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PART-A(20X1=20 Marks) 

Answer all the Questions: 
 

1. The set which contains no element at all is called  the --------- set. 

     a) sub b) null  c) singleton d) equal 

 

2. ------------ is the binary operation on the set N of natural  numbers. 

   a) Subtraction   b) Division 

   c) Cartesian product   d) Addition 
 

 

3. The set of natural number is a -------------- group with respect to the operation addition. 

    a) semi b) normal c) symmetric   d) abelian 
 

 

 

4. The properties of an equivalence relation are-------------- 

    a) reflexive, symmetry and transitive     b) reflexive and transitive 

    c) reflexive, anti symmetry and transitive     d) symmetry and anti transitive 
 

5. The equivalence relation has -------- distinct equivalence classes. 

      a) 1 b) n      c) n! d) no 

 

6. If ab = ba, ∀ a, b ∈ G, then G is said to be ---------- group. 

    a) finite b) abelian c) sub  d) semi 

 

7. The identity element in a group is -------- 

    a) unique b) disjoint c) symmetric d) not equal 
 

8. The right inverse of an element is ----------- inverse. 

   a) left b) normal c) right  d) own 

 

9. If  a,b∈G, then(a.b)-1=----------- 

    a) a-1  b) a-1 b-1 c) b-1a-1 d) b-1 
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10. An infinite group is said to be ---------------order 

     a) identity       b) finite c) infinite d) symmetric 

 

11. The left identity element is also ------------ identity. 

      a) left b) normal c) right d) own 

12.  If  a, b ∈G, then  (a-1)-1---------- 

     a) a-1 b) a  c) 1   d) 0 

 

13. If G is a group, then the identity element of G is ---------- 

     a) zero b) two        c) unique  d) equal 

14. If every element of the group G is its own inverse, then G  is -------- 

     a) abelian  b) finite c) infinite d) subgroup 

 

15. The --------- element of a group has its own inverse. 

      a) single    b) identity    c) two d) no 

 

16. Every group is a --------- group of itself. 

     a) semi b) sub  c) finite d) abelian 

17. If N is a normal subgroup of G and H is any subgroup of G, then NH is a ----------  

      group of G. 

      a) normal    b) sub c) semi  d) abelian 

 

18. A nonempty subset H of a group G is said to be ------------- of G H itself forms a group. 

     a) coset   b) subset  

     c) normal subgroup d) subgroup 
 

19. The subgroup N of G is a normal subgroup of G iff the product of two right  

      coset of H in G is a ------- of N in G. 

      a) right coset  b) left coset 

      c) normal subgroup d) subgroup 

 

20. The---------- of each subgroup of a finite group is a divisor  

      of the order of the group. 

      a) index b) order c) cardinal number d) coset 

  

PART-B(3 X 10 = 30 Marks) 

Answer all the Questions: 

21. a) If G is a group ,then prove that 

           i) the identity element of G is unique 

           ii) every aG has a unique inverse in G 

          iii) for every aG, (a-1)-1 = a 
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          iv) for all a,bG, (a.b)-1 = b-1.a-1 

Proof: 

i) Let aεG since e is the identity. Consider f as an ordinary elements in G. then  

    by the definition, 

 a.e=e.a=a 

 f.e=e.f=f 

   since f is the identity consider e as an ordinary element in G. then by definition 

 a.f=f.a=a 

 e.f=f.e=e 

   we know that e.f=f   and e.f=e     f=e   hence the identity element is unique. 

ii) Let aεG 

   If possible let there be two inverses a| and a|| for a in G.  

   Then by definition we know that 

 a.a|=a|.a=e 

 a.a||=a||.a=e 

    Since e is the identity element we can wriye 

 a| = a|.e 

    = a|.(a.a|) 

    = (a|.a).a|| 

    = e.a|| 

    = a|| 

 a| = a|| hence every element in G has a unique inverse. 

iii) Let aεG let a -1 be the inverse of a in G then (a -1) -1 will be the inverse of a -1 in G. 

Since G is a group we have 

a. a -1= a -1.a=e    and    a -1(a -1) -1=( a -1) -1. a -1=e 

we have   a -1.a= a -1.( a -1) -1 

using left cancellation law we have a=( a -1) -1. 

iv) Let a,bεG let a -1, b -1 be the inverse of a and b in G. 

    Then a.b  and b -1. a -1 exists in G by closure property 

    Now we consider 

 (a.b).(b -1. a -1)=a.(b.b -1). a -1 
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   =a.e. a -1 

   =a. a -1 

   =e 

  (a.b) -1=b -1. a -1 

b) Show that the set G = { a+b2: a.bQ} is a group with respect to addition. 

    Proof: 

   Closure Property: 

 

    Let x , y be any two elements of G.  

    Then x = a+b2, y = c+d2 where a,b,c,dQ 

     Now x + y = (a+b2) + (c+d2)=( a+c)+ (b+d) 2 

     Since ( a+c) , (b+d) are the elements of Q, therefore ( a+c)+ (b+d) 2G. 

    Thus x,yGx+yG 

    Therefore G is closed with respect to addition. 

    Associativity: 

    The elements of G are all real numbers and addition of real numbers is associative. 

    Existence of identity: 

      We have, 0+02G 

       If a+b2G is any element of G, 

       then (a+b2) + (0+02)=( 0+a)+ (0+b) 2 = a+b2 

      Therefore 0+02 is an identity element of G. 
    

    Existence of inverse: 

     We have, a+b2G  (-a)+(-b2)G since a ,b Q-a, -bQ 

      Now, (-a)+(-b2)+ a+b2 = 0+02 = Identity 

      Therefore  (-a)+(-b2) is the inverse of a+b2. 

      Hence G is a group with respect to addition. 

 

22. a) If G is a group, in which (a.b)i = aibi for three consecutive integers i for all a,bG.  

          Show that G is abelian. 

 Proof: 

 Let a, b be any two elements of G. Suppose i, i+1, i+2 are three consecutive 

             integers such that (ab)m = ambm, (ab)m+1= am+1bm+1 and (ab)m+2= am+2bm+2. 

 We have (ab)m+2 =  (ab)m+1(ab) 

       am+2bm+2 = am+1bm+1(ab) 

       aam+1bm+1b = a ambmbab 

      am+1bm+1 = ambmba 

      (ab)m+1 = (ab)mba 

    (ab)m(ab) = (ab)mba 

    ab=ba 

    G is abelian. 
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     b) Prove that the inverse of the product of two elements of a group G is the product of the   

         inverses taken in the reverse order. 

 Proof: 

 Suppose a and b are elements of G. 

 If a-1 and b-1 are inverses of a and b respectively, then 

 aa-1 = a-1a = e and b b-1 = b-1b=e 

 Now(ab) (b-1 a-1) =[(ab) b-1] a-1 

       = [a(b b-1)] a-1 

       = (ae) a-1 = e 

 Also (b-1 a-1)(ab) = b-1[a-1(ab)] 

       = b-1[(a-1a)b)] = b-1(eb)= e 

 Thus we have (ab) (b-1 a-1) = e = (b-1 a-1)(ab) 

 Therefore by definition of inverse, we have, (ab)-1 = b-1 a-1. 

 

  

23. a) If H and K are any two complexes of a group G, then  prove that (HK)-1 = K-1H-1. 

 Proof: 

 Let x be any arbitrary element of  (HK)-1. 

 x = (hk)-1, hH, kK 

    = k-1h-1 K-1H-1. 

 Therefore (HK)-1 K-1H-1  

 Again, let y be any arbitrary element of  K-1H-1 

 Then y = k-1h-1, hH, kK 

  = (hk)-1(HK)-1 

 Therefore K-1H-1 (HK)-1  

 Hence (HK)-1 = K-1H-1. 

 

     b) A non-empty subset H of a group G is a subgroup of G iff  i) a H, bH  abH,  

         ii) a H a-1 H where a-1  is the inverse of a in G. 

   Proof: 

   First we assume that H is a subgroup of G then by definition H is a group under the    

   same binary operation as in G. 

a, b ε H = abεH and  

aεH=a -1εH  ,  ¥ a, b εH 

conversely let us assume that, 

a, b ε H=abεH and  

aεH=a -1εH  ,  ¥ a, b εH 

Now we prove that H is a subgroup of G. from the first result we observe that 

closure property is valid. 

Since H is a non empty subset of G since the associative law is true in G, itmust be 

true to H also. 

Associativity is true also. 
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From the second result we observe that inverse exists for every element of H. 

Existence of inverse is true. 

Once again the second result is a, a -1εH 

aa -1ςeεH 

Existence of identity is true. 

Hence H is a subgroup of G. 
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PART-A(20X1=20 Marks) 

Answer all the Questions: 
 

1. The set which contains no element at all is called  

     the --------- set. 

     a) sub b) null  c) singleton d) equal 

 

2. ------------ is the binary operation on the set N of natural    

    numbers. 

   a) Subtraction   b) Division 

   c) Cartesian product   d) Addition 

 

3. The set of natural number is a -------------- group with  

    respect to the operation addition. 

    a) semi b) normal c) symmetric   d) abelian 
 

 
 

 

4. The properties of an equivalence relation are-------------- 

    a) reflexive, symmetry and transitive  

    b) reflexive and transitive 

    c) reflexive, anti symmetry and transitive  

    d) symmetry and anti transitive 
 

5. The equivalence relation has -------- distinct equivalence  

     classes. 

      a) 1 b) n      c) n! d) no 

 

6. If ab = ba,   a, b   G, then G is said to be ---------- group. 

    a) finite b) abelian c) sub  d) semi 

 

7. The identity element in a group is -------- 

    a) unique b) disjoint c) symmetric d) not equal 
 

8. The right inverse of an element is ----------- inverse. 

   a) left b) normal c) right  d) own 

 

9. If  a,b G, then(a.b)
-1

=----------- 

    a) a
-1

  b) a
-1

 b
-1

 c) b
-1

a
-1

 d) b
-1

 

10. An infinite group is said to be ---------------order 

     a) identity       b) finite c) infinite d) symmetric 

 

11. The left identity element is also ------------ identity. 

      a) left b) normal c) right d) own 

12. If a,b G, then  (a
-1

)
-1

---------- 

     a) a
-1

 b) a  c) 1   d) 0 

 

 

 



13. If G is a group, then the identity element of G is ---------- 

     a) zero b) two        c) unique  d) equal 

14. If every element of the group G is its own inverse, then  

     G  is -------- 

     a) abelian  b) finite c) infinite d) subgroup 

 

15. The --------- element of a group has its own inverse. 

      a) single    b) identity    c) two d) no 

 

16. Every group is a --------- group of itself. 

     a) semi b) sub  c) finite d) abelian 

17. If N is a normal subgroup of G and H is any subgroup of G,  

      then NH is a ---------- group of G. 

      a) normal    b) sub c) semi  d) abelian 

 

18. A nonempty subset H of a group G is said to be -------------    

     of GH itself forms a group. 

     a) coset   b) subset  

     c) normal subgroup d) subgroup 
 

19. The subgroup N of G is a normal subgroup of G iff the    

      product of two right coset of H in G is a ------- of N in G. 

      a) right coset  b) left coset 

      c) normal subgroup d) subgroup 

 

20. The---------- of each subgroup of a finite group is a divisor  

      of the order of the group. 

      a) index b) order c) cardinal number d) coset 

 

  

PART-B(3 X 10 = 30 Marks) 

Answer all the Questions: 

21. a) If G is a group ,then prove that 

           i) the identity element of G is unique 

           ii) every aG has a unique inverse in G 

          iii) for every aG, (a
-1

)
-1 

= a 

          iv) for all a,bG, (a.b)
-1

 = b
-1

.a
-1

 

(OR) 

       b) Show that the set G = { a+b2: a.bQ} is a group with  

            respect to addition. 

 

22. a) If G is a group, in which (a.b)
i 
= a

i
b

i 
for three consecutive  

         integers i for all a,bG. Show that G is abelian. 

(OR) 

     b) Prove that the inverse of the product of two elements of a    

         group G is the product of the inverses taken in the reverse    

         order. 

 

23. a) If H and K are any two complexes of a group G, then      

         prove that (HK)
-1

 = K
-1

H
-1

. 

(OR) 

     b) A non-empty subset H of a group G is a subgroup of G  

         iff  i) a H, bH  abH,  ii) a H a
-1
 H where a

-1
     

         is the inverse of a in G. 
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UNIT – I 

1.  1 Introduction about set theory T1: 3-5 

2.  1 Basic concepts on sets with examples T1: 5-7 

3.  1 Some general properties on sets T1: 8-12 

4.  1 Mappings- Definition and Types of 

mappings with example 

T1: 19-23 

5.  1 Theorems on mapping T1: 25-29 

6.  1 Binary operations-Types of binary 

operations 

T1: 33-35 

7.  1 Relations T1: 37-38 

8.  1 Properties of relation in a set T1: 38-40 
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10.  1 Basic concepts on groups T1: 48-50 

11.  1 Some examples on groups T1: 50-53 
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R5: 3.6-3.7, 3.12-3.13 

13.  1 General properties of groups T1: 55-57 
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groups 

T1: 57-59 

15.  1 Examples on groups T1: 59-61 

16.  1 Continuation of examples on groups T1: 61-65 

17.  1 Examples on finite groups T1: 70-72 
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questions  

 

 Total  No of  Hours Planned  For  Unit I =18  
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1. 1 Subgroups: Definition and some 

examples of subgroups 
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2. 1 Theorems on subgroups T1: 139-143 
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 Total No of  Hours Planned  For  Unit III =14  
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2. 1 Elementary properties of a ring T1: 255-256 

3. 1 Examples of rings T1: 257-258 

4. 1 Some special classes of rings T1: 259-261 
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9. 1 Theorems on Homomorphisms of rings T1: 356-358 

10. 1 Continuation of theorems on 

Homomorphisms of rings 

T1: 358-360 

11. 1 Recapitulation and discussion of possible 

questions  

 

 Total No of  Hours Planned  For  Unit IV =11  

UNIT – V 

1. 1 Ideal-Definition and examples R5: 4.18-4.19 

2. 1 Theorems on ideals R5: 4.19-4.20 

3. 1 Quotient rings R5: 4.20-4.21 

4. 1 Maximal ideal  T1: 361-362 

5. 1 Theorems on maximal ideals T1: 364-366 

6. 1 Fields of quotients of an integral domain R5: 4.27-4.28 

7. 1 Continuation of fields of quotients of an 

integral domain  

R5: 4.28-4.29 

8. 1 Euclidean Rings: Definition and 

examples 

T1: 370-373 

9. 1 Properties of Euclidean rings T1: 373-374 

10. 1 Theorems on Euclidean rings T1: 374-375 

11. 1 Continuation of  theorems on Euclidean 

rings 

T1: 375-377 

12. 1 Unique Factorization theorem T1: 377-378 

13. 1 Recapitulation and discussion of possible 

questions  

 

14. 1 Discussion of previous ESE question 

papers. 

 

15. 1 Discussion of previous ESE question 

papers. 

 

16. 1 Discussion of previous ESE question 

papers. 

 

 Total No of  Hours Planned  For  Unit V=16  

 Total No of  Hours Planned  = 75  
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PART - A (20 x 1 =20 Marks)(30 Minutes) 
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PART-B 

Answer All the Questions: 

21. a)  If A and B are any two sets prove that  

i) (A-B) U (B-A) = (AUB)-(A∩B)         ii) A∩(B-C)=(A∩B)-(A∩C) 

Proof: 

 i) (A-B) U (B-A) = (AUB)-(A∩B) 

AUB C (A-B) U (B-A) ------- 1 

(A∩B) C (A-B)U (B-A)-------- 2 

From 1 & 2  

(AUB)-(A∩B) C (A-B) U (B-A)-------- 3  

Let  xє (A-B)U (B-A)------ 4   and 

xЄ(AUB)-(A∩B)-------- 5 

from 4 and 5 we get, (A-B)U(B-A) C (AUB)-(A∩B)-------- 6 

from 3 & 6 we have 

 (A-B) U (B-A) = (AUB)-(A∩B) 

ii) A∩(B-C)=(A∩B)-(A∩C) 

similarly we have to prove (A∩B)-(A∩C) C A∩(B-C)-------- 7 and 

A∩(B-C) C (A∩B)-(A∩C)------8  

7 & 8 we have 



 A∩(B-C)=(A∩B)-(A∩C) 

 

b) i) Show that the set of all positive rational numbers forms an abelian group under the 

composition defined by  a*b= ab)/4 

ii) If (G, *) is group show that (𝒂 ∗ 𝒃)−𝟏 = 𝒃−𝟏 ∗ 𝒂−𝟏 for all a,b є 𝑮 

Proof: 

 i) let a,b Є G, then a.b and (ab)/4 exist abelian in G by closure property, 

(a.b)(a.𝑎−1)= a. (ab)/4 𝑎−1 

a*b=(ab)/4 and also satisfied associative, identity, inverse property. 

ii) Let a,b ∈ 𝐺. Let 𝑎−1𝑏−1 be the inverse of a and b in G. 

 closure property: consider, (a.b) (𝑏−1𝑎−1 )= a(b. 𝑏−1) 𝑎−1=e 

(𝑎. 𝑏)−1 (a.b) (𝑏−1𝑎−1 )= (𝑎. 𝑏)−1 . e 

e (𝑏−1𝑎−1 )= (𝑎. 𝑏)−1 

ie) (𝑎. 𝑏)−1 = 𝑏−1𝑎−1 for all a,b є 𝐺. 

 

22.a) Define a subgroup with example and hence show that the order of each subgroup of a 

finite group is a divisor of the order of the group. 

 

Sub groups: 

A non empty subset H of a group G is said to be a subgroup of G if under the product is G,H 

itself forms a group 

Examples: 

1. Let G be the group of integers under addition H the subset consisting of all the 

multiplies of 5. Then H is a subgroup of G. 

2. Let G be the group of all real nos under addition and H be the set of all integers then H 

is a subgroup of G. 

3. Let G be the group of all non zero complex numbers a+ib(a, b real not both zero) under     

    multiplication and let H={a+ibεG/a2+b2=1} then H is a subgroup of G. 

           Since Ha=[a] any two right coset being 

i) Equivalence classes are either disjoint or identical. 

ii) Also the union of the distinct right coset in G. 

iii) Let there be K distinct right coset. Since there is an one to one correspondence 

between any two right cosets, all the right cosets have the same no of elements. 



But H=He is a right coset and has o(H) elements. So the K distinct right cosets each 

having o(H) elements fill out g. 

So K.o(H)=o(G) 

o(H) is a divisor of o(G) 

Hence the theorem. 

 

b) Define a normal subgroup and hence show that a subgroup H of a group G is a normal 

subgroup of G iff each left coset of H in G is a right coset of H in G. 

Normal subgroup: 

Let G be a group. A sub group N of G is said to be a normal subgroup of G, if for every gεG and 

nεN, gng -1εN. 

Equivalently if gNg -1={gng -1/nεN} then N is a normal subgroup of G. then gNg -1ς ¥ gεG. 

Proof: 

Let us assume that N is a normal subgroup of G then we know that lemma, 

i.e., gN=Ng 

every left coset of N in G is a right coset of N in G. conversely let N be a subgroup of G. every 

left coset of N in G is also a right coset of N in G. let g be any element of G. then gN=Ng for 

some gεG. 

Since eεN, ge=gεgN=Ng 

gεNg 

also g=egεNg  i.e.,gεNg 

gN=Ng 

post multiplying both sides by g -1 we get  

gNg -1=Ngg -1 

gNg -1=N 

then  N is a normal subgroup of G. 

23.a)Show that every homomorphic image of a group G is isomorphic to some quotient 

group of G. 

 Proof: 

Let G be a group put s=G, then for gεG. 

Define the mapping τg:G  G 

By xτG=xg  ¥ xεG 

Let x, yεG 



Then xτg=xg 

yτg=yg 

If xτg= yτg 

Then xg=yg         x=y     τg is one to one. 

If yεG then y=yg -1g 

=(yg -1)g 

=(yg -1)τg 

Now yg -1εG     yg -1 is the pre image of y in G under τg. Τg is onto. 

Τg ε A(G) ¥ gεG 

Now define the mapping ψ:G      A(G) by ψ(g)=τg ¥gεG 

Let us know prove that ψ is hpomomorphism. 

Let a, bεG then for any xεG we have xτab=xab  ¥ xεG 

Now consider xτaτb=(xτa)τb 

=(xa)τb 

=xab  ¥ xεG 

xτaτb=xτab 

τaτb=τab 

now consider ψ(ab)= τab 

= τaτb 

=ψ(a).ψ(b) 

Ψ is a homomorphism of G into A(G) suppose that k is the kernel of ψ. Let kεK then ψ(k)=I by 

definition of kernel. 

τk=i 

xτk=xi 

xk=xe 

k=e 

Ψ is one to one. 

Ψ is isomorphism of G into A(G). 

Also ψ is onto upto the range of ψ. We know that the range of a homomorphism is a subgroup of 

A(G). 

Hence every group is isomorphic to a subgroup of A(S) for some appropriate S. 

 

b) Suppose G is a finite abelian group and p/o(G) where p is a prime number then show 

that there is an element a≠e belongs to G such that ap=e. 

Proof: 

Let us prove that this theorem by the method of this induction on the order of G. 

If G has no proper subgroups then G must be of prime order because every group of composite 

order possesses proper subgroups. 

But p is prime and p/o(G)=o(G) must be p. also we know that every group of prime order is 

cyclic each element a≠eof G will be a generatorof G. 

G has p-1 element as a≠e such that ap=ao(G)=e. 



If G has a proper subgroup H H≠{e} and H≠G and if p/o(H) then by our induction hypothesis the 

theorem is true for H and also H is abelian group with o(H)<o(G). 

F an element bεH and b≠e show that bp=e. 

Let us assume that p is not a divisor of o(H). since G is a abelian . H is a normal subgroup of G 

and so G/H is a quotient group. 

Since G is a abelian G/H is also abelian. 

Since o(G/H)<o(G) since o(H)>1 since p/o(G) and p is not a divisor of o(H). 

P is a divisor of o(G)/o(H). hence by our induction hypothesis the theorem is true for the group 

G/H. 

Since H is the identity element of  G/H F an element C in G such that Hc≠H is G/H. 

So that (Hc)
p=H 

With quotient group G/H, o(Hc)=p 

(Hc)
p=H 

Hc
p=H=CpεH 

By corollary of lagranges theorem we have (Cp)o(H)=e 

(Co(H))p=e 

dp=e 

let us prove that this d≠e. 

if we assume that d=e, then consider that  

(Hc)
o(H)=Hc

o(H)=H 

(Hc)
o(H)=H is the identity of G/H. 

But o(Hc)=p as Hc=G/H 

p/o(H) which is a contradiction our assumption d=e is wrong 

d≠e 

=dp=e 

d≠e show that dp=e 

hence the induction theorem is proved. 



24. a) Prove that the set M of 2X2 matrices over the field of real numbers is a ring with 

respect to matrix addition and multiplication. Is it a commutative ring with unit element? 

Find the zero element. Does this ring possess zero divisors? 

 Proof: 

Some M is a ring of 2*2 matrices with their elements as integers, the addition and multiplication 

of matrices being the two ring composition then M is a ring with zero-devisors 

The ring of integer is a ring without zero-devisors 

If R is a commutative ring then a≠0 ϵ R is said to be a zero-devisor if there exist a,b ϵ R,b≠ 0 

such that ab=0 

[Eg : define (a1,b1,c1) (a2,b2,c2)=(a1a2,b1b2,c1c2) 

(1,2,0) (0,0,7)=(0,0,0)] 

b) Prove that every finite integral domain is a field. 

 Proof  

 An integral domain is a commutative ring such that ab=0 if atleast one of a or b is 0. 

Let D be the finite integral domain with n elements.There  exist an element 1 ϵ D such that 

a.1 = 1.a = a v a v D 

I. For every element a ≠ 0 ϵ D 7 a b ϵ D show that ab=1 

Let x1,x2…xn be the n elements of D 

Let a ≠ 0 ϵ D 

we claim that they are all distinct 

if possible let us assume that 

xia = xja for i ≠ j 

then xia – xja = 0 

(xi – xj)a = 0 (R.D.L) 

Since D is an integral domain and a ≠ 0 (by assumption ) 

We have xi – xj =0 => xi – xj 

This is contradiction since i ≠ j 

Our assumption that xia = xja is false 

xia ≠ xja for i≠j 



x1a,x2a…xna are distinct and these n-distinct elements lie in D. 

therefore by the pigeon hole principle these elements are the elements of D 

if Y ϵ D then y=xia for some xi 

in particular since a ϵ D we must have 

a=x a for some xi0 ϵ D 

since D is commutative we have 

a = xi0 a=axi0 

we shall P.T xi0 is a unit element for every element of D 

now yxi0 = (xi a)xi0 

   =xi(axi0)=y 

   Xi0 is the unit element of D and we write it as 1 

 xi0=1 

Now 1 ϵ D .. a.1 = a v a ϵ D 

1 must be of the form xia for some xi ϵ D 

1 = xia 

For every a,b ϵ b such that 1 = ba 

Ab = ba = 1 => Innverse exist 

Thus we proved two conditions 

Hence every finite integral domain is a field 

25.a) Define an ideal of a ring and hence show that a commutative ring R with identity  is a 

filed iff if it has no proper ideals. 

Ideal of a ring: 

 If R is any ring then a subset L of R is called a left Ideal of R, if 

i)L is a subgroup of R under addition 

ii)r ϵ R, a ϵ L =>  ra ϵ L 

In a similar way we can define a right ideal 

 

 



Proof: 

Let R be commutative ring with unity have no proper ideals. 

Set Ra={ra: rє𝑅} is ideal of R. Thus R has no proper ideals. 

Ra=R. Their exist  an element  bєR such that ba=1. 

Hence non zero element R possesses multiplicative inverse.  

Therefore R is field. 

b) Prove that an ideal S of a commutative ring R with unity is maximal iff the residue class 

ring R/S is a field. 

 Proof: 

Given that m is an ideal of R 

Assume that  is a field. Since  is a field , its only ideals are {0} and  Then by 

theorem  there I a one to one correspondence between the set of ideals of  and the set of 

ideals of R which contain  m. the ideal M of R corresponds to the ideal {0} of  whereas the 

ideal R of R corresponds to the ideal  of  in this one to one correspondence. Thus there 

is no ideal between m and R other than these two 

Hence m is a maximal ideal of R 

 Conversely assume that m is a maximal ideal of R 

Then by the correspondence mentioned above  has only {0} and itself an ideals. Further 

since R is a commutative ring with unit element hence by lemma we have ,  is a field. 
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Answer all the Questions: 

 
 

1. Let H and K be subgroups of a group G, then-------- 

    a) HK is a subgroup of G     b) HK is a subgroup of G 

    c) H X K is a subgroup of G    d) HK is a subgroup of G 
 

2. If N is a normal subgroup of G and H is any subgroup of G,    

    then NH is a ---------- group of G. 

    a) normal   b) sub        c) semi  d) abelian 

3. Two cycles are said to be ---------- if they have no symbols    

     in common. 

     a) disjoint    b) transposition    c) 2 cycles       d) m cycles 
 

4. A mapping φ from a group G into a group G̅ is said to be ----     

     if for all a,b є G,   φ(ab)=φ(a)φ(b). 

      a) automorphism   b) isomorphism  

     c) homomorphism  d) endomorphism  

 

 

5. The product of two even permutation is------ . 

     a) odd  b) even  

     c) zero  d) either odd or even 

 

6. A homomorphism of a group into itself is called  --------. 

     a) homomorphism onto b) endomorphism  

      c) isomorphism  d) automorphism 

 

7. If φ is a homomorphism of G into G̅ then φ(e) =-------- 

     a)𝑒̅  b)0  c)1  d)e 

8. Every permutation is the product of -------- cycles. 

    a) disjoint b)2  c)3  d)m 

 

9. Every ------- group having more than two elements has a    

      nontrivial automorphism. 

      a) infinite     b) finite c) normal  d) sub 

10. The mapping  f : G→G/N is called a ------- mapping. 

       a)one-to-one b)onto  c)natural d)into 

 

11. The group Sn has ------ elements. 

       a) n!/2  b) n!/3  c) n!  d)(n+1)! 

12. Every --------- is the product of its cycles. 

    a) cyclic group   b) sub group   

    c) semi group  d) permutation 

 



13. Every homomorphic image of an abelian group is --------- 

     a) fnite b) infinite c) normal d)abelian 

14. The number of elements in the finite set S is known as 

       the -------- of permutation. 

       a) degree     b) equality c) symmetric d)product 

 

15. Every transposition is an --------- permutation 

     a) even b) odd  c) zero  d)unit 

16. Every finite group G is --------- to a permutation group. 

 a) homomorphic b)automorphic   

            c) isomorphic  d)endomorphic 
 

17. If every non zero element in R is a unit is called ---- 

     a) ring with unit element    b) commutative ring   

     c) zero ring       d)division ring 
 

18. A ring is an algebraic structure with --------- binary    

      operations. 

 a)1  b)2  c)3  d) 4 
 

19. A ring is called a Boolean ring if -------. 

       a) a2 =e for all a є R, where e is the multiplicative identity 

       b) a2 =a for all a є R 

       c) a2 =0 for all a є R 

       d) an =0 for all a є R 

 

20. If in a ring R there is an element 1 in R such that a.1=1.a=a    

      then R is -------- 

     a) ring with unit element    b) commutative ring  

     c) zero      d) division ring 

 

  

PART-B(3 X 10 = 30 Marks) 

Answer all the Questions: 

 

21.a) State and prove Lagrange’s theorem. 

(OR) 

    b)  If H and K are finite subgroups of G of orders O(H) and  

         O(K), then prove that  O(HK)= 
𝑂(𝐻)𝑂(𝐾)

𝑂(𝐻∩𝐾)
. 

 

22.a) If f is a homomorphism of a group G into G', then prove   

         that i) f(e) = e', where e is the identity of G and e' is the   

                    identity of G' 

     ii) f(a-1) = [f(a)]-1, aG 

(OR) 

      b) State and prove Cayley’s theorem. 

 

23.a) State and prove the fundamental theorem on    

         homomorphism of groups. 

(OR) 

      b) If R is a ring, then for all a,b∈R, 

 i) a0 = 0a = 0. 

 ii) a(-b) = (-a)b = -(ab) 

 iii) (-a)(-b) = ab. 

 iv) a(b-c) = ab - ac 
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Answer all the Questions: 
 

1. Let H and K be subgroups of a group G, then-------- 

    a) HK is a subgroup of G     b) HK is a subgroup of G 

    c) H X K is a subgroup of G    d) HK is a subgroup of G 
 

2. If N is a normal subgroup of G and H is any subgroup of G, then NH is a ----------  

    group of G. 

    a) normal   b) sub c) semi  d) abelian 

3. Two cycles are said to be ---------- if they have no symbols in common. 

     a) disjoint    b) transposition    c) 2 cycles       d) m cycles 
 

4. A mapping φ from a group G into a group G̅ is said to be ----  if for all a,b є G,      

    φ(ab)=φ(a)φ(b). 

      a) automorphism   b) isomorphism c) homomorphism d) endomorphism  

 

5. The product of two even permutation is------ . 

     a) odd  b) even      c) zero  d) either odd or even 

 

6. A homomorphism of a group into itself is called  --------. 

     a) homomorphism onto b) endomorphism c) isomorphism d) automorphism 

 

7. If φ is a homomorphism of G into G̅ then φ(e) =-------- 

     a)𝒆̅  b)0  c)1  d)e 

8. Every permutation is the product of -------- cycles. 

    a) disjoint b)2  c)3  d)m 

 

9. Every ------- group having more than two elements has a   nontrivial automorphism. 

      a) infinite     b) finite c) normal  d) sub 



10. The mapping  f : G→G/N is called a ------- mapping. 

       a)one-to-one b)onto  c)natural d)into 

 

11. The group Sn has ------ elements. 

       a) n!/2  b) n!/3  c) n!  d)(n+1)! 

12. Every --------- is the product of its cycles. 

    a) cyclic group   b) sub group  c) semi group  d) permutation 

 

13. Every homomorphic image of an abelian group is --------- 

    a) fnite b) infinite c) normal d)abelian 

14. The number of elements in the finite set S is known as the -------- of permutation. 

       a) degree     b) equality c) symmetric d)product 

 

15. Every transposition is an --------- permutation 

     a) even b) odd  c) zero  d)unit 

16. Every finite group G is --------- to a permutation group. 

 a) homomorphic b)automorphic  c) isomorphic  d)endomorphic 
 

17. If every non zero element in R is a unit is called ---- 

     a) ring with unit element    b) commutative ring   

     c) zero ring       d)division ring 

 

18. A ring is an algebraic structure with --------- binary    operations. 

 a)1  b)2  c)3  d) 4 

 

19. A ring is called a Boolean ring if -------. 

       a) a2 =e for all a є R, where e is the multiplicative identity 

       b) a2 =a for all a є R 

       c) a2 =0 for all a є R 

       d) an =0 for all a є R 

 

20. If in a ring R there is an element 1 in R such that a.1=1.a=a   then R is -------- 

     a) ring with unit element    b) commutative ring  

     c) zero      d) division ring 

 

 

 

 



PART-B(3X10=30 Marks) 

Answer all the Questions: 

21.a) State and prove Lagrange's theorem. 

Statement: 

If G is a finite group and H is a subgroup of G, then o(H) is a division of o(G). 

Proof: 

Since Ha=[a] any two right coset being 

i) Equivalence classes are either disjoint or identical. 

ii) Also the union of the distinct right coset in G. 

iii) Let there be K distinct right coset. Since there is an one to one correspondence 

between any two right cosets, all the right cosets have the same no of elements. 

But H=He is a right coset and has o(H) elements. So the K distinct right cosets 

each having o(H) elements fill out g. 

So K.o(H)=o(G) 

o(H) is a divisor of o(G) 

Hence the theorem. 

 

 

b) If H and K are are finite subgroups of G of orders o(H) and o(K) respectively 

then o(HK)=  

Proof: 

Case i) let H∩K={E}   o(H∩K)=1 

In this acse it is enough to prove that o(HK)=o(H).o(K) 

The elements of HK are h1k1, h2k2,h3k3………… 

Where h1, h2 ,h3……….εH and k1, k2, k3,……….εk 

This list contains o(H).o(K) no of elements. 

Claim: 

Each product in this list is distinct h1k1≠h2k2 whenever h1≠h2 if possible let us assume 

that h1k1=h2k2   whenever h1≠h2. 

Per multiplying by h2
 -1 and post multiplying by k1

 -1 on both sides we get 



h2
 -1h1k1k1

 -1= h2
 -1h2k2k1

 -1 

h2
 -1h1= k2k1

 -1 

but h2
 -1h1εH and k2k1

 -1εK 

h2
 -1h1εH∩K={e}= h2

 -1h1=e    h2=h1 

a contradiction to our assumption H is a subgroup. Thus our assumption is wrong. Hence 

each product in this list is distinct all the elements in this list of HK are distinct having 

o(H).o(K) number of elements. Thus in this case H∩K={e} 

we have o(HK)=  

Case ii) H∩K≠{e} 

we shall know show that the list of elements of HK contains repetitions elements, 

repeating exactly o(H∩K) times. 

Let h1εH∩K 

Then hk=(hh1)(h1
 -1) 1 

Where hh1εH  and h1
 -1kεK thus hk is duplicated in the product atleast o(H∩K) times 

however if hk=h -1k -1 

Then h -1hk(k1) -1=h -1h1k1(k1) -1 

K(k1) -1=h -1h1=u (say) 

uεH∩K 

h1=hu    k1=u -1k 

thus all duplications are taken into consideration in equation 1. 

Hk appears in the list of HK exactly o(H∩K) times. 

Thus the number of distinct elements in HK is the total no of elements in the list HK. 

O(H).o(K) divided by the no of times a given element appears namely o(H∩K) 

o(HK)= . 

22.a) If f is a homomorphism of a group G into G', then prove that i) f(e) = e', where e is the    

        identity of G and e' is the  identity of G' 

 ii) f(a-1) = [f(a)]-1, aG 



 

Proof: 

i) Let xεG then f(x)εG 

Consider f(x) e'  = f(x) 

=f(xe) 

=f(x).f(e) 

e' =f(e) 

ii) Now e'   =f(e) 

=f(xx -1) ,  for every xεG 

=f(x).f(x -1) 

=[f(x)] -1=f(x -1) 

Hence the lemma 

 

22.b) State and prove Cayley’s theorem . 

Cayley’s theorem: 

Every group is isomorphic to a subgroup of A(S) for some appropriate S. 

Proof: 

Let G be a group put s=G, then for gεG. 

Define the mapping τg:G  G 

By xτG=xg  ¥ xεG 

Let x, yεG 

Then xτg=xg 

yτg=yg 

If xτg= yτg 

Then xg=yg         x=y     τg is one to one. 

If yεG then y=yg -1g 

=(yg -1)g 

=(yg -1)τg 

Now yg -1εG     yg -1 is the pre image of y in G under τg. Τg is onto. 

Τg ε A(G) ¥ gεG 



Now define the mapping ψ:G      A(G) by ψ(g)=τg ¥gεG 

Let us know prove that ψ is hpomomorphism. 

Let a, bεG then for any xεG we have xτab=xab  ¥ xεG 

Now consider xτaτb=(xτa)τb 

=(xa)τb 

=xab  ¥ xεG 

xτaτb=xτab 

τaτb=τab 

now consider ψ(ab)= τab 

= τaτb 

=ψ(a).ψ(b) 

Ψ is a homomorphism of G into A(G) suppose that k is the kernel of ψ. Let kεK then 

ψ(k)=I by definition of kernel. 

τk=i 

xτk=xi 

xk=xe 

k=e 

Ψ is one to one. 

Ψ is isomorphism of G into A(G). 

Also ψ is onto upto the range of ψ. We know that the range of a homomorphism is a 

subgroup of A(G). 

Hence every group is isomorphic to a subgroup of A(S) for some appropriate S. 

 

23.a) State and prove Fundamental theorem on homomorphism of groups. 

Statement: 

Let Ф be a homomorphism of G onto G with kernel k then G/k≈G 

(or) 

Every homomorphic image of G is isomorphic to some quotient group of G. 

Proof: 



Let us define ψ:G/k        G by 

Ψ(ka)=Ф(a) 1 where ka is any element of G/k and aεG. 

Let us first prove that the mapping to show that ka=kb      ψ(ka)=ψ(kb)¥ka,kbεG/k 

A, bεG 

Now we assume that ka=kb 

Now a¥ka=kb 

Aεkb 

a=kb where kεk 2 

now ψ(ka)=Ф(a) by equ 1 

=Ф(kb) by equ 2 

=Ф(k)Ф(b) 

=Ф(b) 

=¥ψ(kb) by equ 1 

Ψ(ka)=ψ(kb) whenever ka=kb 

Ψ is called well defined. 

Let ka, kb εG/k where a, bεG 

Now ψ(ka, kb)=ψ(kab) 

=Ф(ab) 

=Ф(a)Ф(b) 

=ψ(ka).ψ(kb) 

Ψ is homomorphism 

Given that Ф is onto for every gεG  F a gεG such that Ф(g)=g 

Ψ(kg)=g 

For every g   ε  G kgεG/k such that ψ(kg)=g 

Then by definition ψ is onto 

Let us show that ψ is one to one by showing that the kernel of ψ namely kψ consists of 

only one element k which is the identity element of G/k. 

By definition kψ={kaεG/k/ψ(ka)=e} 

={kaεG/k/Ф(a)=e  } 



={k} 

Then by definition G/k≈G. 

b) If R is ring, then for all a,b ϵ R 

1. a.0  = 0.a = 0 

2. a(-b)=(-a)b=-(ab) 

3. (-a)(-b)=ab 

Proof:  

i) Let a ϵ R then consider 

 a.0 = a.(0+0) 

      =a.0+a.0 (L.D.L) 

(i.e) a.0=0 = A. + A.0 

=> 0 = a.0 (by L.C.L) 

Since R is a group under addition we have 

 a.0 = 0 

Similarly we can prove 0.a = 0 

Thus we have a.0 = 0.a = 0 

ii)  We shall first show that a(-b) = -(ab) 

(i.e) To P.T a(-b) + ab = 0 

Now consider, a(-b) + ab = a(-b + b) 

        =a(0) 

       = 0 by 1 

(i.e) a(-b) + ab = 0 

(i.e) a(-b) = -ab 

Similarly we can P.T (-a)b = -ab 

 a (-b) = (-a)b = -ab 

iii) Now consider (-a)(-b) 

(-a) (-b) = -(a(-b)) by 2 

  = -(-ab) 



  =ab 

 

iv) We have a(b-c)  = a[b+(-c)] 

                                 = ab+a(-c)    (Since L.C.L) 

                                   = ab+[-(ac)  ]  = ab-ac  
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PART - A (20 x 1 =20 Marks) 

 

ANSWER ALL THE QUESTIONS: 

 

1. A set consisting of one element is called a ------- set. 

    a) singleton  b) null  c) equal d) sub  

 

2. The properties of an equivalence relation are-------------- 

      a) reflexive,symmetry and transitive       b) reflexive and transitive 

      c) reflexive, anti symmetry and transitive      d) symmetry and anti transitive 

 

3. The function f : ZZ defined by f(x) = 3x is ------ 

      a) bijection  b) 1-1 and onto  

      c) not 1-1 but onto  d) neither 1-1 nor onto 

 

4. The number of elements in a --------- group is called the order of the group. 

        a) finite     b)infinite c)semi  d)sub  

 

5. If H is a subgroup of G, a∈G, then Ha={ha: h є H} is called --------- of H in G. 

      a) left coset    b) right cancellation       c) left cancellation    d) right coset 
 

6. Every group is a --------- group of itself. 

 a) semi  b )sub  c)finite  d) abelian 

7. If N is a normal subgroup of G iff gNg-1 = ------- 

      a)g  b) g-1  c)N   d)n 
 

8. If N is a normal subgroup of G and H is any subgroup of G, then NH is a ---------- group of G. 

       a)normal     b)sub c)semi  d)abelian 

9. A mapping φ from a group G into a group G̅ is said to be ---- if for all a,b є G, φ(ab)=φ(a)φ(b) 

       a) automorphism   b) isomorphism c) homomorphism d) endomorphism  
 

10. The product of two even permutation is------ . 

         a)odd  b)even       c)zero d)either odd or even 
 

11. If G is a group, then A(G), the set of automorphism of G is also a -------- 



        a) subgroup b)group   c) normal group  d)semi group 

 

12. Two cycles are said to be ---------- if they have no symbols in common. 

         a) disjoint b) transposition  c) 2 cycles  d) m cycles 

 

13. If in a ring R there is an element 1 in R such that a.1=1.a=a then R is -------- 

      a) ring with unit element b)commutative ring 

      c)zero    d)division ring 
 

14. A ring is called a Boolean ring if -------. 

      a) a2 =e for all aє R, where e is the multiplicative identity 

      b) a2 =a for all a є R 

      c) a2 =0 for all aє R 

      d) an =0 for all aє R 
 

 

15. If R is a ring, for all a є R then a(0) = --------- 

      a) a  b)1  c)0  d)∞ 

16. A ring is called ------ if it is commutative, unit element and  without zero divisors. 

      a) finite field b)sub field       c)skew field d)integral domain 

 
 

17. A non empty subset S of a ring R is said to be -------- ideal  of R if rsєS. 

      a)right b)left  c)prime d)proper 
 

18. A ring having no proper ideal is --------ring. 

       a)division        b)boolean  c)commutative  d)simple 
 

19. A ---------- ring possesses a unit element. 

      a) division  b)commutative     c)zero  d)euclidean 
 

20. The set of integer is not an ------ of the ring of rational numbers. 

       a) division ring  b)ideal         c) sub ring  d)simple ring 
 

 

PART-B ( 5x 8 = 40 Marks) 

ANSWER ALL THE QUESTIONS: 

 

21. a) i) Prove that  A(BC) = (AB)  (AC) 

 

 Proof: 

 

For any 3 sets A,B,C we have  

A∩(BUC)=( A∩B)U(A∩C) 

First we try to prove that  



( A∩B)U(A∩C)ς A∩(BUC) 

Now B ς BUC 

A∩B ς A∩(BUC)                 1 

c ς BUC 

A∩C ς A∩(BUC) 2 

1 and 2 (A∩B)U(A∩C) ς A∩(BUC) 3 

Next we try to prove  

A∩(BUC) ς(A∩B)U(A∩C) 

xεA A∩(BUC) 4 

Let xεA and (xεB or xεC) 

xεA and xεB or xεA and xεC 

xε A∩B or xε A∩C 

xε(A∩B)U(A∩C) 5 

from 4 and 5,  A∩(BUC) =(A∩B)U(A∩C) 6 

 

       ii) If a finite set S has n elements, then prove that the power set S has 2n elements. 

     Solution: 

     Given that A is a finite set with n elements 

     Thus A contains obviously the empty set also that it contains the following subsets. 

    nc1=number of 1 element subsets. 

    nc2=number of 2 element subsets. 

ncn=number of n element subsets. 



The total number of subsets=nc0+nc1+nc2+…….+ncn 

                     =1+nc1+nc2+……….+1 

From binomial theorem we know that 

(1+x)n=1+nx+ x2+………..+xn 

When x=1 we have, 

2n=1+n+ +………….+1 

      From these both we have the total no of subsets=2n. 

b) Show that the set G ={ a+b2: a,bQ} is a group with respect to addition. 

Solution: 

Closure Property: 

Let x,y be any two elements of G. Then x= a+b2, y = c+d2, where a,b,c,d Q 

Now x+y=(a+c)+(b+d) 2Q,  

Thus x+y G for every x,y G. 

Therefore G is closed with respect to addition. 

Associativity: 

The elements of G are all real numbers and the addition of real numbesr is associative. 

Existence of identity: 

We have 0+02 G since 0Q. 

If a+b2 is any element of G, then (0+02 )+(a+b2) = a+b2 

0+02 is the identity. 

Existence of inverse: 

We have  a+b √2 ∈ 𝐺  (−𝑎) + (−𝑏)√2 ∈ 𝐺 since a, b  Q   - a, -b  Q. 

 Now [(-a)+(-b)√2] + [𝑎 + 𝑏√] = [(−𝑎) + 𝑎] + [−𝑏) + 𝑏]√2 = 0 + 0√2 = the left identity. 

There for (-a) +(-b)√2 is the left inverse of a+b√2. 

Hence G is a group with respect to addition.  



22.a) Prove that a subgroup H of a group G is a normal subgroup of G if and only if the 

product of  two right coset of H in G is a right coset of H in G. 

Proof: 

First we assume that H is a normal subgroup of G. let a, bεG and consider the two right 

cosets Ha and Hb. 

Now HaHb=H(aH)b 

=(HH)ab 

=Hab 

=Hc where c=abεG 

Hence the product of any two right cosets of H in G is again a right cosets of H in G. 

Conversely let us assume that the product of any two right cosets of H in G is again a 

right coset of H in G. 

We have to prove that H is a normal in G. by hypothesis HaHb=Hc for some cεG 

First we try to prove that HaHb=Hab 

To prove that Hc=Hab 

Now ab=eaeb=HaHb=Hc 

abεHc 

now ab=eabεHab 

abεHab 

but we know that any two right cosets are either distinct or identical. 

Now we get Hab=Hc 

Hence we have let a=g, b=g -1 

Then we have HgHg -1=Hgg -1 

HgHg -1=H  ¥  gεG 

Now gHg -1ε gHg -1¥ nεH 

gHg -1=e gHg -1εHgHg -1=H 

gHg -1εH  ¥ gεG  and nεH 



then by definition H is a normal subgroup of G. 

Hence the lemma.  

 

b) State and prove Fermat theorem. 

Statement:  

If p is a prime number and a is any integer then ap=a mod p. 

Proof: 

        let G be the set of non zero residue classes of integers module p. if p is a prime 

number then w.r.to multiplication of residue classes. A is a group of order p-1. The 

identity elements of this group is [1]. 

Now suppose a is an integer 

Case (i): 

 p is an divisor of a. 

p/a 

p/ab 

p/ap-a 

ap=a mod p 

Case (ii) : 

p is not a divisor of a. 

in this case [a]≠o   [a]εG 

now ao(G)=[1] by corollary 2 

ap-1=[1] 

p/ap-1-1 

p/ap-a 

ap≡a mod p   hence the corollary. 

 

23.a)  State and prove Cayley’s theorem. 



Statement: 

Every group is isomorphic to a subgroup of A(S) for some appropriate S. 

Proof: 

Let G be a group put s=G, then for gεG. 

Define the mapping τg:G  G 

By xτG=xg  ¥ xεG 

Let x, yεG 

Then xτg=xg 

yτg=yg 

If xτg= yτg 

Then xg=yg         x=y     τg is one to one. 

If yεG then y=yg -1g 

=(yg -1)g 

=(yg -1)τg 

Now yg -1εG     yg -1 is the pre image of y in G under τg. Τg is onto. 

Τg ε A(G) ¥ gεG 

Now define the mapping ψ:G      A(G) by ψ(g)=τg ¥gεG 

Let us know prove that ψ is hpomomorphism. 

Let a, bεG then for any xεG we have xτab=xab  ¥ xεG 

Now consider xτaτb=(xτa)τb 

=(xa)τb 

=xab  ¥ xεG 

xτaτb=xτab 

τaτb=τab 

now consider ψ(ab)= τab 

= τaτb 

=ψ(a).ψ(b) 

Ψ is a homomorphism of G into A(G) suppose that k is the kernel of ψ. Let kεK then 

ψ(k)=I by definition of kernel. 



τk=i 

xτk=xi 

xk=xe 

k=e 

Ψ is one to one. 

Ψ is isomorphism of G into A(G). 

Also ψ is onto upto the range of ψ. We know that the range of a homomorphism is a 

subgroup of A(G). 

Hence every group is isomorphic to a subgroup of A(S) for some appropriate S. 

 

b) Define a permutation. If A= (
1  2   3
2  3  1

) and B =(
1  2   3
3  1  2

) then find AB and BA. 

Solution: 

AB = (
1  2   3
2  3  1

) (
1  2   3
3  1  2

)  = (
1  2   3
1  2  3

) 

BA = (
1  2   3
3  1  2

)  (
1  2   3
2  3  1

) =  (
1  2   3
1  2  3

) 

 

24.a)i) Define Integral domain with example. 

 A ring is called an integral domain if  it i) is commutative ii) has unit element iii) is 

without zero divisors. 

 

ii) Prove that every finite integral domain is a field. 

Proof  

An integral domain is a commutative ring such that ab=0 if atleast one of a or b is 0. 

A field is a commutative ring with unit element in which every non zero element has a 

multiplicative inverse in the ring. 

Let D be the finite integral domain with n elements.  In order to show that D is a field  

we have to P.T 

I. There  exist an element 1 ϵ D such that 

a.1 = 1.a = a v a v D 

II. For every element a ≠ 0 ϵ D, for every a b ϵ D show that ab=1 

Let x1,x2…xn be the n elements of D 

Let a ≠ 0 ϵ D 



Consider the elements, 

x1a,x2a,…xna they are in D 

we claim that they are all distinct 

if possible let us assume that 

xia = xja for i ≠ j 

then xia – xja = 0 

(xi – xj)a = 0 (R.D.L) 

Since D is an integral domain and a ≠ 0 (by assumption ) 

We have xi – xj =0 => xi – xj 

This is contradiction since i ≠ j 

Our assumption that xia = xja is false 

xia ≠ xja for i≠j 

x1a,x2a…xna are distinct and these n-distinct elements lie in D. 

therefore by the pigeon hole principle these elements are the elements of D 

if Y ϵ D then y=xia for some xi 

in particular since a ϵ D we must have 

a=x a for some xi0 ϵ D 

since D is commutative we have 

a = xi0 a=axi0 

we shall P.T xi0 is a unit element for every element of D 

now yxi0 = (xi a)xi0 



   =xi(axi0) 

   =xi.a 

   =y 

Xi0 is the unit element of D and we write it as 1 

 xi0=1 

Now 1 ϵ D .. a.1 = a v a ϵ D 

1 must be of the form xia for some xi ϵ D 

1 = xia 

For every a,b ϵ b such that 1 = ba 

Ab = ba = 1 => Innverse exist 

Thus we proved two conditions 

Hence every finite integral domain is a field 

b) State and Prove fundamental theorem on homomorphism of rings. 

Fundamental theorem on homomorphism of rings. 

Every homomorphic image of a ring R is isomorphic to some residue class ring thereof. 

Proof:  

Let R’ be the homomorphic image of a ring R and f be the corresponding homomorphism.  

Then f is a homomorphism of R onto R’. Let S be the kernel of this homomorphism. 

Then S is an idealof R. Therefore R/S is a ring of residue classes of R relative to S. 

We shall prove that R/S≅R’. 

 If aR, then S+aR/S and f(a) R’. 

Consider the mapping :R/SR’ such that (S+a) = f(a) ∀ 𝑎 ∈ 𝑅. 

To prove:  is well defined 

If a.b R and S+a = S+b then (S+a) = (S+b) 



We have S+a = S+b 

 a-bS 

f(a-b) =0’ 

f[a+(-b)] = 0’ 

f(a) + f(-b) = 0’ 

f(a) =f(b) 

(S+a)= (S+b) 

  is well defined. 

To Prove :  is 1-1 

We have (S+a) = (S+b) 

f(a) =f(b) 

f(a) -f(b) = 0’ 

f(a) + f(-b) = 0’ 

f(a-b) = 0’ 

 a-bS 

 S+a = S+b 

Therefore  is 1-1. 

To Prove :  is onto 

Let y be any element of R’. Then y=f(a) for some aR because f is onto R’. 

Now S+aR/S and we have (S+a) = f(a) = y. 

Therefore  is onto R’. 

Finally we have [(S+a) + (S+b)]= [(S+(a+b)] = f(a+b) 

              = f(a)+f(b) = (S+a) +(S+b) 

 

[(S+a) (S+b)]= [(S+(ab)] = f(ab) = f(a)f(b) = [(S+a)][ (S+b)] 

Therefore  is an isomorphism of R/s onto R’. 



25.a) i) Define an ideal. 

        If R is any ring then a subset L of R is called a left Ideal of R, if 

i) L is a subgroup of R under addition 

ii) r ϵ R, a ϵ L =>  ra ϵ L 

 In a similar way we can define a right ideal 

 

   ii) Prove that the intersection of any two left ideals of a ring is again a left ideal 

       of  the ring. 

       Proof: 

       Let 𝐼1 𝑎𝑛𝑑 𝐼2 be two left ideals of a ring R. Then 𝐼1 𝑎𝑛𝑑 𝐼2 are subgroups of R under    

        addition. 

       Therefore 𝐼1 𝐼2 is also a subgroups of R under addition. 

        Now to show that 𝐼1 𝐼2𝑖𝑠 a left ideal of R, we are only to show that  

        rR, s𝐼1 𝐼2 𝑟𝑠𝐼1 𝐼2 

        We have s𝐼1 𝐼2 s𝐼1  𝑎𝑛𝑑 𝑠𝐼2 

        But 𝐼1 𝑎𝑛𝑑 𝐼2 are left idals of R. 

       Therefore rR, s𝐼1 𝑟𝑠𝐼1 and rR, s𝐼2rs𝐼2. 
       Now 𝑟𝑠𝐼 and rs𝐼2rs𝐼1 𝐼2. 
      Therefore 𝐼1 𝐼2 is also a left ideal of R. 

    

b) i) If U is an ideal of a ring R with unity and 1U, then prove that U=R. 

Proof: 

We have UR since U is an ideal of R. Let x be any element of R. Since U is an ideal of R, 

Therefore 1U, xR1xUxU. 

Therefore RU. 

Therefore R=U 

ii) If F is a field then  prove that its only ideals are (0) and F itself 

Proof   

In order to prove this result, it is enough if we prove that v a ≠ 0 ϵ R 7 a b ≠ 0 ϵ R  s.t  

ab = 1 

Let a ≠ 0 ϵ R 

Consider the set Ra = { xa / x ϵ R} 

We claim that Ra is an ideal of R 



Since 0 = 0.a ϵ Ra 

Ra is a non empty subset of R 

Let u,v ϵ Ra 

Then u = x` a and v = x2a for some x1,x2 ϵ R) 

Now u – v = x1a –x2a 

 = (x1-x2)a 

ϵ  …[x1-x2 ϵ Ra] 

Ra is a subgroup of R under addition 

Let r ϵ R let u = xa 

Then consider ru = r(xa) = (rx) a ϵ Ra (rx ϵ R) 

Similarly we can prove that ur ϵ Ra 

By deff Ra is an ideal of R 

From the given hypothesis it follows that Ra = { 0} or Ra = R 

(i.e) every multiply of R is a multiple of a by some element of R 

There exist an element b ≠ 0 s.T ab=1 

R is a field 

 

 



Reg. No ---------------- 

(15MMU603)  

KARPAGAM ACADEMY OF HIGHER EDUCATION 

COIMBATORE-21 

Model Examination- March 2018 

Sixth Semester 

Mathematics 

Modern Algebra 
 

Date:  .03.18(  N)              Time: 3 Hours 

Class: III B.Sc Mathematics      Maximum Marks:60 

 

PART - A (20 x 1 =20 Marks) 
 

ANSWER ALL THE QUESTIONS: 
 

1. A set consisting of one element is called a ------- set. 

    a) singleton  b) null  c) equal d) sub  
 

2. The properties of an equivalence relation are-------------- 

      a) reflexive,symmetry and transitive  

      b) reflexive and transitive 

      c) reflexive, anti symmetry and transitive 

      d) symmetry and anti transitive 
 

3. The function f : ZZ defined by f(x) = 3x is ------ 

      a) bijection  b) 1-1 and onto  

      c) not 1-1 but onto  d) neither 1-1 nor onto 
 

4. The number of elements in a --------- group is called the  

     order of the group. 

        a) finite     b) infinite c) semi  d) sub  

 

5. If H is a subgroup of G, a∈G, then Ha={ha: h є H} is 

    called --------- of H in G. 

      a) left coset    b) right cancellation  

      c) left cancellation    d) right coset 

 

6. Every group is a --------- group of itself. 

 a) semi  b ) sub  c) finite d) abelian 

7. If N is a normal subgroup of G iff gNg-1 = ------- 

      a) g b) g-1  c) N   d) n 
 

8. If N is a normal subgroup of G and H is any subgroup of G,   

    then NH is a ---------- group of G. 

       a) normal     b) sub c) semi  d) abelian 
 

9. A mapping φ from a group G into a group G̅ is said to be ----    

     if for all a,b є G, φ(ab)=φ(a)φ(b) 

       a) automorphism   b) isomorphism  

       c) homomorphism d) endomorphism  
 
 

10. The product of two even permutation is------ . 

         a) odd  b) even       c) zero d) either odd or even 
 

11. If G is a group, then A(G), the set of automorphism of G is  

       also a -------- 

        a) subgroup  b)group  

        c) normal group  d)semi group 
 

12. Two cycles are said to be ---------- if they have no  

      symbols in common. 

         a) disjoint  b) transposition   

         c) 2 cycles  d) m cycles 
 

13. If in a ring R there is an element 1 in R such that a.1=1.a=a  

      then R is -------- 

      a) ring with unit element  b) commutative ring 

      c) zero    d) division ring 
 

14. A ring is called a Boolean ring if -------. 

      a) a2 =e for all aє R, where e is the multiplicative identity 

      b) a2 =a for all a є R 

      c) a2 =0 for all aє R 

      d) an =0 for all aє R 
 
 



15. If R is a ring, for all a є R then a(0) = --------- 

      a) a  b)1  c)0  d)∞ 

16. A ring is called ------ if it is commutative, unit element and     

     without zero divisors. 

      a) finite field b) sub field  

      c) skew field d) integral domain 
 

17. A non empty subset S of a ring R is said to be -------- ideal   

     of R if rsєS. 

      a) ight b) left  c) prime d) proper 
 

18. A ring having no proper ideal is --------ring. 

       a) division        b) boolean    

       c) commutative  d) simple 
 

19. A ---------- ring possesses a unit element. 

      a)division  b)commutative    c)zero d)euclidean 
 

 

20. The set of integer is not an ------ of the ring of rational  

      numbers. 

       a) division ring  b)ideal  

       c) sub ring  d)simple ring 
 

 

PART-B ( 5x 8 = 40 Marks) 
 

ANSWER ALL THE QUESTIONS: 
 

21. a) i) Prove that  A(BC) = (AB)  (AC) 

         ii) If a finite set S has n elements, then prove that the  

            power set S has 2n elements. 

(OR) 

    b) Show that the set G ={ a+b2: a,bQ} is a group with  

        respect to addition. 

 

22.a) Prove that a subgroup H of a group G is a normal   

         subgroup of G if and only if the product of  two right    

         coset of H in G is a right coset of H in G. 

 

(OR) 

        b) State and prove Fermat theorem. 

 

23.a)  State and prove Cayley’s theorem. 

(OR) 

b) Define a permutation. If A= (
1  2   3
2  3  1

) and B =(
1  2   3
3  1  2

) then  

     find AB and BA. 

 

24.a)i) Define Integral domain with example. 

        ii) Prove that every finite integral domain is a field. 

(OR) 

      b) State and Prove fundamental theorem on homomorphism  

         of rings. 

 

25.a) Define an ideal. Prove that the intersection of any two left   

         ideals of a ring is again a left ideal of  the ring. 

(OR) 

     b) i) If U is an ideal of a ring R with unity and 1U, then  

              prove that U=R. 

    ii) If F is fields then prove that its only ideals are (0) and    

         F itself. 
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UNIT - I /2015-2018 Batch

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

A ------is a collection of well defined objects. set function relation group set

The sum of two natural number is also --------- number real odd natural  even natural

A set consisting of one element is called a ------- set. singleton null equal sub singleton

The set which contains no element at all is called the  ------ set. singleton null equal sub null

The number of power set in S= {a,b,c} is ------------ 4 7 9 8 8

If  A⊆B and B⊆A then ---------- A=B A¹B A=0 B=0 A=B

If  B⊂A then A∪B= -------- A A' B A

If A and B are two sets then (A∩B)1 = ---------  A∩B  A'∩B'  A'∪B'  A∪B  A'∪B'

If A,B and C are three sets then A∩(B∪C) = ---------  (A∩B)∪(A∩C)
 (A∪B) ∩ 
(A∪C)  (A∩B)∩(A∩C)  (A∩B)∪(A∪C)  (A∩B)∪(A∩C)
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If A,B and C are three sets then A∪ (B∩C) = ---------  (A∩B)∪(A∩C)
 (A∪B) ∩ 
(A∪C)  (A∩B)∩(A∩C)  (A∩B)∪(A∪C)  (A∪B) ∩ (A∪C)

If A,B and C are three sets then A∪ (B∪C) = ---------   (A∩ B)∪C  A∩ (B ∩ C) A∩( B ∪ C )   (A∪ B)∪C   (A∪ B)∪C

If A,B and C are three sets then (A∩ B) ∩ C = --------- (A∩ B)∪C A∩ (B∩C) (A∪ B)∪C (A∩ B) ∪ C A∩ (B∩C)

If  B⊂A then A∩B= -------- A A' B φ B

If a finite set S has n elements, then the power set has ---- elements.  2n  2n+1 2n-1 2n-2  2n

If A and B are two sets then (A∪B)1 = ---------  A∩B  A'∩B'  A'∪B'  A∪B  A'∩B'

The symmetric difference of two set A & B is defined by --------- (A-B)∪(B-A) (A-B)∩(B-A) (B-A)∪(A-B) (B-A)∩(A-B) (A-B)∪(B-A)

If A and B are two sets, B ⊂A then A∩B =--------------- A {} 1 B singleton

One to one mapping is also known as ------------- injective bijective surjective 1-1 onto injective 

On to mapping is also known as ------------- injective bijective surjective 1-1 onto surjective

Two sets are said to be ------------- if their intersection is empty. union  disjoint difference superset  disjoint

Two sets A and B are said to ---------- set, if every element of A is an element of 
B. equal  infinite null singleton equal

A set consisting of a number of sets is called --------- set. union  disjoint  power superset  power

If the range of the function has one element , then the function is ------ onto one -one constant identity onto 
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Composition of mapping is not ---------- commutative equal well defined set commutative

The function f : ZZ defined by f(x) = 3x is ------ bijection 1-1 and onto not 1-1 but onto
neither 1-1 nor 
onto bijection

The set of natural number is a -------------- group with respect to the operation 
addition semi  normal symmetric abelian semi 

An infinite group is said to be ---------------order identity finite infinite symmetric infinite

If G is a group, then the identity element of G is ---------- zero two unique one unique

If G is a group, then every a∈G has a --------- inverse in G zero two unique one   unique

The equivalence relation has -------- distinct equivalence classes. one n n! no n

If every element of the group G is its own inverse, then G  is -------- abelian  finite infinite  subgroup abelian

Two integers a and b are said to be relatively prime , if (a,b) = -------- 0 1 2 3 1

A Group G is said to be  ---------------- if for every a,b in G ,a.b =b.a Non-abelian abelian unity inverse abelian

The number of elements in a finite group is called ------------ of the group order infinite abelian Non-abelian order

If G is a group, then the identity element of G is ---------- zero two unique one unique

For every aG (a-1)-1 = ------- a-1 a 1 0 a

The --------- identity element is also right identity left normal right coset left 
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If s is a set with n elements then A(S) has ------- elements. one n n! zero n!

The number of elements in a group is called the -------- of the group finite order semi symmetric order

The identity element in a group is --------- unique disjoint symmetric not equal unique

The inverse of each element of a group is --------. symmetric disjoint unique not equal unique

The --------- element of a group has its own inverse single identity two no identity

The left identity element is also ------------ identity left normal right same right

The right inverse of an element is ----------- inverse.  left normal right same  left

If  a, b ∈G, then  (a-1)-1---------- a-1 a 1 0 a

If  a, b∈G, then(a.b)-1=----------- a-1 a-1 b-1  b-1a-1 b-1  b-1a-1

------------- is the binary operation on the set N of natural numbers Subtraction  Division
Cartesian 
product Addition Addition

The properties of an equivalence relation  are ------------.

reflexive, 
symmetry and 
transitive

reflexive and 
transitive

reflexive, anti 
symmetry and 
transitive 

symmetry and 
anti transitive

reflexive, 
symmetry and 
transitive

One to one on to mapping is also known as -------------  bijective injective surjective  transitive injective

If different elements in A have different f-images in B, then the function is said to 
be ------  one-one  onto  one-one on to  inverse  one-one

The identity mapping   f : A→A is defined by ---------  f(x') = x f(x) = f(x')    f(x) = x'    f(x)= x    f(x)= x
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The relation is said to be a partial order relation if it satisfies  ------------.

reflexive, 
symmetry and 
transitive

reflexive and 
transitive

reflexive, anti 
symmetry and 
transitive 

symmetry and 
anti transitive

reflexive, anti 
symmetry and 
transitive 

-----------is a binary operation on the set of natural numbers. Addition  Subtraction  Division equation Addition

If  ab = ba , ∀a,b ∈G,  then G is said to be ---------group. symmetric abelian sub semi abelian

The number of elements in a ---------- group is called the order of the group. sub  infinite  finite  semi  finite
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UNIT-I 

SYLLABUS 

SYLLABUS 

 

Introduction to set theory 

 The algebra of sets defines the properties and laws of sets, the set-theoretic operations of 

union, intersection, and complementation and the relations of set equality and set inclusion. It 

also provides systematic procedures for evaluating expressions, and performing calculations, 

involving these operations and relations. 

Preliminary notations: 

 Set theory: 

1. A set is any well defined class or collection of objects. 

2. A set ‘A’ is said to be a subset of s. if every element in A is an element of s. if 

aεA=aεs. 

3. A set is said to be a finite if it consists of a specific number of different elements, 

otherwise it is called as an infinite set. 

4. Two sets A and B are said to be equal if and only if every element of A is an 

element of B, and also every element of B is an element of A. 

If the two sets A and B are equal then we write it as A=B. 

If the two sets A and B are not equal then we write it as A≠B. 

5. A set which contains no element is called as null set or an empty set. 

6. A set consisting of a single element is called singleton set. 

7. Given a set S we use the notations as, 

A=  means that A is the set of all the elements in s for which the 

property p holds 

Sets – Mappings – Binary operations and Relations. Groups – Abelian group, SymmetricGroup – 

Definitions and Examples – Basic properties.  
 

http://en.wikipedia.org/wiki/Set_%28mathematics%29
http://en.wikipedia.org/wiki/Union_%28set_theory%29
http://en.wikipedia.org/wiki/Intersection_%28set_theory%29
http://en.wikipedia.org/wiki/Complement_%28set_theory%29
http://en.wikipedia.org/wiki/Binary_relation
http://en.wikipedia.org/wiki/Equality_%28mathematics%29
http://en.wikipedia.org/wiki/Subset
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8. The union of the two sets A and B is denoted as AUB the set is {x/x }. 

9. The intersection of the two sets A and B is denoted as A∩B is the set 

{x/x }. 

10. The two sets A and B have no elements is then we say that A and B are disjoint or 

mutually exclusive. 

Prepositions: 

1. For any 3 sets A,B,C we have  

A∩(BUC)=( A∩B)U(A∩C) 

First we try to prove that  

( A∩B)U(A∩C)ς A∩(BUC) 

Now B ς BUC 

A∩B ς A∩(BUC)                 1 

c ς BUC 

A∩C ς A∩(BUC) 2 

1 and 2 (A∩B)U(A∩C) ς A∩(BUC) 3 

Next we try to prove  

A∩(BUC) ς(A∩B)U(A∩C) 

xεA A∩(BUC) 4 

Let xεA and (xεB or xεC) 

xεA and xεB or xεA and xεC 

xε A∩B or xε A∩C 
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xε(A∩B)U(A∩C) 5 

from 4 and 5 A∩(BUC) ς(A∩B)U(A∩C) 6 

Definitions: 

1. Given a set T we say that T serves as an index set for the family f.f={Aα} of sets if for 

every αεT, there is a set of Aα is the family of F.The index set T can be any finite set or 

infinite. 

2. By the union of sets Aα where α is in T, we mean the set  

   {x/xε Aα for atleast one α in T} we denote it by U Aα αεT. 

 

3. By the intersection of he sets Aα where α is in T we mean that the set                                           

    { x/xε Aα for every α εT } we denote it by ∩ αεT Aα. 

 

4. The sets Aα are mutually disjoint if α≠β Aα∩Aβ is the null set. 

 

5. Given the two sets A and B then the difdferenc set A-B is the set {xεA/xεB} then  

     B is a subset of A in this case we call A-B is the complement of B in A. 

 

6. Let A and B be any two given sets then their Cartesian product A*B is defined as  

    the set of all ordered pairs(a,b) where aεA and bεB. 

 

Note: 

i) (a1,b1)=(a2,b2) iff a1=a2 and b1=b2 given any index set T we can define the Cartesian 

product of the sets Aα as α varies over T. 

ii) If the set A is a finite set having elements then the set A*A is also a finite set but  

    has n2 elements. 

 

iii) The set of all elements (a,a) is A*A is called the diaponal of A*A. 
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Definition: 
The binary relation ~ on A is said to be a equivalence relation if for all a,b,c is A. 

i) a~a reflexing 

ii) a~b=b~a symmetry 

iii) a~b and b~c=a~c transistivity 

 

Example:  

                 Let s be the set of all integers given a,bεs defines a~b if a-b is even integer. 

Solution: 

     i) since 0=a-a is even a~a 

     ii) if a~b then a-b is even –(b-a) is also even=b~a. 

     iii)if a~b then a-b is even and b~c then (b-c) is even. 

a-c=(a-b)+(b-c) is also even=a~c. 

The given relation is equivalence relation. 

Definition: 

If A is a set and if ~ is an equivalence relation on A then the equivalence class of aεA is 

the set {xεA/a~x} we write it as cl(a). 

Fundamental theorem on equivalence relation: 

Theorem 1.1.1  

The distinct equivalence classes of an equivalence relation A provide us with a 

decomposition of A as a union of mutually disjoint subsets. Conversely given a 

decomposition of A as union of mutually disjoint, non empty subsets we can define an 

equivalence relation on A for which these subsets are the distinct equivalence classes. 

Proof:  

            Let the equivalence relation on A be denoted by ‘~’ since for any aεA, a~a. 

A must be in cl(a). 
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Hence the union of the cl(a) is all of A we now try to prove that given two equivalence 

classes they are either equal or disjoint. 

Now we suppose that cl(a) and cl(b) are not disjoint then f an element. 

      xεcl(a)∩cl(b) 

Since xεcl(a) a~x 

Since xεcl(b) b~x 

But by the symmetry of relation we have x~b. 

a~x and x~b=a~b 1 

Now we suppose that yεcl(b) 

b~y 2 

1 and 2 a~y=yεcl(a). 

Every element in cl(b) is in cl(a) cl(b)ςcl(a) 3 

In a similar way we can prove that 

Cl(a)ςcl(b) 4 

3 and 4 cl(a)=cl(b) 

Thus we have shown that the distinct cl(a) are either they are equal or disjoint. 

Let us suppose that A=uAα where Aα mutually disjoint non empty set[α is in the some 

index set]. Given an element a is A is exactly in one Aα. 

We define for a,bεA,a~b if a and b are in the same Aα. 

We now prove that this is an equivalence relations on a and that the distinct equivalence 

classes on the Aα.|. 

Now a and a are in the same Aα. a~a. 

Now assume that a~b, then by definition a and b are in the same Aα. 

b~a hence if a~b=b~a then it follows that a and b are in the same Aα. 
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B and c are in the same Aβ. 

Now suppose that Aα≠ Aβ since bε Aβ.= Aα∩Aβ≠0 

Which is a contradiction. Since Aα and Aβ. Are distinct  Aα=Aβ. Hence a and c are in the 

same Aα. 

a~c thus a~b and b~c=a~c. thus the relation defined above satisfies reflexity symmetry 

and transitivity. Hence the above relation is an equivalence relation. 

Lat aεA let Aα be the unique no of the partition such that aε Aα then by definition of ~ we 

get cl(a)= Aα. 

Thus distinct equivalence classes are Aα. 

State And Prove Demorgan’s Theorem: 

Statement: 

For a subset c of s let c| denotes the complement of c in s. for any two subsets A,B of s 

we have, 

i) (A∩B)|'=A| U B|     ii) (AUB)|= A| ∩ B| 

Proof: 

 i)let xε(A∩B)|                1 

xε(A∩B ) 

xεA and  xεB 

xεA| and  xεB| 

xεA| U B|              2 

from 1 and 2 we get (A∩B|)ς A| U B|              3 

now let xεA| U B|              4 

xεA| or xεB| 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
      CLASS: III BSC MATHEMATICS                    COURSE NAME: MODERN ALGEBRA 

COURSE CODE: 15MMU603                  UNIT: I  BATCH-2015-2018 
 

Prepared by Dr.M.M.Shanmugapriya, Asst.Prof, Department of Mathematics, KAHE Page 7/21 

xεA or  xεB 

xε(A∩B ) 

xε(A∩B )| 5 

from 4 and 5we get (A| U B|)ς(A∩B)|              6 

from 3 and 6 we get (A∩B)|= (A| U B|) 

ii)(AUB)|=A|∩B| 

let xε(AUB)|             1 

xε(AUB ) 

xεA and  xεB 

xεA| and  xεB| 

xεA|∩ B|              2 

from 1 and 2 we get (AUB)|ς A|∩B| 3 

now let xεA|∩ B|  4 

xεA| and  xεB| 

xεA and  xεB 

xεAUB 

xε(AUB)| 5 

from 4 and 5 we get A|∩B|ς(AUB)| 6 

from 3 and 6 we get (AUB)|= A|∩B|. 

Problem: 

1. If A is a finite set having n elements then prove that A has exactly 2n distinct subsets. 

Solution: 

Given that A is a finite set with n elements 

Thus A contains obviously the empty set also that it contains the following subsets. 

    nc1=number of 1 element subsets. 
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    nc2=number of 2 element subsets. 

    ncn=number of n element subsets. 

The total number of subsets=nc0+nc1+nc2+…….+ncn 

                     =1+nc1+nc2+……….+1 

From binomial theorem we know that 

(1+x)n=1+nx+ x2+………..+xn 

When x=1 we have, 

2n=1+n+ +………….+1 

From these both we have the total no of subsets=2n. 

 Introduction to Mappings 

           In mathematics, the term mapping, usually shortened to map, refers to either 

A function, often with some sort of special structure, or  

A morphism in category theory, which generalizes the idea of a function. 

Mappings:  

A mapping from a set S is a rule that associates with each element s in s a unique element 

t in T. 

Note:  

In the above case way that t is the unique of s under the mapping. 

Definition:  

If S and T are non empty sets then a mapping from s to T is a subset of M of s*t such that 

for every sεS there is a unique tεT such that the ordered pairs(s, t) is in M. 

Note:  

Let σ be a mapping from S to T we denote this by σ : ST or T=Sσ. 

 

 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Morphism
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Examples:   

1. Let S be any set. Define i:S         S by s=si for any sets sεs. This mapping I is called the 

identity mapping. 

2. Let S and T be any two sets and let t0 be an element of T. define ψ:S         T by an 

ψ(s)=t0 for every sεs then ψ is a mapping. 

3. Let S and T be any two sets. Define τ by (a, b)τ = a for any (a, b)εS*T. this τ is called 

as the projection of S*T on  S. in a similarity we can define the projection of S * T on T. 

Note: .  

Let S be any set we construct a new set s*, the set whose elements are the subsets of S 

then we call S* the set of subsets of S. 

Example:  

1. If S={x1, x2} 

   Then s*= {{}, {x1}, {x2}, S} 

2.Given a mapping τ:  T, we define for tεT, the inverse of t w.r.to τ to be the  

    set {sεS/t=ST}. 

Definition: 

1.The mapping τ of S into T is said to be onto T if given tεT, F an element sεS  

    such that t=st. 

2. The mapping τ of s into T is said to be a one to one mapping. If whenever s1≠s2  

    then s1τ ≠ s2τ. 

3. The two mappings σ and τ of s into T are said to be equal is sσ=sτ for every sεs. 

4. If σ:S        T  and τ:T          U then the composition (or product) of τ andσ is the 

mapping σ0τ: S          U. 

5. Defined by s(σ0τ) =(sσ)τ fro every s ε S 

=tτ for every tεT 

=u for every uεU. 

Example:  

Let S = {x1, x2, x3} and T=S. 

Let σ : S         S be defined by x1σ = x2, x2σ = x3, x3σ = x and τ : S         S be defined by 

x1τ = x1, x2τ = x3, x3τ = x2 

thus x1(σ0τ)=(x1σ)τ 
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= x2τ = =x3 

X2(σ0τ)=(x2σ)τ 

= x3τ = =x2 

X3(σ0τ)=(x3σ)τ 

= x1τ = =x1 

x1(τ0σ)=(x1τ)σ 

= x2σ = =x2 

X2(τ0σ)=(x2τ)σ 

= x3σ = =x1 

X3(τ0σ)=(x3τ)σ 

= x2σ = =x3 

So from above resets we conclude that is general σ0τ ≠ τ0σ. 

Lemma 1.2.1: Associative law: 

If σ: S          t, τ : T          U  and u: U         V then 

(σ0τ)0μ =σ0(τ0μ) 

Proof: 

We know that σ0τ makes sense and takes S into U. 

Thus (σ0τ) 0μ also makes sense and takes S into V. 

Now let us prove for any sεS, 

S[(σ0τ)0μ]=s[σ0(τ0μ)] 

l.h.s =s[(σ0τ)0μ] 

=s(σ0τ)μ 

=((sσ)τ)μ 

=sσ(τ0μ) 

= s[σ0(τ0μ)]=r.h.s.= associative property. 
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Lemma 1.2.2: 

Let σ:S         T and τ:T          U then  

i) σ0τ is onto if each of σ and τ is onto. 

ii) σ0τ is one to one if each of σ and τ is one to one. 

Proof: 

Since τ: T          U is onto for a given uεU , F a tεT such that 

tτ=u            1 

since σ:S T is onto 

for given tεT F a sεS such that 

sσ=t           2 

now s (σ0τ)=(sσ)τ 

=tτ by 2 

=u by 1 

Thus for every uεU F a sεS such that s (σ0τ)=u 

Then by definition σ0τ is onto 

Let s1, s2 ε s and s1 ≠ s2 

Since σ is one to one s1σ≠s2σ 

s1σ&s2σ are distinct elements in T. 

since τ is one to one s1τ≠s2τ 

= s1(σ0τ)=(s1σ)τ≠( s2σ)τ=s2(σ0τ) 

= s1(σ0τ)≠ s2(σ0τ) 

=(σ0τ) is one to one by definition. 

Note:  

The converse of above lemma is false. 

i) If(σ0τ) is onto then σ and τ is need not be onto. 

ii) σ0τ is one to one if each of σ and τ is need not be one to one. 
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Definition: 

 Let σ:S T if σ is both one to one and on to then we say the mapping σ is one to one 

correspondence between S and T. 

Lemma 1.2.3: 

Statement:  

The mapping σ: S         T is one to one correspondence between S and T iff there exists a 

mapping μ:T          S such that σ0μ and μ0σ are the identity mappings on S and T 

respectively. 

Proof: 

First let us assume that the mapping σ: S         T is a one to one correspondence between 

S and T. 

Since σ is onto, for given tεT, F an element sεS such that sσ=t             1 

Since σ is one to one this s in must be unique now we define the mapping  

σ -1:T          S by s= t σ -1 iff t=sσ the mapping σ -1 is the inverse of σ. 

 Let σ0 σ -1: s          S 

Now for any sεS, s (σ0 σ -1) = (sσ) σ -1 

=t σ -1 by 1 

= s 

=si 

σ0 σ -1 is the identity mapping on s. 

if we take μ= σ -1 then 

σ0μ is the identity mapping on s. 

Now σ -10σ: T         T then for any tεT. 

t(σ -10σ)=( tσ -1)σ 

=sσ 

=t 

=ti 

σ -10σ is the identity mapping on T. 

Conversely if σ: S         T is such that F a mapping on μ: T          S with the property that 

σ0μ and μ0σ are the identity mapping on S and T respectively. Then we have to show that 

σ is a one to one correspondence between S and T. we have to show σ is both one to one 

and onto. 
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Let tεT then t=ti 

                     =t (μ0σ)=(tμ)σ 

Now tμ is an element of S. so t is the image under σ of the element tμ in s. for a given tεT 

F a tμεS such that (tμ) σ=t by definition σ is onto. 

Let s1, s2 ε S assume that s1σ=s2σ 

Now consider s1=s1(σ0μ) 

= (s1σ) μ 

= (s2σ) μ 

=s2 (σ0μ) 

=s2 (σ0μ is the identity on s) 

Whenever s1σ=s2σ=s1=s2 

Then by definition σ is one to one. 

Definition: 

A binary operation 0 on a non empty set A is a mapping which associates each pair (a, b) 

of elements of A an uniquely defined element CεA thus 0 is a mapping of product of the 

set A*A to A symbolically a map 0: A*A         A is called a binary operation on the set A. 

Example:  

Addition and multiplication on binary operation on N. 

If S is non empty set then A(s) is the set of all one to one mappings of s onto itself. 

Theorem: 1.2.1:  

If σ, τ, μ are elements of A(S) then i) σ0τ is in A(S) 

ii) (σ0τ) 0μ=σ0 (τ0μ) 

iii) F an element I the identity map in A(S) such that σ0i=i0σ 

iv)F an element σ -1εA(S) such that σ0σ -1=σ -10σ = i 

Proof: 

1.Lemma 1.2.2 

2.Lemma 1.2.1 

3.Clearly the identity map ‘i’ is both one to and on to iεA(S) let sεS 

Now consider s(σ0i)=(sσ)i 
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=sσ  ¥ sεS=σ0i=σ 

Lemma 1.2.3(write the first part only). 

Lemma: 1.2.4:  

If s has more than two elements we can find two elements σ*τ in A(S) such that 

σ0τ≠τ0σ. 

Proof:  

     Let us assume that S has more than two elements let x1, x2, and x3 be three distinct 

elements in s.  

Now we define σ: S         S 

By x1σ=x2 

X2σ=x3 

X3σ=x1 

Sσ=s for only sεS different from x1, x2, x3 

Define τ: S         S 

By x2τ=x3 

x3τ=x2 

and sτ=s for any sεS different from x2, and x3 clearly both σ and τ are one to one and 

on to and hence in A(S) 

now x1(σ0τ)=(x1σ)τ 

=x2τ 

=x3     1 

And x1(τ0σ)=(x1τ)σ 

=x1σ 

=x2     2 

Comparing 1 and 2 we observe that σ0τ≠τ0σ. 
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Problem1: 

If the set S has n elements then prove that A(S) has n! Elements. 

Solution: 

When S={x1, x2, x3...xn} 

Any one to one mapping on S onto itself is given by specifying the image of each 

elements. 

The image of x1 can be chosen is different ways. Since the image of x2 is different 

from image of x1 it can be chosen in n – 1 different ways and so on. Hence the total 

no of one to one mapping of s onto itself is n(n-1)(n-2)……3.2.1=n!. 

Problem2:  

If f: A         B is a map and E1, E2 are any two subsets of A then show that 

i) f(E1UE2)=f(E1)Uf(E2) 

ii) f(E1∩E2)ς f(E1)∩f(E2) 

Solution: 

i) Let bεf(E1UE2) 

b=f(a) for some aε E1UE2 1 

b=f(a) for some aεE1 or aεE2 

b=f(a) and f(a)εf(E1)or f(a)εf(E2) 

b=f(a) and f(a)ε f(E1)U f(E2)             2 

from 1 and 2 we get f(E1UE2)ς f(E1)Uf(E2) 3 

now let b|εf(E1)Uf(E2)  4 

b|εf(E1) or b|εf(E2) 

b|=f(a|) for some a|εE1 or E2 

b|=f(a|) for some a|ε(E1UE2) 

b|=f(a|) for some f(a|)εf(E1UE2) 5 

from 4 and 5 we get f(E1)Uf(E2)ς f(E1UE2) 6 

from 3 and 6 we get f(E1UE2)= f(E1)Uf(E2) 
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ii) Let bε f(E1∩E2)              7 

bεf(a) for some aεE1∩E2 

b=f(a) for some aε E1 and aε E2 

b=f(a) and f(a)εf(E1) and f(a)εf(E2) 

b=f(a) and f(a)εf(E1)∩f(E2)  8 

from 7 and 8 we get f(E1∩E2)ς f(E1)∩f(E2)  

Introduction to Group Theory 

           In mathematics, a group is a set of elements together with an operation that combines any 

two of its elements to form a third element satisfying four conditions called the group axioms, 

namely closure, associativity, identity and invertibility. One of the most familiar examples of a 

group is the set of integers together with the addition operation; the addition of any two integers 

forms another integer. The abstract formalization of the group axioms, detached as it is from the 

concrete nature of any particular group and its operation, allows entities with highly diverse 

mathematical origins in abstract algebra and beyond to be handled in a flexible way, while 

retaining their essential structural aspects. The ubiquity of groups in numerous areas within and 

outside mathematics makes them a central organizing principle of contemporary mathematics.  

Group theory: 

Definition of a group: 

A non empty set G is called a group if in G there is defined a binary operation 

called a product and denoted by ‘.’ Such that 

i) For a, bεG     a.bεG -1(closure property) 

ii) a,b,cεG   a.(b.c)=(a.b).c(associative property) 

iii) F an element eεG such that a.e=e.a ¥ aεG e is called the identity of  

the element in G. 

iv) For every aεG F an element a -1εG such that a.a -1=a -1.a=e eixtence of 

inverse.  

The algebra structure of the group is given by (G,.). 

Definition: 

i) A group G is said to be an abelian group or commutative if for every a,bεG 

a.b=b.a 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Set_%28mathematics%29
http://en.wikipedia.org/wiki/Element_%28mathematics%29
http://en.wikipedia.org/wiki/Binary_operation
http://en.wikipedia.org/wiki/Axiom
http://en.wikipedia.org/wiki/Closure_%28mathematics%29
http://en.wikipedia.org/wiki/Associativity
http://en.wikipedia.org/wiki/Identity_element
http://en.wikipedia.org/wiki/Latin_square_property
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Addition
http://en.wikipedia.org/wiki/Abstract_algebra
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ii) A group which is not abelian is called a non abelian group. 

iii) The order of a group G, denoted by o(G) is the no of elements in G. 

iv) If G contains finite no of elements we say that G is a finite group otherwise it is 

called as an infinite group. 

v) We know that if a set S contains ‘n’ elements then A(S) contains n! elements amd 

A(S) is a group. This group is called as the symmetric group of degree n 

denoted by sn. 

Some examples of groups. 

Let G consists of the integers 0, ±1, ±2,…… where we means by a.b foe a,bεG the 

usually sum of integers that is a.b=a+b. 

Solution: 

Closure property: 

Let a, b εG then a+bεG, since the sum of two integers is also an integer in G. 

Associative property: 

Let a,b,cεG then (a+b)+c=a+(b+c) since the associative property is true in the case of 

integers. 

Existence of identity elements: 

OεG, now a+o=a  ¥aεG  o is the additive identity element in G. 

Existence of inverse element: 

For any aεG we can find an element –a in G such that a+(-a)=0 

-a acts as the inverse for a in G    (G, +) is a group. 

Examples: 

1. The set of all 2*2 matrices            a,b,c,dεR is a group under matrix addition. 

2. Q,R,C groups are all under usual addition. 

3. Let G consists of real nos (1, -1) under the binary operation multiplication then G 

is an abelian group of order 2. 
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4. Since sum of two integers is commutative for any a,bεG     a+b=b+a   G is an 

abelian group. Also G contains infinite number of elements. G is an infinite 

abelian group to the binary operation addition. 

Some preliminary lemmas: 

Lemma 2.3.1: 

If G is a group then 

1. The identity element of G is unique. 

2. Every aεG has an unique inverse in G. 

3. Left and right cancellation laws hold 

a.b=a.c          b=c 

b.a=c.a           b=c 

4. for every aεG (a -1) -1=a 

5. for all aεG(a.b) -1=b -1.a -1 

Proof: 

If possible let there be two I denoted elements e, f in G. 

Let aεG since e is the identity. Consider f as an ordinary elements in G. then by the 

definition, 

a.e=e.a=a 

f.e=e.f=f 

since f is the identity consider e as an ordinary element in G. then by definition 

a.f=f.a=a 

e.f=f.e=e 

we know that e.f=f   and e.f=e     f=e   hence the identity element is unique. 

2.  let aεG 

If possible let there be two inverses a| and a|| for a in G. then by definition we know that 

a.a|=a|.a=e 

a.a||=a||.a=e 
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Since e is the identity element we can wriye 

a| = a|.e 

= a|.(a.a|) 

= (a|.a).a|| 

= e.a|| 

= a|| 

a| = a|| hence every element in G has a unique inverse. 

3..  let a,b,cεG let us suppose that    a.b=a.c 

Since aεG     a -1εG 

Now premultiplying by a -1 we get 

a -1.(a.b)= a -1.(a.c) 

(a -1.a).b=( a -1.a).c 

e.b=e.c 

b=c 

left cancellation law is true. 

Since aεG    a -1εG    now post multiplying  by a -1 we get 

(b.a). a -1=(c.a). a -1 

b.( a -1.a)=c.( a -1.a) 

b.e=c.e 

right cancellation law is true. 

4. let aεG let a -1 be the inverse of a in G then (a -1) -1 will be the inverse of a -1 in G. 

Since G is a group we have 

a. a -1= a -1.a=e    and    a -1(a -1) -1=( a -1) -1. a -1=e 

we have   a -1.a= a -1.( a -1) -1 

using left cancellation law we have a=( a -1) -1. 
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5.. let a,bεG let a -1, b -1 be the inverse of a and b in G. 

Then a.b  and b -1. a -1 exists in G by closure property 

Now we consider 

(a.b).(b -1. a -1)=a.(b.b -1). a -1 

=a.e. a -1 

=a. a -1 

=e 

(a.b) -1=b -1. a -1 

Lemma 2.3.2: 

Given a,b in the group G then the equations a.x=b and y.a=b have unique solutions for x 

and y in G. 

Proof: 

Given that a,bεG 

Since a,bεG, a -1εG 

. x=a -1.bεG 

Now consider 

a.x=a.(a -1.b) 

=(a. a-1).b 

=e.b 

=b 

X satisfies the given equation and hence x=a -1.b is a solution. 

To establish the uniqueness of the solution, let there be two solution x1 and x2 for the 

equation  a.x=b 

We have a.x1=a.x2 

x1=x2 

henc x=a -1.b is a unique solution for a.x=b. in a similar way we can prove that y=b.a -1 is 

a unique solution for y.a=b. 
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POSSIBLE QUESTIONS: 

Part-B( 5X8 = 40 Marks) 

Answer all the questions: 

1. i) Prove that  A(BC) = (AB)  (AC) 

     ii) If a finite set S has n elements, then prove that the power set S has 2n elements. 

2. Write about the types of binary operations. 

 

3. If G is a group ,then prove that 

   i)the identity element of G is unique 

  ii)every aG has a unique inverse in G 

  iii)for every aG, (a-1)-1 = a 

 iv)for all a,bG, (a.b)-1 = b-1.a-1 

 

4.  If a,b are any two elements of a group G, then prove that the equations ax = b and ya = b   

     have unique solutions in G. 

 

5. Show that the set G ={ a+b2: a,bQ} is a group with respect to addition. 

6.  i) Prove that the inverse of the product of two elements of a group G is the product of the   

        inverse taken in the reverse order. 

     ii)Show that if every element of the group G is its own inverse , then G is abelian. 

 

7. Let G be a group. Then prove that i) identity element of  G is unique 

         ii) for any aG, the inverse of a is unique. 

 

8. Prove that if G is an abelian group, then for all a,bG and all integers n, (a.b)n=an.bn. 

 

9. If G is a group, in which (a.b)i = aibi for three consecutive integers i for all a,bG. Show 

 that G is abelian. 

10. If a.b.c are any elements of G, then prove that ab =ac  b = c  and ba = ca  b = c  . 
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Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

Every subgroup of an abelian group is ----------- cyclic normal ring field normal 

Every subgroup of an ---------- group is normal cyclic abelian non- abelian order abelian 

Every subgroup of a ---------- group is normal abelian cyclic ring field cyclic

An infinite group is said to be ---------------order identity finite infinite symmetric infinite

If G is a group, then the identity element of G is ---------- zero two unique none unique

Let H and K be subgroups of a group G, then--------
HK is a 
subgroup of G

HK is a 
subgroup of G

H X K is a 
subgroup of G

HK is a subgroup 
of G

HK is a subgroup 
of G

If G is a finite group and H is a subgroup of G then -------- 
divisor of o(G) o(G) o(S) o(H) o(A) o(H)
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N(a) is a ------------- of G coset subset
normal-
subgroup subgroup normal-subgroup

If H is a subgroup of G, the -------- of H in G is the number of 
distinct right cosets of H in G. ideal index coset congruent index

If G is a finite group  and a∈G  the order of ‘a’ is least 

positive integer m such that am =------- 1 0 e a e 

If aG, then N(a)={xG: ax = xa} is called the ---------- of a 
in G. normalizer centralizer either a or b none either a or b

If o(G) = P where p is a prime number then G is ----------- cyclic abelian non- abelian order cyclic

If  H1 and H2 are two subgroups of a group G,then ------------ 
that is also a subgroup of G H1  H2 H1  H2 H1   H2 H1  H2  H1  H2

The ------ of a group G is defined by Z = {zG: zx = xz, all 
xG}. normal subgroup center ideal ring center

If ‘n’ is a positive integer and ‘a’ is relatively prime to ‘n’ 
then aφ(n)≡1 mod n.This is called -------theorem Euler’s Fermat Lagrange sylow Euler’s

Any two ------- in a group is either identical (or) disjoint. left coset center coset subgroup right coset right coset

Every group is a --------- group of itself. semi sub  finite abelian sub 

Every complex is not always a -------- group. normal semi  sub abelian  sub 

Every --------is a subset of itself. function relation group set set
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The identity of a subgroup is the -------- as that of the group different inverse same not equal same

A subgroup other than group G and an element e is called -----
--- subgroup. proper improper  normal  trivial proper

Improper subgroup is also called--------- subgroup.  proper  quotient trivial normal trivial

The inverse of an element of a subgroup is the  --------- as an 
element of the group. different identity same not equal same

The relation of congruency in a group G is an --------- 
relation. symmetric  equivalence partial order anti symmetric  equivalence

If H is a subgroup of G, a∈G, then Ha={ha: h є H} is called --
------- of H in G left coset

right 
cancellation

left 
cancellation right coset right coset

If H is a subgroup of G, a∈G then aH={ah: h∈H}is called -----
---- of H in G. left coset

right 
cancellation

left 
cancellation right coset left coset

A nonempty subset H of a group G is said to be ------------- of 
G H itself forms a group coset  subset

normal-
subgroup subgroup subgroup

Any two right cosets are ----------- common identical unity zero identical 

Any two left cosets are ----------- disjoint equal unity zero disjoint

If H is a subgroup of G, there is a --------- correspondence 
between any two right  cosets of H in G onto one-one one-one onto one-one into one-one 

The number of distinct right cosets of H in G is ----------- equal  zero  finite infinite  finite
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The number of distinct right cosets of H in G is called----------
- of H in G index order

cardinal 
number finite index

The order of each subgroup of a -------- group is a divisor of 
the order of the group.  infinite finite normal semi finite 

If G is a finite group and H is a subgroup of G then -------- 
divisor of o(G) o(G)  o(S) o(H)  o(A) o(H)  

If G is a finite group  and a∈G  the --------- of ‘a’ is least 

positive integer m such that am =e coset subset order infinite-order order 

The---------- of each subgroup of a finite group is a divisor of 
the order of the group index order

cardinal 
number infinite-order index

If H is a subgroup of a finite group G, then the index of H in 
G = -------- o(H)│o(G) o(G)│o(H) o(G) o(H) o(G)│o(H) 

If p is a prime number, then φ(p)= ------- p-1  p+1 p+2 p+3 p-1 

The Euler φ function, φ(n) is defined by -------- 0 1 2 3 1

A non empty subset H of a group G is said to be a subgroup, 
if  a∈H, b∈H⇒ ------- ab∈H        ba∈H             ab-1∈H          b-1 a∈H   ab-1∈H          

If G is a finite group  and a∈G  the order of a is least positive 

integer m such that am =  ------ e 1 0 2 e

If a is congruent to b mod H , then------ ab∈H        ba∈H             ab-1∈H          b-1 a∈H   ab-1∈H          

The relation  a ≡ b mod H is an ------------- relation.  binary equivalence partial order symmetric equivalence
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If H is any subgroup of G and h∈H, then Hh= ---------- G h H h' H

If H is any subgroup of G and h∈H, then hH= ---------- G h H h' H

If a,b are any two elements of a group G and H is any 
subgroup of G then,Ha=Hb ⇔------- ab∈H        ba∈H  ab-1∈H   b-1a∈H   ab-1∈H   

If a,b are any two elements of a group G and H is any 
subgroup of G then,aH=bH ⇔------- ab∈H        ba∈H             ab-1∈H   a-1 b∈H   a-1 b∈H   

If G is a finite group of order n and a∈G, then an = ------- 1 0 e a e 

If H, K are subgroup of the abelian group G, then HK is a -----
----group of G. sub semi normal isomorphic sub 

A subgroup N of a group G is said to be ------------- of G  if 

gng-1  coset  subset
normal-
subgroup subgroup normal-subgroup 

A subgroup N of a group G is said to be normal subgroup of 
G  if-------- gng-1G gng-1N gnN        ) ng-1N gng-1N 

If G is a group, N normal subgroup of G then G/N is called ---
---- quotient group ring 

normal-
subgroup subgroup quotient group 

N(a) is a ------------- of G coset subset
normal-
subgroup subgroup normal-subgroup

A normal subgroup is ---------- with every complex commutative equal unity zero commutative

If N is a normal subgroup of G and H is any subgroup of G , 
then NH is a -------group of G. normal sub semi abelian normal
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If  N is a normal subgroup of G iff gNg-1 = ------- g g-1 N n N

The ------------- of any two normal subgroups of a group is a 
normal subgroup. intersection union addition subtraction intersection

The subgroup N of G is a normal subgroup of G iff left coset 
of N in G is a ------- of N in G left coset right coset

normal 
subgroup subgroup right coset
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Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

Every subgroup of an abelian group is ----------- cyclic normal ring field normal 

Every subgroup of an ---------- group is normal cyclic abelian non- abelian order abelian 

Every subgroup of a ---------- group is normal abelian cyclic ring field cyclic

An infinite group is said to be ---------------order identity finite infinite symmetric infinite

If G is a group, then the identity element of G is ---------- zero two unique none unique

Let H and K be subgroups of a group G, then--------
HK is a 
subgroup of G

HK is a 
subgroup of G

H X K is a 
subgroup of G

HK is a subgroup 
of G

HK is a subgroup 
of G

If G is a finite group and H is a subgroup of G then -------- 
divisor of o(G) o(G) o(S) o(H) o(A) o(H)
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N(a) is a ------------- of G coset subset
normal-
subgroup subgroup normal-subgroup

If H is a subgroup of G, the -------- of H in G is the number of 
distinct right cosets of H in G. ideal index coset congruent index

If G is a finite group  and a∈G  the order of ‘a’ is least 

positive integer m such that am =------- 1 0 e a e 

If aG, then N(a)={xG: ax = xa} is called the ---------- of a 
in G. normalizer centralizer either a or b none either a or b

If o(G) = P where p is a prime number then G is ----------- cyclic abelian non- abelian order cyclic

If  H1 and H2 are two subgroups of a group G,then ------------ 
that is also a subgroup of G H1  H2 H1  H2 H1   H2 H1  H2  H1  H2

The ------ of a group G is defined by Z = {zG: zx = xz, all 
xG}. normal subgroup center ideal ring center

If ‘n’ is a positive integer and ‘a’ is relatively prime to ‘n’ 
then aφ(n)≡1 mod n.This is called -------theorem Euler’s Fermat Lagrange sylow Euler’s

Any two ------- in a group is either identical (or) disjoint. left coset center coset subgroup right coset right coset

Every group is a --------- group of itself. semi sub  finite abelian sub 

Every complex is not always a -------- group. normal semi  sub abelian  sub 

Every --------is a subset of itself. function relation group set set
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The identity of a subgroup is the -------- as that of the group different inverse same not equal same

A subgroup other than group G and an element e is called -----
--- subgroup. proper improper  normal  trivial proper

Improper subgroup is also called--------- subgroup.  proper  quotient trivial normal trivial

The inverse of an element of a subgroup is the  --------- as an 
element of the group. different identity same not equal same

The relation of congruency in a group G is an --------- 
relation. symmetric  equivalence partial order anti symmetric  equivalence

If H is a subgroup of G, a∈G, then Ha={ha: h є H} is called --
------- of H in G left coset

right 
cancellation

left 
cancellation right coset right coset

If H is a subgroup of G, a∈G then aH={ah: h∈H}is called -----
---- of H in G. left coset

right 
cancellation

left 
cancellation right coset left coset

A nonempty subset H of a group G is said to be ------------- of 
G H itself forms a group coset  subset

normal-
subgroup subgroup subgroup

Any two right cosets are ----------- common identical unity zero identical 

Any two left cosets are ----------- disjoint equal unity zero disjoint

If H is a subgroup of G, there is a --------- correspondence 
between any two right  cosets of H in G onto one-one one-one onto one-one into one-one 

The number of distinct right cosets of H in G is ----------- equal  zero  finite infinite  finite
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The number of distinct right cosets of H in G is called----------
- of H in G index order

cardinal 
number finite index

The order of each subgroup of a -------- group is a divisor of 
the order of the group.  infinite finite normal semi finite 

If G is a finite group and H is a subgroup of G then -------- 
divisor of o(G) o(G)  o(S) o(H)  o(A) o(H)  

If G is a finite group  and a∈G  the --------- of ‘a’ is least 

positive integer m such that am =e coset subset order infinite-order order 

The---------- of each subgroup of a finite group is a divisor of 
the order of the group index order

cardinal 
number infinite-order index

If H is a subgroup of a finite group G, then the index of H in 
G = -------- o(H)│o(G) o(G)│o(H) o(G) o(H) o(G)│o(H) 

If p is a prime number, then φ(p)= ------- p-1  p+1 p+2 p+3 p-1 

The Euler φ function, φ(n) is defined by -------- 0 1 2 3 1

A non empty subset H of a group G is said to be a subgroup, 
if  a∈H, b∈H⇒ ------- ab∈H        ba∈H             ab-1∈H          b-1 a∈H   ab-1∈H          

If G is a finite group  and a∈G  the order of a is least positive 

integer m such that am =  ------ e 1 0 2 e

If a is congruent to b mod H , then------ ab∈H        ba∈H             ab-1∈H          b-1 a∈H   ab-1∈H          

The relation  a ≡ b mod H is an ------------- relation.  binary equivalence partial order symmetric equivalence
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If H is any subgroup of G and h∈H, then Hh= ---------- G h H h' H

If H is any subgroup of G and h∈H, then hH= ---------- G h H h' H

If a,b are any two elements of a group G and H is any 
subgroup of G then,Ha=Hb ⇔------- ab∈H        ba∈H  ab-1∈H   b-1a∈H   ab-1∈H   

If a,b are any two elements of a group G and H is any 
subgroup of G then,aH=bH ⇔------- ab∈H        ba∈H             ab-1∈H   a-1 b∈H   a-1 b∈H   

If G is a finite group of order n and a∈G, then an = ------- 1 0 e a e 

If H, K are subgroup of the abelian group G, then HK is a -----
----group of G. sub semi normal isomorphic sub 

A subgroup N of a group G is said to be ------------- of G  if 

gng-1  coset  subset
normal-
subgroup subgroup normal-subgroup 

A subgroup N of a group G is said to be normal subgroup of 
G  if-------- gng-1G gng-1N gnN        ) ng-1N gng-1N 

If G is a group, N normal subgroup of G then G/N is called ---
---- quotient group ring 

normal-
subgroup subgroup quotient group 

N(a) is a ------------- of G coset subset
normal-
subgroup subgroup normal-subgroup

A normal subgroup is ---------- with every complex commutative equal unity zero commutative

If N is a normal subgroup of G and H is any subgroup of G , 
then NH is a -------group of G. normal sub semi abelian normal
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If  N is a normal subgroup of G iff gNg-1 = ------- g g-1 N n N

The ------------- of any two normal subgroups of a group is a 
normal subgroup. intersection union addition subtraction intersection

The subgroup N of G is a normal subgroup of G iff left coset 
of N in G is a ------- of N in G left coset right coset

normal 
subgroup subgroup right coset
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Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

Every permutation can be uniquely expressed as a product of -
-------- cycles. disjoint 2 3 m disjoint 

Every permutation is a product of --------- cycles. disjoint 2 3 m 2

A group is said to be --------- if it has trivial normal subgroup  finite infinite  simple subgroup  simple

The product of two disjoint cycles is -------- 2 cycles m cycles commutative equal commutative

A cycle of length --------- is called a transposition. 3 2 1 0 2

Two cycles are said to -------- if they have no symbols in 
common disjoint transposition 2 cycles m cycles disjoint 

Every transposition is an --------- permutation even  odd zero unit  odd 
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The inverse of even permutation is ---------- permutation. odd even zero
either odd or 
even even

The inverse of odd permutation is ---------- permutation odd even zero
either odd or 
even odd 

The group Sn has ------ elements. n!/2 n!/3 n!  (n+1)! n!/2 

A mapping φ from a group G into a group G̅ is said to be -----
--- if for all a , b єG, φ(ab)=φ(a)φ(b) automorphism isomorphism homomorphism endomorphism homomorphism

A mapping φ from a group G into a group G̅ is said to be 
homoorphism if for all a , bєG, then  φ (ab)= -------- φ(a) φ (b) φ(a)- φ (b) φ(a)+ φ(b)   φ(a)/ φ(b) φ(a) φ (b) 

A homomorphism of a group into itself is called -------- automorphism isomorphism homomorphism endomorphism endomorphism

The Product of two even permutation is ------ odd even zero
either odd or 
even even

The Product of two odd permutation is ------ odd even zero
either odd or 
even even

The  product of even permutation and odd permutation is  ----
-- permutation. odd even zero

either odd or 
even odd 

The  product of odd permutation and even permutation is  ----
-- permutation odd even zero

either odd or 
even odd 

If  φ(x) = x for every x∈G is a ------------ automorphism isomorphism homomorphism endomorphism homomorphism

If φ is a homomorphismof G into G̅ with kernal K, then K is 
a -------- group of G. sub  semi normal sub quotient normal sub
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A homomorphism  φ  from G into G̅ is said to be 
isomorphism if φ is ---- one-to-one onto into  one-one onto one-to-one 

Every ------- group having more than two elements has a 
nontrivial automorphism infinite  finite normal  sub  finite

. Every finite group G is --------- to a permutation group. homomorphic  automorphic  isomorphic  endomorphic  isomorphic

The number of elements in the finite set S is known as the ----
---- of permutation.  degree equality  symmetric  product  degree

A ------------- of a group into itself is called endomorphism automorphism isomorphism homomorphism endomorphism homomorphism

If φ is a homomorphismof G into G̅with ------- K, then K is a 
normal subgroup of G. kernal isomorphism homomorphism endomorphism kernal

Every permutation is the product of its --------. ring kernal group cycle cycle

Every -------------- is an odd permutation cycle transposition
even 
permutation odd permutation transposition

A --------- of length 2 is called a transposition. ring kernal group cycle cycle

A homomorphism φ from G into G̅is said to be --------- if φ is 
one-to-one automorphism isomorphism homomorphism endomorphism isomorphism

If  φ is a homomorphism of G into G̅ then φ(e) =-------- e ̅ 0 1 e e ̅

If  φ is a homomorphism of G into G̅ then φ (x-1) =  ------- (φ (x))-1 φ (x) x-1 x (φ (x))-1
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The mapping  f : G→G/N is called a ------- mapping. one-one onto natural into natural

Every homomorphic image of a group G is ----------- to some 
quotient group of G. automorphism isomorphism homomorphism endomorphism isomorphism

Every homomorphic image of an abelian group is --------- finite infinite normal abelian abelian 

An isomorphic mapping of  a  group G onto itself is called ----
----- automorphism isomorphism homomorphism endomorphism automorphism

If G is a group, then A(G), the set of automorphism of G is 
also a -------- subgroup group normal group semi group group

Every group is  ------------ to a subgroup of A(S) for some 
appropriate S isomorphism automorphic homomorphic endomorphic isomorphism

Every --------- is the product of its cycles. cyclic group  sub group semi group permutation permutation
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Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

Every permutation can be uniquely expressed as a product of -
-------- cycles. disjoint 2 3 m disjoint 

Every permutation is a product of --------- cycles. disjoint 2 3 m 2

A group is said to be --------- if it has trivial normal subgroup  finite infinite  simple subgroup  simple

The product of two disjoint cycles is -------- 2 cycles m cycles commutative equal commutative

A cycle of length --------- is called a transposition. 3 2 1 0 2

Two cycles are said to -------- if they have no symbols in 
common disjoint transposition 2 cycles m cycles disjoint 

Every transposition is an --------- permutation even  odd zero unit  odd 
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The inverse of even permutation is ---------- permutation. odd even zero
either odd or 
even even

The inverse of odd permutation is ---------- permutation odd even zero
either odd or 
even odd 

The group Sn has ------ elements. n!/2 n!/3 n!  (n+1)! n!/2 

A mapping φ from a group G into a group G̅ is said to be -----
--- if for all a , b єG, φ(ab)=φ(a)φ(b) automorphism isomorphism homomorphism endomorphism homomorphism

A mapping φ from a group G into a group G̅ is said to be 
homoorphism if for all a , bєG, then  φ (ab)= -------- φ(a) φ (b) φ(a)- φ (b) φ(a)+ φ(b)   φ(a)/ φ(b) φ(a) φ (b) 

A homomorphism of a group into itself is called -------- automorphism isomorphism homomorphism endomorphism endomorphism

The Product of two even permutation is ------ odd even zero
either odd or 
even even

The Product of two odd permutation is ------ odd even zero
either odd or 
even even

The  product of even permutation and odd permutation is  ----
-- permutation. odd even zero

either odd or 
even odd 

The  product of odd permutation and even permutation is  ----
-- permutation odd even zero

either odd or 
even odd 

If  φ(x) = x for every x∈G is a ------------ automorphism isomorphism homomorphism endomorphism homomorphism

If φ is a homomorphismof G into G̅ with kernal K, then K is 
a -------- group of G. sub  semi normal sub quotient normal sub
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A homomorphism  φ  from G into G̅ is said to be 
isomorphism if φ is ---- one-to-one onto into  one-one onto one-to-one 

Every ------- group having more than two elements has a 
nontrivial automorphism infinite  finite normal  sub  finite

. Every finite group G is --------- to a permutation group. homomorphic  automorphic  isomorphic  endomorphic  isomorphic

The number of elements in the finite set S is known as the ----
---- of permutation.  degree equality  symmetric  product  degree

A ------------- of a group into itself is called endomorphism automorphism isomorphism homomorphism endomorphism homomorphism

If φ is a homomorphismof G into G̅with ------- K, then K is a 
normal subgroup of G. kernal isomorphism homomorphism endomorphism kernal

Every permutation is the product of its --------. ring kernal group cycle cycle

Every -------------- is an odd permutation cycle transposition
even 
permutation odd permutation transposition

A --------- of length 2 is called a transposition. ring kernal group cycle cycle

A homomorphism φ from G into G̅is said to be --------- if φ is 
one-to-one automorphism isomorphism homomorphism endomorphism isomorphism

If  φ is a homomorphism of G into G̅ then φ(e) =-------- e ̅ 0 1 e e ̅

If  φ is a homomorphism of G into G̅ then φ (x-1) =  ------- (φ (x))-1 φ (x) x-1 x (φ (x))-1

Prepared by:  Dr. M.M. Shanmugapriya , Department of Mathematics, KAHE



UNIT - III /2015-2018 Batch

The mapping  f : G→G/N is called a ------- mapping. one-one onto natural into natural

Every homomorphic image of a group G is ----------- to some 
quotient group of G. automorphism isomorphism homomorphism endomorphism isomorphism

Every homomorphic image of an abelian group is --------- finite infinite normal abelian abelian 

An isomorphic mapping of  a  group G onto itself is called ----
----- automorphism isomorphism homomorphism endomorphism automorphism

If G is a group, then A(G), the set of automorphism of G is 
also a -------- subgroup group normal group semi group group

Every group is  ------------ to a subgroup of A(S) for some 
appropriate S isomorphism automorphic homomorphic endomorphic isomorphism

Every --------- is the product of its cycles. cyclic group  sub group semi group permutation permutation
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Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

A field which has only a finite number of elements is called ------ 
 .  finite field  sub field  skew field integral domain  finite field

Right distributive law is defined by (b+c).a = ------------- (a.b) -(a.c) (b.a) + (b.c)  (a.b) / (a.c) (a.b) *(a.c) (b.a) + (b.c)  

The ring of integers is a ring --------- divisor. with equal to without not equal to without

. If  R is a ring, for all a, b, c єR then a(b-c) = ---------  -ab+bc ab-bc  ab+bc ac-bc ab-bc

. If  R is a ring, for all a, b, c є R then a(0) = --------- a 1 0 ∞      0

A ring is called a Boolean ring if -------.

a2 =e for all a є R, 
where e is the 
multiplicative a2 =a for all a є R

a2 =0 for all a є 
R

an =0 for all a є 
R

a2 =a for all a 
є R

A ring is called ------ if it is commutative, unit element and 
without zero divisors.   finite field  sub field  skew field  integral domain

 integral 
domain
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The set R consisting of a single element ------ with two binary 
operations is called zero ring. 1 2 0 ∞ 0

If φ is a -------------- of R into R' then φ(0)= 0 automorphism isomorphism automorphism homomorphism homomorphism

If R is a ---------- ring, a≠0∈ R is said to be zero divisor , such 
that ab= 0 zero commutative division Euclidean ring commutative 

Every -------------- ring of a ring is a homomorphic image of the 
ring. quotient euclidean ring division proper quotient

The -------------- is also known as skew field. division ring euclidean ring sub ring simple ring division ring

The product of two non zero element is equal to the ----------- 
element of the ring. equal unit zero finite zero 

The product of two non zero integers cannot equal to the ----------
- integers. zero unit  equal finite zero 

If R is a commutative ring, a≠0∈ R is said to be zero divisor , 
such that ab= --------- 1 2 0 ∞ 0

A commutative ring with unity ------------ is called integral 
domain

without zero 
divisors

without zero 
divisors zero  identity

without zero 
divisors

A commutative ring is an ---------- if it has no zero divisors division ring field integral domain eucledian ring integral domain

A finite integral domain is a ---------- division ring field integral domain Eucledian ring field

A --------- is a commutative division ring division ring  field integral domain Eucledian ring field
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A finite commutative ring without zero divisor is a---------. field  division ring integral domain Eucledian ring field

A ring R is called a --------------ring if all its elements are 
idempotent division boolean commutative Eucledian boolean

Every field is also a ---------- ring. division boolean commutative  Eucledian division 

If in a ring R there is an element 1 in R such that a.1=1.a=a then 
R is --------

ring with unit 
element commutative ring zero division ring

ring with unit 
element 

If the multiplication of R such that a.b=b.a then R is --------
ring with unit 
element commutative ring zero division ring

commutative 
ring

A ring in which the non zero elements form a group is called a ---
-----

ring with unit 
element commutative ring zero division ring division ring

The set R consisting of a single element 0 with two binary 
operations is called------- ring. skew field commutative ring zero ring division ring zero ring

The set I of all integers with two binary operations is called the 
ring of ------- skew field commutative integers division ring integers

The product of two integers is also an -------- skew field commutative integers division ring integers

An element a of a ring R is  said to be idempotent if ------- a=1 a2=1 a2=a    a2=0 a2=a   

An element a of a ring R is  said to be ------------- if a2=a idempotent nilpotent identity unity idempotent 

A ring is said to be ------------------ if its nonzero elements form a 
group under multiplication division ring field integral domain Euclidian ring division ring
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A ring is an algebraic structure with --------- binary operations. one two three no two

Left distributive law is defined by a.(b+c) = ------------- (a.b) + (a.c) (a.b) - (a.c)  (a.b) / (a.c) (a.b) *(a.c) (a.b) + (a.c) 

If φ is a homomorphism of R into R' then φ(0)= ------ 1 2 0 ∞ ∞

A homomorphism of R into R' is said to be an --------- if it is a 
one-one mapping automorphism  isomorphism endomorphism kernal  isomorphism

A homomorphism of R into R' is an isomorphism iff  I(φ) = ------
- 1 2 0 ∞ 0

If φ is a homomorphism of R into R' then φ(-a)= ------ φ(a)  - φ(a) 0 ∞  - φ(a)

Every quotient ring of a ring is a --------- image of the ring. automorphic  isomorphic automorphic  homomorphic  homomorphic

In a group, the identity element is ------.  unique different zero  one  unique

. If  R is a ring, for all a, b, c є R then (-a)(-b) = ---------  -ab ab a+b a-b ab

Division ring is also known as --------  finite field  sub field  skew field integral domain  skew field
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UNIT-IV 

SYLLABUS 

SYLLABUS 

 

INTRODUCTION TO RING THEORY 

 In  algebra, ring theory is the study of rings—algebraic structures in which addition and 

multiplication are defined and have similar properties to those operations defined for the 

integers. Ring theory studies the structure of rings, their representations, or, in different 

language, modules, special classes of rings (group rings, division rings, universal enveloping 

algebras), as well as an array of properties that proved to be of interest both within the theory 

itself and for its applications, such as homological properties and polynomial identities . 

Definition  

 A non empty set R is said to be an associative ring if in R these are defined two 

operations denoted by ‘+’ and ‘.’ Called addition and multiplication respectively such that for all 

a,b,c ϵR 

i. a +b ϵ R 

ii. a +b=b+a 

iii. a+(b+c)=(a+b)+c 

iv. There is an element 0 in R such that a+0=0+a=a v a ϵ R 

v. There exist an element –a in R such that a+(-a)=0=(-a)+a 

vi. a.b ϵ R 

vii. (a.b).c=a.(b.c) 

viii. (i) Left Distributive law: 

a.(b+c)=a.b+a.c 

             (ii) Right distributive law: 

                     (b=c).a=b.a=c.a  

Definition  

              A nonempty set R is called a ring, if it has two binary operations called addition 

denoted by a + b and multiplication denoted by ab for a, b ∈  R satisfying the following axioms: 

Multiplication is associative, i.e. a(bc) = (ab)c for all a, b, c ∈  R.  

 

Rings: Definition and Examples –Some Special Classes of Rings – Commutative ring – Field –

Integral domain - Homomorphisms of Rings.  

 

  
 

http://en.wikipedia.org/wiki/Abstract_algebra
http://en.wikipedia.org/wiki/Ring_%28mathematics%29
http://en.wikipedia.org/wiki/Algebraic_structure
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Representation_of_an_algebra
http://en.wikipedia.org/wiki/Module_%28ring_theory%29
http://en.wikipedia.org/wiki/Group_ring
http://en.wikipedia.org/wiki/Division_ring
http://en.wikipedia.org/wiki/Universal_enveloping_algebra
http://en.wikipedia.org/wiki/Universal_enveloping_algebra
http://en.wikipedia.org/wiki/Homological_algebra
http://en.wikipedia.org/wiki/PI_ring
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Distributive laws hold: a(b + c) = ab + ac and (b + c)a = ba + ca for all a, b, c ∈  R.  

Definition  

.              Let R be a ring. 

    (1)   If multiplication in R is commutative, it is called a commutative ring.  

    (2) If there is an identity for multiplication, then R is said to have identity. 

    (3) A nonzero element a ∈  R is said to have a left (resp. right) inverse b if ba = 1  

       (resp. ab = 1) We say that a is invertible or a unit in R if it has a left and a right inverse.                                               

(4)A commutative division ring is called a field.  

(5)An element a of a commutative ring R is called a zerodivisor if there is a nonzero b ∈  R 

such that ab = 0. An element a ∈  R that is not a zerodivisor is called a nonzerodivisor. If all 

nonzero elements of a commutative ring are nonzerodivisors, then R is called an integral 

domain.  

(6) A nonempty subset S of a ring R is called a subring of R if S is a ring with respect to 

addition and multiplication in R.  

Example of rings 

                   The set of integers Z, the set of rational numbers Q, the set of real numbers R and the 

set of complex numbers C are commutative rings with identity. 

NOTE 

i. In this case we also say that (R,+,.) is a ring 

ii. 0 is called the zero element of the ring and it is the additive identity element 

iii. If there is an element 1 in R such that a.1=1.a=a v a ϵ R then R is called a ring with unit 

element. 

iv. If for all a,b ϵ R a.b=b.a then R is called a commutative ring 

Some Special Classes Of Rings 

Definition 

 If R is a commutative ring then a≠0 ϵ R is said to be a zero-devisor if there exist a,b ϵ 

R,b≠ 0 such that ab=0 

[Eg : define (a1,b1,c1) (a2,b2,c2)=(a1a2,b1b2,c1c2) 
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(1,2,0) (0,0,7)=(0,0,0)] 

Examples 

1.Some M is a ring of 2*2 matrices with their elements as integers, the addition and 

multiplication of matrices being the two ring composition then M is a ring with zero-devisors 

2.The ring of integer is a ring without zero-devisors 

Definition 

 A commutative ring is an integral domain if it has no zero devisors 

Example : The ring of integers 

Definition 

 A ring is said to be a division ring if its non-zero element form a group under 

multiplication 

Remark 

 Sometimes a division ring is called a skew field. 

Definition 

 A field is a commutative division ring 

Lemma 4.1  

If R is ring, then for all a,b ϵ R 

1. a.0  = 0.a = 0 

2. a(-b)=(-a)b=-(ab) 

3. (-a)(-b)=ab 

If in addition,R has a unit element 1 then 

4. (-1) a =-a 

5. (-1)(-1)=1 

 1) Let a ϵ R then consider 

 a.0 = a.(0+0) 

      =a.0+a.0 (L.D.L) 

(i.e) a.0=0 = A. + A.0 

=> 0 = a.0 (by L.C.L) 
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Since R is a group under addition we have 

 a.0 = 0 

Similarly we can prove 0.a = 0 

Thus we have a.0 = 0.a = 0 

2)  We shall first show that a(-b) = -(ab) 

(i.e) To P.T a(-b) + ab = 0 

Now consider, a(-b) + ab = a(-b + b) 

        =a(0) 

       = 0 by 1 

(i.e) a(-b) + ab = 0 

(i.e) a(-b) = -ab 

Similarly we can P.T (-a)b = -ab 

 a (-b) = (-a)b = -ab 

3)Now consider (-a)(-b) 

(-a) (-b) = -(a(-b)) by 2 

  = -(-ab) 

  =ab 

4)Given that R has a unit element 1 

By definition 1.a = a.1 = a v a ϵ R 

Now consider (-10a = a = (-a) a + 1.a 

      = (-1 + 1) a 

        = 0.a = 0 

 (-1) a = -a 

5)In a proof of fourth result we have, 

 (-1) a = -a v  a ϵ R 

If we take a = -1 then we have (-1)(-1) = -(-1) 
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    (-1)  (-1) = 1 

The Pigeon Hole Principle 

 Definition 

  If n objects are distributed over m places and if n > m then some places receives at least 

two objects. 

 Equivalently, if n objects are distributed over n places in such a way that no place receive 

more than one object, then each place receives exactly one object. 

Lemma: 4.2  

A finite integral domain is a field. 

Proof  

 An integral domain is a commutative ring such that ab=0 if atleast one of a or b is 0. 

A field is a commutative ring with unit element in which every non zero element has a 

multiplicative inverse in the ring. 

 Let D be the finite integral domain with n elements 

 In order to show that D is a field we have to P.T 

I. There  exist an element 1 ϵ D such that 

a.1 = 1.a = a v a v D 

II. For every element a ≠ 0 ϵ D 7 a b ϵ D show that ab=1 

Let x1,x2…xn be the n elements of D 

Let a ≠ 0 ϵ D 

Consider the elements, 

x1a,x2a,…xna they are in D 

we claim that they are all distinct 

if possible let us assume that 

xia = xja for i ≠ j 

then xia – xja = 0 
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(xi – xj)a = 0 (R.D.L) 

Since D is an integral domain and a ≠ 0 (by assumption ) 

We have xi – xj =0 => xi – xj 

This is contradiction since i ≠ j 

Our assumption that xia = xja is false 

xia ≠ xja for i≠j 

x1a,x2a…xna are distinct and these n-distinct elements lie in D. 

therefore by the pigeon hole principle these elements are the elements of D 

if Y ϵ D then y=xia for some xi 

in particular since a ϵ D we must have 

a=x a for some xi0 ϵ D 

since D is commutative we have 

a = xi0 a=axi0 

we shall P.T xi0 is a unit element for every element of D 

now yxi0 = (xi a)xi0 

   =xi(axi0) 

   =xi.a 

   =y 

Xi0 is the unit element of D and we write it as 1 

 xi0=1 
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Now 1 ϵ D .. a.1 = a v a ϵ D 

1 must be of the form xia for some xi ϵ D 

1 = xia 

7  a,b ϵ b such that 1 = ba 

Ab = ba = 1 => Innverse exist 

Thus we proved two conditions 

Hence every finite integral domain is a field 

Corollary: 

 If p is a prime no then jp, the ring of integers mod p is a field. 

Proof: 

 Jp has a finite no  of elements , , , ,  where , is the class of integers which 

give remainder i on division by p. 

 Then by the above lemma it is enough to prove that jp is an integral domain but we know 

that jp is a commutative ring. Let a,b ϵ jp and ab = 0 then p must divide a or b 

Either a = 0 mod p or b = 0 mod p 

(i.e) a = 0 or b = 0 

Jp has no zero divisor 

By definition jp is a finite integral domain  

Hence by the above lemma, jp is a field 

NOTE 

Let f be an finite field having m elements like jp, by corollary (ii) of lagranges theorem we have 

a
0(f)  

=e 
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Under addition we have 

a + a +…= 0 

m terms 

(i.e) ma = 0 

Definition 

  An integral domain D is said to be of characteristic ‘0’ in the relation ma = 0 where    a ≠ 

0 is in D and where m is an integer can hold only if m = 0 

Example 

i. The ring of integers 

ii. The ring of even integers 

iii. The ring of rationals 

Definition 

 An integral domain D is said to be of finite characteristic if 7 a +ve integer ‘m’ such that 

ma = 0 for all a ϵ D 

NOTE 

1. If D is of finite characteristic then we define the characteristic of D to be the 

smallest the integer p, S.T pa = 0 v a ϵ D 

2. If D is of finite characteristic then its characteristics is a prime number 

3. An integral domain which has an finite characteristics 

Definition 

 An element ‘a’ of a ring R is said to be Idompotent if a
2
 = a 

 A ring R is called a Boolean ring if all elements are idempotent 

Homomorphisms 

Definition 

 A mapping from ring R into the ring R is said to be a homomorphism if 

i. Ф( a + b ) = Ф(a) + Ф(b) 

ii. Ф(ab) = Ф(a) . Ф (b)   v a,b ϵ R 

Lemma 4.3 

If Ф is a homo morphism of R into R then  
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i. Ф (0) = 0 

ii. Ф (-a) = - Ф(a) for every a ϵ R 

Proof 

i. Let a ϵ R then Ф(a) ϵ R now Ф(a) + 0 = Ф(a) 

(i.e) Ф(a) + 0 = Ф(a + 0) 

(i.e) Ф(a) + 0 = Ф(a) + Ф(0) 

=> Ф(0) = 0 by L.C.L 

ii. From (i) we have Ф(0) = 0 

(i.e) 0 = Ф(o) 

= Ф(a + -a) 

= Ф(a) + Ф(-a) 

 Ф(-a) = - Ф(a) 

Hence the proof 

NOTE 

 If both R and R’ have the respective unit element as 1 and 1’ for their multiplication, it 

need not follow that Ф(1)=1’ 

 However if R’ is a integral domain (or) R’ is arbitrary but Ф is onto then Ф(1) = 1’ 

Definition 

 If Ф is a homomorphism of R onto R’ then the kernel of Ф, denoted by I(Ф) is the set of 

all elements a ϵ R such that Ф9a)=0 where 0 is the zero element of R’. 

(i.e) I(Ф) ={ a ϵ R / Ф(a)=0,the zero element of R’} 
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Lemma : 4.4 

 If Ф is a homomorphism of R into R’ with kernel I(Ф),then 

1. I(Ф) is a subgroup of R under addition 

2. If a ϵ I(Ф) and r ϵ R then both ar and ra are in I(Ф) 

Proof 

1. We know that Ф(0) = 0 by lemma3.3.3 

0 ϵ I(Ф) 

I(Ф) is a non-empty subset of R 

Let a,b ϵ I(Ф) 

Ф(a) = 0 and Ф(b) = 0 

Since Ф is a homomorphism we have, 

Ф(a+b) = Ф(a) + v9b) 

= 0 + 0 

=0 

 a+b ϵ I(Ф) 

let a ϵ I(Ф) 

Ф(a) = 0 

But we know Ф(-a) = - Ф(a) 

=0 

       -a ϵ I(Ф) whenever a ϵ I(Ф) then by a lemma I(Ф) is a subgroup of R under addition. 

Since a ϵ I(Ф) by definition Ф(a)=0 
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Now consider Ф(ar) 

Ф(ar)= Ф(a). Ф( r ) 

 =0 

 ar ϵ I (Ф) 

similarly Ф(ra) = Ф ( r). Ф(a) 

 = Ф( r).0 

=0 

 ra ϵ I(Ф) 

Hence if a ϵ I(Ф) and r ϵ R, then both ar and ra are in I(Ф)   

Definition 

1. A homomorphism of R into r’ is said to be an isomorphism if it is a one to one 

mapping. 

2. Two rings are said to be isomorphic if ther is an isomorphism of one onto the 

other 

Lemma:4.5 

 The homomorphism Ф of R in R’ is an isomorphism iff I(v) = {0} 

Proof 

Let us assume that Ф is an isomorphism of R into R’. then by definition Ф is one to one. 

Let a ϵ I(Ф) 

Ф(a) = 0 where 0 is the identity element of R’ 

Ф(a) = Ф(0)    [Ф(0)=0] 

 a = 0 [ф is one to one] 

Conversely, 

Assume that I(Ф)={0} 

It is enough to prove that Ф is one to one. 
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Let x,y ϵ R 

Then Ф(x), Ф(y) ϵ R’ 

Now Ф(x) – Ф(y) = Ф(x) + Ф(-y) 

       = Ф(x – y) 

If Ф(x) = Ф(y) then 

Ф(x) – Ф(y)=0 

Thus Ф( x – y ) = 0 

 x – y ϵ I(Ф) = {0} 

 x – y = 0 

 x = y 

 Ф is one to one 

Hence the homomorphism Ф of R into R’ is an isomorphism iff I{ Ф}= 0 . 
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POSSIBLE QUESTIONS: 

Part-B( 5X8 = 40 Marks) 

Answer all the questions: 

1. If R is a ring, then foe all a,b R, 

 (i) a0 = 0a = 0. 

 (ii) a(-b) = (-a)b = -(ab) 

 (iii) (-a)(-b) = ab. 

 (iv) a(b-c) = ab - ac 

 

2. i) Define Integral domain with example. 

    ii) Prove that every finite integral domain is a field. 

3. Prove that every field is an integral domain. 

4. i) Define field with example. 

     ii) Prove that a skew field has no divisors of zero. 

5. Show that the set of numbers of the form a+b2, with a and b as rational numbers 

     is a field. 

 

6. Prove that a ring R has zero divisors iff cancellation law is valid in R. 

 

7. Prove that a finite commutative ring R without zero divisors is a field. 

8. Let R  and R' be a rings and f:RR' be an isomorphism. Then prove that 

    i) R is commutative  R'  is commutative 

    ii) R is ring with identity  R' is ring with identity 

    iii) R is an integral domain R' is an integral domain 

     iv) R is a field R' is a field 

   

9. Prove that the homomorphism  of a ring into a ring R' is an isomorphism of R into R'  

     iff  I() =(0), where I() denotes the kernel of  . 

 

10. State and Prove fundamental theorem on homomorphism of rings. 
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Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

Every field is a ---------- field commutative ring integral domain Euclidean ring Euclidean ring

Any other ---------- of R are called proper ideals. right left  prime ideal ideal

Every sub ring is not an ---------. division ring ideal group boolean ideal

Every subgroup of a cyclic group is ----------- abelian normal ring field normal 

Every cyclic group is ----------- abelian normal ring field abelian

The ring of integers is a ring --------- divisor. with equal to without not equal to without

The product of two integers is also an -------- skew field commutative integers division ring integers

If R is a commutative ring, then every left ideal will also ------- 
ideal. right left prime proper right 

A non empty subset S of a ring R is said to be -------- ideal of R 
if srєS. right left prime proper right 
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Every ideal of a ring R is also a --------- ring of R. division boolean  sub simple  sub 

Every subring is not an ---------. ideal division ring group boolean ideal

. A non empty subset S of a ring R is said to be -------- ideal of R 
if rsєS. right left  prime  proper left

 A ring having no proper ideal is --------ring division boolean commutative simple simple 

Any other ideal of R are called--------- ideals. right left  prime  proper  proper

The intersection of any two left ideals of a ring is again --------- 
ideal of the ring. right left  prime proper left

Every ------------ can be embedded in the field. field commutative ring integral domain Euclidian ring integral domain

A ring of integers is a ------------ ideal ring. right left prime principal principal

Every ------- is a principal ideal ring field commutative ring integral domain Euclidian ring field

The quotient field of a --------- integral domain coincides with 
itself. infinite  finite  single zero  finite

Any two isomorphic integral domain have -------- quotient field  automorphic isomorphic automorphic  homomorphic isomorphic

A ---------- ring possesses a unit element. zero commutative division Euclidean ring commutative 

The ring of integers is a -------- field commutative ring integral domain Euclidean ring Euclidean ring

Every ------- is a Euclidian ring. field commutative ring integral domain Euclidean ring field 

Prepared by:  Dr. M.M. Shanmugapriya , Department of Mathematics, KAHE



UNIT - V /2015-2018 Batch

The set of integer is not an ------ of the ring of rational numbers division ring ideal sub ring simple ring ideal 

If U is an ideal of the ring R, then R/U is a ring and is a ---------- 
image of R. automorphic isomorphic automorphic  homomorphic  homomorphic

A -------- has no proper ideals. right ideal  prime field field

A commutaive ring with unity is a field if it has no ---------- 
ideals division boolean proper simple proper

If R is a commutative ring with unit element and M is an ideal of 
R, then M is------------ of R iff R/M is a field. maximal ideal division ring integral domain Eucledian ring maximal ideal

A ring R can be imbedded in a-------R' if there is an 
isomorphism of R intoR'. automorphism ring automorphism kernal ring 

Any two ----------- integral domain have isomorphic quotient 
field.  automorphic isomorphic automorphic  homomorphic isomorphic

A -------- of integers is a principal ideal ring. right left prime ring ring

A commutative ring possesses a -------- element. zero unit prime ideal unit

The integral domain of Gausian integers is an ------------. division ring euclidean ring sub ring simple ring euclidean ring

If R is a commutative ring with unit element, then a and b are 
said to be associates if ---------. a=u+b a=u/b a=u-b a=u.b a=u.b

If U is an ideal of a ring R with unity, then --------- U=R U=0 R=0 UR U=R

The set of integers I is only a ---------- ring. division boolean sub simple sub 

The set Q of rational numbers is only a ---------- division ring ideal sub ring simple ring sub ring
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The set Q of rational numbers is not an --------------- of the ring 
of real numbers division ring ideal sub ring simple ring ideal

The intersection of any two ideals of a ring is again --------- of 
the ring right ideal prime proper ideal

A field has no ---------- ideals. right ideal  prime proper proper

A ---------- ring with unity is a field if it has no proper ideals division boolean commutative simple commutative

If R is a commutative ring with unit element and M is an ideal of 
R, then M is a maximal ideal of R iff R/M is a ---------------- field division ring integral domain Eucledian ring field 

A ring R can be imbedded in a ring R' if there is an ----------- of 
R intoR'. automorphism isomorphism automorphism kernal isomorphism

An integral domain R with unit element is a ---------- ideal ring if 
every ideal A in R is of the form A = (a) , aєR. right left prime  principal  principal

. A non empty subset S of a --------R is said to be left ideal of R 
if rsєS.  ring ideal sub ring simple ring  ring

Every ------------ is not an ideal. division ring sub ring group boolean sub ring

 A ring having no proper --------- is simple ring division boolean commutative ideal ideal

Any other ideal of R are called--------- ideals. right left  prime  proper  proper

The -------------- of any two left ideals of a ring is again left ideal 
of the ring. union intersecton  prime proper intersecton

If U is an ideal of a ring R with --------, then U=R Unity zero ideal ring Unity

The set Q of rational numbers is not an ideal of the ------- of real 
numbers division ring ring sub ring simple ring ring 
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The------------- of any two ideals of a ring is again ideal of the 
ring. right intersection prime proper intersection

A commutative ring with identity  is a field iff  it has no ----------- 
ideals division  boolean proper simple proper

A ---------- ring with identity  is a field iff  it has no proper ideals division  boolean commutative simple commutative
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UNIT-V 

SYLLABUS 

SYLLABUS 

 

INTRODUCTION TO IDEALS AND QUOTIENT  RINGS  

In ring theory, an ideal is a special subset of a ring. Ideals generalize certain subsets of the 

integers, such as the even numbers or the multiples of 3. Addition and subtraction of even 

numbers preserves evenness, and multiplying an even number by any other integer results in 

another even number; these closure and absorption properties are the defining properties of an 

ideal.Among the integers, the ideals correspond one-for-one with the non-negative integers: in 

this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative 

number. However, in other rings, the ideals may be distinct from the ring elements, and certain 

properties of integers, when generalized to rings, attach more naturally to the ideals than to the 

elements of the ring. For instance, the prime ideals of a ring are analogous to prime numbers, and 

the Chinese remainder theorem can be generalized to ideals. There is a version of unique prime 

factorization for the ideals of a Dedekind domain (a type of ring important in number theory). An 

ideal can be used to construct a quotient ring similarly to the way that modular arithmetic can be 

defined from integer arithmetic, and also similarly to the way that, in group theory, a normal 

subgroup can be used to construct a quotient group. 

IDEALS AND QUOTIENT RINGS 

Definition 

 If R is any ring then a subset L of R is called a left Ideal of R, if 

i. L is a subgroup of R under addition 

ii. r ϵ R, a ϵ L =>  ra ϵ L 

In a similar way we can define a right ideal 

 

Ideals and Quotient Rings – More Ideals and Quotient Rings – Maximal ideal - The field of Quotients 

of an Integral Domain – Euclidean rings.  
 

http://en.wikipedia.org/wiki/Ring_theory
http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Ring_%28mathematics%29
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Even_numbers
http://en.wikipedia.org/wiki/Closure_%28mathematics%29
http://en.wikipedia.org/wiki/Non-negative_integer
http://en.wikipedia.org/wiki/Principal_ideal
http://en.wikipedia.org/wiki/Prime_ideal
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Chinese_remainder_theorem
http://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic
http://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic
http://en.wikipedia.org/wiki/Dedekind_domain
http://en.wikipedia.org/wiki/Number_theory
http://en.wikipedia.org/wiki/Quotient_ring
http://en.wikipedia.org/wiki/Modular_arithmetic
http://en.wikipedia.org/wiki/Group_theory
http://en.wikipedia.org/wiki/Normal_subgroup
http://en.wikipedia.org/wiki/Normal_subgroup
http://en.wikipedia.org/wiki/Quotient_group
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Definition 

 A non empty subset u of R is said to be a (two sided) ideal of R if 

i. u is a subgroup of R under addition 

ii. For every u ϵU and r ϵ R, both ur and ru ϵ U 

NOTE 

i. An ideal is thus simultaneously a left ideal and right ideal of R 

ii. Since the ring R is an abelian group w.r.to addition it follows that any ideal U is normal 

subgroup of r (since any subgroup of an abelian group is normal) 

iii. If u is an ideal of the ring R then  is a ring and is homomorphic of R 

Lemma:5.1 

 If U is an ideal of R, U is a normal subgroup of R (by note (i) ) 

w.r.to addition   is the set of all distinct cosets of U in R, mearly we say that coset and we donot 

say left coset or right coset. Since R is an abelian group w.r.to addition, 

a + U = U + a 

 consists of all cosets a+u,a ϵ R 

From a theorem 2.6.1 we know that   is a group under addition (prove here), where the 

composition law is ( a + u) + ( b+ u ) = (a + b) + U v a,b ϵ R 

 is also abelian since R is abelian w.r.t.addition. let us define the multiplication in  as follows 

(a + u) + ( b + u) = ab + u v a,b ϵ R 

Now we prove, the above said multiplication is well defined 

If a + u = a’ + u 

And b +u = b’ + u 
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Then by our definition of multiplication ,we have to prove that 

( a + u ) (b + u ) =(a’ + u) (b’ + u) 

(i.e) to prove that (ab + u ) = (a’b’ + u) 

Since a + u =a’ + 0 

We have 

A= a’ + u1 where u1 ϵ u 

Similarly since b + u =b’ + u 

We have b= b’+u2 where u2 ϵ u 

ab= (a’ + u1) (b’ + u2) 

=a’b’ + a’u2 +b’u1 + u1u2 

Since u is an ideal of R we have 

a’u2 + b’u1 and u1u2 ϵ u 

a’u2 + b’u1 + u1u2 ϵ U 

ab=a’b’ + u3 where u3=a’u2 + b’u1 + u1u2 ϵ u 

ab + u =a’b’ + u3 = u 

=a’b’ + u 

 ab+u =a’b’ = u 

The multiplication defined above is well defined now (a + u ) (b + u ) =ab+u ϵ   

As a,b ϵ R by closure property ab ϵ u 

 is closed with respect is multiplication  
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Since R is associative w.r.to multiplication, 

 

Let x,y,z ϵ   

Then x = a + u 

y=b + u 

z=c + u where a,b,c ϵ R  

now we P.T x(y + z) =xy + xz 

L.H.S  = x(y + z ) 

 =(a + u) (b + u + c + u) 

=(a + u) [(b + c) + u] 

=(a(b + c) + u) 

=ab + ac + u 

=(ab + u) + (ac + u) 

=(a + u) (b + u) + (a + u)  9c + u) 

=xy + yz 

=R.H.S 

Similarly we prove that (y + z) x =yx + zy 

If R is commutative then   is also commutative as seen below, 

Consider (a + u) (b + u) = ab + u 
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=ba + u ( R is commutative ab=ba) 

=(b + u) (a + u) 

 is also commutative, if R is commutative  

If R has an unit element 1, then   has unit element 1 + u 

Define a mapping ф:R ->   

By ф(a) = a = u for a ϵ R 

Let a,b ϵ R 

Then ф (a + b ) = (a + b) + U 

 =(a + u) + (b + u) 

 = ф (a) + ф((b) 

And ф (ab) = ab + u 

 =(a + u) (b + u) 

 Ф (a). ф (b) 

 by def ф is a homomorphism 

let y ϵ  then y= a + u for a ϵ R and ф (a) = a + u = Y 

a is the pre image of Y in  

ф is onto 

If u ϵ U then ф(u) = u + U = u whih is the identity element of  

The kernel of ф is exactly U 

Hence the lemma 

Remark : 

The ring  is known as quotient Ring 
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Theorem 5.1 

 let R, R’ be ring and ф a homomorphism of R onto R’ with kernel U. then R’ is isomorphic 

To  

Moreover there is a one to one correspondence between the set of ideals of R’ and the set of 

ideals of R which contain U. this correspondence can be achieved by associating with an idel W’ 

in R’, the ideal W in R defined by 

W = { x ϵ R / ф (x) ϵ W so defined  -> R’ by 

Ψ  ( u + a) = ф (a) -------- 1 

Where u + a is an arbitrary element of  and a ϵ R 

Let  us prove that the mapping is well defined (i.e) to show that U + a = U + b 

 ψ(u + a) = ψ( u  + b) v u + a, U +b ϵ  where a,b ϵ R 

let us prove that the mapping is well defined 

(i.e) to show that U + a = U + b 

=> ψ (u + a) = ψ( U + b) v u +a, U +b ϵ  where a,b ϵ R 

Now assume that u + a = u + b 

Since a =0 = a ϵ u + a ……(o ϵ u) 

a ϵ u + a = u +b by an assumption 

a = u + b for some u ϵ U 

now ψ (u + a) =ф(a) 

 = ф( u + b) 

 =Ф(u) + ф(b) 

 = 0’ + ф(b) 

=ψ (u + b) by 1 

ψ  is well defined 

ψ[ (u + a) = (u + b)]  =  ψ (u + (a+b)) 
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    = ф( a + b) 

    =Ф(a) + ф(b) 

    =ψ (u + a) + ψ (u + b) 

ψ[ (u + a) = (u + b)]  =  ψ (u + ab) 

    = ф( ab) 

    =Ф(a) . ф(b) 

    =ψ (u + a)  ψ (u + b) 

Ψ is a homomorphism 

Given that ф is onto’. 

For every r’ ϵ R’ 7 ar ϵ R such that ф( r ) = r’ 

Ψ( u + r) = r’ 

U + r is thepre image of r’ under ψ 

Ψ is onto 

Let us now show that ψ is one to one 

Now we prove the result by proving that the kernel of ψ  namely Uψ  consist of only one element 

U which is the identity element of  

By definition of kernel we have, 

Uψ= { U +a ϵ   / ψ(u + a)
=0’

the zero element of R’} 

={ u + a ϵ  / ф(a )
=0’

} by 1 

={u} since ф(a) =0’ 

 a ϵ u 

 u + a =U  

ψ  is one to one 

ψ :  -> R’ is an onto isomorphism 
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 ~ R’ 

(i.e) R’ ~ isomorphism is an equivalence relation) 

(ii) Given that W = { x ϵ R / ф(x) W’} and W’ is an ideal of R’ 

To prove  

U C W and W is an ideal of R 

Let x ϵ U 

Ф(x) = 0’ ϵ W’ 

 x ϵ W 

x ϵ U => x ϵ W 

U C W 

Now ф(0) = 0’ ϵ W’ (W’ is an ideal of R’) 

Ф(0) ϵ W’ 

0 ϵ W… W is an non empty subset of  R 

Let x,y ϵ W, 

Ф(x) ϵ W’, Ф(y) ϵ W’ 

Ф(x + y) = Ф(x) + Ф(y) ϵ W’ (W’ is closed under addition) 

 x + y ϵ W whenever x,y ϵ W 

let x ϵ W 

Ф(x) ϵ w’ 

Now Ф(-x) = - Ф(x) ϵ W’ 

Ф(-x) ϵ W’ 

 -x ϵ W’ whenever x ϵ W 

Then by a lemma W is a subgroup of R under addition 

Next we prove that W is an ideal of R let r ϵ R and x ϵ W 

Ф(r) ϵ R’ and Ф(x) ϵ W’ …. x ϵ R 

Xr and rx ϵ R (R is closed under multiplication) 
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Ф(xr) = Ф(x). Ф(r) ϵ W’ (W’ is an ideal of R’) 

xr ϵ W 

similarly we can prove that 

rx ϵ W v r ϵ W , x ϵ W 

W is an ideal of R containing U 

(i.e) inverse image of an ideal W’ of R’ is also an ideal W of R containing U 

Conversely assume that w is an ideal of R and we prove that w’ is an ideal of R’ 

Define W’={ x’ ϵ R’/ x’=ф(y), y ϵW} 

Now 0 ϵ W ф(0) =0’ ϵ w’ 

W’ is a non empty subset of R’ 

Let x1’,x2’ ϵ w’ 

 x1’= ф(y1) 

x2’= ф(y2) 

y1, y2ϵ W 

x1’ + x2’= ф(y1)+ ф(y2) 

= ф(y1+y2) 

ϵ w’ since y1+y2 ϵ w 

thus x1’ + x2’ ϵ w’ 

then x’= ф(y), y ϵ w 

- y ϵ w 
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-x’= - ф(y) 

= ф(-y)  ϵ w’ …..(- y ϵ w) 

-x’ ϵ w’ whenever x’ ϵ w’ 

Then by lemma w’ is a subgroup of R’ under addition 

Let x’ ϵ w, r’ ϵ R’ 

Let  r ϵ R, ф(r)=r’ 

X’= ф(y), y ϵ w 

ф(yr)= ф(y). ф(x) 

=x’r’ 

yr ϵ w as w is an ideal of R 

ф(yr) ϵ w’ 

x’r’ ϵ w’ 

Similarly we can prove that r’x’ ϵ w’ 

w’ is an ideal of R’ 

next we prove that the ideal w of R is unique 

let T be another ideal of R 

T= { y ϵ R/ ф(y) ϵ w’} 

We have to prove that W= T 

Let y ϵ w 

ф(y) ϵ w’   (by def of W) 
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y ϵ T (by def of T) 

W C T 

Let t ϵ T 

ф(t) ϵ w’ 

t ϵ w 

T C W 

 W = T 

Thus W is unique 

Thus there is a one to one correspondence between the ideals of R’ and the ideals of R containing 

U 

(iii ) Now we define a mapping F : R ->  

By F(a) =W’ +ф(a), a ϵ R 

Since ф is onto,for every a’ ϵ R’ 7 an element a ϵ R s.t ф(a) = a’ 

Now W’ + ф(a) = W’ + a’ 

   = F9a) 

A is the pre image of w’ + ф(a) 

F is onto 

Let x,y ϵ R 

F(x + y) = W’ + ф(x + y) 

=W’ + ф(x)+ ф(y) 

==W’ + ф(x)W’+ ф(y) 
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=F(x) + F (y) v x,y ϵ R 

We shall  show that the kernel of F namely KF  is W 

Assume that L is the kernel of F and we prove that W = L 

Now by def L = { x ϵ R / F(x) = w’} 

Let x ϵ L … F(x) = w’ 

w’+ ф(x)=w’ 

ф(x) ϵ w’ 

x ϵ w 

L C W 

Let x ϵ W … ф(x) ϵ w’ 

w’+ ф(x)=w’ 

F(x) = w’ 

x ϵ L 

W C L 

Hence w = L 

The kernel of F is W and is unique 

F is a homo of R onto   with kernel W 

Then by a theorem (2.7.1)  is isomorphic to   

 ~   
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Lemma 5.2 

 Let R be a commutative ring with unit element whose only ideas are {0} and R itself 

,then R is a field 

Proof   

In order to prove this result, it is enough if we prove that v a ≠ 0 ϵ R 7 a b ≠ 0 ϵ R  s.t  

ab = 1 

Let a ≠ 0 ϵ R 

Consider the set Ra = { xa / x ϵ R} 

We claim that Ra is an ideal of R 

Since 0 = 0.a ϵ Ra 

Ra is a non empty subset of R 

Let u,v ϵ Ra 

Then u = x` a and v = x2a for some x1,x2 ϵ R) 

Now u – v = x1a –x2a 

 = (x1-x2)a 

ϵ  …[x1-x2 ϵ Ra] 

Ra is a subgroup of R under addition 

Let r ϵ R let u = xa 

Then consider ru = r(xa) = (rx) a ϵ Ra (rx ϵ R) 

Similarly we can prove that ur ϵ Ra 

By deff Ra is an ideal of R 
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From the given hypothesis it follows that Ra = { 0} or Ra = R 

(i.e) every multiply of R is a multiple of a by some element of R 

There exist an element b ≠ 0 s.T ab=1 

R is a field 

Definition 

 An ideal M ≠ R in a ring R is said to be a maximal ideal of R, if  whenever u is an ideal 

of R such that M C U C R then either R = U or M = U 

 In otherwords, an ideal of R is a maximal ideal, if it is impossible to sqneeze an ideal 

between it and full ring. 

NOTE 

i. An ring need not have a maximal ideal 

ii. Ring in the unit element has maximal ideals 

Examples 

1) Let R be the ring of integers and U be an ideal of R. since U is a subgroup of R under 

addition from group theory (eg subgroup of even integers0) we know that U consists of 

all multiples of a fixed integer say n0 (i.e) u = (n0) if P is a prime no we claim that p = (p) 

is a maximal ideal of R 

Proof  

If U is an ideal of R and U ) R then U = (n0) for some integer n0 

Since p ϵ P C U , p=m n0 for some integer m 

since p is a prime no, 

p = m n0  => n0 =1 or n0 = p 

if n0 =1 then u = (p) = p 
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U = P 

If n0 = 1 then 1ϵ U 

Let r ϵ R, then r = 1.r ϵ U for all r ϵ R 

[ U is an ideal of R] 

R C U  

Since u is an ideal other than R (or) P itself between them 

P is a maximal ideal of R 

2) Let R be the ring of all real valued continous functions on the closed unit interval 

Let M = { f(x) ϵ R / f ( u2)=0} M is certainly an ideal of R. then M is a maximal ideal of R 

Proof 

If there is an ideal U of R such that m c u and m ≠ u, then there is a function g(x) ϵ u and g(x) ϵ 

m  

Since g(x) ϵ m ,g(  ) = α ≠ 0 

Let h(x) = g(x) – α 

Now h(  )= g(  ) – α 

       = α – α 

 = 0 

 h(x) ϵ m c u (i.e) h(x) ϵ u 

α = g(x) – h(x) ϵ u ….[u is an ideal of r so a subgroup of r] 

now 1 = α α
-1

ϵ u 
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since α
-1

 =  

=  ϵ R …………… α
-1

 is continuous and u is an ideal of R 

Thus for any t(x) ϵ R we have 

t(x) = 1.t(x) ϵ u …[u is an ideal of R] 

R C U  

But U C R [u is an ideal of R] 

U=R 

Thus m is a maximal ideal of R 

Theorem 5.2 

 If R is a commutative ring with unit element and m is an ideal of R then m is a maximal 

ideal of R iff    is a field 

Proof 

Given that m is an ideal of R 

Assume that  is a field 

We shall P.T m is a maximal field of R 

Since  is a field , its only ideals are {0} and  

Then by theorem 93.4.1) there I a one to one correspondence between the set of ideals of  

and the set of ideals of R which contain  m. the ideal M of R corresponds to the ideal {0} of  

whereas the ideal R of R corresponds to the ideal  of  in this one to one 

correspondence. Thus there is no ideal between m and R other than these two 
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Hence m is a maximal ideal of R 

 Conversely assume that m is a maximal ideal of R 

Then by the correspondence mentioned above  has only {0} and itself an ideals. Further 

since R is a commutative ring with unit element hen by lemma 3.5.1 ,  is a field. 

 Definition . 

                 If all ideals of a ring R are finitely generated then R is called a Noetherian ring. 

Theroem 5.3  

         A commutative ring with identity is Noetherian if and only if given any ascending chain of 

ideals I1 ⊆ I2 ⊆ ··· ⊆ In ⊆ ··· , there exists an m such that Im = Im+i for all i ≥ 0. 

Proof.  

         Let R be Noetherian.  Since {In}
∞

n=1  is an ascending chain, I = 

 

∪∞
n=1In is an ideal of R. Hence we can find a1, a2, . . . , ag ∈  I such that I = (a1, a2, . . . , ag). It is 

easy to see that there is an m such that ai ∈  Im for all i = 1, 2, . . . , g. Hence I ⊆ Im which implies 

that Im = Im+i for all i ≥ 0. 

 

Conversely let every ascending chain of ideals be stationary. Let I be an ideal of R which is not 

finitely generated. Then I is nonzero and I < R. 

 

Inductively, we can find a1, a2, . . . ∈  I such that In = (a1, a2, . . . , an) and the chain In, n = 1, 2, . . 

. is not stationary. This is a contradiction. 

 Hence I is finitely generated. 

 

THE FIELD OF QUOTIENTS OF AN INTEGRAL DOMAIN 

Definition 

 A ring R can be imbedded in a ring R’ if there is an isomorphism of R into R’. 
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 If R and R’ have unit elements 1 and 1’ we insist in addition that this isomorphism takes 

1 and 1’ 

 R’ is called an over ring or extension of R . if R can be imbedded in r’  

Definition  

 

           Let R be an integral domain. A nonzero element a ∈ R is called irreducible if it is not a 

unit and whenever a = bc then either b or c is a unit. We say a is a prime if (a) is a prime ideal. 

Theorem 5.4 

Every integral domain can be imbedded in a field 

Proof   

let d be an integral domain 

Let mo be the set of all ordered pairs(a,b) where a,b ϵ D and b ≠ 0 [consider (a,b) as  ] 

In mo  we define  a relation ‘~’ as follows 

(a,b) ~ (c,d) iff ad = bc -------------------------1 

We claim that this is an equivalence reletion on mo  

Let (a,b) , (c,d) , (e,f) ϵ mo 

Since ab= ba 

We can write (a,b) ~ (a,b) 

(i.e)  reflexivity is satisfied 

Now let us assume that (a,b) ~ (c,d) 

Then by the definition ad=bc 

Cb=da (the ring is commutative0 
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 (c,d) ~ (a,b) 

Summary is true 

Let (a,b) ~ (c,d) and (c,d) ~ (e,f) 

(ie) ad= bc and cf = de 

a=    and f=  

now consider af =  .  

(i.e) af = be 

(i.e) (a,b) ~ (e,f) 

(i.e) transitivity is true 

Hence the relation ‘~’ defined above is an equivalence relation on m0 

Let [a,b] be the equivalence class of (a,b) in M0 

Let F be the set of all such equivalence classes [a,b] where a,b ϵ D and b ≠ 0 

We shall prove that F is a field w.r.to two operations addition and multiplication defined below 

[a,b] + [c ,d] = [ ad + bc + bd] 

[a,b] . [c,d] = [ac,bd] 

Since D is an integral domain and both d ≠ 0 and b ≠ 0 

We have bd ≠ 0  

[ad + bc,bd ] ϵ F and 

[ac ,bd] ϵ F 

We now P.T the addition defined above is well defined 
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(I.e) if [a,b] = [a’, b’] 

 [c,d] = [c’,d’] 

Then we have to prove that  

[a,b] +[c,d] = [a’,b’] +[c’,d’] 

To p.T 

[ad + bc, bd] =(a’d’ + b’c’, b’d’] 

(i.e) to P.T 

(ad +bc)b’d’ = (a’d’ + b’c’+ bd 

Since [a,b] =[a’b’] 

We have  =   => ab’ = a’b 

Similarly [c,d] = [c’,d’]  =   => cd’ = c’d 

Now consider  

(ad + bc)b’d’ = ad b’d + bcb’d’ 

  =ab’dd’ + bb’cd’ 

  =ba’dd’ + bbb’dc’ 

  =bd(a’d’ = b’c’) 

Addition defined above well defined 

[0,b] acts as a zero element for this addition and [-a,b] is the additive inverse of [a,b]. then we 

can verify that F is an abelian group under the addition defined above.we can also verify that the 

non-zero elements of F namely the elements [a,b] , a ≠ 0 form an abelian group under 

multiplication 
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Here [d,d] acts as the unit element and [c,d] 
-1

 =[d,e] { c ≠ 0, [d,c] is in F} 

The distributive laws also hold in F 

F is a field 

We have to s.t D can be imbedded in F for x ≠ 0, y ≠ 0 in D, we note that 

[ax,x] =[ay,y] 

Let us denote [ax,x] by [a,1] 

Define ф : D -> F by ф(a) = [a,1] v a ϵ D 

Let a,b ϵ D 

Then ф(a + b)= [ a + b,1] 

  =[a,1] + [b,1] 

  =ф(a) + ф(b) 

Ф is homomorphism of D into F 

Let y ϵ F then Y=[a,1] ϵ F,a ϵD and ф(a)=[a,1]=y 

A is the pre image of Y under ф 

Then by def ф is onto. 

Now ф(a) = ф(b) 

 [a,1] =[b,1] 

 a= b 

ф is onto 

ф is an homomorphism of  D into F 

F is the homomorphic image of D under ф 
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If 1 is the unit element of D then ф(1) ϵ F 

Let a’ be any element of F then 

ф(a) = a’ for some a ϵ D 

now consider ф(1).a’ = ф(1). ф(a) 

= ф(1.a) 

=ф(a) 

=a’ 

Also a’. ф(1)= ф(a). ф(1) 

 = ф(a.1) 

= ф(a) 

=a’ 

ф(1) is the unit element of F 

thus every integral domain can be imbedded in a field 

Definition 

Let R be a commutative ring. An ideal P of R is said to be a prime ideal of R. If ab ϵ P , ab ϵ R 

=> a ϵ P or b ϵ P 

Theorem 5.5 

 Let R be a commutative ring and S an ideal of R then the ring of residue classes  is an integral 

domain iff S is a prime ideal 

Proof 

Let R be a commutative ring and S an ideal of R. 
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Then   = { S +a / a ϵ R} 

Let S + a, s + b be any two elements of    

Then ab ϵ R 

 is also a commutative ring 

Now let S be a prime ideal of R 

Then we have to prove that  is an integral domain 

The zero element of  is the residue class S itself 

Let S + a, S + b ϵ  

Then (s + a) (s + b) = s 

 s + ab = s 

 ab ϵ s 

 either a or b is in s …(s is a prime ideal) 

 either s = a =s or s + b = s  

 either s +a or s + b is the zero element of  

 is without zero divisor 

Since  is a commutative ring without zero divisor,  is a integral domain 

 Conversely , let  be an integral domain then we have to P.T S is an prime ideal of R 

Let a,b be any two element in r s.t  ab ϵ s 

We have  ab ϵ s  
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 s + ab = s 

 (s +a) (s + b) = s 

 is an integral domain it is without zerp divisor 

Either s + a =s or s + b=s 

Either a ϵ s or b ϵ s 

Then by def s is a prime ideal of R 

IMPORTANT RESULTS.  

 Let R be an integral domain and a, b ∈  R. Then 

 

(1) a is a unit in R if and only if (a) = R.  

 

(2) a and b are associates if and only if (a) = (b)  

 

(3) a | b if and only if (b) ⊂ (a)  

 

(4) a is a proper divisor of b if and only if (b) < (a) < R.  

 

(5) a is irreducible if and only if (a) is maximal among proper principal ideals.  

 

Definition 

          An integral domain R is called a factorization domain, abbreviated as FD, if every non-

zero element of R can be expressed as a product of irreducible elements. 

Definition 

. A ring R is said to satisfy ascending chain condition 

(acc) on principal ideals if for any chain (a1) ⊂ (a2) ⊂ . . . of principal ideals of R, there exists an 

n such that (an) = (an+i) for all i = 1, 2, 3, . . . . 
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POSSIBLE QUESTIONS: 

Part-B( 5X8 = 40 Marks) 

Answer all the questions: 

1. i) Define an ideal. Prove that the intersection of any two left ideals of a ring is again a  

        left ideal of  the ring. 

2.  Prove that every integral domain can be imbedded into a field. 

3.  i) If U is an ideal of a ring R with unity and 1U, prove that U=R. 

ii) If F is a field then  prove that its only ideals are (0) and F itself 

4. If R is a commutative ring with unit element and M is an ideal of R, then prove   

   that M is a maximal ideal of R iff R│M is a field. 

 

5. Prove that a commutative ring without zero divisor can be imbedded in a field 

 

6. Let R be a commutative ring and S an ideal of R. Then prove that the ring of residue  

    classes R/S is an integral domain iff S is a prime ideal. 

 

7. State and prove unique factorization theorem. 

8. Prove that the ring of  Gaussian integers is a Euclidean ring. 

9. i) Prove that a Euclidian ring possesses a unit element 

    ii) Prove that  every field is a Euclidean ring. 

10.Prove that every euclidean ring is a principal ideal ring. 


	ESE Qp(13 Batch).pdf (p.1)
	ESE Qp(14 Batch).pdf (p.2)
	I Internal Qp(Answer Key).pdf (p.3-8)
	I Internal Qp.pdf (p.9-10)
	Lecture Plan(Modern Algebra).pdf (p.11-14)
	Modern algebra (ESE QP).pdf (p.15)
	MODERN ALGEBRA ESE(Answer Key).pdf (p.16-23)
	Modern Algebra( II Internal Qp).pdf (p.24-25)
	Modern Algebra(II Internal )answer key.pdf (p.26-34)
	Modern Algebra(Model exam-Answer Key).pdf (p.35-47)
	Modern Algebra(Model Qp).pdf (p.48-49)
	Syllabus.pdf (p.50-51)
	Unit-I(Part-A).pdf (p.52-56)
	Unit-I.pdf (p.57-77)
	Unit-II(Part-A) (1).pdf (p.78-83)
	Unit-II(Part-A).pdf (p.84-89)
	Unit-III(Part-A) (1).pdf (p.90-93)
	Unit-III(Part-A).pdf (p.94-97)
	Unit-IV(Part-A).pdf (p.98-101)
	Unit-IV.pdf (p.102-114)
	Unit-V(Part-A).pdf (p.115-119)
	Unit-V.pdf (p.120-144)

