
SEMESTER-IV

17CAP405D DISTRIBUTED DATABASE MANAGEMENT SYSTEM 4H -4C

Instruction Hours / week: L: 4 T: 0 P: 0 C:4 Marks: Internal: 40 External: 60 Total: 100

 End Semester Exam: 3 Hours

Scope: The Scope of this course is to expose the students to the architecture, design, and

implementation of massive-scale data systems. The course also discusses foundational concepts

of distributed database theory including design and architecture, security, integrity, query

processing and optimization, transaction management, concurrency control, and fault tolerance.

Objectives: To impart necessary skills to students

 To design good performing distributed database schemas.

 To create optimized query execution plan.

 To efficiently distribute and manage the data.

 To manage distributed access control

 To know how to make secure the databases.

UNIT - I

Database concepts: Data Models- Database Operations- Database Management-DB Clients,

Servers, and Environments. DBE Architecture: Services- Components and Subsystems- Sites -

Expected Services-Expected Subsystems- Typical DBMS Services– DBE Taxonomy: COS

Distribution and Deployment- COS Closeness or Openness-Schema and Data Visibility-

 Schema and Data Control.

UNIT - II

Data Distribution Alternatives: Design Alternatives- Localized Data- Distributed Data.

Fragmentation: Vertical Fragmentation- Horizontal Fragmentation. Distribution Transparency:

Location Transparency-Fragmentation Transparency-Replication Transparency-Location,

 Fragmentation, and Replication Transparencies.

UNIT - III

Query Optimization : Sample Database- Query Processing in Centralized Systems: Query

 Parsing and Translation - Query Optimization- Query Processing in Distributed Systems-

Heterogeneous Database Systems - Concurrency Control in Distributed Database Systems.

UNIT - IV

Deadlock Handling: Deadlock Definition- Deadlocks in Centralized Systems- Deadlocks in

Distributed Systems- Distributed Deadlock Detection. Replication Control: Replication Control

Scenarios. Failure and Commit Protocols: Terminology- Commit Protocols.

UNIT - V

DDBE Security: Cryptography- Securing Data . Traditional DDBE Architectures: Classifying

the Traditional DDBMS Architecture- The MDBS Architecture Classifications- Approaches for

Developing A DDBE- Deployment of DDBE Software.

SEMESTER-IV

17CAP405D DISTRIBUTED DATABASE MANAGEMENT SYSTEM 4H -4C

SUGGESTED READINGS

1. Saeed K. Rahimi And Frank S. Haug.(2010),“Distributed Database Management

Systems :A Practical Approach.”, 1
st
 Edition, A John Wiley & Sons, Inc., Publication.

2. Ceri.(1985),Distributed Databases Principles and Systems , 1
st
 Edition Mchraw Hill Pub.

3. Tamer Ozus M,Patrick Valduriez,S.Sridhar(2006), Principle Of Distributed Database

Systems, 1
st
 Edition , Pearson Education.

4. William M.NewMan, Robort F.Sproull (2004), Principles of Interactive Computer

Graphics, 1
st

 Edition , Pearson Education.

WEB SITES

1. en.wikipedia.org/wiki/Distributed_computing

 2. www.webopedia.com/TERM/D/distributed_computing.html

 3.www.tech-faq.com/distributed-computing.shtml

 4.http://www.inf.unibz.it/dis/teaching/DDB/ln/ddb01.pdf

Karpagam Academy of Higher Education
 (Established Under Section 3 of UGC Act 1956)

Eachanari Post, Coimbatore – 641 021. INDIA

Phone: 0422-2611146, 2611082 Fax No: 0422 -2611043

17CAP405D – DISTRIBUTED DATABASE MANAGEMENT SYSTEM

LECTURE PLAN

S.No Lecturer
Duration(Hrs)

Topics to be Covered Support Materials

UNIT I

1

1
Database concepts: Data Models
Database Operations
Database Management

T1: 1 - 3
R1: 41 – 58,W1,J1

2

1 DB Clients, Servers, and Environments.
T1: 3 – 4, W2

3

1 DBE Architecture: Services- Components and
Subsystems- Sites

T1: 4 - 6

4

1 Expected Services-Expected Subsystems,
Typical DBMS Services

T1: 8 – 11
 W1

5

1 DBE Taxonomy
COS Distribution and Deployment

T1: 13 - 14, W1

6

1 COS Closeness or Openness
Schema and Data Visibility

T1: 15-16,J1

7

1 Schema and Data Control T1: 17, J1

8

1 Recapitulation and Discussion of important
Questions

-

Total No. of Hours planned for Unit I 8 hrs

TEXT BOOK:

T1: Saeed K. Rahimi And Frank S. Haug.(2010),“Distributed Database Management Systems :A Practical

Approach.”, 1st Edition, A John Wiley & Sons, Inc., Publication

REFERENCE BOOK:

R1: Ceri.(1985),Distributed Databases Principles and Systems , 1st Edition Mchraw Hill Pub

WEBSITES:

W1: http://www.tutorialspoint.com

W2: http://www.studytonight.com

JOURNAL:

J1: Journal of Database Management

Karpagam Academy of Higher Education
 (Established Under Section 3 of UGC Act 1956)

Eachanari Post, Coimbatore – 641 021. INDIA

Phone: 0422-2611146, 2611082 Fax No: 0422 -2611043

S.No
Lecturer

Duration(Hrs)
Topics to be Covered Support Materials

UNIT II

1 1 Data Distribution Alternatives: Design Alternatives T1: 35 – 38, W1, J1

2 1 Localized Data- Distributed Data T1: 38 - 39

3

1
Fragmentation: Vertical Fragmentation

Horizontal Fragmentation

T1: 39 – 47, R1: 81 –
112,W2

4 1 Distribution Transparency: Location Transparency T1: 68 - 69

5 1
Fragmentation Transparency

Replication Transparency
T1: 68,W1

6 1 Location Transparency T1: 69

7 1 Replication Transparencies - Location T1: 70,J1

8 1
Recapitulation and Discussion of important
Questions

-

Total No. of Hours planned for Unit II 8 hrs

TEXT BOOK:

T1: Saeed K. Rahimi And Frank S. Haug.(2010),“Distributed Database Management Systems :A Practical

Approach.”, 1st Edition, A John Wiley & Sons, Inc., Publication

REFERENCE BOOK:

R1: Ceri.(1985),Distributed Databases Principles and Systems , 1st Edition Mchraw Hill Pub

WEBSITES:

W1: http://www.tutorialspoint.com

W2: http://www.studytonight.com

JOURNAL:

J1: Journal of Database Management

Karpagam Academy of Higher Education
 (Established Under Section 3 of UGC Act 1956)

Eachanari Post, Coimbatore – 641 021. INDIA

Phone: 0422-2611146, 2611082 Fax No: 0422 -2611043

S.No Lecturer
Duration(Hrs)

Topics to be Covered Support Materials

UNIT III

1

1

Query Optimization : Sample Database

Query Processing in Centralized Systems

T1: 111 – 112, R1: 246 - 249

T1: 126 – 127, W1

2

1

Query Parsing and Translation

Query Optimization

T1: 127 - 130

J1,W2

3

1

Cost Optimization

Plan generation

T1: 131 - 135

4

1

Dynamic Programming

Reducing the solution space

T1: 135 – 144

J1

5 1 Query Processing in Distributed Systems T1: 145 – 146, W2

6 1 Heterogeneous Database Systems T1: 170 – 172, R1: 307 - 314

7 1 Concurrency Control in Distributed Database

Systems

T1: 222 – 237,W1

8 1 Recapitulation and Discussion of important

Questions

-

Total No. of Hours planned for Unit III 8 hrs

TEXT BOOK:

T1: Saeed K. Rahimi And Frank S. Haug.(2010),“Distributed Database Management Systems :A Practical

Approach.”, 1st Edition, A John Wiley & Sons, Inc., Publication

REFERENCE BOOK:

R1: Ceri.(1985),Distributed Databases Principles and Systems , 1st Edition Mchraw Hill Pub

WEBSITES:

W1: http://www.tutorialspoint.com

W2: http://www.studytonight.com

JOURNAL:

J1: Journal of Database Management

Karpagam Academy of Higher Education
 (Established Under Section 3 of UGC Act 1956)

Eachanari Post, Coimbatore – 641 021. INDIA

Phone: 0422-2611146, 2611082 Fax No: 0422 -2611043

S.No Lecturer
Duration(Hrs)

Topics to be Covered Support Materials

UNIT IV

1.

1

Deadlock Handling: Deadlock Definition-

Deadlocks in Centralized System

T1: 247 – 252, W2

J1

2.

1

Deadlocks in Distributed Systems

Distributed Deadlock Detection

T1: 252 - 257

T1: 260 – 265, R1: 391 – 394,

W1

3.

1

Replication Control: Replication Control Scenarios.

Failure and Commit Protocols: Terminology-

T1: 275 – 279,

T1: 297 – 298

4.
1 Commit Protocols: commit point, Transaction

Rollback

T1: 293 – 300

5. 1 Transaction Roll forward, transaction scenario T1: 300 – 302

6.

1

Database Update modes

Transaction Log, Log contents

T1: 302 - 305

7. 1 DBMS storage types T1: 305 - 308

8.
1 Recapitulation and Discussion of important

Questions

-

Total No. of Hours planned for Unit IV 8 hrs

TEXT BOOK:

T1: Saeed K. Rahimi And Frank S. Haug.(2010),“Distributed Database Management Systems :A Practical

Approach.”, 1st Edition, A John Wiley & Sons, Inc., Publication

REFERENCE BOOK:

R1: Ceri.(1985),Distributed Databases Principles and Systems , 1st Edition Mchraw Hill Pub

 WEBSITES:

W1: http://www.tutorialspoint.com

W2: http://www.studytonight.com

JOURNAL:

J1: Journal of Database Management

Karpagam Academy of Higher Education
 (Established Under Section 3 of UGC Act 1956)

Eachanari Post, Coimbatore – 641 021. INDIA

Phone: 0422-2611146, 2611082 Fax No: 0422 -2611043

S.No Lecturer
Duration(Hrs)

Topics to be Covered Support Materials

UNIT V

1. 1 DDBE Security : Cryptography T1: 357 – 366, R1: 7 – 15, W2

2.
1 Securing Data : Authentication and authorization,

Data Encryption.
T1: 368 – 370,W1,J1

3.
1 Unvalidated Input and SQL Injection, Data Inference,

Data Auditing.
T1: 370 – 375,W1

4. 1 Traditional DDBE Architectures: T1: 453 – 454, W1

5.
1 Classifying the Traditional DDBMS Architecture T1: 453 – 454,J1

6. 1 The MDBS Architecture Classifications T1: 457 – 459

7. 1 Approaches for Developing A DDBE T1: 459 – 460

8. 1 Deployment of DDBE Software. T1: 461 – 463,W1,J1

9.
1 Recapitulation and Discussion of important Questions -

10. 1 Discussion of previous year ESE Question paper -

11. 1 Discussion of previous year ESE Question paper -

12. 1 Discussion of previous year ESE Question paper -

Total No. of Hours planned for Unit V 12 hrs

TEXT BOOK:

T1: Saeed K. Rahimi And Frank S. Haug.(2010),“Distributed Database Management Systems :A Practical

Approach.”, 1st Edition, A John Wiley & Sons, Inc., Publication

REFERENCE BOOK:

R1: Ceri.(1985),Distributed Databases Principles and Systems , 1st Edition Mchraw Hill Pub

WEBSITES:

W1: http://www.tutorialspoint.com

W2: http://www.studytonight.com

JOURNAL:

J1: Journal of Database Management

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT: I(Database Concepts-Distributed Database)

BATCH-2018-2020(L)

UNIT-1

SYLLABUS

Database concepts: Data Models- Database Operations- Database Management-DB Clients,
Servers, and Environments. DBE Architecture: Services- Components and Subsystems- Sites -

Expected Services-Expected Subsystems- Typical DBMS Services– DBE Taxonomy: COS

Distribution and Deployment- COS Closeness or Openness-Schema and Data Visibility- Schema

and Data Control.

Distributed Database: relating to, or being a computer network in which at least some of the

processing is done by the individual workstations and information is shared by and often stored

at the workstations.

Database: usually large collection of data organized especially for rapid search and retrieval (as

by a computer).

Informally speaking, a database (DB) is simply a collection of data stored on a computer,

and the term distributed simply means that more than one computer might cooperate in order to

perform some task. Most people working with distributed databases would accept both of the

preceding definitions without any reservations or complaints. Unfortunately, achieving this same

level of consensus is not as easy for any of the other concepts involved with distributed databases

(DDBs). A DDB is not simply “more than one computer cooperating to store a collection of

data”—this definition would include situations that are not really distributed databases, such as

any machine that contains a DB and also mounts a remote file system from another machine.

Similarly, this would be a bad definition because it would not apply to any scenario where we

deploy a DDB on a single computer. Even when a DDB is deployed using only one computer, it

remains a DDB because it is still possible to deploy it across multiple computers. Often, in order

to discuss a particular approach for implementing a DB, we need to use more restrictive and

specific definitions. This means that the same terms might have conflicting definitions when we

consider more than one DB implementation alternative. This can be very confusing when

researching DBs in general and especially confusing when focusing on DDBs.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 1/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT: I(Database Concepts-Distributed Database)

BATCH-2018-2020(L)

DATABASE CONCEPTS

 Whenever we use the term “DB” in this book, we are always contemplating a

collection of persistent data. This means that we “save” the data to some form of

secondary storage (the data usually written to some form of hard disk). As long as we

shut things down in an orderly fashion (following the correct procedures as opposed

to experiencing a power failure or hardware failure), all the data written to secondary

storage should still exist when the system comes back online. We can usually think of

the data in a DB as being stored in one or more files, Based on the markup, the text

would be styled using the appropriate typeface, point size, weight, etc.

possibly spanning several partitions, or even several hard disk drives—even if the data is

actually being stored in something more sophisticated than a simple file.

DATA MODELS

Every DB captures data in two interdependent respects; it captures both the data structure

and the data content. The term “data content” refers to the values actually stored in the DB, and

usually this is what we are referring to when we simply say “data.” The term “data structure”

refers to all the necessary details that describe how the data is stored. This includes things like

the format, length, location details for the data, and further details that identify how the data’s

internal parts and pieces are interconnected. When we want to talk about the structure of data, we

usually refer to it as the data model (DM) (also called the DB’s schema, or simply the schema).

Often, we will use a special language or programmatic facility to create and modify the DM.

When describing this language or facility, authors sometimes refer to the facility or language as

“the data model” as well, but if we want to be more precise, this is actually the data modeling

language (ML)—even when there is no textual language. The DM captures many details about

the data being stored, but the DM does not include the actual data content. We call all of these

details in the DM metadata, which is informally defined as “data about data” or “everything

about data except the content itself.”

DATABASE OPERATIONS

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 2/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT: I(Database Concepts-Distributed Database)

BATCH-2018-2020(L)

Usually, we want to perform several different kinds of operations on DBs. Every DB

must at least support the ability to “create” new data content (store new data values in the DB)

and the ability to retrieve existing data content. After all, if we could not create new data, then

the DB would always be empty! Similarly, if we could not retrieve the data, then the data would

serve no purpose. However, these operations do not need to support the same kind of interface;

for example, perhaps the data creation facility runs as a batch process but the retrieval facility

might support interactive requests from a program or user. We usually expect newer DB

software to support much more sophisticated operations than minimum requirements dictate. In

particular, we usually want the ability to update and delete existing data content. We call this set

of operations CRUD (which stands for “create, retrieve, update, and delete”). Most modern DBs

also support similar operations involving the data structures and their constituent parts. Even

when the DBs support these additional “schema CRUD” operations, complicated restrictions that

are dependent on the ML and sometimes dependent on very idiosyncratic deployment details can

prevent some schema operations from succeeding.

Some DBs support operations that are even more powerful than schema and data CRUD

operations. For example, many DBs support the concept of a query, which we will define as “a

request to retrieve a collection of data that can potentially use complex criteria to broaden or

limit the collection of data involved.” Likewise, many DBs support the concept of a command,

which we will define as “a request to create new data, to update existing data, or to delete

existing data—potentially using complex criteria similar to a query.” Most modern DBs that

support both queries and commands even allow us to use separate queries (called subqueries) to

specify the complex criteria for these operations.

Any DB that supports CRUD operations must consider concurrent access and conflicting

operations. Anytime two or more requests (any combination of queries and commands) attempt

to access overlapping collections of data, we have concurrent access. If all of the operations are

only retrieving data (no creation, update, or deletion), then the DB can implement the correct

behavior without needing any sophisticated logic. If any one of the operations needs to perform a

write (create, update, or delete), then we have conflicting operations on overlapping data.

Whenever this happens, there are potential problems—if the DB allows all of the operations to

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 3/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT: I(Database Concepts-Distributed Database)

BATCH-2018-2020(L)

execute, then the execution order might potentially change the results seen by the programs or

users making the requests.

DATABASE MANAGEMENT

When DBs are used to capture large amounts of data content, or complex data structures,

the potential for errors becomes an important concern—especially when the size and complexity

make it difficult for human verification. In order to address these potential errors and other issues

(like the conflicting operation scenario that we mentioned earlier), we need to use some

specialized software. The DB vendor can deploy this specialized software as a library, as a

separate program, or as a collection of separate programs and libraries. Regardless of the

deployment, we call this specialized software a database management system (DBMS). Vendors

usually deploy a DBMS as a collection of separate programs and libraries.

DB CLIENTS, SERVERS, AND ENVIRONMENTS

There is no real standard definition for a DBMS, but when a DBMS is deployed using

one or more programs, this collection of programs is usually referred to as the DB Server. Any

application program that needs to connect to a DB is usually referred to as the DB-Client. Some

authors consider the DB-Server and the DBMS to be equivalent—if there is no DB-Server, then

there is no DBMS; so the terms DBMS Server and DBMS-Client are also very common.

However, even when there is no DB-Server, the application using the DB is still usually called

the DB-Client. Different DBMS implementations have different restrictions. For example, some

DBMSs can manage more than one DB, while other implementations require a separate DBMS

for each DB.

Because of these differences (and many more that we will not discuss here), it is

sometimes difficult to compare different implementations and deployments. Simply using the

term “DBMS” can suggest certain features or restrictions in the mind of the reader that the author

did not intend. For example, we expect most modern DBMSs to provide certain facilities, such as

some mechanism for defining and enforcing integrity constraints—but these facilities are not

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 4/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT: I(Database Concepts-Distributed Database)

BATCH-2018-2020(L)

necessarily required for all situations. If we were to use the term “DBMS” in one of these

situations where these “expected” facilities were not required, the reader might incorrectly

assume that the “extra” facilities (or restrictions) were a required part of the discussion.

Therefore, we introduce a new term, database environment (DBE), which simply means one or

more DBs along with any software providing at least the minimum set of required data

operations and management facilities. In other words, a DBE focuses on the DB and the desired

functionality—it can include a DBMS if that is part of the deployment, but does not have to

include a DBMS as long as the necessary functionality is present.

Similarly, the term DBE can be applied to DBs deployed on a single host, as well as DBs

deployed over a distributed set of machines. By using this new term, we can ignore the

architectural and deployment details when they are not relevant. While this might seem

unnecessary, it will prevent the awkward phrasing we would have to use otherwise. (If you

prefer, you can substitute a phrase like “one or more DB instances with the optional DBMS

applications, libraries, or services needed to implement the expected data operations and

management facilities required for this context” whenever you see the term “DBE.”) There are

times when we will explicitly use the term DBMS; in those instances, we are emphasizing the

use of a traditional DBMS rather than some other facility with more or less capabilities or

limitations. For example, we would use the term DBMS when we want to imply that an actual

DBMS product such as Oracle, DB2, and so on is being used. If we use the term DBE, we could

still be referring to one of these products, but we could also be referring to any other combination

of software with greater, lesser, or equal levels of functionality.

DBE ARCHITECTURAL CONCEPTS

When considering the architecture of a complicated system, such as a DBE, there are

several different ways we can view the details. For our purposes here, we will merely consider

services, components, subsystems, and sites.

SERVICES

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 5/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT: I(Database Concepts-Distributed Database)

BATCH-2018-2020(L)

Regardless of the deployment details, we can create logical collections of related

functionality called services. For example, we mentioned earlier that many DBs support queries;

we can call the logical grouping of the software that implements this functionality the query

service. We can define services like this for both publicly visible functions (such as query) and

internal functions (such as query optimization). Services are merely logical collections, which

means that they do not necessarily have corresponding structure duplicated in the actual

implementation or deployment details. We call any piece of software that uses a service a service

consumer, while any piece of software implementing the service is called a service provider.

Implicitly, each service has at least one interface (similar to a contractual agreement that defines

the inputs, outputs, and protocols used by the service consumers and providers). These interfaces

can be very abstract (merely specifying an order of steps to be taken) or they can describe very

tangible details such as data types or even textual syntax. Most of these interface details are

usually only present in lower-level design diagrams—not the high-level architectural or

deployment diagrams.

The same piece of software can be both a service consumer and a service provider and

can even consume or provide several different services using many different interfaces—but it is

usually better to limit the number of services involved for an individual piece of code. Although

we can talk about the services as part of the overall architecture or deployment (like interfaces),

we usually do not see them directly represented in architectural or deployment diagrams. Instead,

we usually see the components and subsystems implementing the services in these diagrams.

COMPONENTS AND SUBSYSTEMS

For our purposes, a component is simply a deployable bundle that provides a reasonably

cohesive set of functionality, and a subsystem is a collection of one or more components that

work together toward a common goal. Whenever we want to use the two terms interchangeably,

we will use the term COS (component or subsystem). Unlike a service, which is merely a logical

grouping, a COS is a physical grouping, which means that it does have a corresponding structure

in the implementation. Frequently, we name these COSs after the primary service that they

provide. There can be multiple instances of the same COS deployed within the system. These

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 6/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT: I(Database Concepts-Distributed Database)

BATCH-2018-2020(L)

instances are often referred to as servers, although we can also use other terminology. For

example, we might see a Query COS defined in the architecture, and several Query Servers

(instances of the Query COS) deployed within the environment. Alternatively, we might refer to

these COSs or their deployed instances as Query Managers, Query Processors, Query

Controllers, or even some other name. Different instances of the same COS can have different

implementation and configuration details, as long as the instances still provide all the necessary

services using the correct protocols and interfaces. We usually represent a COS in an

architectural diagram as a box or oval with its name written inside. Deployment diagrams show

each COS instance similarly, but usually the instance name includes some additional hint (such

as a number, abbreviation, or other deployment detail) to help differentiate the instances from

each other.

SITES

The term site represents a logical location in an architectural diagram or a deployment

diagram—typically, this is a real, physical machine, but that is not necessarily true.

For example, we might have a deployment using two sites (named Site-A and SiteB).

This means that those two sites could be any two machines as long as all of the necessary

requirements are satisfied for the machines and their network connections. In certain

circumstances, we could also deploy all of the subsystems located at Site-A and Site-B on the

same machine. Remember, a DDB deployed on a single machine is still a DDB. In other words,

as long as the deployment plan does not explicitly forbid deploying all the COS instances for that

DDB on a single machine, we can deploy them this way and still consider it a DDB.

Architectural and deployment diagrams depict sites as container objects (usually with the site

name and the deployed COS instances included inside them) when there is more than one site

involved; otherwise it is assumed that everything in the diagram is located in a single site, which

may or may not be named in the diagram.

ARCHETYPICAL DBE ARCHITECTURES

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 7/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT: I(Database Concepts-Distributed Database)

BATCH-2018-2020(L)

When considering a DBE, there are some bare minimum requirements that need to be

present—namely, the ability to add new data content and retrieve existing content. Most real-

world DBEs provide more than just this minimal level of functionality. In particular, the update

and delete operations for data are usually provided. We might see some more sophisticated

facilities such as the query service and other services supporting schema operations.

REQUIRED SERVICES

The following figure shows a simplistic architectural diagram for a minimal DBE. The

architecture shown is somewhat unrealistic. In this architecture, there is a separate subsystem for

each service discussed in this section, and each subsystem is named the same as the service that

it provides. These subsystems are contained within a larger subsystem, which we call the Data

Getter (DG). This DBE provides (at least) three services—they are named Drd-S, Sec-S, and

Semi-S. When reading this diagram, we should recall that it is a DBE and, therefore, the services

shown should be considered vitally important, or at least expected—but there might be additional

services provided by the environment that are not shown here. For example, this diagram does

not show any service providers for query or command operations but that does not necessarily

mean we cannot use this diagram to discuss a DBE with those facilities—instead, it merely

means that any DBE without those unmentioned facilities is still potentially represented by this

diagram.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 8/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT: I(Database Concepts-Distributed Database)

BATCH-2018-2020(L)

Whenever we use an architectural or deployment diagram for a DBE, we are usually

highlighting some requirement or feature of the environment within a specific context; in this

case, we are merely showing what a “bare minimum” DBE must provide, and the four services

shown here satisfy those minimum requirements. Every DBE must include a service providing

the ability to retrieve data from the DB. We will call this the Data Read Service (Drd-S). Since

most DBEs also have at least a basic level of privacy or confidentiality, there should always be

some form of Security Service (Sec-S). In an effort to be inclusive, we can consider DBEs with

“no security” to be implementing a Sec-S that “permits everyone to do everything.” Any real-

world DBE should have a Sec-S providing both authentication and authorization. The Drd-S uses

the Sec-S to ensure that private data remains unseen by those without proper permissions. There

is usually another service providing at least some minimal level of integrity checking or

enforcement. This other service is responsible for preventing semantic errors (e.g., data content

representing a salary must be greater than zero, otherwise it is a semantic error). Similar to the

Sec-S, this service can be less than perfect, or perhaps even implemented using an “allow all

modifications” policy if explicit constraints are not defined. We call this service the Semantic

Integrity Service (Semi-S). This service can be used by several services, including the Drd-S,

which can use it to provide default values for the content it retrieves (among other possibilities).

BASIC SERVICES

Every DB must provide some mechanism for populating data (otherwise the DB would

always be empty), but we also said that each DB might support different interfaces for the

mechanisms they use. Therefore, the ability to write data is not always implemented as a service,

or in the very least, it is not always implemented in a way that we can incorporate into our DBE

architecture.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 9/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT: I(Database Concepts-Distributed Database)

BATCH-2018-2020(L)

For example, if the only data population mechanism provided by a particular DBE was a

program that only supported interactive user input (text screens or graphical dialog boxes) then

we could not use that program as a service provider in any meaningful sense. However, if the

DBE does provide a “program-friendly” mechanism to write data, we can call this the Data Write

Service (Dwr-S). Although it is not a required service, and it is not present in all DBEs, it is

typically present in most traditional DBMS products, and in many other DBEs we will consider.

If there is a Dwr-S, then it uses the Sec-S (to prevent unauthorized data content additions,

modifications, and removals) and the Semi-S (to prevent causing any semantic errors when it

adds, modifies, or removes any data content). Once again, unless we specify the requirements

more explicitly, it is possible for the Sec-S and Semi-S in a particular DBE to provide varying

degrees of functionality for these services. The following Figure shows the architectural diagram

for a DBE providing the basic services we just discussed. Here, we show all the services used to

access the data for read or write operations as a single subsystem called the Data Accessor (DA).

We could also have shown the Data Getter subsystem in place of the Drd-S. However, we did

not include it here because the Semi-S and Sec-S are used by both the read and the write

operations. Similarly, we could consider the combination of the Dwr-S, Semi-S, and Sec-S to be

a “Data Setter” subsystem, but these details do not usually add much value to our diagram.

EXPECTED SERVICES

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 10/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT: I(Database Concepts-Distributed Database)

BATCH-2018-2020(L)

Every DBE must supply the functionality contained in the DG, and many DBEs will

provide the functionality contained in the DA, but often we expect a DBE to be more powerful

than these minimal or basic scenarios. In particular, we mentioned the query service earlier, and

here we will call it the Query Request Service (Qreq-S).

Most modern DBMSs should provide this as well as some form of Query Optimization

Service (Qopt-S), but neither of these services is a requirement for all DBEs. Typically, the

Qreq-S forms a plan for a query and then passes the plan on to the Qopt-S. The Qopt-S optimizes

the plan and then uses the Drd-S to retrieve the data matching the query criteria. We will discuss

the Qreq-S and Qopt-S further in Chapter 4. We also mentioned that some DBEs have the ability

to execute commands (create, update, and delete operations with potentially complex criteria).

Therefore, in most DBEs providing DA operations, we would also expect to see an Execution

Service (Exec-S) and Execution Optimization Service (Eopt-S) to encapsulate these command

operations. Again, these are present in most DBMSs, but not necessarily present in all DBEs.

Chapter 3 will explore these services further. Often, there is a “non programmatic” interface

provided to users. In particular, many relational DBMSs support a special language (called the

SQL) and provide batch and/or interactive facilities that users can employ to pass queries and

commands to the DB. We will call the service providing this function the User Interface Service

(UI-S). This service is not always present in a DBE and is usually implemented differently,

including different syntax, features, and restrictions for the queries and commands. However, we

would expect most modern DBMSs (including nonrelational ones) to provide some sort of UI-S.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 11/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT: I(Database Concepts-Distributed Database)

BATCH-2018-2020(L)

EXPECTED SUBSYSTEMS

The following figure shows a reasonably realistic DBE set of subsystems for the

architecture; it contains all the same services, but we have bundled the services into four

subsystems: the application processor (AP), the query processor (QP), the command processor

(CP), and the data accessor (DA). Two of the subsystems (QP and CP) are contained within one

of the others (AP), while the other two subsystems (AP and DA) are shown as independent

packages. Each component has been allocated to one of the subsystems, and the communication

links shown only connect subsystems rather than the components inside them. Although the

communication links are not quite as detailed, there is no real loss of information when we do

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 12/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT: I(Database Concepts-Distributed Database)

BATCH-2018-2020(L)

this in a diagram. We have placed the Qreq-S and Qopt-S inside the QP. Similarly, we have

placed the Exec-S and Eopt-S inside the CP. The AP subsystem contains the combination of the

UI-S, QP, and CP subsystems. All the remaining service components have been allocated to the

DA.

TYPICAL DBMS SERVICES

There can be many other services and subsystems in a DBE, but often these additional

services and subsystems are highly dependent on other details, specific to the particular DBE

being considered. This is especially true when the particular DBE being focused upon is a

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 13/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT: I(Database Concepts-Distributed Database)

BATCH-2018-2020(L)

DBMS. For example, in a DBE with a Dwr-S, we might include one or more services to handle

conflicting operations. Such a DBE might use one or more of the following: a Transaction

Management Service (Tran-S), a Locking Service (Lock-S), a Timestamping Service (Time-S),

or a Deadlock Handling Service (Dead-S)—all of which will be discussed in Chapters 5 and 6.

Similarly, most modern relational DBMSs have a Fallback and Recovery Service (Rec-S), which

we will discuss in Chapter 8. The architectural diagram for a DBE like this is shown in Figure

1.5; notice that the services shown are implemented as components inside a single subsystem,

called “DBMS” in this diagram. If the DBE is for a DDB, we might even have a Replication

Service (Repl-S).

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 14/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT: I(Database Concepts-Distributed Database)

BATCH-2018-2020(L)

A NEW TAXONOMY

We mentioned earlier that “DBE” is a new term representing several different possible

implementations for similar functionality. Because a DBE considers the system at such an

abstract level, it can be used to refer to a wide variety of possible architectures and deployments.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 15/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT: I(Database Concepts-Distributed Database)

BATCH-2018-2020(L)

In this section, we will present a new taxonomy to be used for classifying all the possible DBE

alternatives that we might consider when exploring DB and DDB issues. For our purposes, we

will consider a new taxonomy with four levels, presented in order from most abstract to most

specific. We hope that this arrangement will reduce the complexity for each successive level and

simplify the taxonomic groups (the taxa) containing the environments that we ultimately want to

discuss. Like most taxonomies, the extreme cases are most useful for understanding the

categorical differences between the taxa, but most real-world DBEs will most likely fall

somewhere between the extremes. The four levels of categorizations (from most abstract to most

specific) are:

• COS distribution and deployment (COS-DAD)

• COS closedness or openness (COS-COO)

• Schema and data visibility (SAD-VIS)

• Schema and data control (SAD-CON)

COS DISTRIBUTION AND DEPLOYMENT

The first level in our taxonomy is the COS distribution and deployment (COS-DAD)

level. This is perhaps the easiest level to understand, and usually this is the first classification

that we want to make when evaluating a particular DBE. The two extreme cases that define this

level are the completely centralized DBE (CDBE) and the fully distributed DBE (DDBE). In a

completely CDBE, we must deploy all the DBs, and COS instances on a single machine. In other

words, placing any of the COS instances or DB instances on a second, separate machine is

strictly forbidden. This case includes the initial releases of most traditional DBMSs (such as

Oracle, Sybase, Informix, etc.) and many other early DBs that did not have a DBMS-Server

(such as dBase, Paradox, Clipper, FoxPro, Microsoft Access, etc.). Most modern releases of

DBMSs and DBs have moved away from this extreme scenario slightly, since we can often

deploy the DB-Clients on a separate machine for many of these systems. Similarly, some modern

DBMSs have some ability to distribute their DBs (using techniques such as mirroring, etc.), but

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 16/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT: I(Database Concepts-Distributed Database)

BATCH-2018-2020(L)

they are still essentially a CDBE since the “almost distributed DBs” are not really a “true DB” in

the same sense as the original DB that they attempt to duplicate.

If each COS instance and each DB instance is deployed on a separate machine, then we

have the other extreme (the fully DDBE). Of course, in the real world, we would probably not go

to this extreme—in the very least, it is usually not necessary to separate components within the

same subsystem from each other, and also not necessary to separate the lowest-level subsystems

(such as the DAs) from the DBs (i.e., the files containing the data structure and content) that they

access. Typically, the DDBE will consist of one or more “coordinating” server instances

(providing services across the entire DDBE) and a set of DBEs that combine to make the DDBE

work. We call each of these DBEs a Sub-DBE (S-DBE), because they combine to form the

DDBE in a way that is similar to how subsystems combine to form a system. Each S-DBE is a

DBE in its own right, which means that each of them is also subject to categorization too using

this taxonomy—in particular, each S-DBE can be either a centralized DBE or another distributed

DBE. Most S-DBEs are centralized environments, especially for traditional architectures.

COS CLOSEDNESS OR OPENNESS

The second level in our taxonomy is the COS closedness or openness (COS-COO) level.

This level considers the software implementation and integration issues for the major

subsystems, components, and the DB storage itself. Although we will introduce the two extreme

cases for this level (completely open and completely closed), the COSs in most DBEs will

occupy a strata (a series of gradations) within this level rather than either extreme scenario.

There is no such thing as a commercial off-the-shelf (COTS) DDBE that we can simply

buy and install. Even if there were such a product, we would still probably want to integrate

some of our existing COS instances into the DDBE architecture. Conversely, if our goal was to

create our own DDBE “from the ground up,” it is doubtful that we would write absolutely

everything (including the operating systems, file systems, etc.) completely from scratch.

Therefore, every DDBE needs to integrate multiple COS instances, some of which we did not

write ourselves, regardless of which architectural alternative we choose to implement. When

attempting to integrate all of these COS instances, we need to consider the public interface

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 17/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT: I(Database Concepts-Distributed Database)

BATCH-2018-2020(L)

exposed by each COS. Since most of these COSs were not designed with a DDBE specifically in

mind, it is quite possible that the interfaces they expose will not provide everything we need.

Simply put, there are several DDBE algorithms and services that can only be implemented when

we have complete access to the underlying implementation for the COS instances involved—this

is especially true if we want to perform our own DDBE research. For example, suppose we

wanted to develop a new mechanism for distributed deadlock handling based on a new variation

of locking. Obviously, we could only do this if we were able to see (and perhaps even modify)

the underlying locking implementation details for each Sub-DBE in the environment.

Subsystems that provide either “unrestrained access” or at least “sufficient access” to the

underlying state and implementation details are open to us, while systems that do not are closed

to us. While most real subsystems provide some level of access, determining the degree to which

a particular subsystem is open or closed depends on the actual interfaces it exposes and the type

of functionality we are trying to implement. If all the COS instances are open to us, then we have

the first extreme case (completely open). If all the COS instances are closed to us, then we have

the other extreme case (completely closed). A completely open DDBE can occur in any of these

three scenarios:

• If we write all of the components or service instances ourselves (from scratch)

• If we use free and open source software (FOSS) for all the COS instances that we do

not write ourselves

• If we obtain some sort of agreement or arrangement with the COS vendors (for all the

COS instances that we do not write ourselves) allowing us the open access we need.

SCHEMA AND DATA VISIBILITY

The third level in our taxonomy is the schema and data visibility (SAD-VIS) level. In this

level, we are considering the DB schema and all the data content stored in each DB in the

environment. For a CDBE, this is not very interesting because, typically, there is only a single

DB to consider or all the DBs use the same ML. However, a DDBE can be a much more

complicated consideration. In a DDBE, each DB is actually under S-DBE, which is a DBE in its

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 18/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT: I(Database Concepts-Distributed Database)

BATCH-2018-2020(L)

own right (usually a CDBE). Different DBEs can potentially have different MLs, which means

that the ML for the DDBE and the ML for each S-DBE it contains could theoretically be

different. In reality, there are not that many different MLs, so it is not likely that there would be

that many different ones used in the same environment; but the simple fact that there might be

different MLs within the same DDBE is important to consider.

Assuming that there is an appropriate way to combine the different MLs into a single

(perhaps different) ML, we can now consider the “combined schema” for all the DBs in the

DDBE. If the “most powerful user in the DDBE,” which we will call the DDB administrator

(DDBA), can see all of the data structure across all the DBs, then we have total schema visibility

(TSV). In other words, TSV means that there are no hidden data structures and there is no

structure missing from the combined schema but present in one of the S-DBE schemas.

Similarly, we can consider the data content for the combined schema and compare it to the data

content in each S-DBE. If every data value present in the S-DBE DBs is visible to the DDBA in

the DDBE, then we have total data visibility (TDV). In other words, TDV means that there is no

hidden data content; there is no data value missing from the DDBE but present in one of the

CDBE DBs. When we have both total schema visibility and total data visibility, we have the first

extreme case for this level, namely, total visibility (TV).

It should be obvious that the other extreme case is not possible—if the combined schema

was empty and all the data content were hidden, then the DDBE would be completely worthless!

If we have some hidden schema, then we have partial schema visibility (PSV). If we have some

hidden data, then we have partial data visibility (PDV). Having either PSV, PDV, or both PSV

and PDV is referred to as partial visibility (PV). PV is a common occurrence and even a

requirement for some particular DDBE architectures.

SCHEMA AND DATA CONTROL

The fourth level in our taxonomy is the schema and data control (SAD-CON) level. In

this level, we are considering the set of all operations that we are allowed to perform using only

the visible schema and the visible data content (we ignore any operation that would attempt to

use hidden schema or content, since it would obviously fail). Once again, our primary focus is on

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 19/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT: I(Database Concepts-Distributed Database)

BATCH-2018-2020(L)

the DDBEs. If the DDBA can perform any and every valid schema operation on the visible

combined schema structures, then we have total schema control (TSC). Similarly, if the DDBA

can perform any and every possible data operation on the visible data content for the DDBE,

then we have total data control (TDC). When we have both TSC and TDC, we have the first

extreme scenario, which we call total control (TC). If there is at least one valid schema operation

that the DDBA does not have permission to perform for some part of the visible combined

schema, then we only have partial schema control (PSC). If there is at least one data operation

that the DDBA does not have permission to perform on some subset of the visible data content,

then we have partial data control (PDC). Having either PSC, PDC, or both PSC and PDC is

referred to as partial control (PC).

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 20/21

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT: I(Database Concepts-Distributed Database)

BATCH-2018-2020(L)

POSSIBLE QUESTIONS

PART B

(EACH QUESTION CARRIES SIX MARKS)

1. Discuss in detail about Database Concepts.
2. Describe about Services, Components, Subsystems and Sites in detail.
3. Discuss in detail about Data Models.
4. Explain in detail about Expected Services and Expected Subsystems.
5. Discuss in detail about Database Operations.
6. Explain in detail about typical DBMS services.
7. Discuss in detail about Database Management.
8. Expound COS distribution and deployment, COS Closedness or Openness in detail.
9. Discuss in detail about Database Clients, Servers and Environments.
10. Explain in detail about Schema and Data Visibility, Schema and Data Control.

PART C

(EACH QUESTION CARRIES TEN MARKS)

1. Discuss in detail about Cryptography.
2. Discuss in detail about terminologies of failure and commit protocols.
3. Discuss in detail about Query processing in centralized systems.

4. Explain i)Vertical Fragmentation ii)Horizontal Fragmentation in detail.
5. Discuss in detail about DBE taxonomy.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 21/21

KARPAGAM ACADEMY OF HIGHER EDUCATION

DEPARTMENT OF COMPUTER APPLICATIONS

DISTRIBUTED DATABASE MANAGEMENT SYSTEM

SUBJECT CODE:17CAP405D CLASS : II MCA SEMESTER: IV

 Unit-1

Questions Op1 Op2 Op3 Op4 Op5 Op6 Answer

Distributed data base is a collection of multiple ,logically Computer Computer

interrelated databases distributed over a ___ Dbms DDBS RDBMS network network

The data independence are basically __________ types. One type Two type Six Type Ten type Two type

Logical data Independence deals with
Physical Logical Database Network Logical

Structure Structure Structure Structure

Structure

Physical data independence deals with hiding the details of

Physical Logical Database Network Network

Structure Structure Structure Structure Structure

_______________ is the final form of transparency in Network Replication Data Fragmentation Fragmentation

DDBMS transparency Transparency Independence transparency transparency

which of the following is commonly done for reasons of network data

performance ,avialability ,and reliablity fragmentation replication transparecy independence fragmentation

How many types of fragmentation alternatives generally

followed one two three four two

Horizontal fragmentation has a subset of________ relation

 Rows and

tuples columns columns vertical tuples

Vertical fragmenation has a subset of _______________ Rows and

relation coulumns centrally logically columns columns

The data to be stored in close proximity to use is Data Conceptual Improved Data

called_________ Localization Centralization data base performance Localization

The distributed database design has _____________ basic

alternatives to placing a data 2 1 3 4 1

________ database is divided into a number of disjoint

partitions partitioned fully replicated medium, partitioned

The partition of the database is stored at more than one site partially fully partially

is known as__________ replicated replicated no replication normal replicated

__________processing deals with designing algorithms

and convert them into a series of data manipulation Distributed concurrency Directory query query

operation. deadlock control managemen processing processing

A directory contains information about __________ data Descriptional Directory query Descriptional

items in the database Location managemen processing DDBS Location

The values of multiple copies of every data item for concurrency mutual Distributed Directory concurrency

coverage to the same value is called control consistency dbms management control

_______________ synchronizing is the execution of user Time

requests before the execution starts Optimistic Pesimistics Locking stamping Pesimistics

Executing the request and then checking if the execution

compromised the consistency of the database is called ------

--------------- Optimistic Pesimistics Time stamping dead lock Optimistic

mutual exclution of access to data items is known as Database Time

______________ security design Time stamping Lock stamping

______________ is the potential advantage of distributed Confidentialit

systems Reliability y Security locality Reliability

Developing inidividual module is called_______________

programming programming programming programming programming

in medium in small in normal in large in small

Task of integrating module into a complete system programming programming programming programming programming

___________ in medium in small in normal in large in medium

Reference model can described into 3 level 2 level 1 level 0 level 3 level

DBMS statandard proposals are prepared as CCA ANSI CCNA SPARC CCA

Data is the central resources that a DBMS manages. This Data logical functional Data logical

approach is referred to as approach OR approach Exor approcah approcah approach

ANSI/SPARC architecture recognizes how many views 1 2 3 4 3

External views deals about the _________
 programmer programmer

programmer user system and user

and user

which one is the lowest level of architecture
 Conceptual

Internal view External view View Rear view

Internal view

Architectural models for distributed DBMS divided into

______________ types 2 4 5 3 5

Autonomy refers to the distributIon of control data function requirement control

DBMS can execute the transaction that are submitted to it design communicatio execution execution

in any way that it wants to is called ____ autonomy n autonomy autonomy autonomous autonomy

________ system consists of DBMS that can operate semi design communication execution semi

independently autonomous autonomous autonomous autonomous autonomous

Peer to peer system is called___________
semi fully medium full and half fully

distributed distributed distributed distributed

distributed

How many function are involved in client server systems 2 3 0 4 2

Only one server which is accessed by multiple clients is

called _________ singel server one to one 3 tier multiclient multiclient

The transparency of data access is provided at the server medium

interface is known as heavy clients clients light clients normal light clients

Individual Internal schema definition at each site is

_________ LIS GCS LCS ES LIS

_________schema describes the enterprise view of data ES GCS LIS LCS GCS

Local conceptual schema describes about_________
data logical logical

organisation organisation organisation data

organisation

User application and user access to the database is

supported by LIS GCS LCS ES ES

 Distributed

________is responsible for interpreting user commands execution Query interface semantic data interface

 monitor optimizer handler controlloer handler

_____________is responsible for integrity constraints and Semantic data Data Semantic data

authorization controller controller Control Structure controller

_____________determines an execution strategy to
 query query

semantic data

optimizer and

optimizer and

minimize a cost function

controller peer to peer client /server decomposer

decomposer

 distributed distributed

Execution monitor is also called transaction transaction transaction

 manager distribution manager data controller manager

Data processor in the distributed DBMS consist of

________ types of elements 3 2 1 4 3

local query optimizer actually acts as_________
 access path access path

path selector selector optimizer dataitem

selector

The Local database remains consistent even when failure support recovery recovery

occur is known as recovery processor optimizer manager manager

________physically accesses the database according to
 runtime runtime

support support time

support

physical command

processor processor processor processor

processor

Run time support processor is the interface to the operating
 Database Database

Data base buffer and buffer and

system and contains __________ buffer cache Data processor cache cache

Different data models and languages both a local database

and global data base accessed is known as unilingual multilingual lingual semilingual unilingual

________ Is the basic philosophy to permit each user to

access the global database unilingual multilingual lingual semiligual multilingual

how many layers a model without a global conceputal

schema idenitfies ? 2 3 4 5 2

Global directory issues are relevant for________
Distributed DDBMS and DDBMS and

DBMS multi DBMS DBMS multi DBMS

multi DBMS

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEMCOURSE

CODE: 17CAP405D UNIT:II (DATA DISTRIBUTION ALTERNATIVES) BATCH-2018-2020(L)

 UNIT-II

 SYLLABUS

Data Distribution Alternatives: Design Alternatives- Localized Data- Distributed Data.
Fragmentation: Vertical Fragmentation- Horizontal Fragmentation. Distribution Transparency:
Location Transparency-Fragmentation Transparency-Replication Transparency-Location,

Fragmentation, and Replication Transparencies.

DATA DISTRIBUTION ALTERNATIVES

In a distributed database management system (DDBMS) data is intentionally distributed

to take advantage of all computing resources that are available to the organization. For these

systems, the schema design is done top– down. A top–down design approach considers the data

requirements of the entire organization and generates a global conceptual model (GCM) of all

the information that is required. The GCM is then distributed across all appropriate local DBMS

(LDBMS) engines to generate the local conceptual model (LCM) for each participant LDBMS.

As a result, DDBMSs always have one and only one GCM and one or more LCM. The following

Figure depicts the top–down distribution design approach in a distributed database management

system. By contrast, the design of a federated database system is done from the bottom–up.

A bottom–up design approach considers the existing data distributed within an

organization and uses a process called schema integration to create at least one unified schema.

The unified schema is similar to the GCM, except that there can be more than one unified

schema. Schema integration is a process that uses a collection of existing conceptual model

elements, which have previously been exported from one or more LCMs, to generate a

semantically integrated model (a single, unified schema). Designers of a distributed database

(DDB) will decide what distribution alternative is best for a given situation. They may decide to

keep every table intact (all rows and all columns of every table are stored in the same DB at the

same Site) or to break up some of the tables into smaller chunks of data called fragments or

partitions. In a distributed database, the designers may decide to store these fragments locally

(localized) or store these fragments across a number of LDBMSs on the network (distributed).

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 1/18

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEMCOURSE

CODE: 17CAP405D UNIT:II (DATA DISTRIBUTION ALTERNATIVES) BATCH-2018-2020(L)

Distributed tables can have one of the following forms:

• Nonreplicated, nonfragmented (nonpartitioned)

• Fully replicated (all tables)

• Fragmented (also known as partitioned)

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 2/18

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEMCOURSE

CODE: 17CAP405D UNIT:II (DATA DISTRIBUTION ALTERNATIVES) BATCH-2018-2020(L)

• Partially replicated (some tables or some fragments)

• Mixed (any combination of the above)

The goal of any data distribution is to provide for increased availability, reliability, and

improved query access time. On the other hand, as opposed to query access time, distributed data

generally takes more time for modification (update, delete, and insert). It has been proved that

for a given distribution ¨ design and a set of applications that query and update distributed data,

determining the optimal data allocation strategy for database servers in a distributed system is an

NP-complete problem. That is why most designers are not seeking the best data distribution and

allocation design but one that minimizes some of the cost elements.

DESIGN ALTERNATIVES

LOCALIZED DATA

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 3/18

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEMCOURSE

CODE: 17CAP405D UNIT:II (DATA DISTRIBUTION ALTERNATIVES) BATCH-2018-2020(L)

This design alternative keeps all data logically belonging to a given DBMS at one site

(usually the site where the controlling DBMS runs). This design alternative is sometimes called

―not distributed.‖

DISTRIBUTED DATA

A database is said to be distributed if any of its tables are stored at different sites; one or

more of its tables are replicated and their copies are stored at different sites; one or more of its

tables are fragmented and the fragments are stored at different sites; and so on. In general, a

database is distributed if not all of its data is localized at a single site.

NONREPLICATED, NONFRAGMENTED

This design alternative allows a designer to place different tables of a given database at

different sites. The idea is that data should be placed close to (or at the site) where it is needed

the most. One benefit of such data placement is the reduction of the communication component

of the processing cost. For example, assume a database has two tables called ―EMP‖ and

―DEPT.‖ A designer of DDBMS may decide to place EMP at Site 1 and DEPT at Site 2.

Although queries against the EMP table or the DEPT table are processed locally at Site 1 and

Site 2, respectively, any queries against both EMP and DEPT together (join queries) will require

a distributed query execution. The question that arises here is, ―How would a designer decide

on a specific data distribution?‖ The answer depends on the usage pattern for these two tables.

This distribution allows for efficient access to each individual table from Sites 1 and 2. This is a

good design if we assume there are a high number of queries needing access to the entire EMP

table issued at Site 1 and a high number of queries needing access to the entire DEPT table

issued at Site 2. Obviously, this design also assumes that the percentage of queries needing to

join information across EMP and DEPT is low.

FULLY REPLICATED

This design alternative stores one copy of each database table at every site. Since every

local system has a complete copy of the entire database, all queries can be handled locally. This

design alternative therefore provides for the best possible query performance. On the other hand,

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 4/18

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEMCOURSE

CODE: 17CAP405D UNIT:II (DATA DISTRIBUTION ALTERNATIVES) BATCH-2018-2020(L)

since all copies need to be in sync—show the same values—the update performance is impacted

negatively. Designers of a DDBMS must evaluate the percentage of queries versus updates to

make sure that deploying a fully replicated database has an overall acceptable performance for

both queries and updates.

FRAGMENTED OR PARTITIONED

Fragmentation design approach breaks a table up into two or more pieces called

fragments or partitions and allows storage of these pieces in different sites.

There are three alternatives to fragmentation:

• Vertical fragmentation

• Horizontal fragmentation

• Hybrid fragmentation

This distribution alternative is based on the belief that not all the data within a table is

required at a given site. In addition, fragmentation provides for increased parallelism, access,

disaster recovery, and security/privacy. In this design alternative, there is only one copy of each

fragment in the system (non replicated fragments).

PARTIALLY REPLICATED

In this distribution alternative, the designer will make copies of some of the tables (or

fragments) in the database and store these copies at different sites. This is based on the belief that

the frequency of accessing database tables is not uniform. For example, perhaps Fragment 1 of

the EMP table might be accessed more frequently than Fragment 2 of the table. To satisfy this

requirement, the designer may decide to store only one copy of Fragment 2, but more than one

copy of Fragment 1 in the system. Again, the number of Fragment 2 copies needed depends on

how frequently these access queries run and where these access queries are generated.

MIXED DISTRIBUTION

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 5/18

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEMCOURSE

CODE: 17CAP405D UNIT:II (DATA DISTRIBUTION ALTERNATIVES) BATCH-2018-2020(L)

In this design alternative, we fragment the database as desired, either horizontally or

vertically, and then partially replicate some of the fragments.

FRAGMENTATION

Fragmentation requires a table to be divided into a set of smaller tables called fragments.

Fragmentation can be horizontal, vertical, or hybrid (a mix of horizontal and vertical). Horizontal

fragmentation can further be classified into two classes: primary horizontal fragmentation (PHF)

and derived horizontal fragmentation (DHF). When thinking about fragmentation, designers need

to decide on the degree of granularity for each fragment. In other words, how many of the table

columns and/or rows should be in a fragment? The range of options is vast. At one end, we can

have all the rows and all the columns of the table in one fragment. This obviously gives us a non

fragmented table; the grain is too coarse if we were planning to have at least one fragment. At

the other end, we can put each data item (a single column value for a single row) in a separate

fragment. This grain obviously is too fine: it would be hard to manage and would add too much

overhead to processing queries. The answer should be somewhere in between these two

extremes. As we will explain later, the optimal solution depends on the type and frequency of

queries that applications run against the table. In the rest of this section, we explore each

fragmentation type and formalize the fragmentation process.

VERTICAL FRAGMENTATION

Vertical fragmentation (VF) will group the columns of a table into fragments. VF must be

done in such a way that the original table can be reconstructed from the fragments. This

fragmentation requirement is called ―reconstructiveness.‖ This requirement is used to

reconstruct the original table when needed. As a result, each VF fragment must contain the

primary key column(s) of the table. Because each fragment contains a subset of the total set of

columns in the table, VF can be used to enforce security and/or privacy of data. To create a

vertical fragment from a table, a select statement is used in which ―Column_list‖ is a list of

columns from R that includes the primary key.

Select Column_list from R;

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 6/18

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEMCOURSE

CODE: 17CAP405D UNIT:II (DATA DISTRIBUTION ALTERNATIVES) BATCH-2018-2020(L)

Example: Consider the EMP table shown in the following Figure. Let‘s assume that for security

reasons the salary information for employees needs to be maintained in the company

headquarters‘ server, which is located in Minneapolis. To achieve this, the designer will

fragment the table vertically into two fragments as follows:

Create table EMP_SAL as

Select EmpID, Sal

From EMP;

Create table EMP_NON_SAL as

Select EmpID, Name, Loc, DOB, Dept

From EMP;

EMP_SAL contains the salary information for all employees while EMP_NON_SAL

contains the nonsensitive information. These statements generate the vertical fragments shown in

Figure a, b from the EMP table.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 7/18

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEMCOURSE

CODE: 17CAP405D UNIT:II (DATA DISTRIBUTION ALTERNATIVES) BATCH-2018-2020(L)

After fragmentation, the EMP table will not be stored physically anywhere. But, to

provide for fragmentation transparency—not requiring the users to know that the EMP table is

fragmented—we have to be able to reconstruct the EMP table from its VF fragments. This will

give the users the illusion that the EMP table is stored intact. To do this, we will use the

following join statement anywhere the EMP table is required:

Select EMP_SAL.EmpID, Sal, Name, Loc, DOB, Dept

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 8/18

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEMCOURSE

CODE: 17CAP405D UNIT:II (DATA DISTRIBUTION ALTERNATIVES) BATCH-2018-2020(L)

From EMP_SAL, EMP_NON_SAL

Where EMP_SAL.EmpID = EMP_NON_SAL.EmpID;

This join statement can be used in defining a view called ―EMP‖ and/or can be used as an

in-line view in any select statement that uses the virtual (physically non existing) table ―EMP.‖

HORIZONTAL FRAGMENTATION

Horizontal fragmentation (HF) can be applied to a base table or to a fragment of a table.

Note that a fragment of a table is itself a table. Therefore, in the following discussion when we

use the term table, we might refer to a base table or a fragment of the table. HF will group the

rows of a table based on the values of one or more columns. Similar to vertical fragmentation,

horizontal fragmentation must be done in such a way that the base table can be reconstructed

(reconstructiveness). Because each fragment contains a subset of the rows in the table, HF can be

used to enforce security and/or privacy of data. Every horizontal fragment must have all columns

of the original base table. To create a horizontal fragment from a table, a select statement is used.

For example, the following statement selects the row from R satisfying condition C:

Select * from R where C;

As mentioned earlier, there are two approaches to horizontal fragmentation. One is called

primary horizontal fragmentation (PHF) and the other is called derived horizontal fragmentation

(DHF).

PRIMARY HORIZONTAL FRAGMENTATION

Primary horizontal fragmentation (PHF) partitions a table horizontally based on the

values of one or more columns of the table.

The following Example discusses the creation of three PHF fragments from the EMP

table based on the values of the Loc column.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 9/18

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEMCOURSE

CODE: 17CAP405D UNIT:II (DATA DISTRIBUTION ALTERNATIVES) BATCH-2018-2020(L)

Consider the EMP table . Suppose we have three branch offices, with each employee

working at only one office. For ease of use, we decide that information for a given employee

should be stored in the DBMS server at the branch office where that employee works. Therefore,

the EMP table needs to be fragmented horizontally into three fragments based on the value of the

Loc column as shown below:

Create table MPLS_EMPS as

Select * From EMP

Where Loc = ‗Minneapolis‘;

Create table LA_EMPS as

Select * From EMP

Where Loc = ‗LA‘;

Create table NY_EMPS as

Select * From EMP

Where Loc = ‗New York‘;

This design generates three fragments, shown in Figure a,b,c. Each fragment can be

stored in its corresponding city‘s server. Again, after fragmentation, the EMP table will not be

physically stored anywhere. To provide for horizontal fragmentation transparency, we have to be

able to reconstruct the EMP table from its HF fragments. This will give the users the illusion that

the EMP table is stored intact. To do this, we will use the following union statement anywhere

the EMP table is required:

(Select * from MPLS_EMPS

Union

Select * from LA_EMPS)

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 10/18

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEMCOURSE

CODE: 17CAP405D UNIT:II (DATA DISTRIBUTION ALTERNATIVES) BATCH-2018-2020(L)

Union

Select * from NY_EMPS;

DERIVED HORIZONTAL FRAGMENTATION

Instead of using PHF, a designer may decide to fragment a table according to the way

that another table is fragmented. This type of fragmentation is called derived horizontal

fragmentation (DHF). DHF is usually used for two tables that are naturally (and frequently)

joined. Therefore, storing corresponding fragments from the two tables at the same site will

speed up the join across the two tables. As a result, an implied requirement of this fragmentation

design is the presence of a join column across the two tables.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 11/18

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEMCOURSE

CODE: 17CAP405D UNIT:II (DATA DISTRIBUTION ALTERNATIVES) BATCH-2018-2020(L)

Example: the following Figure shows table ―DEPT(Dno, Dname, Budget, Loc),‖ where

Dno is the primary key of the table. Let‘s assume that DEPT is fragmented based on the

department‘s city. Applying PHF to the DEPT table generates three horizontal fragments, one for

each of the cities in the database, as depicted in Figure b,c,d.

Now, let‘s consider the table ―PROJ,‖ as depicted in Figure a. We can partition the

PROJ table based on the values of Dno column in the DEPT table‘s fragments with the following

SQL statements. These statements will produce the derived fragments from the PROJ table as

shown in Figure b,c. Note that there are no rows in PROJ3, since department ―D4‖ does not

manage any project.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 12/18

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEMCOURSE

CODE: 17CAP405D UNIT:II (DATA DISTRIBUTION ALTERNATIVES) BATCH-2018-2020(L)

Create table PROJ1 as

Select Pno, Pname, Budget, PROJ.Dno

From PROJ, MPLS_DEPTS

Where PROJ.Dno = MPLS_DEPTS.Dno;

Create table PROJ2 as

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 13/18

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEMCOURSE

CODE: 17CAP405D UNIT:II (DATA DISTRIBUTION ALTERNATIVES) BATCH-2018-2020(L)

Select Pno, Pname, Budget, PROJ.Dno

From PROJ, NY_DEPTS

Where PROJ.Dno = NY_DEPTS.Dno;

Create table PROJ3 as

Select Pno, Pname, Budget, PROJ.Dno

From PROJ, LA_DEPTS

Where PROJ.Dno = LA_DEPTS.Dno;

It should be rather obvious that all the rows in PROJ1 have corresponding rows in the

MPLS_DEPTS fragment, and similarly, all the rows in PROJ2 have corresponding rows in the

NY_DEPTS fragment. Storing a derived fragment at the same database server where the deriving

fragment is, will result in better performance since any join across the two tables‘ fragments will

result in a 100% hit ratio (all rows in one fragment have matching rows in the other).

For this example, assume that sometimes we want to find those projects that are managed

by the departments that have a budget of less than or equal to 500,000 (department budget, not

project budget) and at other times we want to find those projects that are managed by the

departments that have a budget of more than 500,000. In order to achieve this, we fragment

DEPT based on the budget of the department. All departments with a budget of less than or equal

to 500,000 are stored in DEPT4 and other departments are stored in the DEPT5 fragment.

Figures a and b show DEPT4 and DEPT5, respectively.

To easily answer the type of questions that we have outlined in this example, we should

create two derived horizontal fragments of the PROJ table based on DEPT4 and DEPT5 as

shown below.

Create table PROJ5 as

Select Pno, Pname, Budget, PROJ.Dno

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 14/18

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEMCOURSE

CODE: 17CAP405D UNIT:II (DATA DISTRIBUTION ALTERNATIVES) BATCH-2018-2020(L)

From PROJ, DEPT4

Where PROJ.Dno = DEPT4.Dno;

Create table PROJ6 as

Select Pno, Pname, Budget, PROJ.Dno

From PROJ, DEPT5

Where PROJ.Dno = DEPT5.Dno;

The following Figure shows the fragmentation of the PROJ table based on these SQL

statements.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 15/18

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEMCOURSE

CODE: 17CAP405D UNIT:II (DATA DISTRIBUTION ALTERNATIVES) BATCH-2018-2020(L)

DISTRIBUTION TRANSPARENCY

Although a DDBMS designer may fragment and replicate the fragments or the tables of a

system, the users of such a system should not be aware of these details. This is what is known as

distribution transparency. Distribution transparency is one of the sought after features of a

distributed DBE. It is this transparency that makes the system easy to use by hiding the details of

distribution from the users. There are three aspects of distribution transparency—location,

fragmentation, and replication transparencies.

LOCATION TRANSPARENCY

The fact that a table (or a fragment of table) is stored at a remote site in a distributed

system should be hidden from the user. When a table or fragment is stored remotely, the user

should not need to know which site it is located at, or even be aware that it is not located locally.

This provides for location transparency, which enables the user to query any table (or any

fragment) as if it were stored locally.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 16/18

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEMCOURSE

CODE: 17CAP405D UNIT:II (DATA DISTRIBUTION ALTERNATIVES) BATCH-2018-2020(L)

FRAGMENTATION TRANSPARENCY

The fact that a table is fragmented should be hidden from the user. This provides for

fragmentation transparency, which enables the user to query any table as if it were intact and

physically stored. This is somewhat analogous to the way that users of a SQL view are often

unaware that they are not using an actual table (many views are actually defined as several union

and join operations working across several different tables).

REPLICATION TRANSPARENCY

The fact that there might be more than one copy of a table stored in the system should be

hidden from the user. This provides for replication transparency, which enables the user to query

any table as if there were only one copy of it.

LOCATION, FRAGMENTATION, AND REPLICATION TRANSPARENCIES

The fact that a DDBE designer may fragment a table, make copies of the fragments, and

store these copies at remote sites should be hidden from the user. This provides for complete

distribution transparency, which enables the user to query the table as if it were physically stored

at the local site without being fragmented or replicated.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 17/18

 KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEMCOURSE

CODE: 17CAP405D UNIT:II (DATA DISTRIBUTION ALTERNATIVES) BATCH-2018-2020(L)

 POSSIBLE QUESTIONS

 PART B

 (EACH QUESTION CARRIES SIX MARKS)

1. Explain about Data Distribution alternatives in detail.

2. Discuss about i)Vertical Fragmentation ii)Horizontal Fragmentation in detail.
3. Describe about Design alternatives in DDBE.
4. Discuss in detail about Distribution Transparency.
5. Describe in detail about Localized Data.

6. Discuss in detail about i) Location Transparency ii) Fragmentation Transparency.

7. Explain in detail about Distributed Data.
8. Describe in detail about Replication Transparency.
9. Discuss in detail about Fragmentation.
10. Describe in detail about Location, Fragmentation and Replication Transparencies.

PART C

(EACH QUESTION CARRIES TEN MARKS)

1. Discuss in detail about Cryptography.
2. Discuss in detail about terminologies of failure and commit protocols.
3. Discuss in detail about Query processing in centralized systems.

4. Explain i)Vertical Fragmentation ii)Horizontal Fragmentation in detail.
5. Discuss in detail about DBE taxonomy.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 18/18

KARPAGAM ACADEMY OF HIGHER EDUCATION

DEPARTMENT OF COMPUTER APPLICATIONS

DISTRIBUTED DATABASE MANAGEMENT SYSTEM

SUBJECT CODE:17CAP405D CLASS : II MCA SEMESTER: IV

 Unit-2

Questions Op1 Op2 Op3 Op4 Op5 Op6 Answer

How many copies the final issues of replication contains 2 0 1 4 2

multiple copies of database provides more_________ reliability accessbility portability readability reliability

non distributed multiple dbms always maintains______

copy of the directory multiple single different big different

Making decisions on the placement of ___________ data and data and

across the sites of a computer networks data programms programme functions programme

The organisation of distributed system investigated along

_________level of orthogonal dimensions 2 3 1 0 3

level of sharing having how many possibilities 2 1 3 0 3

Programmes are replicated at all sites but data files are not
 plus

programme recovery

is called

no sharing

data sharing sharing sharing

data sharing

The originate and the necessary datafiles are moved common

around the network its known to be ? Data sharing nosharing sharing sharing Data sharing

 Data and Data and

Both data and programmes may be shared is called programmer programmer

 Data sharing No sharing sharing sharing sharing

Reasonably be predicated and not deviate significantly complete partial no complete

from these predications are called________ information information information information information

________ dimension of access pattern behaviour is used to

find an identity 2 1 3 4 2

The access pattern of user requests may__________
 static and static or static and

static

dynamic dynamic dynamic

dynamic

There are deviations from predications are called partical complete partical

_________ information information no information information information

How many strategies involved in designing distributed

database 1 2 3 4 2

The requirements document is input to______ parallel

activites 1 2 3 4 2

_________activity deals with defining the interface for end conceptual functional

users view design design design design view design

which the enterprises is examined to determine entity types conceptual functional conceptual

and relationship among these entities view design design design design design

_________ is concerned with determing the entities and functional relationship Entitiy

their attributes and the relationship among them entity analysis analysis analysis relationship entity analysis

Determining the fundamental functions with which the functional relationship ER functional

modeled enterprises involved ________ entity analysis analysis analysis Diagramme analysis

 functional functional

________ needs to be cross_referenced to get a better analysis and analysis and

understanding of which function deal with entities functional requirement requirement requirement

 analysis analysis entity analysis analysis analysis

__________activity is very important for the conceptual

model that should support not only the existing application view functional requirement view

but also future application integration integration integration normal integration

________ information includes the specification of the

frequency of user application statistical dynamic database server statistical

The GCS and access pattern information collected as a distribution distribution

result of view design that are inputs to the ______ step distribution design design data design

Distributing relation is divided into subrelations is called

_________ allocation fragmentation distribution database fragmentation

The distribution of design activity consist of _____ types fragmentation fragmentation

of activities fragmentation allocation and allocation conceptual and allocation

Which one is the last step in the design process_________

physical distributon physical

design logical design design various design design

_________suitable approach for database already exist and conceptual

the design task top down bottom up view design design bottom up

 individual,loc individual,loc

__________is the starting point of bottom up design al and al and

 Individual local conceptual conceptual conceptual

______ enviornment exists primarily in the context of conceptual

heterogeneous data base topdown bottom up viewdesign design bottom up

how many reasons related to fragmentation? 1 2 3 4 2

permitting a number of transactions to execute is called intraquery intraquery

__________ concurrency concurrency schema none of these concurrency

to retrieve data from two fragments use ______ union join innerjoin union and join union and join

second problem is related to semantic data control

specifically to ______ checking integrity control allocation group integrity

how many alternatives are generally followed 1 2 3 4 2

Which one is the fragmentation alternatives
 horizontal and horizontal or horizontal and

horizontal vertical vertical vertical

vertical

the fragmentation of nestings has ______ of different types

 horizontal or

horizontal vertical hybrid vertical hybrid

The correctness rules of fragmentation is divided into 1 2 3 4 3

The completeness of which identical to the _________ lossless lossless

property of normalization decompostion decompostion composition fragments decompostion

The vertical partitioning and disjointness is defined only non primary non primary

on the_____ key attributes of relation primary key foreign key key unique key key

single copy of replication are reliability and efficiency of read only read only

___________ queries sub queries replication allocationn queries

_________queries that access the same data items that can

be executed in parallel single copy multiple copy read only write only read only

A non replicated database commonly called___________
fully partially partitioned partitioned

replicated replicated replicated database

database

The database exists in its entirety at each site is _______
fully partially partitioned fully

replicated replicated replicated database

replicated

The copies of a fragment may reside in multiple sites is fully partially partitioned partitioned

called ? replicated replicated replicated database database

The information needed for distribution design that can be

divided into _______ 1 2 3 4 4

In horizontal partitioning how many versions are involved

? 1 2 3 4 2

_______ relation is performed using predicates that are
primary dervied primary

horizontal horizontal

vertical

horizontal

defined on that relation

fragments fragments horizontal frag fragements

fragments

___________ Is the partitioning of a relation that results
primary dervied

horizontal horizontal

vertical

form predicated being defined on another relation

fragments fragments horizontal frag fragements

horizontal frag

_________information concerns the global conceptual

schema application network computer database database

_________ information is required for application
 qualitative and qualitative or qualitative and

qualitative quantitative quantitative quantitative

quantitative

selection operation on the owner relations of a database
primary primary

horizontal

horizontal

schema is known as

fragmentation horizontal vertical network

fragmentation

how many type of heuristic approaches exist in vertical

fragmentation 3 2 1 4 2

________ was used later in for distributed databases grouping spliting fragmentation tuples grouping

_________distributed enviornment introduced in 1984 grouping spliting fragmentation tuples spliting

which fragmentation minimizes the execution time of user

application? vertical horizontal optimal active optimal

______sub relation can be identified and placed in faster

memory subsystem vertical horizontal optimal active active

______of attributes which indicates how closely related

the attributes are affinity tuple identifier active tuples affinity

 mixed and mixed or mixed and

hybrid fragmentation also called as ________ mixed nested nested nested nested

 fragmentation fragmentation fragmentation fragmentation fragmentation

The rules for semantic data control must be stored in a semantic data

________ control data control catalog distributed catalog

A view is a___________ defined as the result of a query.
view & data data base

base relation control semantic database

relation

A ________ is a dynamic window in the sense that it

reflects all updates to the database view management DBMS centralized view

The two main schemes in the data encryption are ______ standard and standard and

and _______ standard public key public key unique key public key

Authorization can be uniformly controlled by whom
system database database

administrator administrator systemanalyst administrator

administrator

How many actors are involved in authorization control? 1 2 3 4 4

who trigger the execution of application programs user programmer administrator designer user

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

UNIT-III

SYLLABUS

Query Optimization : Sample Database- Query Processing in Centralized Systems: Query

Parsing and Translation - Query Optimization- Query Processing in Distributed Systems-

Heterogeneous Database Systems - Concurrency Control in Distributed Database Systems.

QUERY OPTIMIZATION

We provide an overview of query processing with the emphasis on optimizing queries in

centralized and distributed database environments. It is a well documented fact that for a given

query there are many evaluation alternatives. The reason for the existence of a large number of

alternatives (solution space) is the vast number of factors that affect query evaluation. These

factors include the number of relations in the query, the number of operations to be performed,

the number of predicates applied, the size of each relation in the query, the order of operations to

be performed, the existence of indexes, and the number of alternatives for performing each

individual operation—just to name a few. In a distributed system, there are other factors, such as

the fragmentation details for the relations, the location of these fragments/tables in the system,

and the speed of communication links connecting the sites in the system. The overhead

associated with sending messages and the overhead associated with the local processing speed

increase exponentially as the number of available alternatives increases. It is therefore generally

acceptable to merely try to find a ―good‖ alternative execution plan for a given query, rather

than trying to find the ―best‖ alternative.

A query running against a distributed database environment (DDBE) will have to go

through two types of optimization. The first type of optimization is done at the global level,

where communication cost is a prominent factor. The second type of optimization is done at the

local level. This is what each local DBE performs on the fragments that are stored at the local

site, where the local CPU and, more importantly, the disk input/output (I/O) time are the main

drivers. Almost all global optimization alternatives ignore the local processing time. When these

alternatives were being developed, it was believed that the communication cost was a more

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 1/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

dominant factor than the local processing cost. Now, it is believed that both the local query cost

and the global communication cost are important to query optimization.

Suppose we have two copies of a relation at two different servers, where the first server is

a lot faster than the second server, but at the same time, the connection to the first server is a lot

slower than the connection to the second server (perhaps we are closer to the second server). An

optimization strategy that only considered communication cost would choose the second server

to run the local query. This will not necessarily be the best strategy, due to the speed of the

chosen (second) server. The overall time to run a query in a distributed system consists of the

time it takes to communicate local queries to local DBEs; the time it takes to run local query

fragments; the time it takes to assemble the data and generate the final results; and the time it

takes to display the results to the user. Therefore, to study distributed query optimization, we

need to understand how a query is optimized both locally and globally.

Here, we introduce the architecture of the query processor for a centralized system first.

We then analyze how a query is processed optimally, discussing the optimization techniques in a

centralized system. The optimization of queries in a distributed system is explained last. We

introduce a simple database that we use in our examples.

SAMPLE DATABASE

We will use a small database representing a bank environment for our examples. This

database has five relations: Customer, Branch, Account, Loan, and Transaction. In this database,

customers, identified by CID, open up accounts and/or loans in different branches of the bank

that are located in different cities. This is indicated by the CID and BNAME foreign keys in the

Account and Loan relations. Customers also run transactions against their accounts. This is

shown in the Transaction relation by the combined foreign key ―(CID, A#).‖ Later in this

chapter, when discussing query optimization alternatives, we will specify the statistics for this

database. The following shows the relations of our example bank database.

CUSTOMER (CID, CNAME, STREET, CCITY);

BRANCH (BNAME, ASSETS, BCITY);

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 2/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

ACCOUNT (A#, CID, BNAME, BAL);

LOAN (L#, CID, BNAME, AMT);

TRANSACTION (TID, CID, A#, Date, AMOUNT);

QUERY PROCESSING IN CENTRALIZED SYSTEMS

The goal of the query processing subsystem of a DBMS should be to minimize the

amount of time it takes to return the answer to a user‘s query. Obviously, the response time

metric is the most important to the user. However, there are other cost elements that the system is

concerned with, which do not necessarily result in the best response time. For example, the

system may decide to optimize the amount of resources it uses to get the answer to a given user‘s

query or the answers to queries requested by a group of users. In other cases, we may try to

maximize the throughput for the entire system. This may translate into a ―reasonable‖ response

time for all queries rather than focusing on the response time for a specific query. These goals

are sometime contradictory and do not always mean the fastest response time for a given user or

group of users.

In a centralized system, the goals of the query processor may include the following: •

Minimize the query response time.

• Maximize the parallelism in the system.

• Maximize the system throughput.

• Minimize the total resources used (amount of memory, disk space, cache, etc.).

The system might be unable to realize all of these goals. For example, minimizing the

total resource usage may not yield minimum query response time. It is understood that

minimizing the amount of memory allocated to sorting relations can have a direct impact on how

fast a relation can be sorted. Faster sorting of the relations speeds up the total amount of time

needed to join two relations using the sort–merge strategy. The more memory pages (memory

frames) allocated to the sort process the faster the sort can be done, but since total physical

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 3/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

memory is limited, increasing the size of sort memory decreases the amount of memory that can

be allocated to other data structures, temporary table storage in memory, and other processes. In

effect, this may increase the query response time.

The center point of any query processor in a centralized or distributed system is the data

dictionary (DD) (the catalog). In a centralized system, the catalog contains dictionary

information about tables, indexes, views, and columns associated with each table or index. The

catalog also contains statistics about the structures in the database. A system may store the

number of pages used by each relation and indexes, the number of rows per page for a given

relation, the number of unique values in the key columns of a given relation, the types of keys,

the number of leaf index pages, and so on. In a distributed system, the catalog stores additional

information that pertains to the distribution of the information in the system. Information on how

relations are fragmented, the location of each fragment, the speed of communication links

connecting sites, the overhead associated with sending messages, and the local CPU speed are all

examples of the details the catalog may contain in a distributed system.

QUERY PARSING AND TRANSLATION

As shown in Figure, the first step in processing a query is parsing and translation. During

this step, the query is checked for syntax and correctness of its data types. If this check passes,

the query is translated from its SQL representation to an equivalent relational algebra expression.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 4/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

In this Example, Suppose we want to retrieve the name of all customers who have one or

more accounts in branches in the city of Edina. We can write the SQL statement for this question

as

Select c.Cname From Customer c, Branch b, Account a

Where c.CID = a.CID AND a.Bname = b.Bname AND b.Bcity = ‗Edina‘;

There are two join conditions and one select condition (known as a filter) in this

statement. The relational algebra (RA) expression that the parser might generate is shown below:

PJcname (SLBcity = ‗Edina‘ (Customer CP (Account CP Branch)))

The DBMS does not execute this expression as is. The expression must go through a

series of transformations and optimization before it is ready to run. The query optimizer is the

component responsible for doing that.

QUERY OPTIMIZATION

There are three steps that make up query optimization. These are cost estimation, plan

generation, and query plan code generation. In some DBMSs (e.g., DB2), an extra step called

―Query Rewrite‖ is performed before query optimization is undertaken. In query rewrite, the

query optimizer rewrites the query by eliminating redundant predicates, expanding operations on

views, eliminating redundant sub expressions, and simplifying complex expressions such as

nesting. These modifications are carried out regardless of database statistics. Statistics are used

in the optimization step to create an optimal plan. Again, an optimal plan may not necessarily be

the best plan for the query. The RA expression for Example does not run efficiently, since

forming Cartesian products of the three tables involved in the query produces large intermediate

relations. Instead, join operators are used and the expression is rewritten as

PJcname (Customer NJN Account)NJN

(Account NJN (SLBcity = ‗Edina‘(Branch)))

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 5/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

This expression can be refined further by eliminating the redundant joining of Account

relation as

PJcname (Customer NJN (Account NJN (SLBcity=‗Edina‘ (Branch))))

There are other equivalent expressions that can also be used. All available alternatives are

evaluated by the query optimizer to arrive at an optimal query expression.

Cost Estimation Given a query with multiple relational algebra operators, there are

usually multiple alternatives that can be used to express the query. These alternatives are

generated by applying the associative, commutative, idempotent, distributive, and factorization

properties of the basic relational operators. These properties are outlined below (the symbol ―≡‖

stands for equivalence):

• Unary operator (Uop) is commutative:

Uop1(Uop2(R)) ≡ Uop2(Uop1(R))

For example,

SLBname = ‗Main‘ (SLAssets > 12000000 (Branch) ≡

SLAssets > 12000000 (SLBname = ‗Main‘ ((Branch))

• Unary operator is idempotent:

Uop((R)) ≡ Uop1(Uop2((R))

For example,

SLBname = ‗Main‘ AND Assets > 12000000 (Branch) ≡

SLBname = ‗Main‘ (SLAssets > 12000000 (Branch)

• Binary operator (Bop) is commutative except for set difference:

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 6/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

R Bop1 S ≡ S Bop1 R

For example,

Customer NJN Account ≡ Account NJN Customer

• Binary operator is associative:

R Bop1 (S Bop2 T) ≡ (R Bop1 S) Bop2 T

For example,

Customer NJN (Account NJN Branch) ≡ (Customer NJN Account) NJN Branch

• Unary operator is distributive with respect to some binary operations:

Uop(R Bop S) ≡ (Uop(R)) Bop (Uop(S))

For example,

SLsal > 50000 (PJCname, sal (Customer)

UN PJEname, sal (Employee)) ≡

(SLsal > 50000 (PJCname, sal (Customer))

UN ((SLsal > 50000 (PJEname, sal (Employee)))

• Unary operator can be factored with respect to some binary operation:

(Uop(R)) Bop (Uop(S)) ≡ Uop(R Bop S)

For example,

SLsal > 50000 (PJCname, sal (Customer))

UN (SLsal > 50000 (PJEname, sal (Employee))) ≡

SLsal > 50000

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 7/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

(PJCname, sal (Customer)) UN (PJEname, sal (Employee))

This is the inverse of the distributive property. Applying the above properties to the

operators of an RA query can create multiple equivalent expressions. For example, the following

eight expressions are equivalent. It is the responsibility of the query optimizer to choose the most

optimal alternative.

Alt1: (SLBname = ‗Main‘ (Account)) NJN Branch

Alt2: Branch NJN (SLBname = ‗Main‘ (Account))

Alt3: (SLBname = ‗Main‘(Branch)) NJN Account

Alt4: Account NJN (SLBname = ‗Main‘(Branch))

Alt5: SLBname = ‗Main‘ (Account NJN Branch)

Alt6: SLBname = ‗Main‘ (Branch NJN Account)

Alt7: (SLBname = ‗Main‘ (Account)) NJN (SLBname = ‗Main‘(Branch))

Alt8: (SLBname = ‗Main‘(Branch))NJN(SLBname = ‗Main‘(Account))

For query optimization discussion, it is more convenient to use a query tree instead of the

RA expression. A query tree is a tree whose leaves represent the relations and whose nodes

represent the query‘s relational operators. Unary operators take one relation as input and produce

one relation as output, while binary operators take two relations as input and produce one

relation as output. That is why every operator‘s output can be fed into any other operator. Results

from one level‘s operators are used by the next level‘s operators in the tree until the final results

are gathered at the root. All operators have the same relation-based interface for input and

output. This helps with a uniform interface implementation for the query execution manager.

This uniformity has given rise to the use of this operator model in most commercial systems such

as System R (DB2), Oracle, Informix, and Ingres. In such systems, each operator‘s

implementation is based on the concept of an iterator.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 8/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

Each iterator has a set of functions (methods in object-orientated terminology) that can be

called when needed. An iterator acts as a producer for the iterator at the next level and as a

consumer for the iterator(s) above it— remember in our representation of a query tree the leaves

are on the topmost level. An iterator has three functions—to prepare, to produce, and to wrap-up

production. These functions are called ―Open,‖ ―Get_Next,‖ and ―Close.‖ For example, to

perform a select using a scan access path, the operator opens the file that contains the relation to

be scanned and allocates enough input and output memory buffers for the operation. Once

opened, the Get_Next function is called repeatedly to process tuples from the input buffer(s), it

qualifies them and puts them in the output buffer(s). Once there are no more tuples to process,

the Close function is activated to close the file and deallocate the memory buffers. Note that

although the Open and Close functions for all iterators perform similar tasks, depending on the

operator, the work that Get−Next function has to do may vary tremendously. For instance, a

sort–merge to join two relations requires reading the pages for each relation into memory, sorting

them, writing them out, bringing them back, and merging them to produce the output, as

explained in Section 4.3. One of the advantages of the iterator model is that it naturally supports

pipelining, where the output tuples of one operator can be fed as input into another operator

without needing to store them on the disk (materializing them).

For a given query expression, the query optimizer analyzes all equivalent query trees that

represent the solution space for the query. For the SQL query used in Example, the solution

space (not considering the trees that produce Cartesian products) consists of five query trees that

can be used to produce the same results as shown in the following Figure.

The optimizer analyzes all these trees in the solution space and selects a tree that is optimal

for the query. The first step in the optimization is pruning. In the pruning step, the ―bad‖ alternative

trees are eliminated. The optimizer usually uses a small set of rules for pruning. One such rule

requires that ―before joining two relations, the relations should be reduced in size by applying the

select and the project operations.‖ Considering this rule, alternatives 2 and 5 perform better than the

others do, since they perform the select operation before the join operation. In the next step, the

optimizer selects trees 2 and 5 and runs them through the cost

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 9/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

analysis. In the cost analysis step, statistics are used to determine/estimate the cost of each

candidate tree. In this step, the tree with the smallest cost is chosen.

The following are statistics about our database:

• There are 500 customers in the bank.

• On average, each customer has two accounts.

• There are 100 branches in the bank.

• There are 10 branches in Edina city.

• Ten percent of customers have accounts in the branches in Edina.

Since there are 1000 accounts in the bank, and 50 customers have accounts in the

branches in Edina resulting in 100 accounts in that city. Let‘s also assume that it takes ―t‖ units

of time to process each tuple of each relation in memory. Using the statistics

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 10/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

We can calculate the cost of the two chosen alternatives based on the number of rows that each

one processes. Figure 4.6 shows the cost analysis for these two alternatives.

Analysis of Alternative 2: The first operation in this alternative is the join between the

Customer and the Account relations. The cost of this join is ―500 * 1000t,‖ since there are 500

tuples in the Customer relation and 1000 tuples in the Account relation. The join results in the

temporary relation ―R1.‖ R1 has 1000 tuples, since every account must belong to a customer.

The second operation selects those branches that are in city

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 11/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

Edina as temporary relation ―R2.‖ Since there are 100 branches in the bank, the select

cost is 100t and R2 has 10 tuples in it. The last operation joins R1 and R2, picking up the

customers for accounts in Edina‘s branches. The cost of this join is ―1000 * 10t.‖ Since there

are 100 accounts in branches in Edina, it returns 100 tuples. The total cost of this alternative

therefore is 510,100t.

Analysis of Alternative 5: The first operation in this alternative is the select with the cost

of 100t resulting in relation ―R1‖ with 10 tuples. The second operation joins the Account

relation with R1, storing the accounts that are in Edina in the temporary relation ―R2.‖ This

operation‘s cost is ―1000 * 10t‖ and it returns 100 tuples. The last operation joins Customer and

R2, picking up the customers for the accounts in Edina. The cost of this operation is ―500 *

100t‖ and it returns 100 tuples, which represent the accounts in Edina.

Since query tree 5‘s cost is smaller than query tree 2‘s cost, alternative 5 is chosen for the

query. We could have arrived at the same conclusion by noticing that we join the Account and

Customer relations, which are the largest relations in the database, first in query tree 2—

resulting in a higher cost. As a general rule, most DBMSs postpone joining the larger relations

until the select operations and other joins have reduced the number of tuples in the join operands

to a more manageable number.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 12/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

Plan Generation

In this optimization step, the query plan is generated. A query plan (or simply, a plan, as

it is known by almost all DBMSs) is an extended query tree that includes access paths for all

operations in the tree. Access paths provide detailed information on how each operation in the

tree is to be performed. For example, a join operation can have an access path that indicates the

use of the block-nested loop join, hash-join, or sort–merge join, while a select access path can

specify the use of an index (a B+Tree index or a hash index) or a table scan.

In addition to the access paths specified for each individual RA operator, the plan also

specifies how the intermediate relations should be passed from one operator to the next—

materializing temporary tables and/or pipelining can be used. Furthermore, operation

combinations may also be specified. For projected out while the tuple is still in memory. This

eliminates reprocessing qualified rows in a project operation after a select. Other examples of

operator combination include select and join; select and union; project and join; project and

union; and select, project, and join.

Query optimization has been researched for many years and is still the focus of research

due to its importance in centralized and distributed DBEs. Steinbrunn provides an excellent

overview of an alternative approach to query optimization. Among the proposed algorithms,

exhaustive search and heuristics-based algorithms are most popular. The difference between

these two approaches is in the time and space complexity requirements and superiority of the

plans they generate. We will review these two approaches to optimization next.

Exhaustive Search Optimization Algorithms in this class will first form all possible query

plans for a given query and then select the ―best‖ plan for the query. Dynamic programming is

an example of an algorithm in this class. Since the solution space containing all the possible

query execution alternatives using DP is very large—it has an exponential time-and-space

complexity. Many different DP algorithms attempting to reduce the solution space and lower the

time and/or complexity have been proposed.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 13/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

Heuristics-Based Optimization Originally, most commercial DBMSs used heuristics

based approaches, which are also known as rule-based optimization (RBO) approaches, as their

optimization technique. The algorithms in this class have a polynomial time-and-space

complexity as compared to the exponential complexity of the exhaustive search-based

algorithms, but the heuristics-based algorithms do not always generate the best query plan. In

this approach, a small set of rules (heuristics) are used to order the operators in an RA expression

without much regard to the database‘s statistics. One such heuristic is based on the observation

that if we reduce the size of the input relations to a join, we reduce the overall cost of the

operation. This rule is enforced by applying the select and/or project operations before the join.

This rule is also known as ―pushing‖ the select and project toward the leaves of the query tree.

Another heuristic joins the two smallest tables together first. This is based on the belief that since

not all tuples from the relations being joined qualify the join condition, fewer tuples will be used

in the next operation of the query tree, resulting in a smaller overall cost for the query. Another

popular heuristic is simply to disallow/avoid using the cross-product operation, which is based

on the fact that the intermediate result of this operation is usually a huge relation.

These rules (and others like them) are used in many of today‘s commercial systems. In

DB2, for example, there is a rule that forbids/avoids the use of an intermediate relation as the

right operand of a join operation. In Oracle 10g, the rule-based optimizer (RBO) associates

weights with each operation and uses the operation with the smallest weight first. For example,

Oracle associates a weight of 5 with a select operation that uses a unique index, while it assigns a

weight of 20 to a relation scan. As a result, when given the choice, the RBO will use the index

lookup to find a single tuple rather than scanning the table. Oracle‘s RBO generates the query

plan by applying this rule repeatedly to all operations in the query tree. One advantage of using a

small set of rules like these is that the optimizer can generate a plan quickly. Although Oracle‘s

RBO example, select and project operations can be combined. In this case, after a tuple is

qualified, unwanted attributes are is fast, because it applies rules statically—without considering

available statistics—it does not always generate an optimal plan. For instance, perhaps the RBO

only considers nested-loop joins for a particular query, even when a sort–merge join or a hash-

join would perform better for the current state of the database.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 14/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

Dynamic Programming

Dynamic programming (DP) is an exhaustive search-based algorithm used today by most

commercial DBMSs. The approach uses a cost model, such as query response time, to generate a

plan with the optimal cost. This approach is also known as cost-based optimization (CBO).

For the sake of simplicity when discussing dynamic programming, let‘s consider the case of

joining N relations together in an N-way join, that is, ―R1 JN R2 ... JN RN−1 JN RN.‖ The

number of alternatives for joining the N relations is ―(2*(N−1))!/(N−1)!‖ For example, there are

12 alternatives for joining three tables, 120 alternatives for joining four tables, and 1680

alternatives for joining five tables. Dynamic programming uses a cost model to dynamically

reduce the solution space and generates an optimal plan by building the plan one step at a time,

from the bottom–up. The algorithm iterates over the number of relations that have been joined so

far and prunes the alternatives that are inferior (cost more), keeping only the least costly

alternatives. In addition to keeping optimal alternatives, the algorithm may also keep plans that

generate a sorted intermediate relation. These plans are of an ―interesting order‖ and are kept

because having a sorted intermediate relation helps the next join, encouraging it to apply a sort–

merge join as discussed before (since the intermediate result is already sorted, the overhead is

less than it would be otherwise). To illustrate how DP works, let‘s examine a few steps in the DP

processing of this N-way join.

Step 1: Generate All 1-Relation Plans. This step generates the access plans for each of the

relations involved in the query. Select and project are the only operations we consider in this

step. All other operations are binary operations, which involve more than one relation by

definition. When considering 1-relation plans, the access paths for each select and project

operation are evaluated and we choose the path with the smallest cost, discarding the others. For

instance, we know that a predicate of the form ―attribute = constant‖ for a uniquely valued

attribute will return either one tuple or zero tuple. In this case, if a unique index has been created

on the attribute, we have an access path based on a unique index lookup. Alternatively, we could

scan the relation to find the matching tuple. It should be obvious that between these two access

paths, the unique index lookup is faster than the scan, especially for large relations that occupy

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 15/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

many disk pages. Therefore, the plan that utilizes the index is chosen for the select operation

using this relation. Let‘s assume that the optimal access plans, P1, P2,... , PN, are kept for

relations R1, R2, ... , RN correspondingly.

Step 2: Generate All 2-Relation Plans. In this step, the algorithm combines all the 1-relation

plans we kept from Step 1 into 2-relation plans and chooses those with the smallest cost for each

pair of determined by the different access paths available for the join. The 2-relation plans with

the smallest cost are chosen in this step. For example, we know that there are two alternatives for

joining R1 and R2, based on the order of operands—―R1 JN R2‖ and ―R2 JN R1.‖ For each

alternative, it is also possible to join the two relations based on any of the join strategies we

discussed in Section 3.4. Let‘s assume that our system only supports nested-loop row-based joins

and sort–merge joins. For this system, there will be two ways to join R1 and R2 and two ways to

join R2 and R1. Depending on the availability of indexes keyed on the join attributes of the two

relations, the nested-loop join can be implemented in two different ways—one using the index

and one not using the index. As a result, for each pair of relations, this system has to consider six

different join alternatives (each operand ordering alternative can use one of the two nested-loop

join alternatives or the sort–merge alternative). Since the sort–merge join produces a sorted

intermediate relation, this plan is kept as an interesting order plan, as we discussed earlier. When

we consider the two nested-loop join alternatives, we only keep the plan with the smallest cost if

its cost is less than the cost of the sort–merge join. Assuming that we only keep one plan for each

pair of relations, we can indicate these plans as P12, P13,... , P1N, P21,... , PNN−1, where the

two digits in the indexes refer to the relations and the order of their join. In other words, the plan

we keep for the join between R1 and R2 is called ―P12,‖ while the plan we keep for the join

between R2 and R1 is called ―P21.‖

Step 3: Generate All 3-Relation Plans. In this step, the algorithm combines all the 2- relation

plans from Step 2, with the 1-relation plans from Step 1 to form 3-relation plans. For example,

assume the query calls for ―R1 JN R2 JN R4.‖ Furthermore, assume that the 2-relation plan

P12, which joins R1 and R2 and produces R12, is kept from Step 2. In this case, ―R12 JN R4‖

and ―R4 JN R12‖ must be considered. For each one of these alternatives, we consider all the

access paths for the join and keep the optimal plan along with any plans with interesting orders.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 16/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

Step 4: Generate All 4-Relation Plans. In this step, the algorithm joins the 3-relation plans from

Step 3 with the 1-relation plans from Step 1 to form 4-relation plans. The algorithm also joins all

the 2-relation plans from Step 2 with each other to form 4-relation plans. Again, for each of these

alternatives, we consider all the access paths for each join, keeping the optimal plan and the

plans with interesting orders.

Subsequent Steps: The pattern is repeated for each subsequent step, to incrementally create

bigger plans until all N relations have been joined.

Reducing the Solution Space

Dynamic programming generates a large solution space even for a small number of

relations. Therefore, it is fairly common for the query optimizers to sacrifice some of the query

response time in return for faster query plan generation by reducing the solution space. This

means the optimizer tries to find an optimal plan and not necessarily the best plan. The optimizer

may actually miss some better plans trying to save time to generate the plan.

For instance, the optimizer may only consider a left-deep (or a right-deep) query tree

instead of a bushy tree when analyzing different access paths as depicted in the above Figure.

Although a bushy tree may perform better in some situations, the left-deep plan lends itself better

to do the operations on-the-fly. The left-deep plan is the only type of tree that DB2 allows. Using

a left-deep query plan, the execution manager can perform the second and third joins in our

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 17/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

example on-the-fly. As the tuples from the previous join are produced, they are joined with the

relation at the next level. This eliminates the need to materialize the results of the joins that are

necessary for the bushy plan. For large relations, the intermediate join results could potentially

be large and could not be kept in memory for the next step. Storing these large intermediate

relations on disk can take a considerable number of disk I/Os.

Even considering only one shape for the query tree does not reduce the solution space

dramatically. Consider the case of having to join three relations: A, B, and C. With a left-deep

type of tree, joining these relations can be done in six different ways, as depicted in Figure.

In this example, we assume that any relation can be joined with any other relation. In

reality, this may not be the case; that is, A can be joined with B if there is a common attribute

between A and B but not with C if there are no common attributes between A and C. Other

alternatives to reduce solution space and the cost-and-time complexity of DP are iterative

dynamic programming (IDP) and the greedy approach, both of which we will review next.

Iterative Dynamic Programming

The main issue with dynamic programming is the space-and-time complexity of the

algorithm. DP selects the best possible approach by forming all possible alternatives for joining

the relations in a query from the bottom up. The time and space requirements of DP grow

exponentially as the number of relations grows. For a large number of relations, it is fairly

common for the algorithm to exhaust the available memory since DP keeps all the plans

generated throughout the entire process. Thrashing—the constant exchange of information

between the memory and the disk—starts when the computer runs out of memory. One

alternative that specifically addresses the issue with the size of memory is called iterative

dynamic programming (IDP). The IDP algorithm divides the optimization process into a set of

iterations. In each iteration, the algorithm only enumerates up to k-relation plans and then stops.

Parameter ―k‖ is carefully defined ahead of time to prevent exhausting the available memory

based on the number of relations in the query.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 18/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

For example, if ―k = 3‖, then in iteration one the algorithm forms only 1-relation, 2-

relation, and 3-relation plans. From the first iteration the best 3-relation plan is selected. All 1-

relation and 2-relation plans that include one or more of the three relations participating in the

chosen 3-relation plan are discarded. Other plans are carried over to the second iteration.

Assuming the same five relations that we used in Example, Iteration 1 of IDP generates the same

plans as generated by DP for up to 3-relation plans. From these plans, the plans shown in Figure

a are kept for Iteration 2. In Iteration 2, the 2-relation plans are formed. Note that although these

are called 2-relation plans, in reality they may contain more than two relations. If two base

relations are joined the plan is a 2-relation plan. If one 2-relation plan is combined with one 3-

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 19/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

relation plan, the result is a 5-relation plan. Figure b indicates all the 2-relation plans generated

from Iteration 2 for our example. As seen from this figure, ―CE JN DAB‖ is actually the 5-

relation plan that we are seeking. Figure c shows the final query plan based on this strategy.

The basic strategy behind IDP is this: if we keep the cheapest k-way plan in each step, the

final plan costs the least based on the chosen plans. What we must keep in mind is that since we

do not consider all possible plans in each step, IDP may actually miss the optimal overall plan.

Greedy Algorithms

Greedy algorithms have a much smaller time-and-space complexity requirement

compared to dynamic programming. However, they do not necessarily produce superior plans.

One can categorize greedy algorithms as a special case of IDP with k = 2. Greedy algorithms

behave exactly the same as IDP except that only 1-relation and 2-relation plans are formed from

plans kept from the previous iteration. Let‘s apply the greedy algorithm to joining five relations

A, B, C, D, and E. For the first iteration, the greedy algorithm generates the same plans as

generated by DP for up to 2-relation.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 20/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

At this point, as shown in Figure, the greedy algorithm breaks and selects the best 2-

relation plans and all 1-relation plans that do not include a relation in the chosen 2-relation plan.

The above Figure also shows the 3-relation, 4-relation, and 5-relation plans that the greedy

algorithm generates in the second, third, and fourth iterations, respectively. The final plan, which

is shown in Figure, is chosen from all the 5-relation plans that we formed.

Code Generation

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 21/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

The last step in query optimization is code generation. Code is the final representation of

the query and is executed or interpreted depending on the type of operating system or hardware.

The query code is turned over to the execution manager (EM) to execute.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 22/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

QUERY PROCESSING IN DISTRIBUTED SYSTEMS

There are two distinct categories of distributed systems: (1) distributed homogeneous

DBE (what we called a DDBE) and (2) distributed heterogeneous DBE (what we called a MDB).

In both of these systems, processing a query consists of optimization and planning at the global

level as well as at the local database environment (LDBE) level. The Figure depicts how queries

are processed in a DDBE.

The site where the query enters the system is called the client or controlling site. The

client site needs to validate the user or application attempting to access the relations in the query;

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 23/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

to check the query‘s syntax and reject it if it is incorrect; to translate the query to relational

algebra; and to globally optimize the query.

Mapping Global Query into Local Queries

The relations used in the global query may be distributed (fragmented and/or replicated)

across multiple local DBEs. Each local DBE only works with the local view of the information at

its site and is unaware of how the data stored at its site is related to the global view. It is the

responsibility of the controlling site to use the global data dictionary (GDD) to determine the

distribution information and reconstruct the global view from local physical fragments.

Distributed Query Optimization

Global optimization is greatly impacted by the database distribution design. Just like a

local query optimizer, a global query optimizer must evaluate a large number of equivalent query

trees, each of which can produce the desired results. In a distributed system, the number of

alternatives increases drastically as we apply replication, horizontal fragmentation, and vertical

fragmentation to the relations involved in the query.

Utilization of Distributed Resources

In a distributed system, there are many database servers available that can perform the

operations within a query. There are three main approaches on how these resources are utilized.

The difference among these approaches is based on whether we perform the operation where the

data is; send the data to another site to perform the operation; or a combination of the two.

Operation Shipping

In this approach, we run the operation where the data is stored. In order to achieve this,

the local DBE must have a database server that can perform the operation. A good example of

the kind of operation that lends itself nicely to operation shipping is any unary operation such as

relational algebra‘s select (SL) and project (PJ). Since a unary operation works on only one

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 24/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

relation, the most logical and most economical in terms of communication cost is to run the

operation where the data fragment is stored. Even for binary operations, such as join and union,

we prefer operation shipping if the two operands of the operation are stored at the same site.

Most of today‘s DBMSs such as Oracle, SQL Server, and DB2 prefer operation shipping. In

these systems, an interactive query that enters the system at a client computer does not run at the

client but at the database server, where the data is stored. The results are then transferred back to

the client. These systems store canned queries such as stored procedure on the database server as

well. The database server activates these stored procedures upon request from an application or

an interactive user at the server, simulating operation or query shipping.

Data Shipping

Data shipping refers to an alternative that sends the data to where the database server is.

This obviously requires shipment of data fragments across the network, which can potentially

lead to a high communication cost. Consider the case of having to select some tuples from a

relation. We can perform the SL operation where the data is as explained in operation shipping.

We can also send the entire relation to another site and perform the SL operation there. One can

argue that in a high-speed fiber optic communication network, it might be faster to send the

entire relation from a low-speed processor to a high-speed processor and perform the SL

operation there.

Data shipping is also used in object-oriented databases as a preferred approach.

Pagebased data caching, close to where the use is, will presumably speed up the response time

for queries that run frequently when data does not change often. A similar caching approach is

proposed for an index lookup by Lomet. An index page fault happens when data required by a

query is not in the cache. In this case, the page containing the data is brought into memory. If the

cache is full, the least recently used page will be written back to the disk to make room available

for the required page.

Hybrid Shipping

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 25/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

Hybrid shipping combines data and operation shipping. This approach takes advantage of

the speed of database servers to perform expensive operations such as joins by transferring the

smaller relation to the server where the larger relation resides.

Dynamic Programming in Distributed Systems

The dynamic programming principles we discussed for centralized systems can also be

used for query optimization in distributed systems. The following example applies dynamic

programming to a distributed database.

Query Trading in Distributed Systems An alternative to dynamic programming that is

based on the principles of trading negotiation is called query trading (QT), which was proposed

by Pentaris and Ioannidis. In the QT algorithm, the control site for a distributed query is called

the buyer and each site where a local query runs is called a seller. The buyer has different

alternatives for choosing sites where data fragments are and also different choices for

reconstructing the global results. In this algorithm, the buyer tries to achieve the optimal total

cost for the query by negotiating services from different local sellers.

For example, assume a relation is replicated at two sites. When the buyer asks each seller

about the cost of performing a select operation on a given relation, each seller (local server) bids

on the select based on the facilities and services that are locally available. The difference

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 26/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

between the prices that two sellers offer for the same select operation on the same relation is due

to differences between each local server‘s processing speed, workload, method of local

optimization, and available indexes. The buyer decides on which seller‘s offer to choose to lower

the overall cost of the query. A cost function is used by the buyer to choose the right seller(s). As

an example, assume we need to join relations R1 and R2. Suppose Site 1 has already been

chosen to perform a select on R1. In the next step the buyer needs to decide where the join

operation is going to be performed. It might be cheaper to join R1 and R2 at Site 1 by sending

R2 to this site than sending the results of the select from Site 1 to Site 2 where the join will be

performed. The buyer‘s decision in this case depends on the prices that Site 1 and Site 2 offer for

the join operation. In subsequent steps, the buyer negotiates with chosen sellers to see if they can

perform a larger portion of the query. This process is repeated until the entire query execution is

planned.

The query trading algorithm works by gradually assigning subqueries to local sites. A site

may be a buyer, a seller, or both a buyer and a seller depending on the data stored at the site

and/or the query that is being performed. During the negotiation, the buyer simply puts the plan

together from the bottom up. The query is not actually executed until the overall global plan has

been determined. The goal of the algorithm is to create the most optimal plan from local

optimized query plans that have been proposed by the sellers together with the communication

cost of reconstructing the final results.

Distributed Query Solution Space Reduction

Both dynamic programming and query trading algorithms have to deal with a large number

of alternatives even for simple queries. Attaining the absolute best distributed query plan,

therefore, is too expensive to achieve. The following is a summary of the rules that can be

applied to a query tree in a distributed system to reduce its solution space.

 Apply Select and Project as Soon as Possible


 Simplify Operations on Horizontal Fragments


 Perform Operations Where Most of the Data Is

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 27/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

 Simplify Join Operations


 Materialize Common Sub expressions Once


 Use Semi-join to Reduce Communication Cost


 Use Bit Vectors to Reduce Communication Cost

Heterogeneous Database Systems

Heterogeneous distributed database systems behave differently from homogeneous

distributed database systems. In a heterogeneous database system, the underlying database

systems are different, maintain their autonomy, and may hide the details of how they process

queries from the outside world. These systems are also called federated database systems or

multidatabase systems. The individual DBEs that make up a heterogeneous database system can

support different database models, for example, relational, hierarchical, network, object-oriented,

or text databases such as BigBook. DBEs in a heterogeneous database system may also utilize

different query processing and optimization approaches. They can be closed or open to the

outside world. If open, they provide an application programming interface (API). These

differences make processing a distributed query in heterogeneous database systems a lot more

difficult than processing queries in a homogeneous distributed database system.

Heterogeneous Database Systems Architecture

The underlying DBEs of a heterogeneous system are different in nature and may provide

different interfaces to the outside world. One of the first challenges in integrating heterogeneous

DBEs is to hide the difference in the interfaces these systems expose. A wrapper is a software

module that uses the open (or the proprietary) interface of an underlying DBE and provides a

uniform interface to the outside world based on the capabilities that the DBE provides. Since the

de facto standard for query processing in any heterogeneous database system is SQL, a wrapper

exposes a relational model and SQL as the interface for the system is wraps.

Depending on the capabilities of the underlying component DBEs, wrappers provide

different sets of functionalities. For instance, a relational DBMS wrapper can support all of the

capabilities that a relational DBMS provides. An Excel wrapper can provide the ability to

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 28/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

enumerate the rows in an Excel worksheet as tuples in a relation. This ability can be utilized to

perform a select on the contents of a worksheet very much like performing a select operation on

a relation. As a result, we can use an Excel wrapper to join the rows in an Excel worksheet with

the rows of a table exposed by a relational DBMS wrapper. Because of limitations of the

BigBook database, a wrapper for the BigBook database can only provide capability of selecting

limited information such as business category and the city where the business is located. The

BigBook wrapper is not able to provide the capability to enumerate rows and, therefore, cannot

support joins.

Each data source in the system is wrapped by a specific wrapper. Depending on the

underlying DBE, a wrapper may be able to provide either tuple level or block level (a set of

tuples that are grouped together) access to the information that the database controls. The

wrapper may also be able to cache information outside the database for faster access. According

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 29/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

to Wiederhold, wrappers are not directly used by the client of the heterogeneous database

system, but interact with a layer of software called the mediator. The mediator does not have the

capability to interface directly to the underlying DBE. The mediator can access the global data

dictionary to find out the schema of the local DBEs and the functionality they provide. The

mediator processes the queries that are posted by the global users; determines the location details

for each piece of required data for the queries being processed by looking up the details in the

GDD; exploits the functionalities that each local DBE provides through its wrapper; and

optimizes the queries at the global level.

Optimization in Heterogeneous Databases

Query optimization in a heterogeneous DDBE is a much more difficult task than query

optimization in a homogeneous DDBE. The reason is that in a homogeneous distributed database

system all the DBEs provide the same and uniform capabilities. This provides the global

optimizer with the ability to choose any of the DBEs to perform, for example, a join. In a

heterogeneous distributed database system, the mediator does not have the same freedom. In a

heterogeneous database system, a local DBE may be able to perform a join and the other may

not. Lack of join capability by some of the DBEs (or their wrappers) creates a challenge for the

mediator that does not exist in a homogeneous distributed database system.

For example, in a homogeneous distributed database system, the global optimizer that needs

to join relations ―R‖ and ―S‖ can simply send R from where it resides to the DBE where S is and

ask the DBE server there to process the join. In a heterogeneous database system, this may not be

easily achieved. Suppose that the wrapper for the DBE that stores S does not have a join capability

(such as a BigBook database) and can only select tuples based on a given predicate. In this case, the

mediator has to first retrieve all tuples for R from the wrapper that interfaces to the DBE where R is

stored. Once all the tuples of the R relation are received, the mediator iterates through all tuples in R

and uses the value of the join attribute of R, one-by-one, to find

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 30/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

corresponding tuples in S. The lack of a join capability within the S wrapper, in effect, forces a

nested-loop join to be carried out by the mediator. This approach is probably a lot more

expensive than having the join be performed by the component DBE, as is the case for a

homogeneous distributed database system.

Another set of differences that may exist between the DBEs in a heterogeneous database

system are called semantic heterogeneity. For example, Wrapper 1 may interface to a DBE that

uses letter grades {A, B, C, D, F} while Wrapper 2 interfaces to a DBE that uses scores between

1 and 10. When integrating the results from these two local DBEs or when transferring the grade

from one DBE to the other, the mediator has to convert scores of 1 to 10 to letter grades and/or

letter grades to scores in the range of 1 to 10. Once the capability differences between the local

DBEs have been dealt with, the approach to global optimization for both homogeneous and

heterogeneous database systems is very similar.

Once the capabilities of the underlying DBEs are encapsulated by the wrapper and are

presented to the mediator as a set of enumeration rules, dynamic programming or iterative

dynamic programming can be used by the mediator to optimize global queries in heterogeneous

database systems.

CONCURRENCY CONTROL IN DISTRIBUTED DATABASE SYSTEMS

We extend the centralized concurrency control algorithms for a distributed database

system. Distributed locking, timestamping, and optimistic concurrency control algorithms are

discussed. As discussed before, when extending an algorithm that is designed to work on a

centralized system, we have to consider the issue of control. In a centralized system, there is only

one site and that site is the center of control. This is the site where transactions enter the system

and where the concurrency control module of the DBMS resides. In a distributed system, on the

other hand, the control may reside at a site different from the site where a transaction enters the

system. The control may be centralized, residing at only one site, or distributed—where multiple

sites cooperate to control execution of transactions.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 31/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 32/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

We need to generalize the serializability requirements for a distributed DBE.

Serializability in a centralized DBE stated that all partial commitment orders (PCOs) imposed by

the conflicts between operations in concurrent transactions have to be compatible. As such, if we

have the precedence ―Ti → Tj‖ for the commitment order of Ti and Tj, as a result of one

conflict, we need to have the same order requirement for all the conflicts between these two

transactions. In a distributed system, each transaction may run on multiple sites. As a result, we

have to address local serializability as well as global serializability issues.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 33/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

Two-Phase Locking in Distributed Systems

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 34/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

Implementing 2PL for a centralized system is straightforward. Because a centralized

system contains only one site, the lock manager sees all transactions and can control lock

acquisition requests from all transaction monitors (TMs). In a distributed system, that is not the

case. A transaction may enter the system at Site 1, but request a lock from Site 5. At the same

time, a conflicting transaction may enter the system at Site 2 and request a lock from Site 4. If

there isn‘t any coordination between the lock managers at Sites 4 and 5, the conflict will not be

detected, which may result in an inconsistent database.

To deal with distribution issues, a common requirement for all alternatives for

implementing 2PL in a distributed system is that the lock conflicts must be seen by at least one

site. In the centralized implementation, the central lock manager sees all lock requests from all

sites and enforces 2PL principles. In the distributed implementation, the conflict must be

detected by at least one site but may be detected by more than one site. In a distributed system,

when the control of 2PL is given to one site, the algorithm is called centralized 2PL. Alsberg and

Day first proposed the centralized 2PL in 1976. When the control is shared by multiple sites, the

algorithm is called primary copy 2PL and, finally, when the lock responsibility is given to all

sites, the algorithm is called distributed 2PL.

Centralized 2PL

Centralized 2PL is an implementation of the two-phase locking approach in a distributed

system where one site is designated as the central lock manager (CLM). All the sites in the

environment know where the CLM is. Each site is directed to obtain locks, according to 2PL

rules, from the CLM. To request a lock, a TM sends a lock request to the CLM instead of its

local lock manager. If the data item to be locked is available, the CLM locks the item on behalf

of the transaction and sends a ―lock granted‖ message to the requesting TM, thereby granting

the lock. If the data item cannot be locked, because it is locked by one or more conflicting

transactions, the lock is not granted and the transaction is added to the list of transactions that are

waiting for this item.

Upon receiving a ―lock granted‖ message, the requesting TM can continue to run. Note

that the data item that is locked on behalf of the transaction may be local to the site where the

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 35/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

transaction is or it may be located elsewhere. It is the responsibility of the TM to access the data

item wherever it is. If the data item is replicated, then the requesting TM will decide which copy

to read. In this case, the requesting TM also makes sure that a write operation is applied to all

copies. Once a transaction is done, a TM notifies the CLM that a data item lock is no longer

needed by sending a ―lock release‖ message to the CLM. Upon receipt of a ―lock release‖

message, the CLM releases the data item and grants the lock to the transaction in front of the

wait queue for the item. If this ―lock release‖ is the first one from a particular TM, the CLM

also makes a note that the corresponding TM has entered the second phase of 2PL. This is done

to ensure that the TM does not misbehave—that it does not ask for more locks after this point.

Primary Copy 2PL

This alternative for implementing 2PL was first proposed by Stonebreaker. In this

alternative, a number of sites are designated as control centers. Each one of these sites has the

responsibility of managing a number of locks. For example, one site may have the responsibility

of locking rows in the EMP table, while another site manages the locks for rows in the DEPT

table. Obviously, how EMP and DEPT are distributed and/or replicated is known by all sites—

each site knows which site controls EMP and which site controls DEPT. As such, when a TM

needs to lock EMP, it directs its lock requests to the primary site responsible for locking EMP

and does the same for DEPT when it needs to lock it. Beyond this difference in the distribution

of control, the primary copy 2PL is basically the same as centralized 2PL implementation.

Similar to the centralized 2PL implementation, if there are multiple copies of the EMP and

DEPT tables, the requesting TM decides which copy to read and makes sure that all copies are

written to in the case of any write operations.

Distributed 2PL

Variations of this approach have been implemented in IBM‘s system R* by Mohan and

Tandem‘s Nonstop SQL engine. Distributed 2PL requires each lock manager (LM) to manage

the data items stored at its local site. Where the lock manager resides depends on the data

distribution and/or replication. There are three alternatives:

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 36/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

• At one end of the spectrum, the distributed database maintains no replicated data items. In this

case the site where the only copy of the data item resides acts as the lock manager for the item.

• At the other end of the spectrum, all data items are replicated. In this case, one of the sites is

chosen as the lock manager for each data item. If the responsibility of managing the locks for all

items is given to one site, the approach reduces to the centralized 2PL implementation.

• Finally, some of the data items in the system may be replicated while the others are not. For the

data items that are not replicated, the site where the data item resides acts as the lock manager for

that item. For the replicated data items, one site is chosen as the lock manager for each item. It is

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 37/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

the responsibility of the TM to acquire the lock from each data item‘s lock manager. The TM is

also responsible for ensuring any updates to a data item are reflected in all the sites where that

data item resides.

Distributed Timestamp Concurrency Control

The basic concept of timestamp concurrency control algorithms in centralized systems

can easily be extended to a distributed database. Since both the basic and conservative TO

algorithms rely on timestamps for resolving conflicts, it is important that timestamps be a good

representative of the relative age of each transaction. In a centralized system, the physical clock

reading is used as the timestamp. The physical clock obviously produces a true indication of each

transaction‘s age—the smaller the timestamp the older the transaction is. As mentioned earlier,

we do not actually have to use the physical clock reading of the local system as the timestamp.

We can use a logical clock (LC) that is incremented for each event in the system as the

transaction timestamp, since it provides for the same relative ordering for a transaction‘s age.

In a distributed system, on the other hand, we cannot use any local physical clock

readings or any site‘s logical clock readings as our global timestamps, since they are not globally

unique. An indication of the site ID (which is globally unique) needs to be included in the

timestamp of a transaction. The issue with using a site‘s physical clocks is called ―drifting‖—

when two or more clocks show numbers that are different from each other. To see the impact of

clock drifting on the TO algorithms, consider two sites, S1 and S2, that generate the same

number of transactions during a period of time. If the clocks at these two sites are relatively

close, then the ages of transactions at these sites are also relatively close. But, if the clock at S1 is

much faster than the clock at S2, after a period of time, transactions generated at S1 are going to

be much younger than the transactions generated at S2. This will cause S1‘s transactions to be

given a lower priority when they conflict with S2‘s transactions. To solve this problem, we can

either use a system clock with which all sites synchronize their local clocks or we can

periodically synchronize all the sites‘ clocks with each other. Using either approach will require

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 38/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

a large number of messages. Because of this problem, we can use the logical clock readings at

each site as part of the global timestamps.

When using logical clock (LC) readings drifting can still occur. In this case, sites that

generate more transactions have larger LC readings. This again will negatively impact the site‘s

transactions when conflicts occur. Let‘s assume site S1 generates a lot more transactions than

site S2 does within a given period of time. If at time t1 the LCs at sites S1 and S2 are both set to

5, it is possible that, at time t2, S1‘s clock might be 50 while S2‘s clock might only be 20. From

this point on, transactions at S1 will get lower priority than the ones at S2. To resolve this issue,

we need to synchronize the logical clocks at S1 and S2. Note that it is only important to achieve

clock synchronization if transactions at S1 and S2 conflict. If they do, the TMs at these sites will

have to communicate with each other. We can use the messages that are sent from one site to the

other for synchronization. When one site communicates with another site, it can piggyback its

LC reading on the message. The receiving site then examines the LC reading received and

compares it to its own. If its clock is slower than the clock at the other site, then it will advance

its clock accordingly. Sites do not decrement their LCs since this would cause duplicate clock

readings. This idea can be implemented with a simple comparison:

LC at local site = Max(Local LC, LC received with the message)

In the above example, when S2 sends a message to S1, no adjustment is made. On the

other hand, when S1 sends a message to S2, site S2‘s clock will be advanced to 50.

Implementing the basic TO algorithm in a distributed database is not cost effective due to the

substantial number of messages required to enforce the read, pre-write, and commit phases of the

algorithm.

Implementation of the conservative TO algorithm proposed by Herman and Verjus in a

distributed system is straightforward. The basic idea is to maintain a queue for each TM in the

system at each site. For example, for a system with five sites and five TMs, each site‘s scheduler

will maintain five queues, one for each TM. Each TM sends the lock request to each site‘s

scheduler. The receiving scheduler puts the requests in that site‘s queue, in increasing timestamp

order (oldest first). It should be obvious that the queues for a given TM have the operations in

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 39/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

the same order at all sites. Requests are then processed from the front of the queues in the order

of their age—the oldest first. Although this approach reduces the number of restarts, it does not

completely eliminate them. Suppose when processing operations from the front of queues at Site

5, the scheduler finds the queue for Site 3 empty. This indicates a lack of requests from Site 3. It

is possible that Site 3 has transactions that are older than the ones in the other queues—

processing the requests from younger transactions in the queues for Sites 1, 2, and 4 invalidates

all such older transactions initiated at Site 3, resulting in restarts for those transactions.

One way to get around this problem is to force the schedulers to process the queues only

when there is at least one request in every queue. There are two issues with this approach. First,

this very conservative TO approach forces the system to execute transactions sequentially.

Second, the queues for sites that do not have any transaction waiting to be processed will be

empty. A site with an empty queue cannot process transactions in the other queues until a request

from the corresponding site arrives. To circumvent this problem, we can require each site that

does not have any transaction waiting to be processed to send a dummy request periodically in

order ensure that it does not delay the processing of transactions from other sites.

Note that using timestamps to order the commitment of transactions according to their

age has an advantage over locking—in TO algorithms, local sites will only allow schedules that

are age-sensitive (older transactions commit before younger transactions). For example, assume

transaction T4 commits before T6 at Site 5. If T4 and T6 also run at Site 7, the local scheduler at

Site 7 only allows T4 to commit if it commits before T6, and not the other way around.

Consequently, the second requirement we explained in Section 5.4 is automatically enforced by

the local schedulers.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 40/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

Conflict Graphs and Transaction Classes

SDD-1, a system for distributed databases that was developed at the Computer

Corporation of America, uses the conservative distributed timestamp algorithm with some

modifications [Bernstein80a]. The following provides an overview of SDD-1‘s concurrency

control implementation. SDD- 1 recognizes different classes of transactions and levels of

conflict. Each class contains one set of data items as its read set (RS) and another set of data

items as its write set (WS). As we discussed before, two transactions are in conflict if one writes

a data item that the other reads or writes. This concept is extended to the definition of conflicts

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 41/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

between two transaction classes, TCi and TCj. Two transaction classes are in conflict if one of

the following is true:

WS(TCi) ∩ (WS(TCj) U RS(TCj))

= Ø

WS(TCj) ∩ (WS(TCi) U RS(TCi))

= Ø

A given transaction belongs to a particular class if all of the data items in the

transaction‘s read set are contained within the class‘ read set and all of the data items in the

transaction‘s write set are contained within the class‘ write set. In other words, Ti belongs to

transaction class TCj if and only if

RS(Ti) is a subset of RS(TCj), and

WS(Ti) is a subset of WS(TCj)

Each transaction issues its read requests for the data items contained within its read set

during its read phase. Each transaction issues its write requests during the second phase, which is

called the write phase. Based on the data items currently being read and written, we create a

conflict graph for the classes to which the active transactions belong. A conflict graph is a non

directed graph that has a set of vertical, horizontal, and diagonal edges. A vertical edge connects

two nodes within a class and indicates a conflict between two transactions within the class. A

horizontal edge connects two nodes across two classes and indicates a write–write conflict across

different classes. A diagonal edge connects two nodes within two different classes and indicates

a write– read or a read–write conflict across two classes. The following is an example that shows

how a conflict graph is created. Assume the following read sets and write sets for transactions

T1, T2, and T3:

T1: (RS1) = {a} and (WS1) = {b}

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 42/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

T2: (RS2) = {c} and (WS2) = {d}

T3: (RS3) = {e} and (WS3) = {a, b}

Also, assume that transactions T1, T2, and T3 belong to transaction classes TC1, TC2,

and TC3, respectively, and that Figure shows the conflict graph for these transactions.

Analysis of the conflict graph determines if two transactions within the same class or

across two different classes can be run parallel to each other. In the above example, transactions

T1 and T3 cannot run in parallel since their classes are connected (both diagonally and

horizontally) in the conflict graph. This means that they have both a write–write conflict and a

read–write conflict. On the other hand, transaction T2 can run in parallel to T1 and T3 since

there are no edges between TC2 and TC1 and no edges between TC3 and TC2. By knowing to

which class a transaction belongs, the scheduler at a given site knows whether the transaction can

be safely processed or not. Within a class, conflicting transactions are processed in order,

according to their timestamps. Across classes, transactions only conflict with each other if the

classes they belong to conflict. This allows SDD-1 to statically define classes that can run in

parallel and to statically define classes whose transaction-execution needs to be controlled.

In SDD-1, if a transaction needs to read or write data items at a remote site, it does not

start a child process there—instead it issues a remote read or remote write request. The

implementation assumes that remote requests arrive at their destination in the order of their

timestamp as well. To guarantee this, a younger transaction at a given site (Site K) that wants to

issue a remote read or write request to some other site (Site L) must wait until all older

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 43/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

transactions at Site K have issued their reads and writes to Site L. This requirement further

restricts concurrency among distributed transactions.

Each site maintains two queues (a read queue and a write queue) for each site in the

system. Assuming that there are N sites in the system, each site will have 2 * N queues, out of

which, two queues are set aside for the local operations from the local transactions. In order to

handle read–write conflicts, special processing must be performed when the next read request is

taken from the front of a read queue at a given site. In particular, we must examine all the write

requests that are at the front of all write queues at this site. If any of these write operations are for

an older transaction than the read request we are processing, we must delay the read. If all these

write operations are for younger transactions, we may proceed with the read operation.

Otherwise, the read is delayed. To take care of write–write conflicts, a write request at front of a

write queue at a given site is processed only when all write requests at the front of all write

queues at this site are from younger transactions. Otherwise, the write is delayed. To deal with a

read–write conflict, similar checks are necessary when a read request in the front of a queue at a

site is processed. A careful reader observes that this distributed implementation serializes the

transactions based on their age and therefore reduces the amount of parallelism across

transactions from different sites.

Distributed Optimistic Concurrency Control

To extend the optimistic concurrency control algorithm to a distributed implementation,

two rules must be applied:

• The first rule applies to validating transactions locally. Transaction Ti must be locally

validated at all the sites where it runs. The local optimistic concurrency control algorithm is used

to apply this rule. If Ti is invalid at one or more sites, then it is aborted. Local validation

guarantees that Ti is part of a serializable schedule at the sites where it has been run. After Ti has

been validated at all the sites where it has run, then it needs to be globally validated.

• The second rule applies to validating transactions globally. When two conflicting transactions

run together at more than one site, the global validation requires that these two transactions

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 44/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

commit in the same relative order at all the sites they run together. Suppose transactions Ti and

Tj run at two sites (Site 1 and Site 2). Ti can globally validate if and only if the relative commit

order of Ti and Tj is the same at both Site 1 and Site 2. Otherwise, Ti cannot validate. To apply

this rule, Ti‘s commitment at a site is delayed until all conflicting transactions that precede Ti in

the serialization order are committed or aborted. Note that this requirement makes the algorithm

pessimistic since Ti cannot commit as soon as it is validated at a site.

One way to implement optimistic concurrency control is to require that all local schedulers

maintain a total commitment order for all local transactions. These schedulers are required to

send their total commitment order graphs to the responsible global TM when they validate a

transaction locally. The global TM receiving all such graphs will only commit the transaction

globally if the order of committing the transaction in all local graphs is compatible. Otherwise,

the global TM aborts the transaction.

Federated/Multidatabase Concurrency Control

The concurrency control methods apply only to centralized databases or homogeneous

distributed databases. There are other kinds of distributed database systems, however. In

particular, a different class of distributed database systems known as federated or multidatabase

also exists—its databases are heterogeneous. For this class of distributed database systems,

implementing the concurrency control algorithms that we discussed in this chapter is not

practical for various reasons. The first and foremost issue is that federated and multidatabase

systems integrate both relational and nonrelational (e.g., flat file based) systems, and these

systems do not always expose their transaction management functions (Transaction−Begin,

Transaction−End, Commit, Abort, Lock, Unlock, etc.). As a result, implementation of the

concurrency control algorithms mentioned above is not possible. Even for newer relational

systems, where the distributed database software has access to the transaction management

functions, implementing 2PL negatively affects the sites‘ autonomy and performance.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 45/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:III (QUERY OPTIMIZATION) BATCH-2018-2020(L)

POSSIBLE QUESTIONS

PART B

(EACH QUESTION CARRIES SIX MARKS)

1. Explain in detail about Query processing in distributed systems.
2. Discuss in detail about Query parsing and translation.
3. Discuss in detail about Query Translation in DDBS.
4. State the difference between centralized systems and distributed systems.
5. Expound Query parsing in detail.
6. Give an example for query optimization in sample database.
7. Explain about Query processing in centralized systems in detail.
8. Describe Concurrency Control in DDBS in detail.
9. Discuss in detail about Query Optimization.
10. Describe in detail about heterogeneous Database Systems.

PART C

(EACH QUESTION CARRIES TEN MARKS)

1. Discuss in detail about Cryptography.
2. Discuss in detail about terminologies of failure and commit protocols.
3. Discuss in detail about Query processing in centralized systems.

4. Explain i)Vertical Fragmentation ii)Horizontal Fragmentation in detail.
5. Discuss in detail about DBE taxonomy.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 46/46

KARPAGAM ACADEMY OF HIGHER EDUCATION

DEPARTMENT OF COMPUTER APPLICATIONS

DISTRIBUTED DATABASE MANAGEMENT SYSTEM

SUBJECT CODE:17CAP405D CLASS : II MCA SEMESTER: IV

 Unit-3

Questions Op1 Op2 Op3 Op4 Op5 Op6 Answer

________object in which the operations are performed database semantic security device database

In a distributed DBMS is to make view______ efficient localization normalization materialization distribution n

query expressed on view into a query expressed on base query view query query

relation can be done by_______ optimization management relation modification modification

_______In a distributed system may be derived from

fragmented relations stored at different sites view normal semantic fragmentaion view

In a view the name and its retrieval query are stored in

_____ catalog anolog database partition catalog

The view found in a distributed database catalog then

merged with query on base relations such modified query distributed distributed or distributed

is____ distributed query query query query

View derivation by maintaining actual versions of the

views called system relation optimization snapshot snapshot

_______ does not reflect updates to base relation dynamic static database logic static

________ is an important function of a database system concurrency view security system security

Data security includes how many aspects 1 2 3 4 2

________ Is required to prevent unauthorized users from data data

understanding the physical content of data authorization protection encryption decrypted protection

The information stored on disk and information exchanged data data data

on network is called______ authorization protection data encryption decryption encryption

Encrypted data can be decrypted only by whom?
authorized authorized

user end user all limited user

user

In data security how many schemes are used ? one scheme 4 schemes 3 schemes two schemes two schemes

user authentication is necessary since to be consistent if

the database satisfies a set of constraints called _________ remote reliable programming general programming

semantic integrity constraints are rules that represent the

_________ properities of an application knowledge database static dynamic knowledge

_______expresses basic semantic properties inherent to a behavioural structural structural

model constraints constraints constraints concepts constraints

A data base state is said to be consistent if the database distributed database semantic semantic

satisfies a set of constraints called ________ authorization consis integrity security integrity

_____regulates the application behaviour
behavioural structural behavioural

constraints constraints constaints concepts

constraints

Integrity constraints should be manipulated by the database

administrator using ______ language high level lowlevel structured conceptual high level

how many basic methods permits the rejection of in

consistent updates 1 2 3 4 2

_______assertion to be expressed in tuple relational

calculus Integrity individual set oriented privacy Integrity

single relation and single variable assertions is called individual set oriented assertion taxonomy individual

multirelation and multivariable constraints such as

_______ primary key foreign key secondary unique key primary key

________ is a special processing because of the cost of assertion assertion

evaluating the aggregates involving setorinted individual group involving

The user from query optimization a time consuming task is query query

best handled by__________ processor optmization fragments processor processor

calculus query must be decomposed into a sequence of algebraic algebraic

relational operations called_____ query query located fragments none query

The data accessed by the query must be_________ so that

the operations on relations are translated to bear on local algebraic query

data query localized localized fragments localized

high level query to lowlevel query is the main function query query

of__________ calculus query decomposed algebraic query processor processor

A good measure of resource consumption is the ______ I/o and cpu

that will be incurred in processing the query cost total cost cost cpu cost total cost

Which directly affects their execution time, dictates some
complexiy complexiy

relational relational

implementatio

relational

principles useful to a query processor

algebra algebra binary n

algebra

To avoid the high cost of execution search how many

methods are proposed? 1 2 3 4 2

popular way of reducing the cost of exhaustive search is interactive simulated query

the use of ________ heuristics improvement annealing processor heuristics

optimization can be done ______ before executing the statically & logically & static & static &

query or______ as the query is executed logically dynamically dynamic constant dynamic

The main advantage over static query optimization is minimizing optimizing optimizing

_____ cost cost hiring cost bad choice cost

predicated size and actual size of intermediate relations is query

detected by ? dynamic qp static qp optimization constant qp dynamic qp

The effectiveness of query optimization relies on

________ statistics dynamics exploitation network statistics

one site makes the major decisions and other sites can centralized hyrbrid local hyrbrid

make local decisions are also frequent _______ approach decision approaches information approaches

The power of the client workstation can be exploited to

perform database operations using ________ datamining data shipping optimization query data shipping

_______ is main function that is used to localize the data

involved in the query replicated localization database semijoins localization

______ operation has the important property of reducing

the size of the operand relation joint inner join semi join outerjoin semi join

 query query

Which two layers are involved query rewriting ?
 decompositio decomposition

query data global query n and data

and data

 decompostion localization optimization localization localization

In query decompostion global conceptual schema conceptual

describing the____ relations relation normal global local global

The calculus query is re written in _______ form conceptual normalized global centralized normalized

The normalized query is ________ semanticaly so that

incorrect queries are detected and rejected as early as

possible analyzed restructured simplified views analyzed

The calculus query is _______ as an algebraic query structured joined semantic restructured restructured

Reconstructed by applying the fragmentation rules and localization materializatio localization

then deriving a pogramme is called program n normalized globalized program

query is mapped into a fragment query by substituting each localization materializatio materializatio

distributed relation by its reconstruction is called ? programmer n normalized globalized n

 communicatio

In a distributed query can be described with relational communication n primitives

algebra operation and________ for transferring data primitives and and

between sites communicatio send/receive send/receive receive send/receive

 n primitives operation operation operation operation

query decompostion transforms a _________ into _______
 relational relational

relational relational calculus and calculus and

query calculus algebra algebra normalized algebra

To transform the query to normalized form to facilitate for

their processing is which one of the following goal? normalization centralization decompostion analysis normalization

The main reasons for rejection are that the query is semantically semantically semantically

type_________ incorrect incorrect correct correct incorrect

The last step of query decompostion is _______
 elimination of

normalization analysis redundancy re writing

re writing

sub trees corresponding to the localization programme is reducation

called ? generic query query localization optimization generic query

The vertical fragmentation function distributes a relation projection projection

based on_________ attributes reconstruction decomposition localization attributes

The goal of hybrid fragmentation is to

support,efficiently,queries involving projection, selection

and ________ join inner join outerjoin normal join

Remove useless relation generated by _______ on vertical

fragments contrdicting projections isolate distribute projections

______ordering of operations for a given query is the main optimal execution

role of the query optimization layer optimal optimizer strategy plan optimal

optimal strategy also called ________
optimal query optimal

ordering execution optmizer optimization

ordering

________ plan consisting of the algebraic query specified query optimal query

on fragments and the communication operations execution strategy optimizer query execution

1KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

UNIT-IV

SYLLABUS

Deadlock Handling: Deadlock Definition- Deadlocks in Centralized Systems- Deadlocks in
Distributed Systems- Distributed Deadlock Detection. Replication Control: Replication Control
Scenarios. Failure and Commit Protocols: Terminology- Commit Protocols.

DEADLOCK HANDLING

Both centralized and distributed database environments (DBEs) can utilize locks to

enforce concurrency control. To access a data item, a transaction must put the right type of lock

on it—a read lock to read the item or a write lock to modify the item. Suppose we have a

transaction called T1. If T1 wants to lock some particular data item, but that item is already

locked by some other transaction such as T2, then T1 must wait for T2 to release the lock before

it can proceed. When any transaction waits for another transaction, there is always a potential for

a deadlock.

DEADLOCK DEFINITION

Deadlock, or deadly embrace, is a state of the system in which two or more transactions

wait forever. This is indicated by a cycle in the wait-for-graph (WFG). A WFG is a directed

graph in which the circles indicate transactions and the arcs indicate waits. Sometimes, we put

the name of the data item in contention (the item we are waiting for) on the arc, but often, for

simplicity, the item name may not be shown. Figure depicts the classical example of a two-

transaction deadlock. As seen from this WFG, transaction T1 has locked item Y and needs to

lock item X, while T2 has locked item X and needs to lock item Y. In this case, since both

transactions are waiting, no transaction can continue and a deadlock is formed.

There are three classical approaches to deadlock handling. These approaches can be used

in either a centralized or a distributed database system. These are deadlock prevention, deadlock

avoidance, and deadlock detection and removal.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 1/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

UNIT-IV

SYLLABUS

Deadlock Handling: Deadlock Definition- Deadlocks in Centralized Systems- Deadlocks in

Distributed Systems- Distributed Deadlock Detection. Replication Control: Replication Control

Scenarios. Failure and Commit Protocols: Terminology- Commit Protocols.

DEADLOCKS IN CENTRALIZED SYSTEMS

All three approaches mentioned earlier can be used in a centralized system. Most current

DBMS vendors, such as Oracle, Microsoft, IBM, and Sybase, utilize deadlock detection and

removal in their products.

Deadlock Prevention

Deadlock prevention is an approach that prevents the system from committing to an

allocation of locks that will eventually lead to a deadlock. In other words, it is impossible (both

theoretically and practically) for a deadlock to occur in a system using a deadlock prevention

approach. There are several possible implementations of this approach, but all of them follow the

rule that ―when two or more transactions require conflicting locks for the same data item, only

one of them will be given the lock.‖ One example of such implementation is the preacquisition of

all locks algorithm.

The Preacquisition of All Locks Algorithm

The preacquisition of all locks is an implementation example of deadlock prevention. In

this scheme, transactions are required to lock all the data items they need before they are allowed

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 2/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

to start their work and are also required to hold onto these locks for the entire duration of the

transaction. For example, suppose a transaction needs three data items. This transaction will ask

the lock manager to lock all three items before it starts executing any commands inside the

transaction. If any data item this transaction needs is locked by another transaction, then this

transaction will have to wait. As soon as all the locks needed by the transaction are obtained, this

transaction proceeds. Although this transaction may have to wait before it starts executing, the

system will never be deadlocked since waiting transactions are not running, and therefore not

holding any locks yet. Another way of thinking about this approach is to say that deadlock

prevention deals with deadlocks ―ahead of time.‖

Observation 1: It should be obvious that in order for this approach to work, each and

every transaction in the system must know all the data items they need to lock before they start

executing. If any of this information is missing, the deadlock prevention approach is not going to

work. Therefore, this approach is suitable for transactions that know all the data items they need

a priori. This is, of course, somewhat limiting with respect to the types of transactions that can be

processed. Data driven transactions cannot use this approach since, for them, what the

transaction needs to lock is only known at runtime.

Observation 2: It should also be obvious that this system has no overhead for locking. At

the same time, this approach may cause some transactions to wait indefinitely. This phenomenon

is known as transaction starvation. Transaction starvation usually happens to large/long

transactions that need to lock many data items. Because a long transaction needs to lock many

data items, it is possible (and likely) that while it is waiting, some other smaller/shorter

transactions (requiring fewer data item locks) will succeed in locking the items that it needs. If

these other transactions keep locking items required by our long transaction, the long transaction

might be forced to wait for a long time.

Deadlock Avoidance

Deadlock avoidance is a deadlock handling approach in which deadlocks are dealt with

before they occur. The deadlock avoidance approach uses knowledge about the system in

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 3/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

determining whether or not a wait can lead to a deadlock. If deadlock prevention deals with

deadlocks ahead of time, deadlock avoidance deals with deadlocks ―just in time.‖

In this scheme, transactions can start executing and can request data items to be locked as

needed. If a data item to be locked is available, then the lock manager will allocate that item to

the requesting transaction. On the other hand, if the data item is locked by another transaction,

then the requesting transaction has to wait. If transactions are made to wait without any control,

deadlocks will undoubtedly occur. Therefore, to avoid deadlocks, we must also define a deadlock

avoidance approach. When one transaction requests a lock on a data item that has already been

locked by another transaction in an incompatible mode, the algorithm decides if the requesting

transaction can wait or if one of the transactions needs to abort. Sometimes it is easy to

determine when one transaction can safely wait for another transaction. However, it is not easy

to see if allowing a transaction to wait will cause a deadlock in future.

The database deadlock avoidance approach proposed by Garcia-Molina uses a variation

of the deadlock avoidance approach employed in operating systems. In this approach, data items

are ordered in the system and transactions are required to access data items following this

predefined order. Implementing this approach in a centralized system is straightforward.

Implementing the approach in a distributed database system requires numbering the sites and

then numbering the data items within each site as well. For distributed systems, the combination

of site number and data item number is unique, and the ordering is defined based on this

combination. In a distributed system, transactions are required to request locks on data items

determined by the combined site and item number. This is achieved by transactions visiting sites

in order identified by their site number, and within the site, transactions access the required data

items in order. Garcia-Molina shows that such requirements guarantee that deadlocks never

occur.

Two algorithms proposed by Rosenkrantz can be used to address the uncertainty about

deadlock creation caused by allowing transactions to wait for each other. These algorithms are

known as the wait–die and the wound–wait algorithms.

The Wait–Die Algorithm

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 4/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

Consider two transactions, called ―Ta‖ and ―Tb.‖ Let’s assume that Ta issues a lock

request on data item ―X‖ and that Tb holds an exclusive lock on ―X.‖ In this case, we do not

want to allow Ta to wait for Tb if this wait will eventually cause a deadlock. To make sure that

deadlocks are avoided at all costs, we will utilize each transaction’s age as a way of deciding

whether we should allow or disallow the wait. Obviously, in order to be able to do this, we need

to know the age of each transaction in the system. As a result, we need to keep track of when

each transaction entered the system; in other words, we need to maintain a timestamp for every

transaction in the system. A timestamp is a unique ID that carries site information as well as the

local clock reading at the site where the transaction enters the system. Think of a timestamp as a

sort of ―birth date‖ for each transaction. Because the timestamp contains a site component and a

time component, we can guarantee uniqueness quite easily, by merely restricting timestamp

generation to ―one transaction at a time‖ on each site. Since a transaction can only be ―born‖ at

one site and each site can only create one transaction at a given ―local time,‖ we can be sure that

the timestamp is unique across all sites in the system.

If we timestamp each transaction when it enters the system, we can use the algorithm

depicted in Figure as our wait–die algorithm. Recall that a timestamp is like a birth date. This

means that the smaller a timestamp is, the older the transaction is. For example, a person born in

1908 is older than a person born in 2007, and, of course, 1908 is less than 2007. Therefore, if the

timestamp of Ta, which is written as ―ts(Ta),‖ is less than the timestamp of Tb, we know that Ta

is older than Tb.

This algorithm simply states that when an older transaction (the transaction with the

smaller timestamp) needs to lock an item that has already been locked by a younger transaction

(the transaction with a larger timestamp), the older transaction waits. If, on the other hand, a

younger transaction requests a lock that is held by an older transaction, then the younger

transaction will be killed. Because timestamps are unique, it is impossible for two transactions to

have the same age. Therefore, because we only allow the older transactions to wait, there is no

way that the wait-for-graph can contain a cycle (i.e., a deadlock). The reason the algorithm kills

younger transactions, as opposed to killing older transactions, is a simple priority mechanism.

The belief is that because older transactions have been in the system for a longer period of time

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 5/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

and have done more work, killing them is not advisable. If the younger transaction is killed, it

will be ―reborn‖ later, but when this ―rebirth‖ happens, the transaction will retain its current

timestamp instead of obtaining a new timestamp.

The Wound–Wait Algorithm

Because the wait–die algorithm is very straightforward, it does not recognize some

special cases. For example, there is no special handling in it to address the scenario where a

younger transaction that is a candidate to be killed is very close to being done. Obviously, killing

such transactions can add to the overall system overhead and can delay the average response

time. Because of this shortcoming, a modified approach to the wait–die algorithm, known as the

wound–wait algorithm, can be used instead. This new algorithm has the same assumptions as

those we stated for the wait–die algorithm. Let’s consider two transactions, Ta and Tb, and

suppose that Ta needs a data item that is locked by Tb. Using the wound–wait algorithm, if Ta is

older than Tb, then Ta ―wounds‖ Tb. Notice that we did not ―kill‖ the transaction, we

―wounded‖ it. If instead, Ta were younger than Tb, then Ta would wait for Tb instead of

wounding it. Figure depicts the wound–wait algorithm.

Observation 1: As before, priority is given to older transactions by allowing them to

wound younger transactions and thereby access the data items that were locked by the younger

transactions. The wound process deserves some explanation. Once the transaction is wounded,

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 6/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

the transaction has a small amount of time to finish processing. If the wounded transaction does

not finish within the specified period of time, then the transaction is killed. It is worth noticing

that, during the wound period, the system may actually ―sort of‖ be in a deadlock. This

deadlock, however, is not an indefinite deadlock, and therefore it is not really a deadlock—it is

merely an apparent one. As soon as the wounded transaction is finished or killed, the apparent

deadlock is broken.

Observation 2: The wound period will give the younger transaction that is holding the

data item required by the older transaction a chance to finish. If the younger transaction does

finish within this ―grace period,‖ it will not be killed. This obviously eliminates some of the

drawbacks of the wait–die algorithm.

Observation 3: Both algorithms are run from the ―second‖ transaction’s point of view. In

other words, we are always looking from the transaction (Ta) toward the other transaction (Tb)—

from the transaction requesting the lock (Ta) toward the transaction that ―got there first‖ and

already obtained the lock (Tb) on the data item in conflict. Both names reflect the same

processing order (and this ―second‖ transaction’s point of view): ―wait–die‖ means ―if Ta is

older-then-wait-else-die.‖ ―Wound–wait‖ means ―if Ta is older-then-wound-else-wait.‖ Both

algorithms avoid deadlocks by ensuring the ―death‖ of the younger transaction.

Deadlock Detection and Removal

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 7/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

In this approach, the lock manager component of the concurrency control subsystem does

not check for deadlocks when a transaction requests a lock. The approach is designed for fast

response to lock requests. If the data item in question is not locked, the lock manager grants the

requested lock to the requesting transaction. If the data item in question is already locked by

some other transaction and the lock type is not compatible with the new lock request, the lock

manager makes the requesting transaction wait. It is obvious that, without precautions, some of

these transactions may end up in a deadlock after awhile. To handle this, the lock manager

checks the WFG for cycles (deadlocks) at regular time intervals based on the system load.

Typically, a timer is used to initiate the deadlock detection process. Checking for

deadlocks is initiated when the timer goes off. At that time, the lock manager looks for cycles in

the WFG. It is possible that there are no cycles and therefore no deadlocks at that time, in which

case there is nothing more that needs to be done. If there are any cycles in the graph, the lock

manager will have to select a transaction, a victim, that needs to be rolled back to break the

deadlock. Sometimes, there might be more than one cycle, meaning that there can be more than

one independent (nonoverlapping) deadlock. In this case, one victim from each cycle will have to

be rolled back. Sometimes, two deadlocks may overlap (have one or more transactions in

common). In this case, an efficient lock manager will choose a victim that is present in both

cycles to reduce the overhead of rollback and restart. Once deadlocks are dealt with, the lock

manager resets the timer and continues. Victim selection can be based on many parameters.

Possible approaches to choosing the victim include the following:

• Choosing the youngest transaction as the victim

• Choosing the shortest transaction (transaction with fewest required data items) as the victim

• Choosing the transaction with the lowest restart overhead as the victim

DEADLOCKS IN DISTRIBUTED SYSTEMS

Use of timestamps in dealing with deadlocks is basically the same for both centralized

and distributed DBMSs. In a distributed system, we will rely on the global timestamps and use a

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 8/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

relative order based on age among all transactions in the system. As discussed, this can be

achieved using a combination of site ID and local logical clock readings to guarantee global

uniqueness as well as age fairness. Therefore, with respect to relative age of transactions, the

global timestamps are good indicators and can be used in the wait–die and the wound–wait

algorithms.

Because data is distributed in a DDBMS, the transaction processing is also distributed.

This means that the same transaction might require processing at multiple sites within the

DDBE. Because of this, there are two main issues that we have to deal with when implementing

deadlock handling algorithms in a distributed database system.

The first issue deals with where and when a transaction is active at any given point in

time. Transactions must be processed at each site that contains one or more of the data items

used by the transaction. The amount of processing required at each site is not necessarily divided

equally across all the sites. The start and stop times at each site are dependent on the global

transaction processing model, as well as site-specific details, such as the amount of work

required and the other work being done at that site. This means that processing within a single

distributed transaction does not occur at exactly the same time at all the sites. In other words, we

can consider the distributed transaction to be active at a given site when work is being done there

and inactive when work at the site is either completed, not yet started, or placed on hold for some

time. Depending on our implementation, a given transaction might be active at one or more sites

at any given time, but we cannot guarantee that it is active at any particular site or at any

particular time. As a result, the first issue we have to deal with for a distributed implementation

is directly related to the active/inactive status at a given site for a given transaction. When a

conflict happens between two transactions at a given site, it is possible that one of the

transactions might not be active at that site. This is not an issue in a centralized system since

there is only one DBE that contains all active transactions. We call this issue the transaction

location issue.

The second issue is related to where the algorithms are actually implemented—in other

words, which sites are responsible for carrying out the steps in the deadlock handling scheme.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 9/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

This is not an issue in a centralized system since there is only one DBE that handles all

algorithms. In a distributed system, since there are multiple local DBE servers, we have several

alternatives to choose from when deciding where to implement our algorithms. We could

designate one server as the center of control, we could have a floating control center that travels

from server to server as needed, or we could have a number of servers share the control

responsibility. We call this issue the transaction control issue.

The Transaction Location Issue

In order to better understand why there is an issue with the location of the transaction that

is in conflict with another transaction, we have to understand the processing model we use in

distributed systems. In our processing model, transactions initiate at a single site and get a

transaction ID at that site. This ID is unique throughout the entire distributed database

management system. Once a transaction has been given an ID, it can start processing. If all the

data required by the transaction is locally available, this transaction does not leave its originating

site and is therefore called a local transaction. If the transaction needs to access data items on

other databases at other sites, then the transaction is called a global transaction or a distributed

transaction.

There are two approaches for processing global transactions. In the first approach, the

transaction is broadcast to all sites that contain any data items needed by the transaction and

these sites can then perform the transaction’s work concurrently. In the second approach, the

transaction is not broadcast to all sites but moves from site to site. The difference is that, in the

first case, the transaction might be active at multiple sites at any given point in time, while in the

second case, the transaction is only active at one site at any given point in time. For simplicity of

our discussion, we will only consider the second approach.

In our chosen model—which is also called the daisy-chain model - a transaction carries

some needed information with it when it moves from one site to another. As the transaction

moves from site to site, it includes details such as the list of databases (and sites) that the

transaction has already visited and the number of sites yet to be visited, items the transaction has

already locked, and lock types for items locked. When the transaction terminates, either by

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 10/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

committing (successful termination) or aborting (unsuccessful termination), it sends a message to

all the sites it previously visited informing them of the decision to commit or abort. Figure shows

an example of two transactions in a three-site system. In this figure, T1 initiates at Site 1, does

some processing at Site 1, moves to Site 2 where it performs more work, and finally moves to

Site 3 where it needs to complete its processing. At the same time, T2 initiates at Site 2, performs

some work there, and then moves to Site 3 where it is supposed to finish its processing as well. It

is plausible that the two transactions running at Site 3 cause a conflict. We will discuss in detail

how to handle situations like this, once we explain the details of the distributed wait–die

algorithm.

The Transaction Control Issue

By definition, a distributed system consists of more than one server. This raises an issue

that does not exist in a centralized system where there is only one server that controls everything.

In a distributed system, we have to decide whether the control is given to one site or more than

one site. If the control is given to only one site, we call the control approach ―centralized.‖ If

multiple sites share the control, we call the control approach ―distributed.‖ Variations of these

approaches are also possible. For example, in the centralized control approach, we can have one

fixed site that is always the center of control or the control can be given to a site for awhile and

then transferred to another site. Although different sites may be the center of control, at any

given point in time there is only one controlling site in the system. In distributed control, we can

have all sites be involved in controlling deadlocks or only a subset of the sites.

Distributed Deadlock Prevention

Deadlock prevention in a distributed system is implemented in exactly the same way that

it is implemented in a centralized system. All resources needed by the transaction, in this case a

global transaction, must be locked before the transaction starts its processing. For this alternative

to distributed deadlock handling, the site where the transaction enters the system becomes the

controlling site. Since the transaction does not actually start processing until all required locks

are secured, deadlocks are prevented. All performance issues mentioned for centralized deadlock

prevention are still present in a distributed system. In addition, since the resources that a

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 11/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

transaction needs are potentially stored at different sites on different database servers,

preacquisition will take a longer amount of time to complete due to communication delays. One

side effect of a long wait time is an increased susceptibility to starvation for large/long

transactions.

Aside from this issue, the implementation of distributed deadlock prevention is fairly

straightforward. The controlling site informs the servers where the items the transaction needs

are located, to lock the desired items. The controlling site waits until it receives confirmation that

all items have been locked before it starts processing the transaction. If there are any site failures

or communication failures, it is possible that one or more of the required sites might not be

available. In this case, the transaction cannot start until all failed sites and/or communication

lines have been repaired.

Obviously, the controlling site can also fail while waiting and this can be a complex

problem for this approach to handle. Consider the case where the controlling site fails after lock

acquisition has begun. In this case, all sites that have already locked items must unlock those

items but they will not be able to do that since they cannot communicate with the controlling site.

These sites will need to wait. This is an example of a larger issue known as blocking. With

respect to this issue, if a site failure or communication failure happens, then either the controlling

site blocks other sites or other sites block the controlling site.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 12/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

Distributed Deadlock Avoidance

Distributed deadlock avoidance can have one of the two alternatives that we discussed for

centralized deadlock avoidance. The distributed wait–die and the distributed wound–wait

algorithms essentially work the same as the centralized versions of the algorithms. The major

difference, as mentioned earlier, is that we need to address the transaction location issue and the

transaction control issue. Because each transaction may perform its work on multiple sites, a

given transaction may cause a conflict with some transaction at one site and also cause another

conflict with a different transaction at a different site. It is also possible for one or more of the

conflicting transactions to be inactive at the site where the conflict happens.

The Distributed Wait–Die Algorithm

The basic wait– die algorithm in a distributed system is essentially the same as it is in the

centralized system. When a conflict happens between two transactions, age (based on the global

timestamp) is used as a way of deciding which transaction is to be killed. The algorithm states

that if a younger transaction requests a lock that is already held by an older transaction, then the

younger transaction will die and be reborn later with the same timestamp it has now if the user

still wants to run the transaction. On the other hand, if an older transaction needs to lock an item

that a younger transaction has already locked, the older transaction will wait for the younger

transaction. There are two issues with respect to implementing this algorithm in a distributed

system. The Example explains the transaction location issue.

Example: Let’s assume that transaction ―Ta‖ arrives at Site K, where it needs to lock data item

―X.‖ By the time Ta gets to Site K, suppose transaction ―Tb‖ has already locked X exclusively

at that site. When the conflict happens, Ta’s age is compared to Tb’s age. The action to be taken

depends on which transaction is older and which one is younger. Keep in mind that even though

Ta and Tb have a conflict at Site K, Tb might be active at some other site and therefore not be

active at Site K.

There are two possible cases:

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 13/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

• Case 1: Ta Is Older than Tb. In this case, Ta has to wait for Tb. Since Ta is only active at Site

K, this wait will completely block Ta’s processing. Ta will continue only when Tb has

successfully committed, aborted, or decided to die. How does Ta know how long to wait? Ta will

wait at Site K until the site receives a message that indicates the termination of Tb—either

successful termination or unsuccessful termination. Remember, Site K is in the list of sites that

Tb has visited and, therefore, the broadcast from the concurrency control at the site at which Tb

terminates will include Site K.

• Case 2: Ta Is Younger than Tb. In this case, Ta will have to die. Again, since Ta is only active

at Site K, the concurrency control at Site K kills Ta and sends a message to all of the sites that Ta

has already visited, telling them to also kill Ta. Once Ta has successfully died at all sites, the

user is notified.

The Distributed Wound–Wait Algorithm

Similar to the centralized wound– wait algorithm, when a conflict happens between two

transactions in the distributed wound–wait algorithm, age is used to decide which transaction

waits or is wounded. The algorithm states that if a younger transaction requests a lock on an item

that is already locked by an older transaction, then the younger transaction will wait for the older

transaction. On the other hand, if an older transaction needs to lock an item that a younger

transaction already holds, then the older transaction has the right to wound the younger

transaction to access the resource. Again, there are two issues with respect to implementing this

algorithm in a distributed system.

Example: Continuing with the scenario of Example 6.1, Ta arrives at Site K, where it needs to

lock X. Suppose that by the time Ta gets to Site K, Tb has already locked X exclusively. When

the conflict happens, Ta’s age is compared to Tb’s age. The action to be taken depends on which

transaction is older and which one is younger. Once again, keep in mind that even though Ta and

Tb have a conflict at Site K, Tb might be active at some other site and, therefore, not be active at

Site K.

Case 1 and Case 2 outline the steps required for implementation of this algorithm.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 14/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

• Case 1: Ta Is Younger than Tb. According to the rule, Ta has to wait for Tb. Since Ta is only

active at Site K, this wait will completely block Ta’s processing. Ta will continue only when Tb

has successfully committed or aborted.

• Case 2: Ta Is Older than Tb. According to the rule, Ta wounds Tb. In this case, what happens

next depends on where Tb is active. There are three possible scenarios: (1) Tb is also active at

Site K, (2) Tb has left Site K and is active at some other site, say, Site L, or (3) Tb has left Site K

but is waiting (blocked) at some other site, say, Site N, because the resource it needs is locked by

another transaction that is older than Tb.

Scenario 1: Tb is active at Site K. The concurrency control at Site K will enforce the

wound rule. In this case, Tb is given the wound period of time to finish. If Tb does not finish

within the specified period of time, Site K will roll back Tb locally and broadcast the wound-

rollback message to all the sites that Tb has already visited. Each of these sites will roll back Tb

locally, once they receive this message from Site K.

Scenario 2: Tb has left Site K, so it is not active there, but Tb is active at Site L. In this

case, the concurrency control at Site K broadcasts the fact that Tb has been wounded to all sites.

When Site L receives the wound message, that site carries out the wound rule. Again, if Tb does

not finish within the time period specified by the wound process, then Site L kills Tb locally and

broadcasts the wound-rollback message to all sites where Tb had previously done work. If Tb

does finish within the wound period, then Site L broadcasts the committed message to all sites

where Tb had previously done work.

Scenario 3: Tb has left Site K but Tb is waiting (blocked) at Site N. This scenario is the

same as Scenario 2 with one minor difference. Since Tb is blocked at Site N, Site N will carry

out the wound rule rather than Site L, and there is very little chance of Tb committing during the

wound period.

In general, when a wound message is broadcast for a given transaction, the site at which

Tb is active or is blocked has the responsibility of carrying out the wound process. According to

our processing model, Tb cannot be both active at one site and blocked at another site. Thus,

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 15/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

there is only one site that carries out the wound process and there is no need for further

synchronization. Note also that there is a case when Tb might not be active at any site: this

transaction is not blocked (not waiting for a locked resource), and this transaction is not active.

This transaction is in transit from one site to another. As soon as the transaction arrives at its

destination, it becomes active there. This can be handled simply by caching the message that was

broadcast from Site K and applying it when the transaction arrives at the site with the newly

activated transaction.

Distributed Wound–Wait Control Alternatives

From the control point of view, there are two approaches to implementing deadlock

avoidance algorithms in a distributed system. These are, as mentioned earlier, centralized control

and distributed control. In the centralized implementation, one site has total control, while in the

distributed implementation, two or more sites share the control. Generally, centralized control is

simple to implement since all decisions are made by one site. At the same time, centralized

control suffers from reliability issues, since the center of control is a weak point in the system.

To overcome this issue, distributed control is used to allow the system to operate even when one

or more sites fail. The main issue with distributed control is how sites agree on applying the

same decision. Distributed control requires additional synchronization steps that sites have to

take.

In this example, we describe the centralized control implementation for the distributed

deadlock avoidance algorithm. Let’s assume there are four sites in the system and they are numbered

―S0,‖ ―S1,‖ ―S2,‖ and ―S3.‖ Furthermore, data item ―X‖ is stored at S1, Y is at S3, Z is at S2,

and there are no data items at S0. Let transactions ―T1‖ and ―T2‖ enter the system at roughly the

same time and let T1 be older than T2. T1 is issued at S1 while T2 is issued at S3. S0 is the center of

control running the wound–wait algorithm. Transaction T1 needs to perform operations ―R(X),

W(X), R(Z), W(Z),‖ while T2 wants to perform operations ―R(Y), W(Y), R(Z), W(Z).‖ Obviously,

T1 must perform R(X) and W(X) locally and then move to S2 to perform R(Z) and W(Z). Similarly,

T2 must perform R(Y) and W(Y) locally and move to S2 to

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 16/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

perform R(Z) and W(Z). Figure 6.5 displays data distribution as well as what each transaction

does locally and remotely for this example.

To run their operations locally, T1 and T2 send their lock requests to S0. Since X and Y

are available, S0 will grant the lock requests to allow T1 and T2 to perform their local reads and

writes. Since T1 and T2 enter the system at roughly the same time, the local operations happen in

parallel. After T1 and T2 have finished their local operations, they have to move to S2 to work

on Z. Now, the questions we have to answer are related to the order in which these transactions

arrive at S2 and how the conflict is handled by S0. There are two possible scenarios for T1 and

T2 running at S2.

In the first scenario, we assume that T1 arrives at S2 first and write locks Z by sending a

request to S0. Since at this point in time Z is not locked, T1’s request will be granted and T1 will

lock the item. Later on, when T2 arrives at S2, the item is already locked by T1. In this case,

T2’s request to lock the item will not be granted. The controlling site (S0) will apply the wound–

wait rule. Since T2 is younger than T1, T2 will have to wait for T1 to finish or to roll back. In the

second scenario, T2 gets to site S2 first and locks item Z. In this case, when T1 requests to lock

Z, the controlling site cannot grant the lock to T1 immediately and will have to wound T2.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 17/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

It is easy to see that the outcome of applying the wound–wait algorithm depends on when

transactions request the lock. What happens strongly depends on the timing of transactions and

what operations they perform as part of their processing at any given site. This version of the

algorithm is straightforward and has the lowest overhead for implementing the wound–wait

rules. That is because all of the information necessary to decide whether or not a transaction

could wait or be wounded is stored at one site (site S0 in this case). Although centralization helps

with simplicity of implementing the algorithm, centralization has a major drawback, namely,

having the control site as a potential bottleneck. That is why most distributed database

management systems implement a distributed wound–wait deadlock avoidance approach.

In this example, we outline the details of the distributed wound–wait deadlock avoidance

algorithm. We need to recall two familiar terms and introduce two new terms:

• Local Transaction. A local transaction is a transaction that does not leave the initiation site (as

discussed in Section 6.3.1).

• Global Transaction. A global transaction is a transaction that moves from the initiation site to

other sites (as discussed in Section 6.3.1).

• Awaits. We say that ―transaction S awaits transaction T‖ at a particular site if both S and T are

local and S is waiting for T at that site, or if both S and T are global and have already visited this

site.

• Can-Wait-for. We say that ―transaction Q can-wait-for transaction P‖ at a particular site if

there is no chain of transactions from P to Q in which each process awaits the next at that site.

With these new definitions, we can expand the wound–wait algorithm to incorporate

distributed control. The algorithm is shown in the following figure:

In this algorithm, Ta and Tb are both global transactions. As a result, we have to consider

not only the local waits but also the global waits (which are denoted as ―awaits‖ in this

discussion). Local deadlock detectors can detect deadlocks among local transactions but cannot

detect global deadlocks. To make sure that we do not have a global deadlock—a deadlock

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 18/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

spanning the sites in the global wait-for-graph—we include the condition ―If (Ta can-wait-for

Tb).‖ To demonstrate how this new algorithm works, we apply the distributed wound–wait

deadlock avoidance to a three-site system.

How a distributed wound–wait algorithm works for this setup depends on the age of these

three transactions and the order in which they work on the data items they need at different sites. Let

Q be the oldest transaction, P the next oldest, and N the youngest. Figure 6.8 depicts one possible

scenario where these three transactions enter the system at almost the same time, do some work

locally, and then move to another site to perform the rest of their actions. Note that transaction

actions are ordered from the top of the page to the bottom, that is, ―WLQ(b)‖ happens before

―WQ(b),‖ ―WQ(b)‖ happens before ―WLN(c),‖ and so on. Based on the ordering shown, schedule

―WLQ(b),WQ(b),WLN(c),WN(c),WLP(a),WP(a),WLQ(d),WQ(d),RLN(d),WLP(c)‖ will be formed

at time 13. At this point in time, Q needs to lock item ―a‖ at Site 1 but the item has already been

locked by P. The question that the distributed wound–wait algorithm has to answer is: ―If Q can-

wait-for P,‖ can transaction Q wait for transaction P without the probability of a deadlock?

The answer to the question in this instance is, ―No, we cannot allow Q to wait for P.‖

Since P is already waiting for N, and N is already waiting for Q, making Q wait for P would

cause a distributed deadlock. Since the answer is no, we have to figure out what to do with Q.

That is when we apply the distributed wound–wait rule that says ―if (ts(Q) < ts(P)) then Q

wounds P.‖ Because Q is older than P, Q will wound P. Since P is waiting for N at Site 2, it does

not finish within the wound period, and it will be killed. In this case, Q is then free to finish its

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 19/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

execution, which will then allow N to complete. At this point, P would be free to run if it were

executed again.

Distributed Deadlock Detection

In this deadlock-handling approach, deadlocks are allowed to happen and the system

periodically checks for them. Deadlock detection in a distributed system works exactly the same

as deadlock detection in a centralized system, but it requires the creation of global wait-for-

graphs (WFGs). In this approach, when a transaction requests a lock for a data item, it is not

checked by the system at the time the lock request is made.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 20/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

Sometimes, this will result in one or more deadlocks. To make sure that the deadlocks are

eventually detected, the system maintains what is known as a global WFG that indicates which

transactions are waiting for which other transactions. The existence of a directed cycle in this

global WFG indicates a deadlock. It is not too complicated to detect deadlocks that are local to a

site. This has been done by all centralized database management systems for many years. In a

distributed database management system, however, the problem arises from having transactions

wait for resources across the network. In this section, we describe how to extend the approach to

local deadlock detection in a centralized system to detect deadlocks in a distributed system.

Deadlock detection algorithms use the concept of a timer. The timer is set to the

prespecified amount of time in which a transaction is expected to finish. If the transaction does

not finish within a predetermined amount of time and the timer goes off, we suspect that the

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 21/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

transaction is in a deadlock and needs our intervention. The other mechanism required for

deadlock handling is the concept of a deadlock detector. In a centralized system, there is one

deadlock detector that is located with the local database management system. In a distributed

system, we can have one or more deadlock detectors. Each deadlock detector is responsible for

detecting deadlocks for the site or sites that are under its control. There are three alternatives for

deadlock detection in a distributed system. They are centralized, hierarchical, and distributed

deadlock detectors.

Centralized Deadlock Detectors

We can designate one site in a distributed system as the centralized deadlock detector.

Periodically, each site sends its local WFG (LWFG) to this controlling site. The control site then

assembles a global wait-for graph (GWFG) to determine if there are any local or distributed

deadlocks. If the controlling site detects any deadlock, it must choose a victim transaction, which

will be aborted to break the deadlock. Once the victim transaction is chosen, the controlling site

will send information to the site where the transaction was initiated to roll back the transaction.

Although centralized deadlock detectors are easy to implement, they are not very reliable.

Often, the controlling site will create a bottleneck, which means that the communication lines to

the site are overwhelmed and the site may be overloaded if there are too many transactions in the

system and the LWFGs contain long chains. To overcome the bottleneck issues with centralized

deadlock detectors, we can implement a hierarchical or a distributed deadlock detection

mechanism.

Hierarchical Deadlock Detectors

In this approach to deadlock detection, there can be more than one deadlock detector in

the system, organized into a hierarchy. Each deadlock detector in the hierarchy is responsible for

collecting the wait-for-graph information from all sites that are under its control. In turn, each

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 22/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

detector can then send the collected wait-for-graph information to a deadlock detector that is at a

higher level in the hierarchy. The site at the top of the hierarchy tree (the root) is responsible for

detecting deadlocks across all sites. This approach works well for a system that consists of

multiple regions. Each region’s deadlock detection responsibilities are assigned to a particular

site in that region. Since most deadlocks occur among transactions that only run within a region,

regional deadlock detectors work well. If deadlocks occur across regions, then the site that is

designated as the root of the hierarchy can detect them by merging the WFGs from each regional

deadlock detector involved. It should be obvious that this approach is more reliable than the

centralized deadlock detection approach because there is more than one detector in the system at

any given point in time.

Distributed Deadlock Detectors

In this approach to deadlock detection, all the sites participate in detecting and resolving

potential deadlocks. Ron Obermarck first introduced an approach to distributed deadlock

detection that shares the responsibility of detecting distributed deadlocks among all sites in the

system. This approach has the highest level of reliability since the system can continue working

even when one or more sites have failed. Before we talk about how distributed deadlock

detection works, we should describe what makes up a distributed deadlock. In order to

understand how transactions can create a distributed deadlock, we have to understand the

transaction-processing model we introduced earlier in this chapter. We discussed the fact that in

our model a transaction carries out its work by moving from site to site. We now extend that

concept to include the concept of subtransaction. We defined a global transaction as one that

leaves its initiation site after performing some work locally. To perform work at another site, a

global transaction spawns a subtransaction at that site. All spawned subtransactions are called

children of the global transaction. Because of the processing model we described earlier in this

chapter, a global transaction can be active at only one site at any given point in time, which

means that only one subtransaction can be active for a given transaction at any time.

For example, assume that T1 is a transaction initiated at Site 1 and it needs to perform

some database access operations at both Site 1 and Site 2. T1 performs its intended work at Site

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 23/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

1 by spawning a subtransaction at Site 1. Once T1 has finished working with the local database

at Site 1, it spawns another subtransaction at Site 2 to access the database at that site. At this

point in time, the child of T1 at Site 2 is the only child of T1 that is active. In some respects, we

can consider T1’s child at Site 1 to be waiting for T1’s child at Site 2. Figure depicts the WFG

for two transactions (Ti and Tj) in a distributed deadlock for a two-site system.

Observation 1: As Figure 6.9 shows, the only time we allow ―waiting‖ to span sites is

when the subtransactions are children of the same global transaction. In other words, a

distributed (cross-site) wait must be between two children of the same transaction at two

different sites. In Figure, this is denoted by the two dashed lines.

Observation 2: In Figure 6.9, we can also see that the only time we allow local ―waiting‖

is when the subtransactions are children of different global transactions. In other words, a local

(within-site) wait must be between children of two different transactions at the same site. In

Figure, this is denoted by the two solid lines.

Observation 3: In order for a global deadlock to happen, we must have at least two cross-

site waits in the global WFG.

Observation 4: Although there are no local deadlocks, Figure clearly indicates that

transactions Ti and Tj are in a distributed/global deadlock, because there is a cycle where all the

arrows flow in the same direction.

The following Figure depicts an example of a three-site system in which T7, T8, and T9

are globally deadlocked.

We should recognize that just because there are cross-site waits, it does not mean that

there is always a global deadlock. For example, in a two-site system shown in Figure 6.11, there

is no distributed deadlock even though we have cross-site waits.

If the existence of cross-site waits does not always indicate the presence of a deadlock,

how do we determine if the system is, in fact, in a distributed deadlock state? To examine the

issue, we consider the example WFG depicted in Figure. It is clear that locally (at Site 1) there

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 24/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

are no local deadlocks. How do we know if the transactions on this site participate in a global

deadlock?

Site 1 knows that Ti’s child at Site 1 is waiting for another child of Ti outside Site 1. Site

1 also knows that Tj’s child at Site 1 has been spawned from outside Site 1. The rest of

transactions on Site 1 are all local transactions and, therefore, Site 1 knows their status

completely. Based on the information that Site 1 has, it determines that there is a ―potential‖ for

a global deadlock. As far as Site 1 is concerned, if there is a chain of global waits outside Site 1

that transitively makes Ti wait for Tj, then there is a distributed deadlock. The issue here is that

Site 1 does not know what is going on with transactions Ti and Tj outside of its control. The

approach that realizes the potential for a global deadlock and detects such deadlocks requires the

definition of two new terms and two new rules. In what follows, we explain these two terms and

rules and then provide the algorithm for distributed deadlock detection.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 25/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

Definition 1: Input and Output Ports. Let’s focus on one site. If a transaction at this site

spawns a child at some other site (outside this site), we create an output port at this site. If some

transaction at some other site (outside this site) spawns a subtransaction on this site, we create an

input port at this site. In Figure, transaction Ti has created an output port at Site 1, while

transaction Tj has created an input port at Site 1. To distinguish these ports from subtransactions

we use a square instead of a circle as depicted in Figure.

As far as Site 1 is concerned, if the two ports are connected by a chain of other

transactions, such that the output port is forced to wait for the input port, then there is a global

deadlock as depicted in Figure.

To simplify the process of identifying potential global deadlocks, we can collapse the

output ports and input ports into one port called an ―external‖ port, abbreviated as ―Ex.‖

Definition 2: External Port. An external port is a port that represents the world outside a

site. Figure 6.15 shows the external port (Ex) for Site 1.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 26/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

With this definition of an external port, each site can identify the potential for a global

deadlock locally if Rule 6.1 as discussed below applies.

Rule 6.1:

Potential for a Global Deadlock There is a potential for a global deadlock at a site if and

only if there exists a directed chain of waits that start with Ex and end with Ex at that site. In

other words, there is a potential for global deadlock if a site has a directed cycle of waits

including Ex. For example, in Figure, the cycle ―Ex→Tj→Tk→Tl→Ti→Ex‖ indicates a

potential for a global deadlock including Tj, Tk, Tl, and Ti. Now, we can formally define the

algorithm for distributed deadlock detection.

Algorithm 6.1

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 27/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

• All input and output ports at a site are collected into one port called external (Ex).

• A potential global deadlock is detected by the local deadlock detector when there is a cycle in

the LWFG that includes Ex.

• When such a LWFG is detected, the site sends the LWFG information (including the Ex) to the

other site(s).

• A site combines its local graph with LWFGs received from other sites and checks for cycles in

the combined graph.

• Any cycle in the combined graph indicates a global deadlock.

• Upon detecting a global deadlock, the site selects a victim transaction to be rolled back.

• The site rolls back the selected transaction locally and broadcasts a kill message to other sites.

• Every site receiving the kill message also kills the transaction and releases the resources it is

holding.

Rule 6.2:

Graph Sending Rule When a site detects a potential for global deadlock, the site sends its

graph information if and only if ―the Ex is waiting for a transaction that is younger than the

transaction that is waiting for Ex.‖

Applying Rule 6.2 to the above example results in the following sequence of events:

• Both sites detect a potential global deadlock.

• Site 1 detects ―Ex→T2 →T1 →Ex‖ as a potential for distributed deadlock.

• Site 2 detects ―Ex→T1 →T2 →Ex‖ as a potential for distributed deadlock.

• Site 1 sends ―Ex→T2 →T1 →Ex‖ to Site 2.

• Site 2 does not send its LWFG since in its graph T1 is older then T2.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 28/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

• Site 2 receives information from Site 1, combines the two graphs, and detects the deadlock.

• Site 2 selects either T1 or T2 to be killed (but not both).

• Site 2 informs Site 1 of the decision.

REPLICATION CONTROL

Replication is a technique that only applies to distributed systems. A database is said to

be replicated if the entire database or a portion of it (a table, some tables, one or more fragments,

etc.) is copied and the copies are stored at different sites. The issue with having more than one

copy of a database is maintaining the mutual consistency of the copies—ensuring that all copies

have identical schema and data content. Assuming replicas are mutually consistent, replication

improves availability since a transaction can read any of the copies. In addition, replication

provides for more reliability, minimizes the chance of total data loss, and greatly improves

disaster recovery. Although replication gives the system better read performance, it does affect

the system negatively when database copies are modified. That is because an update operation,

for example, must be applied to all of the copies to maintain the mutual consistency of the

replicated items.

This example shows how the mutual consistency of two copies of a database can be lost

when the copies are subjected to schedules that are not identical. In this example, the value of

data item ―X‖ is 50 at both the LA and NY sites before transactions ―T1‖ and ―T2,‖ as shown

below, start.

Begin_Tran T1; Begin_Tran T2;

R(X); (R(X);

X = X - 20; X = X * 1.1;

W(X); W(X);

End_Tran T1; End_Tran T2;

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT,

KAHE Page 29/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

T1 runs in LA before it moves to NY to run there. T2, on the other hand, runs in NY first

and them moves to LA to run there. Based on this ordering of the transactions’ operations, the

following two schedules are formed at LA and NY:

SLA = R1(X), W1(X), R2(X), W2(X)

SNY = R2(X), W2(X), R1(X), W1(X)

When we apply these schedules to the copies of X in LA and NY, we end up with ―X =

33‖ in LA and ―X = 35‖ in NY as shown below:

At Los Angeles

Initial Value X = 50

T1 Subtracts 20 X = 30

T2 Increases 10% X = 33

At New York

Initial Value X = 50

T2 Increases 10% X = 55

T1 Subtracts 20 X = 35

SLA is a serial schedule as ―T1 → T2‖ and SNY is also a serial schedule as ―T2 →

T1.‖ Although both local schedules are serial schedules and maintain the consistency of the local

copies, the system has a cycle in its global schedule, which leads to the inconsistency between

the copies. To maintain the mutual consistency of the data items in the replicated database, we

must enforce the rule that ―two conflicting transactions commit in the same order at every site

where they both run‖

REPLICATION CONTROL SCENARIOS

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 30/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

It should be clear by now that replication control algorithms must maintain the mutual

consistency of the copies of the database. One way to categorize the approaches is based on

whether or not the copies are identical at all times. From this perspective, there are two

approaches to replication control: synchronous replication control and asynchronous replication

control.

In synchronous replication, replicas are kept in sync at all times. In this approach, a

transaction can access any copy of the data item with the assurance that the data item it is

accessing has the same value as all its other copies. Obviously, it is physically impossible to

change the values of all copies of a data item at exactly the same time. Therefore, to provide a

consistent view across all copies, while a data item copy is being changed, the replication control

algorithm has to hide the values of the other copies that are out of sync with it (e.g., by locking

them). In other words, no transaction will ever be able to see different values for different copies

of the same data item. In asynchronous replication, as opposed to synchronous replication, the

replicas are not kept in sync at all times. Two or more replicas of the same data item can have

different values sometimes, and any transaction can see these different values. This happens to

be acceptable in some applications, such as the warehouse and point-of-sales database copies.

Synchronous Replication Control Approach

In this approach, all copies of the same data item must show the same value when a

transaction accesses them. To ensure this, any transaction that makes one or more changes to any

copy is expanded to make the same change(s) to all copies. The twophase commit protocol (see

Chapter 8) is used to ensure the atomicity of the modified transaction across the sites that host

the replicas. For example, assume we have copied the ―EMP(Eno, Ename, Sal)‖ table in all the

sites in a three-site system. Also, assume transaction ―T1‖ has the following operations in it:

Begin T1:

Update EMP

Set Sal = Sal *1.05

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 31/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

Where Eno = 100;

End T1;

This transaction gives a 5% salary increase to employee 100. To make sure that all copies

of the EMP table are updated, we would change T1 to the following:

Begin T1:

Begin T11:

Update EMP

Set Sal = Sal *1.05

Where Eno = 100;

End T11;

Begin T12:

Update EMP

Set Sal = Sal *1.05

Where Eno = 100;

End T12;

Begin T13:

Update EMP

Set Sal = Sal *1.05

Where Eno = 100;

End T13;

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 32/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

End T1;

where T11 is a child of T1 that runs at Site 1, T12 is a child of T1 that runs at Site 2, and

T13 is a child of T1 that runs at Site 3. Because of this modification, when T1 commits all three

copies will have been updated accordingly. It is important to note that, during the execution of

T1, employee 100’s salary is locked and therefore no other transaction can see a mutually

inconsistent value for this employee’s salary.

The lock is removed when T1 commits, at which time T1 reveals the new salary for

employee 100 in all copies of the EMP table.

It should be obvious that enforcing synchronous replication control has major

performance drawbacks. Another major issue is dealing with site failures. If one of the sites

storing a replica of a data item modified by T1 goes down during the execution of T1, T1 is

blocked until the failed site is repaired. For these reasons, synchronous replication is only used

when one computer is a backup of the other. In this scenario, two computers act as a hot standby

for each other. Suppose we have two servers, ―A‖ as the primary and ―B‖ as the backup, that

need to be identical at all times. In this setup, when A fails, transaction processing continues on

B without interruption. Meanwhile, transactions that run on B are kept in a pending queue for

application to A when it is repaired. When the A server restarts, it is not put back in service until

it is synchronized with the B server. During synchronization, new transactions that arrive at

either site are held in the job queue and are not run. Synchronizing A means that the pending

transactions from B are applied to A in the same order that they ran on B. After all of the

transactions in the pending queue have been processed against A, both servers are put back in

service. At this time, transactions are processed from the front of the job queue and run against

both copies.

Asynchronous Replication Control

In this approach, copies do not have to be kept in sync at all times. One or more copies

may lag behind the others (be out of date) with respect to the transactions that have run against

the copies. These copies need to eventually catch up to the others. In the industry, this process is

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 33/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

known as synchronization. How and when the out-of-date copies are synchronized with the

others depends on the application. There are multiple approaches to implementing the required

synchronization. Most commercial DBMSs support what is known as the primary copy

approach. This approach is also known as the store and forward approach. The site that is

updated first is called the primary site, while others are known as the secondary sites. Some

DBMS vendors call the primary site the publisher and the secondary sites the subscribers. All

transactions are run against the primary site first. This site determines a serialization order for the

transactions it receives and applies them in that order to preserve the consistency of the primary

copy. The transactions are then queued for application to the secondary sites. Secondary sites are

updated with the queued transactions using a batch-mode process. This process is known as the

rollout. The database designer or the DBA decides on the frequency of rolling out transactions to

the secondary sites.

The secondary copies can be kept in sync with the primary copy by either rolling out the

transactions that are queued or rolling out a snapshot of the primary copy. To roll out queued

transactions, the transactions are run from the front of queue against all secondary sites. In the

snapshot rollout, the image of the primary copy is copied to all secondary sites. The advantage of

rolling out a snapshot of the primary is speed. Most databases support unloading a database to a

file and reloading the database from a file. Snapshot replication can be implemented using these

database capabilities to speed up the synchronization of the secondary sites with the primary.

Snapshot replication can be done on demand, can be scheduled, or can simply run periodically.

In asynchronous replication, the failure of the primary is troublesome, since the primary

is the only copy that is updated in real time. To deal with the failure of the primary, the system

may use a hot standby as a backup for the primary. When the primary fails, the standby will

continue to act as the primary until the primary is repaired and is synchronized. Instead of having

a fixed site as the primary, an approach that allows for a floating primary can also be utilized. In

this approach, the responsibility to be the hot standby for the primary is passed from one site to

another in a round-robin fashion. As another alternative, sites may also be allowed to compete to

be the primary’s hot standby, if the designers choose.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 34/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

Other alternatives to asynchronous replication control can also be implemented. In one

approach, instead of having one primary and many secondary sites, a system can have multiple

primaries and a single secondary. In this case, transactions are applied to each primary when they

arrive at a secondary. Since there is no immediate synchronization between the primaries, the

primary copies may diverge. To synchronize all the copies, transactions that are queued at each

primary are sent to the single secondary for application. This copy will then generate a

serialization order that is applied to the secondary and is then rolled out to all the primaries. In

another approach, as opposed to having sites designated as primary and secondary, we can have

all sites act as peers. In this approach to replication, we utilize symmetric replication in which all

copies are treated the same. Transactions are applied to the local copy of the database as they

arrive at a site. This approach potentially causes the divergence of the replicas. Since the copies

of the database in this approach may diverge, occasionally the system has to synchronize all the

copies. Most DBMS vendors ship the necessary software to compare the contents of the copies

and also provide tools for synchronization and identification of differences in the copies. When

synchronization is required, tools from the DBMS allow the database designer or a DBA to

synchronize the replicas before they are put back in service again.

FAILURE AND COMMIT PROTOCOLS

Any database management system needs to be able to deal with failures. There are many

types of failures that a DBMS must handle.

TERMINOLOGY

We define the terms we need here to make sure that the reader’s understanding of these

terms is the same as what we have in mind.

Soft Failure

A soft failure, which is also called a system crash, is a type of failure that only causes the

loss of data in nonpersistent storage. A soft failure does not cause loss of data in persistent

storage or disks. Soft failures can range from the operating system misbehaving, to the DBMS

bugs, transaction issues, or any other supporting software issues. We categorize these under the

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 35/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

soft failure, since we assume that the medium (the disk) stays intact for these types of failure. A

soft failure can also be caused by the loss of power to the computer. In this case, whatever

information is stored in the volatile storage of the computer, such as main memory, buffers, or

registers, is lost. Again, the assumption we make is that power loss does not cause disk or

database loss. This assumption does not mean that we do not deal with disk failure issues but that

we treat the disk loss under the hard failure that we discuss next. Note that soft failures can leave

the data stored in persistent storage in a state that needs to be addressed; for example, if the

software was in the middle of writing information to the disk, and only some data items were

written before the failure, then, obviously, the data content might be inconsistent, incomplete, or

possibly corrupted. However, the persistent storage did not lose any data. This is true in the sense

that the persistent storage still contains everything we wrote to it—it just does not contain all the

things we intended to write to it.

Hard Failure

A hard failure is a failure that causes the loss of data on nonvolatile storage or the disk. A

disk failure caused by a hard failure destroys the information stored on the disk (i.e., the

database). A hard failure can be caused by power loss, media faults, IO errors, or corruption of

information on the disk. In addition to these two types of failures, in a distributed system

network failures can cause serious issues for a distributed DBMS. Network failures can be

caused by communication link failure, network congestion, information corruption during

transfer, site failures, and network partitioning. There have been many studies on the percentage,

frequency, and causes of soft and hard failures in a computer system over the years. We will not

repeat these finding here.

As a rule of thumb, the following can be used as the frequency of different types of

failures:

• Transaction failures happen frequently—maybe as many as a few times a minute. This is

usually for high-volume transaction processing environments like banking and airline reservation

systems. The recovery is usually fast and is measured in a fraction of a second.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 36/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

• System failures (power failure) can happen multiple times a week. The time it takes to recover

is usually minutes.

• Disk failures can happen once to maybe twice a year. Recovery is usually short (a few hours),

if there is a new, formatted, and ready-to-use disk on reserve. Otherwise, duration includes the

time it takes to get a purchase order, buy the disk, and prepare it, which is much longer (could be

a number of days to a week or two).

• Communication link failures are usually intermittent and can happen frequently. This includes

the communication link going down or the link being congested. Recovery depends on the nature

of the failure. For congestion, typically the system state changes over time. For link failure, the

link will be bypassed by the routing protocols until after the link is repaired. Sometimes the link

failure is caused by the failure of a hub or a router. In this case, the links that are serviced by the

hub or the router are disconnected from the rest of the network for the duration of the time the

device is being repaired or replaced.

Commit Protocols

A DBMS, whether it is centralized or distributed, needs to be able to provide for

atomicity and durability of transactions even when failures are present. A DBMS uses commit

protocols to deal with issues that failures raise during the execution of transactions. The main

issue that the commit protocols have to deal with is the ability to guarantee the ―all or nothing‖

property of transactions. If a failure happens during the execution of a transaction, chances are

that not all of the changes of the transaction have been committed to the database. Commit

protocols prevent this from happening either by continuing the transaction to its completion (roll

forward or redo) or by removing whatever changes it has made to the database (rollback or

undo). The commit protocols guarantee that after a transaction successfully commits, all of its

modifications are written to the database and made available to other transactions. Commit

protocols also guarantee that all the incomplete changes made by the incomplete transactions are

removed from the database by rollback when a failure happens.

Commit Point

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 37/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

A commit point is a point in time when a decision is made to either commit all the

changes of a transaction or abort the transaction. The commit point of a transaction is a

consistent point for the database. At this point, all other transactions can see a consistent state for

the database. The commit point is also a restart point for the transaction. This means that the

transaction can be safely undone. Finally, the commit point is a release point for the resources

that the transaction has locked.

Transaction Rollback (Undo)

Transaction rollback or undo is the process of undoing the changes that a transaction has

made to the database. Rollback is applied mostly as the result of a soft failure (see Section 8.1.1).

Rollback is also used as a necessary part of transaction semantics. For example, in the fund

transfer transaction in a banking system, there are three places from which a transaction should

abort. It is necessary to abort this transaction if the first account number is wrong (it does not

exist), if there is not enough money in the first account for the transfer, and finally, if the second

account number is wrong (it does not exist). The following shows the fund transfer transaction

that is written as a nested transaction consisting of two subtransactions—a debit and a credit

transaction. This nesting of the two transactions allows the program to run on a distributed

DBMS, where accounts are stored on two different servers.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 38/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

This transaction transfers the ―amount‖ from the ―from‖ account to the ―to‖ account.

The debit subtransaction checks the validity of the account from which funds are to be taken. If

that account does not exist, then the transaction is aborted. If the account exists but there is not

enough money to transfer—the resulting balance after the debit is less than zero—the transaction

has to abort again. The credit subtransaction does not need to worry about the amount of money

in the ―to‖ account since money will be added but needs to make sure that the ―to‖ account

exists. If the ―to‖ account does not exist, then the transaction aborts again.

If all three abort conditions are false, then the transaction is at the commit point. At this

point, as mentioned before, the user needs to make a decision to commit the transaction or roll it

back. For an ATM transaction, this point in time is when the ATM machine gives the customer

the option to complete the transaction or cancel it. At this point, each account’s balance has been

updated and everything is ready to be committed. The two database servers—local systems

where the accounts are stored—have the accounts’ balances still locked. Once the user decides to

commit the transaction, the locks are released and the new accounts’ balances are available to

other transactions.

Transaction Roll Forward (Redo)

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 39/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

Transaction roll forward or redo is the process of reapplying the changes of a transaction

to the database. Since the changes are reapplied to the database, typically a transaction redo is

applied to a copy of the database created before the transaction started. Redo is mostly necessary

for recovery from a hard failure.

Transaction States

A transaction goes through the following set of steps during execution:

1. Start_Transaction

2. Repeat

2.1 Read a data item’s value

2.2 Compute new values for the data item

2.3 If abort condition exists then abort and exit

2.4 Write the new value for the data item

2.5 If abort condition exists then abort and exit

3. Until no more data items to process

4. Commit

5. End_Transaction

Statement 1 indicates a transaction’s activation by a user or the system. Similarly,

statement 5 indicates the successful termination of the transaction. The transaction can also

terminate unsuccessfully, as shown in statements 2.3 and 2.5, if abort conditions exist. Some

DBMSs require explicit ―Start Transaction‖ and ―End Transaction‖ while others use implicit

start and end statements. For example, in Oracle a begin transaction is assumed when changes

are made to the database. In this context, an implicit ―End Transaction‖ is assumed when a

commit is issued. On the other hand, in SQL Server the ―Start Transaction‖ and ―End

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 40/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

Transaction‖ are explicit. As seen in the code snippet above, once a transaction starts, it

repeatedly reads the data items from the database, calculates new values for them, and writes

new values for the data items to the database. Obviously, in this algorithm we assume the

operation being performed inside the transaction is an update operation. In case of an insert into

the database, no data items need to be read. Conversely, when a delete command is executed, no

new values are written to the database.

One formal specification of a transaction uses a finite state automaton (FSA) that consists

of a collection of states and transitions. This is typically shown as a state transition diagram

(STD). In a STD, states are shown as circles and transitions as arrows, where the tail is

connected to the state the program leaves and the tip is connected to the state the program enters.

The state of the STD that a transaction is in at the time of a failure, tells the local recovery

manager (LRM) what needs to be done for a transaction. Figure depicts the STD for a

transaction.

In this diagram, the double-lined circles are terminal states and the single-lined states are

transitional. The ―Idle‖ state corresponds to when the transaction is not running.

Once started, a transaction changes state to the ―Active‖ state. In the ―Active‖ state, the

transaction performs its work. In this state, the transaction reads, performs calculations, and

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 41/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

writes data items. If any of the abort conditions hold, the transaction issues an abort and changes

state to the ―Failed‖ state. Entry into the ―Failed‖ state causes the local recovery manager to

undo the transaction. The transaction enters its commit point by transitioning to the ―Before

Commit‖ state. As mentioned before, at the commit point a transaction holds a consistent state

for the database. It can back out of the transaction by canceling the transaction or it can complete

the work by committing. Cancellation is performed by a transition from the ―Before Commit‖

state to the ―Failed‖ state, which causes the LRM to undo the transaction. The successful

termination is initiated by transitioning from the ―Before Commit‖ state to the ―Committed‖

state.

It is important to remember the following:

• In the ―Active‖ state, the transaction has not completed all the work necessary—not all

changes have been made.

• In the ―Before Commit‖ state, the transaction has completed all the work necessary—all

transaction changes have been made.

• In the ―Failed‖ state, the transaction has decided to abort or it has been forced by the DBMS to

abort due to concurrency control and/or deadlock issues.

• In the ―Committed‖ state, the transaction has terminated successfully.

• In the ―Aborted‖ state, the transaction has terminated unsuccessfully.

Database Update Modes

A DBMS can use two update modes:

• Immediate update mode—a DBMS is using immediate updates, if it writes the new values to

the database as soon as they are produced by a transaction.

• Deferred update mode—a DBMS is using deferred update, if it writes the new values to the

database when a transaction is ready to commit.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 42/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

In the case of the immediate update, the old value of a data item being changed is

overwritten in the database by the transaction. As a direct result of this, it is not possible to

rollback the transaction if the old value of the data item is not stored anywhere else. Keep in

mind that maintaining the old value of the data item in memory is not sufficient since the

contents of memory will be lost in the case of power loss or system failure. Therefore, we need a

safe place where the old values of data items can be stored. A transaction log is used for this

purpose.

Transaction Log

A transaction log is a sequential file that stores the values of the data items being worked

by transactions. Like the blocks written on a magnetic tape, a transaction log is a sequential

device. To reach a certain record within the log, the log must be processed sequentially, either

from the beginning or from the end. Typically, log records for a given transaction are linked

together for ease of processing.

The transaction log is used for two purposes. The first use of the log is to support commit

protocols to commit or abort running transactions. The second use of the log is to allow recovery

of the database in case of a failure. In the first case, we use the log information to redo— repeat

the changes of a transaction—or undo— remove the changes of a transaction from a database.

Redo and undo are sometimes called transaction roll forward and rollback, respectively. When a

transaction is rolled forward its changes are redone— rewritten to the database. When a

transaction is rolled back, its changes are undone— removed from the database. In the second

case, the log information is used to recover a database after a power failure or a disk crash. If

power fails, incomplete transactions have to be undone. The log information is used to achieve

this. Also, as we will discuss later, if the disk crashes, completed transactions need to be redone.

Again, the log information is used to achieve this.

Information that is written to the log is used for recovering the contents of the database to

a consistent state after a transaction rollback or after a failure. Without this information, recovery

may not be possible. Technologically, today the safest place a log can be stored is on the disk.

However, if the disk fails and the log is on it, the log is lost. That is, of course, not too troubling

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 43/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

if the database is still intact. Losing the log and the database at the same time, obviously, is

disastrous.

To make sure this is not the case, one of the following alternatives can be utilized:

1. Use tapes for the log. Although this separates the database storage (disk) and log

storage (tape), this is not typically the choice of DBAs because writing to and reading from the

tape is very slow. Some of the DBMSs, such as Oracle, archive the inactive portion of the log—

the log portion that pertains to transactions that have been competed—on tape.

2. In smaller systems where the log and the database share the same disk, one can use

different disk partitions for the database and the log files. Doing so reduces the probability of

loss of the database and the log at the same time when a portion of the disk is damaged. In this

case, if the disk completely fails or the disk controller goes bad, both the log and the database

will be lost.

To guard against the issue with the second alternative, we can store the log and the

database on separate disks. This is typically the case for larger systems where the database may

require more than one disk for its storage. In this case, we can use a separate disk for the log

files. In very large systems, a RAID (redundant array of independent disks) system may be used

to provide for recovery of the disk contents by rebuilding the contents of a failed disk from other

disks. Regardless of the alternative used for maintaining the log, the goal is to keep the log safe

from power loss and/or disk failure. The storage type that is used for the log is known as the

―stable storage‖ as categorized below.

DBMS Storage Types

There are three types of storage in the storage hierarchy of a DBMS:

1. Volatile Storage (Memory). Memory is a fast magnetic device that can store

information for the computer to use. It is called volatile storage since loss of electrical power

causes it to lose its contents. That is why memory is used for temporary storage of information to

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 44/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

serve the need of the CPU. During normal operations of the system, memory-based log files can

be used for database rollback, since during the rollback, the transactions are still running and the

memory contents are still intact. On the other hand, the memory cannot serve as a storage

medium for logs required for database recovery after a failure since the memory contents of a

failed system are lost.

2. Nonvolatile Storage (Disk, Tape). Disk and tape are magnetic devices that can store

information in a way that withstands shutdowns and power losses. The information written to a

disk or a tape stays intact even when the power is disconnected. Although disks and tapes are

nonvolatile with respect to power loss, they are still volatile to medium failure—a disk crash

causes the loss of information on the disk. As a result, a log that is stored on the disk is lost when

the disk crashes.

3. Stable Storage. Stable storage is a storage type that can withstand power loss and

medium failure. The log is written to stable storage so that the information in the log is not lost

when the system is subjected to power failure or disk failure. DBMSs usually maintain duplicate

or triplicate copies of the log files for resiliency. Lampson and Sturgis assume that replicating the

log on the disk (persistent storage) is stable. For the rest of our discussion in this chapter, we also

assume a replicated log on the disk and we refer to the disk as stable storage.

Log Contents

The log is a sequential device consisting of a set of records. A log record stores

information about a change from a single transaction. In addition to the time of the change,

specific information about the transaction ID, the DML operation, the data item involved, and

the type of operation are recorded. Specific record contents depend on the mode of update. To

represent a log record, we use the notation ―.‖. Obviously, since read operations do not change

data item values, they are not tracked in the log. There are many types of log records that support

different strategies for updating the database—immediate versus deferred—and recovery

alternatives for power and disk failures. We will start by investigating the transaction update

modes and their impact on what the log should contain.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 45/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

Deferred Update Mode Log Records

In this mode of update, the DBMS does not write the changes of a transaction to the

database until a transaction decides to commit (the commit point). There are two basic

approaches used for deferred updates. Ozsu and Valduriez outline the details of these approaches

in what they call ¨ ―out-of-place‖ update. We briefly mention the two approaches here.

The first approach uses the concept of differential files, which has been used in the

operating system for file maintenance for many years. Severance and Lohman proposed to

extend the concept to database updates. In this approach, changes are not made to the database

directly, but instead, they are accumulated in a separate file as the difference. A file could

accumulate changes from a single transaction or from multiple transactions. There are two

approaches to merging the changes from the differential files with the database. A transaction’s

changes can be merged into the database when the transaction commits. Alternatively, changes

can be left in the file and be used as the new values for the changed data items. In this case, the

DBMS has to keep track of the new values for data items that have been worked on in the files.

Once these files become too large and the overhead becomes too high, the files are merged into

the database and the differential files are discarded.

The second approach uses the concept of ―shadow paging‖. In this approach, the

database page containing the data item being changed is not modified. Instead, the change is

made to a copy of the page called the ―shadow page.‖ The actual database page holds the old

data item value (used for undo) and the shadow page contains the new data item value (used for

redo). If the transaction decides to commit, the shadow page becomes part of the database and

the old page is discarded. Logging in conjunction with shadow paging has been used to enable

database recovery after a failure in IBM’s System R.

As a direct result of deferred updates, for each data item being changed, the old value

(also known as the ―before-image‖) is in the database until just before the transaction commits.

Therefore, the log only needs to tack the new value (also known as the ―after-image‖) for the

data item being changed in the log. Therefore, in the deferred update mode, the old values of the

data items being changed by a transaction do not need to be written to the log. To see what is

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 46/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

stored in the log for a database that uses the deferred update mode, let T5 be a fund transfer

transaction that transfers $200 from account A1 with the balance of $1000 to account A2 with

the balance of $500. For this example, the records written to the log for T5 are

Notice that every record has a time marker indicating the time of the event. The first

record indicates that transaction T5 has started. The second and third records track the writes that

T5 makes, the time of these events, and the after-images for the data items being changed. The

fourth record indicates that there will be no more changes made by this transaction; that is, the

transaction has entered its commit point at time t4. This log shows a successful completion of

T5, which is indicated by the existence of the commit record at time t5. During normal

operations, transferring the new values for the two data items from the memory buffers is

followed by writing a commit record to the log. If, on the other hand, T5 had decided to abort the

transaction, the log would have contained the following records:

For deferred updates, when T5 aborts there is no need to undo anything. That is because

T5 does not write anything to the database until it decides to commit. If a failure happens,

depending on the time and type of failure, T5 needs to be undone or redone (see Section 8.4). If

T5 needs to be redone, the after-images from the log are used. Again, there is nothing to do to

undo T5.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 47/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

Immediate Update Mode Log Records

In this mode of update, the DBMS writes the changes of a transaction to the database as

soon as the values are prepared by the transaction. As a direct result of this, the old values of the

data items are overwritten in the database. Therefore, the log not only needs to track the after-

images but also the before-images of the data items changed by the transaction. If T5, as

discussed above, runs a system with immediate update, the log records will look like the

following:

When T5 decides to commit, the new values for the two data items are already in the

database. Therefore, the only action required is indicating the successful completion of the

transaction by writing a ―Commit‖ record to the log. In immediate update mode, the DBMS has

access to the before-and after-images of data items being changed in the log. The DBMS can

undo T5 by transferring the before-images from the log to the database and can redo T5 by

transferring the after-images of the data items to the database when needed. It should be obvious

that in a multitransaction system the records that different transactions write to the log are

interleaved.

The log record contents discussed above are generic and do not indicate implementation by

any specific DBMS. Most DBMS vendors use two or three additional fields in each record to help

traverse the records for a given transaction. A linked list is used to connect together all records that

belong to the same transaction. Table 8.1 depicts an example of log records for four transactions

―T1,‖ ―T2,‖ ―T3,‖ and ―T4,‖ including the link fields (Record ID and Link Info in the table). This

information is helpful in locating records for a given transaction quickly during recovery from a

failure. Another point worth mentioning is that commercial DBMSs do not

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 48/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

include ―before commit‖ and ―failed‖ records in the log and therefore eliminate these states.

These states are recorded as part of the commit and the abort states.

This approach speeds up the log management for committed and/or aborted transactions.

The assumption is that most of the time transactions succeed and they are not subjected to

failures. As a result, it seems unnecessary to do a lot of recordkeeping for dealing with failures.

The drawback to this approach, therefore, is the payback when failures do happen.

As an example, assume a system that does not write the ―Before Commit‖ to the log to

indicate that the transaction has finished preparing the new values for the data items. When a

failure during the commitment of the transaction happens, since there is no ―Before Commit‖

record in the log, the LRM has to assume that the transaction was active when the failure

happened and will have to rollback the transaction. It should be easy to see that the existence of

the ―Before Commit‖ record in the log tells the LRM to commit the transaction using the new

values of the changed data items from the log. We encourage readers to map the structure

discussed above with specific DBMS implementation. For example, the following displays an

update statement that changes the balance of account 1111 and the log records that are extracted

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 49/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

by Oracle Log Miner from the log

running

the

select

statement

shown

against

the

―v$logmnr−contents‖ dictionary view.

As can be seen from the results of the select statement, Oracle records the actual SQL

statement in the log record to be able to undo or redo a column change. In addition, Oracle tracks

the operation type, before-image, and after-image for the column being changed. Note that there

are many other columns used in this dictionary view in Oracle that we did not print. These

columns record transaction ID, transaction name, timestamp, table, tablespace, and so on.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 50/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT:IV(DEADLOCK HANDLING) BATCH- 2018-2020(L)

POSSIBLE QUESTIONS

PART B

(EACH QUESTION CARRIES SIX MARKS)

1. Explain in detail about deadlock handling in DDBS.
2. Discuss in detail about replication control.
3. Discuss in detail about Deadlock.
4. Explain in detail about replication control scenarios.
5. Discuss in detail about deadlocks in centralized systems.
6. Describe in detail about replication failures and commit protocols.
7. Explain in detail about deadlocks in distributed systems.
8. Describe about Commit protocols.
9. Describe in detail about distribution deadlock detection techniques.
10. Discuss about the terminologies commit protocols.

PART C

(EACH QUESTION CARRIES TEN MARKS)

1. Discuss in detail about Cryptography.
2. Discuss in detail about terminologies of failure and commit protocols.
3. Discuss in detail about Query processing in centralized systems.

4. Explain i)Vertical Fragmentation ii)Horizontal Fragmentation in detail.
5. Discuss in detail about DBE taxonomy.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 51/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

DEPARTMENT OF COMPUTER APPLICATIONS

DISTRIBUTED DATABASE MANAGEMENT SYSTEM

SUBJECT CODE:17CAP405D CLASS : II MCA SEMESTER: IV

 Unit-4

Questions Op1 Op2 Op3 Op4 Op5 Op6 Answer

The execution cost is expressed as a weighted combination

of I/o_______ and communication cost SMPS HTTP CPU CMPT CPU

How many components involved in query optimization ? 1 2 3 4 3

_______ is the set of alternative execution plans to search

represent the input query cost model starategy query search space search space

_________ predicity of the cost of a given execution plan
search strategy cost model query search spcae

cost model

________ strategey explores the search space and selects search search

the best plan using the cost model costmodel query search space strategy strategy

_________ is a tree such that at least one operand of each

operator node is a base relation linear tree busy tree join tree tree view linear tree

______ is more general and may have operators with no

base relations as operands bushy tree liner tree join tree tree view bushy tree

Deterministic strategies proceed by ____ plan
 search

dynamic deterministic building strategy

building

_______ strategies allow the optimizer to trade

optimization time for execution time normalized transformation optimization randomized randomized

query optimization techniques are often extensions of the

techniques for _____ system INGRES Quel centralized decentralized centralized

_________ Is an important aspect of centralized query

optimization joins semijoins union odering joins odering joins

The semi join acts as a ________ size reducer join queries super join left join size reducer

The optimization timing is dynamic for ______
 R * distributed distributed

SDD --1 algoritham INGRES relational

INGRES

which one handle fragments ? INGRES R * Algorth SDD--I relational INGRES

Distributed INGRES considers ______
 size, local and size, local and

size local processing processing

processing

R * co ordinated by a ________ normal site master site apprentice site website master site

_______ sites are the other sites that have relations

involved in the query normal site master site apprentice site website apprentice site

SDD 1 is derived from_________
 query

hill climbing processing optmization normalization

hill climbing

which is described the both highspeed & medium speed

network R* INGRES SDD Relational R*

The concept of a ________ is used within the database
transaction

domain as a basic unit of consistent and reliable computing

transaction consistency consistent state reliable transaction

______ are quite informal
 consistent and consistent and

consistent reliable reliable durability

reliable

A replicated database is ________ if all the copies of every
mutually mutually

consistent one copy consistent

data item in it have identical values state equivalance resiliency recover state

Reliability refers to both the _____________
 resiliency and resiliency and

resiliency recover recover consistent

recover

The fundamental properties of a transaction__________ as atomicity and atomicity and

the term is used in database system atomicity durability durability recover durability

The transaction can complete its task successfully is called

? commits aborts update null commits

The transaction stops without completing its task is called

? commit aborts update null aborts

Actions are updone by returning the database to the state

before their execution is called? commit aborts rollback deadlock rollback

The data items that a transaction reads are said to write and read

constitute is called ? write set read set set base set read set

The data item that a transaction writes are said to write and read

constitute is called write set read set set base set write set

The union of the read set and write set of transaction is write and read

known as____ write set read set set base set base set

dynamic database have to deal with the problem of phantoms static dynamic tuples phantoms

Transactions are consist of how many properties ? 1 2 3 4 4

 consistency, consistency,

ACID of transation represents atomicity isolation and isolation and

 consistency Isolation durability durability durability

Which transaction is treated as a unit of operations atomicity consistency Isolation durability atomicity

________ of a transaction is simply its correctness atomicity consistency Isolation durabiltiy consistency

Data values that have been updated by a transaction prior

to its commitment is called? dirty degree failure EOT dirty

Which requires each transaction to see a consistent

database at all times ? atomicity consistency durability Isolation Isolation

Which ensures that once transaction commits the result

cannot be erased from the database ? atomicty consistency durability isolation durability

Transaction may be classifed as on line or ________ batch shortlife longlife restricted batch

_________transactions are characterized by very short

execution/response time online batch longlife online, batch online, batch

______ transaction take longer to execute and access a

larger portions of the database oneline batch shrotlife long life batch

________ transaction have a single start point and single nested flat flat

termination point transaction transaction transaction subtransaction transaction

Transaction include other transaction with their own begin nested flat nested

and commit point is known as _________ transaction transaction transaction subtransaction transaction

The transaction that are embeded in another one are nested flat

usually called______ transaction transaction transaction subtransaction subtransaction

transaction from existing ones simply by inserting the old

one inside the new one as ___________ transaction sub nested flat work flow sub

A collection of task organised to accomplish some
Human system

oriented work oriented work transactional

business process is called ?

flow flow work flow work flow

work flow

 both human both human

The transaction workflow consist of __________ human system and system and system

 oriented oriented oriented remote system oriented

concurrency control deals with _________ properites
 isolation and isolation and

Isolation consistency transaction consistency

consistency

_________ is probably the most important parameter in Level of Level of

distributed system concurrecny distributed semantic consistency concurrecny

In serializability how many conflicts are used ? 1 2 3 4 2

________ algorithm synchronizes the concurrent execution

of transaction early in their execution life cycle pessimistic ordering optimistic locking based pessimistic

The pessimistic group consist of ________ algorithms locking based ordering optimistic pessimistic locking based

one of the copies of each lock unit is designated as the centralised primary copy decentralisedlo primary copy

primay copy is known to be ___________ locking locking cking none of these locking

The lock management duty is shared by all the sites of a centralised decentralised decentralised

network is called ? locking primary locking copy locking locking

________ class involves organising the execution order of timestamp timestamp

transactions ordering hybrid fragmentation semantic ordering

communication between the transaction manager at the site primary site centralized co ordinating co ordinating

where the transaction is initiated is called_________ 2PL 2Pl 2PL lock TM TM

primary copy 2PL was proposed for the prtotype distributed primary copy centralized distributed

_________ of INGRES verison 2pl distributed 2pl 2PL verison

The transaction implements the ___________ replica coloumn &

control protocol row rows colomn tuples rows

______ Is only one of the properties of time stamp

generation uniqueness monotonicity time stamp tuple uniqueness

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM

COURSE CODE: 17CAP405D UNIT: V (DDBE SECURITY) BATCH-2018-2020(L)

UNIT-V
SYLLABUS

DDBE Security: Cryptography- Securing Data . Traditional DDBE Architectures: Classifying

the Traditional DDBMS Architecture- The MDBS Architecture Classifications- Approaches for

Developing A DDBE- Deployment of DDBE Software

DDBE SECURITY

Security is a key facet of any database deployment. It is essential that we authenticate

database users (ensuring that they are who they claim to be), allow only authorized users access

to information, and maintain overall system data integrity. There are also many subtle security

issues, specific to databases, such as SQL injection and inference attacks. Distributed database

environments (DDBEs) require communication, so we must ensure not only that the data in

databases is secure but that the communication links between users and their data and among the

communicating DDBE components are also secure.

CRYPTOGRAPHY

Cryptography is the science of creating secrets. Cryptanalysis is the science of breaking

secrets. The related science of hiding secrets is called steganography. To create a secret, we can

use either codes, which map whole words to other words, or ciphers, which map individual

characters (bytes) to other characters (bytes). The use of codes declined after World War II and

today ciphers are most commonly used with digital data. The original (unencrypted) words or

characters are referred to as the original message, the unencrypted message, or more specifically

as the plaintext, while the characters we map to are referred to as the encrypted message or, more

specifically, as the ciphertext.

Specific cryptographic functions include the following:

• Confidentiality keeps messages private between parties even in the face of eavesdroppers

attempting to snoop while data is transported over communication networks or while it resides in

the database.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 1/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

• Authentication allows message receivers to validate the message source and to ensure the

integrity of the message.

• Nonrepudiation validates the message source so strongly that the message sender cannot deny

being the message sender (this is a stronger form of authentication).

There are a number of cryptographic building blocks that provide these functions:

• Conventional cryptography provides confidentiality with previously distributed keys.

• Message digests (MDs) and message authentication codes (MACs) provide authentication.

• Public key cryptography provides confidentiality without prior key distribsution.

• Digital signatures provide nonrepudiation.

• Digital certificates and certificate authorities authenticate public keys.

Conventional Cryptography

Conventional cryptography is a simple concept. Suppose we have two parties who want

to communicate securely with each other; let’s call them Alice and Bob. Further suppose that

Alice and Bob each have their own copy of the same secret key, which is a random string of bits.

When Bob wants to send a message to Alice and wants to ensure that no eavesdroppers can read

it, he encrypts his message with an encryption algorithm that uses his copy of the secret key

before he sends it. After receiving the encrypted message from Bob, Alice uses a corresponding

decryption algorithm that uses her copy of the same secret key to decrypt the message so she can

read it. If Alice wants to send a message to Bob, she can use exactly the same process (sending

an encrypted message to Bob by encrypting her message using her copy of the secret key and

then sending the encrypted message to Bob so that he can decrypt the message using his copy of

the key). This is shown in Figure, with M representing the message, E representing the encrypt

operation, D representing the decrypt operation, and ―secret‖ representing the secret key.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 2/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

There are a variety of algorithms that can provide the encrypt and decrypt operations, but

we always assume that the algorithm is known (or at least knowable). The security of these

algorithms does not depend on the obscurity of the algorithms themselves; it depends solely on

the strength and obscurity of the secret key. Because a key is just a string of bits (typically 128 or

256 bits long) that determines the mapping from plaintext to ciphertext for encryption and from

ciphertext to plaintext for decryption, an attacker can always try to break the encryption by trying

all of the possible keys. This is called a brute force attack. In order to defend against this attack,

we try to use a key space large enough such that the attacker can never, even with large networks

of fast computers, try all of the possible keys in any realistic amount of time. Today, a typical

key size for conventional cryptography is 128 bits, which yields 2128 or 3.4 × 1038 keys. On

average, we need to try half of all the possible keys before we will find the correct one using a

brute force attack. If we deployed a million computers, each trying a million keys per second, it

would take on average 5.4 × 1018 years to find the key needed to decrypt the message. This is

about a billion times the estimated age of the universe!

All of the security in conventional cryptography depends on only two things: a sound

algorithm (assumed to be known to all) and a long, randomly generated key kept secret between

communicating parties. Of course, it is possible that the brute force attack could find the key in a

shorter than average time (or take longer than the average time). Since we can never prevent

these attacks against the key space, we must use an algorithm that has no weakness that would

allow an attacker to find the key or the plaintext more efficiently than brute force.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 3/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

Let us now consider how we can securely transport the shared secret key from Alice to

Bob. We cannot encrypt the key—what key would we use to encrypt the key and how would we

get that encryption key to the other party? In practice, we could send the key via some alternative

communication channel that is hopefully free from eavesdropping, such as email or the telephone

or a person with a handcuffed briefcase, but these are cumbersome alternatives. This form of

cryptography (and its cumbersome key transfer methods) is known as conventional cryptography

because it was the only type of cryptography known before the mid-1970s (and the invention of

public key cryptography).

There are two families of conventional cryptographic algorithms: block ciphers and

stream ciphers. Block ciphers encrypt a block of bits, typically 128 bits long, at a time and do not

maintain state. This means that each resulting ciphertext block does not depend on the encryption

of previous blocks (although we will soon see how to add dependency with a concept called

modes). Stream ciphers encrypt a bit or a byte at a time while maintaining state from previous

encryptions. This means that the same plaintext byte or bit will result in a different ciphertext

byte or bit depending on the previous encryption result. These state-dependent mappings help

thwart cryptanalysis. Over the years, many conventional cryptographic algorithms have emerged.

With block ciphers (and also, as we will see, with public key cryptography), we need to

consider the problem of encrypting data when it does not match the block size of the cipher. The

data we have can be smaller or larger than the cipher block size. We use padding to handle the

smaller case and modes to handle the larger case. If the data we have is smaller than the cipher

block size, we must pad the data, which means that we add bits to the data until it matches the

block size. Unfortunately, just adding 0s or 1s is not cryptographically secure, so special padding

algorithms, usually matched to specific cipher algorithms, perform this function securely. If the

data we have is larger than the cipher block size, we must split it up into chunks that match the

block size. The options for doing this are called modes. The obvious way to do this is to just take

each block size worth of plaintext and encrypt it independently of any previous encryptions. This

is known as electronic code book (ECB) mode. Unfortunately, this approach creates several

problems. Since each block of plaintext is encrypted to the same value ciphertext each time, an

attacker can build a dictionary of ciphertext values knowing that they are repeats of the same

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 4/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

plaintext values. An attacker can also carry out a replay attack by injecting or rearranging

ciphertext blocks, causing unexpected results for the receiver.

A better solution is to chain together successive blocks of encryption so that the

encryption of one block is dependent on the previous encryptions. This yields ciphertext for a

block that is different from the ciphertext generated for the exact same plaintext block elsewhere

in the message. This causes any rearrangement of the encrypted ciphertext blocks to result in an

incorrect (and incomprehensible) decrypted version of the plaintext because of the broken

dependency chain. Many different modes can accomplish this, with different engineering

considerations, but the most common one is cipher block chaining (CBC). When using this

mode, we have to start the chain with a value called an initialization vector (IV). The IV does not

have to be encrypted, but it should be integrity protected and never be reused.

DES/Triple DES

Historically, the most famous algorithm for conventional cryptography was the Data

Encryption Standard (DES). IBM submitted an internally developed cipher for a National

Institute of Standards and Technology (NIST) standardization effort and it became DES, and

reigned from 1976 to 2002. DES uses a 64-bit block size and a 56-bit key length. Unfortunately,

it is no longer recommended due to the general vulnerability to brute force attacks (but it has no

severe breaks). Several factors contributed to this vulnerability, including the 56-bit key length,

the increasing pace of CPU speed improvement, and the ease of harnessing large networks to

provide parallel computing capacity. A cipher based on DES as a building block has extended its

life. By increasing the key length (to either 112 bits or 168 bits depending on the specific

implementation), and encrypting data with DES three times in succession, we get an effective

strength of about 256 that of DES alone. This approach is known as Triple DES, 3DES, or

DESede. Note that there is no ―Double DES‖ algorithm because an attack called the meet-in-

the-middle attack is known. This attack weakens the strength of a Double DES approach—and

actually degrades it to the same strength as the original DES. This attack also explains why the

strength of Triple DES is only 256 instead of 2112 times as strong as DES alone. While Triple

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 5/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

DES is an improvement, it should be viewed as a stopgap solution because of the performance

inefficiencies of using DES three times in succession.

AES

In 2002, NIST selected an algorithm called Rijndael as the successor to DES and

renamed it. The new name they gave it is the Advanced Encryption Standard (AES). AES has a

block size of 128 bits and a choice of three key lengths (128, 192, or 256 bits). The criteria for its

selection as the replacement for DES included many factors, such as resistance to all known

attacks, good performance when implemented in both hardware and software, efficient resource

usage (small memory footprint and small CPU requirements for smart card implementations),

and fast key changing times. Currently, best practice is to use the AES algorithm in new

applications, typically with a 128-bit key length.

RC4

Ron Rivest of RSA, Inc. created RC4 but never officially released it. Ironically, it was

leaked to the public, and once it was leaked, it became commonplace in many applications,

ranging from wireless network encryption to browser security via Transport Layer Security

(TLS)/Secure Sockets Layer (SSL). RC4 is a stream cipher that encrypts and decrypts one byte at

a time. It uses a shared secret key as the seed for a pseudorandom number generator. At the

sender side, each successive byte of the random stream is Exclusive-ORed (XORed) with each

successive byte of plaintext to produce each successive byte of ciphertext. At the receiver side,

each successive byte of the regenerated random number stream (which is the same as the

sender’s stream because of the common key/seed) is XOR ed with each successive byte of

ciphertext to recreate the original plaintext byte.

This approach takes advantage of two properties of XOR. First, if we XOR the same bits

twice (in this case, the pseudorandom number stream), the result will be the same as the original

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 6/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

data. Second, if we XOR with random bits, then the result (in this case, the ciphertext) will also

look like random bits. RC4 can be viewed as a pragmatic implementation of a theoretical cipher

known as a one time pad (OTP). When using an OTP, the sender XORs the plaintext with the

key (a string of random bits, which is exactly the same length as the plaintext), thereby

producing the ciphertext, which is then sent to the receiver. The receiver receives the ciphertext

and then XORs it with the same shared key (that string of random bits used by the sender),

thereby producing the plaintext. OTPs are impractical because the key lengths need to be as long

as the plaintext, the shared key must be perfectly random, and it can never be reused. RC4 makes

this idea more practical by generating the key using a pseudorandom number stream. This stream

can be exactly as long as needed and uses a shared secret seed value, which can then be viewed

as the conventional shared secret key.

Message Digests and Message Authentication Codes

Ensuring data integrity is a fundamental requirement for any database. We must guard

against both accidental database modification and malicious attempts to modify the data. Simple

error detection and correction algorithms, such as cyclic redundancy codes (CRCs), which were

designed to detect errors due to noise and other communication faults, cannot be used for

security. If we did use one of these algorithms, an attacker could easily modify both the data and

the CRC designed to protect the data in such a way that the receiver would be unaware of the

data modification. There are two classes of cryptographic building blocks designed to ensure

data integrity, message digests (MDs) and message authentication codes (MACs). MD

algorithms take a message of unlimited size as input and produce a fixed sized (often several

hundred bits long) output. The output is often referred to as a hash of the input. The algorithm

used for MD is designed to quickly process the large number of input bits into the fixed sized

output. It is essential that this function is one way, meaning that it is computationally infeasible

to reverse engineer the input bit stream from a given output hash value. This means that an

attacker cannot modify the data to match the MD value in an attempt to fool the receiver into

thinking that the data still has integrity. MACs operate similarly to MDs, except that they use a

shared secret key to control the mapping from input message to output hash. Because they use a

secret key, MACs can also authenticate data origin.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 7/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

MD5 and SHA MD5 was the most popular MD algorithm. It generates a 128-bit output

hash. But, because of weaknesses identified with the algorithm, it is no longer recommended.

Despite these weaknesses, it does still exist in many legacy implementations. Its replacement, an

algorithm called SHA-1, has a 160-bit output. However, weaknesses were found in SHA-1 as

well, so it also is no longer recommended (and it also still exists in many legacy applications). A

stronger form of SHA, called SHA-256, is currently recommended while a NIST-sponsored

effort is underway to develop a replacement standard MD algorithm. A popular framework for

turning an MD algorithm into a MAC algorithm is called HMAC (hash message authentication

code). Common versions include HMAC-MD5, HMAC-SHA1, and HMAC-SHA256, which are

based on the named MD algorithms.

Public Key Cryptography

The biggest drawback of conventional cryptography is the requirement for a shared secret

key (and the awkward or insecure options for distributing that key). In the mid-1970s, a number

of solutions to this problem appeared. All of these solutions extended the notion of a single key

to a key pair, consisting of a private key (similar to the secret key of conventional cryptography)

and a mathematically related partner called a public key. The public key can safely be revealed

to the world. The public key can be sent to any party that wants to send a secret message to the

key’s owner without any communication channel protection or prior prearranged secret.

Consider the example shown in Figure. Whenever Bob wants to send a secret message to Alice

using public key cryptography, he first needs to have a copy of Alice’s public key. Because this

is a public key, Alice can make her public key available to Bob using any mechanism she wants

to use (including any nonsecure mechanism). Once Bob has Alice’s public key, he can encrypt

the plaintext of the message he wants to send using Alice’s public key, and then send the

resulting ciphertext to Alice. The ciphertext can also be sent using any mechanism, since it is

encrypted. Once Alice receives the ciphertext message from Bob, she can decrypt it using her

private key. Because Alice is the only one with her private key, she is also the only one who can

decrypt messages encrypted using her public key. If she wants to send a message to Bob, she

would do the same thing Bob did (obtain a copy of Bob’s public key, use it to encrypt the

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 8/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

message, and send it to him). With this technology, any two parties can ensure the confidentiality

of their communication without previously exchanging any secret information.

Unfortunately, public key cryptography algorithms are much less efficient than

conventional cryptography algorithms, typically by several orders of magnitude. This means that

it is usually not practical to encrypt or decrypt long messages with public key cryptography.

However, we can use it to encrypt a secret key. Then, we can simply send the encrypted secret

key using a nonsecure communication channel. Now, we can use conventional cryptography

without the awkward secret key distribution issue. By using this hybrid approach, public key

cryptography is used for its strength (privately distributing a secret key without prior secret

sharing) and conventional cryptography is used for its strength (speed).

We will now look at two algorithms for public key cryptography: the RSA algorithm and

the Diffie–Hellman algorithm. There is also a new family of algorithms called elliptic curve

cryptography (ECC), which might emerge in the future, but we will not cover them here. Note,

as previously discussed, we must pad data that is smaller than a block size and choose a mode for

data that is larger than a block size.

RSA and Diffie–Hellman

Although there are a few different algorithms that can be used for public key encryption,

we will only mention two of them. The RSA algorithm is one of the oldest yet still the most

popular public key cryptographic algorithm. It is based on the computational difficulty of

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 9/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

factoring large numbers into component prime factors. Typically, a user generates a key pair of

size 1024 bits (although the best practice is moving to 2048 bits). The RSA block size is

typically the same as the key length.

The Diffie–Hellman algorithm does not directly perform encryption. It is an algorithm

run between two parties. Each party performs a calculation based on secret information. This

secret information is not preshared with the other party. Instead, the two parties exchange some

public results of those calculations with each other and then perform another calculation. The

algorithm ensures that both parties will have calculated the same result, which can then be

treated as a secret key and used with a subsequent conventional cryptographic algorithm such as

AES. Diffie–Hellman is an example of a class of algorithms known as key agreement algorithms.

Digital Signatures

Digital signatures (DSs) are an authentication technique based on public key

cryptography. A DS can provide authentication, just like a MAC can, but a DS can also provide a

more advanced function, namely, nonrepudiation. There is a subtle distinction between

authentication and nonrepudiation. Suppose Alice receives a message from Bob, and that

message has an associated and appended MAC. Also, suppose that Alice and Bob had previously

obtained the secret MAC key. Alice can then take her key and run the message through the MAC

algorithm to verify that she generates the same MAC code as the one appended to Bob’s

message. Because Alice and Bob are the only ones with the shared secret key, Alice knows that

only Bob could have originated this message and associated MAC. Therefore, Alice has

authenticated Bob as the source of the message (and authenticated the integrity of the message).

But, what would happen if Bob denied that he ever sent Alice this message? If Alice took Bob to

court, could Alice prove that Bob originated the message? Although Alice knows that Bob is the

only one who could have sent this message (because Bob is the only one who had the other copy

of the secret key), Bob could claim that since Alice also has a copy of the secret key, she could

have composed the message and sent it to herself! Alice would not be able to prove him wrong,

so although MACs provide authentication, they do not provide nonrepudiation.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 10/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

With a DS, we can use the public and private key pair and certain public key

cryptographic algorithms (RSA is the most popular choice) to perform a completely different

function than the encryption function we’ve already discussed. When Bob wants to send a signed

message to Alice, he uses his private key to ―encrypt‖ or sign the message. While this action

uses an encryption algorithm, it isn’t true encryption because anyone with the corresponding

public key can decrypt the message, and anyone can potentially get access to the public key.

While the message is not encrypted, it is authenticated, because the message receiver can use

Bob’s public key to ―decrypt‖ or verify the message. This not only authenticates the message

origin to Alice as Bob, but (since Bob is the only holder of Bob’s private key) this provides the

even stronger notion of nonrepudiation. If Alice takes Bob to court, Alice can prove that Bob is

the only one who could have originated the message since he is the only holder of the private key

that was used to sign the message. So, Bob cannot completely deny that he originated the

message. However, there is still a problem in attaining perfect nonrepudiation from digital

signature technology. Bob can claim that his private key was stolen and the thief, not Bob,

signed the message. A family of protocols called arbitrated digital signatures can partially

address this ―stolen key‖ issue, but we will not discuss them here.

For performance reasons, we typically do not sign an entire message. The sender takes a

message and calculates the message digest of the message, and signs (―encrypts‖) that digest

with a private key and appends the signed digest along with the plaintext message. The receiver

removes the appended signed digest and verifies (―decrypts‖) the digest with the corresponding

public key. The receiver then takes the plaintext message and runs it through the same message

digest algorithm. If the results of the verified message digest match the results of the message

digest calculation, then the receiver knows that the message has integrity and authenticates the

message to the sender such that the sender cannot deny message origination. Notice that public

key cryptography can be used for two completely different purposes. If we encrypt a message

with the receiver’s public key, we get an encrypted message, but no authentication. If we sign a

message with the sender’s private key, we get authentication (and nonrepudiation), but no

privacy. We can, however, use both of these functions in sequence.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 11/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

If Bob wants to send a signed, encrypted message to Alice, the following sequence must

occur:

• Bob signs the message he wants to send with his private key.

• Bob encrypts his (already signed) message using Alice’s public key.

• Bob sends the signed, encrypted message to Alice.

If Alice wants to receive a signed, encrypted message from Bob, the following sequence

must occur:

• Alice receives the signed, encrypted message from Bob.

• Alice decrypts the message using her private key.

• Alice verifies the unencrypted message using Bob’s public key.

Digital Certificates and Certification Authorities

While public keys are designed to be publicly shared and distributed, they must also be

authenticated to their owners. Otherwise, anyone could generate a key pair and then distribute it.

The attacker could claim that the public key belonged to someone else, and then use the private

key to intercept and decrypt messages meant for the legitimate receiver. The most famous

scenario for this attack is called the man-in the-middle attack in which a malicious entity in the

middle of a communication path can make two legitimate parties think that they are securely

communicating with each other while the malicious entity can decrypt all the traffic.

The most common solution for this problem is to employ a digital certificate. A digital

certificate for a user or machine consists of a public key, some identifying information (name,

location, etc.), and some dates indicating the certificate validity period. All of this information is

unencrypted, but it is signed with the private key of a trusted third party known as a certificate

authority (CA), such as Verisign, Inc. For a fee, the CA will verify the identity of a party

requesting a certificate and then sign the certificate with their private key. The certificates are in

a format defined in a standard called X.509. The CA public key is distributed in browsers and

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 12/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

operating systems. Using this technology, users do not send their public keys directly to another

party. Instead, they send their digital certificates. Certificate receivers can then verify the CA

signature using their own copy of the CA public key (in their browser or operating system). This

authenticates the owner of the public key contained inside the certificate, which can then be used

for subsequent conventional key distribution, encryption, or digital signature verification. If a

security problem with the key or certificate is found, then the certificate serial number is placed

on the CA’s certificate revocation list (CRL), which should always be checked prior to using any

certificate. Most browsers have a setting that automates this checking, but for performance

reasons, the default is usually set to not check the CRL.

Digital certificates do not need to be signed by a CA, but can be self-signed or signed by

a company for its own use. This works well for internal applications (and there is no external CA

cost). External web users, however, must be presented with a CA-signed certificate or they will

see a message box in their web browser indicating that the certificate cannot be trusted.

SECURING DATA

While secure communication between users and DDBEs, and between DDBE

components themselves, is necessary for overall system security, it is not always sufficient.

Sometimes, we must also protect the data residing in the databases from unauthorized viewing

and modification. Even when these security measures are in place, we can be vulnerable to

various other attacks. In this section, we will begin by examining some techniques for

authorizing data access. Then, we will consider techniques for encrypting data. Next, we will

look at two classes of database-specific security attacks. The first class of attacks (unvalidated

input and SQL injection) depends on deployment and implementation details, while the second

(data inference) has more subtle causes. We will close this section with an overview of data

auditing.

Authentication and Authorization

Authentication for both DDBE users and components can be implemented using digital

certificates, as described above in the TLS protocol using client certificates, or with user ID and

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 13/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

password. Security tokens (in the form of a key fob or a credit cardsized device) are increasingly

popular extensions to the user ID/password approach. They display a sequence of digits, which

randomly change every 30 seconds or so. To authenticate, the user enters his/her user ID, the

displayed digit sequence, and his/her PIN, creating a one-time password. This is known as two-

factor authentication: something you have (the token) and something you know (the PIN).

Biometrics offers a third factor to use for authentication: something you are (such as a

fingerprint).

After users are authenticated to the DDBE, they can only access resources if they are

authorized to do so. If we model our DDBE security service on the traditional Relational

Structured Query Language (SQL) approach, we can offer authorization control via the GRANT

statement. If we execute the GRANT command on the left in Figure 9.4, the Alice DDBE

Account will be granted the right to insert and delete rows in the Employee table. If we execute

the GRANT command on the right in Example 9.1, the Alice User Account will be granted the

right to read rows from the Employee table

and her account will also be granted the right to extend this authorization (SELECT) to

other DDBE Accounts.

A technology called Lightweight Directory Access Protocol (LDAP) can also support

authentication and authorization. Within this context, a directory is a collection of generic

information (such as white pages listing people, their phone numbers, addresses, email addresses,

etc.) Directories can also contain authentication information such as user ID and password

information. Similarly, directories can contain authorization information that specifies what

software an authenticated user can or cannot access. By using either a single LDAP server or a

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 14/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

collection of cooperating LDAP servers, administrators can use a single facility to control

distributed authentication and authorization details. This strategy is called single sign on (SSO).

Microsoft Windows Active Directory provides a similar capability. We must secure all the

communication links to LDAP servers too, which is often done using TLS.

Firewalls, often specialized for use with databases, can control access at the network

level. Administrators can specify parameters such as a list of IP addresses, ports, protocols,

dates, and times for which accesses are allowed or denied. This enables the firewall to filter

unauthorized network traffic before it arrives at the DDBE components. Intrusion detection

systems (IDSs) can monitor network traffic for patterns of malicious traffic (such as viruses,

worms, or live attackers) that can potentially compromise a database. The IDS can then alert an

administrator to take action. Note that IDSs can be human resource intensive because they

typically generate many false positives.

Data Encryption

If the physical hardware systems used by our DDBE components are ever physically

compromised, the disks could be removed and scanned for sensitive data. Even if they are never

physically compromised, these systems could be attacked across a network from remote

machines, from local machines on the network, or even from processes running directly on the

host server itself. This means that sensitive data should be encrypted inside the database storage.

Encrypted file systems (EFSs) are becoming increasingly popular for protecting hard disk

drives (especially on laptops) containing sensitive data. All the data on the disk is encrypted with

a conventional key and accessed via a user password. However, this technology can often create

performance problems when used with database systems because database system designers have

taken great care to optimize data access assuming specific physical disk layouts that might be

disrupted when data is encrypted.

A better approach for encrypting database data is to encrypt the data being stored rather

than the underlying file system. There are two basic approaches: internal to the DBE, and

external from the DBE. In the first approach, we use components or applications to encrypt the

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 15/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

data prior to sending it to the DBE for storage and then use similar components or applications to

decrypt the data after it is retrieved from the DBE. Since the DB is storing the encrypted version

of the data, the data types used inside our DBs must be modeled to hold the encrypted ciphertext,

not the plaintext. This often requires extensive use of binary data types in the database, such as

variable-length binary (varbinary) types or binary large objects (BLOBs). In the second

approach, because the DBE directly supports encryption, the DDBE users can simply read and

write their data normally while the DBE handles the encryption ―under the covers.‖ This is

generally the most efficient approach to data encryption for centralized DBMS.

With any type of encryption, we must be careful with key handling, because a

compromised key means compromised data. Often, the key is protected by a password. This

password must be stronger than the key it is protecting. In this context, stronger has a very

specific, technical meaning, called entropy, that refers to more than just the literal password

length. A long password consisting of words easily found in a dictionary and using only a subset

of possible characters (such as all lowercase letters) has lower entropy than a password that is the

same length but uses random, uniformly distributed characters.

Users must never store their passwords directly on a machine unless the passwords are

also encrypted using a sufficiently strong encryption mechanism. Software providing password

vaulting, a technique where a master password is used to decrypt a list of other passwords, is a

reasonably safe way to store passwords. The master password must be at least as strong as the

contained passwords. The Mac OS X keychain is an example of a password vault.

We must also be careful when the password is supplied by a machine or process instead

of a person. Hard-coding passwords in command scripts can make them vulnerable to both

snooping and to system utilities that list the command lines of running processes. Hard-coding

passwords in source code can make the passwords vulnerable to string extraction utilities. The

best options use operating system provided key protection constructs such as key chains and

ACL protected registries. In the future, secure hardware module key storage will probably

become increasingly popular.

Unvalidated Input and SQL Injection

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 16/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

Unvalidated user input is one of the most common software security flaws. It is

responsible for exploits ranging from buffer-overruns, to command injection, to cross-site

scripting. It is also responsible for a class of exploits specific to databases known as SQL

injection. This attack takes advantage of a lack of user input validation, usually in web-based

input fields for forms and in URLs containing post data. The attack uses cleverly crafted input

values to sneak in SQL commands that can expose confidential information, allow unauthorized

data modification, or even destroy or corrupt the data in the database.

Suppose we have a web-based application that uses web-forms for user input, which it

then uses to build SQL commands dynamically. It creates these SQL commands at runtime by

concatenating SQL command fragments and the user-supplied input values. Although the actual

DDBE authorization and authentication would never be based on this user input, this is an easy

example to explore. For each of these scenarios, suppose our web-based application is an online

storefront of some kind, and the web-form in the scenario is the customer login and password

entry form. Assume we have a relational table named ―CustomerLogin‖ in the DDB that

contains a unique ―CustomerId‖ value for each unique pair of ―CustomerName‖ and

―CustomerPassword‖ values. Our web-form must have two user-supplied data fields; let’s call

them ―inputName‖ and ―inputPass.‖ Now let’s consider what happens when this form is

attacked using a SQL injection technique.

By passing the Password for Customer Login

Suppose our application dynamically builds a SQL Select statement using the hard-coded

strings shown in Figure, and the user input values. Notice that String2 and String3 have a leading

space. Both String3 and String4 have a single-quote (apostrophe) at the end, and both String4

and String5 have a single-quote (apostrophe) at the beginning. String5 ends with a semicolon,

which is the ―end of command‖ character for SQL. When the customer logging in provides

values via the input fields in this form, our application creates a SQL query by concatenating

String1, String2, and String3 together, followed by the value of inputName field, then String4,

followed by the value of inputPass, and then, finally, String5. This SQL query will return the

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 17/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

CustomerId value from the relational table where the CustomerName value and

CustomerPassword value each match the values specified in the web-form fields.

For an example of what we intended to have happen, if a customer named Alice used this

form to enter her name and password (let’s suppose she enters the value ―Alice‖ for inputName

and ―Rabbit‖ for inputPass), our application would create the SQL query in Figure. If the

specified values (CustomerName equal to ―Alice‖ and CustomerPassword equal to ―Rabbit‖)

do not exist for any row in the table, then the SQL query will return an empty set (zero rows

returned, a ―SQL-Not-Found‖ error raised, etc.). If this happens, since there is no

―CustomerId‖ value returned for this query, the login attempt will fail. On the other hand, if the

SQL query returns a nonempty result set, then it will contain Alice’s CustomerId value, and the

login attempt will succeed.

For an example of an unintended consequence, if we have ―unvalidated‖ input for this

web-form (if our code does not adequately check for malicious or invalid customer input), it is

possible that some attacker could cleverly construct values for these input fields to circumvent

both our authentication and authorization mechanisms. Suppose our attacker provides the input

values shown in Figure. The value for each field is the same: a single-quote, followed by a space,

the word ―OR,‖ and another space, and then two single-quotes followed by an equal-sign and

another single-quote. What will happen next?

Figure shows the SQL query that our application would create and execute in this

scenario. Notice that the single-quotes changed the logic of the WHERE clause. Now, we will

return the CustomerId value wherever the CustomerName value is empty OR wherever an empty

string equals an empty string. This would effectively return a random CustomerId value and

allow the attacker to be logged in as this random customer. By specifying a known customer

name for the inputName field, along with this same malicious password value, an attacker can

impersonate any customer.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 18/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

fields to circumvent both our authentication and authorization mechanisms. Suppose our attacker

provides the input values shown in Figure. The value for each field is the same: a single-quote,

followed by a space, the word ―OR,‖ and another space, and then two single-quotes followed by

an equal-sign and another single-quote.

Figure shows the SQL query that our application would create and execute in this

scenario. Notice that the single-quotes changed the logic of the WHERE clause. Now, we will

return the CustomerId value wherever the CustomerName value is empty OR wherever an empty

string equals an empty string. This would effectively return a random CustomerId value and

allow the attacker to be logged in as this random customer. By specifying a known customer

name for the inputName field, along with this same malicious password value, an attacker can

impersonate any customer.

By passing the Password for Change Password

This same technique can be used to circumvent other unvalidated web-forms, even when

we attempt to enforce security. For example, suppose our attacker has logged in using

CustomerName ―Alice‖ and obtained her CustomerId as shown in Figure. Suppose Alice’s

CustomerId value is ―1234.‖ Now, suppose the attacker wants to change Alice’s password—

effectively preventing Alice from being able to log in to her own account. Suppose we had

another (unvalidated) web-form for changing passwords. Even if this form attempted to provide

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 19/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

additional security by requiring the customer to enter the old password value along with the new,

the attacker could again use the technique (and values) shown in Figure. Here, the system would

provide the CustomerId value, and our attacker would provide the ―old CustomerPassword

value‖, and a ―new CustomerPassword value‖ (suppose the new password is ―newValue‖).

Figure shows how the exploited SQL Update command might look in this scenario.

Vandalizing the DDBE

In the previous examples, our attacker was attempting to impersonate one of our

customers. Suppose we encounter an attacker who want

to vandalize our website and DDBE. There are several scenarios where the same SQL injection

technique can allow such an attacker to do very damaging things to our system. The issue of

unvalidated input again plays a key part in this security breach, but we also have a new class of

exposures that increases the potential for harm based on the violation of the least privilege

principle, or granting more authority than necessary.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 20/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

Although there are several different approaches for identifying the right level of authority

for a given application or scenario, they are beyond our scope here. Instead, we will focus on a

simple example demonstrating what can happen when we are too generous with the authorization

policy. When our web application connects to the DDBE, the DDBE authenticates the Account

information that the application is using. Whenever the application attempts to execute a query

or command, the DDBE verifies that the account has the authority to perform the operations

required for request. For example, the account used by our application must have the ability to

read the CustomerLogin table if it is going to verify customer names and passwords, and the

ability to update the CustomerLogin table if it is going to change customer passwords.

Suppose this account is authorized to do more than simply read and update a single table.

In the previous examples, the attacker tricked our application into executing clever variations of

the intended commands. In this scenario, the attacker uses the same security vulnerability

(unvalidated input) and the same exploit (SQL injection) but, because we have given a

tremendous amount of authority to the underlying DDBE account being used by our application,

the unintended commands will be more destructive. For example, suppose our attacker uses the

same web-form and the same dynamic SQL scenario as we depicted in Figure, but now, the

values entered are those in Figure.

Notice that the inputName starts with a single-quote, and then is followed by a

semicolon. Recall that the semicolon terminates a SQL command, which means that the

remaining text is a new command. The remaining text in the name value is a command to drop

the CustomerLogin table. If the account is authorized to do this command, it will destroy the

CustomerLogin table structure and content! The second semicolon in this field is followed by a

space and two dashes (hyphens, minus signs). The space followed by two dashes is recognized as

a ―begin comment‖ command in most SQL parsers. Figure shows the SQL command generated

for this scenario. Everything after the two dashes is ignored. The fact that the SQL query returns

no rows is irrelevant, because after the query executes, the entire table will be dropped.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 21/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

This means that customer login information will be lost, and nobody will be able to log

into the system.

Preventing SQL Injection

There are several techniques for thwarting this attack. First, we can perform simple input

validation, such as ensuring CustomerName values can only contain alphanumeric data (no

spaces, punctuation, numbers, etc.). Similarly, verifying that the user-supplied value falls

between the minimum and maximum lengths defined for the field can limit the amount of

malicious content. Many RDBMS platforms provide a facility known as ―prepared SQL,‖ or

―parameterized SQL;‖ facilities like these can use precompiled type checking as a technique to

minimize exposure to attacks such as SQL injections. Unfortunately, there is no such thing as a

commercial off-the-shelf (COTS) DDBE product. This means that we must manually create the

facilities used to parse and execute commands.

SQL injection is just one example of a broad class of software flaws that can compromise

security in applications. In order to guard against these attacks, there are many preventative

actions that we need to perform, such as ensuring that software memory buffers on stacks and

heaps are not overrun in our components, subsystems, and applications, protecting against

injection for operating system commands and DBE commands, and properly handling exceptions

and return codes.

Data Inference

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 22/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

Databases can also suffer from a specific security and privacy vulnerability, known as a

data inference attack. This attack is extremely difficult to address, and impossible to completely

solve as a general case. When we allow certain, individual queries that are by themselves

innocuous, we cannot prevent the aggregation of these results, which then exposes confidential

information. It is a specific example of a more general problem: when attackers can create data

mining results from disparate sources, each of which is authorized, in order to gain confidential

results through the aggregate.

Suppose we have a relational table named EmpCompensation, containing the columns

and data needed to capture employee salary. Suppose we have three employees named ―John,‖

―Mary,‖ and ―Karen‖ (as shown in the figure data), and each employee has an authenticated

DDBE account. Employee accounts have the privileges necessary to look up their own salary

information, but not the information for other employees. We also allow employees to retrieve

statistical information about salaries in the organization (so that they can see where they fall on

the salary grid).

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 23/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

This means that John could execute the query in Figure, but Mary (or Karen) cannot, but

all three employees can execute the query in Figure. Suppose John uses his query to retrieve his

salary information and Mary uses a similar query to retrieve her salary information. Each of them

can execute aggregate queries on the Employee table, such as those shown in Figure. The first

query will return $20,000, while the second query will return three, in this example. Now, if John

and Mary collude and share their salaries, the average, and the number of salaries, they can infer

their manager Karen’s salary. There are some partial (but no complete) solutions to this problem.

Data Auditing

Data auditing is an essential component of data security. Often, we cannot detect security

breaches when they occur, but examining audit logs for evidence can be a very useful post-attack

tool. Audit logs can vary in detail, but they can contain useful information such as the date and

time for failed access attempts, successful attempts, important modifications made to the system,

and other details. We should try to ensure that the audit log is stored separately from the database

so that attackers who compromise the database cannot attempt to hide their tracks by modifying

the log as well. One approach to accomplish this is to use a separate audit server that can only

receive data in a single direction from the database and uses write-only storage.

TRADITIONAL DDBE ARCHITECTURES

In most large organizations, information that is vital to business operations does not

reside on a single computer system; instead, this information is scattered across many diverse

systems. This distribution of information is more the result of mergers and acquisitions than any

corporate strategy or plan. When a large company subsumes several smaller companies, it also

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 24/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

inherits the information systems that these smaller companies own. In most cases, these systems

do not fit neatly together—often, the database systems are incompatible, the same information is

stored in multiple places using different representations, and the level of quality across these

systems is inconsistent. The larger company, therefore, is faced with the challenge of application

and information integration across these preexisting, incompatible systems that are expected to

have inconsistent and duplicated data. If the company in this scenario decides to build a new

system in an attempt to address the integration challenges we just described, what kind of system

should the company build? This chapter provides some insight into the traditional, architectural

alternatives suitable for this task.

There are several ways to categorize data modeling and data storage techniques.

Similarly, there are multiple ways to categorize database management systems (DBMSs). There

are even different techniques for categorizing the different infrastructures and architectures on

which these database environments (DBEs) are built. Before we do that, however, it would be

useful to revisit why we prefer to use the term ―DBE‖ in this book, rather than the term

―DBMS.‖ We introduced the concept of a DBE as a way to focus on the similarities between

different database implementations, while ignoring any potential differences in their

requirements, abilities, or limitations. For example, we said that even though a DBMS is a useful

tool, there are times when we do not need all of its power or complexity. Therefore, we

developed our own vocabulary. This new term can now safely be used to identify a subsystem

within our architecture that would be satisfied by a DBMS, but could also be satisfied by

something much less powerful than a DBMS or by something much greater than a mere DBMS.

In other words, we introduced this term because the traditional term had too many nonstandard

usages and unintended implications and ambiguities.

We introduce our taxonomy-based categorization technique for similar reasons—we

think that the nomenclature used by other categorization techniques is unintentionally laden with

implications and ambiguities, due in part to the lack of standard definitions for the fundamental

terms being used. For example, the term ―distributed database management system‖ has

traditionally been used in two distinctly different ways. In the first usage, the term ―DDBMS‖

refers generically to any architecture that supports distributed data. Therefore, it is valid to say

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 25/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

that ―a federated database system is one example of a DDBMS, and a multidatabase system is

another example of a DDBMS.‖ However, in its second (and still traditional) usage, the term

―DDBMS‖ is interpreted as the name of a specific architectural approach for implementing a

distributed database. The architecture to which this second usage refers is radically different

from, and incompatible with, many of the other architectural alternatives. Therefore, it is also

valid to say that ―the architecture for a federated database system is completely inappropriate

and incompatible with any implementation of a DDBMS.‖ It is difficult to discuss the generic

architectural issues across these two architectures when both interpretations of ―DDBMS‖ are

being used. Similarly, it is potentially confusing to explain how a system with multiple databases

is not necessarily the same as a multidatabase system because the former does not meet all of the

necessary architectural requirements.

Classifying the Traditional DDBMS Architecture

The DDBMS architecture (meaning the second, traditional interpretation) can be classi-

fied in many ways, but we will look at how it fits within our taxonomy first, before we discuss

any of the other classification methods. In this architecture, the DDBE consists of several Sub-

DBEs (S-DBEs) networked together. The S-DBE’s only purpose in this architecture is to serve

the DDBE as a whole. In other words, the S-DBEs do not allow independent access from outside

the DDBE. For this reason, it could be argued that the S-DBEs are quite different from local

database management systems (LDBMSs). Instead, the S-DBEs act more like the Data Accessors

or the Data Getters (without any application processor to support outside requests). For example,

even if the S-DBEs provided a query processor and a command processor, it would not be

LDBMSs. Typically, LDBMSs would provide one or more interfaces to allow both users and

applications direct access to the data contained in their databases.

The COS-DAD Level

The first level in the taxonomy is the COS-DAD level. Here, we group all the

components and subsystems together (ignoring the differences between them) and focus on how

distributed the deployment can be within the architecture. For the traditional DDBMS

architecture, we have several databases and several S-DBEs. Each S-DBE is typically deployed

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 26/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

at the same site as the database or databases that it manages, but otherwise, all the COSs can be

deployed in a highly distributed fashion. The data stored inside the DBE can also be highly

distributed (fragmented, replicated, or merely located on different S-DBEs).

The COS-COO Level

The second level in the taxonomy is the COS-COO level. Here, we look at how closed or

open the various components and subsystems are. For the traditional DDBMS architecture, we

have essentially implemented the system from scratch. Therefore, this architecture is completely

open. This is a great advantage, since it means that we can always view and modify the

implementation and interface details for any COS in the architecture. However, it also means that

in order to implement this architecture, we probably need to write everything ourselves—which

can be a monumental task unless we limit the functionality that we will support. For example, we

might have restrictions on replication, fragmentation, or even the transactions and write

operations—all in an attempt to make the implementation more practical (and possible).

The SAD-VIS Level

The third level in the taxonomy is the SAD-VIS level. Here, we focus on the schema and

the data for all things stored in the DDBE—in particular, we will focus on the visibility (ability

to access). Since the DBs in this architecture (and S-DBEs) are only used to support the DDBMS

as a whole, we can have total visibility (TV). If we have TV, then we have both total schema

visibility (TSV) and total data visibility (TDV). In other words, there are no hidden data

structures and no hidden data content in this architecture. Every data structure stored in the

database must be visible to the distributed database administrator (DDBA), because it is

impossible to define any data structures from outside the DDBMS—those operations are not

allowed in this architecture. Similarly, all data content must be accessible by the DDBA, because

it is impossible to load any data content without using the DDBMS. We mentioned in Chapter 1

that we can artificially mandate partial visibility (PV), which means either partial schema

visibility (PSV), partial data visibility (PDV), or both PSV and PDV. This is a common practice,

especially in relational DBMS environments—in fact, this is one of the primary purposes of the

SQL view, namely, to limit the schema and data visible to particular users or applications. Again,

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 27/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

this can be artificially mandated (for several good reasons) for the non-DDBA accounts, but

strictly speaking, the architecture requires TV for the DDBA.

The SAD-CON Level

The fourth, and final, level in the taxonomy is the SAD-CON level. Here, we focus on the

visible schema and the visible data for all things stored in the DDBE, and we are mainly

concerned with the degree of control that the DDBA can exercise. In other words, if the DDBA

can perform all possible (valid) schema operations on the visible schema, then we have total

schema control (TSC), if the DDBA can do the same for the visible data, then we have total data

Control (TDC) and the combination is total control (TC). The partial schema control (PSC),

partial data control (PDC), and partial control (PC) are analogous to the previous level’s

―partial‖ scenarios. In the traditional DDBMS architecture, we have TC—since partial control

would imply that some other environment had control over some piece of schema or data and

that is not possible in this architecture. Once again, we could artificially mandate PC for non-

DDBA accounts, but the DDBE requires TC for the DDBA.

DDBMS Architectural Summary

The schema for the DDBMS is designed top–down in this architecture and components

and subsystems are designed and implemented from scratch. The databases, components, and

subsystems can be completely distributed within the environment. Because we write the COSs

ourselves, and only access the databases through the DDBMS environment, the system is

completely open, and the data and schema are completely visible and under the system’s control.

We can always artificially impose limits or restrictions on the distribution, visibility, or control—

but these are not required by the architecture itself.

THE MDBS ARCHITECTURE CLASSIFICATIONS

A good representative of other classification techniques for DDBE architectures can be

found in a survey by Sheth and Larson. What we call a DDBE in our taxonomy is called a

multidatabase system (MDBS) in their classification system. In a MDBS, each S-DBE is called

an LDBMS and is actually limited to being a CDBE. This is different from our nomenclature and

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 28/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

taxonomy—although all the traditional architectures we have considered so far also have this

limitation; the architectures we will discuss in Chapter 13 will use other DDBEs as their S-

DBEs. According to Sheth and Larson, a MDBS can be either a nonfederated database (NFDB)

system or a federated database (FDB) system. There are several differences between these two

subcategories, but the primary distinction is whether the component database systems (S-DBEs)

can be used outside the MDBS. In an FDB, the components can freely be used outside the FDB,

while component database systems participating in an NFDB cannot be used in this way. This

distinction makes the component LDBMS systems in an FDB autonomous while they are

nonautonomous in an NFDB. Therefore, the FDB architecture provides partial visibility and

partial control while the NFDB MDBS architecture allows total visibility and total control. An

example of an NFDB is the UNIBASE architecture. The COSs within FDBs can be coupled to

each other loosely or tightly, Sheth and Larson define a loosely coupled FDB as one that

provides its users with an imported, global view of the schemas defined by the local systems;

while a tightly coupled FDB provides its users access to an integrated, global schema. The

difference in coupling is essentially the distinction between an imported view and an integrated

view. An example of a loosely coupled FDB is the MRDSM architecture. Tightly coupled FDBs

are further divided into single-federation systems, such as DDTS, versus systems with multiple

federations, for example, Mermaid. In a single– federation system, all of the DDBE users have

access to a single, integrated schema. In a multiple federation FDB, there are multiple, integrated

schemas. Other classifications have also been proposed that focus on whether or not database

systems and data models are homogeneous or heterogeneous.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 29/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

APPROACHES FOR DEVELOPING A DDBE

There are two main approaches for developing a DDBE—the first approach uses a top–

down methodology to create the entire system from scratch, while the second uses a bottom–up

methodology to integrate the DDBE from its component S-DBEs. The top–down or bottom–up

approaches apply to both software and database schema creation.

Before delving into the details of the top–down and bottom–up alternatives, we will

review the architecture of a DDBE.

The Top–Down Methodology

In the top–down approach, we develop the entire set of DDBE software components from

scratch. In this approach, we design, develop, test, and deploy all required software components

such as the user interface, transaction management, recovery and fault tolerance, and

optimization services. We can choose to use any programming languages or development

environments we like for these tasks. In effect, we act as the DDBE software vendor. Taken in

the extreme, this is not a good idea. In practice, we feel that this approach is only acceptable for

experimental or research-oriented DDBE projects. This approach is simple to implement in the

sense that it avoids the headaches normally associated with integrating new software with

existing DBMS software. However, we must be willing to invest the time and money necessary

to develop all the required software components, and we must have the necessary skills and

experience to implement this DDBE project by ourselves.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 30/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

Creating the GCS Top–Down

When a DDBE is created top–down, the global conceptual schema (GCS) is created first.

Next, the requirements for local conceptual schemas (LCSs) are determined, and the global

constructs are distributed and deployed into LCSs as needed. Information is loaded into the local

databases as specified by the local system’s LCS. Therefore, the DDBE has total visibility and

total ownership and control over the information in the system.

Developing the Software Top–Down

In a top–down approach, we develop all the necessary software components according to

a predetermined set of requirements. The top–down strategy is typically used for experimental

and research situations where total control is necessary.

Bottom–Up Methodology

In addition to inherent philosophical differences between top–down and bottom–up

methodologies, it is important to mention that in a top–down implementation the DDBE ends up

with only one GCS—the original GCS that we started with. By contrast, in the bottom–up

implementation, the GCS is created by integrating portions of participating LCSs, and, as a

result, we have the option of creating more than one GCS. We can create multiple GCSs to

satisfy the needs of different groups of users and different applications.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 31/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

Creating the GCS Bottom–Up

When we use the bottom–up approach to implement a GCS, each local database

administrator (DBA) decides what degree of visibility and control to allow the DDBE to have.

Each DBA defines a subschema for each local database. Each subschema identifies which parts

of the schema and data will be made visible to the DDBE. Each subschema (called an export

schema is then integrated with the other relevant subschemas from the other local databases in

the environment. This integration results in the creation of a single integrated GCS (called the

unified schema) as implemented in DDTS or the creation of multiple unified schemas as

implemented in Mermaid.

Developing the Software Bottom–Up

In the bottom–up software development approach, we utilize the database management

system functionality of the underlying S-DBEs (usually CDBEs) to develop software capabilities

for distributed concurrency control, distributed fault tolerance, distributed commit, distributed

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 32/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

query optimization, and distributed semantic integrity control. Any additional software

functionality that we need to develop must use, or at least interface with, the capabilities that the

underlying S-DBEs provide. In order to accommodate this, the bottom–up architecture typically

uses the local DBMS software to manage the local data. The DP for each S-DBE interfaces with

the LDBMS software to run the local transactions that were delegated to it by the AP.

DEPLOYMENT OF DDBE SOFTWARE

Once written, the software components of a DDBE need to be deployed across the

different computer systems within our environment. These computer systems may run different

operating systems and support different DBMS software. In order to deploy a software

component on one of these target computer systems, we must compile, link, and install it using

the facilities provided by the underlying platform. In a well-designed architecture, we can reuse

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 33/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

the same source code for several different component implementations and deployments (ideally,

across the entire set of target operating systems and DBMSs in our environment). Figure depicts

an example deployment, where a CP and an AP have been deployed to both a Windows system

and a UNIX-based system. In this example, since the CP has been deployed on both systems,

users on either system can access the information contained within the other system (from both

the Oracle and SQL Server databases collectively).

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 34/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

Figure depicts a different deployment, for a different environment, where a DP has been

deployed to a mainframe system, but there is no AP deployed within that system. In this case, the

users who login to the mainframe do not have access to the data in the Oracle database, but users

on the UNIX machine do have access to both the local data within the Oracle database and the

data within the DB2 database deployed on the mainframe.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 35/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: DISTRIBUTED DATABASE MANAGEMENT SYSTEM
COURSE CODE: 17CAP405D UNIT: V(DDBE SECURITY) BATCH-2018-2020(L)

POSSIBLE QUESTIONS

PART B

(EACH QUESTION CARRIES SIX MARKS)

1. Explain in detail about DDBE Security.
2. Describe in detail about MDBS architecture and classifications.
3. Expound in detail about Cryptography.
4. How to develop a DDBE? Explain the approaches.
5. How to secure data in DDBE? Explain.
6. How to deploy a DDBE software? Explain.
7. Discuss in detail about traditional DDBE architecture.
8. Explain in detail about the cryptography techniques.
9. How to classify the traditional DDBMS architecture? Explain.
10. Describe in detail about the approaches for securing data in DDBE.

PART C

(EACH QUESTION CARRIES TEN MARKS)

1. Discuss in detail about Cryptography.
2. Discuss in detail about terminologies of failure and commit protocols.
3. Discuss in detail about Query processing in centralized systems.

4. Explain i)Vertical Fragmentation ii)Horizontal Fragmentation in detail.
5. Discuss in detail about DBE taxonomy.

Prepared by Dr.K.Prathapchandran, Assistant Professor, Department of CS, CA & IT, KAHE Page 36/36

KARPAGAM ACADEMY OF HIGHER EDUCATION

DEPARTMENT OF COMPUTER APPLICATIONS

DISTRIBUTED DATABASE MANAGEMENT SYSTEM

SUBJECT CODE:17CAP405D CLASS : II MCA SEMESTER: IV

 Unit-5

Questions Op1 Op2 Op3 Op4 Op5 Op6 Answer

__________ when it is first initiated and does not permit it

to proceed if it may cause a deadlock fragmentation transaction deadlock control transaction

______________ is the most popular and best studied
 deadlock deadlock

detection and

detection and

method

detection resolution prevention resolution

resolution

In which approach one site is designated as the deadlock
 centralized centralized

deadlock deadlock deadlock deadlock

deadlock

detector for the entire system

detection resolution detection prevention

detection

 semantic semantic

A correctness criterion called________ relative relative

 atomicity atomicity DBMS Transaction atomicity

open nested transactions are even more relaxed then their nested

closed nested counter parts are called ______ analog anarchic transaction serializability anarchic

________ state of a system can be defined as the response

that system gives to an external stimulus Internal reliability external aviliabiltiy external

A permanent fault is also called________ failure fault hardfault erroneous failure

______ is the expected time between subsequent failures

in a system with repair MTTR MTBF MTBR MTFB MTBF

______refers to system design approach which recognizes fault

that faults will occur fault tolerance prevention fault avoidence fault detection fault tolerance

_________ aims at ensuring that the implemented system fault fault

will not contain any fault fault tolerance prevention fault avoidence fault detection prevention

The terms fault prevention and _____ are used fault fault

interchangebly fault tolerance prevention fault avoidence fault detection avoidence

more efficient function distribution in which application
 parallel

application data base database

application

programs run on workstations is called______

servers server system database

servers

Database function are handled by dedicated computer is
 parallel

application data base database

data base

called_____

servers server system database

server

_________ is used to run the user interface
application data base

server server parallel server client server

client server

Distributed database technology can be naturally revised
 parallel parallel

application data base database

database

and extended to implement_______

server server system client server

system

The main computer executing the application programs data base back end

was termed the ____ Host computer computer computer server Host computer

The dedicated computer was called________
database database back end centralized database

machine computer computer system

machine

Data base server fits naturally in a client_server or database application database

distributed enviornment has an advantages of_______ server server parallel server client server server

Any workstation could access the data at any database local network local network

server through either the_______ local network local access and access global access and access

The value of ____ used to provide efficient database parallel parallel

management system client system server system remote system system

The parallel database system support the
 database database

database

function and

function and

_________interface

function client server client server master slave

client server

______plays the role of a transaction monitor
session request system session

manager manager data manager manager

manager

Request manager receives client requests related to compilation & compilation & data & compilation &

query___________ execution run run & error directory execution

Which one provides the lowlevel functions needed to run session request system

compiled queries in parallel manager manager data manager manager data manager

Parallel system architectures range between two extremes
 shared memory shared

shared_memor

and shared shared

memory and

the _____________ architectures

y shared nothing nothing everything

shared nothing

shared _memory has two strong advantages they
 simplicity & simplicity &

meta control

load

load

are______

information information load behaviour behaviour

behaviour

shared memory has a problem of _______
 limited limited

cost extensibility low aviliabity consistency

extensibility

 higher higher

shared disk suffer from_________ problem higher complexity and complexity

 complexity potential potential simplicity and potential

In _______ each processor has exclusive access to its shared

mainmemory and disk units shared disk memory shared nothing shared shared nothing

 shared

Hierarchical architecture is a combination of ___________ nothing and shared nothing

 shared nothing shared disk shared memory memory and memory

Hierarchical architecture is also called ______ cluster shared disk memory cluster

The term declustering is also used to mean______ partitioning partition hash range partitioning

_______ is the simplest strategy, it ensures uniform data round robin hash range round robin

distribution partitioning partitioning partitioning hash indexing partitioning

____ applies a hash function to some attributes which round robin hash range hash

yeilds the partition number partitioning partitioning partitioning hash indexing partitioning

_______ has distributed tuples based on the value intervals round robin hash range range

of some attributes partitioning partitioning partitioning hash indexing partitioning

_____ enables the parallel execution of multiple queries

generated by concurrent transactions Inter query inter operator intra operation parallelism Inter query

 inter query

_________ are used to decrease response time inter operator inter query and and

 Inter query parallelism parallelism parallelism parallelism

Intra_operator parallelism is based on the decomposition

of one operator in a set of independent sub operators called operator query operator

? instance inter operator inter query parallelism instance

______ has several operators with a producer_consumer pipeline independent pipeline

link are executed in parallel materialized parallelism parallelism processor parallelism

_____ Is the set of alternative execution plan to represent search

the input query cost model strategy search space annotations search space

Operator trees are enriched with_______
 search search

cost model strategy search space annotations

strategy

Load balancing problem can appear with intra_operator attribute value selectivity redistribution

parallelism namley dataskew skew sekew skew dataskew

_____ explores the search space and selects the best plan
 search search

costmodel strategy search space annotations

strategy

_______is the smallest unit of sequential processing that redistribution selectivity product

cannot be further partitioned activation sekew sekew sekew activation

object represents a ________in the system that is being object

modeled real entity identity identical value real entity

An ______ datatype is a template for all objects of that

type primary secondary primitive abstract abstract

The composite object relationship between types can be

represented by______ class collections composition subtyping composition

collection is similar to a_______ in that it groups object collection composition subtyping class class

subtyping is based on the ____ relationship among types specialization collection composition subtyping specialization

The data allocation problem for object database involves methods and methods and

allocation of both________ methods classes classes functions classes

How many types of client /server architectures have been

proposed 2 1 4 5 2

 object object

OID represents the______ identifier identifier

 POID AID management LOID management

The process of converting a disk version of the pointer to a pointer Loid pointer

methods version of a pointer is known as _____ Swizzling Loid mapping generation surrogates Swizzling

A common way of tracking objects is to leave
pointer Loid

Swizzling Loid mapping generation surrogates

surrogates

____ object are currently involved in an activity in

response to an invocation or a message ready active waiting suspended active

_____ object are not currently involved ready active waiting suspended ready

______object are temporarily unavailable for invocation ready active waiting suspended suspended

Relational query lanaguage operate on very simple type physical path query

systems consisting of a single type_____ relation storage expression processing relation

_______is an alternative general technique to represent
access support

access support

and compute path expressions

relation set matching path indexes access suppot

relation

__________ relation that has been defined to determine
access support

serializable histories

relation set matching path indexes access suppot

set matching

	1.pdf (p.1-2)
	2.pdf (p.3-7)
	3.pdf (p.8-28)
	4.pdf (p.29-36)
	5.pdf (p.37-54)
	6.pdf (p.55-58)
	7.pdf (p.59-104)
	8.pdf (p.105-108)
	9.pdf (p.109-159)
	10.pdf (p.160-162)
	12.pdf (p.163-198)
	13.pdf (p.199-202)
	14.pdf (p.203)
	15.pdf (p.204)
	16.pdf (p.205)

