
SEMESTER-IV

17CAP405W WEB SERVICES 4H - 4C

Instruction Hours / week: L: 4 T: 0 P: 0 C : 4 Marks: Internal: 40 External: 60 Total: 100

 End Semester Exam: 3Hours

Scope: This course will give students an overview of the web services architectures, and then

learn the standard APIs for SOAP messaging and WSDL-driven, component-based service

development.

Objective:

 Be able to describe the interoperable web services architecture, including the roles of

SOAP and WSDL.

 Use lower-level SOAP and XML APIs for services and/or clients.

 Build and Host Web Services.

UNIT I

Introduction: What are Web Services – Importance of web services – Web services and

enterprises; XML Fundamentals:: XML Documents - Namespaces – Schema – Processing

XML.

UNIT II

SOAP: SOAP Model – messages – Encoding – RPC – Alternative SOAP encodings –

Document, RPC, Literal, Encoded – SOAP, Web Services and the REST Architecture

WSDL: Structure – Using SOAP and WSDL. UDDI- UDDI Business Registry – Specification –

Data Structures – Life cycle Management – Dynamic Access Point Management.

UNIT III

Advanced Web Services Technologies and Standards: Conversation – Overview – Web Services

Conversation Language – WSCL Interface Components- Workflow-Business Process

Management – Workflow and Workflow Management systems – BPEL. Transaction –ACID

transaction – Distributed Transaction – OASIS Business Transaction Protocol.

UNIT IV

Security – Security Basics – Security Issues – Types of Security Attacks – WS –Security.

Mobile and Wireless – Mobile Web Services – Challenges with mobile – Proxy Based Mobile

Systems -Direct Mobile Web service access - J2ME Web Services.

SEMESTER-IV

17CAP405W WEB SERVICES 4H - 4C

UNIT V

Building Real World Enterprise Web Service and Applications: Real World Web Service

Application Development – Development of Web services and Applications onto Tomcat

application Server and Axis Soap Server.

SUGGESTED READINGS

1. Sandeep Chatterjee, James Webber (2009), Developing Enterprise Web Services: An

Architect’s Guide, 4
th

 Edition, Pearson Education, New Delhi.

2. Martin Kalin (2013), Java Web Services: Up and Running, 2nd Edition, O'Reilly

Media,USA.

3. Vikram Ramchand, Sonal Mukhi (2008), XML Web Services and SOAP , 1st Edition,

BPB Publications, New Delhi.

4. Eric A Marks and Mark J Werrell. (2003), Executive Guide to Web Services, 1st Edition,

John Wiley and Sons, New Delhi.

WEB SITES

1. www.w3schools.com/webservices/default.asp

2. en.wikipedia.org/wiki/Web_service

3. www.webservices.org/

4. https://www.cl.cam.ac.uk/~ib249/teaching/Lecture1.handout.pdf

5. http://www.codejava.net/java-ee/web-services/create-client-server-application-for-web-

service-in-java

http://shop.oreilly.com/product/0636920029571.do#tab_04_2

KarpagamAcademy of Higher Education

 (Established Under Section 3 of UGC Act 1956)

Eachanari Post, Coimbatore – 641 021. INDIA

Phone : 0422-2611146, 2611082 Fax No : 0422 -2611043

17CAP405W WEB SERVICES

LECTURE PLAN

S.No Lecturer

Duration(Hrs)

Topics to be Covered Support Materials

UNIT I

1 1 Introduction: What are Web Services T1: 2-8

2 1 Importance of web services T1: 8-11

3 1 Web services and enterprises T1:11-13

4 1 XML Fundamentals T1: 17-19

5 XML Documents, Namespaces

T1: 19-20,W1

6 1 Schema T1: 21-25

7 1 Processing XML R1: 15-21

8 1 Recapitulation and discussion of Important

Questions

Total No. of Hours planned for Unit-I : 8 Hours

S.No Lecturer

Duration(Hrs)

Topics to be Covered Support Materials

UNIT II

1 1 SOAP: SOAP Model, messages T1:71-80,J2

2 1 Encoding, RPC, Alternative SOAP encodings T1:80-85

3 1 Document, RPC, Literal, Encoded T1:85-90

4 1 SOAP, Web Services and the REST

Architecture

W2, T1:90-93

5 1 WSDL: Structure, Using SOAP and WSDL,

UDDI

T1:94-97,R2:31-36

6 1 UDDI Business Registry, Specification, Data

Structures

T1:100-112

7 1 Life cycle Management T1:113-119

8 1 Dynamic Access Point Management T1:121-128

9 1 Recapitulation and discussion of Important

Questions

Total No. of Hours planned for Unit II : 9 Hours

S.No Lecturer

Duration(Hrs)

Topics to be Covered Support Materials

UNIT III

1 1 Advanced Web Services T1:145-150

2 1 Technologies and Standards: Conversation T1:150-155

3 1 Overview, Web Services Conversation

Language

W2,T1:160-165

4 1 WSCL Interface Components T1:177-180

5 1 Workflow-Business Process Management T1:180-186, R2:48-54

6

1 Workflow and Workflow Management

systems

T1:187-197

7 1 BPEL,Transaction, ACID transaction J2,T1:198-205

8 1 Distributed Transaction, OASIS Business

Transaction Protocol

T1:205-218

9 1 Recapitulation and Discussion of important

Questions

Total No. of Hours planned for Unit III : 9 Hours

LECTURE PLAN

S.No Lecturer

Duration(Hrs)

Topics to be Covered Support Materials

UNIT IV

1 1 Security, Security Basics T1:307-312

2 1 Types of Security Attacks T1:312-325

3 1 Security Issues , WS –Security.

J3,T1:325-328

4 1 Mobile and Wireless T1:330-336

5 1 Mobile Web Services T1:337-345

6 1 Challenges with mobile, Proxy Based Mobile

Systems

T1:350-357

7 1 Direct Mobile Web service access T1:358-369

8 1 J2ME Web Services R3:79-85

9 1 Recapitulation and Discussion of important

Questions

Total No. of Hours planned for Unit IV : 9 Hours

LECTURE PLAN

S.No Lecturer

Duration(Hrs)

Topics to be Covered Support Materials

UNIT V

1 1 Building Real World Enterprise Web Service

and Applications

T1:439-445

2 1 Real World Web Service Application

Development

T1:446-454

3 1 Development of Web services T1:455-464

4 1 Applications onto Tomcat application Server T1:465-472

5 1 Axis Soap Server W4,T1:473-479

6 1 Recapitulation and Discussion of important

Questions

7 1 Discussion of Previous ESE papers

8 1 Discussion of Previous ESE papers

9 1 Discussion of Previous ESE papers

 Total No. of Hours planned for Unit V :

9 Hours

 TOTAL

PLANNED

HOURS : 44

TEXT BOOK

T1: Sandeep Chatterjee, James Webber, 2009, “Developing Enterprise Web Services: An

Architect’s Guide”, 4

th Edition, Pearson Education, New Delhi.

REFERENCES

R1: Martin Kalin, 2013, 2nd Edition “Java Web Services: UP and Running”, O’Relly Media,

USA

R2: Vikram RamChand, Sonal Mukhi, 1
st
 Edition 2008, “XML Web Services and SOAP”,

BPB Publications, New Delhi.

R3: Eric Marks and Mark J Werrell, 1
st
 Edition, 2003, Executive Guide to Web Services,

John Wiley and sons, New Delhi.

WEBSITES

W1: www.w3schools.com/web services/default.asp

W2: en.wikipedia.org/wiki/web-service

W3: www.w3schools.com/web services/default.asp

W4:http://en.wikipedia.org/wiki/Apache-Axis

JOURNALS

J1: “Investigating SOAP and XML Technologies in Web services”, IJSC ,Volume 3, No.4 ,

Nov 2012

J2: “Web Services Based on SOAP and REST Principles”, IJSR ,Volume 3, Issue 5 , May

2013

J3: “Model driven Development of Web Service Transactions”, Enterprise Modelling and

Information System Architecture , Volume 1, No1, Oct 2005

J4:”Security Issues in Web services: A Review and Development Approach of Research

Agenda”, Assam University Journal of Science and Technology, Volume 5, No2 , 2010.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 1/35

UNIT-I

SYLLABUS

Introduction: What are Web Services – Importance of web services – Web services and

enterprises; XML Fundamentals: XML Documents - Namespaces – Schema – Processing XML.

INTRODUCTION

 Web service is a method of communications between two electronic devices over World

Wide Web. A Web service is a software function provided at a network address over the

web or the cloud; it is a service that is "always on" as in the concept of utility computing.

 The Web service can be defined as software system designed to support interoperable

machine-to-machine interaction over a network.

 It has an interface described in a machine-processable format (specifically WSDL). Other

systems interact with the Web service in a manner prescribed by its description using

SOAP messages, typically conveyed using HTTP with an XML serialization in

conjunction with other Web-related standards.

 We can identify two major classes of Web services:

 REST-compliant Web services, in which the primary purpose of the service is to

manipulate XML representations of Web resources using a uniform set of "stateless"

operations; and arbitrary Web services, in which the service may expose an arbitrary

set of operations

What are Web Services?

 Web services are application components

 Web services communicate using open protocols

 Web services are self-contained and self-describing

 Web services can be discovered using UDDI

 Web services can be used by other applications

 A web API is a development in web services where emphasis has been moving to simpler

representational state transfer (REST) based communications. RESTful APIs do not

require XML-based web service protocols (SOAP and WSDL) to support their light-

weight interfaces.

The basic Web services platform is XML + HTTP.

 XML provides a language which can be used between different platforms and

programming languages and still express complex messages and functions.

 The HTTP protocol is the most used Internet protocol.

http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Utility_computing
http://en.wikipedia.org/wiki/Interoperability
http://en.wikipedia.org/w/index.php?title=Computers_snetwork&action=edit&redlink=1
http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Serialization
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Web_resource
http://en.wikipedia.org/wiki/Stateless_protocol
http://en.wikipedia.org/wiki/Web_API
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Web_Services_Description_Language

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 2/35

Web services platform elements:

 SOAP (Simple Object Access Protocol)

 UDDI (Universal Description, Discovery and Integration)

 WSDL (Web Services Description Language

Interoperability has Highest Priority

 When all major platforms could access the Web using Web browsers, different platforms

could interact. For these platforms to work together, Web-applications were

developed.

 Web-applications are simple applications that run on the web. These are built around the

Web browser standards and can be used by any browser on any platform.

XML web services:

 XML web services use Extensible Markup Language (XML) messages that follow the

SOAP standard and have been popular with the traditional enterprises. In such systems,

there is often a machine-readable description of the operations offered by the service

written in the Web Services Description Language (WSDL).

 The latter is not a requirement of a SOAP endpoint, but it is a prerequisite for automated

client-side code generation in many Java and .NET SOAP frameworks (frameworks such

as Apache Axis2, Apache CXF, Spring, gSOAP being notable exceptions). Some industry

organizations, such as the WS-I, mandate both SOAP and WSDL in their definition of a

web service.

AUTOMATED DESIGN METHODS

 Automated tools can aid in the creation of a web service. For services using WSDL it is

possible to either automatically generate WSDL for existing classes (a bottom-up strategy)

or to generate a class skeleton given existing WSDL (a top-down strategy).

http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://en.wikipedia.org/wiki/Client-side
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/Apache_Axis2
http://en.wikipedia.org/wiki/Apache_CXF
http://en.wikipedia.org/wiki/Spring_Framework
http://en.wikipedia.org/wiki/Gsoap
http://en.wikipedia.org/wiki/Web_Services_Interoperability
http://upload.wikimedia.org/wikipedia/commons/8/84/SOA_Detailed_Diagram.png
http://upload.wikimedia.org/wikipedia/commons/8/84/SOA_Detailed_Diagram.png

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 3/35

 A developer using a bottom up method writes implementing classes first (in some

programming language), and then uses a WSDL generating tool to expose methods from

these classes as a web service. This is simpler to develop but may be harder to maintain if

the original classes are subject to frequent change

 A developer using a top down method writes the WSDL document first and then uses a

code generating tool to produce the class skeleton, to be completed as necessary. This way

is generally considered more difficult but can produce cleaner designs and is generally

more resistant to change.

 As long as the message formats between sender and receiver do not change, changes in the

sender and receiver themselves do not affect the web service. The technique is also

referred to as "contract first" since the WSDL (or contract between sender and receiver) is

the starting point

Web Services take Web-applications to the Next Level

 By using Web services, your application can publish its function or message to the rest of

the world. Web services use XML to code and to decode data, and SOAP to transport it

(using open protocols). With Web services, your accounting department's Win 2k server's

billing system can connect with your IT supplier's UNIX server.

Web Services have Two Types of Uses

Reusable application-components.

 Web services can offer application-components like: currency conversion, weather

reports, or even language translation as services.

Connect existing software.

 Web services can help to solve the interoperability problem by giving different

applications a way to link their data.

 With Web services you can exchange data between different applications and different

platforms

WEB SERVICES AND ENTERPRISES

 Enterprise web services can be considered to be a set of consistent, persistent, secure and

RESTful web services that allow developers to integrate and link applications and web

pages that contain essential business systems. These services include application and

software development that are serving businesses.

 Most web services allow data to be accessed in a programmatic fashion, which allows

for in-house or 3rd-party API (application programming interfaces) integration.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 4/35

In-house vs 3rd-party APIs

 In-house APIs are those APIs developed internally, because they are developed using

internal talent or resources. There are much significant strength inherent in the in-

house API that make this format extremely attractive to a business. These strengths are:

 High level of control over the process of development. Because the API is

developed in-house, they can be dictated by the developer requesting it.

 In-house APIs help encapsulate custom logic that’s needed internally and they can

be designed for very specific needs.

 In-house APIs can be controlled from project’s start to finish.

 3rd-party APIs are those written by others and that provide additional functionality and

data. Their main benefits include:

 Utilization of experiences from different resource – It is, indeed very beneficial to

use outside perspectives, because they can create different approaches which often

can lead to better project results.

 Time To Market – It is usually requires less time and money to use a 3d-party API.

 Connect with Data – Other companies may have helpful value-add data streams

you can access and consume into your own application. You’ll need to make 3rd

party API calls and handle the data in a way that promotes security, availability,

fault tolerance and scalability.

 Augment System functionality – Since you’re connect with another company’s

API, then you’re able to get data and functionality managed by them and augment

your own systems.

 Both in-house and 3rd-part APIs are great and work well depending on which

requirements you have. The goal is to blend each to deliver a value added solution.

Enterprise Web Services

 Enterprise Web Applications are dynamic web sites combined with server side

programming that assist businesses to automatically manage their businesses online and

enables them to utilize additional time with other beneficial activities.

 Examples of Web Applications are Online Banking, Social Networking, Online

Reservations, eCommerce / Shopping Cart Applications, Interactive Games etc.

 How enterprises benefit from web app development:

 Cross-Platform – Users can access web applications regardless of what operating

systems they have (Windows, Mac, etc.) Moreover, with the variety of Internet

browsers, such as Internet Explorer, Firefox or Chrome, users run into issues with

software compatibility.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 5/35

 Interactivity – It is important to retain existing clients and attract new ones. This

requires continued interaction and a web-based application can do that. For example, a

web app can be customized for sending and receiving emails. Users can strengthen

communication effectively with web apps and eventually increase referrals.

 Easy maintenance – Using web-based applications does not require installation on

users’ hard drives which results in the reduction of memory on users’ computers.

It can be done directly onto a server and all the updates can be deployed effectively to

users’ computers.

 Cost reduction – Companies can save money by using web developed software,

because they won’t need to purchase a difficult hardware to support it and perform

time-consuming updates.

THE IMPORTANCE OF WEB SERVICES

 You’ve likely noticed that vendors are increasingly touting the wonders of Web Services

or other associated technologies such as SOAP, XML, WSDL, etc… And it’s with good

reason.

What is SOAP?

 SOAP is an XML-based protocol to let applications exchange information over HTTP.

 SOAP is a protocol for accessing a Web Service.

 SOAP stands for Simple Object Access Protocol

 SOAP is a communication protocol

 SOAP is a format for sending messages

 SOAP is designed to communicate via Internet

 SOAP is platform independent

 SOAP is language independent

 SOAP is based on XML

 SOAP is simple and extensible

 SOAP allows you to get around firewalls

 SOAP is a W3C standard

What is WSDL?

 WSDL is an XML-based language for locating and describing Web services.

 WSDL stands for Web Services Description Language

 WSDL is based on XML

 WSDL is used to describe Web services

 WSDL is used to locate Web services

 WSDL is a W3C standard

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 6/35

What is UDDI?

 UDDI is a directory service where companies can register and search for Web services.

 UDDI stands for Universal Description, Discovery and Integration

 UDDI is a directory for storing information about web services

 UDDI is a directory of web service interfaces described by WSDL

 UDDI communicates via SOAP

 UDDI is built into the Microsoft .NET platform

A Web Service Example

 In the following example we will use ASP.NET to create a simple Web Service that

converts the temperature from Fahrenheit to Celsius, and vice versa:

<%@ WebService Language="VBScript" Class="TempConvert" %>

Imports System

Imports System.Web.Services

Public Class TempConvert :Inherits WebService

<WebMethod()> Public Function FahrenheitToCelsius

(ByVal Fahrenheit As String) As String

 dim fahr

 fahr=trim(replace(Fahrenheit,",","."))

 if fahr="" or IsNumeric(fahr)=false then return "Error"

 return ((((fahr) - 32) / 9) * 5)

end function

<WebMethod()> Public Function CelsiusToFahrenheit

(ByVal Celsius As String) As String

 dim cel

 cel=trim(replace(Celsius,",","."))

 if cel="" or IsNumeric(cel)=false then return "Error"

 return ((((cel) * 9) / 5) + 32)

end function

end class

 This document is saved as an .asmx file. This is the ASP.NET file extension for XML

Web Services.

 The first line in the example states that this is a Web Service, written in VBScript, and has

the class name "TempConvert":

<%@ WebService Language="VBScript" Class="TempConvert" %>

 The next lines import the namespace "System.Web.Services" from the .NET framework:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 7/35

Imports System

Imports System.Web.Services

 The next line defines that the "TempConvert" class is a WebService class type:

Public Class TempConvert :Inherits WebService

 The next steps are basic VB programming. This application has two functions. One to

convert from Fahrenheit to Celsius, and one to convert from Celsius to Fahrenheit. The

only difference from a normal application is that this function is defined as a

"WebMethod()".

 Use "WebMethod()" to convert the functions in your application into web services:

<WebMethod()> Public Function FahrenheitToCelsius

(ByVal Fahrenheit As String) As String

 dim fahr

 fahr=trim(replace(Fahrenheit,",","."))

 if fahr="" or IsNumeric(fahr)=false then return "Error"

 return ((((fahr) - 32) / 9) * 5)

end function

<WebMethod()> Public Function CelsiusToFahrenheit

(ByVal Celsius As String) As String

 dim cel

 cel=trim(replace(Celsius,",","."))

 if cel="" or IsNumeric(cel)=false then return "Error"

 return ((((cel) * 9) / 5) + 32)

end function

Then, end the class:

end class

Publish the .asmx file on a server with .NET support, and you will have your first

working Web Service.

XML FUNDAMENTALS

 XML stands for extensible Markup Language.

 XML is designed to transport and store data.

 XML is important to know, and very easy to learn.

XML DOCUMENT

 XML Document Example

<?xml version="1.0"?>

<note>

 <to>Tove</to>

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 8/35

 <from>Jani</from>

</note>

What is XML?

 XML stands for EXtensible Markup Language

 XML is a markup language much like HTML

 XML was designed to carry data, not to display data

 XML tags are not predefined. You must define your own tags

 XML is designed to be self-descriptive

 XML is a W3C Recommendation

The Difference Between XML and HTML

 XML is not a replacement for HTML.

 XML and HTML were designed with different goals:

 XML was designed to transport and store data, with focus on what data is

 HTML was designed to display data, with focus on how data looks

 HTML is about displaying information, while XML is about carrying information.

XML Does Not DO Anything

 Maybe it is a little hard to understand, but XML does not DO anything. XML was created

to structure, store, and transport information.

 The following example is a note to Tove, from Jani, stored as XML:

<note>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

 The note above is quite self descriptive. It has sender and receiver information, it also has

a heading and a message body.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 9/35

 But still, this XML document does not DO anything. It is just information wrapped in

tags. Someone must write a piece of software to send, receive or display it.

 With XML You Invent Your Own Tags

 The tags in the example above (like <to> and <from>) are not defined in any XML

standard. These tags are "invented" by the author of the XML document.That is because

the XML language has no predefined tags.

 The tags used in HTML are predefined. HTML documents can only use tags defined in

the HTML standard (like <p>, <h1>, etc.).

 XML allows the author to define his/her own tags and his/her own document structure.

XML is Not a Replacement for HTML

 Many application programming interfaces (APIs) have been developed to aid software

developers with processing XML data, and several schema systems exist to aid in the

definition of XML-based languages. Hundreds of document formats using XML syntax

have been developed,including RSS, Atom, SOAP, and XHTML.

 XML-based formats have become the default for many office-productivity tools, including

Microsoft Office (Office Open XML), OpenOffice.org and LibreOffice (OpenDocument),

and Apple's iWork. XML has also been employed as the base language for communication

protocols, such as XMPP.

XML is a complement to HTML.

 It is important to understand that XML is not a replacement for HTML. In most web

applications, XML is used to transport data, while HTML is used to format and display the

data.

 My best description of XML is this

 XML is a software- and hardware-independent tool for carrying information.

 XML is a W3C Recommendation

 XML became a W3C Recommendation February 10, 1998.

 XML is Everywhere

 XML is now as important for the Web as HTML was to the foundation of the Web.

 XML is the most common tool for data transmissions between all sorts of applications.

 XML Separates Data from HTML

 If you need to display dynamic data in your HTML document, it will take a lot of work to

edit the HTML each time the data changes.

 With XML, data can be stored in separate XML files. This way you can concentrate on

using HTML for layout and display, and be sure that changes in the underlying data will

not require any changes to the HTML.

 With a few lines of JavaScript code, you can read an external XML file and update the

data content of your web page.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 10/35

XML Simplifies Data Sharing

 In the real world, computer systems and databases contain data in incompatible formats.

 XML data is stored in plain text format. This provides a software- and hardware-

independent way of storing data. This makes it much easier to create data that can be

shared by different applications.

XML Simplifies Data Transport

 One of the most time-consuming challenges for developers is to exchange data between

incompatible systems over the Internet.

 Exchanging data as XML greatly reduces this complexity, since the data can be read by

different incompatible applications.

XML Simplifies Platform Changes

 Upgrading to new systems (hardware or software platforms), is always time consuming.

Large amounts of data must be converted and incompatible data is often lost.

 XML data is stored in text format. This makes it easier to expand or upgrade to new

operating systems, new applications, or new browsers, without losing data.

XML Makes Your Data More Available

 Different applications can access your data, not only in HTML pages, but also from XML

data sources.

 With XML, your data can be available to all kinds of "reading machines" (Handheld

computers, voice machines, news feeds, etc), and make it more available for blind people,

or people with other disabilities.

 XML is Used to Create New Internet Languages

 A lot of new Internet languages are created with XML.

 Here are some examples:

 XHTML

 WSDL for describing available web services

 WAP and WML as markup languages for handheld devices

 RSS languages for news feeds

 RDF and OWL for describing resources and ontology

 SMIL for describing multimedia for the web

XML Naming Rules

 XML elements must follow these naming rules:

 Names can contain letters, numbers, and other characters

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 11/35

 Names cannot start with a number or punctuation character

 Names cannot start with the letters xml (or XML, or Xml, etc)

 Names cannot contain spaces

What is an XML Element?

 An XML element is everything from (including) the element's start tag to (including) the

element's end tag.

 An element can contain:

other elements

text

attributes

or a mix of all of the above...

<bookstore>

 <book category="CHILDREN">

 <title>Harry Potter</title>

 <author>J K. Rowling</author>

 <year>2005</year>

 <price>29.99</price>

 </book>

 <book category="WEB">

 <title>Learning XML</title>

 <author>Erik T. Ray</author>

 <year>2003</year>

 <price>39.95</price>

 </book>

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 12/35

</bookstore>

 In the example above, <bookstore> and <book> have element contents, because they

contain other elements. <book> also has an attribute (category="CHILDREN"). <title>,

<author>, <year>, and <price> have text content because they contain text.

XML Attributes

 In HTML, attributes provide additional information about elements:

 Attributes often provide information that is not a part of the data. In the example below,

the file type is irrelevant to the data, but can be important to the software that wants to

manipulate the element:

<file type="gif">computer.gif</file>

XML Attributes Must be Quoted

Attribute values must always be quoted. Either single or double quotes can be used. For a person's

sex, the person element can be written like this:

<person sex="female">

or like this:

<person sex='female'>

 If the attribute value itself contains double quotes you can use single quotes, like in this

example:

<gangster name='George "Shotgun" Ziegler'>

or you can use character entities:

<gangster name="George "Shotgun" Ziegler">

XML Elements vs. Attributes

 Take a look at these examples:

<person sex="female">

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 13/35

 <firstname>Anna</firstname>

 <lastname>Smith</lastname>

</person>

<person>

 <sex>female</sex>

 <firstname>Anna</firstname>

 <lastname>Smith</lastname>

</person>

 In the first example sex is an attribute. In the last, sex is an element. Both examples

provide the same information.

 There are no rules about when to use attributes or when to use elements. Attributes are

handy in HTML. In XML my advice is to avoid them. Use elements instead.

XML NAMESPACES

 In XML, element names are defined by the developer. This often results in a conflict when

trying to mix XML documents from different XML applications.

 This XML carries HTML table information:

<table>

 <tr>

 <td>Apples</td>

 <td>Bananas</td>

 </tr>

</table>

 This XML carries information about a table (a piece of furniture):

<table>

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 14/35

 <name>African Coffee Table</name>

 <width>80</width>

 <length>120</length>

</table>

 If these XML fragments were added together, there would be a name conflict. Both

contain a <table> element, but the elements have different content and meaning.

 An XML parser will not know how to handle these differences.

 Solving the Name Conflict Using a Prefix

 Name conflicts in XML can easily be avoided using a name prefix.

 This XML carries information about an HTML table, and a piece of furniture:

<h:table>

 <h:tr>

 <h:td>Apples</h:td>

 <h:td>Bananas</h:td>

 </h:tr>

</h:table>

<f:table>

 <f:name>African Coffee Table</f:name>

 <f:width>80</f:width>

 <f:length>120</f:length>

</f:table>

 In the example above, there will be no conflict because the two <table> elements have

different names.

XML Namespaces - The xmlns Attribute

 When using prefixes in XML, a so-called namespace for the prefix must be defined.

 The namespace is defined by the xmlns attribute in the start tag of an element.

 The namespace declaration has the following syntax. xmlns:prefix="URI".

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 15/35

<root>

<h:table xmlns:h="http://www.w3.org/TR/html4/">

 <h:tr>

 <h:td>Apples</h:td>

 <h:td>Bananas</h:td>

 </h:tr>

</h:table>

<f:table xmlns:f="http://www.w3schools.com/furniture">

 <f:name>African Coffee Table</f:name>

 <f:width>80</f:width>

 <f:length>120</f:length>

</f:table>

</root>

 In the example above, the xmlns attribute in the <table> tag give the h: and f: prefixes a

qualified namespace.

 When a namespace is defined for an element, all child elements with the same prefix are

associated with the same namespace.

 Namespaces can be declared in the elements where they are used or in the XML root

element:

 The purpose is to give the namespace a unique name. However, often companies use the

namespace as a pointer to a web page containing namespace information.

Uniform Resource Identifier (URI)

 A Uniform Resource Identifier (URI) is a string of characters which identifies an Internet

Resource.

 The most common URI is the Uniform Resource Locator (URL) which identifies an

Internet domain address. Another, not so common type of URI is the Universal Resource

Name (URN).

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 16/35

Default Namespaces

 Defining a default namespace for an element saves us from using prefixes in all the child

elements. It has the following syntax:

xmlns="namespaceURI"

 This XML carries HTML table information:

<table xmlns="http://www.w3.org/TR/html4/">

 <tr>

 <td>Apples</td>

 <td>Bananas</td>

 </tr>

</table>

 This XML carries information about a piece of furniture:

<table xmlns="http://www.w3schools.com/furniture">

 <name>African Coffee Table</name>

 <width>80</width>

 <length>120</length>

</table>

 Namespaces in Real Use

 XSLT is an XML language that can be used to transform XML documents into other

formats, like HTML.

 In the XSLT document below, you can see that most of the tags are HTML tags.

 The tags that are not HTML tags have the prefix xsl, identified by the namespace

xmlns:xsl="http://www.w3.org/1999/XSL/Transform":

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 17/35

<html>

<body>

 <h2>My CD Collection</h2>

 <table border="1">

 <tr>

 <th align="left">Title</th>

 <th align="left">Artist</th>

 </tr>

 <xsl:for-each select="catalog/cd">

 <tr>

 <td><xsl:value-of select="title"/></td>

 <td><xsl:value-of select="artist"/></td>

 </tr>

 </xsl:for-each>

 </table>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

Example XML: Show XML data inside an HTML div element

<!DOCTYPE html>

<html>

<body>

<script>

if (window.XMLHttpRequest)

 {// code for IE7+, Firefox, Chrome, Opera, Safari

 xmlhttp=new XMLHttpRequest();

 }

else

 {// code for IE6, IE5

 xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

xmlhttp.open("GET","cd_catalog.xml",false);

xmlhttp.send();

xmlDoc=xmlhttp.responseXML;

document.write("<table border='1'>");

var x=xmlDoc.getElementsByTagName("CD");

for (i=0;i<x.length;i++)

 {

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 18/35

 document.write("<tr><td>");

 document.write(x[i].getElementsByTagName("ARTIST")[0].childNodes[0].nodeValue);

 document.write("</td><td>");

 document.write(x[i].getElementsByTagName("TITLE")[0].childNodes[0].nodeValue);

 document.write("</td></tr>");

 }

document.write("</table>");

</script>

</body>

</html>

Example XML: Get the value of an XML attribute

<!DOCTYPE html>

<html>

<body>

<script>

if (window.XMLHttpRequest)

 {// code for IE7+, Firefox, Chrome, Opera, Safari

 xmlhttp=new XMLHttpRequest();

 }

else

 {// code for IE6, IE5

 xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

xmlhttp.open("GET","books.xml",false);

xmlhttp.send();

xmlDoc=xmlhttp.responseXML;

txt=xmlDoc.getElementsByTagName("title")[0].childNodes[0].nodeValue;

document.write(txt);

</script>

</body>

</html>

Namespaces in APIs and XML object models

 Different specifications have taken different approaches on how namespace information is

presented to applications. Nearly all programming models allow the name of an element

or attribute node to be retrieved as a three-part name: the local name, the namespace

prefix, and the namespace URI.

 Applications should avoid attaching any significance to the choice of prefix, but the

information is provided because it can be helpful to human readers. Names are considered

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 19/35

equal, if the namespace URI and local name match. In addition, most models provide

some way of determining which namespaces have been declared for a given element. This

information is needed because some XML vocabularies allow qualified names (containing

namespace prefixes) to appear in the content of elements or attributes, as well as in their

names. There are three main ways this information can be provided:

 As attribute nodes named "xmlns" or "xmlns:xxx", exactly as the namespaces are written

in the source XML document. This is the model presented by DOM.

o As namespace declarations: distinguished from attributes, but corresponding one-

to-one with the relevant attributes in the source XML document. This is the model

presented by JDOM.

o As in-scope namespace bindings: in this model, the application is able to determine

which namespaces are in scope for any given element, but is not able to determine

which elements contain the actual declarations. This is the model used in XPath,

XSLT, and XQuery.

 Transaction Processing over XML (TPoX) is a computing benchmark for XML database

systems. As a benchmark, TPoX is used for the performance testing of database

management systems that are capable of storing, searching, modifying and retrieving

XML data. The goal of TPoX is to allow database designers, developers and users to

evaluate the performance of XML database features, such as the XML query languages

XQuery and SQL/XML, XML storage, XML indexing, XML Schema support, XML

updates, transaction processing and logging, andconcurrency control. TPoX includes

XML update tests based on the XQuery Update Facility.

 The TPoX benchmark exercises the processing of data-centric XML, in contrast to

content- or document-centric XML.

 TPoX was originally developed and tested by IBM and Intel, but became an open source

project on SourceForge in January 2007. TPoX 1.1 was released in June 2007. TPoX 2.0

was released in July 2009.

 The TPoX benchmark package contains the following:

 XML Schemas that define the XML data used in the benchmark.

 An XML data generation tool to generate an arbitrary number of XML documents with

well-defined value distributions and referential integrity across documents. The XML data

is generated conforming to industry schema such as FIXML to model real-world

applications.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 20/35

 Workloads which are executed on the generated data. A workload is a set of transactions.

A transaction can be a query in XQuery or SQL/XML notation or an insert, update or

delete operation.

 A Java application which acts as a workload driver. It is configurable and can spawn 1 to

n parallel threads to simulate concurrent database users. Each user connects to the

database and executes a random sequence of transactions defined in the workload.

Parameter markers in the transactions are replaced by real values that are drawn from

random value distributions. The workload driver collects and reports performance metrics,

such as the transaction throughput as well as minimum, maximum and average response

times.

XML SCHEMA (W3C)

 A newer schema language, described by the W3C as the successor of DTDs, is XML

Schema, often referred to by the initialism for XML Schema instances, XSD (XML

Schema Definition). XSDs are far more powerful than DTDs in describing XML

languages. They use a rich datatyping system and allow for more detailed constraints on

an XML document's logical structure. XSDs also use an XML-based format, which makes

it possible to use ordinary XML tools to help process.

RELAX NG

 RELAX NG was initially specified by OASIS and is now also an ISO/IEC International

Standard (as part of DSDL). XML Schema[edit]

 An XML Schema describes the structure of an XML document, just like a DTD.

 An XML document with correct syntax is called "Well Formed".

 An XML document validated against an XML Schema is both "Well Formed" and

"Valid".

XML SCHEMA

 XML Schema is an XML-based alternative to DTD:

<xs:element name="note">

<xs:complexType>

 <xs:sequence>

 <xs:element name="to" type="xs:string"/>

 <xs:element name="from" type="xs:string"/>

 <xs:element name="heading" type="xs:string"/>

 <xs:element name="body" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

</xs:element>

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 21/35

 The Schema above is interpreted like this:

<xs:element name="note"> defines the element called "note"

<xs:complexType> the "note" element is a complex type

<xs:sequence> the complex type is a sequence of elements

<xs:element name="to" type="xs:string"> the element "to" is of type string (text)

<xs:element name="from" type="xs:string"> the element "from" is of type string

<xs:element name="heading" type="xs:string"> the element "heading" is of type string

<xs:element name="body" type="xs:string"> the element "body" is of type string

 XML Schemas are More Powerful than DTD

 XML Schemas are written in XML

 XML Schemas are extensible to additions

 XML Schemas support data types

 XML Schemas support namespaces

Why Use an XML Schema?

 With XML Schema, your XML files can carry a description of its own format.

 With XML Schema, independent groups of people can agree on a standard for

interchanging data.

 With XML Schema, you can verify data.

XML Schemas Support Data Types

 One of the greatest strengths of XML Schemas is the support for data types:

 It is easier to describe document content

 It is easier to define restrictions on data

 It is easier to validate the correctness of data

 It is easier to convert data between different data types

XML Schemas use XML Syntax

 Another great strength about XML Schemas is that they are written in XML:

 You don't have to learn a new language

 You can use your XML editor to edit your Schema files

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 22/35

 You can use your XML parser to parse your Schema files

 You can manipulate your Schemas with the XML DOM

 You can transform your Schemas with XSLT

Processing XML

 XML can be used for the presentation, communication, and storage of data. This

webpage provides an overview of the XML processing to accomplish this.

 The figure below illustrates transforming the contents of files, messages, or data from

one format to another. Note that the input and output options are the same. This is

meant to illustrate that the transformation can be from some non-XML format to XML,

from XML to some non-XML format, from some non-XML format to another non-

XML format, or from one XML vocabulary to another XML vocabulary. Nevertheless,

since this website emphasizes the use of XML in service-oriented architectures, some

XML format or message that uses XML will most likely be on one end fo the

transformation or the other. This is why it is called "XML processing."

XML Processing

 There are many ways to accomplish the transformation. You could use custom

programming, a tool that generates code, or a specialized scripting language. More

information on some options can be found in the XML resources under the related

content heading below.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 23/35

 The basic process is to acquire the input, transform the input, and then render the

output in the desired format.

 The next figure places XML processing in the context of Web Services and a service-

oriented architecture (SOA). The large shared box near the top represents a service that

provides or consumes SOAP or REST messages.

 Note that to provide a message, the service will need to take in possibly multiple

inputs, transform those inputs, and render a message. Conversely, the service will need

to take in a message, transform the XML in the message into possibly multiple outputs,

and then render those outputs. The latter is shown at the right of the large shaded box.

XML Processing for Web Services

 Adapters are also shown in this figure using the smaller shaded boxes. Each adapter

will need to deal with some non-XML format. It will need to use that non-XML format

as input and then transform and render it as XML to be used by the service at the top of

the figure. Conversely, the adapter will need to take XML as input from the service and

then tranform and render it to some non-XML format. More on adapters.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 24/35

 This figure shows the service and adapters as separate entities in the architecture. Of

course, the service and the adapters and all the XML processing could be written as one

program. It depends on how you structure your architecture.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 25/35

Programming Interface

 The design goals of XML include, "It shall be easy to write programs which process XML

documents." Despite this, the XML specification contains almost no information about

how programmers might go about doing such processing. The XML Infoset specification

provides a vocabulary to refer to the constructs within an XML document, but also does

not provide any guidance on how to access this information. A variety of APIs for

accessing XML have been developed and used, and some have been standardized.

Existing APIs for XML processing tend to fall into these categories:

 Stream-oriented APIs accessible from a programming language, for example SAX and

StAX.

 Tree-traversal APIs accessible from a programming language, for example DOM.

 XML data binding, which provides an automated translation between an XML

document and programming-language objects.

 Declarative transformation languages such as XSLT and XQuery.

 Stream-oriented facilities require less memory and, for certain tasks which are based

on a linear traversal of an XML document, are faster and simpler than other

alternatives. Tree-traversal and data-binding APIs typically require the use of much

more memory, but are often found more convenient for use by programmers; some

include declarative retrieval of document components via the use of XPath

expressions.

 XSLT is designed for declarative description of XML document transformations, and

has been widely implemented both in server-side packages and Web browsers.

XQuery overlaps XSLT in its functionality, but is designed more for searching of large

XML databases.

SIMPLE API FOR XML

 Simple API for XML (SAX) is a lexical, event-driven interface in which a document is

read serially and its contents are reported as callbacks to various methods on a handler

object of the user's design. SAX is fast and efficient to implement, but difficult to use for

extracting information at random from the XML, since it tends to burden the application

author with keeping track of what part of the document is being processed.

 It is better suited to situations in which certain types of information are always handled the

same way, no matter where they occur in the document.

Pull parsing

 Pull parsing treats the document as a series of items which are read in sequence using the

Iterator design pattern. This allows for writing of recursive-descent parsers in which the

structure of the code performing the parsing mirrors the structure of the XML being

parsed, and intermediate parsed results can be used and accessed as local variables within

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 26/35

the methods performing the parsing, or passed down (as method parameters) into lower-

level methods, or returned (as method return values) to higher-level methods. Examples of

pull parsers include StAX in the Javaprogramming language, XMLReader in PHP,

ElementTree.iterparse in Python, System.Xml.XmlReader in the .NET Framework, and

the DOM traversal API (NodeIterator and TreeWalker).

 A pull parser creates an iterator that sequentially visits the various elements, attributes,

and data in an XML document. Code which uses this iterator can test the current item (to

tell, for example, whether it is a start or end element, or text), and inspect its attributes

(local name, namespace, values of XML attributes, value of text, etc.), and can also move

the iterator to the next item. The code can thus extract information from the document as it

traverses it.

 The recursive-descent approach tends to lend itself to keeping data as typed local variables

in the code doing the parsing, while SAX, for instance, typically requires a parser to

manually maintain intermediate data within a stack of elements which are parent elements

of the element being parsed. Pull-parsing code can be more straightforward to understand

and maintain than SAX parsing code.

Document Object Model

 The Document Object Model (DOM) is an interface-oriented application programming

interface that allows for navigation of the entire document as if it were a tree of node

objects representing the document's contents.

 A DOM document can be created by a parser, or can be generated manually by users (with

limitations). Data types in DOM nodes are abstract; implementations provide their own

programming language-specific bindings. DOM implementations tend to be memory

intensive, as they generally require the entire document to be loaded into memory and

constructed as a tree of objects before access is allowed.

Data binding

 Another form of XML processing API is XML data binding, where XML data are made

available as a hierarchy of custom, strongly typed classes, in contrast to the generic

objects created by aDocument Object Model parser. This approach simplifies code

development, and in many cases allows problems to be identified at compile time rather

than run-time. Example data binding systems include the Java Architecture for XML

Binding (JAXB) and XML Serialization in .NET.

XML as data type

 XML has appeared as a first-class data type in other languages. The ECMAScript for

XML (E4X) extension to the ECMAScript/JavaScript language explicitly defines two

specific objects (XML and XMLList) for JavaScript, which support XML document nodes

and XML node lists as distinct objects and use a dot-notation specifying parent-child

relationships.[19] E4X is supported by theMozilla 2.5+ browsers (though now deprecated)

and Adobe Actionscript, but has not been adopted more universally. Similar notations are

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 27/35

used in Microsoft's LINQ implementation for Microsoft .NET 3.5 and above, and in Scala

(which uses the Java VM).

XSLT

 XSLT is a language for transforming XML documents.

 XPath is a language for navigating in XML documents.

 XQuery is a language for querying XML documents.

 It Started with XSL

XSL stands for EXtensible Stylesheet Language.

 The World Wide Web Consortium (W3C) started to develop XSL because there was a

need for an XML-based Stylesheet Language.

CSS = Style Sheets for HTML

 HTML uses predefined tags. The meaning of, and how to display each tag is well

understood.

 CSS is used to add styles to HTML elements.

XSL = Style Sheets for XML

 XML does not use predefined tags, and therefore the meaning of each tag is not well

understood.

 A <table> element could indicate an HTML table, a piece of furniture, or something

else - and browsers do not know how to display it!

 So, XSL describes how the XML elements should be displayed.

 XSL - More Than a Style Sheet Language

 XSL consists of four parts:

 XSLT - a language for transforming XML documents

 XPath - a language for navigating in XML documents

 XSL-FO - a language for formatting XML documents (discontinued in

2013)

 XQuery - a language for querying XML documents

 With the CSS3 Paged Media Module, W3C has delivered a new standard for

document formatting. So, since 2013, CSS3 is proposed as an XSL-FO replacement

What is XSLT?

 XSLT stands for XSL Transformations

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 28/35

 XSLT is the most important part of XSL

 XSLT transforms an XML document into another XML document

 XSLT uses XPath to navigate in XML documents

 XSLT is a W3C Recommendation

 XSLT = XSL Transformations

 XSLT is the most important part of XSL.

 XSLT is used to transform an XML document into another XML document, or another

type of document that is recognized by a browser, like HTML and XHTML. Normally

XSLT does this by transforming each XML element into an (X)HTML element.

 With XSLT you can add/remove elements and attributes to or from the output file.

You can also rearrange and sort elements, perform tests and make decisions about

which elements to hide and display, and a lot more

 A common way to describe the transformation process is to say that XSLT transforms

an XML source-tree into an XML result-tree.

XSLT Uses XPath

 XSLT uses XPath to find information in an XML document. XPath is used to navigate

through elements and attributes in XML documents.

XSLT Browser Support

 All major browsers support XSLT and XPath.

 XPath can be used to navigate through elements and attributes in an XML document.

XPath

 XPath stands for XML Path Language

 XPath uses "path like" syntax to identify and navigate nodes in an XML document

 XPath contains over 200 built-in functions

 XPath is a major element in the XSLT standard

 XPath is a W3C recommendation

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 29/35

 XPath Path Expressions

 XPath uses path expressions to select nodes or node-sets in an XML document.

 XPath Standard Functions

 XPath includes over 200 built-in functions.

 There are functions for string values, numeric values, booleans, date and time

comparison, node manipulation, sequence manipulation, and much more

 Today XPath expressions can also be used in JavaScript, Java, XML Schema, PHP,

Python, C and C++, and lots of other languages.

 XPath is Used in XSLT

 XPath is a major element in the XSLT standard.

 With XPath knowledge you will be able to take great advantage of your XSLT

knowledge.

 XLink is used to create hyperlinks in XML documents.

XPath

 XLink is used to create hyperlinks within XML documents

 Any element in an XML document can behave as a link

 With XLink, the links can be defined outside the linked files

 XLink is a W3C Recommendation

 XLink Browser Support

 There is no browser support for XLink in XML documents

 However, all major browsers support XLinks in SVG.

XLink

XLink Syntax

 In HTML, the <a> element defines a hyperlink. However, this is not how it works in

XML. In XML documents, you can use whatever element names you want - therefore

it is impossible for browsers to predict what link elements will be called in XML

documents.

 Below is a simple example of how to use XLink to create links in an XML document:

<?xml version="1.0" encoding="UTF-8"?>

<homepages xmlns:xlink="http://www.w3.org/1999/xlink">

 <homepage xlink:type="simple" xlink:href="https://www.w3schools.com">Visit

W3Schools</homepage>

 <homepage xlink:type="simple" xlink:href="http://www.w3.org">Visit

W3C</homepage>

</homepages>

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 30/35

 To get access to the XLink features we must declare the XLink namespace. The XLink

namespace is: "http://www.w3.org/1999/xlink".

 The xlink:type and the xlink:href attributes in the <homepage> elements come from

the XLink namespace.

 The xlink:type="simple" creates a simple "HTML-like" link (means "click here to go

there").

 The xlink:href attribute specifies the URL to link to.

XLink Example

 The following XML document contains XLink features:

<?xml version="1.0" encoding="UTF-8"?>

<bookstore xmlns:xlink="http://www.w3.org/1999/xlink">

<book title="Harry Potter">

 <description

 xlink:type="simple"

 xlink:href="/images/HPotter.gif"

 xlink:show="new">

 As his fifth year at Hogwarts School of Witchcraft and

 Wizardry approaches, 15-year-old Harry Potter is.......

 </description>

</book>

<book title="XQuery Kick Start">

 <description

 xlink:type="simple"

 xlink:href="/images/XQuery.gif"

 xlink:show="new">

 XQuery Kick Start delivers a concise introduction

 to the XQuery standard.......

 </description>

</book>

</bookstore>

Example explained:

The XLink namespace is declared at the top of the document

(xmlns:xlink="http://www.w3.org/1999/xlink")

The xlink:type="simple" creates a simple "HTML-like" link

The xlink:href attribute specifies the URL to link to (in this case - an image)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 31/35

The xlink:show="new" specifies that the link should open in a new window

XLink - Going Further

 In the example above we have demonstrated simple XLinks. XLink is getting more

interesting when accessing remote locations as resources, instead of standalone pages.

 If we set the value of the xlink:show attribute to "embed", the linked resource should

be processed inline within the page. When you consider that this could be another

XML document you could, for example, build a hierarchy of XML documents.

 You can also specify WHEN the resource should appear, with the xlink:actuate

attribute.

XLink Attribute Reference

 Attribute Value Description

 xlink:actuate onLoad

 onRequest

 other

 none Defines when the linked resource is read and shown:

 onLoad - the resource should be loaded and shown when the document

loads

 onRequest - the resource is not read or shown before the link is clicked

 xlink:href URL Specifies the URL to link to

 xlink:show embed

 new

 replace

 other

 none Specifies where to open the link. Default is "replace"

 xlink:type simple

 extended

 locator

 arc

 resource

 title

 none Specifies the type of link

XPointer

 XPointer allows links to point to specific parts of an XML document

 XPointer uses XPath expressions to navigate in the XML document

 XPointer is a W3C Recommendation

 XPointer Browser Support

 There is no browser support for XPointer. But XPointer is used in other XML

languages.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 32/35

XPointer Example

 In this example, we will use XPointer in conjunction with XLink to point to a specific

part of another document.

 We will start by looking at the target XML document (the document we are linking

to):

<?xml version="1.0" encoding="UTF-8"?>

<dogbreeds>

<dog breed="Rottweiler" id="Rottweiler">

 <picture url="https://dog.com/rottweiler.gif" />

 <history>The Rottweiler's ancestors were probably Roman

 drover dogs.....</history>

 <temperament>Confident, bold, alert and imposing, the Rottweiler

 is a popular choice for its ability to protect....</temperament>

</dog>

<dog breed="FCRetriever" id="FCRetriever">

 <picture url="https://dog.com/fcretriever.gif" />

 <history>One of the earliest uses of retrieving dogs was to

 help fishermen retrieve fish from the water....</history>

 <temperament>The flat-coated retriever is a sweet, exuberant,

 lively dog that loves to play and retrieve....</temperament>

</dog>

</dogbreeds>

 Note that the XML document above uses id attributes on each element!

 So, instead of linking to the entire document (as with XLink), XPointer allows you to

link to specific parts of the document. To link to a specific part of a page, add a

number sign (#) and an XPointer expression after the URL in the xlink:href attribute,

like this: xlink:href="https://dog.com/dogbreeds.xml#xpointer(id('Rottweiler'))". The

expression refers to the element in the target document, with the id value of

"Rottweiler".

 XPointer also allows a shorthand method for linking to an element with an id. You can

use the value of the id directly, like this:

xlink:href="https://dog.com/dogbreeds.xml#Rottweiler".

 The following XML document contains links to more information of the dog breed for

each of my dogs:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 33/35

<?xml version="1.0" encoding="UTF-8"?>

<mydogs xmlns:xlink="http://www.w3.org/1999/xlink">

<mydog>

 <description>

 Anton is my favorite dog. He has won a lot of.....

 </description>

 <fact xlink:type="simple" xlink:href="https://dog.com/dogbreeds.xml#Rottweiler">

 Fact about Rottweiler

 </fact>

</mydog>

<mydog>

 <description>

 Pluto is the sweetest dog on earth......

 </description>

 <fact xlink:type="simple" xlink:href="https://dog.com/dogbreeds.xml#FCRetriever">

 Fact about flat-coated Retriever

 </fact>

</mydog>

</mydogs>

XQuery

What is XQuery?

 XQuery is to XML what SQL is to databases.

 XQuery was designed to query XML data.

 XQuery Example

for $x in doc("books.xml")/bookstore/book

where $x/price>30

order by $x/title

return $x/title

XQuery

 XQuery is the language for querying XML data

 XQuery for XML is like SQL for databases

 XQuery is built on XPath expressions

 XQuery is supported by all major databases

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 34/35

 XQuery is a W3C Recommendation

 XQuery is About Querying XML

 XQuery is a language for finding and extracting elements and attributes from XML

documents.

Here is an example of what XQuery could solve:

"Select all CD records with a price less than $10 from the CD collection stored in

cd_catalog.xml"

XQuery and XPath

 XQuery 1.0 and XPath 2.0 share the same data model and support the same functions

and operators. If you have already studied XPath you will have no problems with

understanding XQuery.

 XQuery - Examples of Use

 XQuery can be used to:

 Extract information to use in a Web Service

 Generate summary reports

 Transform XML data to XHTML

 Search Web documents for relevant information

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: I (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 35/35

POSSIBLE QUESTIONS

PART – A

(Online Exam 20*1=20 marks)

 Multiple Choice Questions available in Moodle

PART – B

(Each Question carries 6 marks)

1. Explain the importance of Web services

2. Discuss in detail about XML Schema

3. Discuss in detail about XML namespaces.

4. Explain about XML document

5. Explain the advantages of XML and its process

6. Differentiate between XML and HTML

7. Explain about XML Processing

8. Explain the different Components of XML tree Structure

9. Explain about Default Namespace

10. Discuss in detail (i) XSL (ii) X-Link

 PART – C

(Compulsory Question carries 10 marks)

1. Create a menu in XML

2. Write a program to view an Employee details and display the student details with an

XSLT Stylesheet

3. Write a program to show XML data inside an HTML div element

4. Difference between XML and XML Schema

5. Explain about Web services and Enterprises

Questions Opt1 Opt2 Opt3 Opt4 Opt5 Opt6

XML refers to _____________ eXtended

Markup

Language

Extended

Markup

language

eXtensibl

e Markup

Language

Extra

Markup

Language

ROI refers to_______________ Return of

Investme

nt

Return on

Investme

nt

return of

interest

Return of

Image

web services is created to

support__________

 ROI WSDL XML QoS

WSDL means ________________ Web

services

Descripti

on

Language

World

services

descriptio

n

language

Web

server

Descripti

on

Language

Web

service

developm

ent life

cycle

___________be created to support

QoS

WSDL XML Web

services

HTML

QoS means_________________ Quality-

of-

Service

Quality-

of-Server

Quantity-

of-service

Quantity-

of-server

_________________platform

consisting of SOAP,WSDL and

UDDI

 UNIX

WINDO

WS

Web

service

LINUX

_________represent a new

architectural paradigm for

applications

 top-

down

bottom

up

Web

service

Middle

level

______________represent reusable

software building blocks that are

URL addressable

 web

service

 Web

developm

ent

Web

technolog

y

w3c

UDDI means _____________ Universal

discovery

descriptio

n and

integratio

n

Universal

descriptio

n

discovery

and

integratio

n

Universal

descriptio

n

discovery

and

invention

Universal

discriptin

data

interface

SOAP means____________ Single

object

access

protocol

Simple

object

access

protocol

single

object

accept

protocol

Sevice

Oriented

applicatio

n

Protocol

WSDL means_________ Web

services

Descripti

on

Language

Web

server

descrptio

n

Language

web

services

descriptiv

e

language

Web

service

developm

ent life

cycle

_________such as a routine for

calculating the integral square root of

a number.

function data Business

processes

Applicati

on

_______such as fetching the quantity

of a particular widget a vendor has

on hand

function data business

processes

Control

______________ such as accepting

an order for a widget,and sending an

invoice

function data business

processes

Applicati

on

function such as ____________ for

calculating the integral square root of

a number.

fecthing routine accepting Exit

Data such as _______________ the

quantity of a particular widget a

vendor has on hand.

fecthing routine accepting Put

_____________ is an XML based

mechanism

SOAP WSDL UDDI XML

SOAP is an ______based mechanism WML XML HTML HTTP

RPC means__________ Remote

Procedur

e call

Remote

procedura

l call

Reverse

procedure

call

Remote

Protocol

call

_________is used for exchanging

information between applications

within a distributed environment.

WSDL WML SOAP WSCL

SOAP is used for exchanging

information between ____within a

distributed environment.

Functions applicatio

ns

procedure

s

DATA

____________ is an information

exchange mechanism

SOAP WSDL XML HTML

 _____________can be used to send

messages between applications.

SOAP WSDL XML SMTP

WSDL is a

_______________application

client server service WEB

 ____________ files are typically

stored in registries called UDDI.

SOAP WSDL XML WSCL

WSDL files are typically stored in

registries called___________

 pointer registor UDDI WSDL

The key enabler for web services is

WML XML HTML SMTP

CORBA means__________ Common

Object

Request

Broker

Architect

ure

Common

Object

response

Broker

Architect

ure

control

object

request

Broker

Architect

ure

Common

object

Request

DCOM means_______________ Documen

t

Compone

nt Object

model

Data

compone

nt Object

Model

Directory

compone

nt object

model

documet

object

method

 _______defines a means to

publish,discover information, about

web services.

UDDL UDDI WSCL WSDL

UBR means_____________ UDDL

Business

registry

UDDI

Business

registry

UDDL

broker

registry

UDDI

Broker

Register

.__________is a global

implementation of the UDDI

specification.

UDDL UBR UDR UDDI

________are applications that are

available via the World wide web its

capabilities.

web

applicatio

ns

Wireless

applicatio

ns

system

applicatio

ns

Mobile

Applicati

on

Web applications are available via

the ________and allow any user to

access.

 web

server

 Web

browser

 Web Web

Service

HTML means _________________ Hyper

Text

Markup

language

Hyper

Tool

Markup

language

Hyper

Text

Managem

ent

Language

Hyper

text

markup

level

HTML and XML

are____________readable language

Machine human robot Compiler

___________is for presentation

markup

HTML XML WML SMTP

HTML is for ________________

markup

Semanic presentati

on

constructi

ng

Designin

g

___________ is for semanic markup WML HTML XML TCP

XML is for _____________markup Semanic Presentati

on

constructi

ng

Designin

g

___________enables any-to-any

information exchange

HTML XML WML UML

___________is used for structuring

data

HTML XML WML HTTP

XML is used for

_______________data

Structuri

ng

Functioni

ng

constructi

ng

Coding

___________data includes things

like Spreadsheets, address books,

configuration detail.

WML HTML XML UDDI

____a set of rules to design text

formats to support developer in

creating structured data.

WML HTML XML IP

The purpose of an XML document is

to capture ____________data.

Structure

d

Functioni

ng

semi

structure

d

Unstructu

red

The purpose of an

___________document is to capture

structured data

WML HTML XML API

____________ are structured into

number of elements

Documen

ts

functions semi

structure

d

File

Documents are structured into

number of _________

Data Functions Structure

s

elements

__________document can have a

single route element

WML HTML XML HEAD

XML document can have

__________root element.

Single 2 0 3

_______ is extremely strict in its

syntax.

HTML XML WML URL

____in OOP ‘slanguages allow

developers to name classes

unambiguously.

Functions Namespc

es

Structure Header

URI means ____________ Uniform

Resource

Identifier

Unified

resource

identifier

Universal

resource

Identifier

Universal

Resorce

Intraction

_______ is the union of _______ and

URL

URN,UR

I

URI,UR

N

URI,URL UML,UR

L

XML is to use a _________ as the

namespace identifier

URI URL URN HTTP

URN means _______________ Universal

Resource

name

Uniform

resource

name

unified

resource

name

United

Resource

identifier

URL means_________ Universal

Resource

Locator

Uniform

resource

locator

unified

resource

locator

United

Resource

Locator

XML schema provides a total of

_________simple types

55 47 44 43

Answer

eXtensibl

e Markup

Language

Return on

Investme

nt

 XML

Web

services

Descripti

on

Language

Web

services

Quality-

of-

Service

Web

service

Web

service

 web

service

Universal

descriptio

n

discovery

and

integratio

n

Simple

object

access

protocol

Web

services

Descripti

on

Language

function

data

 business

processes

routine

fecthing

SOAP

 XML

Remote

Procedur

e call

SOAP

applicatio

ns

SOAP

SOAP

client

 WSDL

UDDI

XML

Common

Object

response

Broker

Architect

ure

Documen

t

Compone

nt Object

model

UDDI

UDDI

Business

registry

UBR

web

applicatio

ns

 Web

Hyper

Text

Markup

language

human

XML

Semanic

HTML

Presentati

on

XML

XML

Structuri

ng

 XML

XML

Structure

d

 XML

Documen

ts

elements

XML

Single

XML

Namespc

es

Universal

resource

Identifier

URI,UR

N

URN

Uniform

resource

name

Uniform

resource

locator

44

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 1/25

UNIT-II

SYLLABUS

SOAP: SOAP Model – messages – Encoding – RPC – Alternative SOAP encodings – Document,

RPC, Literal, Encoded – SOAP, Web Services and the REST Architecture. WSDL: Structure –

Using SOAP and WSDL. UDDI- UDDI Business Registry – Specification – Data Structures –

Life cycle Management – Dynamic Access Point Management.

SOAP

SOAP Model

 The Simple Object Access Protocol provides a model for distributed processing assuming

that a SOAP message is originated at a particular SOAP sender and is ultimately received

by an ultimate SOAP receiver, and in the path of the message there could be zero or many

SOAP intermediaries.

 This processing model defines how any SOAP receiver should process the SOAP message

and applies to a single message only isolating itself from any other.

 SOAP Nodes

 A SOAP node is any node that participates in the SOAP message path. It can be

the initial SOAP node, in which case it is a SOAP Sender, the ultimate SOAP

receiver or a SOAP intermediary. Any SOAP node that receives a SOAP message

must perform several processes according to the SOAP specification.

 SOAP Roles

 While processing a SOAP message a SOAP node performs one or several SOAP

roles, each of them are identified by a URI, also known as the SOAP role name.

 SOAP is a way for a program running in one operating system to communicate

with a program running in either the same or a different operating system, using

HTTP (or any other transport protocol) and XML

What is SOAP?

 SOAP stands for Simple Object Access Protocol

 SOAP is a communication protocol

 SOAP is for communication between applications

 SOAP is a format for sending messages

 SOAP communicates via Internet

 SOAP is platform independent

 SOAP is language independent

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 2/25

 SOAP is based on XML

 SOAP is simple and extensible

 SOAP allows you to get around firewalls

 SOAP is a W3C recommendation

Why SOAP?

 It is important for application development to allow Internet communication between

programs.

 Today's applications communicate using Remote Procedure Calls (RPC) between objects

like DCOM and CORBA, but HTTP was not designed for this. RPC represents a

compatibility and security problem; firewalls and proxy servers will normally block this

kind of traffic.

 A better way to communicate between applications is over HTTP, because HTTP is

supported by all Internet browsers and servers. SOAP was created to accomplish this.

 SOAP provides a way to communicate between applications running on different

operating systems, with different technologies and programming languages.

SOAP Message

SOAP Building Blocks

 A SOAP message is an ordinary XML document containing the following elements:

 An Envelope element that identifies the XML document as a SOAP message

 A Header element that contains header information

 A Body element that contains call and response information

 A Fault element containing errors and status information

 All the elements above are declared in the default namespace for the SOAP envelope and

the default namespace for SOAP encoding and data types is:

Syntax Rules

 Here are some important syntax rules:

 A SOAP message MUST be encoded using XML

 A SOAP message MUST use the SOAP Envelope namespace

 A SOAP message MUST use the SOAP Encoding namespace

 A SOAP message must NOT contain a DTD reference

 A SOAP message must NOT contain XML Processing Instructions

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 3/25

Skeleton SOAP Message

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Header>

...

</soap:Header>

<soap:Body>

...

 <soap:Fault>

 ...

 </soap:Fault>

</soap:Body>

</soap:Envelope>

The SOAP Envelope Element

 The required SOAP Envelope element is the root element of a SOAP message. This

element defines the XML document as a SOAP message.

Example

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 ...

 Message information goes here

 ...

</soap:Envelope>

The xmlns:soap Namespace

 Notice the xmlns:soap namespace in the example above. It should always have the value

of: "http://www.w3.org/2001/12/soap-envelope".

 The namespace defines the Envelope as a SOAP Envelope.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 4/25

 If a different namespace is used, the application generates an error and discards the

message.

The encodingStyle Attribute

 The encodingStyle attribute is used to define the data types used in the document. This

attribute may appear on any SOAP element, and applies to the element's contents and all

child elements.

 A SOAP message has no default encoding.

Syntax

soap:encodingStyle="URI"

Example

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 ...

 Message information goes here

 ...

</soap:Envelope>

The SOAP Header Element

 The optional SOAP Header element contains application-specific information (like

authentication, payment, etc) about the SOAP message.

 If the Header element is present, it must be the first child element of the Envelope

element.

 Note: All immediate child elements of the Header element must be namespace-qualified.

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Header>

 <m:Trans xmlns:m="http://www.w3schools.com/transaction/"

 soap:mustUnderstand="1">234

 </m:Trans>

</soap:Header>

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 5/25

...

...

</soap:Envelope>

 The example above contains a header with a "Trans" element, a "mustUnderstand"

attribute with a value of 1, and a value of 234.

 SOAP defines three attributes in the default namespace

("http://www.w3.org/2001/12/soap-envelope"). These attributes are: mustUnderstand,

actor, and encoding Style.

 The attributes defined in the SOAP Header defines how a recipient should process the

SOAP message.

The mustUnderstand Attribute

 The SOAP must understand attribute can be used to indicate whether a header entry is

mandatory or optional for the recipient to process.

 If you add mustUnderstand="1" to a child element of the Header element it indicates that

the receiver processing the Header must recognize the element. If the receiver does not

recognize the element it will fail when processing the Header.

Syntax

soap:mustUnderstand="0|1"

Example

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Header>

 <m:Trans xmlns:m="http://www.w3schools.com/transaction/"

 soap:mustUnderstand="1">234

 </m:Trans>

</soap:Header>

...

...

</soap:Envelope>

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 6/25

The actor Attribute

 A SOAP message may travel from a sender to a receiver by passing different endpoints

along the message path. However, not all parts of a SOAP message may be intended for

the ultimate endpoint, instead, it may be intended for one or more of the endpoints on the

message path.

 The SOAP actor attribute is used to address the Header element to a specific endpoint.

 Syntax
soap:actor="URI"

 Example

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Header>

<m:Trans xmlns:m="http://www.w3schools.com/transaction/"

soap:actor="http://www.w3schools.com/appml/">234

</m:Trans>

</soap:Header>

...

...

</soap:Envelope>

The encodingStyle Attribute

 The encodingStyle attribute is used to define the data types used in the document. This

attribute may appear on any SOAP element, and it will apply to that element's contents

and all child elements.

 A SOAP message has no default encoding.

 Syntax

soap:encodingStyle="URI"

REMOTE PROCEDURE CALLS (RPC)

 Remote procedure calls in SOAP are essentially client-server interactions over HTTP

where the request and response comply with SOAP encoding rules. The Request-URI

(Universal Resource Identifier) in HTTP is typically used at the server end to map to a

class or an object, but this is not mandated by SOAP. Additionally, the HTTP

header SOAPAction specifies the interface name (a URI) and the name of the method to

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 7/25

be called on the server.

 The SOAP message is an XML document whose root element, the Envelope, specifies the

overall structure of the message, its intended recipient, and other attributes of the message.

SOAP specifies a remote procedure call convention, which includes the representation and

format to be used for calls and responses. A method call is modeled as a compound data

element consisting of a sequence of fields (accessors), one for each parameter. A return

structure consists of the return value as well as the out and in/out parameters. SOAP

encoding rules specify the serialization for primitive and application-defined datatypes.

 Figures 1 and 2 show the request and response structure of a remote procedure call

transported as an HTTP request carrying a SOAP payload.

Figure 1: Example of a SOAP request sent via HTTP.

POST /Temperature HTTP/1.1

Host: www.temperature-service.com

Content-Type: text/xml

Content-Length: 357

SOAPAction: "http://weather.org/query#GetTemperature"

< SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 SOAP-

ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 < SOAP-ENV:Body>

 < m:GetTemperature xmlns:m="http://weather.org/query">

 < longitude>39W< /longitude>

 < latitude>62S< /latitude>

 < /m:GetTemperature>

 < /SOAP-ENV:Body>

< /SOAP-ENV:Envelope>

Figure 2: Example of a SOAP response received via HTTP.

HTTP/1.1 200 OK

Content-Type: text/xml

Content-Length: 343

< SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 SOAP-

ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 < SOAP-ENV:Body>

 < m:GetTemperatureResponse

xmlns:m="http://weather.org/query">

https://www.extreme.indiana.edu/xgws/papers/sc00_paper/node5.html#fig:soap-request
https://www.extreme.indiana.edu/xgws/papers/sc00_paper/node5.html#fig:soap-response

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 8/25

 < centigrade>28.4< /centigrade>

 < /m:GetTemperatureResponse>

 < /SOAP-ENV:Body>

< /SOAP-ENV:Envelope>

 SOAP allows hierarchically structured queries and responses, and specifies serialization of

primitive string, numeric and date datatypes, and aggregates like arrays and vectors.

Sparse arrays, and protocols for sending parts of them are also supported. New types may

be defined using the <complexType> construct inside a schema definition.

 Overall, SOAP provides many advantages. Unfortunately, its universality comes with a

performance penalty: XML messages are textual and so the sizes of its messages are

significantly larger than protocols which send binary data. Since a distinguishing

characteristic of scientific computation is the need to handle large data sets, the

performance of SOAP relative to specialized protocols that can use binary representations

is an important issue. The next section tests SOAP performance relative to other

communication protocols.

REST

 Despite the name, Web service technology offers several advantages in non-Web

environments. For example, Web service technology facilitates the integration of J2EE

components with .NET components within an enterprise or department in a

straightforward manner.

 But as shown, Web services can be implemented in Web environments, too, on top of

basic Web technologies such as HTTP, Simple Mail Transfer Protocol (SMTP), and so on.

Representational State Transfer (REST) is a specific architectural style introduced in .

Simply put, it is the architecture of the Web.

 Consequently, the question arises about how Web services compare to the Web, or how

the corresponding underlying architectural styles SOA and REST compare.

“Representational” in REST

 The basic concept of the REST architecture is that of a resource. A resource is any piece

of information that you can identify uniquely.

 In REST, requesters and services exchange messages that typically contain both data and

metadata. The data part of a message corresponds to the resource in a particular

representation as described by the accompanying metadata (format), which might also

contain additional processing directives. You can exchange a resource in multiple

representations. Both communication partners might agree to a particular representation in

advance.

 For example, the data of a message might be information about the current weather in

New York City (the resource). The data might be rendered as an HTML document, and

the language in which this document is encoded might be German. This makes up the

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 9/25

representation of the resource “current weather in New York City.” The processing

directives might indicate that the data should not be cached because it changes frequently.

 “State Transfer” in REST

 Services in REST do not maintain the state of an interaction with a requester; that is, if an

interaction requires a state, all states must be part of the messages exchanged. By being

stateless, services increase their reliability by simplifying recovery processing. (A failed

service can recover quickly.)

 Furthermore, scalability of such services is improved because the services do not need to

persist state and do not consume memory, representing active interactions. Both reliability

and scalability are required properties of the Web. By following the REST architectural

style, you can meet these requirements.

REST Interface Structure

 REST assumes a simple interface to manipulate resources in a generic manner. This

interface basically supports to create, retrieve, update, and delete (CRUD) method.

 The metadata of the corresponding messages contains the method name and the identifier

of the resource that the method targets. Except for the retrieval method, the message

includes a representation of the resource. Therefore, messages are self-describing.

 Identifier being included in the messages is fundamental in REST. It implies further

benefits of this architectural style.

 For example, by making the identifier of the resource explicit, REST furnishes caching

strategies at various levels and at proper intermediaries along the message path. An

intermediary might determine that it has a valid copy of the target resource available at its

side and can satisfy a retrieval request without passing the request further on. This

contributes to the scalability of the overall environment.

 If you are familiar with HTTP and URIs, you will certainly recognize how REST maps

onto these technologies.

REST and Web Services

 At its heart, the discussion of REST versus Web services revolves around the advantage

and disadvantages of generic CRUD interfaces and custom-defined interfaces.

 Proponents of REST argue against Web service technology because custom-defined Web

service interfaces do not automatically result in reliability and scalability of the

implementing Web services or cache ability of results, as discussed earlier.

 For example, caching is prohibited mainly because neither identifiers of resources nor the

semantics of operations are made explicit in messages that represent Web service

operations. Consequently, an intermediary cannot determine the target resource of a

request message and whether a request represents retrieval or an update of a resource.

Thus, an intermediary cannot maintain its cache accordingly.

 Proponents of Web service technology argue against REST because quality of service is

only rudimental addressed in REST. Scenarios in which SOA is applied require qualities

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 10/25

of services such as reliable transport of messages, transactional interactions, and selective

encryption of parts of the data exchanged.

 Furthermore, a particular message exchange between a requester and a service might be

carried out in SOA over many different transport protocols along its message path—with

transport protocols not even supported by the Web. Thus, the tight coupling of the Web

architecture to HTTP (and a few other transport protocols) prohibits meeting this kind of

end-to-end qualities of service requirement.

 Metadata that corresponds to qualities of services cannot—in contrast to what REST

assumes—be expected as metadata of the transport protocols along the whole message

path. Therefore, this metadata must be part of the payload of the messages. This is exactly

what Web service technology addresses from the outset, especially via the header

architecture of SOAP.

 From an architectural perspective, it is not “either REST or Web services.” Both

technologies have areas of applicability. As a rule of thumb, REST is preferable in

problem domains that are query intense or that require exchange of large grain chunks of

data. SOA in general and Web service technology as described in this book in particular is

preferable in areas that require asynchrony and various qualities of services. Finally, SOA-

based custom interfaces enable straightforward creation of new services based on

choreography.

 You can even mix both architectural styles in a pure Web environment. For example, you

can use a regular HTTP GET request to solicit a SOAP representation of a resource that

the URL identifies and specifies in the HTTP message. In that manner, benefits from both

approaches are combined. The combination allows use of the SOAP header architecture in

the response message to built-in quality of service that HTTP does not support (such as

partial encryption of the response). It also supports the benefits of REST, such as caching

the SOAP response.

 Representational State Transfer (REST) is an architectural style that abstracts the

architectural elements within a distributed hypermedia system. REST ignores the details

of component implementation and protocol syntax in order to focus on the roles of

components, the constraints upon their interaction with other components, and their

interpretation of significant data elements. REST has emerged as a predominant web

API design model.

Scope of Applicability of SOA and Web Service

As indicated throughout the first three chapters of this book, Web service technology provides a

uniform usage model for components/services, especially within the context of heterogeneous

distributed environments. Web service technology also virtualizes resources (that is, components

that are software artifacts or hardware artifacts). Both are achieved by shielding idiosyncrasies of

the different environments that host those components. This shielding can occur by dynamically

selecting and binding those components and by hiding the communication details to properly

access those components.

Furthermore, interactions between a requester and a service might show configurable qualities of

service, such as reliable message transport, transaction protection, message-level security, and so

http://en.wikipedia.org/wiki/Hypermedia
http://en.wikipedia.org/wiki/Web_API
http://en.wikipedia.org/wiki/Web_API

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 11/25

on. These qualities of services are not just ensured between two participants but between any

number of participants in heterogeneous environments.

Given this focus, the question about the scope of applicability of SOA in general and Web service

technology in particular is justified. As with most architectural questions, there is no crisp answer,

no hard or fast rule to apply. Given this, common sense should prevail. For example:

SOA is not cost effective for organizations that have small application portfolios or those whose

new interface requirements are not enough to benefit from SOA.

SOA does not benefit organizations that have relatively static application portfolios that are

already fully interfaced.

If integration of components within heterogeneous environments or dynamically changing

component configurations is at the core of the problem being addressed, consider SOA and Web

service technology. SOA offers potentially significant benefits to organizations with large

application portfolios that undergo frequent change (lots of mergers and acquisitions or frequent

switching of service providers).

If reusability of a function (in the sense of making it available to all kinds of requesters) is

important, providing the function as a Web service is a good approach.

Currently, the XML footprint and parsing cost at both ends of a message exchange does take up

time and resources. If high performance is the most important criterion for primary

implementation, consider the use of Web service technology with care. Use of binary XML for

interchange might help this, but currently there are no agreed-upon standards for this.

Similarly, if the problem in hand is within a homogeneous environment, and interoperation with

other external environments is not an issue, Web service technology might not have significant

benefit.

WSDL

What is WSDL?

 WSDL stands for Web Services Description Language

 WSDL is written in XML

 WSDL is an XML document

 WSDL is used to describe Web services

 WSDL is also used to locate Web services

 WSDL is a W3C recommendation

WSDL Describes Web Services

 WSDL stands for Web Services Description Language.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 12/25

 WSDL is a document written in XML. The document describes a Web service. It specifies

the location of the service and the operations (or methods) the service exposes.

The WSDL Document Structure

 A WSDL document describes a web service using these major elements:

Element Defines

<types> The data types used by the web service

<message> The messages used by the web service

<portType> The operations performed by the web service

<binding> The communication protocols used by the web service

 The main structure of a WSDL document looks like this:

<definitions>

<types>

 definition of types........

</types>

<message>

 definition of a message....

</message>

<portType>

 definition of a port.......

</portType>

<binding>

 definition of a binding....

</binding>

</definitions>

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 13/25

 A WSDL document can also contain other elements, like extension elements, and a

service element that makes it possible to group together the definitions of several web

services in one single WSDL document.

WSDL Ports

 The <portType> element is the most important WSDL element.

 It describes a web service, the operations that can be performed, and the messages that are

involved.

 The <portType> element can be compared to a function library (or a module, or a class) in

a traditional programming language.

WSDL Messages

 The <message> element defines the data elements of an operation.

 Each message can consist of one or more parts. The parts can be compared to the

parameters of a function call in a traditional programming language.

WSDL Types

 The <types> element defines the data types that are used by the web service.

 For maximum platform neutrality, WSDL uses XML Schema syntax to define data types.

WSDL Bindings

 The <binding> element defines the message format and protocol details for each port.

WSDL Example

 This is a simplified fraction of a WSDL document:

<message name="getTermRequest">

 <part name="term" type="xs:string"/>

</message>

<message name="getTermResponse">

 <part name="value" type="xs:string"/>

</message>

<portType name="glossaryTerms">

 <operation name="getTerm">

 <input message="getTermRequest"/>

 <output message="getTermResponse"/>

 </operation>

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 14/25

</portType>

 In this example the <portType> element defines "glossaryTerms" as the name of a port,

and "getTerm" as the name of an operation.

 The "getTerm" operation has an input message called "getTermRequest" and an output

message called "getTermResponse".

 The <message> elements define the parts of each message and the associated data types.

 Compared to traditional programming, glossaryTerms is a function library, "getTerm" is a

function with "getTermRequest" as the input parameter, and getTermResponse as the

return parameter.

WSDL Ports

 The <portType> element is the most important WSDL element.

 It defines a web service, the operations that can be performed, and the messages that are

involved.

 The port defines the connection point to a web service. It can be compared to a function

library (or a module, or a class) in a traditional programming language. Each operation

can be compared to a function in a traditional programming language.

Operation Types

 The request-response type is the most common operation type, but WSDL defines four

types:

Type Definition

One-way The operation can receive a message but will not return a

response

Request-response The operation can receive a request and will return a response

Solicit-response The operation can send a request and will wait for a response

Notification The operation can send a message but will not wait for a response

One-Way Operation

 A one-way operation example:

<message name="newTermValues">

 <part name="term" type="xs:string"/>

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 15/25

 <part name="value" type="xs:string"/>

</message>

<portType name="glossaryTerms">

 <operation name="setTerm">

 <input name="newTerm" message="newTermValues"/>

 </operation>

</portType >

 In the example above, the port "glossaryTerms" defines a one-way operation called

"setTerm".

 The "setTerm" operation allows input of new glossary terms messages using a

"newTermValues" message with the input parameters "term" and "value". However, no

output is defined for the operation.

Request-Response Operation

A request-response operation example:

<message name="getTermRequest">

 <part name="term" type="xs:string"/>

</message>

<message name="getTermResponse">

 <part name="value" type="xs:string"/>

</message>

<portType name="glossaryTerms">

 <operation name="getTerm">

 <input message="getTermRequest"/>

 <output message="getTermResponse"/>

 </operation>

</portType>

In the example above, the port "glossaryTerms" defines a request-response operation called

"getTerm".

The "getTerm" operation requires an input message called "getTermRequest" with a parameter

called "term", and will return an output message called "getTermResponse" with a parameter

called "value".

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 16/25

Binding to SOAP

 A request-response operation example:

<message name="getTermRequest">

 <part name="term" type="xs:string"/>

</message>

<message name="getTermResponse">

 <part name="value" type="xs:string"/>

</message>

<portType name="glossaryTerms">

 <operation name="getTerm">

 <input message="getTermRequest"/>

 <output message="getTermResponse"/>

 </operation>

</portType>

<binding type="glossaryTerms" name="b1">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http" />

 <operation>

 <soap:operation soapAction="http://example.com/getTerm"/>

 <input><soap:body use="literal"/></input>

 <output><soap:body use="literal"/></output>

 </operation>

</binding>

 The binding element has two attributes - name and type.

 The name attribute (you can use any name you want) defines the name of the binding, and

the type attribute points to the port for the binding, in this case the "glossaryTerms" port.

 The soap:binding element has two attributes - style and transport.

 The style attribute can be "rpc" or "document". In this case we use document. The

transport attribute defines the SOAP protocol to use. In this case we use HTTP.

 The operation element defines each operation that the port exposes.

 For each operation the corresponding SOAP action has to be defined. You must also

specify how the input and output are encoded. In this case we use "literal".

UDDI

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 17/25

What is UDDI

 UDDI is a platform-independent framework for describing services, discovering

businesses, and integrating business services by using the Internet.

 UDDI stands for Universal Description, Discovery and Integration

 UDDI is a directory for storing information about web services

 UDDI is a directory of web service interfaces described by WSDL

 UDDI communicates via SOAP

 UDDI is built into the Microsoft .NET platform

What is UDDI Based On?

 UDDI uses World Wide Web Consortium (W3C) and Internet Engineering Task Force

(IETF) Internet standards such as XML, HTTP, and DNS protocols.

 UDDI uses WSDL to describe interfaces to web services

 Additionally, cross platform programming features are addressed by adopting SOAP,

known as XML Protocol messaging specifications found at the W3C Web site.

UDDI Benefits

 Any industry or businesses of all sizes can benefit from UDDI.

 Before UDDI, there was no Internet standard for businesses to reach their customers and

partners with information about their products and services. Nor was there a method of

how to integrate into each other's systems and processes.

 Problems the UDDI specification can help to solve:

 Making it possible to discover the right business from the millions currently online

 Defining how to enable commerce once the preferred business is discovered

 Reaching new customers and increasing access to current customers

 Expanding offerings and extending market reach

 Solving customer-driven need to remove barriers to allow for rapid participation in the

global Internet economy

 Describing services and business processes programmatically in a single, open, and

secure environment

How can UDDI be Used

 If the industry published an UDDI standard for flight rate checking and reservation,

airlines could register their services into an UDDI directory. Travel agencies could then

search the UDDI directory to find the airline's reservation interface. When the interface is

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 18/25

found, the travel agency can communicate with the service immediately because it uses a

well-defined reservation interface.

UDDI BUSINESS REGISTRY

Relationship of UDDI Core Data Types

businessEntity fields

<identifierBag>

<keyedReference

tModelKey="uddi:uddi.org:ubr:identifier:dnb.com:d-u-n-s"

keyName="SAP AG"

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 19/25

keyValue="31-626-8655" />

</identifierBag

Business Service

 Each business Service structure represents a logical grouping of Web services. At the

service level, there is still no technical information provided about those services; rather,

this structure allows the ability to assemble a set of services under a common rubric. Each

businessService is the logical child of a single businessEntity. Each businessService

contains descriptiveinformation – again, names, descriptions and classification

 information -- outlining the purpose of the individual Web services found within it. For

example, a businessService structure could contain a set of Purchase Order Web services

(submission, confirmation and notification) that are provided by a business.

BindingTemplate fields

SPECIFICATION

 The UDDI project also defines a set of XML Schema definitions that describe the data

formats used by the various specification APIs. These documents are all available for

download at www.uddi.org. The current version of all specification groups is Version

2.0.

 The specifications include the following −

 UDDI Replication,

http://www.uddi.org/

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 20/25

 UDDI Operators,

 UDDI Programmer's API, and

 UDDI Data Structures

UDDI Replication

 This document describes the data replication processes and interfaces to which a registry

operator must conform to achieve data replication between sites. This specification is not

a programmer's API; it defines the replication mechanism used among UBR nodes.

UDDI Operators

 This document outlines the behavior and operational parameters required by the UDDI

node operators. This specification defines data management requirements to which

operators must adhere.

UDDI Programmer's API

 This specification defines a set of functions that all UDDI registries support for inquiring

about services hosted in a registry and for publishing information about a business or a

service to a registry. This specification defines a series of SOAP messages containing

XML documents that a UDDI registry accepts, parses, and responds to. This

specification, along with the UDDI XML API schema and the UDDI Data Structure

specification, makes up a complete programming interface to a UDDI registry.

UDDI Data Structures

 This specification covers the specifics of the XML structures contained within the SOAP

messages defined by the UDDI Programmer's API. This specification defines five core

data structures and their relationships with one another.

 The UDDI XML API schema is not contained in a specification; rather, it is stored as an

XML Schema document that defines the structure and datatypes of the UDDI data

structures.

 UDDI includes an XML Schema that describes the following data structures −

 businessEntity

 businessService

 bindingTemplate

 tModel

 publisherAssertion

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 21/25

businessEntity Data Structure

 The business entity structure represents the provider of web services. Within the

UDDI registry, this structure contains information about the company itself,

including contact information, industry categories, business identifiers, and a list of

services provided.

 Here is an example of a fictitious business's UDDI registry entry −

<businessEntity businessKey = "uuid:C0E6D5A8-C446-4f01-99DA-

70E212685A40"

 operator = "http://www.ibm.com" authorizedName = "John Doe">

 <name>Acme Company</name>

 <description>

 We create cool Web services

 </description>

 <contacts>

 <contact useType = "general info">

 <description>General Information</description>

 <personName>John Doe</personName>

 <phone>(123) 123-1234</phone>

 <email>jdoe@acme.com</email>

 </contact>

 </contacts>

 <businessServices>

 ...

 </businessServices>

 <identifierBag>

 <keyedReference tModelKey = "UUID:8609C81E-EE1F-4D5A-B202-

3EB13AD01823"

 name = "D-U-N-S" value = "123456789" />

 </identifierBag>

 <categoryBag>

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 22/25

 <keyedReference tModelKey = "UUID:C0B9FE13-179F-413D-8A5B-

5004DB8E5BB2"

 name = "NAICS" value = "111336" />

 </categoryBag>

</businessEntity>

businessService Data Structure

 The business service structure represents an individual web service provided by the

business entity. Its description includes information on how to bind to the web

service, what type of web service it is, and what taxonomical categories it belongs

to.

 Here is an example of a business service structure for the Hello World web service.

<businessService serviceKey = "uuid:D6F1B765-BDB3-4837-828D-8284301E5A2A"

 businessKey = "uuid:C0E6D5A8-C446-4f01-99DA-70E212685A40">

 <name>Hello World Web Service</name>

 <description>A friendly Web service</description>

 <bindingTemplates>

 ...

 </bindingTemplates>

 <categoryBag />

</businessService>

Notice the use of the Universally Unique Identifiers (UUIDs) in the businessKey and

serviceKey attributes. Every business entity and business service is uniquely identified in

all the UDDI registries through the UUID assigned by the registry when the information is

first entered.

bindingTemplate Data Structure

 Binding templates are the technical descriptions of the web services represented by

the business service structure. A single business service may have multiple binding

templates. The binding template represents the actual implementation of the web

service.

 Here is an example of a binding template for Hello World.

<bindingTemplate serviceKey = "uuid:D6F1B765-BDB3-4837-828D-8284301E5A2A"

 bindingKey = "uuid:C0E6D5A8-C446-4f01-99DA-70E212685A40">

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 23/25

 <description>Hello World SOAP Binding</description>

 <accessPoint URLType = "http">http://localhost:8080</accessPoint>

 <tModelInstanceDetails>

 <tModelInstanceInfo tModelKey = "uuid:EB1B645F-CF2F-491f-811A-

4868705F5904">

 <instanceDetails>

 <overviewDoc>

 <description>

 references the description of the WSDL service definition

 </description>

 <overviewURL>

 http://localhost/helloworld.wsdl

 </overviewURL>

 </overviewDoc>

 </instanceDetails>

 </tModelInstanceInfo>

 </tModelInstanceDetails>

</bindingTemplate>

As a business service may have multiple binding templates, the service may specify

different implementations of the same service, each bound to a different set of protocols or

a different network address.

tModel Data Structure

 tModel is the last core data type, but potentially the most difficult to grasp. tModel

stands for technical model.

 tModel is a way of describing the various business, service, and template structures

stored within the UDDI registry. Any abstract concept can be registered within the

UDDI as a tModel. For instance, if you define a new WSDL port type, you can

define a tModel that represents that port type within the UDDI. Then, you can

specify that a given business service implements that port type by associating the

tModel with one of that business service's binding templates. Here is an example

of a tModel representing the Hello World Interface port type.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 24/25

<tModel tModelKey = "uuid:xyz987..." operator = "http://www.ibm.com"

authorizedName = "John Doe">

<name>HelloWorldInterface Port Type</name>

<description>

An interface for a friendly Web service

</description>

<overviewDoc>

<overviewURL>

http://localhost/helloworld.wsdl

</overviewURL>

</overviewDoc>

</tModel>

publisherAssertion Data Structure

 This is a relationship structure putting into association two or more businessEntity

structures according to a specific type of relationship, such as subsidiary or

department.

 The publisherAssertion structure consists of the three elements: fromKey (the first

businessKey), toKey (the second businessKey), and keyedReference.

 The keyedReference designates the asserted relationship type in terms of a

keyName keyValue pair within a tModel, uniquely referenced by a tModelKey.

<element name = "publisherAssertion" type = "uddi:publisherAssertion" />

<complexType name = "publisherAssertion">

 <sequence>

 <element ref = "uddi:fromKey" />

 <element ref = "uddi:toKey" />

 <element ref = "uddi:keyedReference" />

 </sequence>

</complexType>

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: II (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 25/25

POSSIBLE QUESTIONS

PART – A

(Online Exam 20*1=20 marks)

 Multiple Choice Questions available in Moodle

POSSIBLE QUESTIONS

PART – B

(Each Question carries 6 marks)

1. Explain about SOAP Model

2. Explain the process of SOAP Messages

3. Explain the process of REST Architecture

4. Write in detail: (i) Encoding (ii) RPC

5. Explain the Structure of WSDL

6. Explain about UDDI and its process

7. Discuss in detail about UDDI Business Registry

8. Explain the Operation types of WSDL

9. Discuss in detail about UDDI Data Structures

10. Differentiate between SOAP and WSDL

PART – C

(Compulsory Question carries 10 marks)

1. Explain how WSDL describes Web Services.

2. Explain about SOAP Envelope Element

3. Explain about publisher Assertion Data Structure

4. Write a program to demonstrate SOAP Binding

5. Write a program to simplified fraction of a WSDL document

Questions Opt1 Opt2 Opt3 Opt4

SOAP is an___________ based

protocol

JAVA XML HTTP FTP

SOAP is a format for sending

messages and is called as

communication protocol linkinkg protocolcarrier protocolconcatina

tion

protocol

__________ is the directory for

strong information

 about web services

UDDI FTTP SMTP FTP

SOAP is a ____________ carrier language protocol markup

WSdL is a_______________ web service description language web service data languageweb service dynamic languageweb

service

 dynamic

leader

WSdL is pronounced

as____________

wis-dell wis-doll wizz-dull wiz-dell

________ is an extenstion of

WSDL

x link x lang x query x path

WSDL is not

a__________________

ibm standard microsoft standardwww standard w3c standard

The first working draft of WSDL

1.2 was released by WBC in

2002 june 2002 july 2003 july 2012 july

The binding element has

___________ attributes

one two three four

which of these are WSDL operator

types?

one way error messagesrequest responsesolicst response

The SOAP binding element has

two attributes they are

style font style and transport font and bulet

UDDI stands for ___________ integration destination universal

descriptio

n

discover

and

integratio

n

universal

descriptio

n

discover

and

inspectio

n

universal

descriptio

n

discover

and intent

BPEL standards

for_______________

business process

excecution language

business

process

 equation

language

business

process

enabling

language

business

process

 eqalling

language

_________is used to model

behaviourof the both executive and

abstract classes

BHEL BPPE BPL BPEL

____________document specifies

the location of service

WSDL WWW WWWW WSCL

_____________ defines the

message format & protocol

 design for webservice

WSDL DESINGING WSDL bindingWSDL tableWSDL tag

Intial SOAP is also called as

maker finder orginator intimater

SOAP _________ is a node that

receives , accepts the

 messages passed by user

entertainer receiver sender linker

SOAP _______is between SOAP

sender

 and SOAP receiver

diary intermeditaryinvolency inspecting

SOAP messages can be attached

with ________

 extensions

mime fine hype rime

___________is a node that

transmits messages received

by receiver

SOAP caster SOAP senderSOAP readerSOAP player

SOAP objects are __________

and hard to maintain

statefull stable less state less stunning

SOAP identify the objects other

than ______end point

FTP HTP CMTP URL

the data that is exchanged between

client and server

 is in XML format and_________

canal passes river passesSOAP passescalibre passes

SOM stands for

syndicate deployment model service development modelservice denominant modelservice

deployme

nt

 model

SOAP is a______________ connecting protocol concept protocolconverse protocolcommuni

cation

protocol

SOAP uses ___________channel

to transport

FTP HTTP HPR HDR

___________ and transport layers

of a network are

 used by SOAP

application integrationimmigrationinteligence

______ is a light weight protocol TOMB SOAP SOAR SOME

SOAP protocol posses only

_______ fundamental properties

3 2 1 5

SOAP is based on__________ ruling sealing message exchngesmessage

converge

nce

Application and _________ layers

of network is used by SOAP

transport intelligent integrationvibration

A SOAP __________ contains

block of information or how

messages is processed

<header> <footer> <middle> <body>

The <body> elements contains

either application

specified data or _________

documents links images fault messages

SOAP supports the documents and

APC LLC RPC IC

RPC is abbreviated as

random proven

 connection

remote procedure callremote point controlrival

point

connectio

n

The ________ elements reflects no

explicit XML structure

<body> <tag> <title> <header>

SOAP provides model for

handling ___________

famaliness conveigencescalablity fault arise

fault information is placed in

SOAP's ____________

<body> <header> <title> <footer>

SOAP uses same error and

stubs structure unions status codes

In SOAP serialization is done

by___________and not

 by the reference

data language images value

________ is an XML based

standard for describing web

services

UDDI FTM FTP HTP

UDDI Is a platform independent

opening frameset websites open frame work

 UDDI is an ____________

university

open closed commited controlled

__________ and IBM launched

the first UDDI open sites

microsoft nokia samsung intel

UDDI version 2.0 announced in

the year _______

2001 2012 1993 1998

currently UDDI is sponsered by

sun opera intel oasis

Three elements of UDDI

are______, yellow, green pages

pink blue black white

white pages contain _________

information

basic highlevel average waste

green pages contain

____________ information about

webservices

basic random technical risky

UBR is abbreviated

as____________

under black reaction ultimate

bouncer

racing

UDDI

business

registry

UDDI

business

reaction

____________ is an XML format

for describing network service

www wsll wsdl wwe

WSDL is written in _______ XML C C++ phython

__________ defines protocol and

data format for each port type

<binding> <tagline> <carrying><message>

____________ describes the

operation that can be performed

and

message involved

<port link> <port tag><port type><port struct>

___________ defines the data

types used by web service

<types> <messages><tag> <binding>

___________defines the data

element for each operation

<types> <messages><tag> <binding>

The __________ operation has an

inputed messages called

"get term request"

"get it" "get term" "get" "gets'

_______ response can be sent as

request and will

wait for response

solicit stable suthing simple

Opt5 Opt6 Answer

JAVA

communication protocol

UDDI

protocol

web service description language

wizz-dull

x lang

w3c standard w3c standard

2002 july

two

solicst response error messages

font and bulet style and transport

universal

descriptio

n

discover

and

integratio

n

business process equation language

BPEL

WWW

WSDL tag WSDL binding

orginator

sender

inspecting intermeditary

mime

SOAP player SOAP sender

stable less

URL

calibre passes SOAP passes

service development model

communication protocol

HTTP

inteligence application

SOAP

2

message exchnges

transport

<header>

fault messages fault messages

RPC

remote procedure call

<body>

fault arise

<body>

status codes status codes

value

UDDI

open frame work open frame work

open

microsoft

2012

oasis

white

basic

technical

UDDI business registry

wsdl

XML

<message> <binding>

<port struct> <port type>

<binding> <types>

<binding> <messages>

"get term"

solicit

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: III (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 1/23

UNIT-III

SYLLABUS

Advanced Web Services Technologies and Standards: Conversation – Overview – Web

Services Conversation Language – WSCL Interface Components- Workflow-Business Process

Management – Workflow and Workflow Management systems – BPEL. Transaction –ACID

transaction – Distributed Transaction – OASIS Business Transaction Protocol.

ADVANCED WEB SERVICES TECHNOLOGIES AND STANDARDS

CONVERSATION

Each conversation definition has the root element Conversation.

<?xml version="1.0" encoding="UTF-8"?>

<Conversation name="StoreFrontServiceConversation" version="1.01"

 xmlns="http://www.w3.org/2002/02/wscl10"

 initialInteraction="Start" finalInteraction="End"

 targetNamespace="http://example.com/conversations/StoreFront101"

 hrefSchema="http://example.com/schema_files/StoreFront101.wscl"

 description="Conversation for a Store Front Service" >

 <ConversationInteractions>

 list of all the interactions

 </ConversationInteractions>

 <ConversationTransitions>

 list of all the transitions

 </ConversationTransitions>

</Conversation>

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: III (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 2/23

The Conversation element contains the following two sub-elements:

ConversationInteractions lists all Interaction elements.

ConversationTransitions lists all Transition elements.

The Conversation element contains the following attributes:

initialInteraction and finalInteraction reference the initial and final interactions of the

conversation.

name is the name of a conversation. The name is the shared piece of information needed by both

parties so they realize the same conversation type in their service implementation. This name

would also appear in the header elements of the actual messages exchanged. WSCL does not

specify how to name conversations. Conversation names do not have to be URIs. If a

conversation is published in a UDDI directory, the conversation name could be a tModel key.

version (optional) is the version of the conversation. If no version number is given, the name of

the conversation must be unique.

targetNamespace (optional) is the namespace of this conversation as it should be used when

elements of this conversation are referenced in other XML documents.

hrefSchema (optional) is the URL of the file containing this conversation definition.

description (optional) is the textual description of the conversation.

OVERVIEW

WEB SERVICES CONVERSATION LANGUAGE

 Electronic commerce is moving toward a vision in which corporate enterprises use Web

services to interact with each other based on well-defined standards in a dynamic and

loosely coupled way. To use Web services effectively, the interacting parties need to know

and agree on the following:

 Business payload – Both parties need to know which information to exchange.

 Protocol – Both parties need to know how to exchange business payload. They must

agree on the message structure, message header information, mapping to underlying

transfer protocols, and overall framework for communication and error handling.

Protocols for Web services include SOAP-RPC , asynchronous SOAP with specific

profiles, RNIF, and ebXML TR&P.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: III (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 3/23

 Service location – To interact with a specific service, both parties need to know which

protocols the service supports, which payload it exchanges, and its location; for

example, an HTTP URL.

Elements of a WSCL Specification

 The complete schema for WSCL is listed in Appendix A. There are four main elements to

a WSCL specification, as depicted in the UML model shown in Figure 3.

 Document type descriptions specify the types (schemas) of XML documents the service

can accept and transmit in the course of a conversation. The schemas of the documents

exchanged are not specified as part of the WSCL specification document; the actual

document schemas are separate XML documents referenced by their URL in the

XMLDocumentType elements of the conversation specification.

 Interactions model the actions of the conversation as document exchanges between two

participants. WSCL supports five types of interactions: Send (the service sends out an

outbound document); Receive (the service receives an inbound document); SendReceive

(the service sends out an outbound document and then expects to receive an inbound

document in reply); ReceiveSend (the service receives an inbound document and then

sends out an outbound document); Empty does not contain any documents exchanged, but

is used only for modeling the start and end of a conversation.

Transitions specify the ordering relationships between interactions. A transition specifies a source

interaction, a destination interaction, and, optionally, a document type of the source interaction as

an additional condition for the transition.

Conversations list all the interactions and transitions that make up the conversation. A

conversation contains additional information about the conversation, including the conversation’s

name and the interaction the conversation can start with and end with. Conversations can be

thought of as interfaces or public processes supported by a service. They differ from interfaces as

defined by CORBA IDE or Java interfaces because they also specify the possible ordering of

operations, i.e. the possible sequences in which documents may be exchanged.

Document Types

The interaction between service-consumer and service-provider is achieved through XML

document exchange. A conversation definition language must be able to define all the input and

output document types. The attribute hrefSchema of the elements InboundXMLDocument and

OutboundXMLDocument refers to the schema to which the document corresponds. WSCL

supports only XML schema specifications of payload because schemas seem to be the prevailing

means of describing data exchanged on the Internet. Existing DTD specifications can be

translated easily into XML schemas. WSCL, a very simple and basic conversation definition

language, does not directly support the specification of non-XML payload-like binary

attachments. Yet the attribute hrefSchema is optional, which allows the schema definition to be

omitted in case of binary payload.

http://www.w3.org/TR/wscl10/#AppA#AppA
http://www.w3.org/TR/wscl10/#F3#F3

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: III (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 4/23

InboundXMLDocument and OutboundXMLDocument also serve to declare an ID for the

document that can be used within the rest of the conversation definition. In the following

example, the definition defines an input document that conforms to a purchase order schema

defined in PurchaseOrderRQ.xsd.

<InboundXMLDocument

 hrefSchema="http://foo.org/PurchaseOrderRQ.xsd"

 id="PurchaseOrderRQ"

</InboundXMLDocument>

 In a WSCL conversation definition, the document types are declared within the interaction

definitions as either an InboundXMLDocument or OutboundXMLDocument, depending

on whether the document is expected as input or is produced as output in the interaction.

 WSCL only references the schemas for the business payload of any messages. Of course,

the business documents will be complemented by XML message header information for

the exchange over the Internet. These message header schemas, however, are defined by

the protocol binding and should not appear in the business documents referenced by the

document types.

INTERACTIONS

 An interaction is an exchange of one or two documents between a service and its client.

WSCL only models business level interactions. It only specifies which business level

documents are exchanged and does not model how this exchange is carried out by lower-

level messaging protocols. The actual messaging may involve more than one message per

business document exchange; for example, an HTTP-POST as well as an HTTP-

RESPONSE per business document. The messaging logic may even introduce additional

transport level acknowledge messages; for example, to achieve reliable messaging.

 The following interaction types are currently defined in WSCL: Receive and Send (one-

way interactions), ReceiveSend and SendReceive (two-way interactions), and Empty.

One-Way Interactions

 One-way interactions represent a single one-way message being sent or received by a

participant. There are two sub-types of one-way interactions: Receive and Send. Send

represents a document sent out by a participant. Receive represents a document received

by a participant.

 The following example represents a Receive interaction that receives a login document:

 <Interaction interactionType="Receive" id="LoginRegInput">

 <InboundXMLDocument id="LoginRequestData"

 hrefSchema=http://foo.org/LoginRequestData.xsd />

 </Interaction>

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: III (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 5/23

 A Receive interaction must contain one InboundXMLDocument element. A Send

interaction must contain one OutboundXMLDocument element.

Two-Way Interactions

 Two-way interactions can be either SendReceive or ReceiveSend, depending on whether

the participant sends out a message for which it gets a response (SendReceive) or responds

to a request that it receives (ReceiveSend).

 SendReceive: Each SendReceive interaction is the logical unit of sending a request and

then receiving a response. The interaction is not complete until the response has been

exchanged.

<Interaction interactionType="SendReceive" id="Payment">

 <OutboundXMLDocument id="Invoice"

 hrefSchema="http://foo.org/InvoiceRS.xsd">

 </OutboundXMLDocument>

 <InboundXMLDocument id="Payment"

 hrefSchema="http://foo.org/Payment.xsd">

 </InboundXMLDocument>

</Interaction>

ReceiveSend: Each ReceiveSend interaction is the logical unit of receiving a request and then

returning a response. The interaction is not complete until the response has been sent.

<Interaction interactionType="ReceiveSend" id="Quotation">

 <InboundXMLDocument id="PurchaseOrderRQ"

 hrefSchema="http://foo.org/PurchaseOrderRQ.xsd">

 </InboundXMLDocument>

 <OutboundXMLDocument id="InvoiceRS"

 hrefSchema="http://foo.org/InvoiceRS.xsd">

 </OutboundXMLDocument>

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: III (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 6/23

</Interaction>

 The following example shows a Purchase interaction that specifies two additional

outbound document types for the cases of invalid payment and out of stock.

<Interaction interactionType="ReceiveSend" id="Purchase" >

 <InboundXMLDocument hrefSchema="http://conv123.org/PurchaseOrderRQ.xsd"

 id="PurchaseOrderRQ" />

 <OutboundXMLDocument id="PurchaseOrderAcceptedRS"

 hrefSchema="http://conv123.org/PurchaseOrderAcceptedRS.xsd" />

 <OutboundXMLDocument id="InvalidPaymentRS"

 hrefSchema="http://conv123.org/InvalidPaymentRS.xsd" />

 <OutboundXMLDocument id="OutOfStockRS"

 hrefSchema="http://conv123.org/OutOfStockRS.xsd" />

</Interaction>

Similarly, a SendReceive interaction can specify more than one InboundXMLDocument.

Transitions

 A conversation can proceed from one interaction to another as allowed by the permissible

sequencing defined in the transition elements.

<Transition>

 <SourceInteraction href="Invoice"/>

 <DestinationInteraction href="Receipt"/>

 <SourceInteractionCondition href="InvoiceRS"/>

</Transition>

 SourceInteraction references an interaction that can precede the DestinationInteraction

when the conversation is executed. Similarly, DestinationInteraction references one of the

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: III (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 7/23

interactions that can follow the SourceInteraction when the conversation is executed.

Together, all transitions specify all possible sequences of the interactions.

 SourceInteractionCondition is an additional constraint on the transition. It is needed when

the Source Interaction specifies more than one possible document to be exchanged and the

type of document exchanged has an influence on the possible next interactions. Source

Interaction Condition references an OutboundXMLDocument of the SourceInteraction

when it is a Receive Send interaction, or an InboundXMLDocument from the

SourceInteraction when it is a Send Receive interaction. If no SourceInteractionCondition

is listed, Destination Interaction can be triggered independent of the types of documents

exchanged in Source Interaction. There is one important limitation to specifying

transitions without Source Interaction Condition: If there exists a transition from Source

Interaction A to Destination Interaction B that specifies a SourceInteraction Condition,

then it is not possible to also specify a transition from SourceInteraction A to Destination

Interaction B without a Source Interaction Condition.

 Transitions define all the permissible orders of interactions but do not specify under which

condition which permissible sequence is chosen. This is determined by the internal

application logic of both participants, often based on back-end information; for example,

in the example in Appendix B, it is the buyer who decides whether the CatalogInquiry

interaction is followed by a Quote interaction or a Purchase interaction, by sending either

a PurchaseRQ or QuoteRQ document. A PurchaseRQ document triggers the Purchase

interaction; a QuoteRQ document triggers the Quote interaction.

Initial and Final Interactions

 Part of defining the possible ordering of interactions is the specification of the first and

last interactions of a conversation. In WSCL, this is done by the attributes

initialInteraction and finalInteraction of the Conversation element. The attribute

initialInteraction references the ID of the first interaction to be executed in the

conversation. The attribute finalInteraction references the ID of the last interaction to be

executed.

<Conversation name="ExampleConversation"

 initialInteraction = "Login"

 finalInteraction = "Purchase" >

 Of course, there might be more than one interaction with which the conversation can start

or end. In the example shown in Figure 2 and Appendix B, the conversation can end after

a CatalogInquiry interaction, a Quote interaction, a Purchase interaction (in case the

purchase cannot go through), or the Shipping interaction. In addition, the conversation can

start with either a Registration or a Login interaction, depending on whether or not the

client is already a registered user. To specify several possible start and end interactions,

interactions of type Empty are used. In Figure 2, an empty interaction Start is added, plus

transitions from Start to Registration and Login. The attribute initialInteraction references

http://www.w3.org/TR/wscl10/#F2#F2
http://www.w3.org/TR/wscl10/#AppB#AppB
http://www.w3.org/TR/wscl10/#F2#F2

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: III (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 8/23

this empty interaction Start. An empty interaction, End, is introduced with various

transitions to it, and is referenced in the attribute finalInteraction.

 An interactionType Empty is an interaction in which no documents are exchanged. Its

specification does not contain the sub-elements InboundXMLDocument and

OutboundXMLDocument. Currently, the only situation in which empty interactions can

be used in a conversation definition is when several possible final or initial interactions

need to be modeled. The conversation example in Appendix B shows empty interactions.

 Where WSDL and WSCL overlap, we can map the different terminology used as follows:

WSDL WSCL

Port Type Conversation

Operation:

- One-way

- Request-response

- Solicit-response

- Notification

Interaction*:

- Receive

- ReceiveSend

- SendReceive

- Send

Input InboundXMLDocument

Output, Fault OutboundXMLDocument

Names of Operation,

Input, Output, Fault
ID of Interaction, InboundXMLDocument, OutboundXMLDocument

Message

URL of XML schema (WSCL delegates the specification of the payload

entirely to an external XML schema, whereas WSDL directly uses XML

data types)

*Empty does not appear in this list because it is used only for modeling the start and end state of

conversations, and does not contain any documents exchanged.

 There are three approaches for combining WSDL and WSCL descriptions of a Web

service:

 Adding protocol bindings in WSDL to a conversation described in WSCL: If the abstract

interface is already completely described by a WSCL document, we can use the WSDL

Binding elements to describe the protocol binding; for example:

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="MyStoreFrontService"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 targetNamespace=...

 xmlns:conv="http://example.com/Conversations/StoreFront.cdl" >

http://www.w3.org/TR/wscl10/#AppB#AppB

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: III (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 9/23

 <binding name="StoreFrontServiceConversationBinding"

 type="conv:StoreFrontServiceConversation">

 <soap:binding style="document"/>

 <operation name="conv:Login">

 <soap:operation soapAction="Login">

 </operation>

 <operation name="conv:Registration">

 <soap:operation soapAction="Registration">

 </operation>

 ... for all other interactions

 </binding>

 <service name="MyStoreFrontService">

 <port name="MyStoreFrontServiceAccessPoint"

 binding="StoreFrontServiceConversationBinding">

 <soap:Address location="http://mystore.com/storefront" />

 </port>

 </service>

</definitions>

In the example, the attribute type in the element binding refers to the name of the conversation in

the WSCL document describing this conversation. The names of the operations refer to the IDs of

the interactions.

 Adding choreography to a WSDL port type description: If a port type is already described

by a WSDL document, we can describe the choreography in an additional WSCL

document that only contains transition elements. The sub-elements SourceInteraction and

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: III (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 10/23

DestinationInteraction refer to the names of operations from the WSDL document. The

sub-element SourceInteractionCondition refers to an output or fault message of the

operation. WSCL uses attributes of type HREF to refer to other elements. Therefore, to

refer to operations from a WSDL document, the WSCL schema needs to be slightly

adapted to also accept values of type QNAME.

 Providing a full WSDL and WSCL description for the same port type/conversation: We

can also express which documents get exchanged by both a WSDL port type and a WSCL

conversation with the conversation also describing the choreography used. The following

example describes the interaction "Login" from the WSCL example in Appendix B as a

WSDL operation:

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="MyStoreFrontService"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 targetNamespace=...

 xmlns:xsd1="http://example.com/types/LoginRQ.xsd"

 xmlns:xsd2="http://example.com/types/ValidLoginRS.xsd"

 xmlns:xsd3="http://example.com/types/InvalidLoginRS.xsd" >

 <message name="LoginRequestDocument">

 <part name="body" element="xsd1:LoginRQElement" />

 </message>

 <message name="ValidLoginDocument">

 <part name="body" element="xsd2:ValidLoginRSElement" />

 </message>

 <message name="InvalidLoginDocument">

 <part name="body" element="xsd3:InvalidLoginRSElement" />

 </message>

http://www.w3.org/TR/wscl10/#AppB#AppB

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: III (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 11/23

 <portType name="StoreFrontServiceConversation" >

 <operation name="Login">

 <input name="LoginRQ" message="LoginRequestDocument"/>

 <output name="ValidLoginRQ" message="ValidLoginDocument"/>

 <fault name="InvalidLoginRQ" message="InvalidLoginDocument"/>

 </operation>

 </portType>

</definitions>

 Extending WSCL

 The WSCL specification contains the smallest possible set of elements and attributes to

describe conversations. This set is sufficient to model many of the conversations needed

for Web services. However, there are more complex B2B interactions that need additional

capabilities from a conversation definition language. Such additional requirements include

the following examples:

 Defining document types that have non-XML content; for example, binary attachments

 Explicit description of roles of participants

 Multi-party conversations with three or more participants or roles

 Expressing timeouts and other quality of service characteristics of individual interactions

 Expressing more complex SourceInteractionConditions; for example, listing several

documents, excluding documents, or even referencing the content of documents

 Events, i.e. interactions that can occur at any time within a conversation instance

 Recursive conversations, aggregating conversations into larger conversations

 Sub-typing and extending existing conversation definitions

WORKFLOW AND WORKFLOW MANAGEMENT SYSTEMS

Introduction

 – Workflow & Web Service Composition

 – Workflow Management Systems

• Automatic Web Service Composition

 – Process definition language: BPEL

– Semantics & Semantic Web Services

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: III (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 12/23

– Process composer (Planner)

– Workflow Engine

Workflow – definition

 Workflow: Process that can be automated by invoking applications or external services

and/or assigning manual tasks

• Workflow Composition: arranging activities to form a business process

– if invocation is limited to Web Services calls:

Workflow Composition

 Web Service Composition

 Web Service Composition in a broad sense:

 „the automatic selection, composition, and

 interoperation of Web services to perform some

 task, given a high-level description of an

 objective“ [OWL-S: Semantic Markup for Languages]

– Web Service discovery

– Composition (in a narrow sense) of new Services

– Execution of new, composite Services

two different approaches:

1. low-level process modeling and execution languages (like WS-BPEL)

- directly executable in existing engines

- manual definition of new (composed) processes that interact with existing ones

- does not allow for automation

2. high-level unambigious description language for Web Services (like OWL-S)

- allows reasoning about web services

- automation of discovery and composition possible

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: III (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 13/23

Parts allowing WS Composition

Language for process definitions: BPEL

– must be supported by available workflow engines

2. Semantics to describe capabilities of WS and requested functionality

3. Process composer (Planner) which creates BPEL process definitions to fulfill a request

– based on semantic descriptions of

• request

• available atomic Web Services

4. Workflow Engine that can work with BPEL process definitions

Process definition language: Why not WSDL?

typical business interactions:

– sequences of peer-to-peer messages (synchronous and asynchronous)

– long-running, stateful

� protocol for message exchange needed

• WSDL

– based on stateless interaction model

– only synchronous (request/response) and uncorrelated asynchronous interactions

� specifies only method invocations (no order)

Process modeling language based on Web services

• BPEL4WS was originally developed by BEA, IBM,

Microsoft and (later joined) SAP, Siebel

– version 1.0 proposed in 2002

– current version: 1.1, 2.0 as draft

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: III (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 14/23

– based on the specifications: WSDL, XML Schema, XPath,

WS-Addressing (allows standardized addressing)

• Today OASIS is in charge of the standardization of

BPEL � called WS-BPEL

Process definition language: BPEL

conceptual separation of

– abstract vs. executable process

� internal, executable process can be altered without changing the abstract process

• supporting two-level programming model

– „programming in the large“ � abstract process vs.

– „programming in the small“ � executable process

• common core of process descriptions concepts

– BPEL specification focused on common core

– extensions required for private, abstract processes

– BPEL

BPEL

 Web service interactions can be described in two ways: executable business processes and

abstract business processes. Executable business processes model actual behavior of a

participant in a business interaction. Abstract business processes are partially specified

processes that are not intended to be executed. An Abstract Process may hide some of the

required concrete operational details. Abstract Processes serve a descriptive role, with

more than one possible use case, including observable behavior and/or process template.

WS-BPEL is meant to be used to model the behavior of both Executable and Abstract

Processes.

 WS-BPEL provides a language for the specification of Executable and Abstract business

processes. By doing so, it extends the Web Services interaction model and enables it to

support business transactions. WS-BPEL defines an interoperable integration model that

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: III (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 15/23

should facilitate the expansion of automated process integration both within and between

businesses.

 The origins of BPEL can be traced to WSFL and XLANG. It is serialized in XML and

aims to enable programming in the large. The concepts of programming in the large and

programming in the small distinguish between two aspects of writing the type of long-

running asynchronous processes that one typically sees in business processes.

 Programming in the large generally refers to the high-level state transition interactions of a

process—BPEL refers to this concept as an Abstract Process. A BPEL Abstract Process

represents a set of publicly observable behaviors in a standardized fashion. An Abstract

Process includes information such as when to wait for messages, when to send messages,

when to compensate for failed transactions, etc. Programming in the small, in contrast,

deals with short-lived programmatic behavior, often executed as a single transaction and

involving access to local logic and resources such as files, databases, etc. BPEL's

development came out of the notion that programming in the large and programming in

the small required different types of languages.

 IBM and Microsoft had each defined their own, fairly similar, "programming in the large"

languages: WSFL and XLANG, respectively. With the advent and popularity of BPML,

and the growing success of BPMI.org and the open BPMS movement led by JBoss and

Intalio Inc., IBM and Microsoft decided to combine these languages into a new language,

BPEL4WS. In April 2003, BEA Systems, IBM, Microsoft, SAP and Siebel Systems

submitted BPEL4WS 1.1 to OASIS for standardization via the Web Services BPEL

Technical Committee. Although BPEL4WS appeared as both a 1.0 and 1.1 version, the

OASIS WS-BPEL technical committee voted on 14 September 2004 to name their spec

"WS-BPEL 2.0". (This change in name aligned BPEL with other Web Service standard

naming conventions which start with "WS-" and took account of the significant

enhancements made between BPEL4WS 1.1 and WS-BPEL 2.0.) If not discussing a

specific version, the moniker BPEL is commonly used[citation needed].

 In June 2007, Active Endpoints, Adobe Systems, BEA, IBM, Oracle and SAP published

the BPEL4People and WS-HumanTask specifications, which describe how human

interaction in BPEL processes can be implemented.

 There were ten original design goals associated with BPEL:

 Define business processes that interact with external entities through web service

operations defined using WSDL 1.1, and that manifest themselves as Web services

defined using WSDL 1.1. The interactions are “abstract” in the sense that the dependence

is on portType definitions, not on port definitions.

 Define business processes using an XML-based language. Do not define a graphical

representation of processes or provide any particular design methodology for processes.

 Define a set of Web service orchestration concepts that are meant to be used by both the

external (abstract) and internal (executable) views of a business process. Such a business

process defines the behavior of a single autonomous entity, typically operating in

interaction with other similar peer entities. It is recognized that each usage pattern (i.e.

abstract view and executable view) will require a few specialized extensions, but these

http://en.wikipedia.org/w/index.php?title=Web_Services_Flow_Language&action=edit&redlink=1
http://en.wikipedia.org/wiki/Xlang
http://en.wikipedia.org/wiki/Extensible_Markup_Language
http://en.wikipedia.org/wiki/Programming_in_the_large
http://en.wikipedia.org/wiki/Programming_in_the_large
http://en.wikipedia.org/wiki/Programming_in_the_small
http://en.wikipedia.org/wiki/Business_process
http://en.wikipedia.org/wiki/State_transition_system
http://en.wikipedia.org/wiki/Message_(computer_science)
http://en.wikipedia.org/wiki/Computer_file
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/w/index.php?title=Web_Services_Flow_Language&action=edit&redlink=1
http://en.wikipedia.org/wiki/Xlang
http://en.wikipedia.org/wiki/BPML
http://en.wikipedia.org/wiki/JBoss
http://en.wikipedia.org/wiki/BEA_Systems
http://en.wikipedia.org/wiki/SAP_AG
http://en.wikipedia.org/wiki/Siebel_Systems
http://en.wikipedia.org/wiki/OASIS_(organization)
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://en.wikipedia.org/wiki/BPEL4WS
http://www.choreology.com/external/WS_BPEL_issues_list.html#Issue98
http://en.wikipedia.org/wiki/WS-BPEL
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
http://en.wikipedia.org/wiki/Adobe_Systems
http://en.wikipedia.org/wiki/BPEL4People
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Web_Services_Description_Language

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: III (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 16/23

extensions are to be kept to a minimum and tested against requirements such as

import/export and conformance checking that link the two usage patterns.

 Provide both hierarchical and graph-like control regimes, and allow their use to be

blended as seamlessly as possible. This should reduce the fragmentation of the process

modeling space.

 Provide data manipulation functions for the simple manipulation of data needed to define

process data and control flow.

 Support an identification mechanism for process instances that allows the definition of

instance identifiers at the application message level. Instance identifiers should be defined

by partners and may change.

 Support the implicit creation and termination of process instances as the basic lifecycle

mechanism. Advanced lifecycle operations such as "suspend" and "resume" may be added

in future releases for enhanced lifecycle management.

 Define a long-running transaction model that is based on proven techniques like

compensation actions and scoping to support failure recovery for parts of long-running

business processes.

 Use Web Services as the model for process decomposition and assembly.

 Build on Web services standards (approved and proposed) as much as possible in The

BPEL language

 BPEL is an orchestration language, not a choreography language. The primary difference

between orchestration and choreography is executability and control. An orchestration

specifies an executable process that involves message exchanges with other systems, such

that the message exchange sequences are controlled by the orchestration designer. A

choreography specifies a protocol for peer-to-peer interactions, defining, e.g., the legal

sequences of messages exchanged with the purpose of guaranteeing interoperability. Such

a protocol is not directly executable, as it allows many different realizations (processes

that comply with it). A choreography can be realized by writing an orchestration (e.g. in

the form of a BPEL process) for each peer involved in it. The orchestration and the

choreography distinctions are based on analogies: orchestration refers to the central

control (by the conductor) of the behavior of a distributed system (the orchestra consisting

of many players), while choreography refers to a distributed system (the dancing team)

which operates according to rules (the choreography) but without centralized control.

 BPEL's focus on modern business processes, plus the histories of WSFL and XLANG, led

BPEL to adopt web services as its external communication mechanism. Thus BPEL's

messaging facilities depend on the use of the Web Services Description Language

(WSDL) 1.1 to describe outgoing and incoming messages.

 In addition to providing facilities to enable sending and receiving messages, the BPEL

programming language also supports:

 A property-based message correlation mechanism

BPEL syntax in XML

<process>

<partnerLinks> … </partnerLinks>

http://en.wikipedia.org/wiki/Orchestration_(computers)
http://en.wikipedia.org/wiki/Web_Service_Choreography
http://en.wikipedia.org/wiki/Business_process
http://en.wikipedia.org/w/index.php?title=Web_Services_Flow_Language&action=edit&redlink=1
http://en.wikipedia.org/wiki/Web_services
http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://en.wikipedia.org/wiki/Message_(computer_science)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: III (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 17/23

<partners> … </partners>

<variables> … </variables>

<correlationSets> … </correlationSets>

<faultHandler> … <faultHandler>

<compensationHandler> … </compensationHandler>

<eventHandler> … </eventHandler>

(activities)*

</process>

XML and WSDL typed variables

 An extensible language plug-in model to allow writing expressions and queries in multiple

languages: BPEL supports XPath 1.0 by default

 Structured-programming constructs including if-then-elseif-else, while, sequence (to

enable executing commands in order) and flow (to enable executing commands in

parallel)

 A scoping system to allow the encapsulation of logic with local variables, fault-handlers,

compensation-handlers and event-handlers

 Serialized scopes to control concurrent access to variables

Relationship of BPEL to BPMN

 There is no standard graphical notation for WS-BPEL, as the OASIS technical committee

decided this was out of scope. Some vendors have invented their own notations. These

notations take advantage of the fact that most constructs in BPEL are block-structured

(e.g. sequence, while, pick, scope, etc.) This feature enables a direct visual representation

of BPEL process descriptions in the form of structograms, in a style reminiscent of a

Nassi–Shneiderman diagram.

 Others have proposed to use a substantially different business process modeling language,

namely Business Process Modeling Notation (BPMN), as a graphical front-end to capture

BPEL process descriptions. As an illustration of the feasibility of this approach, the

BPMN specification includes an informal and partial mapping from BPMN to BPEL 1.1.

A more detailed mapping of BPMN to BPEL has been implemented in a number of tools,

including an open-source tool known as BPMN2BPEL. However, the development of

these tools has exposed fundamental differences between BPMN and BPEL, which make

it very difficult, and in some cases impossible, to generate human-readable BPEL code

from BPMN models. Even more difficult is the problem of BPMN-to-BPEL round-trip

engineering: generating BPEL code from BPMN diagrams and maintaining the original

http://en.wikipedia.org/wiki/XPath
http://en.wikipedia.org/wiki/Structured_programming
http://en.wikipedia.org/wiki/Scope_(programming)
http://en.wikipedia.org/wiki/Encapsulation_(computer_science)
http://en.wikipedia.org/wiki/Local_variable
http://en.wikipedia.org/wiki/Callback_(computer_science)
http://en.wikipedia.org/wiki/Event_handler
http://en.wikipedia.org/wiki/Variable_(programming)
http://en.wikipedia.org/wiki/Nassi%E2%80%93Shneiderman_diagram
http://en.wikipedia.org/wiki/Business_process_modeling
http://en.wikipedia.org/wiki/Business_Process_Modeling_Notation
http://en.wikipedia.org/wiki/BPMN
http://bpmn.org/Documents/Mapping_BPMN_to_BPEL_Example.pdf
http://code.google.com/p/bpmn2bpel/
http://en.wikipedia.org/wiki/Human-readable
http://en.wikipedia.org/wiki/Round-trip_engineering
http://en.wikipedia.org/wiki/Round-trip_engineering

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: III (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 18/23

BPMN model and the generated BPEL code synchronized, in the sense that any

modification to one is propagated to the other.

Adding 'programming in the small' support to BPEL

 BPEL's control structures such as 'if-then-elseif-else' and 'while' as well as its variable

manipulation facilities depend on the use of 'programming in the small' languages to

provide logic. All BPEL implementations must support XPath 1.0 as a default language.

But the design of BPEL envisages extensibility so that systems builders can use other

languages as well. BPELJ is an effort related to JSR 207 that may enable Java to function

as a 'programming in the small' language within BPEL.

 WS-BPEL 2.0

What's new in WS-BPEL 2.0?

 New activity types: repeatUntil, validate, forEach (parallel and sequential), rethrow,

extensionActivity, compensateScope

 Renamed activities: switch/case renamed to if/else, terminate renamed to exit

 Termination Handler added to scope activities to provide explicit behavior for termination

 Variable initialization

 XSLT for variable transformations (New XPath extension function

bpws:doXslTransform)

 XPath access to variable data (XPath variable syntax $variable[.part]/location)

 XML schema variables in Web service activities (for WS-I doc/lit style service

interactions)

 Locally declared messageExchange (internal correlation of receive and reply activities)

 Clarification of Abstract Processes (syntax and semantics)

 Enable expression language overrides at each activity

ActiveBPEL – deploying processes

 create deployment archive file

 – normal .jar archive

 – named .bpr

 – copy to subdirectory „bpr“ in Tomcat folder

 – following directory/file structure

BPEL covers all necessary workflow patterns

 – output of composition: executable process

 - provides no adequate semantic to describe WS

 • Planner provides meta-model for modelling capabilities need to describe all Services in

this language need to transfer into BPEL process definition better way using standardized

language ?

http://en.wikipedia.org/wiki/XPath
http://ftpna2.bea.com/pub/downloads/ws-bpelj.pdf
http://www.jcp.org/en/jsr/detail?id=207

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: III (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 19/23

 • ActiveBPEL is currently the best available free workflow engine that supports BPEL

 Semantic Web Services (SWS)

 “Semantic Web concepts are used to define intelligent web service, i.e., services

supporting automatic discovery, composition, invocation and interoperation.“

 „These efforts try to improve current web service technology around SOAP, WSDL and

UDDI, which provides very limited support for real automation of services.

Challenges to tackle with SWS

 Automatic discovery of services

– Semantic match between declaritive description of services sought and services offered

• Automatic composition of services

– Allow the composition of services to provide functionality that available services cannot

provide

 • Both tasks need a declarative language to describe semantics of available and sought services

(goal) The OASIS Business Transaction Protocol (or simply BTP) is a protocol for coordinating

loosely coupled systems like Web services. BTP was the product of more than a year's work from

several major vendors including BEA, Hewlett-Packard, Sun Microsystems, and Oracle, which

set out to reconcile transactionality with systems consisting of loosely coupled autonomous

parties. In short, the result of this collaboration has been to produce a specification which,

although based on the traditional two-phase approach, is still suitable for supporting transactions

on the Web.

OASIS BUSINESS TRANSACTION PROTOCOL

Interoperation

 Using XML, over multiple communications protocols

Coordination of autonomous parties

 Relationships are governed by contracts, rather than the dictates of a central design

authority

Drop less ACID

 Multiple possible successful outcomes to a transaction

 Relaxed isolation, volatile results

Discontinuous service

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: III (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 20/23

 Work unit lifespans exceed sub-system MTBFs

Business Transactions and Business Process

BTP complements BP/Collaboration frameworks

 A coordinated, mutually understood outcome requires

 Special messages and acknowledgements

 Consistent, durable record of decisions

 Asynchronous failure recovery operations

 These features are tricky, error-prone and intrusive

 “Build or buy”

 BTP lets business people concentrate on business process

 Puts housekeeping work in the background

 Minimizes application exchanges

 Reduces complexity of collaborative process schemas or scripts

 Reduces conformance testing

 Deploy new trading protocols or conventions more quickly

 BTP uses a two-phase outcome coordination protocol to create atomic effects (results of

computations).

 BTP permits the composition of atomic units of work into cohesive business transactions

(cohesions) which allow application selection of which work units will be confirmed (or

cancelled)

 Atoms are cohesions where the underlying work units are either all confirmed, or are all

cancelled

Messaging

 All BTP messages are XML documents

 Can be compounded for optimization

 “One-shot requests”: only 2 WAN messages instead of 6

 Application response + ENROL/PREPARE

 “One wire” application topologies

 All traffic between two business entities over a single, authenticated link

BPEL 1.1 and OASIS WSBPEL

 The original BPEL specification that we have considered so far in this chapter has been

superceded as part of the original vendor's efforts to standardize the technology. As such,

as their submission to OASIS under the WSBPEL (Web Services Business Process

Execution Language) Technical Committee, IBM, Microsoft, BEA and partners have

updated the specification to version 1.1 with a number of changes.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: III (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 21/23

 The most obvious changes in BPEL 1.1 is that the term “container” has been replaced with

the more traditional term “variable,” though its type is still considered in terms of

messages. These variables are now supported at arbitrary scope, unlike BPEL 1.0 which

only supported containers at the global process scope.

. Transaction

 Transactions are a fundamental abstraction in dependable computing systems. Put simply,

a transaction is a unit of work which either succeeds completely or fails without leaving

any side effects. To illustrate, a commonly cited example of a transaction use-case is

where an amount of money is to be moved between bank accounts. In this case the goal is

to ensure that the money both leaves the sender's account and is received by the recipient's

account, or if something fails, for it to appear as if the transaction itself logically never

occurred.

 This is the inherent value of transactional systems; if something goes wrong, they allow us

as programmers to make it appear as if it never happened in the first place. In an

inherently unreliable world, transactions can truly be a godsend, especially when we

consider the amount of computing infrastructure involved in something apparently as

simple as moving money between accounts. Any aspect of that computing system from

the network cables through to the software and everything in between has a small yet

significant chance of failing—something we'd rather it didn't do while it's processing our

money! The point is that using transactions to safeguard against failures allows us to

reverse any partial work performed during a failed transaction and, thus, prevent our

money from disappearing into a banking black hole.

ACID transaction

 The field of transaction processing is by no means a new discipline. Transaction

processing infrastructures such as CICS and Tuxedo, OTS/JTS and MS DTC have been

around for decades, and much innovative and interesting work continues in the field today.

However, underlying the development of transaction technology over the decades has

been one pervasive notion: ACID.

Distributed Transactions and Two-Phase Commit

 The evolution of transactions from centralized to distributed systems has followed the

evolution of computing from a centralized resource model to its modern day distributed

and federated architectures. The underlying goals in distributed transaction processing are

the same as in the traditional centralized model: to ensure a unit of work either

successfully completes or logically appears to have never been run at all.

Dealing with Heuristic Outcomes

 An heuristic outcome to a transaction is simply the worst thing that can arise during a

2PC-based transaction system. They may occur where a participant in the transaction

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: III (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 22/23

reneges on its promise to either commit or abort and instead does the exact opposite. This

means that the ACIDity of the transaction is compromised, since changes to data in some

participants will have been made durable, while changes to data managed by other

participants will have been discarded. As was alluded to earlier, the chances of such an

outcome occurring are significantly increased if the period of uncertainty (the gap between

prepare and commit phases) is too long, and we may arrive at a situation where

participants in a transaction start to guess at outcomes for themselves (that is, they may

make heuristic decisions).

Scaling Transactions to Web Services

 ACID transactions in their centralized or distributed variations are especially suited to the

bank account credit-debit type of problem, and offer the kinds of guarantees on which

truly dependable back-end computing systems can be built. There is, however, a practical

limitation to how far ACID transactions can be applied to the Web services world, even

with advanced mechanisms like nesting and interposition.

– Distributed Transaction – OASIS Business Transaction Protocol.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: III (WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 23/23

POSSIBLE QUESTIONS

PART – A

(Online Exam 20*1=20 marks)

 Multiple Choice Questions available in Moodle

PART – B

(Each Question carries 2 marks)

1. Explain about Conversation and its process

2. Discuss in detail about Web services Conversation Language

3. Explain about WSCL Interface Components

4. Discuss in detail about Workflow

5. Explain about Business Process Management

6. Explain about Workflow Management System

7. Discuss in detail about BPEL

8. Explain about ACID Transaction

9. Explain about Distributed Transaction

10. Discuss in detail about OASIS Business Transaction Protocol.

PART – C

(Compulsory Question carries 10 marks)

11. Difference between WSCL and WSDL

12. Explain one and two way interaction in WSCL

13. Explain the Elements of WSCL Specification

14. Discuss in detail about Transaction

15. Explain about WS BPEL2.0

Questions Opt1 Opt2 Opt3 Opt4 Opt5 Opt6 Answer

The attribute____________is

optional that allows schema

definiton to be owned in case

of binary upload.

hrefshcem

a

hrefload hbinary thread hrefshcema

WSCL paves way or creation

of __________ framework.

sigma standar

d

service reading service

Web service conversation

language loses__________

infinite

automatio

n

file

state

automat

ion

simple

state

automat

ion

file state

transfer

simple state

automation

_____________ element acts

as a container for interaction

 element

transition transver

sal

travello

gue

timer transition

_____________ condition can

be used to guard against taking

particular transition in a

conversation

destinatio

n

source

interacti

on

source destinati

on

interacti

on

destination

interaction

The WSCL specification does

not mandate _________

interaction.

start and

end

forward

and

backwar

d

front

and

back

up and

down

start and end

The _______ part of WSCL

description draws together

messages,interactions and

transitions

conversati

on

translati

on

trading specific

ation

conversation

the ________ elements

attribute declares the entry and

exit point .

root basic link group root

________ system is the basic

function of workflow

management

systems.

routing distribut

ion

agent assistant routing

____________ system detects

exceptonal circumstances.

routing distribut

ion

agent assistant distribution

__________________ is an

example of workflow

management

software .

fox hub fox sub fire hub fire sub fire sub

BPEL supports _______ based

message conolation.

strategy standar

d

property docume

nt

property

A _______ system allows the

encapsulation of logic with

 local variables.

robing funding scoping rhyming scoping

extended BPEL to role based

human

activities a well.

people

hub

BPEL

people

BPEL4

people

BPEL

public

BPEL4

people

____________ is a type of

webservice language

oasis blooper tropics robotics oasis

_______ defines notation for

specifying business process

behaviour

based on web services.

BPRL BSNL BPFL BPEL BPEL

WS BPEL defines an

interoperable _____________

model.

seggregati

on

integrati

on

repitatio

n

sequenc

ing

integration

MS-transaction decribes Co-

ordinatio types that are used

with ___________

right extensib

le

extende

d

experien

ced

extensible

WS_BPEL provides a faster

way to compose and

orchestrate

 services by ________

reuse postuse preuse usage reuse

__________________ logic is

centralised within one location

rather than distributed across

multiple services.

Business

process

backup read

only

centralis

ed

Business

process

FSA stands for

file state

automobil

e

file

state

automat

ion

for

super

area

file state

transfer

file state

transfer

WSCL are themselves

_________ documents

XML FTP HTTP SMTP XML

___________________ refers

to the schema to which the

documents correspond.

hrefschem

a

href WS hregsch

ema

hret

schema

hrefschema

An _______________ is an

exchange of documents

between a

service and client.

deviation automat

ion

interacti

on

involve

ment.

interaction

In ___________ an outbound

document is sent in an inbound

document is taken as reply

recieve send sending send-

recieve

send-recieve

A ______________ interaction

does not contain any document

 exhanged.

full half empty big empty

____________ interaction does

not proceede the destination

interaction when conversation

is executed.

force master importa

nt

source source

_________________ is an

additional condition for

transaction.

final

interaction

beginni

ng

interacti

on

source

interacti

on

convers

ation

conversation

________________ is used to

orchestrate the various message

exchange that occurs in each

stage of conversation

WWW WSCL WLTP OLTP WSCL

____ types of interactions are

supported by WSCL

6 2 3 5 5

There might be __________

interaction with which the

 conversation ca start or end

less one zero more

than one

more than

one

conversations comprises 3 or

more

 participation roles

multiparty multifu

nction

multi

role

multiro

ot

multiparty

___________________ refers

to ID of the first interaction to

be

 executed in conversation

initial

interaction

final

interacti

on

all

interacti

ons

full

interacti

on

initial

interaction

WS-secure conversation

provides secure commuication

using __________

lock-keys fine

keys

syntax

keys

session

keys

session keys

A________________ manages

the ranscational state and

enables

web services and clients to

register as participants

coordinato

r

conduct

or

manage

r

mover coordinator

__________________ service

enables the application to

activate

a transcation.

terminatio

n

determi

nation

activati

on

allocatio

n

activation

___________ transaction are

be used to bridge between

proprietory transaction service

implementary.

ACID BTL ERP UML ACID

________________ transaction

may be structured as a

collection

 of atomic transactions

business

process

ACIS OASIS business

building

s

business

process

BTP is __________________ interopera

ble

not

interope

rable

secure scalable not

interoperabl

e

_______ can be eithe send

receive or receive sent

One way

interaction

2 way

interacti

on

3 way

interacti

on

4 way

interacti

on

One way

interaction

WSCL only models _____

level interaction

Business Hier Physical Applicat

ion

Business

_____ interaction follow the

source interaction when

conversation

is executed

Source Voice Mail Destinat

ion

Destination

____ interaction preced the

destination interaction

Voice Source Destinat

ion

Mail Source

______ interaction condition is

an additional condition

 for transaction

Voice Destinat

ion

Source Mail Source

________ specify ordering

relationships between

interactions

Transactio

ns

Transist

ors

Trans-

associat

es

Trans-

roots

Transactions

WSCL conversation definitions

are themselves_______

documents

HTML XML FTP SMTP XML

WSCL provides a formal

language for specifying

Conversat

ions

Docum

ent

Image Audio Conversatio

ns

Two subtypes of one way

interactions are ______

Send,recei

ve

Send,re

send

Send,se

nd back

Send,

read

Send,receive

A receive send interactions can

specify ore than one ______

XML

document

Inbound Outbou

nd

Middle

bound

Startup Outbound

The registrations and login

interactions areonly allowed in

case of______

Valid

login RS

Invalid

login

RS

Valid

logbook

Invalid

passwor

d

Invalid login

RS

_____ consists of an orchestard

and repeatable pattern of

business

activity

System Softwar

e

Work-

minder

Workflo

w

Workflow

___ process flow will create a

visualization of business

 process flow

Work Busines

s

Rando

m

Logic Business

Workflows can be started by

users or can be _______

Written Structur

ed

Collaps

ed

Automa

ted

Automated

______ are asynchronous or

real-time processes

Workship

s

Workfl

ows

Work

man

Work

tide

Workflows

______ process run in

background

Asynchro

nous

Synchro

nous

Runtim

e

Data Asynchrono

us

___ process run immediately Asynchro

nous

Synchro

nous

Runtim

e

Data Synchronous

Transaction specify ordering

relationships between

interaction

s

Transist

ors

Trans-

associat

es

Trans-

roots

interactions

source interaction condition is

an additional condition for

Voice Destinat

ion

transact

ion

Mail transaction

Send-receive is a type of

_________interaction.

one way two

way

threewa

y

four

way

one way

In case of Invalid login

RS____________interaction is

allowed

state and

form

registrat

ions and

login

passwor

d

change

stub

check

registrations

and login

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: IV(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 1/13

UNIT-IV

SYLLABUS

Security – Security Basics – Security Issues – Types of Security Attacks – WS –Security.Mobile

and Wireless – Mobile Web Services – Challenges with mobile – Proxy Based Mobile Systems -

Direct Mobile Web service access - J2ME Web Services.

SECURITY

SECURITY

 The most critical issue limiting the widespread deployment of Web services by

organizations is the lack of understanding of the security risks involved as well as the best

practices for addressing those risks. Development and IT managers want to know whether

the security risks and the types of attack common for Web sites will be the same for Web

services. Will existing enterprise security infrastructure already in place, such as firewalls

and well-understood technologies like Secure Sockets Layer (SSL), be sufficient to protect

their companies from Web service security risks?

 Much of the experience companies have with security is with Web sites and Web

applications. Both Web sites and Web applications involve sending HTML between the

server and the client (e.g., Internet browser). Web services involve applications

exchanging data and information through defined application programming interfaces

(APIs). These APIs can contain literally dozens of methods and operations, each of which

presents hackers with potential entry points to compromise the security and integrity of a

system.

SECURITY

Everyday Security Basics

 The issues underlying security on the Internet are not that different from security issues

we face when making everyday transactions. These issues are not just about monetary

transactions that involve the exchange of money during purchases, but any transaction

where there is dissemination of critical information—such as social security or other

uniquely identifying numbers, or of limited resources, such as money.

 Transactions rely on a level of trust between the parties involved in the transaction. The

person disseminating information must prove to the person receiving information that she

is who she claims to be. The person receiving the information must also prove to the

person disseminating the information that he will hold the information in confidence and

use it responsibly and appropriately. In many situations, the second person may also have

information to disseminate based on the received information. In this case, both parties

must prove their identities to the other.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: IV(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 2/13

Security Is An End-to-End Process

 Contrary to popular belief, security is important not only during data transport between

one computer and another computer, but also after transport. In the process of doing a

transaction the path that data follows is oftentimes complex and long, involving multiple

hops. If a small section of this path is insecure, the security of the entire transaction and

the system is compromised.

 Today, many systems that are seemingly secure are in fact insecure. Designers and

architects usually focus on the security issues relating to the transmission of data between

the client and the server, while other segments of the data transmission value chain are

assumed to be secure and do not get much attention. Many of today's Web site and Web

application vulnerabilities are directly applicable to Web services as these and other

legacy systems are oftentimes just being wrapped and made available as Web services.

SECURITY ISSUES

 Before we can address Web services security, we must first understand the areas where

potential threats may occur as well as how they may occur. In this section, we look at the

issues surrounding Web services security flow of a Web service invocation starting from

the client application through the actual business logic implementation of the service and

back to the client again. Throughout this flow, we analyze the possible threats and best

practices to address those threats.

Data Protection and Encryption

 Data protection refers to the management of transmitted messages so that the contents of

each message arrives at its destination intact, unaltered, and not viewed by anyone along

the way. The concept of data protection is made up of the sub-concepts of data integrity

and data privacy:

TYPES OF SECURITY ATTACKS AND THREATS

Types of Security Attacks and Threats

 In this section we briefly look at the types of security attacks and threats that are possible

within a Web services environment. Since Web services leverage much of the

infrastructure developed for Web sites, it is understandable that the types of security

breaches that are common for Web sites will also be common for Web services.

 However, since Web services provide an application programming interface (API) for

external agents to interact with it and also provides a description of this API (in the form

of WSDL files), Web service environments facilitate and in fact attract attacks. These

environments also make it more difficult to detect attacks from legitimate interactions.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: IV(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 3/13

Malicious Attacks

 As we have discussed, Web service traffic shares a lot in common with Web site traffic.

Both types of traffic usually flow through the same ports and while many firewalls can

recognize SOAP traffic, they usually treat them as standard HTTP traffic.

WS-SECURITY

 WS-Security is a specification that unifies multiple Web services security technologies

and models in an effort to support interoperability between systems in a language- and

platform-independent manner. More specifically, WS-Security specifies a set of SOAP

extensions that can be used to implement message integrity and confidentiality. To this

end, the WS-Security specification brings together a number of XML security

technologies and positions them within the context of SOAP messages.

 The origins of WS-Security are with Microsoft, IBM, and VeriSign submitting a group of

security specifications to the Organization for the Advancement of Structured Information

Standards (OASIS). Later, Sun Microsystems started to cooperate to further develop the

specifications. With such heavyweights behind it, WS-Security is emerging as the de facto

standard for Web services security.

 he lack of a coherent security model and policy is the most often cited reason for the slow

deployment of externally facing Web services by enterprises. Addressing security issues

with vigor will not only make Web services (as well as the applications that consume Web

services) more secure, but will also increase the community's confidence in Web service

technologies. This improved confidence will likely result in increased numbers and types

of available Web services.

 In this chapter we took a broad look at security, and then focused on the security issues

specific to Web services environments. We described how security is really an end-to-end

process, and a secure system cannot be implemented by simply using a few technologies

within a service or application.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: IV(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 4/13

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: IV(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 5/13

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: IV(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 6/13

MOBILE AND WIRELESS

What is a Mobile Agent?

 This is a simpler question to answer - at it's most basic level we can say that an agent is

mobile if we don't need to know where in the system it resides. Thus, a mobile agent could

be found on a desktop computer, a mobile device such as a PDA, or even in the depths of

a server. All we need to know is how to find the agent, and how to communicate with it.

Once we have this conceptual framework in place, we have the abstraction and flexibility

required to design our system.

 How mobile is a mobile agent, though? Currently, in order to move from one system to

another, or even to communicate amongst themselves, mobile agents need a common

platform on which to operate. Thus, in order for our mobile agents to be useful to our

business partners (and to ourselves by operating with our partners), we have to share a

platform with our partners, something we cannot guarantee being able to do. Even with

the best developers in the world, this will take time. In order for intelligent agents to

communicate, they would need to share a common language - the best candidate for this

would be XML, or SOAP.

Mobile Agents and Web Services

 With the advent of Web Services, we can develop mobile agents that can exist on an

Intranet, or even in the deeper waters of the Internet. How? Because exposing our mobile

agents as Web Services means that we can take advantage of the already existing network

infrastructure and communication protocols provided by the Internet. As we expose our

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: IV(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 7/13

existing mobile agents as Web Services, or write future agents to take full advantage of

the situation, not only do we make it easy for ourselves, but also quicker and more

convenient.

 Mobile intelligent agents can be developed to the Web Services standard using SOAP,

WSDL, and UDDI. The mobile intelligent agents are Web Services ready so they can be

plugged into this network and serve its knowledge. Using WSDL give the agent the ability

to describe it's capacity, invaluable if it is to become part of a domain agent society.

 As if the ability to use the Internet to further the reach of our mobile agents wasn't enough,

there are companies dedicated to providing networking facilities for Web Services. With

Web Services essentially moving components onto the Internet, it makes sense for

companies to provide technology that will ease this process. Using such facilities, we can

launch our mobile agents into the wider world should we desire. Companies such as Grand

Central and Flamenco Networks are providing these Web Services network solutions.

 Advantages of using Web Services

 As well as making it easy for our mobile agents to be truly mobile, Web Services can

provide other important benefits. The following list represents the key additional benefits:

1. Conservation of Enterprise bandwidth

2. Reduction in latency

3. Conflict Knowledge Credibility Management

4. Support for Dynamic Deployment

5. Improved decision support workflow

 Enterprise bandwidth is conserved through the use of mobile agents due to the reduction in

network traffic they enable. Rather than pass numerous requests across the network, we can

send a mobile agent to the site requiring processing; once there, the agent can conduct the

operation, and return to the server only the information that actually needs to be returned. Of

course, there will be a point when it isn't efficient to use a mobile agent, like when the

process involves only two or three network calls.

 Our mobile agents would ideally reside on a Web Services network. If a user requests

knowledge from a mobile agent very frequently, the Web Services network can intelligently

save this knowledge into a cache. So when a user asks the same questions, the Web Service

cache will broadcast it for mobile agent if there is nothing new in the request.

 A Web Services network will host many mobile agents, each of which will have expert

knowledge in a particular area. The Web Services network will also need intelligence to be

able to tell which agent has the best knowledge or if the knowledge conflicts with that of

another agent. The Web Services network will judge and pick the best by its own

intelligence and broadcast to the requesting agent.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: IV(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 8/13

 As you would expect, mobile agents can aid in the dynamic deployment of new

components in a Web Service. Additionally, a mobile agent can act as a remote controller

in a process, allowing decision support workflow to be improved.

 With our mobile agents residing in a Web Services network, many of our infrastructure

concerns are handled for us. When a user requests certain knowledge, the Web Service

network will route this message to a mobile agent. The network determines which is the

nearest agent that has the knowledge requested, and routes the query by the quickest path.

MOBILE WEB SERVICES

 The challenge for architects designing software is to be able to seamlessly support mobile

devices. Where a software architect could before count on a keyboard, mouse, and monitor

together with a hard disk drive, a reasonable amount of memory and processing power,

she can no longer count on such a fixed and well-defined target platform. Instead, the

architect must now concern herself with whether a display is available at all, and whether

the available processing resources are sufficient to provide a reasonable latency to the

application. Moreover, as the number and type of mobile devices increase, architects must

think about how the nuances between different devices will affect their software.

 Web services are an interesting addition to the technology mix for developing mobile

applications. The use of Web services allows some, if not most, of the application's

business logic to run on remote servers, which are independent of the mobile device's

computational resource limitations. This has the added benefit that a variety of mobile

devices can effectively access the same functionality or business logic.

CHALLENGES WITH MOBILE

 Many challenges exist in the development of mobile applications and systems that are

usually not an issue in the development of non-mobile systems. For instance, non-mobile

developers rarely think about the ramifications that their application architecture will have

on a system's energy consumption. Non-mobile developers also do not usually think about

how their application's network utilization will affect the user's monthly wireless

subscription bill.

 In this section, we briefly look at the issues that are inherent to the development of mobile

systems. Then, we discuss approaches for addressing these issues and solution best

practices.

PROXY-BASED MOBILE SYSTEMS

 When developing mobile Web services-based applications, a variety of different

architectures are possible. A mobile systems architecture that is commonly used is a

proxy-based one in which the mobile application communicates only with a proxy server.

The proxy server in turn communicates with and manages the back-end resources, such as

Web services.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: IV(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 9/13

 The mobile device is capable of running multiple applications. Each of these mobile

applications presents a front-end user interface that presents information to users and

captures user input. The application does only enough processing on the user input so that

the proxy server can properly interpret the data. Different proxy servers may exist for

different applications, or a single server may handle multiple applications. The role of the

proxy server is to implement all required business logic to service the needs of the mobile

application. The implementation of the business logic may include Web services or other

distributed computing resources.

DIRECT MOBILE WEB SERVICE ACCESS

 Mobile applications can directly access Web services without an intermediary proxy

server. MobileDirectTestServiceInvoke.java is a simple Java program that uses the

InvokeService class we discussed earlier in the chapter and directly calls the ChessMaster

Web service without using a proxy server for the invocation.

J2ME WEB SERVICES

 The Java 2 Micro Edition (J2ME) Web Service specification is an attempt at standardizing

programmatic access to Web services from J2ME client applications. Currently, this

specification exists as Java Specification Request (JSR) 172 as part the Java Community

Process (JCP). More information about JSR-172 can be found at http://www.jcp.org.

 Web services can be accessed by J2ME clients today, but involve low-level network APIs

that result in non-standard and proprietary implementations. Other specifications and

initiatives, such as Java API for XML Processing (JAXP) and Java API for XML-based

RPC (JAX-RPC), have addressed high-level and standardized means of accessing XML-

based Web services from Java platforms. However, these initiatives do not sufficiently

address the unique requirements and limitations of mobile environments, including

footprint, computational resources, and wireless networks.

Prepare the J2ME Web service client and Java Web service

 Run KToolbar of J2ME Wireless Toolkit.

 Create the new project (Hello).

 Specify the Project Name (Hello).

 Specify the MIDlet Class Name (HelloMidlet).

 Select the Additional APIs - Web Service Access for J2ME (JSR 172).

 Create the Web service directory (C:\WTK22\apps\Hello\server).

 Create the source directory of Web service (C:\WTK22\apps\Hello\server\src\hello).

 Write the property file (build.properties) for Apache Ant (a Java-based build tool) (in

C:\WTK22\apps\Hello\server) and these properties must be set according to your

environment (project-root=C:/WTK22/apps/Hello/server).

 Write the compilation and deployment file (build.xml) (in C:\WTK22\apps\Hello\server)

for Apache Ant and specify the project name according to your environment (project name

= "helloservice").

http://www.jcp.org/
http://www.cs.wichita.edu/~chang/lecture/cs898t/program/web-service/Hello/server/build.properties
http://www.cs.wichita.edu/~chang/lecture/cs898t/program/web-service/Hello/server/build.xml

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: IV(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 10/13

Create and deploy a Java Web service.

 Write the Web service interface class (Hello.java) (in

C:\WTK22\apps\Hello\server\src\hello).

package hello;

import java.rmi.*;

public interface Hello extends Remote {

 public String getHello(String name) throws RemoteException;

}

Write the Web service implementation class (HelloImpl.java) (in

C:\WTK22\apps\Hello\server\src\hello).

package hello;

import java.rmi.RemoteException;

public class HelloImpl implements Hello {

 public String getHello(String name) throws RemoteException {

 return "Hello, " + name + "!";

 }

}

 Write the associated descriptor files (all XML files) (in C:\WTK22\apps\Hello\server\src).

o config.xml

o jaxrpc-ri.xml

o web.xml

 Compile the service (Hello.java and HelloImpl.java) and generate Web services stubs/ties

(C:\WTK22\apps\Hello\server\generated) and WSDL file

(C:\WTK22\apps\Hello\server\WEB-INF\classes\helloservice.wsdl) using tools provided

with the Java Web Services Developer Pack:

 ant compile

 Deploy the web service to the Tomcat server.

o Build the web service to generate a web application archive

(C:\WTK22\apps\Hello\server\helloservice.war):

o ant build

o Remove the previously installed Web service (C:\tomcat50-

jwsdp\webapps\helloservice.war).

If it is not removed before deployment, the incorrect WSDL (helloservice.wsdl)

might be installed.

o Deploy the web service to the Tomcat server (C:\tomcat50-

jwsdp\webapps\helloservice.war):

http://www.cs.wichita.edu/~chang/lecture/cs898t/program/web-service/Hello/server/src/hello/Hello.java
http://www.cs.wichita.edu/~chang/lecture/cs898t/program/web-service/Hello/server/src/hello/HelloImpl.java
http://www.cs.wichita.edu/~chang/lecture/cs898t/program/web-service/Hello/server/src/config.xml
http://www.cs.wichita.edu/~chang/lecture/cs898t/program/web-service/Hello/server/src/jaxrpc-ri.xml
http://www.cs.wichita.edu/~chang/lecture/cs898t/program/web-service/Hello/server/src/web.xml

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: IV(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 11/13

o ant deploy

o Verify if the Web service is correctly deployed.

 Access http://localhost:8080/helloservice/helloservice.

 Click http://localhost:8080/helloservice/helloservice?WSDL

Create the J2ME Web service client

 Use the generated WSDL file and the tools built into the Wireless Toolkit to generate

the stubs and supporting code used by the MIDlet to access the Web service.

Specify the location of the Web service. (in C:\WTK22\apps\Hello\server\WEB-

INF\classes\helloservice.wsdl)

<soap:address location="http://localhost:8080/helloservice/helloservice"/>

Click the Project menu and select Stub Generator.

Specify WSDL Filename or URL (C:\WTK22\apps\Hello\server\WEB-

INF\classes\helloservice.wsdl).

Specify Output Package (helloservice) and generate client stubs (in

C:\WTK22\apps\Hello\src\helloservice).

Code the MIDlet (HelloMidlet.java) (in C:\WTK22\apps\Hello\src) and associated classes

using JAX-RPC to invoke the Web service and JAXP to process the SOAP message.

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import java.io.*;

import java.util.*;

import java.rmi.RemoteException;

import helloservice.*;

public class HelloMidlet extends MIDlet implements Runnable, CommandListener {

 Hello_Stub service;

 Display display;

 private Form f;

 private StringItem si;

 private TextField tf;

 private Command sendCommand = new Command("Send", Command.ITEM, 1);

 private Command exitCommand = new Command("Exit", Command.EXIT, 1);

 String name = "";

http://www.cs.wichita.edu/~chang/lecture/cs898t/program/web-service/Hello/src/HelloMidlet.java

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: IV(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 12/13

 public void startApp() {

 display = Display.getDisplay(this);

 f = new Form("Hello Client");

 tf = new TextField("Send:", "", 30, TextField.ANY);

 si = new StringItem("Status:" , " ");

 f.append(tf);

 f.append(si);

 f.addCommand(sendCommand);

 f.addCommand(exitCommand);

 f.setCommandListener(this);

 display.setCurrent(f);

 }

 public void pauseApp() {}

 public void destroyApp(boolean unconditional) {}

 public void commandAction(Command c, Displayable d) {

 if (c == sendCommand) {

 name = tf.getString();

 si.setText("Message sent: " + name);

 /*

 * Start a new thread so that the remote invocation won't block

 * the process.

 */

 new Thread(this).start();

 }

 if (c == exitCommand) {

 notifyDestroyed();

 destroyApp(true);

 }

 }

 public void run() {

 try {

 service = new Hello_Stub();

 service._setProperty(Hello_Stub.SESSION_MAINTAIN_PROPERTY, new

Boolean(true));

 String msg = service.getHello(name);

 si.setText("Message Receive: " + msg);

 } catch (Exception exception) {}

 }

}

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: IV(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 13/13

POSSIBLE QUESTIONS

PART – A

(Online Exam 20*1=20 marks)

 Multiple Choice Questions available in Moodle

PART – B

(Each Question carries 6 marks)

1. Explain the process of Web Security

2. Explain the feature of Security Basics

3. Explain about Security Issues

4. Explain about J2ME Web Services

5. Explain the types of Security attacks

6. Discuss in detail about the Challenges with mobile

7. Explain about Proxy Based Mobile Systems

8. Explain about Direct Mobile Web service access

9. Explain about Mobile Web Services

10. Explain the advantages of using Web services

PART – C

(Compulsory Question carries 10 marks)

11. Write a program to generate WSDL file and the tools built into the Wireless Toolkit to

generate the stubs and supporting code used by the MIDlet to access the Web service.

12. Explain how to create and deploy java web service’

13. Discuss in detail about Security solution for threads

14. Explain how to create the J2ME Web service client

15. Difference between Mobile web service and J2ME Web services

Questions Opt1 Opt2 Opt3 Opt4 Opt5 Opt6 Answer

Hardware threats are easy

to detect in comparison

to________

Softwar

e threats

Malware function

s

Hardware

parts

Software

threats

Physical electrical

environmental and

maintaince threats

S/W

threats

H/W

threats

softwar

e

systems

Applicati

ons

H/W threats

H/W threats are classified

as physical , electrical

_______and

 maintainace threats

Environ

mental

electroni

c

engine effective Environmental

In _____attack an

adversery deploys a sniffer

tool and wait

 for sensitive information

active

attack

passive

atack

adaptiv

e attack

aggressiv

e attack

passive atack

There are _____ goals for

security threat

3 4 5 1 3

A ____ is a group of

hijacked computer

Botnet cardcore boldnet bottlenet Botnet

A _____ reproduces itself

by ataching to other files

DOS Trojans Virus Logic

bomb

Virus

In security , DOS is

Denial

of

service

Denial

of

simplicit

Demo

of

situatio

Denial of

sustainin

g

Denial of service

SOA's are implemented

with___________

Web

apps

Web

services

Web

technol

ogy

webmina

rs

Web services

In tear drop second packet

has_________

fragmen

tation

offset

Function

s

framew

orks

modules fragmentation

offset

Through _____ operators

can offer value added

services

Mobile

web

services

cellphon

e towers

mobile

media

web

functions

Mobile web

services

_____ attack usually takes

place between running

session

Hijack Binary run Half way Hijack

In password attack

someone tries to login

using____________

Key column

name

userna

me

guessed

password

guessed

password

______ pings all possible

IP addresses

Run

sleep

ping-

pong

Ping

sweep

attack

ping-

comb

Ping sweep

attack

Cisco secure agent works

like__________

Antiviru

s

malware threat guard Antivirus

_____ is used to take

finger print of data

Data

making

Data

hashing

Data

filling

Limiting

data

Data hashing

________ filters all

network traffic for possible

attack

Cisca

IPS

Cisca

RAM

Cisca

ROM

Cisca

CPC

Cisca IPS

IPS can be integrated

as___________

Stand

alone

device

Rimmin

g device

Rivial

device

Stand out

device

Stand alone

device

________ attack occurs

when someone is between

you and

 communicating person

Man in

middle

Man in

edge

Man in

corner

Man in

front

Man in middle

Man in middle attack

occurs when someone is

between you

and_________

system software hardwar

e

Commun

icating

person

Communicating

person

Computers are mostly

communicating between

______ of network layers

High

levels

low

levels

peak

level

custom

level

low levels

A ___ is an application or

device that can

read,monitor and

 capture network data

Sniffer bufer hop hustle Sniffer

Even encapsulated packets

can be broken open and

read

unless they are _______

altered encrypte

d

hidden played encrypted

______attack is used after

Re connaissance attack

Exploit

attack

Car

attack

SOS

attack

Buffer

attack

Exploit attack

Exploit attack is used after

Re

connaiss

ance

attack

Car

attack

SOS

attack

Buffer

attack

Re connaissance

attack

________has much more

feature than antivirus

CSA VLSI RPC CSS CSA

_________ includes audit

logs, malicious mobile

code, etc

ADT VLSI RPC CSA CSA

Blocking traffic will result

in _________ to

networkresources

loss of

access

reading writing loss of

terminal

loss of access

A _____ is the secret code

or number necessary to

interpret secured

information

key log hype chain key

After an _________

obtains key, the key is

called as sompromised key

attracker denoter writer blogger attracker

After an attracker obtains

key, the key is called as

Compro

mised

key

column

key

custom

key

casper

key

Compromised

key

Enabling the mobile web

services will automatically

enable ________ protocol

REST BBC SLEEP KINDLE REST

Mobile web services will

allow Xmlrpc:use for

user role

Abacus Acuratec Authent

icated

Appropri

ate

Authenticated

__________ is dormant

until an event triggers it

Gun Logic

bomb

Knife

hub

Hydrogen

bomb

Logic bomb

_______ is a self

producing program

Horn Tbalet Tuffled Worm Worm

_______are used in denial

of service attacks, typically

 against targeted web sites.

Worm Zombie Virus Trojan

horse

Zombie

Select the correct order for

the different phases of

virus execution.i)

Propagation phase ii)

Dormant phase iii)

Execution phase

i, ii, iii,

and iv

i, iii, ii

and iv

ii, i, iv

an iii

ii, iii, iv

and i

ii, i, iv an iii

A __________attaches

itself to executable files

and replicates,

when the infected program

is executed, by finding

other executable files to

Stealth

virus

Polymor

phic

Virus

Parasiti

c Virus

Macro

Virus

Stealth virus

__________ is a form of

virus explicitly designed to

hide itself from detection

by antivirus software.

Stealth

virus

Polymor

phic

Virus

Parasiti

c Virus

Macro

Virus

Parasitic Virus

A ___________ creates

copies during replication

that are functionally

equivalent but have

distinctly different bit

Boot

Sector

Virus

Polymor

phic

Virus

Parasiti

c Virus

Macro

Virus

Polymorphic

Virus

A portion of the

Polymorphic virus,

generally called a

___________ , creates, a

random encryption, key to

encrypt the remainder of

mutual

engine

mutation

engine

multiple

engine

polymorp

hic

engine

mutation engine

A macro virus

is__________

independent.

platform

system director

y

hardware platform

ACID Transaction

processing system might

use _____________and

abort

Commit Start Open close Commit

In __________, the virus

places an identical copy of

itself into other programs

or into certain system areas

on the disk.

Dormant

phase

Propagat

ion

phase

Triggeri

ng

phase

Executio

n phase

Propagation

phase

A __________ is a

program that secretly takes

over another Internet-

attached

computer and then uses

that computer to launch

Worm Zombie Virus Trap

doors

Zombie

What is “Trend Micro”? anti-

virus

software

 program virus

program

virtual

program

 anti-virus

software

What is the name of the

viruses that fool a user into

downloading and/or

executing them by

pretending to be useful

applications?

Cracker Worm Trojan

horses

Keylogge

r

Trojan horses

The virus that spread in

application software is

called as

Boot

virus

Macro

virus

File

virus

Anti

virus

Macro virus

How does a Le-Hard virus

come into existence?

Hardwar

e

Software FRIDA

Y 13

Comman

d.Com

Command.Com

What is the virus that

spread in computer?

hardwar

e

 system

software

comput

er

program

 windows

tool

computer

program

What kind of attempts is

made by individuals to

obtain

confidential information

from a person by falsifying

Comput

er

viruses

Spyware

scams

Phishin

g scams

Logic

scams

Phishing scams

Delayed payload of some

viruses is also called as

Time Bomb Anti-

virus

Bomb

What is the first boot

sector virus?

Brain Mind ELK

cloner

Trojan

horse

Brain

What is the name of first

computer virus?

The

Famous

HARLIE PARA

M

Creeper Creeper

What is anti-virus? Acompu

ter

 program

code

compan

y name

Hardware program code

________ filters all

network traffic for possible

attack

Cisca

IPS

Cisca

RAM

Cisca

ROM

Cisca

CPC

Cisca IPS

which is an external

security threat ?

front

door

back

door

undergr

ound

DOS underground

A __________ attaches

itself to executable files

and replicates, when the

infected program is

executed, by finding other

executable files to infect.

Stealth

virus

Polymor

phic

Virus

Parasiti

c Virus

Macro

Virus

Stealth virus

A key security issue in

design of OS is to

control prevent correct handle prevent

___________ infect

documents, not executable

portions of code.

 Macro

viruses

 Mini

viruses

 Maxi

viruses

 Micro

viruses

 Macro viruses

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 1/35

UNIT-V

SYLLABUS

Building Real World Enterprise Web Service and Applications: Real World Web Service

Application Development – Development of Web services and Applications onto Tomcat

application Server and Axis Soap Server.

REAL WORLD WEB SERVICES DEVELOPMENT AND DEPLOYMENT

Introduction

 This document describes how to install Apache Axis. It assumes you already know how

to write and run Java code and are not afraid of XML. You should also have an

application server or servlet engine and be familiar with operating and deploying to it. If

you need an application server, we recommend Jakarta Tomcat. [If you are installing

Tomcat, get the latest 4.1.x version, and the full distribution, not the LE version for Java

1.4, as that omits the Xerces XML parser]. Other servlet engines are supported, provided

they implement version 2.2 or greater of the servlet API. Note also that Axis client and

server requires Java 1.3 or later.

Enterprise Procurement

 Most companies have to buy goods or services from other companies in the course of doing

their business. The procurement can be for physical components such as silicon chips,

plastic components, or power modules, as well as for services such as contract

manufacturing or overnight courier services.

System Functionality and Architecture

 The basic functionality of our Enterprise Procurement System (EPS) application is to:

 Provide a Web-based interface that allows users to browse a catalog of goods and

services from which they can select a particular part number.

 Provide a Web-based interface that allows users to enter a part number to be located,

the desired quantity, and whether the user is interested in optimizing for cost (if a

high-volume product is being built) or for lead time (if a prototype needs to be built

rapidly).

 Connect to the Web services of a set of vendors and use the entered part number,

quantity, and optimization criteria (cost or lead time) to get a price or lead time quote.

 Analyze the returned values from the vendor Web services, and select the best choice.

http://jakarta.apache.org/tomcat/

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 2/35

 Present the best price or lead-time from the available vendors that meet the user's

procurement needs.

 If the part cannot be located, consult another Web service to find alternate part

numbers that may have similar functionality to that of the first part.

 Present the alternate part number to the user; otherwise, inform the user that there is no

such alternate part.

Running the EPS Application

 In this section, we briefly look at the flow through the EPS application from the user's

perspective. In the next section, we delve into the actual development of the EPS.

 The static HTML page, generated by the EPS.html file, is the main form in which the

user enters information about the component to be procured. In the screenshot,

information for part number 15151, desired quantity of 4, and optimization criteria of

lead-time are specified.

 For more details on using Axis, please see the user guide.

 Things you need to know before writing a Web Service:

1. Core Java datatypes, classes and programming concepts.

2. What threads are, race conditions, thread safety and sychronization.

3. What a classloader is, what hierarchical classloaders are, and the common causes

of a "ClassNotFoundException".

4. How to diagnose trouble from exception traces, what a NullPointerException

(NPE) and other common exceptions are, and how to fix them.

5. What a web application is; what a servlet is, where classes, libraries and data go in

a web application.

6. How to start your application server and deploy a web application on it.

7. What a network is, the core concepts of the IP protocol suite and the sockets API.

Specifically, what is TCP/IP.

8. What HTTP is. The core protocol and error codes, HTTP headers and perhaps the

details of basic authentication.

9. What XML is. Not necessarily how to parse it or anything, just what constitutes

well-formed and valid XML.

 Axis and SOAP depends on all these details. If you don't know them, Axis (or anyone

else's Web Service middleware) is a dangerous place to learn. Sooner or later you will

be forced to discover these details, and there are easier places to learn than Axis.

 If you are completely new to Java, we recommend you start off with things like the Java

Tutorials on Sun's web site, and perhaps a classic book like Thinking in Java, until you

http://axis.apache.org/axis/java/user-guide.html
http://www.mindview.net/Books/TIJ/

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 3/35

have enough of a foundation to be able to work with Axis. It is also useful to have

written a simple web application, as this will give you some knowledge of how HTTP

works, and how Java application servers integrate with HTTP. Be aware that there is a

lot more needed to be learned in order to use Axis and SOAP effectively than the listing

above. The other big area is "how to write internet scale distributed applications".

Nobody knows how to do that properly yet, so that you have to learn this by doing.

Step 0: Concepts

 Apache Axis is an Open Source SOAP server and client. SOAP is a mechanism for inter-

application communication between systems written in arbitrary languages, across the

Internet. SOAP usually exchanges messages over HTTP: the client POSTs a SOAP

request, and receives either an HTTP success code and a SOAP response or an HTTP

error code. Open Source means that you get the source, but that there is no formal

support organisation to help you when things go wrong.

 SOAP messages are XML messages. These messages exchange structured information

between SOAP systems. Messages consist of one or more SOAP elements inside an

envelope, Headers and the SOAP Body. SOAP has two syntaxes for describing the data

in these elements, Section 5, which is a clear descendant of the XML RPC system, and

XML Schema, which is the newer (and usually better) system. Axis handles the magic

of converting Java objects to SOAP data when it sends it over the wire or receives

results. SOAP Faults are sent by the server when something goes wrong; Axis converts

these to Java exceptions.

 SOAP is intended to link disparate systems. It is not a mechanism to tightly bind Java

programs written by the same team together. It can bind Java programs together, but not

as tightly as RMI or Corba. If you try sending many Java objects that RMI would

happily serialize, you will be disappointed at how badly Axis fails. This is by design: if

Axis copied RMI and serialized Java objects to byte streams, you would be stuck to a

particular version of Java everywhere.

 Axis implements the JAX-RPC API, one of the standard ways to program Java services.

If you look at the specification and tutorials on Sun's web site, you will understand the

API. If you code to the API, your programs will work with other implementations of the

API, such as those by Sun and BEA. Axis also provides an extension feature that in

many ways extends the JAX-RPC API. You can use these to write better programs, but

these will only work with the Axis implementation. But since Axis is free and you get

the source, that should not matter.

 Axis is compiled in the JAR file axis.jar; it implements the JAX-RPC API declared in the

JAR files jaxrpc.jar and saaj.jar. It needs various helper libraries, for logging, WSDL

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 4/35

processing and introspection. All these files can be packaged into a web application,

axis.war, that can be dropped into a servlet container. Axis ships with some sample

SOAP services. You can add your own by adding new compiled classes to the Axis

webapp and registering them.

 Before you can do that, you have to install it and get it working.

Step 1: Preparing the webapp

 Here we assume that you have a web server up and running on the localhost at port 8080.

If your server is on a different port, replace references to 8080 to your own port number.

 In your Application Server installation, you should find a directory into which web

applications ("webapps") are to be placed. Into this directory copy the webapps/axis

directory from the xml-axis distribution. You can actually name this directory anything

you want, just be aware that the name you choose will form the basis for the URL by

which clients will access your service. The rest of this document assumes that the

default webapp name, "axis" has been used; rename these references if appropriate.

Step 2: Setting up the libraries

 In the Axis directory, you will find a WEB-INF sub-directory. This directory contains

some basic configuration information, but can also be used to contain the dependencies

and web services you wish to deploy.

 Axis needs to be able to find an XML parser. If your application server or Java runtime

does not make one visible to web applications, you need to download and add it. Java

1.4 includes the Crimson parser, so you can omit this stage, though the Axis team prefer

Xerces.

 To add an XML parser, acquire the JAXP 1.1 XML compliant parser of your choice. We

recommend Xerces jars from the xml-xerces distribution, though others mostly work.

Unless your JRE or app server has its own specific requirements, you can add the

parser's libraries to axis/WEB-INF/lib. The examples in this guide use Xerces. This

guide adds xml-apis.jar and xercesImpl.jar to the AXISCLASSPATH so that Axis can

find the parser (see below).

 If you get ClassNotFound errors relating to Xerces or DOM then you do not have an

XML parser installed, or your CLASSPATH (or AXISCLASSPATH) variables are not

correctly configured.

http://xml.apache.org/dist/xerces-j/
http://axis.apache.org/axis/java/install.html#ClasspathSetup#ClasspathSetup

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 5/35

Tomcat 4.x and Java 1.4

 Java 1.4 changed the rules as to how packages beginning in java.* and javax.* get

loaded. Specifically, they only get loaded from endorsed directories. jaxrpc.jar and saaj.jar

contain javax packages, so they may not get picked up. If happyaxis.jsp (see below)

cannot find the relevant packages, copy them from axis/WEB-INF/lib to

CATALINA_HOME/common/lib and restart Tomcat.

WebLogic 8.1

 WebLogic 8.1 ships with webservices.jar that conflicts with Axis' saaj.jar and prevents

Axis 1.2 from working right out of the box. This conflict exists because WebLogic uses

an older definition of javax.xml.soap.* package from Java Web Services Developer Pack

Version 1.0, whereas Axis uses a newer revision from J2EE 1.4.

 However, there are two alternative configuration changes that enable Axis based web

services to run on Weblogic 8.1.

 In a webapp containing Axis, set <prefer-web-inf-classes> element in WEB-

INF/weblogic.xml to true. An example of weblogic.xml is shown below:

<weblogic-web-app>

 <container-descriptor>

 <prefer-web-inf-classes>true</prefer-web-inf-classes>

 </container-descriptor>

</weblogic-web-app>

o If set to true, the <prefer-web-inf-classes> element will force WebLogic's

classloader to load classes located in the WEB-INF directory of a web application

in preference to application or system classes. This is a recommended approach

since it only impacts a single web module.

 In a script used to start WebLogic server, modify CLASSPATH property by placing

Axis's saaj.jar library in front of WebLogic's webservices.jar.

o NOTE: This approach impacts all applications deployed on a particular

WebLogic instance and may prevent them from using WebLogic's web services.

 For more information on how Web Logic's class loader works, see Web Logic Server

Application Classloading.

Step 3: starting the web server

 This varies on a product-by-product basis. In many cases it is as simple as double

clicking on a startup icon or running a command from the command line.

http://java.sun.com/webservices/docs/1.0/api/javax/xml/soap
http://java.sun.com/webservices/docs/1.0/api/javax/xml/soap
http://e-docs.bea.com/wls/docs81/programming/classloading.html
http://e-docs.bea.com/wls/docs81/programming/classloading.html

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 6/35

Step 4: Validate the Installation

 After installing the web application and dependencies, you should make sure that the

server is running the web application.

 Look for the start page

 Navigate to the start page of the webapp, usually http://127.0.0.1:8080/axis/, though of

course the port may differ.

 You should now see an Apache-Axis start page. If you do not, then the webapp is not

actually installed, or the appserver is not running.

 Validate Axis with happyaxis

 Follow the link Validate the local installation's configuration

This will bring you to happyaxis.jsp a test page that verifies that needed and optional

libraries are present. The URL for this will be something like

http://localhost:8080/axis/happyaxis.jsp

 If any of the needed libraries are missing, Axis will not work.

You must not proceed until all needed libraries can be found, and this validation

page is happy.

Optional components are optional; install them as your need arises. If you see nothing but

an internal server error and an exception trace, then you probably have multiple XML

parsers on the CLASSPATH (or AXISCLASSPATH), and this is causing version

confusion. Eliminate the extra parsers, restart the app server and try again.

Look for some services

 From the start page, select View the list of deployed Web services. This will list all

registered Web Services, unless the servlet is configured not to do so. On this page, you

should be able to click on (wsdl) for each deployed Web service to make sure that your

web service is up and running.

 Note that the 'instant' JWS Web Services that Axis supports are not listed in this listing

here. The install guide covers this topic in detail.

Test a SOAP Endpoint

 Now it's time to test a service. Although SOAP 1.1 uses HTTP POST to submit an XML

request to the endpoint, Axis also supports a crude HTTP GET access mechanism,

which is useful for testing. First let's retrieve the version of Axis from the version

endpoint, calling the getVersion method:

http://127.0.0.1:8080/axis/
http://localhost:8080/axis/happyaxis.jsp

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 7/35

http://localhost:8080/axis/services/Version?method=getVersion

This should return something like:

<?xml version="1.0" encoding="UTF-8" ?>

<soapenv:Envelope

 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>

 <getVersionResponse

 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <getVersionReturn

 xsi:type="xsd:string">

 Apache Axis version: 1.1 Built on Apr 04, 2003 (01:30:37 PST)

 </getVersionReturn>

 </getVersionResponse>

 </soapenv:Body>

</soapenv:Envelope>

The Axis version and build date may of course be different.

Test a JWS Endpoint

 Now let's test a JWS web service. Axis' JWS Web Services are java files you save into

the Axis webapp anywhere but the WEB-INF tree, giving them the .jws extension.

When someone requests the .jws file by giving its URL, it is compiled and executed.

The user guide covers JWS pages in detail.

 To test the JWS service, we make a request against a built-in example, EchoHeaders.jws

(look for this in the axis/ directory).

 Point your browser at http://localhost:8080/axis/EchoHeaders.jws?method=list.

http://localhost:8080/axis/services/Version?method=getVersion
http://localhost:8080/axis/EchoHeaders.jws?method=list

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 8/35

This should return an XML listing of your application headers, such as

<?xml version="1.0" encoding="UTF-8" ?>

<soapenv:Envelope

 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>

 <listResponse

 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <listReturn xsi:type="soapenc:Array"

 soapenc:arrayType="xsd:string[6]"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">

 <item>accept:image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*</item>

 <item>accept-language:en-us</item>

 <item>accept-encoding:gzip, deflate</item>

 <item>user-agent:Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)</item>

 <item>host:localhost:8080</item>

 <item>connection:Keep-Alive</item>

 </listReturn>

 </listResponse>

 </soapenv:Body>

</soapenv:Envelope>

 Again, the exact return values will be different, and you may need to change URLs to

correct any host, port and webapp specifics.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 9/35

Step 5: Installing new Web Services

 So far you have got Axis installed and working--now it is time to add your own Web

Service.

 The process here boils down to (1) get the classes and libraries of your new service into

the Axis WAR directory tree, and (2) tell the AxisEngine about the new file. The latter

is done by submitting an XML deployment descriptor to the service via the Admin web

service, which is usually done with the AdminClient program or the <axis-admin> Ant

task. Both of these do the same thing: they run the Axis SOAP client to talk to the Axis

administration service, which is a SOAP service in its own right. It's also a special

SOAP service in one regard--it is restricted to local callers only (not remote access) and

is password protected to stop random people from administrating your service. There is

a default password that the client knows; if you change it then you need to pass the new

password to the client.

 The first step is to add your code to the server.

 In the WEB-INF directory, look for (or create) a "classes" directory (i.e. axis/WEB-

INF/classes). In this directory, copy the compiled Java classes you wish to install, being

careful to preserve the directory structure of the Java packages.

 If your classes services are already packaged into JAR files, feel free to drop them into

the WEB-INF/lib directory instead. Also add any third party libraries you depend on

into the same directory.

 After adding new classes or libraries to the Axis webapp, you must restart the webapp.

This can be done by restarting your application server, or by using a server-specific

mechanism to restart a specific webapp.

 Note: If your web service uses the simple authorization handlers provided with xml-axis

(this is actually not recommended as these are merely illustrations of how to write a

handler than intended for production use), then you will need to copy the corresponding

users.lst file into the WEB-INF directory.

Step 6: Deploying your Web Service

 The various classes and JARs you have just set up implement your new Web Service.

What remains to be done is to tell Axis how to expose this web service. Axis takes a Web

Service Deployment Descriptor (WSDD) file that describes in XML what the service is,

what methods it exports and other aspects of the SOAP endpoint.

 The users guide and reference guide cover these WSDD files; here we are going to use

one from the Axis samples: the stock quote service.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 10/35

 Classpath setup

 In order for these examples to work, java must be able to find axis.jar, commons-

discovery.jar, commons-logging.jar, jaxrpc.jar, saaj.jar, log4j-1.2.8.jar (or whatever is

appropriate for your chosen logging implementation), and the XML parser jar file or files

(e.g., xerces.jar). These examples do this by adding these files to AXISCLASSPATH and

then specifying the AXISCLASSPATH when you run them. Also for these examples, we

have copied the xml-apis.jar and xercesImpl.jar files into the AXIS_LIB directory. An

alternative would be to add your XML parser's jar file directly to the AXISCLASSPATH

variable or to add all these files to your CLASSPATH variable.

 On Windows, this can be done via the following. For this document we assume that you

have installed Axis in C:\axis. To store this information permanently in WinNT/2000/XP

you will need to right click on "My Computer" and select "Properties". Click the

"Advanced" tab and create the new environmental variables. It is often better to use

WordPad to create the variable string and then paste it into the appropriate text field.

set AXIS_HOME=c:\axis

set AXIS_LIB=%AXIS_HOME%\lib

set AXISCLASSPATH=%AXIS_LIB%\axis.jar;%AXIS_LIB%\commons-discovery.jar;

 %AXIS_LIB%\commons-logging.jar;%AXIS_LIB%\jaxrpc.jar;%AXIS_LIB%\saaj.jar;

 %AXIS_LIB%\log4j-1.2.8.jar;%AXIS_LIB%\xml-

apis.jar;%AXIS_LIB%\xercesImpl.jar

 Unix users have to do something similar. Below we have installed AXIS into /usr/axis

and are using the bash shell. See your shell's documentation for differences. To make

variables permeate you will need to add them to your shell's startup (dot) files. Again,

see your shell's documentation.

set AXIS_HOME=/usr/axis

set AXIS_LIB=$AXIS_HOME/lib

set AXISCLASSPATH=$AXIS_LIB/axis.jar:$AXIS_LIB/commons-discovery.jar:

 $AXIS_LIB/commons-logging.jar:$AXIS_LIB/jaxrpc.jar:$AXIS_LIB/saaj.jar:

 $AXIS_LIB/log4j-1.2.8.jar:$AXIS_LIB/xml-apis.jar:$AXIS_LIB/xercesImpl.jar

export AXIS_HOME; export AXIS_LIB; export AXISCLASSPATH

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 11/35

 To use Axis client code, you can select AXISCLASSPATH when invoking Java by

entering

java -cp %AXISCLASSPATH% ...

or

java -cp "$AXISCLASSPATH" ...

 depending on ou may omit the quotes if your CLASSPATH doesn't have spaces in it.

 Also, it is probably a good time to add the AXISCLASSPATH variable to your

CLASSPATH variable. This will enable you to not include the AXISCLASSPATH

variable when launching the examples in this guide. This document assumes that you

have NOT done this.

Find the deployment descriptor

 Look in axis/samples/stock for the file deploy.wsdd. This is the deployment descriptor

we want to tell Axis about. Deployment descriptors are an Axis-specific XML file that

tells Axis how to deploy (or undeploy) a Web Service, and how to configure Axis itself.

The Axis Administration Web Service lets the AdminClient program and its Ant task

counterpart submit a new WSDD file for interpretation. The Axis 'engine' will update its

configuration, then save its state.

 By default Axis saves it state into the global configuration file axis/WEB-INF/server-

config.wsdd. Sometimes you see a warning message about such a file not being found--

don't worry about this, because Axis auto-creates the file after you deploy something to

it. You can check in the webapp to see what this file looks like--and even copy it to

other systems if you want to give them identical configurations. Note that Axis needs an

expanded web application and write access to the WEB-INF dir to save its state in this

location.

Run the admin client

 Execute the following command from the samples/stock directory. If you are not in this

directory you will get a "java.io.FileNotFoundException: deploy.wsdd (The system

cannot find the file specified)" exception.

On Windows

java -cp %AXISCLASSPATH% org.apache.axis.client.AdminClient

 -lhttp://localhost:8080/axis/services/AdminService deploy.wsdd

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 12/35

On UNIX

java -cp $AXISCLASSPATH org.apache.axis.client.AdminClient

 -lhttp://localhost:8080/axis/services/AdminService deploy.wsdd

 If you get some java client error (like ClassNotFoundException), then you haven't set up

your AXISCLASSPATH (or CLASSPATH) variable right, mistyped the classname, or

did some other standard error. Tracking down such problems are foundational Java

development skills--if you don't know how to do these things, learn them now!

 Note: You may need to replace localhost with your host name, and 8080 with the port

number used by your web server. If you have renamed the web application to something

other than "axis" change the URL appropriately.

 If you get some AxisFault listing, then the client is working, but the deployment was

unsuccessful. This is where the knowledge of the sockets API to TCP and the basics of

the HTTP that Web Service development requires begins to be needed. If you got some

socket error like connection refused, the computer at the far end isn't talking to you, so

find the cause of that and fix it. If you get an HTTP error code back find out what the

error means and correct the problem. These skills are fundamental to using web

services.

 The user's guide covers the AdminClient in more detail, and there is also an Ant task to

automate the use of Axis in your Ant build scripts.

Step 7: Testing

 This step is optional, but highly recommended. For illustrative purposes, it is presumed

that you have installed and deployed the stock quote demo.

 Change directory to the distribution directory for xml-axis and execute the following

command (or its Unix equivalent):

On Windows

java -cp .;%AXISCLASSPATH% samples.stock.GetQuote

 -lhttp://localhost:8080/axis/servlet/AxisServlet

 -uuser1 -wpass1 XXX

http://axis.apache.org/axis/java/user-guide.html
http://axis.apache.org/axis/java/ant/axis-admin.html

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 13/35

On UNIX

java -cp $AXISCLASSPATH samples.stock.GetQuote

 -lhttp://localhost:8080/axis/servlet/AxisServlet

 -uuser1 -wpass1 XXX

 You should get back "55.25" as a result.

Note: Again, you may need to replace localhost with your host name, and 8080 with the port

number used by your web server. If you have renamed the web application to something other

than "axis" change the URL appropriately.

Advanced Installation: adding Axis to your own Webapp

 If you are experienced in web application development, and especially if you wish to add

web services to an existing or complex webapp, you can take an alternate approach to

running Axis. Instead of adding your classes to the Axis webapp, you can add Axis to

your application.

The core concepts are

1. Add axis.jar, wsdl.jar, saaj.jar, jaxrpc.jar and the other dependent libraries to your WAR

file.

2. Copy all the Axis Servlet declarations and mappings from axis/WEB-INF/web.xml and

add them to your own web.xml

3. Build and deploy your webapp.

4. Run the Axis AdminClient against your own webapp, instead of Axis, by changing the

URL you invoke it with.

What if it doesn't work?

 Axis is a complicated system to install. This is because it depends on the underlying

functionality of your app server, has a fairly complex configuration, and, like all

distributed applications, depends upon the network too.

 We see a lot of people posting their problems on the axis-user mailing list, and other Axis

users as well as the Axis developers do their best to help when they can. But before you

rush to post your own problems to the mailing list, a word of caution:

 Axis is free. This means nobody gets paid to man the support lines. All the help you get

from the community is voluntary and comes from the kindness of their hearts. They may

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 14/35

be other users, willing to help you get past the same hurdles they had to be helped over,

or they may be the developers themselves. But it is all voluntary, so you may need to

keep your expectations low!

1. Post to the user mail list, not the developer list. You may think the developer mail list is a

short cut to higher quality answers. But the developers are also on the user list along with

many other skilled users--so more people will be able to answer your questions. Also, it is

helpful for all user issues to be on one list to help build the searchable mailing list archive.

2. Don't ask non-Axis-related questions. The list is not the place to ask about non-Axis, non-

SOAP, problems. Even questions about the MS Soap toolkit or .NET client side, don't get

many positive answers--we avoid them. That also goes for the Sun Java Web Services

Developer Pack, or the Jboss.net stuff that they've done with Axis.

3. Never bother posting to the soapbuilders mailing list either, that is only for people

developing SOAP toolkits, not using them--all off-topic messages are pointedly ignored.

4. There is no guarantee that anyone will be able to solve your problem. The usual response

in such a situation is silence, for a good reason: if everybody who didn't know the answer

to a question said "I don't know", the list would be overflowed with noise. Don't take

silence personally.

5. Never expect an immediate answer. Even if someone knows the answer, it can take a day

or two before they read their mail. So if you don't get an answer in an hour or two, don't

panic and resend. Be patient. And put the time to use by trying to solve your problems

yourself.

6. Do your homework first. This document lists the foundational stuff you need to

understand. It has also warned you that it can take a day to get a reply. Now imagine you

get a HTTP Error '404' on a SOAP call. Should you rush to post a 'help' request, or should

you try and find out what an HTTP error code is, what #404 usually means and how to use

a Java debugger. We provide the source to make that debugging easier :)

7. Post meaningful subject lines. You want your message read, not deleted unread. A subject

line of 'Axis problem', 'Help with Axis', etc. is not meaningful, and is not likely to get

many readers.

8. Search the mailing list archives FIRST to see if someone had the same problem. This list

is searchable--and may save you much time in getting an answer to your problem.

9. Use the jira database to search for Axis bugs, both open and closed.

10. Consult the Axis Wiki for its Frequently Asked Questions (FAQ), installation notes,

interoperability issues lists, and other useful information.

11. Don't email people for help directly, unless you know them. It's rude and presumptuous.

Messages sent over the mail list benefit the whole community--both the original posters

and people who search the list. Personal messages just take up the recipients time, and are

unwelcome. Usually, if not ignored outright, recipients of personal requests will just

respond 'ask the mail list' anyway!

12. Know that configuration problems are hard to replicate, and so can be difficult to get help

on. We have tried with the happyaxis.jsp demo to automate the diagnostics gathering for

you, but it can be hard for people to be of help here, especially for obscure platforms.

mailto:axis-user@ws.apache.org
http://mail-archives.apache.org/eyebrowse/SummarizeList?listId=209
http://issues.apache.org/jira/
http://wiki.apache.org/ws/FrontPage/Axis

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 15/35

13. Keep up to date with Axis releases, even the beta copies of forthcoming releases. You

wouldn't want your problem to be a bug that was already known and fixed in a more

recent release. Often the common response to any question is 'have you tried the latest

release'.

14. Study and use the source, and fix it when you find defects. Even fix the documentation

when you find defects. It is only through the participation of Axis' users that it will ever

get better.

 Has this put you off joining and participating in the Axis user mail list? We hope not--

this list belongs to the people who use Axis and so will be your peers as your project

proceeds. We just need for you to be aware that it is not a 24x7 support line for people

new to server side Java development, and that you will need to be somewhat self

sufficient in this regard. It is not a silver bullet. However, knowing how to make

effective use of the list will help you develop better with Axis.

Appendix: Enabling the SOAP Monitor

 SOAP Monitor allows for the monitoring of SOAP requests and responses via a web

browser with Java plug-in 1.3 or higher. For a more comprehensive explanation of its

usage, read Using the SOAP Monitor in the User's Guide.

 By default, the SOAP Monitor is not enabled. The basic steps for enabling it are

compiling the SOAP Monitor java applet, deploying the SOAP Monitor web service and

adding request and response flow definitions for each monitored web service. In more

detail:

1. Go to $AXIS_HOME/webapps/axis (or %AXIS_HOME%\webapps\axis) and compile

SOAPMonitorApplet.java.

On Windows

javac -classpath %AXIS_HOME%\lib\axis.jar SOAPMonitorApplet.java

On Unix

javac -classpath $AXIS_HOME/lib/axis.jar SOAPMonitorApplet.java

 When using the Java version of Axis there are two ways to expose Java code as Web

service. The easiest one is to use Axis native JWS (Java Web Service) files. Another way

is to use custom deployment. Custom deployment enables you to customize resources that

should be exposed as Web service.

http://axis.apache.org/axis/java/user-guide.html#AppendixUsingTheSOAPMonitor

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 16/35

2. Copy all resulting class files (i.e. SOAPMonitorApplet*.class) to the root directory of the

web application using the SOAP Monitor (e.g. .../tomcat/webapps/axis)

3. Deploy the SOAPMonitorService web service with the admin client and the deploy-

monitor.wsdd file (shown below).

Go to the directory deploy-monitor.wsdd is located and execute the command below.

The command assume that /axis is the intended web application and it is available on

port 8080.

On Windows

java -cp %AXISCLASSPATH% org.apache.axis.client.AdminClient

 -lhttp://localhost:8080/axis/services/AdminService deploy-monitor.wsdd

On UNIX

java -cp $AXISCLASSPATH org.apache.axis.client.AdminClient

 -lhttp://localhost:8080/axis/services/AdminService deploy-monitor.wsdd

SOAPMonitorService Deployment Descriptor (deploy-monitor.wsdd)

<deployment xmlns="http://xml.apache.org/axis/wsdd/"

 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

 <handler name="soapmonitor"

 type="java:org.apache.axis.handlers.SOAPMonitorHandler">

 <parameter name="wsdlURL"

 value="/axis/SOAPMonitorService-impl.wsdl"/>

 <parameter name="namespace"

 value="http://tempuri.org/wsdl/2001/12/SOAPMonitorService-impl.wsdl"/>

 <parameter name="serviceName" value="SOAPMonitorService"/>

 <parameter name="portName" value="Demo"/>

 </handler>

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 17/35

 <service name="SOAPMonitorService" provider="java:RPC">

 <parameter name="allowedMethods" value="publishMessage"/>

 <parameter name="className"

 value="org.apache.axis.monitor.SOAPMonitorService"/>

 <parameter name="scope" value="Application"/>

 </service>

</deployment>

4. For each service that is to be monitored, add request and response flow definitions to the

service's deployment descriptor and deploy (or redeploy) the service. The requestFlow

and responseFlow definitions follow the start tag of the <service> element. If a service is

already deployed, undeploy it and deploy it with the modified deployment descriptor. An

example is shown below:

5. ...

6. <service name="xmltoday-delayed-quotes" provider="java:RPC">

7. <requestFlow>

8. <handler type="soapmonitor"/>

9. </requestFlow>

10. <responseFlow>

11. <handler type="soapmonitor"/>

12. </responseFlow>

 ...

13. With a web browser, go to http[s]://host[:port][/webapp]/SOAPMonitor (e.g.

http://localhost:8080/axis/SOAPMonitor) substituting the correct values for your web

application. This will show the SOAP Monitor applet for viewing service requests and

responses. Any requests to services that have been configured and deployed correctly

should show up in the applet.

Apache Axis (Apache eXtensible Interaction System) is an open source, XML based Web

service framework. It consists of a Java and a C++implementation of the SOAP server, and

various utilities and APIs for generating and deploying Web service applications. Using Apache

Axis, developers can create interoperable, distributed computing applications. Axis is developed

under the auspices of the Apache Software Foundation.

http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/SOAP_(protocol)
http://en.wikipedia.org/wiki/API
http://en.wikipedia.org/wiki/WWW
http://en.wikipedia.org/wiki/Apache_Software_Foundation

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 18/35

Axis for Java

JWS Web service creation

 JWS files contain Java class source code that should be exposed as Web service. The main

difference between an ordinary java file and jws file is the file extension. Another

difference is that jws files are deployed as source code and not compiled class files.

 The following example is taken from http://axis.apache.org/axis/java/user-

guide.html#Publishing_Web_Services_with_Axis . It will expose

methods add and subtract of class Calculator.

 public class Calculator

 {

 public int add(int i1, int i2)

 {

 return i1 + i2;

 }

 public int subtract(int i1, int i2)

 {

 return i1 - i2;

 }

 }

JWS Web service deployment

Once the Axis servlet is deployed, you need only to copy the jws file to the Axis directory on the

server. This will work if you are using an Apache Tomcat container. In the case that you are using

another web container, custom WAR archive creation will be required .

http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Class_file
http://axis.apache.org/axis/java/user-guide.html#Publishing_Web_Services_with_Axis
http://axis.apache.org/axis/java/user-guide.html#Publishing_Web_Services_with_Axis
http://en.wikipedia.org/wiki/Apache_Tomcat
http://en.wikipedia.org/wiki/WAR_(Sun_file_format)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 19/35

JWS Web service access

JWS Web service is accessible using the URL http://localhost:8080/axis/Calculator.jws . If you

are running a custom configuration of Apache Tomcat or a different container, the URL might be

different.

Custom deployed Web service

 Custom Web service deployment requires a specific deployment descriptor called WSDD

(Web Service Deployment Descriptor) syntax. It can be used to specify resources that

should be exposed as Web services. Current version (1.3) supports

 RPC services

 EJB - stateless (Enterprise Java Bean)

 Automated generation of WSDL[edit]

 When a Web service is exposed using Axis it will generate a WSDL file automatically

hen accessing the Web service URL with ?WSDL appended to it.

Axis for C++

 An example for implementing and deploying a simple web-service with the C++ version

of Axis can be found in the Axis-CPP Tutorial (link in the Reference section below).

The steps necessary are:

 Create the wsdl file

 Generate client and server stubs using wsdl2ws

 Provide the server side web service implementation (e.g. the add method of the calculator

service)

 Build the server side code and update the generated deploy.wsdd with the .dll path

 Deploy the binaries to the directory specified in the wsdd

 Build client

 Run and enjoy...

DEVELOPING WEB SERVICES USING AXIS AND TOMCAT

 The Apache Axis engine is one of the most commonly used Web Services engines in the

Java Web Services realm, and it is the third-generation implementation of Apache SOAP.

Essentially, Axis is a SOAP engine, self-proclaimed to be "a framework for constructing

SOAP processors such as clients, servers, gateways, etc." In addition to being a SOAP

engine, it also includes the following (excerpt taken from the Apache Axis Web site):

http://en.wikipedia.org/wiki/Apache_Tomcat
http://en.wikipedia.org/wiki/Software_deployment
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Enterprise_Java_Bean
http://en.wikipedia.org/w/index.php?title=Apache_Axis&action=edit§ion=6
http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://ws.apache.org/axis/java/user-guide.html

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 20/35

 A simple stand-alone server

 A server that plugs into Servlet engines such as Tomcat

 Extensive support for the Web Services Description Language (WSDL)

 Emitter tooling that generates Java classes from WSDL

 Some sample programs

 A tool for monitoring TCP/IP packets

 Furthermore, here is the feature set that Axis delivers, making it a desireable technology:

 Speed: Axis uses SAX (event-based) parsing to acheive significantly greater speed than

earlier versions of Apache SOAP.

 Flexibility: The Axis architecture gives the developer complete freedom to insert

extensions into the engine for custom header processing, system management, or

anything else you can imagine.

 Stability: Axis defines a set of published interfaces which change relatively slowly

compared to the rest of Axis.

 Component-oriented deployment: You can easily define reusable networks of Handlers

to implement common patterns of processing for your applications, or to distribute to

partners.

 Transport framework: A clean and simple abstraction for designing transports (i.e.,

senders and listeners for SOAP over various protocols such as SMTP, FTP, message-

oriented middleware, etc), and the core of the engine is completely transport-independent.

 WSDL support: Axis supports the Web Service Description Language, version 1.1,

which allows you to easily build stubs to access remote services, and also to automatically

export machine-readable descriptions of your deployed services from Axis.

 A final note on the inherent success of Axis is that it has been the SOAP implementation

inside of JBoss and WebSphere (at the time of this writing.)

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 21/35

Tomcat and Axis Setup

 Before you can begin using Axis, you need to download a copy of Jakarta Tomcat and

Apache Axis:

 Jakarta Tomcat

 Apache Axis

 After installing Tomcat and decompressing Axis, copy the "axis" folder from <axis-

home>/webappsto <tomcat-home>/webapps. This gives you the following folder:

 <tomcat-home>/webapps/axis

 Before starting Tomcat, you need to download a few support libraries that Axis needs:

 Java Activation Framework

 JavaMail

 XML Security

 Then copy the following files to the <tomcat-home>/webapps/axis/WEB-INF/lib folder:

 activation.jar

 mail.jar

 xmlsec-1.2.1.jar

 xalan.jar

 Start Tomcat by executing the startup script from the <tomcat-home>/bin folder. For

example, on Windows:

 C:\jakarta-tomcat-5.5.9\bin> startup

 Now you can test your installation by directing your Web browser to the following URL:

 http://localhost:8080/axis

 Click on "Validation" or go directly to the URL:

 http://localhost:8080/axis/happyaxis.jsp

http://jakarta.apache.org/site/downloads/downloads_tomcat-5.cgi
http://www.apache.org/dyn/closer.cgi/ws/axis/1_2RC3
http://java.sun.com/products/javabeans/glasgow/jaf.html
http://java.sun.com/products/javamail/
http://xml.apache.org/security/dist/java-library/

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 22/35

 This page tells you if Axis located the libraries that it needs to run properly. If you have

any errors, you're provided links to the required libraries. Follow the links, download the

libraries, and copy the JAR files to the <tomcat-home>/webapps/axis/WEB-INF/lib folder.

NOTE

 You may need to restart Tomcat for the changes to take effect; execute

the shutdown script followed by the startup script from the <tomcat-home>/bin folder.

 Finally, you might want to test your installation by listing the currently deployed Web

services. Click "List" from the Axis homepage:

 http://localhost:8080/axis

 You should initially see two services:

 AdminService

 Version

 Click on the wsdl link for the Version service to validate that Axis is properly serving its

content.

Building the Web Service

 We'll continue with the "Age" Web service that we defined in the JBoss example, but in

the context of Axis. An Axis Web Service only requires two things:

1. A normal Java class that provides the Web Service implementation methods

2. A Web Services Deployment Descriptor (WSDD)

Listing 15 shows the source code for the AgeService class.

Listing 15. AgeService.java

package com.javasrc.webservices.age;

public class AgeService {

 public String age(String name, Integer age) {

 return name + " is " + age + " years old!";

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 23/35

 }

}

This is a standard Java class with a single method: age() accepts a name and an age and returns

a String.

Listing 16 shows the Web Services Deployment Descriptor for the AgeService.

Listing 16. AgeService.wsdd

<deployment xmlns="http://xml.apache.org/axis/wsdd/"

 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

 <service name="AgeService" provider="java:RPC">

 <parameter name="className" value="com.javasrc.webservices.age.AgeService"/>

 <parameter name="allowedMethods" value="*"/>

 </service>

</deployment>

The deployment descriptor provides some basic wrapping around three key pieces of information:

1. The name of the Web Service

2. The class that implements the Web Services

3. The methods in the class that we want Axis to expose

In this case, we map the name "AgeService" to the com.javasrc.webservices.age.AgeServiceclass

and expose all of its methods.

And that is all you need to build a Web Service using Axis! I think it is quite elegant!

Deploying the Web service

 Deploying the Web Service to Axis is a little different from traditional application servers.

The Web Service implementation class is packaged together with the Web Services

engine, rather than existing separately and allowing the Servlet or EJB container to map

Web Service requests to the implementation class. In this case, you need to copy your

compiled Web Services classes (both the Web Service implementation and all classes on

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 24/35

which it depends) to the <tomcat-home>/webapps/axis/WEB-INF/classes folder, and

remember to preserve the package directory structure.

 The AgeService.class file should be copied to the following folder:

<tomcat-home>/webapps/axis/WEB-INF/classes/com/javasrc/webservices/age

So far, so good. Now you need to tell Axis about the Web Service by integrating its WSDD file

with Axis and allowing Axis to generate the WSDL file. This can all be accomplished by using

the Axisorg.apache.axis.client.AdminClient class from a command prompt. As with our previous

examples, it can be somewhat of a chore determining the JAR files to add to the CLASSPATH to

utilize Web Services functionality. To launch the AdminClient you need to include the following

JAR files in your CLASSPATH:

<axis-home>\lib\axis.jar

<axis-home>\lib\jaxrpc.jar

<axis-home>\lib\saaj.jar

<axis-home>\lib\wsdl4j.jar

<axis-home>\lib\commons-logging.jar

<axis-home>\lib\commons-discovery.jar

<java-activation-framework-home>\activation.jar

<javamail-home>\mail.jar

 Then launch the AdminClient, passing it the WSDD file as its command line argument:

java org.apache.axis.client.AdminClient AgeService.wsdd

 You should see something similar to the following:

Processing file AgeService.wsdd

<Admin>Done processing</Admin>

 Navigate to the Axis homepage and click on "List" to see if your Web Service was

successfully deployed. If so, click on its wsdl link to see the WSDL file that Axis

generated, or access it directly through the following URL:

 http://localhost:8080/axis/services/AgeService?wsdl

 Listing 17 shows the contents of that file in my environment.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 25/35

Listing 17. AgeService WSDL File (generated)

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions targetNamespace="http://localhost:8080/axis/services/AgeService"

 xmlns:apachesoap="http://xml.apache.org/xml-soap"

 xmlns:impl="http://localhost:8080/axis/services/AgeService"

 xmlns:intf="http://localhost:8080/axis/services/AgeService"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <!-- WSDL created by Apache Axis version: 1.2RC3 Built on Feb 28, 2005 (10:15:14 EST)--

>

 <wsdl:message name="ageRequest">

 <wsdl:part name="in0" type="soapenc:string"/>

 <wsdl:part name="in1" type="soapenc:int"/>

 </wsdl:message>

 <wsdl:message name="ageResponse">

 <wsdl:part name="ageReturn" type="soapenc:string"/>

 </wsdl:message>

 <wsdl:portType name="AgeService">

 <wsdl:operation name="age" parameterOrder="in0 in1">

 <wsdl:input message="impl:ageRequest" name="ageRequest"/>

 <wsdl:output message="impl:ageResponse" name="ageResponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="AgeServiceSoapBinding" type="impl:AgeService">

 <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="age">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="ageRequest">

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 26/35

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 namespace="http://age.webservices.javasrc.com" use="encoded"/>

 </wsdl:input>

 <wsdl:output name="ageResponse">

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 namespace="http://localhost:8080/axis/services/AgeService" use="encoded"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="AgeServiceService">

 <wsdl:port binding="impl:AgeServiceSoapBinding" name="AgeService">

 <wsdlsoap:address location="http://localhost:8080/axis/services/AgeService"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

The important things you need to know from this file when building our client are:

1. The address (URL) of the Web Service: http://localhost:8080/axis/services/AgeService

2. The namespace of the AgeService (used later when creating a QName):

http://age.webservices.javasrc.com

With this information in hand, we are ready to write a test client to test our Web Service.

Testing the Web Service

 In order to test our Web Service, we'll build a test client that uses the Apache Axis client

libraries. For this exercise, keep the same CLASSPATH that you used when launching

the AdminClientclass:

<axis-home>\lib\axis.jar

<axis-home>\lib\jaxrpc.jar

<axis-home>\lib\saaj.jar

<axis-home>\lib\wsdl4j.jar

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 27/35

<axis-home>\lib\commons-logging.jar

<axis-home>\lib\commons-discovery.jar

<java-activation-framework-home>\activation.jar

<javamail-home>\mail.jar

Listing 18 shows the source code for the AgeServiceClient class.

Listing 18. AgeServiceClient.java

package com.javasrc.webservices.age;

import org.apache.axis.client.Call;

import org.apache.axis.client.Service;

import org.apache.axis.encoding.XMLType;

import org.apache.axis.utils.Options;

import javax.xml.namespace.QName;

import javax.xml.rpc.ParameterMode;

public class AgeServiceClient

{

 public static void main(String [] args)

 {

 try {

 Options options = new Options(args);

 String endpointURL = options.getURL();

 String name;

 Integer age;

 args = options.getRemainingArgs();

 if ((args == null) || (args.length < 2)) {

 name = "NoName";

 age = new Integer(0);

 } else {

 name = args[0];

 age = new Integer(args[1]);

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 28/35

 }

 Service service = new Service();

 Call call = (Call) service.createCall();

 call.setTargetEndpointAddress(new java.net.URL(endpointURL));

 call.setOperationName(new QName("http://age.webservices.javasrc.com", "age"));

 call.addParameter("arg1", XMLType.XSD_STRING, ParameterMode.IN);

 call.addParameter("arg2", XMLType.XSD_INT, ParameterMode.IN);

 call.setReturnType(org.apache.axis.encoding.XMLType.XSD_STRING);

 String ret = (String) call.invoke(new Object[] { name, age });

 System.out.println("Age result : " + ret);

 } catch (Exception e) {

 System.err.println(e.toString());

 }

 }

}

 Some of this method should look familiar, in concept anyway. We create a

new Service instance (in this case, we create it directly rather than using

a ServiceFactory because Axis only support JAX-RPC calls) but then we ask

the Service to create a call for us. By doing this (and not involving the Remote

interface as we did in the JBoss implementation), we keep everything generic;

theAgeServiceClient does not need to know anything about the AgeService, and the

Web Services framework handles all of the details.

 To help us manage our command line options, Apache provides the following

class:org.apache.axis.utils.Options. From this class, we can extract the URL of the

destination Web Service through its getURL() method. We tell the Call that this URL

is the target endpoint to connect to. Next, we define the operation name to execute; this

involves the creation on a QName. The QName uses the AgeService namespace that

we found in the WSDL file and the name of the method on the AgeService that we

want to execute: age.

 Next, we tell the call that we have two input parameters -- a String followed by an

Integer -- and that we expect a String to be returned to us.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 29/35

 Finally, we invoke the Web Service call, passing it our parameters, wrapping in

an Object array, and capture the response.

 You can execute this test client as follows:

 java com.javasrc.webservices.age.AgeServiceClient -

lhttp://localhost:8080/axis/services/AgeService "Steve" 33

 And you should get a response similar to the following:

 Age result : Steve is 33 years old!

What is Tomcat?

 Tomcat is an open source server from the Apache Software Foundation. It is a Web

application server, which means that it comes ready to support programming using

JavaServer Pages (JSPs) and servlets.

 Since early 2000, Tomcat has served as the reference implementation for the latest

Java Servlet and JSP specifications. Tomcat 5.5, the latest Tomcat version as of this

writing, supports the latest Java Servlet 2.4 and JavaServer Pages 2.0 standards

(seeResources). Tomcat also includes a limited Web server that can serve static Web

pages when executed in stand-alone mode (by default).

 Because of a variety of open source libraries and extensions, Tomcat supports:

 Web services using the Apache Axis servlet

 Development frameworks, such as Apache Struts

 Templating engines, such as Apache Jakarta Velocity

 Object-relational mapping technology, such as Hibernate

 This tutorial shows you how to use Tomcat to learn JSP, servlet, and Web services

programming. Use of Struts, Velocity, and Hibernate with Tomcat is beyond this

tutorial's scope.

 In the past, because a high level of expertise was required to configure and administer

Tomcat, the primary Tomcat users were advanced server-side application developers.

Now -- thanks to the maturing of Tomcat's GUI installer, the ability to install the server

as a system service, and stabilization of the server's features -- even beginning Web

developers can take advantage of this versatile server.

Tomcat installation and setup

Downloading Tomcat

To download the latest version of Tomcat, go to the Apache Tomcat home page

(see Prerequisites), shown in Figure 1, and click the Tomcat 5.x link under

the Download heading (the area outlined in red in Figure 1):

http://www.ibm.com/developerworks/java/tutorials/j-tomcat/resources.html
http://www.ibm.com/developerworks/java/tutorials/j-tomcat/prerequisites.html

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 30/35

Figure 1. Apache Tomcat project home page

Figure 1. Apache Tomcat project home page You have a choice among the latest 5.5.x

releases. Choose the binary distribution of the latest stable (nonbeta and nonalpha) release. For

Windows systems, download the EXE binary for simple installation.

Back to top

Installing Tomcat

The EXE binary installer does the following:

 Unpacks and installs the Tomcat server components.

Lets you specify the TCP port that the server will use when listening for incoming requests. (A

TCP port is a networking endpoint, represented by a number, that a client application can

specify when connecting to the server.)

 Configures the server to run as a system service.

Start the installation EXE. You'll see the initial splash screen, shown in Figure 2:

Figure 2. Tomcat setup wizard splash screen

http://www.ibm.com/developerworks/java/tutorials/j-tomcat/section3.html#ibm-pcon

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 31/35

Figure 2. Tomcat setup wizard splash screen

The installation EXE runs a wizard-based installer with step-by-step instructions. You must

have administrator privileges on the machine, because Tomcat is installed as a system service.

If you are on your own PC as the default user and have installed other software successfully,

you probably already have administrator privileges.

Table 1 describes the items that each screen of the setup wizard prompts for, along with the

responses you should make.

Table 1. Tomcat setup wizard prompts

Setup wizard

screen

Description

License agreement This is the Apache License 2.0, one of the more liberal open source

software licenses in existence. Read the license terms carefully. If you

agree to the terms, click the I Agree button to proceed.

Choose

components

Select the components of Tomcat to install. By default, the mandatory

components are checked. If you have enough disk space, consider

installing the examples. They are great for learning Web application

programming.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 32/35

Choose install

location

Select the directory on your computer where the Tomcat server will

install. If this is your first installation, the default that the wizard

selects should be fine. This screen also shows how much disk space

the Tomcat installation will take up and the amount of free space you

have on the disk.

Configuration This screen lets you performs basic Tomcat server configuration. You

can select the TCP port that the server listens on, as well as an

administrator username and password. It is recommended that you

leave the TCP port at 8080. Leave the administrator username

as admin and enter your own administrator password. Do not forget

the password; you'll need it later to deploy the examples in this

tutorial.

Java Virtual

Machine

This screen lets you select the JVM that Tomcat runs under. Unless

you have multiple JDKs installed on your machine, you can use the

default. For the latest Tomcat 5.5 release, you should select JVM

version 1.5.0 or later.

Completing the

Apache Tomcat

Setup Wizard

This is the final step of the installation. Select the Run Apache

Tomcat checkbox. This starts the system service immediately after

installation.

Note that on some versions of Windows with a firewall, you might need to give Tomcat

explicit permission to listen to the TCP port for requests.

Verifying server operations

It's simple to access the running Tomcat server and verify that the installation was successful.

Start a browser and point it to the address http://localhost:8080/.

The Tomcat server is listening at port 8080. (You configured this during the installation.)

Figure 4 shows the welcome screen that Tomcat displays:

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 33/35

Figure 4. Tomcat's welcome screen

By running the Tomcat server on the same machine as your browser, you are simulating a

networked environment. Figure 5 shows this loop-back network configuration:

Figure 5. Loop-back configuration for single-machine server-side development

 In Figure 5, both the client (browser) and the server (Tomcat) are running on the same

machine. The TCP connection between the client and the server is running in a loop-

back mode. This is a common practice in Web development, enabling you to perform

server-side development using a single machine. In actual production, you can change

the host name of the URL from localhost to the IP address of your networked

production Tomcat server (shown within dash).

Discovering Web services development with Tomcat

Brief introduction to Web services

 Web services are server-side code components that can expose their functionality for

access over a TCP/IP network using the standard HTTP protocol. This exposure lets Web

service users, called consumers, consume Web services over most network connections --

and even through firewalls.

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 34/35

 A Web service processes incoming requests and generates responses. This is exactly what

a servlet does, so it is quite natural to implement Web services using servlets.

 Web services are becoming increasingly popular because they can be effectively used for

business-to-business or business-to-consumer interfaces. They let requests be sent, and

responses received, through the Internet. Any user who can access your Web site can also

access your Web service(s). For example, both eBay and Amazon.com offer Web services

that their partners and users can consume.

 Web services depend on passing XML-based messages between the consumer and the

service. The messages are packaged and sent according to the Simple Object Access

Protocol (SOAP).

 Apache Axis is a Web services development kit that can be used as an add-on to Tomcat.

The next section shows you how to create a simple Web service, using Apache Axis, and

deploy it on your Tomcat server. See Resources for articles and tutorials that can help you

learn more about Web services programming.

Adding Axis to Tomcat

 Axis can run as a servlet on Tomcat. If you haven't already done so, download the latest

version of Axis (see Prerequisites). Unarchive the Axis distribution.

 Copy all the files under the webapps/axis directory of the Axis distribution to the

step3/axis directory of this article's code distribution (see Download).

 You can use the makewar.bat batch file, found in the step3/axis directory, to create an

axis.war file that can be deployed to Tomcat as a Web application.

 Before Axis will run properly on Tomcat, you might need to download some additional

JAR files over the Internet and place them into the WEB-INF/lib directory of the step3

application. If you're using Axis 1.2.1, you need to download the following:

 activation.jar from http://java.sun.com/products/javabeans/glasgow/jaf.html

 xmlsec-1.2.1.jar from http://xml.apache.org/security/

 mail.jar from http://java.sun.com/products/javamail/

 If you are not using version 1.2.1 of Axis, the above list might differ slightly. See the

documentation accompanying the Axis distribution for more information.

http://www.ibm.com/developerworks/java/tutorials/j-tomcat/resources.html
http://www.ibm.com/developerworks/java/tutorials/j-tomcat/prerequisites.html
http://www.ibm.com/developerworks/java/tutorials/j-tomcat/downloads.html

KARPAGAM ACADEMY OF HIGHER EDUCATION
 CLASS: II MCA COURSE NAME: WEB SERVICES

COURSE CODE: 17CAP405W UNIT: V(WEB SERVICES) BATCH-2017-2020

Prepared by Dr.E.J.Thomson Fredrik, Associate Professor, Department of CS, CA & IT, KAHE Page 35/35

POSSIBLE QUESTIONS

PART – A

(Online Exam 20*1=20 marks)

 Multiple Choice Questions available in Moodle

PART – B

(Each Question carries 2 marks)

1. Explain the Real world Web service Application Development

2. Explain about Development of Web services and Application

3. Explain the Functionality of Enterprise Procurement System (EPS)

4. Explain about Axis SOAP server

5. Differentiate Tomcat application server and Axis SOAP server

6. Explain the steps involved for running the EPS Application

7. Explain how to test a JWS End point

8. Explain the steps involved for installing the new Web services

9. Explain how to discover the Web services development with Tomcat

10. Explain how to test a web service

PART – C

(Each Question carries 6 marks)

1. Explain the steps involved for installing the Tomcat Web server

2. Explain how to build a web service

3. Explain how to deploy a web service

4. Explain about JWS web service creation

5. Explain about Security holes in web services

Questions Opt 1 Opt 2 Opt 3 Opt 4 Opt 5 Opt 6 Answer

__________ implements

servlet 3.0 and JSP 2.2

Tomcat

7.x

Tomcat

8.x

Tomca

t 1.2

Tomcat

5.x

Tomcat 7.x

_____ new components were

added to release Tomcat 7

13 7 3 4 3

3 new components were

added to release _______

Tomcat

8.2

tomcat

7

tomcat

5

tomcat

9

tomcat 7

_____ has been added to

manage large documents

cluster buster foster looser cluster

______ implements serrel

3.1 and JSP 2.4

Tomcat

7.x

tomcat

8.x

tomcat

1.2

tomcat

5.x

tomcat 8.x

Tomcat book was published

with ______ on cover

polar

bear

wild

bear

snow

leaopar

d

fox snow

leaopard

A ______ feature has been

added to faciliate the

scheduling of system

upgrades

low

density

high

density

low

availab

ility

high

availabi

lity

high

availability

___ ant software build

automation software was

developed

 as a side effect of creatop of

tomcat

Apache

ant

apache

bear

apache

app

apache

arms

Apache ant

_____ is a JDT java

compiler

Asper 2 Fazer 2 Jaser 2 Jasper

3

Jaser 2

Jasper 2 uses _______ Eclipse

JDT

Java

bean

CSS HTML Eclipse

JDT

During jsp runtime ______

can be inserted and included

Pages Ruler Scanne

r

Page

maker

Pages

Each tag markup in JSP file

is handled by____ class

File

handler

Tag

handler

Merge

handler

Source

handler

Tag handler

The ___ servlet is deleted

once new servlet is finished

 being compiled

New

JSP

Older

JSP

Curren

t JSP

Last

JSP

Older JSP

The older JSP servlet is

deleted once _____ servlet is

finished

New

JSP

Older

JSP

Curren

t JSP

Last

JSP

New JSP

______ support currently

requires JDK Version 1.5 or

later

clusterin

g

foamin

g

groupi

ng

kayakin

g

clustering

Clustering suports currently

requires JDK_______ or

later

Version

6.1

Version

7.1

Versio

n 1.5

Version

1.7

Version 1.5

_______ is a connector

component for tomcat that

supports

the HTTP

Ryote Ryte Coyote Chandl

er

Coyote

Tomcat 4.x was released

with ________

Catalina Casolin

a

Casper Caterer Catalina

_______ is tomcats servlet

container

Catalina casolina Casper caterer Catalina

In tomcat a realm represents

a ________of usernames,

passwords and roles

Databas

e

Recipie

nt

Sender Worker Database

_____ is built as a

community process that

involves both user

and developer mailing lists

Apache

software

Torand

o

softwar

e

Avira

softwar

e

Avlon

softwar

e

Apache

software

Apache software is built as a

community process that

involves both

 user and developer____

Holding

list

Trackin

g list

Hoppin

g list

Mailing

list

Mailing list

_____ implementation

allow catalina to be

integrated into

 environments where

authentication information is

already being created

Realm Roman Rando

m

Rival Realm

________ listens for

incoming connections to

server on specific

TCP port

coyote boycott canal casper coyote

Coyote listens for incoming

connections to server on

specific ____

port

FTTP TCP FTP SMTP TCP

______ forward request to

another web server such as

apache using JK protocol

Coyote

RT

Coyote

JK

Coyote

PG

Coyote

AL

Coyote JK

As of _______ tomcat user

jasper2

version

4

version

5

version

3

version

9

version 5

___________ feature will

not affect the line

environment

High

availabil

ity

Low

availabi

lity

Rando

m

availab

ility

Functio

n

availabi

lity

High

availability

High availability feature will

not affect the _______

Mortal

environ

ment

Immort

al

environ

ment

Line

enviro

nment

Rando

m

species

Line

environmen

t

Implementations of Axis 2

are available in_____ and C

JAVA C C++ Python JAVA

___ is a sponsered

community of developers

and operator

who are running apache

tomcat in large scale

production environment

Random

source

Data

source

Spring

source

Dialup

source

Spring

source

Spring source is a sponsered

community of _____ who

are running

apache tomcat in large scale

production environment

Prons

and

corns

Develo

per and

operato

r

Develo

pers

only

Operato

rs only

Developer

and

operator

_____availability is done by

dispatching live traffic

requests

High Low Mediu

m

Rando

m

High

In tomcat a _______

represents a database of

usernames,

passwords and roles

Realm Recipie

nt

Sender Worker Realm

______ offers better

performance than HTTP

protocol

JK

protocol

JSP

page

XML Servlet JK protocol

__________ deloyment

requires a specific

deployment descriptor

 called WSDP

Custom

web

service

Honour

webb

service

Genera

l web

service

Existin

g web

service

Custom

web service

Custom web service

deloyment requires a specific

deployment

 descriptor called

WSDP HTML DHTM

L

WSCL WSDP

For b2b one needs

________rather than

reliability

Versatal

ity

Outspo

kness

Accou

ntabilit

y

Interior

ity

Accountabi

lity

Webservices can be

combined in ________ way

to achieve complex

operations

Loosely

coupled

Closely

coupled

Lightly

couple

d

Strongl

y

coupled

Looselycou

pled

It is important to build

infrastructure allowing

components

 to conform ________

High

needs

All

needs

Strict

needs

Basic

needs

Basic needs

_________is often referred

to as Tomcat

Apache

tomcat

Arise

tomcat

Apollo

tomcat

Androi

d

tomcat

Apache

tomcat

_______ implements several

JAVA EE

Tomcat CSS HTML XML Tomcat

_______ is tomcats JSP

engine

Caster Micer Jasper Mirand

o

Jasper

____ is the connector

component of Tomcat

Coyote Miot Tungst

en

Silicon Coyote

While recompling modified

JSP java code , the older

version is still

available for ___________

Server

request

client

request

kernal

request

hiper

request

Server

request

JWS is abbreviated

as____________

Java

web

security

Java

web

service

Java

world

service

Java

world

security

Java web

service

________ is the core engine

for web service

Apache

axis 2

Androi

d

Honey

combs

Ginger

bread

OS

Apache

axis 2

cluster has been added to

manage_______

word

docume

nt

excel

docume

nt

small

docum

ent

large

docume

nt

large

document

Coyote forward request

using ____ protocol

JK FTP HTTP SMTP JK

Tomcat_________ was

released with catalina

 6.x 3.x 4.x 8.x 4.x

Accountability is more

important than ________in

b2b

Versatal

ity

Outspo

kness

Reliabi

lity

Interior

ity

Reliability

Apache tomcat is often

referred to as_______

Tomcat Type

pad

Server Service

provide

r

Tomcat

High availability is done by

dispatching ___________

Low

traffic

Live

traffic

Visible

traffic

Rando

m

traffic

Live traffic

Coyote is a connector

component for tomcat that

supports the ______

HTTP CSS XML HTML HTTP

The tag markup in ____ file

is handled by tag handler

class

JSP ASP FTTP FTP JSP

A high availability feature

helps in ___ of system

upgrades

scheduli

ng

proxy copyin

g

pasting scheduling

Pages can be inserted and

included into ___ run time

JSP HTML XML XSS JSP

Tomcat version 5

uses_________

Jasper 6 Jaser 2 Jasper

4

Jaser 1 Jaser 2

_______offers better

performance than JK

protocol

JP

protocol

JK

protoco

l

FTTP

protoc

ol

HTTP

protoco

l

HTTP

protocol

Several ______

implementations are done in

Tomcat

JAVA

AB

JAVA

AD

JAVA

EE

JAVA

ED

JAVA EE

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

	1.pdf (p.1-2)
	2.pdf (p.3-8)
	3.pdf (p.9-43)
	4.pdf (p.44-53)
	5.pdf (p.54-78)
	6.pdf (p.79-86)
	7.pdf (p.87-109)
	8.pdf (p.110-114)
	9.pdf (p.115-127)
	10.pdf (p.128-131)
	11.pdf (p.132-166)
	12.pdf (p.167-171)
	13.pdf (p.172-175)
	14.pdf (p.176)

