

Semester – III

18CAU302 OPERATING SYSTEMS 4H – 4C

Instruction Hours / week: L: 4 T: 0 P: 0 Marks: Int : 40 Ext : 60 Total: 100

End Semester Exam: 3 Hours

Course Objectives:

 Understand the principles of concurrency and synchronization,.

 Understand basic resource management techniques.

 Understand the implementation of fundamental OS structures, including Threads,

processes, system calls, scheduling, virtual memory, and file systems

Course Outcome:

 Appreciate the role of operating system as System software.

 Compare the various algorithms and comment about performance of various algorithms

used for management of memory, CPU scheduling, File handling and I/O operations.

 Apply various concept related with Deadlock to solve problems related with Resources

allocation, after checking system in Safe state or not.

 To appreciate role of Process synchronization towards increasing throughput of system.

 Describe the various Data Structures and algorithms used by Different Oss like Windows

XP , Linux and Unix pertaining with Process , File , I/O management.

 To control the behavior of OS by writing Shell scripts.

UNIT -I

Introduction to Operating System: Basic OS Functions-Resource Abstraction-Types of Operating

Systems–Multiprogramming Systems-Batch Systems-Time Sharing Systems- Operating Systems

for Personal Computers & Workstations-Process Control & Real Time Systems.

UNIT -II

Operating System Organization: Processor and user modes-Kernels-System Calls and System

Programs. Process Management: System view of the process and resources- Process abstraction-

Process hierarchy-Threads-Threading issues-Thread libraries-Process Scheduling-Non pre-

emptive and Preemptive scheduling algorithms-Concurrent and processes-Critical Section-

Semaphores-Methods for inter-process communication- Deadlocks.

UNIT -III

Memory Management: Physical and Virtual address space-Memory Allocation strategies –Fixed

and Variable partitions-Paging-Segmentation-Virtual memory.

UNIT –IV

File and I/O Management: Directory structure-File operations-File Allocation methods- Device

management.

UNIT -V

Protection and Security: Policy mechanism-Authentication-Internal aCSUess Authorization.

Suggested readings

1. Silberschatz,A., Galvin, P.B., Gagne,G.,(2008). Operating Systems Concepts, (8
th

 ed.),

John Wiley Publications.

2. Stallings,W., (2008). Operating Systems, Internals & Design Principles, (5
th

Edition), Prentice Hall of India.

3. Tanenbaum, A.S., (2007). Modern Operating Systems, (3
rd

 ed.), Pearson Education.

Websites

1. www.cs.columbia.edu/~nieh/teaching/e6118_s00/

2. www.clarkson.edu/~jnm/cs644pages.cs.wisc.edu/~remzi/Classes/736/Fall2002/

Question Paper Pattern:

CIA Max.Marks : 50

Part A Objective type questions : 20 x 1 = 20 Marks

Part B Answer all the questions Either/Or : 3 x 2 = 6 Marks

Part C Answer all the questions : 3 x 8 = 24 Marks

ESE Max.Marks : 60

Part A Objective type questions : 20 x 1 = 20 Marks

Part B Answer all the questions Either/Or : 5 x 6 = 30 Marks

Part C Answer all the questions : 1 x 10 = 10 Marks

http://www.clarkson.edu/~jnm/cs644pages.cs.wisc.edu/~remzi/Classes/736/Fall2002/

16CAU302 OPERATING SYSTEMS

LECTURER PLAN

S.No Lecturer

Duration(Hrs)

Topics to be Covered Support Materials

UNIT I

1 1 Basic OS Function W1

2 1 Resource Abstraction T1:4-6,W1

3 1 Types of Operating System T1:19

4 1 Multiprogramming System T1:32-35, W1

5 1 Batch Systems T1:19-20

6 1 Time Sharing Systems W1

7 1 Operating System for personal computers and

Workstations
W1,W2

 W3

8 1 Process Control & Real time Systems T2:34, W1

9 1 Discussion of Important Questions

Total No. of Hours planned for Unit I 9 hrs

TEXT BOOK:

T1: Silberschatz,A., Galvin, P.B., Gagne,G.,(2008). Operating Systems Concepts, (8th ed.), John Wiley

Publications.

T2: Tanenbaum, A.S., (2007). Modern Operating Systems, (3rd ed.), Pearson Education.

WEBSITES

W1:www.tutorialspoint.com>os_overview.htm

W2: www.comptechdoc.org>basictut>osintro

W3: www.dtic.mil>dtic>fulltext

W4:www.tutorialspoint.com/operating_system/os_processes.htm

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Established Under Section 3 of UGC Act 1956)

EachanariPost, Coimbatore – 641 021. INDIA

Phone: 0422-2611146, 2611082 Fax No: 0422 -2611043

16CAU302 OPERATING SYSTEMS

LECTURER PLAN

S.No Lecturer

Duration(Hrs)

Topics to be Covered Support Materials

UNIT II

1 1 Operating System Organization : Processes and

user modes , kernels .

T1:20-23

2 1 System calls and System Programs T1:55-58, 66-68,

3 1 Process Management: System view of the process

and resources

T1:101-110, W3

4 1 Process Abstraction and process Hierarchy T2:81-93, W3

5 1 Threads – Threading Issues T1:153-157, T1:165-

170,T2:93-115,W2

 Thread Libraries T1:159-164,T2:93-115,W2

6 1 Process Scheduling – Non pre emptive and Pre

emptive Scheduling algorithms , concurrent and

processes

T1:105-110, T2:143-161

7 1 Critical section & Semaphore T1:227-229, T2:117,866,

8 1 Methods for Inter-process communication T1:897-898, T2: 115-126

 Deadlocks T1:294-305, T2:435-439,W2

9 1 Discussion of Important Questions

Total No. of Hours planned for Unit II 9 hrs

TEXT BOOK:

T1: Silberschatz,A., Galvin, P.B., Gagne,G.,(2008). Operating Systems Concepts, (8th ed.), John Wiley

Publications.

T2: Tanenbaum, A.S., (2007). Modern Operating Systems, (3rd ed.), Pearson Education.

WEBSITES

W1:www2.cs.uic.edu>~jbell>4_Threads

W2: www.studytonight.com>operating-system

W3: www.geeksforgeeks.org>gate-notes-operating system-process-management

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Established Under Section 3 of UGC Act 1956)

EachanariPost, Coimbatore – 641 021. INDIA

Phone: 0422-2611146, 2611082 Fax No : 0422 -2611043

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Established Under Section 3 of UGC Act 1956)

EachanariPost, Coimbatore – 641 021. INDIA

Phone: 0422-2611146, 2611082 Fax No : 0422 -2611043

16CAU302 OPERATING SYSTEMS

LECTURER PLAN

S.No Lecturer

Duration(Hrs)

Topics to be Covered Support Materials

UNIT III

1 1 Memory management – Physical address space T1:315-320, T2: 173-185

2 1 Virtual address space T1:359-360, T2: 185

3 1 Memory Allocation Strategies T1:315-327,T2:173-182

4 1 Fixed Partitions and Variable Partitions T1:325-326,W1

5 1 Paging T1:328-337, T2:186-

187,214,225

 Structure of the Page Table T1:337-341,T2:187-195

 Segmentation T1:342-345,W2

6 1 Virtual memory – Demand Paging, Copy on Write T1:357-368,T2:186-196

7 1 Virtual memory – Page Replacement and

Allocation of frames

T1:369-381,T2:197-207

8 1 Virtual memory- Thrashing and Memory Mapped

files

T1:386-395

9 1 Recapitulation and discussion of Important

Questions

Total No. of Hours planned for Unit III 9 hrs

TEXT BOOK:

T1: Silberschatz,A., Galvin, P.B., Gagne,G.,(2008). Operating Systems Concepts, (8th ed.), John Wiley

Publications.

T2: Tanenbaum, A.S., (2007). Modern Operating Systems, (3rd ed.), Pearson Education.

WEBSITES

W1:u.cs.biu.ac.il>~ariel>ppts>os7-2-rea

W2: www.tutorialspoint.com>operating-system/os-memory-management-using-segmentation

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Established Under Section 3 of UGC Act 1956)

EachanariPost, Coimbatore – 641 021. INDIA

Phone: 0422-2611146, 2611082 Fax No : 0422 -2611043

16CAU302 OPERATING SYSTEMS

LECTURER PLAN

S.No Lecturer

Duration(Hrs)

Topics to be Covered Support Materials

UNIT IV

1 1 File and I/O Management T1:64-67,421

2 1 Directory Structure and File Operations T1:423-425, T2:266-270

3 1 File Operations - Example T2:262-263

4 1 File Allocation Methods Contiguous and linked T1:471-476 , W3

5 1 File Allocation Methods Management T1:476-479,T1:64,W1,W3

6 1 File Allocation Methods – Indexed and Device – T1:64 ,W1

7 1 Device type , Storage access T2:262-263

8 1 Device management – Device drivers detection, W1

 Device management – IPC , driver interface W2

9 1 Recapitulation and discussion of Important

Questions

Total No. of Hours planned for Unit IV 9 hrs

TEXT BOOK:

T1: Silberschatz,A., Galvin, P.B., Gagne,G.,(2008). Operating Systems Concepts, (8th ed.), John Wiley

Publications.

T2: Tanenbaum, A.S., (2007). Modern Operating Systems, (3rd ed.), Pearson Education.

WEBSITES

W1:wiki.ordev.org/Device-Management

W2: www.dauniv.ac.in>EmbsysRevEd_PPTs

W3: www.geeksforgeeks.org>File-allocation

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Established Under Section 3 of UGC Act 1956)

EachanariPost, Coimbatore – 641 021. INDIA

Phone: 0422-2611146, 2611082 Fax No : 0422 -2611043

16CAU302 OPERATING SYSTEMS

LECTURER PLAN

S.No Lecturer

Duration(Hrs)

Topics to be Covered Support Materials

UNIT V

1 1 Protection and Security Introduction T1:629,W3

2 1 Policy mechanism T1:620-623

3 1 Authentication –, T1:639-640 , T2:651-654

4 1 Password authentication T1:639-640 , T2:651-654

5 1 biometric Authentication T1:639-640 , T2:651-654

6 1 Encrypted and one time passwords T1:661-662

7 1 Program threats T1:663-664

8 1 Internal Access Authorization W1,W2

9 1 Recapitulation and discussion of Important Questions

10 1 Discussion of previous year ESE Question Paper

11 1 Discussion of previous year ESE Question Paper

12 1 Discussion of previous year ESE Question Paper

Total No. of Hours planned for Unit V 12 hrs

TEXT BOOK:

T1: Silberschatz,A., Galvin, P.B., Gagne,G.,(2008). Operating Systems Concepts, (8th ed.), John Wiley

Publications.

T2: Tanenbaum, A.S., (2007). Modern Operating Systems, (3rd ed.), Pearson Education.

WEBSITES

W1:https://en,m.wkipedia.org>wiki>Authorization

W2: www.federia.urina.it

W3: www.tutorialspoint.com>os_security

http://www.federia.urina.it/

[Type text]

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS
COURSE CODE: 18CAU302 UNIT - I BATCH: 2018 – 2021

UNIT – I

SYLLABUS

Introduction to Operating System: Basic OS Functions-Resource Abstraction-Types of

Operating Systems–Multiprogramming Systems-Batch Systems-Time Sharing Systems-

Operating Systems for Personal Computers & Workstations-Process Control & Real Time

Systems.

INTRODUCTION TO OPERATING SYSTEMS

An Operating System (OS) is an interface between computer user and computer

hardware. An operating system is software which performs all the basic tasks like file

management, memory management, process management, handling input and output, and

controlling peripheral devices such as disk drives and printers. Some popular Operating Systems

include Linux, Windows, OS X, VMS, OS/400, AIX, z/OS, etc.

Definition

An operating system is a program that acts as an interface between the user and the

computer hardware and controls the execution of all kinds of programs.

What is an OS?

A computer system can be divided roughly into four components: the hardware, the

operating system, the application programs, and the users. The hardware provides the basic

computing resources for the system. The application programs define the ways in which these

resources are used to solve users’ computing problems.

Prepared by Mr.S.SUBASH CHANDRA BOSE, Asst Prof, Dept of CS, CA & IT, KAHE Page 1/14

[Type text]

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS
COURSE CODE: 18CAU302 UNIT - I BATCH: 2018 – 2021

System Components

The operating system controls the hardware and coordinates its use among the various

application programs for the various users. OS cannot be defined exactly because, it differs in

perspective.

 User View

The user’s view of the computer varies according to the interface being used. In a

personal Computing environment the goal of OS is “ease to use” with some attention paid for

“resource-sharing “. In Computing environment like mainframes and minicomputer “Resource

utilization” is maximized for computer availability and prevent user from sharing other’s fair

time. In environment like client server “Individual Usability” and “Resource sharing” are

compromised in designing. In latest technologies like mobile and touch-pads, lap-tops the work

of OS is to improve “battery-life” for better efficiency. In some systems like embedded system

user’s interaction is needed at initial phases only. The design principles of user view differ, so

defining the work of OS cannot be made on their perspective.

 System View

In system (Computer) point of view, the work of OS is involved with the efficiency of

handling hardware or software resources. In context, an OS can be viewed as a “Resource

allocator”. A computer system has many resources that may be required to solve a problem: CPU

time, memory space, file-storage space, I/O devices, and so on. The operating system acts as the

Prepared by Mr.SUBASH CHANDRA BOSE, Asst Prof, Dept of CS, CA & IT, KAHE Page 2/14

[Type text]

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS
COURSE CODE: 18CAU302 UNIT - I BATCH: 2018 – 2021

manager of these resources. Facing numerous and possibly conflicting requests for resources, the

operating system must decide how to allocate them to specific programs and users so that it can

operate the computer system efficiently and fairly.

An operating system can be viewed as a “Control Program” that manages the execution of user

programs to prevent errors and improper use of the computer.

BASIC OS FUNCTION

Following are some of important functions of an operating System.

 Memory Management

 Processor Management

 Device Management

 File Management

 Security

 Control over system performance

 Job accounting

 Error detecting aids

 Coordination between other software and users

Memory Management

Memory management refers to management of Primary Memory or Main Memory. Main

memory is a large array of words or bytes where each word or byte has its own address.

Main memory provides a fast storage that can be accessed directly by the CPU. For a program

to be executed, it must in the main memory. An Operating System does the following activities

for memory management −

 Keeps tracks of primary memory, i.e., what part of it are in use by whom, what part are

not in use.

 In multiprogramming, the OS decides which process will get memory when and how

much.

 Allocates the memory when a process requests it to do so.

 De-allocates the memory when a process no longer needs it or has been terminated.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 3/14

[Type text]

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS
COURSE CODE: 18CAU302 UNIT - I BATCH: 2018 – 2021

Processor Management

In multiprogramming environment, the OS decides which process gets the processor when and

for how much time. This function is called process scheduling. An Operating System does the

following activities for processor management −

 Keeps tracks of processor and status of process. The program responsible for this task is

known as traffic controller.

 Allocates the processor (CPU) to a process.

 De-allocates processor when a process is no longer required.

Device Management

An Operating System manages device communication via their respective drivers. It does the

following activities for device management −

 Keeps tracks of all devices. Program responsible for this task is known as the I/O

controller.

 Decides which process gets the device when and for how much time.

 Allocates the device in the efficient way.

 De-allocates devices.

File Management

A file system is normally organized into directories for easy navigation and usage. These

directories may contain files and other directions.

An Operating System does the following activities for file management −

 Keeps track of information, location, uses, status etc. The collective facilities are often

known as file system.

 Decides who gets the resources.

 Allocates the resources.

 De-allocates the resources.

Other Important Activities

Following are some of the important activities that an Operating System performs −

 Security − By means of password and similar other techniques, it prevents unauthorized

access to programs and data.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 4/14

[Type text]

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS
COURSE CODE: 18CAU302 UNIT - I BATCH: 2018 – 2021

 Control over system performance − Recording delays between request for a service and

response from the system.

 Job accounting − Keeping track of time and resources used by various jobs and users.

 Error detecting aids − Production of dumps, traces, error messages, and other debugging

and error detecting aids.

 Coordination between other softwares and users − Coordination and assignment of

compilers, interpreters, assemblers and other software to the various users of the

computer systems.

The operating system is the core software component of your computer. It performs many

functions and is, in very basic terms, an interface between your computer and the outside world.

In the section about hardware, a computer is described as consisting of several component parts

including your monitor, keyboard, mouse, and other parts. The operating system provides an

interface to these parts using what is referred to as "drivers". This is why sometimes when you

install a new printer or other piece of hardware, your system will ask you to install more software

called a driver.

An operating system has three main functions: (1) manage the computer's resources, such as the

central processing unit, memory, disk drives, and printers, (2) establish a user interface, and (3)

execute and provide services for applications software.

 System tools (programs) used to monitor computer performance, debug problems, or

maintain parts of the system.

 A set of libraries or functions which programs may use to perform specific tasks

especially relating to interfacing with computer system components.

 The operating system makes these interfacing functions along with its other functions

operate smoothly and these functions are mostly transparent to the user.

 The operating system underpins the entire operation of the modern computer.

Prepared by Mr.SUBASH CHANDRA BOSE, Asst Prof, Dept of CS, CA & IT, KAHE Page 5/14

[Type text]

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS
COURSE CODE: 18CAU302 UNIT - I BATCH: 2018 – 2021

RESOURCE ABSTRACTION

 Resource abstraction is the process of "hiding the details of how the hardware operates,

thereby making computer hardware relatively easy for an application programmer to use"

OPERATING SYSTEM TYPES

 There are many types of operating systems. The most common is the Microsoft suite of

operating systems. They include from most recent to the oldest:

 Windows XP Professional Edition - A version used by many businesses on workstations.

It has the ability to become a member of a corporate domain.

 Windows XP Home Edition - A lower cost version of Windows XP which is for home

use only and should not be used at a business.

 Windows 2000 - A better version of the Windows NT operating system which works well

both at home and as a workstation at a business. It includes technologies which allow

hardware to be automatically detected and other enhancements over Windows NT.

 Windows ME - A upgraded version from windows 98 but it has been historically plagued

with programming errors which may be frustrating for home users.

 Windows 98 - This was produced in two main versions. The first Windows 98 version

was plagued with programming errors but the Windows 98 Second Edition which came

out later was much better with many errors resolved.

 Windows NT - A version of Windows made specifically for businesses offering better

control over workstation capabilities to help network administrators.

 Windows 95 - The first version of Windows after the older Windows 3.x versions

offering a better interface and better library functions for programs.

There are other worthwhile types of operating systems not made by Microsoft. The greatest

problem with these operating systems lies in the fact that not as many application programs are

written for them. However if you can get the type of application programs you are looking for,

one of the systems listed below may be a good choice.

 Unix - A system that has been around for many years and it is very stable. It is primary

used to be a server rather than a workstation and should not be used by anyone who does

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 6/14

[Type text]

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS
COURSE CODE: 18CAU302 UNIT - I BATCH: 2018 – 2021

not understand the system. It can be difficult to learn. Unix must normally run an a

computer made by the same company that produces the software.

 Linux - Linux is similar to Unix in operation but it is free. It also should not be used by

anyone who does not understand the system and can be difficult to learn.

 Apple MacIntosh - Most recent versions are based on Unix but it has a good graphical

interface so it is both stable (does not crash often or have as many software problems as

other systems may have) and easy to learn. One drawback to this system is that it can

only be run on Apple produced hardware.

TYPES OF OPERATING SYSTEM

 Types of operating system which are commonly used

MULTI-PROGRAMMING SYSTEM

 The work of the server is to execute the job in sequence assigned by the users at

their fair intervals. This is the first time the OS are programmed (Control Program

or Handler) to handle the users with the required resources. The switching

between the users and the allocation of same resources to multiple processes was

the difficult task. There was plenty of algorithm design for this by various

research sectors in this time which paved a new way for multi-processing.

 Multiprogramming is a rudimentary form of parallel processing in which several

programs are run at the same time on a uniprocessor. Since there is only one

processor, there can be no true simultaneous execution of different programs.

BATCH OPERATING SYSTEM

 The tasks are grouped as batch based on the priority specified by the user. Once

the tasks are grouped they are executed as a batch by the machine. The duration of

execution may be a week or even months. The tasks are grouped manually by a

person and after proper execution the results are given to them by that person. The

processing of OS is to just execute the task and not on scheduling.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 7/14

[Type text]

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS
COURSE CODE: 18CAU302 UNIT - I BATCH: 2018– 2021

 The users of a batch operating system do not interact with the computer directly.

Each user prepares his job on an off-line device like punch cards and submits it to

the computer operator. To speed up processing, jobs with similar needs are

batched together and run as a group. The programmers leave their programs with

the operator and the operator then sorts the programs with similar requirements

into batches.

 Lack of interaction between the user and the job.

 CPU is often idle, because the speed of the mechanical I/O devices is slower than

the CPU.

 Difficult to provide the desired priority.

TIME-SHARING OPERATING SYSTEMS

 Time-sharing is a technique which enables many people, located at various

terminals, to use a particular computer system at the same time. Time-sharing or

multitasking is a logical extension of multiprogramming. Processor's time which

is shared among multiple users simultaneously is termed as time-sharing.

 The main difference between Multiprogrammed Batch Systems and Time-

Sharing Systems is that in case of Multiprogrammed batch systems, the objective

is to maximize processor use, whereas in Time-Sharing Systems, the objective is

to minimize response time.

 Multiple jobs are executed by the CPU by switching between them, but the

switches occur so frequently. Thus, the user can receive an immediate response.

For example, in a transaction processing, the processor executes each user

program in a short burst or quantum of computation.

 That is, if n users are present, then each user can get a time quantum. When the

user submits the command, the response time is in few seconds at most. The

operating system uses CPU scheduling and multiprogramming to provide each

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 8/14

[Type text]

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS
COURSE CODE: 18CAU302 UNIT - I BATCH: 2018 – 2021

user with a small portion of a time. Computer systems that were designed

primarily as batch systems have been modified to time-sharing systems.

Advantages of Timesharing operating systems are as follows −

 Provides the advantage of quick response.

 Avoids duplication of software.

 Reduces CPU idle time.

 Problem of reliability.

 Question of security and integrity of user programs and data.

 Problem of data communication.

REAL TIME OPERATING SYSTEM

 A real-time system is defined as a data processing system in which the time interval

required to process and respond to inputs is so small that it controls the environment.

The time taken by the system to respond to an input and display of required updated

information is termed as the response time. So in this method, the response time is very

less as compared to online processing.

 Real-time systems are used when there are rigid time requirements on the operation of a

processor or the flow of data and real-time systems can be used as a control device in a

dedicated application. A real-time operating system must have well-defined, fixed time

constraints, otherwise the system will fail. For example, Scientific experiments, medical

imaging systems, industrial control systems, weapon systems, robots, air traffic control

systems, etc.

There are two types of real-time operating systems.

Hard real-time systems

 Hard real-time systems guarantee that critical tasks complete on time. In hard real-time

systems, secondary storage is limited or missing and the data is stored in ROM. In these

systems, virtual memory is almost never found.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 9/14

[Type text]

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS
COURSE CODE: 18CAU302 UNIT - I BATCH: 2018 – 2021

Soft real-time systems

 Soft real-time systems are less restrictive. A critical real-time task gets priority over

other tasks and retains the priority until it completes. Soft real-time systems have limited

utility than hard real-time systems. For example, multimedia, virtual reality, Advanced

Scientific Projects likes undersea exploration and planetary rovers, etc.

DISTRIBUTED OPERATING SYSTEM

 Distributed systems use multiple central processors to serve multiple real-time

applications and multiple users. Data processing jobs are distributed among the

processors accordingly.

 The processors communicate with one another through various communication lines

(such as high-speed buses or telephone lines). These are referred as loosely coupled

systems or distributed systems. Processors in a distributed system may vary in size and

function. These processors are referred as sites, nodes, computers, and so on.

 With resource sharing facility, a user at one site may be able to use the

resources available at another.

 Speedup the exchange of data with one another via electronic mail.

 If one site fails in a distributed system, the remaining sites can potentially continue

operating.

 Better service to the customers.

 Reduction of the load on the host computer.

 Reduction of delays in data processing.

Distributed Systems

 A distributed system is a collection of physically separate, possibly heterogeneous,

computer systems that are networked to provide users with access to the various

resources that the system maintains. Access to a shared resource increases computation

speed, functionality, data availability, and reliability. Some operating systems generalize

network access as a form of file access, with the details of networking contained in the

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 10/14

[Type text]

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS
COURSE CODE: 18CAU302 UNIT - I BATCH: 2018 – 2021

network interface’s device driver. Distributed systems depend on networking for their

functionality.

 Networks vary by the protocols used, the distances between nodes, and the transport

media. TCP/IP is the most common network protocol, and it provides the fundamental

architecture of the Internet. Most operating systems support TCP/IP, including all

general-purpose ones. The media to carry networks are equally varied. They include

copper wires, fiber strands, and wireless transmissions between satellites, microwave

dishes, and radios.

 A network operating system is an operating system that provides features such as file

sharing across the network, along with a communication scheme that allows different

processes on different computers to exchange messages. A computer running a network

operating system acts autonomously from all other computers on the network, although it

is aware of the network and is able to communicate with other networked computers.

Client-Server Computing : As PCs have become faster, more powerful, and cheaper, designers

have shifted away from centralized system architecture. Terminals connected to centralized

systems are now being supplanted by PCs and mobile devices. Correspondingly, user-interface

functionality once handled directly by centralized systems is increasingly being handled by PCs,

quite often through a web interface. As a result, many of today’s systems act as server systems to

satisfy requests generated by client systems. This form of specialized distributed system, called a

client–server system

Server systems can be broadly categorized as compute servers and file servers:

• The compute-server system provides an interface to which a client can send a request to

perform an action (for example, read data). In response, the server executes the action and sends

the results to the client. A server running a database that responds to client requests for data is an

example of such a system.

• The file-server system provides a file-system interface where clients can create, update, read,

and delete files. An example of such a system is a web server that delivers files to clients running

web browsers.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 11/14

[Type text]

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS
COURSE CODE: 18CAU302 UNIT - I BATCH: 2018 – 2021

Client-Server Model

Peer to peer Systems

Another structure for a distributed system is the peer-to-peer (P2P) system model. In this model,

clients and servers are not distinguished from one another. Instead, all nodes within the system

are considered peers, and each may act as either a client or a server, depending on whether it is

requesting or providing a service. Peer-to-peer systems offer an advantage over traditional client-

server systems. In a client-server system, the server is a bottleneck; but in a peer-to-peer system,

services can be provided by several nodes distributed throughout the network. Determining what

services are available is accomplished in one of two general ways:

 When a node joins a network, it registers its service with a centralized lookup service on

the network. Any node desiring a specific service first contacts this centralized lookup

service to determine which node provides the service. The remainder of the

communication takes place between the client and the service provider.

 An alternative scheme uses no centralized lookup service. Instead, a peer acting as a

client must discover what node provides a desired service by broadcasting a request for

the service to all other nodes in the network. The node (or nodes) providing that service

responds to the peer making the request. To support this approach, a discovery protocol

must be provided that allows peers to discover services provided by other peers in the

network.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 12/14

[Type text]

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS
COURSE CODE: 18CAU302 UNIT - I BATCH: 2018 – 2021

Peer-Peer with no-centralized Machine

Skype is another example of peer-to-peer computing. It allows clients to make voice calls and

video calls and to send text messages over the Internet using a technology known as voice over

IP (VoIP). Skype uses a hybrid peer- to- peer approach. It includes a centralized login server, but

it also incorporates decentralized peers and allows two peers to communicate.

Network operating System

 A Network Operating System runs on a server and provides the server the capability to manage

data, users, groups, security, applications, and other networking functions. The primary purpose

of the network operating system is to allow shared file and printer access among multiple

computers in a network, typically a local area network (LAN), a private network or to other

networks.

 Examples of network operating systems include Microsoft Windows Server 2003, Microsoft

Windows Server 2008, UNIX, Linux, Mac OS X, Novell NetWare, and BSD.

The advantages of network operating systems are as follows −

 Centralized servers are highly stable.

 Security is server managed.

 Upgrades to new technologies and hardware can be easily integrated into the system.

 Remote access to servers is possible from different locations and types of systems.

 High cost of buying and running a server.

 Dependency on a central location for most operations.

 Regular maintenance and updates are required.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 13/14

[Type text]

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS
COURSE CODE: 18CAU302 UNIT - I BATCH: 2018 – 2021

POSSIBLE QUESTIONS

UNIT – I

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. What is an Operating System?

2. List the Basic OS Functions

3. What is meant by Process Control?

4. What is Process?

5. List the types of Operating System

6. What is meant by Resource abstraction

PART – C (6 MARKS)

1. Discuss in detail about Real time System

2. Explain the Types of Operating System.

3. Explain Basic OS Function

4. Discuss in detail about Process Control Block

5. Explain about Distributed Systems

6. Explain the Components of Operating Systems

7. Explain about Batch System

8. Explain about Multiprogramming Systems

9. Discuss in detail about Resource Abstraction

10. Explain about Time Sharing Systems

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 14/14

Questions Opt1 opt2 opt3 opt4 KEY____________is a program that manages the

computer hardware and acts as an intermediary

hardware

acceleration Operating System compiler logical transcation

Operating

System

_____manages the execution of user programs to prevent errors and improper use of the computer resource allocator work station main frame control program control program

 ____were the first computers used to tackle many commercial & scientific application.

Mainframe

computer

system

Mainframe

computer

service

multiframe

computer system

multiframe

computer service

Mainframe

computer

system

_______________contains the address of an

instruction to be fetched from memory Program counter (PC)Instruction register (IR)Control registers Status registers Instruction register (IR)

_______________ is also known as parallel systems or tightly coupled systems)

Multiproces

sor systems

desktop systems Time sharing

systems

Multiprogrammed

systems
Multiprocesso

r systems

______________operating systems are even more complex than multi programmed operating systems. Time-sharing
desktop systems

Multiprogrammed

systems

Multiprocessor

systems Time-sharing

 __________ operating system keeps several jobs

in memory simultaneously. Time-sharing
desktop systems

Multiprogrammed

systems

Multiprocessor

systems

Multiprogram

med systems

___________can save more money than multiple single-processor systems

Multiproces

sor systems

desktop systems Time sharing

systems

Multiprogrammed

systems
Multiprocesso

r systems

The most common multiple-processor systems now use

symmetric

multiproces

sing

asymmetric

multiprocessing multithreading multiprogramming

symmetric

multiprocessin

g

PART - A (Online Examination)

KARPAGAM ACADEMY OF HIGHER EDUCATION
Coimbatore – 641 021.

(For the Candidates admitted from 2018 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

UNIT - I : (Objective Type Multiple choice Questions each Question carries one Mark)

OPERATING SYSTEMS

Another form of a special-purpose operating system is the

real-time

system

distributed

operating

system

Process states multiframe

computer system

real-time

system

The assignment of the CPU to the first process on the ready list is called

graceful

degradation Time-sharing dispatching

Multiprocessor

systems dispatching

The manifestation of a process in an operating system is a

Process

state

transitions

process control

block child process

cooperating

processes

process

control block

For multiprogramming operating system

special

support

from

processor

is

essential

special

support from

processor is

not essential

cache memory is

essential

cache memory is

not essential

special

support from

processor is

not essential

Which operating system reacts in the actual time
Batch

system

Quick

response

system

Real time system
Time sharing

system

Real time

system

The primary job of an OS is to ________

command

resource

manage

resource provide utilities Be user friendly

manage

resource

The term " Operating System " means ________

A set of

programs

which

controls

computer

working

The way a

computer

operator works

Conversion of high-

level language in

to machine level

language

The way a floppy

disk drive operates

A set of

programs

which controls

computer

working

With more than one process can be

running simultaneously each on a different

processer.

Multiprogra

mming Uniprocessing Multiprocessing Uniprogramming

Multiprogram

ming

The two central themes of modern operating system

are

Multiprogra

mming and

Distributed

processing

Multiprogramm

ing and Central

Processing

Single

Programming and

Distributed

processing None of above

Multiprogram

ming and

Distributed

processing

.……………….. is a example of an operating

system that support single user process and single

thread UNIX MS-DOS OS/2 Windows 2000 MS-DOS

The operating system of a computer serves as a

software interface between the user and the

________. Hardware Peripheral Memory Screen Hardware

What is a shell

It is a

hardware

component

It is a command

interpreter

It is a part in

compiler

It is a tool in CPU

scheduling

It is a

command

interpreter

The main function of the command interpreter is:

to get and

execute the

next user-

specified

command

to provide the

interface

between the

API and

application

program

to handle the files

in operating

system

none of the

mentioned

to get and

execute the

next user-

specified

command

As OS that has strict time constraints

Sensor

Node OS Real Time OS Mainframe OS Timesharing OS Real Time OS

The OS that groups similar jobs is called as

Network

OS Distributed OS Mainframe OS Batch OS Batch OS

_____ systems are required to complete a critical

task within a guaranteed amount of time.

hard real

time

Priority

inversion

load sharing Priority inheritance hard real time

A system program that combines the separately

compiled modules of a program into a form suitable

for execution assembler linking loader cross compiler load and go linking loader

A ______________manages the execution of user

programs to prevent errors and improper use of the

computer.

Control

program

Managing

Program allocating program User program

Control

program

________ is a program associated with the operating

system but are not part of the kernel,

System

Program User program System calls Functions

System

Program

General-purpose computers run most of their

programs from rewriteable memory, called as

_________________ Floppy disk ROM

Random access

Memory Hard disk

Random

access

Memory

On systems with multiple command interpreters to

choose from, the interpreters are known as

_________ GUI shells Signal Command shells

The term PDA is ______________

Personal

Digital

Assistant

Personal Data

Assistant

Personal Data

Accountant

Private Digital

Assistant

Personal

Digital

Assistant

_______________ handle large numbers of small

requests

Batch

systems Time sharing

Transaction-

processing systems Distributed systems

Transaction-

processing

systems

The occurrence of an event is usually signaled by an

___________from either the hardware or the

software. interrupt signal service routine interrupt

Operating systems have a ______________for each

device controller Process device driver controller allocator device driver

CPU design that includes multiple computing cores

on a single chip. Such multiprocessor systems are

termed __________ multicore uniprocessor singlecore multichips multicore

logical storage unit is called as ___________ folder file RAM ROM file

___________ is any mechanism for controlling the

access of processes or users to the resources defined

by a computer system. Protection authorization policy privacy Protection

A _____________is an operating system that

provides features such as file sharing across the

network.

network

operating

system Distributed OS Parallel OS Sensor OS

network

operating

system

______________operating systems are even more

complex than multi programmed operating systems.

Time-

sharing

desktop systems
Multiprogrammed

systems
Multiprocessor

systems Time-sharing

___________can save more money than multiple

single-processor systems

Multiproces

sor systems

desktop systems Time sharing

systems

Multiprogrammed

systems
Multiprocesso

r systems

_______________ is also known as parallel systems

or tightly coupled systems

Multiproces

sor systems

desktop systems Time sharing

systems

Multiprogrammed

systems
Multiprocesso

r systems

Another form of a special-purpose operating system

is the

real-time

system

distributed

operating

system

Process states multiframe

computer system

real-time

system

The message-passing facility in Windows 2000 is

called

MUTUAL

EXCLUSI

ON Buffering

local procedure

call facility

CRITICAL

SECTIONS

local

procedure call

facility

Which process is known for initializing a

microcomputer with its OS

cold

booting
boot recording booting warm booting booting

 A series of statements explaining how the data is to

be processed is called
instruction compiler program interpretor program

Distributed systems should
high

security

have better

resource

sharing

better system

utilization

low system

overhead

have better

resource

sharing

Which of the following is always there in a

computer

Batch

system

Operating

system

Time sharing

system
Controlling system

Operating

system

When did IBM released the first version of its disk

operating system DOS version 1.0
1981 1982 1983 1984 1981

The kernel is a___________________

memory

manager

resource

manager file manager directory manager

resource

manager

_______________contains the address of an

instruction to be fetched from memory

Program

counter

(PC)

Instruction

register (IR) Control registers Status registers

Instruction

register (IR)

___________________contains the instruction most

recently fetched.

Program

counter

(PC)

Instruction

register (IR) Control registers Status registers

Program

counter (PC)

If a process fails, most operating system write the

error information to a log file

another running

process new file

none of the

mentioned log file

The OS X has ________

monolithic

kernel hybrid kernel microkernel

monolithic kernel

with modules hybrid kernel

Which Operating system does not support long file

names OS/2 Windows 95 MS-DOS Windows NT MS-DOS

Which Operating system does not support

networking between computers

Windows

3.1 Windows 95 Windows 2000 Windows NT Windows 3.1

Which Operating system is better for implementing

client server network MS DOS Windows 95 Windows 98 Windows 2000

Windows

2000

___________is the commercial UNIX-based

operating system of Sun Microsystems. Solaris UNIX Linux Macintosh Solaris

__________ is an example of an open-source

operating system GNU/Linux Windows 3.1 Windows NT Macintosh GNU/Linux

In Operating System___________ hides the details of how underlying machinery operates.

Resource

manager

Resource

Abstraction Resource Hiding Information Hiding

Resource

Abstraction

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

UNIT – II

SYLLABUS

Operating System Organization: Processor and user modes-Kernels-System Calls and System

Programs. Process Management: System view of the process and resources- Process abstraction-

Process hierarchy-Threads-Threading issues-Thread libraries-Process Scheduling-Non pre-

emptive and Preemptive scheduling algorithms-Concurrent and processes-Critical Section-

Semaphores-Methods for inter-process communication- Deadlocks.

PROCESSOR AND USER MODES

• Mode bit: Supervisor or User mode • Supervisor mode – Can execute all machine

instructions – Can reference all memory locations • User mode – Can only execute a subset of

instructions – Can only reference a subset of memory locations

Modes supported by the operating system

Kernel Mode

 When CPU is in kernel mode, the code being executed can access any memory address

and any hardware resource.

 Hence kernel mode is a very privileged and powerful mode.

 If a program crashes in kernel mode, the entire system will be halted.

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 1/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

User Mode

 When CPU is in user mode, the programs don’t have direct access to memory and

hardware resources.

 In user mode, if any program crashes, only that particular program is halted.

 That means the system will be in a safe state even if a program in user mode crashes.

 Hence, most programs in an OS run in user mode.

SYSTEM CALLS AND SYSTEM PROGRAMS

 System calls provide an interface between the process and the operating system. System

calls allow user-level processes to request some services from the operating system which

process itself is not allowed to do. In handling the trap, the operating system will enter in

the kernel mode, where it has access to privileged instructions, and can perform the

desired service on the behalf of user-level process. It is because of the critical nature of

operations that the operating system itself does them every time they are needed. For

example, for I/O a process involves a system call telling the operating system to read or

write particular area and this request is satisfied by the operating system.

 System programs provide basic functioning to users so that they do not need to write their

own environment for program development (editors, compilers) and program execution

(shells). In some sense, they are bundles of useful system calls.

Prepared by Mr.SUBASH CHANDRA BOSE.S , Asst Prof, Dept of CS, CA & IT, KAHE Page 2/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

SYSTEM CALL

When a program in user mode requires access to RAM or a hardware resource, it must ask the

kernel to provide access to that resource. This is done via something called a system call.

When a program makes a system call, the mode is switched from user mode to kernel mode.

This is called a context switch.

Then the kernel provides the resource which the program requested. After that, another

context switch happens which results in change of mode from kernel mode back to user mode.

Generally, system calls are made by the user level programs in the following situations:

 Creating, opening, closing and deleting files in the file system.

 Creating and managing new processes.

 Creating a connection in the network, sending and receiving packets.

 Requesting access to a hardware device, like a mouse or a printer.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 3/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

In a typical UNIX system, there are around 300 system calls. Some of them which are

important ones in this context are described below.

SYSTEM PROGRAMS

These programs are not usually part of the OS kernel, but are part of the overall operating

system.

File Management

These programs create, delete, copy, rename, print, dump, list, and generally manipulate files and

directories.

Status Information

Some programs simply request the date and time, and other simple requests. Others provide

detailed performance, logging, and debugging information. The output of these files is often sent

to a terminal window or GUI window

File modification

Programs such as text editors are used to create, and modify files.

Communications

These programs provide the mechanism for creating a virtual connect among processes, users,

and other computers. Email and web browsers are a couple examples.

PROCESS MANAGEMENT

Process Concept

Process is a program that is in execution. It is defined as unit of work in modern systems.

A batch system executes jobs, whereas a time-shared system has user programs, or tasks. Even

on a single-user system, a user may be able to run several programs at one time: a word

processor, a Web browser, and an e-mail package. And even if a user can execute only one

program at a time, such as on an embedded device that does not support multitasking, the

operating system may need to support its own internal programmed activities, such as memory

management. In many respects, all these activities are similar, so we call all of them processes.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 4/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

Process in memory

A process is more than the program code, which is sometimes known as the text section.

It also includes the current activity, as represented by the value of the program counter and the

contents of the processor’s registers. A process generally also includes the process stack, which

contains temporary data (such as function parameters, return addresses, and local variables), and

a data section, which contains global variables. A process may also include a heap, which is

memory that is dynamically allocated during process run time.

Process in Memory

A program is a passive entity, such as a file containing a list of instructions stored on disk

(often called an executable file). In contrast, a process is an active entity, with a program counter

specifying the next instruction to execute and a set of associated resources. A program becomes a

process when an executable file is loaded into memory.

Process State

As a process executes, it changes state. The state of a process is defined in part by the

current activity of that process. A process may be in one of the following states:

• New. The process is being created.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 5/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

• Running. Instructions are being executed.

• Waiting. The process is waiting for some event to occur (such as an I/O completion or

reception of a signal).

• Ready. The process is waiting to be assigned to a processor.

• Terminated. The process has finished execution.

These names are arbitrary, and they vary across operating systems. The states that they

represent are found on all systems, however. Certain operating systems also more finely

delineate process states. It is important to realize that only one process can be running on any

processor at any instant. Many processes may be ready and waiting, however. The state diagram

corresponding to these states is presented in the following Figure.

Process State Diagram

Process Control Block (PCB)

Each process is represented in the operating system by a process control block (PCB)—also

called a task control block. It contains many pieces of information associated with a specific

process, including these: Process state. The state may be new, ready, running, and waiting,

halted, and so on.

 Program counter. The counter indicates the address of the next instruction to be

executed for this process.

 CPU registers. The registers vary in number and type, depending on the computer

architecture. They include accumulators, index registers, stack pointers, and general-

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 6/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

purpose registers, plus any condition-code information. Along with the program counter,

this state information must be saved when an interrupt occurs, to allow the process to be

continued correctly afterward.

 CPU-scheduling information. This information includes a process priority, pointers to

scheduling queues, and any other scheduling parameters.

Process Control Block (PCB)

 Memory-management information. This information may include such items as the

value of the base and limit registers and the page tables, or the segment tables, depending

on the memory system used by the operating system

 Accounting information. This information includes the amount of CPU and real time

used, time limits, account numbers, job or process numbers, and so on.

 I/O status information. This information includes the list of I/O devices allocated to the

process, a list of open files, and so on.

THREAD

 A thread is a flow of execution through the process code, with its own program counter,

system registers and stack. A thread is also called a light weight process. Threads provide

a way to improve application performance through parallelism. Threads represent a

software approach to improving performance of operating system by reducing the

overhead thread is equivalent to a classical process.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 7/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

 Each thread belongs to exactly one process and no thread can exist outside a process.

Each thread represents a separate flow of control. Threads have been successfully used in

implementing network servers and web server. They also provide a suitable foundation

for parallel execution of applications on shared memory multiprocessors. Following

figure shows the working of the single and multithreaded processes.

Advantages of Thread

 Thread minimizes context switching time.

 Use of threads provides concurrency within a process.

 Efficient communication.

 Economy- It is more economical to create and context switch threads.

 Utilization of multiprocessor architectures to a greater scale and efficiency.

Types of Thread

 Threads are implemented in following two ways

 User Level Threads -- User managed threads

 Kernel Level Threads -- Operating System managed threads acting on kernel, an

operating system core.

 User Level Threads

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 8/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

 In this case, application manages thread management kernel is not aware of the existence

of threads. The thread library contains code for creating and destroying threads, for

passing message and data between threads, for scheduling thread execution and for

saving and restoring thread contexts. The application begins with a single thread and

begins running in that thread.

ADVANTAGES

 Thread switching does not require Kernel mode privileges.

 User level thread can run on any operating system.

 Scheduling can be application specific in the user level thread.

 User level threads are fast to create and manage.

DISADVANTAGES

 In a typical operating system, most system calls are blocking.

 Multithreaded application cannot take advantage of multiprocessing.

Kernel Level Threads

In this case, thread management done by the Kernel. There is no thread management code in

the application area. Kernel threads are supported directly by the operating system. Any

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 9/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

application can be programmed to be multithreaded. All of the threads within an application are

supported within a single process.

The Kernel maintains context information for the process as a whole and for individuals

threads within the process. Scheduling by the Kernel is done on a thread basis. The Kernel

performs thread creation, scheduling and management in Kernel space. Kernel threads are

generally slower to create and manage than the user threads.

ADVANTAGES

 Kernel can simultaneously schedule multiple threads from the same process on multiple

processes.

 If one thread in a process is blocked, the Kernel can schedule another thread of the same

process.

 Kernel routines themselves can multithreaded.

DISADVANTAGES

 Kernel threads are generally slower to create and manage than the user threads.

 Transfer of control from one thread to another within same process requires a mode

switch to the Kernel.

Multithreading Models

Some operating system provides a combined user level thread and Kernel level thread

facility. Solaris is a good example of this combined approach. In a combined system, multiple

threads within the same application can run in parallel on multiple processors and a blocking

system call need not block the entire process. Multithreading models are three types

 Many too many relationships.

 Many to one relationship.

 One to one relationship.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 10/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

Many to Many Model

 In this model, many user level threads multiplex to the Kernel thread of smaller or

equal numbers. The number of Kernel threads may be specific to either a particular
application or a particular machine.

 Following diagram shows the many to many models. In this model, developers can

create as many user threads as necessary and the corresponding Kernel threads can
run in parallels on a multiprocessor.

Many to One Model

 Many to one model maps many user level threads to one Kernel level thread. Thread

management is done in user space. When thread makes a blocking system call, the
entire process will be blocks. Only one thread can access the Kernel at a time,so
multiple threads are unable to run in parallel on multiprocessors.

 If the user level thread libraries are implemented in the operating system in such a

way that system does not support them then Kernel threads use the many to one
relationship modes.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 11/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

One to One Model

 There is one to one relationship of user level thread to the kernel level thread. This

model provides more concurrency than the many to one model. It is also another
thread to run when a thread makes a blocking system call. It supports multiple thread
to execute in parallel on microprocessors.

 Disadvantage of this model is that creating user thread requires the corresponding

Kernel thread. OS/2, windows NT and windows 2000 use one to one relationship
model.

THREADING ISSUES OPERATING SYSTEMS

1. The fork() and exec() System Calls

 If one thread in a program calls fork(), does the new process duplicate all threads, or

is the new process single-threaded? Some UNIX systems have chosen to have two
versions of fork(), one that duplicates all threads and another that duplicates only the
thread that invoked the fork() system call.

 If a thread invokes the exec() system call, the program specified in the parameter to
exec () will replace the entire process-including all threads.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 12/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

2. Cancellation

 Thread cancellation is the task of terminating a thread before it has completed. For

example, if multiple threads are concurrently searching through a database and one
thread returns the result, the remaining threads might be canceled.

 A thread that is to be canceled is often referred to as the target thread.

 Cancellation of a target thread may occur in two different scenarios:

 Asynchronous cancellation. One thread immediately terminates the target

thread.

 Deferred cancellation. The target thread periodically checks whether it should

terminate, allowing it an opportunity to terminate itself in an orderly fashion.

 The difficulty with cancellation occurs in situations where resources have been

allocated to a canceled thread or where a thread is canceled while in the midst of
updating data it is sharing with other threads.

3. Signal Handling

 A signal is used in UNIX systems to notify a process that a particular event has
occurred. All signals, whether synchronous or asynchronous, follow the same pattern:

 A signal is generated by the occurrence of a particular event.

 A generated signal is delivered to a process.

 Once delivered, the signal must be handled.

 Examples of synchronous signals include illegal memory access and division by 0. If
a running program performs either of these actions, a signal is generated.

 Every signal has a default signal handler that is run by the kernel when handling

that signal. This default action can be overridden by a user defined signal handler
that is called to handle the signal.

 Handling signals in single-threaded programs is straightforward: signals are always
delivered to a process. However, delivering signals is more complicated in

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 13/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

multithreaded programs, where a process may have several threads. Where, then,

should a signal be delivered?

 In general the following options exist:

 Deliver the signal to the thread to which the signal applies.

 Deliver the signal to every thread in the process.

 Deliver the signal to certain threads in the process.

 Assign a specific thread to receive all signals for the process.

4. Thread Pools

 The first issue concerns the amount of time required to create the thread prior to

servicing the request, together with the fact that this thread will be discarded once it
has completed its work.

 The second issue is more troublesome: if we allow all concurrent requests to be

serviced in a new thread, we have not placed a bound on the number of threads
concurrently active in the system. Unlimited threads could exhaust system resources,
such as CPU time or memory. One solution to this problem is to use a thread pool.

 The general idea behind a thread pool is to create a number of threads at process
startup and place them into a pool, where they sit and wait for work.

 Thread pools offer these benefits:

o Servicing a request with an existing thread is usually faster than waiting to create a

thread.

o A thread pool limits the number of threads that exist at any one point. This is

particularly important on systems that cannot support a large number of

concurrent threads.

5. Thread-Specific Data

 Threads belonging to a process share the data of the process. Indeed, this sharing of data

provides one of the benefits of multithreaded programming.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 14/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT – II BATCH: 2018 – 2021

 However, in some circumstances, each thread might need its own copy of certain data.

We will call such data thread specific data.

 For example, in a transaction-processing system, we might service each transaction in a

separate thread. Furthermore, each transaction might be assigned a unique identifier. To

associate each thread with its unique identifier, we could use thread-specific data.

PROCESS SCHEDULING

Definition

 The process scheduling is the activity of the process manager that handles the removal of

the running process from the CPU and the selection of another process on the basis of a
particular strategy.

 Process scheduling is an essential part of a Multiprogramming operating system. Such

operating systems allow more than one process to be loaded into the executable memory
at a time and loaded process shares the CPU using time multiplexing.

Scheduling Queues

 Scheduling queues refers to queues of processes or devices. When the process enters into

the system, then this process is put into a job queue. This queue consists of all processes
in the system. The operating system also maintains other queues such as device queue.
Device queue is a queue for which multiple processes are waiting for a particular I/O
device. Each device has its own device queue.

This figure shows the queuing diagram of process scheduling.

 Queue is represented by rectangular box.

 The circles represent the resources that serve the queues.

 The arrows indicate the process flow in the system.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 15/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

Queues are of two types

 Ready queue

 Device queue

A newly arrived process is put in the ready queue. Processes waits in ready queue for allocating

the CPU. Once the CPU is assigned to a process, then that process will execute. While executing

the process, any one of the following events can occur.

 The process could issue an I/O request and then it would be placed in an I/O queue.

 The process could create new sub process and will wait for its termination.

 The process could be removed forcibly from the CPU, as a result of interrupt and put

back in the ready queue.

Two State Process Model

Two state process model refers to running and non-running states which are described below.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 16/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

S.N. State & Description

Running

1 When new process is created by Operating System that process enters into the

system as in the running state.

Not Running

Processes that are not running are kept in queue, waiting for their turn to

execute. Each entry in the queue is a pointer to a particular process. Queue is

2 implemented by using linked list. Use of dispatcher is as follows. When a

process is interrupted, that process is transferred in the waiting queue. If the

process has completed or aborted, the process is discarded. In either case, the

dispatcher then selects a process from the queue to execute.

Schedulers

Schedulers are special system software which handles process scheduling in various ways. Their

main task is to select the jobs to be submitted into the system and to decide which process to run.

Schedulers are of three types

 Long Term Scheduler

 Short Term Scheduler

 Medium Term Scheduler

Long Term Scheduler

 It is also called job scheduler. Long term scheduler determines which programs are

admitted to the system for processing. Job scheduler selects processes from the queue and
loads them into memory for execution. Process loads into the memory for CPU
scheduling. The primary objective of the job scheduler is to provide a balanced mix of

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 17/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

jobs, such as I/O bound and processor bound. It also controls the degree of

multiprogramming. If the degree of multiprogramming is stable, then the average rate of

process creation must be equal to the average departure rate of processes leaving the

system.

 On some systems, the long term scheduler may not be available or minimal. Time-

sharing operating systems have no long term scheduler. When process changes the state
from new to ready, then there is use of long term scheduler.

Short Term Scheduler

 It is also called CPU scheduler. Main objective is increasing system performance in

accordance with the chosen set of criteria. It is the change of ready state to running state
of the process. CPU scheduler selects process among the processes that are ready to
execute and allocates CPU to one of them.

 Short term scheduler also known as dispatcher, execute most frequently and makes the

fine grained decision of which process to execute next. Short term scheduler is faster than
long term scheduler.

Medium Term Scheduler

 Medium term scheduling is part of the swapping. It removes the processes from the

memory. It reduces the degree of multiprogramming. The medium term scheduler is in-
charge of handling the swapped out-processes.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 18/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 20201

 Running process may become suspended if it makes an I/O request. Suspended processes

cannot make any progress towards completion. In this condition, to remove the process
from memory and make space for other process, the suspended process is moved to the
secondary storage. This process is called swapping, and the process is said to be swapped
out or rolled out. Swapping may be necessary to improve the process mix.

Comparison between Scheduler

S.N. Long Term Scheduler Short Term Scheduler
Medium Term

Scheduler

1 It is a job scheduler It is a CPU scheduler
It is a process swapping

scheduler.

Speed is lesser than short Speed is fastest among
Speed is in between both

2 short and long term
term scheduler other two

scheduler.

It controls the degree of
It provides lesser

It reduces the degree of
3 control over degree of

multiprogramming multiprogramming.
multiprogramming

It is almost absent or
It is also minimal in It is a part of Time sharing

4 minimal in time sharing
time sharing system systems.

system

It selects processes from It selects those
It can re-introduce the

process into memory and
5 pool and loads them into processes which are

execution can be
memory for execution ready to execute

continued.

SCHEDULING (PREEMPTIVE AND NONPREEMPTIVE)

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 19/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

 A final issue to be considered with multithreaded programs concerns communication

between the kernel and the thread library, which may be required by the many-to-many

and two-level models.

 Such coordination allows the number of kernel threads to be dynamically adjusted to help

ensure the best performance.

General Goals

Fairness

Fairness is important under all circumstances. A scheduler makes sure that each process

gets its fair share of the CPU and no process can suffer indefinite postponement. Note that giving

equivalent or equal time is not fair. Think of safety control and payroll at a nuclear plant.

Policy Enforcement

The scheduler has to make sure that system's policy is enforced. For example, if the local

policy is safety then the safety control processes must be able to run whenever they want to, even

if it means delay in payroll processes.

Efficiency

Scheduler should keep the system (or in particular CPU) busy cent percent of the time when

possible. If the CPU and all the Input/Output devices can be kept running all the time, more work

gets done per second than if some components are idle.

Response Time

A scheduler should minimize the response time for interactive user.

Turnaround

A scheduler should minimize the time batch users must wait for an output.

Throughput

A scheduler should maximize the number of jobs processed per unit time.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 20/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

Preemptive Vs Non preemptive Scheduling

The Scheduling algorithms can be divided into two categories with respect to how they deal

with clock interrupts.

Non preemptive Scheduling

 A scheduling discipline is non preemptive if, once a process has been given the CPU, the
CPU cannot be taken away from that process.

Following are some characteristics of non preemptive scheduling

1. In non preemptive system, short jobs are made to wait by longer jobs but the overall

treatment of all processes is fair.

2. In non preemptive system, response times are more predictable because incoming

high priority jobs cannot displace waiting jobs.

3. In non preemptive scheduling, a scheduler executes jobs in the following two situations.

a. When a process switches from running state to the waiting state.

b. When a process terminates.

Preemptive Scheduling

 A scheduling discipline is preemptive if, once a process has been given the CPU
can taken away.

 The strategy of allowing processes that are logically runable to be temporarily suspended
is called Preemptive Scheduling and it is contrast to the "run to completion" method.

Schedule:

 A Process Scheduler schedules different processes to be assigned to the CPU based on

particular scheduling algorithms. There are six popular process scheduling algorithms
which we are going to discuss in this chapter −

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 21/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

 First-Come, First-Served (FCFS) Scheduling

 Shortest-Job-Next (SJN) Scheduling

 Priority Scheduling

 Shortest Remaining Time

 Round Robin(RR) Scheduling

 Multiple-Level Queues Scheduling

 These algorithms are either non-preemptive or preemptive. Non-preemptive algorithms

are designed so that once a process enters the running state; it cannot be preempted until

it completes its allotted time, whereas the preemptive scheduling is based on priority

where a scheduler may preempt a low priority running process anytime when a high

priority process enters into a ready state.

First Come First Serve (FCFS)

 Jobs are executed on first come, first serve basis.

 It is a non-preemptive, pre-emptive scheduling algorithm.

 Easy to understand and implement.

 Its implementation is based on FIFO queue.

 Poor in performance as average wait time is high.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 22/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

Wait time of each process is as follows −

Process Wait Time : Service Time - Arrival Time

P0 0 - 0= 0

P1 5 - 1= 4

P2 8 - 2= 6

P3 16 - 3= 13

Average Wait Time: (0+4+6+13) / 4 = 5.75

Shortest Job Next (SJN)

 This is also known as shortest job first, or SJF

 This is a non-preemptive, pre-emptive scheduling algorithm.

 Best approach to minimize waiting time.

 Easy to implement in Batch systems where required CPU time is known in advance.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 23/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

 Impossible to implement in interactive systems where required CPU time is not known.

 The processer should know in advance how much time process will take.

Wait time of each process is as follows −

Process Wait Time : Service Time - Arrival Time

P0 3 - 0 = 3

P1 0 - 0 = 0

P2 16 - 2 = 14

P3 8 - 3 = 5

Average Wait Time: (3+0+14+5) / 4 = 5.50

Priority Based Scheduling

 Priority scheduling is a non-preemptive algorithm and one of the most common

scheduling algorithms in batch systems.

 Each process is assigned a priority. Process with highest priority is to be executed first

and so on.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 24/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

 Processes with same priority are executed on first come first served basis.

 Priority can be decided based on memory requirements, time requirements or any other

resource requirement.

Wait time of each process is as follows −

Process Wait Time : Service Time - Arrival Time

P0 9 - 0 = 9

P1 6 - 1 = 5

P2 14 - 2 = 12

P3 0 - 0 = 0

Average Wait Time: (9+5+12+0) / 4 = 6.5

Shortest Remaining Time

 Shortest remaining time (SRT) is the preemptive version of the SJN algorithm.

 The processor is allocated to the job closest to completion but it can be preempted by a

newer ready job with shorter time to completion.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 25/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

 Impossible to implement in interactive systems where required CPU time is not known.

 It is often used in batch environments where short jobs need to give preference.

Round Robin Scheduling

 Round Robin is the preemptive process scheduling algorithm.

 Each process is provided a fix time to execute, it is called a quantum.

 Once a process is executed for a given time period, it is preempted and other process

executes for a given time period.

 Context switching is used to save states of preempted processes.

Wait time of each process is as follows −

Process Wait Time : Service Time - Arrival Time

P0 (0 - 0) + (12 - 3) = 9

P1 (3 - 1) = 2

P2 (6 - 2) + (14 - 9) + (20 - 17) = 12

P3 (9 - 3) + (17 - 12) = 11

Average Wait Time: (9+2+12+11) / 4 = 8.5

Prepared by Mr.SUBASH.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 26/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

Multiple-Level Queues Scheduling

Multiple-level queues are not an independent scheduling algorithm. They make use of other

existing algorithms to group and schedule jobs with common characteristics.

 Multiple queues are maintained for processes with common characteristics.

 Each queue can have its own scheduling algorithms.

 Priorities are assigned to each queue.

For example, CPU-bound jobs can be scheduled in one queue and all I/O-bound jobs in another

queue. The Process Scheduler then alternately selects jobs from each queue and assigns them to

the CPU based on the algorithm assigned to the queue.

Context Switch

 A context switch is the mechanism to store and restore the state or context of a CPU in

Process Control block so that a process execution can be resumed from the same point at

a later time. Using this technique a context switcher enables multiple processes to share a

single CPU. Context switching is an essential part of a multitasking operating system

features.

 When the scheduler switches the CPU from executing one process to execute another, the

context switcher saves the content of all processor registers for the process being

removed from the CPU, in its process descriptor. The context of a process is represented

in the process control block of a process.

 Context switch time is pure overhead. Context switching can significantly affect

performance as modern computers have a lot of general and status registers to be saved.

Content switching times are highly dependent on hardware support. Context switch

requires (n + m) bxK time units to save the state of the processor with n general

registers, assuming b are the store operations are required to save n and m registers of

two process control blocks and each store instruction requires K time units.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 27/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

Some hardware systems employ two or more sets of processor registers to reduce the amount of

context switching time. When the process is switched, the following information is stored.

 Program Counter

 Scheduling Information

 Base and limit register value

 Currently used register

 Changed State

 I/O State

 Accounting

CONCURRENT AND PROCESSES

Co-operation of Process

Processes executing concurrently in the operating system may be either independent

processes or cooperating processes. A process is cooperating if it can affect or be affected by the

other processes executing in the system. Clearly, any process that shares data with other

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 28/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

processes is a cooperating process. There are several reasons for providing an environment that

allows process cooperation:

• Information sharing. Since several users may be interested in the same piece of information

(for instance, a shared file).It must provide an environment to allow concurrent access to such

information.

• Computation speedup. If we want a particular task to run faster, we must break it into

subtasks, each of which will be executing in parallel with the others. Notice that such a speedup

can be achieved only if the computer has multiple processing cores.

• Modularity. We may want to construct the system in a modular fashion, dividing the system

functions into separate processes or threads,

• Convenience. Even an individual user may work on many tasks at the same time. For instance,

a user may be editing, listening to music, and compiling in parallel.

Cooperating processes require an inter-process communication (IPC) mechanism that will allow

them to exchange data and information. There are two fundamental models of inter-process

communication: shared memory and message passing. In the shared-memory model, a region of

memory that is shared by cooperating processes is established. Processes can then exchange

information by reading and writing data to the shared region. In the message-passing model,

communication takes place by means of messages exchanged between the cooperating processes.

CRITICAL SECTION PROBLEM

Consider a system consisting of n processes {P0, P1, ..., Pn−1}. Each process has a

segment of code, called a critical section, in which the process may be changing common

variables, updating a table, writing a file, and so on. The important feature of the system is that,

when one process is executing in its critical section, no other process is allowed to execute in its

critical section. That is, no two processes are executing in their critical sections at the same time.

The critical-section problem is to design a protocol that the processes can use to

cooperate. Each process must request permission to enter its critical section. The section of code

implementing this request is the entry section. The critical section may be followed by an exit

section. The remaining code is the remainder section.

A solution to the critical-section problem must satisfy the following three requirements:

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 29/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

1. Mutual exclusion. If process Pi is executing in its critical section, then no other processes can

be executing in their critical sections.

2. Progress. If no process is executing in its critical section and some processes wish to enter

their critical sections, then only those processes that are not executing in their remainder sections

can participate in deciding which will enter its critical section next, and this selection cannot be

postponed indefinitely.

3. Bounded waiting. There exists a bound, or limit, on the number of times that other processes

are allowed to enter their critical sections after a process has made a request to enter its critical

section and before that request is granted.

Two general approaches are used to handle critical sections in operating systems: preemptive

kernels and non-preemptive kernels. A preemptive kernel allows a process to be preempted while

it is running in kernel mode. A non-preemptive kernel does not allow a process running in kernel

mode to be preempted; a kernel-mode process will run until it exits kernel mode, blocks, or

voluntarily yields control of the CPU.

SEMAPHORE

Mutex locks, as we mentioned earlier, are generally considered the simplest of

synchronization tools. In this section, we examine a more robust tool that can behave similarly to

a mutex lock but can also provide more sophisticated ways for processes to synchronize their

activities. A semaphore S is an integer variable that, apart from initialization, is accessed only

through two standard atomic operations: wait() and signal(). The wait() operation was originally

termed P (from the Dutch proberen, ―to test‖); signal() was originally called V (from verhogen,

―to increment‖). The definition of wait() is as follows:

wait(S) {

while (S <= 0)

; // busy

wait S--;

}

The definition of signal() is as

follows: signal(S) {

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 30/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

S++;

}

All modifications to the integer value of the semaphore in the wait () and signal () operations

must be executed indivisibly. That is, when one process modifies the semaphore value, no other

process can simultaneously modify that same semaphore value. In addition, in the case of

wait(S), the testing of the integer value of S (S ≤ 0), as well as its possible modification (S--),

must be executed without interruption.

Semaphore Usage

Operating systems often distinguish between counting and binary semaphores. The

value of a counting semaphore can range over an unrestricted domain. The value of a binary

semaphore can range only between 0 and 1. Thus, binary semaphores behave similarly to

mutex locks. Counting semaphores can be used to control access to a given resource consisting

of a finite number of instances. The semaphore is initialized to the number of resources

available. Each process that wishes to use a resource performs a wait() operation on the

semaphore (thereby decrementing the count). When a process releases a resource, it performs a

signal () operation (incrementing the count). When the count for the semaphore goes to 0, all

resources are being used. After that, processes that wish to use a resource will block until the

count becomes greater than 0.

Deadlock and Starvation

The implementation of a semaphore with a waiting queue may result in a situation where

two or more processes are waiting indefinitely for an event that can be caused only by one of the

waiting processes. The event in question is the execution of a signal() operation. When such a

state is reached, these processes are said to be deadlocked. To illustrate this, consider a system

consisting of two processes, P0 and P1, each accessing two semaphores, S and Q, set to the value

1: P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

. .

. .

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 31/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

. .

signal(S); signal(Q);

signal(Q); signal(S);

Suppose that P0 executes wait(S) and then P1 executes wait(Q).When P0 executes

wait(Q), it must wait until P1 executes signal(Q). Similarly, when P1 executes wait(S), it must

wait until P0 executes signal(S). Since these signal() operations cannot be executed, P0 and P1

are deadlocked. We say that a set of processes is in a deadlocked state when every process in the

set is waiting for an event that can be caused only by another process in the set.

The events with which we are mainly concerned here are resource acquisition and release

Another problem related to deadlocks is indefinite blocking or starvation, a situation in which

processes wait indefinitely within the semaphore. Indefinite blocking may occur if we remove

processes from the list associated with a semaphore in LIFO (last-in, first-out) order.

METHODS OF INTER-PROCESS COMMUNICATION (IPC)

Inter-process communication using shared memory requires communicating processes to

establish a region of shared memory. Typically, a shared-memory region resides in the address

space of the process creating the shared-memory segment. Other processes that wish to

communicate using this shared-memory segment must attach it to their address space. Shared

memory requires that two or more processes agree to remove this restriction. They can then

exchange information by reading and writing data in the shared areas. The form of the data and

the location are determined by these processes and are not under the operating system’s control.

The processes are also responsible for ensuring that they are not writing to the same

location simultaneously. Two types of buffers can be used. The unbounded buffer places no

practical limit on the size of the buffer. The consumer may have to wait for new items, but the

producer can always produce new items. The bounded buffer assumes a fixed buffer size. In this

case, the consumer must wait if the buffer is empty, and the producer must wait if the buffer is

full.

Message-Passing Systems

Message passing provides a mechanism to allow processes to communicate and to

synchronize their actions without sharing the same address space. It is particularly useful in a

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 32/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

distributed environment, where the communicating processes may reside on different computers

connected by a network. For example, an Internet chat program could be designed so that chat

participants communicate with one another by exchanging messages. A message-passing facility

provides at least two operations:

send(message) receive(message)

Messages sent by a process can be either fixed or variable in size. If only fixed-sized

messages can be sent, the system-level implementation is straightforward. This restriction,

however, makes the task of programming more difficult. Conversely, variable-sized messages

require a more complex system common kind of tradeoff seen throughout operating-system

design. If processes P and Q want to communicate, they must send messages to and receive

messages from each other: a communication link must exist between them. This link can be

implemented in a variety of ways. We are concerned here not with the link’s physical

implementation (such as shared memory, hardware bus, or network, but rather with its logical

implementation. Here are several methods for logically implementing a link and the

send()/receive() operations:

• Direct or indirect communication

• Synchronous or asynchronous communication

• Automatic or explicit buffering

Naming

Processes that want to communicate must have a way to refer to each other. They can use

either direct or indirect communication. Under direct communication, each process that wants to

communicate must explicitly name the recipient or sender of the communication. In this scheme,

the send() and receive() primitives are defined as:

• send(P, message)—Send a message to process P.

• receive(Q, message)—Receive a message from process Q.

A communication link in this scheme has the following properties:

• A link is established automatically between every pair of processes that want to communicate.

The processes need to know only each other’s identity to communicate.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 33/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

• A link is associated with exactly two processes.

• Between each pair of processes, there exists exactly one link.

This scheme exhibits symmetry in addressing; that is, both the sender process and the

receiver process must name the other to communicate. A variant of this scheme employs

asymmetry in addressing. Here, only the sender names the recipient; the recipient is not required

to name the sender. In this scheme, the send () and receive () primitives are defined as follows:

• send (P, message)—Send a message to process P.

• receive (id, message)—Receive a message from any process. The variable id is

set to the name of the process with which communication has taken place.

The disadvantage in both of these schemes (symmetric and asymmetric) is the limited

modularity of the resulting process definitions. Changing the identifier of a process may

necessitate examining all other process definitions. All references to the old identifier must be

found, so that they can be modified to the new identifier. In general, any such hard-coding

techniques, where identifiers must be explicitly stated, are less desirable than techniques

involving indirection.

With indirect communication, the messages are sent to and received from mailboxes, or

ports. A mailbox can be viewed abstractly as an object into which messages can be placed by

processes and from which messages can be removed. Each mailbox has a unique identification.

For example, POSIX message queues use an integer value to identify a mailbox. A process can

communicate with another process via a number of different mailboxes, but two processes can

communicate only if they have a shared mailbox. The send () and receive () primitives are

defined as follows:

• send (A, message)—Send a message to mailbox A.

• receive (A, message)—Receive a message from mailbox A.

In this scheme, a communication link has the following properties:

• A link is established between a pair of processes only if both members of the pair have a shared

mailbox.

• A link may be associated with more than two processes.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 34/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

• Between each pair of communicating processes, a number of different links may exist, with

each link corresponding to one mailbox.

Now suppose that processes P1, P2, and P3 all share mailbox A. Process P1 sends a

message to A, while both P2 and P3 execute a receive() from A. Which process will receive the

message sent by P1? The answer depends on which of the following methods we choose:

• Allow a link to be associated with two processes at most.

• Allow at most one process at a time to execute a receive () operation.

• Allow the system to select arbitrarily which process will receive the message (that is, either P2

or P3, but not both, will receive the message).

The system may define an algorithm for selecting which process will receive the message

(for example, round robin, where processes take turns receiving messages). The system may

identify the receiver to the sender. A mailbox may be owned either by a process or by the

operating system.

If the mailbox is owned by a process (that is, the mailbox is part of the address space of

the process), then we distinguish between the owner (which can only receive messages through

this mailbox) and the user (which can only send messages to the mailbox). Since each mailbox

has a unique owner, there can be no confusion about which process should receive a message

sent to this mailbox. When a process that owns a mailbox terminates, the mailbox disappears.

Any process that subsequently sends a message to this mailbox must be notified that the

mailbox no longer exists. In contrast, a mailbox that is owned by the operating system has an

existence of its own. It is independent and is not attached to any particular process. The operating

system then must provide a mechanism that allows a process to do the following:

• Create a new mailbox.

• Send and receive messages through the mailbox.

• Delete a mailbox.

The process that creates a new mailbox is that mailbox’s owner by default. Initially, the owner is

the only process that can receive messages through this mailbox. However, the ownership and

receiving privilege may be passed to other processes through appropriate system calls. Of course,

this provision could result in multiple receivers for each mailbox.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 35/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

Synchronization

Communication between processes takes place through calls to send() and receive()

primitives. There are different design options for implementing each primitive. Message passing

may be either blocking or non blocking— also known as synchronous and asynchronous.

(Throughout this text, you will encounter the concepts of synchronous and asynchronous

behavior in relation to various operating-system algorithms.)

• Blocking send. The sending process is blocked until the message is received by the receiving

process or by the mailbox.

• Non-blocking send. The sending process sends the message and resumes operation.

• Blocking receive. The receiver blocks until a message is available.

• Non-blocking receive. The receiver retrieves either a valid message or a null.

Different combinations of send () and receive () are possible. When both send () and

receive () are blocking, we have a rendezvous between the sender and the receiver. The solution

to the producer–consumer problem becomes trivial when we use blocking send () and receive ()

statements. The producer merely invokes the blocking send () call and waits until the message is

delivered to either the receiver or the mailbox. Likewise, when the consumer invokes receive (),

it blocks until a message is available.

Buffering

Whether communication is direct or indirect, messages exchanged by communicating

processes reside in a temporary queue. Basically, such queues can be implemented in three ways:

• Zero capacity. The queue has a maximum length of zero; thus, the link cannot have any

messages waiting in it. In this case, the sender must block until the recipient receives the

message.

• Bounded capacity. The queue has finite length n; thus, at most n messages can reside in it. If

the queue is not full when a new message is sent, the message is placed in the queue (either the

message is copied or a pointer to the message is kept), and the sender can continue execution

without waiting. The link’s capacity is finite, however. If the link is full, the sender must block

until space is available in the queue.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 36/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

• Unbounded capacity. The queue’s length is potentially infinite; thus, any number of messages

can wait in it. The sender never blocks.

The zero-capacity case is sometimes referred to as a message system with no buffering. The

other cases are referred to as systems with automatic buffering.

DEADLOCK

Under the normal mode of operation, a process may utilize a resource in only the

following sequence:

1. Request. The process requests the resource. If the request cannot be granted immediately (for

example, if the resource is being used by another process), then the requesting process must wait

until it can acquire the resource.

2. Use. The process can operate on the resource (for example, if the resource is a printer, the

process can print on the printer).

3. Release. The process releases the resource.

 For each use of a kernel-managed resource by a process or thread, the operating

system checks to make sure that the process has requested and has been allocated

the resource. A system table records whether each resource is free or allocated.

For each resource that is allocated, the table also records the process to which it is

allocated. If a process requests a resource that is currently allocated to another

process, it can be added to a queue of processes waiting for this resource.

 A set of processes is in a deadlocked state when every process in the set is waiting

for an event that can be caused only by another process in the set. The events with

which we are mainly concerned here are resource acquisition and release. The

resources may be either physical resources (for example, printers, tape drives,

memory space, and CPU cycles) or logical resources (for example, semaphores,

mutex locks, and files).

Deadlock Prevention

Mutual Exclusion

 The mutual exclusion condition must hold. That is, at least one resource
must be non-sharable. Sharable resources, in contrast, do not require mutually exclusive

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 37/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

access and thus cannot be involved in a deadlock. Read-only files are a good example of

a sharable resource. If several processes attempt to open a read-only file at the same

time, they can be granted simultaneous access to the file.

 A process never needs to wait for a sharable resource. In general, however, we cannot

prevent deadlocks by denying the mutual-exclusion condition, because some resources
are intrinsically non-sharable. For example, a mutex lock cannot be simultaneously
shared by several processes.

Hold and Wait

 To ensure that the hold-and-wait condition never occurs in the system, we must guarantee
that, whenever a process requests a resource, it does not hold any other resources.

 One protocol that we can use requires each process to request and be allocated all its

resources before it begins execution. We can implement this provision by requiring that
system calls requesting resources for a process precede all other system calls. An
alternative protocol allows a process to request resources only when it has none.

 A process may request some resources and use them. Before it can request any additional
resources, it must release all the resources that it is currently allocated.

 Both these protocols have two main disadvantages. First, resource utilization may be low,

since resources may be allocated but unused for a long period. In the example given, for
instance, we can release the DVD drive and disk file, and then request the disk file and
printer, only if we can be sure that our data will remain on the disk file. Otherwise, we
must request all resources at the beginning for both protocols.

 Second, starvation is possible. A process that needs several popular resources may have

to wait indefinitely, because at least one of the resources that it needs is always allocated
to some other process.

No Preemption

 The third necessary condition for deadlocks is that there be no preemption of resources

that have already been allocated. To ensure that this condition does not hold, we can use
the following protocol.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 38/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

 If a process is holding some resources and requests another resource that cannot be

immediately allocated to it (that is, the process must wait), then all resources the process
is currently holding are preempted. In other words, these resources are implicitly
released. The preempted resources are added to the list of resources for which the process
is waiting.

 The process will be restarted only when it can regain its old resources, as well as the new

ones that it is requesting. Alternatively, if a process requests some resources, we first

check whether they are available. If they are, we allocate them. If they are not, we check

whether they are allocated to some other process that is waiting for additional resources.

If so, we preempt the desired resources from the waiting process and allocate them to the

requesting process. If the resources are neither available nor held by a waiting process,

the requesting process must wait.

 While it is waiting, some of its resources may be preempted, but only if another process

requests them. A process can be restarted only when it is allocated the new resources it is
requesting and recovers any resources that were preempted while it was waiting.

Circular Wait

 The fourth and final condition for deadlocks is the circular-wait condition. One way to

ensure that this condition never holds is to impose a total ordering of all resource types
and to require that each process requests resources in an increasing order of enumeration.

 To illustrate, we let R = {R1, R2, ..., Rm} be the set of resource types. We assign to each

resource type a unique integer number, which allows us to compare two resources and to
determine whether one precedes another in our ordering. Formally, we define a one-to-

one function F: R→N, where N is the set of natural numbers. For example, if the set of
resource types R includes tape drives, disk drives, and printers, then the function F might

be defined as follows:

F(tape drive) = 1

F(disk drive) = 5

F(printer) = 12

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 39/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

 We can now consider the following protocol to prevent deadlocks: Each process can

request resources only in an increasing order of enumeration. That is, a process can

initially request any number of instances of a resource type —say, Ri . After that, the

process can request instances of resource type Rj if and only if F(Rj) > F(Ri). For

example, using the function defined previously, a process that wants to use the tape drive

and printer at the same time must first request the tape drive and then request the printer.

 Alternatively, we can require that a process requesting an instance of resource type Rj

must have released any resources Ri such that F(Ri) ≥ F(Rj). Note also that if several

instances of the same resource type are needed, a single request for all of them must be

issued. If these two protocols are used, then the circular-wait condition cannot hold. We

can demonstrate this fact by assuming that a circular wait exists (proof by contradiction).

Let the set of processes involved in the circular wait be {P0, P1, ..., Pn}, where Pi is

waiting for a resource Ri , which is held by process Pi+1. (Modulo arithmetic is used on

the indexes, so that Pn is waiting for a resource Rn held by P0.) Then, since process Pi+1

is holding resource Ri while requesting resource Ri+1, we must have F(Ri) < F(Ri+1) for

all i. But this condition means that F(R0) < F(R1) < ... < F(Rn) < F(R0). By transitivity,

F(R0) < F(R0), which is impossible. Therefore, there can be no circular wait.

Deadlock Avoidance:

 For avoiding deadlocks, it is to require additional information about how resources are to

be requested. For example, in a system with one tape drive and one printer, the system
might need to know that process P will request first the tape drive and then the printer

before releasing both resources, whereas process Q will request first the printer and then
the tape drive.

 With this knowledge of the complete sequence of requests and releases for each process,

the system can decide for each request whether or not the process should wait in order to
avoid a possible future deadlock. Each request requires that in making this decision the
system consider the resources currently available, the resources currently allocated to
each process, and the future requests and releases of each process.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 40/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

 The various algorithms that use this approach differ in the amount and type of

information required. The simplest and most useful model requires that each process
declare the maximum number of resources of each type that it may need.

Safe State:

 A state is safe if the system can allocate resources to each process in some order and still

avoid a deadlock. More formally, a system is in a safe state only if there exists a safe
sequence.

 A sequence of processes <P1, P2, ... , Pn> is a safe sequence for the current allocation

state if, for each Pi, the resource requests that Pi can still make can be satisfied by the

currently available resources plus the resources held by all Pj, with j < i. In this situation,

if the resources that Pi needs are not immediately available, then Pi can wait until all Pj

have finished. When they have finished, Pi can obtain all of its needed resources,

complete its designated task, return its allocated resources, and terminate. When Pi

terminates, Pi+l can obtain its needed resources, and so on. If no such sequence exists,

then the system state is said to be unsafe. A safe state is not a deadlocked state.

Conversely, a deadlocked state is an unsafe state.

Resource-Allocation-Graph Algorithm

 If we have a resource-allocation system with only one instance of each resource type, we

can use a variant of the resource-allocation graph defined for deadlock avoidance. In
addition to the request and assignment edges already described, we introduce a new type
of edge, called a claim edge.

 A claim edge Pi ~ Rj indicates that process Pi may request resource Rj at some time in

the future. This edge resembles a request edge in direction but is represented in the graph
by a dashed line. When process Pi requests resource R1, the claim edge P; -+ R1 is
converted to a request edge. Similarly, when a resource R1 is released by P;, the
assignment edge Rj -+ P; is reconverted to a claim edge P; -+ Rj.

 We note that the resources must be claimed a priori in the system. That is, before process
P; starts executing, all its claim edges must already appear in the resource-allocation

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 41/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

graph. We can relax this condition by allowing a claim edge P; -+ R1 to be added to the

graph only if all the edges associated with process P; are claim edges. Now suppose that

process P; requests resource Rj. The request can be granted only if converting the request

edge P; -+ Rj to an assignment edge R1 -+ P; does not result in the formation of a cycle

in the resource-allocation graph. We check for safety by using a cycle-detection

algorithm.

 An algorithm for detecting a cycle in this graph requires an order of n2 operations, where

n is the number of processes in the system. If no cycle exists, then the allocation of the

resource will leave the system in a safe state. If a cycle is found, then the allocation will

put the system in an unsafe state. In that case, process P; will have to wait for its requests

to be satisfied. To illustrate this algorithm, we consider the following resource-allocation

graph.

 Suppose that P2 requests R2. Although R2 is currently free, we cannot allocate it to P2,

since this action will create a cycle in the graph .A cycle, as mentioned, indicates that the
system is in an unsafe state. If P1 requests R2, and P2 requests R1, then a deadlock will
occur.

Banker’s algorithm:

 The resource-allocation-graph algorithm is not applicable to a resource allocation system

with multiple instances of each resource type. The Banker's algorithm is less efficient
than the resource-allocation graph scheme. This algorithm is commonly known as the
banker's algorithm. When a new process enters the system, it must declare the maximum

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 42/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

number of instances of each resource type that it may need. This nun1.ber may not

exceed the total number of resources in the system.

 When a user requests a set of resources, the system must determine whether the

allocation of these resources will leave the system in a safe state. If it will, the resources

are allocated; otherwise, the process must wait until some other process releases enough

resources. Several data structures must be maintained to implement the banker's

algorithm. These data structures encode the state of the resource-allocation system. We

need the following data structures, where n is the number of processes in the system and

m is the number of resource types:

Available: A vector of length m indicates the number of available resources of each type. If

Available[j] equals k, then k instances of resource type Ri are available.

Max: An n x m matrix defines the maximum demand of each process. If Max[i] [j] equals k,

then process P; may request at most k instances of resource type Ri.

Allocation: An 11 x m matrix defines the number of resources of each type currently allocated to

each process. If Allocation[i][j] equals lc, then process P; is currently allocated lc instances of

resource type Rj.

Need: An n x m matrix indicates the remaining resource need of each process. If Need[i][j]

equals k, then process P; may need k more instances of resource type Ri to complete its task.

Note that Need[i][j] equals Max[i][j] - Allocation [i][j].

These data structures vary over time in both size and value. To simplify the presentation of the

banker's algorithm, we next establish some notation. Let X andY be vectors of length 11. We say

that X::= Y if and only if X[i] ::= Y[i] for all i = 1, 2, ... , n. For example, if X = (1,7,3,2) and Y

= (0,3,2,1), then Y ::=X. In addition, Y < X if Y ::=X and Y# X. We can treat each row in the

matrices Allocation and Need as vectors and refer to them as Allocation; and Need;. The vector

Allocation; specifies the resources currently allocated to process P;; the vector Need; specifies

the additional resources that process P; may still request to complete its task.

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively. Initialize Work=

Available and Finish[i] =false for i = 0, 1, ... , n - 1.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 43/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

2. Find an index i such that both

a. Finish[i] ==false

b. Needi Work. If no such i exists, go to step 4.

3. Work = Work + Allocation; Finish[i] = true. Go to step 2.

4. If Finish[i] ==true for all i, then the system is in a safe state.

Resource-Request Algorithm

Let Request; be the request vector for process P;. If Request; [j] == k, then process P; wants k

instances of resource type Rj. When a request for resources is made by process P;, the following

actions are taken:

1. If Request; <= Need; go to step 2. Otherwise, raise an error condition, since the

process has exceeded its maximum claim.

2. If Request< = Available, go to step 3. Otherwise, P; must wait, since the resources are

not available.

3. Have the system pretend to have allocated the requested resources to process P; by

modifyil1.g the state as follows: Available=

Available- Requesti

Deadlock

Allocation; =Allocation; +Requesti

Need; =Needi- Requesti

If the resulting resource-allocation state is safe, the transaction is completed, and process P; is

allocated its resources. However, if the new state is unsafe, then P; must wait for Requesti, and

the old resource-allocation state is restored.

Deadlock Detection

If a system does not employ either a deadlock-prevention or a deadlock avoidance

algorithm, then a deadlock situation may occur. In this environment, the system may provide:

• An algorithm that examines the state of the system to determine whether a deadlock has

occurred

• An algorithm to recover from the deadlock

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 44/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

Single Instance of Each Resource Type

If all resources have only a single instance, then we can define a deadlock detection

algorithm that uses a variant of the resource-allocation graph, called a wait-for graph. We obtain

this graph from the resource-allocation graph by removing the resource nodes and collapsing the

appropriate edges.

More precisely, an edge from Pi to Pj in a wait-for graph implies that process Pi is

waiting for process Pj to release a resource that Pi needs.

An edge Pi → Pj exists in a wait-for graph if and only if the corresponding resource allocation

graph contains two edges Pi → Rq and Rq → Pj for some resource Rq . In Figure, we present a

resource-allocation graph and the corresponding wait-for graph. As before, a deadlock exists in

the system if and only if the wait-for graph contains a cycle.

To detect deadlocks, the system needs to maintain the wait for graph and periodically

invoke an algorithm that searches for a cycle in the graph. An algorithm to detect a cycle in a

graph requires an order of n2 operations, where n is the number of vertices in the graph.

Several Instances of a Resource Type

The wait-for graph scheme is not applicable to a resource-allocation system with multiple

instances of each resource type. We turn now to a deadlock detection algorithm that is applicable

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 45/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 17CAU302 UNIT - II BATCH: 2017 – 2020

to such a system. The algorithm employs several time-varying data structures that are similar to

those used in the banker’s algorithm

• Available. A vector of length m indicates the number of available resources of each type.

• Allocation. An n × m matrix defines the number of resources of each type currently allocated to

each process.

• Request. An n × m matrix indicates the current request of each process. If Request[i][j] equals

k, then process Pi is requesting k more instances of resource type Rj . To simplify notation, we

again treat the rows in the matrices Allocation and Request as vectors; we refer to them as

Allocationi and Requesti . The detection algorithm described here simply investigates every

possible allocation sequence for the processes that remain to be completed.

1. Let Work and Finish be vectors of length m and n, respectively. Initialize Work = Available.

For i = 0, 1, ..., n–1, if Allocationi _= 0, then Finish[i] = false. Otherwise, Finish[i] = true.

2. Find an index i such that both

a. Finish[i] == false

b. Requesti ≤Work

3. Work =Work +

Allocationi Finish[i] = true

Go to step 2.

4. If Finish[i] ==false for some i, 0≤i<n, then the system is in a deadlocked state. Moreover, if

Finish[i] == false, then process Pi is deadlocked. This algorithm requires an order of m × n2

operations to detect whether the system is in a deadlocked state. You may wonder why we

reclaim the resources of process Pi (in step 3) as soon as we determine that Requesti ≤ Work (in

step 2b). We know that Pi is currently not involved in a deadlock (since Requesti ≤ Work). Thus,

we take an optimistic attitude and assume that Pi will require no more resources to complete its

task; it will thus soon return all currently allocated resources to the system. If our assumption is

incorrect, a deadlock may occur later. That deadlock will be detected the next time the deadlock-

detection algorithm is invoked.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 46/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

To illustrate this algorithm, we consider a system with five processes P0 through P4 and

three resource types A, B, and C. Resource type A has seven instances, resource type B has two

instances, and resource type C has six instances. Suppose that, at time T0, we have the following

resource-allocation state:

Allocation Request Available

A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

We claim that the system is not in a deadlocked state. Indeed, if we execute our algorithm, we

will find that the sequence <P0, P2, P3, P1, P4> results in Finish[i] == true for all i. Suppose

now that process P2 makes one additional request for an instance of type C. The Request matrix

is modified as follows:

Request

A B C

P0 0 0 0

P1 2 0 2

P2 0 0 1

P3 1 0 0

P4 0 0 2

We claim that the system is now deadlocked. Although we can reclaim the resources held

by process P0, the number of available resources is not sufficient to fulfill the requests of the

other processes. Thus, a deadlock exists, consisting of processes P1, P2, P3, and P4.

Recovery from Deadlock

When a detection algorithm determines that a deadlock exists, several alternatives are

available. One possibility is to inform the operator that a deadlock has occurred and to let the

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 47/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

operator deal with the deadlock manually. Another possibility is to let the system recover from

the deadlock automatically. There are two options for breaking a deadlock.

Process Termination

To eliminate deadlocks by aborting a process, we use one of two methods. In both

methods, the system reclaims all resources allocated to the terminated processes.

• Abort all deadlocked processes. This method clearly will break the deadlock cycle, but at great

expense. The deadlocked processes may have computed for a long time, and the results of these

partial computations must be discarded and probably will have to be recomputed later.

• Abort one process at a time until the deadlock cycle is eliminated. This method incurs

considerable overhead, since after each process is aborted, a deadlock-detection algorithm must

be invoked to determine whether any processes are still deadlocked.

Aborting a process may not be easy. If the process was in the midst of updating a file,

terminating it will leave that file in an incorrect state. Similarly, if the process was in the midst of

printing data on a printer, the system must reset the printer to a correct state before printing the

next job.

Resource Preemption

To eliminate deadlocks using resource preemption, we successively preempt some

resources from processes and give these resources to other processes until the deadlock cycle is

broken. If preemption is required to deal with deadlocks, then three issues need to be addressed:

1. Selecting a victim. Which resources and which processes are to be preempted? As in process

termination, we must determine the order of preemption to minimize cost. Cost factors may

include such parameters as the number of resources a deadlocked process is holding and the

amount of time the process has thus far consumed.

2. Rollback. If we preempt a resource from a process, what should be done with that process?

Clearly, it cannot continue with its normal execution; it is missing some needed resource. We

must roll back the process to some safe state and restart it from that state. Since, in general, it is

difficult to determine what a safe state is, the simplest solution is a total rollback: abort the

process and then restart it. Although it is more effective to roll back the process only as far as

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 48/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

necessary to break the deadlock, this method requires the system to keep more information about

the state of all running processes.

3. Starvation. How do we ensure that starvation will not occur? That is, how can we guarantee

that resources will not always be preempted from the same process?

In a system where victim selection is based primarily on cost factors, it may happen that the

same process is always picked as a victim. As a result, this process never completes its

designated task, a starvation situation any practical system must address. Clearly, we must ensure

that a process can be picked as a victim only a (small) finite number of times. The most common

solution is to include the number of rollbacks in the cost factor.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 49/50

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - II BATCH: 2018 – 2021

POSSIBLE QUESTIONS

UNIT – II

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. Define System Call

2. What is meant by Kernel?

3. Write a short notes on System Program

4. Define Semaphore

5. List the types of Scheduling

6. Define Deadlock

7. List some Threading issues

PART – C (6 MARKS)

1. Discuss in detail about System Calls and System Programs.

2. Explain about FCFS Scheduling Algorithm with an example

3. Explain about Deadlock and its process

4. Explain about process scheduling

5. Discuss in detail about System view of the process and resources

6. Explain about Thread and threading issues

7. Discuss in detail about Preemptive and Non preemptive Scheduling

Algorithms with suitable examples

8. Explain the methods of inter-process communication

9. Explain the Round Robin Scheduling Algorithm with an example

10. Explain the Shortest Job First (SJF) Scheduling Algorithm with an example

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 50/50

Questions Opt1 opt2 opt3 opt4 KEY

Semaphores function is to

synchronize

critical resources

to prevent

deadlock

synchronize

processes for

better CPU

utilization

used for memory

management

may cause a high

I/O rate

synchronize

critical

resources to

prevent

deadlockFour necessary conditions for deadlock are non

pre-emption, circular wait, hold and wait and
mutual exclusion race condition buffer overflow multiprocessing

mutual

exclusion
 A series of statements explaining how the data

is to be processed is called
instruction compiler program interpretor program

Banker's algorithm deals with
deadlock

prevention

deadlock

avoidance
deadlock recovery mutual exclusion

deadlock

avoidance

Which is non pre-emptive Round robin FIFO MQS MQSF FIFO

A hardware device which is capable of

executing a sequence of instructions, is known

as

CPU ALU CU Processor Processor

Distributed systems should high security
have better

resource sharing

better system

utilization

low system

overhead

have better

resource

sharing

Which of the following is always there in a

computer
Batch system Operating system

Time sharing

system

Controlling

system

Operating

system

PART - A (Online Examination)

KARPAGAM ACADEMY OF HIGHER EDUCATION
Coimbatore – 641 021.

(For the Candidates admitted from 2018 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

UNIT - II : (Objective Type Multiple choice Questions each Question carries one Mark)

OPERATING SYSTEMS

Which of following is not an advantage of

multiprogramming

increased

throughput

shorter response

time

ability to assign

priorities of jobs

decreased system

overload

decreased

system

overload

 Banker's algorithm for resource allocation deals

with

deadlock

prevention

deadlock

aviodance
deadlock recovery circular wait

deadlock

aviodance

_______ is the basis of multiprogrammed

operating system.

RR scheduling Self Scheduling CPU sceduling throughput CPU

sceduling

A ______ is executed until it must wait,

typically for the completion of some i/o request

reverse deadlock

avoidance

deadlock process process

_____ is a fundamental operating system

function.

RR CPU Scheduling nonpreemptive Scheduling

Process execution begins with a_____ CPU burst RR scheduling SJF scheduling SRT scheduling CPU burst

The operating system must select one of the

processes in the ready queue to be executed by

the _________

nonpreemptive short term

scheduler

long term

scheduler

low level short term

scheduler

When scheduling takes place only under

circumstances 1 and 4 called _______

variable class real time class priority class nonpreemptive nonpreemptive

Another component involved in the CPU

scheduling function is the ______

central edge dispatcher claim edge graph edge dispatcher

One measure of work is the number of processes

completed per time unit called _____

throughput variable class real time class priority class throughput

Which of the following is the simplest

scheduling discipline?

FCFS scheduling RR scheduling SJF scheduling SRT scheduling FCFS

scheduling

In which scheduling, processes are dispatched

according to their arrival time on the ready

queue?

FCFS scheduling RR scheduling SJF scheduling SRT scheduling FCFS

scheduling

In which scheduling, processes are dispatched

FIFO but are given a limited amount of CPU

time?

FIFO scheduling RR scheduling SJF scheduling SRT scheduling RR scheduling

Which scheduling is effective in time sharing

environments

FIFO scheduling RR scheduling SJF scheduling SRT scheduling RR scheduling

Variable size blocks are called Pages Segments Tables None Segments

Which scheduling is effective in time sharing

environments

FIFO scheduling RR scheduling SJF scheduling SRT scheduling RR scheduling

Which of the following is non-preemptive

scheduling?

RR scheduling SJF scheduling SRT scheduling None SJF

scheduling

The interval from the time of submission of a

process to the time of completion is the ____

Queues Processor

Sharing

Sharing resources turaround time turaround time

The simplest CPU sceduling algorithm is the FCS SJS FCFS DFG FCFS

The SJF algorithm is a special case of the

general _______ algorithm

FCS SJS Roundrobin FCSC Roundrobin

_______ scheduling algorithm is designed

especially for time sharing systems.

CFS FSCS priority Round Robin

Round Robin

The seek optimization strategy in which there is

no reordering of the queue is called

__________.

 FCFS SSTF SCAN C-SCAN FCFS

A major problem with priority scheduling

algorithms is _____

tail Starvation time first time quantum Starvation

If the time quantum is very small the RR

aproach is called ________

Queues Processor

Sharing

Sharing resources Context

switching

Processor

Sharing

 The seek optimization strategy in which the

disk arm is positioned next at the request

(inward or outward) that minimizes arm

movement is called ________.

 FCFS SSTF SCAN C-SCAN

SSTF

If several identical processors are available then

_____ can occur.

heterogeneous homogeneous load sharing UMA load sharing

The high priority process would be waiting for a

lower priority one to finish is called _____

resources

inversion

Priority inversion priority Priority

inheritance

Priority

inversion

_____ systems are required to complete a

critical task within a guaranteed amount of time.

hard real time Priority inversion load sharing Priority

inheritance

hard real time

The scheduler than either admits a process

guarenteeing that the process will complete on

time known as _____

Priority inversion resources

reservation

load sharing Sharing resources resources

reservation

_______ uses the the given algorithm and the

system workload to produce a formula.

deterministic

modelling

scheduling

process

Analaytic

evaluation

Queuing model Analaytic

evaluation

If no thread is found the dispatcher will execute

a special thread called______

variable class real time class priority class idle thread idle thread

Deadlocks can be described more precisely in

terms of a directed graph called

resource graph system graph system resources

allocation graph

request graph system

resources

allocation

graph

______ is th set of methods for ensuring that at

atleast one of the necessary condition.

Deadlock

prevention

deadlock

avoidance

handling deadlock resource

deadlock

Deadlock

prevention

_____ is possible to construct an algorithm that

ensures that the system will never enter the

deadlock state.

Deadlock

prevention

deadlock

avoidance

handling deadlock resource

deadlock

deadlock

avoidance

A system is in a safe state only if there exists a

Safe state unsafe state normal deadlock Safe state

 A critical section is a program segment

____________.

 which should run

in a certain

specified amount

 which avoids

deadlocks

 where shared

resources are

accessed

 which must be

enclosed by a

pair of

semaphore

operations, P and

V

 where shared

resources are

accessed

The deadlock avoidance algorithm are described

in next system but is less efficient than the

resource allocation graph called ______

Deadlock

prevention

deadlock

avoidance

bankers algorithm bankers

allocation

bankers

algorithm

CPU Scheduling is the basis of _________

operating system.

single

programmed

multi

programmed

multi system multi disks multi

programmed

Scheduling is a fundamental ___________

function.

computer operating system system resource disk operating

system

Another component involved in the CPU

_______ function is the dispatcher

processing mathematical arithmetic scheduling scheduling

A major problem for priority __________ is

starvation.

sort algorithms scheduling

algoriuthms

search algorithms manage

algorithms

scheduling

algoriuthms

The seek _______ strategy in which there is no

reordering of the queue is called SSTF

processing scheduling optimization implementation optimization

The high ___________ would be waiting for a

lower priority one to finish is called priority

inversion

performance priority patent graph edge priority

A __________ is a program segment where

shared resources are accessed.

critical section sub section cross section class section critical section

If no thread is found, the ________ will execute

a special thread called idle thread.

degrader scheduler dispatcher redeemer dispatcher

_______ execution begins with a CPU Burst. Process Performance Purge Put Process

SJF Scheduling is an example for _________

scheduling.

non- preemptive preemptive emptive prescheduling non-

preemptive

_______ is the simplest CPU sceduling

algorithm.

FCFS LCFS FCLS LCFS FCFS

Segments are called ________ blocks. equal size variable class variable size big size variable size

________ can be described more precisely in

terms of a directed graph.

semaphore deadlocks dumplocks starvation deadlocks

The interval from the time of submission of a

process to the time of completion is the ____

Queues Processor

Sharing

Sharing resources turaround time turaround time

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

UNIT – III

SYLLABUS

Memory Management: Physical and Virtual address space-Memory Allocation strategies –

Fixed and Variable partitions-Paging-Segmentation-Virtual memory.

MEMORY MANAGEMENT

 The operating system, executing in kernel mode, is given unrestricted access to both

operating-system memory and users’ memory. This provision allows the operating

system to load users’ programs into users’ memory, to dump out those programs in case

of errors, to access and modify parameters of system calls, to perform I/O to and from

user memory, and to provide many other services.

 Consider, for example, that an operating system for a multiprocessing system must

execute context switches, storing the state of one process from the registers into main

memory before loading the next process’s context from main memory into the registers.

This scheme allows the operating system to change the value of the registers but prevents

user programs from changing the registers’ contents.

Address Binding

 Memory management is the functionality of an operating system which handles or

manages primary memory. Memory management keeps track of each and every memory

location either it is allocated to some process or it is free. It checks how much memory is

to be allocated to processes. It decides which process will get memory at what time. It

tracks whenever some memory gets freed or unallocated and correspondingly it updates

the status.

 Memory management provides protection by using two registers, a base register and a

limit register. The base register holds the smallest legal physical memory address and the

limit register specifies the size of the range. For example, if the base register holds

300000 and the limit register is 1209000, then the program can legally access all

addresses from 300000 through 411999.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 1/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

Instructions and data to memory addresses can be done in following ways

 Compile time -- When it is known at compile time where the process will reside, compile

time binding is used to generate the absolute code.

 Load time -- When it is not known at compile time where the process will reside in

memory, then the compiler generates re-locatable code.

 Execution time -- If the process can be moved during its execution from one memory

segment to another, then binding must be delayed to be done at run time

Dynamic Loading

 In dynamic loading, a routine of a program is not loaded until it is called by the program.

All routines are kept on disk in a re-locatable load format. The main program is loaded

into memory and is executed. Other routines methods or modules are loaded on request.

Dynamic loading makes better memory space utilization and unused routines are never

loaded.

 The advantage of dynamic loading is that a routine is loaded only when it is needed.

This method is particularly useful when large amounts of code are needed to handle

infrequently occurring cases, such as error routines. In this case, although the total

program size may be large, the portion that is used (and hence loaded) may be much

smaller.

 Dynamic loading does not require special support from the operating system. It is the

responsibility of the users to design their programs to take advantage of such a method.

Operating systems may help the programmer, however, by providing library routines to

implement dynamic loading.

Dynamic Linking

 Linking is the process of collecting and combining various modules of code and data

into a executable file that can be loaded into memory and executed. Operating system

can link system level libraries to a program. When it combines the libraries at load time,

the linking is called static linking and when this linking is done at the time of execution,

it is called as dynamic linking.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHEPage 2/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

 In static linking, libraries linked at compile time, so program code size becomes bigger

whereas in dynamic linking libraries linked at execution time so program code size

remains smaller.

 Unlike dynamic loading, dynamic linking and shared libraries generally require help

from the operating system. If the processes in memory are protected from one another,

then the operating system is the only entity that can check to see whether the needed

routine is in another process’s memory space or that can allow multiple processes to

access the same memory addresses.

PHYSICAL AND VIRTUAL ADDRESS SPACE

Logical (Virtual) versus Physical Address Space

An address generated by the CPU is a logical address whereas address actually available

on memory unit is a physical address. Logical address is also known a Virtual address. Virtual

and physical addresses are the same in compile-time and load-time address-binding schemes.

Virtual and physical addresses differ in execution-time address-binding scheme.

The set of all logical addresses generated by a program is referred to as a logical address

space. The set of all physical addresses corresponding to these logical addresses is referred to as

a physical address space.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 3/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

The run-time mapping from virtual to physical address is done by the memory

management unit (MMU) which is a hardware device.

MMU uses following mechanism to convert virtual address to physical address.

 The value in the base register is added to every address generated by a user process which is

treated as offset at the time it is sent to memory. For example, if the base register value is

10000, then an attempt by the user to use address location 100 will be dynamically reallocated

to location 10100.

 The user program deals with virtual addresses; it never sees the real physical addresses.

MEMORY ALLOCATION STRATEGIES

Contiguous Memory Allocation

 The main memory must accommodate both the operating system and the various user

processes. We therefore need to allocate main memory in the most efficient way possible.

The memory is usually divided into two partitions: one for the resident operating system and

one for the user processes.

 We can place the operating system in either low memory or high memory. The major factor

affecting this decision is the location of the interrupt vector. Since the interrupt vector is

often in low memory, programmers usually place the operating system in low memory as

well.

 We usually want several user processes to reside in memory at the same time. We therefore

need to consider how to allocate available memory to the processes that are in the input

queue waiting to be brought into memory. In contiguous memory allocation, each process is

contained in a single section of memory that is contiguous to the section containing the next

process.

Memory Protection

 Before discussing memory allocation further, we must discuss the issue of memory

protection. If we have a system with a relocation register, together with a limit, we

accomplish our goal. The relocation register contains the value of the smallest physical

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 4/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

address; the limit register contains the range of logical addresses (for example, relocation =

100040 and limit = 74600).

 Each logical address must fall within the range specified by the limit register. The MMU maps

the logical address dynamically by adding the value in the relocation register. This mapped

address is sent to memory. When the CPU scheduler selects a process for execution, the

dispatcher loads the relocation and limit registers with the correct values as part of the

context switch. Because every address generated by a CPU is checked against these

registers, we can protect both the operating system and the other users’ programs and data

from being modified by this running process.

Memory Allocation

 One of the simplest methods for allocating memory is to divide memory into several fixed-

sized partitions. Each partition may contain exactly one process. Thus, the degree of

multiprogramming is bound by the number of partitions. In this multiple partition method,

when a partition is free, a process is selected from the input queue and is loaded into the free

partition.

 When the process terminates, the partition becomes available for another process. This

method was originally used by the IBM OS/360 operating system (called MFT) but is no

longer in use. The method described next is a generalization of the fixed-partition scheme

(called MVT); it is used primarily in batch environments. Many of the ideas presented here

are also applicable to a time-sharing environment in which pure segmentation is used for

memory management.

 In the variable-partition scheme, the operating system keeps a table indicating which parts

of memory are available and which are occupied. Initially, all memory is available for user

processes and is considered one large block of available memory, a hole. Eventually, as you

will see, memory contains a set of holes of various sizes.

 As processes enter the system, they are put into an input queue. The operating system takes

into account the memory requirements of each process and the amount of available memory

space in determining which processes are allocated memory.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 5/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

 When a process is allocated space, it is loaded into memory, and it can then compete for

CPU time. When a process terminates, it releases its memory, which the operating system

may then fill with another process from the input queue.

 In general, the memory blocks available comprise a set of holes of various sizes scattered

throughout memory. When a process arrives and needs memory, the system searches the set

for a hole that is large enough for this process. If the hole is too large, it is split into two

parts. One part is allocated to the arriving process; the other is returned to the set of holes.

When a process terminates, it releases its block of memory, which is then placed back in the

set of holes.

 If the new hole is adjacent to other holes, these adjacent holes are merged to form one larger

hole. At this point, the system may need to check whether there are processes waiting for

memory and whether this newly freed and recombined memory could satisfy the demands

of any of these waiting processes. This procedure is a particular instance of the general

dynamic storage allocation problem, which concerns how to satisfy a request of size n from

a list of free holes. There are many solutions to this problem. The first-fit, best-fit, and

worst-fit strategies are the ones most commonly used to select a free hole from the set of

available holes.

• First fit. Allocate the first hole that is big enough. Searching can start either at the beginning of

the set of holes or at the location where the previous first-fit search ended. We can stop searching

as soon as we find a free hole that is large enough.

• Best fit. Allocate the smallest hole that is big enough. We must search the entire list, unless the

list is ordered by size. This strategy produces the smallest leftover hole.

• Worst fit. Allocate the largest hole. Again, we must search the entire list, unless it is sorted by

size. This strategy produces the largest leftover hole, which may be more useful than the smaller

leftover hole from a best-fit approach.

Fragmentation

 Both the first-fit and best-fit strategies for memory allocation suffer from external

fragmentation. As processes are loaded and removed from memory, the free memory space

is broken into little pieces. External fragmentation exists when there is enough total memory

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 6/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

space to satisfy a request but the available spaces are not contiguous: storage is fragmented

into a large number of small holes. This fragmentation problem can be severe. In the worst

case, we could have a block of free (or wasted) memory between every two processes. If all

these small pieces of memory were in one big free block instead, we might be able to run

several more processes.

 Whether we are using the first-fit or best-fit strategy can affect the amount of fragmentation.

(First fit is better for some systems, whereas best fit is better for others.) Another factor is

which end of a free block is allocated. (Which is the leftover piece—the one on the top or

the one on the bottom?) Memory fragmentation can be internal as well as external. Consider

a multiple-partition allocation scheme with a hole of 18,464 bytes. Suppose that the next

process requests 18,462 bytes. If we allocate exactly the requested block, we are left with a

hole of 2 bytes. The overhead to keep track of this hole will be substantially larger than the

hole itself.

 The general approach to avoiding this problem is to break the physical memory into fixed-

sized blocks and allocate memory in units based on block size. With this approach, the

memory allocated to a process may be slightly larger than the requested memory. The

difference between these two numbers is internal fragmentation—unused memory that

is internal to a partition.

 One solution to the problem of external fragmentation is compaction. The goal is to shuffle

the memory contents so as to place all free memory together in one large block. Compaction

is not always possible, however. If relocation is static and is done at assembly or load time,

compaction cannot be done. It is possible only if relocation is dynamic and is done at

execution time. Another possible solution to the external-fragmentation problem is to permit

the logical address space of the processes to be noncontiguous, thus allowing a process to be

allocated physical memory wherever such memory is available. Two complementary

techniques achieve this solution: segmentation and paging

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 7/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

PAGING

 It is a memory-management scheme that permits the physical address space a process to

be noncontiguous. Paging avoids external fragmentation and the need for compaction. It

also solves the considerable problem of fitting memory chunks of varying sizes onto the

backing store; most memory management schemes used before the introduction of paging

suffered from this problem. The problem arises because, when some code fragments or

data residing in main memory need to be swapped out, space must be framed on the

backing store.

 The backing store has the same fragmentation problems discussed in connection with

main memory, but access is much slower, so compaction is impossible. Because of its

advantages over earlier methods, paging in its various forms is used in most operating

systems.

Traditionally, support for paging has been handled by hardware. However, recent designs

have implemented paging by closely integrating the hardware and operating system,

especially on 64-bit microprocessors.

Basic Method

 The basic method for implementing paging involves breaking physical memory into fixed-

sized blocks called frames and breaking logical memory into blocks of the same size called

pages.

 When a process is to be executed, its pages are loaded into any available memory frames

from their source (a file system or the backing store). The backing store is divided into

fixed-sized blocks that are of the san1.e size as the memory frames. The hardware support

for paging is illustrated in the following figure

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 8/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

 Every address generated the CPU is divided into two parts: a {p) and a . The page number is

used as an index into a page table contains the base address of each page in physical

memory. This base address is combined with the page offset to define the physical memory

address that is sent to the memory unit. The paging model of memory is shown in the

following diagram

 The page size (like the frame size) is defined by the hardware. The size of a page is typically

a power of 2, varying between 512 bytes and 16 MB per page, depending on the computer

architecture. The selection of a power of 2 as a page size makes the translation of a logical

address into a page number and page offset particularly easy.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 9/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

 If the size of the logical address space is 2m, and a page size is 271 addressing units (bytes

or wordst then the high-order m- n bits of a logical address designate the page number, and

the n low-order bits designate the page offset. Thus, the logical address is as follows: where

p is an index into the page table and d is the displacement within the page. As a concrete

(although minuscule) example, consider the memory in the following diagram

 Here, in the logical address, n= 2 and m = 4. Using a page size of 4 bytes and a physical

memory of 32 bytes (8 pages), we show how the user's view of memory can be mapped into

physical memory. Logical address 0 is page 0, offset 0. Indexing into the page table, we find

that page 0 is in frame 5. Thus, logical address 0 maps to physical address 20 [= (5 x 4) + 0].

Logical address 3 (page 0, offset 3) maps to physical address 23 [= (5 x 4) + 3].

 Logical address 4 is page 1, offset 0; according to the page table, page 1 is mapped to frame

6. Thus, logical address 4 maps to physical address 24 [= (6 x 4) + O]. Logical address 13

maps to physical address 9. You may have noticed that paging itself is a form of dynamic

relocation. Every logical address is bound by the paging hardware to some physical address.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 10/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

Using paging is similar to using a table of base (or relocation) registers, one for each frame

of memory. When we use a paging scheme, we have no external fragmentation: any free

frame can be allocated to a process that needs it. However, we may have some internal

fragmentation. Notice that frames are allocated as units.

 If the memory requirements of a process do not happen to coincide with page boundaries,

the last frame allocated may not be completely full. For example, if page size is 2,048 bytes,

a process of 72,766 bytes will need 35 pages plus 1,086 bytes. It will be allocated 36 frames,

resulting in internal fragmentation of 2,048 - 1,086 = 962 bytes. In the worst case, a process

would need 11 pages plus 1 byte. It would be allocated 11 + 1 frames, resulting in internal

fragmentation of almost an entire frame. If process size is independent of page size, we

expect internal fragmentation to average one-half page per process. This consideration

suggests that small page sizes are desirable. Generally, page sizes have grown over time as

processes, data sets, and main memory have become larger.

 Today, pages typically are between 4 KB and 8 KB in size and some systems support even

larger page sizes. Some CPUs and kernels even support multiple page sizes. For instance,

Solaris uses page sizes of 8 KB and 4 MB, depending on the data stored by the pages.

Researchers are now developing support for variable on-the-fly page size. Usually, each

page-table entry is 4 bytes long, but that size can vary as well. A 32-bit entry can point to

one of 232 physical page frames. If frame size is 4 KB, then a system with 4-byte entries

can address 244 bytes (or 16 TB) of physical memory. When a process arrives in the system

to be executed, its size, expressed in pages, is examined. Each page of the process needs one

frame. Thus, if the process requires 11 pages, at least 11 frames must be available in

memory.

 If n frames are available, they are allocated to this arriving process. The first page of the

process is loaded into one of the allocated frames, and the frame number is put in the page

table for this process. The next page is loaded into another frame, its frame number is put

into the page table, and so on. An important aspect of paging is the clear separation between

the user's view of memory and the actual physical memory. The user program views

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 11/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

memory as one single space, containing only this one program. In fact, the user program is

scattered throughout physical memory, which also holds other programs.

 The difference between the user's view of memory and the actual physical memory is

reconciled by the address-translation hardware. The logical addresses are translated into

physical addresses. This mapping is hidden from the user and is controlled by the operating

system. Notice that the user process by definition is unable to access memory it does not

own.

 It has no way of addressing memory outside of its page table, and the table includes only

those pages that the process owns. Since the operating system is managing physical

memory, it must be aware of the allocation details of physical memory-which frames are

allocated, which frames are available, how many total frames there are, and so on. This

information is generally kept in a data structure called a frame the frame-table has one entry

for each physical page frame, indicating whether the latter is free or allocated and, if it is

allocated, to which page of which process or processes.

 In addition, the operating system must be aware that user processes operate in user space,

and all logical addresses must be mapped to produce physical addresses.If a user makes a

system call (to do I/0, for example) and provides an address as a parameter (a buffe1~ for

instance), that address must be mapped to produce the correct physical address.

 The operating system maintains a copy of the page table for each process, just as it

maintains a copy of the instruction counter and register contents. This copy is used to

translate logical addresses to physical addresses whenever the operating system must map a

logical address to a physical address manually. It is also used by the CPU dispatcher to

define the hardware page table when a process is to be allocated the CPU. Paging therefore

increases the context-switch time.

STRUCTURE OF PAGE TABLE

In this section, we explore some of the most common techniques for structuring the page table,

including hierarchical paging, hashed page tables, and inverted page tables.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 12/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

Hierarchical Paging

 Most modern computer systems support a large logical address space (232 to 264). In

such an environment, the page table itself becomes excessively large. For example,

consider a system with a 32-bit logical address space. If the page size in such a system is

4 KB (212), then a page table may consist of up to 1 million entries (232/212). Assuming

that each entry consists of 4 bytes, each process may need up to 4 MB of physical address

space for the page table alone. Clearly, we would not want to allocate the page table

contiguously in main memory. One simple solution to this problem is to divide the page

table into smaller pieces.

 We can accomplish this division in several ways. One way is to use a two-level paging

algorithm, in which the page table itself is also paged. For example, consider again the

system with a 32-bit logical address space and a page size of 4 KB. A logical address is

divided into a page number

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 13/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

consisting of 20 bits and a page offset consisting of 12 bits. Because we page the

page table, the page number is further divided into a 10-bit page number and a 10-bit

page offset. Thus, a logical address is as follows:

Where p1 is an index into the outer page table and p2 is the displacement within

the page of the inner page table. The address-translation method for this

architecture is shown in Figure. Because address translation works from the outer

page table inward, this scheme is also known as a forward-mapped page table.

Hashed Page Tables

 A common approach for handling address spaces larger than 32 bits is to use a hashed

page table, with the hash value being the virtual page number. Each entry in the hash

table contains a linked list of elements that hash to the same location (to handle

collisions). Each element consists of three fields: (1) the virtual page number, (2) the

value of the mapped page frame, and (3) a pointer to the next element in the linked list.

The algorithm works as follows:

 The virtual page number in the virtual address is hashed into the hash table. The virtual

page number is compared with field 1 in the first element in the linked list. If there is a

match, the corresponding page frame (field 2) is used to form the desired physical

address. If there is no match, subsequent entries in the linked list are searched for a

matching virtual page number.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 14/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

Inverted Page Tables

 Usually, each process has an associated page table. The page table has one entry for each

page that the process is using (or one slot for each virtual address, regardless of the

latter’s validity). This table representation is a natural one, since processes reference

pages through the pages’ virtual addresses.

 The operating system must then translate this reference into a physical memory address.

Since the table is sorted by virtual address, the operating system is able to calculate where

in the table the associated physical address entry is located and to use that value directly.

One of the drawbacks of this method is that each page table may consist of millions of

entries. These tables may consume large amounts of physical memory just to keep track

of how other physical memory is being used.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 15/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

 To solve this problem, we can use an inverted page table. An inverted page table has one

entry for each real page (or frame) of memory. Each entry consists of the virtual address

of the page stored in that real memory location, with information about the process that

owns the page. Thus, only one page table is in the system, and it has only one entry for

each page of physical memory.

Shared Pages

 An advantage of paging is the possibility of sharing common code. This consideration is

particularly important in a time-sharing environment. Consider a system that supports 40

users, each of whom executes a text editor. If the text editor consists of 150 KB of code

and 50 KB of data space, we need 8,000 KB to support the 40 users. If the code is

reentrant code (or pure code), it can be shared, as shown in Figure. Here, we see three

processes sharing a three-page editor—each page 50 KB in size (the large page size is

used to simplify the figure). Each process has its own data page. Reentrant code is non-

self-modifying code: it never changes during execution. Thus, two or more processes can

execute the same code at the same time.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 16/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

 Each process has its own copy of registers and data storage to hold the data for the

process’s execution. The data for two different processes will, of course, be different.

Only one copy of the editor need be kept in physical memory. Each user’s page table

maps onto the same physical copy of the editor, but data pages are mapped onto different

frames. Thus, to support 40 users, we need only one copy of the editor (150 KB), plus 40

copies of the 50 KB of data space per user. The total space required is now 2,150 KB

instead of 8,000 KB—a significant savings. Other heavily used programs can also be

shared—compilers, window systems, run-time libraries, database systems, and so on. To

be sharable, the code must be reentrant. The read-only nature of shared code should not

be left to the correctness of the code; the operating system should enforce this property.

 The sharing of memory among processes on a system is similar to the sharing of the

address space of a task by threads.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 17/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

SEGMENTATION

 An important aspect of memory management that became unavoidable with paging is the

separation of the user's view of memory from the actual physical memory. As we have

already seen, the user's view of memory is not the same as the actual physical memory.

The user's view is mapped onto physical memory. This mapping allows differentiation

between logical memory and physical memory.

Basic Methods

 It is a memory-management scheme that supports this user view of memory. A logical

address space is a collection of segments. Each segment has a name and a length. The

addresses specify both the segment name and the offset within the segment. The user

therefore specifies each address by two quantities: a segment name and an offset.

(Contrast this scheme with the paging scheme, in which the user specifies only a single

address, which is partitioned by the hardware into a page number and an offset, all

invisible to the programmer.) For simplicity of implementation, segments are numbered

and are referred to by a segn"lent number, rather than by a segment name. Thus, a logical

address consists of a two tuple:

<segment-number, offset>.

 Normally, the user program is compiled, and the compiler automatically constructs

segments reflecting the input program. A C compiler might create separate segments for

the following:

1. The code

2. Global variables

3. The heap, from which memory is allocated

4. The stacks used by each thread

5. The standard C library

 Libraries that are linked in during compile time might be assigned separate segments. The

loader would take all these segments and assign them segment numbers.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 18/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

Hardware

 Although the user can now refer to objects in the program by a two-dimensional address,

the actual physical memory is still, of course, a one-dimensional sequence of bytes. Thus,

we must define an implementation to map two dimensional user-defined addresses into

one-dimensional physical addresses. This mapping is affected by each entry in the

segment table has a segment base and a segment limit. The segment base contains the

start physical address where the segment resides in memory, and the segment limit

specifies the length of the segment. The use of a segment table is illustrated in Figure

 A logical address consists of two parts: a segment number, s, and an offset into that

segment, d. the segment number is used as an index to the segment table. The offset d of

the logical address must be between 0 and the segment limit. If it is not, we trap to the

operating system (logical addressing attempt beyond end of segment). When an offset is

legal, it is added to the segment base to produce the address in physical memory of the

desired byte. The segment table is thus essentially an array of base-limit register pairs. As

an example, consider the situation shown in Figure

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 19/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

 We have five segments numbered from 0 through 4. The segments are stored in physical

memory as shown. The segment table has a separate entry for each segment, giving the

beginning address of the segment in physical memory (or base) and the length of that

segment (or limit). For example, segment 2 is 400 bytes long and begins at location 4300.

Thus, a reference to byte 53 of segment 2 is mapped onto location 4300 +53= 4353. A

reference to segment 3, byte 852, is mapped to 3200 (the base of segment 3) + 852 =

4052. A reference to byte 1222 of segment 0 would result in a trap to the operating

system, as this segment is only 1000 bytes long.

Segmentation and Paging

 A user program can be subdivided using segmentation, in which the program and its

associated data are divided into a number of segments. It is not required that all segments

of all programs be of the same length, although there is a maximum segment length. As

with paging, a logical address using segmentation consists of two parts, in this case a

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 20/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

segment number and an offset. Because of the use of unequal-size segments,

segmentation is similar to dynamic partitioning.

 In the absence of an overlay scheme or the use of virtual memory, it would be required

that all of a program’s segments be loaded into memory for execution. The difference,

compared to dynamic partitioning, is that with segmentation a program may occupy more

than one partition, and these partitions need not be contiguous. Segmentation eliminates

internal fragmentation but, like dynamic partitioning, it suffers from external

fragmentation.

 However, because a process is broken up into a number of smaller pieces, the external

fragmentation should be less. Whereas paging is invisible to the programmer,

segmentation is usually visible and is provided as a convenience for organizing programs

and data. STypically, the programmer or compiler will assign programs and data to

different segments. For purposes of modular programming, the program or data may be

further broken down into multiple segments.

 The principal inconvenience of this service is that the programmer must be aware of the

maximum segment size limitation. Another consequence of unequal-size segments is that

there is no simple relationship between logical addresses and physical addresses.

 Each segment table entry would have to give the starting address in main memory of the

corresponding segment. The entry should also provide the length of the segment, to

assure that invalid addresses are not used. When a process enters the Running state, the

address of its segment table is loaded into a special register used by the memory

management hardware. Consider an address of n_m bits, where the leftmost n bits are the

segment number and the rightmost m bits are the offset. In our example (Figure C), n _ 4

and m _ 12. Thus the maximum segment size is 2 12 _ 4096.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 21/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

The following steps are needed for address translation:

• Extract the segment number as the leftmost n bits of the logical address.

• Use the segment number as an index into the process segment table to find the starting physical

address of the segment.

• Compare the offset, expressed in the rightmost m bits, to the length of the segment.

If the offset is greater than or equal to the length, the address is invalid. The desired

physical address is the sum of the starting physical address of the segment plus the offset.

In our example, we have the logical address 0001001011110000, which is segment

number 1, offset 752. Suppose that this segment is residing in main memory starting at physical

address 0010000000100000. Then the physical address is 0010000000100000 + 001011110000

_ 0010001100010000.

To summarize, with simple segmentation, a process is divided into a number of segments

that need not be of equal size. When a process is brought in, all of its segments are loaded into

available regions of memory, and a segment table is set up.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 22/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

VIRTUAL MEMORY

Virtual Memory and its Organization

 Virtual memory is a technique that allows the execution of processes which are not

completely available in memory. The main visible advantage of this scheme is that

programs can be larger than physical memory. Virtual memory is the separation of user

logical memory from physical memory. This separation allows an extremely large

virtual memory to be provided for programmers when only a smaller physical memory is

available. Following are the situations, when entire program is not required to be loaded

fully in main memory.

 User written error handling routines are used only when an error occured in the data or

computation.

 Certain options and features of a program may be used rarely.

 Many tables are assigned a fixed amount of address space even though only a small

amount of the table is actually used.

 The ability to execute a program that is only partially in memory would counter many

benefits.

 Less number of I/O would be needed to load or swap each user program into memory.

 A program would no longer be constrained by the amount of physical memory that is

available.

 Each user program could take less physical memory, more programs could be run the

same time, with a corresponding increase in CPU utilization and throughput.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 23/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

 Virtual memory is commonly implemented by demand paging. It can also be

implemented in a segmentation system. Demand segmentation can also be used to

provide virtual memory.

Demand Paging

 A demand paging system is quite similar to a paging system with swapping. When we

want to execute a process, we swap it into memory. Rather than swapping the entire

process into memory, however, we use a lazy swapper called pager.

 When a process is to be swapped in, the pager, guesses which pages will be used before

the process is swapped out again. Instead of swapping in a whole process, the pager

brings only those necessary pages into memory. Thus, it avoids reading into memory

pages that will not be used in anyway, decreasing the swap time and the amount of

physical memory needed.

 Hardware support is required to distinguish between those pages that are in memory and

those pages that are on the disk using the valid-invalid bit scheme, where valid and

invalid pages can be checked by checking the bit. Marking a page will have no effect if

the process never attempts to access the page. While the process executes and accesses

pages that are memory resident, execution proceeds normally.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 24/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

 Access to a page marked invalid causes a page-fault trap. This trap is the result of the

operating system's failure to bring the desired page into memory. But page fault can be

handled as following

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 25/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

Step Description

Step 1 Check an internal table for this process, to determine whether the

reference was a valid or it was an invalid memory access.

Step 2 If the reference was invalid, terminate the process. If it was valid,

but page have not yet brought in, page in the latter.

Step 3 Find a free frame.

Step 4 Schedule a disk operation to read the desired page into the newly

allocated frame.

Step 5 When the disk read is complete, modify the internal table kept

with the process and the page table to indicate that the page is now

in memory.

Step 6 Restart the instruction that was interrupted by the illegal address

trap. The process can now access the page as though it had always

been in memory. Therefore, the operating system reads the desired

page into memory and restarts the process as though the page had

always been in memory.

 Advantages

Following are the advantages of Demand Paging

 Large virtual memory.

 More efficient use of memory.

 Unconstrained multiprogramming. There is no limit on degree of multiprogramming.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 26/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

 Disadvantages

Following are the disadvantages of Demand Paging

 Number of tables and amount of processor overhead for handling page interrupts are

greater than in the case of the simple paged management techniques.

 Due to the lack of an explicit constraint on a job address space size.

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 27/28

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - III BATCH: 2018 – 2021

POSSIBLE QUESTIONS

UNIT – III

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. What is paging?

2. What is meant by Segmentation?

3. What is Fragmentation?

4. Define Page table

5. List some Memory Allocation Strategies.

6. Define Virtual Address Space

PART – C (6 MARKS)

1. Explain about Memory Allocation Strategies.

2. Explain the process of Fixed and Variable partition.

3. Explain about Virtual address space.

4. Discuss in detail about Paging in detail

5. Explain the concept of Physical address space in detail.

6. Discuss in detail about Segmentation.

7. Explain the process of swapping

8. Difference between Paging and Segmentation

9. Comparison between paging and Fragmentation

10. Difference between Physical address space and Virtual Address space

Prepared by Mr.SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 28/28

Questions Opt1 opt2 opt3 opt4 KEY

Memory is array of ___________ bytes circuits ics ram bytes

CPU fetches instructions from ______ memory pendrive dvd cmos memory

Program must be in ________________ dvd pendrive memory cmos memory

Collection of process in disk forms_____ input queue output queue stack circle input queue

Address space of computer starts at _________ 3333 4444 0000 2222 0000

If process location is found during compile time then _________ code is generatedrelative absolute approximate more or less absolute

Address generated by CPU is ______________ addresslogical physical direct indirect logical

Logical address can be also called as ______________ addressphysical virtual direct indirect virtual

Run time mapping is done using _____________ MMU CPU CU IU MMU

In address binding base register is also called as ______________relocation register memory register hard disk pendrive relocation register

Better memory space is utilized using ________________dynamic loading dynamic linking registers array of words dynamic loading

_________________ routine is never loaded in dynamic loadingunused used regular recursive unused

Some operating systems support only __________ linkingstatic dynamic temporary interruptive static

______________ is a code that locates library routinestub dll recursive routine exe file stub

____________ can be used to manage large memory requirement for a processoverlays swapping roll in and out libraries overlays

______________ error is raised in memory addressing swapping dynamic index addressing

Set of ___________ are scattered throughout the memoryholes gaps free space words holes

PART - A (Online Examination)

KARPAGAM ACADEMY OF HIGHER EDUCATION
Coimbatore – 641 021.

(For the Candidates admitted from 2018 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

UNIT - III : (Objective Type Multiple choice Questions each Question carries one Mark)

OPERATING SYSTEMS

_____________ can be internal and external fragmentation merging grouping fixing fragmentation

____________ is used to divide a process into fixed size chunkspaging segmentation sp swapping paging

In paging physical memory is divided into _______________frames pages segments bytes frames

In paging virtual memory is divided into _______________frames pages segments bytes pages

_____________ is first of virtual address in pagingpage number segment number frame number offset page number

_____________ is second part of virtual address in pagingpage number segment number frame number offset offset

Page mapping entries are found in __________ page table segment table hash table pointing table page table

Page size is defined by ______________ hardware software os kernel hardware

_____________ is first in mapping of virtual to physical address in pagingdirect associate direct & associative pointing direct

_____________ is second in mapping of virtual to physical address in pagingdirect associate direct & associative pointing associate

_____________ is third in mapping of virtual to physical address in pagingdirect associate direct & associative pointing direct & associative

____________ is used to divide a process into variable size chunkspaging segmentation sp swapping segmentation

In segmentation virtual memory is divided into _______________frames pages segments bytes segments

___________ view is supported in segmentation user system cpu manager user

____________ is format for segmentation virtual address(s,d) (p,d) (v,d) (k,d) (s,d)

____________ is the first element in segment tablelimit base offset page number limit

____________ is the second element in segment tablelimit base offset page number base

Addressing in segmentation is similar as ___________ addressing in pagingdirect associate direct & associative pointing direct

How many elements are there in segmentation address ________1 2 3 4 3

____________ is organization in physical memory in segmentationframes pages segments bytes frames

_______________ memory is used to manage incompleteness of a process executionvirtual physical rom eprom virtual

virtual memory abstracts ________ memory virtual eerom main eprom main

______________ reasons are there for existence for virtual memory1 2 3 4 3

______________ benefits are there from virtual memory1 2 3 4 3

Virtual memory is commonly implemented by ___________ pagingdemand bargain quarrel order demand

_______________ fault occurs when desired page is not in memorypage segment pages segments page

______________ table is used in demand paging page segment pages segments page

______________ methods are there for process creation1 2 3 4 2

______________ method implements partial sharing in process creationcopy on write memory mapping paging segmentation copy on write

______________ is done for page fault replacement swapping logging locking replacement

______________ is unrealizable page replacement algorithmoptimal FIFO LRU NRU optimal

______________ is first page replacement algorithmoptimal FIFO LRU NRU FIFO

______________ is second page replacement algorithmoptimal FIFO LRU NRU optimal

______________ is third page replacement algorithmoptimal FIFO LRU NRU NRU

______________ is associated with each page in optimal algorithmlabel index number identity label

______________ labelled page replaced in optimal algorithmhighest lowest moderate below average highest

______________ end page is removed in fifo algorithmrear head top bottom head

Modified version of fifo algorithm gives ___________ chance to a page1 2 3 4 2

_____________ is called as high paging activity thrashing smashing mocking breaking thrashing

_____________ occurs frequently during thrashingpage fault segment fault memory fault address fault page fault

______________ strategy is used to solve thrashing a littleworking set pff lpr algorithm gpl algorithm working set

______________ algorithm is used to solve thrashing a littleworking set pff lpr algorithm gpl algorithm lpr algorithm

______________ is a basic solution for thrashingworking set pff lpr algorithm gpl algorithm pff

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - IV BATCH: 2018 – 2021

UNIT – IV

SYLLABUS

File and I/O Management: Directory structure-File operations-File Allocation methods- Device

management.

FILE AND I/O

MANAGEMENT DIRECTORY STRUCTURE

 The directory can be viewed as a symbol table that translates file names into their

directory entries. If we take such a view, we see that the directory itself can be organized

in many ways. The organization must allow us to insert entries, to delete entries, to search

for a named entry, and to list all the entries in the directory. When considering a

particular directory structure, we need to keep in mind the operations that are to be

performed on a directory:

• Search for a file. We need to be able to search a directory structure to find the entry for a

particular file. Since files have symbolic names, and similar names may indicate a

relationship among files, we may want to be able to find all files whose names match a

particular pattern.

• Create a file. New files need to be created and added to the directory. • Delete a file. When

a file is no longer needed, we want to be able to remove it from the directory.

• List a directory. We need to be able to list the files in a directory and the contents of the

directory entry for each file in the list.

• Rename a file. Because the name of a file represents its contents to its users, we must be

able to change the name when the contents or use of the file changes. Renaming a file may

also allow its position within the directory structure to be changed.

• Traverse the file system. Wemay wish to access every directory and every file within a

directory structure. For reliability, it is a good idea to save the contents and structure of the

entire file system at regular intervals. Often, we do this by copying all files to magnetic tape.

This technique provides a backup copy in case of system failure. In addition, if a file is no

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 1/15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - IV BATCH: 2018 – 2021

longer in use, the file can be copied to tape and the disk space of that file released for reuse

by another file.

Single-Level Directory

It is Simple to implement, but each file must have a unique name.

Two-Level Directory

 In this structure each user gets their own directory space. File names only need to be

unique within a given user's directory. A master file directory is used to keep track of

each user’s directory, and must be maintained when users are added to or removed

from the system.

 A separate directory is generally needed for system (executable) files. Systems may

or may not allow users to access other directories besides their own If access to other

directories is allowed, then provision must be made to specify the directory being

accessed. If access is denied, then special consideration must be made for users to run

programs located in system directories. A search path is the list of directories in

which to search for executable programs, and can be set uniquely for each user.

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 2/15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - IV BATCH: 2018 – 2021

Tree-Structured Directories

 An obvious extension to the two-tiered directory structure, and the one with which we are

all most familiar. Each user / process has the concept of a current directory from which

all (relative) searches take place. Files may be accessed using either absolute pathnames

(relative to the root of the tree) or relative pathnames (relative to the current directory.)

Directories are stored the same as any other file in the system, except there is a bit that

identifies them as directories, and they have some special structure that the OS

understands. One question for consideration is whether or not to allow the removal of

directories that are not empty - Windows requires that directories be emptied first, and

UNIX provides an option for deleting entire sub-trees.

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 3/15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - IV BATCH: 2018 – 2021

Acyclic-Graph Directories

 When the same files need to be accessed in more than one place in the directory structure

(e.g. because they are being shared by more than one user / process), it can be useful to

provide an acyclic-graph structure. (Note the directed arcs from parent to child.)

UNIX provides two types of links for implementing the acyclic-graph structure. (See

"man ln" for more details.)

 A hard link (usually just called a link) involves multiple directory entries that both refer

to the same file. Hard links are only valid for ordinary files in the same filesystem.

 A symbolic link, that involves a special file, containing information about where to find

the linked file. Symbolic links may be used to link directories and/or files in other file

systems, as well as ordinary files in the current file system.

 Windows only supports symbolic links, termed shortcuts. Hard links require a reference

count, or link count for each file, keeping track of how many directory entries are

currently referring to this file. Whenever one of the references is removed the link count

is reduced, and when it reaches zero, the disk space can be reclaimed. For symbolic links

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 4/15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - IV BATCH: 2018 – 2021

there is some question as to what to do with the symbolic links when the original file is

moved or deleted: One option is to find all the symbolic links and adjust them also.

Another is to leave the symbolic links dangling, and discover that they are no longer valid

the next time they are used. What if the original file is removed, and replaced with

another file having the same name before the symbolic link is next used?

General Graph Directory

 If cycles are allowed in the graphs, then several problems can arise: Search algorithms

can go into infinite loops. One solution is to not follow links in search algorithms. (Or

not to follow symbolic links, and to only allow symbolic links to refer to directories.)

Sub-trees can become disconnected from the rest of the tree and still not have their

reference counts reduced to zero.

 Periodic garbage collection is required to detect and resolve this problem. (chkdsk in

DOS and fsck in UNIX search for these problems, among others, even though cycles are

not supposed to be allowed in either system. Disconnected disk blocks that are not

marked as free are added back to the file systems with made-up file names, and can

usually be safely deleted.)

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 5/15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - IV BATCH: 2018 – 2021

FILE OPERATIONS

 A file is an abstract data type. To define a file properly, we need to consider the

operations that can be performed on files. The operating system can provide system calls

to create, write, read, reposition, delete, and truncate files. Let’s examine what the

operating system must do to perform each of these six basic file operations.

 Creating a file: Two steps are necessary to create a file. First, space in the file system

must be found for the file. Second, an entry for the new file must be made in the

directory.

 Writing a file: To write a file, we make a system call specifying both the name of the

file and the information to be written to the file. Given the name of the file, the

system searches the directory to find the file’s location. The system must keep a write

pointer to the location in the file where the next write is to take place. The write

pointer must be updated whenever a write occurs.

 Reading a file: To read from a file, we use a system call that specifies the name of

the file and where (in memory) the next block of the file should be put. Again, the

directory is searched for the associated entry, and the system needs to keep a read

pointer to the location in the file where the next read is to take place. Once the read

has taken place, the read pointer is updated. Because a process is usually either

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 6/15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - IV BATCH: 2018 – 2021

reading from or writing to a file, the current operation location can be kept as a per-

process currentfile- position pointer. Both the read and write operations use this same

pointer, saving space and reducing system complexity.

 Repositioning within a file: The directory is searched for the appropriate entry, and

the current-file-position pointer is repositioned to a given value. Repositioning within

a file need not involve any actual I/O. This file operation is also known as a file seek.

 Deleting a file: To delete a file, we search the directory for the named file. Having

found the associated directory entry, we release all file space, so that it can be reused

by other files, and erase the directory entry.

 Truncating a file: The user may want to erase the contents of a file but keep its

attributes. Rather than forcing the user to delete the file and then recreate it, this

function allows all attributes to remain unchanged—except for file length—but lets

the file be reset to length zero and its file space released.

FILE ALLOCATION METHODS

There are three major methods of storing files on disks: contiguous, linked, and indexed.

Contiguous Allocation

 Contiguous Allocation requires that all blocks of a file be kept together contiguously.

The performance is very fast, because reading successive blocks of the same file

generally requires no movement of the disk heads, or at most one small step to the next

adjacent cylinder.

 Storage allocation involves the same issues discussed earlier for the allocation of

contiguous blocks of memory (first fit, best fit, fragmentation problems, etc.) The

distinction is that the high time penalty required for moving the disk heads from spot to

spot may now justify the benefits of keeping files contiguously when possible.

Problems can arise when files grow, or if the exact size of a file is unknown at creation time:

 Over-estimation of the file's final size increases external fragmentation and wastes disk

space.

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 7/15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - IV BATCH: 2018 – 2021

 Under-estimation may require that a file be moved or a process aborted if the file grows

beyond its originally allocated space.

 If a file grows slowly over a long time period and the total final space must be allocated

initially, then a lot of space becomes unusable before the file fills the space.

A variation is to allocate file space in large contiguous chunks, called extents. When a file

outgrows its original extent, then an additional one is allocated. (For example an extent may be

the size of a complete track or even cylinder, aligned on an appropriate track or cylinder

boundary.) The high-performance files system VERITAS uses extents to optimize performance.

Contiguous allocation of disk space.

Linked Allocation

 Disk files can be stored as linked lists, with the expense of the storage space consumed

by each link. (E.g. a block may be 508 bytes instead of 512.) Linked allocation involves

no external fragmentation, does not require pre-known file sizes, and allows files to grow

dynamically at any time. Unfortunately linked allocation is only efficient for sequential

access files, as random access requires starting at the beginning of the list for each new

location access. Allocating clusters of blocks reduces the space wasted by pointers, at the

cost of internal fragmentation. Another big problem with linked allocation is reliability if

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 8/15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - IV BATCH: 2018 – 2021

a pointer is lost or damaged. Doubly linked lists provide some protection, at the cost of

additional overhead and wasted space.

Linked allocation of disk space.

The File Allocation Table, FAT, used by DOS is a variation of linked allocation, where

all the links are stored in a separate table at the beginning of the disk. The benefit of this

approach is that the FAT table can be cached in memory, greatly improving random access

speeds.

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 9/15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - IV BATCH: 2018 – 2021

File-allocation table.

Indexed Allocation

 Indexed Allocation combines all of the indexes for accessing each file into a common

block (for that file), as opposed to spreading them all over the disk or storing them in a

FAT table.

 Some disk space is wasted (relative to linked lists or FAT tables) because an entire

index block must be allocated for each file, regardless of how many data blocks the file

contains. This leads to questions of how big the index block should be, and how it should

be implemented. There are several approaches:

 Linked Scheme - An index block is one disk block, which can be read and written in a

single disk operation. The first index block contains some header information, the first N

block addresses, and if necessary a pointer to additional linked index blocks.

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 10/15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - IV BATCH: 2018 – 2021

Indexed allocation of disk space.

 Multi-Level Index - The first index block contains a set of pointers to secondary index
blocks, which in turn contain pointers to the actual data blocks.

 Combined Scheme - This is the scheme used in UNIX inodes, in which the first 12 or so

data block pointers are stored directly in the inode, and then singly, doubly, and triply

indirect pointers provide access to more data blocks as needed. The advantage of this

scheme is that for small files (which many are), the data blocks are readily accessible (

up to 48K with 4K block sizes); files up to about 4144K (using 4K blocks) are

accessible with only a single indirect block (which can be cached), and huge files are

still accessible using a relatively small number of disk accesses (larger in theory than can

be addressed by a 32-bit address, which is why some systems have moved to 64-bit file

pointers.)

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 11/15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - IV BATCH: 2018 – 2021

The UNIX inode.

Performance

 The optimal allocation method is different for sequential access files than for random

access files, and is also different for small files than for large files. Some systems support

more than one allocation method, which may require specifying how the file is to be used

(sequential or random access) at the time it is allocated.

 Such systems also provide conversion utilities. Some systems have been known to use

contiguous access for small files, and automatically switch to an indexed scheme when

file sizes surpass a certain threshold. And of course some systems adjust their allocation

schemes (e.g. block sizes) to best match the characteristics of the hardware for optimum

performance.

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 12/15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - IV BATCH: 2018 – 2021

DISK MANAGEMENT

Disk Formatting

 Before a disk can be used, it has to be low-level formatted, which means laying down all

of the headers and trailers marking the beginning and ends of each sector. Included in the

header and trailer are the linear sector numbers, and error-correcting codes, ECC, which

allow damaged sectors to not only be detected, but in many cases for the damaged data to

be recovered (depending on the extent of the damage.) Sector sizes are traditionally 512

bytes, but may be larger, particularly in larger drives.

 ECC calculation is performed with every disk read or write, and if damage is detected but

the data is recoverable, then a soft error has occurred. Soft errors are generally handled

by the on-board disk controller, and never seen by the OS.

 Once the disk is low-level formatted, the next step is to partition the drive into one or

more separate partitions. This step must be completed even if the disk is to be used as a

single large partition, so that the partition table can be written to the beginning of the

disk.

 After partitioning, then the file-systems must be logically formatted, which involves

laying down the master directory information (FAT table or inode structure), initializing

free lists, and creating at least the root directory of the file-system. (Disk partitions which

are to be used as raw devices are not logically formatted. This saves the overhead and

disk space of the file-system structure, but requires that the application program manage

its own disk storage requirements.

Boot Block

 Computer ROM contains a bootstrap program (OS independent) with just enough code

to find the first sector on the first hard drive on the first controller, load that sector into

memory, and transfer control over to it. (The ROM bootstrap program may look in

floppy and/or CD drives before accessing the hard drive, and is smart enough to

recognize whether it has found valid boot code or not.). The first sector on the hard drive

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 13/15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - IV BATCH: 2018 – 2021

is known as the Master Boot Record, MBR, and contains a very small amount of code in

addition to the partition table. The partition table documents how the disk is partitioned

into logical disks, and indicates specifically which partition is the active or boot partition.

 The boot program then looks to the active partition to find an operating system, possibly

loading up a slightly larger / more advanced boot program along the way. In a dual-boot (

or larger multi-boot) system, the user may be given a choice of which operating system

to boot, with a default action to be taken in the event of no response within some time

frame.

 Once the kernel is found by the boot program, it is loaded into memory and then control

is transferred over to the OS. The kernel will normally continue the boot process by

initializing all important kernel data structures, launching important system services (e.g.

network daemons, sheds, init, etc.), and finally providing one or more login prompts.

Boot options at this stage may include single-user a.k.a. maintenance or safe modes, in

which very few system services are started - These modes are designed for system

administrators to repair problems or otherwise maintain the system.

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 14/15

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - IV BATCH: 2018 – 2021

POSSIBLE QUESTIONS

UNIT – IV

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. What is meant by Linked allocation?

2. What are the file allocation methods?

3. What is the process of Device management?

4. List the File Authentication Methods

5. List the various File operations

PART – C (6 MARKS)

1. Describe about files and explain the access methods for files.

2. Explain the various File operations.

3. Explain about Device management.

4. Discuss in detail about directory structure

5. Explain about contiguous file allocation method.

6. Discuss in detail about Linked file allocation method.

7. Explain about Indexed file allocation method.

8. Explain the process of file operation with suitable example

9. Discuss in detail about File structure and file access mechanisms

10. Describe the process of I/O Management in Operating System

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 15/15

Questions Opt1 opt2 opt3 opt4 KEY

The file system consist of -------------- Distinct parts 2 3 4 5 2

A --------------- File is a sequence of character organized
into lines Source Object Text Executable Text
A --------------- File is a sequence of subroutines and
functions Source Object Text Executable Source

The operating system keeps a small table called the ----
----------- ,containing information about all open files Show file table

Visible file
table Open file ta

Manage file
table

Open file
table

A file is executed in --------------- extension External structure .bat .mdb .in .bat
The .bat file is a ----------------containing in ANCII
format,command to the operating system Binary file Batch file Text file Word file Batch file
The file type is used to indicate the ---------------- of the
file .txt

Internal
structure Block structure

Outer
structure

Internal
structure

Information in the file is processed in the order called-
----------------- Direct access

Sequence
access Dynamic access

Random
access

Sequence
access

A file is made up of fixed length that allows the
program to read and write record rapidly in no Direct access

Sequence
access Dyanamic access

Random
access Direct access

PART - A (Online Examination)

KARPAGAM ACADEMY OF HIGHER EDUCATION
Coimbatore – 641 021.

(For the Candidates admitted from 2018 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT
UNIT - IV : (Objective Type Multiple choice Questions each Question carries one Mark)

OPERATING SYSTEMS

Data cannot be written in secondary storage unless
written with in a --------------------- File Swap space Directory Text format File

File attribute consist of ----------------
Name,Type,Conte
nt

Name,type,Siz
e

Seperate
directory system

Name,identifi
er

Name,Size,Typ
e,identifier

The information about all files is kept in ----------------- swap space
operating
system

Name,Size,Type,id
entifier Hard disk

Seperate
directory

A file is a -------------- type Abstract Primitive Public Private Abstract

In UNIX Open system call returns -----------------
pointer to the
entry in the open

pointer to the
entry in the

A file to the
process calling it

pointer to
the entry in

pointer to the
entry in the

The open file table has a ------------------- Associated
with each file File content

File
permission open count Close count open count

The file name is generaly split into which of the two
parts ----------------- Name and type

Name and
identifier

Name and
extension

Extension
and type

Name and
extension

In the sequential access method, information in the
file is processed

One disk after
the other

One record
after the other

One text
document after

One name
after the

One record
after the

Sequential access method ----------------,on random
access devices Works well

Dosen’t works
well Works slow

Works
normal Works well

The direct access method is based on a -------------
model of a file as---------------- allow random access to

Magnetic
tape,magnetic Tape,Tapes Disk,Disks Tape,Disk Disk,Disks

A relative block number is an index relative to -----------

The beginning of
the file

The end of
the file

The last written
position in file

Middle of
the file

The
beginning of
the file

The index contains ------------------------
Name of all
content of file

Pointer to
each page

Pointers to the
various blocks

Pointer to
same page

Pointers to
the various

The directory can be viewed as a ---------------,that
translate the file name into their directory entries Symbol table Partition Swap space Cache Symbol table

In the single level directory: ------------------------
All files are
contain in

All files are
contained in

Depend on the
operating system

Depend on
the file name

All files are
contained in

In the single level directory --------------
All directory must
have a unique

All files must
have a unique

All files must have
a unique owner

All files must
have a

All files must
have a unique

In the two level directory structure -----------------
own user file
directory

has its own
master file)Both a and b

has its
different file Both a and b

When a user refers to a particular file --------------------
System MFD is
searched

His own UFD
is searched

Both MFD and
UFD are searched

Every
directory is
searched

Both MFD
and UFD are
searched

The disadvantage of the two level directory structure
is that

the name
collision problem

name
collision

users from one
another

users from
one another

users from
one another

In the tree structure directory -------------------
The tree has the
same directory

The tree has
the leaf

The tree has the
root directory

The tree has
no directory

The tree has
the root

The three major methods of allocating disk space that
are in wide use are ---------------

Contiguous,Linked
,Hashed

Contiguous,Lin
ked,Indexed

Linked,Hashed,Ind
exed

Contiguous
,Linked

Contiguous,Li
nked,Indexed

In Contiguous allocation ----------------

each file must
occupy a set of
contiguous block

Each file is a
linked list of
disk blocks

All the pointers to
scattered

All the files
are blocked

each file must
occupy a set
of contiguous

In linked allocation ------------------
Each file must
occupy a set of

Each file is a
linked list of

All the pointers to
scattered

All the files
are blocked

Each file is a
linked list of

In indexed allocation ------------
Each file must
occupy a set of

Each file is a
linked list of

All the pointers to
scattered blocks

All the files
are blocked

All the
pointers to One system where there are multiple operating

system, the decision to load a particular one is done
by ---------------- Boot loader Boot strap

Process control
block

File control
block Boot loader

The VFS refers to -----------
Virtual File
System

Valid File
System

Virtual Font
System

Virtual
Function

Virtual File
System

The disadvantage of a linear list of directory entries is
the ---------------------

Size of the linear
list in the memory

Linear search
to find a file It is not reliable It is not valid

Linear search
to find a file

One difficulty of contiguous allocation is ---------------
Finding space for
a new file Ineffecient Costly Time taking

Finding space
for a new file

To solve the problem of external fragmentation ---------
-------- needs to be done periodically Compaction Check Formatting

Replacing
memory Compaction

If too little space is allocated to a file ----------------
The file will not
work

There will not
be any space

The file cannot be
extended

file cannot
be opened

The file
cannot be
extended

A system program such as fsck ------------------ is a
consistency checker UNIX Windows Macintosh Solaris UNIX

Each set of operations for performing a specific task is
a ---------------------- Program Code Transaction Method Transaction

Once the changes are written to the log, they are
considered to be --------------- Committed Aborted Completed Finished Committed
When an entire command transaction is completed,----

It is stored in the
memory

It is removed
from the log
file It is redone

It is deleted
from the
memory

It is removed
from the log
file

In --------------- information is recorded magnetically on
platters Magnetic disk Electrical disk Assemblies Cylinders Magnetic disk

The head of the magnetic disk are attached to a ---------
------ that moves all the head as unit Spindle Disk arm Track Pointer Disk arm
The set of tracks that are at one arm position make up
a ----------- Magnetic disk Electrical disk Assemblies Cylinders Cylinders
The time taken to move a disk arm to the desired
cylinder is called as--------------- Positioning time

Random
access ti Seek time

Rotational
latency Seek time

When a head damages the magnetic surface, it is
known as --------------------- Disk crash Head crash Magnetic damage All of these Head crash
A flopy disk is designed to rotate -------------- as
compared to a hard disk drive Faster Slower At the same speed

Normal
speed Slower

The host controller is -------------------

Controller built at
the end of each
disk

Controller at
the computer
end of the bus Both a and b

Controller at
the system
side

Controller at
the computer
end of the bus

The process of dividing a disk into sectors that the disk
controller can read and write, before a disk can store
data is known as----------------- Partitioning

Swap space
creation

Low-level
formatting

Physical
formatting

Low-level
formatting
,Physical

the data structure for a sector typically contains --------
----------- Header Data area Trailer Main section

Header ,Data
area ,Trailer

The header and trailer of a sector contains
information used by the disk controller such as
_____________. Main section

Error
corecting
codes Sector number

Disk
identifier

Sector
number

The two steps that the operating system takes to use
a disk to hold its files are ---------------- and -------------- partitioning

Swap space
creation Catching

Logical
formatting partitioning

The -------------- program initializes all aspects of the
system, from CPU registers to device controllers and
the content of main memory, and then starts the Main Boot loader Boot strap ROM Boot strap

For most computers the boot strap is stored in-----------
--------- RAM ROM Cache

Tertiary
storage ROM

A disk that has a boot partition is called a --------------- Start disk
Destroyed
blocks Boot disk Format disk

System
disk,boot disk

Defective sectors on disks are often known as ------------
----- Good blocks System disk Bad blocks Semi blocks Bad blocks

Bad blocks are called as __________ Good Sectors
Defective
Sectors boot disks boot strap

Defective
Sectors

ROM got _________ file boot strap Data area head data random data boot strap

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - V BATCH: 2018 – 2021

UNIT – V

SYLLABUS

Protection and Security: Policy mechanism-Authentication-Internal access Authorization.

PROTECTION AND SECURITY

 Security refers to providing a protection system to computer system resources such as

CPU, memory, disk, software programs and most importantly data/information stored in

the computer system. If a computer program is run by unauthorized user then he/she may

cause severe damage to computer or data stored in it. So a computer system must be

protected against unauthorized access, malicious access to system memory, viruses,

worms etc. We're going to discuss following topics in this article.

 Authentication

 One Time passwords

 Program Threats

 System Threats

Authentication

 Authentication refers to identifying the each user of the system and associating the

executing programs with those users. It is the responsibility of the Operating System to

create a protection system which ensures that a user who is running a particular program

is authentic. Operating Systems generally identifies/authenticates users using following

three ways:

 Username / Password - User need to enter a registered username and password with
Operating system to login into the system.

 User card/key - User need to punch card in card slot, or enter key generated by key
generator in option provided by operating system to login into the system.

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 1/9

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - V BATCH: 2018 – 2021

 User attribute - fingerprint/ eye retina pattern/ signature - User need to pass his/her
attribute via designated input device used by operating system to login into the system.

One Time passwords

 One time passwords provides additional security along with normal authentication. In

One-Time Password system, a unique password is required every time user tries to login

into the system. Once a one-time password is used then it can not be used again. One

time password are implemented in various ways.

 Random numbers - Users are provided cards having numbers printed along with

corresponding alphabets. System asks for numbers corresponding to few alphabets

randomly chosen.

 Secret key - User are provided a hardware device which can create a secret id mapped

with user id. System asks for such secret id which is to be generated every time prior to

login.

 Network password - Some commercial applications send one time password to user on
registered mobile/ email which is required to be entered prior to login.

Program Threats

 Operating system's processes and kernel do the designated task as instructed. If a user

program made these process do malicious tasks then it is known as Program Threats. One

of the common example of program threat is a program installed in a computer which can

store and send user credentials via network to some hacker. Following is the list of some

well known program threats.

 Trojan Horse - Such program traps user login credentials and stores them to send to
malicious user who can later on login to computer and can access system resources.

 Trap Door - If a program which is designed to work as required, have a security hole in

its code and perform illegal action without knowledge of user then it is called to have a

trap door.

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 2/9

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - V BATCH: 2018 – 2021

 Logic Bomb - Logic bomb is a situation when a program misbehaves only when certain
conditions met otherwise it works as a genuine program. It is harder to detect.

 Virus - Virus as name suggest can replicate themselves on computer system .They are

highly dangerous and can modify/delete user files, crash systems. A virus is generally a

small code embedded in a program. As user accesses the program, the virus starts getting

embedded in other files/ programs and can make system unusable for user.

System Threats

 System threats refers to misuse of system services and network connections to put user in

trouble. System threats can be used to launch program threats on a complete network

called as program attack. System threats creates such an environment that operating

system resources/ user files are mis-used. Following is the list of some well known

system threats.

 Worm -Worm is a process which can choked down a system performance by using

system resources to extreme levels.A Worm process generates its multiple copies where

each copy uses system resources, prevents all other processes to get required resources.

Worms processes can even shut down an entire network.

 Port Scanning - Port scanning is a mechanism or means by which a hacker can detects
system vulnerabilities to make an attack on the system.

 Denial of Service - Denial of service attacks normally prevents user to make legitimate

use of the system. For example user may not be able to use internet if denial of service

attacks browser's content settings.

POLICY MECHANISM

 Protection: mechanisms that prevent accidental or intentional misuse of a system.

o Accidents: generally easier to solve (make them unlikely)

o Malicious abuse: much more difficult to eliminate (can't leave any loopholes,

can't use probabilities).

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 3/9

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - V BATCH: 2018 – 2021

 Three aspects to a protection mechanism:

o Authentication: identify a responsible party (principal) behind each action.

o Authorization: determine which principals are allowed to perform which actions.

o Access enforcement: combine authentication and authorization to control access.
 A tiny flaw in any of these areas can compromise the entire protection mechanism.

AUTHENTICATION

 Typically done with passwords:

o A secret piece of information used to establish identity of a user.

o Must not be stored in a directly-readable form: use one-way transformations.

o Passwords should be relatively long and obscure.

 Alternate form of authentication: badge or key.

o Does not have to be kept secret.

o Should not be forgable or copyable.

o Can be stolen, but owner should know if it is.

 Paradox: key must be cheap to make, hard to duplicate.

 Once authentication is complete, the identity of the principal must be protected from

tampering, since other parts of the system will rely on it.

 Once you log in, your user id is associated with every process executed under that login:

each process inherits the user id from its parent.

INTERNAL ACCESS AUTHORIZATION

Authorization:

 Goal: determine which principals can perform which operations on which objects.

 Logically, authorization information represented as an access matrix:

 One row per principal.

 One column per object.

 Each entry indicates what that principle can do to that object.

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 4/9

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - V BATCH: 2018 – 2021

 In practice a full access matrix would be too bulky, so it gets stored in one of two

compressed ways: access control lists or capabilities.

 Access Control Lists (ACLs): organize by columns.

 With each object, store information about which users are allowed to perform which

operations.

 Most general form: list of <user, privilege> pairs.

 For simplicity, users can be organized into groups, with a single ACL for an entire group.

 ACLs can be very general (Windows) or simplified (Unix).

 UNIX: 9 bits per file:

 owner, group, anyone

 read, write, execute permissions for each of the above

 In addition, user "root" has all permissions for everything

 ACLs are simple and are used in almost all file systems.

 Capabilities: organize by rows.

 With each user, indicate which objects may be accessed, and in what ways.

 Store a list of <object, privilege> pairs with each user. This is called a capability list.

 Typically, capabilities also act as names for objects: can't even name objects not referred

to in your capability list.

 Almost as if there were no root directory in Unix and no "..".

 Systems based on ACLs encourage visibility of objects: shared public namespace.

 Capability systems discourage visibility; namespaces are private by default.

 Capabilities have been used in experimental systems attempting to be very secure.

However, they have proven to be clumsy to use (painful to share things), so they have

mostly fallen out of favor for managing objects such as files.

 Example of a simple capability-based protection scheme: page tables.

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 5/9

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - V BATCH: 2018 – 2021

Access Enforcement

 Some part of the system must be responsible for enforcing access controls and protecting

authentication and authorization info.

 This portion of the system has total power, so it should be as small and simple as possible.

Example: the portion of the system that sets up page tables.

 Security kernel: an inner layer of the operating system that enforces security; only this layer

has total power.

 Most operating systems have no security kernel: the entire OS has unlimited power.

 Miscellaneous Issues

 There are many other things that need to be protected besides just file access

 In Unix, root access is used to control most of these things.

Some common problems:

 Account penetration

 Abuse of valid privileges.

 Trojan Horse: modify valid program to misbehave or steal information.

 Impersonation/phishing: create the appearance of a trusted application, trick users into

divulging personal information

 Network attack: snoop on network traffic or other communications and steal unprotected

information (e.g. passwords).

 Denial of service: create program that uses up all system resources to make system crash or

prevent others from getting work done

 Worm or virus: a Trojan Horse that can spread itself from machine to machine (exploiting

bugs and loopholes)

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 6/9

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - V BATCH: 2018 – 2021

Examples of successful attacks:

 Tenex page-fault password attack

 Botnets and denial of service

 "Salami attack": checking account interest calculator that credited fractional cents to the

account of the creator

 It may not be possible to tell that a system has been penetrated. Example of undetectable

Trojan Horse:

 Modify login program to recognize special login and give root privilege without a

password.

 But, people might notice the login code.

 So, modify the compiler to figure out when it's compiling the login code and insert the

Trojan Horse automatically.

 But, people might notice the compiler code.

 Modify the compiler to insert the compiler Trojan Horse.

 Compile the compiler.

 Remove the Trojan Horse from the sources.

 The Trojan Horse is completely hidden in the binaries!

 Once penetrated, it may be difficult or impossible to secure it again: too many complex

Trojan Horses.

 Any bug can result in a security loophole, and all systems have bugs.

 Security Solutions

 Logging: record important actions and uses of privilege

 Principle of minimum privilege: limit access to only what is absolutely needed.

 Involve humans more:

 Auditing code to catch bugs and Trojan Horses.

 Human approval for particularly dangerous operations (e.g., large funds transfers)

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 7/9

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - V BATCH: 2018 – 2021

 Prove correctness of system (absence of bugs)

 Information flow control:

 Control not only who can access what, but what they can do with the information once they

have it.

 Goal: prevent Trojan Horses

 Example: can my editor leak my files out onto the Internet?

 Many attempts at information flow control, none that both work and are convenient to use.

 Example: covert channels

 Use some observable property of the system as a channel for signaling to an accomplice.

 E.g. modulate CPU load, accomplice observes.

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 8/9

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA COURSE NAME: OPERATING SYSTEMS

COURSE CODE: 18CAU302 UNIT - V BATCH: 2018 – 2021

POSSIBLE QUESTIONS

UNIT – V

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. What is meant by Access Control List?

2. Define Internal access authorization

3. What are Authentication mechanisms?

4. Define Program threats

5. What is meant by OS Security?

6. Define Trojan horse

PART – C (6 MARKS)

1. Explain about OS Protection and Security.

2. Discuss in detail about Policy mechanism.

3. Explain the process of Internal access authorization.

4. Describe the Features of Security in Operating System.

5. Discuss in detail about Authentication.

6. Explain the protection for Unix Files and Directories

7. Describe the process of protection in Operating System.

8. Discuss about the Configuration of User Authentication

9. Describe the process of Threats in Operating System.

10. Discuss in detail about Policy versus Mechanism

Prepared by Mr,SUBASH CHANDRA BOSE.S, Asst Prof, Dept of CS, CA & IT, KAHE Page 9/9

Questions Opt1 opt2 opt3 opt4 KEY
computer system assets can be modified only by
authorized parities. Confidentiality Integrity Availability Authenticity Integrity
In computer security, …………………….. means that
the information in a computer system only be
accessible for reading by authorized parities. Confidentiality Integrity Availability Authenticity

Confidentialit
y

Which of the following is independent malicious
program that need not any host program? Trap doors Trojan horse Virus Worm Worm
The ……….. is code that recognizes some special
sequence of input or is triggered by being run from a
certain user ID of by unlikely sequence of events. Trap doors Trojan horse Logic Bomb Virus Trap doors
program that is set to “explode” when certain
conditions are met. Trap doors Trojan horse Logic Bomb Virus Trap doors
Which of the following malicious program do not
replicate automatically? Trojan Horse Virus Worm Zombie Trojan Horse
…………… programs can be used to accomplish
functions indirectly that an unauthorized user could not Zombie Worm Trojan Horses Logic Bomb Trojan Horses
programs by modifying them, the modification includes
a copy of the virus program, which can go on to infect Worm Virus Zombie Trap doors Virus
the systems be given just enough privileges to perform
their task?

principle of
operating system

principle of
least privilege

principle of
process scheduling

none of the
mentioned

principle of
least privilege

PART - A (Online Examination)

KARPAGAM ACADEMY OF HIGHER EDUCATION
Coimbatore – 641 021.

(For the Candidates admitted from 2018 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT
UNIT - V : (Objective Type Multiple choice Questions each Question carries one Mark)

OPERATING SYSTEMS

_______ is an approach to restricting system access to
authorized users.

Role-based access
control

Process-based
access control

Job-based access
control

none of the
mentioned

Role-based
access control

For system protection, a process should access all the resources

only those
resources for
which it has

few resources but
authorization is
not required

all of the
mentioned

only those
resources for
which it has

The protection domain of a process contains object name rights-set
object name and
rights-set

none of the
mentioned

object name
and rights-set

If the set of resources available to the process is fixed
throughout the process’s lifetime then its domain is static dynamic

neither static nor
dynamic

none of the
mentioned static

Access matrix model for user authentication contains a list of objects
a list of
domains

a function which
returns an object’s

all the
options all the options

Global table implementation of matrix table contains domain object right-set
all the
options all the options

For a domain _______ is a list of objects together with
the operation allowed on these objects. capability list access list authorization

none of the
mentioned capability list

Which one of the following is capability based
protection system? hydra

cambridge
CAP system

hydra &
cambridge CAP

none of the
mentioned

hydra &
cambridge

In UNIX, domain switch is accomplished via file system user superuser
none of the
mentioned file system

 ___________ is an important property of an operating
system that hopes to keep up with advancements in

 Portability Reliability Extensibility
compatibility

 Extensibility

 ___________ is the ability to handle error conditions,
including the ability of the operating system to protect
itself and its users from defective or malicious software.

 Portability Reliability Extensibility
compatibility

 Reliability

 __________ is the ability to move from one hardware
architecture to another with relatively few changes.

 Portability Reliability Extensibility
compatibility

 Portability

 Windows NT is designed to afford good
___________.

 Portability Reliability Extensibility performance performance

 A __________ is created by the NT disk
administrator utility, and is based on a logical disk

 Volume File Directory subdirectory Volume

 A __________ of a directory contains the top level of
the B+ tree.

 index root file reference attributes metadata index root

 The _________ in NT may occupy a portion of a
disk, may occupy an entire disk or may span across
several disks.

 Volume File Directory subdirectory Volume

 The ___________ of a directory contains the top level
of the B+ tree.

 Volume File index root subdirectory index root

 The _____________ attribute contains the access
token of the owner of the file, and an access control list
that states the access privileges that are granted to each

 Portability Recovery Reliability Security Security

 To deal with disk sectors that go bad, ___________
uses a hardware technique called sector spanning.

 Ps Valloc Kmalloc FtDisk FtDisk
In the security literature, people who are nosing around
places where they have no business being are called
__________ intruders crackers hackers worms intrudersOutsiders can sometimes take command of people's home
computers (using viruses and other means) and turn them
into ______________ virus worms malware zombies zombiesMost operating systems allow individual users to determine
who may read and write their files and other objects, This
policy is called __________________ mandatory access controlaccess matrix

discretionary access
control.

access control
lists

discretionary
access control

Every secured computer system must require all users to be
___________________at login time authenticated authorized transferred scheduled authenticated

The most widely used form of authentication is to require
the user to type a __________and a _______________` mailid, PIN number

login name,
password.

PIN number,
Account number

Username,
mailid

login name,
password.

characteristics of the user that are hard to forge is called as
______________ Biometrics password stegnography access control Biometrics

___________is the name given to hackers who break
into computers for criminal gain hackers spoofing phising Crackers Crackers
A typical biometrics system has two parts:

enrollment and
identification

identification
&
authentication

authentication &
confidentiality

authorization
and
authentication

enrollment and
identification

Any malware hidden in software or a Web page that people
voluntarily download is called _________________ worm Trojan Horse Virus Backdoor Trojan HorseThe idea of creating a virus that could overwrite the master
boot record or the boot sector, with devastating results, such
viruses called as ________________ device driver virus

source code
virus companion virus

boot sector
viruses

boot sector
viruses

The trick to infect a device driver leads to a
________________ source code virus

device driver
virus companion virus

boot sector
viruses

device driver
virus

When an attempt is to make a machine or network resource
unavailable to its intended users, the attack is called

denial-of-service
attack slow read attack spoofed attack

starvation
attack

denial-of-
service attack

The code segment that misuses its environment is called a internal thief trojan horse code stacker
none of the
mentioned trojan horseThe internal code of any software that will set of a

malicious function when specified conditions are met, is
called logic bomb trap door code stacker

none of the
mentioned logic bomb

The pattern that can be used to identify a virus is known as stealth virus signature armoured multipartite virus signature

Which one of the following is a process that uses the spawn
mechanism to revage the system performance? worm trojen threat virus worm

What is a trap door in a program?

a security hole,
inserted at
programming time

a type of
antivirus

security hole in a
network

none of the
mentioned

a security hole,
inserted at
programming

Which one of the following is not an attack, but a search for
vulnerabilities to attack? denial of service port scanning

memory access
violation

dumpster
diving port scanning

File virus attaches itself to the source file object file executable file
all of the
mentioned executable file

Multipartite viruses attack on files boot sector memory
all of the
mentioned

all of the
mentioned

In asymmetric encryption

same key is used
for encryption and
decryption

different keys
are used for
encryption and

no key is required
for encryption and
decryption

none of the
mentioned

different keys
are used for
encryption and

Which of the following are forms of malicious attack ?
Theft of
information

Modification
of data

Wiping of
information

All of the
mentioned

All of the
mentioned

What are common security threats ? File Shredding

File sharing
and
permission File corrupting File integrity

File sharing
and
permission

From the following, which is not a common file
permission ? Write Execute Stop Read Stop

Which of the following is a good practice ?
permission for
remote

only
permission

permission to
specified account

read and
write

permission to
specified

What is not a good practice for user administration ?

Isolating a system
after a
compromise

random
auditing
procedures

Granting
privileges on a per
host basis

and FTP for
remote
access.

Using telnet
and FTP for
remote access.

Which of the following is least secure method of
authentication ? Key card fingerprint retina pattern Password Password

Which of the following is a strong password ? 19thAugust88 Delhi88 P@assw0rd !augustdelhi P@assw0rd

What does Light Directory Access Protocol (LDAP)
doesn’t store ? Users Address Passwords Security Keys Address

Which happens first authorization or authentication ? Authorization Authentication Both are same
None of the
mentioned Authorization

What is characteristics of Authorization ?
RADIUS and
RSA

handshaking
with syn and

protection for
securing resources

privileges
and rights

privileges and
rights

What forces the user to change password at first logon ?
Default behavior
of OS

Part of AES
encryption
practice

Devices being
accessed forces
the user

Account
administrator

Account
administrator

PART-A (20 X 1 = 20 Marks)

Answer Keys

1. ____________is a program that manages the computer hardware and acts as an intermediary between the

computer user and the computer hardware.

a)hardware acceleration b)Operating System c)compiler d)logical transcation

2. _____manages the execution of user programs to prevent errors and improper use of the computer

a) resource allocator b)work station c)main frame d)control program

 3. ____were the first computers used to tackle many commercial & scientific application.

a)Mainframe computer system b)Mainframe computer service

c)multiframe computer system d)multiframe computer service

4. _______________contains the address of an instruction to be fetched from memory

a) Program counter (PC)b)Instruction register (IR) c)Control registers d)Status registers

5. _______________ is also known as parallel systems or tightly coupled systems)

 a)Multiprocessor systems b)desktop systems c)Time sharing systems d)Multiprogrammed systems

6. ______________operating systems are even more complex than multi programmed operating systems.

a)Time-sharing b)desktop systems c)Multiprogrammed systems d)Multiprocessor systems

7. __________ operating system keeps several jobs in memory simultaneously.

a)Time-sharing b)desktop systemsc)Multiprogrammed systemsd)Multiprocessor systems

8. ___________can save more money than multiple single-processor systems

a)Multiprocessor systems b)desktop systems c)Time sharing systems d)Multiprogrammed systems

9. The most common multiple-processor systems now use

a)symmetric multiprocessing b)asymmetric multiprocessing c) multithreading d)multiprogramming

10. Another form of a special-purpose operating system is the

a)real-time systemb)distributed operating system c)Process states d)multiframe computer system

11. The assignment of the CPU to the first process on the ready list is called

a)graceful degradation b)Time-sharing c)dispatching d)Multiprocessor systems

12. The manifestation of a process in an operating system is a

a)Process state transitions b)process control block c)child process d)cooperating processes

13. For multiprogramming operating system

a) special support from processor is essential b)special support from processor is not essential c)cache

memory is essential d)cache memory is not essential

14. Which operating system reacts in the actual time

a)Batch system b)Quick response system c)Real time system d)Time sharing system

15. The primary job of an OS is to ________

a)command resource b)manage resource c)provide utilities d)Be user friendly

16. The term " Operating System " means ________

a)A set of programs which controls computer working b)The way a computer operator works c)Conversion of

high-level language in to machine level language d)The way a floppy disk drive operates

17. Withmore than one process can be running simultaneously each on a different processer.

 a)Multiprogramming b)Uniprocessing c)Multiprocessing d)Uniprogramming

18. The two central themes of modern operating system are

a)Multiprogramming and Distributed processing b)Multiprogramming and Central Processing c)Single

Programming and Distributed processing d)None of above

19. .……………….. is a example of an operating system that support single user process and single thread

 a)UNIX b)MS-DOS c)OS/2 d)Windows 2000

20. The operating system of a computer serves as a software interface between the user and the ________.

A) sHardware b)Peripheral c)Memory d)Screen

 Part –B (3 x 2 = 6 Marks)

Answer All the Questions

21. What is Operating Syste?

22. What is Kernel?

23. What is Resource Abstraction?

 Part –C (3 x 8 = 24 Marks)

 Answer All the Questions

24.a) Explain in detail about the Types of Operating Systems

 OR

b) Explain about the Basic OS Functions

25. a) Explain in detail about Process Control with suitable diagram

 OR

 b) Describe about the Operating Systems for Personal Computers & Workstations

26. a) Write a program to execute parent and child class using fork() System call.

OR

b) Explain in detail about System Calls and System Programs.

Part –B (3 x 2 = 6 Marks)

 Answer Key for 2 marks

21. What is Operating System?

Definition: An operating system is a program that acts as an interface between the

user and the computer hardware and controls the execution of all kinds of

programs.

A computer system can be divided roughly into four components: the hardware, the

operating system, the application programs, and the users. The hardware provides the basic

computing resources for the system. The application programs define the ways in which these

resources are used to solve users’ computing problems.

22. What is Kernel?

The kernel is the central module of an operating system (OS). It is the part of the operating

system that loads first, and it remains in main memory. Because it stays in memory, it is

important for the kernel to be as small as possible while still providing all the essential services

required by other parts of the operating system and applications. The kernel code is usually

loaded into a protected area of memory to prevent it from being overwritten by programs or other

parts of the operating system.

23. What is Resource Abstraction?

Resource abstraction is the process of "hiding the details of how the hardware operates,

 Thereby making computer hardware relatively easy for an application programmer to use.

 One way in which the operating system might implement resource abstraction is to provide

a single abstract disk interface which will be the same for both the hard disk and floppy disk.

Such an abstraction saves the programmer from needing to learn the details of both

 hardware interfaces. Instead, the programmer only needs to learn the disk abstraction

 provided by the operating system.

Part –C (3 x 10 = 30 Marks)

Answer Key

https://www.webopedia.com/TERM/M/module.html
https://www.webopedia.com/TERM/O/operating_system.html
https://www.webopedia.com/TERM/M/main_memory.html
https://www.webopedia.com/TERM/A/application.html

24. A) Explain in detail about the Types of Operating Systems

TYPES OF OPERATING SYSTEM

 Types of operating system which are commonly used

MULTI-PROGRAMMING SYSTEM

 The work of the server is to execute the job in sequence assigned by the users at

their fair intervals. This is the first time the OS are programmed (Control

Program or Handler) to handle the users with the required resources. The

switching between the users and the allocation of same resources to multiple

processes was the difficult task.

 Multiprogramming is a rudimentary form of parallel processing in which several

programs are run at the same time on a uniprocessor. Since there is only one

processor, there can be no true simultaneous execution of different programs.

BATCH OPERATING SYSTEM

 The tasks are grouped as batch based on the priority specified by the user. Once

the tasks are grouped they are executed as a batch by the machine. The duration

of execution may be a week or even months. The tasks are grouped manually by

a person and after proper execution the results are given to them by that person.

Lack of interaction between the user and the job.

TIME-SHARING OPERATING SYSTEMS

 Time-sharing is a technique which enables many people, located at various

terminals, to use a particular computer system at the same time..

 The main difference between Multiprogrammed Batch Systems and Time-

Sharing Systems is that in case of Multiprogrammed batch systems, the objective

is to maximize processor use, whereas in Time-Sharing Systems, the objective is

to minimize response time.

 Multiple jobs are executed by the CPU by switching between them, but the

switches occur so frequently.

 That is, if n users are present, then each user can get a time quantum. When the

user submits the command, the response time is in few seconds at most.

Advantages of Timesharing operating systems are as follows −

 Provides the advantage of quick response.

 Avoids duplication of software.

 Reduces CPU idle time.

 Problem of reliability.

 Question of security and integrity of user programs and data.

 Problem of data communication.

REAL TIME OPERATING SYSTEM

 A real-time system is defined as a data processing system in which the time interval

required to process and respond to inputs is so small that it controls the environment.

The time taken by the system to respond to an input and display of required updated

information is termed as the response time. So in this method, the response time is very

less as compared to online processing.

 Real-time systems are used when there are rigid time requirements on the operation of a

processor or the flow of data and real-time systems can be used as a control device in a

dedicated application. A real-time operating system must have well-defined, fixed time

constraints, otherwise the system will fail. For example, Scientific experiments, medical

imaging systems, industrial control systems, weapon systems, robots, air traffic control

systems, etc.

There are two types of real-time operating systems.

Hard real-time systems

 Hard real-time systems guarantee that critical tasks complete on time. In hard real-time

systems, secondary storage is limited or missing and the data is stored in ROM. In these

systems, virtual memory is almost never found.

Soft real-time system

 Soft real-time systems are less restrictive. A critical real-time task gets priority over

other tasks and retains the priority until it completes. Soft real-time systems have

limited utility than hard real-time systems. For example, multimedia, virtual reality,

Advanced Scientific Projects likes undersea exploration and planetary rovers, etc.

DISTRIBUTED OPERATING SYSTEM

 Distributed systems use multiple central processors to serve multiple real-time

applications and multiple users. Data processing jobs are distributed among the

processors accordingly.

 The processors communicate with one another through various communication lines

(such as high-speed buses or telephone lines). These are referred as loosely coupled

systems or distributed systems. Processors in a distributed system may vary in size and

function. These processors are referred as sites, nodes, computers, and so on.

 With resource sharing facility, a user at one site may be able to use the

resources available at another.

 Speedup the exchange of data with one another via electronic mail.

 If one site fails in a distributed system, the remaining sites can potentially

continue operating.

 Better service to the customers.

 Reduction of the load on the host computer.

 Reduction of delays in data processing

Client-Server Computing: As PCs have become faster, more powerful, and cheaper, designers

have shifted away from centralized system architecture.

Server systems can be broadly categorized as compute servers and file servers:

• The compute-server system provides an interface to which a client can send a request to

perform an action (for example, read data). In response, the server executes the action and sends

the results to the client. A server running a database that responds to client requests for data is an

example of such a system.

• The file-server system provides a file-system interface where clients can create, update, read,

and delete files. An example of such a system is a web server that delivers files to clients

running web browsers.

Client-Server Model

Peer to peer Systems

Another structure for a distributed system is the peer-to-peer (P2P) system model. In this model,

clients and servers are not distinguished from one another. Instead, all nodes within the system

are considered peers, and each may act as either a client or a server, depending on whether it is

requesting or providing a service.

 When a node joins a network, it registers its service with a centralized lookup service on

the network. Any node desiring a specific service first contacts this centralized lookup

service to determine which node provides the service. The remainder of the

communication takes place between the client and the service provider.

 An alternative scheme uses no centralized lookup service. Instead, a peer acting as a

client must discover what node provides a desired service by broadcasting a request for

the service to all other nodes in the network.

Network operating System

 A Network Operating System runs on a server and provides the server the capability to

manage data, users, groups, security, applications, and other networking functions. The

primary purpose of the network operating system is to allow shared file and printer access

among multiple computers in a network, typically a local area network (LAN), a private

network or to other networks.

 Examples of network operating systems include Microsoft Windows Server 2003, Microsoft

Windows Server 2008, UNIX, Linux, Mac OS X, Novell NetWare, and BSD.

The advantages of network operating systems are as follows −

 Centralized servers are highly stable.

 Security is server managed.

 Upgrades to new technologies and hardware can be easily integrated into the system.

 Remote access to servers is possible from different locations and types of systems.

 High cost of buying and running a server.

 Dependency on a central location for most operations.

 Regular maintenance and updates are required.

24. (b) what is Basic OS function?

BASIC OS FUNCTION

Following are some of important functions of an operating System.

 Memory Management

 Processor Management

 Device Management

 File Management

 Security

 Control over system performance

 Job accounting

 Error detecting aids

 Coordination between other software and user

Memory Management

Memory management refers to management of Primary Memory or Main Memory.

Main memory is a large array of words or bytes where each word or byte has its own address.

Main memory provides a fast storage that can be accessed directly by the CPU. For a

program to be executed, it must in the main memory. An Operating System does the following

activities for memory management −

 Keeps tracks of primary memory, i.e., what part of it are in use by whom, what part are

not in use.

 In multiprogramming, the OS decides which process will get memory when and how

much.

 Allocates the memory when a process requests it to do so.

 De-allocates the memory when a process no longer needs it or has been terminate

Processor Management

In multiprogramming environment, the OS decides which process gets the processor when and

for how much time. This function is called process scheduling. An Operating System does the

following activities for processor management −

 Keeps tracks of processor and status of process. The program responsible for this task is

known as traffic controller.

 Allocates the processor (CPU) to a process.

 De-allocates processor when a process is no longer required.

Device Management

An Operating System manages device communication via their respective drivers. It does the

following activities for device management −

 Keeps tracks of all devices. Program responsible for this task is known as the I/O

controller.

 Decides which process gets the device when and for how much time.

 Allocates the device in the efficient way.

 De-allocates devices.

File Management

A file system is normally organized into directories for easy navigation and usage. These

directories may contain files and other directions.

An Operating System does the following activities for file management −

 Keeps track of information, location, uses, status etc. The collective facilities are often

known as file system.

 Decides who gets the resources.

 Allocates the resources.

 De-allocates the resources.

Processor Management

In multiprogramming environment, the OS decides which process gets the processor when and

for how much time. This function is called process scheduling. An Operating System does the

following activities for processor management −

 Keeps tracks of processor and status of process. The program responsible for this task is

known as traffic controller.

 Allocates the processor (CPU) to a process.

 De-allocates processor when a process is no longer required.

Device Management

An Operating System manages device communication via their respective drivers. It does the

following activities for device management −

 Keeps tracks of all devices. Program responsible for this task is known as the I/O

controller.

 Decides which process gets the device when and for how much time.

 Allocates the device in the efficient way.

 De-allocates devices.

File Management

A file system is normally organized into directories for easy navigation and usage. These

directories may contain files and other directions.

An Operating System does the following activities for file management −

 Keeps track of information, location, uses, status etc. The collective facilities are often

known as file system.

 Decides who gets the resources.

 Allocates the resources.

 De-allocates the resources.

Other Important Activities

Following are some of the important activities that an Operating System performs −

 Security − By means of password and similar other techniques, it prevents unauthorized

access to programs and data.

 Control over system performance − Recording delays between request for a service and

response from the system.

 Job accounting − Keeping track of time and resources used by various jobs and users.

 Error detecting aids − Production of dumps, traces, error messages, and other debugging

and error detecting aids.

 Coordination between other softwares and users − Coordination and assignment of

compilers, interpreters, assemblers and other software to the various users of the

computer systems.

The operating system is the core software component of your computer. It performs many

functions and is, in very basic terms, an interface between your computer and the outside world.

In the section about hardware, a computer is described as consisting of several component parts

including your monitor, keyboard, mouse, and other parts. The operating system provides an

interface to these parts using what is referred to as "drivers". This is why sometimes when you

install a new printer or other piece of hardware, your system will ask you to install more

software called a driver.

An operating system has three main functions: (1) manage the computer's resources, such as the

central processing unit, memory, disk drives, and printers, (2) establish a user interface, and (3)

execute and provide services for applications software.

 System tools (programs) used to monitor computer performance, debug problems, or

maintain parts of the system.

 A set of libraries or functions which programs may use to perform specific tasks

especially relating to interfacing with computer system components.

 The operating system makes these interfacing functions along with its other functions

operate smoothly and these functions are mostly transparent to the user.

 The operating system underpins the entire operation of the modern computer.

25. a) Explain in detail about Process Control with suitable diagram

Process Concept

Process is a program that is in execution. It is defined as unit of work in modern systems.

A batch system executes jobs, whereas a time-shared system has user programs, or tasks. Even

on a single-user system, a user may be able to run several programs at one time: a word

processor, a Web browser, and an e-mail package. And even if a user can execute only one

program at a time, such as on an embedded device that does not support multitasking, the

operating system may need to support its own internal programmed activities, such as memory

management. In many respects, all these activities are similar, so we call all of them processes.

Process in memory

A process is more than the program code, which is sometimes known as the text section.

It also includes the current activity, as represented by the value of the program counter and the

contents of the processor’s registers. A process generally also includes the process stack, which

contains temporary data (such as function parameters, return addresses, and local variables),

 and a data section, which contains global variables. A process may also include a heap,

which is memory that is dynamically allocated during process run time.

A program is a passive entity, such as a file containing a list of instructions stored on

disk (often called an executable file). In contrast, a process is an active entity, with a program

counter specifying the next instruction to execute and a set of associated resources. A program

becomes a process when an executable file is loaded into memory.

• Running. Instructions are being executed.

• Waiting. The process is waiting for some event to occur (such as an I/O completion or

reception of a signal).

• Ready. The process is waiting to be assigned to a processor.

• Terminated. The process has finished execution.

These names are arbitrary, and they vary across operating systems. The states that they

represent are found on all systems, however. Certain operating systems also more finely

delineate process states. It is important to realize that only one process can be running on any

processor at any instant. Many processes may be ready and waiting, however. The state diagram

corresponding to these states is presented in the following Figure.

Process State Diagram

Process State

As a process executes, it changes state. The state of a process is defined in part by the

current activity of that process. A process may be in one of the following states:

• New. The process is being created.

Process Control Block (PCB)

Each process is represented in the operating system by a process control block (PCB)—also

called a task control block. It contains many pieces of information associated with a specific

process, including these: Process state. The state may be new, ready, running, and waiting,

halted, and so on.

 Program counter. The counter indicates the address of the next instruction to be

executed for this process.

 CPU registers. The registers vary in number and type, depending on the computer

architecture. They include accumulators, index registers, stack pointers, and general-

Purpose registers, plus any condition-code information. Along with the program counter,

this state information must be saved when an interrupt occurs, to allow the process to be

continued correctly afterward.

 CPU-scheduling information. This information includes a process priority, pointers to

scheduling queues, and any other scheduling parameters.

Process Control Block (PCB)

 Memory-management information. This information may include such items as the

value of the base and limit registers and the page tables, or the segment tables, depending

on the memory system used by the operating system

 Accounting information. This information includes the amount of CPU and real time

used, time limits, account numbers, job or process numbers, and so on.

 I/O status information. This information includes the list of I/O devices allocated to the

process, a list of open files, and so on.

 25. b) Describe about the Operating Systems for Personal Computers & Workstations

Personal computer and workstation operating systems. The emphasis is placed on UNIX,

MS DOS, MS windows and OS/2 operating systems. UNIX is cover under the U.S. Government

POSIX standard, which dictates its use when practical. MS DOS is the most used operating

system worldwide. OS/2 was developed to combat some of the shortcomings of MS DOS. Each

operating system which is discussed has a design philosophy that fulfills specific user's needs.

UNIX was designed for many users sharing a computer system. MS DOS, MS Windows and

OS/2 are designed as single user computer systems. All of these operating systems are in use at

the Naval Postgraduate School. All of the operating systems are discussed with regard to their:

history of development, process management, file system, input and output system, user

interface, network capabilities, and advantages and disadvantages. UNIX has a section devoted

to the POSIX standard and MS DOS has a section devoted to Windows 3. 1. Apple Corporation's

System 7 is mentioned throughout the text, but is not covered in detail. Personal Computer and

Workstation Operating Systems

Computer can be broadly classified by their speed and computing power. Sr. No. Type

Specifications

1. PC (Personal Computer) Single user computer system. Moderately powerful

microprocessor.

2. WorkStation Single user computer system. Similar to Personal Computer but have

more powerful microprocessor.

3. Mini Computer Multi-user computer system. Capable of supporting hundreds of users

simulaneously.

4 Main Frame Multi-user computer system. Capable of supporting hundreds of users

simulaneously.Software technology is different from minicomputer.

 5. Supercomputer An extremely fast computer which can perform hundreds of millions

of instructions per second.

PC (Personal Computer) A PC can be defined as a small, relatively inexpensive computer

designed for an individual user. PCs are based on the microprocessor technology that enables

manufacturers to put an entire CPU on one chip. Businesses use personal computers for word

processing, accounting, desktop publishing, and for running spreadsheet and database

management applications. At home, the most popular use for personal computers is for playing

games and surfing the Internet. Although personal computers are designed as single-user

systems, these systems are normally linked together to form a network. In terms of power, now-

a-days High-end models of the Macintosh and PC offer the same computing power and graphics

capability as low-end workstations by Sun Microsystems, Hewlett-Packard, and DELL.

WORKSTATION Workstation is a computer used for engineering applications

(CAD/CAM), desktop publishing, software development, and other such types of applications

which require a moderate amount of computing power and relatively high quality graphics

capabilities

Workstations generally come with a large, high-resolution graphics screen, large amount

of RAM, inbuilt network support, and a graphical user interface. Most workstations also have a

mass storage device such as a disk drive, but a special type of workstation, called a diskless

workstation, comes without a disk drive. Common operating systems for workstations are UNIX

and Windows NT. Like PC, Workstations are also single-user computers. However, workstations

are typically linked together to form a local-area network, although they can also be used as

stand-alone systems.

26. a) Write a program to execute parent and child class using fork() System call.

 Child class usingfork() System Call

A Process can create a new child process using fork () system call.

This new child process created through fork() call will have same memory image as of parent

process i.e. it will be duplicate of calling process but will have different process ID.

For example,

Suppose there is a Process “Sample” with Process ID 1256 and parent ID 12. Now as soon as

this process calls the fork() function, a new process will be created with same memory image but

with different process ID.

Also, process which has called this fork() function will become the parent process of this new

process i.e.

Process 1: Sample (pid=1341 | Parent Process ID = 12)

After calling fork() system call,

Process 1: Sample (pid=1341 | Parent Process ID = 12)

Process 2: Sample (pid= 4567 | Parent Process ID = 1341)

As memory image of new child process will be the copy of parent process’s memory image. So,

all variables defined before fork() call will be available in child process with same values.

If fork() call is successful then code after this call will be executed in both the

process. Therefore, fork() function’s return value will be different in both the process’s i.e.

If fork() call is successful then it will,
 Return 0 in child process.

 Return process id of new child process in parent process.

If fork() call is unsuccessful then it will return -1.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

#include <iostream>

#include <unistd.h>

int main()

{

 int x = 6;

 pid_t childProcessId = fork();

 // If fork call Code after

 if(childProcessId < 0)

 {

 std::cout<<"Failed to Create a new Process"<<std::endl;

 }

 else if (childProcessId == 0)

 {

 // This code will be executed in Child Process Only

 std::cout<<"Child Process :: x = "<<x<<std::endl;

 x = 10;

 std::cout<<"Child Process :: x = "<<x<<std::endl;

21

22

23

24

25

26

27

28

29

30

31

 std::cout<<"Child Process exists"<<std::endl;

 }

 else if (childProcessId > 0)

 {

 // This code will be executed in Parent Process Only

 sleep(2);

 std::cout<<"Parent Process :: x = "<<x<<std::endl;

 }

}

OUTPUT
Child Process:: x = 6

Child Process:: x = 10

Child Process exists

Parent Process :: x = 6

As we can see value of x was 6 before calling fork() function. Therefore in child process value of

x remain 6 but then child process modified the value of x to 10. But this change will not be

reflected in parent process because parent process has seperate copy of the variable and its value

remain same i.e. 6. We added sleep in parent process because to add a delay of 2 seconds and

check the value of x in parent process after child process exists.

After fork() call finishes both child and parent process will run parallelly and execute the code

below fork() call simultaneously.

26. (b) Explain in detail about System Calls and System Programs.

SYSTEM CALLS AND SYSTEM PROGRAMS

 System calls provide an interface between the process and the operating system. System

calls allow user-level processes to request some services from the operating system

which process itself is not allowed to do. In handling the trap, the operating system will

enter in the kernel mode, where it has access to privileged instructions, and can perform

the desired service on the behalf of user-level process. It is because of the critical nature

of operations that the operating system itself does them every time they are needed. For

example, for I/O a process involves a system call telling the operating system to read or

write particular area and this request is satisfied by the operating system.

 System programs provide basic functioning to users so that they do not need to write

their own environment for program development (editors, compilers) and program

execution (shells). In some sense, they are bundles of useful system calls.

SYSTEM CALL

When a program in user mode requires access to RAM or a hardware resource, it must ask

the kernel to provide access to that resource. This is done via something called a system call.

When a program makes a system call, the mode is switched from user mode to kernel mode.

This is called a context switch.

Then the kernel provides the resource which the program requested. After that, another

context switch happens which results in change of mode from kernel mode back to user

mode.

Generally, system calls are made by the user level programs in the following situations:

 Creating, opening, closing and deleting files in the file system.

 Creating and managing new processes.

 Creating a connection in the network, sending and receiving packets.

 Requesting access to a hardware device, like a mouse or a printer.

SYSTEM PROGRAMS

These programs are not usually part of the OS kernel, but are part of the overall

operating system.

File Management

These programs create, delete, copy, rename, print, dump, list, and generally manipulate

files and directories.

Status Information

Some programs simply request the date and time, and other simple requests. Others

provide detailed performance, logging, and debugging information. The output of these

files is often sent to a terminal window or GUI window

File modification

Programs such as text editors are used to create, and modify files.

Communications

These programs provide the mechanism for creating a virtual connect among processes,

users, and other computers. Email and web browsers are a couple examples.

PART-A-[20X1=20 MARKS

ANSWER KEY

1. When a process to be run, its code and data are brought to the?

Answer: Main storage

2. A scheduling discipline is said to be______if the CPU can be taken away between

Answer:Preemptive

3. Which scheduling is effective in time sharing environments?

Answer: RR Scheduling

4. Block state transition is

Answer: Running Blocked

5. Process is sait to be blocked if

 Answer: Its waiting for some event to be happen

6. Two basic types of operating systems are_____

 Answer: Batch and Interactive

7. A Semaphore is a_____variable whose value can be accessed and altered only by operations P

 & V

 Answer: Protected

8. Process states are______

 Answer: Ready,Run,Block

9. Which access a process should have to modify any information in a segment?

 Answer: Read

10. Critical section can also be called____

 Answer: Mutual Exclusion

11. The processors communicate with one another through various communication lines,such as

 High-speed buses or telephone lines

 Answer:Distributed System

12.Variable size blocks are called_______

 Answer: Segments

13.Using priority scheduling algorithm,find the average waiting time for the following set of

processes given with their priorities in the order :Process:Burst time:Priority respectively p1 : 10

:3,p2 : 1 : 1,p3 : 2 : 4.p4 : 1 : 5 ,p5 : 5 : 2.

 Answer: 8.2 milliseconds

14. The_____algorithm selects the request with the minimum seek time for the current head

position.

 Answer: SSTF

15. An optimal scheduling algorithm in terms of minimizing the average waiting time of the

given set of processes is___________.

 Answer: Shortest job-first scheduling algorithm

16. The hardware mechanism that enables a device to notify the CPU is called_____.

 Answer: Interrupt

17. The SJF algorithm is a special case of the general __________

 Answer: Priority Scheduling Algorithm

18. A Scheduling discipline is said to be_______if the CPU can be taken away in between.

 Answer: Preemptive

19. If a time quantum used in round –robin preemptive CPU scheduling is allowed to grow too

 large, the algorithm degenerates to:

 Answer: First come First Serve

20. The collection of process on the disk that are waiting to be brought into memory for

 execution, forms

 Answer: Input Queue

Part-B[3x2=6 Marks]

21.What is system call?

SYSTEM CALLS- provide an interface between the process and the operating system.

System calls allow user-level processes to request some services from the operating

system which process itself is not allowed to do. In handling the trap, the operating

system will enter in the kernel mode, where it has access to privileged instructions, and

can perform the desired service on the behalf of user-level process. It is because of the

critical nature of operations that the operating system itself does them every time they

are needed. For example, for I/O a process involves a system call telling the operating

system to read or write particular area and this request is satisfied by the operating

system.

22. WHAT IS KERNAL?

The kernel is the central module of an operating system (OS). It is the part of the operating

system that loads first, and it remains in main memory. Because it stays in memory, it is

important for the kernel to be as small as possible while still providing all the essential services

required by other parts of the operating system and applications. The kernel code is usually

loaded into a protected area of memory to prevent it from being overwritten by programs or other

parts of the operating system.

23. DEFINE SEMAPHORE.

A semaphore S is an integer variable that, apart from initialization, is accessed only through two

standard atomic operations: wait() and signal(). The wait() operation was originally termed P

(from the Dutch proberen, ―to test‖); signal() was originally called V (from verhogen, ―to

increment‖).

https://www.webopedia.com/TERM/M/module.html
https://www.webopedia.com/TERM/O/operating_system.html
https://www.webopedia.com/TERM/M/main_memory.html
https://www.webopedia.com/TERM/A/application.html

24.a.Discuss process stated with neat Diagram

Process State

As a process executes, it changes state. The state of a process is defined in part by the

current activity of that process. A process may be in one of the following states:

• New. The process is being created.

• Running. Instructions are being executed.

• Waiting. The process is waiting for some event to occur (such as an I/O completion or

reception of a signal).

• Ready. The process is waiting to be assigned to a processor.

• Terminated. The process has finished execution.

These names are arbitrary, and they vary across operating systems. The states that they

represent are found on all systems, however. Certain operating systems also more finely

delineate process states. It is important to realize that only one process can be running on any

processor at any instant. Many processes may be ready and waiting, however. The state diagram

corresponding to these states is presented in the following Figure.

Process State Diagram

24. B.Explain about process scheduling in detail

Definition

 The process scheduling is the activity of the process manager that handles the removal of

the running process from the CPU and the selection of another process on the basis of a

particular strategy.

 Process scheduling is an essential part of a Multiprogramming operating system. Such

operating systems allow more than one process to be loaded into the executable memory

at a time and loaded process shares the CPU using time multiplexing.

Scheduling Queues

 Scheduling queues refers to queues of processes or devices. When the process enters into

the system, then this process is put into a job queue. This queue consists of all processes

in the system. The operating system also maintains other queues such as device queue.

Device queue is a queue for which multiple processes are waiting for a particular I/O

device. Each device has its own device queue.

This figure shows the queuing diagram of process scheduling.

 Queue is represented by rectangular box.

 The circles represent the resources that serve the queues.

 The arrows indicate the process flow in the system.

Queues are of two types

 Ready queue

 Device queue

A newly arrived process is put in the ready queue. Processes waits in ready queue for allocating

the CPU. Once the CPU is assigned to a process, then that process will execute. While executing

the process, any one of the following events can occur.

 The process could issue an I/O request and then it would be placed in an I/O queue.

 The process could create new sub process and will wait for its termination.

 The process could be removed forcibly from the CPU, as a result of interrupt and put

back in the ready queue.

Two State Process Mode

Two state process model refers to running and non-running states which are described below.

S.N.

State & Description

Running

 1 When new process is created by Operating System that process enters into the

 system as in the running state.

 Not Running

 Processes that are not running are kept in queue, waiting for their turn to

 execute. Each entry in the queue is a pointer to a particular process. Queue is

 2 implemented by using linked list. Use of dispatcher is as follows. When a

 process is interrupted, that process is transferred in the waiting queue. If the

 process has completed or aborted, the process is discarded. In either case, the

 dispatcher then selects a process from the queue to execute.

Schedulers

Schedulers are special system software which handles process scheduling in various ways. Their

main task is to select the jobs to be submitted into the system and to decide which process to

run. Schedulers are of three types

 Long Term Scheduler

 Short Term Scheduler

 Medium Term Scheduler

Long Term Scheduler

It is also called job scheduler. Long term scheduler determines which programs are

admitted to the system for processing. Job scheduler selects processes from the queue

and loads them into memory for execution. Process loads into the memory for CPU

scheduling. The primary objective of the job scheduler is to provide a balanced mix of

jobs, such as I/O bound and processor bound. It also controls the degree of

multiprogramming. If the degree of multiprogramming is stable, then the average rate of

process creation must be equal to the average departure rate of processes leaving the

system.

 On some systems, the long term scheduler may not be available or minimal. Time-

sharing operating systems have no long term scheduler. When process changes the state

from new to ready, then there is use of long term scheduler.

Short Term Scheduler

 It is also called CPU scheduler. Main objective is increasing system performance in

accordance with the chosen set of criteria. It is the change of ready state to running state

of the process. CPU scheduler selects process among the processes that are ready to

execute and allocates CPU to one of them.

 Short term scheduler also known as dispatcher, execute most frequently and makes the

fine grained decision of which process to execute next. Short term scheduler is faster

than long term scheduler.

Medium Term Scheduler

 Medium term scheduling is part of the swapping. It removes the processes from the

memory. It reduces the degree of multiprogramming. The medium term scheduler is in-

charge of handling the swapped out-processes.

SCHEDULING (PREEMPTIVE AND NONPREEMPTIVE)

Non preemptive Scheduling

 A scheduling discipline is non preemptive if, once a process has been given the CPU,
the CPU cannot be taken away from that process.

Following are some characteristics of non preemptive scheduling

1. In non preemptive system, short jobs are made to wait by longer jobs but the

overall treatment of all processes is fair.

2. In non preemptive system, response times are more predictable because incoming

high priority jobs cannot displace waiting jobs.

3. In non preemptive scheduling, a scheduler executes jobs in the following two situations.

a. When a process switches from running state to the waiting state.

b. When a process terminates.

Preemptive Scheduling

 A scheduling discipline is preemptive if, once a process has been given the CPU
can taken away.

 The strategy of allowing processes that are logically runable to be temporarily
suspended is called Preemptive Scheduling and it is contrast to the "run to completion"
method.

Schedule:

A Process Scheduler schedules different processes to be assigned to the CPU based on

particular scheduling algorithms. There are six popular process scheduling algorithms

which we are going to discuss in this chapter

 First-Come, First-Served (FCFS) Scheduling

 Shortest-Job-Next (SJN) Scheduling

 Priority Scheduling

 Shortest Remaining Time

 Round Robin(RR) Scheduling

 Multiple-Level Queues Scheduling

 These algorithms are either non-preemptive or preemptive. Non-preemptive

algorithms are designed so that once a process enters the running state; it cannot be

preempted until it completes its allotted time, whereas the preemptive scheduling is

based on priority where a scheduler may preempt a low priority running process anytime

when a high priority process enters into a ready state.

25. A.Explain about Virtual address space.

We have already discussed how the logical address are referenced by the program as it runs, but

the Memory Management Unit calculates the physical address before loading the address on to

bus. With a virtual memory management system, the logical address space becomes a virtual

address space that uses the full range of memory addresses for each process (0 to 4 GB for a 32

bit system).

The virtual memory address space for each process is quite sparse. Recall what the contiguous

address space for a process looks like. If address space is sparse, then the heap is quite large,

which mean that the stack is unlikely to grow into other memory. A large heap leaves plenty of

room for dynamically allocated memory and also for the memory addresses of shared libraries

(called DLLs in Windows).

http://faculty.salina.k-state.edu/tim/ossg/glossary.html#term-logical-address
http://faculty.salina.k-state.edu/tim/ossg/Memory/mem_hw.html#mmu
http://faculty.salina.k-state.edu/tim/ossg/glossary.html#term-physical-address

25. b .Explain about Deadlock and its process

DEADLOCK

Under the normal mode of operation, a process may utilize a resource in only the

following sequence:

1. Request. The process requests the resource. If the request cannot be granted immediately (for

example, if the resource is being used by another process), then the requesting process must wait

until it can acquire the resource.

2. Use. The process can operate on the resource (for example, if the resource is a printer, the

process can print on the printer).

3. Release. The process releases the resource.

 For each use of a kernel-managed resource by a process or thread, the operating

system checks to make sure that the process has requested and has been allocated

the resource. A system table records whether each resource is free or allocated.

For each resource that is allocated, the table also records the process to which it

is allocated. If a process requests a resource that is currently allocated to another

process, it can be added to a queue of processes waiting for this resource.

 A set of processes is in a deadlocked state when every process in the set is

waiting for an event that can be caused only by another process in the set. The

events with which we are mainly concerned here are resource acquisition and

release. The resources may be either physical resources (for example, printers,

tape drives, memory space, and CPU cycles) or logical resources (for example,

semaphores, mutex locks, and files).

Deadlock Prevention

Mutual Exclusion

 The mutual exclusion condition must hold. That is, at least one resource
must be non-sharable. Sharable resources, in contrast, do not require mutually exclusive

access and thus cannot be involved in a deadlock. Read-only files are a good example of

a sharable resource. If several processes attempt to open a read-only file at the same
time, they can be granted simultaneous access to the file.

 A process never needs to wait for a sharable resource. In general, however, we cannot

prevent deadlocks by denying the mutual-exclusion condition, because some resources

are intrinsically non-sharable. For example, a mutex lock cannot be simultaneously

shared by several processes.

Hold and Wait

 To ensure that the hold-and-wait condition never occurs in the system, we must
guarantee that, whenever a process requests a resource, it does not hold any other
resources.

 One protocol that we can use requires each process to request and be allocated all its

resources before it begins execution. We can implement this provision by requiring that

system calls requesting resources for a process precede all other system calls. An

alternative protocol allows a process to request resources only when it has none.

 A process may request some resources and use them. Before it can request any additional
resources, it must release all the resources that it is currently allocated.

 Both these protocols have two main disadvantages. First, resource utilization may be

low, since resources may be allocated but unused for a long period. In the example

given, for instance, we can release the DVD drive and disk file, and then request the disk

file and printer, only if we can be sure that our data will remain on the disk file.

Otherwise, we must request all resources at the beginning for both protocols.

 Second, starvation is possible. A process that needs several popular resources may have

to wait indefinitely, because at least one of the resources that it needs is always allocated

to some other process.

No Preemption

 The third necessary condition for deadlocks is that there be no preemption of resources

that have already been allocated. To ensure that this condition does not hold, we can use

the following protocol.

 If a process is holding some resources and requests another resource that cannot be

immediately allocated to it (that is, the process must wait), then all resources the process

is currently holding are preempted. In other words, these resources are implicitly

released. The preempted resources are added to the list of resources for which the

process is waiting.

 The process will be restarted only when it can regain its old resources, as well as the new

ones that it is requesting. Alternatively, if a process requests some resources, we first

check whether they are available. If they are, we allocate them. If they are not, we check

whether they are allocated to some other process that is waiting for additional resources.

If so, we preempt the desired resources from the waiting process and allocate them to the

requesting process. If the resources are neither available nor held by a waiting process,

the requesting process must wait.

 While it is waiting, some of its resources may be preempted, but only if another process

requests them. A process can be restarted only when it is allocated the new resources it is

requesting and recovers any resources that were preempted while it was waiting.

Circular Wait

 The fourth and final condition for deadlocks is the circular-wait condition. One way to

ensure that this condition never holds is to impose a total ordering of all resource types

and to require that each process requests resources in an increasing order of enumeration.

Deadlock Avoidance:

 For avoiding deadlocks, it is to require additional information about how resources are to

be requested. For example, in a system with one tape drive and one printer, the system

might need to know that process P will request first the tape drive and then the printer

before releasing both resources, whereas process Q will request first the printer and then

the tape drive.

 With this knowledge of the complete sequence of requests and releases for each process,

the system can decide for each request whether or not the process should wait in order to

avoid a possible future deadlock. Each request requires that in making this decision the

system consider the resources currently available, the resources currently allocated to

each process, and the future requests and releases of each process.

Safe State:

 A state is safe if the system can allocate resources to each process in some order and still

avoid a deadlock. More formally, a system is in a safe state only if there exists a safe

sequence.

26.a.Explain in Detail About Preemptive and Non Preemptive Scheduling Algorithms

with suitable examples

There are six popular process scheduling algorithms

 First-Come, First-Served (FCFS) Scheduling

 Shortest-Job-Next (SJN) Scheduling

 Priority Scheduling

 Shortest Remaining Time

 Round Robin(RR) Scheduling

 Multiple-Level Queues Scheduling

 These algorithms are either non-preemptive or preemptive. Non-preemptive

algorithms are designed so that once a process enters the running state; it cannot be

preempted until it completes its allotted time, whereas the preemptive scheduling is

based on priority where a scheduler may preempt a low priority running process anytime

when a high priority process enters into a ready state.

First Come First Serve (FCFS)

 Jobs are executed on first come, first serve basis.

 It is a non-preemptive, pre-emptive scheduling algorithm.

 Easy to understand and implement.

 Its implementation is based on FIFO queue.

 Poor in performance as average wait time is high.

Wait time of each process is as follows –

Process

Wait Time : Service Time - Arrival Time

 P0 0 - 0 = 0

 P1 5 - 1 = 4

 P2 8 - 2 = 6

 P3 16 - 3 = 13

Average Wait Time: (0+4+6+13) / 4 = 5.75

Shortest Job Next (SJN)

 This is also known as shortest job first, or SJF

 This is a non-preemptive, pre-emptive scheduling algorithm.

 Best approach to minimize waiting time.

 Easy to implement in Batch systems where required CPU time is

known in advance.

 Impossible to implement in interactive systems where required

CPU time is not known.

 The processer should know in advance how much time process

will take.

Wait time of each process is as follows –

Process

Wait Time : Service Time - Arrival Time

 P0 3 - 0 = 3

 P1 0 - 0 = 0

 P2 16 - 2 = 14

 P3 8 - 3 = 5

Average Wait Time: (3+0+14+5) / 4 = 5.50

Priority Based Scheduling

 Priority scheduling is a non-preemptive algorithm and one of the most common

scheduling algorithms in batch systems.

 Each process is assigned a priority. Process with highest priority is to be executed first

and so on.

 Processes with same priority are executed on first come first served basis.

 Priority can be decided based on memory requirements, time requirements or any other

resource requirement.

Wait time of each process is as follows –

Process

Wait Time : Service Time - Arrival Time

 P0 9 - 0 = 9

 P1 6 - 1 = 5

 P2 14 - 2 = 12

 P3 0 - 0 = 0

 Average Wait Time: (9+5+12+0) / 4 = 6.5

Shortest Remaining Time

 Shortest remaining time (SRT) is the preemptive version of the SJN algorithm.

 The processor is allocated to the job closest to completion but it can be preempted by a

newer ready job with shorter time to completion.

 Impossible to implement in interactive systems where required CPU time is not known.

 It is often used in batch environments where short jobs need to give preference.

Round Robin Scheduling

 Round Robin is the preemptive process scheduling algorithm.

 Each process is provided a fix time to execute, it is called a quantum.

 Once a process is executed for a given time period, it is preempted and other process

executes for a given time period.

 Context switching is used to save states of preempted processes.

Wait time of each process is as follows –

Process

Wait Time : Service Time - Arrival Time

P0 (0 - 0) + (12 - 3) = 9

P1 (3 - 1) = 2

P2 (6 - 2) + (14 - 9) + (20 - 17) = 12

P3 (9 - 3) + (17 - 12) = 11

 Average Wait Time: (9+2+12+11) / 4 = 8.5

Multiple-Level Queues Scheduling

Multiple-level queues are not an independent scheduling algorithm. They make use of other

existing algorithms to group and schedule jobs with common characteristics.

 Multiple queues are maintained for processes with common characteristics.

 Each queue can have its own scheduling algorithms.

 Priorities are assigned to each queue.

For example, CPU-bound jobs can be scheduled in one queue and all I/O-bound jobs in another

queue. The Process Scheduler then alternately selects jobs from each queue and assigns them to

the CPU based on the algorithm assigned to the queue.

26. a .Explain the methods for interprocess communication

METHODS OF INTER-PROCESS COMMUNICATION (IPC)

Inter-process communication using shared memory requires communicating processes to

establish a region of shared memory. Typically, a shared-memory region resides in the address

space of the process creating the shared-memory segment. Other processes that wish to

communicate using this shared-memory segment must attach it to their address space. Shared

memory requires that two or more processes agree to remove this restriction. They can then

exchange information by reading and writing data in the shared areas. The form of the data and

the location are determined by these processes and are not under the operating system’s control.

The processes are also responsible for ensuring that they are not writing to the same

location simultaneously. Two types of buffers can be used. The unbounded buffer places no

practical limit on the size of the buffer. The consumer may have to wait for new items, but the

producer can always produce new items. The bounded buffer assumes a fixed buffer size. In this

case, the consumer must wait if the buffer is empty, and the producer must wait if the buffer is

full.

Message-Passing Systems

Message passing provides a mechanism to allow processes to communicate and to

synchronize their actions without sharing the same address space. It is particularly useful in a

distributed environment, where the communicating processes may reside on different computers

connected by a network. For example, an Internet chat program could be designed so that chat

participants communicate with one another by exchanging messages. A message-passing facility

provides at least two operations:

send(message) receive(message)

Messages sent by a process can be either fixed or variable in size. If only fixed-sized

messages can be sent, the system-level implementation is straightforward. This restriction,

however, makes the task of programming more difficult. Conversely, variable-sized messages

require a more complex system common kind of tradeoff seen throughout operating-system

design. If processes P and Q want to communicate, they must send messages to and receive

messages from each other: a communication link must exist between them. This link can be

implemented in a variety of ways. We are concerned here not with the link’s physical

implementation (such as shared memory, hardware bus, or network, but rather with its logical

implementation. Here are several methods for logically implementing a link and the

send()/receive() operations:

• Direct or indirect communication

• Synchronous or asynchronous communication

• Automatic or explicit buffering

Naming

Processes that want to communicate must have a way to refer to each other. They can

use either direct or indirect communication. Under direct communication, each process that

wants to communicate must explicitly name the recipient or sender of the communication. In

this scheme, the send() and receive() primitives are defined as:

• send(P, message)—Send a message to process P.

• receive(Q, message)—Receive a message from process Q.

A communication link in this scheme has the following properties:

• A link is established automatically between every pair of processes that want to communicate.

The processes need to know only each other’s identity to communicate.

• A link is associated with exactly two processes.

• Between each pair of processes, there exists exactly one link.

This scheme exhibits symmetry in addressing; that is, both the sender process and the

receiver process must name the other to communicate. A variant of this scheme employs

asymmetry in addressing. Here, only the sender names the recipient; the recipient is not required

to name the sender. In this scheme, the send () and receive () primitives are defined as follows:

• send (P, message)—Send a message to process P.

• receive (id, message)—Receive a message from any process. The variable id is

set to the name of the process with which communication has taken place.

The disadvantage in both of these schemes (symmetric and asymmetric) is the limited

modularity of the resulting process definitions. Changing the identifier of a process may

necessitate examining all other process definitions. All references to the old identifier must be

found, so that they can be modified to the new identifier. In general, any such hard-coding

techniques, where identifiers must be explicitly stated, are less desirable than techniques

involving indirection.

With indirect communication, the messages are sent to and received from mailboxes, or

ports. A mailbox can be viewed abstractly as an object into which messages can be placed by

processes and from which messages can be removed. Each mailbox has a unique identification.

For example, POSIX message queues use an integer value to identify a mailbox. A process can

communicate with another process via a number of different mailboxes, but two processes can

communicate only if they have a shared mailbox. The send () and receive () primitives are

defined as follows:

• send (A, message)—Send a message to mailbox A.

• receive (A, message)—Receive a message from mailbox A.

In this scheme, a communication link has the following properties:

• A link is established between a pair of processes only if both members of the pair have a

shared mailbox.

Synchronization

Communication between processes takes place through calls to send() and receive()

primitives. There are different design options for implementing each primitive. Message passing

may be either blocking or non blocking— also known as synchronous and asynchronous.

(Throughout this text, you will encounter the concepts of synchronous and asynchronous

behavior in relation to various operating-system algorithms.)

• Blocking send. The sending process is blocked until the message is received by the receiving

process or by the mailbox.

• Non-blocking send. The sending process sends the message and resumes operation.

• Blocking receive. The receiver blocks until a message is available.

• Non-blocking receive. The receiver retrieves either a valid message or a null.

Different combinations of send () and receive () are possible. When both send () and

receive () are blocking, we have a rendezvous between the sender and the receiver. The solution

to the producer–consumer problem becomes trivial when we use blocking send () and receive ()

statements. The producer merely invokes the blocking send () call and waits until the message is

delivered to either the receiver or the mailbox. Likewise, when the consumer invokes receive (),

it blocks until a message is available.

Buffering

Whether communication is direct or indirect, messages exchanged by communicating

processes reside in a temporary queue. Basically, such queues can be implemented in three

ways:

• Zero capacity. The queue has a maximum length of zero; thus, the link cannot have any

messages waiting in it. In this case, the sender must block until the recipient receives the

message.

• Bounded capacity. The queue has finite length n; thus, at most n messages can reside in it. If

the queue is not full when a new message is sent, the message is placed in the queue (either the

message is copied or a pointer to the message is kept), and the sender can continue execution

without waiting. The link’s capacity is finite, however. If the link is full, the sender must block

until space is available in the queue.

1. Expand UDF

Answer: User file directory

2. MS-DOS environment provided by a__________application is called by a VDM.

 Answer: win32

3. Linux is a_____like system that has gained popularity in recent years.

 Answer: UNIX

4. The ____________contains all the internal worker threads and never executes in user mode.

 Answer: System Process

5._________is used for both anonymous and authenticated access

 Answer: ftp

6. The __________program is to bring in a full bootstrap program from disk

 Answer: Bootstrap loader

7. Which of the following are forms of malicious attack

 Answer: Theft of information

8. __________access control is an approach to restricting system access to authorized user

 Answer: Role-based

9. ________is the ability to move from one hardware architecture to another with relatively few

changes

 Answer: Portability

10. The code segment that misuses its environment is called

 Answer: Trojan horse

11. The pattern that can be used to identify a virus is known as

 Answer: Virus Signature

12. The authentication method that measures the physical characteristics of the user that are to

forge is called as__________

 Answer: Biometrics

13. Any maleware hidden in software or a webpage that people voluntarily download is

 Called

 Answer: Trojan Horse

14. what are the common security threats

 Answer: File sharing and permission

15. A________ is a group of related records

 ANSWER: File

16. The operation of building a new file is called ______

 Answer: Create

17. Which maleware is hidden in software/Web page that user voluntarily to download is

 called _________

 Answer: Trojan Horse

18. The most widely used form of authenticationbis to required the user to type a ______

 Answer: Login name

19. What are Characteristics of Authorization?

 Answer: Deals with Privilages and rights

20. Which of the following is least secure method of authentication?

 Answer: Password

21. What are the file allocation methods?

FILE ALLOCATION METHODS

There are three major methods of storing files on disks:

1. Contiguous.

2. Linked.

3. Indexed.

22. What is device management?

DISK MANAGEMENT

Disk Formatting

Before a disk can be used, it has to be low-level formatted, which means laying down all of the

headers and trailers marking the beginning and ends of each sector. Included in the header and

trailer are the linear sector numbers, and error-correcting codes, ECC, which allow damaged

sectors to not only be detected, but in many cases for the damaged data to be recovered

(depending on the extent of the damage.) Sector sizes are traditionally 512 bytes, but may be

larger, particularly in larger drives

Boot Block

Computer ROM contains a bootstrap program (OS independent) with just enough code to find

the first sector on the first hard drive on the first controller, load that sector into memory, and

transfer control over to it. (The ROM bootstrap program may look in floppy and/or CD drives

before accessing the hard drive, and is smart enough to recognize whether it has found valid boot

code or not.).

23. What is internal access authorization?

INTERNAL ACCESS AUTHORIZATION

Authorization:

 Goal: determine which principals can perform which operations on which objects.

 Logically, authorization information represented as an access matrix:

 One row per principal.

 One column per object.

 Each entry indicates what that principle can do to that object.

 In practice a full access matrix would be too bulky, so it gets stored in one of two.

 Access Control Lists (ACLs): organize by columns.

 With each object, store information about which users are allowed to perform which

operations.

 Most general form: list of <user, privilege> pairs.

 For simplicity, users can be organized into groups, with a single ACL for an entire group.

 ACLs can be very general (Windows) or simplified (Unix).

 UNIX: 9 bits per file:

 owner, group, anyone

 read, write, execute permissions for each of the above

 In addition, user "root" has all permissions for everything

 ACLs are simple and are used in almost all file systems.

 Capabilities: organize by rows.

 Example of a simple capability-based protection scheme: page tables.

24. a.Explain in detail about directory structure

DIRECTORY STRUCTURE

 The directory can be viewed as a symbol table that translates file names into their

directory entries. If we take such a view, we see that the directory itself can be organized

in many ways. The organization must allow us to insert entries, to delete entries, to

search for a named entry, and to list all the entries in the directory. When considering a

particular directory structure, we need to keep in mind the operations that are to be

performed on a directory:

• Search for a file. We need to be able to search a directory structure to find the entry for a

particular file. Since files have symbolic names, and similar names may indicate a

relationship among files, we may want to be able to find all files whose names match a

particular pattern.

• Create a file. New files need to be created and added to the directory. • Delete a file. When

a file is no longer needed, we want to be able to remove it from the directory.

• List a directory. We need to be able to list the files in a directory and the contents of the

directory entry for each file in the list.

• Rename a file. Because the name of a file represents its contents to its users, we must be

able to change the name when the contents or use of the file changes. Renaming a file may

also allow its position within the directory structure to be changed.

• Traverse the file system. We may wish to access every directory and every file within a

directory structure. For reliability, it is a good idea to save the contents and structure of the

entire file system at regular intervals. Often, we do this by copying all files to magnetic tape.

This technique provides a backup copy in case of system failure. In addition, if a file is no

• longer in use, the file can be copied to tape and the disk space of that file released

for reuse by another file.
•
• Single-Level Directory
•
• It is Simple to implement, but each file must have a unique name.

Two-Level Directory

 In this structure each user gets their own directory space. File names only need to be

unique within a given user's directory. A master file directory is used to keep track of

each user’s directory, and must be maintained when users are added to or removed

from the system.

 A separate directory is generally needed for system (executable) files. Systems may

or may not allow users to access other directories besides their own If access to other

directories is allowed, then provision must be made to specify the directory being

accessed. If access is denied, then special consideration must be made for users to

run programs located in system directories. A search path is the list of directories in

which to search for executable programs, and can be set uniquely for each user.

Tree-Structured Directories

 An obvious extension to the two-tiered directory structure, and the one with which we

are all most familiar. Each user / process has the concept of a current directory from

which all (relative) searches take place. Files may be accessed using either absolute

pathnames (relative to the root of the tree) or relative pathnames (relative to the current

directory.) Directories are stored the same as any other file in the system, except there is

a bit that identifies them as directories, and they have some special structure that the OS

understands. One question for consideration is whether or not to allow the removal of

directories that are not empty - Windows requires that directories be emptied first, and

UNIX provides an option for deleting entire sub-trees.

Acyclic-Graph Directories

 When the same files need to be accessed in more than one place in the directory structure

(e.g. because they are being shared by more than one user / process), it can be useful to

provide an acyclic-graph structure. (Note the directed arcs from parent to child.)

UNIX provides two types of links for implementing the acyclic-graph structure. (See

"man ln" for more details.)

 A hard link (usually just called a link) involves multiple directory entries that both

refer to the same file. Hard links are only valid for ordinary files in the same filesystem.

 A symbolic link, that involves a special file, containing information about where to find

the linked file. Symbolic links may be used to link directories and/or files in other file

systems, as well as ordinary files in the current file system.

Windows only supports symbolic links, termed shortcuts. Hard links require a reference count,

or link count for each file, keeping track of how many directory entries are currently referring to

this file. Whenever one of the references is removed the link count is reduced, and when it

reaches zero, the disk space can be reclaimed.

General Graph Directory

 If cycles are allowed in the graphs, then several problems can arise: Search algorithms

can go into infinite loops. One solution is to not follow links in search algorithms. (Or

not to follow symbolic links, and to only allow symbolic links to refer to directories.)

Sub-trees can become disconnected from the rest of the tree and still not have their

reference counts reduced to zero.

24.b.Explain about the Contiguous file allocation method.

Contiguous Allocation

 Contiguous Allocation requires that all blocks of a file be kept together contiguously.

The performance is very fast, because reading successive blocks of the same file

generally requires no movement of the disk heads, or at most one small step to the next

adjacent cylinder.

 Storage allocation involves the same issues discussed earlier for the allocation of

contiguous blocks of memory (first fit, best fit, fragmentation problems, etc.) The

distinction is that the high time penalty required for moving the disk heads from spot to

spot may now justify the benefits of keeping files contiguously when possible.

Problems can arise when files grow, or if the exact size of a file is unknown at creation time:

 Over-estimation of the file's final size increases external fragmentation and wastes disk

space.

 Under-estimation may require that a file be moved or a process aborted if the file grows

beyond its originally allocated space.

 If a file grows slowly over a long time period and the total final space must be allocated

initially, then a lot of space becomes unusable before the file fills the space.

A variation is to allocate file space in large contiguous chunks, called extents. When a file

outgrows its original extent, then an additional one is allocated. (For example an extent may be

the size of a complete track or even cylinder, aligned on an appropriate track or cylinder

boundary.) The high-performance files system VERITAS uses extents to optimize performance.

Contiguous allocation of disk space

25.a.Explain in detail about Linked file allocation method

Linked Allocation

Disk files can be stored as linked lists, with the expense of the storage space consumed

by each link. (E.g. a block may be 508 bytes instead of 512.) Linked allocation involves

no external fragmentation, does not require pre-known file sizes, and allows files to grow

dynamically at any time. Unfortunately linked allocation is only efficient for sequential

access files, as random access requires starting at the beginning of the list for each new

location access. Allocating clusters of blocks reduces the space wasted by pointers, at

the cost of internal fragmentation. Another big problem with linked allocation is

reliability if a pointer is lost or damaged. Doubly linked lists provide some protection, at

the cost of additional overhead and wasted space.

Linked allocation of disk space.

25.b.Explain in Detail About Authentication

Authentication

 Authentication refers to identifying the each user of the system and associating the

executing programs with those users. It is the responsibility of the Operating System to

create a protection system which ensures that a user who is running a particular program

is authentic. Operating Systems generally identifies/authenticates users using following

three ways:

 Username / Password - User need to enter a registered username and password with
Operating system to login into the system.

 User card/key - User need to punch card in card slot, or enter key generated by key
generator in option provided by operating system to login into the system.

 User attribute - fingerprint/ eye retina pattern/ signature - User need to pass his/her
attribute via designated input device used by operating system to login into the system.

One Time passwords

 One time passwords provides additional security along with normal authentication. In

One-Time Password system, a unique password is required every time user tries to login

into the system. Once a one-time password is used then it can not be used again. One

time password are implemented in various ways.

 Random numbers - Users are provided cards having numbers printed along with

corresponding alphabets. System asks for numbers corresponding to few alphabets

randomly chosen.

 Secret key - User are provided a hardware device which can create a secret id mapped

with user id. System asks for such secret id which is to be generated every time prior to

login.

 Network password - Some commercial applications send one time password to user on
registered mobile/ email which is required to be entered prior to login.

 Typically done with passwords:

o A secret piece of information used to establish identity of a user.

o Must not be stored in a directly-readable form: use one-way transformations.

o Passwords should be relatively long and obscure.

 Alternate form of authentication: badge or key.

o Does not have to be kept secret.

o Should not be forgable or copyable.

o Can be stolen, but owner should know if it is.

 Paradox: key must be cheap to make, hard to duplicate.

 Once authentication is complete, the identity of the principal must be protected from

tampering, since other parts of the system will rely on it.

 Once you log in, your user id is associated with every process executed under that login:

each process inherits the user id from its parent.

26.a.Explain in detail about Policy mechanism

 Protection: mechanisms that prevent accidental or intentional misuse of a system.

o Accidents: generally easier to solve (make them unlikely)

o Malicious abuse: much more difficult to eliminate (can't leave any loopholes,

can't use probabilities).

 Three aspects to a protection mechanism:

o Authentication: identify a responsible party (principal) behind each action.

o Authorization: determine which principals are allowed to perform which actions.

o Access enforcement: combine authentication and authorization to control access.
 A tiny flaw in any of these areas can compromise the entire protection mechanism.

AUTHENTICATION

 Typically done with passwords:

p A secret piece of information used to establish identity of a user.

p Must not be stored in a directly-readable form: use one-way transformations.

p Passwords should be relatively long and obscure.

 Alternate form of authentication: badge or key.

p Does not have to be kept secret.

p Should not be forgable or copyable.

p Can be stolen, but owner should know if it is.

 Paradox: key must be cheap to make, hard to duplicate.

 Once authentication is complete, the identity of the principal must be protected from

tampering, since other parts of the system will rely on it.

 Once you log in, your user id is associated with every process executed under that login:

each process inherits the user id from its parent.

INTERNAL ACCESS AUTHORIZATION

Authorization:

 Goal: determine which principals can perform which operations on which objects.

 Logically, authorization information represented as an access matrix:

 One row per principal.

 One column per object.

 Each entry indicates what that principle can do to that object.

 In practice a full access matrix would be too bulky, so it gets stored in one of two

compressed ways: access control lists or capabilities.

 Access Control Lists (ACLs): organize by columns.

 With each object, store information about which users are allowed to perform which

operations.

 Most general form: list of <user, privilege> pairs.

 For simplicity, users can be organized into groups, with a single ACL for an entire group.

 ACLs can be very general (Windows) or simplified (Unix).

 UNIX: 9 bits per file:

 owner, group, anyone

 read, write, execute permissions for each of the above

 In addition, user "root" has all permissions for everything

 ACLs are simple and are used in almost all file systems.

 Capabilities: organize by rows.

 With each user, indicate which objects may be accessed, and in what ways.

 Store a list of <object, privilege> pairs with each user. This is called a capability list.

 Typically, capabilities also act as names for objects: can't even name objects not referred

to in your capability list.

 Almost as if there were no root directory in Unix and no "..".

 Systems based on ACLs encourage visibility of objects: shared public namespace.

 Capability systems discourage visibility; namespaces are private by default.

 Capabilities have been used in experimental systems attempting to be very secure.

However, they have proven to be clumsy to use (painful to share things), so they have

mostly fallen out of favor for managing objects such as files.

 Example of a simple capability-based protection scheme: page tables.

Access Enforcement

 Some part of the system must be responsible for enforcing access controls and protecting

authentication and authorization info.

 This portion of the system has total power, so it should be as small and simple as possible.

Example: the portion of the system that sets up page tables.

 Security kernel: an inner layer of the operating system that enforces security; only this layer

has total power.

 Most operating systems have no security kernel: the entire OS has unlimited power.

 Miscellaneous Issues

 There are many other things that need to be protected besides just file access

 In Unix, root access is used to control most of these things.

26. b.Discuss briefly about Internal access authorization

INTERNAL ACCESS AUTHORIZATION

Authorization:

 Goal: determine which principals can perform which operations on which objects.

 Logically, authorization information represented as an access matrix:

 One row per principal.

 One column per object.

 Each entry indicates what that principle can do to that object.

 In practice a full access matrix would be too bulky, so it gets stored in one of two

compressed ways: access control lists or capabilities.

 Access Control Lists (ACLs): organize by columns.

 With each object, store information about which users are allowed to perform which

operations.

 Most general form: list of <user, privilege> pairs.

 For simplicity, users can be organized into groups, with a single ACL for an entire group.

 ACLs can be very general (Windows) or simplified (Unix).

 UNIX: 9 bits per file:

 owner, group, anyone

 read, write, execute permissions for each of the above

 In addition, user "root" has all permissions for everything

 ACLs are simple and are used in almost all file systems.

 Capabilities: organize by rows.

 With each user, indicate which objects may be accessed, and in what ways.

 Store a list of <object, privilege> pairs with each user. This is called a capability list.

 Typically, capabilities also act as names for objects: can't even name objects not referred

to in your capability list.

 Almost as if there were no root directory in Unix and no "..".

 Systems based on ACLs encourage visibility of objects: shared public namespace.

 Capability systems discourage visibility; namespaces are private by default.

 Capabilities have been used in experimental systems attempting to be very secure.

However, they have proven to be clumsy to use (painful to share things), so they have

mostly fallen out of favor for managing objects such as files.

 Example of a simple capability-based protection scheme: page tables.

	1.pdf (p.1-2)
	2.pdf (p.3-7)
	3.pdf (p.8-21)
	4.pdf (p.22-28)
	5.pdf (p.29-78)
	6.pdf (p.79-83)
	7.pdf (p.84-111)
	8.pdf (p.112-116)
	9.pdf (p.117-131)
	10.pdf (p.132-136)
	Sheet1

	11.PDF (p.137-145)
	12.pdf (p.146-150)
	Sheet1

	13.pdf (p.151)
	14.pdf (p.152-172)
	15.pdf (p.173)
	16.pdf (p.174-196)
	17.pdf (p.197)
	18.pdf (p.198-213)

