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1.1 INTRODUCTION
A distributed system is a collection of independent entities that cooperate to solve a problem
that cannot be individually solved. Distributed systems have been in existence since the start
of the universe. From a school of fish to a flock of birds and entire ecosystems of
microorganisms, there is communication among mobile intelligent agents in nature. With the
widespread proliferation of the Internet and the emerging global village, the notion of
distributed computing systems as a useful and widely deployed tool is becoming a reality.
For computing systems, a distributed system has been characterized in one of several ways:
• Using one when the crash of a computer you have never heard of prevents you from doing
work.
• A collection of computers that do not share common memory or a common physical clock,
that communicate by a messages passing over a communication network, and where each
computer has its own memory and runs its own operating system. Typically the computers
are semi-autonomous and are loosely coupled while they cooperate to address a problem
collectively.
• A collection of independent computers that appears to the users of the system as a single
coherent computer.
• A term that describes a wide range of computers, from weakly coupled systems such as
wide-area networks, to strongly coupled systems such as local area networks, to very strongly
coupled systems such as multiprocessor systems.
A distributed system can be characterized as a collection of mostly autonomous processors
communicating over a communication network and having the following features:
• No common physical clock This is an important assumption because it introduces the
element of “distribution” in the system and gives rise to the inherent asynchrony amongst the
processors.
No shared memory This is a key feature that requires message-passing for communication.
This feature implies the absence of the common physical clock. It may be noted that a
distributed system may still provide the abstraction of a common address space via the
distributed shared memory abstraction. Several aspects of shared memory multiprocessor
systems have also been studied in the distributed computing literature.
• Geographical separation The geographically wider apart that the processors are, the more
representative is the system of a distributed system. However, it is not necessary for the
processors to be on a wide-area network (WAN). Recently, the network/cluster of
workstations (NOW/COW) configuration connecting processors on a LAN is also being
increasingly regarded as a small distributed system. This NOW configuration is becoming
popular because of the low-cost high-speed off-the-shelf processors now available. The
Google search engine is based on the NOW architecture.
• Autonomy and heterogeneity The processors are “loosely coupled” in that they have
different speeds and each can be running a different operating system. They are usually not
part of a dedicated system, but cooperate with one another by offering services or solving a
problem jointly.
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Relation to computer system components
A typical distributed system is shown in Figure 1. Each computer has a memory-processing
unit and the computers are connected by a communication network. Figure 2 shows the
relationships of the software components that run on each of the computers and use the local
operating system and network protocol stack for functioning. The distributed software is also
termed as middleware. A distributed execution is the execution of processes across the
distributed system to collaboratively achieve a common goal. An execution is also sometimes
termed a computation or a run.
The distributed system uses a layered architecture to break down the complexity of system
design. The middleware is the distributed software that

drives the distributed system, while providing transparency of heterogeneity at the platform
level. Figure 2 schematically shows the interaction of this software with these system
components at each processor. Here we assume that the middleware layer does not contain
the traditional application layer functions of the network protocol stack, such as http, mail,
ftp, and telnet. Various primitives and calls to functions defined in various libraries of the
middleware layer are embedded in the user program code. There exist several libraries to
choose from to invoke primitives for the more common functions – such as reliable and
ordered multicasting – of the middleware layer.
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There are several standards such as Object Management Group’s (OMG) common object
request broker architecture (CORBA), and the remote procedure call (RPC) mechanism. The
RPC mechanism conceptually works like a local procedure call, with the difference that the
procedure code may reside on a remote machine, and the RPC software sends a message
across the network to invoke the remote procedure. It then awaits a reply, after which the
procedure call completes from the perspective of the program that invoked it. Currently
deployed commercial versions of middleware often use CORBA, DCOM (distributed
component object model), Java, and RMI (remote method invocation) technologies. The
message-passing interface (MPI) developed in the research community is an example of an
interface for various communication functions.
The motivation for using a distributed system is some or all of the following requirements:
1. Inherently distributed computations In many applications such as money transfer in
banking, or reaching consensus among parties that are geographically distant, the
computation is inherently distributed.
2. Resource sharing Resources such as peripherals, complete data sets in databases, special
libraries, as well as data (variable/files) cannot be fully replicated at all the sites because it is
often neither practical nor cost-effective. Further, they cannot be placed at a single site
because access to that site might prove to be a bottleneck. Therefore, such resources are
typically distributed across the system. For example, distributed databases such as DB2
partition the data sets across several servers, in addition to replicating them at a few sites for
rapid access as well as reliability.
3. Access to geographically remote data and resources In many scenarios, the data cannot
be replicated at every site participating in the distributed execution because it may be too
large or too sensitive to be replicated. For example, payroll data within a multinational
corporation is both too large and too sensitive to be replicated at every branch office/site.
It is therefore stored at a central server which can be queried by branch offices. Similarly,
special resources such as supercomputers exist only in certain locations, and to access such
supercomputers, users need to log in remotely.
Advances in the design of resource-constrained mobile devices as well as in the wireless
technology with which these devices communicate have given further impetus to the
importance of distributed protocols and middleware.
4. Enhanced reliability A distributed system has the inherent potential to provide increased
reliability because of the possibility of replicating resources and executions, as well as the
reality that geographically distributed resources are not likely to crash/malfunction at the
same time under normal circumstances. Reliability entails several aspects:
• availability, i.e., the resource should be accessible at all times;
• integrity, i.e., the value/state of the resource should be correct, in the face of concurrent
access from multiple processors, as per the semantics expected by the application;
• fault-tolerance, i.e., the ability to recover from system failures, where such failures may be
defined to occur in one of many failure models.
5. Increased performance/cost ratio By resource sharing and accessing geographically
remote data and resources, the performance/cost ratio is increased. Although higher
throughput has not necessarily been the main objective behind using a distributed system,
nevertheless, any task can be partitioned across the various computers in the distributed
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system. Such a configuration provides a better performance/cost ratio than using special
parallel machines. This is particularly true of the NOW configuration. In addition to meeting
the above requirements, a distributed system also offers the following advantages:
6. Scalability As the processors are usually connected by a wide-area network, adding more
processors does not pose a direct bottleneck for the communication network.
7. Modularity and incremental expandability Heterogeneous processors may be easily
added into the system without affecting the performance, as long as those processors are
running the same middleware algorithms. Similarly, existing processors may be easily
replaced by other processors.
1.4 Relation to parallel multiprocessor/multicomputer systems
The characteristics of a distributed system were identified above. A typical distributed system
would look as shown in Figure 1. However, how does one classify a system that meets some
but not all of the characteristics? Is the system still a distributed system, or does it become a
parallel multiprocessor system? To better answer these questions, we first examine the
architecture of parallel systems, and then examine some well-known taxonomies for
multiprocessor/multicomputer systems.
1.4.1 Characteristics of parallel systems
A parallel system may be broadly classified as belonging to one of three types:
1. A multiprocessor system is a parallel system in which the multiple processors have direct
access to shared memory which forms a common address space. The architecture is shown in
Figure 3(a). Such processors usually do not have a common clock. A multiprocessor system
usually corresponds to a uniform memory access (UMA) architecture in which the access
latency, i.e., waiting time, to complete an access to any memory location from any processor
is the same. The processors are in very close physical proximity and are connected by an
interconnection network. Interprocess communication across processors is traditionally
through read and write operations on the shared memory, although the use of message-
passing primitives such as those provided by
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the MPI, is also possible (using emulation on the shared memory). All the processors usually
run the same operating system, and both the hardware and software are very tightly coupled.
The processors are usually of the same type, and are housed within the same box/container
with a shared memory. The interconnection network to access the memory may be a bus,
although for greater efficiency, it is usually a multistage switch with a symmetric and regular
design. Figure 4 shows two popular interconnection networks – the Omega network and the
Butterfly network , each of which is a multi-stage network formed of 2×2 switching
elements. Each 2×2 switch allows data on either of the two input wires to be switched to the
upper or the lower output wire. In a single step, however, only one data unit can be sent on an
output wire. So if the data from both the input wires is to be routed to the same output wire in
a single step, there is a collision. Various techniques such as buffering or more elaborate
interconnection designs can address collisions.
Each 2×2 switch is represented as a rectangle in the figure. Furthermore, a n-input and n-
output network uses log n stages and log n bits for addressing. Routing in the 2×2 switch at
stage k uses only the kth bit, and hence can be done at clock speed in hardware. The multi-
stage networks can be constructed recursively, and the interconnection pattern between any
two stages can be expressed using an iterative or a recursive generating function. Besides the
Omega and Butterfly (banyan) networks, other examples of multistage interconnection
networks are the Clos and the shuffle-exchange networks. Each of these has very interesting
mathematical properties that allow rich connectivity between the processor bank and memory
bank.

1.4 Flynn’s taxonomy
Flynn identified four processing modes, based on whether the processors execute the same or
different instruction streams at the same time, and whether or not the processors processed
the same (identical) data at the same time. It is instructive to examine this classification to
understand the range of options used for configuring systems:
• Single instruction stream, single data stream (SISD)
This mode corresponds to the conventional processing in the von Neumann paradigm with a
single CPU, and a single memory unit connected by a system bus.
• Single instruction stream, multiple data stream (SIMD)
This mode corresponds to the processing by multiple homogenous processors which execute
in lock-step on different data items. Applications that involve operations on large arrays and
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matrices, such as scientific applications, can best exploit systems that provide the SIMD
mode of operation because the data sets can be partitioned easily.
Several of the earliest parallel computers, such as Illiac-IV, MPP, CM2, and MasPar MP-1
were SIMD machines. Vector processors, array processors’ and systolic arrays also belong to
the SIMD class of processing. Recent SIMD architectures include co-processing units such as
the MMX units in Intel processors (e.g., Pentium with the streaming SIMD extensions (SSE)
options) and DSP chips such as the Sharc.
• Multiple instruction stream, single data stream (MISD)
This mode corresponds to the execution of different operations in parallel on the same data.
This is a specialized mode of operation with limited but niche applications, e.g., visualization.

Multiple instruction stream, multiple data stream (MIMD)
In this mode, the various processors execute different code on different data. This is the mode
of operation in distributed systems as well as in the vast majority of parallel systems. There is
no common clock among the system processors. Sun Ultra servers, multicomputer PCs, and
IBM SP machines are examples of machines that execute in MIMD mode.
SIMD, MISD, and MIMD architectures are illustrated in Figure 6. MIMD architectures are
most general and allow much flexibility in partitioning code and data to be processed among
the processors. MIMD architectures also include the classically understood mode of
execution in distributed systems.

Coupling, parallelism, concurrency, and granularity
Coupling
The degree of coupling among a set of modules, whether hardware or software, is measured
in terms of the interdependency and binding and/or homogeneity among the modules. When
the degree of coupling is high (low), the modules are said to be tightly (loosely) coupled.
SIMD and MISD architectures generally tend to be tightly coupled because of the common
clocking of the shared instruction stream or the shared data stream. Here we briefly examine
various MIMD architectures in terms of coupling:
• Tightly coupled multiprocessors (with UMA shared memory). These may be either switch-
based (e.g., NYU Ultracomputer, RP3) or bus-based (e.g., Sequent, Encore).
• Tightly coupled multiprocessors (with NUMA shared memory or that communicate by
message passing). Examples are the SGI Origin 2000 and the Sun Ultra HPC servers (that
communicate via NUMA shared memory), and the hypercube and the torus (that
communicate by message passing).
• Loosely coupled multicomputers (without shared memory) physically colocated. These may
be bus-based (e.g., NOW connected by a LAN or Myrinet card) or using a more general
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communication network, and the processors may be heterogeneous. In such systems,
processors neither share memory nor have a common clock, and hence may be classified as
distributed systems – however, the processors are very close to one another, which is
characteristic of a parallel system. As the communication latency may be significantly lower
than in wide-area distributed systems, the solution approaches to various problems may be
different for such systems than for wide-area distributed systems.
• Loosely coupled multicomputers (without shared memory and without common clock) that
are physically remote. These correspond to the conventional notion of distributed systems.

Parallelism or speedup of a program on a specific system
This is a measure of the relative speedup of a specific program, on a given machine. The
speedup depends on the number of processors and the mapping of the code to the processors.
It is expressed as the ratio of the time T_1_ with a single processor, to the time T_n_ with n
processors.

Parallelism within a parallel/distributed program
This is an aggregate measure of the percentage of time that all the processors are executing
CPU instructions productively, as opposed to waiting for communication (either via shared
memory or message-passing) operations to complete. The term is traditionally used to
characterize parallel programs. If the aggregate measure is a function of only the code, then
the parallelism is independent of the architecture. Otherwise, this definition degenerates to
the definition of parallelism in the previous section.

Concurrency of a program
This is a broader term that means roughly the same as parallelism of a program, but is used in
the context of distributed programs. The parallelism/concurrency in a parallel/distributed
program can be measured by the ratio of the number of local (non-communication and non-
shared memory access) operations to the total number of operations, including the
communication or shared memory access operations.

Granularity of a program
The ratio of the amount of computation to the amount of communication within the
parallel/distributed program is termed as granularity. If the degree of parallelism is coarse-
grained (fine-grained), there are relatively many more (fewer) productive CPU instruction
executions, compared to the number of times the processors communicate either via shared
memory or message passing and wait to get synchronized with the other processors.
Programs with fine-grained parallelism are best suited for tightly coupled systems. These
typically include SIMD and MISD architectures, tightly coupled MIMD multiprocessors (that
have shared memory), and loosely coupled multicomputers (without shared memory) that are
physically colocated. If programs with fine-grained parallelism were run over loosely coupled
multiprocessors that are physically remote, the latency delays for the frequent communication
over the WAN would significantly degrade the overall throughput. As a corollary, it follows
that on such loosely coupled multicomputers, programs with a coarse-grained
communication/message-passing granularity will incur substantially less overhead.



UNIT I - INTRODUCTION TO DISTRIBUTED SYSTEMS DISTRIBUTED COMPUTING (PG 2016-2018 LATERAL ENTRY)

M . T H I L L A I N A Y A K I      D E P T . O F  C S ,  C A & I T     K A H E P a g e | 8/18

Figure 1.2 showed the relationships between the local operating system, the middleware
implementing the distributed software, and the network protocol stack. Before moving on, we
identify various classes of multiprocessor/ multicomputer operating systems:
• The operating system running on loosely coupled processors (i.e., heterogenous and/or
geographically distant processors), which are themselves running loosely coupled software
(i.e., software that is heterogenous), is classified as a network operating system. In this case,
the application cannot run any significant distributed function that is not provided by the
application layer of the network protocol stacks on the various processors.
• The operating system running on loosely coupled processors, which are running tightly
coupled software (i.e., the middleware software on the processors is homogenous), is
classified as a distributed operating system.
• The operating system running on tightly coupled processors, which are themselves running
tightly coupled software, is classified as a multiprocessor operating system. Such a parallel
system can run sophisticated algorithms contained in the tightly coupled software.

1.5 Message-passing systems versus shared memory systems
Shared memory systems are those in which there is a (common) shared address space
throughout the system. Communication among processors takes place via shared data
variables, and control variables for synchronization among the processors. Semaphores and
monitors that were originally designed for shared memory uniprocessors and multiprocessors
are examples of how synchronization can be achieved in shared memory systems. All
multicomputer (NUMA as well as message-passing) systems that do not have a shared
address space provided by the underlying architecture and hardware necessarily communicate
by message passing. Conceptually, programmers find it easier to program using shared
memory than by message passing. For this and several other reasons that we examine later,
the abstraction called shared memory is sometimes provided to simulate a shared address
space. For a distributed system, this abstraction is called distributed shared memory.
Implementing this abstraction has a certain cost but it simplifies the task of the application
programmer. There also exists a well-known folklore result that communication via message-
passing can be simulated by communication via shared memory and vice-versa. Therefore,
the two paradigms are equivalent.

1.5.1 Emulating message-passing on a shared memory system (MP →SM)
The shared address space can be partitioned into disjoint parts, one part being assigned to
each processor. “Send” and “receive” operations can be implemented by writing to and
reading from the destination/sender processor’s address space, respectively. Specifically, a
separate location can be reserved as the mailbox for each ordered pair of processes. A Pi–Pj
message-passing can be emulated by a write by Pi to the mailbox and then a read by Pj from
the mailbox. In the simplest case, these mailboxes can be assumed to have unbounded size.
The write and read operations need to be controlled using synchronization primitives to
inform the receiver/sender after the data has been sent/received.

1.5.2 Emulating shared memory on a message-passing system (SM →MP)
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This involves the use of “send” and “receive” operations for “write” and “read” operations.
Each shared location can be modeled as a separate process; “write” to a shared location is
emulated by sending an update message to the corresponding owner process; a “read” to a
shared location is emulated by sending a query message to the owner process. As accessing
another processor’s memory requires send and receive operations, this emulation is
expensive. Although emulating shared memory might seem to be more attractive from a
programmer’s perspective, it must be remembered that in a distributed system, it is only an
abstraction. Thus, the latencies involved in read and write operations may be high even when
using shared memory emulation because the read and write operations are implemented by
using network-wide communication under the covers.
An application can of course use a combination of shared memory and message-passing. In a
MIMD message-passing multicomputer system, each “processor” may be a tightly coupled
multiprocessor system with shared memory. Within the multiprocessor system, the processors
communicate via shared memory. Between two computers, the communication is by message
passing. As message-passing systems are more common and more suited for wide-area
distributed systems, we will consider message-passing systems more extensively than we
consider shared memory systems.

1.6 Primitives for distributed communication
1.6.1 Blocking/non-blocking, synchronous/asynchronous primitives
Message send and message receive communication primitives are denoted Send() and
Receive(), respectively. A Send primitive has at least two parameters – the destination, and
the buffer in the user space, containing the data to be sent. Similarly, a Receive primitive has
at least two parameters – the source from which the data is to be received (this could be a
wildcard), and the user buffer into which the data is to be received.
There are two ways of sending data when the Send primitive is invoked – the buffered option
and the unbuffered option. The buffered option which is the standard option copies the data
from the user buffer to the kernel buffer. The data later gets copied from the kernel buffer
onto the network. In the unbuffered option, the data gets copied directly from the user buffer
onto the network. For the Receive primitive, the buffered option is usually required because
the data may already have arrived when the primitive is invoked, and needs a storage place in
the kernel.
The following are some definitions of blocking/non-blocking and synchronous/ asynchronous
primitives:
• Synchronous primitives A Send or a Receive primitive is synchronous if both the Send()
and Receive() handshake with each other. The processing for the Send primitive completes
only after the invoking processor learns that the other corresponding Receive primitive has
also been invoked and that the receive operation has been completed. The processing for the
Receive primitive completes when the data to be received is copied into the receiver’s user
buffer.
• Asynchronous primitives A Send primitive is said to be asynchronous if control returns
back to the invoking process after the data item to be sent has been copied out of the user-
specified buffer. It does not make sense to define asynchronous Receive primitives.
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• Blocking primitives A primitive is blocking if control returns to the invoking process after
the processing for the primitive (whether in synchronous or asynchronous mode) completes.
• Non-blocking primitives A primitive is non-blocking if control returns back to the
invoking process immediately after invocation, even though the operation has not completed.
For a non-blocking Send, control returns to the process even before the data is copied out of
the user buffer. For a non-blocking Receive, control returns to the process even before the
data may have arrived from the sender.
For non-blocking primitives, a return parameter on the primitive call returns a system-
generated handle which can be later used to check the status of completion of the call. The
process can check for the completion of the call in two ways. First, it can keep checking (in a
loop or periodically)
if the handle has been flagged or posted. Second, it can issue a Wait with a list of handles as
parameters. The Wait call usually blocks until one of the parameter handles is posted.
Presumably after issuing the primitive in non-blocking mode, the process has done whatever
actions it could and now needs to know the status of completion of the call, therefore using a
blocking Wait() call is usual programming practice. The code for a non-blocking Send would
look as shown in Figure 7.

If at the time that Wait() is issued, the processing for the primitive (whether synchronous or
asynchronous) has completed, the Wait returns immediately. The completion of the
processing of the primitive is detectable by checking the value of handlek. If the processing
of the primitive has not completed, the Wait blocks and waits for a signal to wake it up. When
the processing for the primitive completes, the communication subsystem software sets the
value of handlek and wakes up (signals) any process with a Wait call blocked on this handlek.
This is called posting the completion of the operation.
There are therefore four versions of the Send primitive – synchronous blocking, synchronous
non-blocking, asynchronous blocking, and asynchronous non-blocking. For the Receive
primitive, there are the blocking synchronous and non-blocking synchronous versions. These
versions of the primitives are illustrated in Figure 8 using a timing diagram. Here, three time
lines are
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check for the completion of the non-blocking Receive by invoking the Wait operation on the
returned handle. (If the data has already arrived when the call is made, it would be pending in
some kernel buffer, and still needs to be copied to the user buffer.)
A synchronous Send is easier to use from a programmer’s perspective because the handshake
between the Send and the Receive makes the communication appear instantaneous, thereby
simplifying the program logic. The “instantaneity” is, of course, only an illusion, as can be
seen from Figure 8(a) and (b). In fact, the Receive may not get issued until much after the
data arrives at Pj , in which case the data arrived would have to be buffered in the system
buffer at Pj and not in the user buffer. At the same time, the sender would remain blocked.
Thus, a synchronous Send lowers the efficiency within process Pi.
The non-blocking asynchronous Send (see Figure 8(d)) is useful when a large data item is
being sent because it allows the process to perform other instructions in parallel with the
completion of the Send. The non-blocking synchronous Send (see Figure 8(b)) also avoids the
potentially large delays for handshaking, particularly when the receiver has not yet issued the
Receive call. The non-blocking Receive (see Figure 8(b)) is useful when a large data item is
being received and/or when the sender has not yet issued the Send call, because it allows the
process to perform other instructions in parallel with the completion of the Receive. Note that
if the data has already arrived, it is stored in the kernel buffer, and it may take a while to copy
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it to the user buffer specified in the Receive call. For non-blocking calls, however, the burden
on the programmer increases because he or she has to keep track of the completion of such
operations in order to meaningfully reuse (write to or read from) the user buffers. Thus,
conceptually, blocking primitives are easier to use.

1.6. Processor synchrony
As opposed to the classification of synchronous and asynchronous communication primitives,
there is also the classification of synchronous versus asynchronous processors. Processor
synchrony indicates that all the processors execute in lock-step with their clocks
synchronized. As this synchrony is not attainable in a distributed system, what is more
generally indicated is that for a large granularity of code, usually termed as a step, the
processors are synchronized. This abstraction is implemented using some form of barrier
synchronization to ensure that no processor begins executing the next step of code until all
the processors have completed executing the previous steps of code assigned to each of the
processors.

A model of distributed computations
A distributed system consists of a set of processors that are connected by a communication
network. The communication network provides the facility of information exchange among
processors. The communication delay is finite but unpredictable. The processors do not share
a common global memory and communicate solely by passing messages over the
communication network. There is no physical global clock in the system to which processes
have instantaneous access. The communication medium may deliver messages out of order,
messages may be lost, garbled, or duplicated due to timeout and retransmission, processors
may fail, and communication links may go down. The system can be modeled as a directed
graph in which vertices represent the processes and edges represent unidirectional
communication channels.
A distributed application runs as a collection of processes on a distributed system. This
chapter presents a model of a distributed computation and introduces several terms, concepts,
and notations that will be used in the subsequent chapters.

2.1 A distributed program
A distributed program is composed of a set of n asynchronous processes p1, p2,    , pi,    , pn
that communicate by message passing over the communication network. Without loss of
generality, we assume that each process is running on a different processor. The processes do
not share a global memory and communicate solely by passing messages. Let Cij denote the
channel from process pi to process pj and let mij denote a message sent by pi to pj . The
communication delay is finite and unpredictable. Also, these processes do not share a global
clock that is instantaneously accessible to these processes. Process execution and message
transfer are asynchronous – a process may execute an action spontaneously and a process
sending a message does not wait for the delivery of the message to be complete.

The global state of a distributed computation is composed of the states of the processes and
the communication channels. The state of a process is characterized by the state of its local
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memory and depends upon the context. The state of a channel is characterized by the set of
messages in transit in the channel.

2.2 A model of distributed executions
The execution of a process consists of a sequential execution of its actions. The actions are
atomic and the actions of a process are modeled as three ypes of events, namely, internal
events, message send events, and message receive events. Let ex i denote the xth event at
process pi. Subscripts and/or superscripts will be dropped when they are irrelevant or are
clear from the context. For a message m, let send_m_ and rec_m_ denote its send and receive
events, respectively. The occurrence of events changes the states of respective processes and
channels, thus causing transitions in the global system state. An internal event changes the
state of the process at which it occurs. A send event (or a receive event) changes the state of
the process that sends (or receives) the message and the state of the channel on which the
message is sent (or received). An internal event only affects the process at which it occurs.
The events at a process are linearly ordered by their order of occurrence. The execution of
process pi produces a sequence of events e1i , e2i , , exi ,ex+1i ,    and is denoted by _i:

where hi is the set of events produced by pi and binary relation → i defines a linear order on
these events. Relation → i expresses causal dependencies among the events of pi. The send
and the receive events signify the flow of information between processes and establish causal
dependency from the sender process to the receiver process. A relation → msg that captures
the causal dependency due to message exchange, is defined as follows. For every message m
that is exchanged between two processes, we have

defines causal dependencies between the pairs of corresponding send and receive events.
The evolution of a distributed execution is depicted by a space–time diagram. Figure 2.1
shows the space–time diagram of a distributed execution involving three processes. A
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horizontal line represents the progress of the

process; a dot indicates an event; a slant arrow indicates a message transfer. Generally, the
execution of an event takes a finite amount of time; however, since we assume that an event
execution is atomic (hence, indivisible and instantaneous), it is justified to denote it as a dot
on a process line. In this figure, for process p1, the second event is a message send event, the
third event is an internal event, and the fourth event is a message receive event.

Causal precedence relation
The execution of a distributed application results in a set of distributed events produced by
the processes. Let H =∪ ihi denote the set of events executed in a distributed computation.
Next, we define a binary relation on the set H, denoted as →, that expresses causal
dependencies between events in the distributed execution.

The causal precedence relation induces an irreflexive partial order on the events of a
distributed computation [6] that is denoted as _=(H, →).

Logical vs. physical concurrency
In a distributed computation, two events are logically concurrent if and only if they do not
causally affect each other. Physical concurrency, on the other hand, has a connotation that the
events occur at the same instant in physical time. Note that two or more events may be
logically concurrent even though they do not occur at the same instant in physical time. For
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example, in Figure 2.1, events in the set {e3 1_ e4 2_ e3 3} are logically concurrent, but they
occurred at different instants in physical time. However, note that if processor speed and
message delays had been different, the execution of these events could have very well
coincided in physical time. Whether a set of logically concurrent events coincide in the
physical time or in what order in the physical time they occur does not change the outcome of
the computation. Therefore, even though a set of logically concurrent events may not have
occurred at the same instant in physical time, for all practical and theoretical purposes, we
can assume that these events occured at the same instant in physical time.

2.3 Models of communication networks
There are several models of the service provided by communication networks, namely, FIFO
(first-in, first-out), non-FIFO, and causal ordering. In the FIFO model, each channel acts as a
first-in first-out message queue and thus, message ordering is preserved by a channel. In the
non-FIFO model, a channel acts like a set in which the sender process adds messages and the
receiver process removes messages from it in a random order. The “causal ordering” model
[1] is based on Lamport’s “happens before” relation. A system that supports the causal
ordering model satisfies the following property:

That is, this property ensures that causally related messages destined to the same destination
are delivered in an order that is consistent with their causality relation. Causally ordered
delivery of messages implies FIFO message delivery. Furthermore, note that CO ⊂ FIFO ⊂
Non-FIFO. Causal ordering model is useful in developing distributed algorithms. Generally,
it considerably simplifies the design of distributed algorithms because it provides a built-in
synchronization. For example, in replicated database systems, it is important that every
process responsible for updating a replica receives the updates in the same order to maintain
database consistency. Without causal ordering, each update must be checked to ensure that
database consistency is not being violated. Causal ordering eliminates the need for such
checks.

2.4 Global state of a distributed system
The global state of a distributed system is a collection of the local states of its components,
namely, the processes and the communication channels. The state of a process at any time is
defined by the contents of processor registers, stacks, local memory, etc. and depends on the
local context of the distributed application. The state of a channel is given by the set of
messages in transit in the channel.
The occurrence of events changes the states of respective processes and channels, thus
causing transitions in global system state. For example, an internal event changes the state of
the process at which it occurs. A send event (or a receive event) changes the state of the
process that sends (or receives) the message and the state of the channel on which the
message is sent (or received).
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Let LSx i denote the state of process pi after the occurrence of event ex i and before the event
ex+1 i . LS0 i denotes the initial state of process pi. LSx i is a result of the execution of all the
events executed by process pi till ex i . Let send(m)≤LSx i denote the fact that ∃y:1≤y≤x ::
ey i = send(m). Likewise, let rec(m)_≤LSx i denote the fact that ∀y:1≤y≤x :: ey i_=rec(m).
The state of a channel is difficult to state formally because a channel is a distributed entity
and its state depends upon the states of the processes it connects. Let SCx_y ij denote the
state of a channel Cij defined as follows:

Thus, channel state SCx_y ij denotes all messages that pi sent up to event ex i and which
process pj had not received until event ey j .

2.4.1 Global state
The global state of a distributed system is a collection of the local states of the processes and
the channels. Notationally, the global state GS is defined as

For a global snapshot to be meaningful, the states of all the components of the distributed
system must be recorded at the same instant. This will be possible if the local clocks at
processes were perfectly synchronized or there was a global system clock that could be
instantaneously read by the processes. However, both are impossible. However, it turns out
that even if the state of all the components in a distributed system has not been recorded at
the same instant, such a state will be meaningful provided every message that is recorded as
received is also recorded as sent. Basic idea is that an effect should not be present without its
cause. A message cannot be received if it was not sent; that is, the state should not violate
causality. Such states are called consistent global states and are meaningful global states.
Inconsistent global states are not meaningful in the sense that a distributed system can never
be in an inconsistent state.

A global state GS = is a consistent global state iff it
satisfies the following condition:

That is, channel state SCyi_zk ik and process state LSzk k must not include any message that
process pi sent after executing event exi i .
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Thus, all channels are recorded as empty in a transitless global state. A global state is strongly
consistent iff it is transitless as well as consistent. Note that in Figure 2.2, the global state
consisting of local states {LS21 , LS32 ,LS43 , LS24} is strongly consistent. Recording the
global state of a distributed system is an important paradigm when one is interested in
analyzing, monitoring, testing, or verifying properties of distributed applications, systems,
and algorithms. Design of efficient methods for recording the global state of a distributed
system is an important problem.

2.7 Models of process communications
There are two basic models of process communications – synchronous and asynchronous.
The synchronous communication model is a blocking type where on a message send, the
sender process blocks until the message has been received by the receiver process. The
sender process resumes execution only after it learns that the receiver process has accepted
the message. Thus, the sender and the receiver processes must synchronize to exchange a
message.
On the other hand, asynchronous communication model is a non-blocking type where the
sender and the receiver do not synchronize to exchange a message. After having sent a
message, the sender process does not wait for the message to be delivered to the receiver
process. The message is bufferred by the system and is delivered to the receiver process when
it is ready to accept the message. A buffer overflow may occur if a process sends a large
number of messages in a burst to another process.
Neither of the communication models is superior to the other. Asynchronous communication
provides higher parallelism because the sender process can execute while the message is in
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transit to the receiver. However, an implementation of asynchronous communication requires
more complex buffer management.
In addition, due to higher degree of parallelism and non-determinism, it is much more
difficult to design, verify, and implement distributed algorithms for asynchronous
communications. The state space of such algorithms are likely to be much larger.
Synchronous communication is simpler to handle and implement. However, due to frequent
blocking, it is likely to have poor performance and is likely to be more prone to deadlocks.



Questions OPT1 OPT2 OPT3 OPT4 OPT5 OPT6 Answer

A ________ is a collection of an independent entities that 

cooperate to solve a problem that cannot be individually 

solved

distributed system network component device distributed system

Distributed systems have been in existence since the start of 

the ________ .
world universe machine states universe

Typically the computers are _________________ and are 

loosely coupled while they operate to address a problem 

collectively.

autonaomous
fully 

autonomous
semi autonomous completed semi autonomous

A collection of independent computers that appears to the 

users of the system as a single _______________.
inherent computer

different 

devices
Iinherent devices coherent computer coherent computer

A wide range of computers from weakly coupled systems 

such as _________

wide area 

networks.
MAN LAN Networks

wide area 

networks.

________ coupled systems such as local area networks. weakly Strongly completely terminated. Strongly

No common ________ gives rise to the inherent asynchrony 

amongst the processors.
errors terminal clock physical clock CMOS physical clock

No_________ is a key feature the requires message passing 

for communication.

Distributed 

memory

unshared 

memory

fully distibuted 

memory
shared memory shared memory

A DS may still provide the abstraction of a common address 

space via the distributed shared _________.
memory abstraction deletion enapsulation data abstraction

memory 

abstraction

The geographically wider apart that the processors are the 

more representative is the system of a _______.
DC DS

Memory 

coherence
Memory DS

Recently, the network/cluster of a workstations configuration 

connecting processors on a _________ is also being 

increasingly regarded as a small DS.

WAN MAN LAN
Fully connected 

Network
LAN

The ________ search engine is based on the NOW 

architecture.
Yahoo LYNX Bing Google Google

The processors are_____________ in that they have different 

speeds and each can be running a different OS.
tightly coupled coupled  loosely coupled no coupling  loosely coupled

Each computer has a memory processing unit and the 

computers are connected by a _____________.

Distributed 

network

communication 

network
DS

Connection 

network

communication 

network

The distributed software is also termed as 

_________________.
software hardware middleware terminal middleware

A ____________________ is the execution of processes 

across the DS to collaboratively achieve a common goal.

distributed 

execution

dustributed 

computers

distrinuted 

systems

connected 

executions

distributed 

execution

An __________ is also sometimes termed as computation or 

a run.
termination execution connection suspension execution
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The DS uses a_____________ architecture to break down the 

complexity of system design.
nonlayered category  layered boxed  layered

The ________________ is the distributed software that 

drives the DS.
software hardware terminal middleware middleware

Various primitives and calls to functions define in various 

______________ of the middleware layer are embedded in 

the user program code.

libraries files records sources libraries

The _________ mechanism conceptually works like a local 

procedure call, with the difference that the procedure code 

may reside on the remote machine.

IP RPC TCP UDP RPC

Currently deployed _________________________ of 

middleware often use CORBA, DCOM, Java, and RMI 

technologies.

Un commercial 

versions
Monetarized

commercial 

versions
lost verisons

commercial 

versions

The message passing interface developed in the research 

community is an example of an ______________ for various 

communication functions.

communications network resources interface interface

 _______________such as peripherals, complete data sets in 

databases, special libraries, as well as data cannot be full 

replicated at all the sites because it is often neither practical 

nor cost effective.

Resources network interfaces communications Resources

A DS has the inherent potential to provide 

_____________reliability.
decreased  increased tight loose  increased

Reliability entails several aspects are availability, integrity 

and ______________
unfault tolerance tightly coupled fault tolerance. loosely coupled fault tolerance.

By _____________ and assessing geographically remote data 

and resources the performance/cost ratio is increased.
network sharing file sharing devcies sharing resource sharing resource sharing

Scalability as the processors are usually connected by WAN 

adding more processors does not pose a direct bottleneck for 

the ______________

communication 

network.
network addresses devices

communication 

network.

A multiprocessor system is a parallel system in which the 

multiple processors have direct access to shared memory 

______________

address space
common 

address space.
memory space space

common address 

space.

A ___________________ usually corresponds to a uniform 

memory access architecture in which the access latency.

uniprocessor 

system
mainframes

multiprocessor 

system
computers

multiprocessor 

system

The processors are usually of the same type and are housed 

within the same box,/container with a ______________.
unshared memory devices computers shared memory shared memory

Various techniques such as buffering or more elaborate 

interconnection designs can______________.
 address collisions

noncollision 

systems

noncollision 

devices

collisions 

addresses
 address collisions

Observe that for the butterfly and the omega networks the 

paths from the different inputs to any one output form a 

________________.

travelling space spanning tree timimg limit synchroniation spanning tree



The processors are in close physical proximity and are 

usually very tightly coupled and are connected by an 

________________.

unidirectional bidirectional
interconnection 

network
interfaces

interconnection 

network

A multicomputer system that has a common address space or 

via ______________
sharing detecting avoiding message passing message passing

A _______________ that has a common address space 

usually corresponds to a non uniform memory access 

architecture in which the latency to access various shared 

memory locations from the different processors varies.

single computer multicomputer resources 
multicomputer 

system

multicomputer 

system

The regular and _______________ have interesting 

mathematical properties that enable very easy routing and 

provide many rich features ash as alternate routing.

asymmetrical 

topologies
ring topology

symmetrical 

topologies
star topology

symmetrical 

topologies

The processors are labelled such that the shortest path 

between any two processors is the _____________ between 

the processor labels.

unipolar
Hamming 

distance
bipolar distance vector Hamming distance

Routing in the hypercube is done by _________________.  hop_by_hop terminals devices systems  hop_by_hop

The 4D hypercube is formed by connecting the 

corresponding edges of two 3D hypercube along 

the________________.

third dimension
 fourth 

dimension
single dimension two dimension  fourth dimension

The hypercube and its variant topologies have very 

interesting mathematical properties with implications for 

_______________.

fault tolerance
routing 

tolerance

routing and fault 

tolerance
nothing fault

routing and fault 

tolerance

____________belong to a class of parallel computers that are 

physically collocated are very tightly coupled and have a 

common system clock.

bit processors
memory 

processors
stack processors Array processors Array processors 

The primary and most efficacious use of parallel systems is 

for obtaining a higher throughput by dividing the 

computational workload among the _____________.

devices terminals covers processors processors

Searching through large state spaces can be performed with 

significant speedup on ___________.

distributed 

machines
DS parallel machines DC parallel machines

SISD mode corresponds to the conventional processing in the 

Von Neumann paradigm with a single CPU, and a single 

memory unit connected by a __________________ .

Devices terminals processors system bus system bus

________mode corresponds to the execution of different 

operations in parallel on the same data.
SISD SIMD MIMD MISD MISD 

Sun Ultra servers, Multicomputer PCs and IBM SP machines 

are examples of machines that execute in ________.
SISD SIMD MIMD mode MISD MIMD mode

The _____________ among a set of modules whether 

hardware or software is measured in terms of the 

interdependency and binding and or homogeneity among the 

modules.

cohesion
degree of 

coupling
tighlty coupled loosely coupled degree of coupling



______________arhitectures generally tend to be tightly 

coupled because of the common clocking of the shared 

instruction stream or the shared data stream.

SIMD and MIMD SIMD MIMD MISD SIMD and MIMD

The speedup depends on the number of processors and the 

mapping of the code to the___________.
terminals  processors arrays devices  processors

The ratio of the amount of computation to the amount of 

communication within the parallel. Distributed program is 

termed as _____________

granularity. complexity durability none of these granularity.

The operating system running on loosely coupled processors 

which are themselves running loosely coupled software is 

classified as ___________________.

OS 

network 

operating 

system

LINUX DOS
network operating 

system

The operating system running on tightly coupled processors, 

which are themselves running themselves running tightly 

coupled software is classified as a _____________

OS DOS
multiprocessor 

operating system.
LINUX

multiprocessor 

operating system.

Implementing the abstraction has a certain cost but it 

simplifies the task of the __________________.
system programmer

network 

programmer
programmer

application 

programmer

application 

programmer

_______________ communication primitives are denoted 

Send() and Receive() respectively.
receives sends transmits

Message send and 

message receive

Message send and 

message receive

The buffered option which is a the standard option copies the 

data from the user buffer to the_______________.
buffer memory  kernel buffer virtual memory  kernel buffer

A distributed application runs as a collection of processes on 

a ______________________.
DC

distributed 

system
terminals fdevices distributed system

In the_____________, each channel acts as a first in first out 

message queue and thus message ordering is preserved by a 

channel.

 FIFO model LIFO model
System 

contribution
System testing  FIFO model

The state of a ______ is given by the set of messages in 

transit in the channel.
devices channel transmits receives channel

The occurrence of events changes the states of respective 

processes and channels thus causing transitions in 

_________________.

local kernel local systems
global system 

state
state devices global system state
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2.1 Message ordering and group communication
Inter-process communication via message-passing is at the core of any distributed system. In
this chapter, we will study non-FIFO, FIFO, causal order, and synchronous order
communication paradigms for ordering messages. We will then examine protocols that
provide these message orders. We will also examine several semantics for group
communication with multicast – in particular, causal ordering and total ordering. We will
then look at how exact semantics can be specified for the expected behavior in the face of
processor or link failures. Multicasts are required at the application layer when superimposed
topologies or overlays are used, as well as at the lower layers of the protocol stack. We will
examine some popular multicast algorithms at the network layer. An example of such an
algorithm is the Steiner tree algorithm, which is useful for setting up multi-party
teleconferencing and videoconferencing multicast sessions.

Notation
As before, we model the distributed system as a graph (N, L). The following notation is used
to refer to messages and events:
• When referring to a message without regard for the identity of the sender and receiver
processes, we use mi. For message mi, its send and receive events are denoted as si and ri,
respectively.
• More generally, send and receive events are denoted simply as s and r. When the
relationship between the message and its send and receive events is to be stressed, we also
use M, send(M), and receive(M), respectively.
For any two events a and b, where each can be either a send event or a receive event, the
notation a ∼ b denotes that a and b occur at the same process, i.e., a ∈ Ei and b ∈ Ei for some
process i. The send and receive event pair for a message is said to be a pair of corresponding
events. The send event corresponds to the receive event, and vice-versa. For a given
execution E, let the set of all send–receive event pairs be denoted as T = {s, r) ∈ Ei ×Ej | s
corresponds to r}. When dealing with message ordering definitions, we will consider only
send and receive events, but not internal events, because only communication events are
relevant.

2.2 Message ordering paradigms
The order of delivery of messages in a distributed system is an important aspect of system
executions because it determines the messaging behavior that can be expected by the
distributed program. Distributed program logic greatly depends on this order of delivery. To
simplify the task of the programmer, programming languages in conjunction with the
middleware provide certain well-defined message delivery behavior. The programmer can
then code the program logic with respect to this behavior.
Several orderings on messages have been defined: (i) non-FIFO, (ii) FIFO, (iii) causal order,
and (iv) synchronous order. There is a natural hierarchy among these orderings. This
hierarchy represents a trade-off between concurrency and ease of use and implementation.
After studying the definitions of and the hierarchy among the ordering models, we will study
some implementations of these orderings in the middleware layer.
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2.1.1 Asynchronous executions
Definition (A-execution) An asynchronous execution (or A-execution) is an execution (E, )
for which the causality relation is a partial order. There cannot exist any causality cycles in
any real asynchronous execution because cycles lead to the absurdity that an event causes
itself. On any logical link between two nodes in the system, messages may be delivered in
any order, not necessarily first-in first-out. Such executions are also known as non-FIFO
executions. Although each physical link typically delivers the messages sent on it in FIFO
order due to the physical properties of the medium, a logical link may be formed as a
composite of physical links and multiple paths may exist between the two end points of the
logical link. As an example, the mode of ordering at the Network Layer in connectionless
networks such as IPv4 is non-FIFO. Figure 2.1(a) illustrates an A-execution under non-FIFO
ordering.

2.1.2 FIFO executions
Definition (FIFO executions) A FIFO execution is an A-execution in which, for all

On any logical link in the system, messages are necessarily delivered in the order in which
they are sent. Although the logical link is inherently non- FIFO, most network protocols
provide a connection-oriented service at the transport layer. Therefore, FIFO logical channels
can be realistically assumed when designing distributed algorithms. A simple algorithm to
implement a FIFO logical channel over a non-FIFO channel would use a separate numbering
scheme to sequence the messages on each logical channel. The sender assigns and appends a
(sequence_num, connection_id) tuple to each message.
The receiver uses a buffer to order the incoming messages as per the sender’s sequence
numbers, and accepts only the “next” message in sequence.

2.1.3 Causally ordered (CO) executions
Definition (Causal order (CO)) A CO execution is an A-execution in which,

If two send events s and s_ are related by causality ordering (not physical time ordering),
then a causally ordered execution requires that their corresponding receive events r and r_
occur in the same order at all common destinations. Note that if s and s_ are not related by
causality, then CO is vacuously satisfied because the antecedent of the implication is false.
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Examples
• Figure 2(a) shows an execution that violates CO because s1 γ s3 and at the common
destination P1, we have r3 γ r1.
• Figure 2(b) shows an execution that satisfies CO. Only s1 and s2 are related by causality
but the destinations of the corresponding messages are different.

• Figure 2(c) shows an execution that satisfies CO. No send events are related by causality.
• Figure 2(d) shows an execution that satisfies CO. s2 and s1 are relatez by causality but the
destinations of the corresponding messages are different. Similarly for s2 and s3. Causal
order is useful for applications requiring updates to shared data, implementing distributed
shared memory, and fair resource allocation such as granting of requests for distributed
mutual exclusion.
To implement CO, we distinguish between the arrival of a message and its delivery. A
message m that arrives in the local OS buffer at Pi may have to be delayed until the messages
that were sent to Pi causally before m was sent (the “overtaken” messages) have arrived and
are processed by the application. The delayed message m is then given to the application for
processing. The event of an application processing an arrived message is referred to as a
delivery event (instead of as a receive event) for emphasis.

2.1.4 Synchronous execution (SYNC)
When all the communication between pairs of processes uses synchronous send and receive
primitives, the resulting order is the synchronous order. As each synchronous communication
involves a handshake between the receiver and the sender, the corresponding send and
receive events can be viewed as occurring instantaneously and atomically. In a timing
diagram, the “instantaneous” message communication can be shown by bidirectional vertical
message lines. Figure 3(a) shows a synchronous execution on an asynchronous system.
Figure 3(b) shows the equivalent timing diagram with the corresponding instantaneous
message communication.
The “instantaneous communication” property of synchronous executions requires a modified
definition of the causality relation because for each (s, r)∈ T, the send event is not causally
ordered before the receive event. The two events are viewed as being atomic and
simultaneous, and neither event precedes the other.
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2.3 Asynchronous execution with synchronous communication
When all the communication between pairs of processes is by using synchronous send and
receive primitives, the resulting order is synchronous order. The send and receive events of a
message appear instantaneous, see the example in Figure 3. We now address the following
question
• If a program is written for an asynchronous system, say a FIFO system, will it still execute
correctly if the communication is done by synchronous primitives instead? There is a
possibility that the program may deadlock, as shown by the code in Figure 4. Charron-Bost et
al. observed that a distributed algorithm designed to run correctly on asynchronous systems
(called A-executions) may not run correctly on synchronous systems. An algorithm that runs
on an asynchronous system may deadlock on a synchronous system.

2.3.1 Executions realizable with synchronous communication (RSC)
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An execution can be modeled (using the interleaving model) as a feasible schedule of the
events to give a total order that extends the partial order (E,γ). In an A-execution, the
messages can be made to appear instantaneous if there exists a linear extension of the
execution, such that each send event is immediately followed by its corresponding receive
event in this linear extension. Such an A-execution can be realized under synchronous
communication and is called a realizable with synchronous communication (RSC) execution.

2.3.2 Hierarchy of ordering paradigms
Let SYNC (or RSC), CO, FIFO, and A denote the set of all possible executions ordered by
synchronous order, causal order, FIFO order, and non- FIFO order, respectively. We have the
following results:
• For an A-execution, A is RSC if and only if A is an S-execution.
• RSC∁CO∁FIFO∁A. This hierarchy is illustrated in Figure 6.(a), and example executions of
each class are shown side-by-side in Figure 6.(b). Figure 6.(a) shows an execution that
belongs to A but not to FIFO. Figure 6.(a) shows an execution that belongs to FIFO but not
to CO. Figures 6.(b) and (c) show executions that belong to CO but not to RSC.
• The above hierarchy implies that some executions belonging to a class X will not belong to
any of the classes included in X. Thus, there are more restrictions on the possible message
orderings in the smaller classes. Hence, we informally say that the included classes have less
concurrency. The degree of concurrency is most in A and least in SYNC.
• A program using synchronous communication is easiest to develop and verify. A program
using non-FIFO communication, resulting in an A execution, is hardest to design and verify.
This is because synchronous order offers the most simplicity due to the restricted number of
possibilities, whereas non-FIFO order offers the greatest difficulties because it admits a much
larger set of possibilities that the developer and verifier need to account for. Thus, there is an
inherent trade-off between the amount of concurrency provided, and the ease of designing
and verifying distributed programs.

2.4 Classification of application-level multicast algorithms
We have seen some algorithmically challenging techniques in the design of multicast
algorithms. The most general scenario allows each process to multicast to an arbitrary and
dynamically changing group of processes at each step. As this generality incurs more
overhead, algorithms implemented on real systems tend to be more “centralized” in one sense
or another: Defago et al. give an exhaustive survey and this section is based on this survey.
For details of the various protocols, please refer to the survey. Many multicast protocols have
been developed and deployed, but they can all be classified as belonging to one of the
following five classes.

Communication history-based algorithms
Algorithms in this class use a part of the communication history to guarantee ordering
requirements. The RST and KS algorithms belong to this class, and provide only causal
ordering. They do not need to track separate groups, and hence work for open-group
multicasts. Lamport’s algorithm, wherein messages are assigned scalar timestamps and a
process can deliver a message only when it knows that no other message with a lower
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timestamp can be multicast, also belongs to this class. The NewTop protocol, which extends
Lamport’s algorithm to overlapping groups, also guarantees both total and causal ordering.
Both these algorithms use closed group configurations.

Privilege-based algorithms
The operation of such algorithms is illustrated in Figure 6.(a). A token circulates among the
sender processes. The token carries the sequence number for the next message to be
multicast, and only the token-holder can multicast. After a multicast send event, the sequence
number is updated. Destination processes deliver messages in the order of increasing
sequence numbers. Senders need to know the other senders, hence closed groups are
assumed. Such algorithms can provide total ordering, as well as causal ordering using a
closed group configuration.
Examples of specific algorithms are On-Demand, and Totem. They differ in implementation
details such as whether a token ring topology is assumed

(Totem) or not (On-Demand). Such algorithms are not scalable because they do not permit
concurrent send events. Hence they are of limited use in large systems.
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Moving sequencer algorithms
The operation of such algorithms is illustrated in Figure 6.(b). The original algorithm was
proposed by Chang and Maxemchuck; various variants of it were given by the Pinwheel and
RMP algorithms. These algorithms work as follows.
(1) To multicast a message, the sender sends the message to all the sequencers.
(2) Sequencers circulate a token among themselves. The token carries a sequence number and
a list of all the messages for which a sequence number has already been assigned – such
messages have been sent already.
(3) When a sequencer receives the token, it assigns a sequence number to all received but
unsequenced messages. It then sends the newly sequenced messages to the destinations,
inserts these messages in to the token list, and passes the token to the next sequencer.
(4) Destination processes deliver the messages received in the order of increasing sequence
number. Moving sequencer algorithms guarantee total ordering.

Fixed sequencer algorithms
The operation of such algorithms is illustrated in Figure 6.(c). This class is a simplified
version of the previous class. There is a single sequencer (unless a failure occurs), which
makes this class of algorithms essentially centralized. The propagation tree approach studied
earlier, belongs to this class. Other algorithms are the ISIS sequencer, Amoeba, Phoenix, and
Newtop’s asymmetric algorithm. Let us look briefly at Newtop’s asymmetric algorithm.
All processes maintain logical clocks, and each group has an independent sequencer. The
unicast from the sender to the sequencer, as well as the multicast from the sequencer are
timestamped. A process that belongs to multiple groups must delay the sending of the next
message (to the relevant sequencer) until it has received and processed all messages, from the
various sequencers, corresponding to the previous messages it sent. Assuming FIFO
channels, it can be shown that total order is maintained.

Destination agreement algorithms
The operation of such algorithms is illustrated in Figure 6.(d). In this class of algorithms, the
destinations receive the messages with some limited ordering information. They then
exchange information among themselves to define an order. There are two sub-classes here:
(i) the first sub-class uses timestamps (Lamport’s three-phase belongs to this sub-class); (ii)
the second sub-class uses an agreement or “consensus” protocol among the processes.

2.5 Distributed multicast algorithms at the network layer
Several applications can interface directly with the network layer and the lower hardware-
related layers to exploit the physical connectivity and the physical topology for group
communication. The network is viewed as a graph (N, L), and various graph algorithms –
centralized or distributed – are run to establish and maintain efficient routing structures. For
example,
• LANs connected by bridges maintain spanning trees for distributing information and for
forward/backward learning of destinations;
• the network layer of the Internet has a rich suite of multicast algorithms. In this section, we
will study the principles underlying several such algorithms. Some of the algorithms in this
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section may not be distributed. Nevertheless, they are intended for a distributed setting,
namely the LAN or the WAN.

2.5.1 Reverse path forwarding (RPF) for constrained flooding
Broadcasting data using flooding in a network (N,L) requires up to 2|L| messages. Reverse
path forwarding (RPF) is a simple but elegant technique that brings down the overhead
significantly at very little cost. Network nodes are assumed to run the distance vector routing
(DVR) algorithm, which was used in the Internet until 1983. (Since 1983, the LSR-based
algorithms have been used. These are more sophisticated and provide more information than
that required by DVR.) The simple DVR algorithm assumes that each node knows the next
hop on the path to each destination x. This path is assumed to be the approximation to the
“best” path. Let Next_hop(x) denote the function that gives the next hop on the “best” path to
x. The RPF algorithm leverages the DVR algorithm for point-to-point routing, to achieve
constrained flooding. The RPF algorithm for constrained flooding is shown in the following
Algorithm.

Algorithm Reverse path forwarding (RPF).
(1) When process Pi wants to multicast message M to group Dests:
(1a) send M(i, Dests) on all outgoing links.
(2) When a node i receives message M(x, Dests) from node j:
(2a) if Next_hop(x) = j then // this will necessarily be a new message
(2b) forward M(x, Dests) on all other incident links besides (i,j);
(2c) else ignore the message.

This simple RPF algorithm has been experimentally shown to be effective in bringing the
number of messages for a multicast closer to |N| than to |L|. Actually, the algorithm does a
broadcast to all the nodes, and this broadcast is smartly curtailed to approximate a spanning
tree. The curtailed broadcast is effective because, implicitly, an approximation to a tree
rooted at the source is identified, without it being computed or stored at any node.
Pruning of the implicit broadcast tree can be used to deal with unwanted multicast packets. If
a node receives the packets but the application running on it does not need the packets, and
all “downstream” (in the implicit tree) nodes also do not need the packets, the node can send
a prune message to the parent in the tree indicating that packets should not be forwarded on
that edge. Implementing this in a dynamic network where the tree periodically changes and
the application’s node membership also changes dynamically is somewhat.

2.5.2 Steiner trees
The problem of finding an optimal “spanning” tree that spans only all nodes participating in a
multicast group, known as the Steiner tree problem, is formalized as follows.
Steiner tree problem
Given a weighted graph (N,L) and a subset N' C N, identify a subset L'CL such that (N',L') is
a subgraph of (N,L) that connects all the nodes of N'. A minimal Steiner tree is a minimal-
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weight subgraph (N',L'). The minimal Steiner tree problem has been well-studied and is
known to be NP-complete. When the link weights change, the tree has to be recomputed to
obtain the new minimal Steiner tree, making it even more difficult to use in dynamic
networks.
Several heuristics have been proposed to construct an approximation to the minimal Steiner
tree. A simple heuristic constructs a MST, and deletes edges that are not necessary. This
algorithm is given by the first three steps of Algorithm. The worst case cost of this heuristic is
twice the cost of the optimal solution. Algorithm can show better performance when using
the heuristic by Kou et al., given by steps 4 and 5 in the algorithm. The resulting Steiner tree
cost is also at most twice the cost of the minimal Steiner tree, but behaves better on average.

Algorithm The Kou–Markowsky–Berman heuristic for a minimum Steiner tree.

2.5.3 Multicast cost functions
Consider a source node s that has to do a multicast to Steiner nodes. As before, we are given
the weighted graph (N,L) and the Steiner node set N'. For example, let cost(i) be the cost of
the path from s to i in the routing scheme R. The destination cost of R is defined as

. This represents the average cost of the routing. If the cost is measured in time delay, this
routing function metric gives the shortest average time for the multicast to reach nodes in N'.
As a variant, a link is counted only once even if it is used on the minimum cost path to
multiple destinations. This variant reduces to the Steiner tree. The sum of the costs of the
edges in the Steiner tree routing scheme R is defined as the network cost.
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2.5.4 Delay-bounded Steiner trees
Multimedia networks and interactive applications have given rise to the need for a minimum
Steiner tree that also satisfies delay constraints on the transmission. Thus now, the goal is not
only to minimize the cost of the tree (measured in terms of a parameter such as the link
weight, which models the available bandwidth or a similar cost measure) but also to
minimize the delay (propagation delay). The problem is formalized as follows.

Delay-bounded minimal Steiner tree problem
Given a weighted graph (N, L), there are two weight functions C(l) and D(l) for each edge in
L. C(l) is a positive real cost function on l ∈ L and D(l) is a positive integer delay function on
l ∈L. For a given delay tolerance ∆, a given source s and a destination set Dest, where
s_∪Dest = N'C N, identify a spanning tree T covering all the nodes in N', subject to the
constraints below. Here, we let path_s_ v_ denote the path from s to v in T.

Finding such a minimal Steiner tree, subject to another parameter, is at least as difficult as
finding a Steiner tree. It can be shown that this problem reduces to the Steiner tree problem.
A detailed study of two heuristics to solve this problem is presented by Kompella et al.. A
constrained cheapest path between x and y is the cheapest path between x and y that has
delay less than _. The cost and delay on such a path are denoted by C(x,y) and D(x,y),
respectively. If two or more paths have the lowest cost, the lowest delay path is chosen. The
steps to compute the constrained Steiner tree are shown in Algorithm. Step 1 computes the
complete closure graph G' on nodes in N'. The two heuristics given below are used in Step 2
to greedily build a constrained Steiner tree on G'. Step 3 expands the tree edges in G' to their
original paths in G. An example of a constrained Steiner
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• Heuristic CSTCD This heuristic tries to choose low-cost edges, while also trying to pick
edges that maximize the remaining allowable delay. The motivation is to try to reduce the
tree cost by path sharing, by extending the path beyond the selected edge. This heuristic has
the tendency to optimize on delay also, while adding to the cost.
• Heuristic CSTC This heuristic simply minimizes the cost while ensuring that the delay
bound is met.
Complexity Assuming integer-valued ∆, step 1, which finds the constrained cheapest shortest
paths over all the nodes, has O(n3∆) time complexity. This is because all pairs of end and
intermediate nodes have to be examined, for all integer delay values from 1 to ∆. Step 2,
which constructs the constrained MST on the closure graph having k nodes, has O(k3) time
complexity. Step 3, which expands the constrained spanning tree, involves expanding the k
edges to up to n−1 edges each and then eliminating loops. This has O(kn) time overhead. The
dominating step is step 1.

2.3.5 Core-based trees
In the core-based tree approach, each group has a center node, or core node. A multicast tree
is constructed dynamically, and grows on-demand, as follows. (i) A node wishing to join the
tree as a receiver sends a unicast “join” message to the core node. (ii) The join message
marks the edges as it travels; it either reaches the core node, or some node which is already a
part of the multicast tree. The path followed by the “join” message from its source till the
core/multicast tree is grafted to the multicast tree, and defines the path to the “core.” (iii) A
node on the tree multicasts a message by using a flooding on the core tree. (iv) A node not on
the tree sends a message towards the core node; as soon as the message reaches any node on
the tree, the message is flooded on the tree. In a network with a dynamically changing
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topology, care needs to be taken to maintain the tree structure and prevent messages from
looping. This problem also exists for normal routing algorithms, such as the LSR and DVR
algorithms, in dynamic networks. Current systems do not widely implement the Steiner tree
for group multicast, even though it is more efficient after the initial cost to construct the
Steiner tree. They prefer the simpler core-based tree (CBT) approach. Core-based trees have
various variants. A multi-core-based tree has more than one core node. For all CBT
algorithms, high-bandwidth links can be specially chosen over others for forming the tree.
Core-based trees have a natural analog in wireless networks, wherein it is reasonable to
constitute the core tree of high-bandwidth wired links or high-power wireless links.



Questions OPTION 1 OPTION 2 OPTION 3 OPTION 4 OPTION 5 OPTION 6 Answer Key

Interprocess communication via ________ is at the core of 

any distributed system.
message passing

message 

terminating
messages

termination 

detection
message passing

Multicasts are required at the application layer when 

superimposed topologies or overlays are used as well as at 

the lower layers of the _______________.

stack protocol stack network protocol layers protocol stack

The order of delivery of ______________ in a distributed 

system is an important aspect of system executions because it 

determines the messaging behaviour that can be expected by 

the DS.

stacks queue messages terminals messages

__________ logic greatly depends on this order of delivery. DC DS
distributed 

terminals

Distributed 

program

Distributed 

program

To simplify  the task of the programmer, 

_________________ in conjunction with the middleware 

provide certain well_defined message delivery behaviour.

programming 

languages

system 

programs
terminals devices

programming 

languages

The _____________ can then code the program logic with 

respect to this behaviour.
locker programmer

terminating 

process
system locking programmer

An ____________ is an execution for which the causality 

relation is a partial order.
asynchronous synchronous

synchronous 

execution
execution

synchronous 

execution

There cannot exist any causality __________ in any real 

asynchronous execution because cycles lead to the absurdity 

that an event causes itself.

stacks queues buffers cycles cycles

On any logical link between two nodes in the system, 

messages may be delivered in any order, not necessarily first 

in first out. Such executions are also known as ________

FIFO LIFO model NON LIFO non FIFO non FIFO

As an example, the mode of ordering at the network layer in 

connectionless networks such as ________ is non FIFO.
IPv1 IPv2 IPv3 IPv4 IPv4

Casual order is useful for applications requiring updates to 

shared data, implementing distributed shared memory, and 

fear resource allocation such as_________ of requests.

accessing termianting  granting accepting  granting

To implement CO, distinguish between the arrival of a 

______and its delivery.
stacks message pototcols terminals message 

When all the communication between pairs of processes uses 

synchronous send and receive primitives the resulting order is 

the__________.

 synchronous order asynchronous synchronous timing signals
 synchronous 

order
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The instantaneous__________ property of synchronous 

executions requires a modified definition of the causality 

relation.

interfaces  communication terminals resurces  communication

In a timing diagram the instaneous message communication 

can be shown by _______ vertical message lines.
unidirectional unipolar bidirectional bipolar bidirectional

If a program is written for an asynchronous system say 

a_____________wilt still execute correctly if the 

communication is done by synchronous primitives instead?

LIFO SYSTEM LIFO model FIFO MODEL  FIFO system  FIFO system 

An algorithm that runs on as asynchronous system 

may___________on a synchronous system.
lacking resources

feasible 

schedule

lacking 

communication
 deadlock  deadlock 

An execution can be modelled as a ___________ of the 

events to give a total order.
unfeasible schedule termination feasible schedule starting feasible schedule

In an A_execution the messages can be made to appear 

instantaneous if there exists a linear extension of the 

execution such that each send event is immediately followed 

by its corresponding receive event.

unlinear linear extension
unlinear 

extensions
linear linear extension

A_execution can be realized under synchronous 

communication and is called a realizable with synchronous 

communication __________.

termination separation execution disseparated execution

In the __________ linear extension if the adjacent send event 

and its corresponding receive event are viewed atomically 

then that pair of events shares a common past and a common 

future with each other.

separated communicated
non 

communicated
non_separated non_separated

A characterization of the execution in terms of a graph 

structure called a____.
stack terminal  crown backlog  crown

The crown leads to a feasible test for a ___________. EXE TXT RPC RSC execution RSC execution

Intuitively the __________dependencies in a crown indicate 

that it is not possible to find a linear extension.
cyclic acyclic termination detection cyclic 

The crown criterion states that an A_computation is ______. RPC RSC TXT EXE RSC

A program using synchronous communication is easiest to 

develop and ___________.
unverified stabled verify unstabled verify

A program using _________ communication resulting in a 

execution is hardest to design and verify.
LIFO SYSTEM FIFO SYSTEM Non LIFO NonFIFO NonFIFO

The events in __________ are scheduled as per some 

nonseparated linear extension and adjacent (s,r) events in this 

linear extension are executed sequentially in the synchronous 

system.

EXE TXT RPC RSC execution RSC execution

The partial order of the asynchronous execution 

remains______________ .
changed distributed 

system 

contribution
unchanged unchanged

A (valid) S_execution can be trivially realized on an 

asynchronous system by scheduling the__________ in the 

order in which they appear in the S_execution.

terminals stacks  messages protocols  messages



The partial order of the S_execution remains unchanged but 

the communication occurs on an asynchronous system that 

uses_____________ communication primitives.

synchronous  asynchronous timimg limit signals  asynchronous

Once a message send event is scheduled the middleware 

layer waits for an acknowledgement after the ack is received 

the synchronous send ____________completes.

primitive non primitive
synchronization 

variable

asychronous 

variable
primitive 

There do not exist ___________ with instantaneous 

communication that allows for synchronous communication 

to be naturally realized.

real systems
embedded 

systems
batch processing timing systems real systems

We need to __________ the basic question of how a system 

with synchronous communication can be implemented.
stacks address spaces memory address

We first examine non determinism in program execution and 

CSP as a representative synchronous programming language 

before examining an implementation of  ___________.

asynchronous 

communication
timing signals

synchronous 

communication
none of these

synchronous 

communication

Some algorithmically challenging techniques in the design of 

the _____________
unicast algorithms algorithms procedures

multicast 

algorithms.

multicast 

algorithms.

The most general scenario allows each process to multicast to 

an arbitrary and ________ changing group of processes at 

each step.

statically processing timing dynamically dynamically

___________ in the class use a part of the communication 

history to guarantee ordering requirements.
procedures stack processing Algorithms tokens Algorithms

The ____________ which extends Lamport's algorithm to 

overlapping groups also gurantees both total and casual 

ordering.

protocol
NewTop 

protocol
layered protocol toping layers NewTop protocol

A __________ circulates among the sender processes. token parsers packets terminals token

The token carries the______________ for the next message 

to be multicast and only the token holder can multicast.
number

 sequence 

number

unordered 

sequence
ordered sequence  sequence number

After a multicast send event the sequence number is 

_________.
deleted connected updated disconnected updated

__________ processes deliver messages in the order of 

increasing sequence numbers.
source terminals packets Destination Destination

____________need to know the other senders hence closed 

groups are assumed.
receivers transmitters receivers Senders Senders 

All ________ can provide total ordering as well as causal 

ordering using a closed group configuration.
procedures

terminating 

process
detection process algorithms algorithms

___________ wherein messages are assigned scalar 

timestamps and a process can deliver a message only when it 

knows that no other message with a lower timestamp can be 

multicast also belongs to the class.

Lamport's 

algorithm
Pass algorithm original algorithm

NewTop protocol 

algorithm

Lamport's 

algorithm

The _______________ was proposed by Chang and 

Maxemchuck for various variants of it were given by the 

Pinwheel and RMP algorithms.

Lamport's 

algorithm

original 

algorithm
Pass algorithm

NewTop protocol 

algorithm
original algorithm



When a _________ receives the token, it assigns a sequence 

number to all received but unsequenced messages. 
parser detector sequencer failure sequencer

Moving sequencer algorithms gurantee_____________. partial ordering
unpartial 

ordering
timestamped  total ordering  total ordering

The unicast from the sender to the sequencer as well as the 

multicast from the sequencer are ____________
batch processing stack holding fault tolerance. timestamped. timestamped.

When a system component fails in the midst of the 

____________, which is a non atomic operation that spans 

across time and across multiple links and nodes the behaviour 

of a multicast protocol must adhere to a well defined 

specification.

unicast operation multiprocessing multi tasking
multicast 

operation

multicast 

operation

In the regular flavour there are no conditions on the messages 

delivered to____________.
multiprocessors multi computers  faulty processors single processors  faulty processors

The___________states that once the multicast is initiated by 

a correct process, it will go to completion.
invalidating

 validity 

property 
validating processing  validity property 

It is time to remember the folklore result that any protocol or 

implementation that deals with fault tolerance incurs a 

greater cost than what it would in a 

____________environment.

failure free 
failure 

occurence
fault tolerance. fault detection failure free 

_________ in delivering a multicast message can also be 

viewed as a fault.
timing delay Excessive delay signal delay proceesing delay Excessive delay

Several applications can interface directly with the network 

layer and the___________related layers to exploit the 

physical connectivity and the physical topology for group 

communication.

higher hardware higher software  lower hardware lower software  lower hardware 

Network nodes are assumed to run the __________ routing 

algorithm which was used in the internet until 1983
magnitude vector

distance and 

magnitude vector
distance vector distance vector

___________ and interactive applications have given rise to 

the need for a minimum Steiner tree that also satisfies delay 

constraints on the transmission.

networks processors links
Multimedia 

networks

Multimedia 

networks

At the core of distributed computing is the communication by 

message passing among the processes participating in 

the_________.

software hardware middleware  application  application

Maintaining ______ in the presence of faults is necessary in 

real world systems.
links terminals communication layers communication
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Termination detection
Introduction
In distributed processing systems, a problem is typically solved in a distributed manner with
the cooperation of a number of processes. In such an environment, inferring if a distributed
computation has ended is essential so that the results produced by the computation can be
used. Also, in some applications, the problem to be solved is divided into many subproblems,
and the execution of a subproblem cannot begin until the execution of the previous
subproblem is complete. Hence, it is necessary to determine when the execution of a
particular subproblem has ended so that the execution of the next subproblem may begin.
Therefore, a fundamental problem in distributed systems is to determine if a distributed
computation has terminated.
The detection of the termination of a distributed computation is non-trivial since no process
has complete knowledge of the global state, and global time does not exist. A distributed
computation is considered to be globally terminated if every process is locally terminated and
there is no message in transit between any processes. A “locally terminated” state is a state in
which a process has finished its computation and will not restart any action unless it receives
a message. In the termination detection problem, a particular process (or all of the processes)
must infer when the underlying computation has terminated.
When we are interested in inferring when the underlying computation has ended, a
termination detection algorithm is used for this purpose. In such situations, there are two
distributed computations taking place in the distributed system, namely, the underlying
computation and the termination detection algorithm. Messages used in the underlying
computation are called basic messages, and messages used for the purpose of termination
detection (by a termination detection algorithm) are called control messages.
A termination detection (TD) algorithm must ensure the following:
1. Execution of a TD algorithm cannot indefinitely delay the underlying computation; that is,
execution of the termination detection algorithm must not freeze the underlying computation.
2. The termination detection algorithm must not require addition of new communication
channels between processes.

3.1 System model of a distributed computation
A distributed computation consists of a fixed set of processes that communicate solely by
message passing. All messages are received correctly after an arbitrary but finite delay.
Communication is asynchronous, i.e., a process never waits for the receiver to be ready
before sending a message. Messages sent over the same communication channel may not
obey the FIFO ordering.
A distributed computation has the following characteristics:
1. At any given time during execution of the distributed computation, a process can be in only
one of the two states: active, where it is doing local computation and idle, where the process
has (temporarily) finished the execution of its local computation and will be reactivated only
on the receipt of a message from another process. The active and idle states are also called the
busy and passive states, respectively.
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2. An active process can become idle at any time. This corresponds to the situation where the
process has completed its local computation and has processed all received messages.
3. An idle process can become active only on the receipt of a message from another process.
Thus, an idle process cannot spontaneously become active (except when the distributed
computation begins execution).
4. Only active processes can send messages. (Since we are not concerned with the
initialization problem, we assume that all processes are initially idle and a message arrives
from outside the system to start the computation.)
5. A message can be received by a process when the process is in either of the two states, i.e.,
active or idle. On the receipt of a message, an idle process becomes active.
6. The sending of a message and the receipt of a message occur as atomic actions.
We restrict our discussion to executions in which every process eventually becomes idle,
although this property is in general undecidable. If a termination detection algorithm is
applied to a distributed computation in which some processes remain in their active states
forever, the TD algorithm itself will not terminate.

Definition of termination detection
Let pi(t) denote the state (active or idle) of process pi at instant t and ci,j(t) denote the number
of messages in transit in the channel at instant t from process pi to process pj . A distributed
computation is said to be terminated at time instant t0 iff:

3.2 Termination detection using distributed snapshots
The algorithm uses the fact that a consistent snapshot of a distributed system captures stable
properties. Termination of a distributed computation is a stable property. Thus, if a consistent
snapshot of a distributed computation is taken after the distributed computation has
terminated, the snapshot will capture the termination of the computation.
The algorithm assumes that there is a logical bidirectional communication channel between
every pair of processes. Communication channels are reliable but non-FIFO. Message delay
is arbitrary but finite.

3.2.1 Informal description
The main idea behind the algorithm is as follows: when a computation terminates, there must
exist a unique process which became idle last. When a process goes from active to idle, it
issues a request to all other processes to take a local snapshot, and also requests itself to take
a local snapshot. When a process receives the request, if it agrees that the requester became
idle before itself, it grants the request by taking a local snapshot for the request. A request is
said to be successful if all processes have taken a local snapshot for it. The requester or any
external agent may collect all the local snapshots of a request. If a request is successful, a
global snapshot of the request can thus be obtained and the recorded state will indicate
termination of the computation, viz., in the recorded snapshot, all the processes are idle and
there is no message in transit to any of the processes.
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3.2.2 Formal description
The algorithm needs logical time to order the requests. Each process i maintains an logical
clock denoted by x, which is initialized to zero at the start of the computation. A process
increments its x by one each time it becomes idle.
A basic message sent by a process at its logical time x is of the form B(x). A control message
that requests processes to take local snapshot issued by process i at its logical time x is of the
form R(x, i). Each process synchronizes its logical clock x loosely with the logical clocks x’s
on other processes in such a way that it is the maximum of clock values ever received or sent
in messages. Besides logical clock x, a process maintains a variable k such that when the
process is idle, (x,k) is the maximum of the values (x, k) on all messages R(x, k) ever received
or sent by the process. Logical time is compared as follows: (x, k) > (x', k') iff (x > x') or ((x
= x') and (k > k')), i.e., a tie between x and x' is broken by the process identification numbers
k and k'.
The algorithm is defined by the following four rules. We use guarded statements to express
the conditions and actions. Each process i applies one of the rules whenever it is applicable.

3.3 Termination detection in a faulty distributed system
An algorithm is presented that detects termination in distributed systems in which processes
fail in a fail-stop manner. The algorithm is based on the weight-throwing method. In such a
distributed system, a computation is said to be terminated if and only if each healthy process
is idle and there is no basic message in transit whose destination is a healthy process. This is
independent of faulty processes and undeliverable messages (i.e., whose destination is a
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faulty process). Based on the weight-throwing scheme, a scheme called flow detecting
scheme is developed by Tseng to derive a fault-tolerant termination detection algorithm.

Assumptions
Let S = P1, P2,    , Pn be the set of processes in the distributed computation. Cij represents the
bidirectional channel between Pi and Pj . The communication network is asynchronous.
Communications channels are reliable, but they are non-FIFO. At any time, an arbitrary
number of processes may fail. However, the network remains connected in the presence of
faults. The fail-stop model implies that a failed process stops all activities and cannot rejoin
the computation in the current session. Detection of faults takes a finite amount of time.

3.3.1 Flow detecting scheme
Weights may be lost because a process holding a non-zero weight may crash or a message
destined to a crashed process is carrying a weight. Therefore, due to faulty processes and
undeliverable messages carrying weights, it may not be possible for the leader to accumulate
the total weight of 1 to declare termination. In the case of a process crash, the lost weight
must be calculated. To solve this problem, the concept of flow invariant is used.

The concept of flow invariant
Define H⊆S as the set of all healthy processes. Define subsystem H to be part of the system
containing all processes in H and communication channels connecting two processes in H.
According to the concept of flow invariant, the weight change of the subsystem during time
interval I, during which the system is doing computation, is equal to (weights flowing into H
during I) − (weights flowing out of H during I). To implement this concept, a variable called
neti is assigned to each process Pi belonging to H. This variable records the total weight
flowing into and out of the subsystem H. Initially, ∀i neti = 0. The following flow-detecting
rules are defined:
Rule 1: Whenever a process Pi which belongs to H receives a message with weight x from
another process Pj which does not belong to H, x is added to neti.
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3.4. Distributed mutual exclusion algorithms
Mutual exclusion is a fundamental problem in distributed computing systems. Mutual
exclusion ensures that concurrent access of processes to a shared resource or data is
serialized, that is, executed in a mutually exclusive manner. Mutual exclusion in a distributed
system states that only one process is allowed to execute the critical section (CS) at any given
time. In a distributed system, shared variables (semaphores) or a local kernel cannot be used
to implement mutual exclusion. Message passing is the sole means for implementing
distributed mutual exclusion. The decision as to which process is allowed access to the CS
next is arrived at by message passing, in which each process learns about the state of all other
processes in some consistent way. The design of distributed mutual exclusion algorithms is
complex because these algorithms have to deal with unpredictable message delays and
incomplete knowledge of the system state. There are three basic approaches for implementing
distributed mutual exclusion:
1. Token-based approach.
2. Non-token-based approach.
3. Quorum-based approach.
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In the token-based approach, a unique token (also known as the PRIVILEGE message) is
shared among the sites. A site is allowed to enter its CS if it possesses the token and it
continues to hold the token until the execution of the CS is over. Mutual exclusion is ensured
because the token is unique. The algorithms based on this approach essentially differ in the
way a site carries out the search for the token. In the non-token-based approach, two or more
successive rounds of messages are exchanged among the sites to determine which site will
enter the CS next. A site enters the critical section (CS) when an assertion, defined on its
local variables, becomes true. Mutual exclusion is enforced because the assertion becomes
true only at one site at any given time. In the quorum-based approach, each site requests
permission to execute the CS from a subset of sites (called a quorum). The quorums are
formed in such a way that when two sites concurrently request access to the CS, at least one
site receives both the requests and this site is responsible to make sure that only one request
executes the CS at any time. In this chapter, we describe several distributed mutual exclusion
algorithms and compare their features and performance. We discuss relationship among
various mutual exclusion algorithms and examine trade-offs among them.

3.5 Lamport’s algorithm
Lamport developed a distributed mutual exclusion algorithm as an illustration of his clock
synchronization scheme. The algorithm is fair in the sense that a request for CS are executed
in the order of their timestamps and time is determined by logical clocks. When a site
processes a request for the CS, it updates its local clock and assigns the request a timestamp.
The algorithm executes CS requests in the increasing order of timestamps. Every site Si
keeps a queue, request_queuei, which contains mutual exclusion requests ordered by their
timestamps. (Note that this queue is different from the queue that contains local requests for
CS execution awaiting their turn.) This algorithm requires communication channels to deliver
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messages in FIFO order

When a site removes a request from its request queue, its own request may come at the top of
the queue, enabling it to enter the CS. Clearly, when a site receives a REQUEST, REPLY, or
RELEASE message, it updates its clock using the timestamp in the message.

Correctness
Theorem 1 Lamport’s algorithm achieves mutual exclusion.
Proof is by contradiction. Suppose two sites Si and Sj are executing the CS concurrently. For
this to happen conditions L1 and L2 must hold at both the sites concurrently. This implies
that at some instant in time, say t, both Si and Sj have their own requests at the top of their
request_queues and condition L1 holds at them. Without loss of generality, assume that Si’s
request has smaller timestamp than the request of Sj . From condition L1 and FIFO property
of the communication channels, it is clear that at instant t the request of Si must be present in
request_queuej when Sj was executing its CS. This implies that Sj’s own request is at the top
of its own request_queue when a smaller timestamp request, Si’s request, is present in the
request_queuej – a contradiction! Hence, Lamport’s algorithm achieves mutual exclusion.

Theorem 2 Lamport’s algorithm is fair.
Proof A distributed mutual exclusion algorithm is fair if the requests for CS are executed in
the order of their timestamps. The proof is by contradiction. Suppose a site Si’s request has a
smaller timestamp than the request of another site Sj and Sj is able to execute the CS before
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Si. For Sj to execute the CS, it has to satisfy the conditions L1 and L2. This implies that at
some instant in time Sj has its own request at the top of its queue and it has also received a
message with timestamp larger than the timestamp of its request from all other sites. But
request_queue at a site is ordered by timestamp, and according to our assumption Si has
lower timestamp. So Si’s request must be placed ahead of the Sj’s request in the
request_queuej . This is a contradiction. Hence Lamport’s algorithm is a fair mutual
exclusion algorithm.

Example In Figure, sites S1 and S2 are making requests for the CS and send out REQUEST
messages to other sites. The timestamps of the requests are (1,1) and (1,2), respectively. In
Figure 9.4, both the sites S1 and S2 have received REPLY messages from all other sites. S1
has its request at the top of its request_queue but site S2 does not have its request at the top of
its request_queue. Consequently, site S1 enters the CS. In Figure, S1 exits and sends
RELEASE mesages to all other sites. In Figure, site S2 has received REPLY from all other
sites and also received a RELEASE message
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from site S1. Site S2 updates its request_queue and its request is now at the top of its
request_queue. Consequently, it enters the CS next.

Performance
For each CS execution, Lamport’s algorithm requires (N −1)REQUEST messages, (N −1)
REPLY messages, and (N −1) RELEASE messages. Thus, Lamport’s algorithm requires 3_N
−1_ messages per CS invocation. The synchronization delay in the algorithm is T.

An optimization
In Lamport’s algorithm, REPLY messages can be omitted in certain situations. For example,
if site Sj receives a REQUEST message from site Si after it has sent its own REQUEST
message with a timestamp higher than the timestamp of site Si’s request, then site Sj need not
send a REPLY message to site Si. This is because when site Si receives site Sj’s request with
a timestamp higher than its own, it can conclude that site Sj does not have any smaller
timestamp request which is still pending (because communication channels preserves FIFO
ordering). With this optimization, Lamport’s algorithm requires between 3(N −1)and 2(N −1)
messages per CS execution.
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3.6 Token-based algorithms
In token-based algorithms, a unique token is shared among the sites. A site is allowed to enter
its CS if it possesses the token. A site holding the token can enter its CS repeatedly until it
sends the token to some other site. Depending upon the way a site carries out the search for
the token, there are numerous token-based algorithms. Next, we discuss two token-based
mutual exclusion algorithms.
Before we start with the discussion of token-based algorithms, two comments are in order.
First, token-based algorithms use sequence numbers instead of timestamps. Every request for
the token contains a sequence number and the sequence numbers of sites advance
independently. A site increments its sequence number counter every time it makes a request
for the token. (A primary function of the sequence numbers is to distinguish between old and
current requests.) Second, the correctness proof of token-based algorithms, that they enforce
mutual exclusion, is trivial because an algorithm guarantees mutual exclusion so long as a
site holds the token during the execution of the CS. Instead, the issues of freedom from
starvation, freedom from deadlock, and detection of the token loss and its regeneration
become more prominent

3.7 Raymond’s tree-based algorithm
Raymond’s tree-based mutual exclusion algorithm uses a spanning tree of the computer
network to reduce the number of messages exchanged per critical section execution. The
algorithm exchanges only O(log N) messages under light load, and approximately four
messages under heavy load to execute the CS, where N is the number of nodes in the
network. The algorithm assumes that the underlying network guarantees message delivery.
The time or order of message arrival cannot be predicted. All nodes of the network are
completely reliable. (Only for the initial part of the discussion, i.e., until node failure is
discussed.) If the network is viewed as a graph, where the nodes in the network are the
vertices of the graph, and the links between nodes are the edges of the graph, a spanning tree
of a network of N nodes will be a tree that contains all N nodes. A minimal spanning tree is
one such tree with minimum cost. Typically, this cost function is based on the network link
characteristics. The algorithm operates on a minimal spanning tree of the network topology or
logical structure imposed on the network.
The algorithm considers the network nodes to be arranged in an unrooted tree structure as
shown in Figure. Messages between nodes traverse along the undirected edges of the tree in
the Figure. The tree is also a spanning tree of the seven nodes A, B, C, D, E, F, and G. It also
turns out to be a minimal spanning tree because it is the only spanning tree of these seven
nodes. A node needs to hold information about and communicate only to its immediate-
neighboring nodes. In Figure 9.17, for example, node C holds information about and
communicates only to nodes B, D, and G; it does not need to know about the other nodes A,
E, and F for the operation of the algorithm.
Similar to the concept of tokens used in token-based algorithms, this algorithm uses a concept
of privilege to signify which node has the privilege to enter the critical section. Only one
node can be in possession of the privilege (called the privileged node) at any time, except
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when the privilege is in transit

from one node to another in the form of a PRIVILEGE message. When there are no nodes
requesting for the privilege, it remains in possession of the node that last used it.

3.7.1 The HOLDER variables
Each node maintains a HOLDER variable that provides information about the placement of
the privilege in relation to the node itself. A node stores in its HOLDER variable the identity
of a node that it thinks has the privilege or leads to the node having the privilege. The
HOLDER variables of all the nodes maintain directed paths from each node to the node in the
possession of the privilege.
For two nodes X and Y, if HOLDERX= Y, we could redraw the undirected edge between the
nodes X and Y as a directed edge from X to Y. Thus, for instance, if node G holds the
privilege, Figure can be redrawn with logically directed edges as shown in Figure. The
shaded node represents the privileged node. The following will be the values of the HOLDER
variables of various nodes:
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The privileged node G, if it no longer needs the privilege, sends the PRIVILEGE message to
its neighbor C, which made a request for the privilege, and resets HOLDERG to C. Node C,
in turn, forwards the PRIVILEGE to node B, since it had requested the privilege on behalf of
B. Node C also resets HOLDERC to B. The tree in Figure will now look as shown in Figure.
Thus, at any stage, except when the PRIVILEGE message is in transit, the HOLDER
variables collectively make sure that directed paths are maintained from each of the N – 1
nodes to the privileged node in the network.

3.7.2 The operation of the algorithm
Data structures
Each node maintains variables that are defined in Table 9.1. The value “self” is placed in
REQUEST_Q if the node makes a request for the privilege for its own use. The maximum
size of REQUEST_Q of a node is the number of immediate neighbors +1 (for “self ”).
ASKED prevents the sending of duplicate requests for privilege, and also makes sure that the
REQUEST_Qs of the various nodes do not contain any duplicate elements.

3.7.3 Description of the algorithm
The algorithm consists of the following parts:
• ASSIGN_PRIVILEGE;
• MAKE_REQUEST;
• events;
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• message overtaking.
ASSIGN_PRIVILEGE
This is a routine to effect the sending of a PRIVILEGE message. A privileged node will send
a PRIVILEGE message if:
• it holds the privilege but is not using it;
• its REQUEST_Q is not empty; and
• the element at the head of its REQUEST_Q is not “self.” That is, the oldest request for
privilege must have come from another node.
A situation where “self” is at the head of REQUEST_Q may occur immediately after a node
receives a PRIVILEGE message. The node will enter into the critical section after removing
“self” from the head of REQUEST_Q. If the i.d. of another node is at the head of
REQUEST_Q, then it is removed from the queue and a PRIVILEGE message is sent to that
node. Also, the variable ASKED is set to false since the currently privileged node will not
have sent a request to the node (called HOLDER-to-be) that is about to receive the
PRIVILEGE message.
MAKE_REQUEST
This is a routine to effect the sending of a REQUEST message. An unprivileged node will
send a REQUEST message if:
• it does not hold the privilege;
• its REQUEST_Q is not empty, i.e., it requires the privilege for itself, or on behalf of one of
its immediate neighboring nodes; and
• it has not sent a REQUEST message already.
The variable ASKED is set to true to reflect the sending of the REQUEST message. The
MAKE_REQUEST routine makes no change to any other variables. The variable ASKED
will be true at a node when it has sent REQUEST message to an immediate neighbor and has
not received a response. The variable will be false otherwise. A node does not send any
REQUEST messages, if ASKED is true at that node. Thus the variable ASKED makes sure
that unnecessary REQUEST messages are not sent from the unprivileged node, and
consequently ensures that the REQUEST_Q of an immediate neighbor does not contain
duplicate entries of a neighboring node. This makes the REQUEST_Q of any node bounded,
even when operating under heavy load.
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Events
The four events that constitute the algorithm are shown in Table.
• A node wishes critical section entry If it is the privileged node, the node could enter the
critical section using the ASSIGN_PRIVILEGE routine. If not, the node could send a
REQUEST message using the MAKE_REQUEST routine in order to get the privilege.
• A node receives a REQUEST message from one of its immediate neighbors If this node
is the current HOLDER, it may send the PRIVILEGE to a requesting node using the
ASSIGN_PRIVILEGE routine. If not, it could forward the request using the
MAKE_REQUEST routine.
• A node receives a PRIVILEGE message The ASSIGN_PRIVILEGE routine could result
in the execution of the critical section at the node, or may forward the privilege to another
node. After the privilege is forwarded, the MAKE_REQUEST routine could send a
REQUEST message to reacquire the privilege, for a pending request at this node.
• A node exits the critical section On exit from the critical section, this node may pass the
privilege on to a requesting node using the ASSIGN_PRIVILEGE routine. It may then use
the MAKE_REQUEST routine to get back the privilege, for a pending request at this node.

Message overtaking
This algorithm does away with the use of sequence numbers because of its inherent
operations and by the acyclic structure it employs. Figure shows the logical pattern of
message flow between any two neighboring nodes (nodes A and B here).
If any message overtaking occurs between nodes A and B, it can occur when a PRIVILEGE
message is sent from node A to node B, which is then very closely followed by a REQUEST
message from node A to node B. In other words, node A sends the privilege and immediately
wants it back. Such
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message overtaking as described above will not affect the operation of the algorithm. If node
B receives the REQUEST message from node A before receiving the PRIVILEGE message
from node A, A’s request will be queued in REQUEST_QB. Since B is not a privileged node,
it will not be able to send a privilege to node A in reply. When node B receives the
PRIVILEGE message from A after receiving the REQUEST message, it could enter the
critical section or could send a PRIVILEGE message to an immediate neighbor at the head of
REQUEST_QB, which need not be node A. So message overtaking does not affect the
algorithm.

3.7.4 Correctness
The algorithm provides the following guarantees:
• mutual exclusion is guaranteed;
• deadlock is impossible;
• starvation is impossible.

Mutual exclusion is guaranteed
The algorithm ensures that, at any instant of time, no more than one node holds the privilege,
which is a necessity for mutual exclusion. Whenever a node receives a PRIVILEGE message,
it becomes privileged. Similarly, whenever a node sends a PRIVILEGE message, it becomes
unprivileged. Between the instants one node becomes unprivileged and another node
becomes privileged, there is no privileged node. Thus, there is at most one privileged node at
any point of time in the network.

Deadlock is impossible
When the critical section is free, and one or more nodes want to enter the critical section but
are not able to do so, a deadlock may occur. This could happen due to any of the following
scenarios:
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1. The privilege cannot be transferred to a node because no node holds the privilege.
2. The node in possession of the privilege is unaware that there are other nodes requiring the
privilege.
3. The PRIVILEGE message does not reach the requesting unprivileged node. None of the
above three scenarios can occur in this algorithm, thus guarding against deadlocks. Scenario
1 can never occur in this algorithm because we have assumed that nodes do not fail and
messages are not lost. There can never be a situation where REQUEST messages do not
arrive at the privileged node. The logical pattern established using HOLDER variables
ensures that a node that needs the privilege sends a REQUEST message either to a node
holding the privilege or to a node that has a path to a node holding the privilege. Thus
scenario 2 can never occur in this algorithm. The series of REQUEST messages are enqueued
in the REQUEST_Qs of various nodes such that the REQUEST_Qs of those nodes
collectively provide a logical path for the transfer of the PRIVILEGE message from the
privileged node to the requesting unprivileged nodes. So scenario 3 can never occur in this
algorithm.

Starvation is impossible
When node A holds the privilege, and node B requests the privilege, the identity of B or the
i.d.s of the proxy nodes for node B will be present in the REQUEST_Qs of various nodes in
the path connecting the requesting node to the currently privileged node. So, depending upon
the position of the i.d. of node B in those REQUEST_Qs, node B will sooner or later receive
the privilege. Thus once node B’s REQUEST message reaches the privileged node A, node B
is sure to receive the privilege.
To better illustrate, let us consider Figure. Node B is the current holder of the privilege.
Suppose that node C is already at the head of REQUEST_QB. Assume that the
REQUEST_Qs of all other nodes are empty. Now if node E wants to enter the critical section,
it will send a REQUEST message to its immediate neighbor, node A. We will show that node
E does not starve. Assume that B is executing the critical section by the time E’s REQUEST
is propagated to node B. At this instance, the REQUEST_Qs of E, A, and B will be as
follows:
REQUEST_QE = self
REQUEST_QA = E
REQUEST_QB = C,A.
When node B exits the critical section, it removes the node at the head of REQUEST_QB,
i.e., node C, and send the privilege to node C. Node B will then send a REQUEST to node C
on behalf of node A, which requested privilege on behalf of node E. After node C receives
the privilege and completes executing the critical section, the REQUEST_Qs of nodes C, B,
A, and E will look as follows:
REQUEST_QC = B
REQUEST_QB = A
REQUEST_QA= E_
REQUEST_QE = self_
Now, the next node to receive the privilege will be node E, a fact that is represented by the
logical path “BAE” that the REQUEST_Qs of nodes C, B, and A form. Since node B had
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requested privilege on behalf of node A, and node A on behalf of node E, the PRIVILEGE
ultimately gets propagated to node E. Thus, a node never starves.

3.7.5 Cost and performance analysis
The algorithm exhibits the following worst-case cost: (2 * longest path length of the tree)
messages per critical section entry. This happens when the privilege is to be passed between
nodes at either end of the longest path of the minimal spanning tree. Thus the worst possible
network topology for this algorithm will be one where all nodes are arranged in a straight
line. In a straight line the longest path length will be N – 1, and thus the algorithm will
exchange 2 * (N – 1) messages per CS execution. However, if all nodes generate equal
number of REQUEST messages for the privilege, the average number of messages needed
per critical section entry will be approximately 2N/3 because the average distance between a
requesting node and a privileged node is (N +1)/3. The best topology for the algorithm is the
radiating star topology. The worst-case cost of this algorithm for this topology is
O(logK−1N). Even among radiating star topologies, trees with higher fan-outs are preferred.
The longest path length of such trees is typically O(log N). Thus, on average, this algorithm
involves the exchange of O(log N) messages per critical section execution. When under
heavy load, the algorithm exhibits an interesting property: “as the number of nodes requesting
the privilege increases, the number of messages exchanged per critical section entry
decreases.” In fact, it requires the exchange of only four messages per CS execution as
explained below. When all nodes are sending privilege requests, PRIVILEGE messages
travel along all N – 1 edges of the minimal spanning tree exactly twice to give the privilege to
all N nodes. Each of these PRIVILEGE messages travel in response to a REQUEST message.
Thus, a total of 4 * (N – 1) messages travel across the minimal spanning tree. Hence, the total
number of messages exchanged per critical section execution is 4(N−1)/N, which is
approximately 4.

3.7.6 Algorithm initialization
Algorithm initialization begins with one node being chosen as the privileged node. This node
then sends INITIALIZE messages to its immediate neighbors. On receiving the INITIALIZE
message, a node sets its HOLDER variable to the node that sent the INITIALIZE message,
and send INITIALIZE messages to its own immediate neighbors. Once INITIALIZE message
is received, anode can start making privilege requests even if the entire tree is not initialized.
The initialization of the following variables is the same at all nodes:
USING := false
ASKED := false
REQUEST_Q := empty

3.7.7 Node failures and recovery
If a node fails, lost information can be reconstructed on restart. Once a node restarts, it enters
into a recovery phase and selects a delay period for the recovery phase in order to get back all
the lost information. It sends RESTART messages to its immediate neighbors and waits for
ADVISE messages. During the recovery phase, the node can still receive REQUEST and
PRIVILEGE messages; it acts as any normal node would act in response to those messages
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except that ASSIGN_PRIVILEGE and MAKE_REQUEST routines are not executed. The
ADVISE message that a recovering node A receives from each immediate neighbor B will
contain information on the HOLDER, ASKED, and REQUEST_Q variables of B, from
which A can reconstruct its own HOLDER, ASKED, and REQUEST_Q variables.
For example, if HOLDERB = A for all immediate neighbors B of node A, it means node A
holds the privilege, and hence HOLDERA = self. Similar reasoning can be applied to
determine value of ASKEDA and the elements of REQUEST_QA. REQUEST_QA can be
reconstructed but the elements may not be in proper order. To ensure proper order, the
ADVISE messages could provide real or logical timestamps for its REQUEST messages.
USINGA can be set to false.
The recovering node’s REQUEST_Q can have duplicates if it processes REQUEST messages
sent currently and the ones it receives in the ADVISE messages. However, this does not
affect the working of the algorithm as long as the REQUEST_Q is large enough to
accommodate such situations. A node can also possibly fail when recovering from an earlier
failure. In such a case, ASSIST messages related to the first recovery phase can be identified
by making use of the delay chosen for recovery or unique identifiers, and those messages can
be discarded.



Questions OPTION 1 OPTION 2 OPTION 3 OPTION 4 OPTION 5 OPTION 6 Answer Key

In ____________ a problem is typically solved in a 

distributed manner with the cooperation of a number of 

processes.

distributed 

processing systems
DS DC OS

distributed 

processing systems

A fundamental problem in DS is to determine if a distributed 

computation has ___________.
unterminated terminated processing batching terminated

A distributed computation is considered to be ___________ 

if every process is locally terminated and there is no message 

in transits between any processes.

locally terminated
locally 

unterminated

globally 

terminated

globally 

unterminated

globally 

terminated

In the ___________ problem a particular process must infer 

when the underlying computation has term.

termination 

avoidance

temination 

acceptance
termiantion

termination 

detection

termination 

detection

Messages used in the underlying computation are called 

____________.
static messages

dynamic 

messages
message creation basic messages basic messages

Messages are used for the purpose of termination detection 

are called ___________.
static messages

dynamic 

messages
control messages basic messages control messages

The termination detection algorithm must not require 

addition of new communication channels between 

___________.

termination processes detection avoidance processes

A distributed computation consists of a fixed set of processes 

that communicate solely by ____________.
message passing

message 

creations
message detection message deletion message passing

A Process never waits for the receiver to be ready before 

sending a __________.
packets message arrays numbers message

Messages sent over the same communication channel may 

not obey the _____________.
LIFO ordering stack FIFO ordering queue FIFO ordering

The algorithm uses than fact that a consistent snapshot of a 

distributed system captures _____________.
unstable properties implicable imposed stable properties stable properties

Termination of a___________ is a stable property, if a 

consistent snapshot of a DC is taken after the DC is 

terminated, the  snapshot will capture the termination of the 

computation.

DS
Distributed 

methods

 distributed 

computation
teriminology

 distributed 

computation

The__________ assumes that there is a logical bidirectional 

communication channel between every pair of processes.
procedures stacks queues  algorithm  algorithm

Communication channels are reliable but non_FIFO, message 

delay is arbitrary but _________.
infinite unlimited finite limited finite

When a process goes from active to idle , it issues a request 

to all other processes to take a local snapshot and also 

requests itself to take the ___________.

global snapshot local snapshot
globally 

terminated
locally terminated local snapshot
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In the _________all the processes are idle and there is no 

message in transits to any of the processes.
recorded snapshot snapshot

fully connected 

snapshot

fully terminated 

snapshot
recorded snapshot 

The algorithm needs ________to order the requests. physical time logical time allocating time terminating time logical time 

In  by weight throwing ____________a process called 

controlling agent monitors the computation.

termination 

avoidance
termination 

termination 

detection

termination 

communicated

termination 

detection

A ___________ exists between each of the processes and the 

controlling agent and also between every pairs of processes.
pathway stabled pathway

unstabled 

pathway

communication 

channel

communication 

channel

An algorithm is presented that detects termination in DS in 

which processes fail in a _____________.
stop manner fail manner fail_stop manner unstop manner fail_stop manner

______ may be lost because a process holding a non_zero 

weight may crash or a message designated toa crashed 

process is carrying a weight.

stacks Weights processes terminals Weights

In the case of a ________, the lost weight must be calculated. process crash system crash terminals crash task crash process crash

To the problem of __________ the concept of flow invariant 

is used.
trashing crashing deleting avoiding crashing

The algorithm combines the weight throwing scheme the 

flow detecting scheme and a _________ recording scheme.
take a loop lookahead snapshot weights snapshot

The ____________ takes snapshots and estimates remaining 

weight in the system.
processing stop and wait

terminating 

process
leader process leader process

The message complexity of the algorithm is _________. O(M) O(N) O(M+kn+n) O(M+kn) O(M+kn+n)

A DC is terminated if every processes___________ and there 

is  no message in transits between any processes.
globally termianted

 locally 

terminated
locally started globally startes  locally terminated

Determining if a DC has terminated is a_____________ in 

DS.

 fundamental 

problem
basci needs

solution for the 

problem
problem solving

 fundamental 

problem

__________of the termination of a DC is a nontrivial task 

since no process has complete knowledge of the global state.
termination Detection avoidance acceptance Detection 

____________ is a fundamental problem and it finds 

applications at several places in DS.

termination 

avoidance

termination 

acceptance

Termination 

detection
termination needs

Termination 

detection

_____________ is a fundamental problem in DCS. error detection error correction mutual avoidance Mutual exclusion Mutual exclusion

_____________ ensures that concurrent access of processes 

to a shared resource or data is serialized that is executed in a 

mutually exclusive manner.

error detection error correction Mutual exclusion mutual avoidance Mutual exclusion

Mutual exclusion in a DS states that only one process is 

allowed to execute the critical section at any 

______________

limited time given time unlimited time infinite time given time.

In a DS shared variables or a ____________cannot be used 

to implement mutual exclusion.
local kernel global kernel avoidance detection local kernel 

___________ is the sole means for implementing distributed 

mutual exclusion.

message 

termination

Message 

passing
message looping

message 

acceptance
Message passing



The design of the ______________ algorithms is complex 

because these algorithms have to deal with unpredictable 

message delays and incomplete knowledge of the system 

state.

accepted terminals
unaccepted 

terminals

distributed mutual 

exclusion

distributed 

systems

distributed mutual 

exclusion

In the token based approach a unique token is shared among 

the_________.
local terminals stacks processors  sites  sites

____________ is enforced because the assertion becomes 

true only at one site at any given time.
local kernel global kernel Mutual exclusion

detection and 

avoidance
Mutual exclusion

In the _____________ each site requests permission to 

execute the CS from a subset of sites.

distibuted based 

approach

quorum based 

approach

mutually accepted 

approach
existing approach

quorum based 

approach

________________ are reliable but non_FIFO, message 

delay is arbitrary but finite.

Communication 

channels
terminals system channels links 

Communication 

channels

A _____________ to enter the CS requests all other or a 

subset of processes by sending REQUEST  messages, and 

waits for appropriate replies before entering the CS.

process switching process wishing
process 

termination
process accepting process wishing

We assume that __________reliably deliver all messages 

sites do not crash and the network does not get partitioned.
swtiches processes channels tasks channels 

____________ are used to decide the priority to critical 

section requests.
processors kernels terminals Timestamps Timestamps

The general rule followed is that the smaller the timestamp of 

a request the ___________ its priority to execute the CS.
lower very lower very higher higher higher

____________ property is an essential property of a mutual 

exclusion algorithm.
unsafety limited unlimted Safety Safety

____________ should not endlessly wait for messages that 

will never arrive.
one two Two or more sites more than five Two or more sites

In the________________ the fairness property generally 

means that the CS execution requests are executed by in 

order of their arrival in the system.

algorithms

 mutual 

exclusion 

algorithms

accepting 

algorithms

nonaccepting 

algorithms

 mutual exclusion 

algorithms

The value of the ___________ fluctuates statistically fro 

request to request and we generally consider the  average 

value of such a metric.

performance metric measures task completed predefined task
performance 

metric

For many ____________ the performance metrics can be 

computed easily under low and heavy loads through a simple 

mathematical reasoning.

algorithms
accepting 

algorithms

mutual exclusion 

algorithms

nonaccepting 

algorithms

mutual exclusion 

algorithms

Lamport's developed a _____________as an illustration of 

his clock synchronization scheme.
accepted terminals

nonaccepting 

mutual 

exclusion

terminals

distributed mutual 

exclusion 

algorithm 

distributed mutual 

exclusion 

algorithm 

The Richard Agrawala algorithm assumes that the 

communication channels are _______.
FIFO LIFO model stack processors Array processors FIFO

A process sends a ____________ to a process to give its 

permission to that process.
SEND messages

REPLY 

message

RECEIVE 

messages

TRANSMIT 

messages
REPLY message

In ___________ a unique token is shared among the sites.
system based 

algorithms

locally 

terminating 

token based 

algorithms

globally 

terminating 

token based 

algorithms



In Suzuki Kasami's algorithm, if a site that wants to enter the 

CS does not have the token it broadcasts a REQUEST 

message for the token to all ____________.

local sites global sites different sites other sites other sites

Raymond's tree based ___________ uses a spanning tree of 

the computer network to reduce the number of messages 

exchanged per critical section execution.

system based 

algorithms

locally 

terminating 

algorithms

mutual exclusion 

algorithm

globally 

terminating 

algorithms

mutual exclusion 

algorithm

_____________ does away with the use of sequence numbers 

because of its inherent operations and by the acyclic structure 

it employs.

system based 

algorithms

Message 

overtaking 

algorithm

mutual exclusion 

algorithm

globally 

terminating 

algorithms

Message 

overtaking 

algorithm

When the __________ is free and one or more nodes want 

enter the critical situation but are not able to do so, a dead 

lock may occur.

critical section local section global section same section critical section

The privilege cannot be _______ to a node because no node 

holds the privilege.
untransferred transferred limited unlimited transferred

The______________ exhibits the worst case cost messages 

per critical section entry.
procedures tasks  algorithm functions  algorithm

The best topology for the algorithm is the radiating 

_________.
ring topology bus topology mesh topology star topology star topology
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Deadlock detection in distributed systems
Deadlocks are a fundamental problem in distributed systems and deadlock detection in
distributed systems has received considerable attention in the past. In distributed systems, a
process may request resources in any order, which may not be known a priori, and a process
can request a resource while holding others. If the allocation sequence of process resources is
not controlled in such environments, deadlocks can occur. A deadlock can be defined as a
condition where a set of processes request resources that are held by other processes in the
set. Deadlocks can be dealt with using any one of the following three strategies: deadlock
prevention, deadlock avoidance, and deadlock detection. Deadlock prevention is commonly
achieved by either having a process acquire all the needed resources simultaneously before it
begins execution or by pre-empting a process that holds the needed resource. In the deadlock
avoidance approach to distributed systems, a resource is granted to a process if the resulting
global system is safe. Deadlock detection requires an examination of the status of the
process–resources interaction for the presence of a deadlock condition. To resolve the
deadlock, we have to abort a deadlocked process.

4.1 System model
A distributed system consists of a set of processors that are connected by a communication
network. The communication delay is finite but unpredictable. A distributed program is
composed of a set of n asynchronous processes P1, P2,    , Pi,    , Pn that communicate by
message passing over the communication network. Without loss of generality we assume that
each process is running on a different processor. The processors do not share a common
global memory and communicate solely by passing messages over the communication
network. There is no physical global clock in the system to which processes have
instantaneous access. The communication medium may deliver messages out of order,
messages may be lost, garbled, or duplicated due to timeout and retransmission, processors
may fail, and communication links may go down. The system can be modeled as a directed
graph in which vertices represent the processes and edges represent unidirectional
communication channels.
We make the following assumptions:
• The systems have only reusable resources.
• Processes are allowed to make only exclusive access to resources.
• There is only one copy of each resource.
A process can be in two states, running or blocked. In the running state (also called active
state), a process has all the needed resources and is either executing or is ready for execution.
In the blocked state, a process is waiting to acquire some resource.

4.2.1 Wait-for graph (WFG)
In distributed systems, the state of the system can be modeled by directed graph, called a
wait-for graph (WFG). In a WFG, nodes are processes and there is a directed edge from node
P1 to mode P2 if P1 is blocked and is waiting for P2 to release some resource. A system is
deadlocked if and only if there exists a directed cycle or knot in the WFG. Figure 10.1 shows
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a WFG, where process P11 of site 1 has an edge to process P21 of site 1 and an edge to
process P32 of site 2. Process P32 of site 2 is waiting for a resource that is currently held by
process P33 of site 3. At the same time process P21 at site 1 is waiting on process P24 at site
4 to release a resource, and so on. If P33 starts waiting on process P24, then processes in the
WFG are involved in a deadlock depending upon the request model.

4.3 Preliminaries
4.3.1 Deadlock handling strategies
There are three strategies for handling deadlocks, viz., deadlock prevention, deadlock
avoidance, and deadlock detection. Handling of deadlocks becomes highly complicated in
distributed systems because no site has accurate knowledge of the current state of the system
and because every inter-site communication involves a finite and unpredictable delay.
Deadlock prevention is commonly achieved either by having a process acquire all the needed

resources simultaneously before it begins executing or by pre-empting a process that holds
the needed resource. This approach is highly inefficient and impractical in distributed
systems.

In deadlock avoidance approach to distributed systems, a resource is granted to a process if
the resulting global system state is safe (note that a global state includes all the processes and
resources of the distributed system). Due to several problems, however, deadlock avoidance
is impractical in distributed systems.
Deadlock detection requires an examination of the status of process– resource interactions for
the presence of cyclic wait. Deadlock detection in distributed systems seems to be the best
approach to handle deadlocks in distributed systems. In this chapter, we limit the discussion
to deadlock detection techniques in distributed systems.
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4.3.2 Issues in deadlock detection
Deadlock handling using the approach of deadlock detection entails addressing two basic
issues: first, detection of existing deadlocks and, second, resolution of detected deadlocks.

Detection of deadlocks
Detection of deadlocks involves addressing two issues: maintenance of the WFG and
searching of the WFG for the presence of cycles (or knots). Since, in distributed systems, a
cycle or knot may involve several sites, the search for cycles greatly depends upon how the
WFG of the system is represented across the system. Depending upon the way WFG
information is maintained and the search for cycles is carried out, there are centralized,
distributed, and hierarchical algorithms for deadlock detection in distributed systems.

Correctness criteria
A deadlock detection algorithm must satisfy the following two conditions:
• Progress (no undetected deadlocks) The algorithm must detect all existing deadlocks in a
finite time. Once a deadlock has occurred, the deadlock detection activity should
continuously progress until the deadlock is detected. In other words, after all wait-for
dependencies for a deadlock have formed, the algorithm should not wait for any more events
to occur to detect the deadlock.
• Safety (no false deadlocks) The algorithm should not report deadlocks that do not exist
(called phantom or false deadlocks). In distributed systems where there is no global memory
and there is no global clock, it is difficult to design a correct deadlock detection algorithm
because sites may obtain an out-of-date and inconsistent WFG of the system. As a result,
sites may detect a cycle that never existed but whose different segments existed in the system
at different times. This is the main reason why many deadlock detection algorithms reported
in the literature are incorrect.

Resolution of a detected deadlock
Deadlock resolution involves breaking existing wait-for dependencies between the processes
to resolve the deadlock. It involves rolling back one or more deadlocked processes and
assigning their resources to blocked processes so that they can resume execution. Note that
several deadlock detection algorithms propagate information regarding wait-for dependencies
along the edges of the wait-for graph. Therefore, when a wait-for dependency is broken, the
corresponding information should be immediately cleaned from the system. If this
information is not cleaned in a timely manner, it may result in detection of phantom
deadlocks. Untimely and inappropriate cleaning of broken wait-for dependencies is the main
reason why many deadlock detection algorithms reported in the literature are incorrect.

4.4 Models of deadlocks
Distributed systems allow many kinds of resource requests. A process might require a single
resource or a combination of resources for its execution. This section introduces a hierarchy
of request models starting with very restricted forms to the ones with no restrictions
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whatsoever. This hierarchy shall be used to classify deadlock detection algorithms based on
the complexity of the resource requests they permit.
4.4.1 The single-resource model
The single-resource model is the simplest resource model in a distributed system, where a
process can have at most one outstanding request for only one unit of a resource. Since the
maximum out-degree of a node in a WFG for the single resource model can be 1, the
presence of a cycle in the WFG shall indicate that there is a deadlock. In a later section, an
algorithm to detect deadlock in the single-resource model is presented.

4.4.2 The AND model
In the AND model, a process can request more than one resource simultaneously and the
request is satisfied only after all the requested resources are granted to the process. The
requested resources may exist at different locations. The out degree of a node in the WFG for
AND model can be more than 1. The presence of a cycle in the WFG indicates a deadlock in
the AND model. Each node of the WFG in such a model is called an AND node. Consider the
example WFG described in the Figure 10.1. Process P11 has two outstanding resource
requests. In case of the AND model, P11 shall become active from idle state only after both
the resources are granted. There is a cycle P11
→P21
→P24
→P54
→P11, which corresponds to a deadlock situation.
In the AND model, if a cycle is detected in the WFG, it implies a deadlock but not vice versa.
That is, a process may not be a part of a cycle, it can still be deadlocked. Consider process
P44 in Figure.1. It is not a part of any cycle but is still deadlocked as it is dependent on P24,
which is deadlocked. Since in the single-resource model, a process can have at most one
outstanding request, the AND model is more general than the single-resource model.

4.4.3 The OR model
In the OR model, a process can make a request for numerous resources simultaneously and
the request is satisfied if any one of the requested resources is granted. The requested
resources may exist at different locations. If all requests in the WFG are OR requests, then
the nodes are called OR nodes. Presence of a cycle in the WFG of an OR model does not
imply a deadlock in the OR model. To make it more clear, consider Figure 1. If all nodes are
OR nodes, then process P11 is not deadlocked because once process P33 releases its
resources, P32 shall become active as one of its requests is satisfied. After P32 finishes
execution and releases its resources, process P11 can continue with its processing.
In the OR model, the presence of a knot indicates a deadlock. In a WFG, a vertex v is in a
knot if for all u :: u is reachable from v : v is reachable from u. No paths originating from a
knot shall have dead ends. A deadlock in the OR model can be intuitively defined as follows:
a process Pi is blocked if it has a pending OR request to be satisfied. With every blocked
process, there is an associated set of processes called dependent set. A process shall move
from an idle to an active state on receiving a grant message from any of the processes in its
dependent set. A process is permanently blocked if it never receives a grant message from
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any of the processes in its dependent set. Intuitively, a set of processes S is deadlocked if all
the processes in S are permanently blocked. To formally state that a set of processes is
deadlocked, the following conditions hold true:
1. Each of the process is the set S is blocked.
2. The dependent set for each process in S is a subset of S.
3. No grant message is in transit between any two processes in set S.
We now show that a set of processes S shall remain permanently blocked in the OR model if
the above conditions are met. A blocked process P is the set S becomes active only after
receiving a grant message from a process in its dependent set, which is a subset of S. Note
that no grant message can be expected from any process in S because they are all blocked.
Also, the third condition states that no grant messages in transit between any two processes in
set S. So, all the processes in set S are permanently blocked.
Hence, deadlock detection in the OR model is equivalent to finding knots in the graph. Note
that, there can be a deadlocked process that is not a part of a knot. Consider Figure 1, where
P44 can be deadlocked even though it is not in a knot. So, in an OR model, a blocked process
P is deadlocked if it is either in a knot or it can only reach processes on a knot.

4.4.4 The AND-OR model
A generalization of the previous two models (OR model and AND model) is the AND-OR
model. In the AND-OR model, a request may specify any combination of and and or in the
resource request. For example, in the ANDOR model, a request for multiple resources can be
of the form x and (y or z). The requested resources may exist at different locations. To detect
the presence of deadlocks in such a model, there is no familiar construct of graph theory
using WFG. Since a deadlock is a stable property (i.e., once it exists, it does not go away by
itself), this property can be exploited and a deadlock in the AND-OR model can be detected
by repeated application of the test for OR-model deadlock. However, this is a very inefficient
strategy.

4.4.5 The model

Another form of the AND-OR model is the model (called the P-out-of-Q model), which

allows a request to obtain any k available resources from a pool of n resources. Both the

models are the same in expressive power. However, model lends itself to a much more

compact formation of a request. Every request in the model can be expressed in the

AND-OR model and vice-versa. Note that AND requests for p resources can be stated

as and OR requests for p resources can be stated as .

4.4.6 Unrestricted model
In the unrestricted model, no assumptions are made regarding the underlying structure of
resource requests. In this model, only one assumption that the deadlock is stable is made and
hence it is the most general model. This way of looking at the deadlock problem helps in
separation of concerns: concerns about properties of the problem (stability and deadlock) are
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separated from underlying distributed systems computations (e.g., message passing versus
synchronous communication). Hence, these algorithms can be used to detect other stable
properties as they deal with this general model. But, these algorithms are of more theoretical
value for distributed systems since no further assumptions are made about the underlying
distributed systems computations which leads to a great deal of overhead (which can be
avoided in simpler models like AND or OR models).

4.5 Knapp’s classification of distributed deadlock detection algorithms
Distributed deadlock detection algorithms can be divided into four classes: path-pushing,
edge-chasing, diffusion computation, and global state detection.

4.5.1 Path-pushing algorithms
In path-pushing algorithms, distributed deadlocks are detected by maintaining an explicit
global WFG. The basic idea is to build a global WFG for each site of the distributed system.
In this class of algorithm, whenever deadlock computation is performed, each site sends its
local WFG to all the neighboring sites. After the local data structure of each site is updated,
this updated WFG is then passed along to other sites, and the procedure is repeated until one
site has a sufficiently complete picture of the global state to announce deadlock or to
establish that no deadlocks are present. This feature of sending around the paths of the global
WFG has led to the term path-pushing algorithms.

4.5.2 Edge-chasing algorithms
In an edge-chasing algorithm, the presence of a cycle in a distributed graph structure is
verified by propagating special messages called probes along the edges of the graph. These
probe messages are different to the request and reply messages. The formation of a cycle can
be detected by a site if it receives the matching probe sent by it previously. Whenever a
process that is executing receives a probe message, it simply discards this message and
continues. Only blocked processes propagate probe messages along their outgoing edges. An
interesting variation of this method can be found in Mitchell, where probes are sent upon
request and in the opposite direction of the edges.
The main advantage of edge-chasing algorithms is that probes are fixed size messages that
are normally very short.

4.5.3 Diffusing computation-based algorithms
In diffusion computation-based distributed deadlock detection algorithms, deadlock detection
computation is diffused through the WFG of the system. These algorithms make use of echo
algorithms to detect deadlocks. This computation is superimposed on the underlying
distributed computation. If this computation terminates, the initiator declares a deadlock. The
main feature of the superimposed computation is that the global WFG is implicitly reflected
in the structure of the computation. The actual WFG is never built explicitly. To detect a
deadlock, a process sends out query messages along all the outgoing edges in the WFG.
These queries are successively propagated (i.e., diffused) through the edges of the WFG.
Queries are discarded by a running process and are echoed back by blocked processes in the
following way: when a blocked process first receives a query message for a particular
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deadlock detection initiation, it does not send a reply message until it has received a reply
message for every query it sent (to its successors in the WFG). For all subsequent queries for
this deadlock detection initiation, it immediately sends back a reply message. The initiator of
a deadlock detection detects a deadlock when it has received a reply for every query it has
sent out.
4.5.4 Global state detection-based algorithms
Global state detection-based deadlock detection algorithms exploit the following facts: (i) a
consistent snapshot of a distributed system can be obtained without freezing the underlying
computation, and (ii) a consistent snapshot may not represent the system state at any moment
in time, but if a stable property holds in the system before the snapshot collection is initiated,
this property will still hold in the snapshot.
Therefore, distributed deadlocks can be detected by taking a snapshot of the system and
examining it for the condition of a deadlock.

4.7 Chandy–Misra–Haas algorithm for the AND model
We now discuss Chandy–Misra–Haas’s distributed deadlock detection algorithm for the
AND model, which is based on edge-chasing. The algorithm uses a special message called
probe, which is a triplet (i, j, k), denoting that it belongs to a deadlock detection initiated for
process Pi and it is being sent by the home site of process Pj to the home site of process Pk. A
probe message travels along the edges of the global WFG graph, and a deadlock is detected
when a probe message returns to the process that initiated it. A process Pj is said to be
dependent on another process Pk if there exists a sequence of processes Pj , Pi1, Pi2 , . . . , Pim,
Pk such that each process except Pk in the sequence is blocked and each process, except the Pj

, holds a resource for which the previous process in the sequence is waiting. Process Pj is said
to be locally dependent upon process Pk if Pj is dependent upon Pk and both the processes are
on the same site.

Data structures
Each process Pi maintains a boolean array, dependent i, where dependent (i,j) is true only if
Pi knows that Pj is dependent on it. Initially, dependent(i,j) is false for all i and j.

The algorithm
Algorithm is executed to determine if a blocked process is deadlocked. Therefore, a probe
message is continuously circulated along the edges of the global WFG graph and a deadlock
is detected when a probe message returns to its initiating process.
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Performance analysis
In the algorithm, one probe message (per deadlock detection initiation) is sent on every edge
of the WFG which connects processes on two sites. Thus, the algorithm exchanges at most
m(n−1)/2 messages to detect a deadlock that involves m processes and spans over n sites. The
size of messages is fixed and is very small (only three integer words). The delay in detecting
a deadlock is O(n).

4.8 Chandy–Misra–Haas algorithm for the OR model
We now discuss Chandy–Misra–Haas’s distributed deadlock detection algorithm for the OR
model, which is based on the approach of diffusion computation. A blocked process
determines if it is deadlocked by initiating a diffusion computation. Two types of messages
are used in a diffusion computation: query(i, j, k) and reply(i, j, k), denoting that they belong
to a diffusion computation initiated by a process Pi and are being sent from process Pj to
process Pk.

Basic idea
A blocked process initiates deadlock detection by sending query messages to all processes in
its dependent set (i.e., processes from which it is waiting to receive a message). If an active
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process receives a query or reply message, it discards it. When a blocked process Pk receives
a query(i, j, k) message, it takes the following actions:
1. If this is the first query message received by Pk for the deadlock detection initiated by Pi
(called the engaging query), then it propagates the query to all the processes in its dependent
set and sets a local variable numk(i) to the number of query messages sent.
2. If this is not the engaging query, then Pk returns a reply message to it immediately
provided Pk has been continuously blocked since it received the corresponding engaging
query. Otherwise, it discards the query.
Process Pk maintains a boolean variable waitk(i) that denotes the fact that it has been
continuously blocked since it received the last engaging query from process Pi. When a
blocked process Pk receives a reply(i, j, k) message, it decrements numk(i) only if waitk(i)
holds. A process sends a reply message in response to an engaging query only after it has
received a reply to every query message it has sent out for this engaging query. The initiator
process detects a deadlock when it has received reply messagesto all the query messages it
has sent out.

The algorithm
The algorithm works as shown in Algorithm. For ease of presentation, we have assumed that
only one diffusion computation is initiated for a process. In practice, several diffusion
computations may be initiated for a process (a diffusion computation is initiated every time
the process gets blocked), but at any time only one diffusion computation is current for any
process. However, messages for outdated diffusion computations may still be in transit. The
current diffusion computation can be distinguished from outdated ones by using sequence
numbers.



UNIT 4 DISTRIBUTED COMPUTING (PG 2016-2018 LATERAL ENTRY)

M . T H I L L A I N A Y A K I      D E P T . O F  C S , C A & I T     K A H E P a g e | 10/14

Performance analysis
For every deadlock detection, the algorithm exchanges e query messages and e reply
messages, where e = n(n−1) is the number of edges.

4.9 Global predicate detection
4.9.1 Stable and unstable predicates
Specifying predicates on the system state provides an important handle to specify, observe,
and detect the behavior of a system. This is useful in formally reasoning about the system
behavior. By being able to detect a specified predicate in the execution, we gain the ability to
monitor the execution. Predicate specification and detection has uses in distributed
debugging, sensor networks used for sensing in various applications, and industrial process
control. As an example in the manufacturing process, a system may be monitoring the
pressure of Reagent A and the temperature of Reagent B. Only when  1 = (PressureA > 240
KPa) ∧ (TemperatureB > 300 'C) should the two reagents be mixed. As another example,
consider a distributed execution where variables x, y, and z are local to processes Pi, Pj , and
Pk, respectively. An application might be interested in detecting the predicate 2=xi+yj+zk
<−125. In a nuclear power plant, sensors at various locations would monitor the relevant
parameters such as the radioactivity level and temperature at multiple locations within the
reactor.
Observe that the “predicate detection” problem is inherently different from the global
napshot problem. A global snapshot gives one of the possible states that could have existed
during the period of the snapshot execution. Thus, a snapshot algorithm can observe only one
of the predicate values that could have existed during the algorithm execution. Predicates can
be either stable or unstable. A stable predicate is a predicate that remains true once it
becomes true. In traditional systems, a predicate is stable if ∅⇒∅, where “∅” is the
“henceforth” operator from temporal logic. In distributed executions, a more precise
definition is needed, due to the absence of global time. Formally, a predicate  at a cut C is
stable if the following holds:

Deadlock in a system is a stable property because the deadlocked processes continue to
remain deadlocked (until deadlock resolution is performed). Termination of an execution is
another stable property. Specific algorithms to detect termination of the execution, and to
detect deadlock were considered. Here, we look at a general technique to detect a stable
predicate.

4.9.1 Stable predicates
Deadlock
A deadlock represents a system state where a subset of the processes are blocked on one
another, waiting for a reply from the other processes in that subset. The waiting relationship
is represented by a wait-for graph (WFG) where an edge from i to j indicates that process i is
waiting for a reply from process j. Given a wait-for graph G = (V,E), a deadlock is a
subgraphG' = (V ',E') such that V' ⊆ V and E' ⊆ E and for each process i in V', theprocess i
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remains blocked unless it receives a reply from some process(es) in V'. There are two
conditions that characterize the deadlock state of the execution:
• (local condition:) each deadlocked process is locally blocked, and
• (global condition:) the deadlocked process will not receive a reply from some process(es) in
V'.

Termination
Termination of an execution is another stable property, and is best understood by viewing a
process as alternating between two states: active state and passive state. An active process
spontaneously becomes passive when it has no further work to do; a passive process can
become active only when it receives a message from some other process. If such a message
arrives, then the process becomes active by doing CPU processing and maybe sending
messages as a result of the processing. An execution is terminated if each process is passive,
and will not become active unless it receives more messages. There are two conditions that
characterize the termination state of the execution:
• (local condition:) each process is in passive state; and
• (global condition:) there is no message in transit between any pair of processes.
Generalizing from the above two most frequently encountered stable properties, we assume
that each stable property can be characterized by a local process state component, and a
channel component or a global component. Recall from our discussion of global snapshots
that any channel property can be observed by observing the local states at the two endpoints
of the channel, in a consistent manner. Thus, any global condition can be observed by
observing the local states of the processes.

We now address the question: “What are the most effective techniques for detecting a stable
property?” Clearly, repeatedly or periodically taking a global snapshot will work; if the
property is true in some snapshot, then it can be claimed that the property is henceforth true.
However, recording a snapshot is expensive; recall that it can require up to O(n2) control
messages without inhibition, or O(n) messages with inhibition. The approach that has been
widely adopted is the two-phase approach of observing potentially inconsistent global states.
In each state observation, all the local variables necessary for defining the local conditions, as
well as the global conditions, are observed.
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Two potentially inconsistent global states are recorded consecutively, such that the second
recording is initiated after the first recording has completed. This is illustrated in Figure. The
stable property can be declared to be true if the following holds:
• The variables on which the local conditions as well as the global conditions are defined
have not changed in the two observations, as well as between the two observations.
If none of the variables changes between the two observations, it can be claimed that after the
termination of the first observation and before the start of the second observation, there is an
instant in physical time when the variables still have the same value. Even though the two
observations are each inconsistent, if the global property is true at a common physical time,
then the stable property will necessarily be true. The most common ways of taking a pair of
consecutive, not necessarily consistent, snapshots using O(n) control messages are as follows:
• Each process randomly records its state variables and sends them to a central process via
control messages. When the central process receives this message from each other process,
the central process informs each other process to send its (uncoordinated) local state again.
• A token is passed around a ring, and each process appends its local state to the contents of
the token. When the token reaches the initiator, it passes the token around for a second time.
Each process again appends its local state to the contents of the token.
• On a predefined spanning tree, the root (coordinator) sends a query message in the fan-out
sweep of the tree broadcast. In the fan-in sweep of the ensuing tree converge cast, each node
collects the local states of the nodes in its subtree rooted at itself and forwards these local
states to its parent. When the root gets the local states from all the nodes in its tree, the first
phase completes. The second phase, which contains another broadcast followed by a
converge cast, is initiated.

4.9.2 Unstable predicates
An unstable predicate is a predicate that is not stable and hence may hold only intermittently.
The following are some of the several challenges in detecting unstable predicates:
• Due to unpredictable message propagation times and unpredictable scheduling of the
various processes on the processors under various load conditions, even for deterministic
executions, multiple executions of the same distributed program may pass through different
global states. Further, the predicate may be true in some executions and false in others.
• Due to the non-availability of instantaneous time in a distributed system: – even if a monitor
finds the predicate to be true in a global state, it may not have actually held in the execution;–
even if a predicate is true for a transient period, it may not be detected by intermittent
monitoring.
Hence, periodic monitoring of the execution is not adequate. These challenges are faced by
snapshot-based algorithms as well as by a central monitor that evaluates data collected from
the monitored processes. To address these challenges, we can make two important
observations.
• It seems necessary to examine all the states that arise in the execution, so as not to miss the
predicate being true. Hence, it seems useful to define predicates, not on individual states, but
on the observation of the entire execution.
• For the same distributed program, even given that it is deterministic, multiple observations
may pass through different global states. Further, a predicate may be true in some of the
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program observations but not in others. Hence it is more useful to define the predicates on all
the observations of the distributed program and not just on a single observation of it.

4.10 Distributed algorithms for conjunctive predicates
4.10.1 Distributed state-based token algorithm for Possibly___, where _ is conjunctive
Algorithm is a distributed version of Algorithm. Each queue Qi is maintained locally at Pi.
The data structure GS no longer needs to be a n×n array. Instead, a unique token is passed
among the processes serially. The token carries a vector GS corresponding to the vector
timestamp of the earliest global state under consideration as a candidate solution.
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Questions OPTION 1 OPTION 2 OPTION 3 OPTION 4 OPTION 5 OPTION 6 Answer Key

______are a fundamental problem in DS. Deadlocks processors task procedures Deadlocks 

Deadlock  is commo___________nly achieved by either 

having a process acquire all the needed resources 

simultaneously before it begins execution or by pre empting a 

process than holds the needed resources.

acceptance prevention detection looping prevention

In the __________ to DS a resource is granted to a process if 

the resulting global system is safe.
deadlock condition Detection 

deadlock 

avoidance 

approach

acceptance

deadlock 

avoidance 

approach

Deadlock detection requires an examination of the status of 

the process resources interaction for the presence of a 

_________________.

deadlock detection
deadlock 

acceptance

deadlock 

resources
deadlock condition deadlock condition

A DS consists of a set of processors that are connected by 

_______________.
protocols resources

communication 

networks
layers

communication 

networks

The communication delays is finite but _______________. predictable unpredictable limited unlimited unpredictable

 A __________ can be running state if a process has all the 

needed resources and is either executing or is ready for 

execution.

Process tasks procedures functions Process

In the blocked state a process is waiting to acquire 

some__________
Process Methods  resources. Procedures  resources.

In DS the state of the system can be modelled by directed 

graph called a __________
DFG Graph Wait and accept wait for graph. wait for graph.

A system is ___________ if and only if there exists a 

directed cycle or knot in the WFG.
terminates accepted deadlocked leaked deadlocked

Handling of ____ becomes highly complicated in DS because 

no site has accurate knowledge of the current state of the 

system.

tasks deadlocks process resources deadlocks

In _______________ to DS a resource is granted to a process 

if the resulting global system state is safe.

deadlock avoidance 

approach

deadlock 

condition

deadlock 

acceptance

communication 

networks

deadlock 

avoidance 

approach

_________________ in DS seems to be the best approach to 

handle deadlocks in DS.

deadlock avoidance 

approach

Deadlock 

detection

deadlock 

acceptance

communication 

networks

Deadlock 

detection

_____________ requires an examination of the status of the 

process resources interaction for the presence of a cycle wait.

deadlock avoidance 

approach

deadlock 

acceptance

Deadlock 

detection

communication 

networks

Deadlock 

detection
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Deadlock handling using the approach of deadlock detection 

entails ___________ two basic issues.
packeting terminating detecting addressing addressing

____________ must detect all existing deadlocks in a finite 

time.
Primary algorithm safety algorithm

Progress 

algorithm
Process algorithm

Progress 

algorithm

_____________ should not report deadlocks that do not 

exists called phantom or false deadlocks.
Primary algorithm Safety algorithm

Progress 

algorithm
Process algorithm Safety algorithm

_____________ involves breaking existing wait for 

dependencies between the processes to resolve the deadlock.

Deadlock 

resolution
Safety algorithm

Progress 

algorithm
Process algorithm

Deadlock 

resolution

_________________detection algorithms propagate 

information regarding wait for graph.

Deadlock 

resolution

Several 

deadlocks 
detecting addressing Several deadlocks 

The___________ is not cleaned in a timely manner, it am 

result in detection of phantom deadlocks.
data tasks  information process  information

DS allow many kinds of____________. resouce detection
resource 

utilization

resource 

acceptance
 resource requests  resource requests

A process might require a ___________ or a combination of 

resources for its execution.
multi resources waited resources single resource

unwaited 

resources
single resource

The ____________ is the simplest resource model in a DS 

where process can have almost one outstanding request for 

only one unit of a resource.

multi resource 

model

single resource 

model
waited resources

unwaited 

resources

single resource 

model

In the ___________ a process can request more than one 

resource simultaneously and the request is satisfied only after 

all the requested resources are granted to the process.

AND model OR model AND OR model WFG AND model

In the AND model if a cycle is detected in the ________ it 

implies a deadlock but not vice versa.
AND Model WFG OR model AND OR model WFG

In the __________ a process can make a request for 

numerous resources simultaneously and the request is 

satisfied if any one of the requested resources is granted.

AND Model WFG OR model, AND OR model OR model,

The ____________may exist at different locations. resouce detection
resource 

utilization

resource 

acceptance

requested 

resources 

requested 

resources 

Deadlock detection in the OR model is equivalent to find 

________ in the graph.
data tasks knots process knots

A generalization of the previous models is the_________.
 AND_OR 

MODEL
AND model OR model WFG

 AND_OR 

MODEL

Another form of the AND_OR model is the model also called 

as __________- model.
P P out of Q Q P of q P out of Q

In the _____________, no assumptions are made regarding 

the underlying structure of resource requests.
restricted model complex model

unrestricted 

model
static model unrestricted model

In ________ algorithms distributed deadlocks are detected by 

maintaining are explicit global WFG.
path identification 

path 

determination
path detection path pushing path pushing

In an edge chasing algorithm the presence of a cycle in a 

___________-structure is verified by propagating special 

messages called probes along the edges of the graph.

distributed task
distributed 

process
distributed graph 

distributed 

networks
distributed graph 



The main advantage of edge chasing algorithms is that probes 

are _________ size messages that are normally very short.
variables fixed same different fixed

In diffusion computation based distributed deadlock detection 

algorithms deadlock detection computation is diffused 

through the _______ of the system.

WFG AND model OR model AND OR model WFG

To detect the deadlock, a process sends out query messages 

along all the outgoing edges into the _____-.
AND model WFG OR model AND OR model WFG

A consistent snapshot of a DS can be obtained without 

_________ the underlying computation.
terminating accepting freezing processing freezing

Mitchell and Merritt's algorithm belongs to the class of 

__________ algorithms where probes are sent in the opposite 

direction to the edges of the WFG.

local processing
global 

processing
edge clustering edge chasing edge chasing

A private label which is unique to the node at all times 

though it is not __________.
constant

local 

initialization

global 

initialization
variable constant

A ___________ which can be read by the other processes 

and which may not be unique.
private label public label protected label processed label public label

A global WFG is maintained and it defines the _________of 

the system.
localstate global state entire state single state entire state 

Chandy Misra Haas distributed deadlock detection algorithm 

for the ______________ which is based on edge chasing.
OR model AND OR model WFG AND model AND model

Chandy Misra Haas distributed deadlock detection algorithm 

for the __________which is based on approach of diffusion 

computation.

AND OR model WFG OR model AND model OR model 

A blocked process initiates __________________ by sending 

query messages to all processes in its dependent set.
deadlock avoidance

deadlock 

processing

deadlock 

accepting
deadlock detection deadlock detection

The current ____________ can be distinguished from 

outdated ones by using sequence numbers.

diffusion 

termination

diffusion 

detection

diffusion 

computation
all diffusion

diffusion 

computation

The Kshemkalyani Singhal algorithm to _________ 

deadlocks in the P out of the Q model is based on the global 

state detection approach.

computer detect termiante stacks detect

A _______- snapshot gives one of the possible states that 

could have existed during the period of the snapshot 

execution.

global local subset set global

A stable predicte is a predicate that remains true once it 

becomes ________.
FALSE TRUE may be legal TRUE

In distributed executions a more precise definition is needed 

due to the absence of __________.
local time accessing time global time terminating time global time

A deadlock represents a system state where a subset of the 

processes are blocked on one another waiting fro a reply from 

the other processes in that ___________.

set stack unstack subset subset

An___________ spontaneously becomes active only when it 

receives a message from some other processes.
passive process local access global access  active process  active process



A ___________ can become active only when it receives a 

message from some other process.
local access global access passive process  active process passive process

An __________ is terminated if each process is passive and 

will not become active unless it receives more messages.
termination execution processing stoping execution

An __________-is a predicate that is not stable and hence 

may hold only intermittenly.
unstable predicate stable predicate locally started globally started unstable predicate 

A unique token is passed among the processes serially in the 

______________.
local algorithms

global 

algorithms

processing 

algorithms

distributed 

algorithms

distributed 

algorithms

A total of m states at a process the time overhead at a process 

is_________.
O(m) O(n)  O(mn) O(2mn)  O(mn)

The ______________across processes is cumulative as the 

token travels serially.
time lapsed time overhead time delay time batching time overhead 

The total time complexity is ___________ O(mn)
2 O(n)  O(mn) O(2mn) O(mn)

2

Across all the processes the space requirement becomes 

___________
O(n) O(mn)

2  O(mn) O(2mn) O(mn)
2

The token makes O(mn) hops and the size of the token is 

____________.
2n integers n integers mn integers 2m integers 2n integers
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5.1 Distributed shared memory
5.1.1 Abstraction and advantages
Distributed shared memory (DSM) is an abstraction provided to the programmer of a
distributed system. It gives the impression of a single monolithic memory, as in traditional
von Neumann architecture. Programmers access the data across the network using only read
and write primitives,as they would in a uniprocessor system. Programmers do not have to
deal with send and receive communication primitives and the ensuing complexity of dealing
explicitly with synchronization and consistency in the message passing model. The DSM
abstraction is illustrated in Figure. A part of each computer’s memory is earmarked for
shared space, and the remainder is private memory. To provide programmers with the illusion
of a single shared address space, a memory mapping management layer is required to manage
the shared virtual memory space.

DSM has the following advantages:
1. Communication across the network is achieved by the read/write abstraction that simplifies
the task of programmers.
2. A single address space is provided, thereby providing the possibility of avoiding data
movement across multiple address spaces, and simplifying passing-by-reference and passing
complex data structures containing pointers.
3. If a block of data needs to be moved, the system can exploit locality of reference to reduce
the communication overhead.
4. DSM is often cheaper than using dedicated multiprocessor systems, because it uses simpler
software interfaces and off-the-shelf hardware.
5. There is no bottleneck presented by a single memory access bus.
6. DSM effectively provides a large (virtual) main memory.
7. DSM provides portability of programs written using DSM. This portability arises due to a
common DSM programming interface, which is independent of the operating system and
other low-level system characteristics.

Although a familiar (i.e., read/write) interface is provided to the programmer there is a catch
to it. Under the covers, there is inherently a distributed system and a network, and the data
needs to be shared in some fashion. There is no silver bullet. Moreover, with the possibility
of data replication and/or the concurrent access to data, concurrency control needs to be
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enforced. Specifically, when multiple processors wish to access the same data object, a
decision about how to handle concurrent accesses needs to be made. As in traditional
databases, if a locking mechanism based on read and write locks for objects is used,
concurrency is severely restrained, defeating one of the purposes of having the distributed
system. On the other hand, if concurrent access is permitted by different processors to
different replicas, the problem of replica consistency (which is a generalization of the
problem of cache consistency in computer architecture studies) needs to be addressed. The
main point of allowing concurrent access (by different processors) to the same data object is
to increase throughput. But in the face of concurrent access, the semantics of what value a
read operation returns to the program needs to be specified. Programmers ultimately need to
understand this semantics, which may differ from the Von Neumann semantics, because the
program logic depends greatly on this semantics. This compromises the assumption that the
DSM is transparent to the programmer.

Before examining the challenges in implementing replica coherency in DSM systems, we
look at its disadvantages:
1. Programmers are not shielded from having to know about various replica consistency
models and from coding their distributed applications according to the semantics of these
models.
2. As DSM is implemented under the covers using asynchronous message passing, the
overheads incurred are at least as high as those of a message passing implementation. As
such, DSM implementations cannot be more efficient than asynchronous message-passing
implementations. The generality of the DSM software may make it less efficient.
3. By yielding control to the DSM memory management layer, programmers lose the ability
to use their own message-passing solutions for accessing shared objects. It is likely that the



UNIT 5 – DISTRIBUTED SHARED MEMORY DISTRIBUTED COMPUTING (PG 2016-2018 LATERAL ENTRY)

M . T H I L L A I N A Y A K I      D E P T . O F  C S , C A & I T     K A H E P a g e | 3/33

standard vanilla implementations of DSM have a higher overhead than a programmer-written
implementation tailored for a specific application and system.
The main issues in designing a DSM system are the following:
• Determining what semantics to allow for concurrent access to shared objects. The semantics
needs to be clearly specified so that the programmer can code his program using an
appropriate logic.
• Determining the best way to implement the semantics of concurrent access to shared data.
One possibility is to use replication. One decision to be made is the degree of replication –
partial replication at some sites, or full replication at all the sites. A further decision then is to
decide on whether to use read-replication (replication for the read operations) or write-
replication (replication for the write operations) or both.
• Selecting the locations for replication (if full replication is not used), to optimize efficiency
from the system’s viewpoint.
• Determining the location of remote data that the application needs to access, if full
replication is not used.
• Reducing communication delays and the number of messages that are involved under the
covers while implementing the semantics of concurrent
access to shared data.
There is a wide range of choices on how these issues can be addressed. In part, the solution
depends on the system architecture.
There are four broad dimensions along which DSM systems can be classified and
implemented:
• Whether data is replicated or cached.
• Whether remote access is by hardware or by software.
• Whether the caching/replication is controlled by hardware or software.
• Whether the DSM is controlled by the distributed memory managers, by the operating
system, or by the language runtime system.

5.1.2 Memory consistency models
Memory coherence is the ability of the system to execute memory operations correctly.
Assume n processes and si memory operations per process Pi. Also assume that all the
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operations issued by a process are executed sequentially (that is, pipelining is disallowed), as
shown in Figure. Observe that there are a total of

possible permutations or interleavings of the operations issued by the processes. The problem
of ensuring memory coherence then becomes the problem of identifying which of these
interleavings are “correct,” which of course requires a clear definition of “correctness.” The
memory consistency model defines the set of allowable memory access orderings. While a
traditional definition of correctness says that a correct memory execution is one that returns
to each Read operation, the value stored by the most recent Write operation, the very
definition of “most recent” becomes ambigious in the presence of concurrent access and
multiple replicas of the data item. Thus, a clear definition of correctness is required in such a
system; the objective is to disallow the interleavings that make no semantic sense, while not
being overly restrictive so as to permit a high degree of concurrency.

The DSM system enforces a particular memory consistency model; programmers write their
programs keeping in mind the allowable interleavings permitted by that specific memory
consistency model. A program written for one model may not work correctly on a DSM
system that enforces a different model. The model can thus be viewed as a contract between
the DSM system and the programmer using that system. We now consider six consistency
models, which are related as shown in Figure.
Notation A write of value a to variable x is denoted as Write(x,a). A read of variable x that
returns value a is denoted as Read(x,a). A subscript on these operations is sometimes used to
denote the processor that issues these operations.

5.1.3 Strict consistency/atomic consistency/linearizability
The strictest model, corresponding to the notion of correctness on the traditional Von
Neumann architecture or the uniprocessor machine, requires that any Read to a location
(variable) should return the value written by the most recent Write to that location (variable).
Two salient features of such a system are the following: (i) a common global time axis is
implicitly available in a uniprocessor system; (ii) each write is immediately visible to all
processes.
Adapting this correctness model to a DSM system with operations that can be concurrently
issued by the various processes gives the strict consistency model, also known as the atomic
consistency model. The model is more formally specified as follows:
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1. Any Read to a location (variable) is required to return the value written by the most recent
Write to that location (variable) as per a global time reference.
For operations that do not overlap as per the global time reference, the specification is clear.
For operations that overlap as per the global time reference, the following further
specifications are necessary.
2. All operations appear to be executed atomically and sequentially.
3. All processors see the same ordering of events, which is equivalent to the global-time
occurrence of non-overlapping events.
An alternate way of specifying this consistency model is in terms of the “invocation” and
“response” to each Read and Write operation, as shown in Figure. Recall that each operation
takes a finite time interval and hence different operations by different processors can overlap
in time. However, the invocation and the response to each invocation can both be separately
viewed as being atomic events. An execution sequence in global time is viewed as a sequence
Seq of such invocations and responses. Clearly, Seq must satisfy the following conditions:
• (Liveness:) Each invocation must have a corresponding response.
• (Correctness:) The projection of Seq on any processor i, denoted Seqi, must be a sequence
of alternating invocations and responses if pipelining is disallowed.
Despite the concurrent operations, a linearizable execution needs to generate an equivalent
global order on the events that is a permutation of Seq, satisfying the semantics of
linearizability. More formally, a sequence Seq of invocations and responses is linearizable
(LIN) if there is a permutation Seq' of adjacent pairs of corresponding (invoc, resp) events
satisfying:
1. For every variable v, the projection of Seq' on v, denoted Seq'v, is such that every Read
(adjacent (invoc, resp) event pair) returns the most recent Write (adjacent (invoc, resp) event
pair) that immediately preceded it.
2. If the response op1_resp_ of operation op1 occurred before the invocation op2_invoc_ of
operation op2 in Seq, then op1 (adjacent (invoc, resp), event pair) occurs before op2
(adjacent (invoc, resp) event pair) in Seq'.
Condition 1 specifies that every processor sees a common order Seq' of events, and that in
this order, the semantics is that each Read returns the most recent completed Write value.
Condition 2 specifies that the common order Seq' must satisfy the global time order of events,
viz., the order of non-overlapping operations in Seq must be preserved in Seq'.
Examples Figure shows three executions:
• Figure (a) The execution is not linearizable because although the Read by P2 begins after
Write(x,4), the Read returns the value that existed before the Write. Hence, a permutation
Seq' satisfying the condition 2 above on global time order does not exist.
• Figure (b) The execution is linearizable. The global order of operations (corresponding to
(invocation, response) pairs in Seq'), consistent with the real-time occurrence, is: Write(y,2),
Write(x,4), Read(x,4), Read(y,2). This permutation Seq' satisfies conditions 1 and 2.
• Figure 12.4(c) The execution is not linearizable. The two dependencies: Read(x,0) before
Write(x,4), and Read(y,0) before Write(x,2) cannot both be satisfied in a global order while
satisfying the local order of operations at each processor. Hence, there does not exist any
permutation Seq_ satisfying conditions 1 and 2.
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Implementations
Implementing linearizability is expensive because a global time scale needs to be simulated.
As all processors need to agree on a common order, the implementation needs to use total
order. For simplicity, we assume full replication of each data item at all the processors.
Hence, total ordering needs to be combined with a broadcast. Algorithm gives the
implementation

assuming the existence of a total order broadcast primitive that broadcasts to all processors
including the sender. Hence, the memory manager software has to be placed between the
application above it and the total order broadcast layer below it.
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Although Algorithm appears simple, it is also subtle. The total order broadcast ensures that
all processors see the same order:
• For two non-overlapping operations at different processors, by the very definition of non-
overlapping, the response to the former operation precedes the invocation of the latter in
global time.
• For two overlapping operations, the total order ensures a common view by all processors.

For a Read operation, when the memory managers system wide receive the total order
broadcast, they do not perform any action. Why is the broadcast then necessary? The reason
is this. If Read operations do not participate in the total order broadcasts, they do not get
totally ordered with respect to the Write operations as well as with respect to the other Read
operations. This can lead to a violation of linearizability, as shown in Figure. The Read by Pk
returns the value written by Pi. The later Read by Pj returns the initial value of 0. As per the
global time ordering requirement of linearizability, the Read by Pj that occurs after the Read
by Pk must also return the value 4. However, that is not the case in this example, wherein the
Read operations do not participate in the total order broadcast.
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5.2 Shared memory mutual exclusion
Operating systems have traditionally dealt with multi-process synchronization using
algorithms based on first principles (e.g., the well-known bakery algorithm), high-level
constructs such as semaphores and monitors, and special “atomically executed” instructions
supported by special-purpose hardware (e.g., Test&Set, Swap, and Compare&Swap). These
algorithms are applicable to all shared memory systems. In this section, we will review the
bakery algorithm, which requires O(n) accesses in the entry section, irrespective of the level
of contention. We will then study fast mutual exclusion, which requires O(1) accesses in the
entry section in the absence of contention. This algorithm also illustrates an interesting
technique in resolving concurrency. As hardware primitives have the in-built atomicity that
helps to easily solve the mutual exclusion problem, we will then examine mutual exclusion
based on these primitives.

5.3. Lamport’s bakery algorithm
Lamport proposed the classical bakery algorithm for n-process mutual exclusion in shared
memory systems. The algorithm is so called because it mimics the actions that customers
follow in a bakery store. A process wanting to enter the critical section picks a token number
that is one greater than the elements in the array choosing[1.. n]. Processes enter the critical
section in the increasing order of the token numbers. In case of concurrent accesses to
choosing by multiple processes, the processes may have the same token number. In this case,
a unique lexicographic order is defined on the tuple (token, pid), and this dictates the order in
which processes enter the critical section. The algorithm for process i is given in Algorithm.
The algorithm can be shown to satisfy the three requirements of the critical section problem:
(i) mutual exclusion, (ii) bounded waiting, and (iii) progress. In the entry section, a process
chooses a timestamp for itself, and resets it to 0 in the exit section. In lines 1a–1c, each
process chooses a timestamp for itself, as the max of the latest timestamps of all processes,
plus one. These steps are non-atomic; thus multiple processes could be choosing timestamps
in overlapping durations. When process i reaches line 1d, it has to check the status of each
other process j, to deal with the effects of any race conditions in selecting timestamps. In
lines 1d–1f, process i serially checks the status of each other process j. If j is selecting a
timestamp for itself, j’s selection interval may have overlapped with that of i, leading to an
unknown order of timestamp values. Process i needs to make sure that any other process j (j <
i) that had begun to execute line 1b concurrently with itself and may still be executing line 1b
does not assign itself the same timestamp. Otherwise mutual exclusion could be violated as i
would enter the CS, and subsequently, j, having a lower process identifier and hence a
lexicographically lower timestamp, would also enter the CS. Hence, i waits for j’s timestamp
to stabilize, i.e., choosing(j) to be set to false. Once j’s timestamp is stabilized, i moves from
line 1e to line 1f. Either j is not requesting (in which case j’s timestamp is 0) or j is
requesting. Line 1f determines the relative priority between i and j. The process with a
lexicographically lower timestamp has higher priority and enters the CS; the other process
has to wait (line 1g). Hence, mutual exclusion is satisfied. Bounded waiting is satisfied
because each other process j can “overtake” process i at most once after i has completed
choosing its timestamp. The second time j chooses a timestamp, the value will necessarily be
larger than i’s timestamp if i has not yet entered its CS. Progress is guaranteed because the
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lexicographic order is a total order and the process with the lowest timestamp at any time in
the loop (lines 1d–1g) is guaranteed to enter the CS.

• Space complexity: A lower bound of n registers, specifically, the timestamp array, has been
shown for the shared memory critical section problem. Thus, one cannot hope to have a more
space-efficient algorithm for distributed shared memory mutual exclusion.
• Time complexity: In many environments, the level of contention may be low. The O(n)
overhead of the entry section does not scale well for such environments. This concern is
addressed by the field of fast mutual exclusion that aims to have O(1) time overhead for the
entry and exit sections of the algorithm, in the absence of contention. Although this algorithm
guarantees mutual exclusion and progress, unfortunately, this fast algorithm has a price – in
the worst case, it does not guarantee bounded delay. Next, we will study Lamport’s algorithm
for fast mutual exclusion in asynchronous shared memory systems. This algorithm is notable
in that it is the first algorithm for fast mutual exclusion, and uses the asynchronous shared
memory model. Further, it illustrates an important technique for resolving contention. The
worst-case unbounded delay in the presence of persisting contention has been addressed
subsequently, by using a timed model of execution, wherein there is an upper bound on the
time it takes to execute any step.

5.3.2 Lamport’s WRWR mechanism and fast mutual exclusion
Lamport’s fast mutual exclusion algorithm is given in Algorithm. The algorithm illustrates an
important technique – the (W −R−W −R) sequence that is a necessary and sufficient
sequence of operations to check for contention and to ensure safety in the entry section, using
only two registers.
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Lines 1b, 1c, 1g , and 1h represent a basic (W(x)-R(y)-W(y)-R(x))vsequence whose necessity
in identifying a minimal sequence of operations for fast mutual exclusion is justified as
follows:
1. The first operation needs to be a Write, say to variable x. If it were a Read, then all
contending processes could find the value of the variable even outside the entry section.
2. The second operation cannot be a Write to another variable, for that could equally be
combined with the first Write to a larger variable. The second operation should not be a Read
of x because it follows Write of x and if there is no interleaved operation from another
process, the Read does not provide any new information. So the second operation must be a
Read of another variable, say y.
3. The sequence must also contain Read(x) and Write(y) because there is no point in reading
a variable that is not written to, or writing a variable that is never read.

4. The last operation in the minimal sequence of the entry section must be a Read, as it will
help determine whether the process can enter CS. So the last operation should be Read(x),
and the second-last operation should be the Write(y). In the absence of contention, each
process writes its own i.d. to x and then reads y. Then finding that y has its initial value, the
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process writes its own i.d. to y and then reads x. Finding x to still be its own i.d., it enters CS.
Correctness needs to be shown in the presence of contention – let us discuss this after
considering the structure of the remaining entry and exit section code.
In the exit section, the process must do a Write to indicate its completion of the CS. The
Write cannot be to x, which is also the first variable written in the entry section. So the
operation must be Write(y).
Now consider the sequence of interleaved operations by processes i, j, and k in the entry
section, as shown in Figure. Process i enters its critical

section, but there is no record of its identity or that it had written any variables at all, because
the variables it wrote (shown boldfaced above) have been overwritten. In order that other
processes can discover when (and who) leaves the CS, there needs to be another variable that
is set before the CS and reset after the CS. This is the boolean, b(i). Additionally, y needs to
be reset on exiting the CS.
The code in lines 1c–1f has the following use. If a process p finds y '= 0, then another process
has executed at least line 1g and not yet executed line 3a. So process p resets its own flag,
and before retrying again, it awaits for y = 0. If process p finds y = 0 in line 1c, it sets y = p in
line 1g and checks if x = p.
• If x = p, then no other process has executed line 1b, and any later process would be blocked
in the loop in lines 1c–1f now because y = p. Thus, if x = p, process p can safely enter the CS.
• If x '= p, then another process, say q, has overwritten x in line 1b and there is a potential
race. Two broad cases are possible:
– Process q finds y '= 0 in line 1c. It resets its flag, and stays in the 1d–1f section at least until
p has exited the CS. Process p on the other hand resets its own flag (line 1i) and waits for all
other processes such as q to reset their own flags. As process q is trapped in lines 1d–1f,
process p will find y = p in line 1l and enter the CS.
– Process q finds y = 0 in line 1c. It sets y to q in line 1g, and enters the race, even closer to
process p, which is at line 1h. Of the processes such as p and q that contend at line 1h, there
will be a unique winner:
* If no other process r has since written to x in line 1b, the winner is the process among p and
q that executed line 1b last, i.e., wrote its own i.d. to x. That winner will enter the CS directly
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from line 1h, whereas the losers will reset their own flags, await the winner to exit and reset
its flag, and also await other contenders at line 1h and newer contenders to reset their own
flags. The losers will compete again from line 1a after the winner has reset y.
* If some other process r has since written its i.d. to x in line 1b, both p and q will enter code
in lines 1i–1n. Both p and q reset their flags, await for r, which will be trapped in lines 1d–1f
to reset its flag, and then both p and q check the value of y. Between p and q, the process that
last wrote to y in line 1g will become the unique winner and enter the CS directly. The loser
will then await for the winner to reset y, and then compete again from line 1a.
Thus, mutual exclusion is guaranteed, and progress is also guaranteed. However, a process
may be starved, although with decreasing probability, as its number of attempts increases.

5.3.3 Hardware support for mutual exclusion
Hardware support can allow for special instructions that perform two or more operations
atomically. Two such instructions, Test&Set and Swap , are defined and implemented as
shown in Algorithm. The atomic execution of two actions (a Read and a Write operation) can
greatly simplify a mutual exclusion algorithm, as seen from the mutual exclusion code in
Algorithm, respectively. Algorithm can lead to starvation. Algorithm is enhanced to
guarantee bounded waiting by using a “round-robin” policy to selectively grant permission
when releasing the critical section.

5.3.4 Register hierarchy and wait-free simulations
Observe from our analysis of DSM consistency models that an underlying assumption was
that any memory access takes a finite time interval, and the operation, whether a Read or
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Write, takes effect at some point during

this time duration. In the face of concurrent accesses to a memory location, hereafter called a
register, we cannot predict the outcome. In particular, in the face of a concurrent Read and
Write operation, the value returned by the Read is unpredictable. This observation is true
even for a simpler multiprocessor memory, without the context of a DSM. This observation
led to the research area that tried to define the properties of access orderings for the most
elementary memory unit. The access orderings depend on the properties of the register. An
implicit assumption is that of the availability of global time. This is a reasonable assumption
because we are studying access to a single register. Whether that register value is replicated
in the system or not is a lower detail that is not relevant to the level of abstraction of this
analysis.
In keeping with the semantics of the Read and Write operations, the following register types
have been identified by Lamport to specify the value returned to a Read in the face of a
concurrent Write operation. For the time being, we assume that there is a single reader
process and a single writer process.
• Safe register A Read operation that does not overlap with a Write operation returns the
most recent value written to that register. A Read operation that does overlap with a Write
operation returns any one of the values that the register could possibly contain at any time.
Consider the example of Figure, which shows several operations on an integer-valued
register. We consider two cases, without and with the Write by P3:
– NoWrite by P3 If the register is safe, Read12 must return the value 4, whereas Read22 and
Read32 can return any possible integer (up to MAXINT) because these operations overlap
with a Write, and the value returned is therefore ambiguous.
– Write by P3 Same as for the “no Write” case. If multiple writers are allowed, or if Write
operations are allowed to be pipelined, then what defines the most recent value of the register
in the face of concurrent Write operations becomes complicated. We explicitly disallow
pipelining in this model and analysis. In the face of Write operations from different
processors that overlap in time, the notion of a serialization point is defined. Observe that
each Write or Read operation has a finite duration between its invocation and its response. In
this duration, there iseffectively a single time instant at which the operation takes effect. For a
Read operation, this instant is the one at which the instantaneous value is selected to be
returned. For a Write operation, this instant is the one at which the value written is first
“reflected” in the register. Using this notion of the serialization point, the “most recent”
operation is unambiguously defined.
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• Regular register In addition to being a safe register, a Read that is concurrent with a Write
operation returns either the value before the Write operation, or the value written by the Write
operation.
In the example of Figure, we consider the two cases, with and without the Write by P3:
– No Write by P3 Read12 must return 4, whereas Read22 can return either 4 or 6, and
Read32 can also return either 4 or 6.
– Write by P3 Read12 must return 4, whereas Read22 can return either 4 or −6 or 6, and
Read32 can also return either 4 or −6 or 6.
• Atomic register In addition to being a regular register, the register is linearizable to a
sequential register.
In the example of Figure, we consider the two cases, with and without the Write by P3:
– No Write by P3 Read12 must return 4, whereas Read22 can return either 4 or 6. If Read22
returns 4, then Read32 can return either 4 or 6, but if Read22 returns 6, then Read32 must
also return 6.
– Write by P3 Read12 must return 4, whereas Read22 can return either4 or −6 or 6,
depending on the serialization points of the operations. 1. If Read22 returns 6 and the
serialization point of Write13 precedes the serialization point of Write21, then Read32 must
return 6.
2. If Read22 returns 6 and the serialization point of Write21 precedes the serialization point
of Write13, then Read32 can return +6 or −6.
3. Cases (3) and (4) where Read22 returns −6 are similar to cases (1) and (2).
The following properties, summarized in Table 12.2, characterize registers:
• whether the register is single-valued (boolean) or multi-valued
• whether the register is a single-reader (SR) or multi-reader (MR) register
• whether the register is a single-writer (SW) or multi-writer (MW) register
• whether the register is safe, regular, or atomic
The above characteristics lead to a hierarchy of 24 register types, with the most elementary
being the boolean SRSW safe register and the most complex being the multi-valued MRMW
atomic register. A study of register construction deals with designing the more complex
registers using simpler registers. Such constructions allow us to construct
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any register type from the most elementary register – the boolean SRSW safe register. We
will study such constructions by assuming the following convention: R1   Rq are q registers
that are used to construct a stronger register R, as shown in Figure. We assume n processes
exist; note that for various constructions, q may be different from n. Although the traditional
memory architecture, based on serialized access via memory ports to a memory location,
does not require such an elaborate classification, the bigger picture needs to be kept in mind.
In addition to illustrating algorithmic design techniques, this study paves the way for
accommodating newer technologies such as quantum computing and DNA computing for
constructing system memory.

5.4 Wait-free atomic snapshots of shared objects
Observing the global state of a distributed system is a fundamental problem. For message-
passing systems, we have studied how to record global snapshots which represent an
instantaneous possible global state that could have occurred in the execution. The snapshot
algorithms used message-passing of control messages, and were inherently inhibition-free,
although some variants that use fewer control messages do require inhibition. In this section,
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we examine the counterpart of the global snapshot problem in a shared-memory system,
where only Read and Write primitives can be used. The problem can be modeled as follows.
Given a set of SWMR atomic registers R1...Rn, where Ri can be written only by Pi and can be
read by all processes, and which together form a compound high-level object, devise a wait-
free algorithm to observe the state of the object at some instant in time. The following actions
are allowed on this high-level object, as also illustrated in Figure:
• Scani: This action invoked by Pi returns the atomic snapshot that is an instantaneous view of
the object (R1)...(Rn) at some instant between the invocation and termination of the Scan.
• Updatei_val_: This action invoked by Pi writes the data val to register Ri.
Clearly, any kind of locking mechanism is unacceptable because it is not wait-free. Consider
the following attempt at a wait-free solution. The format of each register Ri is assumed to be
the tuple: (data, seq_no) in order to uniquely identify each Write operation to the register. A
scanner would repeatedly scan the high-level object until two consecutive scans, called
double-collect in the shared memory context, returned identical content. This principle of
“double-collect” has been encountered in multiple contexts, such in two phase deadlock
detection and two-phase termination detection algorithms, and essentially embodies the two-
phase observation rule. However, this solution in not wait-free because between the two
observations of each double-collect, an Update by another process can prevent the Scan from
being successful. A wait-free solution is given in Algorithm. Process Pi can write to its RSW
register Ri and can read all registers R1' Rn. To design a wait free solution, it needs to be
ensured that a scanner is not indefinitely prevented from getting identical scans in the
double-collect, by some writer process periodically making updates. The problem arises
because of the imbalance in the roles of the scanner and updater – the updater is inherently
more powerful in that it can prevent all scanners from being successful. One elegant solution
therefore neutralizes the unfair advantage of the updaters by forcing

the updaters to follow the same rules as the scanner. Namely, the updaters also have to
perform a double-collect, and only after performing a double collect can an update write the
value it needs to. Additionally, an updater also writes the snapshot it collected in the register,
along with the new value of the data item. Now, if a scanner detects that an updater has made
an update after the scanner initiated its Scan, then the scanner can simply “borrow” the
snapshot recorded by the updater in its register. The updater helps the scanner to obtain a
consistent value. This is the principle of “helping” that is often used in designing wait-free
solutions for various problems.
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A scanner detects that an updater has made an update after the scanner initiated its Scan, by
using the local array changed. This array is reset to 0 when the Scan is invoked. Location
changed(k) is incremented (line 2k) if the Scan procedure detects (line 2j) that process Pk has
changed its data and seq_no (and implicitly the old_snapshot) fields in Rk. Based on the
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value

of changed(k), different inferences can be made, as now explained with the help of Figure:
• If changed(k)= 2 (line 2l), then two updates (line 1b) were made by Pk after Pi began its
Scan. Between the first and the second update, the Scan preceding the second update must
have completed successfully, and the scanned value was recorded in the old_snapshot field.
This old snapshot can be safely borrowed by the scanner Pi (line 2m) because it was recorded
after Pk finished its first double-collect, and hence after the scanner Pi initiated its Scan.
• However, if changed(k) = 1, it cannot be inferred that the old_snapshot recorded by Pk was
taken after Pi’s Scan began. When Pk does its the value it writes in old_snapshot is only the
result of a double-scan that preceded the “write” and may be a value that existed before Pi’s
Scan began. There are two cases by which a snapshot can be captured, as illustrated using
Figure :
1. A scanner can collect a snapshot (line 2g) if the double-collect (lines 2d–2e) returns
identical views (line 2f). The returned snapshot represents an instantaneous state that existed
at all times between the end of the first collect (line 2d) and the start of the second collect
(line 2e). Otherwise the scanner returns a borrowed snapshot (line 2m) from Pk if Pk has been
noticed to have made two updates (lines 2l) and therefore Pk has made a Scan embedded
inside Pi’s Scan. This borrowed snapshot itself (i) may have been obtained directly via a
double-collect, or (ii) indirectly been borrowed from another process (line 2l). In case (i), it
represents an instantaneous state/ in the duration of the double-collect. In case (ii), a recursive
argument can be applied. Observe that there are n processes, so the recursive argument can
hold at most n−1 times. The nth time, a double-collect must have been successful. Note that
between the two double-collects of Pi that are shown, there may be up to (n−2) other
unsuccessful double-collects of Pi. Each of these (n−2) other double-collects corresponds to
some Pk, k '= (i, j), having “changed” once.
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The linearization of the Scan and Update operations follows in a straightforward manner. For
example, non-overlapping operations get linearized in the order of their occurrence. An
operation by Pi that borrows a snapshot from Pk gets linearized after Pk.

Complexity
The local space complexity is O(n2) integers. The shared space is O(n2) corresponding to
each of the n registers of size O(n)each. The time complexity is O(n2). This is because the
main Scan loop has a complexity of O(n) and the loop may be executed at most n times – the
nth time, at least one process Pk must have caused Pi’s local changed_k' to reach a value of
two, triggering an end to the loop (lines 2k–2l).

5.5 Issues in failure recovery
In a failure recovery, we must not only restore the system to a consistent state, but also
appropriately handle messages that are left in an abnormal state due to the failure and
recovery.
We now describe the issues involved in a failure recovery with the help of a distributed
computation shown in Figure. The computation comprises of three processes Pi, Pj , and Pk,
connected through a communication network. The processes communicate solely by
exchanging messages over fault-free, FIFO communication channels. Processes Pi, Pj , and
Pk have taken checkpoints {Ci_0, Ci_1}, {Cj_0, Cj_1, Cj_2}, and {Ck_0, Ck_1},
respectively, and these processes have exchanged messages A to J as shown in Figure.
Suppose process Pi fails at the instance indicated in the figure. All the contents of the volatile
memory of Pi are lost and, after Pi has recovered from the failure, the system needs to be
restored to a consistent global state from where the processes can resume their execution.
Process Pi’s state is restored to a valid state by rolling it back to its most recent checkpoint
Ci_1. To restore the system to a consistent state, the process Pj rolls back to checkpoint Cj_1
because the rollback of process Pi to checkpoint Ci_1 created an orphan message H (the
receive event of H is recorded at process Pj while the send event of H has been undone at
process Pi). Note that process Pj does not roll back to checkpoint Cj_2 but to checkpoint
Cj_1, because rolling back to checkpoint Cj_2 does not eliminate the orphan message H.
Even this resulting state is not a consistent global state, as an orphan message I is created due
to the roll back of process Pj to checkpoint Cj_1. To eliminate this orphan message, process
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Pk rolls back to checkpoint Ck_1. The

restored global state {Ci,1, Cj_1, Ck_1} is a consistent state as it is free from orphan messages.
Although the system state has been restored to a consistent state, several messages are left in
an erroneous state which must be handled correctly.
Messages A, B, D, G, H, I, and J had been received at the points indicated in the figure and
messages C, E, and F were in transit when the failure occurred. Restoration of system state to
checkpoints {Ci,1, Cj,1,Ck,1} automatically handles messages A, B, and J because the send and
receive events of messages A, B, and J have been recorded, and both the events for G, H, and
I have been completely undone. These messages cause no problem and we call messages A,
B, and J normal messages and messages G, H, and I vanished messages.
Messages C, D, E, and F are potentially problematic. Message C is in transit during the
failure and it is a delayed message. The delayed message C has several possibilities: C might
arrive at process Pi before it recovers, it might arrive while Pi is recovering, or it might arrive
after Pi has completed recovery. Each of these cases must be dealt with correctly. Message D
is a lost message since the send event for D is recorded in the restored state for process Pj ,
but the receive event has been undone at process Pi. Process Pj will not resend D without an
additional mechanism, since the send D at Pj occurred before the checkpoint and the
communication system successfully delivered D.
Messages E and F are delayed orphan messages and pose perhaps the most serious problem
of all the messages. When messages E and F arrive at their respective destinations, they must
be discarded since their send events have been undone. Processes, after resuming execution
from their checkpoints, will generate both of these messages, and recovery techniques must
be able to distinguish between messages like C and those like E and F.
Lost messages like D can be handled by having processes keep a message log of all the sent
messages. So when a process restores to a checkpoint, it replays the messages from its log to
handle the lost message problem. However, message logging and message replaying during
recovery can result in duplicate messages. In the example shown in Figure, when process Pj

replays messages from its log, it will regenerate message J. Process Pk, which has already
received message J, will receive it again, thereby causing inconsistency in the system state.
Therefore, these duplicate messages must be handled properly.
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Overlapping failures further complicate the recovery process. A process Pj that begins
rollback/recovery in response to the failure of a process P can itself fail and develop amnesia
with respect process Pi’s failure; that is, process Pj can act in a fashion that exhibits ignorance
of process Pi’s failure. If overlapping failures are to be tolerated, a mechanism must be
introduced to deal with amnesia and the resulting inconsistencies.

5.6 Checkpoint-based recovery
In the checkpoint-based recovery approach, the state of each process and the communication
channel is check pointed frequently so that, upon a failure, the system can be restored to a
globally consistent set of checkpoints. It does not rely on the PWD assumption, and so does
not need to detect, log, or replay non-deterministic events. Checkpoint-based protocols are
therefore less restrictive and simpler to implement than log-based rollback recovery.
However, checkpoint-based rollback recovery does not guarantee that prefailure execution
can be deterministically regenerated after a rollback. Therefore, checkpoint-based rollback
recovery may not be suitable for applications that require frequent interactions with the
outside world. Checkpoint-based rollback-recovery techniques can be classified into three
categories: uncoordinated checkpointing, coordinated checkpointing, and communication-
induced checkpointing.

5.6.1 Uncoordinated checkpointing
In uncoordinated checkpointing, each process has autonomy in deciding when to take
checkpoints. This eliminates the synchronization overhead as there is no need for
coordination between processes and it allows processes to take checkpoints when it is most
convenient or efficient. The main advantage is the lower runtime overhead during normal
execution, because no coordination among processes is necessary. Autonomy in taking
checkpoints also allows each process to select appropriate checkpoints positions. However,
uncoordinated checkpointing has several shortcomings.
First, there is the possibility of the domino effect during a recovery, which may cause the loss
of a large amount of useful work.
Second, recovery from a failure is slow because processes need to iterate to find a consistent
set of checkpoints. Since no coordination is done at the time the checkpoint is taken,
checkpoints taken by a process may be useless checkpoints. (A useless checkpoint is never a
part of any global consistent state.) Useless checkpoints are undesirable because they incur
overhead and do not contribute to advancing the recovery line.
Third, uncoordinated checkpointing forces each process to maintain multiple checkpoints,
and to periodically invoke a garbage collection algorithm to reclaim the checkpoints that are
no longer required.
Fourth, it is not suitable for applications with frequent output commits because these require
global coordination to compute the recovery line, negating much of the advantage of
autonomy.
As each process takes checkpoints independently, we need to determine a consistent global
checkpoint to rollback to, when a failure occurs. In order to determine a consistent global
checkpoint during recovery, the processes record the dependencies among their checkpoints



UNIT 5 – DISTRIBUTED SHARED MEMORY DISTRIBUTED COMPUTING (PG 2016-2018 LATERAL ENTRY)

M . T H I L L A I N A Y A K I      D E P T . O F  C S , C A & I T     K A H E P a g e | 22/33

caused by message exchange

during failure-free operation. The following direct dependency tracking technique is
commonly used in uncoordinated checkpointing.

Let Ci,x be the x th checkpoint of process Pi, where i is the process i.d. and x is the checkpoint
index (we assume each process Pi starts its execution with an initial checkpoint Ci,0). Let Ii,x

denote the checkpoint interval or simply interval between checkpoints Ci,x−1 and Ci,x.

Consider the example shown in Figure. When process Pi at interval Ii,x sends a message m to
Pj , it piggybacks the pair (i, x) on m. When Pj receives m during interval Ij,y , it records the
dependency from Ii,x to Ij,y , which is later saved onto stable storage when Pj takes checkpoint
Cj,y. When a failure occurs, the recovering process initiates rollback by broadcasting a
dependency request message to collect all the dependency information maintained by each
process. When a process receives this message, it stops its execution and replies with the
dependency information saved on the stable storage as well as with the dependency
information, if any, which is associated with its current state. The initiator then calculates the
recovery line based on the global dependency information and broadcasts a rollback request
message containing the recovery line. Upon receiving this message, a process whose current
state belongs to the recovery line simply resumes execution; otherwise, it rolls back to an
earlier checkpoint as indicated by the recovery line.

5.6.2 Coordinated checkpointing
In coordinated checkpointing, processes orchestrate their checkpointing activities so that all
local checkpoints form a consistent global state. Coordinated checkpointing simplifies
recovery and is not susceptible to the domino effect, since every process always restarts from
its most recent checkpoint. Also, coordinated checkpointing requires each process to maintain
only one checkpoint on the stable storage, reducing the storage overhead and eliminating the
need for garbage collection. The main disadvantage of this method is that large latency is
involved in committing output, as a global checkpoint is needed before a message is sent to
the OWP. Also, delays and overhead are involved everytime a new global checkpoint is
taken. If perfectly synchronized clocks were available at processes, the following simple
method can be used for checkpointing: all processes agree at what instants of time they will
take checkpoints, and the clocks at processes trigger the local checkpointing actions at all
processes. Since perfectly synchronized clocks are not available, the following approaches
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are used to guarantee checkpoint consistency: either the sending of messages is blocked for
the duration of the protocol, or checkpoint indices are piggybacked to avoid blocking.

Blocking coordinated checkpointing
A straightforward approach to coordinated checkpointing is to block communications while
the checkpointing protocol executes. After a process takes a local checkpoint, to prevent
orphan messages, it remains blocked until the entire checkpointing activity is complete. The
coordinator takes a checkpoint and broadcasts a request message to all processes, asking them
to take a checkpoint. When a process receives this message, it stops its execution, flushes all
the communication channels, takes a tentative checkpoint, and sends an acknowledgment
message back to the coordinator. After the coordinator receives acknowledgments from all
processes, it broadcasts a commit message that completes the two-phase checkpointing
protocol. After receiving the commit message, a process removes the old permanent
checkpoint and atomically makes the tentative checkpoint permanent and then resumes its
execution and exchange of messages with other processes. A problem with this approach is
that the computation is blocked during the checkpointing and therefore, non-blocking
checkpointing schemes are preferable.

Non-blocking checkpoint coordination
In this approach the processes need not stop their execution while taking checkpoints. A
fundamental problem in coordinated checkpointing is to prevent a process from receiving
application messages that could make the checkpoint inconsistent. Consider the example in
Figure: message m is sent by P0 after receiving a checkpoint request from the checkpoint
coordinator. Assume m reaches P1 before the checkpoint request. This situation results in an
inconsistent checkpoint since checkpoint c1,x shows the receipt of message m from P0, while
checkpoint c0,x does not show m being sent from P0. If channels are FIFO, this problem can
be avoided by preceding the first post-checkpoint message on each channel by a checkpoint
request, forcing each process to take a checkpoint before receiving the first post-checkpoint
message, as illustrated in Figure. An example of a non-blocking checkpoint coordination
protocol using this idea is the snapshot algorithm of Chandy and Lamport in which markers
play the role of the checkpoint request messages. In this algorithm, the initiator takes a
checkpoint and sends a marker (a checkpoint request) on all outgoing channels. Each process
takes a checkpoint upon receiving the first marker and sends the marker on all outgoing
channels before sending any application message. The protocol works assuming the channels
are reliable and FIFO.
If the channels are non-FIFO, the following two approaches can be used: first, the marker can
be piggybacked on every post-checkpoint message. When a process receives an application
message with a marker, it treats it as if it has received a marker message, followed by the
application message. Alternatively, checkpoint indices can serve the same role as markers,
where a checkpoint is triggered when the receiver’s local checkpoint index is lower than the
piggybacked checkpoint index.

Coordinated checkpointing requires all processes to participate in every checkpoint. This
requirement generates valid concerns about its scalability. It is desirable to reduce the number
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of processes involved in a coordinated checkpointing session. This can be done since only
those processes that have communicated with the checkpoint initiator either directly or
indirectly since the last checkpoint need to take new checkpoints. A two-phase protocol by
Koo and Toueg achieves minimal checkpoint coordination.

5.6.3 Impossibility of min-process non-blocking checkpointing
A min-process, non-blocking checkpointing algorithm is one that forces only a minimum
number of processes to take a new checkpoint, and at the same time it does not force any
process to suspend its computation. Clearly, such checkpointing algorithms will be very
attractive. Cao and Singhal showed that it is impossible to design a min-process, non-
blocking checkpointing algorithm.
Of course, the following type of min-process checkpointing algorithms are possible. The
algorithm consists of two phases. During the first phase, the

checkpoint initiator identifies all processes with which it has communicated since the last
checkpoint and sends them a request. Upon receiving the request, each process in turn
identifies all processes it has communicated with since the last checkpoint and sends them a
request, and so on, until no more processes can be identified. During the second phase, all
processes identified in the first phase take a checkpoint. The result is a consistent checkpoint
that involves only the participating processes. In this protocol, after a process takes a
checkpoint, it cannot send any message until the second phase terminates successfully,
although receiving a message after the checkpoint has been taken is allowable.
Based on a concept called “Z-dependency,” Cao and Singhal proved that there does not exist
a non-blocking algorithm that will allow a minimum number of processes to take their
checkpoints. Here we give only a sketch of the proof and readers are referred to the original
source for a detailed proof.
Z-dependency is defined as follows: if a process Pp sends a message to process Pq during its
ith checkpoint interval and process Pq receives the message during its jth checkpoint interval,
then Pq Z-depends on Pp during Pp’s ith checkpoint interval and Pq’s jth checkpoint interval,
denoted by Pp →i jPq. If Pp →i, j Pq and Pq → j kPr , then Pr transitively Z-depends
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depends on Pp during Pr ’s kth checkpoint interval and Pp’s ith checkpoint interval, and this
is denoted as Pp ∗→i kPr . A min process algorithm is one that satisfies the following
condition: when a process Pp initiates a new checkpoint and takes checkpoint Cp_i, a process
Pq takes a checkpoint Cq_jassociated with Cp_i if and only if Pq ∗→j−1 i−1Pp. In a min-
process non-blocking algorithm, process Pp initiates a new checkpoint and takes a checkpoint
Cp_i and if a process Pr sends a message m to Pq after it takes a new checkpoint associated
with Cp_i, then Pq takes a checkpoint Cq_i before processing m if and only if Pq ∗→ j−1
i−1Pp. According to the min-process definition, Pq takes checkpoint Cq_j if and only if Pq
∗→j−1 i−1Pp, but Pq should take Cq_i before processing m. If it takes Cq_j after processing
m, m becomes an orphan. Therefore, when a process receives a message m, it must know if
the initiator of a new checkpoint transitively Z-depends on it during the previous checkpoint
interval. But it has been proved that there is not enough information at the receiver of a
message to decide whether the initiator of a new checkpoint transitively Z-depends on the
receiver. Therefore, no min-process, non-blocking algorithm exists.

5.6.4 Communication-induced checkpointing
Communication-induced checkpointing is another way to avoid the domino effect, while
allowing processes to take some of their checkpoints independently Processes may be forced
to take additional checkpoints (over and above their autonomous checkpoints), and thus
process independence is constrained to guarantee the eventual progress of the recovery line.

Communication-induced checkpointing reduces or completely eliminates the useless
checkpoints. In communication-induced checkpointing, processes take two types of
checkpoints, namely, autonomous and forced checkpoints. The checkpoints that a process
takes independently are called local checkpoints, while those that a process is forced to take
are called forced checkpoints. Communication-induced checkpointing piggybacks protocol-
related information on each application message. The receiver of each application message
uses the piggybacked information to determine if it has to take a forced checkpoint to
advance the global recovery line. The forced checkpoint must be taken before the application
may process the contents of the message, possibly incurring some latency and overhead. It is
therefore desirable in these systems to minimize the number of forced checkpoints. In
contrast with coordinated checkpointing, no special coordination messages are exchanged.
There are two types of communication-induced checkpointing: modelbased checkpointing
and index-based checkpointing. In model-based checkpointing, the system maintains
checkpoints and communication structures that prevent the domino effect or achieve some
even stronger properties. In index-based checkpointing, the system uses an indexing scheme
for the local and forced checkpoints, such that the checkpoints of the same index at all
processes form a consistent state.

Model-based checkpointing
Model-based checkpointing prevents patterns of communications and checkpoints that could
result in inconsistent states among the existing checkpoints. A process detects the potential
for inconsistent checkpoints and independently forces local checkpoints to prevent the
formation of undesirable patterns. A forced checkpoint is generally used to prevent the
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undesirable patterns from occurring. No control messages are exchanged among the
processes during normal operation. All information necessary to execute the protocol is
piggybacked on application messages. The decision to take a forced checkpoint is done
locally using the information available. There are several domino-effect-free checkpoint and
communication models.
The MRS (mark, send, and receive) model of Russell avoids the domino effect by ensuring
that within every checkpoint interval all message receiving events precede all message-
sending events. This model can be maintained by taking an additional checkpoint before
every message-receiving event that is not separated from its previous message-sending event
by a checkpoint. Another way to prevent the domino effect by avoiding rollback propagation
completely is by taking a checkpoint immediately after every message-sending event. Recent
work has focused on ensuring that every checkpoint can belong to a consistent global
checkpoint and therefore is not useless.

Index-based checkpointing
Index-based communication-induced checkpointing assigns monotonically increasing indexes
to checkpoints, such that the checkpoints having the same index at different processes form a
consistent state. Inconsistency between checkpoints of the same index can be avoided in a
lazy fashion if indexes are piggybacked on application messages to help receivers decide
when they should take a forced a checkpoint. For instance, the protocol by Briatico et al.
forces a process to take a checkpoint upon receiving a message with a piggybacked index
greater than the local index. More sophisticated protocols piggyback more information on
application messages to minimize the number of forced checkpoints.

5.7 Authentication in distributed systems
A fundamental concern in building a secure distributed system is the authentication of local
and remote entities in the system. In a distributed system, the hosts communicate by sending
and receiving messages over the network. Various resources (such as files and printers)
distributed among the hosts are shared across the network in the form of network services
provided by servers. The entities in a distributed system, such as users, clients, servers, and
processes, are collectively referred to as principals. A distributed system is susceptible to a
variety of threats mounted by intruders as well as legitimate users of the system.
In an environment where a principal can impersonate another principal, principals must adopt
a mutually suspicious attitude toward one another and authentication becomes an important
requirement. Authentication is a process by which one principal verifies the identity of
another principal. For example, in a client–server system, the server may need to authenticate
the client. Likewise, the client may want to authenticate the server so that it is assured that it
is talking to the right entity. Authentication is needed for both authorization and accounting
functions. In one-way authentication, only one principal verifies the identity of the other
principal, while in mutual authentication both communicating principals verify each other’s
identity. A user gains access to a distributed system by logging on to a host in the system. In
an open access environment where hosts are scattered across unrestricted areas, a host can be
arbitrarily compromised, necessitating mutual authentication between the user and host. In a
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distributed system, authentication is carried out using a protocol involving message
exchanges and these protocols are termed authentication protocols.

5.7.1 Background and definitions
In simple terms, authentication is identification plus verification. Identification is the
procedure whereby an entity claims a certain identity, while verification is the procedure
whereby that claim is checked. Authentication is a process of verifying that the principal’s
identity is as claimed. The correctness of authentication relies heavily on the verification
procedure employed.
A successful identity authentication results in a belief held by the authenticating principal
(the verifier) that the authenticated principal (the claimant) possesses the claimed identity.
The other types of authentication include message origin authentication and message content
authentication. In this chapter, we restrict our attention to identity authentication only.
Authentication in distributed systems is carried out using protocols. A protocol is a precisely
defined sequence of communication and computation steps. A communication step transfers
messages from one principal (the sender) to another (the receiver), while a computation step
updates a principal’s internal state. Two distinct states can be identified upon the termination
of the protocol: one signifying successful authentication and the other failure.
Although the goal of any authentication is to verify the claimed identity of a principal,
specific success and failure states are highly protocol dependent. For example, the success of
an authentication during the connection establishment phase of a communication protocol is
usually indicated by the distribution of a fresh session key between two mutually
authenticated peer processes. On the other hand, in a user login authentication, success
usually results in the creation of a login process on behalf of the user.

5.7.2 Basis of authentication
Authentication generally is based on the possession of some secret information, like
password, known only to the entities participating in the authentication. When an entity wants
to authenticate another entity, the former will verify if the latter possesses the knowledge of
the secret. If the entity demonstrates the knowledge of the right secret information, the
authentication succeeds, else authentication fails. Examples of secret information for the
purpose of authentication include the following: something known (e.g., a shared key),
something possessed (e.g., a smartcard), or something inherent (e.g., biometrics). However,
the verification process should not allow an attacker to reuse an authentication exchange to
impersonate an entity. The verification process must provide the verifier with enough
confidence that an attacker is not trying to impersonate an entity.

5.7.3 Types of principals
In a distributed system, the entities that require identification are hosts, users, and processes.
They thus are the principals involved in an authentication.
• Hosts These are addressable entities at the network level. A host is usually identified by its
name (for example, a fully qualified domain name) or its network address (for example, an IP
address).
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• Users These entities are ultimately responsible for all system activities. Users initiate and
are accountable for all system activities. Most access control and accounting functions are
based on users. Typical users include humans, as well as accounts maintained in the user
database. Users are considered to be outside the system boundary.
• Processes The system creates processes within the system boundary to represent users. A
process requests and consumes resources on the behalf of its user.
Processes fall into two classes: client and server. Client processes are consumers who obtain
services from server processes, who are service providers. A particular process can act as
both a client and a server.

5.7.4 A simple classification of authentication protocols
Authentication protocols can be categorized based on the following criteria : type of
cryptography (symmetric vs. asymmetric), reciprocity of authentication (mutual vs. one-
way), key exchange, real-time involvement of a third party (on-line vs. off-line), nature of
trust required from a third party, nature of security guarantees, and storage of secrets.
In this chapter, we classify authentication protocols primarily based on the cryptographic
technique used. There are two basic types of cryptographic techniques: symmetric (“private
key”) and asymmetric (“public key”). Symmetric cryptography uses a single private key to
both encrypt and decrypt data. Any party that has the key can use it to encrypt and decrypt
data. Symmetric cryptography algorithms are typically fast and are suitable for processing
large streams of data. Asymmetric cryptography, also called public-key cryptography, uses a
secret key that must be kept from unauthorized users and a public key that is made public.
Both the public key and the private key are mathematically linked: data encrypted with the
public key can be decrypted only by the corresponding private key, and data signed with the
private key can only be verified with the corresponding public key. Both keys are unique to a
communication session.

5.7.5 Design principles for cryptographic protocols
Abadi and Needham set out a set of principles to denote prudent engineering practices for
cryptographic protocols design. They are not meant to apply to every protocol in every
instance, but they do provide rules of thumb that should be considered when designing a
cryptographic protocol.
We next present these principles and briefly comment on them.
• Principle 1 Every message should say what it means: the interpretation of the message
should depend only on its content. It should be possible to write down a straightforward
English sentence describing the content – though if there is a suitable formalism available,
which is good, too.
• Principle 2 The conditions for a message to be acted upon should be clearly set out so that
someone reviewing the design may see whether they are acceptable or not.
• Principle 3 If the identity of a principal is essential to the meaning of a message, it is
prudent to mention the principal’s name explicitly in the message.
• Principle 4 Be clear as to why encryption is being done. Encryption is not wholly cheap,
and not asking precisely why it is being done can lead to redundancy. Encryption is not
synonymous with security, and its improper use can lead to errors.
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• Principle 5 When a principal signs material that has already been encrypted, it should not
be inferred that the principal knows the content of the message. On the other hand, it is
proper to infer that the principal that signs a message and then encrypts it for privacy knows
the content of the message.
• Principle 6 Be clear about what properties you are assuming about nonces. What may do
for ensuring temporal succession may not do for ensuring association – and perhaps
association is best established by other means.
• Principle 7 The use of a predictable quantity (such as the value of a counter) can serve in
guaranteeing newness, through a challenge–response exchange. But if a predictable quantity
is to be effective, it should be protected so that an intruder cannot simulate a challenge and
later replay a response.
• Principle 8 If timestamps are used as freshness guarantees by reference to absolute time,
then the difference between local clocks at various machines must be much less than the
allowable age of a message deemed to be valid. Furthermore, the time maintenance
mechanism everywhere becomes part of the trusted computing base.
• Principle 9 A key may have been used recently, for example, to encrypt a nonce, yet be
quite old, and possibly compromised. Recent use does not make the key look any better than
it would otherwise.
• Principle 10 If an encoding is used to present the meaning of a message, then it should be
possible to tell which encoding is being used. In the common case where the encoding is
protocol dependent, it should be possible to deduce that the message belongs to this protocol,
and in fact to a particular run of the protocol, and to know its number in the protocol.
• Principle 11 The protocol designer should know which trust relations his protocol depends
on, and why the dependence is necessary. The reasons for particular trust relations being
acceptable should be explicit though they will be founded on judgment and policy rather than
on logic.

5.7.6 Protocols based on symmetric cryptosystems
In a symmetric cryptosystem, knowing the shared key lets a principal encrypt and decrypt
arbitrary messages. Without such knowledge, a principal cannot create the encrypted version
of a message, or decrypt an encrypted message. Hence, authentication protocols can be
designed using the following principle:
If a principal can correctly encrypt a message using a key that the verifier believes is known
only to a principal with the claimed identity (outside of the verifier), this act constitutes
sufficient proof of identity. Thus, the principle embodies the fact that a principal’s knowledge
is indirectly demonstrated through its ability to encrypt or decrypt.

5.7.6.1 Basic protocol
Using the above principle, we immediately obtain the basic where principal P is
authenticating itself to principal Q. “k” denotes a secret key that is shared between only P and
Q.
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In the modified version of the protocol, the principal P wants to authenticate itself to Q. Q
generates a nonce and sends this nonce to P. P then encrypts Q, the nonce, and its own
identity with the secret key and sends this encrypted message to Q. Q verifies this encrypted
message by encrypting its identity, P’s identity, and the nonce with the key k. Q authenticates
P if the encrypted information equals that sent by P, else the authentication fails.
Replay is foiled by the freshness of nonce n and because n is drawn from a large space.
Therefore, it is highly unlikely that the nonce n generated by Q in the current session is the
same as one used in a previous session. Thus an attacker cannot use a message of type m_
from a previous session to mount a replay attack. In addition, even if an eavesdropper has
monitored all previous authentication conversations between P and Q, it is impossible to
produce the message m because it does not know the secret key k. The challenge-and-
response step can be repeated any number of times until the desired level of confidence is
reached by Q.

Weaknesses
This protocol has scalability problems because each principal must store the secret key for
every other principal it would ever want to authenticate. This presents major initialization
(the predistribution of secret keys) and storage problems. Moreover, the compromise of one
principal can potentially compromise the entire system. Note that this protocol is also
vulnerable to known plain text attacks.

5.7.6.2 Wide-mouth frog protocol
The above raised problems can be significantly reduced by postulating a centralized server S.
The wide-mouth frog protocol uses a similar approach where a principal A authenticates
itself to principal B using a Server S. The protocol works as follows:

A decides that it wants to set up communication with B. A sends to S its identity and a packet
encrypted with the key, KAS, it shares with S. The packet contains the current timestamp,
A’s desired communication partner, and a randomly generated key KAB, for communication
between A and B. S decrypts the packet to obtain KAB and then forwards this key to B in an
encrypted packet that also contains the current timestamp and A’s identity. B decrypts this
message with the key it shares with S and retrieves the identity of the other party and the key,
KAB. Any principal receiving a message with an out-of-date timestamp during this protocol
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discards it to prevent replay attacks. This protocol achieve two objectives: first, it securely
establishes a secret key between two principals A and B; and second, A authenticates itself to
B with the help of the server S. This is because only the server S could have constructed the
message TS_KAB_A_KBS in step 2 only after receiving a message from A in step 1. A
weakness of the protocol is that a global clock is required and the protocol will fail if the
server S is compromised.

5.7.6.3 A protocol based on an authentication server
Another approach to solve the problem is by using a centralized authentication server S that
shares a secret key KXS with every principal X in the system. The basic authentication
protocol is shown in Algorithm. In the protocol using an authentication server, the principal P
sends its identity to Q. Q generates a nonce and sends this nonce to P. P then encrypts P, Q
and n with the key KPS and sends this encrypted value x to Q. Q then encrypts P, Q and x
with KQS and sends this encrypted value y to authentication server S. Since S knows both the
secret keys, it decrypts y with KQS, recovers x, decrypts x with KPS and recovers P, Q and n.
Server S then encrypts P, Q and n with key KQS and sends the encrypted value m to Q. Q
then computes P, Q and nKQS and verifies if this value is equal to the value received from S.
If both values are equal, then authentication succeeds, else it fails.
Thus Q’s verification step is preceded by a key-translation step by S. Since P and Q do not
share a secret key, the authentication server S does the key translation because it shares a
secret key with both principals P and Q. Q sends the message (encrypted with KPS that it
received from P) to S. S does the key translation by decrypting it with KPS, encrypting P, Q
and n with KQS and sending the message encrypted with KQS to Q. This is termed as the
key-translation step.
The basis of this protocol is a challenge for Q to P if P can encrypt the nonce n with the secret
key that it shares with server S. The protocol correctness rests on S’s trustworthiness – that S
will properly decrypt using P’s key and reencrypt using Q’s key. The initialization and
storage problems are greatly alleviated because each principal needs to keep only one key.
The risk of compromise is mostly shifted to S, whose security can be guaranteed by various
measures, such as encrypting stored keys using a master key and putting S in a physically
secure room.

5.8 Password-based authentication
The use of passwords is a highly popular technique to achieve authentication because of low
cost and convenience. This section is concerned with authentication techniques that are based
on passwords. A problem with passwords is that people tend to pick a password that is
convenient, i.e., short and easy to remember. Such passwords are vulnerable to a password-
guessing attack, which works as follows: an adversary builds a database of possible
passwords, called a dictionary. The adversary picks a password from the dictionary and
checks if it works. This may amount to generating a response to a challenge or decrypting a
message using the password or a function of the password. After every failed attempt, the
adversary picks a different password from the dictionary and repeats the process. This non-
interactive form of attack is known as the off-line dictionary attack.
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Preventing off-line dictionary attacks
Thus, a major problem is that users tend to choose weak passwords, which are chosen from a
sample space small enough to be enumerated by an adversary. Hence, protocols that are
stronger than simple challenge–response protocols are needed to use these cryptographically
weak passwords to securely authenticate entities. A password-based authentication protocol
aims at preventing off-line dictionary attacks by producing a cryptographically strong shared
secret key, called the session key, after a successful run of the protocol. This session key can
be used by both entities to encrypt subsequest messages for a secret session.
In this section, we focus on protocols designed to prevent off-line dictionary attacks on
password-based authentication. Next, we present two password based authentication
protocols.

5.8.1 Encrypted key exchange (EKE) protocol
The first attempt to protect a password protocol against off-line dictionary attacks was made
by Bellovin and Merritt who developed a password based encrypted key exchange (EKE)
protocol using a combination of symmetric and asymmetric cryptography. Algorithm 16.15
describes the EKE protocol that works as follows: suppose users A and B are participating in
a run of the protocol. (Recall that X,k denotes the encryption of X using a symmetric key k
and Y,k−1 denotes the decryption of Y using a symmetric key k.)
In step 1, user A generates a public/private key pair (EA,DA) and also derives a secret key
Kpwd from his/her password pwd. In step 2, A encrypts his/her public key EA with Kpwd
and sends it to B. In steps 3 and 4, B decrypts the message and uses EA together with Kpwd
to encrypt a session key KAB and sends it to A. In steps 5 and 6, A uses this session key to
encrypt a unique challenge CA and sends the encrypted challenge to B. In step 7, B decrypts
the message to obtain the challenge and generates a unique challenge CB. In step 8, B then
encrypts {CA, CB} with the session key KAB and sends it to A. In step 9, A decrypts this
message to obtain CA and CB and compares the former with the challenge it had sent to B. If
they match, the correctness of B’s response is verified (i.e., B is authenticated). In step 10, A
encrypts B’s challenge CB with the session key KAB and sends it to B. When B receives this
message, it decrypts the message to obtain CB and uses it verify the correctness of A’s
response and to authenticate A. Note that the protocol results in a session key (stronger than
the shared password) which the users can later use to encrypt sensitive data. The EKE
protocol suffers from the plain-text equivalence, which means that the user and the host have
access to the same secret password or hash of the password.

5.9 Authentication protocol failures
Despite the apparent simplicity of the basic design principles, realistic authentication
protocols are notoriously difficult to design. There are several reasons for this:
• First, most realistic cryptosystems satisfy algebraic additional identities. These extra
properties may generate undesirable effects when combined with a protocol logic.
• Second, even assuming that the underlying cryptosystem is perfect, unexpected interactions
among the protocol steps can lead to subtle logical flaws.
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• Third, assumptions regarding the environment and the capabilities of an adversary are not
explicitly specified, making it extremely difficult to determine when a protocol is applicable
and what final states are achieved.
We illustrate the difficulty by showing an authentication protocol proposed, with a subtle
weakness. Consider the authentication protocol shown in Algorithm (kp and kq are
symmetric keys shared between P and A, and Q and A, respectively, where A is an
authentication server and k is a session key).
The message {k(P}kQ in step 3 can only be decrypted by Q and hence can only be
understood by Q. Step 4 reflects Q’s knowledge of k, while step 5 assures Q of P’s
knowledge of k; hence the authentication handshake is based entirely on the knowledge of k.
The subtle weakness in the protocol arises from the fact that the message k(P)kQ sent in step
3 contains no information for Q to verify its freshness. This is the first message sent to Q
about P’s intention to establish a secure connection. An adversary who has compromised an
old session key k' can impersonate P by replaying the recorded message kp,kQ in step 3 and
subsequently executing steps 4 and 5 using k'.
To avoid protocol failures, formal methods may be employed in the design and verification of
authentication protocols. A formal design method should embody the basic design principles.
For example, informal reasoning such as “if you believe that only you and Bob know k, then
you should believe any message you receive encrypted with k was originally sent by Bob”
should be formalized by a verification method.



Questions OPT1 OPT2 OPT3 OPT4 OPT5 OPT6 Answer

Distributed shared memory is abstraction provided to the 

programmer of a ______________.
distributed system DC detection termiantion distributed system

Programmers access the data across the network using only 

read and write primitives as they would in a __________.
multiprocessors

single 

processors
mainframes

uniprocessor 

system

uniprocessor 

system

A part of each computer's memory is earmarked for shared 

space and the remainder is _____________.
public memory key generation private memory public key private memory

There is no _____________presented by a single memory 

access bus.
Deadlocks bottlenecks termination detectition' bottlenecks 

DSM effectively provides a_____________.
 large main 

memory
virtual memory main memory no memory

 large main 

memory

The main point of allowing concurrent access to the same 

data object is to____________.

decrease 

throughput

 increase 

throughput
increase time decrease time

 increase 

throughput

As DSM is implemented under the covers using  

asynchronous message passing the overheads incurred are 

atleast as high as those of a ________ implementation.

message passing message looping
message 

acceptance

message 

avoidance
message passing

Determining what semantics to allow for concurrent access to 

____________.
unshared objects shared objects shared time unshared time shared objects

Determining the best way to implement the __________of 

concurrent access to shared data.
syntax regulations semantics acceptance semantics 

___________ can range from tightly coupled multicomputers 

to wide area DS with heterogeneous hardware and software.
DS DC mainframes DSM systems DSM systems

__________ is the ability of the system to execute memory 

operations correctly.
memory abstraction

memory 

consistency 

model

Memory 

coherence
memory locking

Memory 

coherence

The __________ defines the set of allowlable memory access 

orderings.
memory abstraction

memory 

consistency 

model

Memory 

coherence
memory locking

memory 

consistency model

The strict consistency model also known as the 

_____________

atomic consistency 

model.

memory 

consistency 

model

Memory 

coherence
memory locking

atomic consistency 

model.

An alternate way of specifying the consistency model in 

terms of the____________ and response to each read and 

write operation.

 invocation shared objects shared time unshared time  invocation

Implementing linearability is __________ because a global 

time scale needs to be simulated.
inexpensive expensive very low low expensive
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___________ or strict atomic consistency is difficult to 

implement because the absence of a global time reference in 

a DS necessistates that the time reference has to be 

simulated.

unstricted labelled Linearability unlabelled Linearability

The first weaker model that of sequential consistency was 

proposed by Lamport and uses logical time reference instead 

of the _________

localtime global time reference time
global time 

reference.

global time 

reference.

An_____________ is less restrictive than linearability it 

should be easier to implement.
locally consistency

global 

consistency

parallel 

consistency

 sequential 

consistency

 sequential 

consistency

At a proceesor the serial order of the events defines 

the_____________.
global casual order non order  local casual order pre order  local casual order

A ____________ casually precedes a read operation issued 

by another processor if the read returns a value written by the 

write.

read operation write operation
read/write 

operation
no operation write operation

The transitive closure of the read and write operation 

relations defines the ___________.
global causal order non order  local casual order pre order

global causal 

order

Pipelined memory is otherwise called as _____________. locally consistency
processor 

consistency

parallel 

consistency

 sequential 

consistency

processor 

consistency

__________ requires all causually realted Writes to be seen 

in the same order by all processes.
locally consistency

processor 

consistency

Casual 

consistency

 sequential 

consistency
Casual consistency

In realtion to the cusality realtion between _________ only 

the local causality relation as defined by the local order write 

operations needs to be seen by other processors . 

syntax operations semantics acceptance operations

The next weaker consistency model is that is ___________. slow memory high memory medium usage low memory slow memory

 Slow memory can be implemented using a broadcast 

primitive that is weaker than even the ______________
FIFO broadcast LIFO model FIFO model no model FIFO broadcast

The consistency models seen so far apply to all the 

instructions in the _____________

undistributed 

program

distributed 

program.
local checkpoints global checkpoints

distributed 

program.

Examples of consistency models based on the principle are 

erntry consistency, weak consistency and ___________.

unreleased 

consistency

global 

consistency

release 

consistency

 sequential 

consistency
release consistency

The synchronization ____________ are inserted in the 

program based on the semantics of the types of the accesses.
syntax operations semantics statements statements

A ___________ in the model has the sematics such as used 

to propagate all writes to other processors.
asynchronization invariable

synchronization 

variable
detection

synchronization 

variable

A ___________of the release consistency model is called the 

lazy release consistency model.
detection relaxation avoiding mutually detected relaxation 

___________ requires the programmer to use acquire and 

release at the startand end at each CS, respectively.
Entry consistency

processor 

consistency

Casual 

consistency

 sequential 

consistency
Entry consistency

OS have traditionally dealt with multi process 

synchronization using algorithms based on the prinicples high 

level constructs such as ___________.

semaphores
semaphores and 

monitors
monitors tasks

semaphores and 

monitors

Special automatically executed instructions supported by 

special purpose __________.
software middleware hardware harddisk hardware



Lamport proposed the classical bakery algorithmfor 

n_porcess mutual exclusion in _________
non shared memory virtual memory main memory

shared memory 

systems.

shared memory 

systems.

The algorithm can be shown to satisfy the requirements of the 

_________ problem.
local section global section critical section infinite time critical section

Time complexity in many environments the level of the 

contention may be low of _____.
O(MN) O(mn) O(m) O(n) O(n)

__________ is a property that gurantees that  any process can 

complete any synchronization operation in a finitenumber of 

lower level steps irrespective of the execution speed of other 

processes.

free await Wait freedom stop Wait freedom

A _________ that does not overlap with a write operation 

returns that most recent value written to that register.
write read operation write read readwrite read operation

Regular register in addition to being a safe register a read that 

is concurrent with a write operation returns either the value 

before the write operation or the value written by 

the__________.

 write operation read operation write read readwrite  write operation

Atomic register in addition to being a regular register te 

register is ____________-.
unlinearizable  linearizable acceptable unacceptable  linearizable

A study of register construction deals with designing the 

more complex registers using ___________.
stack registers

memory 

registers
simple registers local registers

In a_________ we must not only restore the system to 

aconsistent state but also appropriately handle messages that 

are left in an abnormal state due to the failure and recovery.

failure free 
failure 

occurence
fail_stop manner  failure recovery  failure recovery

__________ failures further complicate the recovery process. consistent
recovery 

approach
Overlapping availability Overlapping

In the checkpoint based ___________ the state of each 

process and the communication channel is checkpointed 

frequently so that upon a failure the system can be restored 

toa globally consistent set of checkpoints.

consistent
recovery 

approach
persistence availability recovery approach

In______________ each process has autonomy in deciding 

when to take checkpoints.

 uncoordinated 

checkpointing

checkpoints 

independently

checkpoints 

dependently
blocking

 uncoordinated 

checkpointing

In coordinated checkpointing processes orchestrate their 

checkpointing activities so that all local checkpoints from a 

______________.

inconsistent 

checkpoints

consistent 

global state
local checkpoints local states

consistent global 

state

Coordinated checkpointing simplfies recovery and is not 

sueptible to the domino effect, since every process always 

restarts from its most _____________.

executed 

checkpoint

independent 

checkpoints
recent checkpoint local checkpoints recent checkpoint

A straightforward appraoch to coordinated checkpointing is 

to block communications while the checkpointing protocol 

________.

blocks processes terminates executes executes

A fundamental problem in cocordinating checkpointing is 

toprevent a process from receiving application messages that 

could make the check point __________.

consistent persistence availability inconsistent inconsistent



Coordinated checkpointing requires all processes to 

participate in every __________.
transmission Detection checkpoint corrections checkpoint

A min process ___________ is one that forcesonly a 

minimum number of processes to take new checkpoint and at 

the same time it does not force any process to suspend its 

computation.

checkpoints 

independently

nonblocking 

checkpointing 

algorithm

checkpoints 

dependently
blocking

nonblocking 

checkpointing 

algorithm

Communication induced checkpointing is another way to 

avoid the domino effectwhile allowing processes to take 

some of their __________.

checkpoints 

independently

checkpoints 

dependently
nonblocking blocking

checkpoints 

independently

A log based rollback recovery makes use of deterministic and 

non deterministic events in a _______.
termination computation processing scheduling computation

A successful identity authentication results in a belief held by 

the authenticating prinicpal that the authenticated 

possessesthe claimed ________.

tasks identity looping processing identity

In a symmetric cryptosystem knowing the shared key lets a 

principal encrypt andecrypt_____________
local messages global messages

 arbitrary 

messages.

transferring 

messages

 arbitrary 

messages.

The wide mouth frog protocol uses similar approach where a 

principal A _________ to principal B using the server S. 
termiates itself activates itself process itself authenticates itself authenticates itself

The Otway Rees protocol is a server based protocol that 

provides __________ only in four messages without 

requiring timestamps.

non secure secure
authenticated key 

transport
private key

authenticated key 

transport

The goal of Project Athena ws to create an ________based 

on high performance workstations,high speed networking and 

serversof various types.

service

educational 

computing 

environment 

transporting media

educational 

computing 

environment 

The Needham Schroeder _________uses a trusted key server 

that issues certificates containing the public key of a user.
public key protocol 

private key 

protocol

public 

authentication 

protocol

private 

authetication

public key 

protocol 
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