KARPAGA	M ACADEMY OF H	IGHER EDUCATION
LA33: IIIB.3C MATHEMATIC	.5-A ITS APPLICATION	COURSE NAME:FUZZY SEIS AND
COURSE CODE: 15MMU604B	I-INTERNAL	BATCH-2017-2018
-INTERNAL – FUZZY SETS AND ITS A	PPLICATIONS	
EY ANSWER		
'ART-A		
L.Crisp set		
disjoint set		
.normal		
l.1-A(x)		
c(a)≥ c(b)		
a		
.1		
. cardinality		
. countable set		
.0. family of sets		
.1. logic operation		
2. threshold		
.3. relation		
4. X		
5. infinite		
6. Archimedean t-norm		
7. equilibrium		
8. a		

19. nested crisp sets

PART-B

21.a) Fuzzy logic:

Logic is the study of the methods and principles of *reasoning* in all its possible forms. Classical logic deals with *propositions* that are required to be either *true* or *false*. Each proposition has its opposite, which is usually called a *negation* of the proposition. A proposition and its negation are required to assume opposite truth values.

Logic formulas are then defined recursively as follows:

1. if v denotes a logic variable, then v and \overline{v} are logic formulas;

2. if a and b denote logic formulas, then $a \wedge b$ and $a \vee b$ are also logic formulas;

3. the only logic formulas are those defined by the previous two rules.

Various forms of tautologies can be used for making deductive inferences. They are referred to as *inference rules*. Examples of some tautologies frequently used as inference rules are

$$(a \land (a \Rightarrow b)) \Rightarrow b (modus ponens),$$

 $(\overline{b} \land (a \Rightarrow b)) \Rightarrow \overline{a} (modus tollens),$
 $((a \Rightarrow b) \land (b \Rightarrow c)) \Rightarrow (a \Rightarrow c) (hypothetical syllogism).$

b)

Theorem 3.2. Every fuzzy complement has at most one equilibrium.

Proof: Let c be an arbitrary fuzzy complement. An equilibrium of c is a solution of the equation

$$c(a)-a \approx 0,$$

where $a \in [0, 1]$. We can demonstrate that any equation c(a) - a = b, where b is a real constant, must have at most one solution, thus proving the theorem. In order to do so, we assume that a_1 and a_2 are two different solutions of the equation c(a) - a = b such that $a_1 < a_2$. Then, since $c(a_1) - a_1 = b$ and $c(a_2) - a_2 = b$, we get

$$c(a_1) - a_1 = c(a_2) - a_2. \tag{3.7}$$

However, because c is monotonic nonincreasing (by Axiom c2), $c(a_1) \ge c(a_2)$ and, since $a_1 < a_2$,

$$c(a_1) - a_1 > c(a_2) - a_2.$$

This inequality contradicts (3.7), thus demonstrating that the equation must have at most one solution.

22.a.Proof:

The equilibrium e_c of a fuzzy complement c is the solution of the equation c(a)-a=0 where a $\in [0,1]$.

The demonstrates the necessary existences of an equillibrium value for a continuous function.

Uniqeness:

Let c(a)-a=b with a1<a2.

Since c is monotonoic non increasing $c(a1) \ge c(a2)$, atmost one solution of equation c(a)-a=b with a1<a2 the equilibrium of a fuzzy complement is unique.

b. Proof:

Assume A is convex and let $\alpha = A(x1) \le A(x2)$.

By the convexity of A ,then

 $\mathsf{A}[\lambda x 1 + (1 - \lambda) x 2] \ge \alpha = A(x1)$

 $A[\lambda x1 + (1 - \lambda)x2] \ge min[A(x1), A(x2)]$

Conversly,

 $A[\lambda x1 + (1 - \lambda)x2] \ge min[A(x1), A(x2)] = \alpha$

A is convex.

23. a) Fuzzy intersection:

- $i_{\min}(a, b) \le \max(0, a + b 1) \le ab \le \min(a, b)$.
- For all $a, b \in [0, 1]$, $i_{\min}(a, b) \leq i(a, b) \leq \min[a, b]$.

The membership function $\mu_{\tilde{C}}(x)$ of the *intersection* $\tilde{C} = \tilde{A} \cap \tilde{B}$ is pointwise defined by

$$\mu_{\tilde{C}}(x) = \min \{ \mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x) \}, x \in X$$

b. Proof:

If $a = e_c$, then by definition of equilibrium c(a)=a.

If $d_{a=e_c}$, then $c(d_{a)-d_a}=0$

a= $d_{a=e_c}$. Hence the equilibrium of any fuzzy complement is its own dual point.

CLASS: IIIB.Sc MATHEMATICS-A COURSE NAME:FUZZY SETS AND ITS APPLICATIONS COURSE CODE: 15MMU604B II- INTERNAL BATCH-2017-2018

II- INTERNAL – FUZZY SETS AND ITS APPLICATIONS

KEY ANSWER

PART-A

- 1.degree of association
- 2. fuzzy preorder relation
- 3. infinite universe
- 4.characteristic function
- 5. associative
- 6. real number in [0,1]
- 7. product space
- 8. crisp set
- 9. i(a,b)=min(a,b)
- 10. X xY
- 11. degree
- 12. parameters
- 13. cylindrical extension
- 14.max & min
- 15. $i(a,b) \leq min(a,b)$
- 16. presence
- 17. reasoning
- 18. crisp
- 19. u

20. u(a,b)=max(a,b)

PART-B

21.a proof:

Let us consider associative union u(u(a,b),c)=u(a,u(b,c)) we have b=0 & c=0 u(u(a,0),0)=u(a,u(0,0)Then by boundary condition, u(u(a,0),0)=u(a,0)=aMonotonicity we have , $u(a,0) \le u(a,b)$ $a \le u(a,b)$ ------ 1 by commutative property, u(a,b)=u(b,a) we have $b \le u(a,b)$ ------ 2

from 1 & 2 we get, $u(a,b) \ge max(a,b)$ for all $a,b \in [0,1]$

b.i) if a or b=0

ie) {1,b} or {1,a}

ii) if a=b

 $\lim_{w \to \infty} \min[1, (a^w + b^w)^{1/w}] = \max(a,b)$

If $a \neq b$ then we take Q = $(a^w + b^w)^{1/w}$ and takeing log on both sides we have,

```
\log Q = \log (a^w + b^w)^{1/w}
```

apply L' Hospital rule,

```
\lim_{w \to \infty} \log Q = \lim_{w \to \infty} (a^w + b^w)^{1/w} = \log \mathsf{b}
```

```
Thus \lim_{w\to\infty} \min[1, (a^w + b^w)^{1/w}] = \max(a,b)
```

22. a. Compositions of Fuzzy Relations

Fuzzy relations in different product spaces can be combined with each other by the operation "composition." Different versions of "composition" have been suggested, which differ in their results and also with respect to their mathematical properties. The max-min composition has become the best known and the most frequently used one. However, often the so-called max-product or maxaverage compositions lead to results that are more appealing.

Max-min composition: Let $\tilde{R}_1(x, y)$, $(x, y) \in X \times Y$ and $\tilde{R}_2(y, z)$, $(y, z) \in Y \times Z$ be two fuzzy relations. The max-min composition \tilde{R}_1 max-min \tilde{R}_2 is then the fuzzy set $\tilde{R}_1 \circ \tilde{R}_2 = \{ [(x, z), \max_{y} \{ \min \{ \mu_{\tilde{R}_1}(x, y), \mu_{\tilde{R}_2}(y, z) \} \}] | x \in X, y \in Y, z \in Z \}$ $\mu_{\tilde{R}_1 \circ \tilde{R}_2}$ is again the membership function of a fuzzy relation on fuzzy sets

b) Max-product composition:

Let \tilde{R}_1 and \tilde{R}_2 be defined as in definition 6–7. The max-* composition of \tilde{R}_1 and \tilde{R}_2 is then defined as

$$R_1 \stackrel{\circ}{*} R_2 = \{ [(x, z), \max_{y} (\mu_{\tilde{R}_1}(x, y) * \mu_{\tilde{R}_2}(y, z))] | x \in X, y \in Y, z \in Z \}$$

If * is an associative operation that is monotonically nondecreasing in each argument, then the max-* composition corresponds essentially to the max-min composition.

23.a) Charecteristic components of symmetric, reflexive and transitive relation:

Reflexivity

- Let \tilde{R} be a fuzzy relation in $X \times X$.
- 1. *R* is called *reflexive* [Zadeh 1971] if
- $\mu_{\bar{R}}(x, x) = 1 \quad \forall x \in X$ 2. \bar{R} is called ε -reflective [Yeh 1975] if

$$\mu_{\hat{R}}(x, x) \geq \varepsilon \ \forall x \in X$$

3. \tilde{R} is called *weakly reflexive* [Yeh 1975] if $\mu_{\tilde{R}}(x, y) \leq \mu_{\tilde{R}}(x, x)$] $\forall x, y \in X$. $\mu_{\tilde{R}}(y, x) \leq \mu_{\tilde{R}}(x, x)$] $\forall x, y \in X$.

Example

Let $X = \{x_1, x_2, x_3, x_4\}$ and $Y = \{y_1, y_2, y_3, y_4\}$. The following relation "y is close to x" is reflexive:

	y_1	<i>y</i> ₂	y_3	y_4
x_1	1	0	.2	.3
\tilde{R} : x_2	0	1	.1	1
X_3	.2	.7	1	.4
<i>x</i> ₃	0	1	.4	1

Symmetry

A fuzzy relation \tilde{R} is called *symmetric* if $\tilde{R}(x, y) = \tilde{R}(y, x) \ \forall x, y \in X$. A relation is called *antisymmetric* if for $x \neq y$ either $\mu_{\tilde{R}}(x, y) \neq \mu_{\tilde{R}}(y, x)$ or $\mu_{\tilde{R}}(x, y) = \mu_{\tilde{R}}(y, x) = 0$ $\forall x, y \in X$

Transitivity

A fuzzy relation \tilde{R} is called (max-min) transitive if

$$\tilde{R}\circ\tilde{R}\subseteq\tilde{R}$$

FUZZY MEASURES

b)

Given a universal set X and a nonempty family C of subsets of X, a fuzzy measure on (X, C) is a function

$$g:\mathcal{C}\to [0,1]$$

that satisfies the following requirements:

- (g1) $g(\emptyset) = 0$ and g(X) = 1 (boundary requirements);
- (g2) for all $A, B \in \mathbb{C}$, if $A \subseteq B$, then $g(A) \leq g(B)$ (monotonicity);
- (g3) for any increasing sequence $A_1 \subset A_2 \subset \ldots$ in \mathcal{C} , if $\bigcup_{i=1}^{\infty} A_i \in \mathcal{C}$, then

$$\lim_{i\to\infty}g(A_i)=g\left(\bigcup_{i=1}^{\infty}A_i\right)$$

(continuity from below);

(g4) for any decreasing sequence $A_1 \supset A_2 \supset \ldots$ in C, if $\bigcap_{i=1}^{\infty} A_i \in \mathbb{C}$, then

$$\lim_{i\to\infty}g(A_i)=g\left(\bigcap_{i=1}^{\infty}A_i\right)$$

	Reg.no					
(15MMU604B)						
KA	KARPAGAM ACADEMY OF HIGHER EDUCATION					
	Coimbatore- 641 021					
	DEPARTMENT OF MATHEMATICS					
	Sixth s	semester				
	Model Examination - Mar'18					
	Fuzzy sets and	l its applications				
Class:	III B.Sc Mathematics-A	Time : 3 Hours				
Date: 2	22.03.2018(FN)	Max. Marks : 60				
	$\mathbf{PART} - \mathbf{A}(20$	$\times 1 = 20$ marks)				
	ANSWER ALL	THE QUESTIONS				
1.	The set of all levels $\alpha \in$	$[0,1]$, the distinct α – cuts of a				
	fuzzy set is called a	-				
	(a) Level set	(b) crisp set				
	(c) fuzzy set	(d) proper subset				
2.	Any two sets that have r	no common members are				
	called					
	(a) disjoint set	(b) joint set				
	(c) subset	(d) proper subset				
3.	A fuzzy set A is called _	when $h(a) = 1$				
	(a) normal	(b) subnormal				
	(c) convex	(d) membership function				
4.	A fuzzy operation $A(x)$	=				
	(a) 1- $A(x)$	(b) $A(x)$				
	(c) $A(x) - 1$	(d) 1				
5.	If $a \le b$, for all $a, b \in [0]$,1] then				
	(a) $c(a) \ge c(b)$	(b) $c(a) > c(b)$				
	(c) $c(a) \leq c(b)$	(d) $c(a) < c(b)$				
6.	If c is involutive then $c($	$\left[c(a)\right] = __$				
	(a) a	(b) $c(a)$				
	(c) b	(d) $c\overline{(a)}$				
7.	If c is a fuzzy complem	ent then $c(0) =$				
	(a) 0 (b) 1					

	(c) c	(d) $c(\overline{0})$	
8.	The number of mem	bers of a finite set A is	
	(a) cardinality	(b) index	
	(c) union	(d) intersection	
9.	A set whose member	rs can be labeled by the pos	sitive
	integers is called	set	
	(a) countable set	(b) uncountable set	(c)
	relations	(d) universal set	
10.	A set whose element	ts are themselves sets is cal	led
	(a) family of sets	(b) indexed set	(c)
	involutive	(d) Boolean	
11.	Logic functions of o	ne or two variables are call	ed
	(a) logic operation	(b) logic variable	
	(c) Boolean	(d) relation	
		(1 for a <	' †
12.	If $a \in [0,1]$ and $t \in [0,1]$	$= [0,1), c(a) = \begin{cases} 1 \text{ for } a \\ 0 \text{ for } a \end{cases}$	t then t
12.	If $a \in [0,1]$ and $t \in $ is	$= [0,1), c(a) = \begin{cases} 1 & \text{for } a \\ 0 & \text{for } a \end{cases}$	t then t
12.	If $a \in [0,1]$ and $t \in [a]$ is (a) threshold	$[0,1), c(a) = \begin{cases} 1 \text{ for } a \\ 0 \text{ for } a \end{cases}$ (b) characteristic function	t then (c)
12.	If $a \in [0,1]$ and $t \in [a, b]$ is (a) threshold membership function	$[0,1), c(a) = \begin{cases} 1 \text{ for } a \\ 0 \text{ for } a \end{cases}$ (b) characteristic function (d) logic function	t then (c)
12. 13.	If $a \in [0,1]$ and $t \in$ is (a) threshold membership function Subsets of cartesian	$[0,1), c(a) = \begin{cases} 1 \text{ for } a \\ 0 \text{ for } a \end{cases}$ (b) characteristic function (d) logic function products are called	t then (c)
12. 13.	If $a \in [0,1]$ and $t \in$ is (a) threshold membership function Subsets of cartesian (a) relation	$[0,1), c(a) = \begin{cases} 1 \text{ for } a \\ 0 \text{ for } a \end{cases}$ (b) characteristic function (d) logic function products are called (b) function	(c)
12. 13.	If $a \in [0,1]$ and $t \in [0,1]$ and t \in [0,1] and	$[0,1), c(a) = \begin{cases} 1 \text{ for } a \\ 0 \text{ for } a \end{cases}$ (b) characteristic function (d) logic function products are called (b) function (d) denumerable	(c)
12. 13. 14.	If $a \in [0,1]$ and $t \in [a, b]$ is (a) threshold membership function Subsets of cartesian (a) relation (c) nested family The property $A \cup \overline{A}$	$[0,1), c(a) = \begin{cases} 1 \text{ for } a \\ 0 \text{ for } a \end{cases}$ (b) characteristic function (d) logic function products are called (b) function (d) denumerable $= ____$	(c)
12. 13. 14.	If $a \in [0,1]$ and $t \in [0,1]$ ano [0,1] ano [0,1] and $t \in [0,1]$ ano [0,1] ano [0,1] an	$[0,1), c(a) = \begin{cases} 1 \text{ for } a \\ 0 \text{ for } a \end{cases}$ (b) characteristic function (d) logic function products are called (b) function (d) denumerable $= \underline{\qquad}_{(b) X}$	(c) \emptyset

15.	Livery uncountable set is		
	(a) finite	(b) infinite	(c)
	disjoint (d)	joint	
16.	A continuous t-norm that	t satisfies subidempotency is	
	called		
	(a) Archimedean t-norm	(b) idempotent t-norm	
	(c)monotonic	(d) boundary	
17.	Elements of X, $A(x) =$	$\overline{A(x)}$ are called	

PART – B $(5 \times 8 = 40 \text{ marks})$

ANSWER ALL THE QUESTIONS

- 21. (a) Explain operations of fuzzy sets (OR)
 - (b) Prove that every fuzzy complement has at most one equilibrium
- 22. a) Show that $u(a, b) \ge \max(a, b)$ if for all $a, b \in [0,1]$

(**OR**)

- b) Prove that $u(a, b) = \max(a, b)$ is the only continuous and idempotent fuzzy set union.
- 23. a) Compute $\tilde{R}^{\circ}\tilde{R}$ for the fuzzy relation \tilde{R} is defined as

	X_1	X_2	X ₃	X4
\mathbf{X}_1	0.2	1	0.4	0.4
X_2	0	0.6	0.3	0
X3	0	1	0.3	0
X_4	0.1	1	1	0.1

(**OR**)

b) Compute i) min-max composition,

ii) max-prod composition

iii) max-av composition of \widetilde{R}_1 and \widetilde{R}_2 if

\widetilde{R}_1 :

	Y	Y	Y	Y	Y
	1	2	3	4	5
Х	0	0	0	1	0
1					
	1	2			7
Х	0	0	0	0	1
2	3	5		2	
x	0	0	1	0	0
3		0	1		
	8			4	3

	Z_1	Z_2	Z3	\mathbb{Z}_4
\mathbf{Y}_1	0.9	0	0.3	0.4
\mathbf{Y}_2	0.2	1	0.8	0
Y ₃	0.8	0	0.7	1
Y_4	0.4	0.2	0.3	0
Y ₅	0	1	0	0.8

24. a) Prove that a belief measure Bel on a finite power set P(x) is a probability measure if and only if its basic assignment m is given by m({x})=Bel ({x}) and m(A) =0 for all subsets of x that are not singletons.

(**OR**)

b) Derive Dempster's rule of combination

25. a) Describe about fuzzy decision making.

(**OR**)

b) Describe about individual decision making with example

(15MMU604B)

KARPAGAM ACADEMY OF HIGHER EDUCATION						
Coimbatore- 641 021						
DEPARTMENT OF MATHEMATICS						
	sixth semester					
I Internal Test - Jan'18						
	Fuzzy sets and	its applications				
Class:	III B.Sc Mathematics	Time : 2 Hours				
Date: 2	20.01.2018 FN	Max. Marks : 50 Marks				
	$\mathbf{PART} - \mathbf{A}(20)$	$\times 1 = 20$ marks)				
	ANSWER ALL T	THE QUESTIONS				
1.	The set of all levels $\alpha \in$	$[0,1]$, the distinct α – cuts of				
	a fuzzy set is called a_					
	(a) Level set	(b) crisp set				
	(c) fuzzy set	(d) proper subset				
2.	Any two sets that have	no common members are				
	called					
	(a) disjoint set	(b) joint set				
	(c) subset	(d) proper subset				
3.	A fuzzy set A is called	when $h(a) = 1$				
	(a) normal	(b) subnormal				
	(c) convex	(d) membership function				
4.	A fuzzy operation $\overline{A(x)}$					
	(a) $1 - A(x)$ (b) $A(x)$	(c) $A(x) - 1$ (d) 1				
5.	5. If $a \le b$, for all $a, b \in [0,1]$ then					
	(a) $c(a) \ge c(b)$ (b) $c(a) > c(b)$					
	(c) $c(a) \le c(b)$ (d) $c(a) \le c(b)$	c(a) < c(b)				
6.	If c is involutive then c	$(c(a)) = __$				
	(a) a (b) $c(a)$	(c) b (d) $c\overline{(a)}$				
7.	If c is a fuzzy complen	nent then $c(0) =$				
	(a) 0 (b) 1 (c)	c (d) $c(\bar{0})$				

8.	The number of members o	f a finite set A	A is	
	(a) cardinality (b) index	(c) union (d)	intersection	
9.	A set whose members can be labeled by the positive			
	integers is calledset			
	(a) countable set (b) uncountable	e set	
	(c) relations (d	l) universal set	t	
10.	. A set whose elements are t	themselves set	ts is called	
	(a) family of sets (b) indexed set		
	(c) involutive (d	l) Boolean		
11.	. Logic functions of one or t	two variables	are called	
	(a) logic operation (b)) logic variabl	e	
	(c) Boolean (c	d) relation		
12.	. if $a \in [0,1]$ and $t \in [0,1]$), $c(a) = \begin{cases} 1 \ f \\ 0 \ f \end{cases}$	for $a \le t$ for $a > t$ then	
	t is	-		
	(a) threshold (1	b) characterist	ic function	
	(c) membership function ((d) logic funct	ion	
13.	. Subsets of cartesian produ	cts are called_		
	(a) relation (I	b) function		
	(c) nested family (d	l) denumerable	e	
14.	. The property $A \cup \overline{A} = $			
	$\begin{array}{c} \begin{array}{c} A \\ (a) \\ A \\ (b) \\ X \\ (c) \\ \end{array}$	e) Ø	(d) \overline{A}	
15.	. Every uncountable set is	, ·		
	(a) finite (b) infinite ((c) disjoint	(d) joint	
16.	. A continuous t-norm that s	satisfies subid	empotency is	
	called			
	(a) Archimedean t-norm	(b) idempoten	t t-norm	
	(c)monotonic	(d) boundary		
17.	. Elements of X , $A(x) = \overline{A}$	$\overline{(x)}$ are called		
	(a) equilibrium (l	b) operator		
	(c) membership function ((d) function		
18.	. The boundary condition <i>i</i> ((a, 1) =		
	(a) a (b) $i(1,a)$ ((c) 1 (d) $i($	1)	

- 19. All α cuts and all strong α cuts of any fuzzy set form two distinct families of _____ sets.
 (a) nested crisp sets
 (b) crisp sets
 (c) fuzzy sets
 (d) crisp sets
- 20. The _____ of a fuzzy set A within a universal set x is the crisp set that contains all the elements of X that have nonzero membership grades in A.(a) Summart, (b) mented, (c) submerged, (d) core.

(a) Support (b) nested (c) subnormal (d) core

 $PART - B \quad (3 \times 10 = 30 \text{ marks})$

ANSWER ALL THE QUESTIONS

21. (a) Write briefly about on the fuzzy logic

(or)

(b) Prove that every fuzzy complement has atmost one equilibrium.

22. (a) If 'c' is a continuous fuzzy complement then prove that 'c' has a unique equilibrium.

(or)

(b) Prove that a fuzzy set A on \mathcal{R} is convex if and only

if $A(\lambda x_1 + (1 - \lambda x_2)) \ge \min[A(x_1), A(x_2)]$

23. (a) Prove that the standard fuzzy intersection is the only idempotent t - norm.

(or)

(b) If a complement 'c' has an equilibrium e_c , then prove that $d_{e'_c} = e_c$

CLASS: IIIB.Sc MATHEMATICS-A

COURSE NAME: FUZZY SETS AND

ITS APPLICATIONS

COURSE CODE: 15MMU604BUNIT: IV(Fuzzy measures)BATCH-2017-2018

<u>UNIT-IV</u>

SYLLABUS

Fuzzy measures, general discussion, belief and plausibility measures, probability measures, possibility and necessity measures.

Fuzzy measure theory, which is now well developed [Wang and Klir, 1992], is not of primary interest in this text. However, we need to introduce the concept of a fuzzy measure for at least two reasons. First, the concept will provide us with a broad framework within which it is convenient to introduce and examine possibility theory, a theory that is closely connected with fuzzy set theory and plays an important role in some of its applications. Second, it will allow us to explicate differences between fuzzy set theory and probability theory.

FUZZY MEASURES

Definition

Given a universal set X and a nonempty family C of subsets of X, a fuzzy measure on (X, C) is a function

$$g: \mathcal{C} \rightarrow [0,1]$$

that satisfies the following requirements:

- (g1) $g(\emptyset) = 0$ and g(X) = 1 (boundary requirements);
- (g2) for all $A, B \in \mathbb{C}$, if $A \subseteq B$, then $g(A) \leq g(B)$ (monotonicity);
- (g3) for any increasing sequence $A_1 \subset A_2 \subset \ldots$ in \mathcal{C} , if $\bigcup_{i=1}^{n} A_i \in \mathcal{C}$, then

$$\lim_{i\to\infty}g(A_i)=g\left(\bigcup_{i=1}^{\infty}A_i\right)$$

(continuity from below);

(g4) for any decreasing sequence $A_1 \supset A_2 \supset \ldots$ in \mathbb{C} , if $\bigcap_{i=1}^{\infty} A_i \in \mathbb{C}$, then

$$\lim_{i\to\infty}g(A_i)=g\left(\bigcap_{i=1}^{\infty}A_i\right)$$

CLASS: IIIB.Sc MATHEMATICS-A COURSE NAME:FUZZY SETS AND

ITS APPLICATIONS

COURSE CODE: 15MMU604B UNIT: IV(Fuzzy measures) BATCH-2017-2018

The boundary requirements (g1) state that, regardless of our evidence, we always know that the element in question definitely does not belong to the empty set and definitely does belong to the universal set. The empty set, by definition, does not contain any element; hence, it cannot contain the element of our interest, either; the universal set, on the other hand, contains all elements under consideration in each particular context; therefore, it must contain our element as well.

Requirements (g3) and (g4) are clearly applicable only to an infinite universal set. They can therefore be disregarded when the universal set is finite. The requirements state that for every infinite sequence A_1, A_2, \ldots of nested (monotonic) subsets of X which converge to the set A, where $A = \bigcup_{i=1}^{\infty} A_i$ for increasing sequences and $A = \bigcap_{i=1}^{\infty} A_i$ for decreasing sequences, the sequence of numbers $g(A_1), g(A_2), \ldots$ must converge to the number g(A). That is, g is required to be a continuous function. Requirements (g3) and (g4) may also be viewed as requirements of consistency: calculation of g(A) in two different ways, either as the limit of $g(A_i)$ for $i \to \infty$ or by application of the function g to the limit of A_i for $i \to \infty$, is required to yield the same value.

$g(A \cap B) \leq \min[g(A), g(B)]$

for any three sets A, B, $A \cap B \in C$. Similarly, since both $A \subseteq A \cup B$ and $B \subseteq A \cup B$ for any

two sets, the monotonicity of fuzzy measures implies that every fuzzy measure g satisfies the inequality

 $g(A \cup B) \geq \max[g(A), g(B)]$

for any three sets $A, B, A \cup B \in \mathcal{C}$. Belief and plausibility:

Evidence theory is based on two dual nonadditive measures: belief measures and plausibility measures. Given a universal set X, assumed here to be finite, a *belief measure* is a function

$$.\mathrm{Bel}: \mathcal{P}(X) \to [0,1]$$

such that $\operatorname{Bel}(\emptyset) = 0$, $\operatorname{Bel}(X) = 1$, and

$$\operatorname{Bel}(A_1 \cup A_2 \cup \ldots \cup A_n) \ge \sum_j \operatorname{Bel}(A_j) - \sum_{j < k} \operatorname{Bel}(A_j \cap A_k) + \ldots + (-1)^{n+1} \operatorname{Bel}(A_1 \cap A_2 \cap \ldots \cap A_n)$$
(7.3)

Prepared by S. Indhu, Asst Prof, Department of Mathematics, KAHE

CLASS: IIIB.Sc MATHEMATICS-A COURSE NAME:FUZZY SETS AND

ITS APPLICATIONS

COURSE CODE: 15MMU604B UNIT: IV(Fuzzy measures) BATCH-2017-2018

for all possible families of subsets of X. Due to the inequality (7.3), belief measures are called *superadditive*. When X is infinite, function Bel is also required to be *continuous from above*.

For each $A \in \mathcal{P}(X)$, Bel (A) is interpreted as the *degree of belief* (based on available evidence) that a given element of X belongs to the set A. We may also view the subsets of X as answers to a particular question. We assume that some of the answers are correct, but we do not know with full certainty which ones they are.

When the sets A_1, A_2, \ldots, A_n in (7.3) are pair-wise disjoint, the inequality requires that the degree of belief associated with the union of the sets is not smaller than the sum of the degrees of belief pertaining to the individual sets. This basic property of belief measures is thus a weaker version of the additivity property of probability measures. This implies that probability measures are special cases of belief measures for which the equality in (7.3) is always satisfied.

We can easily show that (7.3) implies the monotonicity requirement (g2) of fuzzy measures. Let $A \subseteq B(A, B \in \mathcal{P}(X))$ and let C = B - A. Then, $A \cup C = B$ and $A \cap C = \emptyset$. Applying now A and C to (7.3) for n = 2, we obtain

$$\operatorname{Bel}\left(A\cup C\right)=\operatorname{Bel}\left(B\right)\geq \operatorname{Bel}\left(A\right)+\operatorname{Bel}\left(C\right)-\operatorname{Bel}\left(A\cap C\right).$$

Since $A \cap C = \emptyset$ and Bel $(\emptyset) = 0$, we have

$$\operatorname{Bel}(B) \geq \operatorname{Bel}(A) + \operatorname{Bel}(C)$$

and, consequently, $Bel(B) \ge Bel(A)$.

Let $A_1 = A$ and $A_2 = \overline{A}$ in (7.3) for n = 2. Then, we can immediately derive the following fundamental property of belief measures:

$$\operatorname{Bel}(A) + \operatorname{Bel}(\overline{A}) \le 1. \tag{7.4}$$

Associated with each belief measure is a *plausibility measure*, Pl, defined by the equation

$$PI(A) = 1 - Bel(\overline{A}) \tag{7.5}$$

for all $A \in \mathcal{P}(X)$. Similarly,

$$Bel(A) = 1 - Pl(\overline{A}).$$
(7.6)

Belief measures and plausibility measures are therefore mutually dual. Plausibility measures, however, can also be defined independent of belief measures.

A plausibility measure is a function

$$\mathrm{Pl} : \mathfrak{P}(X) \to [0,1]$$

such that $Pl(\emptyset) = 0$, Pl(X) = 1, and

$$Pl(A_1 \cap A_2 \cap \ldots \cap A_n) \le \sum_j Pl(A_j) - \sum_{j < k} Pl(A_j \cup A_k) + \ldots + (-1)^{n+1} Pl(A_1 \cup A_2 \cup \ldots \cup A_n)$$

$$(7.7)$$

CLASS: IIIB.Sc MATHEMATICS-A COURSE NAME:FUZZY SETS AND

ITS APPLICATIONS

COURSE CODE: 15MMU604B UNIT: IV(Fuzzy measures) BATCH-2017-2018

for all possible families of subsets of X. Due to (7.7), plausibility measures are called subadditive. When X is infinite, function Pl is also required to be continuous from below. Let n = 2, $A_1 = A$, and $A_2 = \overline{A}$ in (7.7). Then, we immediately obtain the following below in a subset of the subset of

basic inequality of plausibility measures:

$$\operatorname{Pl}(A) + \operatorname{Pl}(A) \ge 1. \tag{7.8}$$

Belief and plausibility measures can conveniently be characterized by a function

$$m: \mathcal{P}(X) \to [0,1],$$

such that $m(\emptyset) = 0$ and

$$\sum_{A \in \mathcal{P}(X)} m(A) = 1.$$
(7.9)

This function is called a basic probability assignment.

Upon careful examination of the definition of the basic assignment, we observe the following:

- 1. it is not required that m(X) = 1;
- 2. it is not required that $m(A) \leq m(B)$ when $A \subseteq B$; and
- 3. no relationship between m(A) and $m(\overline{A})$ is required.

It follows from these observations that the basic assignments are not fuzzy measures. However, given a basic assignment m, a belief measure and a plausibility measure are uniquely determined for all set $A \in \mathcal{P}(X)$ by the formulas

$$Bel (A) = \sum_{B|B \subseteq A} m(B), \qquad (7.10)$$

$$\operatorname{Pl}(A) = \sum_{B \mid A \cap B \neq \varnothing} m(B).$$
(7.11)

The inverse procedure is also possible. Given, for example, a belief measure Bel, the corresponding basic probability assignment m is determined for all $A \in \mathcal{P}(X)$ by the formula

$$m(A) = \sum_{B|B \subseteq A} (-1)^{|A-B|} \operatorname{Bel}(B).$$
(7.12)

The relationship between m(A) and Bel(A), expressed by (7.10), has the following meaning: while m(A) characterizes the degree of evidence or belief that the element in question belongs to the set A alone (i.e., exactly to set A), Bel(A) represents the total evidence or belief that the element belongs to A as well as to the various special subsets of A. The plausibility measure Pl(A), as defined by (7.11), has a different meaning: it represents not only the total evidence or belief that the element in question belongs to set A or to any of its subsets, but also the additional evidence or belief associated with sets that overlap with A. Hence,

$$Pl(A) \ge Bel(A) \tag{7.13}$$

for all $A \in \mathcal{P}(X)$.

Prepared by S. Indhu, Asst Prof, Department of Mathematics, KAHE

COURSE NAME: FUZZY SETS AND

CLASS: IIIB.Sc MATHEMATICS-A

ITS APPLICATIONS

COURSE CODE: 15MMU604B UNIT: IV(Fuzzy measures) BATCH-2017-2018

Probability measures:

A special branch of evidence theory that deals only with bodies of evidence whose focal elements are nested is referred to as *possibility theory*. Special counterparts of belief measures and plausibility measures in possibility theory are called *necessity measures* and *possibility measures*, respectively.

Theorem 7.1. Let a given finite body of evidence (\mathcal{F}, m) be nested. Then, the associated belief and plausibility measures have the following properties for all $A, B \in \mathcal{P}(X)$:

(i) Bel $(A \cap B) = \min [Bel(A), Bel(B)];$

(ii) Pl
$$(A \cup B) = \max [\operatorname{Bel} (A), \operatorname{Bel} (B)].$$

Proof: (i) Since the focal elements in \mathcal{F} are nested, they may be linearly ordered by the subset relationship. Let $\mathcal{F} = \{A_1, A_2, \ldots, A_n\}$, and assume that $A_i \subset A_j$ whenever i < j. Consider now arbitrary subsets A and B of X. Let i_1 be the largest integer i such that $A_i \subseteq A$, and let i_2 be the largest integer i such that $A_i \subseteq B$. Then, $A_i \subseteq A$ and $A_i \subseteq B$ iff $i \leq i_1$ and $i \leq i_2$, respectively. Moreover, $A_i \subseteq A \cap B$ iff $i \leq \min(i_1, i_2)$. Hence,

$$Bel (A \cap B) = \sum_{i=1}^{\min(i_1, i_2)} m(A_i) = \min\left[\sum_{i=1}^{i_1} m(A_i), \sum_{i=1}^{i_2} m(A_i)\right]$$
$$= \min[Bel (A), Bel (B)].$$

(ii) Assume that (i) holds. Then, by (7.5),

$$Pl(A \cup B) = 1 - Bel(\overline{A \cup B}) = 1 - Bel(\overline{A \cap B})$$
$$= 1 - \min[Bel(\overline{A}), Bel(\overline{B})]$$
$$= \max[1 - Bel(\overline{A}), 1 - Bel(\overline{B})]$$
$$= \max[Pl(A), Pl(B)]$$

for all $A, B \in \mathcal{P}(X)$.

Possibility and necessity measures:

Definition 7.2. Let Nec denote a fuzzy measure on (X, C). Then, Nec is called a *necessity measure* iff

$$\operatorname{Nec}\left(\bigcap_{k\in K}A_{k}\right) = \inf_{k\in K}\operatorname{Nec}\left(A_{k}\right)$$
(7.21)

Prepared by S. Indhu, Asst Prof, Department of Mathematics, KAHE

CLASS: IIIB.Sc MATHEMATICS-A

ITS APPLICATIONS

COURSE CODE: 15MMU604B UNIT: IV(Fuzzy measures) BATCH-2017-2018

Theorem 7.3. Every possibility measure Pos on a finite power set $\mathcal{P}(X)$ is uniquely determined by a *possibility distribution function*

$$r: X \rightarrow [0, 1]$$

via the formula

$$Pos(A) = \max_{x \in A} r(x)$$
(7.28)

COURSE NAME: FUZZY SETS AND

for each $A \in \mathcal{P}(X)$.

Proof: We prove the theorem by induction on the cardinality of set A. Let |A| = 1. Then, $A = \{x\}$, where $x \in X$, and (7.28) is trivially satisfied. Assume now that (7.28) is satisfied for |A| = n - 1, and let $A = \{x_1, x_2, \ldots, x_n\}$. Then, by (7.20), Pos $(A) = \max[Pos(\{x_1, x_2, \ldots, x_{n-1}\}), Pos(\{x_n\})]$

 $= \max[\max[Pos(\{x_1\}), Pos(\{x_2\}), \dots, Pos(\{x_{n-1}\})], Pos(\{x_n\})]$

$= \max[\operatorname{Pos}(\{x_1\}), \operatorname{Pos}(\{x_2\}), \ldots, \operatorname{Pos}(\{x_n\})]$

 $= \max_{x \in A} r(x).$

POSSIBLE QUESTIONS

PART-B (5 x 8 =40 Marks)

Answer all the questions

- 1. Prove that a belief measure Bel on a finite power set P(x) is a probability measure if and only if its basic assignment m is given by m({x})=Bel ({x}) and m(A) =0 for all subsets of x that are not singletons.
- 2. Derive Dempster's rule of combination
- 3. Given a consonant body of evidence (f,m).Prove that the associated consonant belief and probability measure s process the following properties.
 - i) $Bel(A \cap B) = min \{Bel (A), Bel (B)\}$
 - ii) $Pl(A \cup B) = max \{Pl(A), Pl(B)\}$ for all $A, B \in \varphi(x)$.
- 4. Prove that every possibility measure POS on a finite power set P(X) is unequally determined by a possibility distribution function.
- 5. Discuss similarities and difference between probability theory and possibility theory.
- 6. Show that the function $Bel(A) = \sum_{B/B \subseteq A} m(B)$ for any given basic assignment m is a plausibility measure.
- 7. Explain possibility distribution for a fuzzy proposition by an examples.
- 8. Explain about belief and plausibility measures.

(Deemed to be University Established Under Section 3 of UGC Act 1956) Coimbatore – 641 021.

LECTURE PLAN DEPARTMENT OF MATHEMATICS

STAFF NAME: S.INDHU SUBJECT NAME: FUZZY SETS AND ITS APPLICATIONS SUB.CODE:15MMU604B

SEMESTER: VI

CLASS: III B.SC MATHEMATICS-A

S.No	Lecture Duration Period	Topics to be Covered	Support Material/Page Nos
		UNIT-I	
1	1	Introduction on crisp sets	T1:ch1.1:pg 1-3
2	1	Definitions on crisp sets	T1:ch1.1:pg 4-5
3	1	Basic concepts on crisp set	T1:ch1.1:pg 5-6
4	1	Continuation of basic concepts T1:ch1.1:pg 6-8 on crisp set	
5	1	Fundamental properties of crisp set	T1:ch1.2:pg 8
6	1	Introduction to fuzzy sets	R1:ch2.4:pg 34
7	1	Basic definitions on fuzzy sets	T1:ch1.3:pg 11
8	1	Basic concepts on fuzzy sets	T1:ch1.4:pg 19-21
9	1	Continuation of basic concepts of fuzzy sets	T1:ch1.4:pg 21-33
10	1	Types of operations	T1:ch3.1:pg 50
11	1	Fuzzy complements	T1:ch3.2:pg 51
12	1	First characterization theorem of fuzzy complement	T1:ch3.2:pg 59-60
13	1	Second charecterization theorem of fuzzy complements	T1:ch3.2:pg 60-61

14	1	Introduction on fuzzy logic T1:ch8.1:pg 212-215		
15	1	Continuation of basic concepts on fuzzy logic	T1:ch8.1:pg 215-217	
16	1	Continuation of basic concepts on fuzzy logic	T1:ch8.1:pg 217-220	
17	1	Fuzzy prepositions	T1:ch8.3:pg 220	
18	1	Fuzzy quantifiers	T1:ch8.4:pg 225	
19	1	Linguistic hedges	T1:ch8.5:pg 229-231	
20	1	Recapitulation and discussion on possible questions		
	Total No of Hou	urs Planned For Unit 1=20		
		UNIT-II		
1	1	Operations on fuzzy sets	T1:ch3.4:pg 76	
2	1	Fuzzy unions	R2:ch2.3:pg 45	
3	1	Fuzzy union theorems	T1:ch3.4:pg 77	
4	1	Continuation of theorems on fuzzy union	T1:ch3.4:pg 78-79	
5	1	Continuation of theorems on T1:ch3.4:pg 79-8 fuzzy union		
6	1	Fuzzy intersectionsR2:ch2.4:pg 50		
7	1	t-norms on fuzzy intersection	T1:ch3.3:pg 61-62	
8	1	Theorems on fuzzy intersection	R2:ch2.4:pg 50-52	
9	1	Fuzzy intersection characterization theorem of t- norms	T1:ch3.3:pg 68-69	
10	1	Continuation of fuzzy intersection characterization theorem of t-norms	T1:ch3.3:pg 69-70	
11	1	Further operations on fuzzy sets	R3:ch3.2:pg 28	
12	1	Combination of operations	T2:ch2.5:pg 58	
13	1	Continuation of theorems on combinations of operations	T1:ch3.5:pg 83-85	
14	1	Continuation of theorems on	T1:ch3.5:pg 85-86	

		combinations of operations	
15	1	Continuation of theorems on combinations of operations	T1:ch3.5:pg 86-88
16	1	Recapitulation and discussion of possible questions	
	Total No of Hou	rs Planned For Unit II=16	
		UNIT-III	
1	1	Introduction on fuzzy relations	R3:ch6:pg 69
2	1	Introduction on fuzzy graphs	R3:ch6.1:pg 69-70
3	1	Fuzzy relations on sets and R3:ch6.1:pg 7	
4	1	Continuations of fuzzy R3:ch6.1:pg 7 relations on sets and fuzzy sets	
5	1	Composition of fuzzy relations R3:ch6.1:pg	
6	1	Binary fuzzy relations T1:ch5.3:pg	
7	1	Continuous of fuzzy relations T1:ch5.3:pg on sets and fuzzy sets	
8	1	Binary relations on a single set	T1:ch5.4:pg 128-129
9	1	Examples on binary relations T1:ch5.4:pg on a single set	
10	1	Fuzzy equivalence relations T1:ch5.5:pg 1	
11	1	Fuzzy compatibility relations	T1:ch5.6:pg 135-136
12	1	Fuzzy ordering relations	T1:ch5.7:pg 136-137
13	1	Properties of the min-max compositions	T1:ch6.1.2:pg 77-78
14	1	Fuzzy graphsR3:ch6.2:pg 82	
15	1	Special fuzzy graphs	R3:ch6.2:pg 85
16	1	Recapitulation and discussion of possible questions	
	Total No of Hou	rs Planned For Unit III=16	
		UNIT-IV	

Lesson Plan ²⁰² Bat

17-2018	
tch	

1	1	Introduction on fuzzy	R2:ch4:pg 107
		measures	10
2	1	Continuation of fuzzy	R2:ch4:pg 107-108
		measures	
3	1	Theorems on fuzzy measures	R2:ch4.1:pg 108-
			109
4	1	Belief and plausibility of	R2:ch4.2:pg 109-
	1	measures 110	
5	1	Continuation of belief and	R2:ch4.3:pg 111-
		plausibility of measures	113
6	1	Continuation of belief and	R2:ch4.2:pg 113-
		plausibility of measures	114
7	1	Continuation of belief and	R2:ch4.2:pg 114-
		plausibility of measures	116
8	1	Probability measures	R2:ch4.2:pg 118-
			120
9	1	Continuation of probability	R2:ch4.3:pg 120-
		measures	121
10	1	Possibility and necessity	R2:ch4.4:pg 121-
		measures	125
11	1	Recapitulation and discussion	
		of possible questions	
	Total No of H	ours Planned For Unit IV=11	
		UNIT-V	
1	1	Fuzzy decision making	R1:ch9:pg 276
2	1	Fuzzy general discussions	T1:ch15.1:pg 390
3	1	Individual decision making	T1:ch15.1:pg 391- 392
4	1	Examples on individual T1:ch15.2:pg 392	
		decision making	395
5	1	Fuzzy ranking methods	T1:ch15.6:pg 405
6	1	Examples on fuzzy ranking	T1:ch15.7:pg 407-
		methods	408
7	1	Fuzzy linear programming	T1:ch15.7:pg 409-
			410
8	1	Examples on fuzzy linear	T1:ch15.7:pg 410-
		programming	411
9	1	Discussion of previous ESE	
		question paper	

10	1	Discussion of previous ESE question paper
11	1	Discussion of previous ESE question paper
12	1	Recapitulation and discussion of possible questions
	Total No of	Hours Planned for unit V=12
Total	75	
Planned		
Hours		

TEXT BOOK

1. 1. George J. Klir and Bo Yuan, 1995.Fuzzy sets and fuzzy logic theory and applications, Prentice-Hall of India private limited, New Delhi.

REFERENCES

1. Timothy J. Ross, 2000. Fuzzy logic with Engineering Applications, McGrawHill, Inc. New Delhi.

2. George J.Klir, Tina.A Folger, 2008. Fuzzy sets, uncertainty and information, Prentice Hall of

India Pvt Ltd, New Delhi.

3. H.J. Zimmermann, 2006. Fuzzy set theory and its applications, Second Edition, Springer New

CLASS: IIIB.Sc MATHEMATICS-ACOURSE NAME:FUZZY SETSAND ITS APPLICATIONSCOURSE CODE: 15MMU604BMODELBATCH-2017-2018

MODEL – FUZZY SETS AND ITS APPLICATIONS

KEY ANSWER

PART-A

1.crisp set

2. disjoint set

3. normal

- 4. 1-A(x)
- $5.C(a) \ge c(b)$
- 6. a
- 7.1
- 8. cardinality
- 9. countable set
- 10. family of sets
- 11. logic operation
- 12. threshold
- 13. relation
- 14. X
- 15. infinite
- 16. Archimedean t-norm
- 17. equilibrium

18. a

19. nested crisp sets

20. support

PART-B

21. a) Operations on Classical Sets

Let A and B be two sets on the universe X. The union between the two sets, denoted $A \cup B$, represents all those elements in the universe that reside in (or belong to) the set A, the set B, or both sets A and B. (This operation is also called the *logical or*; another form of the union is the *exclusive or* operation. The *exclusive or* will be described in Chapter 5.) The intersection of the two sets, denoted $A \cap B$, represents all those elements in the universe X that simultaneously reside in (or belong to) both sets A and B. The complement of a set A, denoted \overline{A} , is defined as the collection of all elements in the universe that reside in A and that do not reside in the set A. The difference of a set A with respect to B, denoted $A \mid B$, is defined as the collection of all elements in B, set-theoretic terms.

Union
$$\mu_{A\cup B}(x) = \mu_A(x) \lor \mu_B(x)$$
Intersection $\mu_{A\cap B}(x) = \mu_A(x) \land \mu_B(x)$ Complement $\mu_{\overline{A}}(x) = 1 - \mu_A(x)$

Any fuzzy set A defined on a universe X is a subset of that universe. Also by definition just as with classical sets, the membership value of any element x in the null set \emptyset is 0

b)

Theorem 3.2. Every fuzzy complement has at most one equilibrium.

Proof: Let c be an arbitrary fuzzy complement. An equilibrium of c is a solution of the equation

$$c(a)-a \approx 0,$$

where $a \in [0, 1]$. We can demonstrate that any equation c(a) - a = b, where b is a real constant, must have at most one solution, thus proving the theorem. In order to do so, we assume that a_1 and a_2 are two different solutions of the equation c(a) - a = b such that $a_1 < a_2$. Then, since $c(a_1) - a_1 = b$ and $c(a_2) - a_2 = b$, we get

$$c(a_1) - a_1 = c(a_2) - a_2$$
. (3.7)

However, because c is monotonic nonincreasing (by Axiom c2), $c(a_1) \ge c(a_2)$ and, since $a_1 < a_2$,

$$c(a_1) - a_1 > c(a_2) - a_2.$$

This inequality contradicts (3.7), thus demonstrating that the equation must have at most one solution.

22. a)proof:

For fuzzy union associative condition is

u(u(a,0),0)=u(a,u(0,0))

since from the boundary condition is

u(u(a,0),0)=u(a,0)-----1

assume $u(a,0) = \propto$ which is contradiction.

Therefore u(a,0)=a.

Then monotonicity condition, $u(a,0) \le u(a,b)$

 $a \le u(a,b)$ and $b \le u(b,a)$ we have

 $u(a,b) \ge max(a,b)$, for $a,b \in [0,1]$.

b) proof:

we know that $u(a,b) \ge max(a,b)$, for $a,b \in [0,1]$

and similarly we have

 $u(a,b) \leq max(a,b)$, for $a,b \in [0,1]$

Thus u(a,b) = max(a,b).

```
23. a)

\tilde{R}_1 \circ \tilde{R}_2 = \{ [(x, z), \max_{y} \{ \min \{ \mu_{\tilde{R}_1}(x, y), \mu_{\tilde{R}_2}(y, z) \} \} ] | x \in X, y \in Y, z \in Z \}
```

Max{.2,0,.1}= .2

b)min-max composition:

.2 0 .3 .2

.4 0 .3 .2

.2 .4 .3 0

Max-prod composition:

4 7 8 .5

.2 5 .4 8

8 3 7 1

Max avg composition:

 $1\,1\,1\,1$

1111

1111

24. a)

Dempster's rule of combination:

The standard fuzzy evidence of the way is

 $M_{1,2}$ (A)= $\sum_{B \cap C=A} M1(B) \cdot \frac{M2(C)}{1} - 1 - K$ for $A \neq \emptyset$. where $K = \sum_{B \cap C \neq \emptyset} M1(B) \cdot M2(C)$, $M1, 2(\emptyset) = 0$. This is referred to the dempster rule of combination.

25.a) Fuzzy decision making:

The subject of decision making is, as the name suggests, the study of how decisionsare actually made and how they can be made better or more successfully. That is, the field is concerned, in general, with both descriptive theories and normative theories. Much of the focus in developing the field has been in the area of management, in which the decisionmaking process is of key importance for functions such as inventory control, investment, personnel actions, new-product development, and allocation of resources, as well as many others. Decision making itself, however, is broadly defined to include any choice or selection of alternatives, and is therefore of importance in many fields in both the "soft" social sciences and the "hard" disciplines of natural sciences and engineering.

Making decisions is undoubtedly one of the most fundamental activities of human beings. We all are faced in our daily life with varieties of alternative actions available to us and, at least in some instances, we have to decide which of the available actions to take. The beginnings of decision making, as a subject of study, can be traced, presumably, to the late 18th century, when various studies were made in France regarding methods of election and social choice. Since these initial studies, decision making has evolved into a respectable and rich field of study. The current literature on decision making, based largely on theories and methods developed in this century, is enormous.

INDIVIDUAL DECISION MAKING

b)

Fuzziness can be introduced into the existing models of decision models in various ways. In the first paper on fuzzy decision making, Bellman and Zadeh [1970] suggest a fuzzy model of decision making in which relevant goals and constraints are expressed in terms of fuzzy sets, and a decision is determined by an appropriate aggregation of these fuzzy sets. A decision situation in this model is characterized by the following components:

- a set A of possible actions;
- a set of goals $G_i (i \in \mathbb{N}_n)$, each of which is expressed in terms of a fuzzy set defined on A;
- a set of constraints $C_j (j \in \mathbb{N}_m)$, each of which is also expressed by a fuzzy set defined on A.

Example:

Suppose that an individual needs to decide which of four possible jobs, a_1 , a_2 , a_3 , a_4 , to choose. His or her goal is to choose a job that offers a high salary under the constraints that the job is interesting and within close driving distance. In this case, $A = \{a_1, a_2, a_3, a_4\}$, and the fuzzy sets involved represent the concepts of high salary, interesting job, and close driving distance. These concepts are highly subjective and context-dependent, and must be defined by the individual in a given context. The goal is expressed in monetary terms, independent of the jobs available. Hence, according to our notation, we denote the fuzzy set expressing the goal by G'. A possible definition of G' is given in Fig. 15.1a, where we assume, for convenience, that the underlying universal set is \mathbb{R}^+ . To express the goal in terms of set A, we need a function g: $A \to \mathbb{R}^+$, which assigns to each job the respective salary. Assume the following assignments:

(a) Goal G': High salary.

(b) Constraint C'_2 : Close driving distance.

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po),

Coimbatore -641 021

Subject: FUZZY SETS AND ITS APPLICATIONS

Subject Code: 15MMU604B

Class : III - B.Sc. Mathematics-A

Semester : VI

Crisp sets and fuzzy sets

Part A (20x1=20 Marks) (Ouestion Nos. 1 to 20 Online Examinations)

Possible Questions					
Question	Choice 1	Choice 2	Choice 3	Choice 4	Answer
The set of all levels $\alpha \in [0,1]$, the distinct α - cuts of a	Level set	crisp set	fuzzy set	proper subset	crisp set
fuzzy set is called a					
Any two sets that have no common members are	disjoint set	joint set	subset	proper subset	disjoint set
called					
A fuzzy set A is called when $h(a) = 1$	normal	subnormal	convex	membership function	normal
A fuzzy operation $(A(x))^{-}$	1- A(x)	A(x)	A(x)-1	1	1- A(x)
The of a path n>0 is the number of nodes	length	height	width	long	a) length
contained in the path.					
The of the path is min{ $\mu_G(x_{(i,)} x_{(i+1)})$ }	length	length	strength	height	strength
for all nodes contained in the path.					
A path is called a if $x0 = xn$ and $n \ge 3$	path	cycle	strength	height	cycle
Two nodes that are joined by a path are called	connected nodes	unconnected	path	line	connected nodes
The fuzzy truth value of A' with respect to A, denoted	R	RT	RA/T	RT(A^'/A)	RT(A^'/A)
by					
If f:R2 \rightarrow R such that f(w1,w2)=w for the variables of	f(w1, w2) = w1	b) f(w1, w2)=	c) f(w1, w2)=	d) $f(w1, w2) = f(w1)$	f(w1, w2) = w1 w2
product function	w2	w1, w2	f(w1 w2))f(w2)	

The fuzzy measure assigns a value to each crisp set of	empty set	universal set	null set	super set	universal set
the					
The sequence is said to be monotonic then	$ \begin{array}{l} \llbracket \lim_{T} (i \to \infty) \llbracket g(\\ A_i \rrbracket) = g \\ (\llbracket \lim_{T} (i \to \infty) \\ Ai) \end{array} $	{0,0,0,0}	œ	empty set	
The of a path n>0 is the number of nodes contained in the path.	length	height	width	long	length
The of the path is $\min\{\mu_G(x_{(i,)} x_{(i+1)})\}$ for all nodes contained in the path.	length	width	strength	height	strength
A path is called a if $x0 = xn$ and $n \ge 3$	path	cycle	strength	height	cycle
Two nodes that are joined by a path are called	connected nodes	unconnected	path	line	connected nodes
What is the Methodology for fuzzy decision Making	Evaluate	Alternative	Evaluating Alternative	Determining	Evaluating Alternative
Multi attribute evaluation is carried out on the basis of	Equations	non-linear	linear	Polynomial	linear
Fuzzy concept is an example of	Light	traffic	amber traffic light	Signal	amber traffic light
Individual Decision Making only no of peraons for taking decision	Many	Minimum	Single	few	Single
The crisp set is defined in such way to dichotomize the individuals in some given universe of discourse into	one group	two groups	three groups	five groups	two groups
To distinguish between fuzzy sets and classical sets,we refer to the latter as	empty set	crisp set	fuzzy logic	fuzzy complements	crisp set
Sets are denoted in this text by letters	upper case	lower case	either upper or lower	both cases	upper case
Their members by letters	upper case	lower case	middle	both cases	lower case
The set that contains no members is called the	fuzzy set	empty set	crisp set	classical set	empty set
The characteristic function of a crisp set assigns a value				either 1 or 0	either 1 or 0
of	1		0 2		
Membership function of thefuzzy sets	1		2 3	4	3
A fuzzy set A is called normal when	h(A)<1	h(A)=1	h(A)>1	h(A)=0	h(A)=1
A subnormal of the fuzzy set	h(A)<1	h(A)=1	h(A)>1	h(A)=0	h(A)<1

Prepared by: A.Henna Shenofer, Department of Mathematics, KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po),

Coimbatore –641 021

Subject: FUZZY SETS AND ITS APPLICATIONS

Class : III - B.Sc. Mathematics-A

Subject Code: 15MMU604B

Semester : VI

Unit III Fuzzy Relations

Part A (20x1=20 Marks) (Question Nos. 1 to 20 Online Examinations)

Possible Questions					
Question	Choice 1	Choice 2	Choice 3	Choice 4	Answer
A set whose members can be labeled by the positive	countable set	uncountable set	relations	universal set	countable set
integers is calledset					
A set whose elements are themselves sets is called	family of sets	indexed set	involutive	Boolean	
					family of sets
Logic functions of one or two variables are called	logic operation	logic variable	Boolean	relation	logic operation
If $a \in [0,1]$ and $t \in [0,1)$, $c(a) = \{1 \text{ for } a \le t, 0 \text{ for } a > t\}$	threshold	characteristic	membership	logic function	
then t is		function	function		threshold
Fuzzy relations are fuzzy subsets of	map	perfect order	ХхҮ	X+Y	XxY
Fuzzy relations is a from fuzzy sets contained	map	order	linear	composition	map
in the universal sets into the unit interval					
Fuzzy relations are fuzzy sets in	product space	linear space	binary space	composition	product space
The largest relation is called the of the	product space	linear space	cylindrical	set	cylindrical extension
projection relation.			extension		
If ACAUB and B C AUB, we have $Max[g(A),g(B)]$	≤g(A∪B)	$\geq g(A \cup B)$	none	$< g(A \cup B)$	$\leq g(A \cup B)$
is					
If ACAUB and B C AUB, we have $g(AUB)$	\geq Min[g(A),g(B)])=[g(A),g(B)]	$\leq Min[g(A),g(B)]$	either b or c	\leq Min[g(A),g(B)]
is					

The fuzzy measure assigns a value to each of	empty set	universal set	crisp set	super set	crisp set
the universal set					
If $A \in B$ and $B \in B$ then $A \cup B \in B$, then the set B is	superset field	field	Borel field	sunfield	Borel field
called					
Fuzzy relations are fuzzy subsets of	map	perfect order	X x Y	X+Y	X x Y
Fuzzy relations is a from fuzzy sets contained	map	order	linear	composition	map
in the universal sets into the unit interval					
Fuzzy relations are fuzzy sets in	product space	linear space	binary space	composition	product space
The largest relation is called the of the	product space	linear space	cylindrical	set	cylindrical extension
projection relation			extension		
Truth of a Fuzzy Proposition is a matter of	degree	Power	order	no of elements	degree
Fuzzy LPP values of the of LPP	parameters	Types	constraints	conjunction	parameters
A ⁻ (x) =	A(x)	1	U (x)	1 - A(x)	1 - A(x)
Every fuzzy complement has atmost	many	one equilibrium	two equilibrium	equilibrium	
	equilibrium				
A crisp relation represents the	presence	association	grades	fuzzy relation	presence
Which can be represented by membershipgrades in	degrees of	commutative	degrees of	idempotent	degrees of association
fuzzy relation	association		associative		
The cartesian product of two crisp sets X and Y is	ХхҮ	$\mathbf{X} = \mathbf{Y}$	X or Y	X/Y	X x Y
denoted by					
A relation between two sets is called	binary	ternary	quaternary	n-ary	binary
A fuzzy relation is a fuzzy set defined onof crisp	n-tuples	cartesian product	closed intervals	n-dimension	cartesian product
sets.					
A fuzzy relation represented bymembership array.	n-dimensional	one dimensional	two dimensional	three dimensional	n-dimensional
An inverse to the projection is called	cylindric extension	cylindric closure	either b or c	cylindric	cylindric extension
The cylindric extension clearly produces thethat	smallest fuzzy	largest fuzzy	equal fuzzy	not equal the fuzzy	largest fuzzy relation
is compatible with the projection.	relation	relation	relation	relation	
The resulting relation is usually called a	cylindric	cylindric closure	either b or c	cylindric	cylindric extension
	extension				
The rang of crisp binary relation $R(X,Y)$ is denoted by	ran R(X,Y)	dom R(X,Y)	(X,Y)	ran(X,Y)	ran R(X,Y)

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po),

Coimbatore –641 021

Subject: FUZZY SETS AND ITS APPLICATIONS

Subject Code: 15MMU604B

Class : III - B.Sc. Mathematics-A

Semester : VI

Unit II
Fuzzy union, intersection and operations
Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions

Possible Questions					
Question	Choice 1	Choice 2	Choice 3	Choice 4	Answer
If $a \le b$, for all $a,b \in [0,1]$ then	$c(a) \ge c(b)$	c(a)>c(b)	$c(a) \leq c(b)$	c(a) < c(b)	$c(a) \ge c(b)$
If c is involutive then $c(c(a)) =$	a	c(a)	b	c((a))	a
If c is a fuzzy complement then $c(0)=$	0	1	с	c(0)	1
The number of members of a finite set A is	cardinality	index	union	intersection	cardinality
A is a fuzzy relation $\mu_s(.)$ that is	similarity	order relation	path	node	similarity relation
reflexive, symmetrical and max-min	relation				
transitive.					
	· · · 1 · · · · · 1 · 4 · · · ·	6 1			6 111
A fuzzy relation that is (max-min) transitive and	order relation	iuzzy preorder	relation	set	fuzzy preorder relation
		relation			
A fuzzy relation that is (min-max) transitive, reflexive	fuzzy order	order relation	relation	set	fuzzy order relation
and antisymmetric is called a	relation				
If the relation is perfectly antisymmetrical, it is called a	man	perfect fuzzy	product space	linear space	perfect fuzzy order
	imp	order relation	produce space	initear space	relation
The axiom one states that	evidence	one	degree of evidence	monotonic	degree of evidence
The axiom three is clearly applicable only to an	finite set	universal set	infinite set	infinite universal	infinite universal
If fuzzy measure is often defined more generally as a	family of sunsets	Null set	Universal set	super set	family of sunsets
--	-------------------	-----------------	-----------------	------------------	-------------------------
function g:B \rightarrow [0,1] where BCp(x) is a					
The sequence of numbers g(A1),g(A2)must	1	0	∞	g(A)	g(A)
converge to the number					
A is a fuzzy relation $\mu_s(.)$ that is	similarity	order relation	path	node	similarity relation
reflexive, symmetrical and max-min transitive	relation				
A fuzzy relation that is (max-min) transitive and	order relation	fuzzy preorder	relation	set	fuzzy preorder relation
reflexive is called a		relation			
A fuzzy relation that is (min-max) transitive, reflexive	fuzzy order	order relation	relation	set	fuzzy order relation
and antisymmetric is called a	relation				
. If the relation is perfectly antisymmetrical, it is called	map	perfect fuzzy	product space	linear space	perfect fuzzy order
a	_	order relation			relation
In fuzzy total no of decision Makers	n+1	n	∞	n-1	n
The Characteristic function of a crisp set assign values	0	1	(0,1)	either 0 or 1	either 0 or 1
The membership function of a fuzzy set A is denoted	μ	μA	λ	λΑ	μA
by					
Fuzzy affect the types of	Verbal	Complications	Reasoning	Individuality	Reasoning
Fuzzy intersection and fuzzy union do not cover all	fuzzy set	empty set	classical set	crisp set	fuzzy set
operations by which					
Fuzzy union and fuzzy intersection cover all	associative	idempotent	continuous	additive	associative
aggregating operations that are					
The classical intersection with crisp sets is	i(1,1)=1	i(0,0)=0	i(1,2)=1	i(0,3)=1	both b and c
The fuzzy union that satisfy the	axiomatic	axiom 1	axiom 2	axiom 3	
	skeleton				axiomatic skeleton
Max,min,and any of the sugeno complements satisfy	associative	Demorgans law	commutative	idempotent	Demorgans law
The only continuous and idempotent fuzzy union	u(a,b)=min(a,b)	u(a,b)=max(a,b)	u(a,b)>min(a,b)	u(a,b)>max(a,b)	u(a,b)=max(a,b)
The only continuous and idempotent fuzzy intersection	i(a,b)=min(a,b)	i(a,b)>min(a,b)	i(a,b)>max(a,b)	i(a,b)=max(a,b)	i(a,b)=min(a,b)
For all a,b in [0,1], then	i(a,b)=min(a,b)	i(a,b)>min(a,b)	i(a,b)>max(a,b)	i(a,b)<=min(a,b)	i(a,b)<=min(a,b)
If u is idempotent, then	u(a,a)=a	u(a,a)=0	u(a,a)=1	u(a,b)=1	u(a,a)=a
The fuzzy union of axiom1 satisfy the		boundary	associative	continuous	boundary condition
	commutative	condition			

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po),

Coimbatore –641 021

Subject: FUZZY SETS AND ITS APPLICATIONS

Subject Code: 15MMU604B

Class : III - B.Sc. Mathematics-A

Semester : VI

Unit IV Fuzzy measures

Part A (20x1=20 Marks) (Question Nos. 1 to 20 Online Examinations)

Possible Questions Ouestion Choice 1 Choice 2 Choice 3 Choice 4 Answer Subsets of cartesian products are called relation function nested family denumerable relation Х The property AUA^{-} Ø А (A)Х Every uncountable set is infinite disjoint finite infinite ioint A continuous t-norm that satisfies subidempotency is Archimedean tidempotent tboundary monotonic called norm norm Archimedean t-norm Fuzzy relation in different product spaces can be composition closure composition associative union combined with each other by the operation (R) is called _____ if μ R (x,x)= 1 for all x ϵ X symmetric transitive reflexive union reflexive \tilde{R} is called if $\mu \tilde{R}(x,x) \ge \epsilon$ for all $x \in X$ *ϵ*-reflexive symmetric transitive union symmetric basic probability probability basic probability The shortest term basic assignment instead of the usual plausibility measure normal full term----assignment assignment >Max[pl(A),pl(B \leq If $pl(A \cup B)$ [pl(A),pl(b)] \leq Max[pl(A),pl(B)])] Max[pl(A),pl(B)] Max[pl(A),pl(B)]

If π denote the necessity measure and a possibility measure on $p(x)$ then $\pi (A \cup B) = \dots$	$\max\{\pi(A),\pi(B)\}$	A	В		$0 \max \{\pi(A), \pi(B)\}$
If A $\neq \emptyset$ The total ignorance in terms of the associated plausibility measures $pl(\emptyset) = \cdots$	1	Ø	π		0 0
If $A \neq \emptyset$ The total ignorance in terms of the associated plausibility measures $pl(A)=\cdots$	1	Ø	π	A	1
Fuzzy relation in different product spaces can be combined with each other by the operation	composition	closure	associative	union	composition
A belief measure of a function is	$Bel:p(X) {\rightarrow} [0,1]$	$pl: p(X) \rightarrow [0,1]$	p(X)→[0,1]	$p(x) \rightarrow (0,1)$	$Bel: p(X) \rightarrow [0,1]$
The basis assignment not required that	m(A)=m(B)	m(A)≤m(B)	m(A)≥m(B)	m(A)>m(B)	m(A)≤m(B)
The basis element is not required that	m(X)=1	m(X)<1	m(X)>1	m(X)=0	m(X)=1
A fuzzy set A is called normal if	n(A) = 0	n(A) = 1	n(A) = n	n(A) = m	n(A) = 1
A fuzzy set is convex if	no α level convex	all α level convex	n- α level convex	min no of α level convex	all α level convex
A fuzzy set A is called subnormal if	n(A) = 0	n(A) < 1	n(A) < n	n(A) = m	n(A) < 1
CFL is a branch of fuzzy with modified rules for	conjunction	disjunction	conjunction and Disjunction	conjunction or disjunction	conjunction and Disjunction
The value would indicate the degree of evidence or certainity of the elements membership in such representation of uncertainity is known as	fuzzy measure	fuzzy crisp sets	Universal set	fuzzy relation	fuzzy measure
A plausibility measure is a function	$Pl: p(x) \rightarrow [0,1]$	$Pl: p(x) \rightarrow (0,1)$	Pl→[0,1]	p:x→(0,1)	$P1: p(x) \rightarrow [0,1]$
The function m : $p(x) \rightarrow [0,1]$, m is usually called a	basic probability assignment	probability distribution function	basic assignment	normal	basic probability assignment
The basis assignments that possess this property are called	normal	extension	dimensional	probability	normal
Every set Acp(x) for which m(A)>0 is usually called of m	n-element	focal element	zero element	n-dimensional	focal element
Total is expressed in terms of the basis assignment by m(X)=1 and m(A)=0	body of evidence	basis assignment	ignorance	focal element	ignorance
A basis assignment m is said to be a simple suport function focused at A if	m(A)=s	m(A)>s	m(A) <s< td=""><td>m(A)≤s</td><td>m(A)=s</td></s<>	m(A)≤s	m(A)=s

Group Homomorphisms / 2016-2019 Batch

An important property of probability measures is that	universel set	subsequence	fuzzy measure	subset	universel set
each of them can uniquely represented by a function					
defined on element of					
The most fundamental property of fuzzy measure is	possibility	monotonicity	distributive	believe measure	monotonicity
their with respect to the subset relation ship	measure		function		
Each pair consisting of a belief measure and its dual	single function	double function	triple function	either b or c	single function
plausibility measure is represented by					

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),

Coimbatore -641 021

Subject: FUZZY SETS AND ITS APPLICATIONS

Subject Code: 15MMU604B

Class : III - B.Sc. Mathematics-A

Semester : VI

Unit V Fuzzy decision making

Part A (20x1=20 Marks)

(Question Nos. 1 to 20 Online Examinations)

Possible Questions					
Question	Choice 1	Choice 2	Choice 3	Choice 4	Answer
Elements of X, $A(x)=(A(x))^{-1}$ are called	equilibrium	operator	membership	function	equilibrium
			function		
The boundary condition i(a,1)=	a	i(1,a)		1 i(1)	a
All α - cuts and all strong α - cuts of any fuzzy set form	nested crisp sets	crisp sets	fuzzy sets	crisp sets	nested crisp sets
two distinct families of sets.					
The of a fuzzy set A within a universal set x is the	Support	nested	subnormal	core	
crisp set that contains all the elements of X that have					
nonzero membership grades in A.					Support
A fuzzy relation is called symmetric if $(R_1)^{(x,y)=}$	symmetric	reflexive	asymmetric	transitive	symmetric
$(R_2)^{}(x,y)$ for all x, $y \in X$					
A fuzzy relation R is called (max-min) if R	symmetric	reflexive	asymmetric	transitive	transitive
°R • R					
If \tilde{R} is reflexive and transitive, then	$\tilde{R} \sim \tilde{R} = \tilde{R}$	$\tilde{R} \sim \tilde{R} \leq \tilde{R}$	$\tilde{R} \sim \tilde{R} \geq \tilde{R}$	R°°R°≠R°	$R^{\circ}R^{\sim}=R^{\sim}$
Any \propto - cut of a fuzzy linear order is a	partial order	crisp linear order	order	relation	crisp linear order
Basic assignments is said to be normal if	1	0	π	empty set	0
m(Ø)=					
The single property of additivity expressed by the	Bel(A+B)	Bel(A)+Bel(B)	Bel(A∩B)	Bel(A*B)	Bel(A)+Bel(B)
equation Bel(AUB)=					

Prepared by: A.Henna Shenofer, Department of Mathematics, KAHE

Subsets that are assigned non-zero degrees of evidence	focal elements	Bel(A)	basic probability	dual measure	focal elements
are called	roeur cicilients		busic probubling	duur meusure	roeur crements
When all focal elements are the armedian belief	singlatons	dual	7070	omnty	singlatons
when an local elements are the crynning benef	singletons	duai	zero	empty	singletons
measure is equal to its dual plausibity measure.					
		~ .			
A fuzzy relation is called symmetric if $(R_1)(x,y)=$	symmetric	reflexive	asymmetric	transitive	symmetric
$(R_2)(x,y)$ for all $x,y \in X$.					
A fuzzy relation \tilde{R} is called (max-min) if R	symmetric	reflexive	asymmetric	transitive	transitive
°R • R					
If \tilde{R} is reflexive and transitive, then	$\tilde{R} \sim \tilde{R} = \tilde{R}$	$\tilde{R} \sim \tilde{R} \leq \tilde{R}$	$\tilde{R} \circ \tilde{R} \ge \tilde{R}$	R°°R°≠R°	$\tilde{R} \sim \tilde{R} = \tilde{R}$
Any \propto - cut of a fuzzy linear order is a	partial order	crisp linear order	order	relation	crisp linear order
	Partial crash	••••••			errop mitem er wer
The conjunction is the	A.M	G.M	H.M	Arithmetic Process	G.M
Which one of the following Technique used in fuzzy	Degree	Degree of	Decision Analysis		Degree of Optimality
ranking?		Optimality		Multi Decision Analys	
The term attribute referred to as	Criterion	Condition	goal	Ideas	goal
A Chain is only as strong as its link Weakest is called	Logic	Reasoning	attribute	Links	Logic
	C	C			
classical decision making generally deals with a	set of	certainity	fuzzy model	uncertainity	set of alternatives
comprising the decision space.	alternatives				
The decision may involve the simple optimization of a	linear function	utility function	membership	nonlinear function	utility function
		5	function		5
Decisions may, for instance, be considered to occur in a-	single	multiple	either b or c	triple	either b or c
stages		1		1	

Reg. No.....

[15MMU604B]

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari Post, Coimbatore – 641 021. (For the candidates admitted from 2015 onwards)

B.Sc., DEGREE EXAMINATION, APRIL 2018

Sixth Scmester

MATHEMATICS

FUZZY SETS AND ITS APPLICATIONS

Time: 3 hours

Maximum : 60 marks

PART – A (20 x 1 = 20 Marks) (30 Minutes) (Question Nos. 1 to 20 Online Examinations)

PART B (5 x 8 = 40 Marks) (2 ½ Hours) Auswer ALL the Questions

Ог

1

21.a. Prove that for each $a \in [0, 1]$, $d_a = c(a)$ if and only if c(c(a)) = a that is which the complement is involutive.

b. Explain briefly about fuzzy complement.

22.a. Prove that $\lim_{v \to \infty} i_v = \lim_{v \to \infty} \left[1 - \min \left[1, \left[(1-a)^v + (1-b)^v \right]_v^1 \right] \right]$ Or

b. If for all $a, b \in [0, I]$ then prove that $i(a, b) \ge i_{\min}(a, b)$

23.a. Compute i) $\tilde{R} \cup \tilde{Z}$ ii) $\tilde{R} \cap \tilde{Z}$ If \tilde{R} :

	•			
	Y	Y ₂	Y ₃	Y ₄
XI	0.8	1	0.1	0.7
X ₂	0	0.8	0	0
X ₁	0.9	1	0.7	0.8

7 :				
	Y ₁	Y ₂	Y3	Y4
X	0.4	0	0.9	0.6
X2	0.9	0.4	0.5	0.7
X3	0.3	0	0.8	0.5

b. Find i)first projection ii) second projection

and

iii)Total projection

if Ř:						
	Y ₁	Y ₂	Y ₃	Y ₄	Y5	Y6
X	0.1	0.2	0.4	1	1	0.8
X2	0.2	0.4	0.8	0.8	0.8	0.6
X ₃	0.4	0.8	1	0.4	0.4	0.2

Or

- 24.a. Given a consonant body of evidence (f,m).Prove that the associated consonant belief and probability measure s process the following properties.
 i) Bel(A∩B)=min {Bel (A), Bel (B)}
 ii) Pl(A U B)=max {Pl(A),Pl(B)} for all A,B ∈ φ(x). Or
 - b. Prove that every possibility measure POS on a finite power set P(X) is unequally determined by a possibility distribution function.

2

25.a. Describe about fuzzy ranking methods with example. Or

b. Discuss the types of fuzzy Decision making.

- (c) i(a,b) < max(a,b) (d) $i(a,b) \ge min(a,b)$ 16. A crisp relation represents the_____
- (a) presence (b) association (c) grades (d) fuzzy relation
- 18. The fuzzy measure assigns a value to each _____set
 (a) crisp
 (b) fuzzy union
 (c) fuzzy intersection
- (a) u(a,b)=min(a,b) (b) u(a,b)=max(a,b) (c) u(a,b)>min(a,b) (d) u(a,b)>max(a,b)

PART – B $(3 \times 10 = 30 \text{ marks})$ ANSWER ALL THE QUESTIONS 21.(a) Show that $u(a, b) \ge \max(a, b)$ if for all $a, b \in [0, 1]$

- (OR) (b)) Prove that $\lim_{w\to\infty} \min\left[1, (a^w + b^w)^{\frac{1}{w}}\right] = \max(a, b)$
- 22. a) Define fuzzy relation and explain about composition

of fuzzy relation.

(OR)

b) Explain about max-product composition.

23. a) Explain about Charecteristic components of

symmetric, reflexive and transitive relation.

(OR)

b) Define fuzzy measure and explain the axioms for

fuzzy measures. .

(1980) S. M. S. S. Markenson Sciences (Marken Science) (Marken Science)

943 and 12 12 12 19 19 19

Date: 01.03.2018(FN) Time: 2 Hours Class: III B.Sc Mathematics-A Maximum Marks: 50

PART - A (20 x 1 = 20 Marks)

Answer all the Questions:

- Fuzzy relation describes the _____ of elements.
 (a) degree of association
 (b) membership grades
- (c) Cartesian product
 (d) binary relation
 2. A fuzzy relation that is (max-min) transitive and reflexive is
- (a) order relation (b) fuzzy preorder relation
- (c) relation (d) set3. The axiom three is clearly applicable only to an
- (a) finite set (b) universal set (c) infinite set (d) infinite universe
- (c) infinite set (d) number of the defined by a _______.
 4. Each crisp relation R can be defined by a _______.
 (a) characteristic function (b) membership function
- (c) fuzzy preorder relation (d) order relation Fuzzy union and fuzzy intersection cover all aggregating
- Fuzzy union and fuzzy intersection or operations that are _____

6 00 -1 The membership grade is usually represented by a (d) additive (a) associative (b) idempotent (c)) membership array (a) real number in [0,1] (b) complex number in[0,1] The fuzzy measure assigns a value to each (d) composition (a) product space
 (b) linear space Fuzzy relations are fuzzy sets in universal set (d) super set (a) empty set is the only continuous and idempotent fuzzy set (b) universal set (d) n-dim membership array (c) continuous (c) binary space (c) crisp set of the

- (a) $i(a,b) = \min\{a, b\}$ (b) $i(a,b) = \min\{a, b\}$ (c) $i(a,b) = \max\{a, b\}$

- 12. Fuzzy LPP values of the _____ of LPP(a) parameters (b) Types (c) constraints
- (d) conjunction
 13. The largest relation is called the _____ of the
- projection relation. (a) product space (b) linear space (c) cylindrical extension (d) set
- 14. The standard _____ operations denoted as extinct pair of all the possible pairs of fuzzy union and intersection.
 (a) combinations (b) max & min (c) logic (d) fuzzy
- 15. For all $a,b \in [0,1]$, then ______ (a) $i(a,b) \le \min(a,b)$ (b) $i(a,b) < \min(a,b)$

CLASS: IIIB.Sc MATHEMATICS-A COURSE NAME:FUZZY SETS AND ITS APPLICATIONS COURSE CODE: 15MMU604B SEMESTER BATCH-2017-2018

SEMESTER – FUZZY SETS AND ITS APPLICATIONS

KEY ANSWER

PART-B

21. a. let $d_a = c$ (a).

 d_a is dual point of the fuzzy complement c with membership grade 'a'

We have c (d_a) – d_a = a- c(a) ------ 1

Replace d_a by c (a) in 1

We get c (c(a)) =a

Fuzzy complent is involutive.

Let c(c(a))=a

Since every fuzzy complement and membership grade has atleast one dual point we have,

$$C(d_a) - d_a = a - c(a) - 2$$

Replace a by c(c(a)) in 2 we get, $c(d_a) - d_a = c(c(a)) - c(a)$

 $d_a = c(a).$

b. Fuzzy complement:

A complement of a fuzzy set A is specified by $c[0,1] \rightarrow [0,1]$ which assigns a value $c(u_A(x))$ to each membership grade $u_A(x)$.

Axiom 1:

C(0) =1, c(1)=0

(ie) c behaves as the ordinary complement for crisp sets.

Axiom 2:

C is monotonic non-increasing.

Axiom 3:

C is continuous function.

Axiom 4:

C is involutive.

C(c(a))=a.

22. a. Proof:

We know yagar class of fuzzy unions, thus

i_w (a,b) = 1-max[1-a ,1-b]

Ie) i_{∞} (a,b) = min (a,b)

b. proof:

for all $a,b\in[0,1]$, $i(a,b) \le \min(a,b)$, then i(a,b)=a the theorem is satisfied.

Similarly commutativity, then i(a,b)=b. and i(a,0)=i(0,b)=0.

╘

Then by monotonicity, $i(a,b) \ge i(0,b)=i(a,0)=0$.

23. a.i)

Let \tilde{R} and \tilde{Z} be two fuzzy relations in the same product space. The union/intersection of \tilde{R} with \tilde{Z} is then defined by

ii)

$$\tilde{R}^{(1)} = \{ (x, \max_{y} \mu_{\tilde{R}}(x, y)) \mid (x, y) \in X \times Y \}$$

The second projection is defined as

$$\tilde{R}^{(2)} = \{(y, \max_x \mu_{\tilde{R}}(x, y)) \mid (x, y) \in X \times Y\}$$

and the total projection as

$$\tilde{R}^{(T)} = \max_{x} \max_{y} \{ \mu_{\tilde{R}}(x, y) \mid (x, y) \in X \times Y \}$$

First projection $[\mu_{\tilde{R}^{(1)}}(x)]$

1

1

1

	<i>y</i> 1	<i>y</i> ₂	<i>y</i> ₃	y_4	<i>y</i> ₅	<i>y</i> ₆	
<i>x</i> ₁	.1	.2	.4	.8	1	.8	
\tilde{R} : x_2	.2	.4	.8	1	.8	.6	
<i>x</i> ₃	.4	.8	1	.8	.4	.2	

Second projection:

 $[\mu_{\tilde{R}^{(2)}}(x)]$.4 .8 1 1 1 .8 1 Total projection 24. a)

Proof: (i) Since the focal elements in \mathcal{F} are nested, they may be linearly ordered by the subset relationship. Let $\mathcal{F} = \{A_1, A_2, \ldots, A_n\}$, and assume that $A_i \subset A_j$ whenever i < j. Consider now arbitrary subsets A and B of X. Let i_1 be the largest integer i such that $A_i \subseteq A$, and let i_2 be the largest integer i such that $A_i \subseteq B$. Then, $A_i \subseteq A$ and $A_i \subseteq B$ iff $i \leq i_1$ and $i \leq i_2$, respectively. Moreover, $A_i \subseteq A \cap B$ iff $i \leq \min(i_1, i_2)$. Hence,

$$Bel (A \cap B) = \sum_{i=1}^{\min(i_1, i_2)} m(A_i) = \min\left[\sum_{i=1}^{i_1} m(A_i), \sum_{i=1}^{i_2} m(A_i)\right]$$
$$= \min[Bel (A), Bel (B)].$$

(ii) Assume that (i) holds. Then, by (7.5),

$$Pl(A \cup B) = 1 - Bel(\overline{A \cup B}) = 1 - Bel(\overline{A \cap B})$$
$$= 1 - \min[Bel(\overline{A}), Bel(\overline{B})]$$
$$= \max[1 - Bel(\overline{A}), 1 - Bel(\overline{B})]$$
$$= \max[Pl(A), Pl(B)]$$

for all $A, B \in \mathcal{P}(X)$.

b)

Proof: We prove the theorem by induction on the cardinality of set A. Let |A| = 1. Then, $A = \{x\}$, where $x \in X$, and (7.28) is trivially satisfied. Assume now that (7.28) is satisfied for |A| = n - 1, and let $A = \{x_1, x_2, \ldots, x_n\}$. Then, by (7.20),

$$Pos (A) = max[Pos (\{x_1, x_2, ..., x_{n-1}\}), Pos (\{x_n\})] = max[max[Pos (\{x_1\}), Pos (\{x_2\}), ..., Pos (\{x_{n-1}\})], Pos (\{x_n\})]$$

 $= \max[\operatorname{Pos}(\{x_1\}), \operatorname{Pos}(\{x_2\}), \ldots, \operatorname{Pos}(\{x_n\})]$

 $= \max_{x \in A} r(x).$

25. a) FUZZY RANKING METHODS

In many fuzzy decision problems, the final scores of alternatives are represented in terms of fuzzy numbers. In order to express a crisp preference of alternatives, we need a method for constructing a crisp total ordering from fuzzy numbers. Unfortunately, the lattice of fuzzy numbers, $\langle \mathcal{R}, \text{MIN}, \text{MAX} \rangle$, is not linearly ordered, as discussed in Sec. 4.5. Thus, some fuzzy numbers are not directly comparable.

Numerous methods for total ordering of fuzzy numbers have been suggested in the literature. Each method appears to have some advantages as well as disadvantages. In the context of each application, some methods seem more appropriate than others. However, the issue of choosing a proper ordering method in a given context is still a subject of active research. To illustrate the problem of total ordering of fuzzy numbers, we describe three simple methods and illustrate them by examples.

The first method is based upon defining the Hamming distance on the set \mathcal{R} of all fuzzy numbers. For any given fuzzy numbers A and B, the Hamming distance, d(A, B), is defined by the formula

$$d(A, B) = \int_{\mathbb{R}} |A(x) - B(x)| dx. \qquad (15.16)$$

have been suggested in the literature. A simple variation of this methods proceeds as follows. Given fuzzy numbers A and B to be compared, we select a particular value of $\alpha \in [0, 1]$ and determine the α -cuts ${}^{\alpha}A = [a_1, a_2]$ and ${}^{\alpha}B = [b_1, b_2]$. Then, we define

$$A \leq B$$
 if $a_2 \leq b_2$.

This definition is, of course, dependent on the chosen value of α . It is usually required that $\alpha > 0.5$. More sophisticated methods based on α -cuts, such as the one developed by Mabuchi [1988], aggregate appropriately defined degrees expressing the dominance of one fuzzy number over the other one for all α -cuts.

The third method is based on the extension principle. This method can be employed for ordering several fuzzy numbers, say A_1, A_2, \ldots, A_n . The basic idea is to construct a fuzzy set P on $\{A_1, A_2, \ldots, A_n\}$, called a *priority set*, such as $P(A_i)$ is the degree to which A_i is ranked as the greatest fuzzy number. Using the extension principle, P is defined for each $i \in N_n$ by the formula

$$P(A_i) = \sup\min_{k \in N_i} A_k(r_k), \tag{15.17}$$

where the supremum is taken over all vectors $(r_1, r_2, ..., r_n) \in \mathbb{R}^n$ such that $r_i \geq r_j$ for all $j \in \mathbb{N}_n$.

Example:

$$d(\text{MAX}(A, B), A) = \int_{1.5}^{2} [x - 1 - \frac{x}{3}] dx + \int_{2}^{2.25} [-x + 3 - \frac{x}{3}] dx$$
$$+ \int_{2.25}^{3} [\frac{x}{3} + x - 3] dx + \int_{3}^{4} [4 - x] dx$$
$$= \frac{1}{12} + \frac{1}{24} + \frac{3}{8} + \frac{1}{2} = 1$$

$$d(\text{MAX}(A, B), B) = \int_0^{15} \frac{x}{3} dx - \int_1^{15} [x - 1] dx$$
$$= \frac{3}{8} - \frac{1}{8} = 0.25.$$

b) The types of fuzzy decision making:

Making decisions is undoubtedly one of the most fundamental activities of human beings. We all are faced in our daily life with varieties of alternative actions available to us and, at least in some instances, we have to decide which of the available actions to take. The beginnings of decision making, as a subject of study, can be traced, presumably, to the late 18th century, when various studies were made in France regarding methods of election and social choice. Since these initial studies, decision making has evolved into a respectable and rich field of study. The current literature on decision making, based largely on theories and methods developed in this century, is enormous.

INDIVIDUAL DECISION MAKING

Fuzziness can be introduced into the existing models of decision models in various ways. In the first paper on fuzzy decision making, Bellman and Zadeh [1970] suggest a fuzzy model of decision making in which relevant goals and constraints are expressed in terms of fuzzy sets, and a decision is determined by an appropriate aggregation of these fuzzy sets. A decision situation in this model is characterized by the following components:

- a set A of possible actions;
- a set of goals $G_i (i \in \mathbb{N}_n)$, each of which is expressed in terms of a fuzzy set defined on A;
- a set of constraints $C_j (j \in \mathbb{N}_m)$, each of which is also expressed by a fuzzy set defined on A.

FUZZY RANKING METHODS

In many fuzzy decision problems, the final scores of alternatives are represented in terms of fuzzy numbers. In order to express a crisp preference of alternatives, we need a method for constructing a crisp total ordering from fuzzy numbers. Unfortunately, the lattice of fuzzy numbers, $\langle \mathcal{R}, \text{MIN}, \text{MAX} \rangle$, is not linearly ordered, as discussed in Sec. 4.5. Thus, some fuzzy numbers are not directly comparable.

FUZZY LINEAR PROGRAMMING

The classical linear programming problem is to find the minimum or maximum values of a linear function under constraints represented by linear inequalities or equations. The most typical linear programming problem is:

Minimize (or maximize) $c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$ Subject to $a_{11} x_1 + a_{12} x_2 + \ldots + a_{1n} x_n \le b_1$ $a_{21} x_1 + a_{22} x_2 + \ldots + a_{2n} x_n \le b_2$ \ldots $a_{m1} x_1 + a_{m2} x_2 + \ldots + a_{mn} x_n \le b_m$ $x_1, x_2, \ldots, x_n \ge 0.$ Min z = cxs.t. $Ax \le b$ $x \ge 0,$ (15.18)

where $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$ is a vector of variables, and s.t. stands for "subject to." The set of vectors \mathbf{x} that satisfy all given constraints is called a *feasible set*. As is well known, many practical problems can be formulated as linear programming problems.

ELECTIVE-II FUZZY SETS AND ITS APPLICATION

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956) Coimbatore – 641 021.

SYLLABUS

ELECTIVE-II

		Sem	ester	- VI	
		LΤ	P	С	
15MMU604B	FUZZY SETS AND ITS APPLICATIONS	5 0	0	5	

Scope: To make the students understand the notion of fuzzy sets and to make them to understand the importance, applications of these techniques in real time problems.

Objectives: To enable the students to understand the basic concepts of Fuzzy sets and its applications.

UNIT I

Crisp sets and fuzzy sets - basic concept of fuzzy set - fuzzy logic - operations on fuzzy sets - general discussion fuzzy complements.

UNIT II

Fuzzy union - fuzzy intersection - combinations operations.

UNIT III

Fuzzy relations and fuzzy graphs - fuzzy relation on sets and fuzzy sets - composition of fuzzy relations - properties of the min-max composition - fuzzy graphs - special fuzzy relations.

UNIT IV

Fuzzy measures - general discussion - belief and plausibility measures - probability measures - possibility and necessity measures.

UNIT V

Fuzzy decision making - individual decision making - fuzzy ranking methods - fuzzy linear programming.

SUGGESTED READINGS

TEXTBOOK

1. George J. Klir and Bo Yuan, 1995.Fuzzy sets and fuzzy logic theory and applications, Prentice-Hall of India private limited, New Delhi.

REFERENCES

1. Timothy J. Ross, 2000. Fuzzy logic with Engineering Applications, McGrawHill, Inc. New Delhi.

2. George J.Klir, Tina.A Folger, 2008. Fuzzy sets, uncertainty and information, Prentice Hall of

India Pvt Ltd, New Delhi.

3. H.J. Zimmermann, 2006. Fuzzy set theory and its applications, Second Edition, Springer New

ELECTIVE-II FUZZY SETS AND ITS APPLICATION

CLASS: IIIB.Sc MATHEMATICS-A

COURSE NAME: FUZZY SETS AND

ITS APPLICATIONS

COURSE CODE:15MMU604B UNIT:V(Fuzzy decision making) BATCH-2017-2018

<u>UNIT-V</u>

SYLLABUS

Fuzzy decision making, individual decision making, fuzzy ranking methods, fuzzy linear programming.

The subject of decision making is, as the name suggests, the study of how decisionsare actually made and how they can be made better or more successfully. That is, the field is concerned, in general, with both descriptive theories and normative theories. Much of the focus in developing the field has been in the area of management, in which the decisionmaking process is of key importance for functions such as inventory control, investment, personnel actions, new-product development, and allocation of resources, as well as many others. Decision making itself, however, is broadly defined to include any choice or selection of alternatives, and is therefore of importance in many fields in both the "soft" social sciences and the "hard" disciplines of natural sciences and engineering.

Fuzzy decision making:

GENERAL DISCUSSION

Making decisions is undoubtedly one of the most fundamental activities of human beings. We all are faced in our daily life with varieties of alternative actions available to us and, at least in some instances, we have to decide which of the available actions to take. The beginnings of decision making, as a subject of study, can be traced, presumably, to the late 18th century, when various studies were made in France regarding methods of election and social choice. Since these initial studies, decision making has evolved into a respectable and rich field of study. The current literature on decision making, based largely on theories and methods developed in this century, is enormous.

INDIVIDUAL DECISION MAKING

Fuzziness can be introduced into the existing models of decision models in various ways. In the first paper on fuzzy decision making, Bellman and Zadeh [1970] suggest a fuzzy model of decision making in which relevant goals and constraints are expressed in terms of fuzzy sets, and a decision is determined by an appropriate aggregation of these fuzzy sets. A decision situation in this model is characterized by the following components:

- a set A of possible actions;
- a set of goals $G_i (i \in \mathbb{N}_n)$, each of which is expressed in terms of a fuzzy set defined on A;
- a set of constraints $C_j (j \in \mathbb{N}_m)$, each of which is also expressed by a fuzzy set defined on A.

CLASS: IIIB.Sc MATHEMATICS-A COURSE NAME:FUZZY SETS AND

ITS APPLICATIONS

COURSE CODE:15MMU604B UNIT:V(Fuzzy decision making) BATCH-2017-2018

It is common that the fuzzy sets expressing goals and constraints in this formulation are not defined directly on the set of actions, but indirectly, through other sets that characterize relevant states of nature. Let G'_i and C'_j be fuzzy sets defined on sets X_i and Y_j , respectively, where $i \in \mathbb{N}_n$ and $j \in \mathbb{N}_m$. Assume that these fuzzy sets represent goals and constraints expressed by the decision maker. Then, for each $i \in \mathbb{N}_n$ and each $j \in \mathbb{N}_m$, we describe the meanings of actions in set A in terms of sets X_i and Y_j by functions

$$g_i : A \to X_i,$$

$$c_j : A \to Y_j,$$

and express goals G_i and constraints C_j by the compositions of g_i with G'_i and the compositions of c_j and C'_j ; that is,

$$G_i(a) = G'_i(g_i(a)),$$
 (15.1)

$$C_j(a) = C'_j(c_j(a))$$
 (15.2)

for each $a \in A$.

Given a decision situation characterized by fuzzy sets $A, G_i (i \in \mathbb{N}_n)$, and $C_j (j \in \mathbb{N}_m)$, a *fuzzy decision*, D, is conceived as a fuzzy set on A that simultaneously satisfies the given goals G_i and constraints C_j . That is,

$$D(a) = \min\{\inf_{i \in \mathbb{N}_n} G_i(a), \inf_{j \in \mathbb{N}_m} C_j(a)\}$$
(15.3)

for all $a \in A$, provided that the standard operator of fuzzy intersection is employed.

Once a fuzzy decision has been arrived at, it may be necessary to choose the "best" single crisp alternative from this fuzzy set. This may be accomplished in a straightforward manner by choosing an alternative $\hat{a} \in A$ that attains the maximum membership grade in D. Since this method ignores information concerning any of the other alternatives, it may not be desirable in all situations. When A is defined on \mathbb{R} , it is preferable to determine \hat{a} by an appropriate defuzzification method (Sec. 12.2).

Before discussing the various features of this fuzzy decision model and its possible modifications or extensions, let us illustrate how it works by two simple examples.

Example

Suppose that an individual needs to decide which of four possible jobs, a_1 , a_2 , a_3 , a_4 , to choose. His or her goal is to choose a job that offers a high salary under the constraints that the job is interesting and within close driving distance. In this case, $A = \{a_1, a_2, a_3, a_4\}$, and the fuzzy sets involved represent the concepts of high salary, interesting job, and close driving distance. These concepts are highly subjective and context-dependent, and must be defined by the individual in a given context. The goal is expressed in monetary terms, independent of the jobs available. Hence, according to our notation, we denote the fuzzy set expressing the goal by G'. A possible definition of G' is given in Fig. 15.1a, where we assume, for convenience, that the underlying universal set is \mathbb{R}^+ . To express the goal in terms of set A, we need a function g: $A \to \mathbb{R}^+$, which assigns to each job the respective salary. Assume the following assignments:

CLASS: IIIB.Sc MATHEMATICS-A

5-A COURSE NAME:FUZZY SETS AND ITS APPLICATIONS

COURSE CODE:15MMU604B UNIT

UNIT:V(Fuzzy decision making) BATCH-2017-2018

FUZZY RANKING METHODS

In many fuzzy decision problems, the final scores of alternatives are represented in terms of fuzzy numbers. In order to express a crisp preference of alternatives, we need a method for constructing a crisp total ordering from fuzzy numbers. Unfortunately, the lattice of fuzzy numbers, $\langle \mathcal{R}, \text{MIN}, \text{MAX} \rangle$, is not linearly ordered, as discussed in Sec. 4.5. Thus, some fuzzy numbers are not directly comparable.

Figure 15.4 Maximizing decisions in Example 15.5 for different initial states z^0 .

Numerous methods for total ordering of fuzzy numbers have been suggested in the literature. Each method appears to have some advantages as well as disadvantages. In the context of each application, some methods seem more appropriate than others. However, the issue of choosing a proper ordering method in a given context is still a subject of active research. To illustrate the problem of total ordering of fuzzy numbers, we describe three simple methods and illustrate them by examples.

The first method is based upon defining the Hamming distance on the set \mathcal{R} of all fuzzy numbers. For any given fuzzy numbers A and B, the Hamming distance, d(A, B), is defined by the formula

CLASS: IIIB.Sc MATHEMATICS-A COURSE NAME:FUZZY SETS AND

ITS APPLICATIONS

COURSE CODE:15MMU604B UNIT:V(Fuzzy decision making) BATCH-2017-2018

$$d(A, B) = \int_{\mathbb{R}} |A(x) - B(x)| dx. \qquad (15.16)$$

have been suggested in the literature. A simple variation of this methods proceeds as follows. Given fuzzy numbers A and B to be compared, we select a particular value of $\alpha \in [0, 1]$ and determine the α -cuts ${}^{\alpha}A = [a_1, a_2]$ and ${}^{\alpha}B = [b_1, b_2]$. Then, we define

 $A \leq B$ if $a_2 \leq b_2$.

This definition is, of course, dependent on the chosen value of α . It is usually required that $\alpha > 0.5$. More sophisticated methods based on α -cuts, such as the one developed by Mabuchi [1988], aggregate appropriately defined degrees expressing the dominance of one fuzzy number over the other one for all α -cuts.

The third method is based on the extension principle. This method can be employed for ordering several fuzzy numbers, say A_1, A_2, \ldots, A_n . The basic idea is to construct a fuzzy set P on $\{A_1, A_2, \ldots, A_n\}$, called a *priority set*, such as $P(A_i)$ is the degree to which A_i is ranked as the greatest fuzzy number. Using the extension principle, P is defined for each $i \in \mathbb{N}_n$ by the formula

$$P(A_i) = \sup\min_{k \in \mathbf{N}_*} A_k(r_k), \tag{15.17}$$

where the supremum is taken over all vectors $(r_1, r_2, ..., r_n) \in \mathbb{R}^n$ such that $r_i \ge r_j$ for all $j \in \mathbb{N}_n$.

Example 15.6

In this example, we illustrate and compare the three fuzzy ranking methods. Let A and B be fuzzy numbers whose triangular-type membership functions are given in Fig. 15.5a. Then, MAX (A, B) is the fuzzy number whose membership function is indicated in the figure in bold. We can see that the Hamming distances d(MAX(A, B), A) and d(MAX(A, B), B) are expressed by the areas in the figure that are hatched horizontally and vertically, respectively. Using (15.16), we obtain

$$d(MAX (A, B), A) = \int_{1.5}^{2} [x - 1 - \frac{x}{3}] dx + \int_{2}^{2.25} [-x + 3 - \frac{x}{3}] dx$$
$$+ \int_{2.25}^{3} [\frac{x}{3} + x - 3] dx + \int_{3}^{4} [4 - x] dx$$
$$= \frac{1}{12} + \frac{1}{24} + \frac{3}{8} + \frac{1}{2} = 1$$

CLASS: IIIB.Sc MATHEMATICS-A COURSE NAME:FUZZY SETS AND ITS APPLICATIONS

COURSE CODE:15MMU604B UNIT:V(Fuzzy decision making) BATCH-2017-2018

$$d(\text{MAX}(A, B), B) = \int_0^{1.5} \frac{x}{3} dx - \int_1^{1.5} [x - 1] dx$$
$$= \frac{3}{8} - \frac{1}{8} = 0.25.$$

Since d(MAX(A, B), A) > d(MAX(A, B), B), we may conclude that, according to the first ranking method, $A \leq B$. When applying the second method to the same example, we can easily find, from Fig. 15.5a, that $A \leq B$ for any $\alpha \in [0, 1]$. According to the third method, we construct the priority fuzzy set P on $\{A, B\}$ as follows:

$$P(A) = \sup_{\substack{r_1 \ge r_2 \\ r_2 \ge r_1}} \min[A(r_1), B(r_2)] = 0.75,$$

$$P(B) = \sup_{\substack{r_2 \ge r_1 \\ r_2 \ge r_1}} \min[A(r_1), B(r_2)] = 1.$$

Figure 15.5 Ranking of fuzzy members (Example 15.6).

Hence, again, we conclude that $A \leq B$.

Consider now the fuzzy numbers A and B whose membership functions are given in Fig. 15.5b. The horizontally and vertically hatched areas have the same meaning as before. We can easily find that

$$d(MAX(A, B), A) = 1, d(MAX(A, B), B) = 0.25.$$

Hence, $A \leq B$ according to the first method. The second method gives the same result only for $\alpha > 0.5$. This shows that the method is inconsistent. According to the third method, we again obtain P(A) = 0.75 and P(B) = 1; hence, $A \leq B$.

FUZZY LINEAR PROGRAMMING

The classical linear programming problem is to find the minimum or maximum values of a linear function under constraints represented by linear inequalities or equations. The most typical linear programming problem is:

KARPAGAM ACADEMY OF HIGHER EDUCATION					
CLASS: IIIB.Sc MATHEMATIC	CS-A COURSE NAME:FUZZY SETS AND				
ITS APPLICATIONS					
COURSE CODE:15MMU604B	UNIT:V(Fuzzy decision making) BATCH-2017-2018				
Minimize (or maximize) $c_1x_1 + c_2x_2 + \ldots + c_nx_n$					

Subject to $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \leq b_1$ $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \leq b_2$ \ldots $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \leq b_m$ $x_1, x_2, \ldots, x_n \geq 0.$

The function to be minimized (or maximized) is called an objective function; let us denote it by z. The numbers c_i $(i \in N_n)$ are called cost coefficients, and the vector $\mathbf{c} = \langle c_1, c_2, \ldots, c_n \rangle$ is called a *cost vector*. The matrix $\mathbf{A} = [a_{ij}]$, where $i \in N_m$ and $j \in N_n$, is called a *constraint matrix*, and the vector $\mathbf{b} = \langle b_1, b_2, \ldots, b_m \rangle^T$ is called a *right-hand-side vector*. Using this notation, the formulation of the problem can be simplified as

where $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$ is a vector of variables, and s.t. stands for "subject to." The set of vectors \mathbf{x} that satisfy all given constraints is called a *feasible set*. As is well known, many practical problems can be formulated as linear programming problems.

Example 15.9

Consider the following fuzzy linear programming problem:

$$\begin{array}{ll} \max & z = 5x_1 + 4x_2 \\ \text{s.t.} & \langle 4, \, 2, \, 1 \rangle x_1 + \langle 5, \, 3, \, 1 \rangle x_2 \leq \langle 24, \, 5, \, 8 \rangle \\ & \langle 4, \, 1, \, 2 \rangle x_1 + \langle 1, \, .5, \, 1 \rangle x_2 \leq \langle 12, \, 6, \, 3 \rangle \\ & x_1, \, x_2 \geq 0. \end{array}$$

We can rewrite it as

$$\begin{array}{ll} \max & z = 5x_1 + 4x_2 \\ \text{s.t.} & 4x_1 + 5x_2 \leq 24 \end{array}$$

CLASS: IIIB.Sc MATHEMATICS-A COURSE NAME:FUZZY SETS AND ITS APPLICATIONS

COURSE CODE:15MMU604B UNIT:V(Fuzzy decision making) BATCH-2017-2018

 $4x_{1} + x_{2} \le 12$ $2x_{1} + 2x_{2} \le 19$ $3x_{t} + 0.5x_{2} \le 6$ $5x_{1} + 6x_{2} \le 32$ $6x_{t} + 2x_{2} \le 15$ $x_{1}, x_{2} \ge 0.$

Solving this problem, we obtain $\hat{x}_1 = 1.5$, $\hat{x}_2 = 3$, $\hat{z} = 19.5$.

Notice that if we defuzzified the fuzzy numbers in the constraints of the original problem by the maximum method, we would obtain another classical linear programming problem:

$$\max \ z = 5x_1 + 4x_2$$

s.t. $4x_1 + 5x_2 \le 24$
 $4x_1 + x_2 \le 12$
 $x_1, x_2 \ge 0.$

We can see that this is a classical linear programming problem with a smaller number of constraints than the one converted from a fuzzy linear programming problem. Therefore, fuzziness in (15.21) results in stronger constraints, while fuzziness in (15.20) results in weaker constraints.

CLASS: IIIB.Sc MATHEMATICS-A

5-A COURSE NAME:FUZZY SETS AND ITS APPLICATIONS

COURSE CODE:15MMU604B UNIT:V(Fuzzy decision making) BATCH-2017-2018

POSSIBLE QUESTIONS

PART-B (5 x 8 =40 Marks)

Answer all the questions

- 1. Describe about fuzzy decision making.
- 2. Describe about individual decision making with example.
- 3. Describe about fuzzy ranking methods with example.
- 4. Discuss the types of fuzzy Decision making.
- 5. Discuss about fuzzy linear programming.
- 6. Write short notes on multi criteria fuzzy decision making.
- 7. Write about decision making in fuzzy environment.
- 8. Describe about fuzzy multiple objective decision making.
- 9. Discuss about fuzzy multiple attribute decision making.
- 10. How to rank the fuzzy numbers by distance minimization method.

CLASS: IIIB.Sc MATHEMATICS-A COURSE NAME:FUZZY SETS AND ITS APPLICATIONS

COURSE CODE: 15MMU604B UNIT: I(Crisp and fuzzy sets) BATCH-2017-2018

<u>UNIT-I</u>

SYLLABUS

Crisp sets and fuzzy sets – basic concept of fuzzy set – fuzzy logic-operations on fuzzy sets-general discussion fuzzy complents.

Research on the theory of fuzzy sets has been growing steadily since the inception of the theory in the mid-1960s. The body of concepts and results pertaining to the theory is now quite impressive. Research on a broad variety of applications has also been very active and has produced results that are perhaps even more impressive. In this book, we present an introduction to the major developments of the theory as well as to some of the most successful applications of the theory.

Crisp Sets:

The crisp set is defined in such a way as to dichotomize the individuals in some given universe of discourse into two groups: members (those that certainly belong in the set) and nonmembers (those that certainly do not). A sharp, unambiguous distinction exists between the members and nonmembers of the set. However, many classification concepts we commonly employ and express in natural language describe sets that do not exhibit this characteristic. Examples are the set of tall people, expensive cars, highly contagious diseases, close driving distances, modest profits, numbers much greater than one, or sunny days. We perceive these sets as having imprecise boundaries that facilitate gradual transitions from membership to nonmembership and vice versa.

Fuzzy Sets:

As defined in the previous section, the characteristic function of a crisp set assigns a value of either 1 or 0 to each individual in the universal set, thereby discriminating between members and nonmembers of the crisp set under consideration. This function can be generalized such that the values assigned to the elements of the universal set fall within a specified range and indicate the membership grade of these elements in the set in question. Larger values denote higher degrees of set membership. Such a function is called a *membership function*, and the set defined by it a *fuzzy set*.

The most commonly used range of values of membership functions is the unit interval [0, 1]. In this case, each membership function maps elements of a given *universal set X*, which is *always a crisp set*, into real numbers in [0, 1].

CLASS: IIIB.Sc MATHEMATICS-A COURSE NAME:FUZZY SETS AND

ITS APPLICATIONS

COURSE CODE: 15MMU604B UNIT: I(Crisp and fuzzy sets) BATCH-2017-2018

Two distinct notations are most commonly employed in the literature to denote membership functions. In one of them, the membership function of a fuzzy set A is denoted by μ_A ; that is,

 $\mu_A: X \to [0, 1].$

In the other one, the function is denoted by A and has, of course, the same form:

 $A: X \to [0, 1].$

FUZZY SETS: BASIC CONCEPTS

In this section, we introduce some basic concepts and terminology of fuzzy sets. To illustrate the concepts, we consider three fuzzy sets that represent the concepts of a young, middle-aged, and old person. A reasonable expression of these concepts by trapezoidal membership functions A_1 , A_2 , and A_3 is shown in Fig. 1.7. These functions are defined on the interval [0, 80] as follows:

$A_1(x) =$	$ \begin{bmatrix} 1 \\ (35 - x)/15 \\ 0 \end{bmatrix} $	when $x \le 20$ when $20 < x < 35$ when $x \ge 35$
$A_2(x) =$	$ \begin{array}{c} 0 \\ (x - 20)/15 \\ (60 - x)/15 \\ 1 \end{array} $	when either $x \le 20$ or ≥ 60 when $20 < x < 35$ when $45 < x < 60$ when $35 \le x \le 45$
$A_3(x) =$	$ \begin{bmatrix} 0 \\ (x - 45)/15 \\ 1 \end{bmatrix} $	when $x \le 45$ when $45 < x < 60$ when $x \ge 60$

A possible discrete approximation, D_2 , of function A_2 , is also shown in Fig. 1.7; its explicit definition is given in Table 1.2. Such approximations are important because they are typical in computer representations of fuzzy sets.

One of the most important concepts of fuzzy sets is the concept of an α -cut and its variant, a strong α -cut. Given a fuzzy set A defined on X and any number $\alpha \in [0, 1]$, the α -cut, αA , and the strong α -cut, α^+A , are the crisp sets

CLASS: IIIB.Sc MATHEMATICS-A COURSE NAME:FUZZY SETS AND

ITS APPLICATIONS

COURSE CODE: 15MMU604B UNIT: I(Crisp and fuzzy sets) BATCH-2017-2018

${}^{\alpha}\!A = \{x | A(x) \ge \alpha\}$

That is, the α -cut (or the strong α -cut) of a fuzzy set A is the crisp set ${}^{\alpha}A$ (or the crisp set ${}^{\alpha+}A$) that contains all the elements of the universal set X whose membership grades in A are greater than or equal to (or only greater than) the specified value of α .

As an example, the following is a complete characterization of all α -cuts and all strong α cuts for the fuzzy sets A_1 , A_2 , A_3 given in Fig. 1.7:

Figure 1.7 Membership functions representing the concepts of a young, middle-aged, and old person. Shown discrete approximation D_2 of A_2 is defined numerically in Table 1.2.

CLASS: IIIB.Sc MATHEMATICS-A COURSE NAME: FUZZY SETS AND

ITS APPLICATIONS

COURSE CODE: 15MMU604B UNIT: I(Crisp and fuzzy sets) BATCH-2017-2018

x	$D_2(x)$
x ¢ {22, 24,, 58}	0.00
$x \in \{22, 58\}$	0.13
$x \in \{24, 56\}$	0.27
$x \in \{26, 54\}$	0.40
$x \in \{28, 52\}$	0.53
$x \in \{30, 50\}$	0.67.
$x \in \{32, 48\}$	0.80
$x \in \{34, 46\}$	0.93
$x \in \{36, 38, \dots, 44\}$	1.00

TABLE 1.2 DISCRETE APPROXIMATION OF MEMBERSHIP FUNCTION A₂ (FIG. 1.7) BY FUNCTION D2 OF THE FORM: $D_2: \{0, 2, 4, \dots, 80\} \rightarrow [0, 1]$

 ${}^{0}A_{1} = {}^{0}A_{2} = {}^{0}A_{3} = [0, 80] = X;$ ${}^{\alpha}A_1 = [0, 35 - 15\alpha], {}^{\alpha}A_2 = [15\alpha + 20, 60 - 15\alpha], {}^{\alpha}A_3 = [15\alpha + 45, 80]$ for all $\alpha \in (0, 1];$ ${}^{\alpha+}A_1 = (0, 35 - 15\alpha), {}^{\alpha+}A_2 = (15\alpha + 20, 60 - 15\alpha), {}^{\alpha+}A_3 = (15\alpha + 45, 80)$ for all $\alpha \in [0, 1);$ ${}^{1+}A_1 = {}^{1+}A_2 = {}^{1+}A_3 = \emptyset.$

The set of all levels $\alpha \in [0, 1]$ that represent distinct α -cuts of a given fuzzy set A is called a *level set* of A. Formally,

 $\Lambda(A) = \{ \alpha | A(x) = \alpha \text{ for some } x \in X \},\$

where Λ denotes the level set of fuzzy set A defined on X. For our examples, we have:

 $\Lambda(A_1) = \Lambda(A_2) = \Lambda(A_3) = [0, 1]$, and $\Lambda(D_2) = \{0, 0.13, 0.27, 0.4, 0.53, 0.67, 0.8, 0.93, 1\}.$

CLASS: IIIB.Sc MATHEMATICS-A

5-A COURSE NAME:FUZZY SETS AND ITS APPLICATIONS

COURSE CODE: 15MMU604B UNIT: I(Crisp and fuzzy sets) BATCH-2017-2018

Fuzzy Logic

CLASSICAL LOGIC:

Logic is the study of the methods and principles of *reasoning* in all its possible forms. Classical logic deals with *propositions* that are required to be either *true* or *false*. Each proposition has its opposite, which is usually called a *negation* of the proposition. A proposition and its negation are required to assume opposite truth values.

Logic formulas are then defined recursively as follows:

1. if v denotes a logic variable, then v and \overline{v} are logic formulas;

2. if a and b denote logic formulas, then $a \wedge b$ and $a \vee b$ are also logic formulas;

3. the only logic formulas are those defined by the previous two rules.

Various forms of tautologies can be used for making deductive inferences. They are referred to as *inference rules*. Examples of some tautologies frequently used as inference rules are

$(a \land (a \Rightarrow b)) \Rightarrow b (modus ponens),$ $(\overline{b} \land (a \Rightarrow b)) \Rightarrow \overline{a} (modus tollens),$ $((a \Rightarrow b) \land (b \Rightarrow c)) \Rightarrow (a \Rightarrow c) (hypothetical syllogism).$

Operations on Classical Sets

Let A and B be two sets on the universe X. The union between the two sets, denoted $A \cup B$, represents all those elements in the universe that reside in (or belong to) the set A, the set B, or both sets A and B. (This operation is also called the *logical or*; another form of the union is the *exclusive or* operation. The *exclusive or* will be described in Chapter 5.) The intersection of the two sets, denoted $A \cap B$, represents all those elements in the universe X that simultaneously reside in (or belong to) both sets A and B. The complement of a set A, denoted \overline{A} , is defined as the collection of all elements in the universe that do not reside in the set A. The difference of a set A with respect to B, denoted $A \mid B$, is defined as the collection of all elements in A and that do not reside in B simultaneously. These operations are shown below in set-theoretic terms.

KARPAGAM ACADEMY OF HIGHER EDUCATIONCLASS: IIIB.Sc MATHEMATICS-ACOURSE NAME:FUZZY SETS ANDITS APPLICATIONSITS APPLICATIONSCOURSE CODE: 15MMU604BUNIT: I(Crisp and fuzzy sets)BATCH-2017-2018Union $\mu_{A\cup B}(x) = \mu_{A}(x) \lor \mu_{B}(x)$ Intersection $\mu_{A\cap B}(x) = \mu_{A}(x) \land \mu_{B}(x)$ Complement $\mu_{A\cap B}(x) = 1 - \mu_{A}(x)$

Any fuzzy set A defined on a universe X is a subset of that universe. Also by definition just as with classical sets, the membership value of any element x in the null set \emptyset is 0

FUZZY COMPLEMENTS

Let A be a fuzzy set on X. Then, by definition, A(x) is interpreted as the degree to which x belongs to A. Let cA denote a fuzzy complement of A of type c. Then, cA(x) may be interpreted not only as the degree to which x belongs to cA, but also as the degree to which x does not belong to A. Similarly, A(x) may also be interpreted as the degree to which x does not belong to cA.

As a notational convention, let a complement cA be defined by a function

$c:[0,1]\rightarrow [0,1],$

which assigns a value c(A(x)) to each membership grade A(x) of any given fuzzy set A. The value c(A(x)) is interpreted as the value of cA(x). That is,

c(A(x)) = cA(x)

To produce meaningful fuzzy complements, function c must satisfy at least the following two axiomatic requirements:

Axiom c1. c(0) = 1 and c(1) = 0 (boundary conditions).

Axiom c2. For all $a, b \in [0, 1]$, if $a \le b$, then $c(a) \ge c(b)$ (monotonicity).

In most cases of practical significance, it is desirable to consider various additional requirements for fuzzy complements. Each of them reduces the general class of fuzzy complements to a special subclass. Two of the most desirable requirements, which are usually listed in the literature among axioms of fuzzy complements, are the following:

Axiom c3. c is a continuous function.

Axiom c4. c is *involutive*, which means that c(c(a)) = a for each $a \in [0, 1]$.
CLASS: IIIB.Sc MATHEMATICS-A

ITS APPLICATIONS

COURSE CODE: 15MMU604B UNIT: I(Crisp and fuzzy sets) BATCH-2017-2018

Theorem 3.2. Every fuzzy complement has at most one equilibrium.

Proof: Let c be an arbitrary fuzzy complement. An equilibrium of c is a solution of the equation

$$c(a)-a\approx 0,$$

where $a \in [0, 1]$. We can demonstrate that any equation c(a) - a = b, where b is a real constant, must have at most one solution, thus proving the theorem. In order to do so, we assume that a_1 and a_2 are two different solutions of the equation c(a) - a = b such that $a_1 < a_2$. Then, since $c(a_1) - a_1 = b$ and $c(a_2) - a_2 = b$, we get

$$c(a_1) - a_1 = c(a_2) - a_2. \tag{3.7}$$

COURSE NAME: FUZZY SETS AND

However, because c is monotonic nonincreasing (by Axiom c2), $c(a_1) \ge c(a_2)$ and, since $a_1 < a_2$,

$$c(a_1) - a_1 > c(a_2) - a_2.$$

This inequality contradicts (3.7), thus demonstrating that the equation must have at most one solution.

CLASS: IIIB.Sc MATHEMATICS-A

COURSE NAME: FUZZY SETS AND

ITS APPLICATIONS

COURSE CODE: 15MMU604B UNIT: I(Crisp and fuzzy sets) BATCH-2017-2018

POSSIBLE QUESTIONS

PART-B (5 x 8 =40 Marks)

Answer all the questions

- 1. Explain operations of fuzzy sets
- 2. Prove that every fuzzy complement has at most one equilibrium
- 3. Prove that for each $a \in [0,1]$, $d_a = c(a)$ if and only if c(c(a)) = a that is which the complement is involutive.
- 4. Explain briefly about fuzzy complement.
- 5. If 'c' is a continuous fuzzy complement then prove that 'c' has a unique equilibrium.
- 6. Write briefly about Boolean algebra.
- 7. The fuzzy complement c has an equilibrium e_c , which is unique, then prove that $a \le c(a)$ if and only if $a \le e_c$, $a \ge c(a)$ and $a \ge e_c$.
- 8. Explain extension principle of fuzzy sets.
- 9. Let the interval X = [0,10] by the membership rate function $A(x) = \frac{x}{x+2}$ Find (i) \overline{A}
 - (ii) α cuts and strong α cuts for α = 0.2, 0.5, 0.8, 1
- 10. If a complement 'c' has an equilibrium e_c , then prove that $d_{e'_c} = e_c$

CLASS: IIIB.Sc MATHEMATICS-A

COURSE NAME: FUZZY SETS AND

ITS APPLICATIONS

COURSE CODE: 15MMU604B UNIT: II(Fuzzy union and intersections) BATCH-2017-2018

UNIT-II

SYLLABUS

Fuzzy union, fuzzy intersection, combinations operations.

Fuzzy unions

Definition

A union of two fuzzy sets A and B is given by a function of the form

 $u: [0,1] \times [0,1] \rightarrow [0,1].$

A value is assigned to a pair of membership values A(x)and B(x) of an element x of the universal set X. It represents membership of x to the union of A and B:

$$(A \cup B)(x) = u(A(x), B(x)), \quad \text{for } x \in X.$$

Note:

- Intuitive requirements to be fulfilled by a function u to qualify as a union of fuzzy sets are those of well known and extensively studied t-conorms (triangular conorms); the names fuzzy union and t-conorm are therefore used interchangeably in the literature.
- The value (A ∪ B)(x) does not depend on x, but only on A(x) and B(x).

Fuzzy unions Axiomatic requirements

For all *a*, *b*, *d* ∈ [0, 1],

Ax u1. u(a,0) = a. boundary condition

Ax u2. $b \le d$ implies $u(a, b) \le u(a, d)$. monotonicity

Ax u3. u(a, b) = u(b, a). commutativity

Ax u4. u(a, u(b, d)) = u(u(a, b), d). associativity

Axioms **u1** - **u4** are called **axiomatic skeleton for fuzzy unions**. They differ from the axiomatic skeleton of fuzzy intersections only in boundary condition.

For crisp sets, u behaves like a classical (crisp) union.

COURSE NAME: FUZZY SETS AND

CLASS: IIIB.Sc MATHEMATICS-A

ITS APPLICATIONS

COURSE CODE: 15MMU604B UNIT: II(Fuzzy union and intersections) BATCH-2017-2018

Fuzzy unions

Additional (optional) requirements

For all *a*, *b*, *d* ∈ [0, 1],

Ax u5. u is a continuous function. continuity

Ax u6. $u(a, a) \ge a$. superidempotency

Ax u7. $a_1 < a_2$ and $b_1 < b_2$ implies $u(a_1, b_1) < u(a_2, b_2)$. strict monotonicity

Note:

Requirements u5 - u7 are analogous to Axioms i5 - i7. Superidempotency is a weaker requirement than idempotency. A continuous superidempotent *t*-conorm is called Archimedean *t*-conorm.

The standard fuzzy union, $u(a, b) = \max[a, b]$, is the only idempotent *t*-conorm.

Fuzzy unions

Examples of t-conorms frequently used

For all a, b ∈ [0, 1], max[a, b] ≤ u(a, b) ≤ u_{max}(a, b).

COURSE NAME: FUZZY SETS AND

CLASS: IIIB.Sc MATHEMATICS-A

ITS APPLICATIONS

COURSE CODE: 15MMU604B UNIT: II(Fuzzy union and intersections) BATCH-2017-2018

Fuzzy unions

How to generate t-conorms

Theorem

(Characterization Theorem of t-conorms) Let u be a binary operation on the unit interval. Then, u is an Archimedean t-conorm iff there exists an increasing generator g such that

$$u(a,b) = g^{(-1)}(g(a) + g(b)),$$
 for $a, b \in [0,1].$

Example: A class of increasing generators $f_{\omega}(a) = a^{\omega}, \omega > 0$ generates a Yager class of *t*-conorms

$$u_{\omega}(a,b) = \min[1,(a^{\omega}+b^{\omega})^{\frac{1}{\omega}}], \quad \omega > 0.$$

It can be proved that $\max[a, b] \le u_{\omega}(a, b) \le u_{\max}(a, b)$.

Fuzzy intersections

An intersection of two fuzzy sets A and B is given by a function of the form

$$i: [0,1] \times [0,1] \rightarrow [0,1].$$

A value is assigned to a pair of membership values A(x)and B(x) of an element x of the universal set X. It represents membership of x to the intersection of A and B:

$$(A \cap B)(x) = i(A(x), B(x)), \quad \text{for } x \in X.$$

Note:

- Intuitive requirements to be fulfilled by a function *i* to qualify as an intersection of fuzzy sets are those of well known and extensively studied *t*-norms (triangular norms); the names *fuzzy intersection* and *t*-norm are therefore used interchangeably in the literature.
- The value (A ∩ B)(x) does not depend on x, but only on A(x) and B(x).

Fuzzy intersections Axiomatic requirements

For all $a, b, d \in [0, 1]$,

Ax i1. i(a, 1) = a boundary condition Ax i2. $b \le d$ implies $i(a, b) \le i(a, d)$. monotonicity Ax i3. i(a, b) = i(b, a). commutativity Ax i4. i(a, i(b, d)) = i(i(a, b), d). associativity Axioms i1 - i4 are called axiomatic skeleton for fuzzy intersections.

If the sets are crisp, *i* becomes the classical (crisp) intersection.

COURSE NAME: FUZZY SETS AND

CLASS: IIIB.Sc MATHEMATICS-A

ITS APPLICATIONS

COURSE CODE: 15MMU604B UNIT: II(Fuzzy union and intersections) BATCH-2017-2018

Fuzzy intersections

Additional (optional) requirements

For all $a, b, d \in [0, 1]$,

Ax i5. i is a continuous function. continuity

Ax i6. i(a, a) < a. subidempotency

Ax i7. $a_1 < a_2$ and $b_1 < b_2$ implies $i(a_1, b_1) < i(a_2, b_2)$. strict monotonicity

Note:

Subidempotency is a weaker requirement than idempotency, i(a, a) = a. A continuous subidempotent t-norm is called Archimedean t-norm The standard fuzzy intersection, $i(a, b) = \min[a, b]$, is the only idempotent t-norm.

if b = 1if a = 10 otherwise

- **Bounded difference** $i(a, b) = \max[0, a + b - 1]$
- Algebraic product i(a,b) = ab
- Standard intersection $i(a,b) = \min[a,b]$

Fuzzy intersections Properties

- $i_{\min}(a, b) \le \max(0, a + b 1) \le ab \le \min(a, b)$.
- For all $a, b \in [0, 1]$, $i_{\min}(a, b) \le i(a, b) \le \min[a, b]$.

Fuzzy intersections How to generate t-norms

Theorem

(Characterization Theorem of t-norms) Let i be a binary operation on the unit interval. Then, i is an Archimedean t-norm iff there exists a decreasing generator f such that

 $i(a,b) = f^{(-1)}(f(a) + f(b)),$ for $a, b \in [0,1].$

COURSE NAME: FUZZY SETS AND

CLASS: IIIB.Sc MATHEMATICS-A

ITS APPLICATIONS

COURSE CODE: 15MMU604B UNIT: II(Fuzzy union and intersections) BATCH-2017-2018

Example: A class of decreasing generators $f_{\omega}(a) = (1 - a)^{\omega}, \ \omega > 0$ generates a Yager class of *t*-norms

 $i_{\omega}(a,b) = 1 - \min[1, ((1-a)^{\omega} + (1-b)^{\omega})^{\frac{1}{\omega}}], \quad \omega > 0.$

It can be proved that $i_{\min}(a, b) \leq i_{\omega}(a, b) \leq \min[a, b]$.

Decision as a fuzzy set

Intersection: No positive compensation (trade-off) between the memberships of the fuzzy sets observed.

Union: Full compensation of lower degrees of membership by the maximal membership.

In reality of decision making, rarely either happens.

(non-verbal) "merging connectives" → (language) connectives {'and', 'or',...,}.

Aggregation operations called compensatory and are needed to model fuzzy sets representing to, e.g., managerial decisions.

Definitions:

The membership function $\mu_{\tilde{C}}(x)$ of the *intersection* $\tilde{C} = \tilde{A} \cap \tilde{B}$ is pointwise defined by

$$\mu_{\tilde{C}}(x) = \min \{ \mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x) \}, x \in X$$

The membership function $\mu_{\tilde{D}}(x)$ of the union $\tilde{D} = \tilde{A} \cup \tilde{B}$ is pointwise defined by

 $\mu_{\bar{D}}(x) = \max \{\mu_{\bar{A}}(x), \mu_{\bar{B}}(x)\}, x \in X$

The membership function of the *complement* of a normalized fuzzy set A, $\mu_{CA}(x)$ is defined by

$$\mu_{\mathbb{C}\tilde{A}}(x) = 1 - \mu_{\tilde{A}}(x), \quad x \in X$$

Exmple:

Let \tilde{A} be the fuzzy set "comfortable type of house for a four-person family" from example 2-1a and \tilde{B} be the fuzzy set "large type of house" defined as

$$\tilde{B} = \{ (3, .2), (4, .4), (5, .6), (6, .8), (7, 1), (8, 1) \}$$

CLASS: IIIB.Sc MATHEMATICS-A COURSE NAME:FUZZY SETS AND ITS APPLICATIONS COURSE CODE: 15MMU604B UNIT: II(Fuzzy union and intersections) BATCH-2017-2018

The intersection $\tilde{C} = \tilde{A} \cap \tilde{B}$ is then

$$\tilde{C} = \{ (3, .2), (4, .4), (5, .6), (6, .3) \}$$

The union $\tilde{D} = \tilde{A} \cup \tilde{B}$ is

 $\tilde{D} = \{ (1, .2), (2, .5), (3, .8), (4, 1), (5, .7), (6, .8), (7, 1), (8, 1) \}$

The complement $\mathbb{C}\tilde{B}$, which might be interpreted as "not large type of hous is

 $\mathbb{C}\tilde{B} = \{(1, 1), (2, 1), (3, .8), (4, .6), (5, .4), (6, .2), (9, 1), (10, 1)\}$

Fig: Union and intersection on fuzzy sets

CLASS: IIIB.Sc MATHEMATICS-A COURSE NAME:FUZZY SETS AND

ITS APPLICATIONS

COURSE CODE: 15MMU604B UNIT: II(Fuzzy union and intersections) BATCH-2017-2018

POSSIBLE QUESTIONS

PART-B (5 x 8 =40 Marks)

Answer all the questions

- 1. Show that $u(a, b) \ge \max(a, b)$ if for all $a, b \in [0, 1]$
- 2. Prove that $u(a, b) = \max(a, b)$ is the only continuous and idempotent fuzzy set union.
- 3. Prove that $\lim_{w \to \infty} i_w = \lim_{w \to \infty} \left[1 \min\left(1, \left[(1-a)^w + (1-b)^w \right]^{\frac{1}{w}} \right) \right]$
- 4. If for all $a, b \in [0,1]$ then prove that $i(a, b) \ge i_{min}(a, b)$
- 5. Prove that $\lim_{w \to \infty} \min \left[1, (a^w + b^w)^{\frac{1}{w}} \right] = \max(a, b)$

6. prove that the standard fuzzy intersection is the only idempotent t – norms.

- 7. Show that for all $a, b \in [0,1]$ then $i(a, b) \le \min(a, b)$
- 8. Prove that fuzzy set operation of union intersection and continuous complement that satisfies the law of excluded middle and the law of contradiction are not idempotent or distributive
- 9. Show that $u(a, b) \le u_{max}(a, b)$ if for all $a, b \in [0,1]$
- 10. explain about fuzzy union and intersection.

CLASS: IIIB.Sc MATHEMATICS-A COURSE NAME:FUZZY SETS AND

ITS APPLICATIONS

 COURSE CODE: 15MMU604B
 UNIT: III(Fuzzy relations)
 BATCH-2017-2018

<u>UNIT-III</u>

SYLLABUS

Fuzzy relations and fuzzy graphs, fuzzy relation on sets and fuzzy sets, composition of fuzzy relations, properties of the min-max composition, fuzzy graphs, special fuzzy relations.

Fuzzy relations are fuzzy subsets of $X \times Y$, that is, mappings from $X \to Y$. They have been studied by a number of authors, in particular by Zadeh [1965, 1971], Kaufmann [1975], and Rosenfeld [1975]. Applications of fuzzy relations are widespread and important. We shall consider some of them and point to more possible uses at the end of this chapter. We shall exemplarily consider only binary relations. A generalization to *n*-ary relations is straightforward.

Fuzzy Relations on Sets and Fuzzy Sets

Fuzzy relations are fuzzy subsets of $X \times Y$, that is, mappings from $X \to Y$. They have been studied by a number of authors, in particular by Zadeh [1965, 1971], Kaufmann [1975], and Rosenfeld [1975]. Applications of fuzzy relations are widespread and important. We shall consider some of them and point to more possible uses at the end of this chapter. We shall exemplarily consider only binary relations. A generalization to *n*-ary relations is straightforward.

Definition

Let X, $Y \subseteq \mathbb{R}$ be universal sets; then

 $\tilde{R} = \{((x, y), \mu_{\tilde{R}}(x, y)) \mid (x, y) \in X \times Y\}$

is called a *fuzzy relation* on $X \times Y$.

Example

Let $X = Y = \mathbb{R}$ and \tilde{R} : = "considerably larger than." The membership function of the fuzzy relation, which is, of course, a fuzzy set on $X \times Y$, can then be

CLASS: IIIB.Sc MATHEMATICS-A COURSE NAME:FUZZY SETS AND ITS APPLICATIONS

COURSE CODE: 15MMU604B UNIT: III(Fuzzy relations) BATCH-2017-2018

$$\mu_{\bar{R}}(x, y) = \begin{cases} 0 & \text{for } x \le y \\ \frac{(x - y)}{10y} & \text{for } y < x \le 11y \\ 1 & \text{for } x > 11y \end{cases}$$

A different membership function for this relation could be

$$\mu_{\tilde{R}}(x, y) = \begin{cases} 0 & \text{for } x \le y \\ (1 + (y - x)^{-2})^{-1} & \text{for } x > y \end{cases}$$

For discrete supports, fuzzy relations can also be defined by matrixes.

FUZZY RELATIONS AND FUZZY GRAPHS

Definition 6–2

Let X, $Y \subseteq \mathbb{R}$ and $\tilde{A} = \{ (x, \mu_{\tilde{A}}(x)) \mid x \in X \},$ $\tilde{B} = \{ (y, \mu_{\tilde{B}}(y)) \mid y \in Y \}$ two fuzzy sets.

Then $\tilde{R} = \{ [(x, y), \mu_{\tilde{R}}(x, y)] \mid (x, y) \in X \times Y \}$ is a fuzzy relation on \tilde{A} and \tilde{B} if

$$\mu_{\tilde{R}}(x, y) \leq \mu_{\tilde{A}}(x), \ \forall (x, y) \in X \times Y$$

and

 $\mu_{\tilde{R}}(x, y) \leq \mu_{\tilde{B}}(y), \forall (x, y) \in X \times Y.$

Let \tilde{R} and \tilde{Z} be two fuzzy relations in the same product space. The union/intersection of \tilde{R} with \tilde{Z} is then defined by

$$\mu_{\tilde{R}\cup\tilde{Z}}(x, y) = \max \{ \mu_{\tilde{R}}(x, y), \mu_{\tilde{Z}}(x, y) \}, \quad (x, y) \in X \times Y \mu_{\tilde{R}\cap\tilde{Z}}(x, y) = \min \{ \mu_{\tilde{R}}(x, y), \mu_{\tilde{Z}}(x, y) \}, \quad (x, y) \in X \times Y$$

KARPAGAM	ACADEMY OF HIGHER ED	UCATION
CLASS: IIIB.Sc MATHEMATICS-	A COURSE	NAME:FUZZY SETS AND
Ι	TS APPLICATIONS	
COURSE CODE: 15MMU604B	UNIT: III(Fuzzy relations)	BATCH-2017-2018

Example

Let \tilde{R} and \tilde{Z} be the two fuzzy relations defined in example 6-2. The union of \tilde{R} and \tilde{Z} , which can be interpreted as "x considerably larger or very close to y," is then given by

The intersection of \tilde{R} and \tilde{Z} is represented by

	y_1	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄
x_1	.4	0	.1	.6
$\tilde{R} \cap \tilde{Z}$: x_2	0	.4	0	0
<i>x</i> ₃	.3	0	.7	.5

Definition

Let $\tilde{R} = \{ [(x, y), \mu_{\tilde{R}}(x, y)] | (x, y) \in X \times Y \}$ be a fuzzy binary relation. The *first projection* of \tilde{R} is then defined as

$$\tilde{R}^{(1)} = \{(x, \max \mu_{\tilde{R}}(x, y)) \mid (x, y) \in X \times Y\}$$

The second projection is defined as

$$\tilde{R}^{(2)} = \{ (y, \max_{x} \mu_{\tilde{R}}(x, y)) \mid (x, y) \in X \times Y \}$$

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: IIIB.Sc MATHEMATICS-A COURSE NAME:FUZZY SETS AND ITS APPLICATIONS COURSE CODE: 15MMU604B UNIT: III(Fuzzy relations) BATCH-2017-2018

and the total projection as

$$\tilde{R}^{(T)} = \max_{x} \max_{y} \{ \mu_{\tilde{R}}(x, y) \mid (x, y) \in X \times Y \}$$

Example

Let \tilde{R} be a fuzzy relation defined by the following relational matrix. The first, second, and total projections are then shown at the appropriate places below.

	y 1	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> 5	<i>y</i> ₆	$[\mu_{\tilde{R}^{(1)}}(x)]$
x_1	.1	.2	.4	.8	1	.8	1
\tilde{R} : x_2	.2	.4	.8	1	.8	.6	1
<i>x</i> ₃	.4	.8	1	.8	.4	.2	1
Second pr	ojectio	n:					
$[\mu_{\tilde{R}^{(2)}}(x$;)]						
	.4	4.8	1	1	1	.8	1 Total projection

Compositions of Fuzzy Relations

Fuzzy relations in different product spaces can be combined with each other by the operation "composition." Different versions of "composition" have been suggested, which differ in their results and also with respect to their mathematical properties. The max-min composition has become the best known and the most frequently used one. However, often the so-called max-product or maxaverage compositions lead to results that are more appealing.

Definition

Max-min composition: Let $\tilde{R}_1(x, y)$, $(x, y) \in X \times Y$ and $\tilde{R}_2(y, z)$, $(y, z) \in Y \times Z$ be two fuzzy relations. The max-min composition \tilde{R}_1 max-min \tilde{R}_2 is then the fuzzy set

First projection

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: IIIB.Sc MATHEMATICS-A COURSE NAME:FUZZY SETS AND ITS APPLICATIONS ITS APPLICATIONS COURSE CODE: 15MMU604B UNIT: III(Fuzzy relations) BATCH-2017-2018

 $\tilde{R}_1 \circ \tilde{R}_2 = \{ [(x, z), \max_{y} \{ \min \{ \mu_{\tilde{R}_1}(x, y), \mu_{\tilde{R}_2}(y, z) \} \}] | x \in X, y \in Y, z \in Z \}$ $\mu_{\tilde{R}_1 \circ \tilde{R}_2}$ is again the membership function of a fuzzy relation on fuzzy sets

Definition

Let \tilde{R}_1 and \tilde{R}_2 be defined as in definition 6–7. The max-* composition of \tilde{R}_1 and \tilde{R}_2 is then defined as

 $\tilde{R}_1 \stackrel{\circ}{*} \tilde{R}_2 = \{ [(x, z), \max_{y} (\mu_{\tilde{R}_1}(x, y) * \mu_{\tilde{R}_2}(y, z))] | x \in X, y \in Y, z \in Z \}$

If * is an associative operation that is monotonically nondecreasing in each argument, then the max-* composition corresponds essentially to the max-min

composition. Two special cases of the max-* composition are proposed in the next definition.

Properties of the Min-Max Composition

Associativity. The max-min composition is associative, that is,

$$(\tilde{R}_3 \circ \tilde{R}_2) \circ \tilde{R}_1 = \tilde{R}_3 \circ (\tilde{R}_2 \circ \tilde{R}_1).$$

Hence $\tilde{R}_1 \circ \tilde{R}_1 \circ \tilde{R}_1 = \tilde{R}_1^3$, and the third power of a fuzzy relation is defined. **Reflexivity**

Definition

Let \tilde{R} be a fuzzy relation in $X \times X$.

1. \tilde{R} is called *reflexive* [Zadeh 1971] if

$$\mu_{\bar{R}}(x, x) = 1 \ \forall x \in X$$

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: IIIB.Sc MATHEMATICS-A
 COURSE NAME:FUZZY SETS AND

 ITS APPLICATIONS

 COURSE CODE: 15MMU604B

 UNIT: III(Fuzzy relations)

 BATCH-2017-2018

2. \tilde{R} is called ε -reflective [Yeh 1975] if

 $\mu_{\hat{R}}(x, x) \geq \varepsilon \ \forall x \in X$

3. \tilde{R} is called weakly reflexive [Yeh 1975] if

 $\begin{array}{l} \mu_{\tilde{R}}(x,\,y) \leq \mu_{\tilde{R}}(x,\,x) \\ \mu_{\tilde{R}}(y,\,x) \leq \mu_{\tilde{R}}(x,\,x) \end{array} \forall x,\,y \in X. \end{array}$

Example

Let $X = \{x_1, x_2, x_3, x_4\}$ and $Y = \{y_1, y_2, y_3, y_4\}$. The following relation "y is close to x" is reflexive:

	y_1	<i>y</i> ₂	y_3	y_4
x_1	1	0	.2	.3
\tilde{R} : x_2	0	1	.1	1
<i>x</i> ₃	.2	.7	1	.4
<i>x</i> ₃	0	1	.4	1

If \tilde{R}_1 and \tilde{R}_2 are reflexive fuzzy relations, then the max-min composition $\tilde{R}_1 \circ \tilde{R}_2$ is also reflexive.

Symmetry

Definition

A fuzzy relation \tilde{R} is called *symmetric* if $\tilde{R}(x, y) = \tilde{R}(y, x) \ \forall x, y \in X$.

 KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: IIIB.Sc MATHEMATICS-A
 COURSE NAME:FUZZY SETS AND

 ITS APPLICATIONS
 ITS APPLICATIONS

 COURSE CODE: 15MMU604B
 UNIT: III(Fuzzy relations)
 BATCH-2017-2018

A relation is called *antisymmetric* if for $x \neq y$ either $\mu_{\hat{R}}(x, y) \neq \mu_{\hat{R}}(y, x)$ or $\mu_{\hat{R}}(x, y) = \mu_{\hat{R}}(y, x) = 0$ $\forall x, y \in X$ A relation is called *perfectly antisymmetric* if for $x \neq y$ wheney

A relation is called *perfectly antisymmetric* if for $x \neq y$ whenever $\mu_{\tilde{R}}(x, y) > 0$ then $\mu_{\tilde{R}}(y, x) = 0 \quad \forall x, y \in X$ *Example*

	x_1	х	2	x_3	<i>x</i> ₄	
x_1	.4	0		.1	.8	
\tilde{R}_1 : x_2	.8	1		0	0	
<i>x</i> ₃	0		.6	.7	0	
x_4	0		.2	0	0	
	<i>x</i> ₁	<i>x</i> ₂		<i>x</i> ₃	<i>x</i> ₄	
x_1	.4	0		.7	0	
\tilde{R}_2 : x_2	0	1		.9	.6	
x_3	.8	.4	1	.7	.4	
<i>x</i> ₄	0		t	0	0	
	<i>x</i> ₁	<i>x</i> ₂		x_3	<i>x</i> ₄	
x_1	.4	.8		.1	.8	
\tilde{R}_3 : x_2	.8	1		.0	.2	
x_3	.1	.6		.7	.1	
<i>x</i> ₄	0	.2		0	0	

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: IIIB.Sc MATHEMATICS-A COURSE NAME:FUZZY SETS AND ITS APPLICATIONS ITS APPLICATIONS COURSE CODE: 15MMU604B UNIT: III(Fuzzy relations) BATCH-2017-2018

 \tilde{R}_1 is a perfectly antisymmetric relation, while \tilde{R}_2 is an antisymmetric, but not perfectly antisymmetric relation. \tilde{R}_3 is a nonsymmetric relation, that is, there exist $x, y \in X$ with $\mu_{\tilde{R}}(x, y) \neq \mu_{\hat{R}}(y, x)$, which is not antisymmetric and therefore also not perfectly antisymmetric.

Remark

For max-min compositions, the following properties hold:

- 1. If \tilde{R}_1 is reflexive and \tilde{R}_2 is an arbitrary fuzzy relation, then $\tilde{R}_1 \circ \tilde{R}_2 \supseteq \tilde{R}_2$ and $\tilde{R}_2 \circ \tilde{R}_1 \supseteq \tilde{R}_2$.
- 2. If \tilde{R} is reflexive, then $\tilde{R} \subseteq \tilde{R} \circ \tilde{R}$.
- 3. If \tilde{R}_1 and \tilde{R}_2 are reflexive relations, so is $\tilde{R}_1 \circ \tilde{R}_2$.
- 4. If \tilde{R}_1 and \tilde{R}_2 are symmetric, then $\tilde{R}_1 \circ \tilde{R}_2$ is symmetric if $\tilde{R}_1 \circ \tilde{R}_2 = \tilde{R}_2 \circ \tilde{R}_1$.
- 5. If \tilde{R} is symmetric, so is each power of \tilde{R} .

Transitivity

Definition

A fuzzy relation \tilde{R} is called (max-min) transitive if

$$\tilde{R} \circ \tilde{R} \subseteq \tilde{R}$$

Remark

Combinations of the above properties give some interesting results for max-min compositions:

- 1. If \tilde{R} is symmetric and transitive, then $\mu_{\tilde{R}}(x, y) \leq \mu_{\tilde{R}}(x, x)$ for all $x, y \in X$.
- 2. If \tilde{R} is reflexive and transitive, then $\tilde{R} \circ \tilde{R} = \tilde{R}$.
- 3. If \tilde{R}_1 and \tilde{R}_2 are transitive and $\tilde{R}_1 \circ \tilde{R}_2 = \tilde{R}_2 \circ \tilde{R}_1$, then $\tilde{R}_1 \circ \tilde{R}_2$ is transitive.

CLASS: IIIB.Sc MATHEMATICS-A COURSE NAME:FUZZY SETS AND ITS APPLICATIONS

COURSE CODE: 15MMU604BUNIT: III(Fuzzy relations)BATCH-2017-2018

Fuzzy Graphs

Definition

Let E be the (crisp) set of nodes. A fuzzy graph is then defined by

 $\tilde{G}(x_i, x_j) = \{ ((x_i, x_j), \mu_{\tilde{G}}(x_i, x_j)) \mid (x_i, x_j) \in E \times E \}$

Definition

 $\tilde{H}(x_i, x_j)$ is a fuzzy subgraph of $\tilde{G}(x_i, x_j)$ if

 $\mu_{\vec{H}}(x_i, x_i) \leq \mu_{\vec{G}}(x_i, x_i) \ \forall (x_i, x_i) \in E \times E$

 $\tilde{H}(x_i, x_j)$ spans graph $\tilde{G}(x_i, x_j)$ if the node sets of $\tilde{H}(x_i, x_j)$ and $\tilde{G}(x_i, x_j)$ are equal, that is, if they differ only in their arc weights.

Example

Let $\tilde{G}(x_i, x_j)$ be defined as in example 6–11b. A spanning subgraph of $\tilde{G}(x_i, x_j)$ is then

$$\tilde{H}(x_i, x_j) = \{ [(x_1, x_2), .2], [(x_1, x_3), .4], [(x_3, x_2), .4], [(x_4, x_3), .7] \}$$

Special Fuzzy Relations

Definition

A similarity relation is a fuzzy relation $\mu_s(\cdot)$ that is reflexive, symmetrical, and max-min transitive.

A fuzzy relation that is (max-min) transitive and reflexive is called a *fuzzy preorder* relation.

A total fuzzy order relation [Kaufmann 1975, p. 112] or a fuzzy linear ordering [Dubois and Prade 1980a, p. 82; Zadeh 1971] is a fuzzy order relation such that $\forall x, y \in X; x \neq y$ either $\mu_{\bar{R}}(x, y) > 0$ or $\mu_{\bar{R}}(y, x) > 0$.

Any α -cut of a fuzzy linear order is a crisp linear order.

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: IIIB.Sc MATHEMATICS-A **COURSE NAME: FUZZY SETS AND ITS APPLICATIONS** COURSE CODE: 15MMU604B UNIT: III(Fuzzy relations) BATCH-2017-2018 Example y_2 *y*₄ y_1 *y*₃ .8 .8 .7 .4 x_1 \tilde{R} : x_2 .2 0 1 0 .4 0 .6 0 x_3

 x_4 000.7 \tilde{R} is a total fuzzy order relation.

CLASS: IIIB.Sc MATHEMATICS-A COURSE NAME:FUZZY SETS AND

ITS APPLICATIONS

COURSE CODE: 15MMU604BUNIT: III(Fuzzy relations)BATCH-2017-2018

POSSIBLE QUESTIONS PART-B 5x8=40

Answer all the questions

1. Find i) first projection ii) second projection and iii) Total projection if \tilde{R} :

	Y ₁	Y ₂	Y ₃	Y ₄	Y5	Y6
X_1	0.1	0.2	0.4	1	1	0.8
X_2	0.2	0.4	0.8	0.8	0.8	0.6
X ₃	0.4	0.8	1	0.4	0.4	0.2

2. Compute i) $\tilde{R} \cup \tilde{Z}$ ii) $\tilde{R} \cap \tilde{Z}$

If \tilde{R} :

	Y ₁	Y ₂	Y ₃	Y_4
\mathbf{X}_1	0.8	1	0.1	0.7
X_2	0	0.8	0	0
X ₃	0.9	1	0.7	0.8

And

		\mathbf{Y}_1	Y ₂	Y ₃	Y4
	X_1	0.4	0	0.9	0.6
ĺ	X2	0.9	0.4	0.5	0.7
ĺ	X3	0.3	0	0.8	0.5

3. Compute $\tilde{R}^{\circ}\tilde{R}$ for the fuzzy relation \tilde{R} is defined as

	X ₁	X_2	X ₃	X4
X ₁	0.2	1	0.4	0.4
X2	0	0.6	0.3	0
X3	0	1	0.3	0
X_4	0.1	1	1	0.1

4. Compute i) min-max composition, ii) max-prod composition iii) max-av composition of

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: IIIB.Sc MATHEMATICS-A COURSE NAME: FUZZY SETS AND **ITS APPLICATIONS** COURSE CODE: 15MMU604B UNIT: III(Fuzzy relations) BATCH-2017-2018 if \widetilde{R}_1 and \widetilde{R}_2 \widetilde{R}_1 : Y_1 Y_2 Y_3 Y_4 Y_5 0.1 0.2 0 0.7 X_1 1 0.2 X_2 0.3 0.5 0 1 X3 0.8 0 1 0.4 0.3 $\widetilde{R_2}$: Z_1 \mathbf{Z}_2 \mathbb{Z}_3 \mathbb{Z}_4 0.9 0 0.3 0.4 Y_1 0.2 Y_2 1 0.8 0 Y_3 0.8 0 0.7 1 Y_4 0.4 0.2 0.3 0 0.8 Y_5 0 0 1

5. Discuss the reflexivity

properties of the following fuzzy relation:

	X1	X2	X3
X1	1	0.7	0.3
X ₂	0.4	0.5	0.8
x3	0.7	0.5	1

6. Discuss the following relation is a similarity relation

	\mathbf{X}_1	X_2	X3	X_4	X_5	X_6
X_1	1	0.2	1	0.6	0.2	0.6
X_2	0.2	1	0.2	0.2	0.8	0.2
X ₃	1	0.2	1	0.6	0.2	0.6
X_4	0.6	0.2	0.6	1	0.2	0.8
X5	0.2	0.8	0.2	0.2	1	0.2
X6	0.6	0.2	0.6	0.8	0.2	1

7. Explain the graphs that are forests and give examples of forest and not forest.

8. Explain about properties of the min-max composition.

CLASS: IIIB.Sc MATHEMATI	CS-A COURSE	NAME:FUZZY SETS AND
COURCE CODE 1500 MIKAAR	ITS APPLICATIONS	DATCH 2017 2010
COURSE CODE: 15MIMU604B		BAICH-2017-2018