Syllabus 20

KARPAGAM ACADEMY OF HIGHER EDUCATION

GAM(Deemed to be University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.

SYLLABUS

SEMESTER-V

16CAP503	Optimization Techniques	4H - 4 C
Instruction Hours	/ week: L: 4 T: 0 P: 0	Marks: Internal: 40
External: 60 Total:	: 100	

End Semester Exam: 3Hours

SCOPE

Optimization Techniques is used to design construction and maintenance of engineering systems involved in decision making both at the managerial and technological level

Objective

- To understand the need and origin of the optimization methods
- To get a broad picture of the various applications of optimization methods used in engineering
- The process of finding the conditions that give the minimum or maximum value of the function where the function represents the effort required or the desired benefits

UNIT I

Optimization Techniques Linear Programming: Graphical method for two dimensional problems - Central problem of linear programming various definitions - statements of basic theorems and properties - Phase I and Phase II of the simplex method - revised simplex method - primal and dual - dual simplex method - sensitivity analysis transportation problem and its solution - assignment problem and its solution by Hungarian method.

UNIT II

Integer Programming:Gomory cutting plane methods - Branch and Bound method. **Queueing Theory:**Characteristics of queueing systems - steady state MIMIt, MlMit/K and MIMIC queueing models.

UNIT III

Replacement Theory: replacement of items that deteriorate - Replacement of items that fail Group replacement and individual replacement.

UNIT IV

Inventory theory:Costs involved in inventory problems - single item deterministic modelseconomic lot size models without shortages and with shortages having production rate infinite and finite.

UNIT V

PERT and CPM: Arrow networks - time estimates- earliest expected time, latest allowable occurrence time and slack - critical path - probability of meeting scheduled date of completion of project calculations on CPM network - various floats for activities - critical path - updating project - operation time cost trade off curve - project time cost trade off curve - selection of schedule based on cost analysis.

(Remarks: No mathematical derivations included).

SUGGESTED READINGS

- 1. Gillet, B.E.,(1990), "Introduction to Operations Research : A Computer Oriented Algorithmic Approach". Tata McGraw Hill, New York.
- 2. Gross D., and Harris. C.M (1980), "Fundamentals of Queueing Theory", John Wiley and Sons, New York.
- 3. Hillier F., and Lieberman. GJ.(1985), "Introduction to Operations Research", Holden Day, New York.
- 4. Karnbo, N.S., .(1985) "Mathematical Programming Techniques", McGraw Hill, New York.
- 5. Kanti Swarup, Gupta, P.K., and Man Mohan (1980), "Operations Research", Sultan Chand & Sons. New Delhi.
- 6. Mital K. V.(1992), "Optimization Methods In Operations Research and System Analysis", New Age International (P) Ltd., New Delhi.
- 7. Saffer, L.R., Fitter J.B., and MeyerW.L.,(1990), "The Critical Path Method". McGraw Hill. New York.

KARPAGAM ACADEMY OF HIGHER EDUCATION

KARPAGAM (Deemed to be University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641 021.

LESSON PLAN DEPARTMENT OF MATHEMATICS

Name of the faculty : Y.Sangeetha

: III M.C.A Class

Subject : Optimization Techniques

Subject Code : 16CAP503

S.No	Lecture Duratio	Topics to be covered	Support Materials
	n		
		Unit – I	
1.	1	Introduction to Linear Programming Problem	R3:Ch:3:Pg:31-34
2.	1	Problems on Mathematical Formulation of Linear Programming Problem	R5:Ch:2:Pg:44-49
3.	1	Graphical solution method – Problems	R5:Ch:2:Pg:56-59
4.	1	Continuation of problems on Graphical method	R5:Ch:2:Pg:60-62
5.	1	Statements of basic theorems and properties	R5:Ch:2:Pg:78-85
6.	1	Phase I and Phase II of the simplex method	R5:Ch:2:Pg:60-62
7.	1	Revised simplex method	R6:Ch:3:Pg:77-80
8.	1	Primal and dual problem	R6:Ch:8:Pg:228-230
9.	1	Dual simplex method	R6:Ch:3:Pg:89-90
10.	1	Sensitivity analysis transportation problem and its solution	R5:Ch:6:Pg:146-182
11.	1	Assignment problem and its solution by Hungarian method	R5:Ch:7:Pg:184-189
12.	1	Recapitulation and discussion of possible question	

		Unit – II	
1.	1	Introduction to Integer Programming problem	R1:Ch:4:Pg:129
2.	1	Gomory cutting plane methods	R1:Ch:4:Pg:164-169
3.	1	Branch and Bound method	R3:Ch:11:Pg:505-510
4.	1	Introduction to Queueing Theory	R3:Ch:17:Pg:766-768
5.	1	Characteristics of queueing systems	R5:Ch:17:Pg:421
6.	1	Steady state M/M/1, queueing model.Steady state M/M/1/K queueing model	R5:Ch:17:Pg:427-430 R5:Ch:17:Pg:439-442
7.	1	Steady state M/M/C queueing model.	R5:Ch:17:Pg:446-456
8.	1	Recapitulation and discussion of possible questions	
Total N	o of Hou	rs Planned For Unit II – 8 hours	
		Unit – III	
1.	1	Introduction to Replacement Theory	R5:Ch:19:Pg:535-536
2.	1	Replacement of items that deteriorate	R5:Ch:19:Pg:537-539
3.	1	Continuation on replacement of items that deteriorate	R5:Ch:19:Pg:540-545
4.	1	Replacement of items that fail Group replacement	R5:Ch:19:Pg:546-549
5.	1	Replacement of items that fail individual replacement.	R5:Ch:19:Pg:555-558
6.	1	Continuation on Replacement of items that fail individual replacement.	R5:Ch:19:Pg:559-563
7.	1	Recapitulation and discussion of possible questions	
Total N	o of Hou	rs Planned For Unit III – 7 hours	1
		Unit – IV	
1.	1	Introduction to Inventory theory	R5:Ch:18:Pg:476-477
2.	1	Costs involved in inventory problems	R5:Ch:18:Pg:478-479

3.	1	Single item deterministic models	R5:Ch:18:Pg:480-485
4.	1	Economic lot size models without shortages	R5:Ch:18:Pg:486
5.		Continuatuion on Economic lot size models without shortages	R5:Ch:18:Pg:487
6.	1	Economic lot size models with shortages having production rate infinite and finite.	R5:Ch:18:Pg:488
7.	1	Economic lot size models with shortages	R5:Ch:18:Pg:489-490
8.	1	Continuatuion on Economic lot size models with shortages	R5:Ch:18:Pg:491-493
9.	1	Economic lot size models without shortages having production rate infinite and finite.	R5:Ch:18:Pg:494-496
10.	1	Recapitulation and discussion of possible question	
Total No	o of Hour	rs Planned For Unit IV– 10 hours	
		Unit – V	
1.	1	Introduction to PERT and CPM	R1:Ch:12:Pg:434-435
2.	1	Arrow networks , Time estimates	R1:Ch:12:Pg:435-436 R1:Ch:12:Pg:437-439
3.	1	Earliest expected time, latest allowable occurrence time and slack	R1:Ch:12:Pg:439-442
4.	1	Various floats for activities ,critical path	R1:Ch:12:Pg:442-443
5.	1	Probability of meeting scheduled date of completion of project	R1:Ch:12:Pg:443-444
6.	1	Calculations on CPM network	R1:Ch:12:Pg:445-447
7.	1	Critical path - updating project	R5:Ch:22:Pg:646-647
8.	1	Operation time cost trade off curve, Project time cost trade off curve	R5:Ch:22:Pg:635-637 R5:Ch:22:Pg:638-640
9.	1	Selection of schedule based on cost analysis.	R5:Ch:22:Pg:648-657

Batch

11.	1	Discussion of previous ESE question papers	
Total N	lo of Hour	s Planned For Unit V -11 hours	

SUGGESTED READINGS

- 1. Gillet, B.E.,(1990), "Introduction to Operations Research : A Computer Oriented Algorithmic Approach". Tata McGraw Hill, New York.
- 2. Gross D., and Harris. C.M (1980), "Fundamentals of Queueing Theory", John Wiley and Sons, New York.
- 3. Hillier F., and Lieberman. GJ.(1985), "Introduction to Operations Research", Holden Day, New York.
- 4. Karnbo, N.S., (1985) "Mathematical Programming Techniques", McGraw Hill, New York.
- 5. KantiSwarup, Gupta, P.K., and Man Mohan (1980), "Operations Research", Sultan Chand & Sons. New Delhi.
- 6. Mital K. V.(1992), "Optimization Methods In Operations Research and System Analysis", New Age International (P) Ltd., New Delhi.
- 7. Saffer, L.R., Fitter J.B., and MeyerW.L.,(1990), "The Critical Path Method". McGraw Hill. New York.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III MCA COURSE CODE: 16CAP503 COURSE NAME: Optimization Techniques BATCH-2017-2019

<u>UNIT-I</u>

UNIT: I

SYLLABUS

Optimization Techniques Linear Programming:Graphical method for two dimensional problems -Central problem of linear programming various definitions - statements of basic theorems and properties - Phase I and Phase II of the simplex method - revised simplex method - primal and dual - dual simplex method - sensitivity analysis transportation problem and its solution - assignment problem and its solution by Hungarian method

LINEAR PROGRAMMING PROBLEM

Introduction:

LPP deals with determining optimal allocations of limited resources to meet given objectives. The resources may be in the form of men, raw materials, market demand, money and machines, etc. The objective is usually maximizing utility etc.

LPP deals with the optimization of a function of decision variables known as objective function. Subject to a set of simultaneous linear equation or inequality known as constraints.

The term linear means that all the variables occurring in the objective function and the constraints are of the 1st degree in the problem under consideration and the term programming means the process of determining the particular course of action.

Mathematical formulation of LPP:

If x_j (j = 1,2,....n) are n decision variables of the problem and if the system is subject to m constraints.

 \therefore The general model can be redundant the form,

Optimize $z = f(x_1, x_2, x_3, ..., x_n)$

Subject to the constraints are,

 $g_j(x_1, x_2, x_3, \dots, x_n) \leq i = j \geq b_i (i = 1, 2, \dots, m)$ and

 $x_1, x_2, x_3, \dots, x_n \ge 0$ (non negativity constraints)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III MCA COURSE CODE: 16CAP503

COURSE NAME: Optimization Techniques BATCH-2017-2019

Procedure for forming a LPP model:

Step 1: Identify the unknown decision variables to be determined and assign symbols to them.

Step 2: Identify all the restrictions or constraints in the problem and express them as linear equations or inequalities of decision variables.

UNIT: I

Step 3: Identify the objective or aim and represent it also as a linear function of decision variables.

Step 4: Express the complete formulating of LPP as a general mathematical model.

Problems:

1. A firm manufactures two types of product A and B and sells them at a profit of Rs. 2 on type A and Rs. 3 on type B. Each product is processed on two machines M_1 and M_2 . Type A requires 1 minute of processing time on M_1 and 2 minutes on M_2 . Type B requires 1 minute on M_1 and 1 minute on M_2 . Machine M_1 is available for not more than 6 hours 40 minutes, while machines M_2 is a available for 10 hours during any work hours. Formulate the problem as LPP so as to maximize the profit.

Solution:

Let us consider x_1 be the no. of units in Type A and x_2 be the no. of units in Type B.

To produce these units of Type A and Type B product it requires,

 $x_1 + x_2$ processing minutes on M_1

 $2x_1 + x_2$ processing minutes on M_2

Since M_1 is available for not more than 400 minutes and M_2 is available for not more then 600 minutes.

Therefore the constraints are:

$$x_1 + x_2 \le 400$$

 $2x_1 + x_2 \le 600$
and $x_1, x_2 \ge 0$

since the profit from Type A is Rs. 2 and profit from Type B is Rs. 3.

CLASS: III MCA	C	OURSE NAME: Optimization Techniques
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019
\therefore The total Profit is $2x_1 + 3$	x_2	
\therefore Here the objective is to matrix	ximize the profi	t
\therefore The objective function is,		
Maximize $z = 2x_1 + $	3 <i>x</i> ₂	
The complete formulation of	the LPP is	
Maximize $z = 2x_1 + $	3 <i>x</i> ₂	
Subject to the constraints,		
$x_1 + x_2 \leq 4$		(i)

 $2x_1 + x_2 \le 600$ (ii) and $x_1, x_2 \ge 0$ (iii)

2.A person wants to decide the constituents of a diet which will fulfill his daily requirements of proteins, fats and carbohydrates at the minimum cost. The choice is to be made from 4 different types of foods. The yields per unit of these foods are given in the following table.

Food Type		Yield/unit		Cost / unit (Rs)
	Proteins	Fats	Carbohydrates	
1	3	2	6	45
2	4	2	4	40
3	8	7	7	85
4	6	5	4	65
Minimum	800	200	700	
Requirement				

Formulate the LPP model for this problem.

Solution:

Let x_1, x_2, x_3, x_4 be the no. of units in the food type 1,2,3 and 4 respectively.

In this problem the main objective is to minimize the cost. \therefore The objective function is,

Minimize $Z = 45x_1 + 40x_2 + 85x_3 + 65x_4$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III MCACOURSE NAME: Optimization TechniquesCOURSE CODE: 16CAP503UNIT: IBATCH-2017-2019

The minimize requirement for proteins, fats and carbohydrates are 800, 200 and 700 respectively.

 \therefore The subject to the constraints are:

 $3x_1 + 4x_2 + 8x_3 + 6x_4 \ge 800$ $2x_1 + 2x_2 + 7x_3 + 5x_4 \ge 200$

$$6x_1 + 4x_2 + 7x_3 + 4x_4 \ge 700$$

And the complete formation of LPP is

Minimize $Z = 45x_1 + 40x_2 + 85x_3 + 65x_4$

 \therefore The subject to the constraints:

 $3x_1 + 4x_2 + 8x_3 + 6x_4 \ge 800$ $2x_1 + 2x_2 + 7x_3 + 5x_4 \ge 200$ $6x_1 + 4x_2 + 7x_3 + 4x_4 \ge 700$ and $x_1, x_2, x_3, x_4 \ge 0$.

3.A Television company operates 2 assembly section A and B. Each section is used assemble the components of 3 types of television (i.e.) color, standard and economy. The expected daily production on each section is as following.

T.V Model	Section A	Section B
Color	3	1
Standard	1	1
Economy	2	6

The daily running cost for two sections average Rs. 6000 for section A and Rs. 4000 for section B. It is given that the company must produce atleast 24 colors, 16 standard and 40 economy TV sets for which an order is pending. Formulate this as a LPP so as to minimize the total cost.

Solution:

Let x_1 and x_2 be the no. of units in section A and section B.

CLASS: III MCA	CC	OURSE NAME: Optimization Techniques
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019
The objective function is,	Minimize Z = 6000x	$x_1 + 4000x_2$
\therefore The subject to the constraints,		
$3x_1 + x_2$	≥ 24	
$x_1 + x_2 \ge$	≥ 16	
$2x_1 + 6x_2$	≥ 40	
The complete formation of LPP i	S,	
Minimize $Z = 600$	$00x_1 + 4000x_2$	

 \therefore The subject to the constraints,

 $3x_1 + x_2 \ge 24$ $x_1 + x_2 \ge 16$ $2x_1 + 6x_2 \ge 40$ and $x_1, x_2 \ge 0$

Graphical Method of the solution of the LPP:

Linear programming problems involving only 2 variables can be effective solved by a graphical method which provides a pictorial representation of the problems and its solutions. And which gives the basic concept used in solving general LPP which may involve any finite no. of variables.

Working procedure for graphical method:

Given a LPP optimize $Z = f(x_i)$,

Subject to the constraints,

 $g_i(x_i) \le =, or \ge b_i, (i=1,2,...,n), (j=1,2,...,m)$

and $x_i \ge 0$ (non-negativity restrictions)

Step 1: Consider the inequality constraints as equalities. Draw the straight lines in the XOY plane corresponding to each equality and non-negativity restrictions.

Step 2: Find the permissible region (feasible region or solution space) for the values of the variable which is the region bound by the lines drawn in step1.

KARPAGAM ACADEMY OF HIGHER EDUCATION COURSE III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: I BATCH-2017-2019

Step 3: Find the points of intersection of the bound lines by solving the equations of the corresponding lines.

Step 4: Find the values of Z at all vertices of the permissible region.

Step 5: (i) For minimization problem choose the vertex for which Z is maximum.

(ii) For minimization problem choose the vertex for which Z is minimum.

Problems:

1. Solve the following LPP by graphical method.

$$Max Z = 3x_1 + 2x_2$$

Subject to the constraints are,

$$-2x_1 + x_2 \le 1$$
$$x_1 \le 2$$

 $x_1 + x_2 \le 3$ and $x_1, x_2 \ge 0$

Solution:

Consider the inequality constraints as equality,

$$-2x_{1} + x_{2} = 1 \qquad \dots \dots (1)$$
$$x_{1} = 2 \qquad \dots \dots (2)$$
$$x_{1} + x_{2} = 3 \qquad \dots \dots (3)$$
$$x_{1} = 0 \qquad \dots \dots (4)$$
$$x_{2} = 0 \qquad \dots \dots (5)$$

From equation (1), putting $x_1 = 0$.

We get $-2x_1 + x_2 = 1$

$$x_2 = 1$$

The point $(x_1, x_2) = (0, 1)$

Similarly, putting $x_2 = 0$, we get

 $-2x_1 + 0 = 1$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III MCACOURSE NAME: Optimization TechniquesCOURSE CODE: 16CAP503UNIT: IBATCH-2017-2019 $x_1 = -1/2 = -0.5$

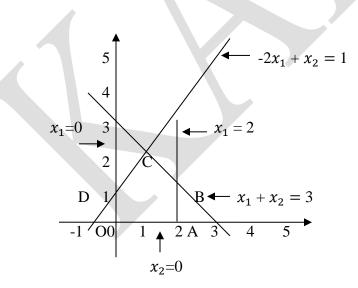
- : The point $(x_1, x_2) = (-0.5, 0)$
- :. The point (0, 1) and (-0.5, 0) lies on the line $-2x_1 + x_2 = 1$

From equation (2) we get, the points (2,1) and (2,2) lies on the line $x_1 = 2$.

From equation (3) putting $x_1 = 0$,

we get $x_1 + x_2 = 3$

 $x_2 = 3$


The point $(x_1, x_2) = (0, 3)$

Similarly putting $x_2 = 0$, we get $x_1 + 0 = 3$

 $x_1 = 3.$

The point $(x_1, x_2) = (3, 0)$

 \therefore The point (0, 3) and (3, 0) lies on the line $x_1 + x_2 = 3$

 \therefore From the graph the vertices of the solution space are,

O(0,0), A(2,0), B(2,1), C(0.7,2.3), D(0,1)

The values of the Z at these vertices are given by,

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III MCA COURSE CODE: 16CAP503 COURSE NAME: Optimization Techniques BATCH-2017-2019

Vertex	$Z = 3x_1 + 2x_2$
O(0,0)	0
A(2,0)	6
B(2,1)	8
C(0.7,2.3)	6.7
D(0,1)	2

UNIT: I

Since the problem is of maximization type.

 \therefore The optimum solution to the LPP is,

Max Z = 8

$$\therefore \quad x_1 = 2 \text{ and } x_2 = 1$$

2.Maximize $Z = 5x_1 + 8x_2$

Subject to constraints, $15x_1 + 10x_2 \le 180$

 $10x_1 + 20x_2 \le 200$

 $15x_1 + 20x_2 \le 210$

and $x_1, x_2 \ge 0$

Solution:

Consider the inequality constraints as equality,

$$15x_1 + 10x_2 = 180$$
(1)

$$10x_1 + 20x_2 = 200$$
(2)

$$15x_1 + 20x_2 = 210$$
(3)

 $x_1 = 0$ (4)

$$x_2 = 0$$
(5)

From the (1) equation, putting $x_1 = 0$, we get

$$15(0) + 10x_2 = 180$$

CLASS: III MCA		HIGHER EDUCATION URSE NAME: Optimization Techniques
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019
	$10x_2 = 180$	
	$x_2 = 18$	
$\therefore \text{ The point } (x_1, x_2) = (0, 1)$	8)	
Similarly putting $x_2 = 0$, w	ve get	
15 <i>x</i> -	$_1 + 10(0) = 180$	
	$15x_1 = 180$	
	$x_1 = 12$	
$\therefore \text{ The point } (x_1, x_2) = (12,$	0)	
From the (2) equation putt	ing $x_1 = 0$, we get	
10(0)	$+20x_2 = 200$	
	$20x_2 = 200$	
	$x_2 = 10$	
: The point $(x_1, x_2) = (0, 1)$	0)	
Similarly putting $x_2 = 0$, w	ve get	
10x	$_1 + 20(0) = 200$	
	$10x_1 = 200$	
	$x_1 = 20$	
: The point $(x_1, x_2) = (20, $	0)	
From the 3 rd equation putti	ng $x_1 = 0$, we get	
15(0	$() + 20x_2 = 210$	
	$20x_2 = 210$	
	$x_2 = 10.5$	
: The point $(x_1, x_2) = (0, 1)$	0.5)	
Similarly putting $x_2 = 0$, w	ve get	

CLASS: III MC	CA	COURSE NAME: Optimization Techniqu
COURSE CODE: 16	CAP503 UNIT: I	BATCH-2017-2019
	$15x_1 = 210$	
	$x_1 = 14$	
\therefore The point (.	$(x_1, x_2) = (14, 0)$	
Γ	Vertex	$\mathbf{Z} = 5x_1 + 8x_2$
-	O(0,0)	0
	A(12,0)	60
	B(10,3)	74
	C(2,9)	82
	D(0,10)	80
∴ The solutio	n Max Z = 82	
$\therefore x_1 = 2, \ x_2$	= 9	
Some more	e cases in a LPP:	
In ger	eral a LPP may have	
1. A unique	optimal solution.	
2. An Infinit	te no. of optimal solutions.	
	unded solution.	
1 No coluti		

4. No solution.

Problems:

1. Solve the following LPP graphically, Maximize $Z = 100x_1 + 40x_2$

Subject to the constraints are:

$$5x_1 + 2x_2 \le 1000$$

 $3x_1 + 2x_2 \le 900$
 $x_1 + 2x_2 \le 500$
and $x_1, x_2 \ge 0$

CLASS: III MCA		COURSE NAME: Optimization Techniques
OURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019
Solution:		
5 <i>x</i> ₁	$+2x_2 = 1000$	(1)
$3x_1$	$+2x_2 = 900$	(2)
x_1	$+2x_2 = 500$	(3)
From (1) equation putting	$x_2 = 0$, we get	
5(0)	$x_1 + 2x_2 = 1000$	
	$2x_2 = 1000$	
	$x_2 = 500$	
$\therefore \text{The point} (x_1, x_2) = (0, 1)$, 500)	
Similarly, $x_2 = 0$, we get	$5x_1 + 0 = 1000$	
	$x_1 = 200$	
$\therefore \text{The point } (x_1, x_2) = (2)$	00, 0)	
From equation (2) putting	$x_1 = 0$, we get	
3(0)	$) + 2x_2 = 900$	
	$x_2 = 450$	
$\therefore \text{The point} \ (x_1, x_2) = (0, x_1)$, 450)	
Similarly $x_2 = 0$, we get,	$3x_1 + 2(0) = 9$	00
	$3x_1 = 900$	
	$x_1 = 300$	
$\therefore \text{The point } (x_1, x_2) = (3)$	00, 0)	
From equation (3) putting	$x_1 = 0$, we get	
$0 + 2x_2 =$	= 500	
$x_2 =$	= 250	

CLASS: III MCA	COU	RSE NAME: Optimization Techniques
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019
: The point $(x_1, x_2) = (0, 2)$	250)	
Similarly $x_2 = 0$, we get,	$x_1 + 0 = 500$	
	$x_1 = 500$	
$\therefore \text{The point } (x_1, x_2) = (500)$	0, 0)	

vertex	$Z = 100x_1 + 40x_2$
O(0,0)	0
A(200,0)	20,000
B(125,187.5)	20,000
C(0,250)	10,000

Since the problem is of maximization type in the above table the two vertices have the same maximization Z value.

Hence the given LPP has an infinite no. of solution. For this problem the optimum solution is Maximize Z = 20,000

 $x_1 = 200$ (or) 125

 $x_2 = 187.5$ (or) 0

2. Max $Z = 2x_1 + 3x_2$ Subject to the constraints:

$$x_1 - x_2 \le 2$$

 $x_1 + x_2 \le 4$ and $x_1, x_2 \ge 0$

Solution:

 $x_1 - x_2 = 2$ (1)

 $x_1 + x_2 = 4$ (2)

From (1) equation $x_1 = 0$ we get,

$$0 - x_2 = 2$$

CLASS: III MCA	0	COURSE NAME: Opti	mization Techniques
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-20	19
$x_2 =$	-2		
:. The point $(x_1, x_2) = (0, -1)$	-2)		
Similarly putting $x_2 = 0$, w	ve get		
<i>x</i> ₁ - 0	0 = 2		
$x_1 =$	2		
: The point $(x_1, x_2) = (2, 0)$))		
From (2) equation $x_1 = 0$ w	e get		
0 + x	₂ = 4		
$x_2 =$	4		
: The point $(x_1, x_2) = (0, 4)$	4)		
Similarly putting $x_2 = 0$, w	re get		
$x_1 + $	0 = 4		
$x_1 =$	4		
: The point $(x_1, x_2) = (4, 0)$))		
verte	ex 1	$\operatorname{Max} \mathbf{Z} = 2x_1 + 3x_2$	
A(0,		12	
B(3,	1)	9	

solution.

3.Max Z = $4x_1 + 3x_2$

Subject to the constraints:

$$x_1 - x_2 \le -1$$

 $-x_1 + x_2 \le 0$ and $x_1, x_2 \ge 0$

CLASS: III MCA	C	OURSE NAME: Optimization Techniques
OURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019
Solution:		
		(1)
$-x_1 + x_2 = 0$		(2)
From (1) equation $x_1 = 0$ w	ve get,	
0 - <i>x</i> ₂	2 = -1	
$x_2 =$	1	
:. The point $(x_1, x_2) = (0, 1)$	1)	
Similarly putting $x_2 = 0$, w	ve get	
<i>x</i> ₁ - 0) = -1	
$x_1 =$		
:. The point $(x_1, x_2) = (-1, -1)$		
From (2) equation $x_1 = 0$ w	re get	
0 + x	$_{2} = 0$	
$x_2 =$	0	
:. The point $(x_1, x_2) = (0, 0)$))	
Similarly putting $x_2 = 0$, w		
$-\chi_1$	0 + 0 = 0	
$x_1 =$	0	
: The point $(x_1, x_2) = (0, 0)$))	
These being no point (x_1, x_2)) common to bot	th the shaded regions. That is, we can not

General Linear Programming Problem:

Simplex Methods:

KARPAGAM ACADEMY OF HIGHER EDUCATION						
CLASS: III MCA		COURSE NAME: Optimization Techniques				
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019				

General Linear Programming Problem:

The Linear Programming Problem involving more than 2 variables will be expressed as follows:

Maximize (or) Minimize $Z = C_1 x_1 + C_2 x_2 + \ldots + C_n x_n$

Subject to the constraints:

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le , =, (\text{or}) \ge b_1$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le a_{2n}$, $(or) \ge b_2$

.....

.....

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le 0$$
, =, (or) $\ge b_m$

and the non-negativity restrictions is, $x_1, x_2, \dots, x_n \ge 0$

Definition – 1:

A set of values x_1, x_2, \dots, x_n which satisfies the constraints of the LPP is called its *solution*.

Definition – 2:

Any solution to a LPP which satisfies the non-negativity restrictions of LPP is called its *Feasible Solution*.

Definition – 3:

Any feasible solution which optimizes the objective function of the LPP is called its *optimum or optimal solution*.

Definition – 4:

If a constraints of a general LPP, $\sum_{i=1}^{n} a_{ij} x_i \le b_i$ (i=1,2,3,....,k)

Then the non – negative variables s_i which are introduced to convert inequalities to the equalities (i.e.) $\sum_{j=1}^{n} a_{ij} x_j + s_i = b_i$ are called *slack variables*.

KARPAGAM ACADEMY OF HIGHER EDUCATION						
CLASS: III MCA COURSE NAME: Optimization Techniques						
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019				

Definition – 5:

If a constraints of a general LPP, $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$ (i=1,2,3,....,k)

Then the non – negative variables s_i which are introduced to convert inequalities to the equalities (i.e.) $\sum_{j=1}^{n} a_{ij} x_j - s_i = b_i$ are called *surplus variables*.

Canonical and standard forms of LPP:

After the formulation of LPP the next step is to obtain its solution. But before any method is used to find its solution the problem must be presented in a suitable form.

There are 2 forms: (1) Canonical form

(2) Standard form

1. The Canonical Form:

The general LPP can always be expressed in the following form,

Maximize $Z = C_1 x_1 + C_2 x_2 + ... + C_n x_n$

Subject to the constraints:

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$

......

.....

 $a_{m1}x_1 + a_{m2}x_2 + \dots \dots + a_{mn}x_n \le b_m$

and the non-negativity restrictions is, $x_1, x_2, \dots, x_n \ge 0$

This form of LPP is called the *Canonical form of LPP*.

Characteristics of the Canonical Form:

- 1. The objective function is of Maximization type.
- 2. All constraints are of less or equal to type.
- 3. All variables x_i are non-negative.

CLASS: III MCA	C	OURSE NAME: Optimization Techniques
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019
1. The Standard Form:		
The general LPP in the form	1,	
Maximize $Z = C_1 x_1$	$+C_2x_2+\ldots+C_n$	x_n
Subject to the constr	aints:	
$a_{11}x_1 + a_{12}x_1$	$x_2 + \dots + a_{1n}$	$a_n x_n = b_1$
$a_{21}x_1 + a_{22}x_1$	$x_2 + \dots + a_2$	$a_n x_n = b_2$
$a_{m1}x_1 + a_{m2}$	$x_{2}x_{2} + \dots + a$	$mnx_n = b_m$
and the non-negativity restri	ictions is, $x_1, x_2, .$	$\dots, \dots, x_n \ge 0$
is known as <i>Standard from</i> .		

Characteristics of the Standard Form:

- 1. The objective function is of Maximization type.
- 2. All constraints are expressed as equation type.
- 3. Right hand sides of each constraint are non-negative.
- 4. All variables x_i are non-negative.

Problems:

1. Express the following LPP in Standard form.

 $Minimize Z = 5x_1 + 7x_2$

Subject to the constraints:

$$x_1 + x_2 \le 8$$

 $3x_1 + 4x_2 \ge 3$
 $6x_1 + 7x_2 \ge 5$ and $x_1, x_2 \ge 0$

Solution:

CLASS: III MCA		COURSE NAME: Optimization Techniques
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019
Since Minimize Z =	- Max(-Z)	
	$= -Max(Z^*) \\ = -(5x_1 + 7x_2)$)
=	$= -5x_1 - 7x_2$	
The given LPP becomes,		
Maximize $Z^* = -5x$	$x_1 - 7x_2$	
Subject to the const	raints:	
$x_1 + x_2 \le 8$		
$3x_1 + 4x_2 \ge$	<u>2</u> 3	
$6x_1 + 7x_2 \ge$	x_1, x_2 s and x_1, x_2	$x_2 \ge 0$
By introducing slack va the LPP is given by,	uriables S ₁ surp	plus variables s_2 , s_3 then the standard form of
Maximize $Z^* = -5x$	$x_1 - 7x_2 + 0s_1 + 0s_1$	$-0s_2 + 0s_3$
Subject to the const	raints:	
$x_1 + x_2 + s_1$	1 = 8	
$3x_1 + 4x_2 -$	$-s_2 = 3$	
$6x_1 + 7x_2 - s_3 = 5$	5 and x_1, x_2	, $s_1, s_2, s_3 \ge 0$
2. Express the following I	DD in Standar	d form

Maximize $Z = 4x_1 + 2x_2 + 6x_3$

Subject to the constraints:

$$2x_1 + 3x_2 + 2x_3 \ge 6$$

$$3x_1 + 4x_2 = 8$$

$$6x_1 - 7x_2 + x_3 \le 10 \text{ and } x_1, x_2, x_3 \ge 0$$

Solution:

KARPAGAM ACADEMY OF HIGHER EDUCATION						
CLASS: III MCA	C	OURSE NAME: Optimization Techniques				
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019				

The given LPP becomes,

Max Z = $4x_1 + 2x_2 + 6x_3$

By introducing slack variables s_2 surplus variables s_1 , then the standard form of the LPP is given by,

Max
$$Z^* = 4x_1 + 2x_2 + 6x_3 + 0s_1 + 0s_2$$

Subject to the constraints:

 $2x_1 + 3x_2 + 2x_3 - s_1 = 6$ $3x_1 + 4x_2 + 0x_3 = 8$ $6x_1 - 7x_2 + x_3 + s_2 = 10$ and $x_1, x_2, x_3, s_1, s_2 \ge 0$

3. Express the following LPP in Canonical form.

Minimize $Z = x_1 + 4x_2$

Subject to the constraints:

$$3x_1 + x_2 \le 5$$

 $-2x_1 + 4x_2 \ge -7$

and
$$x_1, x_2 \ge 0$$

Solution:

The canonical form of the given LPP becomes,

Maximize
$$Z^* = -x_1 - 4x_2$$

Subject to the constraints:

$$3x_1 + x_2 \le 5$$

 $2x_1 - 4x_2 \le 7$
and $x_1, x_2 \ge 0$

CLASS: III MCA	CC	OURSE NAME: Optimization Techniques
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019
4. Maximize $Z = 3x_1 + x_2$	2	
Subject to the constrair	nts:	
$x_1 + 2x_2 \ge$	-5	
$3x_1 + 5x_2 \leq$	≤ 6	
and x_1, x_2	$z_2 \ge 0$	
Solution:		
The canonical form of	a given LPP is,	
$Max Z = 3x_1 + x_2$		
Subject to the const	traints:	
$-x_1 - 2x_2$	≤ 5	
$3x_1 + 5x_2 \leq$	≤ 6	
and x_1, x_2	$z_2 \ge 0$	
5. Express the following l	LPP in the canonic	al form:
Maximize $Z = 2x_1$	$+3x_{2}+x_{3}$	
Subject to the const	traints:	
$4x_1 - 3x_2 - $		
$x_1 + 5x_2 - $	$7x_3 \geq -4$	
and x_1, x_2	$x_3 \ge 0$ and x_2 is un	restricted.
Solution:		
Here x_2 is unrestric	cted, $\therefore x_2$ can be w	ritten as the difference of two non-negative
variables, (i.e.) $x_2 = x_2'$ –		
\therefore The given LPP be	ecomes,	
$Max Z = 2x_1 + 3(x_1 + 3)$	$(x_2' - x_2'') + x_2$	

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III MCACOURSE NAME: Optimization TechniquesCOURSE CODE: 16CAP503UNIT: IBATCH-2017-2019

Subject to the constraints:

$$4x_1 - 3(x_2' - x_2'') + x_3 \le 6$$

-x_1 - 5(x_2' - x_2'') + 7x_3 \le 4

and $x_1, x_2', x_2'', x_3 \ge 0$

The Simplex Method:

Definition – 1:

Given a system of m linear equations with n variables (m < n). The solution obtained by setting (n-m) variables = 0 and solving for the remaining m variables is called a *Basic Solution*.

The m variables are called Basic variables and they form Basic Solution. The (n-m) variables which are put to 0 are called as *Non- basic Variables*.

Definition – 2:

A basic solution is said to be a non-degenerate Basic Solution if none of the Basic variables is zero.

Definition – 3:

A basic solution is said to be a degenerate basic solution if one or more of the basic variables are zero.

Definition – 4:

A feasible solution which is also basic is called a *Basic feasible solution*.

The Simplex Algorithm:

Assuming the existence of an initial basic feasible solution, an optimum solution to any LPP by simplex method is found as follows:

Step 1: Check whether the objective function is to be maximized or minimized. If it is to be minimized, then convert it into a problem of maximization, by Minimize Z = -Maximize(-Z)

Step 2: Check whether all b_i 's are positive. If any of the b_i 's is negative, multiply both sides of that constraint by -1 so as to make its right hand positive.

KARPAGAM ACADEMY OF HIGHER EDUCATION COURSE III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: I BATCH-2017-2019

Step 3: By introducing slack / surplus variables, convert the inequality constraints into equations and express the given LPP into its standard form.

Step 4: Find an initial basic feasible solution and express the above information conveniently in the following simplex table.

		C_j	(C ₁	C_2	C ₃		0	0	0)
C _B	Y _B	X _B	x_1	<i>x</i> ₂	<i>x</i> ₃		<i>s</i> ₁	<i>s</i> ₂	S 3	•••••
C _{B1}	S_1	b_1	<i>a</i> ₁₁	a_{12}	<i>a</i> ₁₃		1	0	0	
C _{B2}	S_2	b_2	<i>a</i> ₂₁	<i>a</i> ₂₂	<i>a</i> ₂₃		0	1	0	
C _{B3}	S_3	b_3	<i>a</i> ₃₁	<i>a</i> ₃₂	<i>a</i> ₃₃		0	0	1	
	•	•	•							
			•	·						
		•								•••••
	•									
			Во	ody matrix				τ	Unit m	atrix
•	·									
(Z _j –	- C _j)	Z_0	$\left(Z_1-C_1\right)$	$(Z_2 - C_2)$		•••••				

(Where C_j – row denotes the coefficients of the variables in the objective function. C_B – column denotes the coefficients of the basic variables in the objective function. Y_B – column denotes the basic variables. X_B – column denotes the values of the basic variables. The coefficients of the non-basic variables in the constraint equations constitute the body matrix while the coefficients of the basic variables constitute the unit matrix. The row $(Z_j - C_j)$ denotes the evaluations (or) index for each column).

Step 5: Compute the net evaluations $(Z_j - C_j)$ (j = 1, 2, ..., n) by using the relation $Z_j - C_j = C_B a_j - C_j$.

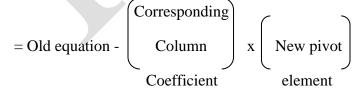
KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III MCACOURSE NAME: Optimization TechniquesCOURSE CODE: 16CAP503UNIT: IBATCH-2017-2019

Examine the sign of Z_j - C_j

- (a) If all $(Z_j C_j) \ge 0$ then the current basic feasible solution X_B is optimal.
- (b) If atleast one $(Z_j C_j) < 0$, then the current basic feasible solution is not optimal, go to the next step.

Step 6: (To find the entering variable)

The entering variable is the non-basic variable corresponding to the most negative value of $(Z_j - C_j)$. Let it be x_r for some j = r. The entering variable column is known as the key column (or) pivot column which is shown marked with an arrow at the bottom. If more than one variable has the same most negative $(Z_j - C_j)$, any of these variables may be selected arbitrarily as the entering variable.


Step 7: (To find the leaving variable)

Compute the ratio $\theta = \text{Min}\left\{\frac{X_{Bi}}{a_{ir}}, a_{ir} > 0\right\}$ (i.e., the ration between the solution column and the entering variable column by considering only the positive denominators)

- (a) If all $a_{ir} \leq 0$, then there is an unbounded solution to the given LPP.
- (b) If atleast one $a_{ir} > 0$, then the leaving variable is the basic variable corresponding to the minimum ratio θ . If $\theta = \frac{x_{Bk}}{a_{kr}}$, then the basic variable x_k leaves the basis. The leaving variable row is called the key row or pivot equation, and the element at the intersection of the pivot column and pivot row is called the pivot element (or) leading element.

Step 8: Drop the leaving variable and introduce the entering variable along with its associated value under C_B column. Convert the pivot element to unity by dividing the pivot equation by the pivot element and all other elements in its column to zero by making use of

- (i) New pivot equation = old pivot equation ÷ pivot element
- (ii) New equation (all other rows including $(Z_j C_j)$ row)

Step 9: Go to step (5) and repeat the procedure until either an optimum solution is obtained or there is an indication of an unbounded solution.

Note(1): For maximization problems:

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: I BATCH-2017-2019

- (i) If all $(Z_i C_i) \ge 0$, then the current basic feasible solution is optimal.
- (ii) If at least one $(Z_j C_j) < 0$, then the current basic feasible solution is not optimal.
- (iii) The entering variable is the non-basic variable corresponding to the most negative value of $(Z_j C_j)$.

Note(2): For minimization problems:

- (i) If all $(Z_i C_i) \le 0$, then the current basic feasible solution is optimal.
- (ii) If at least one $(Z_j C_j) > 0$, then the current basic feasible solution is not optimal.
- (iii) The entering variable is the non-basic variable corresponding to the most positive value of $(Z_j C_j)$.

Note(3): For both maximization and minimization problems, the leaving variable is the basic variable corresponding to the minimum ratio θ .

Problems:

1. Use simplex method to solve following LPP.

Maximize $Z = 4x_1 + 10x_2$

Subject to the constraints:

$$2x_1 + x_2 \le 50$$

$$2x_1 + 5x_2 \le 100$$

$$2x_1 + 3x_2 \le 90$$

and $x_1, x_2 \ge 0$

Solution:

By introducing the slack variables s_1 , s_2 , s_3 . The standard form of the given LPP becomes,

Maximize $Z = 4x_1 + 10x_2 + 0s_1 + 0s_2 + 0s_3$

Subject to the constraints:

$$2x_1 + x_2 + s_1 + 0s_2 + 0s_3 \le 50$$
$$2x_1 + 5x_2 + 0s_1 + s_2 + 0s_3 \le 100$$

KARPAGAM ACADEMY OF HIGHER EDUCATION COURSE III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: I BATCH-2017-2019

 $2x_1 + 3x_2 + 0s_1 + 0s_2 + s_3 \le 90$

and $x_1, x_2, s_1, s_2, s_3 \ge 0$

since there are 3 equations with 5 variables. \therefore The initial basic Feasible Solution is obtained by equality, (5-3) = 2 to 0.

: The initial basic Feasible Solution (IFBS) , s_1 =50, s_2 =100, s_3 =90

Initial iteration:

							A		
			Cj	4	10	0	0	0	
	CB	Y_B	X_B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	<i>s</i> ₂	<i>S</i> ₃	Ratio
	0	<i>S</i> ₁	50	2	1	1	0	0	$\frac{50}{1} = 50$
•	0	<i>S</i> ₂	100	2	5	0	1	0	100/5=20
	0	<i>S</i> ₃	90	2	3	0	0	1	90/3=30
		$Z_j - C_j$	0	-4	-10	0	0	0	
					≜				

 x_2 is entering variable,

 S_2 is leaving variable,

5 is pivot element

I iteration:

		Cj	4	10	0	0	0
CB	Y _B	X_B	x_1	<i>x</i> ₂	<i>s</i> ₁	<i>S</i> ₂	<i>S</i> ₃
0	<i>S</i> ₁	30	8/5	0	1	$^{-1}/_{5}$	0
0	<i>x</i> ₂	20	$^{2}/_{5}$	1	0	¹ / ₅	0
0	<i>S</i> ₃	30	⁴ / ₅	0	0	$^{-3}/_{5}$	1
	$Z_i - C_i$	200	0	0	0	2	0

Since all $Z_j - C_j \ge 0$. \therefore The current Basic Feasible solution is optimal.

: The optimal solution is Max Z = 200, $x_1 = 0$, $x_2 = 20$.

2. Find the non-negative values of x_1, x_2, x_3 which

Max Z =
$$3x_1 + 2x_2 + 5x_3$$

Subject to the constraints,

KARPAGAN	/I ACADEMY O	F HIGHER EDUCATION
CLASS: III MCA		OURSE NAME: Optimization Techniques
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019
$x_1 + $	$4x_2 \le 420$	
$3x_1 +$	$2x_3 \le 460$	
<i>x</i> ₁ +2	$2x_2 + x_3 \le 430$	
and x_1, x_2, x_3	$_3 \geq 0$	

Solution:

By introducing slack variables s_1 , s_2 , s_3 . The standard form of the given

 $Max Z = 3x_1 + 2x_2 + 5x_3 + 0s_1 + 0s_2 + 0s_3$

Subject to the constraints,

$$x_{1} + 4x_{2} + 0x_{3} + s_{1} + 0s_{2} + 0s_{3} = 420$$

$$3x_{1} + 0x_{2} + 2x_{3} + 0s_{1} + s_{2} + 0s_{3} = 460$$

$$x_{1} + 2x_{2} + x_{3} + 0s_{1} + 0s_{2} + s_{3} = 430$$

and $x_{1}, x_{2}, x_{3}, s_{1}, s_{2}, s_{3} \ge 0$

The IFBS is given by, $s_1 = 420, s_2 = 460, s_3 = 430$

Initial iteration:

			Cj	3	2	5	0	0	0	Ratio
	CB	Y_B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	θ
	0	<i>s</i> ₁	420	1	4	0	1	0	0	⁴²⁰ / ₀ =∞
←	0	<i>s</i> ₂	460	3	0	2	0	1	0	$\frac{460}{2} = 230$
	0	<i>S</i> ₃	430	1	2	1	0	0	1	430/1 = 430
		$Z_j - C_j$	0	-3	-2	-5	0	0	0	
						Î				

 S_2 is leaving variable, x_3 is entering variable, 2 is pivot element

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: I BATCH-2017-2019 I iteration: c c 0 Ratio

			c_j	3	Z	5	0	0	0	Katio	
	CB	Y_B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>s</i> ₁	<i>S</i> ₂	<i>S</i> ₃	θ	
	0	<i>S</i> ₁	420	1	4	0	1	0	0	$\frac{420}{4} = 105$	
	5	<i>x</i> ₃	230	$^{3}/_{2}$	0	1	0	$^{1}/_{2}$	0	$230/0^{=\infty}$	
-	0	<i>S</i> ₃	200	$^{-1}/_{2}$	2	0	0	$^{-1}/_{2}$	1	$\frac{200}{2^{2}}$	
		$Z_j - C_j$	1150	⁹ / ₂	-2	0	0	$\frac{5}{2}$	0		
					↑						

 s_3 is leaving variable, x_2 is entering variable, 2 is pivot element

II iteration:

		Cj	3	2	5	0	0	0
CB	Y_B	X_B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>s</i> ₁	<i>S</i> ₂	<i>S</i> ₃
0	<i>S</i> ₁	20	2	0	0	1	0	-2
5	<i>x</i> ₃	230	$^{3}/_{2}$	0	1	0	$^{1}/_{2}$	0
2	<i>x</i> ₂	100	$^{-1}/_{4}$	1	0	0	$-1/_{4}$	$\frac{1}{2}$
	$Z_j - C_j$	1350	4	0	0	0	2	1

: Max Z = 1350, $x_1 = 0$, $x_2 = 100$, $x_3 = 230$

Artificial Variable Techniques:

To solve a LPP by a simplex method. We have to start with initial Basic feasible solution and construct the initial simplex table. In the previous problems the slack variable provided the IFBS. However in some problems the slack variables cannot provide the IFBS. In these problems atleast one of the constraints is of equal to or greater than or equal to type. To solve such a LPP there are 2 methods available:

(1) Big-M method (or) M-Technique (or) The Method of penalties

(2) Two Phase method.

Problems:

1. Use Big- $M \setminus M$

$$\operatorname{Min} \mathbf{Z} = 4x_1 + 3x_2$$

CLASS: III MCA	COURSE NAME: Optimization Te				
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019			
Subject to the constra	unts,				
$2x_1 + x_2 \ge 1$	0				
$-3x_1 + 2x_2 \le$	6				
$x_1 + x_2 \le 6$	and $x_1, x_2 \ge 0$				
Solution:					
The standard form of the given LPP	is				
Max $Z^* = -4x$	$x_1 - 3x_2 + 0s_1 + 0$	$s_2 + 0s_3 - MR_1 - MR_2$			
Subject to the constra	uints,				
$2x_1 + x_2 - s_1$	$+R_1 = 10$				

			Cj	-4	-3	0	0	0	-M	-M	Ratio
	CB	Y_B	X_B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>R</i> ₁	<i>R</i> ₂	θ
•	-M	<i>R</i> ₁	10	2	1	-1	0	0	1	0	$\frac{10}{2} = 5$
	0	<i>S</i> ₂	6	-3	2	0	1	0	0	0	$^{-6}/_{3} = -2$
	-M	<i>R</i> ₂	6	1	1	0	0	-1	0	1	$\frac{6}{1} = 6$
		$Z_j - C_j$	-16M	-3M+4	-2M+3	М	0	М	0	0	

 R_1 is leaving variable, x_1 is entering variable, 2 is pivot element

I iteration:

Prepared by Y.Sangeetha, Asst Prof, Department of Mathematics, KAHE

 $-3x_1 + 2x_2 + s_2 = 6$

 $x_1 + x_2 - s_3 + R_2 = 6$

and $x_1, x_2, s_1, s_2, s_3, R_1, R_2 \ge 0$

: The IFBS is given by, $R_1 = 10$, $s_2 = 6$, $R_2 = 6$

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III MCA COURSE CODE: 16CAP503 COURSE NAME: Optimization Techniques
BATCH-2017-2019

			Cj	-4	-3	0	0	0	-M	Ratio
	C _B	Y_B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	<i>s</i> ₂	<i>S</i> ₃	<i>R</i> ₂	θ
	-4	<i>x</i> ₁	5	1	1/2	-1/2	0	0	0	10
	0	<i>S</i> ₂	21	0	⁷ /2	$^{-3}/_{2}$	1	0	0	6
←	-M	<i>R</i> ₂	1	0	¹ / ₂	¹ / ₂	0	-1	1	2
		$Z_j - C_j$	-20-M	0	$^{2-M}/_{2}$	$4 - M/_{2}$	0	М	0	

UNIT: I

 R_2 is leaving variable, x_2 is entering variable, $\frac{1}{2}$ is pivot element

II iteration:

		Cj	-4	-3	0	0	0
C_B	Y_B	X_B	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>S</i> ₂	<i>S</i> ₃
-4	<i>x</i> ₁	4	1	0	-1	0	1
0	<i>S</i> ₂	14	0	0	-5	1	7
-3	<i>x</i> ₂	2	0	1	1	0	-2
	$Z_j - C_j$	-22	0	0	1	0	2

Since all $Z_j - C_j \ge 0$, \therefore the current solution is optimal.

The optimal solution is, Max $Z^* = -22$, $x_1 = 4$, $x_2 = 2$

But, Min Z = -(Max (-Z))

= - (- 22)

Min Z = 22,
$$x_1 = 4$$
, $x_2 = 2$

2. Solve the following LPP by Simplex Method:

Max Z = $3x_1 + 2x_2$

Subject to the constraints,

$$2x_1 + x_2 \le 2$$

$$3x_1 + 4x_2 \ge 12$$
 and $x_1, x_2 \ge 0$

Solution:

By introducing the slack variable s_1 and surplus variable s_2 ,

artificial variable R_1 . The standard form of the LPP becomes,

KARPAGAM ACADEMY OF HIGHER EDUCATION COURSE: III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: I BATCH-2017-2019

 $Max Z = 3x_1 + 2x_2 + 0s_1 + 0s_2 + 0s_3 - MR_1$

Subject to the constraints,

 $2x_1 + x_2 + s_1 = 2$

$$3x_1 + 4x_2 - s_2 + R_1 = 12$$

and
$$x_1, x_2, s_1, s_2, s_3, R_1 \ge 0$$

 \therefore The IBFS, $s_1 = 2$, $R_1 = 12$

Initial Iteration:

			C _j	3	2	0	0	-M	Ratio
	CB	Y _B	X_B	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>S</i> ₂	<i>R</i> ₁	θ
•	0	<i>S</i> ₁	2	2	1	1	0	0	2
	-M	<i>R</i> ₁	12	3	4	0	-1	1	3
		$Z_j - C_j$	-12M	-3M-3	-4M-2	0	М	0	
					1				

 S_1 is leaving variable, x_2 is entering variable, 1 is pivot element

I Iteration:

		Cj	3	2	0	0	-M
CB	Y _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	<i>S</i> ₂	<i>R</i> ₁
2	<i>x</i> ₂	2	2	1	1	0	0
-M	R_1	4	-5	0	-4	-1	1
	$Z_j - C_j$	4-4M	1+5M	0	4M+2	М	0

∴ Since all $Z_j - C_j \ge 0$ and artificial variable R_1 appears in the basis at the non – zero level. ∴ The given LPP does not possess any feasible solution. But the given LPP Possess a pseudo optimal solution.

3. Use penalty method to solve,

Max Z =
$$2x_1 + x_2 + x_3$$

Subject to the constraints,

KARPAGA	M ACADEMY OF	HIGHER EDUCATION
CLASS: III MCA	CC	OURSE NAME: Optimization Techniques
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019
$4x_1$	$+6x_2+3x_3 \le 8$	
3 <i>x</i> ₁	$-6x_2 - 4x_3 \le 1$	

 $2x_1 + 3x_2 - 5x_3 \ge 4$

and $x_1, x_2, x_3 \ge 0$

Solution:

By introducing the slack variable s_1, s_2 and surplus variable s_3 . Artificial variable R_1 . The standard form of the LPP becomes,

 $Max Z = 2x_1 + x_2 + x_3 + 0s_1 + 0s_2 + 0s_3 - MR_1$

Subject to the constraints,

$$4x_1 + 6x_2 + 3x_3 + s_1 = 8$$

$$3x_1 - 6x_2 - 4x_3 + s_2 = 1$$

$$2x_1 + 3x_2 - 5x_3 - s_3 + R_1 = 4$$

and $x_1, x_2, x_3, s_1, s_2, s_3, R_1 \ge 0$

: The IBFS is $s_1 = 8, s_2 = 1, R_1 = 4$

Initial Iteration:

			Cj	2	1	1	0	0	0	-M	Ratio
	C _B	Y _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>s</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>R</i> ₁	θ
	0	<i>S</i> ₁	8	4	6	3	1	0	0	0	$\frac{8}{6} = \frac{4}{3}$
	0	<i>S</i> ₂	1	3	-6	-4	0	1	0	0	
◀	-M	<i>R</i> ₁	4	2	3	-5	0	0	-1	1	⁴ / ₃
		$Z_j - C_j$	-4M	-2M-2	-3M-1	5M-1	0	0	М	0	
					1						

 R_1 is leaving variable, x_2 is entering variable, 3 is pivot element

	SS: III MO					SE NAM	•		n Techn	iques
COURSE	CODE: 16	5CAP503	U	NIT: I	B	BATCH-2	017-20	019		
I It	teration:									
			Cj	2	1	1	0	0	0	Ratio
	C _B	Y _B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	θ
←	0	<i>S</i> ₁	0	0	0	13	1	0	2	0
	0	<i>s</i> ₂	9	7	0	-14	0	1	-2	
	1	<i>x</i> ₂	⁴ / ₃	$^{2}/_{3}$	1	$^{-5}/_{3}$	0	0	$^{-1}/_{3}$	
	s. is	$Z_j - C_j$	$\frac{4}{3}$	$-4/_3$	0 g variab	⁻⁸ / ₃		0 elemen	-1/3	
II i	S ₁ is iteration	leaving vari				⁻⁸ / ₃			-1/3	
II i		leaving vari			g variab	⁻⁸ / ₃			⁻¹ / ₃	0 Rati
		leaving vari	iable, x_3 i	is enterin	g variab	⁻⁸ / ₃ ↑ le, 13 is	s pivot	elemen	⁻¹ / ₃ t	$\frac{0}{\frac{1}{23}}$ Ratio
	iteration	leaving vari	iable, x_3 i	is enterin	g variab	$-8/_{3}$	s pivot	elemen 0	t	θ
CB	iteration Y _B	leaving vari	iable, x_3 i 2 x_1	is enterin $ \frac{1}{x_2} $	g variab	-8/3 1 1 $\frac{1}{\frac{2}{3}}$	s pivot 0 s_1	elemen 0 S_2	-1/3 t	$ \begin{array}{c c} & \theta \\ \hline & & \\ \hline & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline \hline & & \\ \hline \hline \hline & & \\ \hline \hline \hline \hline & & \\ \hline \hline$
c_B 1	Y _B X ₃	leaving vari	iable, x_3 i $ \begin{array}{c} 2 \\ x_1 \\ 0 \\ \end{array} $	is enterin	g variab	$-\frac{8}{3}$ 1 1 $\frac{1}{3}$ 1 0 1	$\frac{1}{1}$	elemen 0 S_2 0	-1/3 t	θ

III Iteration:

		c_j	2	1	1	0	0	0
C _B	Y_B	X_B	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃
1	<i>x</i> ₃	0	0	0	0	¹ / ₁₃	0	$^{2}/_{13}$
2	<i>x</i> ₁	⁹ / ₇	1	0	0	$^{2}/_{13}$	¹ / ₇	² / ₉₁
1	<i>x</i> ₂	¹⁰ / ₂₁	0	1	0	¹ / ₃₉	$^{2}/_{21}$	$^{-17}/_{273}$
	$Z_j - C_j$	⁶⁴ / ₂₁	0	0	0	¹⁶ /39	⁸ / ₂₁	³⁷ / ₂₇₃

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III MCA COURSE NAME: Optimization Techniques

COURSE CODE: 16CAP503

COURSE NAME: Optimization Techniqu BATCH-2017-2019

: The optimal solution is Max $Z = \frac{64}{21}$, $x_1 = \frac{9}{7}$, $x_2 = \frac{10}{21}$, $x_3 = 0$

UNIT: I

Duality in LPP:

- 1. For every LPP there is a unique LPP associated with it, involving the same data and closely related optimal solutions.
- 2. The original problem is then called *Primal Problem*. While other is called its *Dual Problem*.
- 3. But in General, the two problems are said to be Dual of each other.

Formulation of Dual Problems:

There are 2 important forms of primal – Dual pairs namely,

- 1. Symmetric Form
- 2. Unsymmetrical Form

I. Symmetric Form:

Consider the following LPP

Max Z = $C_1 x_1 + C_2 x_2 + \dots + C_n x_n$

Subject to the constraints:

$$a_{11}x_1 + a_{12}x_2 + \dots \dots + a_{1n}x_n \le b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$

.....

 $a_{m1}x_1 + a_{m2}x_2 + \dots \dots + a_{mn}x_n \le b_m$

and the non-negativity restrictions is, $x_1, x_2, \dots, x_n \ge 0$

This form of LPP is called the *Symmetric Form of LPP*.

Procedure for constructing the Dual Problem:

Rule 1:

KARPAGAN	M ACADEMY O	F HIGHER EDUCATION
CLASS: III MCA	С	OURSE NAME: Optimization Techniques
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019

The Maximization problem in the primal becomes the minimization problem in the Dual and vice versa.

Rule 2:

The Maximization problem has less or equal to constrain while minimization problem has greater than or equal.

Rule 3:

If the primal contains m contains and n variables then the dual will contain n constraints and m variables. (i.e) Transpose of the Body Matrix of the primal problem gives the Body Matrix of the Dual and vice versa.

Rule 4:

The constants C_1, C_2, \ldots, C_n in the objective function of the primal appear in the constraints of the dual.

Rule 5:

The constants b_1, b_2, \ldots, b_m in the constraints of the primal appear in the objective function of the dual.

Rule 6:

The variables in both problems are non-negative.

Problems:

1. Write the dual of the primal LPP,

Max Z =
$$x_1 + 2x_2 + x_3$$

Subject to the constraints,

$$2x_1 + x_2 - x_3 \le 2$$

-2x_1 + x_2 - 5x_3 \ge -6
$$4x_1 + x_2 + x_3 \le 6$$

and x_1, x_2, x_3 \ge 0

KARPAGAN		OF HIGHER EDUCATION
CLASS: III MCA		COURSE NAME: Optimization Techniques
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019

Solution:

The given primal problem is,

Max Z =
$$x_1 + 2x_2 + x_3$$

Subject to the constraints,

 $2x_1 + x_2 - x_3 \le 2$ $2x_1 - x_2 + 5x_3 \le 6$ $4x_1 + x_2 + x_3 \le 6$ and $x_1, x_2, x_3 \ge 0$

since the given problem is Maximization type with less than or equal to constraints and also it has the three variables x_1 , x_2 , x_3 and three constraints.

: The dual problem may be Minimization type with \geq to constraints and also it will have the three variables y_1 , y_2 , y_3 and three constraints.

 \therefore The dual problem will become,

 $Min W = 2y_1 + 6y_2 + 6y_3$

Subject to the constraints,

$$2y_1 + y_2 + 4x_3 \ge 1$$
$$y_1 - y_2 + y_3 \ge 2$$
$$-y_1 + 5x_2 + y_3 \ge 1$$

and $y_1, y_2, y_3 \ge 0$

2. Min Z = $4x_1 + 6x_2 + 18x_3$

Subject to the constraints,

$$x_1 + 3x_2 \ge 3$$

 $x_2 + 2x_3 \ge 5$

and $x_1, x_2, x_3 \ge 0$

Solution:

ER EDUCATION
NAME: Optimization Techniques
СН-2017-2019

Min Z = $4x_1 + 6x_2 + 18x_3$

Subject to the constraints,

 $x_1 + 3x_2 + 0x_3 \ge 3$ $x_2 + 0x_1 + 2x_3 \ge 5$

and
$$x_1, x_2, x_3 \ge 0$$

since the given problem is minimization type with \geq to constraints and has the three variables and 2 constraints.

: The Dual problem will be Maximization type \leq constraints and then 2 variables and 3 constraints.

 \therefore The Dual problems will becomes,

 $Max W = 3y_1 + 5y_2$

Subject to the constraints,

$$y_1 + 0y_2 \le 4$$

 $3y_1 + y_2 \le 6$
 $0y_1 + 2y_2 \le 18$
and $y_1, y_2 \ge 0$

II. Unsymmetrical Form:

1. Write the dual of the given primal LPP,

$$Max Z = 3x_1 + 10x_2 + 2x_3$$

Subject to the constraints,

$$2x_1 + 3x_2 + 2x_3 \le 7$$
$$3x_1 - 2x_2 + 4x_3 = 5$$

and
$$x_1, x_2, x_3 \ge 0$$

Solution:

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: I BATCH-2017-2019

Since the primal problem is maximization type with \leq constraints and equality constraints. It has 3 variables and 2 constraints.

 \therefore The Dual problem is maximization type with \ge type inequality. It has 2 variables and 3 constraints. If the given primal is an equality constraints.

 \therefore In Dual problem, the corresponding dual variable y_2 is unrestricted.

 \therefore The Dual problem will become,

Min W = $7y_1 + 3y_2$

Subject to the constraints,

 $2y_1 + 3y_2 \ge 4$ $3y_1 - 2y_2 \ge 6$ $2y_1 + 4y_2 \ge 18$

and $y_1 \ge 0$, y_2 is unrestricted.

2. Min $Z = x_2 + 3x_3$

Subject to the constraints,

```
2x_1 + x_2 \le 3 \implies -2x_1 - x_2 \ge -3x_1 + 2x_2 + 6x_3 \ge 5-x_1 + x_2 + x_3 = 2
```

and $x_1, x_2 \ge 0$, x_3 is unrestricted.

Solution:

Since the primal problem is minimization type with \geq constraints and equality constraints. It has 3 variables and 3 constraints.

: The Dual problem is Maximization type with \leq constraints. It will have 3 variables and 3 constraints.

 \therefore In the primal problem, the 3rd constraint is equality constraint.

KARPAGAM ACADEMY OF HIGHER EDUCATION COURSE III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: I BATCH-2017-2019

 \therefore The corresponding dual variable y_3 is unrestricted and also.

In the primal problem x_3 is unrestricted.

- \therefore The corresponding dual 3rd constraint is an equality constraint.
- \therefore The dual problem will becomes,

 $Max W = -3y_1 + 5y_2 + 2y_3$

Subject to the constraints,

$$-2y_1 + y_2 - y_3 \le 0$$

$$-y_1 + 2y_2 + y_3 \le 1$$

$$0y_1 + 6y_2 + y_3 = 3$$

and $y_1, y_2 \ge 0, y_3$ is unrestricted.

Use duality to solve the following LPP:

1. Min
$$Z = 2x_1 + 2x_2$$

Subject to the constraints,

$$2x_1 + 4x_2 \ge 1$$

-x_1 - 2x_2 \le -1 \implies x_1 + 2x_2 \ge 1
$$2x_1 + x_2 \ge 1$$

and $x_1, x_2, x_3 \ge 0$

Solution:

The Dual problem of the given primal problem is

Max W = $y_1 + y_2 + y_3$

Subject to the constraints,

 $2y_1 + y_2 + 2y_3 \le 2$

COURSE CODE: 16CAP503UNIT: IBATCH-2017-2019 $4y_1 + 2y_2 + y_3 \le 2$ and $y_1, y_2, y_3 \ge 0$ By introducing the slack variables s_1 and s_2 the standard form of the is,Max W = $y_1 + y_2 + y_3 + 0s_1 + 0s_2$ Subject to the constraints, $2y_1 + y_2 + 2y_3 + s_1 + 0s_2 = 2$	lual problem
and $y_1, y_2, y_3 \ge 0$ By introducing the slack variables s_1 and s_2 the standard form of the is, Max $W = y_1 + y_2 + y_3 + 0s_1 + 0s_2$	lual problem
By introducing the slack variables s_1 and s_2 the standard form of the is, Max W = $y_1 + y_2 + y_3 + 0s_1 + 0s_2$	lual problem
is, Max W = $y_1 + y_2 + y_3 + 0s_1 + 0s_2$	lual problem
Max W = $y_1 + y_2 + y_3 + 0s_1 + 0s_2$	
Subject to the constraints, $2y_1 + y_2 + 2y_3 + s_1 + 0s_2 = 2$	
$4y_1 + 2y_2 + y_3 + 0s_1 + s_2 = 2$	
and $y_1, y_2, y_3, s_1, s_2 \ge 0$	
\therefore The IBFS is given by $s_1 = 2, s_2 = 2$	
Initial Iteration:	
c_i 1 1 1 0 0	Ratio
c_B Y_B X_B y_1 y_2 y_3 s_1 s_2	θ
0 s_1 2 2 1 2 1 0	$\frac{2}{2}=1$

 s_2 is leaving variable, y_1 is entering variable, 4 is pivot element

-1

-1

0

0

I Iteration:

 $Z_j - C_j$

0

-1

			Cj	1	1	1	0	0	Ratio θ
	CB	Y _B	X _B	<i>y</i> ₁	y_2	<i>y</i> ₃	<i>S</i> ₁	<i>S</i> ₂	
←	0	<i>s</i> ₁	1	0	0	3/2	1	- ¹ / ₂	² / ₃
	1	<i>y</i> ₁	¹ / ₂	1	¹ / ₂	1/4	0	1/4	$\frac{4}{2} = 2$
		$W_j - C_j$	¹ / ₂	0	-1/2	-3/4	0	1/4	
						1			

 S_1 is leaving variable, y_3 is entering variable, $\frac{3}{2}$ is pivot element

CLAS	5S: III MC	A		COURSE NAME: Optimization Techniques						
COURSE	CODE: 16	CAP503	UN	IT: I	BATCH-	2017-2019				
I Iteratio	on:									
		Cj	1	1	1	0	0	Ratio		
CB	Y _B	X_B	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>s</i> ₁	<i>S</i> ₂	θ		
1	<i>y</i> ₃	² / ₃	0	0	1	² / ₃	- ¹ / ₃			
1	<i>y</i> ₁	¹ / ₃	1	1/2	0	- ¹ / ₆	1/3	2/3		
I	$W_j - C_j$	1	0	$-\frac{1}{2}$	0	1/2	0	•		

y_1 is leaving variable, y_2 is entering variable, $\frac{1}{2}$ is pivot element

III Iteration:

		Cj	1	1	1	0	0
CB	Y _B	X _B	y_1	<i>y</i> ₂	<i>y</i> ₃	<i>S</i> ₁	<i>S</i> ₂
1	<i>y</i> ₃	² / ₃	0	0	1	² / ₃	- ¹ / ₃
1	<i>y</i> ₂	² / ₃	2	1	0	$-\frac{1}{3}$	² / ₃
	$W_j - C_j$	4/3	1	0	0	¹ / ₃	¹ / ₃

The Solution of Dual problem is,

Max W =
$$\frac{4}{3}$$
, $y_1 = 0$, $y_2 = \frac{2}{3}$, $y_3 = \frac{2}{3}$

The Solution of Primal problem is,

Min Z =
$$\frac{4}{3}$$
, $x_1 = \frac{1}{3}$, $x_2 = \frac{1}{3}$

2. Apply the principal of Duality to solve the LPP:

Max $Z = 3x_1 + 2x_2$

Subject to the constraints,

$$x_1 + x_2 \ge 1 \implies -x_1 - x_2 \le -1$$
$$x_1 + x_2 \le 7$$

CLASS: III MCA			OF HIGHE COURSE N				n Tech	nique	s
OURSE CODE: 16CAP503	ι	JNIT: I		<u>CH-2017</u>	-			•	
<i>x</i> ₁ ·	$+2x_{2} \leq$	≤10							
	<i>x</i> ₂ ≤	≤ 3							
and	$1 x_1, x_2$	≥0							
Solution:									
The Dual problem	of the	given pri	mal problen	n is give	n by,				
Mi	n W = -	$-y_1 + 7y_1$	$y_2 + 10y_3 +$	3 <i>y</i> ₄					
Sut	oject to	the const	raints,						
	- <i>y</i>	$y_1 + y_2 +$	$y_3 \ge 3$						
	—у	$y_1 + y_2 +$	$-2y_3 + y_4$	≥2					
	and	$d y_1, y_2, y_3$	y ₃ , y ₄ ≥0						
By introducing the	e 2 surp	olus variał	bles s_1 and	s_2 and A	rtific	ial va	riable	s R ₁ ,	R _{2.}
The standard form of the	dual pro	oblem is,							
Ma	$X W^* =$	$y_1 - 7y_2$	$-10y_{3} -$	$3y_4 + 0s_4$	1+ 0s	₂ –M	$R_1 - 1$	MR ₂	
Sub	oject to	the const	raints,						
	- <i>y</i>	$y_1 + y_2 +$	$y_3 - s_1 + 0$	$s_2 + R_1$	= 3				
	-y	$y_1 + y_2 +$	$-2y_3 + y_4 -$	+ 0 <i>s</i> ₁ –	<i>s</i> ₂ +	$R_{2} =$	2		
	and	d y_1, y_2, y_3	x_3, y_4, s_1, s_2	R_1, R_2	<u>></u> 0				
The IBFS is given by, $R_{\rm f}$	$_{1} = 3, I$	$R_2 = 2$							
Initial Iteration:									

			J									θ
	C _B	Y_B	X_B	y_1	<i>y</i> ₂	y_3	y_4	<i>s</i> ₁	<i>S</i> ₂	<i>R</i> ₁	<i>R</i> ₂	U
	-M	<i>R</i> ₁	3	-1	1	1	0	-1	0	1	0	$^{3}/_{1} = 3$
-	-M	<i>R</i> ₂	2	-1	1	2	1	0	-1	0	0	$\frac{2}{2} = 1$
		$W_j^* - C_j$	-3M- 2M	2M-1	-2M+7	-3M+10	-M+3	М	М	0	0	

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III MCACOURSE NAME: Optimization TechniquesCOURSE CODE: 16CAP503UNIT: IBATCH-2017-2019

 R_2 is leaving variable, y_3 is entering variable, 2 is pivot element

I Iteration:

			Cj	1	-7	-10	-3	0	0	-M	Ratio
	C _B	Y _B	X _B	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>S</i> ₁	<i>S</i> ₂	<i>R</i> ₁	U
	-M	<i>R</i> ₁	2	- ¹ / ₂	¹ / ₂	0	⁻¹ / ₂	-1	¹ / ₂	1	4
•	-10	<i>Y</i> ₃	1	- ¹ / ₂	1/2	1	¹ / ₂	0	- ¹ / ₂	0	2
		$W_j^* - C_j$	-2M-10	^M / ₂ +4	$-{}^{M}/{}_{2}+2$	0	M_{2}^{-2}	М	-M/2+5	0	

 y_3 is leaving variable, y_2 is entering variable, $\frac{1}{2}$ is pivot element

II Iteration:

			Cj	1	-7	-10	-3	0	0	-M	Ratio
	CB	Y_B	X_B	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	y_4	<i>s</i> ₁	<i>s</i> ₂	R_1	θ
←	-M	<i>R</i> ₁	1	0	0	-1	-1	-1	1	1	1
	-7	<i>y</i> ₂	2	-1	1	2	1	0	-1	0	
		$W_j^* - C_j$	-M-14	6	0	M-4	M-4	М	-M+7	0	
									▲		

 R_1 is leaving variable, S_2 is entering variable, 1 is pivot element

III Iteration:

		cj	1	-7	-10	-3	0	0
CB	Y _B	X_B	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>S</i> ₁	<i>S</i> ₂
0	<i>S</i> ₂	1	0	0	-1	-1	-1	1
-7	<i>y</i> ₂	3	-1	1	1	0	-1	0
	$W_j^* - C_j$	-21	6	0	3	3	7	0

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 **UNIT: I** BATCH-2017-2019 Max $W^* = -21$, $y_1 = 0$, $y_2 = 3$, $y_3 = 0$, $y_4 = 0$. **Dual Solution:** Max W = 21*Primal Solution:* Min Z = 21, x_1 = 7, x_1 = 0. 3. Write down the dual of the following LPP and solve it. Max Z = $4x_1 + 2x_2$ Subject to the constraints, $-x_1 - x_2 \le -3$ $-x_1 + x_2 \ge -2 \quad \Longrightarrow \quad x_1 - x_2 \le 2$ and $x_1, x_2 \ge 0$ \therefore The Dual problem of the given primal problem is, Min W = $-3y_1 + 2y_2$ Subject to the constraints, $-y_1 + y_2 \ge 4$, $-y_1 - y_2 \ge 2$, and $y_1, y_2 \ge 0$ To solve the Dual problem, Consider Max $W^* = 3y_1 - 2y_2$ Subject to the constraints, $-y_1 + y_2 \ge 4$ $-y_1 - y_2 \ge 2$ and $y_1, y_2 \geq 0$

: By introducing the surplus variables s_1 and s_2 and Artificial variable R_1, R_2 .

The standard form is given by,

Max $W^* = 3y_1 - 2y_2 + 0s_1 + 0s_2 - MR_1 - MR_2$

Subject to the constraints,

$$-y_1 + y_2 + s_1 + 0s_2 + R_1 = 4$$

ACADEMY	OF HIGHER EDUCATION
	COURSE NAME: Optimization Techniques
UNIT: I	BATCH-2017-2019

$$-y_1 - y_2 + 0s_1 - s_2 + R_2 = 2$$

and
$$y_1, y_2, s_1, s_2, R_1, R_2 \ge 0$$

 \therefore The IBFS is given by, $R_1 = 4, R_2 = 2$

Initial Iteration:

		Cj	3	-2	0	0	-M	-M	Ratio
CB	Y_B	X _B	y_1	<i>y</i> ₂	<i>s</i> ₁	<i>S</i> ₂	R_1	<i>R</i> ₂	θ
-M	<i>R</i> ₁	4	-1	1	-1	0	1	0	4
-M	<i>R</i> ₂	2	-1	-1	0	-1	0	1	
	$W_j^* - C_j$	-6M	2M-3	2	М	М	0	0	

Since all $W_j^* - C_j \ge 0$ and the artificial variable R_1, R_2 appears in the basis at non-zero level.

 \therefore The Dual problem does not possess any optimum Basic Feasible Solution.

4. Use duality to solve the LPP:

 $Min Z = 50x_1 - 80x_2 - 140x_3$

Subject to the constraints,

$$x_1 - x_2 - 3x_3 \ge 4$$

 $x_1 - 2x_2 - 2x_3 \ge 3$
and $x_1, x_2, x_3 \ge 0$

Solution:

The Dual Problem of the given primal is,

 $Max W = 4y_1 + 3y_2$

Subject to the constraints,

$$y_1 + y_2 \le 50$$

 $-y_1 - 2y_2 \le -80 \implies y_1 + 2y_2 \ge 80$
 $-3y_1 - 2y_2 \le -140 \implies 3y_1 + 2y_2 \ge 140$

KARPAGAM ACADEMY OF HIGHER EDUCATION COURSE: III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: I BATCH-2017-2019

and $y_1, y_2 \ge 0$

By introducing the 2 surplus variables s_2 , s_3 and Artificial variable R_1 , R_2 .

The slack variable is s_1 . The Standard form of the given LPP is:

 $Max W = 4y_1 + 3y_2 + 0s_1 + 0s_2 + 0s_3 - MR_1 - MR_2$

Subject to the constraints:

 $y_1 + y_2 + s_1 = 50$ $y_1 + 2y_2 - s_2 + R_1 = 80$ $3y_1 + 2y_2 - s_3 + R_2 = 140$ and $y_1, y_2, s_1, s_2, s_3, R_1, R_2 \ge 0$

: The IBFS is given by, $s_1 = 50$, $R_1 = 80$, $R_2 = 140$

Initial Iteration:

			Cj	4	3	0	0	0	-M	-M	Ratio
	C _B	Y _B	X _B	<i>y</i> ₁	<i>y</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> ₃	<i>R</i> ₁	<i>R</i> ₂	θ
	0	<i>S</i> ₁	50	1	1	1	0	0	0	0	$\frac{50}{1} = 50$
	-M	<i>R</i> ₁	80	1	2	0	-1	0	1	0	$^{80}/_{1} = 80$
•	-M	R ₂	140	3	2	0	0	-1	0	1	¹⁴⁰ / ₃
		$W_j^* - C_j$	-220M	-4M-4 ♠	-4M-3	0	М	Μ	0	0	

 R_2 is leaving variable, y_1 is entering variable, 3 is pivot element

	Ι	Iteration	1:							
			Cj	4	3	0	0	0	-M	Ratio θ
	CB	Y_B	X_B	y_1	y_2	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> ₃	R_1	U
←	0	<i>S</i> ₁	¹⁰ / ₃	0	1/3	1	0	¹ / ₃	0	10
	-M	<i>R</i> ₁	100/3	0	⁴ / ₃	0	-1	¹ / ₃	1	25
	4	<i>y</i> ₁	¹⁴⁰ / ₃	1	² / ₃	0	0	$-\frac{1}{3}$	0	70
		$W_j^* - C_j$	$^{-100}/_{3} + ^{560}/_{3}$	0	$^{-4M}/_3 - ^{1}/_3$	0	Μ	$-M - \frac{4}{3}$	0	

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III MCA COURSE CODE: 16CAP503

COURSE NAME: Optimization Techniques BATCH-2017-2019

1

 S_1 is leaving variable, y_2 is entering variable, $\frac{1}{3}$ is pivot element

UNIT: I

II Iterat	1011.							
		C _j	4	3	0	0	0	-M
CB	Y_B	X _B	<i>y</i> ₁	<i>y</i> ₂	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>R</i> ₁
3	<i>y</i> ₂	10	0	1	3	0	1	0
-M	<i>R</i> ₁	20	0	0	-4	-1	-1	1
4	<i>y</i> ₁	40	1	0	-2	0	-1	0
	$W_j^* - C_j$	190-20M	0	0	4M+1	М	M-1	0

Since all $W_j^* - C_j \ge 0$ and the artificial variable R_1 appears in the basis at non-zero level.

 \therefore The Dual Problem does not possess any optimum basic feasible solution.

TRANSPORTATION MODEL AND ASSIGNMENT PROBLEM

Transportation Model :

Introduction

Transportation deals with the transportation of a commodity (single product) from 'm' sources (origins or supply or capacity centers) to 'n' destinations (sinks or demand or requirement centers). It is assumed that

- (i) Level of supply at each source and the amount of demand at each destination and
- (ii) The unit transportation cost of transportation is linear.

It is also assumed that the cost of transportation is linear.

The objective is to determine the amount to be shifted from each sources to each destination such that the total transportation cost is minimum.

Note: The transportation model also can be modified to Account for multiple commodities.

1. Mathematical Formulation of a Transportation problem:

Let us assume that there are m sources and n destinations.

KARPAGAM ACADEMY OF HIGHER EDUCATION COURSE: III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: I BATCH-2017-2019

Let a_i be the supply (capacity) at source i, b_j be the demand at destination j, c_{ij} be the unit transportation cost from source *i* to destination j and x_{ij} be the number of units shifted from sources *i* to destination *j*.

Then the transportation problems can be expressed mathematically as

Minimize $Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$

Subject to the constraints

 $\sum_{j=1}^{n} x_{ij} = a_i, \qquad i = 1, 2, 3, \dots, m$ $\sum_{i=1}^{m} x_{ij} = b_j, \qquad j = 1, 2, 3, \dots, N.$

And $x_{ij} \ge 0$, for all *i* and *j*.

Note 1: The two sets of constraints will be consistent if

 $\sum_{i=1}^m a_i = \sum_{j=1}^n b_j$

(total supply) (total demand)

Which is the necessary and sufficient condition for a transportation problems to have a feasible solution. Problems satisfying this condition are balanced transportation problems.

Note 2: If $\sum a_i \neq \sum b_i$

Note 3: For any transportation problems, the coefficient of all x_{ij} in the constraints are unity.

Note 4: The objective function and the constraints being all linear, the transportation problems is a special class of linear programming problem. Therefore it can be solved by simplex method. But the number of variables being large, there will be too many calculations. So we can look for some other technique which would be simpler that the usual simplex method.

Standard transportation table:

Transportation problem is explicitly represented by the following transportation table.

CLA COURSE	SS: III CODI		2503	Ŭ	INIT: I			Optimization Techniques 7-2019
					Destii	nation		
		D_1	D_1	D_1		D_1	 D_1	supply
	S_1	C ₁₁	C ₁₂	C ₁₃		<i>C</i> _{1<i>j</i>}	<i>C</i> _{1<i>n</i>}	a_1
Source	S_1	C ₂₁	C ₂₂	C ₂₃		C _{2j}	<i>C</i> _{2<i>n</i>}	<i>a</i> ₂
	S_1	<i>C</i> _{<i>i</i>1}	C _{i2}			C _{ij}	C _{in}	-
	S_1	<i>C</i> _{<i>m</i>1}	<i>C</i> _{<i>m</i>2}			C _{mj}	C _{mn}	a_n
Demand		<i>b</i> ₁	<i>b</i> ₂	<i>b</i> ₃			 b _n	$\sum a_i = \sum b_j$

The *mn* squares are called **cells.** The unit transportation $\cot c_{ij}$ from the ith source to the jth destination is displayed in the **upper left side of the** (i,j)th cell. Any feasible solution us shown in the table by entering the value of x_{ij} in the center of the (i,j)th cell. The various a's and b's are called **rim requirements.** The feasibility of a solution can be verified by summing the values if x_{ij} along the rows and down the columns.

Definition 1: A set of non-negative values x_{ij} , i=1,2,...,m; j=1,2,...,n. that satisfies the constraints (rim conditions and also the non-negativity restrictions) is called a **feasible solution** to the transportation problems.

Note: A balanced transportation problems will always have a feasible solution.

Definition 2: A feasible solution to a $(m \times n)$ transportation problems that contains no more than m + n-1 non-negative allocations is called a **basic feasible solution** (BFS) to the transportation problem.

Definition 3: A basic feasible solution to a $(m \times n)$ transportation problem is said to be a **non-degenerate basic feasible solution** if it contains exactly m + n-1 non-negative allocations in independent positions.

Definition 4: A basic feasible solution that contains less than m + n - 1 non-negative allocations is said to be a degenerate basic feasible solution.

Definition 5: A feasible solution (not necessarily basic) is said to be an **optimal** solution if it minimize is at most m + n - 1.

Note: The number of non-basic variables in an m x n balanced transportation problem is almost m + n - 1.

KARPAGAN	ACADEMY O	F HIGHER EDUCATION	
CLASS: III MCA	С	OURSE NAME: Optimization Techniques	
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019	

Note: The number of non-basic variables in an m x n balanced transportation problem is at least mn - (m + n - 1).

II. Methods for finding initial basic feasible solution

The transportation problems has a solution is and only if the problem is balanced. Therefore before starting to find the initial basic feasible solution, check whether the given transportation problem is balanced. If not once has to balance the transportation problems first. The way to doing this is discussed in section 7.4 page 7.40. In this section all the given transportation problems are balanced.

Method I: North west corner rule:

Step I: The first assignment is made in the cell occupying the upper left-hand (north-west) corner of the transportation table. The maximum possible amount is allocated there. That is $x_{11} = \min \{a_1, b1\}$.

Case (i): If min $\{a_1, b_1\} = a_1$, then put $x_{11} = a_1$, decrease b_1 by a_1 and move vertically to the 2^{nd} row (i.e.,) to the cell (2, 1) cross out the first row.

Case (ii): If min $\{a_1, b_1\} = b_1$, then put $x_{11} = b_1$, decrease a_1 by b_1 and move horizontally right (i.e.,) to the cell (2, 1) cross out the first column.

Case (iii): If min $\{a_1, b_1\} = a_1 = b_1$, the put $x_{11} = a_1 = b_1$ and move diagonally to the cell (2, 2) cross out the first row and the first column.

Step 2: Repeat the procedure until all the rim requirements are satisfied.

Method 2: Lest cost method (or) Matrix minima method (or) Lowest cost entry

method:

Step 1: Identify the cell with smallest cost and allocate $x_{ij} = Min \{a_i, b_j\}$

Case (i): If min $\{a_i, b_j\} = a_i$, then put $x_{ij} = a_j$, cross out the ith row and decrease b_j by a_i , go to step(2).

Case (ii): If min $\{a_i, b_j\} = b_j$, then put $x_{ij} = b_j$, cross out the jth column and decrease a_j by b_j , go to step(2).

Case (iii): If min $\{a_i, b_j\}=a_i=b_j$, then put $x_{ij}=a_i=b_j$, cross out either ith row and jth column but not both, go to step(2).

Step 2: Repeat step (1) for the resulting reduced transportation table until all the rim requirements are satisfied.

OF HIGHER EDUCATION
COURSE NAME: Optimization Techniques
BATCH-2017-2019

Method 3: Vogel's approximation method (VAM) (or) Unit cost penalty method:

Step 1: Find the difference (penalty) between the smallest and next smallest costs in each row (column) and write them in brackets against the corresponding row (column).

Step 2: Identify the row (or) column with large penalty. If a tie occurs, break the tie arbitrarily. Choose the sell with smallest cost in that selected row or column and allocate as much as possible to this cell and cross out the satisfied row or column and go to step (3).

Step 3: Again compute the column and row penalties for the reduced transportation table and then go to step (2). Repeat the procedure until all the rim requirements are satisfied.

Example 1: Determine basic feasible solution to the following transportation problems using North West Corner Rule:

				Sin k			
		Α	B	С	D	Е	Supply
Origin	Р	2	11	10	3	7	4
	Q	1	4	7	2	1	8
	R	3	9	4	8	12	9
Demand		3	3	4	5	6	
							[MU. BE. Apr 94]

Solution:

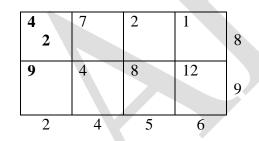
Since $a_i = b_j = 21$, the given problem is balanced. \therefore There exists a feasible solution to the transportation problem.

2	11	10	3	7	4
3					
1	4	7	2	1	8
3	9	4	8	12	9
3	3	4	5	6	

Following North West Corner rule, the first allocation is made in the cell(1,1)

Here $x_{11} = \min \{a_1, b_1\} = \min \{4,3\} = 3$

Allocate 3 to the cell(1,1) and decrease 4 by 3 i.e., 4-3=1


KARPAGAM ACADEMY OF HIGHER EDUCATION				
CLASS: III MCA	C	OURSE NAME: Optimization Techniques		
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019		

As the first column is satisfied, we cross out the first column and the resulting reduced Transportation table is

11	10	3	7	1
1				
4	7	2	1	8
9	4	8	12	9
3	4	5	6	

Here the North West Corner cell is (1,2).

So allocate $x_{11} = \min \{1, 3\} = 1$ to the cell (1,2) and move vertically to cell (2, 2). The resulting transportation table is

Allocate $x_{22} = \min \{8, 2\} = 2$ to the cell (2, 2) and move horizontally to cell (2, 3). The resulting transportation table is

	7	2	1	
_	1	2	ľ	-
	4			6
		0	10	
	4	8	12	
		r		9
	4	5	6	
	4	8 5	12 6	9

Allocate $x_{23} = \min \{6, 4\} = 4$ and move horizontally to cell (2, 4). The resulting reduced transportation table is

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III MCA COURSE CODE: 16CAP503 COURSE NAME: Optimization Techniques BATCH-2017-2019

 2
 1
 2

 2
 1
 2

 8
 12
 9

 5
 6

UNIT: I

Allocate $x_{24} = \min \{2, 5\} = 2$ and move vertically to cell (3, 4). The resulting reduced transportation table is

 8
 12
 9

 3
 6
 9

Allocate $x_{34} = \min \{9, 3\} = 3$ and move horizontally to cell (3, 5).which is

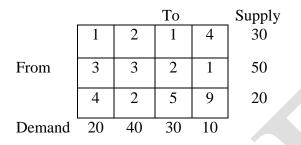
Allocate $x_{35} = \min \{6, 6\} = 6$

Finally the initial basic feasible solution is as shown in the following table.

2	11	10	3	7
3	1			
1	4	7	2	1
	2	4	2	
3	9	4	8	12
			3	6

From this table we see that the number of positive independent allocations is equal to

m + n - 1 = 3 + 5 - 1 = 7. This ensures that the solution is non degenerate basic feasible.


 $\therefore \text{The initial transportation} = \text{Rs. } 2 \times 3 + 11 \times 1 + 4 \times 2 + 7 \times 4 + 2 \times 2 + 8 \times 3 \\ \text{cost} + 12 \times 6$

$$=$$
 Rs. 153/-

KARPAGAM ACADEMY OF HIGHER EDUCATION				
CLASS: III MCA	C	OURSE NAME: Optimization Techniques		
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019		

Example 2:

Find the initial basic feasible solution for the following transportation problem by Least Cost Method.

Solution:

Since $\sum a_i = \sum b_j = 100$, the given TPP is balanced. There exists a feasible solution to the transportation problem.

1	2	1	4	i K
20				30
3	3	2	1	50
4	2	5	9	20
20	40	30	10	
at mathed m	in a _	a – a		1

By least cost method, min $c_{ij} = c_{11} = c_{13} = c_{24} = 1$

Since more than one cell having the same minimum c_{ij} , break the tie.

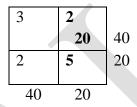
Let us choose the cell (1,1) and allocate $x_{11} = \min \{a_1, b_1\} = \min \{30, 20\} = 20$ and cross out the satisfied column and decrease 30 by 20.

The resulting reduced transportation table is

2	1	4	
	10		10 50
3	2	1	50
2	5	9	20
40	30	10	

KARPAGAM ACADEMY OF HIGHER EDUCATION COURSE III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: I BATCH-2017-2019

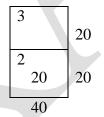
Here min $c_{ij} = c_{13} = c_{24} = 1$. Choose the cell (1,3) and allocate $x_{13} = \min \{a_1, b_3\} = \min \{10,30\} = 10$ and cross out the satisfied row.


The resulting reduced transportation table is

	3	2	1	
			10	50 20
4	2	5	9	20
	40	20	10	

Here min $c_{ij} = c_{24} = 1$

: Allocate $x_{24} = \min \{a_2, b_4\} = \min (50, 10) = 10$ and cross out the satisfied column.


The resulting transportation is

Here $c_{ij} = c_{23} = c_{32} = 2$. Choose the cell (2,3) and allocate $x_{23} = \min \{a_2, b_3\} =$

min (40,20) = 10 and cross out the satisfied column.

The resulting reduced transportation table is

Here min = $c_{ij} = c_{32} = 2$. Choose the cell (3,2) and allocate $x_{32} = \min \{a_3, b_2\} =$

min (20,40) = 20 and cross out the satisfied row.

The resulting reduced transportation table is

Finally the initial basic feasible solution is as shown in the following table.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III MCA COURSE CODE: 16CAP503 COURSE NAME: Optimization Techniques BATCH-2017-2019

1	2	1	4
20		10	
3	3	2	1
	20	20	10
4	20	20 5	10 9

<u>UNIT:</u> I

From this table we see that the number of positive independent allocations is equal to

m + n - 1 = 3 + 4 - 1 = 6. This ensures that the solution is non degenerate basic feasible.

$$\therefore$$
 The initial transportation = Rs. 1 x 20 + 1 x 10 + 3 x 20 + 2 x 20

Cost

+1 x 10 + 2 x 20

= Rs. 20 + 10 + 60 + 40 + 10 + 40

= Rs. 180/-

Example 3:

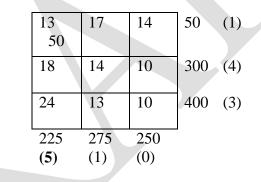
Find the initial basic feasible solution for the following transportation problem by VAM.

		Distribution centres						
		D_1	<i>D</i> ₁	D_1	D_1	Availability		
	S_1	11	13	17	14	250		
Origin	<i>S</i> ₂	16	18	14	10	300		
	<i>S</i> ₃	21	24	13	10	400		
Requirer	nents	200	225	275	250	J		

Solution:

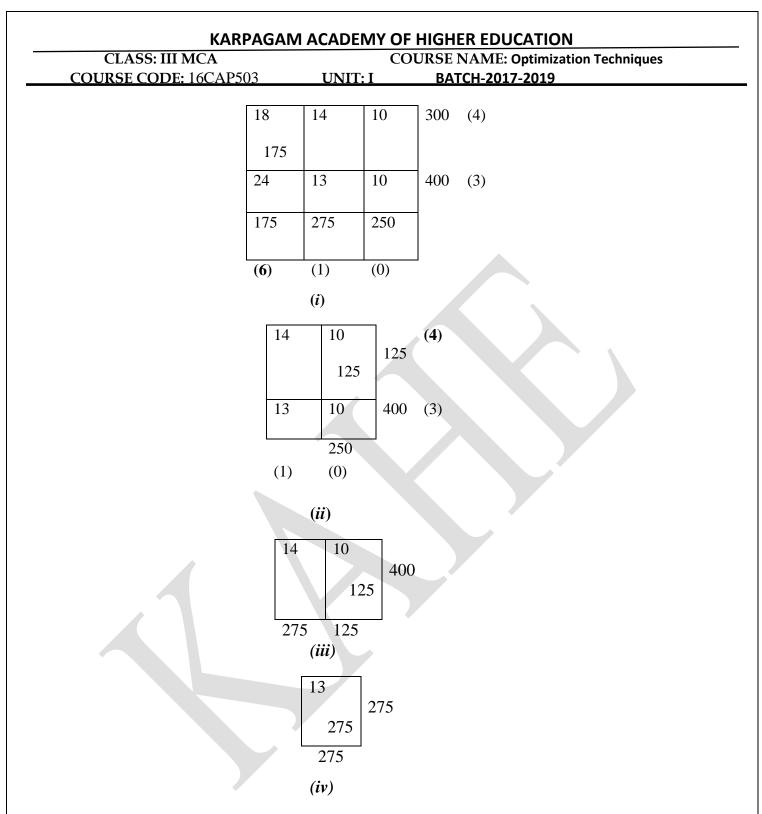
Since $\sum a_i = \sum b_j = 100$, the given is balanced. \therefore There exists a feasible solution to this problem.

KARPA CLASS: III MCA	GAM	ACADEMY OF HIGHER EDUCATION COURSE NAME: Optimization Techniques				
COURSE CODE: 16CAP503		UNIT	H-2017-2019			
	l 200	13	17	14	250 (2)	
16	5	18	14	10	300 (4)	
21	L	24	13	10	400 (3)	
	200 (5)	225 (5)	275 (1)	250 (0)		


First let us find the difference (penalty) between the smallest and next smallest costs in each row and column and write them in brackets against the respective rows and columns.

The largest of these differences is (5) and is associated with the first two columns of the transportation table. We choose the first column arbitrarily.

In this selected column, the cell (1,1) has the minimum unit transportation cost $c_{11} = 11$.


: Allocate $x_{11} = \min (250,200) = 200$ to this cell (1,1) and decrease 250 by 200 and cross out the satisfied column.

The resulting reduced transportation table is

The row and column differences are now computed for this reduced transportation table. The largest of these is (5) which is associated with the second column. Since $c_{12} = 13$ is the minimum cost, we allocate $x_{12} = \min (50,225) = 50$ to the cell (1,2) and decrease 225 by 50 and cross out the satisfied row.

Continuing in this manner, the subsequent reduced transportation tables and the differences for the surviving rows and columns are shown below:

Finally the initial basic feasible solution is as shown in the following table.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III MCA COURSE CODE: 16CAP503 COURSE NAME: Optimization Techniques BATCH-2017-2019

11		13		17		14	
	200		50				
16		18		14		10	
			175				125
21		24		13		10	
					275		125

UNIT: I

From this table we see that the number of positive independent allocation is equal to

m + n - 1 = 3 + 4 - 1 = 6. This ensures that the solution is non degenerate basic feasible.

: The initial transportation Cost = Rs. 11 x 200 + 13 x 50 + 18 x 175 ++ 10 x 125 + 13 x 275 + 10 x 125

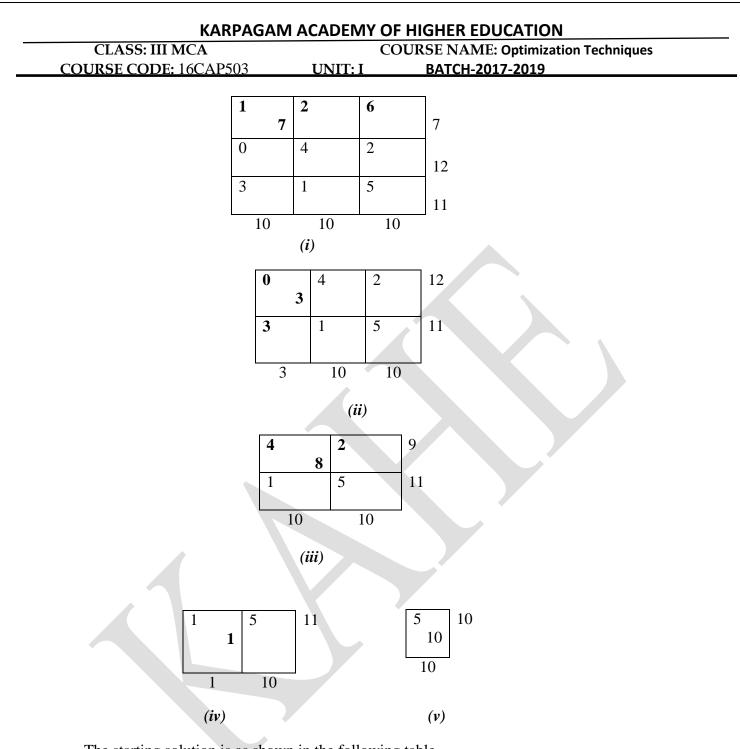
$$=$$
 Rs. 12075/-

Example 4:

Find the starting solution of the following transportation model

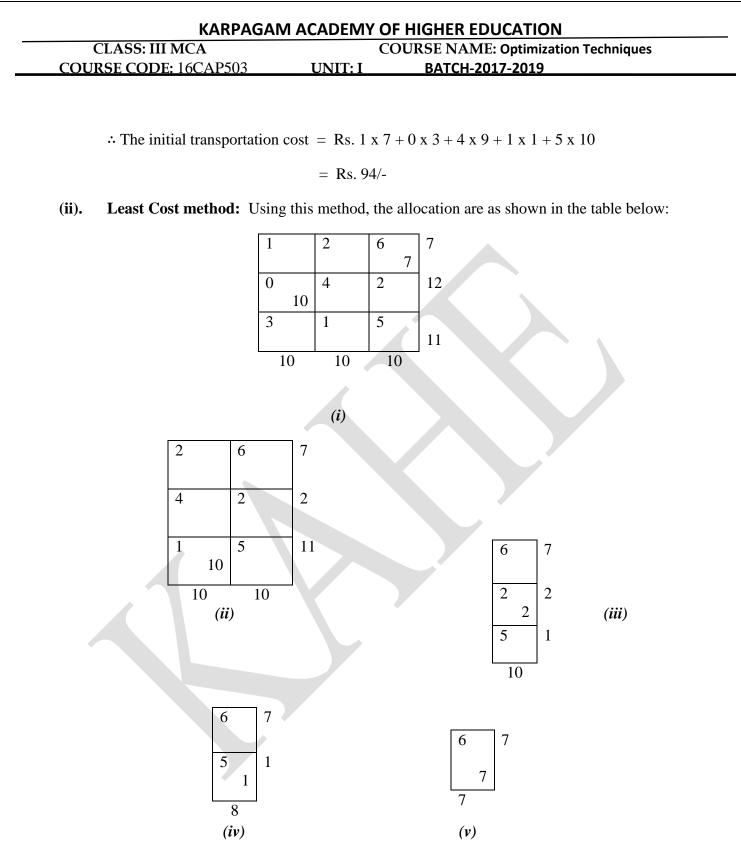
7
- 12
12
11
11

Using (i). North West Corner rule


(ii). Least Cost method

(iii). Vogel's approximation method.

Solution:


Since $\sum a_i = \sum b_j = 100$, the given Transportation problem is balanced. \therefore There exists a basic feasible solution to this problem.

(i). North West Corner rule: Using this method, the allocation are shown in the tables below:

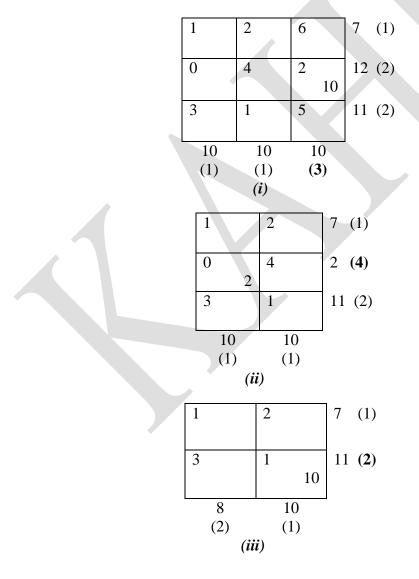
The starting solution is as shown in the following table

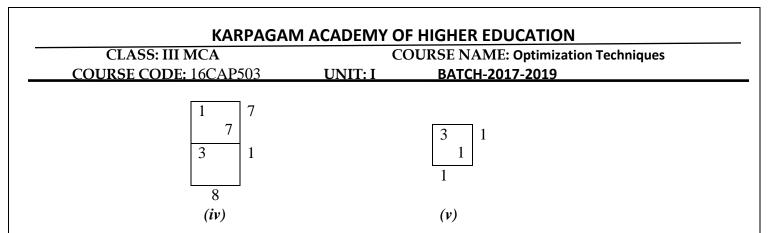
1	7	2		6	
0	3	4	9	2	
3		1	1	5	10

The starting solution is as shown in the following table:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III MCA COURSE CODE: 16CAP503 COURSE NAME: Optimization Techniques BATCH-2017-2019


1		2		6	
					7
0		4		2	
	10				2
3		1		5	
			10		1


UNIT: I

: The initial transportation $\overline{\text{cost} = \text{Rs. } 6 \times 7 + 0 \times 10 + 2 \times 2 + 1 \times 10 + 5 \times 1}$

$$=$$
 Rs. 61/-

(iii). Vogel's approximation Method: Using this method, the allocations are shown in the table below:

The starting solution is as shown in the following table:

1		2	6	
	7			
0		4	2	
	2			10
3		1	5	

 $\therefore \text{ The initial transportation cost} = \text{Rs.1 x 7} + 0 \text{ x 2} + 2 \text{ x 10} + 3 \text{ x 1} + 1 \text{ x 10}$

= Rs. 40/-

Note: For the above problem, the number of positive allocation in independent positions is (m + n - 1) (i.e., m + n - 1 = 3 + 3 - 1 = 5). This ensures that the given problem has a non-degenerate basic feasible solution by using all the three methods. This need not be the case in all the problems.

Transportation Algorithm (or) MODI Method (modified distribution method) (Test for optimal solution).

Step 1: Find the initial basic feasible solution of the given problems by Northwest Corner rule (or) Least Cost method or VAM.

Step 2: Check the number of occupied cells. If these are less than m + n - 1, there exists degeneracy and we introduce a very small positive assignment of $\in (\approx 0)$ in suitable independent positions, so that the number of occupied cells is exactly equal to m + n - 1.

Step 3: Find the set of values u_i , v_j (i=1,2,3,...m; j=1,2,3...n) from the relation $c_{ij} = u_i + v_j$ for each occupied cell (i,j), by starting initially with $u_i = 0$ or $v_j = 0$ preferably for which the corresponding row or column has maximum number of individual allocations.

Step 4: Find $u_i + v_j$ for each unoccupied cell (i,j) and enter at the upper right corner of the corresponding cell (i,j).

KARPAGAM ACADEMY OF HIGHER EDUCATION COURSE: III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: I BATCH-2017-2019

Step 5: Find the cell evaluations $d_{ij} = c_{ij} - (u_i + v_j) (d_{ij} = upper left - upper right) for each unoccupied cell (i,j) and enter at the lower right corner of the corresponding cell (i,j).$

Step 6: Examine the cell evolutions d_{ij} for all unoccupied cells (i,j) and conclude that

- (i) If all $d_{ij}>0$, then the solution under the test is optimal and unique.
- (ii) If all $d_{ij}>0$, with atleast one $d_{ij}=0$, then the solution under the test is optimal and an alternative optimal solution exists.
- (iii) If at least one $d_{ij} < 0$, then the solution is not optimal. Go to the next step.

Step 7: Form a new B>F>S by giving maximum allocation to the cell for which d_{ij} is most negative by making an occupied cell empty. For that draw a closed path consisting of horizontal and vertical lines beginning and ending at the cell for which d_{ij} is most negative and having its **other corners at some allocated cells.** Along this closed loop indicate $+\theta$ and $-\theta$ alternatively at the corners. Choose minimum of the allocations from the cells having $-\theta$. Add this minimum allocation to the cells with $+\theta$ and subtract this minimum allocation from the allocation to the cells with $-\theta$.

Step 8: Repeat steps (2) to (6) to test the optimality of this new basic feasible solution.

Step 9: Continue the above procedure till an optimum solution is attained.

Note: The Vogels approximation method (VAM) takes into account not only the least cost c_{ij} but also the costs that just exceed the least cost c_{ij} and therefore yields better initial solution than obtained from other methods in general. This can be justified by the above example (4). So to find the initial solution, give preference to VAM unless otherwise specified.

Example 1: Solve the	transp	oortatio	on pro	blem:
		1	2	3
	Ι	21	16	25
	П	17	18	14

	1	2	3	4	Supply
Ι	21	16	25	13	11
II	17	18	14	23	13
ш	32	27	18	41	19
Demand	6	10	12	15	

Solution: Since $\sum a_i = \sum b_j = 43$, the given transportation problem is balanced. \therefore There exists a basic feasible solution to this problem.

By Vogel's approximation method, the initial solution is an shown in the following table.

CLASS: III N	CLASS: III MCA			COURSE NAME: Optimization Techniques					
DURSE CODE:	16CAP503	U	NIT: I	BATC	CH-2017-2019				
	21	10	25	12					
	21	16	25	13 11	(3)				
	17	10	1.4						
	17 6	18	3 14	23	(3) (3) (3) (3)				
	32	27	7 18 7 12	41	(9) (9) (9) (9)				
			/ 12						
	(4)	(2)	(4)	(10)					
	(15)	(2) (9)	(4) (4)	(10) (18)					
	(15)	(9)	(4)	(10)					
		(9)	(4)						
That is	21	16	25	13					
				11					
	17	18	14	23					
	6	3		4					
	22	07	10	41					
	32	27 7	18 12	41					

From this table, we see that the number of non-negative independent allocations is (m + n - 1) = (3+4-1) = 6. Hence the solution is non-degenerate basic feasible.

 \therefore The initial transportation cost.

= Rs. 13 x 11 + 17 x 6 + 18 x 3 + 23 x 4 + 27 x 7 + 18 x 12

= Rs. 796/-

To find the optimal solution

Consider the above transportation table. Since m+n-1=6, we apply MODI method,

Now we determine a set of values u_i and v_j for each occupied cell (i,j) by using the

relation $c_{ij} = u_i + v_j$. As the 2nd row contains maximum number of allocations, we choose $u_2=0$.

Therefore

$$C_{21} = u_2 + v_1 \Longrightarrow 17 = 0 + v_1 \Longrightarrow v_1 = 17$$

$$C_{22} = u_2 + v_2 \Longrightarrow 18 = 0 + v_2 \implies v_2 = 18$$

$$C_{24} = u_2 + v_4 \Longrightarrow 23 = 0 + v_4 \implies v_4 = 23$$

$$C_{14} = u_1 + v_4 \Longrightarrow 13 = u_1 + 23 \Longrightarrow u_1 = -10$$

KARPAGAM ACADEMY OF HIGHER EDUCATION

COURSE NAME: Optimization TechniquesUNIT: IBATCH-2017-2019

CLASS: III MCA

COURSE CODE: 16CAP503

$$C_{32} = u_3 + v_2 \Longrightarrow 27 = u_3 + 18 \Longrightarrow u_3 = 9$$

 $C_{33} = u_3 + v_3 \Longrightarrow 18 = 9 + v_3 \implies v_3 = 9$

Thus we have the following transportation table:

21		16		25		13		$u_1 = -10$
							11	
17		18		14		23		$u_2 = 0$
	6		3				4	
32		27		18		41		$u_3 = 9$
			7		12			
$v_1 =$	17	v ₂ =	18	v ₃ =	= 9	v ₄	= 23	

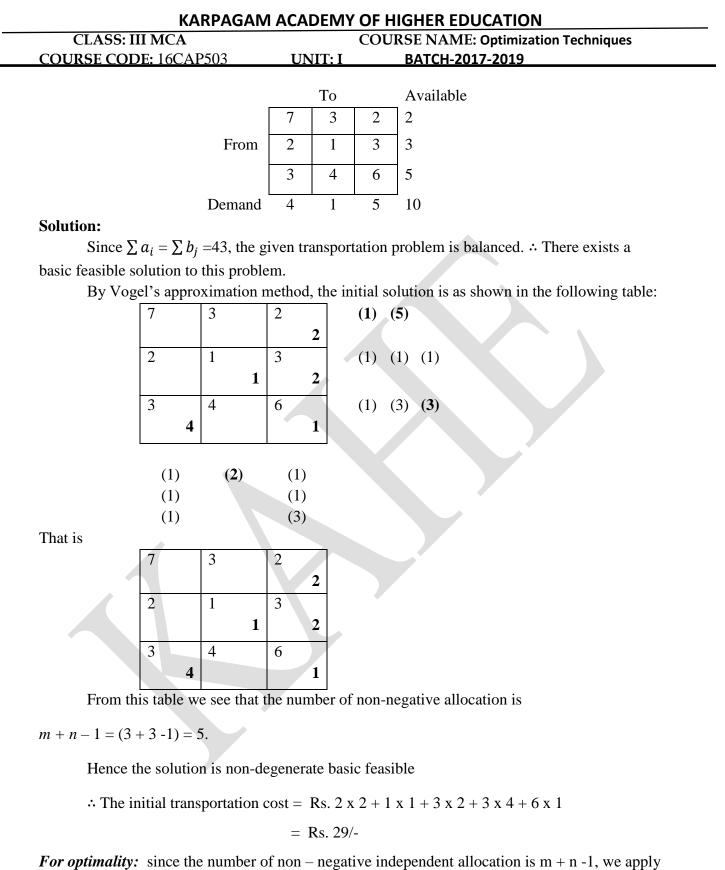
Now we find $u_i + v_j$ for each unoccupied cell (i,j) and enter at the upper right corner of the corresponding unoccupied cell(i,j).

Then we find the cell evalutions $d_{ij} = c_{ij} - (u_i + v_j)$ (ie., upper left corner – upper right corner) for each unoccupied cell (i,j) and enter at the lower right corner of the corresponding unoccupied cell (i,j).

21	7	16	8	25	-1	13		
								$u_1 = -10$
	14		8		26		11	
17		18		14	9	23		
								$u_2 = 0$
	6		3		5		4	
32	26	27		18		41	32	
								$u_3 = 9$
	6		7		12		9	-
	17		10		0		- 22	
$v_1 =$: 17	$v_2 =$	18	v ₃ =	- 9	V4 =	= 23	

Since all $d_{ij}>0$, with $d_{32}=0$, the current solution is optimal and unique.

: The optimum allocation schedule is given by $x_{14} = 11$, $x_{21} = 6$, $x_{22} = 3$, $x_{24} = 4$, $x_{32} = 7$,


 $x_{33} = 12$, and the optimum (minimum) transportation cost

= Rs. 13x 11 + 17 x 6 + 18 x 3 + 23 x 4 + 27 x 7 + 18 x 12

= Rs. 796/-

Example 2:

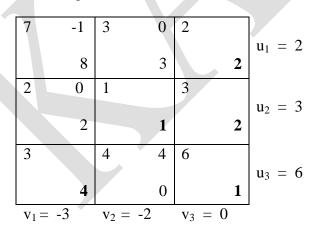
Obtain on optimum has feasible solution to the following transportation problem:

For optimality: since the number of non – negative independent allocation is m + n - 1, we apply MODI method.

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: I BATCH-2017-2019

Since the third column contains maximum number of allocations, we choose $v_3 = 0$.

Now we determine a set of values u_i and v_j by using the occupied cells and the relation $c_{ij} = u_i + v_j. \label{eq:cij}$


That is

7	-1	3 0)	2		
					•	$u_1 = 2$
					2	
2		1		3		
		1			2	$u_2 = 3$
]	L		2	
3		4		6		
						$u_3 = 6$
	4				1	
$v_1 = -3$		$v_2 = -2$		v ₃ =	0	

Now we find $u_i + v_j$ for each unoccupied cell (i, j) and enter at the corresponding unoccupied cell (I,j).

Then we find the cell evaluations $d_{ij} = c_{ij} - (u_i + v_j)$ for each unoccupied cell (i, j) and enter at the lower right corner of the corresponding unoccupied cell (i, j).

Thus we get the following table

Since all $d_{ij}>0$, with $d_{32}=0$, the current solution is optimal and there exists an alternative optimal solution.

: The optimum allocation schedule is given by $x_{13} = 2$, $x_{32} = 1$, $x_{23} = 2$, $x_{31} = 4$, $x_{33} = 1$, and the optimum (minimum) transportation cost

KARPAGAM ACADEMY OF HIGHER EDUCATION COURSE III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: I BATCH-2017-2019

= Rs.2x2+1x1+3x2+3x4+6x1 = Rs.29/-

Example 3: Find the optimal transportation cost of the following matrix using least cost

method for finding the critical solution.

		А	В	С	D	Е	Available
	Р	4	1	2	6	9	100
Factory	Q	6	4	3	5	7	120
	R	5	2	6	4	8	120
Demand		40	50	70	90	90	

Solution:

Since $\sum a_i = \sum b_j = 340$, the given transportation problem is balanced. \therefore There exists a basic feasible solution to this problem.

By using Least cost method, the initial solution is an shown in the following table:

1	2	6	9
1	2	0	-
50	50		
50	30		
4	3	5	7
	20		90
		4	
2	6	4	8
		90	
	1 50 4 2	4 3 20	50 50 4 3 5 20 20 2 6 4

: The initial transportation cost = Rs. $1 \times 50 + 2 \times 50 + 6 \times 10 + 3 \times 20 + 7 \times 90$

+ 5 x 30 + 4 x 90

$$=$$
 Rs. 1410/-

For optimality: Since the number of non – negative independent allocations is (m + n - 1), we apply MODI method:

	KARPA	GAI	M ACA	DEI	мүо	F HI	GHE	R ED	OUCA	TION
CLASS: III MC	A				C	OUF	RSE N	JAM	E: Op	timization Techniques
COURSE CODE: 160	CAP503		U	NIT:	I		BAT	<u>CH-20</u>	017-2	019
	4 5	1		2		6	4	9	6	
										$u_1 = -1$
	-1		50		50		2		3	
					•••				č	
	6	4	2	3		5	5	7		
										$u_2 = 0$
	10)	2		20		0		90	
	5	2	1	6	2	4		8	6	
	5	2	1	6	2	4		ð	6	1
			1		4		00			$u_3 = -1$
	30)	1		4		90		2	
L. L	v ₁ = 6	V2	= 2	V3	= 3	V4	= 5	V5 =	= 7	
	1 -			. 5	-					

Since $d_{11} = -1 < 0$, the current solution is not optimal.

Now let us form a new basic feasible solution by giving maximum allocation to the cell (i,j) for which d_{ij} is most negative by making an occupied cell empty. Here the cell (1,1) having the negative value d_{11} =-1. We draw a closed loop consisting of horizontal and vertical lines beginning and ending at this cell (1,1) and having its other corners at some occupied cells. Along this closed loop indicate + θ and + θ alternatively at the corners. We have

4	1	2	6	9
+ heta	50	50 - θ		
•				
6	4	3	5	7
10		20		90
- θ		$+\theta$		
5	2	6	4	8
30			90	
	$+\theta$ 6 10 $-\theta$ 5	$+\theta$ 50 6 4 10 $-\theta$ 5 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

From the two cells (1,3), (2,1) having $+\theta$, we find that the minimum of the allocations 50,10 is 10. Add this cells with $+\theta$ and subtract this 10 to the cells with $+\theta$.

KARPAGAM ACADEMY OF HIGHER EDUCATION							
CLASS: III MCA	C	COURSE NAME: Optimization Techniques					
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019					

Hence the new basic feasible solution is displayed in the following table:

4		1		2		6	9
	10		50		40		
6		4		3		5	7
					30		90
5		2		6		4	8
	30					90	

We see that the above table satisfies the rim conditions with (m + n - 1) non-negative allocations at independent position. So we apply MODI method.

4	1	2	6 3	9 6	
10					$u_1 = 0$
10	50	40	3	3	
			5	5	
6 5	4 2	3	5 4	7	
					$u_2 = 1$
		30		90	
1	2		1		
5	2 2	6 3	4	8 7	
					$u_3 = 1$
30			90		
	0	3		1	
$v_1 = 4$	$v_2 = 1$	$v_3 = 2$	$v_4 = 3$	$v_5 = 6$	

Since all $d_{ij}>0$, with $d_{32}=0$, the current solution is optimal and there exists an alternative optimal solution.

The optimum allocation schedule is given by $x_{11}=10$, $x_{12}=50$, $x_{13}=40$, $x_{23}=30$, $x_{25}=90$, $x_{31}=30$, $x_{34}=90$ and the optimum (minimum) transportation cost. = Rs. 4 x 10 + 1 x 50 + 2 x 40 + 3 x 30 + 7 x 90 + 5 x 30 + 4 x 90. = Rs. 1400/-

KARPAGAM ACADEMY OF HIGHER EDUCATION								
CLASS: III MCA		COURSE NAME: Optimization Techniques						
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019						

Degeneracy in Transportation Problems

In transportation problems, whenever the number of non-negative independent allocations in less than m + n - 1, the transportation problems is said to be **degenerate** one. Degeneracy may occur either at the initial stage or at an intermediate stage at some subsequent iteration.

To resolve degeneracy, we allocate an extremely small amount (close to zero)to one or more empty cells of the transportation table(generally minimum cost cells if possible), so that the total number of occupied cells becomes (m + n - 1) at independent positions. WE denote this small amount by \in (epsilon) satisfying the following conditions:

- (i) $0 < \epsilon < x_{ij}$, for all $x_{ij} > 0$
- (ii) $X_{ij} \pm \epsilon = x_{ij}$, for all $x_{ij} > 0$

The cells containing \in are then treated like other occupied cells and the problems is solved in the usual way. The \in 's are kept till the optimum solution is attained. Then we let each $\in \rightarrow 0$.

Example 1: find the non-degenerate basic feasible solution for the following transportation problems using

- (i) North west corner rule
- (ii) Least cost method
- (iii) Vogel's approximation method.

		То	~		supply
	10	20	5	7	10
	13	9	12	8	20
From	4	5	7	9	30
	14	7	1	0	40
	3	12	5	19	50
Demand	60	60	20	10	_

Solution: Since $\sum a_i = \sum b_i = 150$, the given transportation problems is balanced.

 \therefore There exists a basic feasible solution to this problem.

The starting solution by NWC rule is an shown in the following table.

Prepared by Y.Sangeetha, Asst Prof, Department of Mathematics, KAHE

CLASS: III MCA			COU	RSE NAMI	E: Optimization Techniques
OURSE CODE: 16CAP	P503 UNIT:		T: I	BATCH-20	017-2019
	10	20	5	7]
	10				
	13	9	12	8	
	20				
4	1	5	7	9	
	30				
-	14	7	1	0	
		4(
	3	12	5	19	
		20	20	10	

Since the number of non-negative allocations at independent positions is 7 which is less than (m + n - 1) = (5 + 4 - 1) = 8, this basic feasible solution is a degenerate one.

To resolve this degeneracy, we allocate a very small quantity \in to the unoccupied cell (5,1) so that the number of occupied cells becomes (m+n-1) (m + n - 1). Hence the non-degenerate basic feasible solution is an shown in the following table.

10	20	5	7
10			
13	9	12	8
20			
4	5	7	9
30			
14	7	1	0
	40		
3	12	5	19
E	20	20	10
3 ∈	12 20	5 20	

KARPAGAM ACADEMY OF HIGHER EDUCATION					
CLASS: III MCA	C	OURSE NAME: Optimization Techniques			
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019			

The initial transportation cost = Rs. $10x10+13x20+4x30+7x40+3x \in +20x20+5x20+19x10$

$$= \text{Rs.}(1290 = 3 \in)$$

= Rs. 1290/- as $\in \rightarrow 0$.

(ii) Least cost method: Using this method the starting solution is an shown in the following table:

10	20	5	7	· · ·
	10			
-	10			
13	9	12	8	
	20			
4	5	7	9	
10	20			
		1	0	
14	7	1	0	
	10	20	10	
3	12	5	19	
2		2	••	
50				

Since the number of non-negative allocations at independent positions is (m + n - 1) = 8, the solution is non-degenerate basic feasible.

The initial transportation cost = Rs.20x10+9x20+4x10+5x20+7x10+1x20+0x10+3x50

(iii) Vogel's approximation method: The starting solution by this method is an shown in the following table:

CLASS: III M	CA				C	OURSE N	AME: Optimization Techniques
OURSE CODE: 10	6CAP503		U	NIT:	I	BATC	CH-2017-2019
	10	20		5		7	
-	10						
	13	9		12		8	
			•••				
-			20				
	4	5		7		9	
_			30				
	14	7		1		0	
			10		20	10	
F	3	12		5		19	
	50						

Since the number of non-negative allocations is 7 which is less than (m + n - 1) = (5+4-1)=8, this basic solution is a degenerate one.

To resolve this degeneracy, we allocate a very small quantity \in to the unoccupied cell(5,2) so that the number of occupied cells becomes (m + n - 1). Hence the non-degenerate basic feasible solution is an shown in the following table.

	10	20	5	7
	10		Ť	
	13	9	12	8
		20		
	4	5	7	9
		30		
-	14	7	1	0
		10	20	10
		10	20	10
	3	12	5	19
		E		
	50			
	50			
-	rtation and	. 4		

 \therefore The initial transportation cost

KARPAGAM ACADEMY OF HIGHER EDUCATION						
CLASS: III MCA		COURSE NAME: Optimization Techniques				
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019				

= Rs. 10 x 10 + 9 x 20 + 5 x 30 + 7 x 10 + 1 x 20 + 0 x 10 + 3 x 50 + 12 x €

= Rs. (670 +12 \in)

= Rs.670/- = as $\in \rightarrow 0$.

Example 2: Solve the following transportation problems using vogel's method.

	Α	В	С	D	Ε	F	Available
1	9	12	9	6	9	10	5
Factory 2	7	3	7	7	5	5	6
3	6	5	9	11	3	11	2
4	6	8	11	2	2	10	9
Requirement	4	4	6	2	4	2	

Solution: Since $\sum a_i = \sum b_j = 22$, the given transportation problem is balanced. \therefore There exists a basic feasible solution to this problem. By Vogel's approximation method, the initial solution is as shown in the following table:

9	12	9 5	6	9	10
7	3 4	7	7	5	5 2
6 1	5 €	9 1	11	3	11
6 3	8	11	2 2	2 4	10

Since the number of non-negative allocations is 8 which is less than (m + n - 1)=(4+6-1)=9, this basic solution is degenerate one.

To resolve degeneracy, we allocate a very small quantity \in to the cell (3,2), so that the number of occupied cells becomes (m + n - 1). Hence the non-degenerate basic feasible solution is as shown in the following table.

CLASS: III	MCA		CO	URSE NAME:	Optimization Techniques
OURSE CODE	:16CAP503	UI	NIT: I	BATCH-201	.7-2019
9	12	9 5	6	9	10
7	3 4	7	7	5	5 2
6 1	5 E	9 1	11	3	11
6 3	8	11	2 2	2 4	10

The initial transportation cost = Rs.9 x 5 + 3 x 4 + 5 x 2 + 6 x 1 + 5 x \in + 9 x 1

+ 6 x 3 + 2 x 2 + 2 x 4

 $= Rs.(112+5\varepsilon) = Rs.112/-, \varepsilon \rightarrow 0.$

To find the optimal solution

Now the number of non-negative allocations at independent positions is (m + n - 1). We apply the MODI method.

9 6	12 5	9	6 2	9 2	10 7	
		5				$u_1 = 0$
3	7		4	7	3	
7 4	3	7 7	7 0	5 0	5	
	4				2	$u_2 = -2$
3		0	7	5		
6	5	9	11 2	3 2	11 7	
1	E	1				$u_3 = 0$
			9	1	4	
6	8 5	11 9	2	2	10 7	
3			2	4		$u_4 = 0$
	3	2			3	
$v_1 = 6$	$v_2 = 5$	$v_3 = 9$	$v_4 = 2$	$v_5 = 2$	$v_6 = 7$	

Since all $d_{ij}>0$ with $d_{23}=0$, the solution under the test is optimal and an alternative optimal solution is also exists.

Prepared by Y.Sangeetha, Asst Prof, Department of Mathematics, KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION COURSE III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: I BATCH-2017-2019

: The optimum allocation schedule is given by $x_{14}=5$,

 $x_{22}=4, x_{26}=2, x_{31}=1, x_{32}=\epsilon, x_{33}=1, x_{41}=3, x_{44}=2, x_{45}=4$ and the optimum(minimum) transportation cost is

 $= Rs.9x5 + 3x4 + 5x2 + 6x1 + 5x \in +9x1 + 6x3 + 2x2 + 2x4$

=Rs. (112+5€)

=Rs. 112 as $\in \rightarrow 0$.

Example 3: Solve the following transportation problem to minimize the total cost of transportation.

			То		Supply
	1	2	3	4	6
From	4	3	2	0	8
	0	2	2	1	10
Demand	4	6	8	6	

Solution: Since $\sum a_i = \sum b_j = 24$, the given transportation problem is balanced. \therefore There exists a basic feasible solution to this problem.

By using Vogel's approximation method, the initial solution is as shown in the following table:

	1		2	3		4	
			6				
	4		3	2		0	
-					_		_
					2		6
	0		2	2		1	
	0	4	2	2	6	1	

Since the number of non-negative allocations is 5, which is less than (m + n - 1)=(3+4-1)=6, this basic feasible solution is degenerate.

KARPAGAM ACADEMY OF HIGHER EDUCATION					
CLASS: III MCA	C	OURSE NAME: Optimization Techniques			
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019			

To resolve degeneracy, we allocate a very small quantity \in to the cell (1,4), so that the number of occupied cells becomes (m + n - 1). Hence the non-degenerate basic feasible solution is given in the following table

1		2 6	3		4	
4		3	2	2	0 6	
0		2	2		1	
	4	E		6		

 $\therefore \text{ The initial transportation cost} = \text{Rs. } 2 \times 6 + 2 \times 2 + 0 \times 6 + 0 \times 4 + 2 \times 6 + 2 \times 6$

= Rs. $(28 + 2\epsilon)$ = Rs. 28/-, as $\epsilon \rightarrow 0$.

To find the optimum solution:

Now the number of non-negative allocations at independent positions is (m + n - 1). We apply MODI method.

1	0	2		3	2	4		0	
	1		6		1			4	$u_1 = 0$
-	1	-			1	-		-	
4	0	3	2	2	2	0	6		
	4		1		4		U		$u_2 = 0$
0	-	0	-	-		1		0	
0	4	2		2	6	1		0	$u_{\rm c} = 0$
	4		E		U			1	$u_3 = 0$
v_1	= 0	v_2	= 2	V 3	= 2	V_4	=	0	

Since all $d_{ij} > 0$ the solution under the test is optimal and unique.

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: I BATCH-2017-2019

: The optimal allocation schedule is given by $x_{12} = 6$, $x_{23} = 2$, $x_{24} = 6$, $x_{31} = 4$, $x_{32} = 6$, $x_{33} = 6$ and the optimum (minimum) transportation cost

$$= \text{Rs. } 2 \ge 6 + 2 \ge 2 + 0 \ge 6 + 0 \ge 4 + 2 \ge 6 + 2 \ge 6$$

= Rs. $(28 + 2\epsilon) =$ Rs. 28, as $\epsilon \longrightarrow 0$.

Example 5:

Solve the following transportation problem to minimize the total cost of transportation.

		Destination						
	1	2	3	4	supply			
1	14	56	48	27	70			
Origin 2	82	35	21	81	47			
3	99	31	71	63	93			
Demand	70	35	45	60	210			

Solution:

Since $\sum a_i = \sum b_j = 210$, the given transportation problem is balanced. \therefore There exists a basic feasible solution to this problem.

By using Vogel's approximation method, the initial solution is as shown in the following table:

14 70	56	48	27
82	35	21 45	⁸¹ 2
99	31 35	71	63 58

Since the number of non-negative allocations is 5, which is less than (m + n - 1) = (3+4-1) = 6, this basic feasible solution is degenerate.

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: I BATCH-2017-2019

To resolve degeneracy, we allocate a very small quantity \in to the cell (1,4). So that the number of occupied cells becomes (m + n - 1). Hence the non-degenerate basic feasible solution is given in the following table.

14	56	48	27
70			E
82	35	21	81
		45	2
99	31	71	63
	35		58

To find the optimum solution:

Now the number of non-negative allocations at independent positions is (m + n - 1) = 6. We apply MODI method.

14	56	-5	48	-33	27		Í
70		61		81		E	$u_1 = 27$
82 68		49	21	45	81	2	$u_2 = 81$
14 99 50		-14	71	3	63		
		35	71	_	05	58	u ₃ = 63
49				68			
$v_1 = -13$	v ₂ =	= -32	V ₃ =	= 60	v_4	= 0	

Since d_{22} =-14<0, the solution under the test is not optimal.

Now let us from a new basic feasible solution by giving maximum allocation to the cell (2,2) by making an occupied cell empty. We draw a closed loop consisting of horizontal and vertical lines beginning and ending at this cell (2,2) and having its other corners at some occupied cells. Along this closed loop, indicate $+\theta$ and $-\theta$ alternatively at the corners.

CLASS: III MCA			COURSE NAME: Optimization Technique				
COURSE CODE: 16CAP503	UN	NIT: I	BATCH	-2017-2019			
14		56	48	27			
	70			E			
82		35	21	81			
		$+\theta$	45	2 -θ			
99		31	71	63			
		<i>_θ</i> ↓ 35		+θ 58			

From the two cells (2,4),(3,2) having $-\theta$ we find that the minimum of the allocations 2,35 is 2. Add this 2 to the cells with $+\theta$ and subtract this 2 to the cells with $+\theta$. Hence the new basic feasible solution is given by

14	56	48	27 E
70			E
82	35	21	81
02	2	45	01
99	31	71	63
	33		60

We see that the above table satisfies the rim conditions with (m + n - 1) non-negative allocations at independent position. We apply MODI method for optimality.

14		56	-5	48	-19	27		
	70						E	$u_1 = -40$
			61		81			
82	54	35		21		81	67	
			2		45			$u_2 \ = 0$
	28						14	
99	50	31		71	17	63		
			33				60	$u_3 = -4$
	49				54			
V	= 54	Vo -	- 35	Va	= 21	V.	- 67	
v ₁ .	- 54	v ₂ -	- 55	v 3	- 41	v 4	- 07	

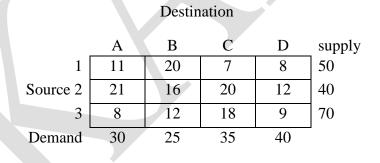
KARPAGAN	KARPAGAM ACADEMY OF HIGHER EDUCATION						
CLASS: III MCA		COURSE NAME: Optimization Techniques					
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019					

Since d_{ij} >0, the solution under the test is optimal.

: The optimal allocation schedule is given by $x_{11} = 70$, $x_{14} = \epsilon$, $x_{22} = 2$, $x_{23} = 45$, $x_{32} = 33$, $x_{34} = 60$ and the optimum (minimum) transportation cost

=Rs. 14 x 70 + 27 x ∈ + 35 x 2 + 21 x 45 + 31 x 33 + 63 x 60

=Rs.6798/- as $\in \rightarrow 0$.


Unbalanced Transportation Problems

If the given transportation problems is unbalanced one, i.e., if $\sum a_i \neq \sum b_j$, then convert this into a balanced one by introducing a dummy source or dummy destination with zero cost vector (zero unit transportation costs) as the case may be and then solve by usual method.

When the total supply if greater than the total demand, a dummy destination is included in the matrix with zero cost vectors. The excess supply is entered as a rim requirement for the dummy destination.

When the total demand is greater than the total supply, a dummy source is included in the matrix with zero cost vectors. The excess demand is entered as rim requirements for the dummy source.

Example 1: Solve the transportation problem

Solution: Since the total supply ($\sum a_i = 160$) is greater than the total demand ($\sum b_j = 130$), the given problem is an unbalanced transportation problem. To convert this i9nto a balanced one, we introduce a dummy destination E with zero unit transportation costs and having demand equal to 160-130=30 units.

 \therefore The given problem becomes

OURSE CODE: 16CAP503	L					•
			UNIT: I BATCH-2017-2019			
		Destin	nation			
	А	В	С	D	E	supply
1	11	20	7	8	0	50
Source 2	21	16	20	12	0	40
3	8	12	18	9	0	70
Demand	30	25	35	40	30	160

11	20	7	8	0
		35	15	
21	16	20	12	0
			10	30
8	12	18	9	0
30	25		15	

 \therefore The initial transportation cost

=Rs. 7 x 35 + 8 x 15 + 12 x 10 + 0 x 30 + 8 x 30 + 12 x 25 + 9 x 15

=Rs. 1160/-

For Optimality: Since the number non-negative allocations at independent position is (m + n - 1), we apply the MODI method.

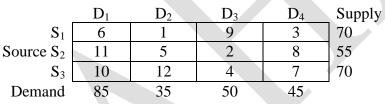
11 7	20 11	7	8	0 -4	
		35	15		$u_1 = 8$
4	9			4	
21 11	16 15	20 11	12	0	
			10	30	$u_2 = 12$
10	1	9			
8	12	18 8	9	0 -3	
30	25		15		$u_3 = 9$
		10		3	
$v_1 = -1$	$v_2 = 3$	$v_3 = -1$	$v_4 = 0$	$v_5 = -12$	

KARPAGAM ACADEMY OF HIGHER EDUCATION COURSE III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: I BATCH-2017-2019

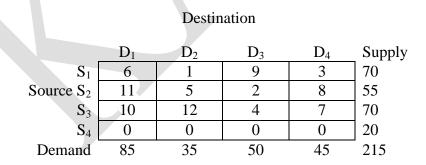
Since all d_{ij} >0, the solution under the test is optimum and unique.

: The optimum allocation schedule is $x_{13} = 35$, $x_{14} = 15$, $x_{24} = 10$, $x_{25} = 30$, $x_{31} = 30$, $x_{32} = 25$, $x_{34} = 15$

It can be noted that $x_{25}=30$ means that 30 units are dispatched from source 2 to the dummy destination E. In other words, 30 units are left undespatched from source 2.


The optimum (minimum) transportation cost

= Rs. 7 x 35 + 8 x 15 + 12 x 10 + 0 x 30 + 8 x 30 + 12 x 25 + 9 x 15


=Rs. 1160/-

Example 2: Solve the transportation problem with unit transportation costs, demands and supplies as given below:

Destination

Solution: Since the total demand ($\sum b_j = 215$) is greater than the total supply ($\sum a_i = 195$), the given problem is unbalanced transportation problem. To convert this into a balanced one, we introduce a dummy source S_4 with zero unit transportation costs and having supply equal to 215-195=20 units. \therefore The given problems becomes

As this problem is balanced, there exists a basic feasible solution to this problem. By using Vogel's approximation method, the initial solution is as shown in the following table.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III MCA COURSE CODE: 16CAP503 COURSE NAME: Optimization Techniques BATCH-2017-2019

6	65	1	5	9		3	
11	03	~	3	2		0	
11		5	30	2	25	8	
10		12		4		7	
-					25	-	45
0		0		0		0	
	20						

UNIT: I

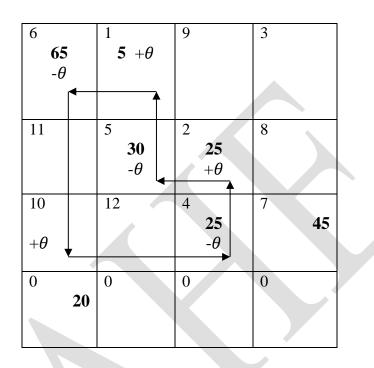
 \therefore The initial transportation cost

= Rs. 6x65 + 1x5 + 5x30 + 2x25 + 4x25 + 7x45 + 0x20

=Rs.1010/-

For optimality: Since number of non-negative allocations at independent positions is (m + n - 1), we apply the MODI method.

6		1		9	-2	3	1	
6	5		5					$u_1 = 6$
					11		2	
11		5		2		8	5	
10			30		25			$u_2 = 10$
							3	
	1							
10		12	7	4		7		
12			, 		25		45	$u_3 = 12$
			5					
-	2							
0		0	-	0	-	0	-	
2	0	5		8		5		$u_4 \ = 0$
			5		8		5	
$v_1 = 0$		$v_2 =$	-5	V 3	= -8	V4 =	= -5	-


Since $d_{31}=-2<0$, the solution under the test is not optimal.

Now let us form a new basic feasible solution by giving maximum empty. For this, we draw a closed path consisting of horizontal and vertical lines beginning and ending at this cell

KARPAGAM ACADEMY OF HIGHER EDUCATION							
CLASS: III MCA	0	COURSE NAME: Optimization Techniques					
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019					

(3,1) and having its other corners at some occupied cells. Along this closed loop, indicate $+\theta$ and $-\theta$ alternatively at the corners.

We have,

From the three cells (1,1), (2,2), (3,3) having $-\theta$, we find that the minimum of the allocations 65,30,25 is 25. Add this 25 to the cells with $+\theta$ and subtract this 25 to this cells with $-\theta$. Finally, the new feasible solution is displayed in the following table.

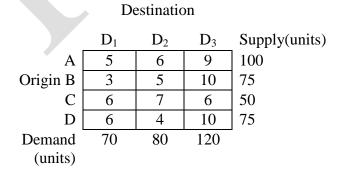
6	1	9	3
40	30		
11	5	2	8
	5	50	
10	12	4	7
25			45
0	0	0	0
0	0	0	0
20			

KARPAGAM ACADEMY OF HIGHER EDUCATION								
CLASS: III MCA	C	OURSE NAME: Optimization Techniques						
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019						

We see that the above table satisfies the rim conditions with (m + n - 1) non-negative allocations at independent positions. Now we check for optimality.

6		1		9	-2	3	3
	40		30				
					11		0
11	10	5		2		8	7
			5		50		
	1						1
10		12	5	4	2	7	
	25						45
			7		2		
0		0	-5	0	-8	0	-3
	20						
			5		8		3

Since all $d_{ij}>0$ with $d_{14}=0$, the solution under the test is optimal and an alternative optimal solution exists.


: The optimum allocation schedule is given by $x_{13} = 35$, $x_{14} = 15$, $x_{24} = 10$, $x_{25} = 30$, $x_{31} = 30$, $x_{32} = 25$, $x_{34} = 15$, $x_{41} = 20$.

It can be noted that $x_{41}=20$ means that 20 units are dispatched from the dummy source S_4 to the destination D_1 . In other words, 20 units are not fulfilled for the destination D_1 .

The optimum (minimum) transportation cost

Example 3:

Solve the transportation problem with unit transportation costs in rupees, demand and supplies as given below:

KARPAGAM ACADEMY OF HIGHER EDUCATION							
CLASS: III MCA	C	OURSE NAME: Optimization Techniques					
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019					

Solution: Since the total supply ($\sum a_i = 270$), the given transportation problem is unbalanced.

To convert this into a balanced one, we introduce a dummy source D_4 with zero unit transportation costs and having demand equal to 300-270=30 units. \therefore The given problem becomes

Destination

	D_1	D_2	D_3	D_4	Supply(units)
А	5	6	9	0	100
Origin B	3	5	10	0	75
С	6	7	6	0	50
D	6	4	10	0	75
Demand	70	80	120	30	300
(units)					

By using VAM the initial solution is given by

5	6	9	0
		100	
3	5	10	0
70	5		
6	7	6	0
		20	30
6	4	10	0
	75		
	3 70 6	3 70 5 5 6 7 6 4	100 3 5 10 6 7 6 6 4 10

Since the number of non-negative allocations is 6, which is less than (m + n - 1) = 4+4-1 = 7, this basic feasible solution is degenerate.

To resolve this degeneracy, we allocate a very small quantity \in to the cell (2,4), so that the number of occupied cells becomes (m + n - 1). Hence the non-degenerate basic feasible solution is given in the following table.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III MCA COURSE CODE: 16CAP503 COURSE NAME: Optimization Techniques BATCH-2017-2019

5	6	9 100	0
3 70	5 5	10	0 E
6	7	6 20	0 30
6	4 75	10	0

UNIT: I

Now the number of non-negative allocations at independent positions is (m + n - 1). We apply MODI method.

5	6	6	8	9		0		3		
				1	00				u ₁ :	= 3
	-1		-2					-3		
3		5		10	6	0				
	70		5				E		u ₂ :	= 0
					4					
6	3	7	5	6		0				
				2	20		30		u3 =	= 0
	3		2							
6	2	4		10	5	0		-1		
		7	75						u 4 :	= -1
	4				5			1		
V	$v_1 = 3$	v_2	= 5	V 3	= 6	\mathbf{V}_4	=	0		

Since there are some $d_{ij} < 0$, the current solution is not optimal.

Since d_{14} = -3 is the most negative, let is form a new basic feasible solution is giving maximum allocations to the corresponding cell(1,4) by making an occupied cell empty. We draw a closed loop consisting of horizontal and vertical lines beginning and ending at this cell (1,4) and having its other corners at some occupied cells. Along this closed loop indicate + θ and

 $-\theta$ Alternatively at the corners.

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: I BATCH-2017-2019 5 6 9 0 100 $+\theta$ -θ 3 5 10 0 70 5 E 7 6 6 0 20 30 $+\theta$ -θ 6 4 10 0 75

From the two cells (1, 3), (3, 4) having $-\theta$, we find that the minimum of the allocations 100, 30 is 30. Add this 30 the cells with $+\theta$ and subtract this 30 to the cells with $-\theta$. Hence the new basic feasible solution is given in the following table.

5	6	9	0
		70	30
3	5	10	0
70	5		E
6	7	6	0
		50	
6	4	10	0
	75		

We see that the above table satisfies the rim conditions with (m + n - 1) non-negative allocations at independent positions. We apply MODI method.

5	3	6	5	9		0]
				7	0		30	$u_1 = 0$
	2		1					
3		5		10	9	0		
70			5				E	$u_2 = 0$
					1			
6	0	7	2	6		0		
				5	0			$u_3 = -3$
	6		5					
6	2	4		10	8	0	-1	
			75					$u_4 = -1$
	4				2		1	
$\mathbf{v}_1 =$	3	\mathbf{V}_2	$_{2} = 5$	V3 =	= 9	V	$_{4} = 0$	

KARPAGAM ACADEMY OF HIGHER EDUCATION COURSE III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: I BATCH-2017-2019

Since all d_{ij}>0, the current solution is optimal and unique.

The optimum allocation schedule is given by $x_{13} = 70$, $x_{14} = 30$, $x_{21} = 70$, $x_{22} = 5$, $x_{24} = \epsilon$, $x_{33} = 50$, $x_{42} = 75$ and the optimum (minimum) transportation cost

 $= Rs. 9 x 70 + 0 x 30 + 3 x 70 + 5 x 5 + 0 x \in + 6 x 50 + 4 x 75$

=Rs. 1465/-

Maximization case in Transportation Problems

So far we have discussed the transportation problems in which the objectives has been to minimize the total transportation cost and algorithms have been designed accordingly.

If we have a transportation problems where the objective is to maximize the total profit, first we have to convert the maximization problem into a minimization problem by multiplying all the entries by -1 (or) by subtracting all the entries from the highest entry in the given transportation table. The modified minimization problem can be solved in the usual manner.

Assignment Problem : Introduction

The assignment problem is a particular case of the transportation problem in which the objective is to assign a number of tasks (Jobs or origins or sources) to an equal number of facilities (machines or persons or destinations) at a minimum cost (or maximum profit).

Suppose that we have 'n' jobs to be performed on 'm' machines (one Job to one machine) and our objective is to assign the jobs to the machines at the minimum cost (or maximum profit) under the assumption that each machine can perform each job but with varying degree of efficiencies.

The assignment problem can be stated in the form of $m \ge n$ matrix (c_{ij}) called a cost matrix (or) Effectiveness matrix where c_{ij} is the cost of assigning ith machine to the jth job.

	1	2	3	•••••	n
1	c_{11}	<i>c</i> ₁₂	<i>C</i> ₁₃	•••••	C_{ln}
2	c_{21}	c_{22}	<i>C</i> ₂₃		C_{2n}
Machines 3	<i>C</i> ₃₁	<i>C</i> ₃₂	<i>C</i> 33		C_{3n}
		•••••	•••••		
•	•••••	•••••	•••••	•••••	•••••
m	C_{m1}	C_{m2}	C_{m3}	•••••	c_{mn}

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: I BATCH-2017-2019

Mathematical formulation of an assignment problem.

Consider an assignment problem of assigning *n* jobs to *n* machines (one job to one machine). Let c_{ij} be the unit cost of assigning *i*th nachine to the *j*th job and

Let $x_{ij} = \begin{cases} 1, \text{ if } j^{\text{th}} \text{ job is assigned to } i^{\text{th}} \text{ machine} \\ 0, \text{ if } j^{\text{th}} \text{ job is not assigned to } i^{\text{th}} \text{ machine} \end{cases}$

The assignment model is then given by the following LPP

Minimize
$$Z = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

Subject to the constraints

$$\sum_{i=1}^{n} x_{ij} = 1, \quad j = 1, 2, \dots, n$$

$$\sum_{j=1}^{n} x_{ij} = 1, \quad i = 1, 2, \dots, n$$

and $x_{ij} = 0$ (or) 1.

Difference between the transportation problem and the assignment problem.

Transportation problem	Assignment problem
 (a) Supply at any source may be any positive quantity a_i 	Supply at any source (machine) will be 1 i.e., $a_i = 1$.
 (b) Demand at any destination may be any positive b_j 	Demand at any destination (job) will be 1 i.e., $b_j = 1$.
(c) One or more source to any Number of destinations	One source (machine) to only one destination (job).

Assignment Algorithm (or) Hungarian Method.

Prepared by Y.Sangeetha, Asst Prof, Department of Mathematics, KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III MCACOURSE NAME: Optimization TechniquesCOURSE CODE: 16CAP503UNIT: IBATCH-2017-2019

First check whether the number of rows is equal to the number of columns. If it is so, the assignment problem is said to be **balanced**. Then proceed to step 1. If it is not balanced, then it should be balanced before applying the algorithm.

Step 1: Subtract the smallest cost element of each row from all the elements in the row of the row of the given cost matrix. See that each row contains atleast one zero.

Step 2: Subtract the smallest cost element of each column from all the elements in the column of the resulting cost matrix obtained by step 1.

Step 3: (Assigning the zeros)

- (a) Examine the rows successively until a row with exactly one unmarked zero is found. Make an assignment to this single unmarked zero by encircling it. Cross all other zeros in the column of this enriched zero, as these will not be considered for any future assignment. Continues in this way until all the rows have been examined.
- (b) Examine the columns successively until a column with exactly one unmarked zero is found. Make an assignment to this single unmarked zero by encircling it and cross any other zero in its row. Continue until all the columns have been examined.

Step 4: (Apply optimal Test)

- (a) If each row and each column contain exactly one encircled zero, then the current assignment is optimal.
- (b) It atleast one row/column is without an assignment (i.e., if there is atleast one row/column is without one encircled zero), then the current assignment is not optimal. Go to step 5.

Step 5: Cover all the zeros by drawing a minimum number of straight lines as follows.

- (a) Mark (\mathcal{I}) the rows that do not have assignment.
- (b) Mark (1) the columns (not already marked) that have zeros in marked columns.
- (c) Mark (\mathcal{V}) the rows (not already marked) that have assignments in marked columns.
- (d) Repeat (b) and (c) until no more marking is required.
- (e) Draw lines through all unmarked rows and columns. If the number of these lines is equal to the order of the matrix then it is an optimum solution otherwise not.
- **Step 6:** Determine the smallest cost element not covered by the straight lines. Subtract this smallest cost element from all the uncovered elements and add this to all those elements

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: I BATCH-2017-2019

which are lying in the intersection of these straight lines and do not change the remaining elements which lie on the straight lines.

Step 7: Repeat steps (1) to (6). Until an optimum assignment is attained.

Note 1: In case some rows or columns contain more than one zero, encircle any unmarked zero, encircle any unmarked zero arbitrarily and cross all other zeros in its column or row. Proceed in this way until no zero is left unmarked or encircled.

- Note 2: The above assignment algorithm is only for minimization problems.
- Note 3: If the given assignment problem is of maximization type, convert it to a minimization assignment problem by max $Z = -\min(-Z)$ and multiply all the given cost elements by -1 in the cost matrix and then solve by assignment algorithm.
- **Note 4:** Sometimes a final cost matrix contains more than required number of zeros at independent positions. This implies that there is more than one optimal solution (multiple optimal solutions) with the same optimum assignment cost.

Example 1:

Consider the problem of assigning five jobs to five persons. The assignment costs are given as follows:

		Job)		
1	2	3	4	5	
8	4	2	6	1	
0	9	5	5	4	
3	8	9	2	6	
4	3	1	0	3	
9	5	8	9	5	
			123	1 2 3 4	12345

Determine the optimum assignment schedule.

Solution: The cost matrix of the given assignment problem is

$$\begin{pmatrix} 8 & 4 & 2 & 6 & 1 \\ 0 & 9 & 5 & 5 & 4 \\ 3 & 8 & 9 & 2 & 6 \\ 4 & 3 & 1 & 0 & 3 \\ 9 & 5 & 8 & 9 & 5 \end{pmatrix}$$

KARPAGAM ACADEMY OF HIGHER EDUCATION					
CLASS: III MCA	COURSE NAME: Optimization Techniques				
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019			

Since the number of rows is equal to the number of columns in the cost matrix, the given assignment problem is balanced.

Step 1: Select the smallest cost element in each row and subtract this from all the elements of the corresponding row, we get the reduced matrix

/7	3	1	5	0\
0	9	1 5	5	4
1	6	7	0	4
4	3	1	0	3
$\setminus 4$	0	3	4	0/

Step 2: select the smallest cost element in each column and subtract this from all the elements of the corresponding column, we get the reduced matrix.

/7	3	0	5	0\	
0	9	4	5	4	
1	6	6	0	4	
4	3	0	0	3	
$\setminus 4$	0	2	4	0/	

Since each row and each column at least one zero, we shall make assignments in the reduced matrix.

Step 3: Examine the rows successively until a row with exactly one unmarked zero is found. Since the 2^{nd} row contains a single zero, encircle this zero and cross all other zeros of its column. The 3^{rd} row contains exactly one unmarked zero, so encircle this zero and cross all other zeros in its column. The 4^{th} row contains exactly one unmarked zero, so encircle this zero and cross all other zeros in its column. The 1^{st} row contains exactly one unmarked zero, so encircle this zero, so encircle this zero and cross all other zeros in its column. The 1^{st} row contains exactly one unmarked zero, so encircle this zero, so encircle this zero and cross all other zeros in its column. The 1^{st} row contains exactly one unmarked zero, so encircle this zero and cross all other zeros in its column. Finally the last row contains exactly one unmarked zero, so encircle this zero and cross all other zeros in its column. Likewise examine the columns successively. The assignments in rows and columns in the reduced matrix is given by

/ 7	3	0	5	(0)
(0)	9	4	5	4
1	6	6 ((0)	4
4	3	(0)	0	3
\ 4	(0)	2	4	0 /

Step 4: Since each row and each column contains exactly one assignment (i.e., exactly one encircled zero) the current assignment is optimal.

: The optimal assignment schedule is given by A \rightarrow 5, B \rightarrow 1, C \rightarrow 4, D \rightarrow 3,

KARPAGAM ACADEMY OF HIGHER EDUCATION					
CLASS: III MCA		COURSE NAME: Optimization Techniques			
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019			

E → 2.

The optimum (minimum) assignment cost = (1 + 0 + 2 + 1 + 5) cost units = 9 units of cost.

Example 2:

The processing time in hours for the when allocated to the different machines are indicated below. Assign the machines for the jobs so that the total processing time is minimum.

		M_1	M ₂	M ₃	M_4	M_5
	\mathbf{J}_1	9	22	58	11	19
	J_2	43	78	72	50	63
Jobs	J ₃	41	28	91	37	45
	J_4	74	42	27	49	39
	J_5	36	11	57	22	25

Solution:

The cost matrix of the given problem is

9	22	58	11	19	
43	78	72	50	63	
41	28	91	37	45	
74	42	27	49	39	
36	11	57	22	25	

Since the number of rows is equal to the number of columns in the cost matrix, the given assignment problem is balanced.

Step 1: select the smallest cost element in each row and subtract this from all the elements of the corresponding row, we get the reduced matrix.

/	0	13	49	2	10 \
1	0	35	29	7	20
1	13	0	63	9	17
\ ·	47	15	0	22	12
1	25	0	46	11	14/

Step 2: Select the smallest cost element in each column and subtract this from all the elements of the corresponding column, we get the following reduced matrix.

KARPAGAM ACADEMY OF HIGHER EDUCATION					
CLASS: III MCA	COURSE NAME: Optimization Techniques				
COURSE CODE: 16CAP503	UNIT: I BATCH-2017-2019				
	$\begin{pmatrix} 0 & 13 & 49 & 0 & 0 \\ 0 & 35 & 29 & 5 & 10 \\ 13 & 0 & 63 & 7 & 7 \\ 47 & 15 & 0 & 20 & 2 \\ 25 & 0 & 46 & 9 & 4 \end{pmatrix}$				

Step 3: Now we shall examine the rows successively. Second row contains a single unmarked zero, encircle this zero and cross all other zeros in its column. Third row contains a single unmarked zero, encircle this zero and cross all other zeros in its column. Fourth row contains a single unmarked zero, encircle this zero and cross all other zero in its column. After this no row is with exactly one unmarked zero. So go for columns.

Examine the columns successively. Fourth column contains exactly one unmarked zero, encircle this zero and cross all other zeros in its row. After examining all the rows and columns. We get

				~
(0	13	49	(0)	0
(0)	35	29	5	10
13	(0)	63	7	7
47	15	(0)	20	2
25	0	46	9	4

Step 4: Since the 5th column do not have any assignment, the current assignment is not optimal.

Step 5: Cover all the zeros by drawing a minimum number of straight lines as follows:

- (a) Mark (f) the rows that do not have assignment. The row 5 is marked.
- (b) Mark (𝒴) the columns (not already marked) that have zeros in marked rows. Thus column 2 is marked.
- (c) Mark the rows (not already marked) that have assignment in, marked columns. Thus row 3 is marked.
- (d) Repeat (b) and (c) until no more marking is required. In the present case this repetition is not necessary.
- (e) Draw lines through all unmarked rows (rows 1, 2 and 4). And marked columns (column 2). We get

KARPAGAM ACADEMY OF HIGHER EDUCATION

Step 6: Here 4 is the smallest element not covered by these straight lines. Subtract this 4 from all the uncovered element and add this 4 to all those elements which are lying in the intersections of these straight lines and do not change the remaining elements which lie on these straight lines. We get the following matrix.

0	17	49	0	0	
0	39	29	5	10	
9	0	59	3	3	
47	19	0	20	2	
21	0	42	5	0)	

Since each row and each column contains at least one zero, we examine the rows and columns successively, i.e., repeat step 3 above, we get

	\sim					
V	0	17	49	(0)	0	
	(0)	39	29	5	10	
	9	(0)	59	3	-3	
	47	19	(0)	20	2	
	21	0	42	5	(0)	
	$\overline{\ }$					

In the above matrix, each row and each column contains exactly one assignment (i.e., exactly one encircled zero), therefore the current assignment is optimal.

: The optimum assignment schedule is $J_1 \rightarrow M_4$, $J_2 \rightarrow M_1$, $J_3 \rightarrow M_2$, $j_4 \rightarrow M_3$,

 $J_5 \longrightarrow M_5$ and the optimum (minimum) processing time

= 11+43+28+27+25 hours = 134 hours.

Unbalanced Assignment Models

If the number of rows is not equal to the number columns in the cost matrix of the given assignment problems, then the given assignment problems is said to be unbalanced.

KARPAGAM ACADEMY OF HIGHER EDUCATION				
CLASS: III MCA		COURSE NAME: Optimization Techniques		
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019		

First convert the unbalanced assignment problems in to a balanced one by adding dummy rows or dummy columns with zero cost element in the cost matrix depending upon whether m<n or m>n and then solve by the usual method.

Example 1: A company has four machines to do three jobs. Each job can be assigned to one and only one machine. The cost of each job on each machine is given in the following table.

	Machines				
	1	2	3	4	
Α	18	24	28	32	
В	8	13	17	19	
Jobs C	10	15	19	22	

What are job assignments which will minimize the cost?

Solution:

The cost matrix of the given assignment problems is

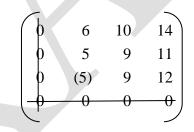
/18	24	28	32)
8	13	17	19
\10	15	19	22/

Since the number of rows is less than the number of columns in the cost matrix, the given assignment problems is unbalanced.

To make it a balanced one, add a dummy job D (row) with zero cost elements. The balanced cost matrix is given by

(18	24	28	32
8	13	17	19
10	15	19	22
$\bigcup 0$	0	0	0)

Now select the smallest cost element in each row (column) and subtract this from all the elements of the corresponding row (columns), we get the reduced matrix


CLASS: III MCA			COU	RSE NAME	: Optimization Tec	hniques
COURSE CODE: 16CAP503	U	UNIT: I		BATCH-20	17-2019	
	(0)	6	10	14		
	0	5	9	11		
	0	5	9	12		
	0	0	0	0		

In this reduced matrix, we shall make the assignment in rows and columns having single zero. We have

(0)	6	10	14
0	5	9	11
0	5	9	12
0	(0)	0	0
\sim	. /		

Since there are some rows and columns without assignment, the current assignment is not optimal.

Cover the all zeros by drawing a minimum number of straight lines. Choose the smallest cost element not covered by these straight lines.

Here 5 is the smallest cost element not covered by these straight lines. Subtract this 5 from all the uncovered element, add this 5 to those elements which lie in the intersections of these straight lines and do not change the remaining element which lie on the straight lines. We get

0	1	5	9
0	0	4	6
0	0	4	7
5	0	0	9)

KARPAGAM ACADEMY OF HIGHER EDUCATION				
CLASS: III MCA	0	COURSE NAME: Optimization Techniques		
COURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019		

Since each row and each column contains atleast one zero, we shall make assignment in the rows and columns having single zero. We get

(0)	1	5	9
0	(0)	4	6
0	0	4	7
5	0	(0)	9)

Since there are some rows and columns without assignment, the current assignment is not optimal.

Cover all the zeros by drawing a minimum number of straight lines.

$$\begin{pmatrix}
0 & 1 & 5 & 9 \\
0 & 0 & 4 & 6 \\
0 & 0 & (4) & 7 \\
5 & 0 & 0 & 0
\end{pmatrix}$$

Choose the smallest cost element not covered by these straight line, subtract this from all the uncovered elements, add this to those elements which are in the intersection of the lines and do not change the remaining elements which lie on these straight lines. Thus we get

0	1	1	5
0	0	0	2
0	0	0	3
9	4	0	0)

Since each row and each column contains atleast one zero, we shall make the assignment in the rows and columns having single zero. We get

KARPAGAM ACADEMY OF HIGHER EDUCATION							
CLASS: III MCA	COURSE NAME: Optimization Techniques						
COURSE CODE: 16CAP503	UNIT: I BATCH-2017-2019			ATCH-2017-2019			
	\subset			$\overline{}$			
	(0)	1	1	5			
	0	(0)	0	2			
	0	0	(0)	3			
	9	4	0	(0)			

Since each row and each column contains exactly one assignment (i.e., exactly one encircled zero) the current assignment is optimal.

: The optimum assignment schedule is given by A \rightarrow 1, B \rightarrow 2, C \rightarrow 3, D \rightarrow 4 and the optimum (minimum) assignment cost

= (18+13+19+0) cost unit = 50/- units of cost

Note 1: For this problem, the alternative optimum schedule is A \rightarrow 1, B \rightarrow 2, C \rightarrow 3, D \rightarrow 4, with the same optimum assignment cost= Rs. (18+17+15+0) = 50/- units of cost.

Note 2: Here the assignment $D \longrightarrow 4$ means that the dummy Job D is assigned to the 4th Machine. It means that machine 4 is left without any assignment.

Maximization case in Assignment Problems

In an assignment problem, we may have to deal with maximization of an objective function. For example, we may have to assign persons to jobs in such a way that the total profit is maximized. The maximization problems has to be converted into an equivalent minimization problem and then solved by the usual Hungarian Method.

The conversion of the maximization problem into an equivalent minimization problems can be done by any of the following methods:

- (i) Since max $Z = -\min(-Z)$, multiply all the cost element c_{ij} of the cost matrix by -1.
- (ii) Subtract all the cost elements c_{ij} of the cost matrix from the highest cost element in that cost matrix.

Example:

Solve the assignment problem for maximization given the profit matrix (profit in rupees).

UNIT: I

CLASS: III MCA COURSE CODE: 16CAP503 COURSE NAME: Optimization Techniques BATCH-2017-2019

		Mach	ines	
	Р	Q	R	S
Α	51	53	54	50
В	51 47	50	48	50
A B Jobs C	49 63	50	60	61
D	63	64	60	60

Solution:

The profit matrix of the given assignment problem is

(51	53	54	50
47	50	48	50
49	50	60	61
63	(64)	60	60

Since this is a maximization problem, it can be converted into an equivalent minimization problem by subtracting all the profit elements in the profit from the highest profit element 64 of this profit matrix. Thus the cost matrix of the equivalent minimization problem is

(13	11	10	14
17	14	16	14
15	14	4	3
	0	4	4)

Select the smallest cost in each row and subtract this from all the cost elements of the corresponding row. We get

<u> </u>			\sim
3	1	0	4
3	0	2	0
12	11	1	0
1	0	4	4
\sim			

Select the smallest cost element in each column and subtract this from all the cost elements of the corresponding column. We get

CLASS: III MCA		CC	OURSE NAME: Optimization Techniques
COURSE CODE: 16CAP503	UNIT	: I	BATCH-2017-2019
(1	0	A
	1 0 11 0	2	
	11	2 1	
	0	1 4	
			east one zero, we shall make the assignm
in rows and columns having single	zero. We	get	

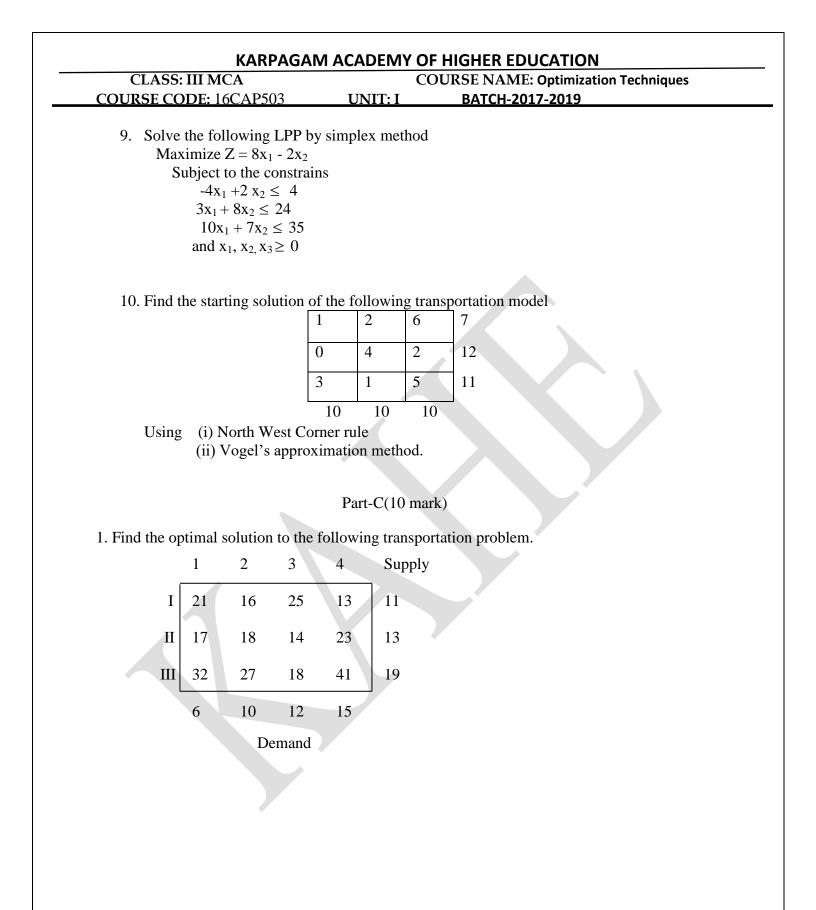
2	1	(0)	4
2	(0)	2	0
11	11	1	(0)
(0)	0	4	4

Since each row and each column contains exactly one encircled zero, the current assignment is optimal.

 $\therefore \text{ The optimum assignment schedule is given by A \longrightarrow R, B \longrightarrow Q, C \longrightarrow S, D \longrightarrow P \text{ and the optimum (maximum) profit} = Rs. (54 + 50 + 61 + 63)$

= Rs. 228/-

CLASS: III MCA	CC	DURSE NAME: Optimization Techniques
OURSE CODE: 16CAP503	UNIT: I	BATCH-2017-2019
ossible Questions		
Part	-B(6 mark)	
1. Use two phase simplex me	thod to solve	
Max $Z=5x_1 + 3x_2$		
Subject to		
$2x_1 + x_2 \le 1$		
$x_1 + 4x_2 \ge 6$		
$\mathbf{x}_1 \!\!\geq\! 0$, $\mathbf{x}_2 \!\geq\! 0$		
2.Use graphical method to solv	ve the following L	РР
Max $Z = 80x_1 + 55$	\mathbf{x}_2 Type equation h	lere.
Subject to		
$4x_1 + 2x_2 \le 40$		
$2x_1 + 4x_2 \leq 32$		
$\mathbf{x}_1 \ge 0$, $\mathbf{x}_2 \ge 0$		
3. Use simplex method to solv	ve the following L	PP
Maximize $Z = 5x_1 - 5x_2$	$+8x_{2}$	
Subject to the	ne constrains	
$-2 x_1 + x_2$	≤ 1	
\mathbf{x}_1	≤ 2	
$x_1 + x_2 \le$	≤ 3	
and x_1 , x	2 > 0	


4. The assignment cost of assigning any one operator to any one machine is given in the following table

			Oper	ator		
		Ι	II	III	IV	
	1	10	5	13	15	
Machine	2	3	9	18	3	
	3	10	7	3	2	
	4	5	11	9	7	

Find the optimal assignment by Hungarian method.

5. Consider the problem of assigning five jobs to five persons. The assignment costs are given as follows:

CLASS: III MC	A			COU	JRSE N.	AME: Optimiza	ation Techni	ques
COURSE CODE: 160	CAP503	1	UNIT: I		BATC	H-2017-2019		
		Jo	h					
		1	2	3	4	5		
		, I	-			2		
	Α	8	4	2 5	6	1		
F	B rom C	0	9		5 2	4		
Γ	rom C D	3 4	8 3	9 1	$\frac{2}{0}$	6 3		
	E	9	5	8	9	5		
Determine the op	ptimum as	Signmen	nt schedu	ıle				
6. Solve the tran	sportation	problem	n					
0. Solve the train		ribution						
	D1	D2		03	D4	Available		
А	$\int 11$	13	17		14	250		
Origin B	16	18	14		10	300		
С	21	24	13	;	10	400		
Demand	200	225	275		250			
7. Solve the assi	gnment pr	oblem.						
А	В	С	D					
	D			1				
I 18	24	28	32					
II 8	13	17	19					
III 10	15	19	22					
8. Find the Non-	degenera	te basic f	teasible	solutio	n for the	e following tra	nsportation	probl
using	i) North	west cor	ner rule					
	ii) Lowe							
		٨	B C		Supply			
	Ι		$\frac{B}{20} \frac{C}{5}$		Supply 10			
	II	13	9 12		20			
	III	4	5 7	9	30			
	TT 7	1 1	7 1	0	40			
	IV V	14	7 1 12 5		+0 50			

CLASS: III MCA COURSE CODE: 16CAP503

COURSE NAME: Optimization Techniques
UNIT: II BATCH-2017-2019

<u>UNIT-II</u>

SYLLABUS

Integer Programming:Gomory cutting plane methods - Branch and Bound method. **Queueing Theory:**Characteristics of queueing systems - steady state MIMIt, MlMit/K and MIMIC queueing models.

Queuing Theory

Introduction

In everyday life it is seen that a number of people arrive at a cinema ticket window. If the people arrive too frequently they will have to wait for getting tickets or sometimes do without it. Such problems arise in Railways, Airline etc. Under such circumstances the only alternative is to form a Queue called the Waiting Line in order to get the service more effectively. If we have too many counters for service then expenditure may be high. On the other hand if we have only few countries then Queue may become longer resulting in the dissatisfaction or loss of customers. Queuing models are aids to determine the optimal number of counters so as to satisfy the customers keeping the total cost minimum. Here the arriving people are called customers and the person issuing the tickets is called a server.

Servers may be in parallel or in series. When in parallel, the arriving customers may form a single Queue or several Queues as is common in biog post offices. Service time may be constant or variable and customers may be served singly or in batches.

Queuing System

A queuing system can be completely described by

- (a) The input (or arrival pattern).
- (b) The service mechanism (or service pattern).
- (c) The Queue discipline.
- (d) Customer's behavior.

(a)The input (or arrival pattern)

The input describes the way in which the customers arrive and join the system. Generally the customers arrive in more or less random fashion which is not worth making the prediction. Thus the arrival pattern can best be described in term of probabilities and consequently the probability distribution for inter arrival times (the time between two successive arrivals) must be

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III MCACOURSE NAME: Optimization TechniquesCOURSE CODE: 16CAP503UNIT: IIBATCH-2017-2019

defined. We deal with those Queuing system in which the customers arrive in 'Poisson' fashion. Mean arrival rate is denoted by

(b) The service mechanism (or service pattern)

The service pattern is specified when it is known how many customers can be served at a time, what the statistical distribution of the service time is, and when the service is available. Service time may be constant or a random variable. Distribution of service time which is important in practice is the **negative exponential distribution**. The mean service rate is denoted by μ .

(c) The Queue discipline

The queue discipline is the rule determining the formation of the Queue, the manner of the customer's behavior while waiting, and the manner in which they are chosen for service. The simplest discipline id first come, First Served" according to which the customers are served in the order of their arrival. Such type of Queue discipline is observed at a ration shop. If the order is reversed, we have 'Last come, first served' discipline, as in the case of a big godown the items which come last are taken out first.

Some of the queue service disciplines are:

FIFO – First in, First out or (FCFS)

LIFO – Last in, First out, (LCFS)

SIRO – Service in Random order.

(d)Customer's behavior:

The customer generally behaves in 4 ways:

- (i) Balking: A customer may leave the Queue, if there is no waiting space.
- (ii) Reneging: This occurs when the waiting customer leaves the Queue due to Impatience.
- (iii) Priorities: In certain applications some customers are served before others regardless of their order of arrival.
- (iv) Jockeying: Customers may jump from one, waiting line to another.

Transient and Steady States

A system is said to be in **Transient State** when its operating characteristics are dependent on time.

KARPAGAM ACADEMY OF HIGHER EDUCATION COURSE III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: II BATCH-2017-2019

Steady State: A system is said to be in **Steady State** when the behavior of the system is independent of time. Let $P_n(t)$ denote the probability that there are 'n' units in the system at time t. Then in steady state

 $=> \lim_{t\to\infty} P'_n(t) = 0$

Kendal'a Notation for representing Queuing models

Generally Queuing Model may be completely specified in the following symbol form :(a|b|c) :(d|e):

Where a=Probability law for the arrival

b=Probability law according to which customers are served.

c=Number of channels (or Service stations).

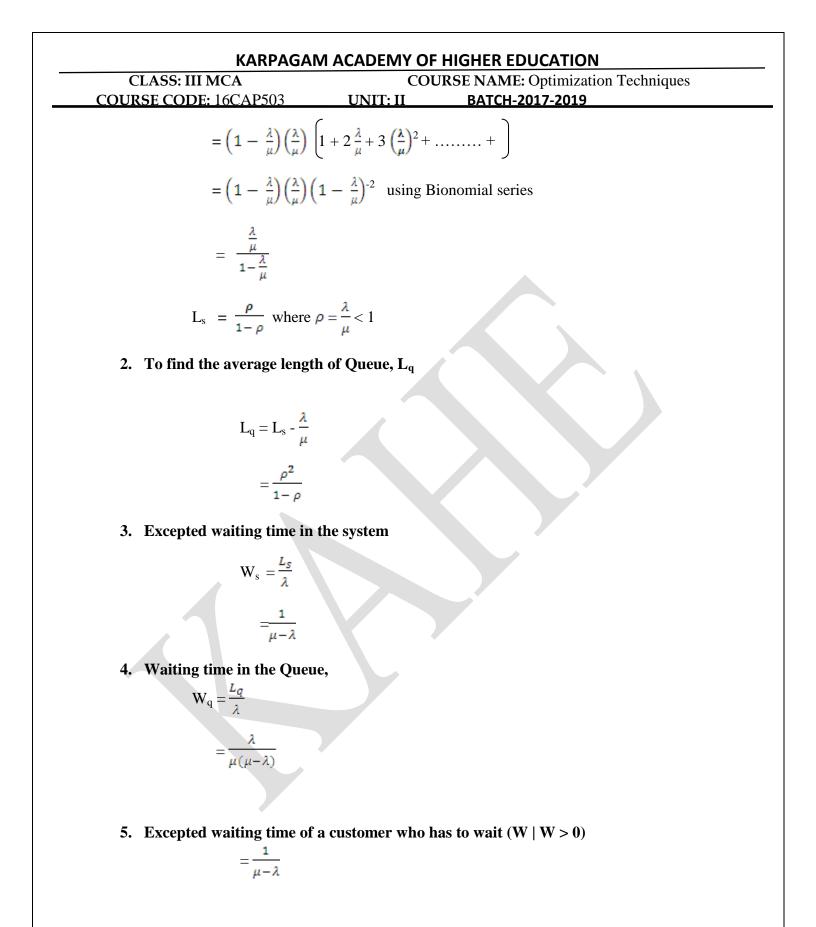
d=Capacity of the system.

e=Queue discipline.

Distribution of Arrivals "The Poisson Process" Arrival Distribution Theorem. (Pure Birth Process)

If the arrivals are completely random, then the probability distribution of a number of arrivals in a fixed – time interval follows a Poisson distribution.

Model 1: (M|M|I): (∞/FCFS) – Birth and Death Model


With usual notation, show that probability distribution of Queue length is given by ρ_n (1- ρ) where $\rho = \frac{\lambda}{\mu} < 1$ and $n \ge 0$.

Measure of Model I

1. To find the average (expected) number of units in the system, L. Solution:

By definition of excepted value

$$L_{s} = \sum_{n=1}^{\infty} nP_{n} = \sum_{n=1}^{\infty} n \left(\frac{\lambda}{\mu}\right)^{n} \left(1 - \frac{\lambda}{\mu}\right)$$
$$= \left(1 - \frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right) \sum_{n=1}^{\infty} n \left(\frac{\lambda}{\mu}\right)^{n-1}$$

KARPAGAM ACADEMY OF HIGHER EDUCATION				
CLASS: III MCA	COURSE NAME: Optimization Techniques			
COURSE CODE: 16CAP503	UNIT: II	BATCH-2017-2019		

6. Excepted length of the non – empty Queue, (L | L > 0)

$$=\frac{\mu}{\mu-\lambda}$$

- 7. Probability of Queue size $\geq N$ is ρ^N
- 8. Probability [Waiting time in the system $\geq t$]

$$=\int_t^\infty (\mu - \lambda) e^{-(\mu - \lambda)w} dw$$

9. Probability [Waiting time in the queue $\geq t$] = $\int_{t}^{\infty} \rho(\mu - \lambda) e^{-(\mu - \lambda)w} dw$

10. Traffic Intensity = $\frac{\lambda}{2}$

Example 1:

In a railway Marshalling yard, goods train arrive at a rate of 30 Trains per day. Assuming that inter arrival time follows an exponential distribution and the service time distribution is also exponential, with an average of 36 minutes. Calculate the following:

- (i) The mean Queue size (line length)
- (ii) The probability that Queue size exceeds 10
- (iii) If the input of the train increases to an average 33 per dya, what will be the changes in (i), (ii)?

Solution:

$$\lambda = \frac{30}{60 \times 24} = \frac{1}{48}, \quad \mu = \frac{1}{36}$$
 trains per minute

$$\therefore \rho = \frac{\lambda}{\mu} = \frac{36}{48} = 0.75$$

(i)
$$L_s = \frac{\rho}{1-\rho} = \frac{0.75}{1-0.75} = 3$$
 trains
(ii) $P (\ge 10) = (0.75)^{10} = 0.056$

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III MCACOURSE NAME: Optimization TechniquesCOURSE CODE: 16CAP503UNIT: IIBATCH-2017-2019

(iii)When the input increases to 33 trains per day,

We have $\lambda = \frac{30}{60 \times 24} = \frac{1}{480}$ and $\mu = \frac{1}{36}$ trains per minute

Now,
$$L_s = \frac{\rho}{1-\rho}$$
 where $\rho = \frac{\lambda}{\mu}$; $\rho = 0.825$

:: $L_s = \frac{0.825}{1 - 0.825} = 5$ trains (app)

Also $P(\ge 10) = \rho^{10} = (0.825)^{10}$

= 0.1460

Example 2:

In a super market, the average arrival rate of customer is 10 in every 30 minutes following Poisson process. The average time taken by the cashier to list and calculate the customer's purchases is 2.5 minutes, following exponential distribution. What is the probability that the Queue length exceeds 6? What is the excepted time spent by a customer in the system?

Solution:

Here the mean arrival rate

$$\lambda = \frac{10}{30}$$
 per minute

and mean service rate = $\frac{1}{2.5}$ per minute

$$\rho = \frac{\lambda}{\mu} = \frac{\frac{1}{3}}{\frac{1}{2.5}} = 0.8333$$

(i) (The probability of Queue size > n) = ρ^n

When
$$n = 6 \implies (0.8333)^6 = 0.3348$$

(ii)
$$W_s = \frac{L_s}{\lambda} = \frac{\frac{\rho}{1-\rho}}{\lambda}, \ \rho = \frac{\lambda}{\mu}$$
$$= \frac{0.8333}{1-0.8333} \ge 3 = \frac{2.499}{0.167}$$

KARPAGAM ACADEMY OF HIGHER EDUCATION					
CLASS: III MCA	COURSE NAME: Optimization Techniques				
COURSE CODE: 16CAP503	UNIT: II	BATCH-2017-2019			

= 14.96 minutes

Example 3:

In a public telephone booth the arrivals are on the average 15 per hour. A call on the average takes 3 minutes. If there is just one phone, find (i) Excepted number of callers in the booth at any time (ii) The proportion of the time the booth is excepted to be Idle?

Solution:

Mean arrival rate $\lambda = 15$ per hour

Mean service rate $\mu = \frac{1}{3} \times 60 = 20$ per hr.

: (i). Excepted length of the non-empty

Queue =
$$\frac{\mu}{\mu - \lambda} = \frac{20}{20 - 15} = 4$$

(ii). The service is busy means
$$=\frac{\lambda}{\mu}=\frac{15}{20}=\frac{3}{4}$$

 \therefore The booth excepted to Idle for $1 - \frac{3}{4} = \frac{1}{4}$ hrs

= 15 minutes

Example 4:

A T.V repairman finds that the time spent on his job has an exponential distribution with mean 30 minutes. If he repairs sets in the order in which they came in and if the arrival of sets is Poisson with an average rate of 10 per 8 hour day, what is his excepted Idle time day? How many hobs are ahead of the average set just brought in?

Solution:

Mean service rate $\mu = \frac{1}{30}$ per minute

$$=\frac{1}{30} \times 60 = 2$$
 sets per hour

Mean arrival rate = $\frac{10}{8}$ per hr

COURSE NAME: Optimization Techniques

CLASS: III MCA COURSE CODE: 16CAP503

UNIT: II BATCH-2017-2019

$$\rho = \frac{\lambda}{\mu}$$
 where $\mu = 2$ per hr.

$$\rho = \frac{5}{4}$$
 per hr

The utilization factor $\frac{\lambda}{\mu}$ is $\frac{5}{4 \ge 2} = \frac{5}{8}$

For 8 hr day, Repairman's busy time = 8 x $\frac{5}{8}$ = 5 hrs

: Idle time of repairman = 8 - 5 hrs = 3 hrs

The number of jobs ahead = No. of units in the system

$$=\frac{\rho}{1-\rho}=\frac{\frac{5}{8}}{1-\frac{5}{8}}=\frac{\frac{5}{8}}{\frac{3}{8}}=\frac{5}{3}$$

= 2 app, TV sets

Example 5:

At a public Telephone booth in a Post Office arrivals are considered to be Poisson with an average inter-arrival time of 12 minutes. The length of the phone call may be assumed to be distributed exponentially with an average of 4 minutes. Calculate the following:

- (a) What is the probability that a fresh arrival will not have to wait for the phone?
- (b) What is the probability than an arrival will have to wait more than 10 minutes before the phone is free?
- (c) What is the average length of Queues formed from time to time?

Solution:

Mean arrival rate, $\lambda = \frac{1}{12}, \mu = \frac{1}{4}$

Mean service rate,
$$\frac{\lambda}{\mu} = \frac{4}{12} = \frac{1}{3} = 0.33$$

KARPAGAM ACADEMY OF HIGHER EDUCATION

 COURSE: III MCA
 COURSE NAME: Optimization Techniques

 COURSE CODE: 16CAP503
 UNT: II
 BATCH-2017-2019

 (a) Probability that a fresh arrival will not have to wait

$$= 1 - \frac{\lambda}{\mu} = 1 - 0.33$$
 $= 0.67$

 (b) Probability that an arrival will have to wait for atleast 10 minutes

 $= \int_{t}^{\infty} \left(\frac{\lambda}{\mu}\right) (\mu - \lambda) e^{-(\mu - \lambda)t} dt$
 $= \int_{t}^{\infty} (0.33)(0.25 - 0.083)e^{-0.167t} dt$
 $= 0.05511 \left[\frac{e^{-0.167t}}{-0.167} \right]_{10}^{\infty}$
 $= 0.0621$

 (c) The average length of Queues from time to time

$$(L > 0) = \frac{\mu}{\mu - \lambda}$$
$$= \frac{0.25}{0.25 - 0.085}$$
$$= 1.5$$

Example 6:

People arrive at a Theatre ticket booth in Poisson distributed arrival rate of 25 per hour. Service time is constant at 2 minutes. Calculate

- (a) The mean number in the waiting line
- (b) The mean waiting time
- (c) The utilization factor.

Solution:

$$\lambda = \text{per hr};$$

$$\mu = \frac{1}{2} \times 60 = 30 \text{ per hr.}$$

$$\therefore \rho = \frac{\lambda}{\mu} = \frac{25}{30} = \frac{5}{6} = 0.833$$

CLASS: III MCA	KARPAGAM ACADEMY OF HIGHER EDUCATION II MCA COURSE NAME: Optimization Technic					
COURSE CODE: 16CAP503	UNIT: II	BATCH-2017-2019				
(i) Length of the Queue						
$L_q = \frac{\rho^2}{1-\rho}$						
(0.833) ²						
$=\frac{1-0.833}{1-0.833}$						
0.00000						
$=\frac{0.693889}{0.167}$	= 4 (app)					
(ii) Mean waiting time = $\frac{L_q}{\lambda}$						
$=\frac{4}{25}$						
25						
= 9.6	minutes					
(iii)Utilization factor $\rho = \frac{\lambda}{\mu} = 0.8$	33.					
Model II:						

(**M** | **M** | **I**) : (**N** | **FCFS**)

Here the capacity of the system is limited, say N. Infact arrivals will not exceed N in any case. The various measures of this Model are

1.
$$P_0 = \frac{1-\rho}{1-\rho^{N+1}}$$
 where $\rho = \frac{\lambda}{\mu}, \left\{ \frac{\lambda}{\mu} > 1 \text{ is allowed} \right\}$
2. $P_n = \frac{1-\rho}{1-\rho^{N+1}} \rho^n \text{ for } n = 0, 1, 2, \dots N$

$$J. \qquad L_s = P_0 \sum_{n=0}^N n \rho^n$$

$$4. \qquad L_q = L_s - \frac{\lambda}{\mu}$$

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III MCA COURSE NAME: Optimization Techniques				
COURSE CODE: 16CAP503	UNIT: II BATCH-2017-2019			

$$6. \qquad W_q = \frac{L_q}{\lambda}$$

Example 1:

If for period of 2 hours in a day (8 - 10 AM) trains arrive at the yard every 20 minutes but the service time continues to remain 36 minutes, then calculate for this period

(a) The probability that the yard is empty

(b) Average Queue length, assuming that capacity of the yard is 4 trains only.

Solution:

Here
$$\rho = \frac{36}{20} = 1.8$$
, N =

$$(a)P_0 = \frac{\rho - 1}{\rho^5 - 1} = 0.04$$

(b) Average Queue size

$$= P_0 \sum_{n=0}^{N} n\rho^n$$

= 0.04 (\rho + 2\rho^2 - 3\rho^3 + 4\rho^4)
= 2.9
\approx 3 trains

Example 2:

In a railway marshalling yard, goods training trains arrive at a rate of 30 trains per day. Assume that the inter arrival – time follows an exponential distribution and the service time distribution is also exponential with an average of 36 minutes, calculate

- (a) The probability that the yard is empty
- (b) Average queue length assuming that the line capacity of the yard is 9 trains.

CLASS: III MCA		HIGHER EDUCATION JRSE NAME: Optimization Techniques
COURSE CODE: 16CAP503	UNIT: II	BATCH-2017-2019
Solution:		
Here N = 10, $\lambda = \frac{10}{60}$	$\mu = \frac{1}{5}$	
$\rho = \frac{\lambda}{\mu} = \frac{5}{6}$		
$P_0 = \frac{1-\rho}{1-\rho^{11}} = \frac{1-\rho}{1-\left(\frac{5}{6}\right)}$	$\frac{5}{6}$	
$=\frac{0.1667}{0.8655}=0.1926$	i	
$\mathbf{P}_{\mathbf{n}} = \left(\frac{1-\rho}{1-\rho^{N+1}}\right)\rho^{n}$		
$= (0.1926) \times \left(\frac{5}{6}\right)^{7}$	n , $n = 0, 1, 2, \dots$,	10

Example 4:

A car park contains 5 cars. The arrival of cars is poisson at a mean rate of 10 per hour. The length of time each car spends in the car park is negative exponential distribution with mean of 2 hours. How many cars are in the car park on average?

Solution:

N = 5,
$$\lambda = \frac{10}{60}$$
, $\mu = \frac{1}{2 \times 60}$, $\rho = \frac{\lambda}{\mu} = 20$
P₀ = $\left(\frac{1-\rho}{1-\rho^{N+1}}\right)$
= $\frac{1-20}{1-20^6} = \frac{-19}{-6399} = 2.962 \times 10^{-7}$

$$L_{\rm s} = \frac{1-\rho}{1-\rho^{N+1}} \sum_{n=0}^{N} n\rho^n$$

CARPAGAM ACADEMY OF HIGHER EDUCATION

 COURSE III MCA
 COURSE NAME: Optimization Techniques

 COURSE CODE: 16CAP503
 UNIT: II
 BATCH-2017-2019

 = (2.9692 x 10⁻³) x
$$\sum_{n=0}^{5} n(2.9692 x 10^{-3})^{n}$$

 = (2.9692 x 10⁻³) x $[0 + (2.9692 x 10^{-3}) + 2 x (2.9692 x 10^{-3})^{2} + 3 x (2.9692 x 10^{-3})^{3} + 4 x (2.9692 x 10^{-3})^{4} + 5 x (2.9692 x 10^{-3})^{5}]$

 = (2.9384 x 10⁻³) x $[0 + (2.9692 x 10^{-3}) + 2 x (2.9384 x 10^{-3}) + 3 x (2.9692 x 10^{-3})^{2} + 4 x (2.9692 x 10^{-3})^{3} + 5 x (2.9692 x 10^{-3})^{4}]$

 = (2.9384 x 10⁻³) x $[0 + (2.9692 x 10^{-3}) + 2 x (2.9384 x 10^{-3}) + 3 x (2.9692 x 10^{-3})^{2} + 4 x (2.9692 x 10^{-3})^{3} + 5 x (2.9692 x 10^{-3})^{4}]$

Example 5:

At a one-man barber shop, the customers arrive following poisson process at an average rate of 5 per hour and they are served according to exponential distribution with an average service rate of 10 minutes. Assuming that only 5 seats are available for waiting customers, find the average time a customers, find the average time a customers find the average time a customer spends in the system.

Solution:

$$W_{s} = \frac{P_{0}}{\lambda} \sum_{n=0}^{N} n \rho^{n}$$

Here $\lambda = 5$ per hr

$$\mu = \frac{1}{10} \ge 60$$

= 6 per hr and N = 5

$$\therefore \frac{1}{\mu} = \frac{5}{6} = \rho$$

CLASS: III MCA	COU	HIGHER EDUCATION RSE NAME: Optimization Techniques
COURSE CODE: 16CAP503	UNIT: II	BATCH-2017-2019
	$P_0 = \frac{1 - \rho}{1 - \rho^6} = \frac{1}{1 - \rho^6}$	$\frac{1-\frac{5}{6}}{-\left(\frac{5}{6}\right)^6}$
	$=\frac{1-\frac{1}{6}}{1-\left(\frac{1}{6}\right)^6}=$	$\frac{\frac{1}{6}}{1-1.07 \text{ x } 10^{-4}}$
	$=\frac{0.1666}{1-0.0001}=$	0.1666
	= 0.1666	
$\frac{L_s}{\lambda} = \frac{L_s}{\lambda}$	Ws	
Where $Ls =$	$0.166 \ge \sum_{n=0}^{N} n\rho^n$	
	(= n	
= 0.1	$66 \ge \sum_{n=0}^{N} n \left(\frac{5}{6}\right)^n$	
= 0.1	$66 \ge \left[\rho + 2\rho^2 + 3\rho\right]$	$^{3} + 4\rho^{4} + 5\rho^{5}$]
= 0.1	$66\left(\frac{5}{6}+2\left(\frac{5}{6}\right)^2+3\left(\frac{5}{6}\right)^2\right)$	$\left(\frac{5}{6}\right)^{3} + 4\left(\frac{5}{6}\right)^{4} + 5\left(\frac{5}{6}\right)^{5}$
= 0.1	66 [0.833 + (2 x 0.	694) + (3 x 0.5782)
	+	(4 x 0.4816) + (5 x 0.4012)]
$W_{s} = \frac{0.1666}{5}$.7346 + 1.9264 + 2.006]
0.1666	$\frac{x\ 7.88}{5} = \frac{1.3094}{5}$	= 0.26 hrs \approx 16 minutes

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III MCACOURSE NAME: Optimization TechniquesCOURSE CODE: 16CAP503UNIT: IIBATCH-2017-2019

Possible Questions

Part-B(6 marks)

1. Find the optimum integer solution to the following LPP Maximize $Z = x_1 + 4 x_2$ Subject to the constraints $2x_1 + 4x_2 \le 7$ $5x_1 + 3x_2 \le 15$ and $x_1, x_2 \ge 0$ and are integers

2. Solve the following ILPP using Branch and Bound method

Maximize $Z = 7x_1 + 9x_2$ Subject to the constraints

 $\begin{array}{l} -x_1 + 3x_2 \leq 6 \\ 7x_1 + x_2 \leq 35 \\ x_2 \leq 7 \\ \text{and } x_1, x_2 \geq 0 \text{ and are integers} \end{array}$

3. Solve the following mixed integer programming problem.

 $\begin{array}{l} \text{Minimize } Z = x_1 - 3x_2\\ \text{Subject to}\\ x_1 + x_2 \leq 5\\ -2x_1 + 4x_2 \leq 11\\ \text{and } x_1, x_2 \geq 0 \text{ and } x_2 \text{ be an integer} \end{array}$

- 4. In a super market, the average arrival rate of customer is 10 in every 30 minutes following Poisson process. The average time taken by the cashier to list and calculate the customer's purchases is 2.5 minutes, following exponential distribution. What is the probability that the Queue length exceeds 6? What is the excepted time spent by a customer in the system?
- 5. Find the optimum integer solution to the following IPP.

Maximize $Z = x_1 + x_2$ Subject to $2x_1 + 5x_2 \le 16$ $6x_1 + 5x_2 \le 30$ and $x_1 \ge 0$, $x_2 \ge 0$ and are all integers

6. At a one-man barber shop, the customers arrive following poisson process at an average rate of 5 per hour and they are served according to exponential distribution with an average

COURSE NAME: Optimization Techniques

CLASS: III MCA COURSE CODE: 16CAP503 UNIT: II BATCH-2017-2019

service rate of 10 minutes. Assuming that only 5 seats are available for waiting customers, find the average time a customers, find the average time a customer spends in the system.

7. Find the optimum integer solution to the following LPP.

Maximize $Z = x_1 + 2x_2$ Subject to the constraints $2x_2 < 7$ $x_1 + x_2 \le 7$ $2x_1 \leq 11$ and $x_1 \ge 0$, $x_2 \ge 0$ and are all integers.

8. Solve the following mixed integer programming problem.

Minimize $Z = 10x_1 + 9x_2$ Subject to the constraints $x_1 \leq 8$ $x_2 \le 10$ $5x_1 + 3x_2 \ge 45$

and $x_1, x_2 \ge 0, x_1$ be an integer.

9. Find the optimum integer solution to the following LPP.

Maximize $Z = 2x_1 + 2x_2$ Subject to the constraints $5x_1 + 3x_2 < 8$ $2x_1 + 4x_2 \le 8$ and $x_1 \ge 0$, $x_2 \ge 0$ and are integers.

10. Solve the following mixed integer programming problem.

Maximize $Z = x_1 + x_2$ Subject to the constraints $2x_1 + 5x_2 \le 16$ $6x_1 + 5x_2 < 30$ and $x_2 \ge 0$ and x_1 is non negative integers.

Part-C(10 marks)

1. At a one-man barber shop, the customers arrive following poisson process at an average rate of 5 per hour and they are served according to exponential distribution with an average service rate of 10 minutes. Assuming that only 5 seats are available for waiting customers, find the average time a customers, find the average time a customer spends in the system.

CLASS: III MCA COURSE CODE: 16CAP503 COURSE NAME: Optimization Techniques
UNIT: III BATCH-2017-2019

UNIT-III

SYLLABUS .

Replacement Theory: replacement of items that deteriorate - Replacement of items that fail Group replacement and individual replacement.

Replacement Theory:

The Replacement Theory in Operations Research is used in the decision making process of replacing a used equipment with a substitute; mostly a new equipment of better usage. The replacement might be necessary due to the deteriorating property or failure or breakdown of particular equipment. The 'Replacement Theory' is used in the cases like; existing items have out-lived, or it may not be economical anymore to continue with them, or the items might have been destroyed either by accident or otherwise. The above discussed situations can be solved mathematically and categorized on some basis like:

- Items that deteriorate with time e.g. machine tools, vehicles, equipment buildings etc.
- Items becoming out-of-date due to new developments like ordinary weaving looms by automatic, manual accounting by tally etc.
- Items which do not deteriorate but fail completely after certain amount of use like electronic parts, street lights etc (Group Replacement) and
- The existing working staff in an organization gradually diminishing due to death, retirement, retrenchment & otherwise (Staff Replacement).

Replacement Policy for Equipment which Deteriorate Gradually

Let us see the fiUSDt case of gradual failure of items with time. Consider the example of a Motor Vehicle; the pattern of failure here is progressive in nature i.e. as the life of vehicle increases; its efficiency decreases. This results in additional expenditure in running or maintaining this vehicle and at the same time its resale value (also called as scrap value) also keeps on decreasing. The above case makes this situation a typical case for applying 'Replacement Theory'.

CLASS: III MCA COURSE CODE: 16CAP503

COURSE NAME: Optimization Techniques UNIT: III BATCH-2017-2019

Group Replacement theory:

Replacement of items that fail suddenly

There are certain items which do not deteriorate but fail completely after certain amount of use. These kinds of failures are analyzed by the method called as group replacement theory. Here, large numbers of items are failing at their average life expectancy. This kind of items may not have maintenance costs as such but they fail suddenly without any prior warning. Also, in case of sudden breakdowns immediate replacement may not be available. Few examples are fluorescent tubes, light bulbs, electronic chips, fuse etc.

Let's consider the example of street lights. We often see street-lights being repaired by the corporation staff using extendable ladders. If a particular light is beyond repairs, then it is replaced. This kind of policy of replacement is called as 'replacement of items as-and-when they fail' or '*Individual Replacement*'. On the other hand, if all the street lights in a particular cluster are replaced as and when they fail and also simultaneously in groups, then the policy is called as '*Group Replacement*'. It should be noted that, group replacement does involve periodic simultaneous replacements along with individual replacements in between.

It is found that replacing these random failing items simultaneously at specific intervals is economical as compared to replacing them only when an item fails. A long period between group replacements results in increase in cost of individual replacements, while frequent group replacements are definitely costly. There lies the need to balance this and find an optimum replacement time for optimum cost of replacement.

- Replacement of the equipment that fails completely.
 - o Individual Replacement Policy : Mortality Theorem
 - o Group Replacement of items that fail completely

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: III BATCH-2017-2019

OBJECTIVES OF REPLACEMENT

The primary objective of replacement is to direct the organization towards profit maximization or cost minimization. Deciding the replacement policy that determines the optimal replacement age of equipment, instead of using with higher maintenance costs for long time, is the main objective of replacement problem. For instance, in order to replace an:

- item whether to wait till its failure or replacing at an early age with higher cost.
- equipment whether to replace the inefficient equipment with a similar type of equipment or with a modern one.

FAILURE MECHANISMS OF EQUIPMENTS

The term 'failure' has a wider meaning in *business* than what it has in our daily life. Failures can be discussed under two categories viz., Gradual Failures, and Sudden Failures.

Costs to be considered: Various costs that are to be included in this model are all those costs that depend upon the choice or age of the equipment. In some special cases, certain costs need to be included in the calculations. For example, in considering the optimum decisions of replacement for a particular machine, the costs that do not change with the age of the equipment need not be considered. The costs to be considered while calculating the optimum replacement period are:

KARPAGAM ACADEMY OF HIGHER EDUCATION COURSE III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: III BATCH-2017-2019

(i) Capital Recovery Cost = Average First Cost, if rate of interest is zero percent.

(ii) Running cost = Average operating and maintenance cost (O&M cost).

The above associated costs can be expressed as average cost per period and the sum of the above two costs can be considered as total cost.

GRADUAL FAILURE

The mechanism under this category is progressive. That is, as the life of an item increases, its efficiency deteriorates, causing:

- Increased expenditure for operating costs
- Decreased equipments' productivity
- Decrease in the value of the equipment

Example: bearings, pistons, piston rings, 'Automobile Tyres', mechanical systems like machines, machine tools, flexible manufacturing equipment etc. fall under this category.

A machine loses efficiency with time and we have to determine the best time at which we have to go for a new one. In case of a vehicle, the maintenance cost is increasing as it is getting aged. These costs increase day by day if we postpone the replacement.

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: III BATCH-2017-2019

INDIVIDUAL REPLACEMENT POLICY (MORTALITY THEOREM)

In this policy, 'an equipment or item is to be replaced as soon as it fails. Mortality tables will be referred to determine the life span of any equipment or the probability distribution of failure. To discuss such type of replacement policy, the problem of human population is considered. No group of people ever existed under the conditions.

- a) that all deaths are immediately replaced by births, and
- b) that there are no other entries or exits.

Individual Replacement:

The mean age of items = $1 \times p_1 + 2 \times p_2 + 3 \times p_3 + 4 \times p_4 + 5 \times p_5 + \dots + k.p_k = \sum_{i=1}^n i.p_i$

The number of failures in each period in steady state = $N / \sum_{i=1}^{n} i.p_i$

The cost of replacing items individually on failure = $= \left[\left(N / \sum_{i=1}^{n} (i.p_i) \right] C_1 \right]$

M(t) = Number of items surviving at time t M(t - 1) = Number of items surviving at time (t - 1) N = Total number of items in the system

Following mortality rates have been observed for certain type of light bulbs.

Time (weeks)	0	1	2	3	4	5	6	7	8	9	10	
Number of bulbs still operating	100	94	82	58	40	28	19	13	7	3	0	

Calculate the probability of failure.

Solution.

Here, t is the time (weeks) and M (t) is the number of bulbs still operating. The probability of failure can be calculated as shown in the following table.

CLASS: III M	CA	COURSE NAME: Optimization Techniq	ues
URSE CODE: 1	6CAP503	UNIT: III BATCH-2017-2019	
ble			
Time (t)	M (t)	Probability of failure p _i = [M (t - 1)- M (t)] / N	
0	100		
1	94	(100 - 94)/100 = 0.06	
2	82	(94 - 82)/100 = 0.12	
3	58	(82 - 58)/100 = 0.24	
4	40	(58 - 40)/100 = 0.18	
5	28	(40 - 28)/100 = 0.12	
6	19	(28 - 19)/100 = 0.09	
7	13	(19 - 13)/100 = 0.06	
8	7	(13 - 7)/100 = 0.06	
9	3	(7 - 3)/100 = 0.04	
10	0	(3 - 0)/100 = 0.03	

Following mortality rates have been observed for a certain type of electronic component.

Month	0	1	2	3	4	5	6
% surviving at the end of the month	100	97	90	70	30	15	0

There are 10000 items in operation. It costs Re 1 to replace an individual item and 35 paise per item, if all items are replaced simultaneously. It is decided to replace all items at fixed intervals & to continue replacing individual items as and when they fail. At what intervals should all items be replaced? Assume that the items failing during a month are replaced at the end of the month.

KARPAGAM ACADEMY OF HIGHER EDUCATION **CLASS: III MCA COURSE NAME:** Optimization Techniques

COURSE CODE: 16CAP503

UNIT: III BATCH-2017-2019

Solution.

Month	% surviving at the end of the month	Probability of failure Pi
0	100	
1	97	(100 - 97)/100 = 0.03
2	90	(97 - 90)/100 = 0.07
3	70	(90 - 70)/100 = 0.20
4	30	(70 - 30)/100 = 0.40
5	15	(30 - 15)/100 = 0.15
6	0	(15 - 0)/100 = 0.15

The given problem can be divided into two parts.

I. Individual replacement.

II. Group replacement.

Case I

It should be noted that no item survives for more than 6 months. Thus, an item which has survived for 5 months is sure to fail during sixth month.

The expected life of each item is given by

= $\Sigma x_i p_i$, where x_i is the month and p_i is the corresponding probability of failure.

= (1 X 0.03) + (2 X 0.07) + (3 X 0.20) + (4 X 0.40) + (5 X 0.15) + (6 X 0.15)

= 4.02 months.

: Average number of replacement every month = N/(average expected life) = 10000/4.02 = 2487.5 = 2488 items (approx.).

Here average cost of monthly individual replacement policy = 2488 X 1 = Rs. 2488/-, (the cost being Re 1/- per item).

CLASS: III MCA	IOD	JRSE NAME: Optimization Techniques
COURSE CODE: 16CAP503	UNIT: III	BATCH-2017-2019
Case II		
Let N _i denote the number of	f items replaced a	t the end of ith month.
Calculating values for N _i		
N ₀ = Number of items in the begin N ₁ = Number of items during the installation = 10000 X 0.03 = 300	-	bility that an item fails during 1st month of
N ₂ = Number of items replaced by =(Number of items in beginning > items replaced in first month X pro	K probability that the	se items will fail in 2 nd month) + (Number of
=N ₀ P ₂ + N ₁ P ₁ =(10000 X 0.07) + (300 X 0.03) = 7	09	
N ₃ = N ₀ P ₃ + N ₁ P ₂ + N ₂ P ₁		
= (10000 X 0.20) + (300 X 0.07)+ (7	709 X 0.03) = 2042	
N ₄ = N ₀ P ₄ + N ₁ P ₃ + N ₂ P ₂ + N ₃ P ₁		
= (10000 X 0.40) + (300 X 0.20)+ (7	709 X 0.07) + (2042 X	0.03) = 4171
N ₅ = N ₀ P ₅ + N ₁ P ₄ + N ₂ P ₃ + N ₃ P ₂ + N	I ₄ P ₁	
= (10000 X 0.15) + (300 X 0.40)+ (7		0.07) + (4171 X 0.03) = 2030
N ₆ = N ₀ P ₆ + N ₁ P ₅ + N ₂ P ₄ + N ₃ P ₃ + N	N ₄ P ₂ + N ₅ P ₁	
= (10000 X 0.15) + (300 X 0.15)+ (70	09 X 0.40) + (2042 X	0.20) + (4171 X 0.07) + (2030 X 0.03) = 2590.
	observed that N: incre	eases upto fourth month and then decreases.

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III MCA

COURSE NAME: Optimization Techniques

COURSE CODE: 16CAP503

UNIT: III BATCH-2017-2019

The optimum replacement cycle under group replacement is given in the following table.

End of month	Total no. of items failed	Cumulative no. of failure	Cost of replacement after failure (Re 1/ item)	Cost of all replacement (Rs. 0.35/ item)	Total cost (Rs.)	Average cost per month (Rs.)
1	300	300	300	3500	3800	3800
2	709	1009	1009	3500	4509	2254.50
3	2042	3051	3051	3500	6551	2183.66
4	4171	7222	7222	3500	10722	2680.50
5	2030	9252	9252	3500	12752	2550.40
6	2590	11842	11842	3500	15342	2557.00

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III MCACOURSE NAME: Optimization TechniquesCOURSE CODE: 16CAP503UNIT: IIIBATCH-2017-2019

Possible Questions:

Part- B(6 marks)

1. A firm is considering replacement of a machine, whose cost price is Rs. 12,200 and the scrap value, Rs. 200. The running (maintenance and operating) costs in rupees are found from experience to be as follows :

Year :	1	2	3	4	5	6	7	8
Running cost :	200	500	800	1200	1800	2500	3200	4000

When should the machine be replaced?

- 2. Machine A costs Rs. 9000. Annual operating costs are Rs. 200 for the first year, and then increase by Rs. 2000 every year. Determine the best age at which to replace the machine. If the optimum replacement policy is followed, what will be the average yearly cost of owning and operating the machine ?
- 3. Machine A costs Rs. 10,000. Annual operating costs are Rs. 400 for the first year, and then increase by Rs. 800 every year. Determine the best age at which to replace the machine. If the optimum replacement policy is followed, what will be the average yearly cost of owning and operating the machine ?
- 4. The data collected in running a machine, the cost of which is Rs. 60,000 are given below:

Year:	1	2	3	4	5
Resale value (Rs.)	42,000	30,000	20,400	14,400	9,650
Cost of spares (Rs.)	4,000	4,270	4,880	5,700	6,800
Cost of labour (Rs.)	14,000	16,000	18,000	21,000	25,000

Determine the optimum period for replacement of the machine.

5. The cost of a machine is Rs. 6,100 and its scrap value is Rs. 100. The maintenance costs found from experience are as follows :

Year	1	2	3	4	5	6	7	8
Maintenance cost (Rs.)	100	250	400	600	900	1,200	1,600	2,000

When should the machine be replaced?

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III MCACOURSE NAME: Optimization TechniquesCOURSE CODE: 16CAP503UNIT: IIIBATCH-2017-2019

6. A firm is considering replacement of a machine whose cost price is Rs. 17,500 and the scrap value is Rs. 500. The maintenance costs (in Rs.) are found from experience to be as follows:

Year:	1	2	3	4	5	6	7	8
Maintenance cost (Rs.)	200	300	3,500	1,200	1,800	2,400	3,300	4,500

When should the machine be replaced?

7. Let the value of money be assumed to be 10% per year and suppose that machine A is replaced after every 3 years whereas machine B is replaced after every six years. The yearly costs of both the machines are given below:

Year:	1	2	3	4	5	6
Machine A :	1000	200	400	1000	200	400
Machine B :	1700	100	200	300	400	500

Determine which machine should be replaced.

8. The initial cost of an item is Rs. 15,500 and maintenance or running costs for different years are given below :

Year :	1	2	3	4	5	6	7
Running cost (in Rs.)	2,500	3,000	4,000	5,000	6,500	8,000	10,000

Part C(10 marks)

1. Machine A costs Rs. 9000. Annual operating costs are Rs. 200 for the first year, and then increase by Rs. 2000 every year. Determine the best age at which to replace the machine. If the optimum replacement policy is followed, what will be the average yearly cost of owning and operating the machine ?

(b) Machine B costs Rs. 10,000. Annual operating costs are Rs. 400 for the first year, and then increase by Rs.800 every year. You now have a machine of type A which is one year old. Should you replace it with B. if so when?

CLASS: I B.Sc Mathematics COURSE CODE: 17MMU203 COURSE NAME: REAL ANALYSIS BATCH-2017-2020

Unit- IV

Inventory theory: Costs involved in inventory problems - single item deterministic models-economic lot size models without shortages and with shortages having production rate infinite and finite.

UNIT: IV

INVENTORY MODELS

Introduction

Inventory may be defined as the stock of goods, commodities or other economic resources that are stored or reserved for smooth and efficient running of business affairs. The Inventory may be kept in any one of the following forms:

i. Raw material Inventory.

Raw materials which are kept in stock for using in production of goods.

ii. Work – in process Inventory.

Semi finished goods which are stored during production process.

iii. Finished goods Inventory.

Finished goods awaiting shipments from the factory.

Type of Inventory

i. Fluctuation Inventorie

In real – life problems, there are fluctuations in the demand and lead time that affect the production of the items. Such types of safety stock are called *Fluctuation Inventories*.

ii. Anticipated Inventories

These are built up in advance for the season of large sales, a promotion programme or a plant shut down period. Anticipated Inventories keep men and machine hours for future participation.

KARPAGAM ACADEMY OF HIGHER EDUCATION						
CLASS: I B.Sc Mathematics		COURSE NAME: REAL ANALYSIS				
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020				

iii. Lot – size Inventories

Generally rate of consumption is different from rate of production or purchasing. Therefore the items are produced in larger quantities, which result in Lot - size*Inventories*

Reasons for maintaining Inventory

- 1. Inventory helps in smooth and efficient running of business.
- 2. It provides service to the customers at short notice.
- 3. Because of long uninterrupted runs, production cost is less.
- 4. It acts as a buffer stock if shop rejections are too many.
- 5. It takes care of economic fluctuations.

Costs involved in Inventory Problems

1. Holding Cost (C₁)

The cost associated with carrying or holding the goods in stock is known as *holding cost* (*or*) *carrying cost* per unit of time. Holding cost is assumed to directly vary with the size of inventory as well as the time the item is held in stock. The following components constitute holding cost.

- (a) *Interested capital cost*: This is the interest charge over the capital invested.
- (b) Record keeping and Administrative costs.
- (c) *Handling cost:* These include costs associated with movement of stock, such as cost of labour etc.
- (d) Storage costs.
- (e) Depreciation costs.
- (f) Taxes and Insurance costs.
- (g) Purchase price or production costs.

Purchase price per unit item is affected by the quantity purchased due to quantity discounts or price breaks. If P is the purchase price of an item and 1 is the stock holding

KARPAGAM ACADEMY OF HIGHER EDUCATION						
CLASS: I B.Sc Mathematics		COURSE NAME: REAL ANALYSIS				
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020				

cost per unit time expressed as a fraction of stock value (in rupees), then the holding cost $C_1 = IP$.

2. Shortage Cost (C_2)

The penalty costs that are incurred as a result of running out of stock (i.e., shortage) are known as *shortage or stock – out costs*. These are denoted by C_2 . In case where the unfilled demand for the goods may be satisfied at a latter date, these costs are assumed to vary directly with both the shortage quantity and the delaying time on the other hand if the unfilled demand is lost (no backlog case) shortage costs become proportional to shortage quantity only.

3. Set – up $cost(C_3)$

These costs are associated with obtaining goods through placing an order or purchasing or manufacturing or setting up a machinery before starting production. So they include costs of purchase, requisition, follow up receiving the goods, quality control etc. These are called *Ordering costs or replenishment costs*, or set-up cost usually denoted by C_3 per production run (cycle). They are assumed to be independent of the quantity ordered or produced.

Variables in Inventory Problem: The variables in inventory model are to two types.

- (a) Controlled Variables
- (b) Uncontrolled Variables

(a) Controlled Variables

- 1. How much quantity acquired.
- 2. The frequency or timing of acquisition.
- 3. The completion stage of stocked items.

(b) Uncontrolled Variables

These include holding costs, shortage costs, set-up cost and demand.

Lead time, Reorder Level (R.O.L)

KARPAGAM ACADEMY OF HIGHER EDUCATION			
CLASS: I B.Sc Mathematics		COURSE NAME: REAL ANALYSIS	
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020	

Lead time: Elapsed time between the placement of the order and its receipts in inventory is known as Lead time.

Reorder Level: This is the time when we should place an order by taking into consideration the interval between placing the order and receiving the supply. For e.g., we would like to place a new order precisely at the time when Inventory Level reaches zero.

Definition: Economic Order Quantity (E.O.Q) or Economic lot size formula

Economic order quantity(EOQ) is that size or order which minimizes total annual cost of carrying inventory and the cost of ordering under the assumed conditions of certainty and that annual demands are known.

Deterministic Inventory Models

There are 4 types under this category which we shall study as follows:

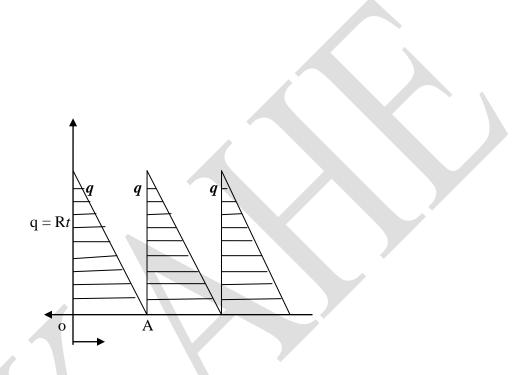
Model I : Purchasing model with no shortages.

Model II : Manufacturing model with no shortages.

Model III : Purchasing model with shortages.

Model IV: Manufacturing model with shortages.

Model I : Purchasing model with no shortages.


(Demand rate uniform, Production rate infinite)

A manufacturer has order to supply goods at a uniform rate of R per unit time. No shortages are allowed, consequently the shortage cost is Infinity. He starts a production run every *t* time units, where *t* is fixed and the set up cost per production run is C_3 . Production time is negligible. (replacement Instantaneous) C_1 is the cost of holding one unit in inventory for a unit of time. The manufacturer's problem is to determine

KARPAGAM ACADEMY OF HIGHER EDUCATION			
CLASS: I B.Sc Mathematics		COURSE NAME: REAL ANALYSIS	
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020	

- 1. How frequently he should make a production run
- 2. How many units should be made per production run.

Diagrammatic representation of this *model*.

If a production run is made at intervals t, a quantity q = Rt must be produced in each run. Since the stock in small time dt is Rtdt, the stock if period t will be

$$\int_0^t Rt \, dt = \frac{1}{2} R t^2$$

 $=\frac{1}{2}qt$ = Area of Inventory triangle OAP.

Cost of holding inventory per production run $=\frac{1}{2}C_1Rt^2$

Set of cost per production run $= C_3$

Total cost per production run $=\frac{1}{2}C_1Rt^2+C_3$.

CLASS: I B.Sc Mathematics		HIGHER EDUCATION COURSE NAME: REAL ANALYSIS
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020
Average total cost per unit t	time C(t) = $\frac{1}{2}C_1Rt_+$	$\frac{C_3}{t}$ (1)
C will be minimum	if $\frac{dC(t)}{dt} = 0$ and $\frac{d^2C}{dt}$	$\frac{f(t)}{2}$ is positive.
Differentiating (1) w.r.t t an	d equating to zero,	
$\frac{dC(t)}{dt}$	$C = \frac{1}{2}C_1Rt - \frac{C_3}{t^2} = 0$	(2)
Which gives	$t = \sqrt{\frac{2C_3}{C_1 R}}$	
Differentiating (2) w.r.t. t	$\frac{d^2 C(t)}{dt^2} = \frac{2C_3}{t_3}$ which	is positive for value of t given by the
above equation.		
Thus $C(t)$ is minimum for o	ptimum time interv	al $t_0 = \sqrt{\frac{2C_3}{C_1 R}}$.
Optimum quantity q_0 to be	produced during eac	ch production run,
$q_0 = Rt_0 = $	$\frac{2C_3R}{C_1}$	
which is known as the optir	nal lot – size formu	ıla due to R.H. Wilson.
The resulting minimum ave	rage cost per unit ti	ne,
	$R_{\sqrt{\frac{2C_{3}}{C_{1}R}}} + C_{3}\sqrt{\frac{C_{1}R}{2C_{3}}}$	
$=\frac{1}{\sqrt{2}},$	$\sqrt{c_1 c_3 R} + \frac{1}{\sqrt{2}} \sqrt{c_1 c_3}$	$_{3}R$
- [2	C C P	

$$=\sqrt{2c_1c_3R}$$

Remarks:

1. If the demand rate is not uniform, and if D is the total demand to be satisfied during the period T then $R = \frac{D}{T}$ in the above formula.

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: I B.Sc MathematicsCOURSE NAME: REAL ANALYSISCOURSE CODE: 17MMU203UNIT: IVBATCH-2017-2020

2. q_0, t_0, C_0 are sometimes referred as q^*, t^*, c^* .

Example

The annual demand for an item is 3200 units. The unit cost is Rs. 6/- and inventory carrying charges 25% per annum. If the cost of one procurement is Rs. 150/- determine

- i. Economic order quantity.
- ii. Time between two consecutive orders

iii. Number of orders per year

iv. The optimal total cost.

Solution:

R = 3200 units,
$$C_1 = \frac{25}{100} X \ 6 = \frac{3}{2}$$

 $C_3 = 150 \ \text{Rs}, \quad \therefore q^* = \sqrt{\frac{2C_3 R}{C_1}}$
$$= \sqrt{\frac{2X150X3200}{\frac{3}{2}}}$$

 $t_0 = \{=t^*\} =$

= 800 units.

(ii)

$$\frac{800}{3200} = \frac{1}{4}$$
 th of a year

(iii) Number of orders
$$=$$
 $\frac{1}{t_0} = \frac{1}{\frac{1}{4}} = 4$

Total = (R x price per unit) + C_0

(iv) Optimal cost =
$$(6 \times 3200) + \sqrt{2C_1C_3R}$$

= Rs. 20,400 [Ans]

Otherwise optimal total cost = $\frac{R}{q}C_3 + \left(\frac{q}{2} XC_1\right) + RP$

Prepared by Y.Sangeetha, Asst Prof, Department of Mathematics, KAHE

1:

KARPAGAM ACADEMY OF HIGHER EDUCATION			
CLASS: I B.Sc Mathematics		COURSE NAME: REAL ANALYSIS	
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020	

Example 2:

A manufacturing company purchases 9000 parts of a machine for its annual requirements, ordering one month usage at a time. Each part costs Rs 20. The ordering cost per order is Rs. 15 and the carrying charges are 15% of the average inventory per year. You have been asked to suggest a more economical purchasing policy for the company. What advice would you offer, and how much would it save the company per year?

Solution:

Hear
$$R = 9000$$
 parts per year

$$C_1 = 15\%$$
 unit cost

(Here 15% of average Inventory per year means that the carrying cost per unit per year is 15% of the unit cost)

=
$$20 \text{ x} \frac{15}{100}$$
 = Rs. 3 each part per year

 $C_3 = \text{Rs. 15 per order}$

$$\therefore q^* = \sqrt{\frac{2C_3 R}{C_1}}$$

$$= \sqrt{\frac{2X150X3200}{\frac{3}{2}}} = 300 \text{ units}$$

$$t^* = \frac{q^*}{R} = \frac{300}{9000} = \frac{1}{30} \text{ year}$$

$$= \frac{365}{30} = 12 \text{ days}$$

$$C_{min} = \sqrt{2C_1 C_3 R}$$

$$= \sqrt{2 X 3 X 15 X 9000}$$

If the company follows the policy of ordering every month, then the annual ordering cost becomes $= 12 \times 15 = \text{Rs. } 180$

CLASS: I B.Sc Mathematics		COURSE NAME: REAL ANALYSIS
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020
and lot – size of Inventory a	at any time $q = \frac{9000}{12}$	= 750 parts.
Average Inventory a	at any time $=\frac{1}{2}q$	= 375 parts.
	st at any time $= 375$	
	= 375	x 3 = Rs. 1125.
Total	l annual cost = 112	$5 + 180 = \text{Rs.}\ 1305$
The company pure	chases 300 parts at t	ime intervals of 12 days instead of
ordering 750 parts each mo	nth. So there will b	e a net saving of

Rs. 1305 - Rs. 900 = Rs. 405 per year

Example 3:

A certain item costs Rs. 235 per ton. The monthly requirements are 5 tons, and each item the stock is replenished, there is a setup cost of Rs. 1000. The cost of carrying inventory has been estimated at 10% of the average inventory per year. What is the optimum order quantity.

Solution:

R = 5 tons/month

= 60 tons/year

$$C_3 = \text{Rs. } 1000$$

 $C_1 = 10\%$ of unit cost per year

$$=$$
 Rs. 235 x $\frac{10}{100}$

= Rs. 23.5 per item per year

KARPAGAM A	KARPAGAM ACADEMY OF HIGHER EDUCATION				
CLASS: I B.Sc Mathematics COURSE NAME: REAL ANALYSIS					
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020			
$\therefore q^* = \sqrt{\frac{2C_3R}{C_1}}$					

$$=\sqrt{\frac{2X1000X60}{23.5}}=71.458$$
 tons

Example 4:

A manufacturer has to supply his customer with 600 units of his products per year. Shortage are not allowed and storage cost amounts to 60 paise per unit per year. The set up cost is Rs. 80.00 find

- i. The economic order quantity
- ii. The minimum average yearly cost
- iii. The optimum number of orders per year
- iv. The optimum period of supply per optimum order

Solution:

R = 600 units/year

$$C_{1} = \text{Rs. 80}$$

$$C_{3} = 0.60 \text{ per unit/year}$$
i. $\therefore q^{*} = \sqrt{\frac{2C_{3}R}{C_{1}}}$

$$= \sqrt{\frac{2X600X80}{0.60}} = 400 \text{ units/year}$$
ii. $C^{*} = \sqrt{2C_{1}C_{3}R} = \sqrt{2 \times 0.60 \times 80 \times 600}$

$$= \text{Rs. 240}$$

iii.
$$N^* = \frac{demand}{EOQ} = \frac{600}{400} = \frac{3}{2}$$

KARPAGAM ACADEMY OF HIGHER EDUCATION			
CLASS: I B.Sc Mathematics		COURSE NAME: REAL ANALYSIS	
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020	

iv.
$$t^* = \frac{1}{N^*} = \frac{2}{3}$$
 of a year

Model II : *Manufacturing model with no shortages.*(*Demand Rate uniform, production rate finite*)

It is assumed that run sizes are constant and that a new run will be started whenever Inventory is zero. Let

R = number of items required per unit time

K = number of items produced per unit time

 $C_1 = \cos t$ of holding per item per unit time

 $C_3 = \text{cost of setting up a production run}$

q = number of items produced per run, q = Rt

t = time interval between runs.

Here each production run of length t consists of two parts t_1 and t_2 ,

where (i) t_1 is the time during which the stock is building up at constant rate of K – R units per unit time. (ii) t_2 is the time during which there is no production (or supply) and inventory is decreasing at a constant rate R per unit time.

Let I_m be the maximum Inventory available at the end of time t_1 which is expected to be consumed during the remaining period t_2 at the demand rate R.

Then
$$I_m = (K - R) t_1 (or)$$

 $t_1 = \frac{I_m}{K - R}$ (1)

Now the total quantity produced during time t_1 id q and quantity consumed during the same period is R*t*, therefore the remaining quantity available at the end of time t_1 is

$$\boldsymbol{t_1} = \boldsymbol{q} - \boldsymbol{R}\boldsymbol{t_1}$$

KARPAGA CLASS: I B.Sc Mathematics	AM ACADEMY OF	HIGHER EDUCATION COURSE NAME: REAL ANALYSIS
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020
	$=q-rac{R.I_m}{K-R}$	from(1)
$\therefore I_m \left(1 + \frac{R}{k-R}\right)$	$= q \text{ (or) } I_m = \frac{k-R}{k} q$	·(2)
Now holding cost per pro	duction run for time p	period $t = \frac{1}{2}I_m tC_1$
And set up	o cost per production 1	$\operatorname{run} = C_3$
•• Total average cost per unit tim	$e C(I_m, t) = \frac{1}{2} I_m C_1 +$	$\frac{C_3}{t}$
	$C(q, t) = \frac{1}{2} \left(\frac{k - H}{k} \right)$	$\left(\frac{C_3}{t}\right)C_1 + \frac{C_3}{t}$
	$\mathcal{C}(q) = \frac{1}{2} \left(\frac{k-k}{k} \right)$	$\left(\frac{d}{d}q\right)C_1 + \frac{C_3}{\frac{q}{R}}$
	$=rac{1}{2}rac{k-R}{k}$	$C_1 q + \frac{C_3 R}{q}$
For minimum value of $C(q)$		
d dq	$[c(q)] = \frac{1}{2} \frac{k-R}{k} C_1$	$-\frac{C_3R}{q^2}=0$
WI	hich gives $q = \sqrt{\frac{2C_3}{c_1}} \frac{A}{R}$	RK -R
: Optimu	m lot size $q_0 = \sqrt{\frac{\kappa}{\kappa - \kappa}}$	$\sqrt{\frac{2C_3R}{C_1}}$
: Optimu	m time interval $t_0 = \frac{q}{R}$	2
	$=\sqrt{\frac{1}{K}}$	$\frac{1}{C_1 R} \sqrt{\frac{2C_3}{C_1 R}}$
Optimum average cost/unit time		
$C_0 = \frac{1}{2} \frac{k-R}{k} C_1$	$\sqrt{\frac{2C_3}{c_1}\frac{RK}{K-R}} + C_3R\sqrt{\frac{C_3}{2}}$	(K-R) C_3RK
Prepared by Y.Sangeetha, Asst Prof	, Department of Mathe	matics, KAHE Page 12/3

KARPAGAM ACADEMY OF HIGHER EDUCATION			
CLASS: I B.Sc Mathematics		COURSE NAME: REAL ANALYSIS	
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020	

$$= \sqrt{2C_1C_3R\frac{\kappa-R}{\kappa}}$$
$$= \sqrt{\frac{\kappa-R}{\kappa}}\sqrt{2C_1C_3R}$$

Note: (*i*) If K = R then $C_0 = 0$, (i.e.,) there will be no holding cost and set up cost

(*ii*) If $K = \infty$, (i.e.,) production rate is Infinite, this model reduces to model I.

Example 1:

A contractor has to supply 10,000 bearings per month to an automobile manufacturer. He finds that when he starts a production run he can produce 25,000 bearings per month. The cost of holding a bearing in stock for one year is Rs. 2 and the set up cost of a production run is Rs. 180. How frequently should the production run be made?

Solution:

R = 10,000/month x 12 = 1,20,000 per year $C_1 = \text{Rs. 2 per year}$ $C_3 = \text{Rs. 180}$ K = 25,000 x 12 = 3,00,000 per year $\therefore q^* = \sqrt{\frac{2C_3 R}{C_1}} \sqrt{\frac{\kappa}{\kappa - R}}$ $= \sqrt{\frac{3,00,000}{30,000 - 120000}} X \sqrt{\frac{2 X 180 X 120000}{2}}$ $= 1.29 \text{ x } \sqrt{21600000} = 6000 \text{ units}$ $t^* = \frac{q^*}{R} = \frac{6000}{120000} = 0.05 \text{ years (i.e.,) 18 days.}$

Example 2:

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: I B.Sc MathematicsCOURSE NAME: REAL ANALYSISCOURSE CODE: 17MMU203UNIT: IVBATCH-2017-2020

The annual demand for a product is 1,00,000 units. The rate or production is 2,00,000 units per year. The set – up cost per production run is Rs. 5000, and the variable production cost of each item is Rs. 10. The annual holding cost per unit is 20% of the value of the unit. Find the optimum production lot – size, and the length of production run.

Solution:

R = 1,00,000 per year

$$C_{1} = \frac{20}{100} \times 10 \text{ Rs. Per year}$$

$$C_{3} = \text{Rs. 5000}$$
K = 2,00,000
∴ EOQ = $\sqrt{\frac{K}{K-R}} \sqrt{\frac{2C_{3}R}{C_{1}}}$
= $\sqrt{\frac{2,00,000}{1,00,000}} \times \sqrt{\frac{2 \times 1,00,000 \times 5000}{\frac{20}{100} \times 10}}$
= 1.4142 x 22360.6
= 31622 units (=q*)
 $t^{*} = \frac{q^{*}}{R} = \frac{31622}{1,00,000} = 0.31622 \text{ years}$
= 115 days

Example 3:

An item is produced at the rate of 50 items per day. The demand occurs at the rate of 25 items per day. If the set up cost is Rs. 100 per set up and holding cost is Rs. 0.01 per unit of item per day, find the economic lot size for one run, assuming that shortages are not permitted. Also find the time of cycle and minimum total cost for one run.

Solution:

R = 25 items per day

CLA	SS: I B.Sc Mathematics		COURSE NAME: REAL ANALYSIS
COUR	SE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020
	$C_1 = \text{Rs. 0.01 per uni}$	it per day	
	$C_3 = \text{Rs. 100 per set}$	up	
	K = 50 items per da	ny	
	$\therefore \text{EOQ} = \sqrt{\frac{K}{K-R}} \sqrt{\frac{2C_3}{C_1}}$	<u>3 R</u> 1	
	$=\sqrt{\frac{2 X 100 X}{0.01}}$	$\frac{1}{25} x \sqrt{\frac{50}{25}}$	
	= 1000 items		
	$t_0 = \frac{q_0}{R} = \frac{1000}{25} =$	= 40 days	
	Minimum daily cost = $\sqrt{2C_1}$	$\overline{C_3R}\sqrt{\frac{K-R}{K}}$	
	= Rs. $$	2 X 0.01 X 100 X	$25 X \frac{25}{50}$
	= Rs. 5		
	Minimum total cost per run	= 5 x 40	
		= Rs. 200	
Examj			

A company has a demand of 12,000 units/year for an item and it can produce 2000 such items per month. The cost of one setup is Rs. 400 and the holding cost/unit/month is Rs. 0.15. Find the optimum lot size, max inventory, manufacturing time, total time.

Solution:

R = 12,000 units/year $C_1 = Rs. 400/ set up$ $C_3 = Rs. 0.15 x 12 = Rs. 1.80/unit/year.$

CLASS: I B.Sc Mathematics		COURSE NAME: REAL ANALYSIS
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020
K = 2000 x 12 = 24,	000 units/year	
$\therefore q_0 = \sqrt{\frac{\kappa}{\kappa - \kappa}} \sqrt{\frac{2C_3R}{C_1}}$		
$=\sqrt{\frac{2 X 400 X}{1.80}}$	$\frac{12,000}{12,000} \times \sqrt{\frac{24,000}{12,000}}$	
= 3266 units/s	et up	
Max inventory $I_{m_0} = \frac{K-R}{K} q_0$	1	
$=\frac{24,000}{24,}$	<u>-12,000</u> x 3266	= 1632 units .
Manufacturing time $t_1 = \frac{I_{m_e}}{K - 1}$	$\frac{1632}{R} = \frac{1632}{12,000}$	= 0.136 years.
Total time $t_0 = \frac{q_0}{R}$	$=\frac{3264}{12,000}=0.272$	years.
Example 5:		

A certain item costs Rs. 250 per ton. The monthly requirements are 10 tons and each time the stock is replenished there is a setup cost of Rs. 1000. The cost of carrying inventory has been estimated as 12% of the value of the stock per year. What is the optimal order quantity and how frequently should orders be placed? **Solution:**

$$C_{1} = \frac{12}{100} \times 250$$

$$C_{3} = \text{Rs. 1000}$$

$$R = 10 \times 12 = 120 \text{ tons/year}$$

$$\therefore \text{EOQ} = \sqrt{\frac{2C_{3}R}{C_{1}}}$$

$$= \sqrt{\frac{2X 1000 \times 120}{\frac{12}{100} \times 250}}$$

KARPAGAN	KARPAGAM ACADEMY OF HIGHER EDUCATION			
CLASS: I B.Sc Mathematics	CLASS: I B.Sc Mathematics COURSE NAME: REAL ANALYSIS			
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020		
= √-	$\frac{24,000}{30} = \sqrt{8000}$.44 units			

$$t_0 = \frac{q_0}{R} = \frac{89.44}{120} = 0.745$$
 year ≈ 9 months.

Model III : Purchasing model with shortages.

(Demand rate uniform, Production rate infinite, shortages allowed)

Assumptions are the same as model I, but shortages are allowed, consequently, a cost of shortage is incurred.

C₁ – Holding cost or carrying cost.

 C_3 – Setup cost or Ordering cost.

 C_2 – Shortage cost

R – Demand Rate.

The optimum quantities of this model are

a) The Economic order quantity
$$q^* = \sqrt{\frac{2C_3R}{C_1}} \sqrt{\frac{c_1 + c_2}{c_2}}$$

b) Time between two consecutive orders $t^* = \frac{q}{r}$

c) Number of orders per year $N^* = \frac{R}{q^*}$

Example 1:

The demand for an item is 18,000 units per year. The holding cost per unit time is Rs. 1.20 and the cost of shortage is Rs. 5.00, the production cost is Rs. 400. Assuming that replenishment rate is Instantaneous, determine the optimal order quantity.

Solution:

R = 18,000

CLASS: I B.Sc Mathematics		COURSE NAME: REAL ANALYSIS
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020
$C_1 = \text{Rs. } 1.20$		
$C_2 = \text{Rs. 5.00}$		
$C_3 = \text{Rs.} 400$		
$\therefore q^* = \sqrt{\frac{2C_3R}{C_1}} \sqrt{\frac{2C_3R}{C_$	$\frac{C_1 + C_2}{C_2}$	
	$\frac{X\ 18,000}{.20}\ \sqrt{\frac{1.20+}{5}}$	5
= 1.113 x 3.13	,464.10	
= 3856 unit	s (app)	
$t^* = rac{q^*}{R} = rac{385}{18,0}$	$\frac{56}{000} = 0.214$ year	
$N^* = \frac{R}{2^*} = 4.67$	orders per year	

Example 2:

A certain product has a demand of 25 units per month and the items are withdrawn uniformly. Each time a production run is made the setup cost is Rs. 15. The production cost is Rs. 1 per item and inventory holding cost is Rs. 0.30 per item per month. If shortage cost is Rs. 1.50 per item per month, determine how often to make a production run and what size it should be ?

Solution:

Though the production cost is given, the cost equation remain the same.

$$\implies q^* = \sqrt{\frac{2C_3R}{C_1}} \sqrt{\frac{C_1 + C_2}{C_2}}$$

Given

$$R = 25$$
 units/month

KARPAGAM ACADEMY OF HIGHER EDUCATION		
CLASS: I B.Sc Mathematics		COURSE NAME: REAL ANALYSIS
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020

 $C_1 = 0.30$ per item per month $C_2 = \text{Rs. } 1.50$ per item per month $C_3 = \text{Rs. } 15$ $\therefore q^* = \sqrt{\frac{(1.50+0.30)2 X 15 X 25}{0.30 X 1.50}}$ $= \sqrt{\frac{54.77}{25}}$ units $t^* = \frac{q^*}{R} = \frac{54.77}{25} = 2.19$ month

Assumptions are the same as model II, but shortages are allowed.

The optimum quantities of this model are

 C_1 – Holding cost or carrying cost.

- R Demand Rate.
- K Production Rate.

a) The Economic order quantity
$$q^* = \sqrt{\frac{2C_3R}{C_1}} \sqrt{\frac{C_1 + C_2}{C_2}} \sqrt{\frac{K}{K-R}}$$

b) Number of shortages $S = \frac{C_1}{C_1 + C_2} q^* \left(1 - \frac{R}{K} \right)$

c) Time between two consecutive orders $t^* = \frac{q^*}{R}$

d) Number of orders per year $N^* = \frac{R}{q^*}$

KARPAGAM ACADEMY OF HIGHER EDUCATION		
CLASS: I B.Sc Mathematics		COURSE NAME: REAL ANALYSIS
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020

e) Manufacturing time

$$=\frac{q^*}{r}$$

Example 1:

The demand for an item in a company is 18,000 units per year, and the company can produce the item at a rate of 3000 per month. The cost of one setup cost is Rs. 500.00 and the holding cost of one unit per month is 15 paise. The shortage cost of one unit is Rs. 20 per month. Determine the optimum manufacturing quantity and the number of shortages. Also determine the manufacturing time and time between set – ups.

Solution:

$$R = 18,000$$
 units per year

- = 1500 units per month
- K = 3000 units per month
- $C_1 = \text{Rs. } 0.15 \text{ per month}$
- $C_2 = \text{Rs.} 20.00$
- $C_3 = \text{Rs.} 500$

$$q^* = \sqrt{\frac{2C_3R}{C_1}} \sqrt{\frac{C_1 + C_2}{C_2}} \sqrt{\frac{K}{K-R}}$$
$$= \sqrt{\frac{2 \times 500 \times 1500}{0.15}} \sqrt{\frac{0.15 + 20}{20}} \sqrt{\frac{3000}{3000 - 1500}}$$
$$= \frac{1224,744}{0.3872} \times 1.0037 \times 1.4142$$
$$= \frac{1738.458}{0.3872} = 4490 \text{ units (app)}$$

Number of shortages $S = \frac{C_1}{C_1 + C_2} q^* \left(1 - \frac{R}{K} \right)$

$$=\frac{0.15}{0.15+20} \times 4490 \left(1-\frac{1500}{3000}\right)$$

KARPAGAM ACADEMY OF HIGHER EDUCATION		
CLASS: I B.Sc Mathematics		COURSE NAME: REAL ANALYSIS
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020

	$=\frac{336.75}{20.15}=16.71$ units.
Manufacturing time	$=\frac{q^*}{\kappa}=\frac{4490}{3000 X 12}=0.1247$ years
Time between setup's	$=\frac{q^*}{R}=\frac{4490}{18,000}=0.2494$ years

Inventory Models with Price breaks:

In this section we shall consider a class of inventory problems in which the production (or) purchase cost per unit is a variable. This depends on the quality manufacture or purchased. This usually happen when discount are offered for the purchase of large quantities. These discounts take the form of Price-Breaks.

Consider the following three cases

Where
$$c_0(q) = \sqrt{2c_3 k_1 PR} + k_1 R + \frac{1}{2}c_3 p$$
(1)

and q =

Total expected cost per unit time

C (q) =
$$\frac{C_3 R}{q} + \frac{1}{2} q PI + PR$$
(2)

 K_1 = purchasing cost of care unit

p = holding cost/month expressed as a fraction of the values of the unit

Case (i): Purchase Inventory model with single price-break

Given:	Unit purchasing cost	Range of quality
	K ₁₁	$0 < q_1 < b_1$
	K ₁₂	$q_2 \ge b_1$

(i) If $b>q_2$ and $c_2(b) > c_0(q_1)$, the optimal lot size is q_1 and minimum values of $c(q) = c_0(q_1)$

CLASS: I I	B.Sc Mathematics		COURSE NAME: REAL ANALYSIS
COURSE CO	DDE: 17MMU203	UNIT: IV	BATCH-2017-2020
(ii)	If $b>q_2$ and $c_2(b) < c_0(q)$, the optimal lot size is b and min $c(q) = c_2(b)$		
(iii)	If b <q<sub>2, the optimal lot size is q_2 and min $c(q) = c_0(q_2)$</q<sub>		
Case (ii): Pu	rchase Inventory Model	with 2 prices – b	reaks
	Unit purchasing cost	R	ange of quality
	K ₁₁		$0 < q_1 < b_1$
	K ₁₂		$b_1 \leq q_2 < b_2$
	K ₁₃		$b_2 \leq q_3$
The optimal	purchase quality is deter	mined in the follo	owing way
(i)	Calculate q_3 , If $q_3 > b_2$, optimal purchase quality is q_3		
(ii)	If $q_3 \le b_2$, calculate q_2 since $q_3 < b_2$, the necessarily $q_2 < b_2$. As a consequence we		
	have $q_2 < b_1$ or $q_2 > b_1$.		
(iii)	If $q_3 < b_2$ and $b_1 < q_2 < b_2$, compare $c_0(q_2)$ with $c_3(b_2)$. The smaller of these qualities		

(iv) If $q_3 < b_2$ and $q_2 < b_1$. Calculated c_3 (q_1) which will necessarily satisfy the inequality $q_1 < b_1$. In this case compared c_0 (q_1), c_2 (b_1) and c_3 (b_2) to determine optimum purchase quantity.

Case (iii): Purchase inventory model with 'n' price breaks

When there are n price breaks, the situation can be represented as follows:

Unit purchasing cost	Range of quality
K ₁₁	$0 < q < b_1$
K ₁₂	$b_1 \leq q < b_2$
K_{1n}	$b_{n-1} \leq q$

(i) Calculate q_n . If $q_n > b_{n-1}$, optimal purchase quality is q_n

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: I B.Sc MathematicsCOURSE NAME: REAL ANALYSISCOURSE CODE: 17MMU203UNIT: IVBATCH-2017-2020

- (ii) If $q_n < b_{n-1}$, calculate q_{n-1} . If $q_{n-1} \ge b_{n-2}$ proceed as in the case of one price break; (i.e.,) compare $c_0(q_{n-1})$ with $c(b_{n-1})$ to determine optimum purchase quality.
- (iii) If $q_{n-1} < b_{n-2}$, compute q_{n-2} . If $q_{n-2} \ge b_{n-3}$, proceed as in the case of 2 price breaks: (i.e.,) compare $c_0(q_{n-2})$ with $c(b_{n-1})$ and $c(b_{n-2})$ to determine optimal purchase quality.
- (iv) If $q_{n-2} < b_{n-3}$ compute q_{n-3}

If $q_{n-3} \ge b_{n-4}$ compare $c_0(q_{n-3})$ with $C(b_{n-3})$, $C(b_{n-2})$ and $C(b_{n-1})$.

(v) Continue in this number until $q_{n-j} \ge b_n - (j+1)(0 \le j \le n-1)$ and then compare $C_0(q_{n-j})$ with $C(b_{n-j})$, $c(b_{n-j+1})$, $C(b_{n-j+2})$ $C(b_{n-1})$. This procedure involves only a finite number of steps.

Example 1:

Find the optimal order quantity for a product for which the price – break is as follows:

Quantity	unit cost
$0 \le Q_1 < 50$	R s. 10
$50 \le Q_1 < 100$	Rs. 9
$100 \leq Q_3$	Rs. 8

The monthly demand for the product is 200 units, the cost of the storage is 25% of the unit cost and ordering cost is Rs. 20.00 per order.

Here R=200 units, P=0.25, $C_3 = Rs.20.00$

$$Q_3^0 = \sqrt{\frac{2 X 20 X 200}{8 X 0.25}}$$

= 63 units

Clearly
$$63 < 100(i.e.,) Q_{3^{0}} < b_{2}$$

KARPAGAM ACADEMY OF HIGHER EDUCATION		
CLASS: I B.Sc Mathematics		COURSE NAME: REAL ANALYSIS
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020

: We compute
$$Q_2^0 = \sqrt{\frac{2 X 20 X 200}{9 X 0.25}}$$

= 60 units

Now since $Q_2^0 > b_1 (= 50)$ the optimum purchase quantity is determined by comparing $C_A(Q_2^0)$ with $C_A(b_2)$

Now
$$C_A(Q_2^0) = 20 \ge \frac{200}{60} + 200 \ge 9 + 9 \ge 0.25 \ge \frac{60}{2}$$

= Rs. 1934.16
 $C_A(b_2) = 20 \ge \frac{200}{100} + 200 \ge 8 + 8 \ge 0.25 \ge \frac{100}{2}$
= Rs.1740.00

Since $C_A(Q_2^0) > C_A(b_2)$, the optimum purchase quantity is $Q^0 = b_2 = 100$ units.

Example 2:

Find the optimal order quantity for which the price breaks are as follows:

Quantity	Unit cost
$0 \le q_1 < 500$	Rs.10
500≤q₂<750	Rs.9.25
750≤q ₃	Rs.8.75

The monthly demand for the product is 200 units, shortage cost is 2% of the unit cost and the cost of ordering is Rs. 100.

Solution:

$$q_{3} = \sqrt{\frac{2c_{3}R}{k_{13}P}}$$
$$= \sqrt{\frac{2 X 100 X 200}{8.75 X 0.2}} = 478 \text{ Units}$$

KARPAGAM	ACADEMY OF I	HIGHER EDUCATION
CLASS: I B.Sc Mathematics		COURSE NAME: REAL ANALYSIS
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020
$b_2 = 750$		
$q_3 < b_{2,}$ we calcul	ate q ₂	
$q_2 = \sqrt{\frac{2c_3 R}{k_{12}P}}$		
$= \sqrt{\frac{2 X 100 X 20}{9.25 X 0.02}}$		
$b_1 = 500$ Units		
$q_2 < b_1$, we compu	ute q ₁	
$q_2 = \sqrt{\frac{2c_3 R}{k_{11}P}}$		
$=\sqrt{\frac{2 \times 100 \times 200}{10 \times 0.02}}$	= 447 Units	
Next we compute		
*Now C ₀ (q_1) = $\sqrt{2c_3 k_{11} PR}$	$+k_{11}R + \frac{1}{2}C_3P$	
=Rs. $[\sqrt{2 X 10}]$	00 X 10 X 0.02 X	$\frac{1}{200}$ +10 x 200+ $\frac{1}{2}$ x 100 x 0.02]
= Rs. 2090.42		
$C_2(b_1) = c_3 \frac{R}{q} + k_{12} R$	$\frac{1}{2}c_3P + \frac{1}{2}k_{12}pq$	
$= \text{Rs.} \ [100 \text{ x} \frac{200}{500} + 9.2]$	$25 \ge 200 + \frac{1}{2} \ge 100$	$x \ 0.02 \ x \ \frac{1}{2} \ x \ 9.25 \ x \ 0.02 \ x \ 500]$
= 1937.25		
$C_3(b_2) = c_3 \frac{R}{q} + k_{13} R$	$+\frac{1}{2}c_{3}P+\frac{1}{2}k_{13}pq$	
$-\mathbf{P}_{s}$ [100 x $\frac{200}{200}$ + 8.2	$75 \times 200 + \frac{1}{2} \times 100$	$0 \ge 0.02 \ge \frac{1}{2} \ge 8.75 \ge 0.02 \ge 750$

KARPAGAM ACADEMY OF HIGHER EDUCATION			
CLASS: I B.Sc Mathematics		COURSE NAME: REAL ANALYSIS	
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020	

= Rs. 1843.29

Since $C_3(b_2) < C_2(b_1) < C_0(q_1)$, the optimal order quantity is $b_2=750$ units. *we can use formula (2) under 12.9 also.

Example 3:

Find the optimum order quantity for a quantity for which the price breaks are as follows:

Quantity	Unit cost
$0 \le Q_1 \le 100$	Rs.10
$500 < Q_2$	Rs.9.25

The monthly demand for the product is 200 units, the cost of storage is 2% of the unit cost and the cost of ordering Rs.350.00

Solution:

$$Q_2^0 = \sqrt{\frac{2 X 350 X 200}{9.25 X 0.2}}$$

as
$$Q_2^0 > b_1, (870 > 500)$$

Optimum purchase quantity = 870 units.

Example 4:

Find the optimum order quantity for a quantity for which the price breaks are as follows:

Quantity	Unit cost
$0 \le Q_1 < 500$	Rs.20 per unit
$500 \le Q_2 < 750$	Rs.18 per unit
$750 \leq Q_3$	Rs.16 per unit

The monthly demand for the product is 400 units. The shortage cost is 20% of the unit cost of the product and the cost of ordering is 25.00 per month.

Solution:

CLASS: I B.Sc Mathematics		COURSE	NAME: REAL ANALYSIS
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2	017-2020
R = 100 units, I = Re. 0.20, 0	$C_{3} = \text{Rs.25.00}$		
$Q_3^0 = \sqrt{\frac{2c_3 R}{k_1 P}}$			
$=\sqrt{\frac{2 X 2}{16 X}}$	$\frac{5 \times 400}{100} = 79$	units	
Since $Q_3 \circ < b_2$, we compute	e Q ₂ ⁰ ,		
: We have $Q_2^0 = \sqrt{\frac{2 X 25 X}{20 X 0}}$.	400 20	= 7:	5 units
Now since $Q_2^0 < b_1(= 100)$ w	ve next compute Q	0	
Next we compute			
Now $C_A(Q_1^0) = 25 \ge \frac{400}{70} + 400$	$00 \ge 20 + 20 \ge 0.20$	$x\frac{70}{2}$ =	Rs. 8283.00
$C_A(b_1) = 25 \ge \frac{400}{100} + $	- 400 x 18 + 18 x 0	$.20 \text{ x} \frac{100}{2}$	= Rs.7480.00
$C_A(b_2) = 25 \times \frac{400}{200} + $	400 x 16 + 16 x 0	$.20 \times \frac{200}{2}$	= Rs.6770.00
ince $C_A(b_2) < C_A(b_1) < C_A(Q_1^0)$,	the optimal purch	e quantity is	$0^0 - b_0 - 200$ units

Find the optimal quantity for a product where the annual demand for the product is 500 units. The cost of storage per unit per year is 10% of the unit cost and the ordering cost per order is Rs.180.00. The unit costs are given below.

Quantity	Unit cost
$0 \le Q_1 \le 500$	Rs. 25
$500 \le Q_2 \le 1500$	Rs. 24.80
$1500 < Q_3 < 3000$	Rs. 24.60

KARPAGAM ACADEMY OF HIGHER EDUCATION			
CLASS: I B.Sc Mathematics		COURSE NAME: REAL ANALYSIS	
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020	

$$3000 < Q_4$$

Rs. 24.40

Solution:

 $R = 500 \text{ units}, P = Rs. 0.10, C_3 = Rs.180.00$

$$Q_4^0 = \sqrt{\frac{2c_3 R}{k_4 P}}$$
$$= \sqrt{\frac{2 X 180 X 500}{(24.40) X 0.10}} = 272$$

Since $Q_4^0 < b_3$, we compute Q_3^0 ,

$$Q_3^0 = \sqrt{\frac{2c_3 R}{k_3 P}} = \sqrt{\frac{2 X 180 X 500}{(24.60) X 0.10}} = 270$$

Since $Q_3^0 < b_2$ (= 1500) \therefore we calculate

$$Q_2^0 = \sqrt{\frac{2c_3 R}{k_2 P}} = \sqrt{\frac{2 X 180 X 500}{(24.80) X 0.10}} = 269$$

Since $Q_2^0 < b_1 (= 500) \therefore$ we calculate

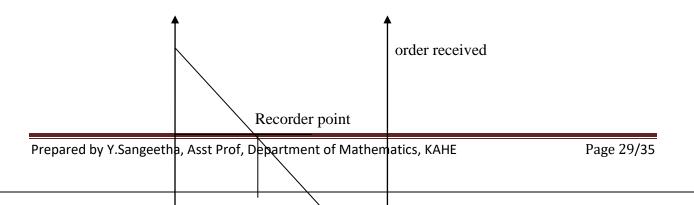
$$Q_1^0 = \sqrt{\frac{2c_3 R}{k_1 P}} = \sqrt{\frac{2 X 180 X 500}{25 X 0.10}} = 268$$

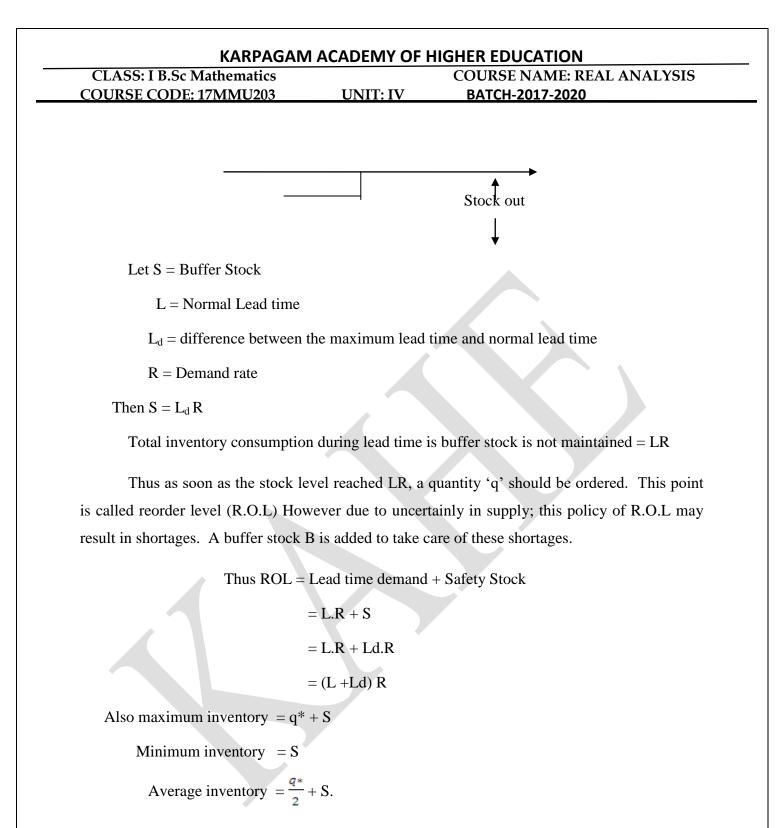
Now $C_A(Q_1^0) = 180 \ge \frac{500}{268} + 500 \ge 25 + 25 \ge 0.10 \ge \frac{268}{2} = \text{Rs. } 13,170.82$ $C_A(b_1) = 180 \ge \frac{500}{500} + 500 \ge 24.80 + (24.80) \ge 0.10 \ge \frac{500}{2}$ = Rs. 13,200.00 $C_A(b_2) = 180 \ge \frac{500}{1500} + 500 \ge 24.60 + (24.60) \ge 0.10 \ge \frac{1500}{2}$

= Rs.14,205.00

$$C_A (b_3) = 180 \times \frac{500}{3000} + 500 \times 24.40 + (24.40) \times 0.10 \times \frac{3000}{2}$$

CLASS: I B.Sc Mathematics		COURSE NAME: REAL ANALYSIS
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020
= Rs.15,89	90.00	
Since $C_A(b_3) > C_A(b_2) > C_A(b_1)$	$(1) > C_A(Q_1^0)$, the optim	num purchase quantity is
$Q^0 = Q_1^0 = 268$ units.		
Example 6:		
Find the optimal order qua order cost = Rs. 50, cost of storag	•	g annual demand = 3600 units, ost
Price break	$0 < Q_1 \le 100$	Rs. 20
	$750 \leq Q_2$	Rs. 18
Solution:		
Given $\mathbf{R} = 3$	3600 units per year,	
I = R	$3.\frac{20}{100}$,	
k. =	Rs.200.00	


 $k_2 = \text{Rs.}18.00$


$$Q_2^0 = \sqrt{\frac{2 \times 50 \times 3600}{18 \times 0.20}} = 316.20$$

Now b = 100 as $Q_2^0 > b$, Optimum purchase quantity = 316.20

Buffer Stock and Reorder Level

Buffer (cushion or safely) stock is the extra inventory maintained in addition to the inventory required corresponding to normal consumption rates. It is maintained as a protection against stockout.

Example 1:

A company uses annually 50,000 units of an item each costing Rs. 1.20. Each order costs Rs. 45 and inventory carrying costs are 15% of the annual average inventory value. (i) Find

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: I B.Sc Mathematics COURSE NAME: REAL ANALYSIS COURSE CODE: 17MMU203 UNIT: IV BATCH-2017-2020

EOQ (ii). If the company operates 250 days a year and the procurement time is 10 days and safety stock is 500 units, find reorder level, maximum, minimum and average inventory.

Solution:

R = 50,000 units, $C_3 = Rs. 45$ per order

C = Rs.1.20 per unit, I = Rs. 0.15

(i).
$$Q^0 = \sqrt{\frac{2c_3 R}{c_1}} = \sqrt{\frac{2 X 45 X 50,000}{1.20 X 0.15}}$$

= 5000 units.

(ii). The company operates 250 days a year

Requirement per day = $\frac{50,000}{250}$

= 200 units.

Lead time demand
$$= 10 \times 200$$

= 2000 units

R.O.L = 2000 + 500

= 2500 units

Max. Inventory = 5000 + 500

= 5500 units

Min. Inventory = 500 units

- Aver. Inventory = $\frac{1}{2} \times 5000 + 500$
 - = 3000 units.

Example 2:

Consider the inventory system with the following data in usual Notation:

	B.Sc Mathematics		COURSE NAME: REAL ANALYSIS
<u>COURSE CO</u>	DDE: 17MMU203	UNIT: IV	BATCH-2017-2020
	R = 1000 uni	its per year	
	P = Rs. 0.50	per unit, I = 0.30	
	$C_3 = \text{Rs. 10.0}$	00	
	L = 2 years (lead time)	
Determine	(i). Optimal orde	er quantity	
(ii).	Reorder point	(iii). M	inimum average cost.
Solution:			
(i).	$Q^{0} = \sqrt{\frac{2 X 10 X 10}{(0.3) X (0.5)}}$	000 50)	
	= 365 units.		
	$t^0 = \frac{365}{1000} = 0.36$	year.	
	-		time is 0.36 years, reorder occurs when d for $(2 - 0.36)$ years = 1.64 years.
∴ Opt	imum quantity Q ⁰ =	365 units is ordered	l when the order the inventory reaches
(1.64) x 1000) units.		
(ii).	Reorder point $= 1$	640 units.	
(iii).	Minimum ave. cost	$= \sqrt{2 X 0.5 X 10}$	<u>X 1000</u>
		= Rs. 54.8	

CLASS: I B.Sc Mathematics		COURSE NAME: REAL ANALYSIS
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020
Possible Questions :		
	Part-A(6 marks)
1.(i) Explain various types of inven	tory.	
(ii) A company has a demand of 1		-
	he cost of one set u	p is Rs 400 and the holding cost
unit/month is Rs.0.15. Find		
1) The optimum		
2) Maximum in	•	
3) Manufacturi	ng time	
4) Total time		
	6	
2. Find the optimam order quantity follows:	for a quantity for v	vnich the price- break is as
Quantity		Unit cost
$0 \le Q_1 < 500$		Rs. 10
$500 \leq Q_2$		Rs. 9.25
The monthly demand for the pro	duct is 200 units, t	he cost of the storage is 2% of the unit
cost and ordering cost is Rs.350.	.00	

3. A manufacturer has to supply his customer with 600 units of his products per year. Shortages are not allowed and storage cost amounts to 60 paise per unit per year. The set up cost is Rs. 80.00. find

- i) The economic order quantity
- ii) The optimum number of orders per year
- iii) The minimum average yearly cost
- iv) The optimum period of supply per optimum order
- 4. A company has a demand of 18,000 units per year for an item and it can produce 3000 such items per month. The cost of one set up is Rs500. and the holding cost per unit per month is Rs.0.15. The shortage cost of one unit is Rs.20 per month. Determine the optimum manufacturing quantity and the number of shortages. Also determine the manufacturing time between set- ups.
- 5. The annual demand for an item is 3200 units. The unit cost is Rs.6 and inventory carrying charges 25 % per annum. If the cost of one procurement is Rs.150. Determine
 - i) Economic order quantity
 - ii) Time between two consecutive orders
 - iii) Number of orders per year
 - iv) The optimal cost.

CLASS: I B.Sc Mathematics		COURSE NAME: REAL ANALYSIS
COURSE CODE: 17MMU203	UNIT: IV	BATCH-2017-2020
6. Find the optimal order quantity	for a product for w	hich the price- break is as follows:
Quantity	-	cost
$0 \le Q_1 < 50$		Rs. 10
$50 \le Q_2 < 100$	J	Rs. 9
$100 \leq Q_3$]	Rs. 8
-	-	s, the cost of the storage is 25% of the
unit cost and ordering cost is	s Rs.20.00 per order	
7. A company has a demand of 12,0	000 units per year fo	r an item and it can produce 2000
such items per month. The cost o	f one set up is Rs 40	0. and the holding cost per unit
per month is Rs.0.15. Find		
1) The optimum lot s		
2) Maximum invento		
3) Manufacturing tin4) Total time	ne	
4) Total time		
8. Find the optimal order quantity for	or which the price b	reak are as follows
Quantity	Unit c	
$0\leqQ_1\!<\!50$	Rs. 50)
$50 \le Q_2 < 100$	Rs. 9	
$100 \le Q_3$	Rs. 8	a cost of storage is 200/ of the unit
cost and the ordering per order is		e cost of storage is 20% of the unit
cost and the ordering per order is	10.2	
9. A barbershop has space to accom	modate only 10 cus	tomers. He can service only one
person at a time. If a customer co	mes to his shop and	finds it full, he goes to the next
shop. Customers randomly, arrive	e at an average rate	$\lambda = 10$ per hours and the barbers
service time is negative exponenti	ial with an average of	of $\frac{1}{\mu} = 5$ minutes per customer. Find
P_0, P_n .		F
1 (), 1 n.		
10. Find the optimal order quantity	for a product where	the annual demand for the product
is 500 units. The cost of stora	age per unit per year	is 10% of the unit cost and the ordering
per order is Rs.180.00. The u	init costs are given b	pelow.
Quantity	Unit cost	
$0\leqQ_1\!<\!500$	Rs. 25	
$500 \le Q_2 < 1500$	Rs. 2	24.80
$1500 \le Q_3 < 3000$	Rs.	24.60
$3000 < Q_4$	Rs.	24.40

CLASS: I B.Sc Mathematics COURSE CODE: 17MMU203	UNIT: IV	COURSE NAME: REAL ANALYSIS BATCH-2017-2020
	Part-C(10 m	arks)
1 .Find the optimum order quantit		which the price breaks are as follows:
Quantity	5 1 5	Unit cost
$0 \le Q_1 < 500$		Rs.10
$500 \le Q_2 < 750$		Rs.9.25
$750 \le Q_3$		Rs.8.75
	duct is 200 units, th	e cost of storage is 2% of the unit cost
and the cost of ordering Rs. 100.		
repared by Y.Sangeetha, Asst Prof, D	epartment of Mather	natics, KAHE Page 35/35

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III MCA COURSE CODE: 16CAP503 COURSE NAME: Optimization Techniques
UNIT: V BATCH-2017-2019

UNIT V

PERT and CPM: Arrow networks - time estimates- earliest expected time, latest allowable occurrence time and slack - critical path - probability of meeting scheduled date of completion of project calculations on CPM network - various floats for activities - critical path - updating project - operation time cost trade off curve - project time cost trade off curve - selection of schedule based on cost analysis.

PERT and CPM

Introduction

A **project** is defined as a combination of interrelated activities all of which must be executed in a certain order to achieve a set goal. A large and complex project involves usually a number of interrelated activities requiring men, machines and materials. It is impossible for the management to make and execute an optimum schedule for such a project just by intuition, based on the organizational capabilities and work experience. A systematic scientific approach has become a necessity for such project. So a number of methods applying networks scheduling techniques has been developed: **Programme Evaluation Review Technique** (PERT) and **Critical Path** method (CPM) are two of the many network techniques which are widely used for planning, scheduling and controlling large complex projects.

The main managerial functions for any project:

The main managerial functions for any project are

- 1. Planning
- 2. Scheduling
- 3. Control

Planning

This phase involves a listing of tasks or jobs that must be performed to complete a project under consideration. In this phase, men, machines and materials required for the project in addition to the estimates of costs and durations of various activities of the project are also determined

KARPAGAM ACADEMY OF HIGHER EDUCATION				
CLASS: III MCA	C	OURSE NAME: Optimization Techniques		
COURSE CODE: 16CAP503	UNIT: V	BATCH-2017-2019		

Scheduling

This phase involves the laying out of the actual activities of the project in a **logical sequence** of time in which they have to be performed.

Men and material requirements as well as the **expected completion time** of each activity at each stage of the project are also determined.

Control

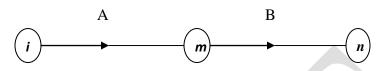
This phase consists of reviewing the progress of the project whether the actual performance is according to the planned schedule and finding the reasons for difference, if any, between the schedule and performance. The basic aspect of control is to analyse and correct this difference by taking remedial action whether possible.

PERT and CPM are especially useful for scheduling and controlling

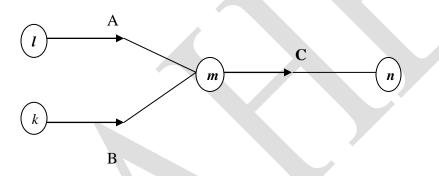
Basic Terminologies

Activity is a task or an item of work to be done in a project. An activity consumer resource like time, money, labour etc.

An activity is represented by an arrow with a node (event) at the beginning and a node (event) at the end indicating the start and termination (finish) of the activity. Nodes are denoted by circles. Since this is a logical diagram length or shape of the arrow has no meaning. The direction indicates the progress of the activity. Initial node and the terminal node are numbered as i-j(j<i) respectively. For example If A is the activity whose initial node is I and the terminal node is j then it is denoted diagrammatically by

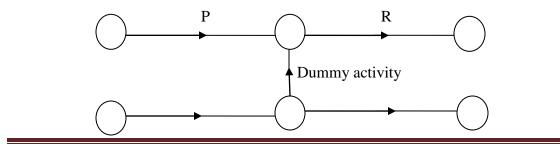

Α

The name of the activity is written over the arrow, **not inside the circle.** The diagram


KARPAGAM ACADEMY OF HIGHER EDUCATION COURSE III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: V BATCH-2017-2019

In which arrow represents an activity is called **arrow diagram.** The Initial and terminal nodes of activities are also called tail and head events.

If an activity B can start immediately after an activity A then it is denoted by


A is called the **immediate predecessor** of B and B is called the **immediate successor** of A. If C can start only after completing activites A and B then it is diagrammatically represented as follows:

Notation: "A is a predecessor of B" is denoted as "A<B',"B is a successor of A" is denoted by "B>A".

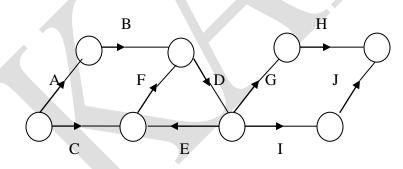
If the project contains two or more activities which have some of their immediate predecessors in common then there is a need for introducing what is called **dummy activity**. Dummy activity is an imaginary activity which does not consume any resources and which serves the purpose of indicating the predecessor or successor relationship clearly in any activity on arrow diagram. The need for a dummy activity is illustrated by the following usual example.

Let P, Q be the predecessors of R and Q be the only predecessors of S.

KARPAGAM ACADEMY OF HIGHER EDUCATION		
CLASS: III MCA	COURSE NAME: Optimization Techniques	
COURSE CODE: 16CAP503	UNIT: V	BATCH-2017-2019

Q

S


Activities which have no *predecessors* are called *start activities* of the project. All the *start activities* can be made to have the *same initial node*. Activities which have *no successors* are called *terminal activities* of the project. These can be made to have the *same* terminal node (end node) of the project.

A project consists of a number of activities to be performed in some technological sequence. For example while constructing a building the activity of laying the foundation should be done before the activity of erecting the walls for the building. The diagram denoting all the activities of a project by arrows taking into account the technological sequence of the activities is called the project network represented by *activity on arrow diagram* or simply *arrow diagram*.

Note: There is another representation of a project network representing activites on nodes called AON diagram. To avoid confusion we use only activity on arrow diagram throughout the text.

Rules for constructing a project network

1. There must be no loops. For example, the activities F,D,E.

Obviously form a loop which is obviously not possible is any real project network.

2. Only one activity should connect any two nodes.

3. No dangling should appear in a project network i.e., no node of any activity except the terminal node of the project should be left without any activity emanating from it such a node can be joined to the terminal node of the project to avoid.

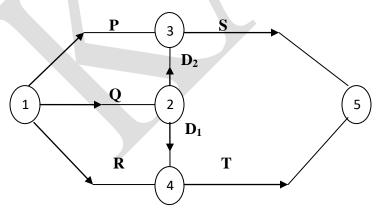
|--|

COURSE NAME: Optimization Techniques UNIT: V

CLASS: III MCA

The Rules for numbering the Nodes:

Nodes may be numbered using the rule given below:


(Ford and Fulkerson's Rule)

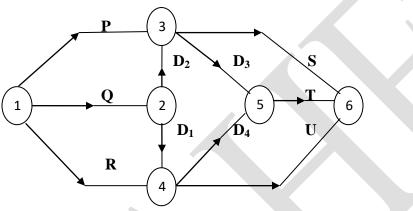
- 1. Number the start node which has no predecessor activity, as 1.
- 2. Delete all the activites emanating from this node 1.
- 3. Number all the resulting start nodes without any predecessor as 2,3.....
- 4. Delete all the activities originating from the start nodes 2,3,...in step 3.
- 5. Number all the resulting new start nodes without any predecessor next to the last number used in step(3).
- 6. Repeat the process until the terminal node without any successor activity is reached and number this terminal node suitably.

Immediate predecessor (successor) will be simply called as predecessor (successor) unless otherwise stated.

Example 1: If there are five activities P, Q, R, S and T such that P, Q, R have no immediate predecessors but S and T have immediate predecessors P, Q, R respectively. Represent this situation by a network.

Solution:

 D_1 and D_2 are dummy activities.


KARPAGAM ACADEMY OF HIGHER EDUCATION							
CLASS: III MCA	CC	OURSE NAME: Optimization Techniques					
COURSE CODE: 16CAP503	UNIT: V	BATCH-2017-2019					

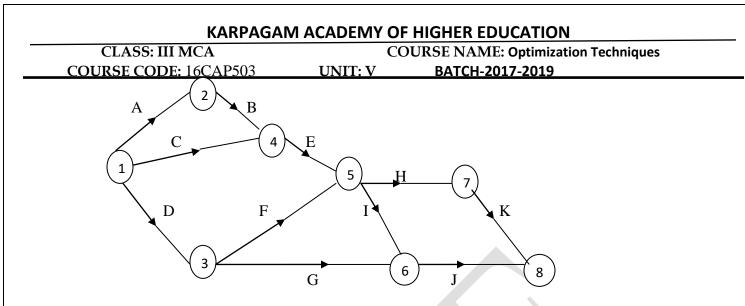
Example 2:

Draw the network for the project whose activities and their precedence relationship are given below:

Activity	Р	Q	R	S	Т	U
Predecessor	-	-	-	P, Q	P, R	Q, R

Solution:

 D_1 , D_2 , D_3 , D_4 are dummy activities.


Example 3:

Draw the network for the project whose activities with their predecessor relationship are given below:

A, C, D can start simultaneously : E > B, C ; F, G > D ; H, I > E, F ; J > I, G ; K > H; B > A.

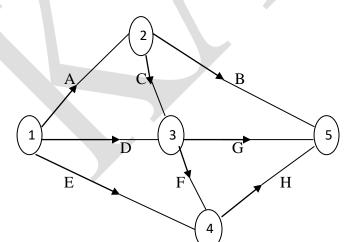
Solution:

Identify the start activities i.e., activities which have no predecessors. They are A,C and D as given. These three activities should start with the same start node. Also identify the terminal activities which have no successors. They are J and K. These two activities should end with the same end node, the last terminal node indicating the completion of the project. Taking into account the predecessors relationship given, the required network is as follows:

Example 4:

Construct the network for the project whose activities and their relationships are as given below:

Activities : A, D, E can start simultaneously.


Activities : B, C > A; G, F > D, C; H > E, F.

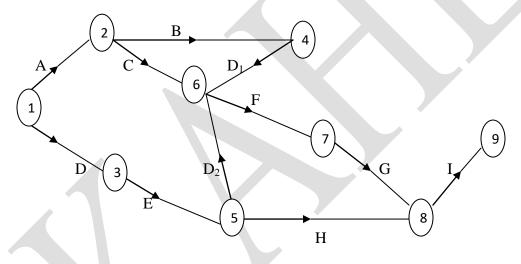
Solution:

Start activities are A, D, E.

End activities are H, G, B.

The required network is

Note : see how the nodes of the activity F are numbered. Can we number C as 2 - 4 and F as 4 - 3?


KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III MCACOURSE NAME: Optimization TechniquesCOURSE CODE: 16CAP503UNIT: VBATCH-2017-2019

Example 5: Draw the network for the project whose activities and their precedence relationships are as given below:

Activities :	А	В	С	D	Е	F	G	Η	Ι
Immediate									
Predecessor:	-	А	А	-	D	B,C,E	F	Е	G,H

Solution:

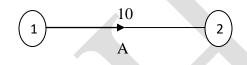
Start activities : A,D, Terminal activities : I only. Activities B and C starting with the same node are both the predecessors of the activity F. Also the activity E has to be the predecessor of both F and H. Therefore dummy activities are necessary. Thus the required network is

 D_1 and D_2 are dummy activities.

Note: sometimes while constructing a network you may introduce more dummy activities than necessary. Redundant dummy activities can always be found out when one checks whether all the given precedence relationships given in the problem are satisfied exactly. (Nothing more, nothing less).

Example 6:

 $\label{eq:construct} Construct the network for the project whose precedence relationships are as given below: \\ B < E, F \ ; C < G, L \ ; E, G < H \ ; L, H < I \ ; L < M \ ; H, M < N \ ; A < J \ ; I, J < P \ ; P < Q.$

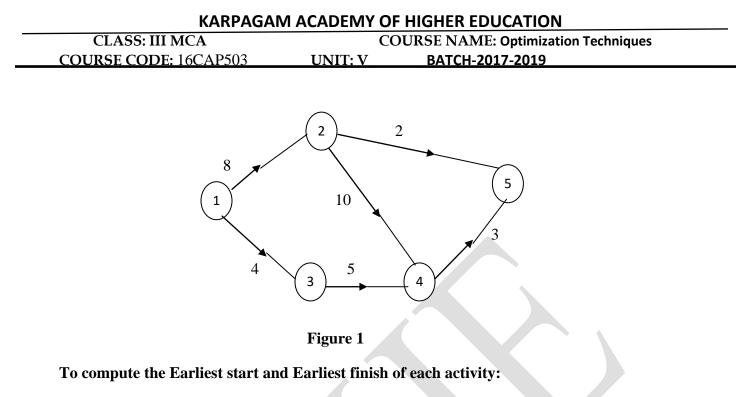

CLASS: III MCA		F HIGHER EDUCATION DURSE NAME: Optimization Techniques
COURSE CODE: 16CAP503	UNIT: V	BATCH-2017-2019
Solution:		
Start activities: B,C End a	activities : N, Q	
2 E F D_{μ} 4 D_{μ} 4 L L	G H D_2 D_2 M	7 1 10 10 10 11 0 11 0 12 N
D_1 , D_2 , D_3 and D_4 are dummy acti		
Example 7:		
Draw the event network fo	r the following da	ta.
Event No : 1 Immediate	2 3	4 5 6 7
Predecessors: -	1 1	2,3 3 4,5 5,6
Solution:	4	6

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III MCACOURSE NAME: Optimization TechniquesCOURSE CODE: 16CAP503UNIT: VBATCH-2017-2019

Network Computations and Critical Path

(Earliest Completion time of a Project and Critical path)

It is obvious that the completion time of the project is one of the very important things to be calculated knowing the durations of each activity. In real world situation the duration of any activity has an element of uncertainty because of sudden unexpected shortage of labour, machines, materials etc. Hence the completion time of the project also has an element of uncertainty. We first consider the situation where the duration of each activity is deterministic without taking the uncertainty into account.


The above diagram represents an activity whose direction is 10 time unit(hour or days or weeks or month etc)

The first network calculation one does is the computation of earliest start and earliest finish (completion) time of each activity given the duration of each activity. The method used is called forward pass calculation and it is best illustrated by means of the following example.

Example 1:

Compute the earliest start, earliest finish latest start and latest finish of each activity of the project given below:

Activity	1-2	1-3	2-4	2-5	3-4	4-5
Duration	8	4	10	2	5	3
(in days)						

We take the earliest time of all the start activities as zero.

So earliest starts of 1-2 and 1-3 are zero.

To find earliest start of 2-4.

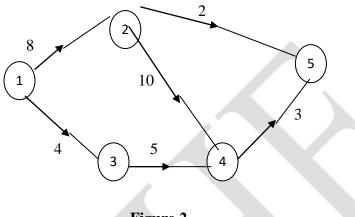
The activity 2-4 can start only after finishing the only preceding activity 1-2 i.e., after 8 days.

Earliest start of 2-4 is 8 days. Similarly earliest start of 2-5 is also 8 days.

Similarly earliest start of 3-4 is 4 days.

To find the earliest start of 4-5 we first notice that the activity 4-5 has more than one predecessor and also the activity 4-5 can start only after finishing all its preceding activities.

There are two paths leading to the activity 4-5: namely 1-2-4 which takes 18 days and 1-3-4 which takes 9 days. Obviously after 18 days all the activities 1-2, 1-3, 2-4, 3-4 can be finished but not earlier than that.


Earliest start of 4-5 is 18 days.

Note: Earliest start of an activity i-j can be denoted as ES_i or ES_{ij} . It can also be called the earliest occurrence of the event i.

KARPAGAM ACADEMY OF HIGHER EDUCATION COURSE III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: V BATCH-2017-2019

Earliest finish of any activity i-j is got by adding the duration of the activity denoted by t_{ij} to the earliest start of i-j.

Hence the earliest finish of 1-2,1-3,2-4,2-5,3-4,4-5 are 8,4,18,10,9,21 respectively.


```
Figure 2
```

Obviously earliest completion time of the project is 21 days, the greater number among these since all the activities can be finished only after 21 days.

Formula for Earliest Start of an activity i-j in a project network is given by

 $ES_{i} = Max [ES_{i}+t_{ij}]$ where

 ES_j denoted the earliest start time of all the activities emanating from node i and t_{ij} is the estimated during of the activity i-j.

To compute the latest finish and latest start of each activity:

The method used here is called backward pass calculation since we start with the terminal activity and go back to the very first node.

We first calculate the latest finish of each activity as follows:

Latest finish of all the terminating (end) activities is taken as the earliest completion time of the project. Similarly latest finish of all the start activities is obviously taken as the same as the earliest start of these start activities.

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III MCACOURSE NAME: Optimization TechniquesCOURSE CODE: 16CAP503UNIT: VBATCH-2017-2019

Thus the latest finish of the terminal activities 2-5 and 4-5 are 21 days which is the earliest completion time of the project.

Latest finish of the activity 2-4 and 3-4 is 21-3 = 18 days.

Latest finish of 1-3 is 18-5 = 13 days

To find the latest finish of the activity 1-2, we observe that the activity 1-2 has more than one successor activity. Therefore the latest finish of the activity 1-2 is the smaller of the two numbers 21 - 2 = 19 and 18 - 10 = 8. i.e. 8 days.

Note : Latest finish of an activity can be denoted by LF_j or LF_{ij} . It can also be called the latest occurrence of the event j.

Latest start of each activity is the latest finish of that activity minus the duration of that activity.

The latest start of the activities 4 - 5, 2 - 5, 2 - 4, 3 - 4, 1 - 3, 1 - 2 are 21, 21, 18, 18, 13, 8 respectively.

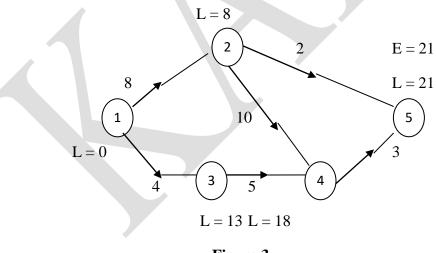


Figure 3

Formula for the latest start time of all the activities emanating from, the event i of the activity i - j, $LS_i = Min [LS_j - t_{ij}]$ for all defined i-j activities where t_{ij} is the estimated duration of the activity i - j.

KARPAGAM ACADEMY OF HIGHER EDUCATION						
CLASS: III MCA	CO	DURSE NAME: Optimization Techniques				
COURSE CODE: 16CAP503	UNIT: V	BATCH-2017-2019				

We can tabulate the results and represents these earliest and latest occurrences of the events in the network diagram as follows:

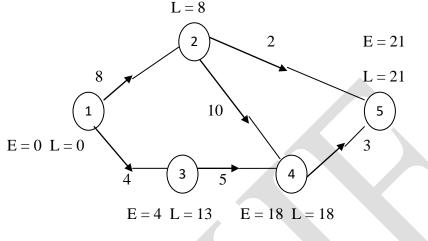


Figure 4

		Ea	arliest	Lat	test
Activity	Duration	Start	Finish EF	Start LS	Finish
	days	ES	$ES = ES + t_{ij}$	$LF - t_{ij}$	LF
1-2	8	0	8	0	8
1-3	4	0	4	9	13
2-4	10	8	18	8	18
2-5	2	8	10	19	21
3-4	5	4	9	13	18
4-5	3	18	21	18	21

Note: For small networks, it is not difficult to draw the network with E and L values calculated directly by looking at the diagram itself and constructing the table given above.

Critical path:

Path, connecting the first initial node to the very last terminal node, of longest duration in any project network is called the critical path.

KARPAGAM ACADEMY OF HIGHER EDUCATION COURSE III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: V BATCH-2017-2019

All the activities in any critical path are called critical activities. Critical path is 1 - 2 - 4 - 5, usually denoted by doubt lines. (Ref fig.4)

Critical path plays a very important role in project scheduling problems.

Floats

Total float of an activity (T.F) is defined as the difference between the latest finish and the earliest finish of the activity or the difference between the latest start and the earliest start of the activity.

Total float of an activity $i - j = (LF)_{ij} - (EF)_{ij}$ Or $= (LS)_{ij} - (ES)_{ij}$.

Total float of an activity is the amount of time by which that particular activity may be delayed without affecting the duration of the project. If the total float is positive then it may indicate that the resources for the activity are more than adequate. If the total float of an activity is zero it may indicate that the resources are just adequate for that activity. If the total float is negative, it may indicate that the resources for that activity are inadequate.

Note: (L - E) of an event of I - j is called the slack of the event j.

There are three other types of floats for an activity, namely, Free float, Independent float and interference (interfering) float.

Free Float:

Free Float of an activity (F.F) is that portion of the total float which can be used for rescheduling that activity without affecting the succeeding activity. It can be calculated as follows:

Free float of an activity i - j = Total float of i - j - (L - E) of the event j

= Total float of i - j – slack of the head event j

= Total float of I - J – slack of the head event j

Where L = Latest occurrence,

E= Earliest occurrence

KARPAGAM ACADEMY OF HIGHER EDUCATION								
CLASS: III MCA		COURSE NAME: Optimization Techniques						
COURSE CODE: 16CAP503	UNIT: V	BATCH-2017-2019						

Obviously Free Float \leq Total float for any activity.

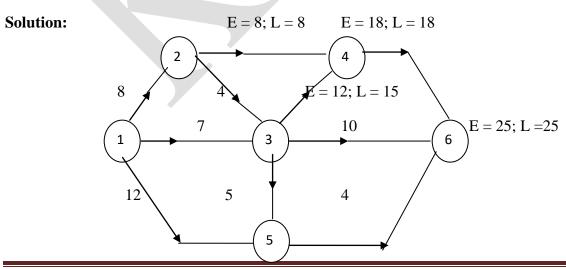
Independent float (I.F):

Independent float (I.F) of an activity is the amount of time by which the activity can be rescheduled without affecting the preceding or succeeding activities of that activity.

Independent float of an activity i - j = Free float of i - j - (L - E) of event i.

= Free float of i - j – Slack of the tail event j.

Clearly, Independent float \leq Free float for any activity. Thus I.F \leq F.F \leq T.F.


Interfering Float or Interference Float of an activity i - j is nothing but the slack of the head event j.Obviously, Interfering Float of i - j = Total Float of i - j – Free Float of i - j.

Example 2:

Calculate the total float, free float and independent float for the project whose activities are given below:

Activity	1-2	1-3	1-5	2-3	2-4 3-4	3-5	3-6	4-6	5-6
Duration	8	7	12	4	10 3	5	10	7	4
(in days)									

The data is the same as given in example 2 above. The network with L and E of every event is given by

KARPAGAM ACADEMY OF HIGHER EDUCATION

COURSE NAME: Optimization Techniques

CLASS: III MCA COURSE CODE: 16CAP503

UNIT: V BATCH-2017-2019

E = 17; L = 21

		Earliest		Latest		Floats		
Activity	Duration	Start	Finish	Start	Finish	TF	FF	IF
	(in							
	weeks)							
1 – 2	8	0	8	0	8	0	0	0
1-3	7	0	7	8	15	8	5	5
1-5	12	0	12	9	21	9	5	5
2-3	4	8	12	11	15	3	0	0
2-4	10	8	18	8	18	0	0	0
3-4	3	12	15	15	18	3	3	0
3 – 5	5	12	17	16	21	4	0	-3
3-6	10	12	22	15	25	3	3	0
4-5	7	18	25	18	25	0	0	0
5-6	4	17	21	21	25	4	4	0

Explanation:

To find the total float of 2 - 3.

Total float of (2-3) = (LF - EF) of (2-3) = 15 - 12 = 3 from the table against the activity 2-3.

Free Float of (2-3) = Total float of (2-3) - (L-E) of event 3

 $= 3 - (15 \ 12)$ from the figure for event 3 = 0

Free Float of (1-5) = Total float of (1-5) - (L-F) of event 5

= (21 - 12) - (21 - 17) from the figure for event 5

= 9 - 4 = 5

Independent float of (1-5) = Free Float of (1-5) - (L-E) of event 1

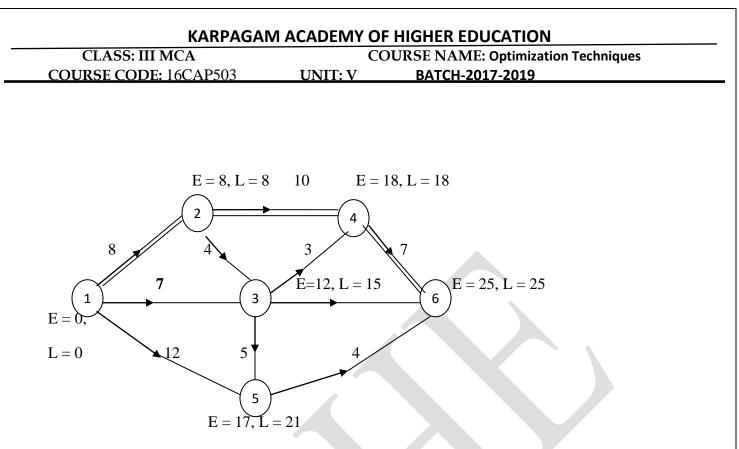
= 5 - (0 - 0) = 5

Important Note:

Note that all the critical activities have their total float as zero. In fact the critical path can also be defined as the path of least (zero) total float. As we have noticed total float is 3 for the activity 2 - 3. This means that the activity 2 - 3 can be delayed by 3 weeks without delaying the duration (completion date) of the project.

Free float of 3 - 4 is 3. This means that the activity 3 - 4 can be delayed by 3 weeks without affecting its succeeding activity 4 - 6.

Independent float of 1 - 5 is 5 means that the activity 1 - 5 can be delayed by 5 weeks without affecting its preceding or succeeding activity. Of course 1 - 5 has no preceding activity.


Uses of floats:

Floats are useful in resources leveling and recourse allocation problems which will be discussed in the last section of this chapter. Floats give some flexibility in rescheduling some activities so as to smoothen the level of resources or allocate the limited resources as best as possible.

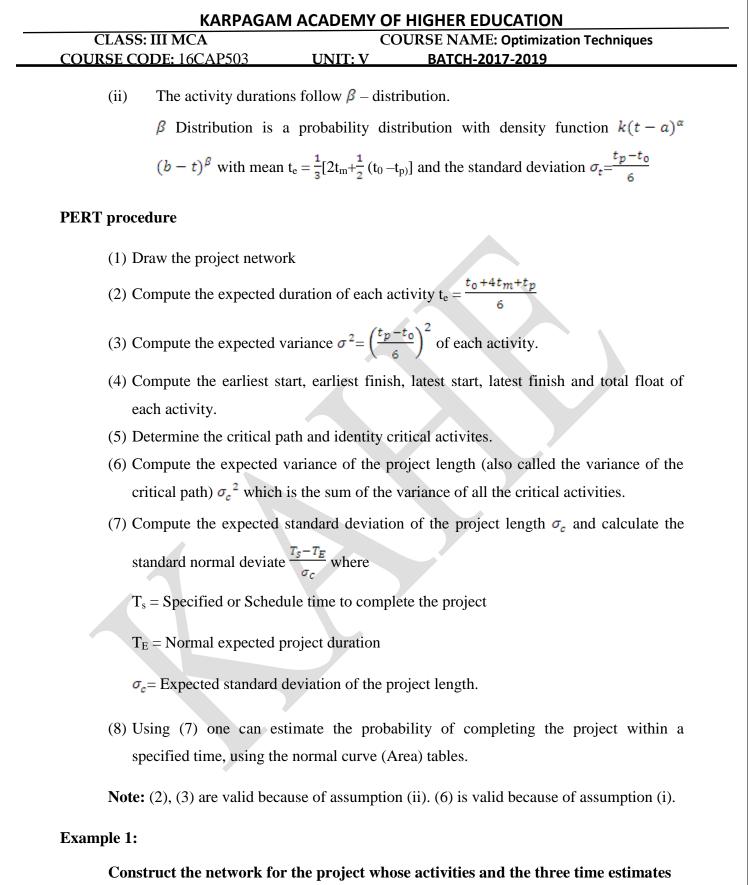
Example 3:

Calculate the earliest start, earliest finish, latest start and latest finish of each activity of the project given below and determine the critical path of the project.

Activity	1 - 2	1 – 3	1 – 5	2 - 3	2 - 4
Duration					
(in weeks)	8	7	12	4	10
Activity	3-4	3 – 5	3-6	4-6	5-6
Duration (in weeks)	3	5	10	7	4
Solution:					

Program Evaluation Review Techniques: (PERT)

This technique, unlike CPM, take into account the uncertainly of project durations into account.

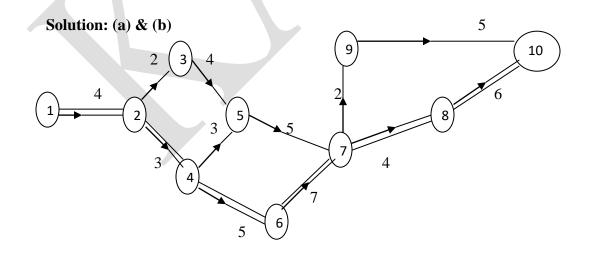

Optimistic (least) time estimate: (t_0 or a) is the duration of any activity when everything goes on very well during the project. i.e., labourers are available and come in time, machines are working properly, money is available whenever needed, there is no scarcity of raw material needed etc.

Pessimistic (greatest) time estimate: $(t_p \text{ or } b)$ is the duration of any activity when almost everything goes against our will and a lot of difficulties is faced while doing a project.

Most likely time estimate: $(t_m \text{ or } m)$ is the duration of any activity when sometimes things go on very well, sometimes things go on very bed while doing the project.

Two main assumption make in PERT calculations are

(i) The activity durations are independent. Ie., the time required to complete an activity will have no bearing on the completion times of any other activity of the project.



of these activities (in weeks) are given below. Compute

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: III MCACOURSE NAME: Optimization TechniquesCOURSE CODE: 16CAP503UNIT: VBATCH-2017-2019

- (a) Excepted duration of each activity.
- (b) Excepted variance of each activity.
- (c) Excepted variance of the project length.

Activity	t ₀	t _m	t_p
1 – 2	3	4	5
2-3	1	2	3
2-4	2	3	4
3-5	3	4	5
4-5	1	3	5
4-6	3	5	7
5-7	4	5	6
6 – 7	6	7	8
7 - 8	2	4	6
7 – 9	1	2	3
8-10	4	6	8
9 – 10	3	5	7

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III MCA COURSE CODE: 16CAP503 COURSE NAME: Optimization Techniques
UNIT: V BATCH-2017-2019

Activity	t_0	t_m	t_p	Excepted duration $t_{e} = \frac{t_{0} + 4t_{m} + t_{p}}{6}$	Excepted variance $\sigma^{2} = \left(\frac{t_{p} - t_{0}}{6}\right)^{2}$
1-2	3	4	5	4	$\frac{1}{9} = 0.11$ nearly
2-3	1	2	3	2	$\frac{1}{9} = 0.11$
2 - 4	2	3	4	3	$\frac{1}{9} = 0.11$
3-5	3	4	5	4	$\frac{1}{9} = 0.11$
4-5	1	3	5	3	$\frac{4}{9} = 0.44$
4-6	3	5	7	5	$\frac{4}{9} = 0.44$
5-7	4	5	6	5	$\frac{1}{9} = 0.11$
6-7	6	7	8	7	$\frac{1}{9} = 0.11$
7-8	2	4	6	4	$\frac{4}{9} = 0.44$
7-9	1	2	3	2	$\frac{1}{9} = 0.11$
8-10	4	6	8	6	$\frac{4}{9} = 0.44$
9 - 10	3	5	7	5	$\frac{4}{9} = 0.44$

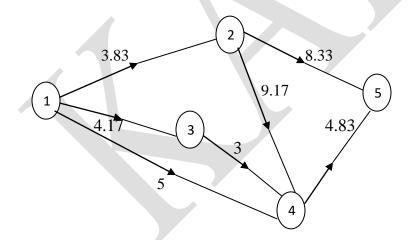
Critical path 1 - 2 - 4 - 6 - 7 - 8 - 10. Excepted project duration = 29 weeks.

(c) Excepted variance of the project length = Sum of the expected variances of all the critical activities

 $= \frac{1}{9} + \frac{1}{9} + \frac{4}{9} + \frac{1}{9} + \frac{4}{9} + \frac{4}{9} = \frac{15}{9} = \frac{15}{9} = \frac{15}{9} = \frac{5}{3} = 1.67$ or (0.11 + 0.11 + 0.44 + 0.11 + 0.44 + 0.44 = 1.32 + 0.33 = 1.65)

Example 2:

The following table indicates the details of a project. The duration are in days. 'a' refers to optimistic time, 'm' refers to most likely time and 'b' refers to pessimistic time duration.


Activit	У	1 - 2	1 - 3	1 - 4	2 - 4	2 - 5	3-5	4 - 5
a		2	3	4	8	6	2	2
т		4	4	5	9	8	3	5
b		5	6	6	11	12	4	7
(a)	Draw t	the netv	vork					
(b)	Find th	ne critic	al path					

KARPAGAM ACADEMY OF HIGHER EDUCATION COURSE: III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: V BATCH-2017-2019

(c) Determine the excepted standard deviation of the completion time.

Solution:

Activity	а	т	b	Excepted duration t _e	Excepted variance σ^2
1 – 2	2	4	5	3.83	$\frac{1}{4}$
1-3	3	4	6	4.17	$\frac{1}{4}$
1-4	4	5	6	5	1 9
2-4	8	9	11	9.17	$\frac{1}{4}$
2-5	6	8	12	8.33	1
3-4	2	3	4	3	1 9
4 – 5	2	5	7	4.83	$\frac{25}{36}$

Critical path 1 - 2 - 4 - 5

Excepted project duration = 17.83 days

Excepted variance of the completion time = $\frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{43}{36}$

KARPAGAM ACADEMY OF HIGHER EDUCATION

COURSE NAME: Optimization Techniques

COURSE CODE: 16CAP503

CLASS: III MCA

BATCH-2017-2019

Excepted standard deviation of the completion time = $\sqrt{\frac{43}{36}} = 1.09$ nearly

Example 3:

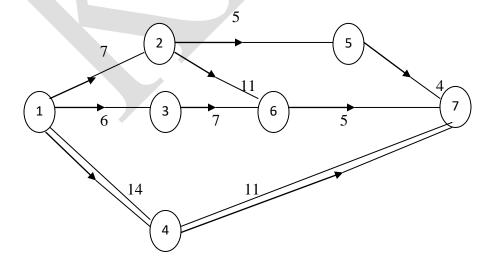
A project consists of the following activities and time estimates:

UNIT: V

Activity	Least time (days)	Greatest time (days)	Most likely time (days)
1-2	3	15	6
2-3	2	14	5
1-4	6	13	12
2-5	2	8	5
2-6	5	17	11
3-6	3	15	6
4 – 7	3	27	9
5 – 7	1	7	4
6 – 7	2	8	5

(a) Draw the network

(b) What is the probability that the project will be completed in 27 days?


Solution:

Obviously Greatest time = Pessimistic time = t_p

Least time = Optimistic time = t_0

Most Likely time = t_m

(a)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III MCA COURSE CODE: 16CAP503 COURSE NAME: Optimization Techniques
UNIT: V BATCH-2017-2019

Activity	t ₀	t _p	t _m	$t_e = \frac{t_0 + 4t_m + t_p}{6}$	$\sigma^2 = \left(\frac{t_p - t_0}{6}\right)^2$
1 – 2	3	15	6	7	4
2-3	2	14	5	6	4
1-4	6	13	12	14	16
2-5	2	8	5	5	1
2-6	5	17	11	11	4
3-6	3	15	6	7	4
4 – 7	3	27	9	11	16
5 – 7	1	7	4	4	1
6-7	2	8	5	5	1

Critical path 1 - 4 - 7

Excepted project duration = 25 days

Sum of the excepted variance of Excepted variance of the project length = all the critical activities

= 16 + 16 = 32.

 σ_c = Standard deviation of the project length = $\sqrt{32} = 4\sqrt{2} = 5.656$

$$Z = \frac{T_s - T_E}{\sigma_c} = \frac{27 - 25}{5.656} = 0.35$$

Probability that the project will be completed in 27 days

$$= P(T_s \le 27) = P(Z \le 0.35)$$

$$= 0.6368 = 63.7\%$$

Basic difference between PERT and CPM

PERT

1. PERT was developed in a brand new R and D project it had to consider and deal with the uncertainties associated with such projects. Thus the project duration is regarded

KARPAGAM ACADEMY OF HIGHER EDUCATION COURSE III MCA COURSE NAME: Optimization Techniques COURSE CODE: 16CAP503 UNIT: V BATCH-2017-2019

as a random variables and therefore probabilities are calculated so as to characteristics it.

- Emphasis is given to important stages of completion of task rather than the activities required to be performed to reach a particular event or task in the analysis of network.
 i.e., PERT network is essentially an event – oriented network.
- PERT is usually used for projects in which time estimates are uncertain. Example: R
 & D activities which are usually non-repetitive.
- 4. PERT helps in identifying critical areas in a project so that suitable necessary adjustments may be made to meet the scheduled completion date of the project.

CPM

- CPM was developed fir conventional projects like construction project which consists of well known routine tasks whose resources requirement and duration were known with certainty.
- 2. CPM is suited to establish a trade off for optimum balancing between schedule time and cost of the project.
- 3. CPM is used for projects involving well known activities of repetitive in nature, However the distinction between PERT and CPM is mostly historical.

KARPAGAN	ACADEMY OF	F HIGHER EDUCATION	
CLASS: III MCA	CC	DURSE NAME: Optimization Techniques	
COURSE CODE: 16CAP503	UNIT: V	BATCH-2017-2019	

Possible Questions

Part-B (6 mark)

- 1. Construct the network for the project whose activities and the three time estimates of these activities (in weeks) are given below. Compute
 - i) Excepted duration of each activity.
 - ii) Excepted variance of each activity.
 - iii) Excepted variance of the project length.

Activity	t_0	t_m	t_p
1 - 2	3	4	5
2 - 3	1	2	3
2 - 4	2	3	4
3 - 5	3	4	5
4-5	1	3	5
4 - 6	3	5	7
5 - 7	4	5	6
6-7	6	7	8
7 - 8	2	4	6
7 – 9	1	2	3
8-10	4	6	8
9 – 10	3	5	7

- 2. Describe the difference between PERT and CPM.
- 3. Calculate the total float, free float and independent float for the project whose activities are given below:

Activity	1-2	1-3	1-5	2-3	2-4	3-4	3-5	3-6	4-6	5-6
Duration	8	7	12	4	10	3	5	10	7	4
(in days)										

4. The following table indicates the details of a project. The duration are in days. 'a' refers to optimistic time, 'm' refers to most likely time and 'b' refers to pessimistic time duration.

Activity	1 - 2	1 - 3	1 - 4	2 - 4	2 - 5	3-5	4 - 5	
а		2	3	4	8	6	2	2
т	× ·	4	4	5	9	8	3	5
b		5	6	6	11	12	4	7
(a) D	raw the	networ	k					

- (b) Find the critical path
- (c) Determine the excepted standard deviation of the completion time.

CLASS: III MC	A		COUR	SE NAME:	Optimization Tee	chniques
COURSE CODE: 16	CAP503	UNIT: V		BATCH-201	-	•
5. Project given			-			~ ~
Activity		. 1-	- 2	1 - 3	2 - 4	2 - 5
Duratio		C		10	C	2
(in wee	eks) 3	8		12	6	3
Activity	3-4	4 3 -	6	4 - 7	5 - 7	6-7
Duratio			C	. ,	C I	0 /
(in weel		8		5	3	8
(······	-					
6. A project cons						
	Activity	Least time	Greates		likely	
		(days)	time (dag	(s) time	(days)	
	1-2	3	15		6	
	2-3	2	14		5	
	1-4	6	13		12	
	2-5	2	8		5	
	2-6	5	17		1	
	3 - 6	3	15		6	
	4-7	3	27		9	
	$\frac{5-7}{6}$	1 2	7 8		4 5	
	6-7) Draw the no		8		5	
			at the pro	ect will be	completed in 27	dave
11) what is the	probability th	at the pro		completed in 27	uays
7. A Project has	the following	o characteristi	cs			
Activity :	A B	C D	E	F		
Duration:	6 8	4 9	2	7		
Preceding						
activity :	_ A	A B	С	D		
Draw the netw	ork diagram	and find the c	ritical pat	h.		
						<i>.</i>
8. The following						
refers to optimi	stic time, 'm	refers to mo	st likely ti	me and 'b'	refers to pessim	iistic time
duration.	1 2 2 3	3 2-4 3-	4 4 - 5	5 - 6		
Activity a	1-2 $2-30.8 3.7$	6.2 2-4 3-6.2 2.6		5 - 6 0.9		
a m	1.0 5.6	6.6 2.7		0.9 1.0		
m b	1.0 J.0 1.2 9.9	15.4 6.1		1.0		
	the network	12.1 0.1	5.0	1.1		

CLASS	: III MCA		COURSE NAME: Optimization	Techniques
OURSE CO	DDE: 16CAP503	UNIT: V	BATCH-2017-2019	
9. The f	ollowing table giv	ven the characteristic	cs of a project.	
	Job	Predecessors	Duration(days)	
	A	-	10	
	В	-	5	
	С	В	3	
	D	A,C	4	
	Е	A,C	6	
	F	D	6	
	G	Е	5	

5

Draw the network diagram and find the critical path.

10. The three estimates for the activities of a project are given below:

F,G

Activity	Estimated duration (days)		
	a	m	В
1 – 2	5	6	7
1 – 3	1	1	7
1 – 4	2	4	12
2-5	3	6	15
3-5	1	1	1
4-6	2	2	8
5-6	1	4	7

i) Draw the project network.

Η

ii) What is the probability that the project will be completed on 22 days ?

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III MCA COURSE CODE: 16CAP503

COURSE NAME: Optimization Techniques
UNIT: V BATCH-2017-2019

Part-C(10 mark)

1. The following table lists the jobs of a network with their time estimate

Jobs	Optimistic	Duration days	Pessimistic
		Most likely	
1-2	3	6	15
1-6	2	5	14
2-3	6	12	30
2-4	2	5	8
3-5	5	11	17
4-5	3	6	15
6-7	3	9	27
5-8	1	4	7
7-8	4	19	28

Draw the project network and calculate the length and variance of the critical path

KARPA(] OP]

Questions	choice 1
Programming is another word for The linear function is to be maximized or minimized is called	planning objective function
LPP is a technique of finding the A Feasible solution to a LPP which is also a basic solution to the problem is called	optimal solution basic solution
The solution which optimizes the objective function are called	feasible solution
A basic solution is said to be a if one of more of the basic variables are Zero More than two decision variables problem in LPP can be	basic solution
solved by Another name for simplex method is	simplex method computational procedure
The minimization of the function f(x) is equivalent to the maximization of The coefficient of slack variables in the constraints is	-(-f(x))
In simplex method all the variables must be	1 negative
The coefficient of slack variables in the objective function is	1
The set of feasible solutions to an LPP is a The number of alternatives in a LPP is typically	convex set finite
LPP deals with the problems involving only objective	one
Constraints appear as when plotted in a graph An LPP is said to be infeasible if it has that	curve
satisfies all the constraints The leaving variable row is called	no solution key row
The entering variable column is called The intersection of the pivot column and pivot row is called the	key row pivot element
For the optimal solution of an LPP, existence of an initial feasible solution is always If Minimum (Z) = -5, then the maximum (Z) =	Assumed
-	-5

If the solution space is unbounded ,then the objective value will always be Linear programming problems involving only two variables	bounded
can be effectively solved by a method. The element of intersection of the pivot column and pivot	simplex
row is called the	pivot row
The Objective of the transportation problem is to be	Maximum
When total supply is equal to total demand, the problem is called a transportation problem	Feasible
Cells in the transportaion table having positive allocation will be called	occupied cells
In a transportation problem the various a's and b's are called	Supply
The unit transportation cost from the ith source to jth destination is displayed in the of the (i j)th cell.	upper left side
A balanced transportation problem will always have a	unique solution
A feasible solution to a (mxn) transportation problem that contains no more than m+n-1 non negative allocations is called	Feasible solution
A feasible solution is said to be an optimul solution if it the total transportation cost	Minimize
The number of basic variables in an mxn balanced transportation problem is atmost	m + n
The number of non basic variables in an mxn balanced transportation problem is atleast	mn - (m + n -1)
In a transportaion problem, the cost of transportation is	Linear
For a feasible solution to exist, it is necessary that the total supply equal to total	cost
Least cost method is also called VAM method is also called Vogel's approximation method is a	Matrix method Penalty method Penalty method
In a VAM method allocations are made so that the penalty	minimised
cost is The MODI method is based on the concept of	Linear Programming Problem
Every loop has an number of cells	even
Closed loops may or may not be in shape	circle
Penalty method is a	North - west corner rule

Matrix minima method is a Every loop has an even number of cells and atleast	North - west corner rule Two
The number of in an mxn balanced transportation problem is atmost m+n-1	basic variables
In a transportation problem, the total transportation cost is	minimum
The dummy source or destination in a transportation problem is added to The occurrence of degeneracy while solving a transportation problem means that	satisfy rim conditions total supply equals total demand
One disadvantage of using North -west corner rule to find initial solution to the transportation problem is that	it is complicated to use
The solution to a transportation problem with m-rows (supplies) and n- columns (destination) is feasible if number of positive allocations are	m + n
If we were to use opportunity cost value for an unused cell to test optimality, it should be	equal to zero
A basic feasible solution to a (mxn) transportation problem is said to be a basic feasible solution if it contains exactly m+n-1 non negative allocations in independent positions.	degenerate
A basic feasible solution to a (mxn) transportation problem is said to be a basic feasible solution if it contains less than m+n-1 non negative allocations in independent positions.	degenerate
In a transportation problem, least cost method gives a better solution to than Ina transportation problem, gives a better starting solution than Least Cost method.	North - west corner rule North - west corner rule
A transportation problem can always be represented by	balanced model
In a transportation model, north west corner rule starting solution is recommended because it ensure that there will be allocations	m + n
The transportation model is restricted to dealing with a	single
For any transportation problem, the coefficients of all units in the constraints are	zero

A solution that satisfies all conditions of supply and demand feasible solution but it may or may bot be optimal is called ------

To solve degeneracy, an occupied cell withcost is converted into occupied cell by assigning infinitely small amount to it.	lowest
In a north west corner rule, if the demand in the column is satisfied, one must move to the cell in the next column.	left
Row wise and column wise difference between two minimum costs is calculated under method. An optimum solution results when net costs change values of all unoccupied cells are MODI method associated with transportation problem, MODI stands for Transportation problem is a sub class of	North - west corner rule positive and greater than zero Modified distribution Linear Programming Problem

GAM ACADEMY OF HIGHER EDUCATION DEPARTMENT OF MATHEMATICS FIMIZATION TECHNIQUES (16CAP503)

choice 2	choice 3	choice 4
UNIT - I		
organizing	managing	decision making
subjective function	optiomal function	odd function
approximate solution	both	infeasible solution
basic feasible solution	non basic feasible solution	optimal solution
optimal solution	optional solution	arbitrary solution
infeasible solution	degenerate basic solution	unbounded solution
Big-M method	Graphical method	Dual simplex method
computational method	Big-M method	Dual simplex method
f(x)	-f(-x)	1 / f(x)
0	2	-1
non-negative	have the same sign	initially zero
0	2	-1
null set	concave	finite
infinite	infeasible	feasible
two	more than one	more than two
straight line	point	circle
infinite solution	Unbounded solution	infeasible solution
key column pivot row	pivot column pivot row	leaving row entering row
leaving element	unit element	first element
given	does not exists	zero
5	4	-4

unbounded	feasible	infeasible
iteration	graphical	Big-M method
pivot column Minimum	keyrow Either maximum or minimum	pivot element Neither maximum nor minimum
Infeasible	Unbalanced	balanced
unoccupied cells	empty cells	zero cells
demand	rim requirement	destination
upper right side	lower left side	lower right side
infinite number of solution	infeasible solution	feasible solution
optimul solution	basic feasible solution	infeasible solution
Maximize	Either maximize or	Neither maximize nor
	minimize	minimize
m + n -1	$\begin{array}{l} \text{minimize} \\ \text{m} + \text{n} + 1 \end{array}$	minimize m - n -1
m + n -1	m + n +1	m - n -1
m + n -1 mn - (m - n -1)	m + n +1 mn - (m + n + 1)	m - n -1 mn - (m - n + 1)
m + n -1 mn - (m - n -1) non linear	m + n +1 mn - (m + n + 1) zero	m - n -1 mn - (m - n + 1) one
m + n -1 mn - (m - n -1) non linear demand Matrix maxima method Matrix minima method	m + n +1 mn - (m + n + 1) zero cells Matrix minima method Lower cost method	m - n -1 mn - (m - n + 1) one rows minima method Hungerian method
m + n -1 mn - (m - n -1) non linear demand Matrix maxima method Matrix minima method Matrix minima method	m + n +1 mn - (m + n + 1) zero cells Matrix minima method Lower cost method Hungerian method	m - n -1 mn - (m - n + 1) one rows minima method Hungerian method Heuristic method
m + n -1 mn - (m - n -1) non linear demand Matrix maxima method Matrix minima method Matrix minima method maximized	m + n +1 mn - (m + n + 1) zero cells Matrix minima method Lower cost method Hungerian method zero	m - n -1 mn - (m - n + 1) one rows minima method Hungerian method Heuristic method non zero
m + n - 1 mn - (m - n - 1) non linear demand Matrix maxima method Matrix minima method Matrix minima method maximized Heuristic method	m + n +1 mn - (m + n + 1) zero cells Matrix minima method Lower cost method Hungerian method zero Matrix maxima method	m - n -1 mn - (m - n + 1) one rows minima method Hungerian method Heuristic method non zero duality

least cost method	VAM method	MODI method
Four	Six	Eight
non basic variables	decision variables	non decision variables
maximum	zero	unique
prevent solution from becoming degenerate the solution so obtained is not feasible		it is a balanced one the solution so obtained is feasible
it does not take into	become negative	it leads to non
account cost of transportation	it leads to a degenerate initial solution	degenerate initial solution
m x n	m + n + 1	m + n -1
most negative number	most positive number	any value
		infinite number of
non degenerate	unique	
		infinite number of
non degenerate	unique	
least cost method	VAM method	MODI method
least cost method	VAM method	MODI method
unbalanced model	simplex model	graphical model
m x n	m + n + l	m + n -1
multiple	positive	negative
any value	unity	unique
infeasible solution	basic feasible solution	initial feasible solution

larger	unit	zero
right	middle	corner
least cost method	VAM method	MODI method
negative	non negative	positive and lesser than zero
Multiple distribution Integer Programming Problem	Matrix distribution Non Linear Programming Problem	Modified distinction Dynamic Programming Problem

Answer

planning

objective function

optimal solution

basic feasible solution

optimal solution

degenerate basic solution

simplex method

computational procedure

-(-f(x))

1

non-negative

0

convex set

finite

one

straight line

no solution

key row

pivot row

pivot element

Assumed

5

unbounded

graphical

pivot element

Minimum

balanced

occupied cells

rim requirement

upper left side

feasible solution

basic feasible solution

Minimize

m + n - 1

mn - (m + n - 1)

Linear

demand

Matrix minima method Penalty method Heuristic method

minimised

duality

even

square

VAM method

least cost method

Four

basic variables

minimum

satisfy rim conditions

the solution so obtained is not feasible

it does not take into account cost of transportation

m + n - 1

most negative number non degenerate

degenerate

North - west corner rule

VAM method

balanced model

m + n - 1

multiple

unity

initial feasible solution

lowest

right

VAM method

non negative

Modified distribution

Linear Programming Problem

KARPAGAM ACADEMY OF HIGHE DEPARTMENT OF MATHEM OPTIMIZATION TECHNIQUES

Questions

choice 1

choice 2 UNIT - II

		UNII - II
A LPP in which all or some of the decision variables are constrained to assume non negative integer values is called an In a LPP, if all the variables in the optimal solution are restricted to assume non negative integer values, then it is	Integer programming problem	Dynamic programming problem
called the	Zero - one IPP	Pure IPP
A systematic procedure for solving pure I.P.P is In cutting algorithm, each cut involves the	Hungarian method	Cutting method less than or equal to
introduction of	an equality constraint	constraint
In the context of Branch and bound method, which of the following is not correct? Which of the following is correct?	It can be used to solve any kind of programming problem If the optimum solution to an LPP has all integer values, it may or may not be an optimum integer solution	the solution to the IPP
Which of the following is not correct? Which of the following is not an integer linear programming problem? The part of the feasible solution space eliminated by plotting a cut constraints	The optimum solution to LPP satisfies the cut that is introduced on the basis of it. Zero - one IPP only non integer solutions	A cut is formed be choosing a row in the optimum simples table that corresponds to a non integer variable. Pure IPP only integer solutions

While solving IP problem any non integer variable in the solution is picked up to In a Branch and Bound minimization tree,	obtain the cut constraint	enter the solution
the lower bounds on objective function value	do not decrease in value	do not increase in value
In a mixed integer programming problem we have Branch and Bound method divides the feasible solution space into smaller parts	all of the decision variables require integer solutions	few of the decision variables require integer solutions
by In a mixed-integer programming problem- requries integer solutions A non integer variable is chosen in the	branching - all of the decision variables	bounding few of the decision variables
optimal simplex table of the integer LP problem to The corners of the reduced feasible region of an integer LP problem contains	leave the basis only integer solution	enter the basis optimal integer solution
An programming was used for capital budgeting in hospital An integer programming was used for	integer	Hungerian method
capital budgeting in If the arrivals are completely random, then the probability distribution of a number of arrivals in a fixed-time interval follows a -	f	railway
distribution	Poisson	normal
The describes the way in which the customers arrive and join the system The arriving people in a queueing system	service mechanism	input
are called	Input	servers
Mean service time is denoted by The traffic intensity in queueing is defined		1
by A system is said to be in state	p / (p-1)	m / 1
when its operating characteristics are dependent on timeA system is said to be in statewhen the behaviour of the system is	Steady	arrival
independent on time.	Steady	arrival

A customer who leaves the queue because

the queue is too long then his behaviour is said to be ------

said to be	Reneging	balking
The Birth–death model is called Average queue length in $(M / M / 1) : (\infty / M)$		M / M / N
FCFS) is	(1-r) / r	r / (1-r)
The expected waiting time in the queue is calculated by the formula	1 / (m – l)	b) l / (m – l)
In Birth–death model, the probability distribution of queue length is given by	-	
 First In First Out (FIFO) is known as the	$r^{n}/(1-r)$	b) $r^2 / (1-r)$
	Input	service mechanism
The probability of an empty system is given by	1 - (1 / m)	1 / (m – l)
A Queuing system can be completely described by	The input, the service mechanism	The input, the service mechanism and the
The probability of Queue size \ge N is	$r^{n}/(1-r)$	r ⁿ
If $1 = 3$, $m = 2$ then $r =$	1.5	3
Average waiting time in the queue is given by	1 1/m - 1	1

R EDUCATION IATICS (16CAP503) choice 3

choice 4

Answer

Non linear programming problem

Decision Analysis Integer programming problem

Mixed IPP	Non IPP	Pure IPP
Revised simplex method greater than or equal to constraint	Modi method an artificial variable. It is not a standardised	Cutting method less than or equal to constraint
It is very usefull employed in problems where then a finite number of solutions	method and is applied differently for different problems	It can be used to solve any kind of programming problem
A cut may or may not eliminate any points that are feasible for the IPP	a cut does not eliminate any points which are feasible for the IPP. The cutting plane algorithm requires all RHS	a cut does not eliminate any points which are feasible for the IPP.
the cutting plane algorithm assures optimal integer solution in a finite number of iterations	values as well as all the coefficients in the constraints to	The optimum solution to LPP satisfies the cut that is introduced on the basis of it.
Mixed IPP both integer and non integer	continuous IPP only rational	continuous IPP only non integer
solutions	solutions	solutions

leave the solution	no solution	obtain the cut constraint
remains constant	no constant	remains constant few of the
different objective functions are mixed together	mixed solution to the problem	decision variables require integer solutions
enumering different objective functions	parts mixed variables	branching few of the decision variables
Tunctions	mixed variables	decision variables
to construct a gomory cut only non-integer	Branch and Bound method	to construct a gomory cut only integer
solution	not a solution	solution
Dynamic programming	Decision	
problem	Analysis	integer
transport	hospital	hospital
binomial	polynomial	Poisson
	customer	
queue discipline	behaviour	input
customers	queue	customers
1 / 1	1 / m	m
1 / m	1 / (1- p)	1 / m
service	transient	transient
service	transient	Steady

jockeying	priorities	balking
$M \ / \ M \ / \ \Psi$	M / M / 2	M / M / 1
$r / (1 - r^2)$	$r^{2}/(1-r)$	$r^{2}/(1-r)$
1 / m (m – l)	1 / m	1 / m (m – l)
r / (1– r)	$(1-r) / r^n$	r ⁿ /(1-r)
customer behaviour	queue discipline	queue discipline
l / m (m – l) The input, the service mechanism,	l / m The input, the service	1 - (l / m) The input, the service

$\frac{1-r^n}{2}$	$(1-r) / r^n$ 0.6	r ⁿ 1.5
m	1/m + 1	1

KARPA

OP¹

Questions	choice 1
The study of replacement is concerned with	
situations that arise when items need	
due to their deteriorating	
efficiency,failure or breakdown.	replacement
Total cost = Capital cost - scrap value +	1
1 1	setup cost
Equipment should be replacement when	Ĩ
maintenance cost the average annual total	
cost.	greater than
The rate of interest becomes and hence	•
v approaches unity when the time value of money is	
taken into consideration.	three
If w(n1) w(n2), choose equipment A	less than
If w(n1) w(n2), choose equipment B	less than
If $w(n1)$ $w(n2)$, both equipments are	
equally good.	less than
In policy an item is replaced	
immediately after its failure.	individual replacement
In policy all the items must be	*
replaced	individual replacement
The probability of failure during time period 't' is	-
given by	p(t) = [M(t-1)+M(t)]/N
The conditional probability of failure is given by	p(t) = [M(t-
	1)+M(t)]/M(t-1)
The probability of survival till age t is given by	p(t)=M(t)
Group replacement must be made at the end of	
if the cost of individual	
replacement for the period is greater than the	
average cost per unit time period through the end of	
't'periods.	t+1' period
The quantity $(1+r)$ to the power -n is called the	
	worth factor
The quantity $(1+r)$ to the power n is called the	compound amount
	factor
The expression which lies between Rn-1 and Rn is	
called the of all the previous n years.	weighted average cost
If the next period's is less than the	
weighted average of previous costs, donot replace	
the equipments.	average cost
Replace the equipments if the next period's	
operating cost is the weighted average of	
previous costs.	less than

GAM ACADEMY OF HIGHER EDUCATION DEPARTMENT OF MATHEMATICS FIMIZATION TECHNIQUES (16CAP503)

UNIT - III

choice 3

choice 4

choice 2

UIII		
shortage	inventory	expensive
maintenance cost	replacement cost	initial cost
less than	equals	greater than or equal to
one greater than greater than	two equals equals	zero not equal not equal
greater than	equal	not equal
group replacement	order replacement	removable
group replacement	order replacement	removable
p(t)=[M(t-1)+M(t)] p(t)=[M(t-1)-M(t)]/M(t)	p(t)=[M(t-1)-M(t)]	p(t)=[M(t-1)-M(t)]/N
p(t) = N(t-1) - M(t) - M(t) - M(t) p(t) = N.	p(t)=[M(t-1)-M(t)] p(t)=M(t)/N+1	p(t)=[M(t-1)+M(t)] p(t)=M(t)/N.

t -1' period	't' period	t+2' period
present factor	factor	present worth factor payment compound amount
factor	payment	factor
average cost	weighted cost	cost
operating cost	cost	weighted cost
greater than	greater than or equal to	equal

Answer

replacement

maintenance cost

equals

zero less than greater than

equal

individual replacement

group replacement

p(t)=[M(t-1)-M(t)]/N

p(t)=[M(t-1)-M(t)]/M(t-1)p(t)=M(t)/N.

't' period

present worth factor payment compound amount factor

weighted average cost

operating cost

greater than

KARPAGAM ACADEMY OF HIGHI DEPARTMENT OF MATHE OPTIMIZATION TECHNIQUES

Questions	choice 1	choice 2 UNIT - IV
may be defined as the stock of goods, commodities or other economic resources that are stored or reserved for smooth and efficient running of business		
affairs	Inventory	Transportation
Rate of consumption is different from	rate of change	rate of production
Cost associated with carrying or holding the goods in stock is known as is the interest change over the	interested capital cost	handling cost
capital invested.	interested capital cost	handling cost
movement of stock, such as cost of labour etc. per unit item is affected by the	interested capital cost	handling cost
quantity purchased due to quantity discounts or price breaks.If P is the purchase price of an item and I is the stock holding cost per unit time	interested capital cost	handling cost
expressed as a fraction of stock value thenthe holding cost isThe penalty costs that are incurred as aresult of running out of stock are known as	I/P	I + P
	shortage cost	set-up cost
Holding cost is denoted by	C ₁	C_2
Shortage cost is denoted by	C ₁	C_2
Set-up cost is denoted by	C_1	C ₂
Elapsed time between the placement of the order and its receipts in inventory is known	1 1.2	
as is the time when we should place an order by taking into consideration the interval between placing the order and	lead time	recorder level
receiving the supply. is that size of order which minimises total annual cost of carrying inventory and the cost of ordering under the assumed conditions of certainty and that	lead time	recorder level
annual demands are known.	lead time	recorder level

EOQ means	Economic Order Quantity economic lot size	Economic Order Quality economic short size
EOQ is also known as include holding cost, set up cost, shortage costs and demand.	formula EOQ	formula controlled variables
Reduction in procurement cost EOQ An approximate percentage of 'C' items in a	increases	decreases
firm is around Economic order quantity results in	60 - 65%	65 - 70%
equilization of cost and annual inventory cost. Economic order quantity results in equilization of annual procurement cost cost	annual procurement cost	procurement cost
and cost. A company uses 10,000 units per year of an item. The purchase price is one rupee per	annual inventory cost	procurement cost
item. Ordering cost = Rs. 25 per order. Carrying cost 12% of the inventory value. Find the EOQ.	2000 units	2083 units
If the procurement cost per order increases 21%, the economic order quantity of the item shall increase by If EOQ is 5000 units and Buffer stock is 500	10%	20%
units calculate max inventory. If EOQ is 5000 units and Buffer stock is 500	5500 units	500 units
units calculate minimum inventory. Reorder level =	5500 units normal lead time x monthly consumption	500 units normal lead time + monthly
An approximate percentage of A- items in a firm is around	5 - 10 %	consumption $10-20$ %
Economic order quantity results in The EOQ of an item which cost is Rs.36 and	reduced stock – outs	increased stock – outs
carrying cost is 1.5 % per month, the economic order quantity is In the ABC analysis, C items are those	240 no's	200 no's
which have	low unit price	low cost price

For an item with storage cost of each item Rs. 1, set up cost Rs.25, demand 200 units		
per month C_{min} is	Rs.100	Rs.400
Minimum inventory equals	EOQ	Reorder level
Given maximum lead time as 20 days and		
normal lead time is 15 days with annual		
consumption 12,000 units find the buffer stock.	176 units	167 units
Given $R = 1000$ units/year I = 0.30, C =		
Re.0.50/unit, $C_3 = Rs.10/order$. Find		
minimum average cost.	54.77	55.77
The set up cost in inventory situation is		• • •
- of size of inventory.	dependent	independent
T . 1	set up cost + purchasing	holding cost +
Total inventory cost =	cost	shortage cost
	1 11. /	1 , ,
Storage cost is associated with	holding cost	shortage cost (EOQ/2) - Safety
Average inventory =	(EOQ/2) + Safety stock	
discounts reduce material cost and		
procurement costs	quantity	quality
The ordering cost is independent of	ordering quantity	ordering quality

EOQ

choice 4

Answer

Queueing	Sequencing	Inventory
rate of purchasing	either b or c	either b or c
holding cost	production cost	holding cost
holding cost	production cost	interested capital cost
holding cost	production cost	handling cost
holding cost	purchase price	purchase price
I – P	IP	IP
holding cost	production cost	shortage cost
C ₃	C_4	C_1
C ₃	C ₅	C ₂
C ₃	C ₄	C ₃
EOQ	variables	lead time
EOQ	variables	recorder level

variables

EOQ

Economic Offer Quality	Economic Offer Quantity	Economic Order Quantity economic lot size
economic formula	economic variables	formula uncontrolled
uncontrolled variables	basic variables	variables
reduces	neutral	reduces
70-75%	75-80%	70-75%
inventory cost	shortage cost	annual procurement cost
inventory cost	shortage cost	annual inventory cost
2038 units	2050 units	2083 units
30%	40%	10%
5000 units	5050 units	5500 units
normal lead time - monthly consumption 20 - 25 % equilisation of carrying cost and procurement costs	5050 units normal lead time / monthly consumption 70 – 75 % favourable procurement price	 5000 units normal lead time x monthly consumption 5 - 10 % equilisation of carrying cost and procurement costs
400 no's	500 no's	200 no's
low usage value	low consumption	low consumption

Rs.500 Safety stock	Rs.800 lead time	Rs.100 Safety stock
157 units	186 units	167 units
53.77	50.77	54.77
large set up cost + purchasing cost + holding cost + shortage cost carrying cost (EOQ/2) / Safety stock	small setup cost + shortage cost set up cost (EOQ/2) * Safety stock	independent set up cost + purchasing cost + holding cost + shortage cost carrying cost (EOQ/2) + Safety stock
carrying cost carrying cost	set up cost set up cost	quantity ordering quantity

KARPAGAM ACADEMY OF HIG DEPARTMENT OF MATH OPTIMIZATION TECHNIQUE

Ouestions choice 1 choice 2 UNIT - V A ----- is defined as a combination of interrelated acitivities all of which be executed in a certain order to achieve a goal Project Acitivity -----is a task or an item of work to be done in aproject. Project Acitivity An ----- is represented by an arrow with a node at the beginning and a node at the end indicating the start and finish of the Project Nodes activity. Nodes are denoted by ----dot circle The diagram in which arrow represents an activity is called ----arrow diagram network diagram The initial node are also called -----head event tail event The terminal node are called -----head event tail event An activity wgich must be completed before one or more other activities start is known as ----- activity Predecessor successor An activity which started immediately after one or more of the other activities are completed is known as ------Predecessor successor An activity which does not consumes either

any resources and/or time is known as ------Predecessor successor If an activity B can start immediately after an activity A, then A is called ------ immediate immediate predecessor successor If an activity B can start immediately after an activity A, then B is called ----- immediate immediate predecessor successor A is a predecessor B is a successor of The notation ' A < B ' is called ----- of B А A is a predecessor B is a successor of The notation 'B > A ' is called ----of B А Activities which have no predecessors are

called------ activity dummy start

All the start activities can be made to have the initial node. Activities which have no successor are	same	different
called activity The diagram denoting all the activities of a project by arrows taking into account the technological square of the activities is	dummy	start
called There is another representation of a project network representing activities on nodes	Project	nework
called activity should connect any	AON diagram	ANO diagram
two nodes. Path, connecting the first node to the very	one	two
last terminal node of long duration in any project network is called All the activities in any critical path are	PERT	Critical path
called Critical path plays a very important role in	start activities	dummy activities
project problems An activity is defined as the difference between the latest start and the earliest start	scheduling	planning
of the activity is called If the total float is then it may indicate that the resources for the activity are	free float	total float
more that adequate. If the total float of an activity is it may indicate that the resources are just	positive	negative
adequate for that activity. If the total float is, it may indicate that the resources for that activity are	positive	negative
inadequate. (L - E) of an aevent i-j is called the	positive	negative
of the event j. One of the portion of the total float is	slack	surplus
rescheduling that activity without affecting the succeding activity we can use	free float	total float
of an activity Free float is the total float of	free float	total float greater than or
an activity	equal to	equal to

The amount of time by which the activity can be rescheduled with effecting the preceding or succeeding of that activity is called The slack of the head event j is called the	free float	total float
of an activity i-j.	free float	total float
Interfering float of i-j is the difference between the total float and All the critical activities have their total float	free float	dependent float
as	one	two
Critical path can also be defined as the path of The objective of network analysis is to	least total float minimize total	greatest total float minimize total
	project duration	project cost
The slack for an activity is equal to	LF - LS	EF - ES
PERT stands for Generally PERT technique does not deals with the project of	Project Enumaration review Technique repetitive nature	Project Evaluation Review Technique non repetitive nature
The technique of OR used for planning, scheduling and controlling large and complex projects are often referred as A network is a	network analysis quality plan	graphical analysis control plan
Critical path method is used for commpletion of projects involving activities of An event which represents the joint	repetitive nature	non repetitive nature
completion of more than one activity is known as An event which represents the initiation of more than one activity is known as	unique event	burst event
	unique event	burst event
Events in the network diagram are identified by The negative value of the independent float	numbers	variables
is	one	zero
In PERT the span of time between the optimistic and pesimistic time estimates of an acitivity is	3σ	бσ

If an activity has zero slack, it implies that	it lies on the critical path	it is a dummy activity
A dummy activity is used in the network diagram when	two parallel	the chain of activities may have
The path of least cost float in a project is called The project duration is affected if the	PERT	Critical path
duration of any activity is The number of time estimates involved ina	changed	unchanged
PERT problem is For a non critical activity, the total float is	1	2
	zero	non zero
The probability to complete a project in the expected time is In PERT analysis, the critical path is obtained by joining event having	1	1.5
In PERT network each activity time assumes a Beta - distribution because	positive slack it is a uni - model distribution that provides informing regarding the uncertainty of time estimates.	negative slack it has got finite non negative error
Float or slack analysis in useful for	projects behind the schedule only	
In time cost trade off funtion analysis	cost decreases linearly as time increases	cost at normal time is zero
The name of the proability distribution (used PERT) which estimates the expected duration and the expected variance of an activity is	Beta distribution	Gamma distribution

Answer

Event	Nodes	Project

Event Nodes Acitivity

Event arrow	Acitivity square	Acitivity circle
graph diagram	line diagram	arrow diagram
first event first event	last event last event	tail event head event
initial	final	Predecessor
initial	final	successor
dummy	initial	dummy
Predecessor	successor	immediate predecessor
Predecessor	successor	immediate successor
A is a successor of B	B is a predecessor of A	A is a predecessor of B
A is a successor of B	B is a predecessor of A	B is a successor of A
zero	terminal	start

multiple	zero	same
zero	terminal	terminal
project network	Event	project network
NOA diagram	arrow diagram	AON diagram
three	multiple	one
Activity	network	Critical path
critical activities	terminal activities	critical activities
controlling	network	scheduling
independent float	interfering float	total float
zero	any value	positive
zero	any value	zero
zero	any value	negative
dummy	total	slack
independent float	interfering float	free float
independent float	interfering float	free float less than or equal
less than or equal to	not equat to	to

independent float	interfering float	independent float
independent float	interfering float	interfering float
independent float	dummy float	free float
zero	any value	zero
least free float minimize prduction delay	greatest free float minimize the interruption	least total float minimize total project duration
LS - ES	LS - EF Planning Enumaration	LS - ES
Planning Evaluation Review Technique		Project Evaluation Review Technique non deterministic
deterministic nature	nature	nature
critical activities graphical plan	PERT inventory plan	network analysis graphical plan
		•
graphical plan	inventory plan non deterministic	graphical plan
graphical plan deterministic nature	inventory plan non deterministic nature	graphical plan
graphical plan deterministic nature merge event	inventory plan non deterministic nature dummy event	graphical plan repetitive nature merge event
graphical plan deterministic nature merge event merge event	inventory plan non deterministic nature dummy event dummy event	graphical plan repetitive nature merge event burst event

the project is progressing well. two parallel activities have the different tail and head events	the project is not progressing well If the activities have the tail and head events	it lies on the critical path two parallel activities have the same tail and head events
unique path	network path	Critical path
same	exist	changed
3	4	3
unique	distinct	non zero
0.5	1.15	0.5
non zero slack	unique slack	positive slack it is a uni - model
it need not be symmetrical about model value	it has infint negative error	distribution that provides informing regarding the uncertainty of time estimates.
projects behind the planning only	projects ahead of the planning only	projects behind the schedule only
cost increases linearly as time increases	cost at normal time is unity	cost decreases linearly as time increases Beta distribution

normal poisson distribution