
Karpagam Academy of Higher Education

(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

DEPARTMENT OF COMPUTER SCIENCE, APPLICATIONS AND

INFORMATION TECHNOLOGY

18CAU301 DATA STRUCTURES 4H – 4C

Instruction Hours / week: L: 4 T: 0 P: 0 Marks: Int : 40 Ext : 60 Total: 100

Scope

Data structures and algorithms are the building blocks in computer programming.

This course will give students a

comprehensive introduction of common data structures, and algorithm design and analysis. This

course also intends

to teach data structures and algorithms for solving real problems that arise frequently in computer

applications, and

to teach principles and techniques of computational complexity.

Objectives

 understand common data structures and algorithms, and be able to implement them

 Judge efficiency trade-offs among alternative data structure implementations or combinations.

 analyze the complexities of data structures and algorithms;

 choose appropriate data structures and algorithms for problem solving.

Unit-I

Arrays-Single and Multi-dimensional Arrays, Sparse Matrices (Array and Linked

Representation).Stacks

Implementing single / multiple stack/s in an Array; Prefix, Infix and Postfix expressions, Utility and

conversion of

these expressions from one to another; Applications of stack; Limitations of Array representation of

stack

Unit-II

Linked Lists Singly, Doubly and Circular Lists (Array and Linked representation); Normal and

Circular,

representation of Stack in Lists; Self Organizing Lists; Skip Lists Queues, Array and Linked

representation of

Queue, De-queue, Priority Queues

Unit-III

Trees - Introduction to Tree as a data structure; Binary Trees (Insertion, Deletion , Recursive and

Iterative

Traversals on Binary Search Trees); Threaded Binary Trees (Insertion, Deletion, Traversals); Height-

Balanced

Trees (Various operations on AVL Trees).

Unit-IV

Searching and Sorting, Linear Search, Binary Search, Comparison of Linear and Binary Search,

Selection Sort,

Insertion Sort, Insertion Sort, Shell Sort, Comparison of Sorting Techniques

Unit-V

Hashing - Introduction to Hashing, Deleting from Hash Table, Efficiency of Rehash Methods, Hash

Table

Reordering, Resolving collusion by Open Addressing, Coalesced Hashing, Separate Chaining,

Dynamic and Extendible Hashing, Choosing a Hash Function, Perfect Hashing, Function

 Text Book:

1. Aaron M. Tenenbaum, Moshe J. Augenstein, YedidyahLangsam, (2009). Data Structures Using C

and C++, (2nd ed.), PHI.

Suggested readings

1. Aaron M. Tenenbaum, Moshe J. Augenstein, Yedidyah Langsam,(2003). Data Structures Using

Java.

2. Aaron M. Tenenbaum, Moshe J. Augenstein, YedidyahLangsam, (2009). Data Structures Using C

and

C++, (2nd ed.), PHI.

3. Adam Drozdek, (2012). Data Structures and algorithm in C++, (3rd ed.), Cengage Learning.

4. Goodrich, M. and Tamassia, R.,(2013). Data Structures and Algorithms Analysis in Java, (4th ed.),

Wiley.

Herbert Schildt, (2014). " Java The Complete Reference (English) 9th Edition Paperback", Tata

McGraw

Hill.

5. John Hubbard,(2009). Data Structures with JAVA, (2nd ed.), India, McGraw Hill Education.

6. Malik, D. S., Nair, P.S., (2003). Data Structures Using Java, Course Technology.

7. Malik, D.S., (2010). Data Structure using C++,(2nd ed.), Cengage Learning.

8. Mark Allen Weiss, (2011). Data Structures and Algorithms Analysis in Java, Pearson Education,

(3rd ed.).

9. Robert L. Kruse, (1999). Data Structures and Program Design in C++, Pearson.

10. Robert Lafore, (2003). Data Structures and Algorithms in Java, (2nd ed.), Pearson Macmillan

Computer

Publications.

11. Sartaj Sahni, (2011). Data Structures, Algorithms and applications in C+, (2 nd ed.) Universities

Press.

Websites

1. http://en.wikipedia.org/wiki/Data_structure

2. http://www.cs.sunysb.edu/~skiena/214/lectures/

3. www.amazon.com/Teach-Yourself-Structures-Algorithms

Data Structures BCA Lesson Plan(2018-2021 Batch)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 1

Karpagam Academy of Higher Education

(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

DEPARTMENT OF COMPUTER SCIENCE, APPLICATIONS AND

INFORMATION TECHNOLOGY

SUBJECT NAME: DATA STRUCTURES SUBJECT CODE: 18CAU301

LECTURE PLAN

UNIT 1

S. No Lecture

Duration

(Hr)

Topics to be Covered Support

Materials

1 1 Introduction to Arrays W1,

T1:24-26

2 1 Single and Multi-dimensional Arrays W1,

T1:33-37

3 1 Sparse Matrices W1

4 1 Stacks Implementing single / multiple stack/s in

an Array

T1:85-94

5 1 prefix, infix and postfix Expressions W1,

T1; 95,96

6 1 Utility and conversion of these expressions from

one to another

T1:98-100

7 1 Applications of stack T1:778,79

8 1 Limitations of Array representation of stack W1,

T1:86,87

9 1 Recapitulation of Important Questions

Total no. of Hours planned for Unit – 1: 9 Hours

Text Book:

T1 : Aaron M. Tenenbaum, Moshe J. Augenstein, YedidyahLangsam, (2009). Data Structures Using C and

C++, (2nd ed.), PHI

Reference Book:

R1: Adam Drozdek, (2012). Data Structures and algorithm in C++, (3rd ed.), Cengage Learning.

Website :

W1 : http://en.wikipedia.org/wiki/Data_structure

Data Structures BCA Lesson Plan(2018-2021 Batch)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 2

Karpagam Academy of Higher Education

(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

DEPARTMENT OF COMPUTER SCIENCE, APPLICATIONS AND

INFORMATION TECHNOLOGY

SUBJECT NAME: DATA STRUCTURES SUBJECT CODE: 18CAU301

LECTURE PLAN

UNIT 2

S. No Lecture

Duration

(Hr)

Topics to be Covered Support

Materials

1 1 Introduction to Linked Lists W1,

T1:186

2 1 Singly, Doubly and Circular Lists T1:188-190

3 1 Normal and Circular Representation T1:190

4 1 Representation of Stack in Lists W1

5 1 Self Organizing Lists T1:203-206

6 1 Skip Lists Queues W1

7 1 Array and Linked representation of Queue T1:174-176

8 1 De-queue, Priority Queues T1:180-183

9 1 Recapitulation of Important Questions

Total no. of Hours planned for Unit – 2: 9 Hours

Text Book:

T1 : Aaron M. Tenenbaum, Moshe J. Augenstein, YedidyahLangsam, (2009). Data Structures Using C and

C++, (2nd ed.), PHI

Reference Book:

R1: Adam Drozdek, (2012). Data Structures and algorithm in C++, (3rd ed.), Cengage Learning.

Website :

W1 : http://en.wikipedia.org/wiki/Data_structure

Data Structures BCA Lesson Plan(2018-2021 Batch)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 3

Karpagam Academy of Higher Education

(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

DEPARTMENT OF COMPUTER SCIENCE, APPLICATIONS AND

INFORMATION TECHNOLOGY

SUBJECT NAME: DATA STRUCTURES SUBJECT CODE: 18CAU301

LECTURE PLAN

UNIT 3

S. No Lecture

Duration

(Hr)

Topics to be Covered Support

Materials

1 1 Introduction to Trees W1,

T1:249

2 1 Introduction to Tree as a data structure T1:249

3 1 Binary Trees :Insertion, Deletion T1:249,250

4 1 Recursive on Binary Search Trees T1:250

5 1 Iterative Traversals on Binary Search Trees T1:251

6 1 Threaded Binary Trees W1

7 1 Insertion, Deletion, Traversals on Binary Tree T1:251-255

8 1 Height-Balanced Trees (Various operations on

AVL Trees).

T1:275

9 1 Recapitulation of Important Questions

Total no. of Hours planned for Unit – 3: 9 Hours

Text Book:

T1 : Aaron M. Tenenbaum, Moshe J. Augenstein, YedidyahLangsam, (2009). Data Structures Using C and

C++, (2nd ed.), PHI

Reference Book:

R1: Adam Drozdek, (2012). Data Structures and algorithm in C++, (3rd ed.), Cengage Learning.

Website :

W1 : http://en.wikipedia.org/wiki/Data_structure

Data Structures BCA Lesson Plan(2018-2021 Batch)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 4

Karpagam Academy of Higher Education

(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

DEPARTMENT OF COMPUTER SCIENCE, APPLICATIONS AND

INFORMATION TECHNOLOGY

SUBJECT NAME: DATA STRUCTURES SUBJECT CODE: 18CAU301

LECTURE PLAN

UNIT 4

S. No Lecture

Duration (Hr)

Topics to be Covered Support

Materials

1 1 Introduction to Searching W1,

R1:301-305

2 1 Introduction to Sorting W1,

R1:305-307

3 1 Linear Search Algorithm W1,

R1:308-312

4 1 Binary Search Algorithm W1,

R1:313-315

5 1 Comparison of Linear and Binary Search W1

6 1 Selection Sort, Insertion Sort W1,

R1:316-325

7 1 Shell Sort W1

8 1 Comparison of Sorting Techniques W1

9 1 Recapitulation of Important Questions

Total no. of Hours planned for Unit – 4: 9 Hours

Text Book:

T1 : Aaron M. Tenenbaum, Moshe J. Augenstein, YedidyahLangsam, (2009). Data Structures Using C and

C++, (2nd ed.), PHI

Reference Book:

R1: Adam Drozdek, (2012). Data Structures and algorithm in C++, (3rd ed.), Cengage Learning.

Website :

W1 : http://en.wikipedia.org/wiki/Data_structure

Data Structures BCA Lesson Plan(2018-2021 Batch)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 5

Karpagam Academy of Higher Education

(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

DEPARTMENT OF COMPUTER SCIENCE, APPLICATIONS AND

INFORMATION TECHNOLOGY

SUBJECT NAME: DATA STRUCTURES SUBJECT CODE: 18CAU301

LECTURE PLAN

UNIT 5

S. No Lecture

Duration (Hr)

Topics to be Covered Support

Materials

1 1 Introduction to Hashing W1,

T1:468

2 1 Deleting from Hash Table T1:473

3 1 Efficiency of Rehash Methods T1:474

4 1 Hash Table Reordering T1:476

5 1 Resolving collusion by Open Addressing W1,

T1:470-472

6 1 Coalesced Hashing, Separate Chaining,

Dynamic and Extendible Hashing

W1,

T1:485-487

7 1 Choosing a Hash Function W1,

T1:505-507

8 1 Perfect Hashing, Function W1,

T1:508-512

9 1 Recapitulation of Important Questions

10 1 Discussion on Previous End Semester

Question Paper

11 1 Discussion on Previous End Semester

Question Paper

12 1 Discussion on Previous End Semester

Question Paper

Total no. of Hours planned for Unit – 5: 12 Hours

Text Book:

T1 : Aaron M. Tenenbaum, Moshe J. Augenstein, YedidyahLangsam, (2009). Data Structures Using C and

C++, (2nd ed.), PHI

Reference Book:

R1: Adam Drozdek, (2012). Data Structures and algorithm in C++, (3rd ed.), Cengage Learning.

Website :

W1 : http://en.wikipedia.org/wiki/Data_structure

DATA STRUCTURES(18CAU301) UNIT-1 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 1

 Karpagam Academy of Higher Education

 (Deemed University Established Under Section 3 of UGC Act 1956)

 Coimbatore – 641 021

 DEPARTMENT OF COMPUTER SCIENCE, APPLICATIONS AND

 INFORMATION TECHNOLOGY

 SUBJECT NAME: DATA STRUCTURES

 SUBJECT CODE: 18CAU301

 UNIT – I

Introduction

Algorithm: An algorithm is a finite set of instructions which if followed accomplish a particular task.

Criteria to be satisfied by an algorithm

 Input: zero or more

 Output: one or more result

 Definiteness: every instruction must be clear and unambiguous

 Effectiveness: every instruction must be sufficiently basic

Data type: Refers to the kinds of data that variables may “hold” in the programming language.

Data objects: Refers to a set of elements. For example data object integers, D, refers to set { 0, ±1, ±2, …..}

Data structure: A data structure is a set of domains , a designated domain d , a set of functions and a set of

axioms

Developing programs

 The process of developing program is broken into five phases:

 Requirement: Identify the input(s) and output(s)

 Design: Assume that the basic operations to be performed on data objects already exist in form of

procedures.

 Top-down approach: Partitions the solutions into subtasks. Each subtask is similarly decomposed until the

tasks are expressed within a programming language

 Bottom-up approach: Different parts of the problem are directly solved in a programming language and

then these pieces are combined into a complete program.

 Analysis: If more than one algorithm exists for a single problem then compare them and choose the more

desirable one. If not able to distinguish between the two then choose one arbitrarily to work.

 Refinement and coding: Modern pedagogy suggests:

 All processing which is independent of the data representation be written out first

 Try to isolate operations that depend upon the choice of data representation

 Verification: Consists of three different aspects:

 Program proving: Before executing a program it is necessary to prove that it is correct. If a correct proof

can be obtained then one is assured that for all possible combination of

 inputs, the program and its specification agree.

 Testing is the art of creating sample data upon which to run the program. Tools are available to aid the

testing process. Such tools instruments the given source code and tells:

 The number of times a statement was executed

 The number of times a branch was taken

 The smallest and largest values of all variables

 If the program fails to respond correctly then debugging is needed to determine what went wrong and how

DATA STRUCTURES(18CAU301) UNIT-1 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 2

to correct it.

Analyzing program

 Efficiency of an algorithm can be measured in terms of:

 Execution time (time complexity)

 The amount of memory required (space complexity)

 The limitations of the technology available at time of analysis determine which one of the above two is

more important. Time complexity comparisons are more interesting than space complexity comparisons

among the algorithms.

 Two approaches for analyzing the efficiency of an algorithm are: a priori estimates and posteriori estimates

Priori estimation

 Determines the time complexity of:

 The amount of time a single execution of a statement will take Number

of times a statement is executed

 The product of the above two give the amount of time taken by the statement

Time complexity:

 A measure of the amount of time required to execute an algorithm.

 If the execution time of an algorithm is determined by choosing a real time machine and an existing

compiler then this exact time would not apply to many machines or to any machine because instruction set,

processing speed and compiler may differ from machine to machine.

 Therefore the factors that should not affect time complexity analysis are:

 The machine language instruction set chosen to implement the algorithm

 The quality of the compiler

 The speed of the computer on which the algorithm is to be executed

 Moreover it is difficult to get reliable timing figure because of Multiprogramming or time sharing

environment

Space complexity

 The better the time complexity of an algorithm is, the faster the algorithm will carry out his work in

practice. Apart from time complexity, its space complexity is also important: This is essentially the number

of memory cells which an algorithm needs. A good algorithm keeps this number as small as possible, too.

 There is often a time-space-tradeoff involved in a problem, that is, it cannot be solved with few computing

time and low memory consumption. One then has to make a compromise and to exchange computing time

for memory consumption or vice versa, depending on which algorithm one chooses and how one

parameterizes it.

 Time complexity analysis can be based on:

 Number of arithmetic operations performed

 Number of comparisons made

 Number of times through a critical loop

 Indirect addressing of memory.

 Assignment of numbers to variables

Sparse Matrix

 A useful application of linear list is the representation of matrices that contain a preponderance of zero

elements. These matrices are called sparse matrices. Consider the matrix

 The elements A(0,1), A(0,2) and A(0,3) contain the number of rows, number of columns and ber of

nonzero entries.

DATA STRUCTURES(18CAU301) UNIT-1 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 3

 Transpose of sparse matrix:

 Here the elements in i.j position gets into j,i position. ie. the rows and columns are interchanged.

 The elements on the diagonal remain unchanged.

 Find all the elements in column 1 and store them into row 1, and all elements in column in 2 and

store them in row 2 etc.

Stack and its operations

 A stack is an ordered list in which all insertions and deletions are made at one end, called the top.

Data Structures(16CAU301) Unit I BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 3

 The last element to be inserted into the stack will be the first to be removed.

 For this reason stacks are sometimes referred to as

Last in First out (LIFO) lists.

procedure PUSH(stack, top, item ,n)

begin

if top = n then call stack_overfolw() top top+1

stack[top] item

end PUSH

4

After

pushing 10 4

After

pushing 20 4

3 3 3

2 2 2

Top

1 Top 1 10 1

Top 0

After

pushing 30 4

3

Top 30

20 2 20

10 1 10

procedure POP(stack, top, item)

begin

if top = 0 then call stack_underfolw() item

stack[top]

top top-1

end POP

Before

poping 4

After

poping 30 4

After

poping 20 4

DATA STRUCTURES(18CAU301) UNIT-1 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 4

After

poping 10 4

Data Structures(16CAU301) Unit I BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 4

3 3 3 3

Top 30

2

20

2

20

2 2

Top

1 10 1 10 Top 1 10 1

Applications of Stack

 Procedure or function calls

 Storing the return address -When a subroutine or a function calls itself recursively, the location(address) of

the instruction at which it can later resume needs.

 Local data storage -A subroutine frequently needs memory space for storing the values of local variables,

the variables that are known only within the active subroutine.

 Parameter passing -Subroutines a function call often require that values for parameters be supplied to them

by the code which calls them .

Infix to postfix conversion and postfix expression evaluation

 The order of precedence is of arithmetic operators is

 Exponentiation

 Multiplication/division *, /

 Addition/subtraction +, -

Postfix:

 Parenthesis the infix expression based on hierarchy of operators

 While writing the postfix form ignore the open parenthesis

 Replace the close parenthesis with the corresponding operator

 ((a + ((b * c) / d)) - (e ^ f))

Prefix:

 Parenthesis the infix expression based on hierarchy of operators

 While writing the prefix form ignore the close parenthesis

 Replace the open parenthesis with the corresponding operator.

S.No QUESTION OPT 1

1

The logical or mathematical model of a particular data

organization is called as Data Structure

2

An algorithms is measured in terms of

computing time ad space consumed by

it.
performance

3
Which of the following is not structured data

type? Arrays

4
Which of the following is a valid non - linear

data structure. Stacks

5
Combining elements of two data

structure into one is called Merging Similar

6

Data structures are classified as data type.

User Defined

7 are the commonl used ordered list. Graphs

8

Data structure can be classified as data type

based on relationship with complex data

element.

Linear & Non Linear

9

A data structure whose elements forms a sequence of

ordered list is called as

data structure.
Non Linear

10

A data structure which represents hierarchical relationship

between the elements are called as

 data structure.
Linear

11

A data structure, which is not composed of other data

structure, is called as data

structure.
Linear

12

Data structures, which are constructed from one or more

primitive data structure, are called as

 data structure.
Non Primitive

UNIT I

Karpagam Academy of Higher Education

Department of Computer Applications

Subject : Data Structures

Class: II BCA Subject code: 18CAU301

Objective Type Questions

13

 is the term that refers to the kinds of data

that variables may hold in a programming

language.
data type

14
The model of a particular data

organization is called as Data Structure.

software

Engineering

15

The design approach where the main tast is decomposed

into subtasks and each subtask is further decomposed into

simpler solutions is

called
top down approach

16
 is a sequence of instructions to

accomplish a particular task Data Strucuture

17

 criteria of an algorithm ensures that the

algorithm terminate after a particular number of

steps.
effectiveness

18
An algorithm must produce

output(s) many

19
 criteria of an algorithm ensures that the

algorithm must be feasible. effectiveness

20

 criteria of an algorithm ensures that

each step of the algorithm must be clear and

unambiguous.
effectiveness

21

The time factor whrn determining the efficiency of the

algorithm is measured by

counting micro seconds

22
Which of the following data strucutre is linear

data structure Trees

23
The operation of processing each element in a

list is called sorting

24
Finding the location of the element with a given

value is Traversal

25
Which of the following data structure are

indexed structures? Linear array

26 Size of the int data type is 2 byte

27

Each array declaration need not give, implicitely or

explicitely the information about name of array

28
Which of the following data strucutre cannot

store the non-homogeneous data elements? Arrays

29
Which of the following data strucutre can only

store the homogeneous data elements? Union

30
Which of the following data strucutre is linear

type? Strings

31 An algorithm that directly calls itself is called Sub algorithm

32 What term is used to describe O(N) algorithm? constant

33
Which of these is the correct Big O expression

for 1 + 2 + 3 + …. + n ? O(log n)

34
Which of these is the correct Big O expression

for 35n + 6? O(log n)

35 Find out the complexity of x = 3*y + 2; z=z+1; O(log n)

36
Representation of data structure in memory is

known as: recursive

37

If the address of A[1][1] and A[2][1] are 1000 and 1010

respectively and each element

occupies 2 bytes then the array has been stored in

 order.

row major

38
When the maximum entries of (m*n) matrix are

zeros then it is called as . Transpose matrix

39
A matrix of the form (row, col, n) is otherwise

known as . Transpose matrix

40
A list of finite number of homogeneous data

elements are called as Stacks

41
No of elements in an array is called the

 of an array. Structure

42 The size or length of an array = . UB – LB + 1

43

Searching is the Process of finding the

of the element with the given value or a record with the

given key.
Place

44
Length of an array is defined as of

elements in it. Structure

45 is a set of pairs, index and value. stack

46

47 Sum of terms of the form ax
e
 is called . Array

48 is a collection of data and links. Links

49 Each item in a node is called a . Field

50
The elements in the list are stored in a one

dimensional array called a Value

51

Data movement and displacing the pointers of the Queue

are tedious proplems in

representation of a Queue.
Array

52

Solving different parts of a program directly and

combining these pieces into a complete program

is called
top down approach

53
The number of times a statement in a program is

executed is called its Piori estimate

54
 means the computing time of the

algorithm is constant O(log n)

55
 means the computing time of the

algorithm is linear O(log n)

56
Algorithms with time complexity O(n

2
) are called

linear

57
For large data set algorithms with complexity

greater than are impractical O(log n)

58
Which of the following case does not exist in

complexity theory? Best case

59
Two main measures for the efficiency of the

algorithm are

Processor and

memory

OPT 2 OPT 3 OPT 4 ANSWER

Software

Engineering Data Mining

Data Ware

Housing Data Structure

effectiveness finiteness definiteness performance

Union. Queue Linked list. Union.

Trees Queues Linked list. Trees

Dissimilar Even Un Even Similar

Abstract

Primitive &

Non

Primitive

predefined only Primitive & Non

Primitive

Trees
Stack and

Queues List
Stack and

Queues

Linear Non Linear

None of the

above

Linear & Non

Linear

Linear. Primitive

Non Primitive

Linear.

Primitive. Non Linear

Non Primitive

Non Linear

Non Primitive Non Linear Primitive Primitive

Primitive. Non Linear Linear Non Primitive

UNIT I

Karpagam Academy of Higher Education

Department of Computer Applications

Subject : Data Structures

Class: II BCA Subject code: 18CAU301

Objective Type Questions

data structure data Object data data type

logical or

mathematical Data Mining
Data Ware

Housing

logical or

mathematical

bottom up

approach

hierarchical

approach

merging

approach
top down approach

Algorithm Ordered List Queue Algorithm

finiteness definiteness particular finiteness

only one atleast one zero or more atleast one

finiteness definiteness infinite effectiveness

finiteness definiteness infinite definiteness

counting the

number of key

operatiuons

counting the

number of

statements

counting the

kilobyte of

the algorithm

counting the number

of key

operatiuons

Graphs Arrays Union Arrays

merging Inserting Traversal Traversal

Search Sort Merging Search

Linked list
Stack and

Queues queue Linear array

4 byte
compiler

dependent

varies all the

time

compiler

dependent

data type of array first data from

the set

to be stored

index set of

array

first data from the

set to be

stored

Records Pointers Union Arrays

Arrays Pointers Strucutres Arrays

Trees Graph B Tree Strings

Recursion
polish

notation

traversal

algorithm Recursion

linear logarithmic quadratic linear

O(n log n) O(n) O(n2) O(n2)

O(n log n) O(n) O(n2) O(n)

O(n log n) O(n) O(1) O(1)

abstract data

type

storage

structure file structure abstract data type

column major matrix major tuple major row major

Sparse Matrix
Inverse

Matrix

tridiagonal

matrix Sparse Matrix

Inverse Matrix
Sparse

Matrix

Diagonal

matrix Sparse Matrix

Records Arrays Linked list. Arrays

Height Width Length. Length.

LB + 1 UB - LB UB – 1 UB – LB + 1

Location Value Operand Location

Height Size Number Number

queue Arrays Set Arrays

Matrix Expression Polynomial Polynomial

Node List Item Node

Data item Pointer Data Field

List Data Link Data

Linked Circular lenear list Array

bottom up

approach

hierarchical

approach

merging

approach

bottom up approach

Posteriori

estimate

Frequency

count

Program

count Frequency count

O(n) O(n log n) O(1) O(1)

O(n) O(n log n) O(1) O(n)

exponential quadratic cubic quadratic

O(n) O(n log n) O(1) O(n log n)

Worst case Average case Null case Null case

Complexity

and capacity

Time and

space

Data and

space Time and space

DATA STRUCTURES(18CAU301) UNIT-2 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 1

 Karpagam Academy of Higher Education

 (Deemed University Established Under Section 3 of UGC Act 1956)

 Coimbatore – 641 021

 DEPARTMENT OF COMPUTER SCIENCE, APPLICATIONS AND

INFORMATION TECHNOLOGY

 SUBJECT NAME: DATA STRUCTURES

 SUBJECT CODE: 16CAU301

 UNIT 2

2.Linked List Introduction

2.1 1nsertion and Deletion in singlely linked ordered list

Single linked Ordered list consists of sequence nodes. Each node consists of a data item and a pointer to a

nextnode. A

pointer called start point to the first node in the ordered linked list. In a empty list start is Null

If (start = Null) then // empty list

while ((currnode <> Null) and (item > INFO(currnode)) do // insertion in middle or end of list prevnode

currnode

currnode LINK(currnode)

end

X

end

end

end SLINKLISTADD

Empty list GETNODE(X) INFO(X) item & LINK(X) Null

start=Null X

Anandi null

X

start X

Anandi

null

start

Insertion at the beginning of the list. Insert Anand in the list

start Anandi

null

GETNODE(X) INFO(X) item

Data structures(16cau301)unitII BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE

X X Anand

Establishing link for newly created node X

LINK(X) start

start Anandi null

X Anand

Making start to point the new node x which now the first node in the list

start X

Anandi null

DATA STRUCTURES(18CAU301) UNIT-2 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 2

X

start

Anand

Insertion at the middle or end of the list. Insert Gopi in the list

After traversing the list the location for inserting Gopi is before the node current in other words after the

previous node

prevnode

currnode

Data structures(16cau301)unitII BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE

start Anand Babu Hari

Node X is created and info Gopi is stored

X Gopi

Establishing link for the newly created node X

prevnode

currnode

star

t

Anand Babu Hari

null

LINK(X) currnode

X Gopi

Prevnode LINK made to point newly created node X

prevnode

currnode

start Anand Babu Hari

null

Data structures(16cau301)unitII BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE

Gopi

X

Procedure SLINKLISTDELETE(start, item) begin

If (item = INFO(start)) then // Deleting first node

X start

start LINK(start)

RET(X)

return

else

start Anand Babu Hari

null

X

start Babu Hari

null

Data structures(16cau301)unitII BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE

DATA STRUCTURES(18CAU301) UNIT-2 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 3

Deleting a node in the middle or at the end of the list

prevnode

start Anand Babu Gopi

ll

X

prevnode

start Anand Babu Gopi

ll

X

prevnode

start Anand Babu

Data structures(16cau301)unitII BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE

2.2 1nsertion and Deletion in Doubly linked ordered list

Double linked ordered list consists of sequence nodes. Each node consists of a data item and two pointers

RLINK to the

previous node and LLINK to the next node. A pointer called start point to the first node in the ordered linked

list. In a

empty list start is Null

procedure DLINKLISTADD(start, item) begin

GETNODE(X) INFO(X) item

If (start = Null) then // empty list RLINK(X) LLINK(X) Null

start X return

else if (item < INFO(start)) then // at front of the list

RLINK(X) start

LLINK(X) Null

LLINK(start) X start X

return

else

currnode start

while ((RLINK(currnode) <> Null) and (item > INFO(RLINK(currnode))) do // insertion in middle of list

currnode RLINK(currnode)

end

RLINK(X) RLINK(currnode) LLINK(X) currnode; LLINK(RLINK(X)) X; RLINK(currnode) X

end

return

end end

end DLINKLISTADD

Inserting in empty list

As X is the one and only node in the list it’s RLINK and LLINK

Data structures(16cau301)unitII BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE

Create new node i.e. X Store Anandi in the new node X are marked Null. i.e. predecessor and successor

nodes are absent

Inserting at the beginning of the list

DATA STRUCTURES(18CAU301) UNIT-2 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 4

start Babu

null Babu null

start

null

Arun

null

X

Arun

start

null

X null

Anand Anandi

null

Insertion in the middle or at the end of the list

CurrNode

Data structures(16cau301)unitII BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE

start

nul

Arun Babu Gopu Ram

nul

RLINK(X) RLINK(currnode)

X Guru

tart

nul

Arun Babu Gopu Ram

nul

LLINK(X) currnode

Guru

Data structures(16cau301)unitII BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE

X

nul

Arun Babu Gopu Ram

nul

start

LLINK(RLINK(X)) X

X

Guru

nul

Arun Babu Gopu Ram

start

RLINK(currnode) X

Guru

X

DATA STRUCTURES(18CAU301) UNIT-2 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 5

procedure DLINKLISTDELETE(start, item) begin

If (item = INFO(start)) then // Deleting first node

X start

start RLINK(start) LLINK(start) Null

RET(X)

return

Data structures(16cau301)unitII BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE

else

currnode RLINK(start)

while ((currnode <> Null) and (item <> INFO(currnode)) do // insertion in middle or end of list currnode

RLINK(currnode)

end

if currnode = Null then

print(“Item not found”) else

RLINK(LLINK(currnode)) RLINK(currnode) If RLLINK(currnode) <> Null LLINK(RLINK(currnode))

LLINK(currnode)

end

RET(currnode)

end

return

end

end DLINKLISTADD

t nul

Arun Babu Gopu Ram

x

nul

Data structures(16cau301)unitII BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE

start nul

Arun Babu Gopu Ram

x

nul

Deleting from the middle of the list

currnode

start nul

Arun Babu Gopu Ram

nul

Data structures(16cau301)unitII BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE

RLINK(LLINK(currnode)) RLINK(currnode)

start nul

Arun Babu Gopu Ram

nul

nul

DATA STRUCTURES(18CAU301) UNIT-2 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 6

Arun Babu Gopu Ram

LLINK(RLINK(currnode)) LLINK(

nul

Data structures(16cau301)unitII BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE

start nul Anand

RET(currnode)

nul

Babu Ramu

nul

2.3 1nsertion and Deletion in Linked stack

Linked stack consists of sequence nodes. Each node consists of a data item and a pointer to a next node. A

pointer called

top point to the top node in the stack. In an empty stack top Null. The following illustrates PUSH and POP

functions of

stack.

procedure PUSH(top, item) begin

GETNODE(X) INFO(X) item LINK(X) top

top X

end PUSH

empty stack: if top = Null

inserting Anand in stack

Statement illustration

GETNODE(X) top Null X

Data structures(16cau301)unitII BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE

INFO(X) item top Null X

Anand

LINK(X) top top Null X

Anand Null

Top X

Anand Null

top

procedure POP(top, item)

begin

X top

item INFO(top) top LINK(top) RET(X)

end POP

Statement illustration

X top top

Anand Babu Null

item INFO(top)

top

Anand Babu Null

item Anand

DATA STRUCTURES(18CAU301) UNIT-2 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 7

top LINK(top)

Anand Babu Null

Anand

top

RET(X) top

Babu Null

Data structures(16cau301)unitII BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE

2.4 1nsertion and Deletion in Linked Queue

Linked queue consists of sequence nodes. Each node consists of a data item and a pointer to a next node. A

pointer called

rear and front point to the first and last node in the queue respectively. In a empty queue rear Null and front

Null. The

following illustrates PUSH and POP functions of stack.

procedure ADDQ(rear, front, item)

begin

GETNODE(X) INFO(X) item

If (front = NULL) then

front X; LINK(X) Null

else

LINK(X) LINK(rear)

end

rear X

end ADDQ

Statement illustration

GETNODE(X) front rear Null X

INFO(X) item front rear Null X

Anand

If front = NULL

Anand Null

front X rear NullX

LINK(X) Null front

rear X x

Anand Null

rear

front

procedure DELETEQ(rear, front, item)

begin

If (front = NULL) then

call QUEUE_EMPTY()

else

X rear

item INFO(rear)

Data structures(16cau301)unitII BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE

DATA STRUCTURES(18CAU301) UNIT-2 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 8

If (front = rear) then

front rear NULL

end

front LINK(front)

end RE(X)

end DELETEQ

Statement illustration

X

Anand Babu Null

X front front rear

item INFO(front)

front

Anand Babu Null

rear

item Anand

front LINK(front)

Anand Babu Null

rear

front item Anand

RET(X) front

Babu Null

rear

2.5 Polynomial Addition

In general, we want to represent the polynomial

A(x) = amxem + ... + a1xe1

where the ai are non-zero coefficients with exponents ei such that em > em-1 > ... > e2 > e1 >= 0. Each term

will be

represented by a node. A node will be of fixed size having 3 fields which represent the coefficient and

exponent of a term

plus a pointer to the next term

For instance, the polynomial A= 13x3 + 12x2 + 1 would be stored as

A 13 3 12 2 1 0

Null

while B = 8x4 - 3x3 + 10x2 would look like

B 8 4 -13 3 12 2 Null

Data structures(16cau301)unitII BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE

In order to add two polynomials together we examine their terms starting at the nodes pointed to by A and B.

Two

pointers p and q are used to move along the terms of A and B. If the exponents of two terms are equal, then

the

coefficients are added and a new term created for the result. If the exponent of the current term in A is less

than the

exponent of the current term of B, then a duplicate of the term of B is created and attached to C. The pointer

q is

DATA STRUCTURES(18CAU301) UNIT-2 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 9

advanced to the next term. Similar action is taken on A if EXP (p) > EXP(q).

Each time a new node is generated its COEF and EXP fields are set and it is appended to the end of the list

C. In order to

avoid having to search for the last node in C each time a new node is added, we keep a pointer d which

points to the

current last node in C. The complete addition algorithm is specified by the procedure PADD. PADD makes

use of a

subroutine ATTACH which creates a new node and appends it to the end of C. To make things work out

neatly, C is initially

given a single node with no values which is deleted at the end of the algorithm. Though this is somewhat

inelegant, it

avoids more computation.

procedure ATTACH(C,E,d)

//create a new term with COEF = C and EXP = E and attach it to the node pointed at by d//

call GETNODE(I) EXP(I) E COEF(I) C LINK(d) I end ATTACH

procedure PADD(A,B,C)

//polynomials A and B represented as singly linked lists are summed to form the new list named C// p A; q B

call GETNODE(C); d C

while ((p<> 0) and (q<> 0)) do case

: EXP(p) = EXP(q): x COEF(p) + COEF(q)

if (x<> 0) then call ATTACH(x, EXP(p),d)

p LINK(p); q LINK(q)

: EXP(p) < EXP(q): call ATTACH(COEF(q),EXP(q),d)

q LINK(q)

: else: call ATTACH(COEF(p),EXP(p),d)

p LINK(p)

end

end

while (p<> 0) do

call ATTACH(COEF(p),EXP(p),d)

p LINK(p) end

wile (q <>0) do

call ATTACH(COEF(q),EXP(q),d) q LINK(q)

end

LINK(d) 0; t C; C LINK(C)

call RET(t) end PAD

2.6 Sparse Matrix

A basic node structure called MATRIX_ELEMENT as depicted in the below figure is required to represent

sparse matrices.

The V, R and C fields of one of those nodes contain the value, row, and column indices, respectively, of one

matrix

element. The fields LEFT and UP are pointers to the next element in a circular list containing matrix

elements for a row or

Data structures(16cau301)unitII BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE

DATA STRUCTURES(18CAU301) UNIT-2 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 10

column. LEFT points to the node with the next smallest column subscript, and UP points to the node with

the next smallest

row subscript.

LEFT UP

V R C

A circular list represent each row and column. A column's list can share nodes with one or more of the row's

list. Each row

and column list has a head node such that more efficient insertion and deletion algorithms can be

implemented. The head

node of each row list contains 0 in the C field. The head node of each column list has 0 in the R field. The

row head nodes

are pointed to by respective elements in the array of pointers AROW. Elements of ACOL point to the

column head nodes.

A row or column without nonzero elements is represented by a head node whose LEFT and UP field points

to itself.

In scanning a circular list we encounter matrix elements in order of decreasing row or column subscripts.

This is used to

simplify the insertion of new nodes to the structure. We assume that new nodes being added to a matrix are

usually

ordered by ascending-row subscript and ascending-column subscript. A new node is inserted following the

head node all

the time and no searching of the list is necessary.

Algorithm for constructing a multilinked structure representing a matrix is given below. It is assumed that

input records for

the algorithm consist of row, column, and nonzero matrix-element values in arbitrary order. Algorithm

CONSTRUCT_MATIX. It is required to form a multilinked representation of a matrix using the MATRIX-

ELEMENT node

structure. The matrix dimensions M and N, representing the number of rows and columns are known before

execution of

algorithm. Arrays AROW and ACOL contain pointers to the head nodes of the circular lists. X and Y are

used as auxiliary

pointers. A row index, column index, and value of a matrix element are read into variables ROW,

COLUMN, and VALUE.

1. Initialize matrix structures

for l 1,2,.....M

ACROW[l] MATRIX_ELEMENT C(AROW[l]) 0

LEFT(AROW[l] AROW[l] end

for l 1,2......N

ACOL[l] MATRIX_ELEMENT R(ACOL[l] 0

UP(ACOL[l]VACOL[l] end

loop

read(ROW, COLUMN, VALUE)

P MATRIX_ELEMENT

R(P) ROW

C(P) COLUMN V(P) VALUE

DATA STRUCTURES(18CAU301) UNIT-2 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 11

Q AROW[R(P)] while C(P)<C(LEFT(Q))

Q LEFT(Q)

LEFT(P) LEFT(Q) LEFT(Q) P

End

Q ACOL[C(P)]

while R(P)<R(UP(Q))

Q UP(Q) UP(P) UP(Q)

UP(Q) P

end forever

representation of 3X3 Sparse matrix 0 22 0 by linked list

Data structures(16cau301)unitII BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE

0 0 0

33 0

1 2 3

ACOL

AROW LEFT LEFT LEFT

1

0 0

0 0 0 0

UP

22 1 2

0 0

1
The data field of the node usually

donot conatain any information.

first

2

A is a linked list in which last node of the

list points to the first node in the list.

Linked list

3
A in which each node has two pointers,

a forward link and a Backward link.

Doubly linked

circular list

4
In sparse matrices each nonzero term was

represented by a node with fields.

Five

5
We want to represent n stacks with 1 ≤ i ≤ n then

T(i)
Top of the i

th
 stack

6

We want to represent m queues with 1 ≤ i ≤ m then

F(i)
Front of the (i + 1)

th

Queue

7

We want to represent m queues with 1 ≤ i ≤ m then

R(i)
Rear of the (i + 1)

th

Queue

8

 list allows traversing in only one direction. Singly linked list

9

 allows traversing in both direction. Singly linked list

10

The best application of Doubly Linked list in computers

is

Job scheduling in Time

sharing

environment

11
The computing time for manipulating the list is

 for sequential Representation

Less then

12
In singly linked list ,each node has

 field.

One

13
In linked list ,each node has fields

namely

Link, Value

14
In Doubly linked list ,each node has at least

 field.

One

UNIT II

Karpagam Academy of Higher Education

Department of Computer Applications

Subject : Data Structures

Class: II BCA Subject code: 18CAU301

Objective Type Questions

15
In Doubly linked list ,each node has fields

namely

Link, Data1, Data2

16

The doubly linked list is said to be empty if it conatins

no nodes at all.

17

In Linked representation of Sparse Matrix,

DOWN field used to link to the next nonzero element in

the same

Row

18

In Linked representation of Sparse Matrix, RIGHT field

used to link to the next nonzero

element in the same

Row

19

The time complexity of the MREAD algorithm that reads

a sparse matrix of n rows, n columns

and r nonzero terms is

O(max {n, m, r})

20
A is a set of characters is called a

string.

Array

21
Adding a new element into a data structure called Merging

22

The Process of finding the location of the element with

the given value or a record with the

given key is .

Merging

23
Arranging the elements of a data structure in

some type of order is called .

Merging

24
What is the index number of the last element of

an array with 29 elements? 29

25
The memory address of the first element of an

array is called

Floor address

26 Two dimensional array are also called as Table arrays

27

Arrays are best data structure for relatively permanent

collection of data

28 In a singly linkedlist how many fields are there? 1

29
Name the fields in circular linked list Data and link

30
To implement Sparse matrix dynamically, the

following data structure is used

Stacks

31 How many fields are there in doubly linked list? 1

32
In the last node of the circular linked list the link

field contains null

33
Name the fields in doubly linked list Data and link

34
How many fields are there in circular doubly

linked list? 1

35
In the last node of the circular doubly linked list

the link field contains null

36
What member function places a new node at the

end of the linked list?

addNode()

d

head tail last head

Singly linked

circular list

Circular list Insertion node Singly linked

circular list

Circular list Singly linked

circular list

Linked list Doubly linked

circular list

Six Three Four Three

Top of the (i +

1)
th

 stack

Top of the (i

– 1)
th

 stack

Top of the (i -

2)
th

 stack

Top of the i
th

 stack

Front of the i
th

Queue

Front of the (i

– 1)
th

Queue

Front of the (i

-2)
th

 Queue

Front of the i
th

Queue

Rear of the i
th

Queue

Rear of the (i –

1)
th

Queue

Rear of the (i -

2)
th

 Queue

Rear of the i
th

 Queue

Doubly linked list Circular

Doubly Linked

List

Ordered List Singly linked list

Doubly linked list Circular Singly

Linked List

Circular Queue Doubly linked list

Processing

Procedure calls

Dynamic

Storage

Management

Evaluating

postfix

expressions

Dynamic Storage

Management

Greater than Less then

equal

Greater than

equal

Less then

Two Three Five Two

Link, Link Data, Link Data, Data Data, Link

Two Three Five Three

UNIT II

Karpagam Academy of Higher Education

Department of Computer Applications

Subject : Data Structures

Class: II BCA Subject code: 18CAU301

Objective Type Questions

Data and Link Only Llink

and Rlink

Llink, Data,

Rlink

Llink, Data,

Rlink

nodes with data

fields empty.

only a head

node.

a node with its

link fields

points to null

only a head node.

List Column Diagonal Column

Matrix Column Diagonal Row

O(m * n * r) O(m + n + r) O(max {n, m}) O(m + n + r)

String Heap List String

Insertion Searching Sorting Insertion

Insertion Searching Sorting Searching

Insertion Searching Sorting Sorting

28 0 25 28

Foundation

address First address Base address Base address

Matrix arrays both a and b Special array both a and b

for data are

constantly

changing

both a and b

none of the

above

for relatively

permanent

collection of data

2 3 4 2

2Data and link Data and

2link

2Data and

2link

2Data and link

linked list Trees Graphs linked list

2 3 4 3

pointer data

item

pointer to

next node

pointer to

first node pointer to first no

2Data and 2link Data and

2link

2Data and

2link

Data and 2link

2 3 4 3

pointer data

item

pointer to

next node

pointer to

first node
pointer to first node

appendNode() lastNode() newNode() appendNode()

d

37

The largest element of an array index is called its

lower bound

38 If the elements “A”, “B”, “C” and “D” are placed ABCD

39 Consider the usual implementation of parentheses 1

Class: II BCA Subject code: 18CAU301

Assume that the operators +,-, X are left

⋀

associative and is right associative. The order

of precedence (from highest to

⋀

low

⋀

est) is , X, +,

⋀ ⋀

abc X+ def -

41
The memory address of the first element of an

array is called floor address

42
What is the minimum number of stacks of size n

required to implement a queue of size n? 1

43
The situation when in a linked list

START=NULL is underflow

44

A linear collection of data elements where the linear node

is given by means of pointer is called

linked list

45

Which of the following operations is performed more

efficiently by doubly linked list than

by singly linked list?
Deleting a node whose

location in

given

46
How many nodes in a tree have no ancestors.

0

e

range upper bound subscript upper bound

DCBA DCAB ABDC DCBA

2 3 4 3

⋀ ⋀

abc X+ de f -

⋀

ab+c Xd – e

⋀

⋀

⋀ ⋀

abc X+ def -

base address first address
foundation

address
base address

3 2 4 2

overflow housefull saturated underflow

node list primitive list queue linked list

Searching of an

unsorted list for

a given item

Inverting a

node after the

node with given

location

Traversing a list

to process

each node

Deleting a node

whose location in

given

1 2 n 1

e

DATA STRUCTURES(18CAU301) UNIT-3 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 1

 Karpagam Academy of Higher Education

 (Deemed University Established Under Section 3 of UGC Act 1956)

 Coimbatore – 641 021

 DEPARTMENT OF COMPUTER SCIENCE, APPLICATIONS AND

INFORMATION TECHNOLOGY

 SUBJECT NAME: DATA STRUCTURES

 SUBJECT CODE: 18CAU301

 Inorder traversal of above tree is : 3 + 7 * 8 - 6 The following table traces how the INORDER works for the binary

tree above

Call of IN ORDER

Value of root

Action Main *

1 +

2 3

3 Null Print

3

3 Null Print

+

4 7

5 Null Print

7

5 Null Print

*

6 -

7 8

8 Null Print

8

8 Null Print -

9 6

10 Null Print

6

10 Null

Preorder Traversal: 1. Visit the node (root or subroot) 2. Traverse the left subtree 3. Traverse the right subtree

Data Structure(16CAU301) Unit III BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 6 / 19 Preorder traversal of above tree is : * + 3 - 8 6 The following table

traces how the PREORDER works for tree above

Call of

INORDER

Value

of

root

Action Main * Print

* 1 + Print

+ 2 3 Print

3 3 Null 3 Null 4 7 Print

7 5 Null 5 Null 6 - Print - 7 8 Print

8 8 Null 8 Null 9 6 Print

6 10 Null

DATA STRUCTURES(18CAU301) UNIT-3 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 2

Postorder Traversal: 1. Traverse the left subtree 2. Traverse the right subtree3. Visit the node (root or subroot)

Postorder traversal of above tree is : 3 7 + 6 8 - * The following table traces how the PREORDER works for the

tree above Data Structure(16CAU301) Unit III BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 7 / 19

Call of

INOR

DER

Value

of

root

Action Main * Print

* 1 + Print

+ 2 3 Print

3 3 Null 3 Null 4 7 Print

7 5 Null 5 Null 6 - Print - 7 8 Print

8 8 Null 8 Null 9 6 Print

6 10 Null 10 Null Threaded Binary Tree

The traversal algorithms described use stack which consumes large storage space

The majority of pointers (LLINK and RLINK) in any binary tree are Null. Threaded representation avert the

need for a stack, making use of pointer fields which would otherwise have the value Null. The most common

convention for threaded representation is: if the left subtree is empty, LLINK points to the in-order predecessor if

the right subtree is empty, RLINK points to the in-order successor. But any program examining the tree must be

able to distinguish between a branch and a thread. So we introduce two additional fields into each node

LBIT and RBIT obviously need be only one-bit fields. Because of word-length considerations, these fields will often

not make any difference to the amount of storage used per node; the convention adopted, for instance, might be to

use negated pointer values to indicate threads. The convention used in these notes is: if LBIT = 0, LLINK points to

the left child; if LBIT = 1, LLINK points to the in-order predecessor; if RBIT = 0, RLINK points to the right child;

if RBIT = 1, RLINK points to the in-order successor.

LBIT LCHI

LD

DAT

A

RCH

ILD

RBIT In the representation of a threaded binary tree, it is convenient to use a special node HEAD — the “list”

head — which is always present, even for an empty tree is: Data Structure(16CAU301) Unit III BCA(2016-2019 Batch)
R.NITHYA Department of CA,CS,IT KAHE 8 / 19

0 - 1 For any node X in a binary tree, if RBIT(X) = 0 then the inorder successor of X is RCHILD(X) is by definition

of threads. If RBIT(X) = 1 then the inorder successor of X is obtained by following a path of left child links from the

right child of X until a node with LBIT(X) = 0. The algorithm INSUC finds the inorder successor of any node X in a

threaded binary tree.

Procedure INSUC(X) S RCHILD(X)

If RBIT[X] = 1 then

While LBIT[X] = 1 do S LCHILD(X) return(S) end INSUC The procedure INSUC finds the inorder successor

of an arbitrary node in the threaded binary tree without using an additional stack. Since the tree is the left subtree of

the head node and because of the choice of RBIT(X) = 0 for the head node, the inorder sequence of the nodes for

the tree T is obtained by the procedure TINORDER

Procedure TINORDER(T) HEAD T

loop T INSUC(T)

DATA STRUCTURES(18CAU301) UNIT-3 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 3

If T = HEAD then return Print (DATA(T))

forever end INSUC Heap sort A heap is defined to be a complete binary tree with the property that the value of

each node is at least as large as the value of its children nodes (if they exist) (i.e., K j/2 Kj for 1 j/2 < j n). This implies

that the root of the heap has the largest key in the tree. Heap sort may be regarded as a two stage method. First the

tree representing the file is converted into a heap. In the second stage the output sequence is generated in

decreasing order by successively outputting the root and restructuring the remaining tree into a heap. Essential to

any algorithm for Heap Sort is a subalgorithm that takes a binary tree T whose left and right subtrees satisfy the

heap property but whose root may not and adjusts T so that the entire binary tree satisfies the heap property.

Algorithm ADJUST does this.

procedure ADJUST (i,n) //Adjust the binary tree with root i to satisfy the heap property. The left and right subtrees

of i, i.e., with roots 2i and 2i+ 1, already satisfy the heap property. The nodes of the trees contain records, R, with

keys K. No node has index greater than n//

R Ri; K Ki; j 2i

while j n do

if j < n and Kj < Kj+1 then j j + 1 //find max of left and right child// //compare max. child with K. If K is max. then

done//

if K Kj then exit

R j/2 Rj; j 2j //move Rj up the tree//

end

R j/2 R

end ADJUST Data Structure(16CAU301) Unit III BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 9 / 19

Analysis of Algorithm Adjust If the depth of the tree with root i is k, then the while loop is executed at most k

times. Hence the computing time of the algorithm is O(k). The heap sort algorithm may now be stated.

procedure HSORT (R,n) //The file R = (R1, ...,Rn) is sorted into nondecreasing order of the key K//

for i n/2 to 1 by -1 do //convert R into a heap//

call ADJUST (i,n)

end

for i n - 1 to 1 by -1 do //sort R//

T Ri+1; Ri+1 R1; R1 T //interchange R1 and Ri+1//

call ADJUST (1,i) //recreate heap//

80 21 73 55 42 85 33 79 90 84 93 97 Constructing Heap

Data added to the Heap is Heap tree

80

21

Data added to the Heap is Heap tree

73

Data added to the Heap is Heap tree

83 Data Structure(16CAU301) Unit III BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 10 / 19

Data added to the Heap is Heap tree

79

90 Second Phase 90 85 80 79 42 73 21 55 Array representation of above tree Swap A[1] and A[8] and

reconstruct the heap with the data from A[1] to A[7] 55 85 80 79 42 73 21 90 Heap reconstruction Data

Structure(16CAU301) Unit III BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 11 / 19 85 79 80 55 42 73 21 Array representation of above tree Swap

A[1] and A[7] and reconstruct the heap with the data from A[1] to A[6] 21 79 80 55 42 73 85 90

Heap reconstruction 80 79 73 55 42 21 Array representation of above tree After swaping A[1] and

DATA STRUCTURES(18CAU301) UNIT-3 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 4

A[6] and reconstruct the heap with the data from A[1] to A[5] 21 79 73 55 42 80 85 90 Heap

reconstruction 79 55 73 21 42 Array representation of above tree After swaping A[1] and A[5] and

reconstruct the heap with the data from A[1] to A[4] Heap reconstruction Data

Structure(16CAU301) Unit III BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 12 / 19 73 55 42 21 Array representation of above tree After swaping

A[1] and A[4] and reconstruct the heap with the data from A[1] to A[3] 21 55 42 73 79 80 85 90 55

21 42 Array representation of above tree After swaping A[1] and A[3] and reconstruct the heap

with the data from A[1] to A[2] 42 21 55 73 79 80 85 90 42 21 Array representation of above tree

After swaping A[1] and A[2] 21 21 55 73 79 80 85 90 B-Tree A B-tree is a balanced tree scheme in

which balance is achieved by permitting the nodes to have multiple keys and more than two

children. In Balanced Tree height of paths from root to leaf are same. Given a search-key K, nearly

same access time for different K values. B Tree A B-tree of order m (m ≥3) is a balanced tree that satisfies

the following properties: – each node contains at most m - 1 elements – each node contains at least -1 elements, –

The root may contain a single element Each non leaf node containing j elements has j +1 children Each node has a

structure of the form: Data Structure(16CAU301) Unit III BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 13 / 19 P0 KI P0 K2 P3 K3 P4 P0(K1, R1)P1(P2, R2)P2 . . . Pj-1(Kj, rj)Pj where j is the number

of the elements in the node In each node K1, ... , Kj are ordered key values, that is, K1 < K2 < ... < Kj There are j + 1

references to children nodes p0,..., pj and j references to the data file r1, ... , rj

Insertion in B tree The updates always start from the leaf nodes and the tree grows or shrinks from the bottom

of the tree The insertion requires first of all a search operation to verify whether the key value is already

present in the tree The insertion is always performed on a leaf node – two cases can arise: – If the leaf node is

not full, the key value is inserted and the updated leaf node is re-written Before inserting 43. After a search it is

found that 43 should be inserted in node 4th node in level 2

P After inserting 43

P – If the leaf node is full, a splitting process starts that can propagate to next level and, in the worst case, can

reach the root inserting 33 After a search it is found that 33 should be inserted in node 3rd node in level 2. Let it be P.

i.e. P address of the 3rd node. The node P is already full. Hence

Order as sequence the m entries that would be created with the new key value and

retain 1 to -1 in the current node.

Create a new node P′and move +1 to m to the new node.

Store key and P′ in Q the parent of P.

if space is not available in Q initiate a propagation of a key from Q to its parent. Ordering of keys in node P with the

new key 33: 30 31 32 33 34 Data Structure(16CAU301) Unit III BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 14 / 19 m=5 i.e. m is the number of elements is The node P is already full.

Create new node P′. Move elements from +1 to m in P to P′.

P When element in location and P′ enters node Q the elements in Q is ordered with the new element 33 and P′. After

insertion of 32 and in Q the resultant B tree is shown below. P P′

P P′ When 45 is inserted a new root node is created as illustrated below. After a search it is found that 45

should be inserted in node 4th node in level 2. Let it be P.

P Ordering of keys in node P with the new key 33: 41 42 43 44 45

Data Structure(16CAU301) Unit III BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 15 / 19 m=5 i.e. m is the number of elements. is The node P is already

full. Create new node P′. Move elements from +1 to m in P to P′. When 43 and P′ to Q the parent P, keys in

node Q with the new key 43: 15 25 33 40 43 m=5 i.e. m is the number of elements. is The node P is already full.

Create new node P′. Move elements from +1 to m in P to P′.

P P′ Create new root node and add P and P′ as its children

Deletion in B tree Deletion of an element from a leaf node – there are two cases: – If the leaf node is not in

DATA STRUCTURES(18CAU301) UNIT-3 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 5

underflow (that is, it has at least elements after the deletion), the key is deleted and the updated leaf node is

rewritten – If the leaf node is in underflow, a concatenation process or redistribution process is started Deleting

46. After a search it is found that 46 is in node 4th node in level 3. Let it be P. Data Structure(16CAU301) Unit III

BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 16 / 19 After deletion the leaf node P contains the minimum number of

elements 2.

Concatenation The concatenation of two adjacent nodes P and P’ is possible if the two nodes contain on the

overall less than m - 1 keys

A node with less -1 than elements, that is, in underflow, is combined with

o an adjacent node with at most -1 keys Deleting 22 Initial situation: – node P in underflow with elements:

p0k1p1k2p2 . . . kepe (e= -2) – node P’ adjacent to the right of P with elements : p0ke+1pe+1 . . . – node Q, father of P and

P’, with elements . . . kt-1pt-1ktptkt+1pt+1 . . .where pt-1 is a pointer to P and pt is a pointer to P’

Q

P P′ The concatenation of two adjacent nodes results in the following situation: – node P with elements:

p0k1p1k2p2 . . . kepektp’0ke+1pe+1 . . . – node Q with elements: . . . kt-1pt-1kt+1pt+1 . . .where pt-1 is a pointer to P

Q

Pt-1 Pt

P P′

Data Structure(16CAU301) Unit III BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 17 / 19 Now Q becomes P and its right adjacent is P′. Parent of P is Q.

Q

P P′

Redistribution

If two adjacent nodes cannot be concatenated, then the elements of the two nodes can be Redistributed

The redistribution operation involves also the father node because one of its elements must be modified; however

the number of its elements is not modified and therefore there is no propagation to the next level Initial situation: –

node P in underflow with elements: p0k1p1k2p2 . . . kjpj (j = -2) – node P’ adjacent to P on the right with elements:

p0’k1p1’k2p2’ . . . kepe’ – node Q, father of P and P’, with elements : . . . kt-1pt-1ktptkt+1pt+1 . . . where pt-1 is a pointer to

P’ and pt a pointer to P To redistribute the elements in the two nodes: – Consider the list of key values k1 k2 . . . kj kt

k’1 k’2 . . . k’e – The first key values are left in P’ – In the father node the key kt is replaced by the key value of position

+1 Data Structure(16CAU301) Unit III BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 18 / 19 – The remaining key values are inserted in P Consider the list of

key values 21 25 30 31 32 since j=1 (i.e. I element) and e=3 (i.e. 3 element)

Q

P P’ Trie indexing An index structure that is particularly useful when key values are of varying size is the trie.

A trie is a tree of degree m 2 in which the branching at any level is determined not by the entire key value but by

only a portion of it. The trie contains two types of nodes.

The first type we shall call a branch node (represented by rectangle) and

the second an information node (represented by oval) In the trie of figure below each branch node contains 27 link

fields. All characters in the key values are assumed to be one of the 26 letters of the alphabet. A blank is used to

terminate a key value. Thus, LINK(T,i) points to a subtrie containing all key values beginning with the i-th letter (T is

the root of the trie. When a subtrie contains only one key value, it is replaced by a node of type information. This

node contains the key value, together with other relevant information such as the address of the record with this key

value, etc. Key is stored here Address of record is stored here Searching a trie for a key value X requires breaking up

X into its constituent characters and following the branching patterns determined by these characters. The

algorithm TRIE assumes that P = 0 is not a branch node and that KEY(P) is the key value represented in P if P is

an information node. Insertion Let us consider the trie of figure 1. Now insert SURESH. A search for ' SURESH' in T

DATA STRUCTURES(18CAU301) UNIT-3 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 6

leads to the node , where

LINK(, 'S') = 0. Hence SUNDAR is not in T and may be inserted here (see figure 2). Next, X = bluejay and a search

of T leads us to the information node . A comparison indicates

Figure 1: Empty Trie tree a b c d e f g h i j k l m n o p q r s t u v w x y z Data Structure(16CAU301) Unit III

BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 19 / 19

Figure 2: Trie tree after inserting SURESH Now insert SURIYA A search for ' SURIYA' in T leads to the node ,

where LINK(, 'S') ≠ 0. A comparison indicates that KEY

(SURESH) ≠ SURIIYA. Both KEY(SURESH) and SURIIYA will form a subtrie of . The two values

KEY(SURESH) ≠ SURIIYA are sampled until the sampling results in two different values. The happens when the

5th letter of KEY() and X are compared. The resulting trie after insertion is in figure 3. Deletion From the trie of figure

4 let us first delete 'SURIYA.' To do this we just set LINK(,'O') = 0. No other changes need be made. Next, let us

delete 'SURESH' If after deletion only one key value is then that node may be deleted and the key may be propagated

up one level. The propagation may end when at a node where more than on key value is present. At this junction we

cannot be moved up any more levels and we set the corresponding LINK filed to point the key (information node for

the key). In order to facilitate deletions from tries, it is useful to add a COUNT field in each branch node. This count

field will at all times give us the number of information nodes in the subtree for which it is the root. A B C D E F G H I J

K L M N O P Q R S T U V W X Y Z A………………U………….…….Z A………R……..………….…….Z A… E…… ……I..………….………. After

deleting key value SURIYA the node has only one key ‘SURAJ’. Hence the branch node is deleted and the key SURAJ is

propagated up one levd one more level. As the node up also contain only one key value the key SURAJ is propagated

one more level. At this junction the propagation stops because the already has one key value ‘ZAHIR; and inserting

SURAJ make the number of keys in that node as 2.

S.No QUESTION OPT 1

1

To add an item into the queue,

FRONT is

incremented by one

2
In Queue FRONTis incremented then, the

operation performed on it is . DelQ

3
Which of the following is a valid linear data

structure. Stacks

4

A is a linear list in which elements

can be inserted and deleted at both ends but not at the

Middle
Queue

5
A is a collection of elements such

that each element has been assigned a priority. Priority Queue

6
A is made up of Operators and

Operands. Stack

7
A is a procedure or function

which calls itself. Stack

8

An example for application of stack is

 .

Time sharing computer

system

9
An example for application of queue is

 .

Stack of coins

10

 is efficient solution to avoid data

movement in array representation of Queue. Circular Queue

11 What is the strategy of Stack? LILO

12 In queue we can add elements at . Top

13 In queue we can delete elements at . Front

14 In Stack we can add elements at . Bottom

15 In Stack we can delete elements at Front

UNIT III

Karpagam Academy of Higher Education

Department of Computer Applications

Subject : Data Structures

Class: II BCA Subject code: 18CAU301

Objective Type Questions

16
When Top = Bottom in stack, the total no of

element in the stack is 1

17
When FRONT = REAR in queue, the total no of

element in the queue is 0

18
In Stack the TOP is decremeted by one after

every operation. AddQ

19
In Stack the TOP is incremeted by one before

every operation. AddQ

20 data structure used for recursion is stack

21
The data structure required to check whether an

expression contains balanced parenthesis is? stack

22
removing the element from the top of the stack is

called the push

23

What data structure would you mostly likely see

in a non recursive implementation of a recursive

algorithm?
stack

24
which data structure is used to implement the

queue most efficiently array

OPT 2 OPT 3 OPT 4 ANSWER

FRONT is

decremented by

one

REAR is

decremented

by one

REAR is

incremeted by

one

REAR is incremeted

by

one

Pop Push AddQ DelQ

Records Trees Graphs Stacks

DeQueue Enqueue

Priority Queue

DeQueue

De Queue
Circular

Queue En Queue Priority Queue

Expression Linked list Queue Expression

Recursion Queue Tree Recursion

Waiting Audience Processing of

subroutines

space sharing

system

Processing of

subroutines

Stack of bills

Processing of

subroutines

Job Scheduling

in TimeSharing

computers

Job Scheduling in

TimeSharing

computers

Dequeue Enqueue queue Circular Queue

FIFO FILO LIFO LIFO

Bottom Front Rear Rear

Bottom Top Rear Front

Top Front Rear Top

Rear Top Bottom Top

UNIT III

Karpagam Academy of Higher Education

Department of Computer Applications

Subject : Data Structures

Class: II BCA Subject code: 18CAU301

Objective Type Questions

2 3 0 0

1 2 3 0

Pop Push DelQ Pop

Pop Push DelQ Push

queue array linked list stack

queue array linked list stack

pop delete remove pop

queue array linked list stack

linked list structure union linked list

25

26

27

Class: II BCA Subject code: 18CAU301

29

30

31

32 The prefix form of A-B/ (C * D E) is?

33

34

35

36

37

(A B D G

+)

+ E F - /

Convert

⋀

the following infix expressions into its

Infinite recursion leads to

Overflow of run- time

stack

What is the result of the following operation Top (Push

(S, X)) X

The prefix form of an infix expression p + q - r *

t is?
+ pq - *rt

The result of evaluating the postfix expression 5,

4, 6, +, *, 4, 9, 3, /, +, * is?
600

which data structure allows deleting data element

from front and inserting at rear?
stack

-/* ACBDE

what is the time complexity of deleting n

elements in a double ended queue?
O(n)

what is the data strucutre used to implement

circular queue?
circular linked list

what is the time complexity of inserting n

elements in a queue?
O(n)

The postfix form of A*B+C/D is? *AB/CD+

The process of accessing data stored in a serial access

memory is similar to manipulating data on

a ?
stack

which data structure is used to implement the

double ended queue?
doubly linked list

queue array linked list

structure Trees graphs

O(n log n) O(1) O(n2)

AB*CD/+ A*BC+/D

O(n log n) O(1) O(n2)

singly linked

list

double

linked list multilist

queue dequeue
binary search

tree

-ABCD* DE -A/B*C DE -A/BC* DE

- +pqr * t - +pq * rt - + * pqrt

350 650 588

Underflow of

registers usage

Overflow of

I/O cycles

Underflow of

run-time

stack

null stack S 0

(A B D + E F -

/ G +)

(A B D + E

F/- G +)

AB+D^+EF/-

G+

(A B D

/ G +)

+ E F -

Overflow of run-

time stack

X

- +pq * rt

350

queue

-A/B*C DE

O(n)

circular linked

list

O(n)

AB*CD/+

stack

doubly linked list

38

What would be returned by the following recursive

function after we call test (0, 3) int test (int a, int b)

{

if (a==b) return (1); else if (a>b) return(0);

else return (a+test(a+1, b));

}

1

39

what is bounded queue?

queue with fixed size of

storage

40
what is the data strucutre used to convert a

bounded queue to circular queue? array

Class: II BCA Subject code: 18CAU301

In a growing array what the amortized type of

time complexity of all dequeue operations? constant time

42

………… is very useful in situation when data have to

stored and then retrieved in reverse order. stack

43
Which data structure allows deleting data

elements from and inserting at rear? stack

44
Which of the following data structure is linear

type? stack

45
To represent hierarchical relationship between

elements, Which data structure is suitable? Dequeue

46 The term "push" and "pop" is related to the stack

47
A data structure where elements can be added or

removed at either end but not in the middle stack

48

The postfix form of A ^ B * C - D + E/ F/ (G + H), AB^C*D- EF/GH+/+

49

Which of the following statement(s) about stack data

structure is/are NOT correct?

Stack data structure can

be implemented using

linked list

50

Which of the following is not an inherent application of

stack? Reversing a string

51

Consider the following operation performed on a stack of

size 5.

Push(1);

Pop();

Push(2);

Push(3);

Pop();

Push(4);

Pop();

Pop();

Push(5);

After the completion of all operation, the no of element

present on stack are

1

52
The type of expression in which operator

succeeds its operands is? Infix Expression

53

Which of the following application generally use a stack? Parenthesis balancing

program

54

Consider the linked list implementation of a

stack. Which of the following node is considered as Top

of the stack?
First node

55

The prefix of (A+B)*(C-D)/E*F /+-AB*CD

56

Convert the following Infix expression to Postfix form

using a stack

x + y * z + (p * q + r) * s

xyz*+pq*r+s*+

57
One can convert an infix expression to a postfix

expression using a stack

58

A linear list of elements in which deletion can be done

from one end (front) and insertion

can take place only at the other end (rear) is

known as a
stack

59

Which of the following types of expressions do not

require precedence rules for

evaluation?
fully parenthesised infix

expression

60

What is the postfix form of the following prefix

expression -A/B*C$DE

ABCDE$*/-

61

The smallest element of an array’s index is called its

lower bound

62 In a circular linked list

components are all

linked together in some

sequential manner

63
The data structure required to evaluate a postfix

expression is stack

64

What data structure would you mostly likely see in a

nonrecursive implementation of a

recursive algorithm?
stack

65 What is the strategy of Queue? LILO

66 Postfix notation is also known as polish notation

67 give the postfix notation of a+b a+b

68 Inserting element in a stack is known as insertion

69 deleting element from a stack is known as insertion

70
elements are removed from which position of the

stack middle

71
If the pushing consumes all of the space allocated

for the call stack, an error called a stack full

72
convert infix expression A * (B + C) / D to

postfix expression ABCD/+*

73
convert infix expression A * (B + C / D) to

postfix expression ABCD/+*

74
convert infix expression A * (B + C / D) to

postfix expression / * A+BCD

75 elements are added at which position of the stack bootom

76
The postfix form of the expression (A+ B)*(C*D-

E)*F / G is?

AB+ CD*E - FG

/**

2 3 4 4

queue with

fixed size of

elements

queue with

fixed size of

reallocation

queue with

variable size

queue with fixed

size of elements

Stack of bills queue tree array

linear time
exponential

time

quadratic

time constant time

queue list linked list stack

queue list linked list queue

tree graph binary tree stack

Prioriy queue Graph Tree Tree

queue Trees Graphs stack

queue Trees deque deque

AB^CD-

EP/GH+/+*

ABCDEFGH

+//+-*^

AB^D

+EFGH +//*+

AB^C*D-

EF/GH+/+

New node can

only be added at

the top of the

stack

Stack is the

FIFO data

structure

The last node at

the bottom of

the stack has a

NULL

link

Stack is the FIFO

data structure

Evaluation of

postfix expression

Implementati

on of recursion

Job scheduling

Job scheduling

2 3 4 1

pre fix

Expression

postfix

Expression Expression
postfix

Expression

Recursive

program Factorial Fibonacci

Parenthesis

Balancing program

Last node Any node Middle node First node

/*+-ABCD*EF

/+AB- CDEF **AB+CD/E F

/+AB-CDEF

xyz*+pq*r+s+*

xyz+*pq*r+s

*+

xyz+*pq*r+s

+*

xyz*+pq*r+s*+

queue Trees deque stack

queue Trees deque queue

postfix expression

partially

parenthesised

infix

expression

Prefix

expression

fully parenthesised

infix expression

A-BCDE$*/- ABC$ED*/- A-BCDE$*/ ABCDE$*/-

upper bound.

range extraction lower bound

there is no

beginning and no

end.

components are

arranged

hierarchically

.

) forward and

backward

traversal within

the list is

permitted.

there is no

beginning and no

end.

queue list linked list stack

queue list linked list stack

FIFO FILO LIFO FIFO

suffix notation infix notation
default

notation suffix notation

ab+ ab #NAME? ab+

push pop addition push

push pop addition pop

top bottom front top

null stack stack empty
stack

overflow stack overflow

ABC+D/* ABC+*D/ AB*C+D/ ABC+*D/

ABC+D/* ABC+*D/ AB*C+D/ ABCD/+*

*A+B/CD *+AB/CD *+ABCD/ *A+B/CD

top front rear top

AB + CD* E -

F **G /

AB + CD* E

*F *G /

AB + CDE * -

* F *G /

AB+ CD*E - FG

/**

DATA STRUCTURES(18CAU301) UNIT-4 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 1

 Karpagam Academy of Higher Education

 (Deemed University Established Under Section 3 of UGC Act 1956)

 Coimbatore – 641 021

 DEPARTMENT OF COMPUTER SCIENCE, APPLICATIONS AND

INFORMATION TECHNOLOGY

 SUBJECT NAME: DATA STRUCTURES

 SUBJECT CODE: 18CAU301

UNIT –IV

A graph is a mathematical structure consisting of a set of vertices (also called nodes) and a set of edges . An

edge is a pair of vertices . Graphs are used to model real-world systems such as the Internet (each node

represents a router and each edge represents a connection between routers); airline connections (each node is

an airport and each edge is a flight); or a city road network (each node represents an intersection and each

edge represents a block). The wireframe drawings in computer graphics are another example of graphs. A

graph G0 = (V 0;E0) is called a subgraph of G = (V;E) if V’ _ V and E0 _ E \ _V 02 _. A graph may be

either undirected or directed. An undirected edge models is a "two-way" or "duplex" connection between its

endpoints, v1 v2 v3 The pairs (v1, v2) and (v2, v1) represent the same. A directed edge is a one-way

connection, and is typically drawn as an arrow. v1 V2 v3 edge is represented by a directed pair (v1, v2). v1

is the tail and v2 the head of the edge. Therefore <v2, v1> and <v1, v2> represent two different edges. The

number of edges with one endpoint on a given vertex is called that vertex's degree. In a directed graph, the

number of edges that point to a given vertex is called its in-degree, and the number that point from it is

called its

out-degree. Node in degree out degree

A 01 01

B 00 02

C 02 00 We may also want to associate some cost or weight to the traversal of an edge. When we add this

information, the graph is called weighted. Data Structures(16CAU301) Unit IV BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 2 / 11 The number of distinct unordered pairs (vi,vj) with vi vj

in a graph with n vertices is n(n - 1)/2. This is the maximum number of edges in any n vertex undirected

graph. An n vertex undirected graph with exactly n(n - 1)/2 edges is said to be complete. A path from vertex

vp to vertex vq in graph G is a sequence of vertices vp,vi1,vi2, ...,vin,vq such that (vp,vi1),(vi1,vi2),

...,(vin,vq) are edges in E(G). If G' is directed then the path consists of <vp,vi1>,<vi,vi2>, ...,<vin,vq>, edges

in E(G'). The length of a path is the number of edges on it. A simple path is a path in which all vertices

except possibly the first and last are distinct. A cycle is a simple path in which the first and last vertices are

the same. Simple path: H-A-B Closed path or walk contains repeated vertices. Eg, B-D-E-F-D-C-B. Length

of the path is 6 Cycle contains no repeated vertex. Eg. D-H-G An undirected graph is said to be connected if

for every pair of distinct vertices vi, vi in V(G) there is a path from vi to vj in G. A connected component or

simply a component of an undirected graph is a maximal connected subgraph. A directed graph G is said to

be strongly connected if for every pair of distinct vertices vi, vj in V(G) there is a directed path from vi to vj

and also from vj to vi. In other words Strongly connected directed graph has a path from all vertices to all

vertices. Data Structures(16CAU301) Unit IV BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 3 / 11 A G is strong connected as all vertices can be reached

from all other vertices. H is not, as we cannot reach any vertex from a.

Representation of graph. Let G = (V,E) be a graph with n vertices, n 1. The adjacency matrix of G is a 2-

dimensional n n array, say A, with the property that A(i,j) = 1 iff the edge (vi,vj) (<vi,vj> for a directed

DATA STRUCTURES(18CAU301) UNIT-4 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 2

graph) is in E(G). A(i,j) = 0 if there is no such edge in G. 1 2 3 4 1 0 1 1 1 2 1 0 1 1 3 1 1 0 1 4 1 1 1 0 The

adjacency matrix for an undirected graph is symmetric as the edge (vi,vj) is in E(G) iff the edge (vj,vi) is

also in E(G). The adjacency matrix for a directed graph need not be symmetric. From the adjacency matrix,

one may readily determine if there is an edge connecting any two vertices I and j. For an undirected graph

the degree of any Data Structures(16CAU301) Unit IV BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 4 / 11 vertex i is its row For a directed graph the row sum is

the out-degree while the column sum is the in-degree..

Adjacency Lists In this representation the n rows of the adjacency matrix are represented as n linked lists.

There is one list for each vertex in G. The nodes in list i represent the vertices that are adjacent from vertex i.

Each node has at least two fields: VERTEX and LINK. The VERTEX fields contain the indices of the

vertices adjacent to vertex i The degree of any vertex in an undirected graph may be determined by just

counting the number of nodes in its adjacency list. The out-degree of any vertex may be determined by

counting the number of nodes on its adjacency list. Determining the in-degree of a vertex is a little more

complex. In case there is a need to repeatedly access all vertices adjacent to another vertex.

Adjacency Multilist In the adjacency list representation of an undirected graph each (vi,vj) is represented by

two entries, one on the list for vi and other on the list for vj. But in adjacency multilist structure for each

edge there will be exactly one node, but this node will be in two lists. i.e., the adjacency lists of the two

nodes it is incident to.

Depth First Search Depth first search of an undirected graph proceeds as follows. The start vertex v is

visited. Next an unvisited vertex w adjacent to v is selected and a depth first search from w initiated. When a

vertex u is reached such that all its adjacent vertices have been visited, we back up to the last vertex visited

which has an unvisited vertex w adjacent to it and initiate a depth first search from w. The search terminates

when no unvisited vertex can be reached from any of the visited one. This procedure is best described

recursively as in

procedure DFS(v) //Given an undirected graph G = (V,E) with n vertices and an array VlSlTED(n) initially

set to zero, this algorithm visits all vertices reachable from v. G and VISITED are global.//

VISITED (v) 1

for each vertex w adjacent to v do

if VISlTED(w) = 0 then call DFS(w)

end

end DFS

Breadth First Search Starting at vertex v and marking it as visited, breadth first search differs from depth

first search in that all unvisited vertices adjacent to v are visited next. Then unvisited vertices adjacent to

these vertices are visited and so on. A Data Structures(16CAU301) Unit IV BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 5 / 11 breadth first search beginning at vertex v1 of the graph

in figure 6.13(a) would first visit v1 and then v 2 and v 3. Next vertices v 4, v 5, v 6 and v 7 will be visited

and finally v 8.

procedure BFS(v) //A breadth first search of G is carried out beginning at vertex v. All vertices visited are

marked as VISlTED(i)= 1. The graph G and array VISITED are global and VISITED is initialized to zero.//

VISITED (v) 1

initialize Q to be empty //Q is a queue//

loop

for all vertices w adjacent to v do

if VISITED(w) = 0 then

call ADDQ(w,Q); VISITED(w) 1

DATA STRUCTURES(18CAU301) UNIT-4 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 3

end

if Q is empty then return

call DELETEQ(v,Q)

forever

end BFS

Content of queue Q Node deleted from Q Adjacent Node(s) not yet

and visited visited & hence added to Q

Q

Q

Q

Content of queue Q Node deleted from Q Adjacent Node(s) not yet

and visited visited & hence added to Q

Q

Q

Q

Q Data Structures(16CAU301) Unit IV BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 6 / 11

Q Q=Null A spanning tree T of a connected, undirected graph G is a tree composed of all the vertices and

some (or perhaps all) of the edges of G. Informally, a spanning tree of G is a selection of edges of G that

form a tree spanning every vertex. That is, every vertex lies in the tree, but no cycles (or loops) are formed.

A spanning tree of a connected graph G can also be defined as a maximal set of edges of G that contains no

cycle, or as a minimal set of edges that connect all vertices. Few spanning trees formed for the graph given

above is listed below A minimum spanning tree (MST) is a spanning tree with weight less than or equal to

the weight of every other spanning tree.

Kruskal Algorithm In this approach a minimum cost spanning tree, T, is built edge by edge. Edges are

considered for inclusion in T in nondecreasing order of their costs. An edge is included in T if it does not

form a cycle with the edges already in T. Since T is connected and has n>0 vertices, exacty n-1 edges will be

selected for inclusion in T. As an example consider the graph given below.

while T contains less than n - 1 edges and E not empty do

choose an edge (v,w) from E of lowest cost;

delete (v,w) from E;

if (v,w) does not create a cycle in T

then add (v,w) to T

else discard (v,w)

end

if T contains fewer than n - 1 edges then print ('no spanning tree')

Single Source all Destinations shortest path In this problem we are given a directed graph G = (V,E), a

weighting function w(e) for the edges of G and a source vertex v

o. The problem is to determine the shortest paths from vo to all the remaining vertices of G. It is assumed

that all the weights are positive. The numbers on the edges are the weights. If we attempt to devise an

algorithm which generates the shortest paths in nondecreasing order, then we can make several observations.

Let Data Structures(16CAU301) Unit IV BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 7 / 11

S denote the set of vertices (including vo) to which the shortest paths have already been found. For w not in

S, let

DATA STRUCTURES(18CAU301) UNIT-4 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 4

DIST(w) be the length of the shortest path starting from vo going through only those vertices which are in S

and ending at w. We observe that: (i) If the next shortest path is to vertex u, then the path begins at vo, ends

at u and goes through only those vertices which are in S. (ii) The destination of the next path generated must

be that vertex u which has the minimum distance, DIST(u), among all vertices not in S. This follows from

the definition of DIST and observation (i). In case there are several vertices not in S with the same DIST,

then any of these may be selected. (iii) Having selected a vertex u as in (ii) and generated the shortest vo to u

path, vertex u becomes a member of S. At this point the length of the shortest paths starting at vo, going

through vertices only in S and ending at a vertex w not in S may decrease. I.e., the value of DIST(w) may

change. If it does change, then it must be due to a shorter path starting at vo going to u and then to w. The

intermediate vertices on the vo to u path and the u to w path must all be in S. Further, the vo to u path must

be the shortest such path, otherwise DIST(w) is not defined properly. Also, the u to w path can be chosen so

as to not contain any intermediate vertices. Therefore, we may conclude that if DIST(w) is to change (i.e.,

decrease), then it is because of a path from vo to u to w where the path from vo to u is the shortest such path

and the path from u to w is the edge <u,w>. The length of

this path is DIST(u) + length (<u,w>). In the algorithm SHORTEST_PATH it is assumed that the n vertices

of G are numbered 1 through n. The set S is maintained as a bit array with S(i) = 0 if vertex i is not in S and

S(i) = 1 if it is. It is assumed that the graph itself is represented by its cost adjacency matrix with COST(i,j)

being the weight of the edge <i,j>. COST(i,j) will be set to some large number, +∞ , in case the edge <i,j> is

not in E(G). For i= j, COST(i,j) may be set to any non-negative number without affecting the outcome of the

algorithm.

procedure SHORTEST-PATH (v,COST,DIST,n) //DIST(j), 1 j n is set to the length of the shortest path from

vertex v to vertex j in a digraph G with n vertices.

DIST(v) is set to zero. G is represented by its cost adjacency matrix, COST(n,n)//

declare S (1: n)

for i 1 to n do //initialize set S to empty//

S(i) 0; DIST(i) COST(v,i)

end

S(v) 1; DIST(v) 0; num 2 //put vertex v in set S//

while num < n do //determine n - 1 paths from vertex v//

choose u: DIST(u) min {DIST(w)}

(w)=0

S(u) 1; num num + 1 //put vertex u in set S//

for all w with S(w) = 0 do //update distances//

DIST(w) min {DIST(w),DIST(u) + COST(u,w)}

end

end

end SHORTEST-PATH Consider the 8 vertex digraph given below The cost matrix of the above 8 vertex

digraph 7 ∞ Min(DIST(7), DIST(6)+COST (6,7)) i.e.Min(∞,250+900) As Min(∞,1150) is 1150 DIST(7) is

changed to 1150 8 ∞ Min(DIST(8), DIST(6)+COST (6,8)) As Min(∞, 1650) is 1650 DIST(8) is changed to

1650 Data Structures(16CAU301) Unit IV BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 8 / 11 i.e.Min(∞,250+1400) 7 8 1650 Min(DIST(8),

DIST(7)+COST (7,8)) Min(1650,1150+ 1000) As Min(1650,2150) IS 1650 DIST(8) remains unchanged 4 3

∞ Min(DIST(3), DIST(4)+COST (4,3)) Min(∞,1250+1200) As Min(∞, 2450) is 2450 DIST(3) is changed to

2450 8 1 ∞ Min(DIST(1), DIST(8)+COST (8,1)) Min(∞,1650+1700) As Min(∞, 3350) is DIST(1) is

changed to 3350 3 1 3350 Min(DIST(1), DIST(3)+COST (3,1)) Min(3350 ,2450+1000) As Min(3350<3550

DATA STRUCTURES(18CAU301) UNIT-4 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 5

) is 3350 DIST(1) remains unchanged 2 ∞ Min(DIST(2), DIST(3)+COST (3,2)) Min(∞,2450+800) As

Min(∞, 3250) is DIST(2) is changed to 3250

All Pairs shortest path The all pairs shortest path problem calls for finding the shortest paths between all

pairs of vertices vi,vj, i≠ j. The graph G is represented by its cost adjacency matrix with COST(i.i)= 0 and

COST(i,j) = +∞ in case edge <i,j>, i≠ j is not in G. Define Ak (i,j) to be the cost of the shortest path from i to

j going through no intermediate Data Structures(16CAU301) Unit IV BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 9 / 11 vertex of index greater than k. Then, An(i,j) will be the

cost of the shortest i to j path in G since G contains no vertex with index greater than n. Ao(i,j) is just

COST(i,j) since the only i to j paths allowed can have no intermediate vertices on them. The basic idea in the

all pairs algorithm is to successively generate the matrices A0, A1, A2, ...,An. If we have already generated

Ak-1, then we may generate Ak by realizing that for any pair of vertices i,j either (i) the shortest path from i

to j going through no vertex with index greater than k does not go through the vertex with index k and so its

cost is Ak-1(i,j); or (ii) the shortest such path does go through vertex k. Such a path consists of a path from i

to k and another one from k to j. These paths must be the shortest paths from i to k and from k to j going

through no vertex with index greater than k - 1, and so their costs are Ak-1(i,k) and Ak-1(k,j). Thus, we

obtain the following formulas for Ak (i,j):

Ak(i,j) = min {Ak-1(i,j), Ak-1(i,k) + Ak-1 (k,j)} k ≥1 --

--------------(1) and

Ao(i,j) = COST(i,j).

procedure ALL_COSTS(COST,A,n) // COST(n,n) is the cost adjacency matrix of a graph with n vertices;

A(i,j) is the cost of the shortest path between vertices vi,vj. COST(i,i) = 0, 1 i n//

for i 1 to n do

for j 1 to n do A (i,j) COST (i,j) //copy COST into A//

end

end

for k 1 to n do //for a path with highest vertex index k//

for i 1 to n do //for all possible pairs of vertices//

for j 1 to n do A (i,j) min {A (i,j),A(i,k) + A(k,j)}

end

end

end

end ALL_COSTS Source vertex i Destinatio n vertex j Intermedia te vertex k Equation 1 A1 (i,j)= Min{ A1

(i,j), A1 (i,j)+ A1 (i,j)} Action 1 1 1 A1 (1,1)= Min{ A0(1,1), A0(1,1)+ A0 (1,1) } A1 (1,1)= Min{0,0+ 0} 2

1 A1 (1,2)= Min{ A0(1,2), A0(1,1)+ A0 (1,2)} A1 (1,2)= Min{ 4,0+ 4} 3 1 A1 (1,3)= Min{ A0(1,3),

A0(1,1)+ A0 (1,3) A1 (1,3)= Min{11, 0+ 11} 2 1 1 A1 (2,1)= Min{ A0(2,1), A0(2,1)+ A0 (1,1) } A1 (2,1)=

Min{ 6, 6 + 0} 2 1 A1 (2,2)= Min{ A0(2,2), A0(2,1)+ A0 (1,2)} A1 (2,2)= Min{ 0, 6 + 0} 3 1 A1 (2,3)=

Min{ A0(2,3), A0(2,1)+ A0 (1,3)} A1 (2,3)= Min{ 6 , 0 + 11} Data Structures(16CAU301) Unit IV

BCA(2016-2019 Batch)

R.NITHYA Department of CA,CS,IT KAHE 10 / 11 3 1 1 A1 (3,1)= Min{ A0(3,1), A0(3,1)+ A0 (1,1)} A1

(3,1)= Min{ 3, 3+0} 2 1 A1 (3,2)= Min{ A0(3,2), A0(3,1)+ A0 (1,2)} A1 (3,2)= Min{ +∞, 3+ 4} Old value

of A1 (3,2)= +∞ New value of A1 (3,2) =7 3 1 A1 (3,3)= Min{ A0(3,3), A0(3,1)+ A0 (1,3)} A1 (3,3)= Min{

0, 3 + 11} Source vertex i Destinatio n vertex j Intermedia te vertex k Equation 1 A1 (i,j)= Min{ A1 (i,j), A1

(i,j)+ A1 (i,j)} Action 1 1 2 A2 (1,1)= Min{ A1(1,1), A1(1,2)+ A1 (2,1) } A2 (1,1)= Min{0,4+ 6} 2 2 A2

(1,2)= Min{ A1(1,2), A1(1,2)+ A1 (2,2)} A2 (1,2)= Min{ 4,4+ 0} 3 2 A2 (1,3)= Min{ A1(1,3), A1(1,2)+ A1

(2,3) A2 (1,3)= Min{11, 4+ 2} Old value of A1 (1,3)= 11 New value of A1 (1,3) =6 2 1 2 A2 (2,1)= Min{

DATA STRUCTURES(18CAU301) UNIT-4 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 6

A1(2,1), A1(2,2)+ A1 (2,1) } A2 (2,1)= Min{ 0, 0 + 6} 2 2 A2 (2,2)= Min{ A1(2,2), A1(2,2)+ A1 (2,2)} A2

(2,2)= Min{ 0, 0 + 0} 3 2 A2 (2,3)= Min{ A1(2,3), A1(2,2)+ A1 (2,3)} A2 (2,3)= Min{ 2 , 0 + 2} 3 1 2 A2

(3,1)= Min{ A1(3,1), A1(3,2)+ A1 (2,1)} A2 (3,1)= Min{ 3, 7+6} 2 2 A2 (3,2)= Min{ A1(3,2), A1(3,2)+ A1

(2,2)} A2 (3,2)= Min{ 7, 7+ 0} 3 2 A2 (3,3)= Min{ A1(3,3), A1(3,2)+ A1 (2,3)} A2 (3,3)= Min{ 0, 7+ 2}

Source vertex i Destinatio n vertex j Intermedia te vertex k Equation 1 A1 (i,j)= Min{ A1 (i,j), A1 (i,j)+ A1

(i,j)} Action 1 1 3 A3 (1,1)= Min{ A2(1,1), A2(1,3)+ A2 (3,1) } A3 (1,1)= Min{0,6+ 3} 2 3 A3 (1,2)= Min{

A2(1,2), A2(1,3)+ A2 (3,2)} A3 (1,2)= Min{ 4,6+ 7} Data Structures(16CAU301) Unit IV BCA(2016-2019

Batch)

R.NITHYA Department of CA,CS,IT KAHE 11 / 11 3 3 A3 (1,3)= Min{ A2(1,3), A2(1,3)+ A2 (3,3) A3

(1,3)= Min{6, 6+ 0} 2 1 3 A3 (2,1)= Min{ A2(2,1), A2(2,3)+ A2 (3,1) } A3 (2,1)= Min{ 6, 2 + 3} Old value

of A1 (2,1)= 6 New value of A1 (2,1) =5 2 3 A3 (2,2)= Min{ A2(2,2), A2(2,3)+ A2 (3,2)} A3 (2,2)= Min{

0, 6 + 7} 3 3 A3 (2,3)= Min{ A2(2,3), A2(2,3)+ A2 (3,3)} A3 (2,3)= Min{ 2 , 2 + 0} 3 1 3 A3 (3,1)= Min{

A2(3,1), A2(3,3)+ A2 (3,1)} A3 (3,1)= Min{ 3, 3+0} 2 3 A3 (3,2)= Min{ A2(3,2), A2(3,3)+ A2 (3,2)} A3

(3,2)= Min{ +∞, 0+ 7} 3 3 A3 (3,3)= Min{ A2(3,3), A2(3,3)+ A2 (3,3)} A3 (3,3)= Min{ 0, 0 + 0}

S.No QUESTION OPT 1

1

Which of the following operations is performed more

efficiently by doubly linked

list than by singly linked list

Deleting a node whose

location is given.

2
Nodes that have degree zero are called

 . end node

3
A binary tree with all its left branches supressed

is called a balanced tree

4
All node except the leaf nodes are

called . terminal node

5
The roots of the subtrees of a node X, are the

 of X. Parent

6 X is a root then X is the of its children. sub tree

7
The children of the same parent are called

 . sibiling

8
 of a node are all the nodes along

the path form the root to that node. Degree

9
The of a tree is defined to be a

maximum level of any node in the tree. weight

10 A is a set of n ≥ 0 disjoint trees Group

11
A tree with any node having at most two

branches is called a . branched tree

12
A of depth k is a binary tree of

depth k having 2
K
-1 nodes.

full binary tree

13

Data structure represents the hierarchical relationships

between individual data item is

known as .
Root

14
Node at the highest level of the tree is known as

 . Child

15
The root of the tree is the of all nodes in

the tree. Child

UNIT IV

Karpagam Academy of Higher Education

Department of Computer Applications

Subject : Data Structures

Class: II BCA Subject code: 18CAU301

Objective Type Questions

16 is a subset of a tree that is itself a tree. Branch

17 A node with no children is called . Root Node

18
In a tree structure a link between parent and child

is called Branch

19
Height – balanced trees are also referred as as

 trees. AVL trees

20
Visiting each node in a tree exactly once is called

 searching

21
In traversal ,the current node is visited

before the subtrees. PreOrder

22
In traversal ,the node is visited between

the subtrees. PreOrder

23
In traversal ,the node is visited after the

subtrees. PreOrder

24 Inorder traversal is also sometimes called Symmetric Order

25
Postorder traversal is also sometimes

called Symmetric Order

26
One can determine whether a Binary tree is a

Binary Search Tree by traversing it in Preorder

27
Nodes of any level are numbered from

 Left to right

28
In Threaded Binary Tree ,LCHILD(P) is a

normal pointer When LBIT(P) = 1

29
In Threaded Binary Tree ,LCHILD(P) is a Thread

When LBIT(P) = 1

30
In Threaded Binary Tree ,RCHILD(P) is a

normal pointer When RBIT(P) = 2

31
In Threaded Binary Tree ,RCHILD(P) is a

Thread When LBIT(P) = 1

32
Which of these searching algorithm uses the

Divide and Conquere technique for sorting Linear search

33
 algorithm can be used only with sorted

lists. Linear search

34

 search involves comparision of the element to

be found with every elements in a list. Linear search

35
Binary search algorithm in a list of n elements

takes only time.
O(log2n)

36
 is used for decision making in eight coin

problem. trees

37

The Linear search algorithm in a list of n element takes

 time to compare in worst case. constant

38

In search method the search begins by

examining the record in the middle of the file. sequential

39
A binary tree with external nodes added is an ----

----------- binary tree extended

40
The search technique for searching a sorted file

that requires increased amount of space is

indexed sequential

search

41

If hl and hr are the heights of the left and right subtrees of

a tree respectively and if |hl-hr|<=1

then this tree is called
extended binary tree

42

If hl and hr are the heights of the left and right subtrees of

a tree respectively then |hl-hr| is

called its
Average height

43 For an AVL Tree the balance factor is = 0

44
In a binary search tree all values of the left

subtree is than the root's value smaller

45
In a binary search tree all values of the right

subtree is than the root's value smaller

46 In BST, we can search for a value in O(log n)

47
In tree construction, which is the suitable

efficient data structure? array

48

In a balance binary tree, the height of two subtrees of

every node cannot differ by more

than?
4

49
The number of possible binary trees with 3 nodes

is 15

50
the number of possible binary trees with 4 nodes

is 14

51 the order of binary search algorithm is n

52 A connected graph T without any cycle is called Tree

53
A binary tree with 10 nodes has null

branches 12

54 binary search algorithm can be applied to sorted binary trees

55

If aaa, bbb and ccc are the elements of a lexically ordered

binary tree, then in pre order traversal

which node will be traversed first?
aaa

56
In an array representation of binary tree the right

child of the root will be at location of 1

57
The maximum number of nodes in a binary tree

of depth 5 is 31

58 A complete binary tree with n leaf nodes has n+1 nodes

59

In a binary tree, certain null entries are replaced by special

pointers which point to nodes higher in tree for efficiency.

These special pointers are

called
leaf

60
A binary tree whose every node has either zero or

two children is called

complete binary

tree

61

when cinverting binary tree into extended binary tree, all

the original nodes in binary tree are

internal nodes on

extended binary tree

62
The inorder traversal will yield a sorting list of

elements of tree in binary tree

63

Which of the following traversal technique lists the nodes

of a binary search tree in ascending

order?
postorder

64
Which of the following need not be a binary

tree? B-Tree

65
A binary tree can be converted in to its mirror

image by traversing it in postorder

66 The prefix form of A-B/ (C * D ^ E) is, -/*^ACBDE

67

Consider that n elements are to be sorted. What is the

worst case time complexity of Bubble sort?

O(1)

68
Which of these searching algorithm uses the

Divide and Conquere technique for sorting Linear search

69
 are genealogical charts which

are used to present the data Graphs

70

A is a finite set of one or more nodes, with one root

node and remaining form the disjoint

sets forming the subtrees.
tree

71 A is a graph without any cycle. tree

72
In binary trees there is no node with a degree

greater than zero

73

Which of this is true for a binary tree. It may be empty

74

Overflow condition in linked list may occur when

attempting to

Create a node when free

space pool is empty.

75
The Number of subtrees of a node is called its

 . leaf

OPT 2 OPT 3 OPT 4 ANSWER

Searching of an

unsorted list for a

given item.

Inserting a new

node after node

whose location

is

given.

Traversing the

list to process

each node. Deleting a node

whose location is

given.

leaf nodes subtree root node leaf nodes

left sub tree
full binary

tree

right skewed

tree right skewed tree

percent node non terminal children node non terminal

Children Sibling sub tree Children

Parent Sibilings subordinate Parent

leaf child subtree sibiling

sub tree Ancestors parent Ancestors

length breath height height

forest Branch sub tree forest

sub tree binary tree forest binary tree

half binary tree sub tree n branch tree full binary tree

Node Tree Address Tree

Root Sibiling Parent Root

Parent Ancestor Head Ancestor

UNIT IV

Karpagam Academy of Higher Education

Department of Computer Applications

Subject : Data Structures

Class: II BCA Subject code: 18CAU301

Objective Type Questions

Root Leaf Subtree Subtree

Branch Leaf Node Null tree Leaf Node

Root Leaf Subtree Branch

Binary Trees Subtree Branch Tree AVL trees

travering walk through path travering

PostOrder Inorder End Order PreOrder

PostOrder Inorder End Order Inorder

PostOrder Inorder End Order PostOrder

End Order PreOrder PostOrder Symmetric Order

End Order PreOrder PostOrder End Order

Inorder Postorder Any order Inorder

Right to Left
Top to

Bottom

Bottom to

Top Left to right

2 3 0 1

2 3 0 0

1 3 0 1

2 0 4 0

Binary search
fibonacci

search m-way search Binary search

Binary search insertion sort merge sort Binary search

Binary search

fibonacci

search m-way search Linear search

O(n)
O(n

3
) O(n

2
)

O(log2n)

graphs linked lists array trees

linear quadratic exponential constant

fibonacci binary

non- sequential

binary

expanded internal external extended

interpolation

search

sequential

search tree search
indexed

sequential search

binary search tree

skewed tree

height balanced

tree

height balanced tree

minimal depth

Maximum

levels

Balance factor

Balance factor

2 3 4 0

larger equal multiples smaller

larger equal multiples larger

O(n) O(n2) O(1) O(log n)

linked list stack queue linked list

8 5 3 8

10 8 5 5

10 15 12 14

log n n log n 1 log n

stack queue graph tree

11 21 22 21

sorted graph pointer array
sorted linked

list sorted linked list

bbb ccc

cannot be

determined aaa

2 3 0 3

16 32 15 31

2n-1 nodes 2n+1 nodes
n(n-1)/2

nodes 2n-1 nodes

path branch thread thread

extended binary

tree

binary search

tree all of above
extended binary

tree

external nodes on

extended

binary tree

vanished on

extended

binary tree

vanished on b

tree

internal nodes on

extended binary

tree

binary search

tree heaps AVL tree binary search tree

inorder preorder insertion inorder

AVL tree heaps Search tree B-Tree

inorder preorder insertion preorder

-ABCD*^DE
-

A/B*C^DE

-

A/BC*^DE -A/B*C^DE

O(log2n)

O(n) O(n2) O(n2)

Binary search
fibonacci

search Factorial Binary search

Pedigree and

lineal chart

Line , bar

chart pie chart
Pedigree and

lineal chart

graph list set tree

path set list tree

one two three two

The degree of all

nodes must

be <=1

It contains a

leaf node

The degree of

all nodes

must be <2
It may be empty

Traverse the nodes

when free space

pool

is empty.

Create a node

when linked list

is

empty.

Search for node

Create a node when

free space pool is

empty.

terminal children degree degree

DATA STRUCTURES(18CAU301) UNIT-5 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 1

 Karpagam Academy of Higher Education

 (Deemed University Established Under Section 3 of UGC Act 1956)

 Coimbatore – 641 021

 DEPARTMENT OF COMPUTER SCIENCE, APPLICATIONS AND

INFORMATION TECHNOLOGY

 SUBJECT NAME: DATA STRUCTURES

 SUBJECT CODE: 18CAU301

 UNIT V

 HASHING

Hash Table is a data structure which stores data in an associative manner. In a hash table, data is stored in an

array

format, where each data value has its own unique index value. Access of data becomes very fast if we know

the

index of the desired data.

Thus, it becomes a data structure in which insertion and search operations are very fast irrespective of the

size of

the data. Hash Table uses an array as a storage medium and uses hash technique to generate an index where

an

element is to be inserted or is to be located from. Hashing

Hashing is a technique to convert a range of key values into a range of indexes of an array. We're going to

use

modulo operator to get a range of key values. Consider an example of hash table of size 20, and the

following

items are to be stored. Item are in the (key,value) format.

(1,20)

(2,70)

(42,80)

(4,25)

(12,44)

(14,32)

(17,11)

(13,78)

(37,98) Sr. No. Key Hash Array Index

1 1 1 % 20 = 1 1

2 2 2 % 20 = 2 2

3 42 42 % 20 = 2 2

4 4 4 % 20 = 4 4

5 12 12 % 20 = 12 12

6 14 14 % 20 = 14 14

7 17 17 % 20 = 17 17

8 13 13 % 20 = 13 13

9 37 37 % 20 = 17 17 Linear Probing

As we can see, it may happen that the hashing technique is used to create an already used index of the array.

In

DATA STRUCTURES(18CAU301) UNIT-5 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 2

such a case, we can search the next empty location in the array by looking into the next cell until we find an

empty

cell. This technique is called linear probing. Sr. No. Key Hash Array Index After Linear Probing, Array

Index

1 1 1 % 20 = 1 1 1

2 2 2 % 20 = 2 2 2

3 42 42 % 20 = 2 2 3

4 4 4 % 20 = 4 4 4

5 12 12 % 20 = 12 12 12

6 14 14 % 20 = 14 14 14

7 17 17 % 20 = 17 17 17

8 13 13 % 20 = 13 13 13

9 37 37 % 20 = 17 17 18 Basic Operations

Following are the basic primary operations of a hash table. Search − Searches an element in a hash table.

Insert − inserts an element in a hash table. delete − Deletes an element from a hash table. DataItem

Define a data item having some data and key, based on which the search is to be conducted in a hash table.

struct DataItem {

int data;

int key;

}; Hash Method

Define a hashing method to compute the hash code of the key of the data item.

int hashCode(int key){

return key % SIZE;

} Search Operation

Whenever an element is to be searched, compute the hash code of the key passed and locate the element

using that

hash code as index in the array. Use linear probing to get the element ahead if the element is not found at the

computed hash code. Example

struct DataItem *search(int key) {

//get the hash

int hashIndex = hashCode(key);

//move in array until an empty

while(hashArray[hashIndex] != NULL) {

if(hashArray[hashIndex]->key == key)

return hashArray[hashIndex];

//go to next cell

++hashIndex;

//wrap around the table

hashIndex %= SIZE;

}

return NULL;

} Insert Operation

Whenever an element is to be inserted, compute the hash code of the key passed and locate the index using

that

hash code as an index in the array. Use linear probing for empty location, if an element is found at the

DATA STRUCTURES(18CAU301) UNIT-5 BCA(2018-2021 BATCH)

Prepared by R.NITHYA , Dept of CS,CA & IT , KAHE Page 3

computed

hash code. Example

void insert(int key,int data) {

struct DataItem *item = (struct DataItem*) malloc(sizeof(struct DataItem));

item->data = data;

item->key = key;

//get the hash

int hashIndex = hashCode(key);

//move in array until an empty or deleted cell

while(hashArray[hashIndex] != NULL && hashArray[hashIndex]->key != -1) {

//go to next cell

++hashIndex;

//wrap around the table

hashIndex %= SIZE;

}

hashArray[hashIndex] = item;

} Delete Operation

Whenever an element is to be deleted, compute the hash code of the key passed and locate the index using

that

hash code as an index in the array. Use linear probing to get the element ahead if an element is not found at

the

computed hash code. When found, store a dummy item there to keep the performance of the hash table

intact. Example

struct DataItem* delete(struct DataItem* item) {

int key = item->key;

//get the hash

int hashIndex = hashCode(key);

//move in array until an empty

while(hashArray[hashIndex] !=NULL) {

if(hashArray[hashIndex]->key == key) {

struct DataItem* temp = hashArray[hashIndex];

//assign a dummy item at deleted position

hashArray[hashIndex] = dummyItem;

return temp;

}

//go to next cell

++hashIndex;

//wrap around the table

Karpagam Academy of Higher Education
(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021
DEPARTMENT OF COMPUTER SCIENCE, APPLICATIONS AND INFORMATION

TECHNOLOGY

UNIT I
PART-B

[EACH QUESTION CARRIES 2 MARKS]
1. Define data.
2. Define algorithm.
3. Define data type in data structures.
4. Define array.
5. What is meant by sparse matrix?
6. What is meant by single dimensional array?
7. What is meant by multi dimensional array?
8. Define stack.
9. What is meant by stack representation?
10. How user define an array using stack representation?
11. What is meant by linked representation of an array?
12. How to represent the postfix and prefix expression?

PART – C
[EACH QUESTION CARRIES 6 MARKS]

1.What is meant by algorithm complexity? Explain their types.
2. Explain in detail structured programming constructs
3. Explain about algorithm complexity and algorithm analysis
4. Explain the difference between abstract data type, data type and data structures
5. Define Data Structure .Explain the description of various Data Structures.
6. Explain the different approaches to design an algorithm.
7. Define Data Structure .Explain the description of various Data Structures.
8. Explain the different approaches to design an algorithm.
9. Define abstract data type, atomic type and data type with example.
10. Explain about the structures approach programming in detail

Karpagam Academy of Higher Education
(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021
DEPARTMENT OF COMPUTER SCIENCE, APPLICATIONS AND INFORMATION

TECHNOLOGY

UNIT II

PART – B
[EACH QUESTION CARRIES 2 MRAKS]

1. Define linked list.
2. What is meant by circular linked list?
3. What is double linked list?
4. What is single linked list?
5. What is meant by queue?
6. Write down the types of queue.
7. Define de-queue in linked list.
8. How to represent the linked list using array.
9. What is meant by double ended queue?
10. What is priority queue/

PART-C
[EACH QUESTION CARRIES 6 MARKS]

1. Define Array. Explain their types and their operations with example
2. Discuss Polynomial Manipulation with example.
3. Write note on Sparse Matrix and how to represent them in memory
4. Define double linked list. Explain the operations on double linked list with
5. Write a note on Circular linked lists and its operation.
6. Explain a note on linked list vs arrays
7. Explain the operations of linear linked list with example
8. Write the basic operations of a doubly linked list.
9. Explain linear array operations with example
10. Explain the operations of doubly linked list with example

Karpagam Academy of Higher Education
(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021
DEPARTMENT OF COMPUTER SCIENCE, APPLICATIONS AND INFORMATION

TECHNOLOGY

UNIT III
PART-B

[EACH QUESTION CARRIES 2 MARKS]
1. Define tree in data structures.
2. Write the tree representation using array.
3. Define binary tree.
4. Define threaded binary tree.
5. What is meant by node in a tree.?
6. What is meant by root of a tree?
7. What is child of a tree?
8. Write the representation of a binary tree using the linked list element.

Part – c
[each question carries 6 marks]

1. Write an algorithm to convert infix to postfix expression and explain it with example
2. Write an algorithm for Queue operations
3. Write a C program to implement stack operations
4. Explain in detail about queue operations
5. Explain Circular queue and its implementation of operation on circular queue
6. Define Stack Explain the Representation of stack using linked list
7. How stack is used in converting an infix expression into postfix expression. Explainwith an example
8. Explain how queues can be implemented using Linked list
9. Explain various operations on AVL trees.
10. Explain operations of queue using linked list

Karpagam Academy of Higher Education
(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021
DEPARTMENT OF COMPUTER SCIENCE, APPLICATIONS AND INFORMATION

TECHNOLOGY

UNIT IV

PART – B
[EACH QUESTION CARRIES 2 MARKS]

1. Define sorting technique.
2. Define heap sorting technique.
3. Define selection sortingtechnique.
4. Define searchingtechnique.
5. Define linear searchtechnique.
6. Define binary searchtechnique.
7. Define shell sort technique.

PART – C
[EACH QUESTION CARRIES 6 MARKS]

1. List the common operations on binary and binary search tree. Write an algorithm with example.
Explain in detail operations on AVL tree with example
2. Explain detail about tree traversal algorithm with suitable example.
3. Write an algorithm to perform sequential search
4. Define Trees and its types. Explain any tree in detail with its operation.
5. Write an algorithm and program for selection sort
6. Write an algorithm and program for binary search.
7. Explain about threaded binary tree and B-Tree.
8. What is a binary tree? When a binary tree becomes a binary search tree?
9. Write an algorithm to perform indexed sequential search

NITHYA R Department of CA,CS,IT KAHE

Karpagam Academy of Higher Education
(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021
DEPARTMENT OF COMPUTER SCIENCE, APPLICATIONS AND

INFORMATION TECHNOLOGY
SUBJECT NAME: DATA STRUCTURES CLASS :II BCA
SUBJECT CODE: 16CAU301 SEMESTER: III

UNIT V
POSSIBLE SIX MARKS

1. Explain Insertion sort with example.
2. Write note on representation of graphs
3. Explain quick sort with example
4. Write an algorithm for finding shortest paths
5. Write an algorithm for heap sort with example

a. Write an algorithm for Heap sort with example
b. Write an algorithm for merge sort with example

6. Explain about minimum spanning tree with example
7. Write an algorithm for selection and bucket sort with example.

Reg No. ………………………

 [18CAU301]

 Karpagam Academy Of Higher Education

 (Established Under Section 3 of UGC Act 1956)

COIMBATORE – 64 021

BCA Degree Examination

(For the candidates admitted from 2018 onwards)

THIRD SEMESTER

First Internal Exam July 2019

 DATA STRUCTURES

Time: 2 Hours Maximum: 50 Marks

Date&Session: CLASS: II BCA(A&B)

Part – A (20 X 1 = 20 Marks)

Answer ALL Questions

1.The tool useful for specifying the logical properties of datatype is___________

 a)abstract data type b)datatype c)data structure d)algorithm

2.The group of items identified by its own identifier is known as____________

 a)member of structure b)structure c)record d)field

3.An order collection of items is called______________

 a)stack b)array c)list d)queue

4.The operation to perform add items in stack using_______

 a)add element b)pop c)pop the element d)pushdown

5.The operation to perform deleting items in stack using_________

 a)pushdownlist b)list the element c)delete item d)push

6.When the stack has zero elements then it can be called as_________

 a)stack zero b)zero element c)no element d)stack empty

7.The operator “+”between the operand A and B is called_____________

 a)infix b)precedence c)add the operand d)combine operand

8.An ordered collection of items from the front is called__________

 a)queue b)double link c)priority queue d)descending queue

9.__________is any data representation and its associated operations.

 a)data structure b)datatype c)data declaration d)object.

10.Which one of the following is a LIFO list?

 a)Stack b)Queue c)Linked list d)Circular list

11.The items may be inserted at one end of queue which is called

 a)front b)rear c)top d)avail

12. The Complexity of linear search

 a)O(n) b)O(log n) c)O(n log n) d)O(n
2
)

13.In linear list each node has pointers to point to the predecessor and successors then node is

called______

 a)singly linked list b)circular linked list c)doubly linked list d)linear linked list

14. A linear collection of data elements where the linear node is given by means of pointer is called

 a) linked list b) node list c) primitive list d)array

15.The expression AB/C-DE*+AC*- is called

 a)postfix b)prefix c)infix d)expn

16.A BST is traversed in the following order recursively: Right, root, left . The output sequence will be in

 a) Ascending order b) Descending order c) Bitomic sequence d) No specific order

17.The expression AB/C-DE*+AC*- is called

 a)postfix b)prefix c)infix d)expn

18.Stacks and queues are

 a)primitive data structure b)non-primitive data structure

 c)non-linear data structure d)data types

19. Which one is not Divide and Conquer algorithm?

 a)2-way merge sort b)quick sort c)selection sort d)insertion sort

20. Stack organization is

 a)FIFO b)LILO c)LIFO d)FILO

Part – B(3X 2= 6 Marks)

Answer ALL Questions

21. Define Array with suitable example.

22. List out the applications of Stack.

23. Define Linked List.

Part – C(3X 8= 24 Marks)

Answer ALL Questions

24.(a)Explain arrays in c with example.

 (OR)

 (b) Discuss about Singly Linked List with Suitable example.

25.(a) Explain the stack in c with example

 (OR)

 (b) Discuss the representation of queue in c with example

26.(a) Explain the data structures in C Programming Language.

 (OR)

 (b) Write a C program to perform linked list(Any 2 Operations).

Reg No. ………………………

 [18CAU301]

 KARPAGAM UNIVERSITY

Karpagam Academy Of Higher Education

 (Established Under Section 3 of UGC Act 1956)

COIMBATORE – 64 021

BCA Degree Examination

(For the candidates admitted from 2018 onwards)

THIRD SEMESTER

First Internal Exam July 2019

 DATA STRUCTURES

Time: 2 Hours Maximum: 50 Marks

Date&Session: CLASS: II BCA(A&B)

Part – A (20 X 1 = 20 Marks)

Answer ALL Questions

1.The tool useful for specifying the logical properties of datatype is___________

 a)abstract data type b)datatype c)data structure d)algorithm

2.The group of items identified by its own identifier is known as____________

 a)member of structure b)structure c)record d)field

3.An order collection of items is called______________

 a)stack b)array c)list d)queue

4.The operation to perform add items in stack using_______

 a)add element b)pop c)pop the element d)pushdown

5.The operation to perform deleting items in stack using_________

 a)pushdownlist b)list the element c)delete item d)push

6.When the stack has zero elements then it can be called as_________

 a)stack zero b)zero element c)no element d)stack empty

7.The operator “+”between the operand Aand B is called_____________

 a)infix b)precedence c)add the operand d)combine operand

8.An ordered collection of items from the front is called__________

 a)queue b)double link c)priority queue d)descending queue

9.__________is any data representation and its associated operations.

 a)data structure b)datatype c)data declaration d)object.

10.Which one of the following is a LIFO list?

 a)Stack b)Queue c)Linked list d)Circular list

11.The items may be inserted at one end of queue which is called

 a)front b)rear c)top d)avail

12. The Complexity of linear search

 a)O(n) b)O(log n) c)O(n log n) d)O(n
2
)

13.In linear list each node has pointers to point to the predecessor and successors then node is

called______

 a)singly linked list b)circular linked list c)doubly linked list d)linear linked list

14. A linear collection of data elements where the linear node is given by means of pointer is

called

 a) linked list b) node list c) primitive list d)array

15.The expression AB/C-DE*+AC*- is called

 a)postfix b)prefix c)infix d)expn

16.A BST is traversed in the following order recursively: Right, root, left . The output sequence

will be in

 a) Ascending order b) Descending order c) Bitomic sequence d) No specific order

17.The expression AB-B+CE*+A-D*- is called

 a)postfix b)prefix c)infix d)expn

18.Stacks and queues are

 a)primitive data structure b)non-primitive data structure

 c)non-linear data structure d)data types

19. Which one is not Divide and Conquer algorithm?

 a)2-way merge sort b)quick sort c)selection sort d)insertion sort

20. Stack organization is

 a)FIFO b)LILO c)LIFO d)FILO

Part – B(3X 2= 6 Marks)

Answer ALL Questions

21. Define Array with suitable example.

An ARRAY is a data structure that contains a group of elements. Typically these

elements are all of the same data type, such as an integer or string. Arrays are commonly used in

computer programs to organize data so that a related set of values can be easily sorted or

searched.

22. List out the applications of Stack.

 Applications of Stack

Expression Evaluation
Stack is used to evaluate prefix, postfix and infix expressions.

 Expression Conversion

An expression can be represented in prefix, postfix or infix notation. Stack can be used to

convert one form of expression to another.

https://techterms.com/definition/datatype
https://techterms.com/definition/integer
https://techterms.com/definition/string

Syntax Parsing
Many compilers use a stack for parsing the syntax of expressions, program blocks etc. before

translating into low level code.

 Backtracking

Suppose we are finding a path for solving maze problem. We choose a path and after following it

we realize that it is wrong. Now we need to go back to the beginning of the path to start with new

path. This can be done with the help of stack.

 Parenthesis Checking

Stack is used to check the proper opening and closing of parenthesis.

String Reversal
Stack is used to reverse a string. We push the characters of string one by one into stack and then

pop character from stack.

 Function Call

Stack is used to keep information about the active functions or subroutines.

23. Define Linked List.

 A Linked list is a linear collection of data elements, whose order is not given by their

physical placement in memory. Instead, each element points to the next. ... In its most basic

form, each node contains: data, and a reference (in other words, a link) to the next node in the

sequence.

Part – C(3X 8= 24 Marks)

Answer ALL Questions

24.(a)Explain arrays in c with example.

 An Array is a group (or collection) of same data types. For example an int array holds

the elements of int

types while a float array holds the elements of float types.

How to declare Array in C

int num[35]; /* An integer array of 35 elements */

char ch[10]; /* An array of characters for 10 elements */

Similarly an array can be of any data type such as double, float, short etc.

How to access element of an array in C

int mydata[20]; mydata[0] /* first element of array mydata*/ mydata[19] /* last (20th) element of

array mydata*/

Example of Array In C programming to find out the average of 4 integers

#include <stdio.h>

int main()

 {

int avg = 0;

int sum =0;

int x=0;

/* Array- declaration – length 4*/

int num[4];

/* We are using a for loop to traverse through the array

* while storing the entered values in the array

*/

for (x=0; x<4;x++) { printf("Enter number %d \n", (x+1)); scanf("%d", &num[x]); }

for (x=0; x<4;x++) { sum = sum+num[x]; } avg = sum/4; printf("Average of entered number is:

%d", avg);

return 0;

}

Output:

Enter number 1

10

Enter number 2

10

Enter number 3

20

Enter number 4

40

Average of entered number is: 20

 (b) Discuss about Singly Linked List with Suitable example.

 A linked list is a way to store a collection of elements. Like an array these can be

character or integers. Each element in a linked list is stored in the form of a node.

Node:

A node is a collection of two sub-elements or parts. A data part that stores the element and

a next part that stores the link to the next node.

Linked List:

A linked list is formed when many such nodes are linked together to form a chain. Each node

points to the next node present in the order. The first node is always used as a reference to

traverse the list and is called HEAD. The last node points to NULL.

Declaring a Linked list :

In C language, a linked list can be implemented using structure and pointers .

struct LinkedList{

 int data;

 struct LinkedList *next;

 };

The above definition is used to create every node in the list. The data field stores the element

and the next is a pointer to store the address of the next node.

Noticed something unusual with next?

In place of a data type, struct LinkedList is written before next. That's because its a self-

referencing pointer. It means a pointer that points to whatever it is a part of. Here next is a part

of a node and it will point to the next node.

Creating a Node:

Let's define a data type of struct LinkedListto make code cleaner.

typedef struct LinkedList *node; //Define node as pointer of data type struct LinkedList

node createNode(){

 node temp; // declare a node

 temp = (node)malloc(sizeof(struct LinkedList)); // allocate memory using malloc()

 temp->next = NULL;// make next point to NULL

 return temp;//return the new node

}

typedef is used to define a data type in C.

malloc() is used to dynamically allocate a single block of memory in C, it is available in the

header file stdlib.h.

sizeof() is used to determine size in bytes of an element in C. Here it is used to determine size of

each node and sent as a parameter to malloc.

The above code will create a node with data as value and next pointing to NULL.

Let's see how to add a node to the linked list:

node addNode(node head, int value){

 node temp,p;// declare two nodes temp and p

 temp = createNode();//createNode will return a new node with data = value and next pointing

to NULL.

 temp->data = value; // add element's value to data part of node

 if(head == NULL){

 head = temp; //when linked list is empty

 }

 else{

 p = head;//assign head to p

 while(p->next != NULL){

 p = p->next;//traverse the list until p is the last node.The last node always points to

NULL.

 }

 p->next = temp;//Point the previous last node to the new node created.

 }

 return head;

}

Here the new node will always be added after the last node. This is known as inserting a node at

the rear end.

This type of linked list is known as simple or singly linked list. A simple linked list can be

traversed in only one direction from head to the last node.

The last node is checked by the condition :

p->next = NULL;

Here -> is used to access next sub element of node p. NULL denotes no node exists after the

current node , i.e. its the end of the list.

Traversing the list:

The linked list can be traversed in a while loop by using the head node as a starting reference:

node p;

p = head;

while(p != NULL){

 p = p->next;

}

25.(a) Explain the stack in c with example

 A STACK is a data structure which is used to store data in a particular order.

 Two operations that can be

performed on a Stack are:

Push operation which inserts an element into the stack.

 Pop operation which removes the last element that was added into the stack.

It follows Last In First Out(LIFO) Order.

#include <stdio.h>

#define MAXSIZE 5

struct stack

{

int stk[MAXSIZE];

int top;

};

typedef struct stack STACK;

STACK s;

void push(void);

int pop(void);

void display(void);

void main ()

{

int choice;

int option = 1;

s.top = -1;

printf ("STACK OPERATION\n");

while (option)

{

printf ("--\n");

printf (" 1 --> PUSH \n");

printf (" 2 --> POP \n");

printf (" 3 --> DISPLAY \n");

printf (" 4 --> EXIT \n");

printf ("--\n");

printf ("Enter your choice\n");

scanf ("%d", &choice);

switch (choice)

{

case 1:

push();

break;

case 2:

pop();

break;

case 3:

display();

break;

case 4:

return;

}

fflush (stdin);

printf ("Do you want to continue(Type 0 or 1)?\n");

scanf ("%d", &option);

}

}

/* Function to add an element to the stack */

void push ()

{

int num;

if (s.top == (MAXSIZE - 1))

{

printf ("Stack is Full\n");

return;

}

else

{

printf ("Enter the element to be pushed\n");

scanf ("%d", &num);

s.top = s.top + 1;

s.stk[s.top] = num;

}

return;

}

/* Function to delete an element from the stack */

int pop ()

{

int num;

if (s.top == - 1)

{

printf ("Stack is Empty\n");

return (s.top);

}

else

{

num = s.stk[s.top];

printf ("poped element is = %dn", s.stk[s.top]);

s.top = s.top - 1;

}

return(num);

}

/* Function to display the status of the stack */

void display ()

{

int i;

if (s.top == -1)

{

printf ("Stack is empty\n");

return;

}

else

{

printf ("\n The status of the stack is \n");

for (i = s.top; i >= 0; i--)

{

printf ("%d\n", s.stk[i]);

}

}

printf ("\n");

}

OUTPUT

STACK OPERATION

--

1 --> PUSH

2 --> POP

3 --> DISPLAY

4 --> EXIT

--

Enter your choice

1

Enter the element to be pushed

34

Do you want to continue(Type 0 or 1)?

0

$ a.out

STACK OPERATION

--

1 --> PUSH

2 --> POP

3 --> DISPLAY

4 --> EXIT

--

Enter your choice

1

Enter the element to be pushed

34

Do you want to continue(Type 0 or 1)?

1

--

1 --> PUSH

2 --> POP

3 --> DISPLAY

4 --> EXIT

--

Enter your choice

2

poped element is = 34

 (b) Discuss the representation of queue in c with example

 #include <stdio.h>

#define MAX 50

int queue_array[MAX];

int rear = - 1;

int front = - 1;

main()

{

int choice;

while (1)

{

printf("1.Insert element to queue \n");

printf("2.Delete element from queue \n");

printf("3.Display all elements of queue \n");

printf("4.Quit \n");

printf("Enter your choice : ");

scanf("%d", &choice);

switch (choice)

{

case 1:

insert();

break;

case 2:

delete();

break;

case 3:

display();

break;

case 4:

exit(1);

default:

printf("Wrong choice \n");

} /*End of switch*/

} /*End of while*/

} /*End of main()*/

insert()

{

int add_item;

if (rear == MAX - 1)

printf("Queue Overflow \n");

else

{

if (front == - 1)

/*If queue is initially empty */

front = 0;

printf("Inset the element in queue : ");

scanf("%d", &add_item);

rear = rear + 1;

queue_array[rear] = add_item;

}

} /*End of insert()*/

delete()

{

if (front == - 1 || front > rear)

{

printf("Queue Underflow \n");

return ;

}

else

{

printf("Element deleted from queue is : %d\n", queue_array[front]);

front = front + 1;

}

} /*End of delete() */

display()

{

int i;

if (front == - 1)

printf("Queue is empty \n");

else

{

printf("Queue is : \n");

for (i = front; i <= rear; i++)

printf("%d ", queue_array[i]);

printf("\n");

}

}

OUTPUT

1.Insert element to queue

2.Delete element from queue

3.Display all elements of queue

4.Quit

Enter your choice : 1

Inset the element in queue : 10

1.Insert element to queue

2.Delete element from queue

3.Display all elements of queue

4.Quit

Enter your choice : 1

Inset the element in queue : 15

26.(a) Explain the data structures in C Programming Language.

 A Data Structure is a specialized format for organizing and storing data. General data

structure types include the array, the file, the record, the table, the tree, and so on. Any data

structure is designed to organize data to suit a specific purpose so that it can be accessed and

worked with in appropriate ways.

In computer programming, a data structure may be selected or designed to store data for the

purpose of working on it with various algorithms.

Data structures are used to store data in a computer in an organized form. In C language

Different types of

DATA STRUCTURES ARE; ARRAY, STACK, QUEUE, LINKED LIST, TREE.

 Array: Array is collection of similar data type, you can insert and deleted element form array

without follow any order.

 Stack: Stack work on the basis of Last-In-First-Out (LIFO). Last entered element removed

first.

 Queue: Queue work on the basis of First-In-First-Out (FIFO). First entered element removed

first.

 Linked List: Linked list is the collection of node, Here you can insert and delete data in any

order.

 Tree: Stores data in a non linear form with one root node and sub nodes.

Algorithm

An algorithm is a finite set instruction, which is written for solve any problem. Algorithm is not

the complete code or

program

Array in Data Structure

An Array is a collection of similar data type value in a single variable. An array is a derived data

type in C, which is

constructed from fundamental data type of C language.

Insert element in array at specific position.

 (b) Write a C program to perform linked list(Any 2 Operations).

C program to implement linked list

#include <stdio.h>

#include <stdlib.h>

struct node

{

int data;

struct node *next;

};

struct node *start = NULL;

void insert_at_begin(int);

void insert_at_end(int);

void traverse();

void delete_from_begin();

void delete_from_end();

int count = 0;

int main ()

{

int input, data;

for (;;)

{

printf("1. Insert an element at beginning of linked list.\n");

printf("2. Insert an element at end of linked list.\n");

printf("3. Traverse linked list.\n");

printf("4. Delete element from beginning.\n");

printf("5. Delete element from end.\n");

printf("6. Exit\n");

scanf("%d", &input);

if (input == 1)

{

printf("Enter value of element\n");

scanf("%d", &data);

insert_at_begin(data);

}

else if (input == 2)

{

printf("Enter value of element\n");

scanf("%d", &data);

insert_at_end(data);

}

else if (input == 3)

traverse();

else if (input == 4)

delete_from_begin();

else if (input == 5)

delete_from_end();

else if (input == 6)

break;

else

printf("Please enter valid input.\n");

}

return 0;

}

void insert_at_begin(int x)

 {

struct node *t;

t = (struct node*)malloc(sizeof(struct node));

count++;

if (start == NULL)

{

start = t;

start->data = x;

start->next = NULL;

return;

}

t->data = x;

t->next = start;

start = t;

}

void insert_at_end(int x)

{

struct node *t, *temp;

t = (struct node*)malloc(sizeof(struct node));

count++;

if (start == NULL) {

start = t;

start->data = x;

start->next = NULL;

return;

}

temp = start;

while (temp->next != NULL)

temp = temp->next;

temp->next = t;

t->data = x;

t->next = NULL;

}

void traverse()

{

struct node *t;

t = start;

if (t == NULL)

{

printf("Linked list is empty.\n");

return;

}

printf("There are %d elements in linked list.\n", count);

while (t->next != NULL) {

printf("%d\n", t->data);

t = t->next;

}

printf("%d\n", t->data);

}

void delete_from_begin()

{

struct node *t;

int n;

if (start == NULL)

{

printf("Linked list is already empty.\n");

return;

}

n = start->data;

t = start->next;

free(start);

start = t;

count--;

printf("%d deleted from beginning successfully.\n", n);

}

void delete_from_end()

{

struct node *t, *u;

int n;

if (start == NULL)

{

printf("Linked list is already empty.\n");

return;

}

count--;

if (start->next == NULL)

{

n = start->data;

free(start);

start = NULL;

printf("%d deleted from end successfully.\n", n);

return;

}

t = start;

while (t->next != NULL)

{

u = t;

t = t->next;

}

n = t->data;

u->next = NULL;

free(t);

printf("%d deleted from end successfully.\n", n);

}

Reg No. ………………………

[18CAU301]
KARPAGAM ACADEMY OF HIGHER EDUCATION

(Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

BCA Degree Examination

(For the candidates admitted from 2018 onwards)

Third Semester

Second Internal Exam

DATA STRUCTURES

Time: 2 Hours Maximum: 50 Marks

Date: 28.08.19 Class: II BCA(A&B)

Part – A (20 X 1 = 20 Marks)

Answer ALL Questions

1. Which item may be deleted at one end is called of the queue

a. Stack b. Front c. Rear d. List

2.Queue organization is

a. LIFO b. FIFO c. LILO d. FILO

3. ______priority queue is similar but allows deletion of only the largest item

a. Ascending b. Descending c. Similar d. Abstract

4. Each item in the list is called

a. node b. file c. field d. data

5. This is used to signal the end of the list

a. Empty List b. Null Pointer c. Node d. Linked List

6. List is a dynamic

a. Dynamic b. Stack c. Queue d. Data Structure

7. hold actual element on the list

a. Information b. Next Address c. Data d. Abstract

8. field contains the address of the next node in the last

a. Information b. Next Address c. Data d. Abstract

9. Self address of the next item is called

a. Node b. Stack c. Queue d. Linked List

10. A is a finite set of element

a. Binary Tree b. Tree c. Linked List d. Queue

11. The first subset contains a single element called of the tree

a. Insertion b. Deletion c. Root d. Recursive

12. Two nodes are if they are left and right sons of the same father

a. Root b. Brothers c. Leaf d. Depth

13. The of the binary tree is the maximum level of any leaf in the tree

a. Root b. Brothers c. Leaf d. Depth

14. Binary tree of depth d is an almost binary tree

a. Threaded b. Complete c. Height Balance d. Traversals

15. To traverse a non-empty binary tree in

a. Preorder b. In order c. Post Order d .Depth Second Order

16. Both the linked array representation and the dynamic node representation are implementation

of an abstract___

a. Array Representation b. Queue Representation c .Tree Representation d .Linked Representation

17. is used to link a node to its left or right sub-tree

a. Array b. Thread c. Stack d. Node

18. A is a finite non-empty set of commands

a. Binary Tree b. Tree c. Linked List d. Queue

19. A node with no sub-trees is a

a. Root b. Brothers c. Leaf d. Depth

20. An is define as a tree in which the sub-trees of each node from an ordered set

a. Ordered tree b. In ordered tree c. Deletion tree d. Insertion tree

Part-B[3*2=6 Marks]

Answer all the questions

21. Define Priority Queue.

 22. Mention the two fields of Linked List.

23. List out the Terminologies of TREE.

Part-C[3*8=24 Marks]

Answer all the questions

 24. a) Explain Linked List with an Example.

OR

 b) Write about the Inserting and Removing node from a List.

25.a)Explain Queue with example.

OR

 b) Write a C program for Implementing Queue Operations (any2).

 26.a)Write a C program for Binary Search Tree(any2).

OR

 b) Discuss the representation of tree using c with example.

Reg No. ………………………

[18CAU301]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

BCA Degree Examination

(For the candidates admitted from 2018onwards)

Third Semester

Second Internal Exam

DATA STRUCTURES

Time: 2 Hours Maximum: 50 Marks

Date: Class: II BCA(A&B)

Part – A (20 X 1 = 20 Marks)

Answer ALL Questions

1. Which item may be deleted at one end is called of the queue

a. stack b. front c. rear d. list

2.Queue organization is

a. LIFO b. FIFO c. LILO d. FILO

3. ______priority queue is similar but allows deletion of only the largest item

a. ascending b. descending c. similar d. abstract

4. Each item in the list is called

a. node b. file c. field d. data

5. This is used to signal the end of the list

a. empty list b. null pointer c. node d. linked list

6. List is a dynamic

a. dynamic b. stack c. queue d. data structure

7. hold actual element on the list

a. information b. next address c. data d. abstract

8. field contains the address of the next node in the last

a. information b. next address c. data d. abstract

9. Self address of the next item is called

a. node b. stack c. queue d. linked list

10. A is a finite set of element

a. binary tree b. tree c. linked list d. queue

11. The first subset contains a single element called of the tree

a. insertion b. deletion c. root d. recursive

12. Two nodes are if they are left and right sons of the same father

a. root b. brothers c. leaf d. depth

13. The of the binary tree is the maximum level of any leaf in the tree

a. root b. brothers c. leaf d. depth

14. Binary tree of depth d is an almost binary tree

a. threaded b. complete c. height balance d. traversals

15. To traverse a non-empty binary tree in

a. preorder b. inorder c.post order d .depth second order

16. Both the linked array representation and the dynamic node representation are implementation of an abstract

a. array representation b. queue representation c .tree representation d .linked representation

17. is used to link a node to its left or right sub-tree

a. array b. thread c. stack d. node

18. A is a finite non-empty set of commands

a. binary tree b. tree c.linked list d. queue

19. A node with no sub-trees is a

a. root b. brothers c. leaf d. depth

20. An is define as a tree in which the sub-trees of each node from an ordered set

a. ordered tree b. inordered tree c. deletion tree d. insertion tree

21. Define Priority Queue.

Part-B [3*2=6 Marks]

Answer all the questions

 A priority queue is an abstract data type which is like a regular queue or stack data structure, but where

additionally each element has a "priority" associated with it.

 In a priority queue, an element with high priority is served before an element with low priority.

22.Mention the two fields of LinkedList.

 A doubly linked list is a linked data structure that consists of a set of sequentially linked records called

nodes.

 Each node contains two fields, called links, that are references to the previous and to the next node in the

sequence of nodes.

23.List out the Applications of TREE.

a.Manipulate hierarchical data.

b.Make information easy to search (see tree traversal).

c.Manipulate sorted lists of data.

d.As a workflow for compositing digital images for visual effects.

e.Router algorithms

Part-B [3*2=6 Marks]

Answer all the questions

 Explain Linked List with an Example.

A linked list is a dynamic data structure.

The number of nodes in a list is not fixed and can grow and shrink on demand.

Any application which has to deal with an unknown number of objects will need to use a linked list.

Types of Linked Lists

A singly linked list is described above

A doubly linked list is a list that has two references, one to the next node and another to previous node.

Another important type of a linked list is called a circular linked list where last node of the list points back to

the first node (or the head) of the list.

Linked List Operations

addFirst

The method creates a node and prepends it at the beginning of the list.

Traversing

Start with the head and access each node until you reach null. Do not change the head reference.

addLast

The method appends the node to the end of the list. This requires traversing, but make sure you stop at the last

node

Inserting "after"

Find a node containing "key" and insert a new node after it. In the picture below, we insert a new node after "e":

Inserting "before"

Find a node containing "key" and insert a new node before that node. In the picture below, we insert a new node

before "a":

Deletion

Find a node containing "key" and delete it. In the picture below we delete a node containing "A"

The algorithm is similar to insert "before" algorithm. It is convinient to use two references prev and cur. When we

move along the list we shift these two references, keeping prev one step before cur. We continue until cur reaches
the node which we need to delete. There are three exceptional cases, we need to take care of:

1. list is empty

2. delete the head node

3. node is not in the list

 Write about the iserting and removing node from a list.

Insertion In Linked list

There are three situation for inserting element in list.

1. Insertion at the front of list.

2. Insertion in the middle of the list.

3. Insertion at the end of the list.

Procedure For Inserting an element to linked list

Step-1: Get the value for NEW node to be added to the list and its position.

Step-2: Create a NEW, empty node by calling malloc(). If malloc() returns no error then go to step-3 or else say

"Memory shortage".

Step-3: insert the data value inside the NEW node's data field.

Step-4: Add this NEW node at the desired position (pointed by the "location") in the LIST.

Step-5: Go to step-1 till you have more values to be added to the LIST.

Insertion Node In Linked List

void insert(node *ptr, int data)

{

/* Iterate through the list till we encounter the last node.*/

while(ptr->next!=NULL)

{

ptr = ptr -> next;

}

/* Allocate memory for the new node and put data in it.*/

ptr->next = (node *)malloc(sizeof(node));

ptr = ptr->next;

ptr->data = data;

ptr->next = NULL;

}

Insertion at the front of list

Insertion Node in given location Linked List

Insertion at the end of the list.

 Explain Queue with example.

 The order is First In First Out (FIFO).

 A good example of queue is any queue of consumers for a resource where the consumer that came first is
served first.

The difference between stacks and queues is in removing.

 In a stack we remove the item the most recently added; in a queue, we remove the item the least recently
added.

Operations on Queue:

Mainly the following four basic operations are performed on queue:

Enqueue: Adds an item to the queue. If the queue is full, then it is said to be an Overflow condition.

Dequeue: Removes an item from the queue. The items are popped in the same order in which they are pushed. If

the queue is empty, then it is said to be an Underflow condition.

Front: Get the front item from queue.

Rear: Get the last item from queue.

Applications of Queue:

Queue is used when things don’t have to be processed immediatly, but have to be processed in First InFirst Out

order like Breadth First Search. This property of Queue makes it also useful in following kind of scenarios.

1) When a resource is shared among multiple consumers. Examples include CPU scheduling, Disk Scheduling.

2) When data is transferred asynchronously (data not necessarily received at same rate as sent) between two

processes. Examples include IO Buffers, pipes, file IO, etc.

Array implementation Of Queue

For implementing queue, we need to keep track of two indices, front and rear. We enqueue an item at the rear and

dequeue an item from front. If we simply increment front and rear indices, then there may be problems, front may

reach end of the array. The solution to this problem is to increase front and rear in circular manner.

// C program for array implementation of queue

#include <stdio.h>

#include <stdlib.h>

#include <limits.h>

// A structure to represent a queue

struct Queue

{

int front, rear, size;

unsigned capacity;

int* array;

};

// function to create a queue of given capacity.

// It initializes size of queue as 0

struct Queue* createQueue(unsigned capacity)

{

struct Queue* queue = (struct Queue*) malloc(sizeof(struct Queue));

queue->capacity = capacity;

queue->front = queue->size = 0;

queue->rear = capacity - 1; // This is important, see the enqueue

queue->array = (int*) malloc(queue->capacity * sizeof(int));

return queue;

}

// Queue is full when size becomes equal to the capacity

int isFull(struct Queue* queue)

{ return (queue->size == queue->capacity); }

// Queue is empty when size is 0

int isEmpty(struct Queue* queue)

{ return (queue->size == 0); }

// Function to add an item to the queue.

// It changes rear and size

void enqueue(struct Queue* queue, int item)

{

if (isFull(queue))

return;

queue->rear = (queue->rear + 1)%queue->capacity;

queue->array[queue->rear] = item;

queue->size = queue->size + 1;

printf("%d enqueued to queue\n", item);

}

// Function to remove an item from queue.

// It changes front and size

int dequeue(struct Queue* queue)

{

if (isEmpty(queue))

return INT_MIN;

int item = queue->array[queue->front];

queue->front = (queue->front + 1)%queue->capacity;

queue->size = queue->size - 1;

return item;

}

// Function to get front of queue

int front(struct Queue* queue)

{

if (isEmpty(queue))

return INT_MIN;

return queue->array[queue->front];

}

// Function to get rear of queue

int rear(struct Queue* queue)

{

if (isEmpty(queue))

return INT_MIN;

return queue->array[queue->rear];

}

// Driver program to test above functions./

int main()

{

struct Queue* queue = createQueue(1000);

enqueue(queue, 10);

enqueue(queue, 20);

enqueue(queue, 30);

enqueue(queue, 40);

printf("%d dequeued from queue\n", dequeue(queue));

printf("Front item is %d\n", front(queue));

printf("Rear item is %d\n", rear(queue));

return 0;

}

Output:

10 enqueued to queue

20 enqueued to queue

30 enqueued to queue

40 enqueued to queue
10 dequeued from queue

Front item is 20

Rear item is 40

24.b) Discuss the representation of tree using c with example.

A tree data structure can be defined recursively (locally) as a collection of nodes(starting at a root node), where

each node is a data structure consisting of a value, together with a list of references to nodes (the "children"), with

the constraints that no reference is duplicated, and none points to the root.

Alternatively, a tree can be defined abstractly as a whole (globally) as an ordered tree, with a value assigned to

each node. Both these perspectives are useful: while a tree can be analyzed mathematically as a whole, when

actually represented as a data structure it is usually represented and worked with separately by node (rather than as

a set of nodes and an adjacency list of edges between nodes

Root

Child

Parent

The top node in a tree.

A node directly connected to another node when moving away from the Root.

The converse notion of a child.

Siblings

A group of nodes with the same parent.

Descendant

A node reachable by repeated proceeding from parent to child.

Ancestor

A node reachable by repeated proceeding from child to parent.

Leaf

(less commonly called External node)

A node with no children.

Branch

Internal node

A node with at least one child.

Degree

Edge

Path

Level

The number of subtrees of a node.

The connection between one node and another.

A sequence of nodes and edges connecting a node with a descendant.

The level of a node is defined by 1 + (the number of connections between the node and the root).

Height of node

The height of a node is the number of edges on the longest path between that node and a leaf.

Height of tree

The height of a tree is the height of its root node.

Depth

The depth of a node is the number of edges from the tree's root node to the node.

 Write a program to perform binary tree using c.

#include <stdio.h>

#include <stdlib.h>

struct btnode

{

int value;

struct btnode *l;

struct btnode *r;

}*root = NULL, *temp = NULL, *t2, *t1;

void delete1();

void insert();

void delete();

void inorder(struct btnode *t);

void create();

void search(struct btnode *t);

void preorder(struct btnode *t);

void postorder(struct btnode *t);

void search1(struct btnode *t,int data);

int smallest(struct btnode *t);

int largest(struct btnode *t);

int flag = 1;

void main()

{

int ch;

printf("\nOPERATIONS ---");

printf("\n1 - Insert an element into tree\n");

printf("2 - Delete an element from the tree\n");

printf("3 - Inorder Traversal\n");

printf("4 - Preorder Traversal\n");

printf("5 - Postorder Traversal\n");

printf("6 - Exit\n");

while(1)

{

printf("\nEnter your choice : ");

scanf("%d", &ch);

switch (ch)

{

case 1:

insert();

break;

case 2:

delete();

break;

case 3:

inorder(root);

break;

case 4:

preorder(root);

break;

case 5:

postorder(root);

break;

case 6:

exit(0);

default :

printf("Wrong choice, Please enter correct choice ");

break;

}

}

}

/* To insert a node in the tree */

void insert()

{

create();

if (root == NULL)

root = temp;

else

search(root);

}

/* To create a node */

void create()

{

int data;

printf("Enter data of node to be inserted : ");

scanf("%d", &data);

temp = (struct btnode *)malloc(1*sizeof(struct btnode));

temp->value = data;

temp->l = temp->r = NULL;

}

/* Function to search the appropriate position to insert the new node */

void search(struct btnode *t)

{

if ((temp->value > t->value) && (t->r != NULL)) /* value more than root node value insert at right

*/

search(t->r);

else if ((temp->value > t->value) && (t->r == NULL))

t->r = temp;

else if ((temp->value < t->value) && (t->l != NULL)) /* value less than root node value insert at left

*/

search(t->l);

else if ((temp->value < t->value) && (t->l == NULL))

t->l = temp;

}

/* recursive function to perform inorder traversal of tree */

void inorder(struct btnode *t)

{

if (root == NULL)

{

printf("No elements in a tree to display");

return;

}

if (t->l != NULL)

inorder(t->l);

printf("%d -> ", t->value);

if (t->r != NULL)

inorder(t->r);

}

/* To check for the deleted node */

void delete()

{

int data;

if (root == NULL)

{

printf("No elements in a tree to delete");

return;

}

printf("Enter the data to be deleted : ");

scanf("%d", &data);

t1 = root;

t2 = root;

search1(root, data);

}

/* To find the preorder traversal */

void preorder(struct btnode *t)

{

if (root == NULL)

{

printf("No elements in a tree to display");

return;

}

printf("%d -> ", t->value);

if (t->l != NULL)

preorder(t->l);

if (t->r != NULL)

preorder(t->r);

}

/* To find the postorder traversal */

void postorder(struct btnode *t)

{

if (root == NULL)

{

printf("No elements in a tree to display ");

return;

}

if (t->l != NULL)

postorder(t->l);

if (t->r != NULL)

postorder(t->r);

printf("%d -> ", t->value);

}

/* Search for the appropriate position to insert the new node */

void search1(struct btnode *t, int data)

{

if ((data>t->value))

{

t1 = t;

search1(t->r, data);

}

else if ((data < t->value))

{

t1 = t;

search1(t->l, data);

}

else if ((data==t->value))

{

delete1(t);

}

}

/* To delete a node */

void delete1(struct btnode *t)

{

int k;

/* To delete leaf node */

if ((t->l == NULL) && (t->r == NULL))

{

if (t1->l == t)

{

t1->l = NULL;

}

else

{

t1->r = NULL;

}

t = NULL;

free(t);

return;

}

/* To delete node having one left hand child */

else if ((t->r == NULL))

{

if (t1 == t)

{

root = t->l;

t1 = root;

}

else if (t1->l == t)

{

t1->l = t->l;

}

else

{

t1->r = t->l;

}

t = NULL;

free(t);

return;

}

/* To delete node having right hand child */

else if (t->l == NULL)

{

if (t1 == t)

{

root = t->r;

t1 = root;

}

else if (t1->r == t)

t1->r = t->r;

else

t1->l = t->r;

t == NULL;

free(t);

return;

}

/* To delete node having two child */

else if ((t->l != NULL) && (t->r != NULL))

{

t2 = root;

if (t->r != NULL)

{

k = smallest(t->r);

flag = 1;

}

else

{

k =largest(t->l);

flag = 2;

}

search1(root, k);

t->value = k;

}

}

/* To find the smallest element in the right sub tree */

int smallest(struct btnode *t)

{

t2 = t;

if (t->l != NULL)

{

t2 = t;

return(smallest(t->l));

}

else

return (t->value);

}

/* To find the largest element in the left sub tree */

int largest(struct btnode *t)

{

if (t->r != NULL)

{

t2 = t;

return(largest(t->r));

}

else

return(t->value);

}

$ cc tree43.c

$ a.out

OPERATIONS ---

1 - Insert an element into tree

2 - Delete an element from the tree

3 - Inorder Traversal

4 - Preorder Traversal

5 - Postorder Traversal

6 - Exit

Enter your choice : 1

Enter data of node to be inserted : 40

Enter your choice : 1

Enter data of node to be inserted : 20

Enter your choice : 1

Enter data of node to be inserted : 10

Enter your choice : 1

Enter data of node to be inserted : 30

Enter your choice : 1

Enter data of node to be inserted : 60

Enter your choice : 1

Enter data of node to be inserted : 80

Enter your choice : 1

Enter data of node to be inserted : 90

Enter your choice : 3

10 -> 20 -> 30 -> 40 -> 60 -> 80 -> 90 ->

40

/\

/ \

20 60

/ \ \

10 30 80

\

 90

 Write a program for binary search tree using c.

#include <stdio.h>

#include <stdlib.h>

struct btnode

{

int value;

struct btnode *l;

struct btnode *r;

}*root = NULL, *temp = NULL, *t2, *t1;

void delete1();

void insert();

void delete();

void inorder(struct btnode *t);

void create();

void search(struct btnode *t);

void preorder(struct btnode *t);

void postorder(struct btnode *t);

void search1(struct btnode *t,int data);

int smallest(struct btnode *t);

int largest(struct btnode *t);

int flag = 1;

void main()

{

int ch;

printf("\nOPERATIONS ---");

printf("\n1 - Insert an element into tree\n");

printf("2 - Delete an element from the tree\n");

printf("3 - Inorder Traversal\n");

printf("4 - Preorder Traversal\n");

printf("5 - Postorder Traversal\n");

printf("6 - Exit\n");

while(1)

{

printf("\nEnter your choice : ");

scanf("%d", &ch);

switch (ch)

{

case 1:

insert();

break;

case 2:

delete();

break;

case 3:

inorder(root);

break;

case 4:

preorder(root);

break;

case 5:

postorder(root);

break;

case 6:

exit(0);

default :

printf("Wrong choice, Please enter correct choice ");

break;

}

}

}

/* To insert a node in the tree */

void insert()

{

create();

if (root == NULL)

root = temp;

else

search(root);

}

/* To create a node */

void create()

{

int data;

printf("Enter data of node to be inserted : ");

scanf("%d", &data);

temp = (struct btnode *)malloc(1*sizeof(struct btnode));

temp->value = data;

temp->l = temp->r = NULL;

}

/* Function to search the appropriate position to insert the new node */

void search(struct btnode *t)

{

if ((temp->value > t->value) && (t->r != NULL)) /* value more than root node value insert at right

*/

search(t->r);

else if ((temp->value > t->value) && (t->r == NULL))

t->r = temp;

else if ((temp->value < t->value) && (t->l != NULL)) /* value less than root node value insert at left

*/

search(t->l);

else if ((temp->value < t->value) && (t->l == NULL))

t->l = temp;

}

/* recursive function to perform inorder traversal of tree */

void inorder(struct btnode *t)

{

if (root == NULL)

{

printf("No elements in a tree to display");

return;

}

if (t->l != NULL)

inorder(t->l);

printf("%d -> ", t->value);

if (t->r != NULL)

inorder(t->r);

}

/* To check for the deleted node */

void delete()

{

int data;

if (root == NULL)

{

printf("No elements in a tree to delete");

return;

}

printf("Enter the data to be deleted : ");

scanf("%d", &data);

t1 = root;

t2 = root;

search1(root, data);

}

/* To find the preorder traversal */

void preorder(struct btnode *t)

{

if (root == NULL)

{

printf("No elements in a tree to display");

return;

}

printf("%d -> ", t->value);

if (t->l != NULL)

preorder(t->l);

if (t->r != NULL)

preorder(t->r);

}

/* To find the postorder traversal */

void postorder(struct btnode *t)

{

if (root == NULL)

{

printf("No elements in a tree to display ");

return;

}

if (t->l != NULL)

postorder(t->l);

if (t->r != NULL)

postorder(t->r);

printf("%d -> ", t->value);

}

/* Search for the appropriate position to insert the new node */

void search1(struct btnode *t, int data)

{

if ((data>t->value))

{

t1 = t;

search1(t->r, data);

}

else if ((data < t->value))

{

t1 = t;

search1(t->l, data);

}

else if ((data==t->value))

{

delete1(t);

}

}

/* To delete a node */

void delete1(struct btnode *t)

{

int k;

/* To delete leaf node */

if ((t->l == NULL) && (t->r == NULL))

{

if (t1->l == t)

{

t1->l = NULL;

}

else

{

t1->r = NULL;

}

t = NULL;

free(t);

return;

}

/* To delete node having one left hand child */

else if ((t->r == NULL))

{

if (t1 == t)

{

root = t->l;

t1 = root;

}

else if (t1->l == t)

{

t1->l = t->l;

}

else

{

t1->r = t->l;

}

t = NULL;

free(t);

return;

}

/* To delete node having right hand child */

else if (t->l == NULL)

{

if (t1 == t)

{

root = t->r;

t1 = root;

}

else if (t1->r == t)

t1->r = t->r;

else

t1->l = t->r;

t == NULL;

free(t);

return;

}

/* To delete node having two child */

else if ((t->l != NULL) && (t->r != NULL))

{

t2 = root;

if (t->r != NULL)

{

k = smallest(t->r);

flag = 1;

}

else

{

k =largest(t->l);

flag = 2;

}

search1(root, k);

t->value = k;

}

}

/* To find the smallest element in the right sub tree */

int smallest(struct btnode *t)

{

t2 = t;

if (t->l != NULL)

{

t2 = t;

return(smallest(t->l));

}

else

return (t->value);

}

/* To find the largest element in the left sub tree */

int largest(struct btnode *t)

{

if (t->r != NULL)

{

t2 = t;

return(largest(t->r));

}

else

return(t->value);

}

OUTPUT:

OPERATIONS ---

1 - Insert an element into tree

2 - Delete an element from the tree

3 - Inorder Traversal

4 - Preorder Traversal

5 - Postorder Traversal

6 - Exit

Enter your choice : 1

Enter data of node to be inserted : 40

Enter your choice : 1

Enter data of node to be inserted : 20

Enter your choice : 1

Enter data of node to be inserted : 10

Enter your choice : 1

Enter data of node to be inserted : 30

Enter your choice : 1

Enter data of node to be inserted : 60

Enter your choice : 1

Enter data of node to be inserted : 80

Enter your choice : 1

Enter data of node to be inserted : 90

Enter your choice : 3

10 -> 20 -> 30 -> 40 -> 60 -> 80 -> 90 ->

40

/\

/ \

20 60

/ \ \

10 30 80

\

90

 Reg.No ----------------------

[18CAU301]
KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

BCA DEGREE EXAMINATION

(For the candidates admitted in 2018 onwards)

THIRD SEMESTER
 III- INTERNAL TEST

 DATA STRUCTURES

Duration:2 hours Maximum Marks:50

Date: Class: II BCA(A&B)

PART-A [20 * 1 = 20 Marks]

Answer ALL the questions

1.In a Hash table the address of the identifier x is obtained by applying

a) sequence of comparisons b)binary searching c)arithmetic function d)collision

2.The partitions of the hash table are called

a)Nodes b)Buckets c)Roots d)Fields

3. The arithmetic functions used for Hashing is called

a)Logical operations b)Rehashing c)Mapping function d)Hashing function

4. Each bucket of Hash table is said to have several

a) sequence of comparisons b)binary searching c)arithmetic function d)collision

5. If the names are in the symbol table, searching is easy.

a)sorted b)short c)bold d)upper case

6. allocation is not desirable for dynamic tables, where insertions and deletions are

allowed.

a)Linear b)Sequential c)Dynamic d)None

7.A search in a hash table with n identifiers may take ------ time

a)O(n) b)O(1) c)O(2) d)O(2n)

8. data structure is used to implement symbol tables

a) directed graphs b)binary search trees c)circular queue d)None

9.A occurs when two non_identical identifiers are hashed in the same bucket.

a)collision b)contraction c)expansion d)Extraction

10.A hashing function f transforms an identifier x into a in the hash table

a)symbol name b)bucket address c)link field d)slot number

11. When a new identifier I is mapped or hashed by the function f into a full bucket then occurs

a)underflow b)overflow c)collision d)rehashing

12. In External sorting data are stored in

a) RAM memory b)Cache memory c)secondary storage devices d)Buffers

13. techniques are used for sorting large files

14. a)Topological sort b)External sorting c)Linear Sorting d)Heap sort

15. 14.In a k-way merging uses only k+1 tapes

a)Internal sorting b)Polyphase merging c)Linking d)Hashing

15. Before merging the next phase is necessary to the output tapes

a)replace b)rewind c)remove d)None

16. To reduce the rewind time it is overlapped with read/write on other tapes. This modification need

a)double the number of tapes (2k tapes) b)only two tapes

c)one additional tape (k+2 tapes) d)k+1 tapes

17. In hash table, if the identifier x has an equal chance of hashing into any of the buckets,

this function is called as _________

a)Equal hash function b)uniform hash function c)Linear hashing function d)unequal

Hashing function

18. Each head node is smaller than the other nodes because it has to retain

a)only a link b) only a link and a record c)only two link d)only the record

19.Each chain in the hash tables will have a

a)tail node b)link node c)head node d)null node

 20.Folding of identifiers from end to end to obtain a hashing function is called _______

a)Shift folding b)boundary folding c)expanded folding d)end to end folding

PART-B [3*2=6Marks]

Answer ALL the questions

 21.What is meant by Preorder & Post Order search?

 22.Define selection Sort.

 23.What is meant by Hashing?

PART-C [3* 8= 24Marks]

Answer ALL the questions

24.A) Write an algorithm for Queue operations.
OR

 B) List the common operations on binary and binary search tree. Write an algorithm with example.

25.A) Explain Insertion sort with example.

OR

 B) Explain quick sort with example.

26.A) Write an algorithm for heap sort with example.

OR

 B) Write an algorithm for merge sort with example.

 Reg.No ----------------------

[18CAU301]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)
(Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021

BCA DEGREE EXAMINATION

(For the candidates admitted in 2018 onwards)
Third Semester

 III- INTERNAL TEST

 DATA STRUCTURES

Duration:2 hours Maximum Marks:50

Date: Class: II BCA(A&B)

PART-A [20 * 1 = 20 Marks]

Answer ALL the questions

1.In a Hash table the address of the identifier x is obtained by applying

a) sequence of comparisons b)binary searching c)arithmetic function d)collision

2.The partitions of the hash table are called

a)Nodes b)Buckets c)Roots d)Fields

3. The arithmetic functions used for Hashing is called

a)Logical operations b)Rehashing c)Mapping function d)Hashing function

4. Each bucket of Hash table is said to have several

a) sequence of comparisons b)binary searching c)arithmetic function d)collision

5. If the names are in the symbol table, searching is easy.

a)sorted b)short c)bold d)upper case

6. allocation is not desirable for dynamic tables, where insertions and deletions

are allowed.

a)Linear b)Sequential c)Dynamic d)None

7.A search in a hash table with n identifiers may take ------ time

a)O(n) b)O(1) c)O(2) d)O(2n)

8. data structure is used to implement symbol tables

a) directed graphs b)binary search trees c)circular queue d)None

9.A occurs when two non_identical identifiers are hashed in the same bucket.

a)collision b)contraction c)expansion d)Extraction

10.A hashing function f transforms an identifier x into a in the hash table

a)symbol name b)bucket address c)link field d)slot number

11. When a new identifier I is mapped or hashed by the function f into a full bucket then occurs

a)underflow b)overflow c)collision d)rehashing

12. In External sorting data are stored in

a) RAM memory b)Cache memory c)secondary storage devices d)Buffers

13. techniques are used for sorting large files

14. a)Topological sort b)External sorting c)Linear Sorting d)Heap sort

15. 14.In a k-way merging uses only k+1 tapes

a)Internal sorting b)Polyphase merging c)Linking d)Hashing

15. Before merging the next phase is necessary to the output tapes

a)replace b)rewind c)remove d)None

16. To reduce the rewind time it is overlapped with read/write on other tapes. This modification need

a)double the number of tapes (2k tapes) b)only two tapes

c)one additional tape (k+2 tapes) d)k+1 tapes

17. In hash table, if the identifier x has an equal chance of hashing into any of the buckets,

this function is called as _________

a)Equal hash function b)uniform hash function c)Linear hashing function d)unequal Hashing

function

18. Each head node is smaller than the other nodes because it has to retain

a)only a link b) only a link and a record c)only two link d)only the record

19.Each chain in the hash tables will have a

a)tail node b)link node c)head node d)null node

20. Folding of identifiers from end to end to obtain a hashing function is called _______

21. a)Shift folding b)boundary folding c)expanded folding d)end to end folding

PART-B [3*2=6Marks]

Answer ALL the questions

22. What is meant by Preorder & PostOrder search?
Preorder traversal is used to create a copy of the tree. Preorder traversal is also used to get prefix expression

on of an expression tree.

Postorder traversal is used to delete the tree. Please see the question for deletion of tree for details. Postorder
traversal is also useful to get the postfix expression of an expression tree.

23. Define selection Sort.
The Selection sort algorithm is based on the idea of finding the minimum or maximum element in an unsorted

array and then putting it in its correct position in a sorted array.

24. What is meant by Root & Node of aTree?
A data structure accessed beginning at the root node. Each node is either a leaf or an internal node. An

internal node has one or more child nodes and is called the parent of its child nodes.

PART-C [3* 8= 24Marks]

Answer ALL the questions

 rite an algorithm for Queue operations.
Queue is ordered collection of homogeneous data elements in which insertion and deletion operation take

place at two end . insertion allowed from starting of queue called FRONT point and deletion allowed

from REAR end only

 insertion operation is called ENQUEUE

 deletion operation is called DEQUEUE

Block Diagram of Queue

Steps:

1. If (REAR = size) then //Queue is full

2. print "Queue is full"

3. Exit

4. Else

5. If (FRONT = 0) and (REAR = 0) then //Queue is empty

6. FRONT = 1

Conditions in Queue
 FRONT < 0 (Queue is Empty)
 REAR = Size of Queue (Queue is Full)
 FRONT < REAR (Queue contains at least one element)

 No of elements in queue is : (REAR - FRONT) + 1

 Algorithm for ENQUEUE (insert element in Queue)
 Input : An element say ITEM that has to be inserted.

Output : ITEM is at the REAR of the Queue.

Data structure : Que is an array representation of queue structure with two pointer FRONT and REAR.

Steps:

1. If (FRONT = 0) then

2. print "Queue is empty"

3. Exit

4. Else

5. ITEM = Que [FRONT]
6. If (FRONT = REAR)

7. REAR = 0

8. FRONT = 0

9. Else

10. FRONT = FRONT + 1

11. End if

12. End if

13. Stop

 Algorithm for DEQUEUE (delete element from Queue)

 Input : A que with elements. FRONT and REAR are two pointer of queue .
Output : The deleted element is stored in ITEM.

Data structure : Que is an array representation of queue structure..

b. List the common operations on binary and binary search tree. Write an algorithm with example.

Operations on Binary Search Tree’s
In the previous lesson, we considered a particular kind of a binary tree called a Binary Search Tree (BST). A binary

tree is a binary search tree (BST) if and only if an inorder traversal of the binary tree results in a sorted sequence.
The idea of a binary search tree is that data is stored according to an order, so that it can be retrieved very

efficiently.
A BST is a binary tree of nodes ordered in the following way:

1. Each node contains one key (also unique)
2. The keys in the left subtree are < (less) than the key in its parent node

3. The keys in the right subtree > (greater) than the key in its parent node
4. Duplicate node keys are not allowed.

Here is an example of a BST

Exercise : Draw the binary tree which would be created by inserting the following numbers in the order given

50 30 25 75 82 28 63 70 4 43 74 35
If the BST is built in a “balanced” fashion, then BST provides log time access to each element. Consider an

arbitrary BST of the height k. The total possible number of nodes is given by

k+1

10. End if

11. Stop

End if

REAR = REAR + 1 // increment REAR

Que[REAR] = ITEM

7.
8.

9.

2 - 1
In order to find a particular node we need to perform one comparison on each level, or maximum of(k+1) total.

Now, assume that we know the number of nodes and we want to figure out the number of comparisons. We have

to solve the following equation with respect to k:
Assume that we have a “balanced” tree with n nodes. If the maximum number of comparisons to find an entry is

(k+1), where k is the height, we have

K+1

2 - 1 = n
we obtain

k = log2(n+1) – 1 = O(log2n)

This means, that a “balanced” BST with n nodes has a maximum order of log(n) levels, and thus it takes at
most log(n) comparisons to find a particular node. This is the most important fact you need to know about BSTs.

But building a BST as a balanced tree is not a trivial task. If the data is randomly distributed, then we can expect

that a tree can be “almost” balanced, or there is a good probability that it would be. However, if the data already
has a pattern, then just naïve insertion into a BST will result in unbalanced trees. For example, if we just insert

the data 1, 2, 3, 4, 5 into a BST in the order they come, we will end up with a tree that looks like this:

Binary search trees work well for many applications (one of them is a dictionary or help

browser). But they can be limiting because of their bad worst-case performance

height = O(# nodes). Imagine a binary search tree created from a list that is already sorted.

Clearly, the tree will grow to the right or to the left. A binary search tree with this worst-

case structure is no more efficient than a regular linked list. A great care needs to be
taken in order to keep the tree as balanced as possible. There are many techniques for

balancing a tree including AVL trees, and Splay Trees. We will discuss AVL trees in the
next lesson. Splay Trees will be discussed in advanced data structure courses like 15-211.

BST OPERATIONS
There are a number of operations on BST’s that are important to understand. We will

discuss some of the basic operations such as how to insert a node into a BST, how to

delete a node from a BST and how to search for a node in a BST.

Inserting a node
A naïve algorithm for inserting a node into a BST is that, we start from the root node, if

the node to insert is less than the root, we go to left child, and otherwise we go to the

right child of the root. We continue this process (each node is a root for some sub tree)
until we find a null pointer (or leaf node) where we cannot go any further. We then insert

the node as a left or right child of the leaf node based on node is less or greater than the

leaf node. We note that a new node is always inserted as a leaf node. A recursive
algorithm for inserting a node into a BST is as follows. Assume we insert a node N to

tree T. if the tree is empty, the we return new node N as the tree. Otherwise, the

problem of inserting is reduced to inserting the node N to left of right sub trees of T,
depending on N is less or greater than T. A definition is as follows.

Insert(N, T) = N if T is empty
= insert(N, T.left) if N < T

= insert(N, T.right) if N > T

Searching for a node
Searching for a node is similar to inserting a node. We start from root, and then go left or

right until we find (or not find the node). A recursive definition of search is as follows.
If the node is equal to root, then we return true. If the root is null, then we return false.

Otherwise we recursively solve the problem for T.left or T.right, depending on N < T or
N > T. A recursive definition is as follows.

Search should return a true or false, depending on the node is found or not.

Search(N, T) = false if T is empty

= true if T = N

= search(N, T.left) if N < T

= search(N, T.right) if N > T

Deleting a node
A BST is a connected structure. That is, all nodes in a tree are connected to some other

node. For example, each node has a parent, unless node is the root. Therefore deleting a

node could affect all sub trees of that node. For example, deleting node 5 from the tree

could result in losing sub trees that are rooted at 1 and 9. Hence we need to be careful
about deleting nodes from a tree. The best way to deal with deletion seems to be considering special cases.

What if the node to delete is a leaf node? What if the node is a node with just one child? What if the node is

an internal node (with two children). The latter case is the hardest to resolve. But we will find a way to
handle this situation as well.

Case 1 : The node to delete is a leaf node

This is a very easy case. Just delete the node. We are done

Case 2 : The node to delete is a node with one child.
This is also not too bad. If the node to be deleted is a left child of the parent, then we connect the left pointer of the

parent (of the deleted node) to the single child. Otherwise if the node to be deleted is a right child of the parent,

then we connect the right pointer of the parent (of the deleted node) to single child.

Case 3: The node to delete is a node with two children
This is a difficult case as we need to deal with two sub trees. But we find an easy way to handle it. First we find a
replacement node (from leaf node or nodes with one child) for the node to be deleted. We need to do this while

maintaining the BST order property. Then we swap leaf node or node with one child with the node to be deleted
(swap the data) and delete the leaf node or node with one child (case 1 or case 2)

Next problem is finding a replacement leaf node for the node to be deleted. We can easily find this as follows. If the
node to be deleted is N, the find the largest node in the left sub tree of N or the smallest node in the right sub tree

of N. These are two candidates that can replace the node to be deleted without losing the order property. For
example, consider the following tree and suppose we need to delete the root 38.

Then we find the largest node in the left sub tree (15) or smallest node in the right sub tree (45) and replace the

root with that node and then delete that node. The following set of images demonstrates this process.

25. a. Explain Insertion sort with example.
An element which is to be 'insert'ed in this sorted sub-list, has to find its appropriate place and then it has to be

inserted there. Hence the name, insertion sort.

The array is searched sequentially and unsorted items are moved and inserted into the sorted sub-list (in the same

array). This algorithm is not suitable for large data sets as its average and worst case complexity are of O(n2),

where n is the number of items.

How Insertion Sort Works?

We take an unsorted array for our example.

Insertion sort compares the first two elements.

It finds that both 14 and 33 are already in ascending order. For now, 14 is in sorted sub-list.

Insertion sort moves ahead and compares 33 with 27.

And finds that 33 is not in the correct position.

It swaps 33 with 27. It also checks with all the elements of sorted sub-list. Here we see that the sorted sub-list has
only one element 14, and 27 is greater than 14. Hence, the sorted sub-list remains sorted after swapping.

By now we have 14 and 27 in the sorted sub-list. Next, it compares 33 with 10.

These values are not in a sorted order.

So we swap them.

However, swapping makes 27 and 10 unsorted.

Hence, we swap them too.

Again we find 14 and 10 in an unsorted order.

We swap them again. By the end of third iteration, we have a sorted sub-list of 4 items.

This process goes on until all the unsorted values are covered in a sorted sub-list. Now we shall see some

programming aspects of insertion sort.

b. Explain quick sort with example
quicksort uses divide-and-conquer, and so it's a recursive algorithm. The way that quicksort uses

divide-and-conquer is a little different from how merge sort does. In merge sort, the divide step does hardly
anything, and all the real work happens in the combine step. Quicksort is the opposite: all the real work happens in

the divide step.

Divide by choosing any element in the subarray array[p..r]. Call this element the pivot. Rearrange the elements

in array[p..r] so that all other elements in array[p..r] that are less than or equal to the pivot are to its left and all
elements in array[p..r] are to the pivot's right.

Conquer by recursively sorting the subarrays array[p..q-1] (all elements to the left of the pivot, which must be less
than or equal to the pivot) and array[q+1..r] (all elements to the right of the pivot, which must be greater than the

pivot).

26.a. Write an algorithm for heap sort with example
Heap Sort
Heaps can be used in sorting an array. In max-heaps, maximum element will always be at the root. Heap Sort uses

this property of heap to sort the array.

Complexity:

max_heapify has complexity O(logN)O(logN), build_maxheap has complexity O(N)O(N) and we run
max_heapify N−1N−1 times in heap_sort function, therefore complexity of heap_sort function

is O(NlogN)O(NlogN).
Example:

In the diagram below,initially there is an unsorted array Arr having 6 elements and then max-heap will be built.

After building max-heap, the elements in the ar

Complexity:

max_heapify has complexity O(logN)O(logN), build_maxheap has complexity O(N)O(N) and we run

max_heapify N−1N−1 times in heap_sort function, therefore complexity of heap_sort function

is O(NlogN)O(NlogN).
Example:

In the diagram below,initially there is an unsorted array Arr having 6 elements and then max-heap will be built.

After building max-heap, the elements in the ar

b. Write an algorithm for merge sort with example
MERGE SORT:

Divide the unsorted list into n sublists, each containing 1 element (a list of 1 element is considered sorted).
Repeatedly merge sublists to produce new sorted sublists until there is only 1 sublist remaining. This will be the

sorted list.

Merge sort is a sorting technique based on divide and conquer technique. With worst-case time complexity
being O(n log n), it is one of the most respected algorithms.

Merge sort first divides the array into equal halves and then combines them in a sorted manner.
How Merge Sort Works?

To understand merge sort, we take an unsorted array as the following −

We know that merge sort first divides the whole array iteratively into equal halves unless the atomic values are

achieved. We see here that an array of 8 items is divided into two arrays of size 4.

This does not change the sequence of appearance of items in the original. Now we divide these two arrays into

halves.

We further divide these arrays and we achieve atomic value which can no more be divided.

Now, we combine them in exactly the same manner as they were broken down. Please note the color codes
given to these lists.

We first compare the element for each list and then combine them into another list in a sorted manner. We see
that 14 and 33 are in sorted positions. We compare 27 and 10 and in the target list of 2 values we put 10 first,

followed by 27. We change the order of 19 and 35 whereas 42 and 44 are placed sequentially.

In the next iteration of the combining phase, we compare lists of two data values, and merge them into a list of
found data values placing all in a sorted order.

After the final merging, the list should look like this −

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

	1.pdf (p.1-3)
	2.pdf (p.4-8)
	3.pdf (p.9-12)
	4.pdf (p.13-20)
	5.pdf (p.21-31)
	6..pdf (p.32-39)
	7.pdf (p.40-45)
	8.pdf (p.46-57)
	9.pdf (p.58-63)
	10.pdf (p.64-73)
	11.pdf (p.74-76)
	12.pdf (p.77)
	13.pdf (p.78)
	14.pdf (p.79)
	15.pdf (p.80)
	16.pdf (p.81)
	17.pdf (p.82-83)
	18.pdf (p.84-97)
	19.pdf (p.98-99)
	KARPAGAM ACADEMY OF HIGHER EDUCATION
	(Established Under Section 3 of UGC Act 1956)
	Coimbatore – 641 021
	BCA Degree Examination
	(For the candidates admitted from 2018 onwards)
	Third Semester
	Second Internal Exam
	DATA STRUCTURES
	Part – A (20 X 1 = 20 Marks)
	Answer ALL Questions
	Part-C[3*8=24 Marks] Answer all the questions

	20.pdf (p.100-122)
	KARPAGAM ACADEMY OF HIGHER EDUCATION
	(Established Under Section 3 of UGC Act 1956)
	Coimbatore – 641 021
	BCA Degree Examination
	(For the candidates admitted from 2018onwards)
	Third Semester
	Second Internal Exam
	DATA STRUCTURES
	Part – A (20 X 1 = 20 Marks) Answer ALL Questions
	Part-B [3*2=6 Marks] Answer all the questions
	Part-B [3*2=6 Marks] Answer all the questions (1)
	Linked List Operations addFirst
	Traversing
	addLast
	Inserting "after"
	Inserting "before"
	Deletion
	Procedure For Inserting an element to linked list
	Insertion Node In Linked List
	Insertion at the front of list
	Operations on Queue:
	Applications of Queue:
	Array implementation Of Queue
	Root
	Siblings
	Descendant
	Ancestor
	Leaf
	Branch
	Degree Edge Path Level
	Height of node
	Height of tree
	Depth

	break;
	break; (1)
	break; (2)
	break; (3)

	21.pdf (p.123-124)
	22.pdf (p.125-136)
	23.pdf (p.137-140)

