

KarpagamAcademy of Higher Education

 (Established Under Section 3 of UGC Act 1956)

Eachanari Post, Coimbatore – 641 021. INDIA

Phone : 0422-2611146, 2611082 Fax No : 0422 -2611043

16CAU601B UNIX/LINUX PROGRAMMING

LECTURE PLAN

S.No Lecturer

Duration(Hrs)

Topics to be Covered Support Materials

UNIT I

1 1 What is Linux/Unix Operating Systems R1:12-15,W1

2 1 Difference between linux/unix and other

operating systems

R1:16-20

3 1 Features and Architecture R2:15-22

4 1 Various Distributions available in the

market

R2:23-27

 Installation, Booting and shutdown process R1:25-30

5 1 Recapitulation and discussion of Important

Questions

Total No. of Hours planned for Unit-I : 5 Hours

S.No Lecturer

Duration(Hrs)

Topics to be Covered Support Materials

UNIT II

1 1 System processes (an overview) R3:53-58

2 1 External and internal commands R3:65-69

3 1 Creation of partitions in OS R3:70-77,W2

4 1 Processes and its creation phases, Fork, Exec,

wait

R3:78-86,W3

5 1 Recapitulation and discussion of Important

Questions

Total No. of Hours planned for Unit II : 5 Hours

S.No Lecturer

Duration(Hrs)

Topics to be Covered Support Materials

UNIT III

1 1 Types of Users, Creating users R4:63-71

2 1 Granting rights

User management commands

R4:72-77

3 1 File quota and various file systems available R4:78-87

4 1 File System Management and Layout, File

permissions

R4:88-96,J1

5 1 Login process, Managing Disk Quotas, Links

(hard links, symbolic links)

R4:103-112

6

1 Recapitulation and discussion of Important

Questions

Total No. of Hours planned for Unit III : 6 Hours

LECTURE PLAN

S.No Lecturer

Duration(Hrs)

Topics to be Covered Support Materials

UNIT IV

1 1 Shell introduction and Shell Scripting R4:129-138

2 1 What is shell and various type of shell R4:139-143, W4

3 1 Various editors present in Linux Different

modes of operation in vi editor

R4:143-148

4 1 What is shell script, Writing and executing the

shell script

R4:149-157

5 1 Shell variable (user defined and system

variables)

R4:158-166

6 1 Recapitulation and Discussion of important

Questions

Total No. of Hours planned for Unit IV : 6 Hours

LECTURE PLAN

S.No Lecturer

Duration(Hrs)

Topics to be Covered Support Materials

UNIT V

1 1 System calls, Using system calls R4:167-173

2 1 Pipes and Filters, Decision making in Shell

Scripts (If else, switch),

W5,R4:174-177

3 1 Loops in shell, Functions R4:178-186

4 1 Utility programs (cut, paste, join, tr, uniq

utilities), Pattern matching utility (grep)

R4:187-195

5 1 Recapitulation and Discussion of important

Questions

6 1 Discussion of Previous ESE papers

7 1 Discussion of Previous ESE papers

8 1 Discussion of Previous ESE papers

 Total No. of Hours planned for Unit V : 8

Hours

 TOTAL

PLANNED

HOURS : 30

REFERENCE BOOKS:

R1: Michael Jang, (2011). RHCSA/ RHCE Red Hat Linux Certification: Exams (Ex200 & Ex300)

,Certification Press.

R2:Nemeth Synder & Hein,(2010). Linux Administration Handbook, (2
nd

 ed.) Pearson Education.

R3: Sumitabha, Das, (2006). Unix Concepts And Applications, Tata McGraw-Hill Education.

R4: Richard Stevens,W., Bill Fenner, Andrew M. Rudoff, (2014). Unix Network Programming, The

sockets Networking, Vol. 1, 3
rd

 ed. API.

WEBSITES

W1:http://en.wikipedia.org/wiki/Linux

W2:http://en.wikibooks.org/wiki/partitions_unix

W3:www.tutorialspoint.com/fork

W4: www.guru99.com/introduction_to_shell_scripting.html

W5: www.tutorialspoint.com/unix/unix_decision_making.htm

JOURNALS:

J1: ”Role of File System in Operating System”, Int. Journal of Computer Science and innovation,

Vol 3, 2016.

Unit-I

Introduction What is Linux/Unix Operating systems, Difference between

linux/unix and other operating systems , Features and Architecture, Various

Distributions available in the market, Installation, Booting and shutdown

process

What is Unix Operating systems

UNIX is an operating system which was first developed in the 1960s, and has been under

constant development ever since. By operating system, we mean the suite of programs which

make the computer work. It is a stable, multi-user, multi-tasking system for servers, desktops

and laptops.

UNIX systems also have a graphical user interface (GUI) similar to Microsoft Windows which

provides an easy to use environment. However, knowledge of UNIX is required for operations

which aren't covered by a graphical program, or for when there is no windows interface

available, for example, in a telnet session.

What is Linux Operationg System?

Linux is a Unix-like, open source and community-developed operating system for computers,

servers, mainframes, mobile devices and embedded devices. It is supported on almost every

major computer platform including x86, ARM and SPARC, making it one of the most widely

supported operating systems.

Difference between Linux/Unix and other operating systems

Linux Unix

Cost Linux can be freely distributed,

downloaded freely, distributed

through magazines, Books etc.

There are priced versions for

Linux also, but they are normally

cheaper than Windows.

Different flavors of Unix have different cost

structures according to vendors

Development

and

Linux is developed by Open

Source development i.e. through

Unix systems are divided into various other

flavors, mostly developed by AT&T as well

https://searchdatacenter.techtarget.com/definition/Unix
https://whatis.techtarget.com/definition/operating-system-OS
https://searchservervirtualization.techtarget.com/definition/SPARC

Linux Unix

Distribution sharing and collaboration of code

and features through forums etc

and it is distributed by various

vendors.

as various commercial vendors and non-

profit organizations.

Manufacturer Linux kernel is developed by the

community. Linus Torvalds

oversees things.

Three bigest distributions are Solaris

(Oracle), AIX (IBM) & HP-UX Hewlett

Packard. And Apple Makes OSX, an unix

based os..

User Everyone. From home users to

developers and computer

enthusiasts alike.

Unix operating systems were developed

mainly for mainframes, servers and

workstations except OSX, Which is

designed for everyone. The Unix

environment and the client-server program

model were essential elements in the

development of the Internet

Usage Linux can be installed on a wide

variety of computer hardware,

ranging from mobile phones,

tablet computers and video game

consoles, to mainframes and

supercomputers.

The UNIX operating system is used in

internet servers, workstations & PCs.

Backbone of the majority of finance

infastructure and many 24x365 high

availability solutions.

File system

support

Ext2, Ext3, Ext4, Jfs, ReiserFS,

Xfs, Btrfs, FAT, FAT32, NTFS

jfs, gpfs, hfs, hfs+, ufs, xfs, zfs format

Text mode

interface

BASH (Bourne Again SHell) is

the Linux default shell. It can

support multiple command

interpreters.

Originally the Bourne Shell. Now it's

compatible with many others including

BASH, Korn & C.

What is it? Linux is an example of Open

Source software development and

Free Operating System (OS).

Unix is an operating system that is very

popular in universities, companies, big

enterprises etc.

GUI Linux typically provides two

GUIs, KDE and Gnome. But there

are millions of alternatives such as

LXDE, Xfce, Unity, Mate, twm,

ect.

Initially Unix was a command based OS,

but later a GUI was created called Common

Desktop Environment. Most distributions

now ship with Gnome.

Price Free but support is available for a

price.

Some free for development use (Solaris) but

support is available for a price.

https://www.diffen.com/difference/PS4_vs_Wii_U
https://www.diffen.com/difference/PS4_vs_Wii_U
https://www.diffen.com/difference/FAT32_vs_NTFS
https://www.diffen.com/difference/GNOME_vs_KDE

Linux Unix

Security Linux has had about 60-100

viruses listed till date. None of

them actively spreading

nowadays.

A rough estimate of UNIX viruses is

between 85 -120 viruses reported till date.

Threat

detection and

solution

In case of Linux, threat detection

and solution is very fast, as Linux

is mainly community driven and

whenever any Linux user posts

any kind of threat, several

developers start working on it

from different parts of the world

Because of the proprietary nature of the

original Unix, users have to wait for a

while, to get the proper bug fixing patch.

But these are not as common.

Processors Dozens of different kinds. x86/x64, Sparc, Power, Itanium, PA-RISC,

PowerPC and many others.

Examples Ubuntu, Fedora, Red Hat, Debian,

Archlinux, Android etc.

OS X, Solaris, All Linux

Architectures Originally developed for Intel's

x86 hardware, ports available for

over two dozen CPU types

including ARM

is available on PA-RISC and Itanium

machines. Solaris also available for x86/x64

based systems.OSX is PowerPC(10.0-

10.5)/x86(10.4)/x64(10.5-10.8)

Inception Inspired by MINIX (a Unix-like

system) and eventually after

adding many features of GUI,

Drivers etc, Linus Torvalds

developed the framework of the

OS that became LINUX in 1992.

The LINUX kernel was released

on 17th September, 1991

In 1969, it was developed by a group of

AT&T employees at Bell Labs and Dennis

Ritchie. It was written in “C” language and

was designed to be a portable, multi-tasking

and multi-user system in a time-sharing

configuration.

Features of UNIX

High reliability, scalability and powerful features make UNIX a popular operating system,

according to Intel. Now beyond its 40th year as of 2010, UNIX is the backbone of many data

centers including the Internet. Big players using UNIX include Sun Microsystems, Apple Inc.,

Hewlett-Packard and AT&T, which is the original parent company of UNIX. The Open Group

owns all UNIX specifications and the trademark, which are freely accessible and available over

the Internet.

https://www.diffen.com/difference/Linux_Mint_vs_Ubuntu
https://www.diffen.com/difference/Fedora_vs_Ubuntu

Multitasking and Portability

The main features of UNIX include multiuser, multitasking and portability capabilities. Multiple

users access the system by connecting to points known as terminals. Several users can run

multiple programs or processes simultaneously on one system. UNIX uses a high-level language

that is easy to comprehend, modify and transfer to other machines, which means you can change

language codes according to the requirements of new hardware on your computer. You,

therefore, have the flexibility to choose any hardware, modify the UNIX codes accordingly and

use UNIX across multiple architectures.

The Kernel and the Shell

The hub of a UNIX operating system, the kernel manages the applications and peripherals on a

system. Together, the kernel and the shell carry out your requests and commands. You

communicate with your system through the UNIX shell, which translates to the kernel. When

you turn on your terminal, a system process starts that overlooks your inputs. When you enter

your password, the system associates the shell program with your terminal. The shell allows you

to customize options even if you are not technically savvy. For example, if you partially type a

command, the shell anticipates the command for which you are aiming and displays the

command for you. The UNIX shell is a program that gives and displays your prompts and, in

conjunction with the kernel, executes your commands. The shell even maintains a history of the

commands you enter, allowing you to reuse a command by scrolling through your history of

commands.

Files and Processes

All the functions in UNIX involve either a file or a process. Processes are executions of

programs, while files are collections of data created by you. Files may include a document,

programming instructions for the system or a directory. UNIX uses a hierarchical file structure in

its design that starts with a root directory--signified by the forward slash (/). The root is followed

by its subdirectories, as in an inverted tree, and ends with the file. In the example

"/Demand/Articles/UNIX.doc," the main directory "Demand" has a subdirectory "Articles,"

which has a file "UNIX.doc."

Features of Linux

Following are some of the important features of Linux Operating System.

 Portable – Portability means softwares can works on different types of hardwares in same

way.Linux kernel and application programs supports their installation on any kind of

hardware platform.

 Open Source – Linux source code is freely available and it is community based development

project. Multiple teams works in collaboration to enhance the capability of Linux operating

system and it is continuously evolving.

 Multi-User – Linux is a multiuser system means multiple users can access system resources

like memory/ ram/ application programs at same time.

 Multiprogramming – Linux is a multiprogramming system means multiple applications can

run at same time.

 Hierarchical File System – Linux provides a standard file structure in which system files/

user files are arranged.

 Shell – Linux provides a special interpreter program which can be used to execute commands

of the operating system. It can be used to do various types of operations, call application

programs etc.

 Security – Linux provides user security using authentication features like password

protection/ controlled access to specific files/ encryption of data.

ARCHITECTURE OF UNIX

There are two important divisions in UNIX operating system architecture.

1.Kernel

2.Shell

In simple words you can say –

 Kernal – interacts with the machine’s hardware

 Shell – interacts with the user

THE KERNEL:

The kernel of UNIX is the hub (or core) of the UNIX operating system. Kernel is a set of

routines mostly written in C language.

User programs that need to access the hardware (like hard disk or terminal) use the services of

the Kernel, which performs the job on the user’s behalf.

User interacts with the Kernal by using System calls. Kernel allocates memory and time to

programs and handles the file store and communications in response to system calls.

As an illustration of the way that the unix shell and the kernel work together, suppose a user

types mv myfile myfile1 (which has the effect of renaming the file myfile). The unix shell

searches the file store for the file containing the program mv, and then requests the kernel,

through system calls, to execute the program mv on myfile. When the process mv myfile has

finished running, the unix shell then returns the UNIX prompt to the user, indicating that it is

waiting for further commands.

THE SHELL:
UNIX Shell acts as a medium between the user and the kernel in unix system. When a user logs

in, the login program checks the username and password and then starts another program called

the shell.

Computers don’t have any inherent capability of translating commands into action. This requires

a command line interpreter (CLI) and this is handled by the “Outer Part” of the operating system

i.e. Shell. It interprets the commands the user types in and arranges for them to be carried out.

In every unix system, the user can customize his own shell, and users can use different shells on

the same machine.

The shell keeps a list of the commands you have typed in. If you need to repeat a command, use

the cursor keys to scroll up and down the list or type history for a list of previous commands.

Various Distributions of UNIX available in the market

Flavors that are available commercially (read: sold) include:

Solaris – Sun Microsystems’ implementation, of which there are different kinds available: these

are Solaris OS for SPARC platforms, Solaris OS for x86 platforms, and Trusted Solaris for both

SPARC & x86 platforms; the latest version is Solaris 10 OS

AIX – short for Advanced Interactive eXecutive; IBM’s implementation, the latest release of

which, is the AIX 5L version 5.2.

SCO UnixWare and OpenServer – are implementations derived from the original AT&T Unix®

source code acquired by the Santa Cruz Operation Inc. from Novell, and later on bought by

Caldera Systems; the latest versions are UnixWare 7.1.3 and OpenServer 5.0.7

BSD/OS – the Berkeley Software Distribution (BSD) Unix implementation from Wind River; its

latest version is the BSD/OS 5.1 Internet Server Edition

IRIX – the proprietary version of Unix from Silicon Graphics Inc.; the latest release of which is

IRIX 6.5

HP-UX – short for Hewlett-Packard UniX; the latest version is the HP-UX 11i

Tru64 UNIX – the Unix operating environment for HP AlphaServer systems; Tru64 UNIX

v5.1B-1 is the latest version

Mac OS – Mac operating system from Apple Computer Inc. having a Unix core; the latest

version is the Mac OS X Panther

Various Distributions of LINUX available in the market

Debian

Debian is one of the oldest distributions out there, and some newer, more popular distributions

are based on the Debian software. For instance, Ubuntu is a newer Linux distribution based on

the Debian architecture. Debian has more than 1,000 volunteers, which makes it very versatile.

Fedora and Red Hat

Red Hat was developed several years ago, and it was known as one of the easiest of the Linux

distributions to learn, if you were new to the operating system. Fedora has a great support

community, and it’s known as one of the better business suites out there.

Ubuntu

For users who are unfamiliar with Linux but want to learn, Ubuntu is the closest to Windows and

user-friendly you can get. Ubuntu is one of the babies of the Linux family. It’s not that old, but

http://wwws.sun.com/software/product_categories/operating_systems.html
http://www-1.ibm.com/servers/aix/index.html
http://www.caldera.com/products/unixware713/
http://www.caldera.com/products/openserver507/
http://www.windriver.com/products/bsd_os/
http://www.sgi.com/developers/technology/irix/
http://www.hp.com/products1/unix/operating/index.html
http://h30097.www3.hp.com/
http://www.apple.com/macosx/

its popularity has grown. Ubuntu has a very “Windows-like” interface, so it’s most popular for

its ease of use for Windows users who want to migrate to a Linux platform.

Linux Mint

Mint has one of the coolest interfaces for customizing a desktop. Mint’s graphics and desktop

reminds most old Linux users of the classic GNOME interface. Mint is the alternative to Ubuntu.

Most Ubuntu fans who are unhappy with the way Ubuntu is heading moved to Mint.

Installation of UNIX

Use this procedure as the starting point for installing WebLogic Integration - Business

Connect on the supported UNIX operating systems.

Steps

1. Create a user account for WebLogic Integration - Business Connect (connect, for example) as

the home directory for the application. For example, you can use one of the following as a

home directory:

/opt/connect

/usr/local/connect

2. Determine the device name of your CD-ROM drive.

The installation CD has a standard ISO-9660 (High Sierra) file system with Rock Ridge

extensions.

3. Determine how much RAM your server has. You need to enter this information during the

installation routine.

4. See the installation procedure for your operating system:

 Installing on Hewlett-Packard HP-UX

 Installing on IBM AIX

 Installing on Sun Solaris

We can use the install.sh command:

Booting of UNIX

https://docs.oracle.com/cd/E13215_01/wlibc/docs81/install/unix.html#1031541
https://docs.oracle.com/cd/E13215_01/wlibc/docs81/install/unix.html#1031585
https://docs.oracle.com/cd/E13215_01/wlibc/docs81/install/unix.html#1031660

Unix boot process has these main phases:

o Basic hardware detection (memory, disk, keyboard, mouse, and the like).

o Executing the firmware system initialization program (happens automatically).

o Locating and running the initial boot program (by the firmware boot program), usually

from a predetermined location on disk. This program may perform additional hardware checks

prior to loading the kernel.

o Locating and starting the Unix kernel (by the first-stage boot program). The kernel image

file to execute may be determined automatically or via input to the boot program.

o The kernel initializes itself and then performs final, high-level hardware checks, loading

device drivers and/or kernel modules as required.

o The kernel starts the init process, which in turn starts system processes (daemons) and

initializes all active subsystems. When everything is ready, the system begins accepting user

logins.

Shutting Down of Unix System

From time to time, you will need to shut thesystem down. This is necessary for scheduled

maintenance, running diagnostics, hardware changes or additions, and other administrative tasks.

During a clean system shutdown, the following actions take place:

o All users are notified that the system will be going down, preferably giving them some

reasonable advance warning.

o All running processes are sent a signal telling them to terminate, allowing them time to

exit gracefully, provided the program has made provisions to do so.

o All subsystems are shut down gracefully, via the commands they provide for doing so.

o All remaining users are logged off, and remaining processes are killed.

o Filesystem integrity is maintained by completing all pending disk updates.

o Depending on the type of shutdown, the system moves to single-user mode, the processor

is halted, or the system is rebooted.

Installation of Linux

1. Download the Linux distribution of your choice. ...

2. Boot into the Live CD or Live USB.

3. Try out the Linux distribution before installing.

4. Start the installation process.

5. Create a username and password.

6. Set up the partition. Linux needs to be installed on a separate partition from any other

operating systems on your computer if you intend dual booting Linux with another OS. A

partition is a portion of the hard drive that is formatted specifically for that operating system.

7. Boot into Linux. Once the installation is finished, your computer will reboot. You will

see a new screen when your computer boots up called “GNU GRUB”. This is a boot loader that

handles Linux installations.Check your hardware.

8.Check your hardware. Most hardware should work out of the box with your Linux distro,

though you may need to download some additional drivers to get everything working. Some

hardware requires proprietary drivers to work correctly in Linux.

Booting of Linux

1.BIOS

 BIOS stands for Basic Input/Output System

 Performs some system integrity checks

2. MBR

 MBR stands for Master Boot Record.

 It is located in the 1st sector of the bootable disk. Typically /dev/hda, or /dev/sda

3. GRUB

 GRUB stands for Grand Unified Bootloader.

 If you have multiple kernel images installed on your system, you can choose which one to be

executed.

 As you notice from the above info, it contains kernel and initrd image.

 So, in simple terms GRUB just loads and executes Kernel and initrd images.

4. Kernel

 Mounts the root file system as specified in the “root=” in grub.conf

 Kernel executes the /sbin/init program

5. Init

 Looks at the /etc/inittab file to decide the Linux run level.

 Following are the available run levels

 0 – halt

 1 – Single user mode

 Typically you would set the default run level to either 3 or 5.

6. Runlevel programs

 When the Linux system is booting up, you might see various services getting started. For

example, it might say “starting sendmail …. OK”. Those are the runlevel programs, executed

from the run level directory as defined by your run level.

Shutdown of Linux

Linux was not made to be shut down, but if you really must, use the shutdown command. After

completing the shutdown procedure, the -h option will halt the system, while -r will reboot it.

The reboot and halt commands are now able to invoke shutdown if run when the system is in

run levels 1-5, and thus ensure proper shutdown of the system, but it is a bad habit to get into, as

not all UNIX/Linux versions have this feature. If your computer does not power itself down, you

should not turn off the computer until you see a message indicating that the system is halted or

finished shutting down, in order to give the system the time to unmount all partitions. Being

impatient may cause data loss.

POSSIBLE QUESTIONS

PART B QUESTIONS

(EACH QUESTION CARRIES TWO MARKS)
1. What are the features of Unix ?

2. What are the features of Linux?

3. What do you mean by shell in Linux?

4. What do you mean by kernel in Unix?.

5. List out the various distributions of Unix.

6. List out the various distributions of Linux.

7. What is booting in Unix?

8. What is utility in Unix?.

PART C QUESTIONS

(EACH QUESTION CARRIES 6 MARKS)

 1.Explain the difference between Unix and Linux.

2.Discuss the architecture of Unix.

3.Explain the architecture of Linux.

4.Discuss the various distributions of Unix and Linux.

5.Explain the internal and external commands in Linux.

6.Explain the Installation, Booting and shutdown process of Unix.

Questions Opt1 opt2 opt3 opt4 KEY____________is a program that manages the

computer hardware and acts as an intermediary

hardware

acceleration Operating System compiler logical transcation

Operating

System

_____manages the execution of user programs to prevent errors and improper use of the computer resource allocator work station main frame control program

control

program

 ____were the first computers used to tackle many commercial & scientific application.

Mainframe

computer

system

Mainframe

computer

service

multiframe

computer system

multiframe

computer service

Mainframe

computer

system

_______________contains the address of an

instruction to be fetched from memory Program counter (PC)Instruction register (IR)Control registers Status registers

Instruction

register (IR)

_______________ is also known as parallel systems or tightly coupled systems)

Multiproces

sor systems

desktop systems Time sharing

systems

Multiprogrammed

systems
Multiprocesso

r systems

______________operating systems are even more complex than multi programmed operating systems. Time-sharing
desktop systems

Multiprogrammed

systems

Multiprocessor

systems Time-sharing

 __________ operating system keeps several jobs

in memory simultaneously. Time-sharing
desktop systems

Multiprogrammed

systems

Multiprocessor

systems

Multiprogram

med systems

___________can save more money than multiple single-processor systems

Multiproces

sor systems

desktop systems Time sharing

systems

Multiprogrammed

systems
Multiprocesso

r systems

The most common multiple-processor systems now use

symmetric

multiproces

sing

asymmetric

multiprocessing multithreading multiprogramming

symmetric

multiprocessin

g

PART - A (Online Examination)

KARPAGAM ACADEMY OF HIGHER EDUCATION
Coimbatore – 641 021.

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

UNIT - I : (Objective Type Multiple choice Questions each Question carries one Mark)

UNIX/LINUX PROGRAMMING

Another form of a special-purpose operating system is the

real-time

system

distributed

operating

system

Process states multiframe

computer system

real-time

system

The assignment of the CPU to the first process on the ready list is called

graceful

degradation Time-sharing dispatching

Multiprocessor

systems dispatching

The manifestation of a process in an operating system is a

Process

state

transitions

process control

block child process

cooperating

processes

process

control block

For multiprogramming operating system

special

support

from

processor

is

essential

special

support from

processor is

not essential

cache memory is

essential

cache memory is

not essential

special

support from

processor is

not essential

Which operating system reacts in the actual time
Batch

system

Quick

response

system

Real time system
Time sharing

system

Real time

system

The primary job of an OS is to ________

command

resource

manage

resource provide utilities Be user friendly

manage

resource

The term " Operating System " means ________

A set of

programs

which

controls

computer

working

The way a

computer

operator works

Conversion of high-

level language in

to machine level

language

The way a floppy

disk drive operates

A set of

programs

which controls

computer

working

With more than one process can be

running simultaneously each on a different

processer.

Multiprogra

mming Uniprocessing Multiprocessing Uniprogramming

Multiprogram

ming

The two central themes of modern operating system

are

Multiprogra

mming and

Distributed

processing

Multiprogramm

ing and Central

Processing

Single

Programming and

Distributed

processing None of above

Multiprogram

ming and

Distributed

processing

.……………….. is a example of an operating

system that support single user process and single

thread UNIX MS-DOS OS/2 Windows 2000 MS-DOS

The operating system of a computer serves as a

software interface between the user and the

________. Hardware Peripheral Memory Screen Hardware

What is a shell

It is a

hardware

component

It is a command

interpreter

It is a part in

compiler

It is a tool in CPU

scheduling

It is a

command

interpreter

The main function of the command interpreter is:

to get and

execute the

next user-

specified

command

to provide the

interface

between the

API and

application

program

to handle the files

in operating

system

none of the

mentioned

to get and

execute the

next user-

specified

command

As OS that has strict time constraints

Sensor

Node OS Real Time OS Mainframe OS Timesharing OS Real Time OS

The OS that groups similar jobs is called as

Network

OS Distributed OS Mainframe OS Batch OS Batch OS

_____ systems are required to complete a critical

task within a guaranteed amount of time.

hard real

time

Priority

inversion

load sharing Priority inheritance hard real time

A system program that combines the separately

compiled modules of a program into a form suitable

for execution assembler linking loader cross compiler load and go linking loader

A ______________manages the execution of user

programs to prevent errors and improper use of the

computer.

Control

program

Managing

Program allocating program User program

Control

program

________ is a program associated with the operating

system but are not part of the kernel,

System

Program User program System calls Functions

System

Program

General-purpose computers run most of their

programs from rewriteable memory, called as

_________________ Floppy disk ROM

Random access

Memory Hard disk

Random

access

Memory

On systems with multiple command interpreters to

choose from, the interpreters are known as

_________ GUI shells Signal Command shells

The term PDA is ______________

Personal

Digital

Assistant

Personal Data

Assistant

Personal Data

Accountant

Private Digital

Assistant

Personal

Digital

Assistant

_______________ handle large numbers of small

requests

Batch

systems Time sharing

Transaction-

processing systems Distributed systems

Transaction-

processing

systems

The occurrence of an event is usually signaled by an

___________from either the hardware or the

software. interrupt signal service routine interrupt

Operating systems have a ______________for each

device controller Process device driver controller allocator device driver

CPU design that includes multiple computing cores

on a single chip. Such multiprocessor systems are

termed __________ multicore uniprocessor singlecore multichips multicore

logical storage unit is called as ___________ folder file RAM ROM file

___________ is any mechanism for controlling the

access of processes or users to the resources defined

by a computer system. Protection authorization policy privacy Protection

A _____________is an operating system that

provides features such as file sharing across the

network.

network

operating

system Distributed OS Parallel OS Sensor OS

network

operating

system

______________operating systems are even more

complex than multi programmed operating systems.

Time-

sharing

desktop systems
Multiprogrammed

systems
Multiprocessor

systems Time-sharing

___________can save more money than multiple

single-processor systems

Multiproces

sor systems

desktop systems Time sharing

systems

Multiprogrammed

systems
Multiprocesso

r systems

_______________ is also known as parallel systems

or tightly coupled systems

Multiproces

sor systems

desktop systems Time sharing

systems

Multiprogrammed

systems
Multiprocesso

r systems

Another form of a special-purpose operating system

is the

real-time

system

distributed

operating

system

Process states multiframe

computer system

real-time

system

The message-passing facility in Windows 2000 is

called

MUTUAL

EXCLUSI

ON Buffering

local procedure

call facility

CRITICAL

SECTIONS

local

procedure call

facility

Which process is known for initializing a

microcomputer with its OS

cold

booting
boot recording booting warm booting booting

 A series of statements explaining how the data is to

be processed is called
instruction compiler program interpretor program

Distributed systems should
high

security

have better

resource

sharing

better system

utilization

low system

overhead

have better

resource

sharing

Which of the following is always there in a

computer

Batch

system

Operating

system

Time sharing

system
Controlling system

Operating

system

When did IBM released the first version of its disk

operating system DOS version 1.0
1981 1982 1983 1984 1981

The kernel is a___________________

memory

manager

resource

manager file manager directory manager

resource

manager

_______________contains the address of an

instruction to be fetched from memory

Program

counter

(PC)

Instruction

register (IR) Control registers Status registers

Instruction

register (IR)

___________________contains the instruction most

recently fetched.

Program

counter

(PC)

Instruction

register (IR) Control registers Status registers

Program

counter (PC)

If a process fails, most operating system write the

error information to a log file

another running

process new file

none of the

mentioned log file

The OS X has ________

monolithic

kernel hybrid kernel microkernel

monolithic kernel

with modules hybrid kernel

Which Operating system does not support long file

names OS/2 Windows 95 MS-DOS Windows NT MS-DOS

Which Operating system does not support

networking between computers

Windows

3.1 Windows 95 Windows 2000 Windows NT Windows 3.1

Which Operating system is better for implementing

client server network MS DOS Windows 95 Windows 98 Windows 2000

Windows

2000

___________is the commercial UNIX-based

operating system of Sun Microsystems. Solaris UNIX Linux Macintosh Solaris

__________ is an example of an open-source

operating system GNU/Linux Windows 3.1 Windows NT Macintosh GNU/Linux

In Operating System___________ hides the details of how underlying machinery operates.

Resource

manager

Resource

Abstraction Resource Hiding Information Hiding

Resource

Abstraction

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 1/50

UNIT – II

SYLLABUS

System processes (an overview), External and internal commands, Creation of partitions in

OS, Processes and its creation phases – Fork, Exec, wait

• Mode bit: Supervisor or User mode • Supervisor mode – Can execute all machine

instructions – Can reference all memory locations • User mode – Can only execute a subset of

instructions – Can only reference a subset of memory locations

Kernel Mode

 When CPU is in kernel mode, the code being executed can access any memory address and

any hardware resource.

 Hence kernel mode is a very privileged and powerful mode.

 If a program crashes in kernel mode, the entire system will be halted.

User Mode

 When CPU is in user mode, the programs don’t have direct access to memory and hardware

resources.

 In user mode, if any program crashes, only that particular program is halted.

 That means the system will be in a safe state even if a program in user mode crashes.

 Hence, most programs in an OS run in user mode.

SYSTEM CALLS AND SYSTEM PROGRAMS

 System calls provide an interface between the process and the operating system. System

calls allow user-level processes to request some services from the operating system which

process itself is not allowed to do. In handling the trap, the operating system will enter in

the kernel mode, where it has access to privileged instructions, and can perform the

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 2/50

desired service on the behalf of user-level process. It is because of the critical nature of

operations that the operating system itself does them every time they are needed. For

example, for I/O a process involves a system call telling the operating system to read or

write particular area and this request is satisfied by the operating system.

 System programs provide basic functioning to users so that they do not need to write their

own environment for program development (editors, compilers) and program execution

(shells). In some sense, they are bundles of useful system calls.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 3/50

SYSTEM CALL

When a program in user mode requires access to RAM or a hardware resource, it must ask the

kernel to provide access to that resource. This is done via something called a system call.

When a program makes a system call, the mode is switched from user mode to kernel mode. This

is called a context switch.

Then the kernel provides the resource which the program requested. After that, another context

switch happens which results in change of mode from kernel mode back to user mode.

Generally, system calls are made by the user level programs in the following situations:

 Creating, opening, closing and deleting files in the file system.

 Creating and managing new processes.

 Creating a connection in the network, sending and receiving packets.

 Requesting access to a hardware device, like a mouse or a printer.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 4/50

In a typical UNIX system, there are around 300 system calls. Some of them which are important

ones in this context are described below.

SYSTEM PROGRAMS

These programs are not usually part of the OS kernel, but are part of the overall operating

system.

File Management

These programs create, delete, copy, rename, print, dump, list, and generally manipulate files and

directories.

Status Information

Some programs simply request the date and time, and other simple requests. Others provide

detailed performance, logging, and debugging information. The output of these files is often sent

to a terminal window or GUI window

File modification

Programs such as text editors are used to create, and modify files.

Communications

These programs provide the mechanism for creating a virtual connect among processes, users,

and other computers. Email and web browsers are a couple examples.

PROCESS MANAGEMENT

Process Concept

Process is a program that is in execution. It is defined as unit of work in modern systems.

A batch system executes jobs, whereas a time-shared system has user programs, or tasks. Even

on a single-user system, a user may be able to run several programs at one time: a word

processor, a Web browser, and an e-mail package. And even if a user can execute only one

program at a time, such as on an embedded device that does not support multitasking, the

operating system may need to support its own internal programmed activities, such as memory

management. In many respects, all these activities are similar, so we call all of them processes.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 5/50

Process in memory

A process is more than the program code, which is sometimes known as the text section.

It also includes the current activity, as represented by the value of the program counter and the

contents of the processor’s registers. A process generally also includes the process stack, which

contains temporary data (such as function parameters, return addresses, and local variables), and

a data section, which contains global variables. A process may also include a heap, which is

memory that is dynamically allocated during process run time.

Process in Memory

A program is a passive entity, such as a file containing a list of instructions stored on disk

(often called an executable file). In contrast, a process is an active entity, with a program counter

specifying the next instruction to execute and a set of associated resources. A program becomes a

process when an executable file is loaded into memory.

Process State

As a process executes, it changes state. The state of a process is defined in part by the

current activity of that process. A process may be in one of the following states:

• New. The process is being created.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 6/50

• Running. Instructions are being executed.

• Waiting. The process is waiting for some event to occur (such as an I/O completion or

reception of a signal).

• Ready. The process is waiting to be assigned to a processor.

• Terminated. The process has finished execution.

These names are arbitrary, and they vary across operating systems. The states that they

represent are found on all systems, however. Certain operating systems also more finely

delineate process states. It is important to realize that only one process can be running on any

processor at any instant. Many processes may be ready and waiting, however. The state diagram

corresponding to these states is presented in the following Figure.

Process State Diagram

Process Control Block (PCB)

Each process is represented in the operating system by a process control block (PCB)—also

called a task control block. It contains many pieces of information associated with a specific

process, including these: Process state. The state may be new, ready, running, and waiting,

halted, and so on.

 Program counter. The counter indicates the address of the next instruction to be

executed for this process.

 CPU registers. The registers vary in number and type, depending on the computer

architecture. They include accumulators, index registers, stack pointers, and general-

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 7/50

purpose registers, plus any condition-code information. Along with the program counter,

this state information must be saved when an interrupt occurs, to allow the process to be

continued correctly afterward.

 CPU-scheduling information. This information includes a process priority, pointers to

scheduling queues, and any other scheduling parameters.

Process Control Block (PCB)

 Memory-management information. This information may include such items as the

value of the base and limit registers and the page tables, or the segment tables, depending

on the memory system used by the operating system

 Accounting information. This information includes the amount of CPU and real time

used, time limits, account numbers, job or process numbers, and so on.

 I/O status information. This information includes the list of I/O devices allocated to the

process, a list of open files, and so on.

THREAD

 A thread is a flow of execution through the process code, with its own program counter,

system registers and stack. A thread is also called a light weight process. Threads provide

a way to improve application performance through parallelism. Threads represent a

software approach to improving performance of operating system by reducing the

overhead thread is equivalent to a classical process.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 8/50

 Each thread belongs to exactly one process and no thread can exist outside a process.

Each thread represents a separate flow of control. Threads have been successfully used in

implementing network servers and web server. They also provide a suitable foundation

for parallel execution of applications on shared memory multiprocessors. Following

figure shows the working of the single and multithreaded processes.

Advantages of Thread

 Thread minimizes context switching time.

 Use of threads provides concurrency within a process.

 Efficient communication.

 Economy- It is more economical to create and context switch threads.

 Utilization of multiprocessor architectures to a greater scale and efficiency.

Types of Thread

 Threads are implemented in following two ways

 User Level Threads -- User managed threads

 Kernel Level Threads -- Operating System managed threads acting on kernel, an

operating system core.

 User Level Threads

http://2.bp.blogspot.com/-XMvsBe8HNrQ/VBbYlRDT1_I/AAAAAAAAADg/8FZ31pMt9i0/s1600/thread_processes.jpg

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 9/50

 In this case, application manages thread management kernel is not aware of the existence

of threads. The thread library contains code for creating and destroying threads, for

passing message and data between threads, for scheduling thread execution and for

saving and restoring thread contexts. The application begins with a single thread and

begins running in that thread.

ADVANTAGES

 Thread switching does not require Kernel mode privileges.

 User level thread can run on any operating system.

 Scheduling can be application specific in the user level thread.

 User level threads are fast to create and manage.

DISADVANTAGES

 In a typical operating system, most system calls are blocking.

 Multithreaded application cannot take advantage of multiprocessing.

Kernel Level Threads

In this case, thread management done by the Kernel. There is no thread management code in

the application area. Kernel threads are supported directly by the operating system. Any

http://3.bp.blogspot.com/-m_3lkCsNMzI/VBbYzgRddNI/AAAAAAAAADo/cAzemrZKmRE/s1600/user_threads.jpg

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 10/50

application can be programmed to be multithreaded. All of the threads within an application are

supported within a single process.

The Kernel maintains context information for the process as a whole and for individuals

threads within the process. Scheduling by the Kernel is done on a thread basis. The Kernel

performs thread creation, scheduling and management in Kernel space. Kernel threads are

generally slower to create and manage than the user threads.

ADVANTAGES

 Kernel can simultaneously schedule multiple threads from the same process on multiple

processes.

 If one thread in a process is blocked, the Kernel can schedule another thread of the same

process.

 Kernel routines themselves can multithreaded.

DISADVANTAGES

 Kernel threads are generally slower to create and manage than the user threads.

 Transfer of control from one thread to another within same process requires a mode

switch to the Kernel.

Multithreading Models

Some operating system provides a combined user level thread and Kernel level thread

facility. Solaris is a good example of this combined approach. In a combined system, multiple

threads within the same application can run in parallel on multiple processors and a blocking

system call need not block the entire process. Multithreading models are three types

 Many too many relationships.

 Many to one relationship.

 One to one relationship.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 11/50

Many to Many Model

 In this model, many user level threads multiplex to the Kernel thread of smaller or

equal numbers. The number of Kernel threads may be specific to either a particular

application or a particular machine.

 Following diagram shows the many to many models. In this model, developers can

create as many user threads as necessary and the corresponding Kernel threads can

run in parallels on a multiprocessor.

Many to One Model

 Many to one model maps many user level threads to one Kernel level thread. Thread

management is done in user space. When thread makes a blocking system call, the

entire process will be blocks. Only one thread can access the Kernel at a time,so

multiple threads are unable to run in parallel on multiprocessors.

 If the user level thread libraries are implemented in the operating system in such a

way that system does not support them then Kernel threads use the many to one

relationship modes.

http://3.bp.blogspot.com/-c5pYbnV2KpM/VBbY9VELENI/AAAAAAAAADw/9h-xmpz6ARc/s1600/many_to_many.jpg
http://3.bp.blogspot.com/-TpAuH1cxNRk/VBbZKEutEdI/AAAAAAAAAD4/RYAn7COHWLg/s1600/many_to_many.jpg

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 12/50

One to One Model

 There is one to one relationship of user level thread to the kernel level thread. This

model provides more concurrency than the many to one model. It is also another

thread to run when a thread makes a blocking system call. It supports multiple thread

to execute in parallel on microprocessors.

 Disadvantage of this model is that creating user thread requires the corresponding

Kernel thread. OS/2, windows NT and windows 2000 use one to one relationship

model.

THREADING ISSUES OPERATING SYSTEMS

1. The fork() and exec() System Calls

 If one thread in a program calls fork(), does the new process duplicate all threads, or

is the new process single-threaded? Some UNIX systems have chosen to have two

versions of fork(), one that duplicates all threads and another that duplicates only the

thread that invoked the fork() system call.

 If a thread invokes the exec() system call, the program specified in the parameter to

exec () will replace the entire process-including all threads.

http://1.bp.blogspot.com/-ZhZBSYde5wE/VBbZWFHoPUI/AAAAAAAAAEA/PWpgy8bMObc/s1600/one_to_one.jpg

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 13/50

2. Cancellation

 Thread cancellation is the task of terminating a thread before it has completed. For

example, if multiple threads are concurrently searching through a database and one

thread returns the result, the remaining threads might be canceled.

 A thread that is to be canceled is often referred to as the target thread.

 Cancellation of a target thread may occur in two different scenarios:

 Asynchronous cancellation. One thread immediately terminates the target

thread.

 Deferred cancellation. The target thread periodically checks whether it should

terminate, allowing it an opportunity to terminate itself in an orderly fashion.

 The difficulty with cancellation occurs in situations where resources have been

allocated to a canceled thread or where a thread is canceled while in the midst of

updating data it is sharing with other threads.

3. Signal Handling

 A signal is used in UNIX systems to notify a process that a particular event has

occurred. All signals, whether synchronous or asynchronous, follow the same pattern:

 A signal is generated by the occurrence of a particular event.

 A generated signal is delivered to a process.

 Once delivered, the signal must be handled.

 Examples of synchronous signals include illegal memory access and division by 0. If

a running program performs either of these actions, a signal is generated.

 Every signal has a default signal handler that is run by the kernel when handling

that signal. This default action can be overridden by a user defined signal

handler that is called to handle the signal.

 Handling signals in single-threaded programs is straightforward: signals are always

delivered to a process. However, delivering signals is more complicated in

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 14/50

multithreaded programs, where a process may have several threads. Where, then,

should a signal be delivered?

 In general the following options exist:

 Deliver the signal to the thread to which the signal applies.

 Deliver the signal to every thread in the process.

 Deliver the signal to certain threads in the process.

 Assign a specific thread to receive all signals for the process.

4. Thread Pools

 The first issue concerns the amount of time required to create the thread prior to

servicing the request, together with the fact that this thread will be discarded once it

has completed its work.

 The second issue is more troublesome: if we allow all concurrent requests to be

serviced in a new thread, we have not placed a bound on the number of threads

concurrently active in the system. Unlimited threads could exhaust system resources,

such as CPU time or memory. One solution to this problem is to use a thread pool.

 The general idea behind a thread pool is to create a number of threads at process

startup and place them into a pool, where they sit and wait for work.

 Thread pools offer these benefits:

o Servicing a request with an existing thread is usually faster than waiting to create

a thread.

o A thread pool limits the number of threads that exist at any one point. This is

particularly important on systems that cannot support a large number of

concurrent threads.

5. Thread-Specific Data

 Threads belonging to a process share the data of the process. Indeed, this sharing of data

provides one of the benefits of multithreaded programming.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 15/50

 However, in some circumstances, each thread might need its own copy of certain data.

We will call such data thread specific data.

 For example, in a transaction-processing system, we might service each transaction in a

separate thread. Furthermore, each transaction might be assigned a unique identifier. To

associate each thread with its unique identifier, we could use thread-specific data.

PROCESS SCHEDULING

Definition

 The process scheduling is the activity of the process manager that handles the removal of

the running process from the CPU and the selection of another process on the basis of a

particular strategy.

 Process scheduling is an essential part of a Multiprogramming operating system. Such

operating systems allow more than one process to be loaded into the executable memory

at a time and loaded process shares the CPU using time multiplexing.

Scheduling Queues

 Scheduling queues refers to queues of processes or devices. When the process enters into

the system, then this process is put into a job queue. This queue consists of all processes

in the system. The operating system also maintains other queues such as device queue.

Device queue is a queue for which multiple processes are waiting for a particular I/O

device. Each device has its own device queue.

This figure shows the queuing diagram of process scheduling.

 Queue is represented by rectangular box.

 The circles represent the resources that serve the queues.

 The arrows indicate the process flow in the system.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 16/50

Queues are of two types

 Ready queue

 Device queue

A newly arrived process is put in the ready queue. Processes waits in ready queue for allocating

the CPU. Once the CPU is assigned to a process, then that process will execute. While executing

the process, any one of the following events can occur.

 The process could issue an I/O request and then it would be placed in an I/O queue.

 The process could create new sub process and will wait for its termination.

 The process could be removed forcibly from the CPU, as a result of interrupt and put

back in the ready queue.

Two State Process Model

Two state process model refers to running and non-running states which are described below.

http://4.bp.blogspot.com/-EkPKxswkdBs/VBbW_PCN-3I/AAAAAAAAACg/A0cUw7W83pU/s1600/queuing_diagram.jpg

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 17/50

S.N. State & Description

1

Running

When new process is created by Operating System that process enters into the

system as in the running state.

2

Not Running

Processes that are not running are kept in queue, waiting for their turn to

execute. Each entry in the queue is a pointer to a particular process. Queue is

implemented by using linked list. Use of dispatcher is as follows. When a

process is interrupted, that process is transferred in the waiting queue. If the

process has completed or aborted, the process is discarded. In either case, the

dispatcher then selects a process from the queue to execute.

Schedulers

Schedulers are special system software which handles process scheduling in various ways. Their

main task is to select the jobs to be submitted into the system and to decide which process to run.

Schedulers are of three types

 Long Term Scheduler

 Short Term Scheduler

 Medium Term Scheduler

Long Term Scheduler

 It is also called job scheduler. Long term scheduler determines which programs are

admitted to the system for processing. Job scheduler selects processes from the queue and

loads them into memory for execution. Process loads into the memory for CPU

scheduling. The primary objective of the job scheduler is to provide a balanced mix of

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 18/50

jobs, such as I/O bound and processor bound. It also controls the degree of

multiprogramming. If the degree of multiprogramming is stable, then the average rate of

process creation must be equal to the average departure rate of processes leaving the

system.

 On some systems, the long term scheduler may not be available or minimal. Time-

sharing operating systems have no long term scheduler. When process changes the state

from new to ready, then there is use of long term scheduler.

Short Term Scheduler

 It is also called CPU scheduler. Main objective is increasing system performance in

accordance with the chosen set of criteria. It is the change of ready state to running state

of the process. CPU scheduler selects process among the processes that are ready to

execute and allocates CPU to one of them.

 Short term scheduler also known as dispatcher, execute most frequently and makes the

fine grained decision of which process to execute next. Short term scheduler is faster than

long term scheduler.

Medium Term Scheduler

 Medium term scheduling is part of the swapping. It removes the processes from the

memory. It reduces the degree of multiprogramming. The medium term scheduler is in-

charge of handling the swapped out-processes.

http://1.bp.blogspot.com/--u1vXs-qeiY/VBbXIRcJ2MI/AAAAAAAAACo/YMO1MnaCTnE/s1600/medium_term_scheduler.jpg

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 19/50

 Running process may become suspended if it makes an I/O request. Suspended processes

cannot make any progress towards completion. In this condition, to remove the process

from memory and make space for other process, the suspended process is moved to the

secondary storage. This process is called swapping, and the process is said to be swapped

out or rolled out. Swapping may be necessary to improve the process mix.

Comparison between Scheduler

S.N. Long Term Scheduler Short Term Scheduler
Medium Term

Scheduler

1 It is a job scheduler It is a CPU scheduler
It is a process swapping

scheduler.

2
Speed is lesser than short

term scheduler

Speed is fastest among

other two

Speed is in between both

short and long term

scheduler.

3
It controls the degree of

multiprogramming

It provides lesser

control over degree of

multiprogramming

It reduces the degree of

multiprogramming.

4

It is almost absent or

minimal in time sharing

system

It is also minimal in

time sharing system

It is a part of Time sharing

systems.

5

It selects processes from

pool and loads them into

memory for execution

It selects those

processes which are

ready to execute

It can re-introduce the

process into memory and

execution can be

continued.

SCHEDULING (PREEMPTIVE AND NONPREEMPTIVE)

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 20/50

 A final issue to be considered with multithreaded programs concerns communication

between the kernel and the thread library, which may be required by the many-to-many

and two-level models.

 Such coordination allows the number of kernel threads to be dynamically adjusted to help

ensure the best performance.

General Goals

Fairness

 Fairness is important under all circumstances. A scheduler makes sure that each process

gets its fair share of the CPU and no process can suffer indefinite postponement. Note that giving

equivalent or equal time is not fair. Think of safety control and payroll at a nuclear plant.

Policy Enforcement

 The scheduler has to make sure that system's policy is enforced. For example, if the local

policy is safety then the safety control processes must be able to run whenever they want to, even

if it means delay in payroll processes.

Efficiency

 Scheduler should keep the system (or in particular CPU) busy cent percent of the time when

possible. If the CPU and all the Input/Output devices can be kept running all the time, more work

gets done per second than if some components are idle.

Response Time

 A scheduler should minimize the response time for interactive user.

Turnaround

 A scheduler should minimize the time batch users must wait for an output.

Throughput

 A scheduler should maximize the number of jobs processed per unit time.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 21/50

Preemptive Vs Non preemptive Scheduling

The Scheduling algorithms can be divided into two categories with respect to how they deal with

clock interrupts.

Non preemptive Scheduling

 A scheduling discipline is non preemptive if, once a process has been given the CPU, the

CPU cannot be taken away from that process.

Following are some characteristics of non preemptive scheduling

1. In non preemptive system, short jobs are made to wait by longer jobs but the overall

treatment of all processes is fair.

2. In non preemptive system, response times are more predictable because incoming high

priority jobs cannot displace waiting jobs.

3. In non preemptive scheduling, a scheduler executes jobs in the following two situations.

a. When a process switches from running state to the waiting state.

b. When a process terminates.

Preemptive Scheduling

 A scheduling discipline is preemptive if, once a process has been given the CPU can

taken away.

 The strategy of allowing processes that are logically runable to be temporarily suspended

is called Preemptive Scheduling and it is contrast to the "run to completion" method.

Schedule:

 A Process Scheduler schedules different processes to be assigned to the CPU based on

particular scheduling algorithms. There are six popular process scheduling algorithms

which we are going to discuss in this chapter −

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 22/50

 First-Come, First-Served (FCFS) Scheduling

 Shortest-Job-Next (SJN) Scheduling

 Priority Scheduling

 Shortest Remaining Time

 Round Robin(RR) Scheduling

 Multiple-Level Queues Scheduling

 These algorithms are either non-preemptive or preemptive. Non-preemptive algorithms

are designed so that once a process enters the running state; it cannot be preempted until

it completes its allotted time, whereas the preemptive scheduling is based on priority

where a scheduler may preempt a low priority running process anytime when a high

priority process enters into a ready state.

First Come First Serve (FCFS)

 Jobs are executed on first come, first serve basis.

 It is a non-preemptive, pre-emptive scheduling algorithm.

 Easy to understand and implement.

 Its implementation is based on FIFO queue.

 Poor in performance as average wait time is high.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 23/50

Wait time of each process is as follows −

Process Wait Time : Service Time - Arrival Time

P0 0 - 0 = 0

P1 5 - 1 = 4

P2 8 - 2 = 6

P3 16 - 3 = 13

Average Wait Time: (0+4+6+13) / 4 = 5.75

Shortest Job Next (SJN)

 This is also known as shortest job first, or SJF

 This is a non-preemptive, pre-emptive scheduling algorithm.

 Best approach to minimize waiting time.

 Easy to implement in Batch systems where required CPU time is known in advance.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 24/50

 Impossible to implement in interactive systems where required CPU time is not known.

 The processer should know in advance how much time process will take.

Wait time of each process is as follows −

Process Wait Time : Service Time - Arrival Time

P0 3 - 0 = 3

P1 0 - 0 = 0

P2 16 - 2 = 14

P3 8 - 3 = 5

Average Wait Time: (3+0+14+5) / 4 = 5.50

Priority Based Scheduling

 Priority scheduling is a non-preemptive algorithm and one of the most common

scheduling algorithms in batch systems.

 Each process is assigned a priority. Process with highest priority is to be executed first

and so on.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 25/50

 Processes with same priority are executed on first come first served basis.

 Priority can be decided based on memory requirements, time requirements or any other

resource requirement.

Wait time of each process is as follows −

Process Wait Time : Service Time - Arrival Time

P0 9 - 0 = 9

P1 6 - 1 = 5

P2 14 - 2 = 12

P3 0 - 0 = 0

Average Wait Time: (9+5+12+0) / 4 = 6.5

Shortest Remaining Time

 Shortest remaining time (SRT) is the preemptive version of the SJN algorithm.

 The processor is allocated to the job closest to completion but it can be preempted by a

newer ready job with shorter time to completion.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 26/50

 Impossible to implement in interactive systems where required CPU time is not known.

 It is often used in batch environments where short jobs need to give preference.

Round Robin Scheduling

 Round Robin is the preemptive process scheduling algorithm.

 Each process is provided a fix time to execute, it is called a quantum.

 Once a process is executed for a given time period, it is preempted and other process

executes for a given time period.

 Context switching is used to save states of preempted processes.

Wait time of each process is as follows −

Process Wait Time : Service Time - Arrival Time

P0 (0 - 0) + (12 - 3) = 9

P1 (3 - 1) = 2

P2 (6 - 2) + (14 - 9) + (20 - 17) = 12

P3 (9 - 3) + (17 - 12) = 11

Average Wait Time: (9+2+12+11) / 4 = 8.5

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 27/50

Multiple-Level Queues Scheduling

Multiple-level queues are not an independent scheduling algorithm. They make use of other

existing algorithms to group and schedule jobs with common characteristics.

 Multiple queues are maintained for processes with common characteristics.

 Each queue can have its own scheduling algorithms.

 Priorities are assigned to each queue.

For example, CPU-bound jobs can be scheduled in one queue and all I/O-bound jobs in another

queue. The Process Scheduler then alternately selects jobs from each queue and assigns them to

the CPU based on the algorithm assigned to the queue.

Context Switch

 A context switch is the mechanism to store and restore the state or context of a CPU in

Process Control block so that a process execution can be resumed from the same point at

a later time. Using this technique a context switcher enables multiple processes to share a

single CPU. Context switching is an essential part of a multitasking operating system

features.

 When the scheduler switches the CPU from executing one process to execute another, the

context switcher saves the content of all processor registers for the process being

removed from the CPU, in its process descriptor. The context of a process is represented

in the process control block of a process.

 Context switch time is pure overhead. Context switching can significantly affect

performance as modern computers have a lot of general and status registers to be saved.

Content switching times are highly dependent on hardware support. Context switch

requires (n + m) bxK time units to save the state of the processor with n general

registers, assuming b are the store operations are required to save n and m registers of

two process control blocks and each store instruction requires K time units.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 28/50

Some hardware systems employ two or more sets of processor registers to reduce the amount of

context switching time. When the process is switched, the following information is stored.

 Program Counter

 Scheduling Information

 Base and limit register value

 Currently used register

 Changed State

 I/O State

 Accounting

CONCURRENT AND PROCESSES

Co-operation of Process

Processes executing concurrently in the operating system may be either independent

processes or cooperating processes. A process is cooperating if it can affect or be affected by the

other processes executing in the system. Clearly, any process that shares data with other

http://2.bp.blogspot.com/-b8mg2EwHGTk/VBbXWCBHWKI/AAAAAAAAACw/ZFmWgxbUTgY/s1600/context_switch.jpg

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 29/50

processes is a cooperating process. There are several reasons for providing an environment that

allows process cooperation:

• Information sharing. Since several users may be interested in the same piece of information

(for instance, a shared file).It must provide an environment to allow concurrent access to such

information.

• Computation speedup. If we want a particular task to run faster, we must break it into

subtasks, each of which will be executing in parallel with the others. Notice that such a speedup

can be achieved only if the computer has multiple processing cores.

• Modularity. We may want to construct the system in a modular fashion, dividing the system

functions into separate processes or threads,

• Convenience. Even an individual user may work on many tasks at the same time. For instance,

a user may be editing, listening to music, and compiling in parallel.

Cooperating processes require an inter-process communication (IPC) mechanism that will allow

them to exchange data and information. There are two fundamental models of inter-process

communication: shared memory and message passing. In the shared-memory model, a region of

memory that is shared by cooperating processes is established. Processes can then exchange

information by reading and writing data to the shared region. In the message-passing model,

communication takes place by means of messages exchanged between the cooperating processes.

CRITICAL SECTION PROBLEM

Consider a system consisting of n processes {P0, P1, ..., Pn−1}. Each process has a

segment of code, called a critical section, in which the process may be changing common

variables, updating a table, writing a file, and so on. The important feature of the system is that,

when one process is executing in its critical section, no other process is allowed to execute in its

critical section. That is, no two processes are executing in their critical sections at the same time.

The critical-section problem is to design a protocol that the processes can use to

cooperate. Each process must request permission to enter its critical section. The section of code

implementing this request is the entry section. The critical section may be followed by an exit

section. The remaining code is the remainder section.

A solution to the critical-section problem must satisfy the following three requirements:

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 30/50

1. Mutual exclusion. If process Pi is executing in its critical section, then no other processes can

be executing in their critical sections.

2. Progress. If no process is executing in its critical section and some processes wish to enter

their critical sections, then only those processes that are not executing in their remainder sections

can participate in deciding which will enter its critical section next, and this selection cannot be

postponed indefinitely.

3. Bounded waiting. There exists a bound, or limit, on the number of times that other processes

are allowed to enter their critical sections after a process has made a request to enter its critical

section and before that request is granted.

Two general approaches are used to handle critical sections in operating systems: preemptive

kernels and non-preemptive kernels. A preemptive kernel allows a process to be preempted while

it is running in kernel mode. A non-preemptive kernel does not allow a process running in kernel

mode to be preempted; a kernel-mode process will run until it exits kernel mode, blocks, or

voluntarily yields control of the CPU.

SEMAPHORE

Mutex locks, as we mentioned earlier, are generally considered the simplest of

synchronization tools. In this section, we examine a more robust tool that can behave similarly to

a mutex lock but can also provide more sophisticated ways for processes to synchronize their

activities. A semaphore S is an integer variable that, apart from initialization, is accessed only

through two standard atomic operations: wait() and signal(). The wait() operation was originally

termed P (from the Dutch proberen, “to test”); signal() was originally called V (from verhogen,

“to increment”). The definition of wait() is as follows:

wait(S) {

while (S <= 0)

; // busy wait

S--;

}

The definition of signal() is as follows:

signal(S) {

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 31/50

S++;

}

All modifications to the integer value of the semaphore in the wait () and signal () operations

must be executed indivisibly. That is, when one process modifies the semaphore value, no other

process can simultaneously modify that same semaphore value. In addition, in the case of

wait(S), the testing of the integer value of S (S ≤ 0), as well as its possible modification (S--),

must be executed without interruption.

Semaphore Usage

Operating systems often distinguish between counting and binary semaphores. The

value of a counting semaphore can range over an unrestricted domain. The value of a binary

semaphore can range only between 0 and 1. Thus, binary semaphores behave similarly to

mutex locks. Counting semaphores can be used to control access to a given resource consisting

of a finite number of instances. The semaphore is initialized to the number of resources

available. Each process that wishes to use a resource performs a wait() operation on the

semaphore (thereby decrementing the count). When a process releases a resource, it performs a

signal () operation (incrementing the count). When the count for the semaphore goes to 0, all

resources are being used. After that, processes that wish to use a resource will block until the

count becomes greater than 0.

Deadlock and Starvation

The implementation of a semaphore with a waiting queue may result in a situation where

two or more processes are waiting indefinitely for an event that can be caused only by one of the

waiting processes. The event in question is the execution of a signal() operation. When such a

state is reached, these processes are said to be deadlocked. To illustrate this, consider a system

consisting of two processes, P0 and P1, each accessing two semaphores, S and Q, set to the value

1: P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

. .

. .

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 32/50

. .

signal(S); signal(Q);

signal(Q); signal(S);

Suppose that P0 executes wait(S) and then P1 executes wait(Q).When P0 executes

wait(Q), it must wait until P1 executes signal(Q). Similarly, when P1 executes wait(S), it must

wait until P0 executes signal(S). Since these signal() operations cannot be executed, P0 and P1

are deadlocked. We say that a set of processes is in a deadlocked state when every process in the

set is waiting for an event that can be caused only by another process in the set.

The events with which we are mainly concerned here are resource acquisition and release

Another problem related to deadlocks is indefinite blocking or starvation, a situation in which

processes wait indefinitely within the semaphore. Indefinite blocking may occur if we remove

processes from the list associated with a semaphore in LIFO (last-in, first-out) order.

METHODS OF INTER-PROCESS COMMUNICATION (IPC)

Inter-process communication using shared memory requires communicating processes to

establish a region of shared memory. Typically, a shared-memory region resides in the address

space of the process creating the shared-memory segment. Other processes that wish to

communicate using this shared-memory segment must attach it to their address space. Shared

memory requires that two or more processes agree to remove this restriction. They can then

exchange information by reading and writing data in the shared areas. The form of the data and

the location are determined by these processes and are not under the operating system’s control.

The processes are also responsible for ensuring that they are not writing to the same

location simultaneously. Two types of buffers can be used. The unbounded buffer places no

practical limit on the size of the buffer. The consumer may have to wait for new items, but the

producer can always produce new items. The bounded buffer assumes a fixed buffer size. In this

case, the consumer must wait if the buffer is empty, and the producer must wait if the buffer is

full.

Message-Passing Systems

Message passing provides a mechanism to allow processes to communicate and to

synchronize their actions without sharing the same address space. It is particularly useful in a

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 33/50

distributed environment, where the communicating processes may reside on different computers

connected by a network. For example, an Internet chat program could be designed so that chat

participants communicate with one another by exchanging messages. A message-passing facility

provides at least two operations:

send(message) receive(message)

Messages sent by a process can be either fixed or variable in size. If only fixed-sized

messages can be sent, the system-level implementation is straightforward. This restriction,

however, makes the task of programming more difficult. Conversely, variable-sized messages

require a more complex system common kind of tradeoff seen throughout operating-system

design. If processes P and Q want to communicate, they must send messages to and receive

messages from each other: a communication link must exist between them. This link can be

implemented in a variety of ways. We are concerned here not with the link’s physical

implementation (such as shared memory, hardware bus, or network, but rather with its logical

implementation. Here are several methods for logically implementing a link and the

send()/receive() operations:

• Direct or indirect communication

• Synchronous or asynchronous communication

• Automatic or explicit buffering

Naming

Processes that want to communicate must have a way to refer to each other. They can use

either direct or indirect communication. Under direct communication, each process that wants to

communicate must explicitly name the recipient or sender of the communication. In this scheme,

the send() and receive() primitives are defined as:

• send(P, message)—Send a message to process P.

• receive(Q, message)—Receive a message from process Q.

A communication link in this scheme has the following properties:

• A link is established automatically between every pair of processes that want to communicate.

The processes need to know only each other’s identity to communicate.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 34/50

• A link is associated with exactly two processes.

• Between each pair of processes, there exists exactly one link.

This scheme exhibits symmetry in addressing; that is, both the sender process and the

receiver process must name the other to communicate. A variant of this scheme employs

asymmetry in addressing. Here, only the sender names the recipient; the recipient is not required

to name the sender. In this scheme, the send () and receive () primitives are defined as follows:

• send (P, message)—Send a message to process P.

• receive (id, message)—Receive a message from any process. The variable id is

set to the name of the process with which communication has taken place.

The disadvantage in both of these schemes (symmetric and asymmetric) is the limited

modularity of the resulting process definitions. Changing the identifier of a process may

necessitate examining all other process definitions. All references to the old identifier must be

found, so that they can be modified to the new identifier. In general, any such hard-coding

techniques, where identifiers must be explicitly stated, are less desirable than techniques

involving indirection.

With indirect communication, the messages are sent to and received from mailboxes, or

ports. A mailbox can be viewed abstractly as an object into which messages can be placed by

processes and from which messages can be removed. Each mailbox has a unique identification.

For example, POSIX message queues use an integer value to identify a mailbox. A process can

communicate with another process via a number of different mailboxes, but two processes can

communicate only if they have a shared mailbox. The send () and receive () primitives are

defined as follows:

• send (A, message)—Send a message to mailbox A.

• receive (A, message)—Receive a message from mailbox A.

In this scheme, a communication link has the following properties:

• A link is established between a pair of processes only if both members of the pair have a shared

mailbox.

• A link may be associated with more than two processes.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 35/50

• Between each pair of communicating processes, a number of different links may exist, with

each link corresponding to one mailbox.

Now suppose that processes P1, P2, and P3 all share mailbox A. Process P1 sends a

message to A, while both P2 and P3 execute a receive() from A. Which process will receive the

message sent by P1? The answer depends on which of the following methods we choose:

• Allow a link to be associated with two processes at most.

• Allow at most one process at a time to execute a receive () operation.

• Allow the system to select arbitrarily which process will receive the message (that is, either P2

or P3, but not both, will receive the message).

The system may define an algorithm for selecting which process will receive the message

(for example, round robin, where processes take turns receiving messages). The system may

identify the receiver to the sender. A mailbox may be owned either by a process or by the

operating system.

If the mailbox is owned by a process (that is, the mailbox is part of the address space of

the process), then we distinguish between the owner (which can only receive messages through

this mailbox) and the user (which can only send messages to the mailbox). Since each mailbox

has a unique owner, there can be no confusion about which process should receive a message

sent to this mailbox. When a process that owns a mailbox terminates, the mailbox disappears.

Any process that subsequently sends a message to this mailbox must be notified that the

mailbox no longer exists. In contrast, a mailbox that is owned by the operating system has an

existence of its own. It is independent and is not attached to any particular process. The operating

system then must provide a mechanism that allows a process to do the following:

• Create a new mailbox.

• Send and receive messages through the mailbox.

• Delete a mailbox.

The process that creates a new mailbox is that mailbox’s owner by default. Initially, the owner is

the only process that can receive messages through this mailbox. However, the ownership and

receiving privilege may be passed to other processes through appropriate system calls. Of course,

this provision could result in multiple receivers for each mailbox.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 36/50

Synchronization

Communication between processes takes place through calls to send() and receive()

primitives. There are different design options for implementing each primitive. Message passing

may be either blocking or non blocking— also known as synchronous and asynchronous.

(Throughout this text, you will encounter the concepts of synchronous and asynchronous

behavior in relation to various operating-system algorithms.)

• Blocking send. The sending process is blocked until the message is received by the receiving

process or by the mailbox.

• Non-blocking send. The sending process sends the message and resumes operation.

• Blocking receive. The receiver blocks until a message is available.

• Non-blocking receive. The receiver retrieves either a valid message or a null.

Different combinations of send () and receive () are possible. When both send () and

receive () are blocking, we have a rendezvous between the sender and the receiver. The solution

to the producer–consumer problem becomes trivial when we use blocking send () and receive ()

statements. The producer merely invokes the blocking send () call and waits until the message is

delivered to either the receiver or the mailbox. Likewise, when the consumer invokes receive (),

it blocks until a message is available.

Buffering

Whether communication is direct or indirect, messages exchanged by communicating

processes reside in a temporary queue. Basically, such queues can be implemented in three ways:

• Zero capacity. The queue has a maximum length of zero; thus, the link cannot have any

messages waiting in it. In this case, the sender must block until the recipient receives the

message.

• Bounded capacity. The queue has finite length n; thus, at most n messages can reside in it. If

the queue is not full when a new message is sent, the message is placed in the queue (either the

message is copied or a pointer to the message is kept), and the sender can continue execution

without waiting. The link’s capacity is finite, however. If the link is full, the sender must block

until space is available in the queue.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 37/50

• Unbounded capacity. The queue’s length is potentially infinite; thus, any number of messages

can wait in it. The sender never blocks.

The zero-capacity case is sometimes referred to as a message system with no buffering. The

other cases are referred to as systems with automatic buffering.

DEADLOCK

Under the normal mode of operation, a process may utilize a resource in only the

following sequence:

1. Request. The process requests the resource. If the request cannot be granted immediately (for

example, if the resource is being used by another process), then the requesting process must wait

until it can acquire the resource.

2. Use. The process can operate on the resource (for example, if the resource is a printer, the

process can print on the printer).

3. Release. The process releases the resource.

 For each use of a kernel-managed resource by a process or thread, the operating

system checks to make sure that the process has requested and has been allocated

the resource. A system table records whether each resource is free or allocated.

For each resource that is allocated, the table also records the process to which it is

allocated. If a process requests a resource that is currently allocated to another

process, it can be added to a queue of processes waiting for this resource.

 A set of processes is in a deadlocked state when every process in the set is waiting

for an event that can be caused only by another process in the set. The events with

which we are mainly concerned here are resource acquisition and release. The

resources may be either physical resources (for example, printers, tape drives,

memory space, and CPU cycles) or logical resources (for example, semaphores,

mutex locks, and files).

Deadlock Prevention

Mutual Exclusion

 The mutual exclusion condition must hold. That is, at least one resource

must be non-sharable. Sharable resources, in contrast, do not require mutually exclusive

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 38/50

access and thus cannot be involved in a deadlock. Read-only files are a good example of

a sharable resource. If several processes attempt to open a read-only file at the same

time, they can be granted simultaneous access to the file.

 A process never needs to wait for a sharable resource. In general, however, we cannot

prevent deadlocks by denying the mutual-exclusion condition, because some resources

are intrinsically non-sharable. For example, a mutex lock cannot be simultaneously

shared by several processes.

Hold and Wait

 To ensure that the hold-and-wait condition never occurs in the system, we must guarantee

that, whenever a process requests a resource, it does not hold any other resources.

 One protocol that we can use requires each process to request and be allocated all its

resources before it begins execution. We can implement this provision by requiring that

system calls requesting resources for a process precede all other system calls. An

alternative protocol allows a process to request resources only when it has none.

 A process may request some resources and use them. Before it can request any additional

resources, it must release all the resources that it is currently allocated.

 Both these protocols have two main disadvantages. First, resource utilization may be low,

since resources may be allocated but unused for a long period. In the example given, for

instance, we can release the DVD drive and disk file, and then request the disk file and

printer, only if we can be sure that our data will remain on the disk file. Otherwise, we

must request all resources at the beginning for both protocols.

 Second, starvation is possible. A process that needs several popular resources may have

to wait indefinitely, because at least one of the resources that it needs is always allocated

to some other process.

No Preemption

 The third necessary condition for deadlocks is that there be no preemption of resources

that have already been allocated. To ensure that this condition does not hold, we can use

the following protocol.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 39/50

 If a process is holding some resources and requests another resource that cannot be

immediately allocated to it (that is, the process must wait), then all resources the process

is currently holding are preempted. In other words, these resources are implicitly

released. The preempted resources are added to the list of resources for which the process

is waiting.

 The process will be restarted only when it can regain its old resources, as well as the new

ones that it is requesting. Alternatively, if a process requests some resources, we first

check whether they are available. If they are, we allocate them. If they are not, we check

whether they are allocated to some other process that is waiting for additional resources.

If so, we preempt the desired resources from the waiting process and allocate them to the

requesting process. If the resources are neither available nor held by a waiting process,

the requesting process must wait.

 While it is waiting, some of its resources may be preempted, but only if another process

requests them. A process can be restarted only when it is allocated the new resources it is

requesting and recovers any resources that were preempted while it was waiting.

Circular Wait

 The fourth and final condition for deadlocks is the circular-wait condition. One way to

ensure that this condition never holds is to impose a total ordering of all resource types

and to require that each process requests resources in an increasing order of enumeration.

 To illustrate, we let R = {R1, R2, ..., Rm} be the set of resource types. We assign to each

resource type a unique integer number, which allows us to compare two resources and to

determine whether one precedes another in our ordering. Formally, we define a one-to-

one function F: R→N, where N is the set of natural numbers. For example, if the set of

resource types R includes tape drives, disk drives, and printers, then the function F might

be defined as follows:

F(tape drive) = 1

F(disk drive) = 5

F(printer) = 12

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 40/50

 We can now consider the following protocol to prevent deadlocks: Each process can

request resources only in an increasing order of enumeration. That is, a process can

initially request any number of instances of a resource type —say, Ri . After that, the

process can request instances of resource type Rj if and only if F(Rj) > F(Ri). For

example, using the function defined previously, a process that wants to use the tape drive

and printer at the same time must first request the tape drive and then request the printer.

 Alternatively, we can require that a process requesting an instance of resource type Rj

must have released any resources Ri such that F(Ri) ≥ F(Rj). Note also that if several

instances of the same resource type are needed, a single request for all of them must be

issued. If these two protocols are used, then the circular-wait condition cannot hold. We

can demonstrate this fact by assuming that a circular wait exists (proof by contradiction).

Let the set of processes involved in the circular wait be {P0, P1, ..., Pn}, where Pi is

waiting for a resource Ri , which is held by process Pi+1. (Modulo arithmetic is used on

the indexes, so that Pn is waiting for a resource Rn held by P0.) Then, since process Pi+1

is holding resource Ri while requesting resource Ri+1, we must have F(Ri) < F(Ri+1) for

all i. But this condition means that F(R0) < F(R1) < ... < F(Rn) < F(R0). By transitivity,

F(R0) < F(R0), which is impossible. Therefore, there can be no circular wait.

Deadlock Avoidance:

 For avoiding deadlocks, it is to require additional information about how resources are to

be requested. For example, in a system with one tape drive and one printer, the system

might need to know that process P will request first the tape drive and then the printer

before releasing both resources, whereas process Q will request first the printer and then

the tape drive.

 With this knowledge of the complete sequence of requests and releases for each process,

the system can decide for each request whether or not the process should wait in order to

avoid a possible future deadlock. Each request requires that in making this decision the

system consider the resources currently available, the resources currently allocated to

each process, and the future requests and releases of each process.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 41/50

 The various algorithms that use this approach differ in the amount and type of

information required. The simplest and most useful model requires that each process

declare the maximum number of resources of each type that it may need.

Safe State:

 A state is safe if the system can allocate resources to each process in some order and still

avoid a deadlock. More formally, a system is in a safe state only if there exists a safe

sequence.

 A sequence of processes <P1, P2, ... , Pn> is a safe sequence for the current allocation

state if, for each Pi, the resource requests that Pi can still make can be satisfied by the

currently available resources plus the resources held by all Pj, with j < i. In this situation,

if the resources that Pi needs are not immediately available, then Pi can wait until all Pj

have finished. When they have finished, Pi can obtain all of its needed resources,

complete its designated task, return its allocated resources, and terminate. When Pi

terminates, Pi+l can obtain its needed resources, and so on. If no such sequence exists,

then the system state is said to be unsafe. A safe state is not a deadlocked state.

Conversely, a deadlocked state is an unsafe state.

Resource-Allocation-Graph Algorithm

 If we have a resource-allocation system with only one instance of each resource type, we

can use a variant of the resource-allocation graph defined for deadlock avoidance. In

addition to the request and assignment edges already described, we introduce a new type

of edge, called a claim edge.

 A claim edge Pi ~ Rj indicates that process Pi may request resource Rj at some time in

the future. This edge resembles a request edge in direction but is represented in the graph

by a dashed line. When process Pi requests resource R1, the claim edge P; -+ R1 is

converted to a request edge. Similarly, when a resource R1 is released by P;, the

assignment edge Rj -+ P; is reconverted to a claim edge P; -+ Rj.

 We note that the resources must be claimed a priori in the system. That is, before process

P; starts executing, all its claim edges must already appear in the resource-allocation

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 42/50

graph. We can relax this condition by allowing a claim edge P; -+ R1 to be added to the

graph only if all the edges associated with process P; are claim edges. Now suppose that

process P; requests resource Rj. The request can be granted only if converting the request

edge P; -+ Rj to an assignment edge R1 -+ P; does not result in the formation of a cycle

in the resource-allocation graph. We check for safety by using a cycle-detection

algorithm.

 An algorithm for detecting a cycle in this graph requires an order of n2 operations, where

n is the number of processes in the system. If no cycle exists, then the allocation of the

resource will leave the system in a safe state. If a cycle is found, then the allocation will

put the system in an unsafe state. In that case, process P; will have to wait for its requests

to be satisfied. To illustrate this algorithm, we consider the following resource-allocation

graph.

 Suppose that P2 requests R2. Although R2 is currently free, we cannot allocate it to P2,

since this action will create a cycle in the graph .A cycle, as mentioned, indicates that the

system is in an unsafe state. If P1 requests R2, and P2 requests R1, then a deadlock will

occur.

Banker’s algorithm:

 The resource-allocation-graph algorithm is not applicable to a resource allocation system

with multiple instances of each resource type. The Banker's algorithm is less efficient

than the resource-allocation graph scheme. This algorithm is commonly known as the

banker's algorithm. When a new process enters the system, it must declare the maximum

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 43/50

number of instances of each resource type that it may need. This nun1.ber may not

exceed the total number of resources in the system.

 When a user requests a set of resources, the system must determine whether the

allocation of these resources will leave the system in a safe state. If it will, the resources

are allocated; otherwise, the process must wait until some other process releases enough

resources. Several data structures must be maintained to implement the banker's

algorithm. These data structures encode the state of the resource-allocation system. We

need the following data structures, where n is the number of processes in the system and

m is the number of resource types:

Available: A vector of length m indicates the number of available resources of each type. If

Available[j] equals k, then k instances of resource type Ri are available.

Max: An n x m matrix defines the maximum demand of each process. If Max[i] [j] equals k,

then process P; may request at most k instances of resource type Ri.

Allocation: An 11 x m matrix defines the number of resources of each type currently allocated to

each process. If Allocation[i][j] equals lc, then process P; is currently allocated lc instances of

resource type Rj.

Need: An n x m matrix indicates the remaining resource need of each process. If Need[i][j]

equals k, then process P; may need k more instances of resource type Ri to complete its task.

Note that Need[i][j] equals Max[i][j] - Allocation [i][j].

These data structures vary over time in both size and value. To simplify the presentation of the

banker's algorithm, we next establish some notation. Let X andY be vectors of length 11. We say

that X::= Y if and only if X[i] ::= Y[i] for all i = 1, 2, ... , n. For example, if X = (1,7,3,2) and Y

= (0,3,2,1), then Y ::=X. In addition, Y < X if Y ::=X and Y# X. We can treat each row in the

matrices Allocation and Need as vectors and refer to them as Allocation; and Need;. The vector

Allocation; specifies the resources currently allocated to process P;; the vector Need; specifies

the additional resources that process P; may still request to complete its task.

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively. Initialize Work=

Available and Finish[i] =false for i = 0, 1, ... , n - 1.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 44/50

2. Find an index i such that both

a. Finish[i] ==false

b. Needi Work. If no such i exists, go to step 4.

3. Work = Work + Allocation; Finish[i] = true. Go to step 2.

4. If Finish[i] ==true for all i, then the system is in a safe state.

Resource-Request Algorithm

Let Request; be the request vector for process P;. If Request; [j] == k, then process P; wants k

instances of resource type Rj. When a request for resources is made by process P;, the following

actions are taken:

1. If Request; <= Need; go to step 2. Otherwise, raise an error condition, since the

process has exceeded its maximum claim.

2. If Request< = Available, go to step 3. Otherwise, P; must wait, since the resources are

not available.

3. Have the system pretend to have allocated the requested resources to process P; by

modifyil1.g the state as follows:

Available= Available- Requesti

Deadlock

Allocation; =Allocation; +Requesti

Need; =Needi- Requesti

If the resulting resource-allocation state is safe, the transaction is completed, and process P; is

allocated its resources. However, if the new state is unsafe, then P; must wait for Requesti, and

the old resource-allocation state is restored.

Deadlock Detection

If a system does not employ either a deadlock-prevention or a deadlock avoidance

algorithm, then a deadlock situation may occur. In this environment, the system may provide:

• An algorithm that examines the state of the system to determine whether a deadlock has

occurred

• An algorithm to recover from the deadlock

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 45/50

Single Instance of Each Resource Type

If all resources have only a single instance, then we can define a deadlock detection

algorithm that uses a variant of the resource-allocation graph, called a wait-for graph. We obtain

this graph from the resource-allocation graph by removing the resource nodes and collapsing the

appropriate edges.

 More precisely, an edge from Pi to Pj in a wait-for graph implies that process Pi is

waiting for process Pj to release a resource that Pi needs.

An edge Pi → Pj exists in a wait-for graph if and only if the corresponding resource allocation

graph contains two edges Pi → Rq and Rq → Pj for some resource Rq . In Figure, we present a

resource-allocation graph and the corresponding wait-for graph. As before, a deadlock exists in

the system if and only if the wait-for graph contains a cycle.

To detect deadlocks, the system needs to maintain the wait for graph and periodically

invoke an algorithm that searches for a cycle in the graph. An algorithm to detect a cycle in a

graph requires an order of n2 operations, where n is the number of vertices in the graph.

Several Instances of a Resource Type

The wait-for graph scheme is not applicable to a resource-allocation system with multiple

instances of each resource type. We turn now to a deadlock detection algorithm that is applicable

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 46/50

to such a system. The algorithm employs several time-varying data structures that are similar to

those used in the banker’s algorithm

• Available. A vector of length m indicates the number of available resources of each type.

• Allocation. An n × m matrix defines the number of resources of each type currently allocated to

each process.

• Request. An n × m matrix indicates the current request of each process. If Request[i][j] equals

k, then process Pi is requesting k more instances of resource type Rj . To simplify notation, we

again treat the rows in the matrices Allocation and Request as vectors; we refer to them as

Allocationi and Requesti . The detection algorithm described here simply investigates every

possible allocation sequence for the processes that remain to be completed.

1. Let Work and Finish be vectors of length m and n, respectively. Initialize Work = Available.

For i = 0, 1, ..., n–1, if Allocationi _= 0, then Finish[i] = false. Otherwise, Finish[i] = true.

2. Find an index i such that both

a. Finish[i] == false

b. Requesti ≤Work

If no such i exists, go to step 4.

3. Work =Work + Allocationi

Finish[i] = true

Go to step 2.

4. If Finish[i] ==false for some i, 0≤i<n, then the system is in a deadlocked state. Moreover, if

Finish[i] == false, then process Pi is deadlocked. This algorithm requires an order of m × n2

operations to detect whether the system is in a deadlocked state. You may wonder why we

reclaim the resources of process Pi (in step 3) as soon as we determine that Requesti ≤ Work (in

step 2b). We know that Pi is currently not involved in a deadlock (since Requesti ≤ Work). Thus,

we take an optimistic attitude and assume that Pi will require no more resources to complete its

task; it will thus soon return all currently allocated resources to the system. If our assumption is

incorrect, a deadlock may occur later. That deadlock will be detected the next time the deadlock-

detection algorithm is invoked.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 47/50

To illustrate this algorithm, we consider a system with five processes P0 through P4 and

three resource types A, B, and C. Resource type A has seven instances, resource type B has two

instances, and resource type C has six instances. Suppose that, at time T0, we have the following

resource-allocation state:

Allocation Request Available

A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

We claim that the system is not in a deadlocked state. Indeed, if we execute our algorithm, we

will find that the sequence <P0, P2, P3, P1, P4> results in Finish[i] == true for all i. Suppose

now that process P2 makes one additional request for an instance of type C. The Request matrix

is modified as follows:

Request

A B C

P0 0 0 0

P1 2 0 2

P2 0 0 1

P3 1 0 0

P4 0 0 2

We claim that the system is now deadlocked. Although we can reclaim the resources held

by process P0, the number of available resources is not sufficient to fulfill the requests of the

other processes. Thus, a deadlock exists, consisting of processes P1, P2, P3, and P4.

Recovery from Deadlock

When a detection algorithm determines that a deadlock exists, several alternatives are

available. One possibility is to inform the operator that a deadlock has occurred and to let the

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 48/50

operator deal with the deadlock manually. Another possibility is to let the system recover from

the deadlock automatically. There are two options for breaking a deadlock.

Process Termination

To eliminate deadlocks by aborting a process, we use one of two methods. In both

methods, the system reclaims all resources allocated to the terminated processes.

• Abort all deadlocked processes. This method clearly will break the deadlock cycle, but at great

expense. The deadlocked processes may have computed for a long time, and the results of these

partial computations must be discarded and probably will have to be recomputed later.

• Abort one process at a time until the deadlock cycle is eliminated. This method incurs

considerable overhead, since after each process is aborted, a deadlock-detection algorithm must

be invoked to determine whether any processes are still deadlocked.

Aborting a process may not be easy. If the process was in the midst of updating a file,

terminating it will leave that file in an incorrect state. Similarly, if the process was in the midst of

printing data on a printer, the system must reset the printer to a correct state before printing the

next job.

Resource Preemption

To eliminate deadlocks using resource preemption, we successively preempt some

resources from processes and give these resources to other processes until the deadlock cycle is

broken. If preemption is required to deal with deadlocks, then three issues need to be addressed:

1. Selecting a victim. Which resources and which processes are to be preempted? As in process

termination, we must determine the order of preemption to minimize cost. Cost factors may

include such parameters as the number of resources a deadlocked process is holding and the

amount of time the process has thus far consumed.

2. Rollback. If we preempt a resource from a process, what should be done with that process?

Clearly, it cannot continue with its normal execution; it is missing some needed resource. We

must roll back the process to some safe state and restart it from that state. Since, in general, it is

difficult to determine what a safe state is, the simplest solution is a total rollback: abort the

process and then restart it. Although it is more effective to roll back the process only as far as

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 49/50

necessary to break the deadlock, this method requires the system to keep more information about

the state of all running processes.

3. Starvation. How do we ensure that starvation will not occur? That is, how can we guarantee

that resources will not always be preempted from the same process?

In a system where victim selection is based primarily on cost factors, it may happen that the

same process is always picked as a victim. As a result, this process never completes its

designated task, a starvation situation any practical system must address. Clearly, we must ensure

that a process can be picked as a victim only a (small) finite number of times. The most common

solution is to include the number of rollbacks in the cost factor.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - II BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 50/50

POSSIBLE QUESTIONS

UNIT – II

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. Define internal commands in Unix.

2. What is External commands in Linux.

3. What do you mean by partition in OS?

4. Define Fork command.

5. Define Wait commands

PART – C (6 MARKS)

1. Discuss in detail the System Processes.

2. Explain the external and internal commands.

3. Explain the creation of partitions in OS.

4. Explain the processes and its creation phases.

5. Discuss the commands of fork, exec and wait.

Questions Opt1 opt2 opt3 opt4 KEY

Semaphores function is to

synchronize

critical resources

to prevent

deadlock

synchronize

processes for

better CPU

utilization

used for memory

management

may cause a high

I/O rate

synchronize

critical

resources to

prevent

Four necessary conditions for deadlock are non

pre-emption, circular wait, hold and wait and
mutual exclusion race condition buffer overflow multiprocessing

mutual

exclusion

 A series of statements explaining how the data

is to be processed is called
instruction compiler program interpretor program

Banker's algorithm deals with
deadlock

prevention

deadlock

avoidance
deadlock recovery mutual exclusion

deadlock

avoidance

Which is non pre-emptive Round robin FIFO MQS MQSF FIFO

A hardware device which is capable of

executing a sequence of instructions, is known

as

CPU ALU CU Processor Processor

Distributed systems should high security
have better

resource sharing

better system

utilization

low system

overhead

have better

resource

sharing

Which of the following is always there in a

computer
Batch system Operating system

Time sharing

system

Controlling

system

Operating

system

PART - A (Online Examination)

KARPAGAM ACADEMY OF HIGHER EDUCATION
Coimbatore – 641 021.

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

UNIT - II : (Objective Type Multiple choice Questions each Question carries one Mark)

UNIX/LINUX PROGRAMMING

Which of following is not an advantage of

multiprogramming

increased

throughput

shorter response

time

ability to assign

priorities of jobs

decreased system

overload

decreased

system

overload

 Banker's algorithm for resource allocation deals

with

deadlock

prevention

deadlock

aviodance
deadlock recovery circular wait

deadlock

aviodance

_______ is the basis of multiprogrammed

operating system.

RR scheduling Self Scheduling CPU sceduling throughput CPU

sceduling

A ______ is executed until it must wait,

typically for the completion of some i/o request

reverse deadlock

avoidance

deadlock process process

_____ is a fundamental operating system

function.

RR CPU Scheduling nonpreemptive Scheduling

Process execution begins with a_____ CPU burst RR scheduling SJF scheduling SRT scheduling CPU burst

The operating system must select one of the

processes in the ready queue to be executed by

the _________

nonpreemptive short term

scheduler

long term

scheduler

low level short term

scheduler

When scheduling takes place only under

circumstances 1 and 4 called _______

variable class real time class priority class nonpreemptive nonpreemptive

Another component involved in the CPU

scheduling function is the ______

central edge dispatcher claim edge graph edge dispatcher

One measure of work is the number of processes

completed per time unit called _____

throughput variable class real time class priority class throughput

Which of the following is the simplest

scheduling discipline?

FCFS scheduling RR scheduling SJF scheduling SRT scheduling FCFS

scheduling

In which scheduling, processes are dispatched

according to their arrival time on the ready

queue?

FCFS scheduling RR scheduling SJF scheduling SRT scheduling FCFS

scheduling

In which scheduling, processes are dispatched

FIFO but are given a limited amount of CPU

time?

FIFO scheduling RR scheduling SJF scheduling SRT scheduling RR scheduling

Which scheduling is effective in time sharing

environments

FIFO scheduling RR scheduling SJF scheduling SRT scheduling RR scheduling

Variable size blocks are called Pages Segments Tables None Segments

Which scheduling is effective in time sharing

environments

FIFO scheduling RR scheduling SJF scheduling SRT scheduling RR scheduling

Which of the following is non-preemptive

scheduling?

RR scheduling SJF scheduling SRT scheduling None SJF

scheduling

The interval from the time of submission of a

process to the time of completion is the ____

Queues Processor

Sharing

Sharing resources turaround time turaround time

The simplest CPU sceduling algorithm is the FCS SJS FCFS DFG FCFS

The SJF algorithm is a special case of the

general _______ algorithm

FCS SJS Roundrobin FCSC Roundrobin

_______ scheduling algorithm is designed

especially for time sharing systems.

CFS FSCS priority Round Robin

Round Robin

The seek optimization strategy in which there is

no reordering of the queue is called

__________.

 FCFS SSTF SCAN C-SCAN FCFS

A major problem with priority scheduling

algorithms is _____

tail Starvation time first time quantum Starvation

If the time quantum is very small the RR

aproach is called ________

Queues Processor

Sharing

Sharing resources Context

switching

Processor

Sharing

 The seek optimization strategy in which the

disk arm is positioned next at the request

(inward or outward) that minimizes arm

movement is called ________.

 FCFS SSTF SCAN C-SCAN

SSTF

If several identical processors are available then

_____ can occur.

heterogeneous homogeneous load sharing UMA load sharing

The high priority process would be waiting for a

lower priority one to finish is called _____

resources

inversion

Priority inversion priority Priority

inheritance

Priority

inversion

_____ systems are required to complete a

critical task within a guaranteed amount of time.

hard real time Priority inversion load sharing Priority

inheritance

hard real time

The scheduler than either admits a process

guarenteeing that the process will complete on

time known as _____

Priority inversion resources

reservation

load sharing Sharing resources resources

reservation

_______ uses the the given algorithm and the

system workload to produce a formula.

deterministic

modelling

scheduling

process

Analaytic

evaluation

Queuing model Analaytic

evaluation

If no thread is found the dispatcher will execute

a special thread called______

variable class real time class priority class idle thread idle thread

Deadlocks can be described more precisely in

terms of a directed graph called

resource graph system graph system resources

allocation graph

request graph system

resources

allocation

graph

______ is th set of methods for ensuring that at

atleast one of the necessary condition.

Deadlock

prevention

deadlock

avoidance

handling deadlock resource

deadlock

Deadlock

prevention

_____ is possible to construct an algorithm that

ensures that the system will never enter the

deadlock state.

Deadlock

prevention

deadlock

avoidance

handling deadlock resource

deadlock

deadlock

avoidance

A system is in a safe state only if there exists a

Safe state unsafe state normal deadlock Safe state

 A critical section is a program segment

____________.

 which should run

in a certain

specified amount

 which avoids

deadlocks

 where shared

resources are

accessed

 which must be

enclosed by a

pair of

semaphore

operations, P and

V

 where shared

resources are

accessed

The deadlock avoidance algorithm are described

in next system but is less efficient than the

resource allocation graph called ______

Deadlock

prevention

deadlock

avoidance

bankers algorithm bankers

allocation

bankers

algorithm

CPU Scheduling is the basis of _________

operating system.

single

programmed

multi

programmed

multi system multi disks multi

programmed

Scheduling is a fundamental ___________

function.

computer operating system system resource disk operating

system

Another component involved in the CPU

_______ function is the dispatcher

processing mathematical arithmetic scheduling scheduling

A major problem for priority __________ is

starvation.

sort algorithms scheduling

algoriuthms

search algorithms manage

algorithms

scheduling

algoriuthms

The seek _______ strategy in which there is no

reordering of the queue is called SSTF

processing scheduling optimization implementation optimization

The high ___________ would be waiting for a

lower priority one to finish is called priority

inversion

performance priority patent graph edge priority

A __________ is a program segment where

shared resources are accessed.

critical section sub section cross section class section critical section

If no thread is found, the ________ will execute

a special thread called idle thread.

degrader scheduler dispatcher redeemer dispatcher

_______ execution begins with a CPU Burst. Process Performance Purge Put Process

SJF Scheduling is an example for _________

scheduling.

non- preemptive preemptive emptive prescheduling non-

preemptive

_______ is the simplest CPU sceduling

algorithm.

FCFS LCFS FCLS LCFS FCFS

Segments are called ________ blocks. equal size variable class variable size big size variable size

________ can be described more precisely in

terms of a directed graph.

semaphore deadlocks dumplocks starvation deadlocks

The interval from the time of submission of a

process to the time of completion is the ____

Queues Processor

Sharing

Sharing resources turaround time turaround time

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 1/28

UNIT – III

SYLLABUS

User Management and the File System Types of Users, Creating users, Granting rights

User management commands, File quota and various file systems available, File System

Management and Layout, File permissions, Login process, Managing Disk Quotas, Links (hard

links, symbolic links)

 The operating system, executing in kernel mode, is given unrestricted access to both

operating-system memory and users’ memory. This provision allows the operating

system to load users’ programs into users’ memory, to dump out those programs in case

of errors, to access and modify parameters of system calls, to perform I/O to and from

user memory, and to provide many other services.

 Consider, for example, that an operating system for a multiprocessing system must

execute context switches, storing the state of one process from the registers into main

memory before loading the next process’s context from main memory into the registers.

This scheme allows the operating system to change the value of the registers but prevents

user programs from changing the registers’ contents.

Address Binding

 Memory management is the functionality of an operating system which handles or

manages primary memory. Memory management keeps track of each and every memory

location either it is allocated to some process or it is free. It checks how much memory is

to be allocated to processes. It decides which process will get memory at what time. It

tracks whenever some memory gets freed or unallocated and correspondingly it updates

the status.

 Memory management provides protection by using two registers, a base register and a

limit register. The base register holds the smallest legal physical memory address and the

limit register specifies the size of the range. For example, if the base register holds

300000 and the limit register is 1209000, then the program can legally access all

addresses from 300000 through 411999.

Instructions and data to memory addresses can be done in following ways

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 2/28

 Compile time -- When it is known at compile time where the process will reside, compile

time binding is used to generate the absolute code.

 Load time -- When it is not known at compile time where the process will reside in

memory, then the compiler generates re-locatable code.

 Execution time -- If the process can be moved during its execution from one memory

segment to another, then binding must be delayed to be done at run time

Dynamic Loading

 In dynamic loading, a routine of a program is not loaded until it is called by the

program. All routines are kept on disk in a re-locatable load format. The main program

is loaded into memory and is executed. Other routines methods or modules are loaded

on request. Dynamic loading makes better memory space utilization and unused routines

are never loaded.

 The advantage of dynamic loading is that a routine is loaded only when it is needed.

This method is particularly useful when large amounts of code are needed to handle

infrequently occurring cases, such as error routines. In this case, although the total

program size may be large, the portion that is used (and hence loaded) may be much

smaller.

 Dynamic loading does not require special support from the operating system. It is the

responsibility of the users to design their programs to take advantage of such a method.

Operating systems may help the programmer, however, by providing library routines to

implement dynamic loading.

 Dynamic Linking

 Linking is the process of collecting and combining various modules of code and data

into a executable file that can be loaded into memory and executed. Operating system

can link system level libraries to a program. When it combines the libraries at load time,

the linking is called static linking and when this linking is done at the time of execution,

it is called as dynamic linking.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 3/28

 In static linking, libraries linked at compile time, so program code size becomes bigger

whereas in dynamic linking libraries linked at execution time so program code size

remains smaller.

 Unlike dynamic loading, dynamic linking and shared libraries generally require help

from the operating system. If the processes in memory are protected from one another,

then the operating system is the only entity that can check to see whether the needed

routine is in another process’s memory space or that can allow multiple processes to

access the same memory addresses.

PHYSICAL AND VIRTUAL ADDRESS SPACE

Logical (Virtual) versus Physical Address Space

An address generated by the CPU is a logical address whereas address actually available

on memory unit is a physical address. Logical address is also known a Virtual address. Virtual

and physical addresses are the same in compile-time and load-time address-binding schemes.

Virtual and physical addresses differ in execution-time address-binding scheme.

The set of all logical addresses generated by a program is referred to as a logical address

space. The set of all physical addresses corresponding to these logical addresses is referred to as

a physical address space.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 4/28

The run-time mapping from virtual to physical address is done by the memory

management unit (MMU) which is a hardware device.

MMU uses following mechanism to convert virtual address to physical address.

 The value in the base register is added to every address generated by a user process which is

treated as offset at the time it is sent to memory. For example, if the base register value is

10000, then an attempt by the user to use address location 100 will be dynamically reallocated

to location 10100.

 The user program deals with virtual addresses; it never sees the real physical addresses.

MEMORY ALLOCATION STRATEGIES

Contiguous Memory Allocation

 The main memory must accommodate both the operating system and the various user

processes. We therefore need to allocate main memory in the most efficient way possible.

The memory is usually divided into two partitions: one for the resident operating system and

one for the user processes.

 We can place the operating system in either low memory or high memory. The major factor

affecting this decision is the location of the interrupt vector. Since the interrupt vector is

often in low memory, programmers usually place the operating system in low memory as

well.

 We usually want several user processes to reside in memory at the same time. We therefore

need to consider how to allocate available memory to the processes that are in the input

queue waiting to be brought into memory. In contiguous memory allocation, each process is

contained in a single section of memory that is contiguous to the section containing the next

process.

Memory Protection

 Before discussing memory allocation further, we must discuss the issue of memory

protection. If we have a system with a relocation register, together with a limit, we

accomplish our goal. The relocation register contains the value of the smallest physical

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 5/28

address; the limit register contains the range of logical addresses (for example, relocation =

100040 and limit = 74600).

 Each logical address must fall within the range specified by the limit register. The MMU

maps the logical address dynamically by adding the value in the relocation register. This

mapped address is sent to memory. When the CPU scheduler selects a process for execution,

the dispatcher loads the relocation and limit registers with the correct values as part of the

context switch. Because every address generated by a CPU is checked against these

registers, we can protect both the operating system and the other users’ programs and data

from being modified by this running process.

Memory Allocation

 One of the simplest methods for allocating memory is to divide memory into several fixed-

sized partitions. Each partition may contain exactly one process. Thus, the degree of

multiprogramming is bound by the number of partitions. In this multiple partition method,

when a partition is free, a process is selected from the input queue and is loaded into the free

partition.

 When the process terminates, the partition becomes available for another process. This

method was originally used by the IBM OS/360 operating system (called MFT) but is no

longer in use. The method described next is a generalization of the fixed-partition scheme

(called MVT); it is used primarily in batch environments. Many of the ideas presented here

are also applicable to a time-sharing environment in which pure segmentation is used for

memory management.

 In the variable-partition scheme, the operating system keeps a table indicating which parts

of memory are available and which are occupied. Initially, all memory is available for user

processes and is considered one large block of available memory, a hole. Eventually, as you

will see, memory contains a set of holes of various sizes.

 As processes enter the system, they are put into an input queue. The operating system takes

into account the memory requirements of each process and the amount of available memory

space in determining which processes are allocated memory.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 6/28

 When a process is allocated space, it is loaded into memory, and it can then compete for

CPU time. When a process terminates, it releases its memory, which the operating system

may then fill with another process from the input queue.

 In general, the memory blocks available comprise a set of holes of various sizes scattered

throughout memory. When a process arrives and needs memory, the system searches the set

for a hole that is large enough for this process. If the hole is too large, it is split into two

parts. One part is allocated to the arriving process; the other is returned to the set of holes.

When a process terminates, it releases its block of memory, which is then placed back in the

set of holes.

 If the new hole is adjacent to other holes, these adjacent holes are merged to form one larger

hole. At this point, the system may need to check whether there are processes waiting for

memory and whether this newly freed and recombined memory could satisfy the demands

of any of these waiting processes. This procedure is a particular instance of the general

dynamic storage allocation problem, which concerns how to satisfy a request of size n from

a list of free holes. There are many solutions to this problem. The first-fit, best-fit, and

worst-fit strategies are the ones most commonly used to select a free hole from the set of

available holes.

• First fit. Allocate the first hole that is big enough. Searching can start either at the beginning of

the set of holes or at the location where the previous first-fit search ended. We can stop searching

as soon as we find a free hole that is large enough.

• Best fit. Allocate the smallest hole that is big enough. We must search the entire list, unless the

list is ordered by size. This strategy produces the smallest leftover hole.

• Worst fit. Allocate the largest hole. Again, we must search the entire list, unless it is sorted by

size. This strategy produces the largest leftover hole, which may be more useful than the smaller

leftover hole from a best-fit approach.

Fragmentation

 Both the first-fit and best-fit strategies for memory allocation suffer from external

fragmentation. As processes are loaded and removed from memory, the free memory space

is broken into little pieces. External fragmentation exists when there is enough total memory

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 7/28

space to satisfy a request but the available spaces are not contiguous: storage is fragmented

into a large number of small holes. This fragmentation problem can be severe. In the worst

case, we could have a block of free (or wasted) memory between every two processes. If all

these small pieces of memory were in one big free block instead, we might be able to run

several more processes.

 Whether we are using the first-fit or best-fit strategy can affect the amount of fragmentation.

(First fit is better for some systems, whereas best fit is better for others.) Another factor is

which end of a free block is allocated. (Which is the leftover piece—the one on the top or

the one on the bottom?) Memory fragmentation can be internal as well as external. Consider

a multiple-partition allocation scheme with a hole of 18,464 bytes. Suppose that the next

process requests 18,462 bytes. If we allocate exactly the requested block, we are left with a

hole of 2 bytes. The overhead to keep track of this hole will be substantially larger than the

hole itself.

 The general approach to avoiding this problem is to break the physical memory into fixed-

sized blocks and allocate memory in units based on block size. With this approach, the

memory allocated to a process may be slightly larger than the requested memory. The

difference between these two numbers is internal fragmentation—unused memory that is

internal to a partition.

 One solution to the problem of external fragmentation is compaction. The goal is to shuffle

the memory contents so as to place all free memory together in one large block. Compaction

is not always possible, however. If relocation is static and is done at assembly or load time,

compaction cannot be done. It is possible only if relocation is dynamic and is done at

execution time. Another possible solution to the external-fragmentation problem is to permit

the logical address space of the processes to be noncontiguous, thus allowing a process to be

allocated physical memory wherever such memory is available. Two complementary

techniques achieve this solution: segmentation and paging

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 8/28

PAGING

 It is a memory-management scheme that permits the physical address space a process to

be noncontiguous. Paging avoids external fragmentation and the need for compaction. It

also solves the considerable problem of fitting memory chunks of varying sizes onto the

backing store; most memory management schemes used before the introduction of paging

suffered from this problem. The problem arises because, when some code fragments or

data residing in main memory need to be swapped out, space must be framed on the

backing store.

 The backing store has the same fragmentation problems discussed in connection with

main memory, but access is much slower, so compaction is impossible. Because of its

advantages over earlier methods, paging in its various forms is used in most operating

systems.

Traditionally, support for paging has been handled by hardware. However, recent designs

have implemented paging by closely integrating the hardware and operating system,

especially on 64-bit microprocessors.

Basic Method

 The basic method for implementing paging involves breaking physical memory into fixed-

sized blocks called frames and breaking logical memory into blocks of the same size called

pages.

 When a process is to be executed, its pages are loaded into any available memory frames

from their source (a file system or the backing store). The backing store is divided into

fixed-sized blocks that are of the san1.e size as the memory frames. The hardware support

for paging is illustrated in the following figure

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 9/28

 Every address generated the CPU is divided into two parts: a {p) and a . The page number is

used as an index into a page table contains the base address of each page in physical

memory. This base address is combined with the page offset to define the physical memory

address that is sent to the memory unit. The paging model of memory is shown in the

following diagram

 The page size (like the frame size) is defined by the hardware. The size of a page is typically

a power of 2, varying between 512 bytes and 16 MB per page, depending on the computer

architecture. The selection of a power of 2 as a page size makes the translation of a logical

address into a page number and page offset particularly easy.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 10/28

 If the size of the logical address space is 2m, and a page size is 271 addressing units (bytes

or wordst then the high-order m- n bits of a logical address designate the page number, and

the n low-order bits designate the page offset. Thus, the logical address is as follows: where

p is an index into the page table and d is the displacement within the page. As a concrete

(although minuscule) example, consider the memory in the following diagram

 Here, in the logical address, n= 2 and m = 4. Using a page size of 4 bytes and a physical

memory of 32 bytes (8 pages), we show how the user's view of memory can be mapped into

physical memory. Logical address 0 is page 0, offset 0. Indexing into the page table, we find

that page 0 is in frame 5. Thus, logical address 0 maps to physical address 20 [= (5 x 4) + 0].

Logical address 3 (page 0, offset 3) maps to physical address 23 [= (5 x 4) + 3].

 Logical address 4 is page 1, offset 0; according to the page table, page 1 is mapped to frame

6. Thus, logical address 4 maps to physical address 24 [= (6 x 4) + O]. Logical address 13

maps to physical address 9. You may have noticed that paging itself is a form of dynamic

relocation. Every logical address is bound by the paging hardware to some physical address.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 11/28

Using paging is similar to using a table of base (or relocation) registers, one for each frame

of memory. When we use a paging scheme, we have no external fragmentation: any free

frame can be allocated to a process that needs it. However, we may have some internal

fragmentation. Notice that frames are allocated as units.

 If the memory requirements of a process do not happen to coincide with page boundaries,

the last frame allocated may not be completely full. For example, if page size is 2,048 bytes,

a process of 72,766 bytes will need 35 pages plus 1,086 bytes. It will be allocated 36 frames,

resulting in internal fragmentation of 2,048 - 1,086 = 962 bytes. In the worst case, a process

would need 11 pages plus 1 byte. It would be allocated 11 + 1 frames, resulting in internal

fragmentation of almost an entire frame. If process size is independent of page size, we

expect internal fragmentation to average one-half page per process. This consideration

suggests that small page sizes are desirable. Generally, page sizes have grown over time as

processes, data sets, and main memory have become larger.

 Today, pages typically are between 4 KB and 8 KB in size and some systems support even

larger page sizes. Some CPUs and kernels even support multiple page sizes. For instance,

Solaris uses page sizes of 8 KB and 4 MB, depending on the data stored by the pages.

Researchers are now developing support for variable on-the-fly page size. Usually, each

page-table entry is 4 bytes long, but that size can vary as well. A 32-bit entry can point to

one of 232 physical page frames. If frame size is 4 KB, then a system with 4-byte entries

can address 244 bytes (or 16 TB) of physical memory. When a process arrives in the system

to be executed, its size, expressed in pages, is examined. Each page of the process needs one

frame. Thus, if the process requires 11 pages, at least 11 frames must be available in

memory.

 If n frames are available, they are allocated to this arriving process. The first page of the

process is loaded into one of the allocated frames, and the frame number is put in the page

table for this process. The next page is loaded into another frame, its frame number is put

into the page table, and so on. An important aspect of paging is the clear separation between

the user's view of memory and the actual physical memory. The user program views

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 12/28

memory as one single space, containing only this one program. In fact, the user program is

scattered throughout physical memory, which also holds other programs.

 The difference between the user's view of memory and the actual physical memory is

reconciled by the address-translation hardware. The logical addresses are translated into

physical addresses. This mapping is hidden from the user and is controlled by the operating

system. Notice that the user process by definition is unable to access memory it does not

own.

 It has no way of addressing memory outside of its page table, and the table includes only

those pages that the process owns. Since the operating system is managing physical

memory, it must be aware of the allocation details of physical memory-which frames are

allocated, which frames are available, how many total frames there are, and so on. This

information is generally kept in a data structure called a frame the frame-table has one entry

for each physical page frame, indicating whether the latter is free or allocated and, if it is

allocated, to which page of which process or processes.

 In addition, the operating system must be aware that user processes operate in user space,

and all logical addresses must be mapped to produce physical addresses.If a user makes a

system call (to do I/0, for example) and provides an address as a parameter (a buffe1~ for

instance), that address must be mapped to produce the correct physical address.

 The operating system maintains a copy of the page table for each process, just as it

maintains a copy of the instruction counter and register contents. This copy is used to

translate logical addresses to physical addresses whenever the operating system must map a

logical address to a physical address manually. It is also used by the CPU dispatcher to

define the hardware page table when a process is to be allocated the CPU. Paging therefore

increases the context-switch time.

STRUCTURE OF PAGE TABLE

In this section, we explore some of the most common techniques for structuring the page table,

including hierarchical paging, hashed page tables, and inverted page tables.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 13/28

Hierarchical Paging

 Most modern computer systems support a large logical address space (232 to 264). In

such an environment, the page table itself becomes excessively large. For example,

consider a system with a 32-bit logical address space. If the page size in such a system is

4 KB (212), then a page table may consist of up to 1 million entries (232/212). Assuming

that each entry consists of 4 bytes, each process may need up to 4 MB of physical address

space for the page table alone. Clearly, we would not want to allocate the page table

contiguously in main memory. One simple solution to this problem is to divide the page

table into smaller pieces.

 We can accomplish this division in several ways. One way is to use a two-level paging

algorithm, in which the page table itself is also paged. For example, consider again the

system with a 32-bit logical address space and a page size of 4 KB. A logical address is

divided into a page number

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 14/28

consisting of 20 bits and a page offset consisting of 12 bits. Because we page the page

table, the page number is further divided into a 10-bit page number and a 10-bit page

offset. Thus, a logical address is as follows:

Where p1 is an index into the outer page table and p2 is the displacement within

the page of the inner page table. The address-translation method for this

architecture is shown in Figure. Because address translation works from the outer

page table inward, this scheme is also known as a forward-mapped page table.

Hashed Page Tables

 A common approach for handling address spaces larger than 32 bits is to use a hashed

page table, with the hash value being the virtual page number. Each entry in the hash

table contains a linked list of elements that hash to the same location (to handle

collisions). Each element consists of three fields: (1) the virtual page number, (2) the

value of the mapped page frame, and (3) a pointer to the next element in the linked list.

The algorithm works as follows:

 The virtual page number in the virtual address is hashed into the hash table. The virtual

page number is compared with field 1 in the first element in the linked list. If there is a

match, the corresponding page frame (field 2) is used to form the desired physical

address. If there is no match, subsequent entries in the linked list are searched for a

matching virtual page number.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 15/28

Inverted Page Tables

 Usually, each process has an associated page table. The page table has one entry for each

page that the process is using (or one slot for each virtual address, regardless of the

latter’s validity). This table representation is a natural one, since processes reference

pages through the pages’ virtual addresses.

 The operating system must then translate this reference into a physical memory address.

Since the table is sorted by virtual address, the operating system is able to calculate where

in the table the associated physical address entry is located and to use that value directly.

One of the drawbacks of this method is that each page table may consist of millions of

entries. These tables may consume large amounts of physical memory just to keep track

of how other physical memory is being used.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 16/28

 To solve this problem, we can use an inverted page table. An inverted page table has one

entry for each real page (or frame) of memory. Each entry consists of the virtual address

of the page stored in that real memory location, with information about the process that

owns the page. Thus, only one page table is in the system, and it has only one entry for

each page of physical memory.

Shared Pages

 An advantage of paging is the possibility of sharing common code. This consideration is

particularly important in a time-sharing environment. Consider a system that supports 40

users, each of whom executes a text editor. If the text editor consists of 150 KB of code

and 50 KB of data space, we need 8,000 KB to support the 40 users. If the code is

reentrant code (or pure code), it can be shared, as shown in Figure. Here, we see three

processes sharing a three-page editor—each page 50 KB in size (the large page size is

used to simplify the figure). Each process has its own data page. Reentrant code is non-

self-modifying code: it never changes during execution. Thus, two or more processes can

execute the same code at the same time.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 17/28

 Each process has its own copy of registers and data storage to hold the data for the

process’s execution. The data for two different processes will, of course, be different.

Only one copy of the editor need be kept in physical memory. Each user’s page table

maps onto the same physical copy of the editor, but data pages are mapped onto different

frames. Thus, to support 40 users, we need only one copy of the editor (150 KB), plus 40

copies of the 50 KB of data space per user. The total space required is now 2,150 KB

instead of 8,000 KB—a significant savings. Other heavily used programs can also be

shared—compilers, window systems, run-time libraries, database systems, and so on. To

be sharable, the code must be reentrant. The read-only nature of shared code should not

be left to the correctness of the code; the operating system should enforce this property.

 The sharing of memory among processes on a system is similar to the sharing of the

address space of a task by threads.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 18/28

SEGMENTATION

 An important aspect of memory management that became unavoidable with paging is the

separation of the user's view of memory from the actual physical memory. As we have

already seen, the user's view of memory is not the same as the actual physical memory.

The user's view is mapped onto physical memory. This mapping allows differentiation

between logical memory and physical memory.

Basic Methods

 It is a memory-management scheme that supports this user view of memory. A logical

address space is a collection of segments. Each segment has a name and a length. The

addresses specify both the segment name and the offset within the segment. The user

therefore specifies each address by two quantities: a segment name and an offset.

(Contrast this scheme with the paging scheme, in which the user specifies only a single

address, which is partitioned by the hardware into a page number and an offset, all

invisible to the programmer.) For simplicity of implementation, segments are numbered

and are referred to by a segn"lent number, rather than by a segment name. Thus, a logical

address consists of a two tuple:

 <segment-number, offset>.

 Normally, the user program is compiled, and the compiler automatically constructs

segments reflecting the input program. A C compiler might create separate segments for

the following:

1. The code

2. Global variables

3. The heap, from which memory is allocated

4. The stacks used by each thread

5. The standard C library

 Libraries that are linked in during compile time might be assigned separate segments. The

loader would take all these segments and assign them segment numbers.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 19/28

Hardware

 Although the user can now refer to objects in the program by a two-dimensional address,

the actual physical memory is still, of course, a one-dimensional sequence of bytes. Thus,

we must define an implementation to map two dimensional user-defined addresses into

one-dimensional physical addresses. This mapping is affected by each entry in the

segment table has a segment base and a segment limit. The segment base contains the

start physical address where the segment resides in memory, and the segment limit

specifies the length of the segment. The use of a segment table is illustrated in Figure

 A logical address consists of two parts: a segment number, s, and an offset into that

segment, d. the segment number is used as an index to the segment table. The offset d of

the logical address must be between 0 and the segment limit. If it is not, we trap to the

operating system (logical addressing attempt beyond end of segment). When an offset is

legal, it is added to the segment base to produce the address in physical memory of the

desired byte. The segment table is thus essentially an array of base-limit register pairs. As

an example, consider the situation shown in Figure

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 20/28

 We have five segments numbered from 0 through 4. The segments are stored in physical

memory as shown. The segment table has a separate entry for each segment, giving the

beginning address of the segment in physical memory (or base) and the length of that

segment (or limit). For example, segment 2 is 400 bytes long and begins at location 4300.

Thus, a reference to byte 53 of segment 2 is mapped onto location 4300 +53= 4353. A

reference to segment 3, byte 852, is mapped to 3200 (the base of segment 3) + 852 =

4052. A reference to byte 1222 of segment 0 would result in a trap to the operating

system, as this segment is only 1000 bytes long.

Segmentation and Paging

 A user program can be subdivided using segmentation, in which the program and its

associated data are divided into a number of segments. It is not required that all segments

of all programs be of the same length, although there is a maximum segment length. As

with paging, a logical address using segmentation consists of two parts, in this case a

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 21/28

segment number and an offset. Because of the use of unequal-size segments,

segmentation is similar to dynamic partitioning.

 In the absence of an overlay scheme or the use of virtual memory, it would be required

that all of a program’s segments be loaded into memory for execution. The difference,

compared to dynamic partitioning, is that with segmentation a program may occupy more

than one partition, and these partitions need not be contiguous. Segmentation eliminates

internal fragmentation but, like dynamic partitioning, it suffers from external

fragmentation.

 However, because a process is broken up into a number of smaller pieces, the external

fragmentation should be less. Whereas paging is invisible to the programmer,

segmentation is usually visible and is provided as a convenience for organizing programs

and data. STypically, the programmer or compiler will assign programs and data to

different segments. For purposes of modular programming, the program or data may be

further broken down into multiple segments.

 The principal inconvenience of this service is that the programmer must be aware of the

maximum segment size limitation. Another consequence of unequal-size segments is that

there is no simple relationship between logical addresses and physical addresses.

 Each segment table entry would have to give the starting address in main memory of the

corresponding segment. The entry should also provide the length of the segment, to

assure that invalid addresses are not used. When a process enters the Running state, the

address of its segment table is loaded into a special register used by the memory

management hardware. Consider an address of n_m bits, where the leftmost n bits are the

segment number and the rightmost m bits are the offset. In our example (Figure C), n _ 4

and m _ 12. Thus the maximum segment size is 2 12 _ 4096.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 22/28

The following steps are needed for address translation:

• Extract the segment number as the leftmost n bits of the logical address.

• Use the segment number as an index into the process segment table to find the starting physical

address of the segment.

• Compare the offset, expressed in the rightmost m bits, to the length of the segment.

If the offset is greater than or equal to the length, the address is invalid. The desired

physical address is the sum of the starting physical address of the segment plus the offset.

In our example, we have the logical address 0001001011110000, which is segment

number 1, offset 752. Suppose that this segment is residing in main memory starting at physical

address 0010000000100000. Then the physical address is 0010000000100000 + 001011110000

_ 0010001100010000.

To summarize, with simple segmentation, a process is divided into a number of segments

that need not be of equal size. When a process is brought in, all of its segments are loaded into

available regions of memory, and a segment table is set up.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 23/28

VIRTUAL MEMORY

Virtual Memory and its Organization

 Virtual memory is a technique that allows the execution of processes which are not

completely available in memory. The main visible advantage of this scheme is that

programs can be larger than physical memory. Virtual memory is the separation of user

logical memory from physical memory. This separation allows an extremely large

virtual memory to be provided for programmers when only a smaller physical memory

is available. Following are the situations, when entire program is not required to be

loaded fully in main memory.

 User written error handling routines are used only when an error occured in the data or

computation.

 Certain options and features of a program may be used rarely.

 Many tables are assigned a fixed amount of address space even though only a small

amount of the table is actually used.

 The ability to execute a program that is only partially in memory would counter many

benefits.

 Less number of I/O would be needed to load or swap each user program into memory.

 A program would no longer be constrained by the amount of physical memory that is

available.

 Each user program could take less physical memory, more programs could be run the

same time, with a corresponding increase in CPU utilization and throughput.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 24/28

 Virtual memory is commonly implemented by demand paging. It can also be

implemented in a segmentation system. Demand segmentation can also be used to

provide virtual memory.

Demand Paging

 A demand paging system is quite similar to a paging system with swapping. When we

want to execute a process, we swap it into memory. Rather than swapping the entire

process into memory, however, we use a lazy swapper called pager.

 When a process is to be swapped in, the pager, guesses which pages will be used before

the process is swapped out again. Instead of swapping in a whole process, the pager

brings only those necessary pages into memory. Thus, it avoids reading into memory

pages that will not be used in anyway, decreasing the swap time and the amount of

physical memory needed.

 Hardware support is required to distinguish between those pages that are in memory and

those pages that are on the disk using the valid-invalid bit scheme, where valid and

invalid pages can be checked by checking the bit. Marking a page will have no effect if

the process never attempts to access the page. While the process executes and accesses

pages that are memory resident, execution proceeds normally.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 25/28

 Access to a page marked invalid causes a page-fault trap. This trap is the result of the

operating system's failure to bring the desired page into memory. But page fault can be

handled as following

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 26/28

Step Description

Step 1 Check an internal table for this process, to determine whether the

reference was a valid or it was an invalid memory access.

Step 2 If the reference was invalid, terminate the process. If it was valid,

but page have not yet brought in, page in the latter.

Step 3 Find a free frame.

Step 4 Schedule a disk operation to read the desired page into the newly

allocated frame.

Step 5 When the disk read is complete, modify the internal table kept

with the process and the page table to indicate that the page is now

in memory.

Step 6 Restart the instruction that was interrupted by the illegal address

trap. The process can now access the page as though it had always

been in memory. Therefore, the operating system reads the desired

page into memory and restarts the process as though the page had

always been in memory.

 Advantages

Following are the advantages of Demand Paging

 Large virtual memory.

 More efficient use of memory.

 Unconstrained multiprogramming. There is no limit on degree of multiprogramming.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 27/28

 Disadvantages

Following are the disadvantages of Demand Paging

 Number of tables and amount of processor overhead for handling page interrupts are

greater than in the case of the simple paged management techniques.

 Due to the lack of an explicit constraint on a job address space size.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 28/28

POSSIBLE QUESTIONS

UNIT – III

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. What do you mean by granting right?

2. What is user management commands?

3. What is File Quota?

4. Define File Layout.

5. What do you mean by managing disk quotas?

6. Define symbolic link.

PART – C (6 MARKS)

1. Explain the types of users.

2. Explain the user management commands.

3. Explain the file quota and various file systems available.

4. Discuss the file system management and layout.

5. Explain the file permissions.

6. Discuss the login process.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 1/28

UNIT – III

SYLLABUS

User Management and the File System Types of Users, Creating users, Granting rights

User management commands, File quota and various file systems available, File System

Management and Layout, File permissions, Login process, Managing Disk Quotas, Links (hard

links, symbolic links)

 The operating system, executing in kernel mode, is given unrestricted access to both

operating-system memory and users’ memory. This provision allows the operating

system to load users’ programs into users’ memory, to dump out those programs in case

of errors, to access and modify parameters of system calls, to perform I/O to and from

user memory, and to provide many other services.

 Consider, for example, that an operating system for a multiprocessing system must

execute context switches, storing the state of one process from the registers into main

memory before loading the next process’s context from main memory into the registers.

This scheme allows the operating system to change the value of the registers but prevents

user programs from changing the registers’ contents.

Address Binding

 Memory management is the functionality of an operating system which handles or

manages primary memory. Memory management keeps track of each and every memory

location either it is allocated to some process or it is free. It checks how much memory is

to be allocated to processes. It decides which process will get memory at what time. It

tracks whenever some memory gets freed or unallocated and correspondingly it updates

the status.

 Memory management provides protection by using two registers, a base register and a

limit register. The base register holds the smallest legal physical memory address and the

limit register specifies the size of the range. For example, if the base register holds

300000 and the limit register is 1209000, then the program can legally access all

addresses from 300000 through 411999.

Instructions and data to memory addresses can be done in following ways

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 2/28

 Compile time -- When it is known at compile time where the process will reside, compile

time binding is used to generate the absolute code.

 Load time -- When it is not known at compile time where the process will reside in

memory, then the compiler generates re-locatable code.

 Execution time -- If the process can be moved during its execution from one memory

segment to another, then binding must be delayed to be done at run time

Dynamic Loading

 In dynamic loading, a routine of a program is not loaded until it is called by the

program. All routines are kept on disk in a re-locatable load format. The main program

is loaded into memory and is executed. Other routines methods or modules are loaded

on request. Dynamic loading makes better memory space utilization and unused routines

are never loaded.

 The advantage of dynamic loading is that a routine is loaded only when it is needed.

This method is particularly useful when large amounts of code are needed to handle

infrequently occurring cases, such as error routines. In this case, although the total

program size may be large, the portion that is used (and hence loaded) may be much

smaller.

 Dynamic loading does not require special support from the operating system. It is the

responsibility of the users to design their programs to take advantage of such a method.

Operating systems may help the programmer, however, by providing library routines to

implement dynamic loading.

 Dynamic Linking

 Linking is the process of collecting and combining various modules of code and data

into a executable file that can be loaded into memory and executed. Operating system

can link system level libraries to a program. When it combines the libraries at load time,

the linking is called static linking and when this linking is done at the time of execution,

it is called as dynamic linking.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 3/28

 In static linking, libraries linked at compile time, so program code size becomes bigger

whereas in dynamic linking libraries linked at execution time so program code size

remains smaller.

 Unlike dynamic loading, dynamic linking and shared libraries generally require help

from the operating system. If the processes in memory are protected from one another,

then the operating system is the only entity that can check to see whether the needed

routine is in another process’s memory space or that can allow multiple processes to

access the same memory addresses.

PHYSICAL AND VIRTUAL ADDRESS SPACE

Logical (Virtual) versus Physical Address Space

An address generated by the CPU is a logical address whereas address actually available

on memory unit is a physical address. Logical address is also known a Virtual address. Virtual

and physical addresses are the same in compile-time and load-time address-binding schemes.

Virtual and physical addresses differ in execution-time address-binding scheme.

The set of all logical addresses generated by a program is referred to as a logical address

space. The set of all physical addresses corresponding to these logical addresses is referred to as

a physical address space.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 4/28

The run-time mapping from virtual to physical address is done by the memory

management unit (MMU) which is a hardware device.

MMU uses following mechanism to convert virtual address to physical address.

 The value in the base register is added to every address generated by a user process which is

treated as offset at the time it is sent to memory. For example, if the base register value is

10000, then an attempt by the user to use address location 100 will be dynamically reallocated

to location 10100.

 The user program deals with virtual addresses; it never sees the real physical addresses.

MEMORY ALLOCATION STRATEGIES

Contiguous Memory Allocation

 The main memory must accommodate both the operating system and the various user

processes. We therefore need to allocate main memory in the most efficient way possible.

The memory is usually divided into two partitions: one for the resident operating system and

one for the user processes.

 We can place the operating system in either low memory or high memory. The major factor

affecting this decision is the location of the interrupt vector. Since the interrupt vector is

often in low memory, programmers usually place the operating system in low memory as

well.

 We usually want several user processes to reside in memory at the same time. We therefore

need to consider how to allocate available memory to the processes that are in the input

queue waiting to be brought into memory. In contiguous memory allocation, each process is

contained in a single section of memory that is contiguous to the section containing the next

process.

Memory Protection

 Before discussing memory allocation further, we must discuss the issue of memory

protection. If we have a system with a relocation register, together with a limit, we

accomplish our goal. The relocation register contains the value of the smallest physical

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 5/28

address; the limit register contains the range of logical addresses (for example, relocation =

100040 and limit = 74600).

 Each logical address must fall within the range specified by the limit register. The MMU

maps the logical address dynamically by adding the value in the relocation register. This

mapped address is sent to memory. When the CPU scheduler selects a process for execution,

the dispatcher loads the relocation and limit registers with the correct values as part of the

context switch. Because every address generated by a CPU is checked against these

registers, we can protect both the operating system and the other users’ programs and data

from being modified by this running process.

Memory Allocation

 One of the simplest methods for allocating memory is to divide memory into several fixed-

sized partitions. Each partition may contain exactly one process. Thus, the degree of

multiprogramming is bound by the number of partitions. In this multiple partition method,

when a partition is free, a process is selected from the input queue and is loaded into the free

partition.

 When the process terminates, the partition becomes available for another process. This

method was originally used by the IBM OS/360 operating system (called MFT) but is no

longer in use. The method described next is a generalization of the fixed-partition scheme

(called MVT); it is used primarily in batch environments. Many of the ideas presented here

are also applicable to a time-sharing environment in which pure segmentation is used for

memory management.

 In the variable-partition scheme, the operating system keeps a table indicating which parts

of memory are available and which are occupied. Initially, all memory is available for user

processes and is considered one large block of available memory, a hole. Eventually, as you

will see, memory contains a set of holes of various sizes.

 As processes enter the system, they are put into an input queue. The operating system takes

into account the memory requirements of each process and the amount of available memory

space in determining which processes are allocated memory.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 6/28

 When a process is allocated space, it is loaded into memory, and it can then compete for

CPU time. When a process terminates, it releases its memory, which the operating system

may then fill with another process from the input queue.

 In general, the memory blocks available comprise a set of holes of various sizes scattered

throughout memory. When a process arrives and needs memory, the system searches the set

for a hole that is large enough for this process. If the hole is too large, it is split into two

parts. One part is allocated to the arriving process; the other is returned to the set of holes.

When a process terminates, it releases its block of memory, which is then placed back in the

set of holes.

 If the new hole is adjacent to other holes, these adjacent holes are merged to form one larger

hole. At this point, the system may need to check whether there are processes waiting for

memory and whether this newly freed and recombined memory could satisfy the demands

of any of these waiting processes. This procedure is a particular instance of the general

dynamic storage allocation problem, which concerns how to satisfy a request of size n from

a list of free holes. There are many solutions to this problem. The first-fit, best-fit, and

worst-fit strategies are the ones most commonly used to select a free hole from the set of

available holes.

• First fit. Allocate the first hole that is big enough. Searching can start either at the beginning of

the set of holes or at the location where the previous first-fit search ended. We can stop searching

as soon as we find a free hole that is large enough.

• Best fit. Allocate the smallest hole that is big enough. We must search the entire list, unless the

list is ordered by size. This strategy produces the smallest leftover hole.

• Worst fit. Allocate the largest hole. Again, we must search the entire list, unless it is sorted by

size. This strategy produces the largest leftover hole, which may be more useful than the smaller

leftover hole from a best-fit approach.

Fragmentation

 Both the first-fit and best-fit strategies for memory allocation suffer from external

fragmentation. As processes are loaded and removed from memory, the free memory space

is broken into little pieces. External fragmentation exists when there is enough total memory

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 7/28

space to satisfy a request but the available spaces are not contiguous: storage is fragmented

into a large number of small holes. This fragmentation problem can be severe. In the worst

case, we could have a block of free (or wasted) memory between every two processes. If all

these small pieces of memory were in one big free block instead, we might be able to run

several more processes.

 Whether we are using the first-fit or best-fit strategy can affect the amount of fragmentation.

(First fit is better for some systems, whereas best fit is better for others.) Another factor is

which end of a free block is allocated. (Which is the leftover piece—the one on the top or

the one on the bottom?) Memory fragmentation can be internal as well as external. Consider

a multiple-partition allocation scheme with a hole of 18,464 bytes. Suppose that the next

process requests 18,462 bytes. If we allocate exactly the requested block, we are left with a

hole of 2 bytes. The overhead to keep track of this hole will be substantially larger than the

hole itself.

 The general approach to avoiding this problem is to break the physical memory into fixed-

sized blocks and allocate memory in units based on block size. With this approach, the

memory allocated to a process may be slightly larger than the requested memory. The

difference between these two numbers is internal fragmentation—unused memory that is

internal to a partition.

 One solution to the problem of external fragmentation is compaction. The goal is to shuffle

the memory contents so as to place all free memory together in one large block. Compaction

is not always possible, however. If relocation is static and is done at assembly or load time,

compaction cannot be done. It is possible only if relocation is dynamic and is done at

execution time. Another possible solution to the external-fragmentation problem is to permit

the logical address space of the processes to be noncontiguous, thus allowing a process to be

allocated physical memory wherever such memory is available. Two complementary

techniques achieve this solution: segmentation and paging

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 8/28

PAGING

 It is a memory-management scheme that permits the physical address space a process to

be noncontiguous. Paging avoids external fragmentation and the need for compaction. It

also solves the considerable problem of fitting memory chunks of varying sizes onto the

backing store; most memory management schemes used before the introduction of paging

suffered from this problem. The problem arises because, when some code fragments or

data residing in main memory need to be swapped out, space must be framed on the

backing store.

 The backing store has the same fragmentation problems discussed in connection with

main memory, but access is much slower, so compaction is impossible. Because of its

advantages over earlier methods, paging in its various forms is used in most operating

systems.

Traditionally, support for paging has been handled by hardware. However, recent designs

have implemented paging by closely integrating the hardware and operating system,

especially on 64-bit microprocessors.

Basic Method

 The basic method for implementing paging involves breaking physical memory into fixed-

sized blocks called frames and breaking logical memory into blocks of the same size called

pages.

 When a process is to be executed, its pages are loaded into any available memory frames

from their source (a file system or the backing store). The backing store is divided into

fixed-sized blocks that are of the san1.e size as the memory frames. The hardware support

for paging is illustrated in the following figure

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 9/28

 Every address generated the CPU is divided into two parts: a {p) and a . The page number is

used as an index into a page table contains the base address of each page in physical

memory. This base address is combined with the page offset to define the physical memory

address that is sent to the memory unit. The paging model of memory is shown in the

following diagram

 The page size (like the frame size) is defined by the hardware. The size of a page is typically

a power of 2, varying between 512 bytes and 16 MB per page, depending on the computer

architecture. The selection of a power of 2 as a page size makes the translation of a logical

address into a page number and page offset particularly easy.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 10/28

 If the size of the logical address space is 2m, and a page size is 271 addressing units (bytes

or wordst then the high-order m- n bits of a logical address designate the page number, and

the n low-order bits designate the page offset. Thus, the logical address is as follows: where

p is an index into the page table and d is the displacement within the page. As a concrete

(although minuscule) example, consider the memory in the following diagram

 Here, in the logical address, n= 2 and m = 4. Using a page size of 4 bytes and a physical

memory of 32 bytes (8 pages), we show how the user's view of memory can be mapped into

physical memory. Logical address 0 is page 0, offset 0. Indexing into the page table, we find

that page 0 is in frame 5. Thus, logical address 0 maps to physical address 20 [= (5 x 4) + 0].

Logical address 3 (page 0, offset 3) maps to physical address 23 [= (5 x 4) + 3].

 Logical address 4 is page 1, offset 0; according to the page table, page 1 is mapped to frame

6. Thus, logical address 4 maps to physical address 24 [= (6 x 4) + O]. Logical address 13

maps to physical address 9. You may have noticed that paging itself is a form of dynamic

relocation. Every logical address is bound by the paging hardware to some physical address.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 11/28

Using paging is similar to using a table of base (or relocation) registers, one for each frame

of memory. When we use a paging scheme, we have no external fragmentation: any free

frame can be allocated to a process that needs it. However, we may have some internal

fragmentation. Notice that frames are allocated as units.

 If the memory requirements of a process do not happen to coincide with page boundaries,

the last frame allocated may not be completely full. For example, if page size is 2,048 bytes,

a process of 72,766 bytes will need 35 pages plus 1,086 bytes. It will be allocated 36 frames,

resulting in internal fragmentation of 2,048 - 1,086 = 962 bytes. In the worst case, a process

would need 11 pages plus 1 byte. It would be allocated 11 + 1 frames, resulting in internal

fragmentation of almost an entire frame. If process size is independent of page size, we

expect internal fragmentation to average one-half page per process. This consideration

suggests that small page sizes are desirable. Generally, page sizes have grown over time as

processes, data sets, and main memory have become larger.

 Today, pages typically are between 4 KB and 8 KB in size and some systems support even

larger page sizes. Some CPUs and kernels even support multiple page sizes. For instance,

Solaris uses page sizes of 8 KB and 4 MB, depending on the data stored by the pages.

Researchers are now developing support for variable on-the-fly page size. Usually, each

page-table entry is 4 bytes long, but that size can vary as well. A 32-bit entry can point to

one of 232 physical page frames. If frame size is 4 KB, then a system with 4-byte entries

can address 244 bytes (or 16 TB) of physical memory. When a process arrives in the system

to be executed, its size, expressed in pages, is examined. Each page of the process needs one

frame. Thus, if the process requires 11 pages, at least 11 frames must be available in

memory.

 If n frames are available, they are allocated to this arriving process. The first page of the

process is loaded into one of the allocated frames, and the frame number is put in the page

table for this process. The next page is loaded into another frame, its frame number is put

into the page table, and so on. An important aspect of paging is the clear separation between

the user's view of memory and the actual physical memory. The user program views

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 12/28

memory as one single space, containing only this one program. In fact, the user program is

scattered throughout physical memory, which also holds other programs.

 The difference between the user's view of memory and the actual physical memory is

reconciled by the address-translation hardware. The logical addresses are translated into

physical addresses. This mapping is hidden from the user and is controlled by the operating

system. Notice that the user process by definition is unable to access memory it does not

own.

 It has no way of addressing memory outside of its page table, and the table includes only

those pages that the process owns. Since the operating system is managing physical

memory, it must be aware of the allocation details of physical memory-which frames are

allocated, which frames are available, how many total frames there are, and so on. This

information is generally kept in a data structure called a frame the frame-table has one entry

for each physical page frame, indicating whether the latter is free or allocated and, if it is

allocated, to which page of which process or processes.

 In addition, the operating system must be aware that user processes operate in user space,

and all logical addresses must be mapped to produce physical addresses.If a user makes a

system call (to do I/0, for example) and provides an address as a parameter (a buffe1~ for

instance), that address must be mapped to produce the correct physical address.

 The operating system maintains a copy of the page table for each process, just as it

maintains a copy of the instruction counter and register contents. This copy is used to

translate logical addresses to physical addresses whenever the operating system must map a

logical address to a physical address manually. It is also used by the CPU dispatcher to

define the hardware page table when a process is to be allocated the CPU. Paging therefore

increases the context-switch time.

STRUCTURE OF PAGE TABLE

In this section, we explore some of the most common techniques for structuring the page table,

including hierarchical paging, hashed page tables, and inverted page tables.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 13/28

Hierarchical Paging

 Most modern computer systems support a large logical address space (232 to 264). In

such an environment, the page table itself becomes excessively large. For example,

consider a system with a 32-bit logical address space. If the page size in such a system is

4 KB (212), then a page table may consist of up to 1 million entries (232/212). Assuming

that each entry consists of 4 bytes, each process may need up to 4 MB of physical address

space for the page table alone. Clearly, we would not want to allocate the page table

contiguously in main memory. One simple solution to this problem is to divide the page

table into smaller pieces.

 We can accomplish this division in several ways. One way is to use a two-level paging

algorithm, in which the page table itself is also paged. For example, consider again the

system with a 32-bit logical address space and a page size of 4 KB. A logical address is

divided into a page number

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 14/28

consisting of 20 bits and a page offset consisting of 12 bits. Because we page the page

table, the page number is further divided into a 10-bit page number and a 10-bit page

offset. Thus, a logical address is as follows:

Where p1 is an index into the outer page table and p2 is the displacement within

the page of the inner page table. The address-translation method for this

architecture is shown in Figure. Because address translation works from the outer

page table inward, this scheme is also known as a forward-mapped page table.

Hashed Page Tables

 A common approach for handling address spaces larger than 32 bits is to use a hashed

page table, with the hash value being the virtual page number. Each entry in the hash

table contains a linked list of elements that hash to the same location (to handle

collisions). Each element consists of three fields: (1) the virtual page number, (2) the

value of the mapped page frame, and (3) a pointer to the next element in the linked list.

The algorithm works as follows:

 The virtual page number in the virtual address is hashed into the hash table. The virtual

page number is compared with field 1 in the first element in the linked list. If there is a

match, the corresponding page frame (field 2) is used to form the desired physical

address. If there is no match, subsequent entries in the linked list are searched for a

matching virtual page number.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 15/28

Inverted Page Tables

 Usually, each process has an associated page table. The page table has one entry for each

page that the process is using (or one slot for each virtual address, regardless of the

latter’s validity). This table representation is a natural one, since processes reference

pages through the pages’ virtual addresses.

 The operating system must then translate this reference into a physical memory address.

Since the table is sorted by virtual address, the operating system is able to calculate where

in the table the associated physical address entry is located and to use that value directly.

One of the drawbacks of this method is that each page table may consist of millions of

entries. These tables may consume large amounts of physical memory just to keep track

of how other physical memory is being used.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 16/28

 To solve this problem, we can use an inverted page table. An inverted page table has one

entry for each real page (or frame) of memory. Each entry consists of the virtual address

of the page stored in that real memory location, with information about the process that

owns the page. Thus, only one page table is in the system, and it has only one entry for

each page of physical memory.

Shared Pages

 An advantage of paging is the possibility of sharing common code. This consideration is

particularly important in a time-sharing environment. Consider a system that supports 40

users, each of whom executes a text editor. If the text editor consists of 150 KB of code

and 50 KB of data space, we need 8,000 KB to support the 40 users. If the code is

reentrant code (or pure code), it can be shared, as shown in Figure. Here, we see three

processes sharing a three-page editor—each page 50 KB in size (the large page size is

used to simplify the figure). Each process has its own data page. Reentrant code is non-

self-modifying code: it never changes during execution. Thus, two or more processes can

execute the same code at the same time.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 17/28

 Each process has its own copy of registers and data storage to hold the data for the

process’s execution. The data for two different processes will, of course, be different.

Only one copy of the editor need be kept in physical memory. Each user’s page table

maps onto the same physical copy of the editor, but data pages are mapped onto different

frames. Thus, to support 40 users, we need only one copy of the editor (150 KB), plus 40

copies of the 50 KB of data space per user. The total space required is now 2,150 KB

instead of 8,000 KB—a significant savings. Other heavily used programs can also be

shared—compilers, window systems, run-time libraries, database systems, and so on. To

be sharable, the code must be reentrant. The read-only nature of shared code should not

be left to the correctness of the code; the operating system should enforce this property.

 The sharing of memory among processes on a system is similar to the sharing of the

address space of a task by threads.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 18/28

SEGMENTATION

 An important aspect of memory management that became unavoidable with paging is the

separation of the user's view of memory from the actual physical memory. As we have

already seen, the user's view of memory is not the same as the actual physical memory.

The user's view is mapped onto physical memory. This mapping allows differentiation

between logical memory and physical memory.

Basic Methods

 It is a memory-management scheme that supports this user view of memory. A logical

address space is a collection of segments. Each segment has a name and a length. The

addresses specify both the segment name and the offset within the segment. The user

therefore specifies each address by two quantities: a segment name and an offset.

(Contrast this scheme with the paging scheme, in which the user specifies only a single

address, which is partitioned by the hardware into a page number and an offset, all

invisible to the programmer.) For simplicity of implementation, segments are numbered

and are referred to by a segn"lent number, rather than by a segment name. Thus, a logical

address consists of a two tuple:

 <segment-number, offset>.

 Normally, the user program is compiled, and the compiler automatically constructs

segments reflecting the input program. A C compiler might create separate segments for

the following:

1. The code

2. Global variables

3. The heap, from which memory is allocated

4. The stacks used by each thread

5. The standard C library

 Libraries that are linked in during compile time might be assigned separate segments. The

loader would take all these segments and assign them segment numbers.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 19/28

Hardware

 Although the user can now refer to objects in the program by a two-dimensional address,

the actual physical memory is still, of course, a one-dimensional sequence of bytes. Thus,

we must define an implementation to map two dimensional user-defined addresses into

one-dimensional physical addresses. This mapping is affected by each entry in the

segment table has a segment base and a segment limit. The segment base contains the

start physical address where the segment resides in memory, and the segment limit

specifies the length of the segment. The use of a segment table is illustrated in Figure

 A logical address consists of two parts: a segment number, s, and an offset into that

segment, d. the segment number is used as an index to the segment table. The offset d of

the logical address must be between 0 and the segment limit. If it is not, we trap to the

operating system (logical addressing attempt beyond end of segment). When an offset is

legal, it is added to the segment base to produce the address in physical memory of the

desired byte. The segment table is thus essentially an array of base-limit register pairs. As

an example, consider the situation shown in Figure

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 20/28

 We have five segments numbered from 0 through 4. The segments are stored in physical

memory as shown. The segment table has a separate entry for each segment, giving the

beginning address of the segment in physical memory (or base) and the length of that

segment (or limit). For example, segment 2 is 400 bytes long and begins at location 4300.

Thus, a reference to byte 53 of segment 2 is mapped onto location 4300 +53= 4353. A

reference to segment 3, byte 852, is mapped to 3200 (the base of segment 3) + 852 =

4052. A reference to byte 1222 of segment 0 would result in a trap to the operating

system, as this segment is only 1000 bytes long.

Segmentation and Paging

 A user program can be subdivided using segmentation, in which the program and its

associated data are divided into a number of segments. It is not required that all segments

of all programs be of the same length, although there is a maximum segment length. As

with paging, a logical address using segmentation consists of two parts, in this case a

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 21/28

segment number and an offset. Because of the use of unequal-size segments,

segmentation is similar to dynamic partitioning.

 In the absence of an overlay scheme or the use of virtual memory, it would be required

that all of a program’s segments be loaded into memory for execution. The difference,

compared to dynamic partitioning, is that with segmentation a program may occupy more

than one partition, and these partitions need not be contiguous. Segmentation eliminates

internal fragmentation but, like dynamic partitioning, it suffers from external

fragmentation.

 However, because a process is broken up into a number of smaller pieces, the external

fragmentation should be less. Whereas paging is invisible to the programmer,

segmentation is usually visible and is provided as a convenience for organizing programs

and data. STypically, the programmer or compiler will assign programs and data to

different segments. For purposes of modular programming, the program or data may be

further broken down into multiple segments.

 The principal inconvenience of this service is that the programmer must be aware of the

maximum segment size limitation. Another consequence of unequal-size segments is that

there is no simple relationship between logical addresses and physical addresses.

 Each segment table entry would have to give the starting address in main memory of the

corresponding segment. The entry should also provide the length of the segment, to

assure that invalid addresses are not used. When a process enters the Running state, the

address of its segment table is loaded into a special register used by the memory

management hardware. Consider an address of n_m bits, where the leftmost n bits are the

segment number and the rightmost m bits are the offset. In our example (Figure C), n _ 4

and m _ 12. Thus the maximum segment size is 2 12 _ 4096.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 22/28

The following steps are needed for address translation:

• Extract the segment number as the leftmost n bits of the logical address.

• Use the segment number as an index into the process segment table to find the starting physical

address of the segment.

• Compare the offset, expressed in the rightmost m bits, to the length of the segment.

If the offset is greater than or equal to the length, the address is invalid. The desired

physical address is the sum of the starting physical address of the segment plus the offset.

In our example, we have the logical address 0001001011110000, which is segment

number 1, offset 752. Suppose that this segment is residing in main memory starting at physical

address 0010000000100000. Then the physical address is 0010000000100000 + 001011110000

_ 0010001100010000.

To summarize, with simple segmentation, a process is divided into a number of segments

that need not be of equal size. When a process is brought in, all of its segments are loaded into

available regions of memory, and a segment table is set up.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 23/28

VIRTUAL MEMORY

Virtual Memory and its Organization

 Virtual memory is a technique that allows the execution of processes which are not

completely available in memory. The main visible advantage of this scheme is that

programs can be larger than physical memory. Virtual memory is the separation of user

logical memory from physical memory. This separation allows an extremely large

virtual memory to be provided for programmers when only a smaller physical memory

is available. Following are the situations, when entire program is not required to be

loaded fully in main memory.

 User written error handling routines are used only when an error occured in the data or

computation.

 Certain options and features of a program may be used rarely.

 Many tables are assigned a fixed amount of address space even though only a small

amount of the table is actually used.

 The ability to execute a program that is only partially in memory would counter many

benefits.

 Less number of I/O would be needed to load or swap each user program into memory.

 A program would no longer be constrained by the amount of physical memory that is

available.

 Each user program could take less physical memory, more programs could be run the

same time, with a corresponding increase in CPU utilization and throughput.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 24/28

 Virtual memory is commonly implemented by demand paging. It can also be

implemented in a segmentation system. Demand segmentation can also be used to

provide virtual memory.

Demand Paging

 A demand paging system is quite similar to a paging system with swapping. When we

want to execute a process, we swap it into memory. Rather than swapping the entire

process into memory, however, we use a lazy swapper called pager.

 When a process is to be swapped in, the pager, guesses which pages will be used before

the process is swapped out again. Instead of swapping in a whole process, the pager

brings only those necessary pages into memory. Thus, it avoids reading into memory

pages that will not be used in anyway, decreasing the swap time and the amount of

physical memory needed.

 Hardware support is required to distinguish between those pages that are in memory and

those pages that are on the disk using the valid-invalid bit scheme, where valid and

invalid pages can be checked by checking the bit. Marking a page will have no effect if

the process never attempts to access the page. While the process executes and accesses

pages that are memory resident, execution proceeds normally.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 25/28

 Access to a page marked invalid causes a page-fault trap. This trap is the result of the

operating system's failure to bring the desired page into memory. But page fault can be

handled as following

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 26/28

Step Description

Step 1 Check an internal table for this process, to determine whether the

reference was a valid or it was an invalid memory access.

Step 2 If the reference was invalid, terminate the process. If it was valid,

but page have not yet brought in, page in the latter.

Step 3 Find a free frame.

Step 4 Schedule a disk operation to read the desired page into the newly

allocated frame.

Step 5 When the disk read is complete, modify the internal table kept

with the process and the page table to indicate that the page is now

in memory.

Step 6 Restart the instruction that was interrupted by the illegal address

trap. The process can now access the page as though it had always

been in memory. Therefore, the operating system reads the desired

page into memory and restarts the process as though the page had

always been in memory.

 Advantages

Following are the advantages of Demand Paging

 Large virtual memory.

 More efficient use of memory.

 Unconstrained multiprogramming. There is no limit on degree of multiprogramming.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 27/28

 Disadvantages

Following are the disadvantages of Demand Paging

 Number of tables and amount of processor overhead for handling page interrupts are

greater than in the case of the simple paged management techniques.

 Due to the lack of an explicit constraint on a job address space size.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 28/28

POSSIBLE QUESTIONS

UNIT – III

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. What do you mean by granting right?

2. What is user management commands?

3. What is File Quota?

4. Define File Layout.

5. What do you mean by managing disk quotas?

6. Define symbolic link.

PART – C (6 MARKS)

1. Explain the types of users.

2. Explain the user management commands.

3. Explain the file quota and various file systems available.

4. Discuss the file system management and layout.

5. Explain the file permissions.

6. Discuss the login process.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 1/28

UNIT – III

SYLLABUS

User Management and the File System Types of Users, Creating users, Granting rights

User management commands, File quota and various file systems available, File System

Management and Layout, File permissions, Login process, Managing Disk Quotas, Links (hard

links, symbolic links)

 The operating system, executing in kernel mode, is given unrestricted access to both

operating-system memory and users’ memory. This provision allows the operating

system to load users’ programs into users’ memory, to dump out those programs in case

of errors, to access and modify parameters of system calls, to perform I/O to and from

user memory, and to provide many other services.

 Consider, for example, that an operating system for a multiprocessing system must

execute context switches, storing the state of one process from the registers into main

memory before loading the next process’s context from main memory into the registers.

This scheme allows the operating system to change the value of the registers but prevents

user programs from changing the registers’ contents.

Address Binding

 Memory management is the functionality of an operating system which handles or

manages primary memory. Memory management keeps track of each and every memory

location either it is allocated to some process or it is free. It checks how much memory is

to be allocated to processes. It decides which process will get memory at what time. It

tracks whenever some memory gets freed or unallocated and correspondingly it updates

the status.

 Memory management provides protection by using two registers, a base register and a

limit register. The base register holds the smallest legal physical memory address and the

limit register specifies the size of the range. For example, if the base register holds

300000 and the limit register is 1209000, then the program can legally access all

addresses from 300000 through 411999.

Instructions and data to memory addresses can be done in following ways

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 2/28

 Compile time -- When it is known at compile time where the process will reside, compile

time binding is used to generate the absolute code.

 Load time -- When it is not known at compile time where the process will reside in

memory, then the compiler generates re-locatable code.

 Execution time -- If the process can be moved during its execution from one memory

segment to another, then binding must be delayed to be done at run time

Dynamic Loading

 In dynamic loading, a routine of a program is not loaded until it is called by the

program. All routines are kept on disk in a re-locatable load format. The main program

is loaded into memory and is executed. Other routines methods or modules are loaded

on request. Dynamic loading makes better memory space utilization and unused routines

are never loaded.

 The advantage of dynamic loading is that a routine is loaded only when it is needed.

This method is particularly useful when large amounts of code are needed to handle

infrequently occurring cases, such as error routines. In this case, although the total

program size may be large, the portion that is used (and hence loaded) may be much

smaller.

 Dynamic loading does not require special support from the operating system. It is the

responsibility of the users to design their programs to take advantage of such a method.

Operating systems may help the programmer, however, by providing library routines to

implement dynamic loading.

 Dynamic Linking

 Linking is the process of collecting and combining various modules of code and data

into a executable file that can be loaded into memory and executed. Operating system

can link system level libraries to a program. When it combines the libraries at load time,

the linking is called static linking and when this linking is done at the time of execution,

it is called as dynamic linking.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 3/28

 In static linking, libraries linked at compile time, so program code size becomes bigger

whereas in dynamic linking libraries linked at execution time so program code size

remains smaller.

 Unlike dynamic loading, dynamic linking and shared libraries generally require help

from the operating system. If the processes in memory are protected from one another,

then the operating system is the only entity that can check to see whether the needed

routine is in another process’s memory space or that can allow multiple processes to

access the same memory addresses.

PHYSICAL AND VIRTUAL ADDRESS SPACE

Logical (Virtual) versus Physical Address Space

An address generated by the CPU is a logical address whereas address actually available

on memory unit is a physical address. Logical address is also known a Virtual address. Virtual

and physical addresses are the same in compile-time and load-time address-binding schemes.

Virtual and physical addresses differ in execution-time address-binding scheme.

The set of all logical addresses generated by a program is referred to as a logical address

space. The set of all physical addresses corresponding to these logical addresses is referred to as

a physical address space.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 4/28

The run-time mapping from virtual to physical address is done by the memory

management unit (MMU) which is a hardware device.

MMU uses following mechanism to convert virtual address to physical address.

 The value in the base register is added to every address generated by a user process which is

treated as offset at the time it is sent to memory. For example, if the base register value is

10000, then an attempt by the user to use address location 100 will be dynamically reallocated

to location 10100.

 The user program deals with virtual addresses; it never sees the real physical addresses.

MEMORY ALLOCATION STRATEGIES

Contiguous Memory Allocation

 The main memory must accommodate both the operating system and the various user

processes. We therefore need to allocate main memory in the most efficient way possible.

The memory is usually divided into two partitions: one for the resident operating system and

one for the user processes.

 We can place the operating system in either low memory or high memory. The major factor

affecting this decision is the location of the interrupt vector. Since the interrupt vector is

often in low memory, programmers usually place the operating system in low memory as

well.

 We usually want several user processes to reside in memory at the same time. We therefore

need to consider how to allocate available memory to the processes that are in the input

queue waiting to be brought into memory. In contiguous memory allocation, each process is

contained in a single section of memory that is contiguous to the section containing the next

process.

Memory Protection

 Before discussing memory allocation further, we must discuss the issue of memory

protection. If we have a system with a relocation register, together with a limit, we

accomplish our goal. The relocation register contains the value of the smallest physical

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 5/28

address; the limit register contains the range of logical addresses (for example, relocation =

100040 and limit = 74600).

 Each logical address must fall within the range specified by the limit register. The MMU

maps the logical address dynamically by adding the value in the relocation register. This

mapped address is sent to memory. When the CPU scheduler selects a process for execution,

the dispatcher loads the relocation and limit registers with the correct values as part of the

context switch. Because every address generated by a CPU is checked against these

registers, we can protect both the operating system and the other users’ programs and data

from being modified by this running process.

Memory Allocation

 One of the simplest methods for allocating memory is to divide memory into several fixed-

sized partitions. Each partition may contain exactly one process. Thus, the degree of

multiprogramming is bound by the number of partitions. In this multiple partition method,

when a partition is free, a process is selected from the input queue and is loaded into the free

partition.

 When the process terminates, the partition becomes available for another process. This

method was originally used by the IBM OS/360 operating system (called MFT) but is no

longer in use. The method described next is a generalization of the fixed-partition scheme

(called MVT); it is used primarily in batch environments. Many of the ideas presented here

are also applicable to a time-sharing environment in which pure segmentation is used for

memory management.

 In the variable-partition scheme, the operating system keeps a table indicating which parts

of memory are available and which are occupied. Initially, all memory is available for user

processes and is considered one large block of available memory, a hole. Eventually, as you

will see, memory contains a set of holes of various sizes.

 As processes enter the system, they are put into an input queue. The operating system takes

into account the memory requirements of each process and the amount of available memory

space in determining which processes are allocated memory.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 6/28

 When a process is allocated space, it is loaded into memory, and it can then compete for

CPU time. When a process terminates, it releases its memory, which the operating system

may then fill with another process from the input queue.

 In general, the memory blocks available comprise a set of holes of various sizes scattered

throughout memory. When a process arrives and needs memory, the system searches the set

for a hole that is large enough for this process. If the hole is too large, it is split into two

parts. One part is allocated to the arriving process; the other is returned to the set of holes.

When a process terminates, it releases its block of memory, which is then placed back in the

set of holes.

 If the new hole is adjacent to other holes, these adjacent holes are merged to form one larger

hole. At this point, the system may need to check whether there are processes waiting for

memory and whether this newly freed and recombined memory could satisfy the demands

of any of these waiting processes. This procedure is a particular instance of the general

dynamic storage allocation problem, which concerns how to satisfy a request of size n from

a list of free holes. There are many solutions to this problem. The first-fit, best-fit, and

worst-fit strategies are the ones most commonly used to select a free hole from the set of

available holes.

• First fit. Allocate the first hole that is big enough. Searching can start either at the beginning of

the set of holes or at the location where the previous first-fit search ended. We can stop searching

as soon as we find a free hole that is large enough.

• Best fit. Allocate the smallest hole that is big enough. We must search the entire list, unless the

list is ordered by size. This strategy produces the smallest leftover hole.

• Worst fit. Allocate the largest hole. Again, we must search the entire list, unless it is sorted by

size. This strategy produces the largest leftover hole, which may be more useful than the smaller

leftover hole from a best-fit approach.

Fragmentation

 Both the first-fit and best-fit strategies for memory allocation suffer from external

fragmentation. As processes are loaded and removed from memory, the free memory space

is broken into little pieces. External fragmentation exists when there is enough total memory

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 7/28

space to satisfy a request but the available spaces are not contiguous: storage is fragmented

into a large number of small holes. This fragmentation problem can be severe. In the worst

case, we could have a block of free (or wasted) memory between every two processes. If all

these small pieces of memory were in one big free block instead, we might be able to run

several more processes.

 Whether we are using the first-fit or best-fit strategy can affect the amount of fragmentation.

(First fit is better for some systems, whereas best fit is better for others.) Another factor is

which end of a free block is allocated. (Which is the leftover piece—the one on the top or

the one on the bottom?) Memory fragmentation can be internal as well as external. Consider

a multiple-partition allocation scheme with a hole of 18,464 bytes. Suppose that the next

process requests 18,462 bytes. If we allocate exactly the requested block, we are left with a

hole of 2 bytes. The overhead to keep track of this hole will be substantially larger than the

hole itself.

 The general approach to avoiding this problem is to break the physical memory into fixed-

sized blocks and allocate memory in units based on block size. With this approach, the

memory allocated to a process may be slightly larger than the requested memory. The

difference between these two numbers is internal fragmentation—unused memory that is

internal to a partition.

 One solution to the problem of external fragmentation is compaction. The goal is to shuffle

the memory contents so as to place all free memory together in one large block. Compaction

is not always possible, however. If relocation is static and is done at assembly or load time,

compaction cannot be done. It is possible only if relocation is dynamic and is done at

execution time. Another possible solution to the external-fragmentation problem is to permit

the logical address space of the processes to be noncontiguous, thus allowing a process to be

allocated physical memory wherever such memory is available. Two complementary

techniques achieve this solution: segmentation and paging

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 8/28

PAGING

 It is a memory-management scheme that permits the physical address space a process to

be noncontiguous. Paging avoids external fragmentation and the need for compaction. It

also solves the considerable problem of fitting memory chunks of varying sizes onto the

backing store; most memory management schemes used before the introduction of paging

suffered from this problem. The problem arises because, when some code fragments or

data residing in main memory need to be swapped out, space must be framed on the

backing store.

 The backing store has the same fragmentation problems discussed in connection with

main memory, but access is much slower, so compaction is impossible. Because of its

advantages over earlier methods, paging in its various forms is used in most operating

systems.

Traditionally, support for paging has been handled by hardware. However, recent designs

have implemented paging by closely integrating the hardware and operating system,

especially on 64-bit microprocessors.

Basic Method

 The basic method for implementing paging involves breaking physical memory into fixed-

sized blocks called frames and breaking logical memory into blocks of the same size called

pages.

 When a process is to be executed, its pages are loaded into any available memory frames

from their source (a file system or the backing store). The backing store is divided into

fixed-sized blocks that are of the san1.e size as the memory frames. The hardware support

for paging is illustrated in the following figure

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 9/28

 Every address generated the CPU is divided into two parts: a {p) and a . The page number is

used as an index into a page table contains the base address of each page in physical

memory. This base address is combined with the page offset to define the physical memory

address that is sent to the memory unit. The paging model of memory is shown in the

following diagram

 The page size (like the frame size) is defined by the hardware. The size of a page is typically

a power of 2, varying between 512 bytes and 16 MB per page, depending on the computer

architecture. The selection of a power of 2 as a page size makes the translation of a logical

address into a page number and page offset particularly easy.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 10/28

 If the size of the logical address space is 2m, and a page size is 271 addressing units (bytes

or wordst then the high-order m- n bits of a logical address designate the page number, and

the n low-order bits designate the page offset. Thus, the logical address is as follows: where

p is an index into the page table and d is the displacement within the page. As a concrete

(although minuscule) example, consider the memory in the following diagram

 Here, in the logical address, n= 2 and m = 4. Using a page size of 4 bytes and a physical

memory of 32 bytes (8 pages), we show how the user's view of memory can be mapped into

physical memory. Logical address 0 is page 0, offset 0. Indexing into the page table, we find

that page 0 is in frame 5. Thus, logical address 0 maps to physical address 20 [= (5 x 4) + 0].

Logical address 3 (page 0, offset 3) maps to physical address 23 [= (5 x 4) + 3].

 Logical address 4 is page 1, offset 0; according to the page table, page 1 is mapped to frame

6. Thus, logical address 4 maps to physical address 24 [= (6 x 4) + O]. Logical address 13

maps to physical address 9. You may have noticed that paging itself is a form of dynamic

relocation. Every logical address is bound by the paging hardware to some physical address.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 11/28

Using paging is similar to using a table of base (or relocation) registers, one for each frame

of memory. When we use a paging scheme, we have no external fragmentation: any free

frame can be allocated to a process that needs it. However, we may have some internal

fragmentation. Notice that frames are allocated as units.

 If the memory requirements of a process do not happen to coincide with page boundaries,

the last frame allocated may not be completely full. For example, if page size is 2,048 bytes,

a process of 72,766 bytes will need 35 pages plus 1,086 bytes. It will be allocated 36 frames,

resulting in internal fragmentation of 2,048 - 1,086 = 962 bytes. In the worst case, a process

would need 11 pages plus 1 byte. It would be allocated 11 + 1 frames, resulting in internal

fragmentation of almost an entire frame. If process size is independent of page size, we

expect internal fragmentation to average one-half page per process. This consideration

suggests that small page sizes are desirable. Generally, page sizes have grown over time as

processes, data sets, and main memory have become larger.

 Today, pages typically are between 4 KB and 8 KB in size and some systems support even

larger page sizes. Some CPUs and kernels even support multiple page sizes. For instance,

Solaris uses page sizes of 8 KB and 4 MB, depending on the data stored by the pages.

Researchers are now developing support for variable on-the-fly page size. Usually, each

page-table entry is 4 bytes long, but that size can vary as well. A 32-bit entry can point to

one of 232 physical page frames. If frame size is 4 KB, then a system with 4-byte entries

can address 244 bytes (or 16 TB) of physical memory. When a process arrives in the system

to be executed, its size, expressed in pages, is examined. Each page of the process needs one

frame. Thus, if the process requires 11 pages, at least 11 frames must be available in

memory.

 If n frames are available, they are allocated to this arriving process. The first page of the

process is loaded into one of the allocated frames, and the frame number is put in the page

table for this process. The next page is loaded into another frame, its frame number is put

into the page table, and so on. An important aspect of paging is the clear separation between

the user's view of memory and the actual physical memory. The user program views

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 12/28

memory as one single space, containing only this one program. In fact, the user program is

scattered throughout physical memory, which also holds other programs.

 The difference between the user's view of memory and the actual physical memory is

reconciled by the address-translation hardware. The logical addresses are translated into

physical addresses. This mapping is hidden from the user and is controlled by the operating

system. Notice that the user process by definition is unable to access memory it does not

own.

 It has no way of addressing memory outside of its page table, and the table includes only

those pages that the process owns. Since the operating system is managing physical

memory, it must be aware of the allocation details of physical memory-which frames are

allocated, which frames are available, how many total frames there are, and so on. This

information is generally kept in a data structure called a frame the frame-table has one entry

for each physical page frame, indicating whether the latter is free or allocated and, if it is

allocated, to which page of which process or processes.

 In addition, the operating system must be aware that user processes operate in user space,

and all logical addresses must be mapped to produce physical addresses.If a user makes a

system call (to do I/0, for example) and provides an address as a parameter (a buffe1~ for

instance), that address must be mapped to produce the correct physical address.

 The operating system maintains a copy of the page table for each process, just as it

maintains a copy of the instruction counter and register contents. This copy is used to

translate logical addresses to physical addresses whenever the operating system must map a

logical address to a physical address manually. It is also used by the CPU dispatcher to

define the hardware page table when a process is to be allocated the CPU. Paging therefore

increases the context-switch time.

STRUCTURE OF PAGE TABLE

In this section, we explore some of the most common techniques for structuring the page table,

including hierarchical paging, hashed page tables, and inverted page tables.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 13/28

Hierarchical Paging

 Most modern computer systems support a large logical address space (232 to 264). In

such an environment, the page table itself becomes excessively large. For example,

consider a system with a 32-bit logical address space. If the page size in such a system is

4 KB (212), then a page table may consist of up to 1 million entries (232/212). Assuming

that each entry consists of 4 bytes, each process may need up to 4 MB of physical address

space for the page table alone. Clearly, we would not want to allocate the page table

contiguously in main memory. One simple solution to this problem is to divide the page

table into smaller pieces.

 We can accomplish this division in several ways. One way is to use a two-level paging

algorithm, in which the page table itself is also paged. For example, consider again the

system with a 32-bit logical address space and a page size of 4 KB. A logical address is

divided into a page number

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 14/28

consisting of 20 bits and a page offset consisting of 12 bits. Because we page the page

table, the page number is further divided into a 10-bit page number and a 10-bit page

offset. Thus, a logical address is as follows:

Where p1 is an index into the outer page table and p2 is the displacement within

the page of the inner page table. The address-translation method for this

architecture is shown in Figure. Because address translation works from the outer

page table inward, this scheme is also known as a forward-mapped page table.

Hashed Page Tables

 A common approach for handling address spaces larger than 32 bits is to use a hashed

page table, with the hash value being the virtual page number. Each entry in the hash

table contains a linked list of elements that hash to the same location (to handle

collisions). Each element consists of three fields: (1) the virtual page number, (2) the

value of the mapped page frame, and (3) a pointer to the next element in the linked list.

The algorithm works as follows:

 The virtual page number in the virtual address is hashed into the hash table. The virtual

page number is compared with field 1 in the first element in the linked list. If there is a

match, the corresponding page frame (field 2) is used to form the desired physical

address. If there is no match, subsequent entries in the linked list are searched for a

matching virtual page number.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 15/28

Inverted Page Tables

 Usually, each process has an associated page table. The page table has one entry for each

page that the process is using (or one slot for each virtual address, regardless of the

latter’s validity). This table representation is a natural one, since processes reference

pages through the pages’ virtual addresses.

 The operating system must then translate this reference into a physical memory address.

Since the table is sorted by virtual address, the operating system is able to calculate where

in the table the associated physical address entry is located and to use that value directly.

One of the drawbacks of this method is that each page table may consist of millions of

entries. These tables may consume large amounts of physical memory just to keep track

of how other physical memory is being used.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 16/28

 To solve this problem, we can use an inverted page table. An inverted page table has one

entry for each real page (or frame) of memory. Each entry consists of the virtual address

of the page stored in that real memory location, with information about the process that

owns the page. Thus, only one page table is in the system, and it has only one entry for

each page of physical memory.

Shared Pages

 An advantage of paging is the possibility of sharing common code. This consideration is

particularly important in a time-sharing environment. Consider a system that supports 40

users, each of whom executes a text editor. If the text editor consists of 150 KB of code

and 50 KB of data space, we need 8,000 KB to support the 40 users. If the code is

reentrant code (or pure code), it can be shared, as shown in Figure. Here, we see three

processes sharing a three-page editor—each page 50 KB in size (the large page size is

used to simplify the figure). Each process has its own data page. Reentrant code is non-

self-modifying code: it never changes during execution. Thus, two or more processes can

execute the same code at the same time.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 17/28

 Each process has its own copy of registers and data storage to hold the data for the

process’s execution. The data for two different processes will, of course, be different.

Only one copy of the editor need be kept in physical memory. Each user’s page table

maps onto the same physical copy of the editor, but data pages are mapped onto different

frames. Thus, to support 40 users, we need only one copy of the editor (150 KB), plus 40

copies of the 50 KB of data space per user. The total space required is now 2,150 KB

instead of 8,000 KB—a significant savings. Other heavily used programs can also be

shared—compilers, window systems, run-time libraries, database systems, and so on. To

be sharable, the code must be reentrant. The read-only nature of shared code should not

be left to the correctness of the code; the operating system should enforce this property.

 The sharing of memory among processes on a system is similar to the sharing of the

address space of a task by threads.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 18/28

SEGMENTATION

 An important aspect of memory management that became unavoidable with paging is the

separation of the user's view of memory from the actual physical memory. As we have

already seen, the user's view of memory is not the same as the actual physical memory.

The user's view is mapped onto physical memory. This mapping allows differentiation

between logical memory and physical memory.

Basic Methods

 It is a memory-management scheme that supports this user view of memory. A logical

address space is a collection of segments. Each segment has a name and a length. The

addresses specify both the segment name and the offset within the segment. The user

therefore specifies each address by two quantities: a segment name and an offset.

(Contrast this scheme with the paging scheme, in which the user specifies only a single

address, which is partitioned by the hardware into a page number and an offset, all

invisible to the programmer.) For simplicity of implementation, segments are numbered

and are referred to by a segn"lent number, rather than by a segment name. Thus, a logical

address consists of a two tuple:

 <segment-number, offset>.

 Normally, the user program is compiled, and the compiler automatically constructs

segments reflecting the input program. A C compiler might create separate segments for

the following:

1. The code

2. Global variables

3. The heap, from which memory is allocated

4. The stacks used by each thread

5. The standard C library

 Libraries that are linked in during compile time might be assigned separate segments. The

loader would take all these segments and assign them segment numbers.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 19/28

Hardware

 Although the user can now refer to objects in the program by a two-dimensional address,

the actual physical memory is still, of course, a one-dimensional sequence of bytes. Thus,

we must define an implementation to map two dimensional user-defined addresses into

one-dimensional physical addresses. This mapping is affected by each entry in the

segment table has a segment base and a segment limit. The segment base contains the

start physical address where the segment resides in memory, and the segment limit

specifies the length of the segment. The use of a segment table is illustrated in Figure

 A logical address consists of two parts: a segment number, s, and an offset into that

segment, d. the segment number is used as an index to the segment table. The offset d of

the logical address must be between 0 and the segment limit. If it is not, we trap to the

operating system (logical addressing attempt beyond end of segment). When an offset is

legal, it is added to the segment base to produce the address in physical memory of the

desired byte. The segment table is thus essentially an array of base-limit register pairs. As

an example, consider the situation shown in Figure

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 20/28

 We have five segments numbered from 0 through 4. The segments are stored in physical

memory as shown. The segment table has a separate entry for each segment, giving the

beginning address of the segment in physical memory (or base) and the length of that

segment (or limit). For example, segment 2 is 400 bytes long and begins at location 4300.

Thus, a reference to byte 53 of segment 2 is mapped onto location 4300 +53= 4353. A

reference to segment 3, byte 852, is mapped to 3200 (the base of segment 3) + 852 =

4052. A reference to byte 1222 of segment 0 would result in a trap to the operating

system, as this segment is only 1000 bytes long.

Segmentation and Paging

 A user program can be subdivided using segmentation, in which the program and its

associated data are divided into a number of segments. It is not required that all segments

of all programs be of the same length, although there is a maximum segment length. As

with paging, a logical address using segmentation consists of two parts, in this case a

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 21/28

segment number and an offset. Because of the use of unequal-size segments,

segmentation is similar to dynamic partitioning.

 In the absence of an overlay scheme or the use of virtual memory, it would be required

that all of a program’s segments be loaded into memory for execution. The difference,

compared to dynamic partitioning, is that with segmentation a program may occupy more

than one partition, and these partitions need not be contiguous. Segmentation eliminates

internal fragmentation but, like dynamic partitioning, it suffers from external

fragmentation.

 However, because a process is broken up into a number of smaller pieces, the external

fragmentation should be less. Whereas paging is invisible to the programmer,

segmentation is usually visible and is provided as a convenience for organizing programs

and data. STypically, the programmer or compiler will assign programs and data to

different segments. For purposes of modular programming, the program or data may be

further broken down into multiple segments.

 The principal inconvenience of this service is that the programmer must be aware of the

maximum segment size limitation. Another consequence of unequal-size segments is that

there is no simple relationship between logical addresses and physical addresses.

 Each segment table entry would have to give the starting address in main memory of the

corresponding segment. The entry should also provide the length of the segment, to

assure that invalid addresses are not used. When a process enters the Running state, the

address of its segment table is loaded into a special register used by the memory

management hardware. Consider an address of n_m bits, where the leftmost n bits are the

segment number and the rightmost m bits are the offset. In our example (Figure C), n _ 4

and m _ 12. Thus the maximum segment size is 2 12 _ 4096.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 22/28

The following steps are needed for address translation:

• Extract the segment number as the leftmost n bits of the logical address.

• Use the segment number as an index into the process segment table to find the starting physical

address of the segment.

• Compare the offset, expressed in the rightmost m bits, to the length of the segment.

If the offset is greater than or equal to the length, the address is invalid. The desired

physical address is the sum of the starting physical address of the segment plus the offset.

In our example, we have the logical address 0001001011110000, which is segment

number 1, offset 752. Suppose that this segment is residing in main memory starting at physical

address 0010000000100000. Then the physical address is 0010000000100000 + 001011110000

_ 0010001100010000.

To summarize, with simple segmentation, a process is divided into a number of segments

that need not be of equal size. When a process is brought in, all of its segments are loaded into

available regions of memory, and a segment table is set up.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 23/28

VIRTUAL MEMORY

Virtual Memory and its Organization

 Virtual memory is a technique that allows the execution of processes which are not

completely available in memory. The main visible advantage of this scheme is that

programs can be larger than physical memory. Virtual memory is the separation of user

logical memory from physical memory. This separation allows an extremely large

virtual memory to be provided for programmers when only a smaller physical memory

is available. Following are the situations, when entire program is not required to be

loaded fully in main memory.

 User written error handling routines are used only when an error occured in the data or

computation.

 Certain options and features of a program may be used rarely.

 Many tables are assigned a fixed amount of address space even though only a small

amount of the table is actually used.

 The ability to execute a program that is only partially in memory would counter many

benefits.

 Less number of I/O would be needed to load or swap each user program into memory.

 A program would no longer be constrained by the amount of physical memory that is

available.

 Each user program could take less physical memory, more programs could be run the

same time, with a corresponding increase in CPU utilization and throughput.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 24/28

 Virtual memory is commonly implemented by demand paging. It can also be

implemented in a segmentation system. Demand segmentation can also be used to

provide virtual memory.

Demand Paging

 A demand paging system is quite similar to a paging system with swapping. When we

want to execute a process, we swap it into memory. Rather than swapping the entire

process into memory, however, we use a lazy swapper called pager.

 When a process is to be swapped in, the pager, guesses which pages will be used before

the process is swapped out again. Instead of swapping in a whole process, the pager

brings only those necessary pages into memory. Thus, it avoids reading into memory

pages that will not be used in anyway, decreasing the swap time and the amount of

physical memory needed.

 Hardware support is required to distinguish between those pages that are in memory and

those pages that are on the disk using the valid-invalid bit scheme, where valid and

invalid pages can be checked by checking the bit. Marking a page will have no effect if

the process never attempts to access the page. While the process executes and accesses

pages that are memory resident, execution proceeds normally.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 25/28

 Access to a page marked invalid causes a page-fault trap. This trap is the result of the

operating system's failure to bring the desired page into memory. But page fault can be

handled as following

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 26/28

Step Description

Step 1 Check an internal table for this process, to determine whether the

reference was a valid or it was an invalid memory access.

Step 2 If the reference was invalid, terminate the process. If it was valid,

but page have not yet brought in, page in the latter.

Step 3 Find a free frame.

Step 4 Schedule a disk operation to read the desired page into the newly

allocated frame.

Step 5 When the disk read is complete, modify the internal table kept

with the process and the page table to indicate that the page is now

in memory.

Step 6 Restart the instruction that was interrupted by the illegal address

trap. The process can now access the page as though it had always

been in memory. Therefore, the operating system reads the desired

page into memory and restarts the process as though the page had

always been in memory.

 Advantages

Following are the advantages of Demand Paging

 Large virtual memory.

 More efficient use of memory.

 Unconstrained multiprogramming. There is no limit on degree of multiprogramming.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 27/28

 Disadvantages

Following are the disadvantages of Demand Paging

 Number of tables and amount of processor overhead for handling page interrupts are

greater than in the case of the simple paged management techniques.

 Due to the lack of an explicit constraint on a job address space size.

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II BCA COURSE NAME: UNIX/LINUX PROGRAMMING
 COURSE CODE: 16CAU601B UNIT - III BATCH: 2016 – 2019

Prepared by Dr.E.J.Thomson Fredrik, Associate Prof, Dept of CS, CA & IT, KAHE Page 28/28

POSSIBLE QUESTIONS

UNIT – III

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. What do you mean by granting right?

2. What is user management commands?

3. What is File Quota?

4. Define File Layout.

5. What do you mean by managing disk quotas?

6. Define symbolic link.

PART – C (6 MARKS)

1. Explain the types of users.

2. Explain the user management commands.

3. Explain the file quota and various file systems available.

4. Discuss the file system management and layout.

5. Explain the file permissions.

6. Discuss the login process.

Questions Opt1 opt2 opt3 opt4 KEY

The file system consist of -------------- Distinct parts 2 3 4 5 2

A --------------- File is a sequence of character organized

into lines Source Object Text Executable Text

A --------------- File is a sequence of subroutines and

functions Source Object Text Executable Source

The operating system keeps a small table called the -----

---------- ,containing information about all open files Show file table

Visible file

table Open file ta

Manage file

table

Open file

table

A file is executed in --------------- extension External structure .bat .mdb .in .bat

The .bat file is a ----------------containing in ANCII

format,command to the operating system Binary file Batch file Text file Word file Batch file
The file type is used to indicate the ---------------- of the

file .txt

Internal

structure Block structure

Outer

structure

Internal

structure

Information in the file is processed in the order called--

---------------- Direct access

Sequence

access Dynamic access

Random

access

Sequence

access

A file is made up of fixed length that allows the

program to read and write record rapidly in no Direct access

Sequence

access Dyanamic access

Random

access Direct access

PART - A (Online Examination)

KARPAGAM ACADEMY OF HIGHER EDUCATION
Coimbatore – 641 021.

(For the Candidates admitted from 2016 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

UNIT - IV : (Objective Type Multiple choice Questions each Question carries one Mark)

OPERATING SYSTEMS

Data cannot be written in secondary storage unless

written with in a --------------------- File Swap space Directory Text format File

File attribute consist of ----------------

Name,Type,Conte

nt

Name,type,Siz

e

Seperate directory

system

Name,identifi

er

Name,Size,Typ

e,identifier

The information about all files is kept in ----------------- swap space

operating

system

Name,Size,Type,id

entifier Hard disk

Seperate

directory

A file is a -------------- type Abstract Primitive Public Private Abstract

In UNIX Open system call returns -----------------

pointer to the

entry in the open

pointer to the

entry in the

A file to the

process calling it

pointer to

the entry in

pointer to the

entry in the

The open file table has a ------------------- Associated

with each file File content

File

permission open count Close count open count
The file name is generaly split into which of the two

parts ----------------- Name and type

Name and

identifier

Name and

extension

Extension

and type

Name and

extension
In the sequential access method, information in the

file is processed

One disk after the

other

One record

after the other

One text

document after

One name

after the

One record

after the

Sequential access method ----------------,on random

access devices Works well

Dosen’t works

well Works slow

Works

normal Works well
The direct access method is based on a -------------

model of a file as---------------- allow random access to

Magnetic

tape,magnetic Tape,Tapes Disk,Disks Tape,Disk Disk,Disks

A relative block number is an index relative to ------------

The beginning of

the file

The end of the

file

The last written

position in file

Middle of the

file

The beginning

of the file

The index contains ------------------------

Name of all

content of file

Pointer to

each page

Pointers to the

various blocks

Pointer to

same page

Pointers to

the various

The directory can be viewed as a ---------------,that

translate the file name into their directory entries Symbol table Partition Swap space Cache Symbol table

In the single level directory: ------------------------

All files are

contain in

All files are

contained in

Depend on the

operating system

Depend on

the file name

All files are

contained in

In the single level directory --------------

All directory must

have a unique

All files must

have a unique

All files must have

a unique owner

All files must

have a

All files must

have a unique

In the two level directory structure -----------------

Each user has its

own user file

directory

The system

has its own

master file)Both a and b

Each user has

its different

file directory Both a and b

When a user refers to a particular file --------------------

System MFD is

searched

His own UFD is

searched

Both MFD and

UFD are searched

Every

directory is

searched

Both MFD and

UFD are

searched

The disadvantage of the two level directory structure is

that

It does not solve

the name collision

problem

It solve the

name collision

problem

It does not isolate

users from one

another

It isolates

users from

one another

It isolates

users from

one another

In the tree structure directory -------------------

The tree has the

same directory

The tree has

the leaf

The tree has the

root directory

The tree has

no directory

The tree has

the root

The three major methods of allocating disk space that

are in wide use are ---------------

Contiguous,Linked

,Hashed

Contiguous,Lin

ked,Indexed

Linked,Hashed,Ind

exed

Contiguous

,Linked

Contiguous,Li

nked,Indexed

In Contiguous allocation ----------------

each file must

occupy a set of

contiguous block

Each file is a

linked list of

disk blocks

All the pointers to

scattered

All the files

are blocked

each file must

occupy a set

of contiguous

In linked allocation ------------------

Each file must

occupy a set of

Each file is a

linked list of

All the pointers to

scattered

All the files

are blocked

Each file is a

linked list of

In indexed allocation ------------

Each file must

occupy a set of

Each file is a

linked list of

All the pointers to

scattered blocks

All the files

are blocked

All the

pointers to One system where there are multiple operating

system, the decision to load a particular one is done by

---------------- Boot loader Boot strap

Process control

block

File control

block Boot loader

The VFS refers to -----------

Virtual File

System

Valid File

System

Virtual Font

System

Virtual

Function

Virtual File

System

The disadvantage of a linear list of directory entries is

the ---------------------

Size of the linear

list in the memory

Linear search

to find a file It is not reliable It is not valid

Linear search

to find a file

One difficulty of contiguous allocation is ---------------

Finding space for

a new file Ineffecient Costly Time taking

Finding space

for a new file
To solve the problem of external fragmentation ----------

------- needs to be done periodically Compaction Check Formatting

Replacing

memory Compaction

If too little space is allocated to a file ----------------

The file will not

work

There will not

be any space

The file cannot be

extended

file cannot be

opened

The file

cannot be

extended

A system program such as fsck ------------------ is a

consistency checker UNIX Windows Macintosh Solaris UNIX

Each set of operations for performing a specific task is

a ---------------------- Program Code Transaction Method Transaction

Once the changes are written to the log, they are

considered to be --------------- Committed Aborted Completed Finished Committed

When an entire command transaction is completed,-----

It is stored in the

memory

It is removed

from the log

file It is redone

It is deleted

from the

memory

It is removed

from the log

file
In --------------- information is recorded magnetically on

platters Magnetic disk Electrical disk Assemblies Cylinders Magnetic disk

The head of the magnetic disk are attached to a ----------

----- that moves all the head as unit Spindle Disk arm Track Pointer Disk arm

The set of tracks that are at one arm position make up

a ----------- Magnetic disk Electrical disk Assemblies Cylinders Cylinders
The time taken to move a disk arm to the desired

cylinder is called as--------------- Positioning time

Random

access ti Seek time

Rotational

latency Seek time
When a head damages the magnetic surface, it is

known as --------------------- Disk crash Head crash Magnetic damage All of these Head crash

A flopy disk is designed to rotate -------------- as

compared to a hard disk drive Faster Slower At the same speed

Normal

speed Slower

The host controller is -------------------

Controller built at

the end of each

disk

Controller at

the computer

end of the bus Both a and b

Controller at

the system

side

Controller at

the computer

end of the bus
The process of dividing a disk into sectors that the disk

controller can read and write, before a disk can store

data is known as----------------- Partitioning

Swap space

creation

Low-level

formatting

Physical

formatting

Low-level

formatting

,Physical

the data structure for a sector typically contains ---------

---------- Header Data area Trailer Main section

Header ,Data

area ,Trailer

The header and trailer of a sector contains information

used by the disk controller such as _____________. Main section

Error

corecting

codes Sector number

Disk

identifier

Sector

number

The two steps that the operating system takes to use a

disk to hold its files are ---------------- and -------------- partitioning

Swap space

creation Catching

Logical

formatting partitioning
The -------------- program initializes all aspects of the

system, from CPU registers to device controllers and

the content of main memory, and then starts the Main Boot loader Boot strap ROM Boot strap

For most computers the boot strap is stored in------------

-------- RAM ROM Cache

Tertiary

storage ROM

A disk that has a boot partition is called a --------------- Start disk

Destroyed

blocks Boot disk Format disk

System

disk,boot disk

Defective sectors on disks are often known as -------------

---- Good blocks System disk Bad blocks Semi blocks Bad blocks

Bad blocks are called as __________ Good Sectors

Defective

Sectors boot disks boot strap

Defective

Sectors

ROM got _________ file boot strap Data area head data random data boot strap

1

UNIT V

 System calls, Using system calls Pipes and Filters, Decision making in Shell Scripts (If

else, switch), Loops in shell, Functions, Utility programs (cut, paste, join, tr, uniq

utilities), Pattern matching utility (grep)

Linux looks and feels much like any other UNIX system. Its development began

in 1991, when a Finnish student, Linus Torvalds, wrote and christened Linux, a small but

self-contained kernel for the 80386 processor, the first true 32-bit processor in Intel's

range of PC-compatible CPUs. From an initial kernel that partially implemented a small

subset of the UNIX system services, the Linux system has grown to include much ifFNIX

functionality. In its early days, Linux development revolved largely around the central

operating-system kernel—the core, privileged executive that manages all system

resources and that interacts directly with the computer hardware. The Linux kernel is an

entirely original piece of software developed from scratch by the Linux community. The

Linux system, as we know it today, includes a multitude of components, some written

from scratch, others borrowed from other development projects, and still others created in

collaboration with other teams. A Linux distribution includes all the standard

components of the Linux system, plus a set of administrative tools to simplify the initial

installation and subsequent upgrading of Linux and to manage installation and removal of

other packages on the system.

1.2 The Linux Kernel

The first Linux kernel released to the public was Version 0.01, dated May 14,

1991. It had no networking, ran only on 80386-compatible Intel processors and PC

hardware, and had extremely limited device-driver support. The virtual memory

subsystem was also fairly basic and included no support for memory mapped files;

however, even this early incarnation supported shared pages with copy-on-write. The

only file system supported was the Minix file system -the first Linux kernels were cross-

developed on a Minix platform.

The next milestone version, Linux 1.0, was released on March 14, 1994. This

release culminated three years of rapid development of the LimlX kernel. Perhaps the

single biggest new feature was networking: 1.0 included support for UNIX's standard

2

TCP liP networking protocols, as well as a BSD-compatible socket interface for

networking programming. Device-driver support was added for running IP over an

Ethernet or (using PPP or SLIP protocols) over serial lines or modems. The 1.0 kernel

also included a new, much enhanced file system without the limitations of the original

Minix file system and supported a range of SCSI controllers for high-performance disk

access. The developers extended the virtual memory subsystem to support paging to swap

files and memory mapping of arbitrary files (but only read-only memory mapping was

implemented in 1.0). A range of extra hardware support was also included in this release.

Although still restricted to the Intel PC platform, hardware support had grown to

include floppy-disk and CD-ROM devices, as well as sound cards, a range of mice, and

international keyboards. Floating-point emulation was provided in the kernel for 80386

users who had no 80387 math coprocessor; System V UNIX-style inclLlding shared

memory, semaphores, and message queues, was implemented. Simple support for

dynamically loadable and unloadable kernel modules was supplied as well. At this point,

development started on the 1.1 kernel stream, but numerous bug-fix patches were

released subsequently against 1.0.

In March 1995, the 1.2 kernel was released. This release did not offer nearly the

same improvement in functionality as the 1.0 release, but it did support a much wider

variety of hardware, including the new PCI hardware bus architecture. Developers added

another PC-specific feature-support for the 80386 CPU's virtual8086 mode-to allow

emulation of the DOS operating system for PC computers. They also updated the

networking stack to provide support for the IPX protocol and made the IP

implementation more complete by including accounting and firewalling functionality.

The 1.2 kernel was the final PC-only Linux kernel. The source distribution for

Linux 1.2 included partially implemented support for SPARC, Alpha, and MIPS CPUs,

but full integration of these other architectures did not begin until after the 1.2 stable

kernels was released. The Linux 1.2 release concentrated on wider hardware support and

more complete implementations of existing functionality.

 Much new functionality was under development at the time, but integration of the

new code into the main kernel source code had been deferred until after the stable 1.2

kernel had been released. As a result, the 1.3 development stream saw a great deal of new

3

functionality added to the kernel. This work was finally released as Linux 2.0 in since

1996. This release was given a major version-number increment on account of two major

new capabilities: support for multiple architectures, including a 64-bit native Alpha port,

and support for multiprocessor architectures. Linux distributions based on 2.0 are also

available for the Motorola 68000-series processors and for Sun's SPARC systems.

A derived version of Linux running on top of the Mach microkernel also runs on

PC and PowerMac systems. The changes in 2.0 did not stop there. The memory-

management code was substantially improved to provide a unified cache for file-system

data independent of the caching of block devices. As a result of this change, the kernel

offered greatly increased file-system and virtual memory performance. For the first time,

file-system caching was extended to networked file systems, and writable memory-

mapped regions also were supported. The 2.0 kernel also included much improved TCP

/IP performance, and a number of new networking protocols were added, including Apple

Talk, AX.25an'lateur radio networking, and ISDN support. The ability to mount

remote netware and SMB (Microsoft LanManager) network volumes was added. Other

major improvements in 2.0 were support for internal kernel threads, for handling

dependencies between loadable modules, and for automatic loading of modules on

demand. Dynamic configuration of the kernel at run time was much improved through a

new, standardized configuration interface. Additional new features included file-system

quotas and POSIX-compatible real-time process-scheduling classes. Improvements

continued with the release of Linux 2.2 in January 1999.

 A port for UltraSPARC systems was added. Networking was enhanced with

more flexible firewalling, better routing and traffic management, and support for TCP

large window and selective acks. Acorn, Apple, and NT disks could now be read, and

NFS was enhanced and a kernel-mode NFS daemon added. Signal handling, interrupts,

and some I/0 were locked at a finer level than before to improve symmetric

multiprocessor (SMP) performance. Advances in the 2.4 and 2.6 releases of the kernel

include increased support for SMP systems, journaling file systems, and enhancements to

the memory management system. The process scheduler was modified in Version 2.6,

providing an efficient 0(1) scheduling algorithm. In addition, the LimiX 2.6 kernel is now

preemptive, allowing a process to be preempted while running in kernel mode.

4

1.3 The Linux System: Design Principles

 Linux is a multiuser, multitasking system with a full set of UNIX-compatible

tools.

 Its file system adheres to traditional UNIX semantics, and it fully implements the

standard UNIX networking model.

 Main design goals are speed, efficiency, flexibility and standardization.

 Linux is designed to be compliant with the relevant POSIX documents; some

Linux distributions have achieved official POSIX certification.

 The Linux programming interface adheres to the SVR4 UNIX semantics, rather

than to BSD behavior.

1.4 The layers of a UNIX system

1.5 Components of a UNIX System

 Like most UNIX implementations, Linux is composed of three main bodies of

code:

 Standard Utilities Programs

 Standard Library

 Kernel

 Standard Utilities Programs perform individual specialized management tasks.

 Shell

5

 Commands for the management of files and directories

 Filters

 Compilers

 Editors

 Commands for the administration of the system

1.6 The shell of a UNIX System

 The UNIX systems have a Graphical User Interface (Linux uses KDE, GNOME

…), but the programmers prefer to type the commands.

 Shell: the user process which executes programs (command interpreter)

 User types command

 Shell reads command (read from input) and translates it to the operating

system.

 Can run external programs (e.g. netscape) or internal shell commands (e.g. cd)

 Various different shells available:

 Bourne shell (sh), C shell (csh), Korn shell (ksh), TC shell (tcsh), Bourne

Again shell (bash).

 The administrator of the system provides to the user a default shell, but the user

can change shell.

1.7 Memory Management

Memory management under Linux has two components. The first deals with

allocating and freeing physical memory—pages, groups of pages, and small blocks of

memory. The second handles virtual memory, which is memory mapped into the address

space of running processes.

Management of Physical Memory

 Due to specific hardware characteristics, Linux separates physical memory into

three different zones identifying different regions of memory. The zones are identified as:

• Z0NE_DMA

• ZONEJTORMAL

• ZONE_HIGHMEM

 These zones are architecture specific. For example, on the Intel 80x86

architecture, certain ISA (industry standard architecture) devices can only access the

6

lower 16 MB of physical memory using DMA. On these systems, the first 16 MB of

physical memory comprise ZONE-DMA. ZQNEJIORMAL identifies physical memory

that is mapped to the CPU's address space. This zone is used for most routine memory

requests. For architectures that do not limit what DMA can access, ZONEJDMA is not

present, and ZQNEJJQRMAL is used.

Finally, ZONE_HIGHMEM (for "high memory") refers to physical memory that is

not mapped into the kernel address space. For example, on the 32-bit Intel architecture

(where 232 provides a 4-GB address space), the kernel is mapped into the first 896 MB

of the address space; the remaining memory is referred to as high memory and is

allocated from ZONE_HIGHMEM.

1.7 File Systems

Linux retains UNIX's standard file-system model. In UNIX, a file does not have to be

an object stored on disk or fetched over a network from a remote file server. Rather,

UNIX files can be anything capable of handling the input or output of a stream of data.

Device drivers can appear as files, and inter process communication channels or network

connections also look like files to the user. The Linux kernel handles all these types of

file by hiding the implementation details of any single file type behind a layer of

software, the virtual file system (VFS). Here, we first cover the virtual file system and

then discuss the standard Linux file system—ext2fs.

The Virtual File System

 The Linux VFS is designed around object-oriented principles. It has two

components: a set of definitions that specify what file-system objects are allowed to look

like and a layer of software to manipulate the objects. The VFS defines four main object

types:

• An inode object represents an individual file.

• A file object represents an open file.

• A superblock object represents an entire file system.

• A dentry object represents an individual directory entry.

For each of these four object types, the VFS defines a set of operations. Every object

of one of these types contains a pointer to a function table. The function table lists the

7

addresses of the actual functions that implement the defined operations for that object.

For example, an abbreviated API for some of the file object's operations includes:

• int open (. . .) — Open a file.

• ssize_t read(. . .) —Read from a file.

• ssize_t write (. . .) —Write to a file.

• int mmap (. . .) — Memory-map a file.

The complete definition of the file object is specified in the struct file_operations,

which is located in the file /usr/include/linux/fs.h. An implementation of the file object

(for a specific file type) is required to implement each function specified in the definition

of the file object.

The VFS software layer can perform an operation on one of the file-system objects

by calling the appropriate function from the object's function table, without having to

know in advance exactly what kind of object it is dealing with. The VFS does not know,

or care, whether an inode represents a networked file, a disk file, a network socket, or a

directory file. The appropriate function for that file's readQ operation will always be at

the same place in its function table, and the VFS software layer will call that function

without caring how the data are actually read.

The inode and file objects are the mechanisms used to access files. An inode object is

a data structure containing pointers to the disk blocks that contain the actual hie contents,

and a file object represents a point of access to the data in an open file. A process cannot

access an inode's contents without first obtaining a file object pointing to the inode. The

file object keeps track of where in the file the process is currently reading or writing, to

keep track of sequential file I/O.

It also remembers whether the process asked for write permissions when the file was

opened and tracks the process's activity if necessary to perform adaptive read-ahead,

fetching file data into memory before the process requests the data, to improve

performance. File objects typically belong to a single process, but inode objects do not.

 Even when a file is no longer being used by any processes, its inode object may

still be cached by the VFS to improve performance if the file is used again in the near

8

future. All cached file data are linked onto a list in the file's inode object. The inode also

maintains standard information about each file, such as the owner, size, and time most

recently modified.

Directory files are dealt with slightly differently from other files. The UNIX

programming interface defines a number of operations on directories, such as creating,

deleting, and renaming a file in a directory.

 The system calls for these directory operations do not require that the user open

the files concerned, unlike the case for reading or writing data. The VFS therefore defines

these directory operations in the inode object, rather than in the file object. The

superblock object represents a connected set of files that form a self-contained file

system. The operating-system kernel maintains a single superblock object for each disk

device mounted as a file system and for each networked file system currently connected.

 The main responsibility of the superblock object is to provide access to inodes.

The VFS identifies every inode by a unique (file-system/inode number) pair, and it finds

the inode corresponding to a particular inode number by asking the superblock object to

return the inode with that number.

 Finally, a dentry object represents a directory entry that may include the name of

a directory in the path name of a file (such as /usr) or the actual file (such as s t d i o . h).

For example, the file Aisr/include/stdio. h contains the directory entries (1) /, (2) usr, (3)

include, and (4) stdio .h. Each one of these values is represented by a separate dentry

object.

 As an example of how dentry objects are used, consider the situation in which a

process wishes to open the file with the pathname / u s r / i n c l u d e / s t d i o . h using

an editor. Because Linux treats directory names as files, translating this path requires first

obtaining the inode for the root /. The operating system must then read through this file to

obtain the inode for the file include. It must continue this process until it obtains the

inode for the file s t d io . h. Because path-name translation can be a time-consuming

task, Linux maintains a cache of dentry objects, which is consulted during path-name

translation. Obtaining the inode from the dentry cache is considerably faster than having

to read the on-disk file.

The Linux ext2fs File System

9

The standard on-disk file system used by Linux is called ext2fs, for historical reasons.

Linux was originally programmed with a Minix-compatible filesystem, to ease

exchanging data with the Minix development system, but that file system was severely

restricted by 14-character file-name limits and a maximum file-system size of 64 MB.

The Minix file system was superseded by a new file system, which was christened the

extended file system (extfs). A later redesign of this file system to improve performance

and scalability and to add a few missing features led to the second extended file system

(ext2fs).

2. Windows 2000

Windows 2000 is an operating system for use on both client and servercomputers. It

was produced by Microsoft and released to manufacturing on December 15, 1999 and

launched to retail on February 17, 2000. It is the successor to Windows NT 4.0, and is the

last version of Microsoft Windows to display the "Windows NT" designation.
[7]

 It is

succeeded by Windows XP (released in October 2001) and Windows Server

2003 (released in April 2003). During development, Windows 2000 was known as

Windows NT 5.0.

 Four editions of Windows 2000 were released: Professional, Server,Advanced

Server, and Datacenter Server; the latter was both released to manufacturing and

launched months after the other editions.

 While each edition of Windows 2000 was targeted at a different market, they

shared a core set of features, including many system utilities such as the Microsoft

Management Console and standard system administration applications.

 Support for people with disabilities was improved over Windows NT 4.0 with a

number of new assistive technologies, and Microsoft increased support for different

languages and locale information.

2.1 The Windows 2000 File System

Windows 2000 supports several file systems, the most important of which are FAT-

16, FAT-32, and NTFS. This sample chapter examines the NTFS file system because it is

a modern file system unencumbered by the need to be fully compatible with the MS-DOS

file system.

http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Client_(computing)
http://en.wikipedia.org/wiki/Server_(computing)
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Windows_NT_4.0
http://en.wikipedia.org/wiki/Windows_2000#cite_note-7
http://en.wikipedia.org/wiki/Windows_XP
http://en.wikipedia.org/wiki/Windows_Server_2003
http://en.wikipedia.org/wiki/Windows_Server_2003
http://en.wikipedia.org/wiki/Microsoft_Management_Console
http://en.wikipedia.org/wiki/Microsoft_Management_Console
http://en.wikipedia.org/wiki/System_administration
http://en.wikipedia.org/wiki/Windows_NT_4.0
http://en.wikipedia.org/wiki/Assistive_technology
http://en.wikipedia.org/wiki/Locale

10

Windows 2000 supports several file systems, the most important of which are FAT-16, FAT-

32, andNTFS (NT File System). FAT-16 is the old MS-DOS file system. It uses 16-bit disk

addresses, which limits it to disk partitions no larger than 2 GB. FAT-32 uses 32-bit disk

addresses and supports disk partitions up to 2 TB. NTFS is a new file system developed

specifically for Windows NT and carried over to Windows 2000. It uses 64-bit disk addresses and

can (theoretically) support disk partitions up to 2
64

bytes, although other considerations limit it to

smaller sizes. Windows 2000 also supports read-only file systems for CD-ROMs and DVDs. It is

possible (even common) to have the same running system have access to multiple file system

types available at the same time.

Fundamental Concepts

Individual file names in NTFS are limited to 255 characters; full paths are limited to 32,767

characters. File names are in Unicode, allowing people in countries not using the Latin alphabet

(e.g., Greece, Japan, India, Russia, and Israel) to write file names in their native language. For

example, file is a perfectly legal file name. NTFS fully supports case sensitive names (so foo is

different from Foo andFOO). Unfortunately, the Win32 API does not fully support case-

sensitivity for file names and not at all for directory names, so this advantage is lost to programs

restricted to using Win32 (e.g., for Windows 98 compatibility).

 An NTFS file is not just a linear sequence of bytes, as FAT-32 and UNIX files are.

Instead, a file consists of multiple attributes, each of which is represented by a stream of bytes.

Most files have a few short streams, such as the name of the file and its 64-bit object ID, plus one

long (unnamed) stream with the data. However, a file can also have two or more (long) data

streams as well. Each stream has a name consisting of the file name, a colon, and the stream

name, as in foo:stream1. Each stream has its own size and is lockable independently of all the

other streams. The idea of multiple streams in a file was borrowed from the Apple Macintosh, in

which files have two streams, the data fork and the resource fork. This concept was incorporated

into NTFS to allow an NTFS server be able to serve Macintosh clients.

 File streams can be used for purposes other than Macintosh compatibility. For example, a

photo editing program could use the unnamed stream for the main image and a named stream for

a small thumbnail version. This scheme is simpler than the traditional way of putting them in the

same file one after another. Another use of streams is in word processing. These programs often

make two versions of a document, a temporary one for use during editing and a final one when

the user is done. By making the temporary one a named stream and the final one the unnamed

stream, both versions automatically share a file name, security information, timestamps, etc. with

no extra work.

11

 The maximum stream length is 2
64

bytes. To get some idea of how big a 2
64

-byte stream

is, imagine that the stream were written out in binary, with each of the 0s and 1s in each byte

occupying 1 mm of space. The 2
67

-mm listing would be 15 light-years long, reaching far beyond

the solar system, to Alpha Centauri and back. File pointers are used to keep track of where a

process is in each stream, and these are 64 bits wide to handle the maximum length stream, which

is about 18.4 exabytes.

 The Win32 API function calls for file and directory manipulation are roughly similar to

their UNIX counterparts, except most have more parameters and the security model is different.

Opening a file returns a handle, which is then used for reading and writing the file. For graphical

applications, no file handles are predefined. Standard input, standard output, and standard error

have to be acquired explicitly if needed; in console mode they are preopened, however. Win32

also has a number of additional calls not present in UNIX.

3. Windows XP

The Microsoft Windows XP operating system is a 32/64-bit preemptive multitasking

operating system for AMD K6/K7, Intel IA32/IA64, and later microprocessors. The

successor to Windows NT and Windows 2000, Windows XP is also intended to replace

the Windows 95/98 operating system. Key goals for the system are security, reliability,

ease of use, Windows and POSIX application compatibility, high performance,

extensibility, portability, and international support.

3.1 History

 In the mid-1980s, Microsoft and IBM cooperated to develop the OS/2 operating

system, which was written in assembly language for single-processor Intel 80286

systems. In 1988, Microsoft decided to make a fresh start and to develop a "new

technology" (or NT) portable operating system that supported both the OS/2 and POSIX

application-programming interfaces (APIs). In October 1988, Dave Cutler, the architect

of the DEC VAX/VMS operating system, was hired and given the charter of building this

new operating system. Originally, the team planned for NT to use the OS/2 API as its

native environment, but during development, NT was changed to use the 32-bit Windows

API (or Win32 API), reflecting the popularity of Windows 3.0.

 The first versions of NT were Windows NT 3.1 and Windows NT 3.1 Advanced

Server. (At that time, 16-bit Windows was at version 3.1.) Windows NT version 4.0

adopted the Windows 95 user interface and incorporated Internet web-server and web-

12

browser software. In addition, user-interface routines and all graphics code were moved

into the kernel to improve performance, with the side effect of decreased system

reliability. Although previous versions of NT had been ported to other microprocessor

architectures, the Windows 2000 version, released in February 2000, discontinued

support for other than Intel (and compatible) processors due to marketplace factors.

Windows 2000 incorporated significant changes over Windows NT. It added Active

Directory (an X.500-based directory service), better networking and laptop support,

support for plug-and-play devices, a distributed file system, and support for more

processors and more memory.

 In October 2001, Windows XP was released as both an update to the Windows

2000 desktop operating system and a replacement for Windows 95/98. In 2002, the server

versions of Windows XP became available (called Windows .Net Server). Windows XP

updates the graphical user interface (GUI) with a visual design that takes advantage of

more recent hardware advances and many new ease-of-use features. Numerous features

have been added to automatically repair problems in applications and the operating

system itself. Windows XP provides better networking and device experience (including

zero-configuration wireless, instant messaging, streaming media, and digital

photography/video), dramatic performance improvements both for the desktop and large

multiprocessors, and better reliability and security than even Windows 2000.

 Windows XP uses a client-server architecture (like Mach) to implement multiple

operating-system personalities, such as Win32 API and POSIX, with user-level processes

called subsystems. The subsystem architecture allows enhancements to be made to one

operating-system personality without affecting the application compatibility of any

others.

 Windows XP is a multiuser operating system, supporting simultaneous access

through distributed services or through multiple instances of the graphical user interface

via the Windows terminal server. The server versions of Windows XP support

simultaneous terminal server sessions from Windows desktop systems. The desktop

versions of terminal server multiplex the keyboard, mouse, and monitor between virtual

terminal sessions for each logged-on user. This feature, called fast user switching, allows

13

users to preempt each other at the console of a PC without having to log off and onto the

system.

 Windows XP is the first version of Windows to ship a 64-bit version. The native

NT file system (NTPS) and many of the Win32 APIs have always used 64- bit integers

where appropriate—so the major extension to 64-bit in Windows XP is support for large

addresses.

 There are two desktop versions of Windows XP. Windows XP Professional is the

premium desktop system for power users at work and at home. For home users migrating

from Windows 95/98, Window's XP Personal provides the reliability and ease of use of

Windows XP, but lacks the more advanced features needed to work seamlessly with

Active Directory or rim POSIX applications. The members of the Windows .Net Server

family use the same core components as the desktop versions but add a range of features

needed for uses such as webserver farms, print/file servers, clustered systems, and, large

datacenter machines. The large datacenter machines can have up to 64 GB of memory

and 32 processors on IA32 systems and 128 GB and 64 processors on IA64 systems.

3.1 Design Principles

 Microsoft's design goals for Windows XP include security, reliability, Windows

and POSIX application compatibility, high performance, extensibility, portability, and

international support.

Security

 Windows XP security goals required more than just adherence to the design

standards that enabled Windows NT 4.0 to receive a C-2 security classification from the

U.S. government (which signifies a moderate level of protection from defective software

and malicious attacks). Extensive code review and testing were combined with

sophisticated automatic analysis tools to identify and investigate potential defects that

might represent security vulnerabilities.

Reliability

 Windows 2000 was the most reliable, stable operating system Microsoft had ever

shipped to that point. Much of this reliability came from maturity in the source code,

extensive stress testing of the system, and automatic detection of many serious errors in

drivers. The reliability requirements for Windows XP were even more stringent.

14

Microsoft used extensive manual and automatic code review to identify over 63,000 lines

in the source files that might contain issues not detected by testing and then set about

reviewing each area to verify that the code was indeed correct.

 Windows XP extends driver verification to catch more subtle bugs, improves the

facilities for catching programming errors in user-level code, and subjects third-party

applications, drivers, and devices to a rigorous certification process. Furthermore,

Windows XP adds new facilities for monitoring the health of the PC, including

downloading fixes for problems before they are encountered by users. The perceived

reliability of Windows XP was also improved by making the graphical user interface

easier to use through better visual design, simpler menus, and measured improvements in

the ease with which users can discover how to perform common tasks.

Windows and POSIX Application Compatibility

 Windows XP is not only an update of Windows 2000; it is a replacement for

Windows 95/98. Windows 2000 focused primarily on compatibility for business

applications. The requirements for Windows XP include a much higher compatibility

with consumer applications that run on Windows 95/98. Application compatibility is

difficult to achieve because each application checks for a particular version of Windows,

may have some dependence on the quirks of the implementation of APIs, may have latent

application bugs that were masked in the previous system, and so forth. Windows XP

introduces a compatibility layer that falls between applications and the Win32 APIs. This

layer makes Windows XP look (almost) bug-for-bug compatible with previous versions

of Windows.

 Windows XP, like earlier NT releases, maintains support for running many 16-bit

applications using a thunking, or conversion, layer that translates 16-bit API calls into

equivalent 32-bit calls. Similarly, the 64-bit version of Windows XP provides a thunking

layer that translates 32-bit API calls into native 64-bit calls. POSIX support in Windows

XP is much improved. A new POSIX subsystem called Interix is now available. Most

available UNIX-compatible software compiles and runs under Interix without

modification.

High Performance

15

 Windows XP is designed to provide high performance on desktop systems

(which are largely constrained by I/O performance), server systems (where the CPU is

often the bottleneck), and large multithreaded and multiprocessor environments (where

locking and cache-line management are key to scalability).

 High performance has been an increasingly important goal for Windows XP.

Windows 2000 with SQL 2000 on Compaq hardware achieved top TPC-C numbers at the

time it shipped. To satisfy performance requirements, NT uses a variety of techniques,

such as asynchronous I/O, optimized protocols for networks (for example, optimistic

locking of distributed data, batching of requests), kernel-based graphics, and

sophisticated caching of file-system data.

 The memory-management and synchronization algorithms are designed with an

awareness of the performance considerations related to cache lines and multiprocessors.

Windows XP has further improved performance by reducing the code-path length in

critical functions, using better algorithms and per-processor data structures, using

memory coloring for NUMA (non-uniform memory access) machines, and implementing

more scalable locking protocols, such as queued spinlocks. The new locking protocols

help reduce system bus cycles and include lock-free lists and queues, use of atomic read-

modify-write operations (like interlocked increment), and other advanced locking

techniques.

Extensibility

 Extensibility refers to the capacity of an operating system to keep up with

advances in computing technology. So that changes over time are facilitated, the

developers implemented Windows XP using a layered architecture. The Windows XP

executive runs in kernel or protected mode and provides the basic system services. On

top of the executive, several server subsystems operate in user mode.

 Among them are environmental subsystems that emulate different operating

systems. Thus, programs written for MS-DOS, Microsoft Windows, and POSIX all run

on Windows XP in the appropriate environment.

 Because of the modular structure, additional environmental subsystems can be

added without affecting the executive. In addition, Windows XP uses loadable drivers in

the I/O system, so new file systems, new kinds of I/O devices, and new kinds of

16

networking can be added while the system is running. Windows XP uses a client-server

model like the Mach operating system and supports distributed processing by remote

procedure calls (RPCs) as defined by the Open Software Foundation.

Portability

 An operating system is portable if it can be moved from one hardware

architecture to another with relatively few changes. Windows XP is designed to be

portable. As is true of the UNIX operating system, the majority of the system is written in

C and C++. Most processor-dependent code is isolated in a dynamic link library (DLL)

called the hardware-abstraction layer (HAL). A DLL is a file that is mapped into a

process's address space such that any functions in the DLL appear to be part of the

process.

3.2 File System

 Historically, MS-DOS systems have used the file-allocation table (FAT) file

system. The 16-bit FAT file system has several shortcomings, including internal

fragmentation, a size limitation of 2 GB, and a lack of access protection for files. The 32-

bit FAT file system has solved the size and fragmentation problems, but its performance

and features are still weak by comparison with modern file systems. The NTFS file

system is much better. It was designed to include many features, including data recovery,

security, fault tolerance, large files and file systems, multiple data streams, UNICODE

names, sparse files, encryption, journaling, volume shadow copies, and file compression.

Windows XP uses NTFS as its basic file system, and we focus on it here. Windows XP

continues to use FAT16, however, to read floppies and other removable media. And

despite the advantages of NTFS, FAT32 continues to be important for interoperability of

media with Windows 95/98 systems. Windows XP supports additional file-system types

for the common formats used for CD and DVD media.

17

POSSIBLE QUESTIONS

UNIT – V

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. What do you mean by system calls?

2. What are pipes?

3. What are filters?

4. What is decision making in shell script?.

5. What are utility programs?

PART – C (6 MARKS)

1. Discuss the system calls.

2. Explain the pipes and filters.

3. Explain the decision making in shell script.

4. Discuss the utility programs of Unix and Linux.

5. Explain the pattern matching utility.

Questions Opt1 opt2 opt3 opt4 KEYIn computer security, ……………………. means that

computer system assets can be modified only by

authorized parities. Confidentiality Integrity Availability Authenticity Integrity

In computer security, …………………….. means that

the information in a computer system only be accessible

for reading by authorized parities. Confidentiality Integrity Availability Authenticity

Confidentialit

y

Which of the following is independent malicious

program that need not any host program? Trap doors Trojan horse Virus Worm Worm

The ……….. is code that recognizes some special

sequence of input or is triggered by being run from a

certain user ID of by unlikely sequence of events. Trap doors Trojan horse Logic Bomb Virus Trap doorsThe …………….. is code embedded in some legitimate

program that is set to “explode” when certain conditions

are met. Trap doors Trojan horse Logic Bomb Virus Trap doors

Which of the following malicious program do not

replicate automatically? Trojan Horse Virus Worm Zombie Trojan Horse

…………… programs can be used to accomplish

functions indirectly that an unauthorized user could not Zombie Worm Trojan Horses Logic Bomb Trojan HorsesA ………….. is a program that can infect other

programs by modifying them, the modification includes

a copy of the virus program, which can go on to infect Worm Virus Zombie Trap doors VirusWhich principle states that programs, users and even the

systems be given just enough privileges to perform their

task?

principle of

operating system

principle of

least privilege

principle of

process scheduling

none of the

mentioned

principle of

least privilege

PART - A (Online Examination)

KARPAGAM ACADEMY OF HIGHER EDUCATION
Coimbatore – 641 021.

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

UNIT - V : (Objective Type Multiple choice Questions each Question carries one Mark)

OPERATING SYSTEMS

_______ is an approach to restricting system access to

authorized users.

Role-based access

control

Process-based

access control

Job-based access

control

none of the

mentioned

Role-based

access control

For system protection, a process should access all the resources

only those

resources for

which it has

few resources but

authorization is not

required

all of the

mentioned

only those

resources for

which it has

The protection domain of a process contains object name rights-set

object name and

rights-set

none of the

mentioned

object name

and rights-set

If the set of resources available to the process is fixed

throughout the process’s lifetime then its domain is static dynamic

neither static nor

dynamic

none of the

mentioned static

Access matrix model for user authentication contains a list of objects

a list of

domains

a function which

returns an object’s

all the

options all the options

Global table implementation of matrix table contains domain object right-set

all the

options all the options
For a domain _______ is a list of objects together with

the operation allowed on these objects. capability list access list authorization

none of the

mentioned capability list
Which one of the following is capability based

protection system? hydra

cambridge

CAP system

hydra & cambridge

CAP system

none of the

mentioned

hydra &

cambridge

In UNIX, domain switch is accomplished via file system user superuser

none of the

mentioned file system

 ___________ is an important property of an operating

system that hopes to keep up with advancements in

 Portability Reliability Extensibility

compatibility

 Extensibility

 ___________ is the ability to handle error conditions,

including the ability of the operating system to protect

itself and its users from defective or malicious software.

 Portability Reliability Extensibility

compatibility

 Reliability

 __________ is the ability to move from one hardware

architecture to another with relatively few changes.

 Portability Reliability Extensibility

compatibility

 Portability

 Windows NT is designed to afford good

___________.

 Portability Reliability Extensibility performance performance

 A __________ is created by the NT disk administrator

utility, and is based on a logical disk partition.

 Volume File Directory subdirectory Volume

 A __________ of a directory contains the top level of

the B+ tree.

 index root file reference attributes metadata index root

 The _________ in NT may occupy a portion of a disk,

may occupy an entire disk or may span across several

disks.

 Volume File Directory subdirectory Volume

 The ___________ of a directory contains the top level

of the B+ tree.

 Volume File index root subdirectory index root

 The _____________ attribute contains the access

token of the owner of the file, and an access control list

that states the access privileges that are granted to each

 Portability Recovery Reliability Security Security

 To deal with disk sectors that go bad, ___________

uses a hardware technique called sector spanning.

 Ps Valloc Kmalloc FtDisk FtDisk

In the security literature, people who are nosing around

places where they have no business being are called

__________ intruders crackers hackers worms intruders
Outsiders can sometimes take command of people's home

computers (using viruses and other means) and turn them

into ______________ virus worms malware zombies zombiesMost operating systems allow individual users to determine

who may read and write their files and other objects, This

policy is called __________________ mandatory access controlaccess matrix

discretionary access

control.

access control

lists

discretionary

access control

Every secured computer system must require all users to be

___________________at login time authenticated authorized transferred scheduled authenticated

The most widely used form of authentication is to require the

user to type a __________and a _______________` mailid, PIN number

login name,

password.

PIN number,

Account number

Username,

mailid

login name,

password.The authentication method that measures the physical

characteristics of the user that are hard to forge is called as

______________ Biometrics password stegnography access control Biometrics

___________is the name given to hackers who break

into computers for criminal gain hackers spoofing phising Crackers Crackers

A typical biometrics system has two parts:

enrollment and

identification

identification &

authentication

authentication &

confidentiality

authorization

and

authentication

enrollment and

identification

Any malware hidden in software or a Web page that people

voluntarily download is called _________________ worm Trojan Horse Virus Backdoor Trojan Horse
The idea of creating a virus that could overwrite the master

boot record or the boot sector, with devastating results, such

viruses called as ________________ device driver virus

source code

virus companion virus

boot sector

viruses

boot sector

viruses

The trick to infect a device driver leads to a

________________ source code virus

device driver

virus companion virus

boot sector

viruses

device driver

virus

When an attempt is to make a machine or network resource

unavailable to its intended users, the attack is called

denial-of-service

attack slow read attack spoofed attack

starvation

attack

denial-of-

service attack

The code segment that misuses its environment is called a internal thief trojan horse code stacker

none of the

mentioned trojan horse

The internal code of any software that will set of a malicious

function when specified conditions are met, is called logic bomb trap door code stacker

none of the

mentioned logic bomb

The pattern that can be used to identify a virus is known as stealth virus signature armoured multipartite virus signature

Which one of the following is a process that uses the spawn

mechanism to revage the system performance? worm trojen threat virus worm

What is a trap door in a program?

a security hole,

inserted at

programming time

a type of

antivirus

security hole in a

network

none of the

mentioned

a security hole,

inserted at

programming

Which one of the following is not an attack, but a search for

vulnerabilities to attack? denial of service port scanning

memory access

violation

dumpster

diving port scanning

File virus attaches itself to the source file object file executable file

all of the

mentioned executable file

Multipartite viruses attack on files boot sector memory

all of the

mentioned

all of the

mentioned

In asymmetric encryption

same key is used for

encryption and

decryption

different keys

are used for

encryption and

no key is required

for encryption and

decryption

none of the

mentioned

different keys

are used for

encryption and

Which of the following are forms of malicious attack ?

Theft of

information

Modification

of data

Wiping of

information

All of the

mentioned

All of the

mentioned

What are common security threats ? File Shredding

File sharing

and

permission File corrupting File integrity

File sharing

and

permission

From the following, which is not a common file

permission ? Write Execute Stop Read Stop

Which of the following is a good practice ?

Give full

permission for

remote

Grant read

only

permission

Grant limited

permission to

specified account

Give both

read and

write

Grant limited

permission to

specified

What is not a good practice for user administration ?

Isolating a system

after a

compromise

Perform

random

auditing

procedures

Granting privileges

on a per host basis

Using telnet

and FTP for

remote

access.

Using telnet

and FTP for

remote access.

Which of the following is least secure method of

authentication ? Key card fingerprint retina pattern Password Password

Which of the following is a strong password ? 19thAugust88 Delhi88 P@assw0rd !augustdelhi P@assw0rd

What does Light Directory Access Protocol (LDAP)

doesn’t store ? Users Address Passwords Security Keys Address

Which happens first authorization or authentication ? Authorization Authentication Both are same

None of the

mentioned Authorization

What is characteristics of Authorization ?

RADIUS and

RSA

3 way

handshaking

with syn and

Multilayered

protection for

securing resources

Deals with

privileges and

rights

Deals with

privileges and

rights

What forces the user to change password at first logon ?

Default behavior

of OS

Part of AES

encryption

practice

Devices being

accessed forces the

user

Account

administrator

Account

administrator

Scanned by CamScanner

Scanned by CamScanner

	1.pdf (p.1-6)
	2.pdf (p.7-17)
	3.pdf (p.18-23)
	4.pdf (p.24-73)
	5.pdf (p.74-78)
	6.pdf (p.79-106)
	7.pdf (p.107-134)
	8.pdf (p.135-162)
	9.pdf (p.163-167)
	10.pdf (p.168-184)
	11.pdf (p.185-189)
	12.pdf (p.190)
	13.pdf (p.191)

