

KarpagamAcademy of Higher Education
(Established Under Section 3 of UGC Act 1956)

Eachanari Post, Coimbatore – 641 021. INDIA
 Phone : 0422-2611146, 2611082 Fax No : 0422 -2611043

Semester – III

18CAU304B STRUTS FRAMEWORK 3H – 3C

Instruction Hours / week: L: 3 T: 0 P: 0 Marks: Int : 40 Ext : 60 Total: 100

End Semester Exam: 3 Hours

Course Objectives:

To help students to

 Know the components of Struts Application

 Implement JSP functions using Struts

 Develop web applications using Struts

 understand the Model, View, Controller (MVC) design pattern and how it is applied

by Struts Framework

 how to perform client & server side validation using Struts Validator Framework

Course Outcome:

 able to construct web based applications and Identify where data structures are

appearing in them.

 able to generate dynamic content using JSP

 able to develop EJB programs and get familiar with Struts framework

UNIT -I

Introduction, Understanding the MVC Design Pattern, The Struts Implementation of the

MVC, Directory Structure, Web Application Deployment Descriptor, The Tomcat

JSP/Servlet Container, Installing and Configuring Tomcat, Testing Your Tomcat Installation,

An Overview of the Java Servlet and JavaServer Pages, The GenericServlet and HttpServlet

Classes, Life Cycle of a Servlet. Struts OverView, Life Cycle of Struts.

UNIT -II

Components of a Struts Application, The Controller, The View, DynaActionForm &

LazyDynaBean, ActionServlet, RequestProcessor, ActionForm, IncludeAction, Forward

Action, LocaleAction, DispatchAction, LookupDispatchAction, MappingDispatchAction,

EventDispatchAction, SwitchAction, Interceptors, Implementing Custom interceptors, Struts

Validation, Exception Handling, Managing Errors, Struts Error Management - ActionError,

ActionErrors, Creating Custom ActionMappings, Struts JDBC Connection, Using a

DataSource in Struts Application, Debugging Struts Applications.

UNIT -III

The struts-config.xml, The Struts Subelements, The icon Tag Subelement, display-name Tag

Subelement, description Tag Subelement, set-property Tag Subelement, Adding a Struts

DataSource, Adding FormBean Definitions, Adding Global Forwards, Adding Actions,

Adding a RequestProcessor, Adding Message Resources, Adding a Plug-in. The Bean Tag

Library, Installing the Bean Tags, bean:cookie Tag, bean:define Tag, bean:header Tag,

bean:include Tag,

bean:message Tag, bean:page Tag, bean:parameter Tag ,bean:resource Tag,<bean:size Tag,

bean:struts Tag, bean:write Tag

UNIT -IV

HTML Tag Library, Base Tag, Button Tag, Cancel Tag, Checkbox Tag, Errors Tag, Form

Tag, Hidden Tag, Html Tag, Image Tag, Img Tag, Link Tag, Multibox Tag, Select Tag,

Option Tag, Options Tag, Password Tag, Radio Tag, Reset Tag, Rewrite Tag, Submit Tag,

Text Tag, Textarea Tag

UNIT -V

The Logic Tag Library , Empty Tag, notEmpty Tag ,equal Tag, notEqual Tag, forward Tag,

redirect Tag, greaterEqual Tag, greaterThan Tag, iterate Tag, lessEqual Tag, lessThan Tag,

match Tag, notMatch Tag, present Tag, notPresent Tag

Suggested readings

1. James Goodwill,(2002). Mastering Jakarta Struts, Wiley Publishing, Inc.

Lesson Plan 2018 -2021

Batch

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University)

 (Established Under Section 3 of UGC Act, 1956)

Coimbatore-21

SYLLABUS

DEPARTMENT OF CS, CA & IT

STAFF NAME: K. GEETHA

SUBJECT NAME: STRUTS FRAMEWORK SUBJECT CODE: 18CAU304B

SEMESTER: III CLASS: II BCA

S.No.

Lecture

Duration

(Period)

Topics to be Covered Support Materials

Unit – I

1.
1

Introduction, Understanding the MVC Design pattern, The

Struts Implementation of MVC
T1: 1-4

2.
1

Directory Structure, Web Application Deployment

Descriptor
T1: 6-7

3.
1

The Tomcat JSP/Servlet container Installing and configuring

Tomcat

T1: 8-11

4.
1

Testing your Tomcat Installation, An overview of the Java

Servlet and Javaserver pages
T1: 9-12

5.
1

The Generic Servlet and HttpServlet Classes, Life Cycle of a

Servlet
T1: 13-14

6.
1 Struts Overview, Life Cycle of Struts T1: 48-58

7.
1 Recapitulation and Discussion of important questions T1:

Text Book 1 (T1) : James Goodwill (2002), Mastering Jakarta Struts, Wilely Publishing, Inc.

Lesson Plan 2018 -2021

Batch

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE 2

Total No. of Hours Planned for Unit-I 7

S.No.

Lecture

Duration

(Period)

Topics to be Covered Support Materials

Unit – II

1. 1
Components of a Struts Application, The Controller, The

View, DynaActionForm & LazyDynaBean
T1: 82-84

2. 1
Acttion Servlet, Request Processor, ActionForm,

IncludeAction, Forward Action, LocaleAction
T1: 62-72

3. 1
DispatchAction, LookupDispatchAction,

MappingDispatchAction,EventDispatchAction,SwitchAction
T1: 75-76

4.

1

Interceptors, Implementing Custom Interception, Struts

Validation, Exception Handling
T1: 93-96

5. 1
Managing Errors, Struts Error Management, Action Error,

Action Errors
T1: 90-94

6. 1 Creating Custom Action Mapping, Struts JDBC Connection T1: 100-103

7. 1
Using a Datasource in Struts Application, Debugging Stuts

Applications
T1: 107-109

8. 1 Recapitulation and Discussion of important questions

Total No. of Hours Planned for Unit-II 8

Text Book 1 (T1) : James Goodwill (2002), Mastering Jakarta Struts, Wilely Publishing, Inc.

Lesson Plan 2018 -2021

Batch

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE 3

S.No.

Lecture

Duration

(Period)

Topics to be Covered Support Materials

Unit – III

1.
1

The Struts – Confil.Xml, The Struts Subelements, The

iconTag subelement, display – nametag subelement
T1: 177-178

2.
1

description Tag subelement, set property Tag subelement,

Adding a struts Datasource
T1: 178-179

3.
1

Adding FormBean Definitions, Adding Global Forwards,

Adding Actions, Adding a Request Processor
T1:181-182

4.
1

Adding Message Resources, Adding a Plug in, The Bean

Tag Library, Installing the Bean Tags, bean: cookie Tag
T1:184-187

5.
1

bean: define Tag, bean: header Tag, bean: include Tag,

bean: message Tag, bean : page Tag
T1: 188-192

6.
1

bean: parameter Tag, bean: resource Tag, bean: size Tag,

bean: struts Tag, bean: write Tag
T1: 193-195

7. 1 Recapitulation and Discussion of important questions

Total No. of Hours Planned for Unit-III 7

Text Book 1 (T1) : James Goodwill (2002), Mastering Jakarta Struts, Wilely Publishing, Inc.

Lesson Plan 2018 -2021

Batch

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE 4

S.No.

Lecture

Duration

(Period)

Topics to be Covered Support Materials

Unit – IV

1.
1 HTML Tag Library, Base Tag, Button Tag, Cancel Tag T1: 197-200

2.
1 Check box Tag, Errors Tag, Form Tag, Hidden Tag T1: 202-206

3.
1

HTML Tag, Image Tag, Img Tag, Link Tag, Multibox

Tag

T1: 207-216

4.
1

Select Tag, Option Tag, Options Tag, Password Tag,

Radio Tag

T1: 219-227

5.
1

Reset Tag, Rewrite Tag, Submit Tag, Text Tag, Textarea

Tag

T1: 229-237

6.
1 Recapitulation and Discussion of important questions

Total No. of Hours Planned for Unit-IV 6

Text Book 1 (T1) : James Goodwill (2002), Mastering Jakarta Struts, Wilely Publishing, Inc.

Lesson Plan 2018 -2021

Batch

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE 5

S.No.

Lecture

Duration

(Period)

Topics to be Covered Support Materials

Unit – V

1.
1 Introduction to Perl, Perl Documentation T2: 57-59,W8

2.
1 Perl Syntax Rules, Declaring Variables with use Strict T2: 59-63, W9

3. 1

Scalar, Array and Hash Variables

T2: 63-71

4.
1 Operators T2: 71-76

5.
1 Flow Control Constructs T2: 77-81, W9

6.
1 Regular Expressions, Functions T2: 81-92

7.
1 File I/O, Additional Perl Constructs T2: 93-103

8.
1

Making Operating System Calls, A Quick Introduction to

Object Oriented Programming, What we didn’t talk about
T2: 103-107

9.
1 Recapitulation and Discussion of important questions

10.
1 Discussion of previous ESE question papers

11.
1 Discussion of previous ESE question papers

12.
1 Discussion of previous ESE question papers

Total No. of Hours Planned for Unit-V 12

Total No. of Hours Planned for this Syllabus 48

Text Book 1 (T1) : James Goodwill (2002), Mastering Jakarta Struts, Wilely Publishing, Inc.

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

Introduction

Struts combines two of the most popular server−side Java technologies—JSPs and servlets—into a

server−side implementation of the Model−View−Controller design pattern. It was conceived by Craig

McClanahan in May of 2000, and has been under the watchful eye of the Apache Jakarta open source

community since that time.

The remarkable thing about the Struts project is its early adoption, which is obviously a testament to both its

quality and utility. The Java community, both commercial and private, has really gotten behind Struts. It is

currently supported by all of the major application servers including BEA, Sun, HP, and (of course) Apache’s

Jakarta−Tomcat. The Tomcat group has even gone so far as to use a Struts application, in its most recent

release 4.0.4, for managing Web applications hosted by the container.

Chapter 1: Introducing the Jakarta Struts Project and Its Supporting Components

We start by providing a high−level description of the Jakarta Struts project. We then describe Java Web

applications, which act as the packaging mechanism for all Struts applications. We conclude this chapter with

a discussion of the Jakarta Tomcat JSP/servlet container, which we use to host all of our examples throughout

the remainder of this text.

The Jakarta Struts Project

The Jakarta Struts project, an open−source project sponsored by the Apache Software Foundation, is a

server−side Java implementation of the Model−View−Controller (MVC) design pattern. The Struts project

was originally created by Craig McClanahan in May 2000, but since that time it has been taken over by the

open−source community.

The Struts project was designed with the intention of providing an open−source framework for creating Web

applications that easily separate the presentation layer and allow it to be abstracted from the transaction/data

layers. Since its inception, Struts has received quite a bit of developer support, and is quickly becoming a

dominant factor in the open−source community.

Note There is a small debate going on in the development community as to the

type of design pattern that the Struts project most closely resembles.

According to the documentation provided by the actual developers of the

Struts project, it is patterned after the MVC, but some folks insist that it

more closely resembles the Front Controller design pattern described by

Sun's J2EE Blueprints Program. The truth is that it does very much resemble

the Front Controller pattern, but for the purpose of our discussions, I am

sticking with the developers. If you would like to examine the Front

Controller yourself, you can find a good article on this topic at the Java

Developer Connection site: http://developer.java.sun.com/developer/

technicalArticles/J2EE/despat/.

Understanding the MVC Design Pattern

http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

To gain a solid understanding of the Struts Framework, you must have a fundamental understanding of the

MVC design pattern, which it is based on. The MVC design pattern, which originated from Smalltalk,

consists of three components: a Model, a View, and a Controller. Table 1.1 defines each of these components.

Table 1.1: The Three Components of the MVC

Component Description

Model Represents the data objects. The Model is what is

being manipulated and presented to the user.

View Serves as the screen representation of the Model. It is

the object that presents the current state of the data

objects

Controller Defines the way the user interface reacts to the user’s

input. The Controller component is the object that

manipulates the Model, or data object.

We will discuss each of these components in more detail throughout this chapter. Some of the major benefits

of using the MVC include:

Reliability: The presentation and transaction layers have clear separation, which allows you

to change the look and feel of an application without recompiling Model or Controller code.

High reuse and adaptability: The MVC lets you use multiple types of views, all accessing

the same server−side code. This includes anything from Web browsers (HTTP) to wireless

browsers (WAP).

Very low development and life−cycle costs: The MVC makes it possible to have

lower−level programmers develop and maintain the user interfaces.

Rapid deployment: Development time can be significantly reduced because Controller

programmers (Java developers) focus solely on transactions, and View programmers (HTML

and JSP developers) focus solely on presentation.

Maintainability: The separation of presentation and business logic also makes it easier to

maintain and modify a Struts−based Web application.

The Struts Implementation of the MVC

The Struts Framework models its server−side implementation of the MVC using a combination of JSPs,

custom JSP tags, and Java servlets. In this section, we briefly describe how the Struts Framework maps to

each component of the MVC. When we have completed this discussion, we will have drawn a portrait similar

to Figure 1.1.

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

Figure 1.1: The Struts implementation of the MVC.

Figure 1.1 depicts the route that most Struts application requests follow. This process can be broken down into

five basic steps. Following these steps is a description of the ActionServlet and Action classes.

1. A request is made from a previously displayed View.

2. The request is received by the ActionServlet, which acts as the Controller, and the ActionServlet

looks up the requested URI in an XML file (described in Chapter 3, “Getting Started with Struts”),

and determines the name of the Action class that will perform the necessary business logic.

3. The Action class performs its logic on the Model components associated with the application.

4. Once the Action has completed its processing, it returns control to the ActionServlet. As part of the

return, the Action class provides a key that indicates the results of its processing. The ActionServlet

uses this key to determine where the results should be forwarded for presentation.

5. The request is complete when the ActionServlet responds by forwarding the request to the View that

was linked to the returned key, and this View presents the results of the Action.

The Model

The Struts Framework does not provide any specialized Model components; therefore, we will not dedicate an

entire chapter to the Model component. Instead, we will reference Model components as they fit into each

example.

The View

Each View component in the Struts Framework is mapped to a single JSP that can contain any combination of

Struts custom tags. The following code snippet contains a sample Struts View:

<%@page language="java">

<%@taglib uri="/WEB−INF/struts−html.tld" prefix="html">

<html:form action="loginAction.do"

name="loginForm"

type="com.wiley.loginForm" >

User Id: <html:text property="username">

Password: <html:password property="password">

<html:submit />

</html:form>

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

As you can see, several JSP custom tags are being leveraged in this JSP. These tags are defined by the Struts

Framework, and provide a loose coupling to the Controller of a Struts application. We build a working Struts

View in Chapter 3; and in Chapter 5, “The Views,” we examine the Struts Views in more detail.

The Controller

The Controller component of the Struts Framework is the backbone of all Struts Web applications. It is

implemented using a servlet named org.apache.struts.action.ActionServlet. This servlet receives all requests

from clients, and delegates control of each request to a user−defined org.apache.struts.action.Action class. The

ActionServlet delegates control based on the URI of the incoming request. Once the Action class has

completed its processing, it returns a key to the ActionServlet, which is then used by the ActionServlet to

determine the View that will present the results of the Action’s processing. The ActionServlet is similar to a

factory that creates Action objects to perform the actual business logic of the application.

The Controller of the Struts Framework is the most important component of the Struts MVC.

Web Applications

All Struts applications are packaged using the Java Web application format. Therefore, before we continue,

let’s take a brief look at Java Web applications.

Java Web applications are best described by the Java Servlet Specification 2.2, which introduced the idea

using the following terms: “A Web Application is a collection of servlets, HTML pages, classes, and other

resources that can be bundled and run on multiple containers from multiple vendors.” In simpler terms, a Java

Web application is a collection of one or more Web components that have been packaged together for the

purpose of creating a complete application to be executed in the Web layer of an enterprise application. Here

is a list of the common components that can be packaged in a Web application:

 Servlets

 JavaServer Pages (JSPs)

 JSP custom tag libraries

 Utility classes and application classes

 Static documents, including HTML, images, JavaScript, etc.

 Metainformation describing the Web application

The Directory Structure

All Web applications are packed into a common directory structure, and this directory structure is the

container that holds the components of a Web application. The first step in creating a Web application is to

create this structure. Table 1.2 describes a sample Web application named wileyapp, and lists the contents of

each of its directories. Each one of these directories will be created from the <SERVER_ROOT> of the

Servlet/JSP container.

Table 1.2: The Web Application Directory Structure

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

Directory Contains

/wileyapp This is the root directory of the Web application. All

JSP and HTML files are stored here.

/wileyapp/WEB−INF This directory contains all resources related to the

application that are not in the document root of the

application. This is where your Web application

deployment descriptor is located. You should note

that the WEB−INF directory is not part of the public

document. No files contained in this directory can be

served directly to a client.

/ wileyapp/WEB−INF/classes This directory is where servlet and utility classes are

located.

/ wileyapp/WEB−INF/lib This directory contains Java Archive (JAR) files that

the Web application is dependent on.

If you’re using Tomcat as your container, the default root directory is <CATALINA_HOME>/webapps/.

Figure 1.2 shows the wileyapp as it would be hosted by a Tomcat container.

Note Web applications allow compiled classes to be stored in both the /WEB−INF/classes and /WEB−INF/lib

directories. Of these two directories, the class loader will load classes from the /classes directory first,

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

followed by the JARs in the /lib directory. If you have duplicate classes in both the /classes and /lib

directories, the classes in the /classes directory will take precedence.

The Web Application Deployment Descriptor

The backbone of all Web applications is its deployment descriptor. The Web application deployment

descriptor is an XML file named web.xml that is located in the

/<SERVER_ROOT>/applicationname/WEB−INF/ directory. The web.xml file describes all of the components

in the Web application. If we use the previous Web application name, wileyapp, then the web.xml file would

be located in the /<SERVER_ROOT>/wileyapp /WEB−INF/ directory. The information that can be described

in the deployment descriptor includes the following elements:

 ServletContext init parameters

 Localized content

 Session configuration

 Servlet/JSP definitions

 Servlet/JSP mappings

 Tag library references

 MIME type mappings

 Welcome file list

 Error pages

 Security information

Figure 1.2: The wileyapp Web application hosted by Tomcat.

This code snippet contains a sample deployment descriptor that defines a single servlet. We examine the

web.xml file in much more detail later in this text.

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

<?xml version="1.0" encoding="ISO−8859−1"?>

<!DOCTYPE web−app PUBLIC

'−//Sun Microsystems, Inc.//DTD Web Application 2.3//EN'

'http://java.sun.com/dtd/web−app_2_3.dtd'>

<servlet>

<servlet−name>SimpleServlet</servlet−name>

<servlet−class>com.wiley.SimpleServlet</servlet−class>

</servlet>

</web−app>

Packaging a Web Application

The standard packaging format for a Web application is a Web Archive file (WAR). A WAR file is simply a

JAR file with the extension .war, as opposed to .jar. You can create a WAR file by using jar, Java’s archiving

tool. To create a WAR file, you simply need to change to the root directory of your Web application and type

the following command:

jar cvf wileyapp.war .

This command will produce an archive file named wileyapp.war that contains the entire wileyapp Web

application. Now you can deploy your Web application by simply distributing this file.

The Tomcat JSP/Servlet Container

The Tomcat server is an open−source Java−based Web application container created to run servlet and

JavaServer Page Web applications. It has become Sun’s reference implementation for both the Servlet and

JSP specifications. We will use Tomcat for all of our examples in this book.

Before we get started with the installation and configuration of Tomcat, you need to make sure you have

acquired the items listed in Table 1.3.

Table 1.3: Tomcat Installation Requirements

Component Location

Jakarta−Tomcat 4 http://jakarta.apache.org/

JDK 1.3 Standard Edition http://java.sun.com/j2se/1.3/

Installing and Configuring Tomcat

For our purposes, we will install Tomcat as a stand−alone server on a Windows NT/2000 operating system

(OS). To do this, you need to install the JDK; be sure to follow the installation instructions included with the

JDK archive. For our example, we will install the JDK to drive D, which means our JAVA_HOME directory

is D:\jdk1.3.

http://java.sun.com/dtd/web
http://jakarta.apache.org/
http://java.sun.com/j2se/1.3/

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

Now we need to extract the Tomcat server to a temporary directory. The default Tomcat archive does not

contain an installation program; therefore, extracting the Tomcat archive is equivalent to installation. Again,

we are installing to drive D, which will make the TOMCAT_HOME directory D:\ jakarta−tomcat−4.0.x.

After we have extracted Tomcat, the next step is to set the JAVA_HOME and TOMCAT_HOME

environment variables. These variables are used to compile JSPs and run Tomcat, respectively. To do this

under NT/2000, perform these steps:

1. Open the NT/2000 Control Panel.

2. Start the NT/2000 System Application and then select the Advanced tab.

3. Click the Environment Variables button. You will see a screen similar to Figure 1.3.

Figure 1.3: The Windows NT/2000 Environment Variables dialog box.

4. Click the New button in the System Variables section of the Environment Variables dialog box. Add a

Variable named JAVA_HOME, and set its value to the location of your JDK installation. Figure 1.4

shows the settings associated with our installation.

Figure 1.4: The JAVA_HOME environment settings for our installation.

5. Your final step should be to repeat Step 4, using CATALINA_HOME for the variable name and the

location of your Tomcat installation as the value. For my installation, I set the value to D:\

jakarta−tomcat−4.0.1.

That’s all there is to it. You can now move on to the next section, in which we test our Tomcat installation.

Testing Your Tomcat Installation

Before continuing, we need to test the steps that we have just completed. To begin, first start the Tomcat

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

server by typing the following command (be sure to replace <CATALINA_HOME> with the location of your

Tomcat installation):

<CATALINA_HOME>\bin\startup.bat

Once Tomcat has started, open your browser to the following URL:

http://localhost:8080

You should see the default Tomcat home page, which is displayed in Figure 1.5.

Figure 1.5: The default Tomcat home page.

The next step is to verify the installation of our JDK. The best way to do this is to execute one of the JSP

examples provided with the Tomcat server. To execute a sample JSP, start from the default Tomcat home

page, shown in Figure 1.5, and choose JSP Examples. You should see a page similar to Figure 1.6.

Figure 1.6: The JSP Examples page.

Now choose the JSP example Snoop and click the Execute link. If everything was installed properly, you

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

should see a page similar to the one shown in Figure 1.7.

Figure 1.7: : The results of the Snoop JSP execution.

If you do not see the page shown in Figure 1.6, make sure that the location of your JAVA_HOME environment

variable matches the location of your JDK installation.

Chapter 2: An Overview of the Java Servlet and JavaServer Pages Architectures

Overview

In this chapter, we discuss the two technologies that the Struts framework is based on: Java servlets and

JavaServer Pages (JSPs). We begin by describing the servlet architecture, including the servlet life cycle; the

relationship between the ServletContext and a Web application; and how you can retrieve form data using

servlets.

Once we have a solid understanding of servlets, we move on to discussing JSPs, which act as the View

component in the Struts framework. In our JSP discussions, we define JSPs and describe their components.

The goal of this chapter is to provide you with a brief introduction to the servlet and JSP technologies. At the

end of this chapter, you will have a clear understanding of both servlets and JSPs, and where they fit into Java

Web application development.

The Java Servlet Architecture

A Java servlet is a platform−independent Web application component that is hosted in a JSP/servlet container.

Servlets cooperate with Web clients by means of a request/response model managed by a JSP/servlet

container. Figure 2.1 depicts the execution of a Java servlet.

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

Figure 2.1: The execution of a Java servlet.

Two packages make up the servlet architecture: javax.servlet and javax. servlet.http. The first of these, the

javax.servlet package, contains the generic interfaces and classes that are implemented and extended by all

servlets. The second, the javax.servlet.http package, contains all servlet classes that are HTTP

protocol−specific. An example of this would be a simple servlet that responds using HTML.

At the heart of this architecture is the interface javax.servlet.Servlet. It is the base class interface for all

servlets. The Servlet interface defines five methods. The three most important of these methods are the

 init() method, which initializes a servlet

 service() method, which receives and responds to client requests

 destroy() method, which performs cleanup

These are the servlet life−cycle methods. We will describe these methods in a subsequent section. All servlets

must implement the Servlet interface, either directly or through inheritance. Figure 2.2 is an object model that

gives you a very high−level view of the servlet framework.

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

Figure 2.2: A simple object model showing the servlet framework.

The GenericServlet and HttpServlet Classes

The two main classes in the servlet architecture are the GenericServlet and HttpServlet classes. The

HttpServlet class is extended from GenericServlet, which in turn implements the Servlet interface. When

developing your own servlets, you will most likely extend one of these two classes.

When extending the GenericServlet class, you must implement the service() method. The

GenericServlet.service() method has been defined as an abstract method in order to force you to follow this

framework. The service() method prototype is defined as follows:

public abstract void service(ServletRequest request,

ServletResponse response) throws ServletException, IOException;

The two parameters that are passed to the service() method are the ServletRequest and ServletResponse

objects. The ServletRequest object holds the information that is being sent to the servlet, and the

ServletResponse object is where you place the data you want to send back to the client.

In contrast to the GenericServlet, when you extend HttpServlet you don’t usually implement the service()

method; the HttpServlet class has already implemented the service() method for you. The following prototype

contains the HttpServlet.service() method signature:

protected void service(HttpServletRequest request,

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

HttpServletResponse response)

throws ServletException, IOException;

When the HttpServlet.service() method is invoked, it reads the method type stored in the request and

determines which HTTP−specific methods to invoke based on this value. These are the methods that you will

want to override. If the method type is GET, it will call doGet(). If the method type is POST, it will call

doPost(). Five other method types are associated with the service() method, but the doGet() and doPost()

methods are the methods used most often, and are therefore the methods that we are going to focus on.

The Life Cycle of a Servlet

The life cycle of a Java servlet follows a very logical sequence. The interface that declares the life−cycle

methods is the javax.servlet.Servlet interface. These methods are the init(), the service(), and the destroy()

methods. This sequence can be described in a simple three−step process:

1. A servlet is loaded and initialized using the init() method. This method will be called when a servlet is

preloaded or upon the first request to this servlet.

2. The servlet then services zero or more requests. The servlet services each request using the service()

method.

3. The servlet is then destroyed and garbage collected when the Web application containing the servlet

shuts down. The method that is called upon shutdown is the destroy() method.

init() Method

The init() method is where the servlet begins its life. This method is called immediately after the servlet is

instantiated. It is called only once. The init() method should be used to create and initialize the resources that

it will be using while handling requests. The init() method’s signature is defined as follows:

public void init(ServletConfig config) throws ServletException;

The init() method takes a ServletConfig object as a parameter. This reference should be stored in a member

variable so that it can be used later. A common way of doing this is to have the init() method call super.init()

and pass it the ServletConfig object.

The init() method also declares that it can throw a ServletException. If for some reason the servlet cannot

initialize the resources necessary to handle requests, it should throw a ServletException with an error message

signifying the problem.

service() Method

The service() method services all requests received from a client using a simple request/response pattern. The

service() method’s signature is shown here:

public void service(ServletRequest req, ServletResponse res)

throws ServletException, IOException;

The service() method takes two parameters:

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

 A ServletRequest object, which contains information about the service request and encapsulates

information provided by the client

 A ServletResponse object, which contains the information returned to the client

You will not usually implement this method directly, unless you extend the GenericServlet abstract class. The

most common implementation of the service() method is in the HttpServlet class. The HttpServlet class

implements the Servlet interface by extending GenericServlet. Its service() method supports standard

HTTP/1.1 requests by determining the request type and calling the appropriate method.

destroy() Method

This method signifies the end of a servlet’s life. When a Web application is shut down, the servlet’s destroy()

method is called. This is where all resources that were created in the init() method should be cleaned up. The

following code snippet contains the signature of the destroy() method:

public void destroy();

Building a Servlet

Now that we have a basic understanding of what a servlet is and how it works, we are going to build a very

simple servlet of our own. Its purpose will be to service a request and respond by outputting the address of the

client. After we have examined the source for this servlet, we will take a look at the steps involved in

compiling and installing it. Listing 2.1 contains the source code for this example.

Listing 2.1: SimpleServlet.java. (continues)

package chapter2;

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class SimpleServlet extends HttpServlet {

public void init(ServletConfig config)

throws ServletException {

// Always pass the ServletConfig object to the super class

super.init(config);

}

//Process the HTTP Get request

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

doPost(request, response);

}

//Process the HTTP Post request

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html>");

out.println("<head><title>Simple Servlet</title></head>");

out.println("<body>");

// Outputs the address of the calling client

out.println("Your address is " + request.getRemoteAddr()

+ "\n");

out.println("</body></html>");

out.close();

}

}

Now that you have had a chance to look over the source of the SimpleServlet, let’s take a closer look at each

of its integral parts. We will examine where the servlet fits into the Java Servlet Development Kit (JSDK)

framework, the methods that the servlet implements, and the objects being used by the servlet. The following

three methods are overridden in the SimpleServlet:

 init()

 doGet()

 doPost()

Let’s take a look at each of these methods in more detail.

init() Method

The SimpleServlet first defines a very straightforward implementation of the init() method. It takes the

ServletConfig object that it is passed and then passes it to its parent’s init() method, which stores the object

for later use. The code that performs this action is as follows:

super.init(config);

Note The SimpleServlet’s parent that actually holds on to the ServletConfig object is the GenericServlet.

You should also notice that this implementation of the init() method does not create any resources. This is

why the SimpleServlet does not implement a destroy() method.

doGet() and doPost() Methods

The SimpleServlet’s doGet() and doPost() methods are where all of the business logic is truly performed, and

in this case, the doGet() method simply calls the doPost() method. The only time that the doGet() method will

be executed is when a GET request is sent to the container. If a POST request is received, then the doPost()

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

method will service the request.

Both the doGet() and the doPost() methods receive HttpServletRequest and HttpServletResponse objects as

parameters. The HttpServletRequest contains information sent from the client, and the HttpServletResponse

contains the information that will be sent back to the client.

The first executed line of the doPost() method sets the content type of the response that will be sent back to

the client. This is done using the following code snippet:

response.setContentType("text/html");

This method sets the content type for the response. You can set this response property only once, and it must

be set prior to writing to a Writer or an OutputStream. In our example, we are setting the response type to

text/html.

The next thing we do is get a PrintWriter. This is accomplished by calling the ServletResponse’s getWriter()

method. The PrintWriter will let us write to the stream that will be sent in the client response. Everything

written to the PrintWriter will be displayed in the client browser. This step is completed in the following line

of code:

PrintWriter out = response.getWriter();

Once we have a reference to an object that will allow us to write text back to the client, we are going to use

this object to write a message to the client. This message will include the HTML that will format this response

for presentation in the client’s browser. The next few lines of code show how this is done:

out.println("<html>");

out.println("<head><title>Simple Servlet</title></head>");

out.println("<body>");

// Outputs the address of the calling client

out.println("Your address is " + request.getRemoteAddr()

+ "\n");

The SimpleServlet uses a very clear−cut method of sending HTML to a client. It simply passes to the

PrintWriter’s println() method the HTML text we want included in the response, and closes the stream. The

only thing that you may have a question about is the following few lines:

// Outputs the address of the calling client

out.println("Your address is " + request.getRemoteAddr()

+ "\n");

This section of code takes advantage of information sent by the client. It calls the HttpServletRequest’s

getRemoteAddr() method, which returns the IP address of the calling client. The HttpServletRequest object

holds a great deal of HTTP protocol−specific information about the client. If you would like to learn more

about the HttpServletRequest or HttpServletResponse objects, you can find additional information at the Sun

Web site:

http://java.sun.com/products/servlet/

http://java.sun.com/products/servlet/

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

Building and Deploying a Servlet

To see the SimpleServlet in action, we need to first create a Web application that will host the servlet, and

then we need to compile and deploy this servlet to the Web application. These steps are described below:

1. Create a Web application named wileyapp, using the directory described in Chapter 1.

2. Add the servlet.jar file to your classpath. This file should be in the

<CATALINA_HOME>/common/lib/ directory.

3. Compile the source for the SimpleServlet.

4. Copy the resulting class file to the

<CATALINA_HOME>/webapps/wileyapp/WEB−INF/classes/chapter2/ directory. The /chapter2

reference is appended because of the package name.

Once you have completed these steps, you can execute the SimpleServlet and see the results. To do this, start

Tomcat, and open your browser to the following URL:

http://localhost:8080/wileyapp/servlet/chapter2.SimpleServlet

You should see an image similar to Figure 2.3.

Figure 2.3: The output of the SimpleServlet.

Note You will notice that the URL to access the SimpleServlet includes the string /servlet

immediately preceding the reference to the actual servlet name. This text tells the container

that you are referencing a servlet.

The ServletContext

A ServletContext is an object that is defined in the javax.servlet package. It defines a set of methods that are

used by server−side components of a Web application to communicate with the servlet container.

The ServletContext is most frequently used as a storage area for objects that need to be available to all of the

server−side components in a Web application.

You can think of the ServletContext as a shared memory segment for Web applications. When an object is

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

placed in the ServletContext, it exists for the life of a Web application, unless it is explicitly removed or

replaced. Four methods defined by the ServletContext are leveraged to provide this shared memory

functionality. Table 2.1 describes each of these methods.

Table 2.1: The Shared Memory Methods of the ServletContext

Method Description

setAttribute() Binds an object to a given name, and stores the object

in the current ServletContext. If the name specified is

already in use, this method will remove the old object

binding and bind the name to the new object.

getAttribute() Returns the object referenced by the given name, or

returns null if there is no attribute bind to the given

key.

removeAttribute() Removes the attribute with the given name from the

ServletContext.

getAttributeNames() Returns an enumeration of strings containing the

object names stored in the current ServletContext.

The Relationship between a Web Application and the ServletContext

The ServletContext acts as the container for a given Web application. For every Web application, there can be

only one instance of a ServletContext. This relationship is required by the Java Servlet Specification, and is

enforced by all servlet containers.

To see how this relationship affects Web components, we are going to use a servlet and a JSP. The first Web

component we will see is a servlet that stores an object in the ServletContext, with the purpose of making this

object available to all server−side components in this Web application. Listing 2.2 shows the source code for

this servlet.

Listing 2.2: ContextServlet.java.

package chapter2;

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class ContextServlet extends HttpServlet {

private static final String CONTENT_TYPE = "text/html";

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

doPost(request, response);

}

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

// Get a reference to the ServletContext

ServletContext context = getServletContext();

// Get the userName attribute from the ServletContext

String userName = (String)context.getAttribute("USERNAME");

// If there was no attribute USERNAME, then create

// one and add it to the ServletContext

if (userName == null) {

userName = new String("Bob Roberts");

context.setAttribute("USERNAME", userName);

}

response.setContentType(CONTENT_TYPE);

PrintWriter out = response.getWriter();

out.println("<html>");

out.println("<head><title>Context Servlet</title></head>");

out.println("<body>");

// Output the current value of the attribute USERNAME

out.println("<p>The current User is : " + userName +

".</p>");

out.println("</body></html>");

}

public void destroy() {

}

}

As you look over the ContextServlet, you will notice that it performs the following steps:

1. It first gets a reference to the ServletContext, using the getServletContext() method:

ServletContext context = getServletContext();

9. Once it has a reference to the ServletContext, it gets a reference to the object bound to the name

USERNAME from the ServletContext, using the getAttribute() method:

String userName =

(String)context.getAttribute("USERNAME");

10. It then checks to see if the reference returned was valid. If getAttribute() returned null, then there was

no object bound to the name USERNAME. If the attribute was not found, it is created and added to

the ServletContext, bound to the name USERNAME, using the setAttribute() method:

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

// If there was no attribute USERNAME, then create

// one and add it to the ServletContext

if (userName == null) {

userName = new String("Bob Roberts");

context.setAttribute("USERNAME", userName);

}

11. The value of this reference is then printed to the output stream, using an instance of the

PrintWriter.println() method:

// Output the current value of the attribute USERNAME

out.println("<p>The current User is : " +

userName + ".</p>");

After you have looked over this servlet, you should compile it and move the class file into the

<CATALINA_HOME>/webapps/wileyapp/WEB−INF/classes/chapter2/ directory. This servlet is now

deployed to the Web application wileyapp.

The JSP that we will be using is much like the servlet above; however, there are two differences:

 The code to access the ServletContext is in a JSP scriptlet, which we will discuss later in this chapter.

 If the JSP cannot find a reference to the USERNAME attribute, then it does not add a new one.

Otherwise, the code performs essentially the same actions, but it does them in a JSP. You can see the source

for the JSP in Listing 2.3.

Listing 2.3: Context.jsp.
<HTML>

<HEAD>

<TITLE>

Context

</TITLE>

</HEAD>

<BODY>

<%

// Try to get the USERNAME attribute from the ServletContext

String userName = (String)application.getAttribute("USERNAME");

// If there was no attribute USERNAME, then create

// one and add it to the ServletContext

if (userName == null) {

// Don’t try to add it just, say that you can’t find it

out.println("Attribute USERNAME not found");

}

else {

out.println("The current User is : " + userName +

"");

}

%>

</BODY>

</HTML>

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

Note In the Context.jsp, we are using two JSP implicit objects: the application object, which references the

ServletContext, and the out object, which references an output stream to the client. We will discuss

each of these later in this chapter.

Now, copy Context.jsp to the <CATALINA_HOME>/webapps/wileyapp/directory, restart Tomcat, and open

your browser first to the following URL:

http://localhost:8080/wileyapp/Context.jsp

You should see a page similar to Figure 2.4.

Figure 2.4: The output of the Context.jsp prior to the execution of the servlet ContextServlet.

You should notice that the Context.jsp cannot find a reference to the attribute USERNAME. It will not be able

to find this reference until the reference is placed there by the ContextServlet. To do this, open your browser

to the following URL:

http://localhost:8080/wileyapp/servlet/chapter2.ContextServlet

You should see output similar to Figure 2.5.

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

Figure 2.5: The output of the ContextServlet.

After running this servlet, the wileyapp Web application has an object bound to the name USERNAME stored

in its ServletContext. To see how this affects another Web component in the wileyapp Web application, open

the previous URL that references the Context.jsp, and look at the change in output. The JSP can now find the

USERNAME, and it prints this value to the response.

Note To remove an object from the ServletContext, you can restart the JSP/servlet container or use the

ServletContext.removeAttribute() method.

Using Servlets to Retrieve HTTP Data

In this (our final) section on servlets, we are going to examine how servlets can be used to retrieve

information from the client. Three methods can be used to retrieve request parameters: the ServletRequest’s

getParameter(), getParameterValues(), and getParameterNames() methods. Each method signature is listed

here:

public String ServletRequest.getParameter(String name);

public String[] ServletRequest.getParameterValues(String name);

public Enumeration ServletRequest.getParameterNames ();

The first method in this list, getParameter(), returns a string containing the single value of the named

parameter, or returns null if the parameter is not in the request. You should use this method only if you are

sure the request contains only one value for the parameter. If the parameter has multiple values, you should

use the getParameterValues() method.

The next method, getParameterValues(), returns the values of the specified parameter as an array of

java.lang.Strings, or returns null if the named parameter is not in the request.

The last method, getParameterNames(), returns the parameter names contained in the request as an

enumeration of strings, or an empty enumeration if there are no parameters. This method is used as a

supporting method to both getParameter() and getParameterValues(). The enumerated list of parameter names

returned from this method can be iterated over by calling getParameter() or getParameterValues() with each

name in the list.

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

To see how we can use these methods to retrieve form data, let’s look at a servlet that services POST requests:

it retrieves the parameters sent to it and returns the parameters and their values back to the client. The servlet

is shown in Listing 2.4.

Listing 2.4: ParameterServlet.java.

package chapter2;

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class ParameterServlet extends HttpServlet {

public void init(ServletConfig config)

throws ServletException {

// Always pass the ServletConfig object to the super class

super.init(config);

}

// Process the HTTP GET request

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

doPost(request, response);

}

// Process the HTTP POST request

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html>");

out.println("<head>");

out.println("<title>Parameter Servlet</title>");

out.println("</head>");

out.println("<body>");

// Get an enumeration of the parameter names

Enumeration parameters = request.getParameterNames();

String param = null;

// Iterate over the paramater names,

// getting the parameters values

while (parameters.hasMoreElements()) {

param = (String)parameters.nextElement();

out.println(param + " : " +

request.getParameter(param) +

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

"
");

}

out.println("</body></html>");

out.close();

}

}

The first notable action performed by this servlet is to get all of the parameter names passed in on the request.

It does this using the getParameterNames() method. Once it has this list, it performs a while loop, retrieving

and printing all of the parameter values associated with the matching parameter names, using the

getParameter() method. You can invoke the ParameterServlet by encoding a URL string with parameters and

values, or simply by using the HTML form found in Listing 2.5.

Listing 2.5: Form.html.

<HTML>

<HEAD>

<TITLE>

Parameter Servlet Form

</TITLE>

</HEAD>

<BODY>

<form

action="servlet/chapter2.ParameterServlet"

method=POST>

<table width="400" border="0" cellspacing="0">

<tr>

<td>Name: </td>

<td>

<input type="text"

name="name"

size="20"

maxlength="20">

</td>

<td>SSN:</td>

<td>

<input type="text" name="ssn" size="11" maxlength="11">

</td>

</tr>

<tr>

<td>Age:</td>

<td>

<input type="text" name="age" size="3" maxlength="3">

</td>

<td>email:</td>

<td>

<input type="text"

name="email"

size="30"

maxlength="30">

</td>

</tr>

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

<tr>

<td> </td>

<td> </td>

<td> </td>

<td>

<input type="submit" name="Submit" value="Submit">

<input type="reset" name="Reset" value="Reset">

</td>

</tr>

</table>

</FORM>

</BODY>

</HTML>

This HTML document contains a simple HTML form that can be used to pass data to the ParameterServlet.

To see this example in action, compile the servlet, and move the class file to the

<CATALINA_HOME>/webapps/ wileyapp/WEB−INF/classes/chapter2 directory and the HTML file to the

<CATALINA_HOME>/webapps/wileyapp/ directory. Now open your browser to the following URL:

http://localhost:8080/wileyapp/Form.html

Go ahead and populate the form (similar to what I’ve done in Figure 2.6), and then click the Submit button.

Figure 2.6: Output from Form.html.

The response you receive will, of course, depend on your entries, but it should resemble Figure 2.7.

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

Figure 2.7: The response of the ParameterServlet.

This example shows just how easy it is to retrieve request parameters in a servlet. While the ParameterServlet

works well for most requests, it does contain an error. When we chose to use getParameter() to retrieve the

parameter values, we were counting on receiving only one value per request parameter. If we could not rely on

this fact, then we should have used the getParameterValues() method discussed previously.

What Are JavaServer Pages?

JavaServer Pages, or JSPs, are a simple but powerful technology used most often to generate dynamic HTML

on the server side. JSPs are a direct extension of Java servlets designed to let the developer embed Java logic

directly into a requested document. A JSP document must end with the extension .jsp. The following code

snippet contains a simple example of a JSP file; its output is shown in Figure 2.8.

<HTML>

<BODY>

<% out.println("HELLO JSP READER"); %>

</BODY>

</HTML>

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

Figure 2.8: The output of the JSP example.

This document looks like any other HTML document, with some added tags containing Java code. The source

code is stored in a file called hello.jsp, and should be copied to the document directory of the Web application

to which this JSP will be deployed. When a request is made for this doc− ument, the server recognizes the .jsp

extension and realizes that special handling is required. The JSP is then passed to the JSP engine (which is just

another servlet mapped to the extension .jsp) for processing.

The first time the file is requested, it is translated into a servlet and then compiled into an object that is loaded

into resident memory. The generated servlet then services the request, and the output is sent back to the

requesting client. On all subsequent requests, the server will check to see whether the original JSP source file

has changed. If it has not changed, the server invokes the previously compiled servlet object. If the source has

changed, the JSP engine will reparse the JSP source. Figure 2.9 shows these steps.

Figure 2.9: The steps of a JSP request.

Note It’s essential to remember that JSPs are just servlets created from a combination of HTML and

Java source. Therefore, they have the resources and functionality of a servlet.

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

The Components of a JavaServer Page

This section discusses the components of a JSP, including directives, scripting, implicit objects, and standard

actions.

JSP Directives

JSP directives are JSP elements that provide global information about a JSP page. An example would be a

directive that included a list of Java classes to be imported into a JSP. The syntax of a JSP directive follows:

<%@ directive {attribute="value"} %>

Three possible directives are currently defined by the JSP specification v1.2: page, include, and taglib. These

directives are defined in the following sections.

The page Directive

The page directive defines information that will globally affect the JSP containing the directive. The syntax of

a JSP page directive is

<%@ page {attribute="value"} %>

Table 2.2 defines the attributes for the page directive.

Note Because all mandatory attributes are defaulted, you are not required to specify any page

directives.

Table 2.2: Attributes for the page Directive (continues)

Attribute Definition

language=”scriptingLanguage” Tells the server which language will be used to

compile the JSP file. Java is currently the only

available JSP language, but we hope there will be

other language support in the not−too−distant future.

extends=”className” Defines the parent class from which the JSP will

extend. While you can extend JSP from other servlets,

doing so will limit the optimizations performed by the

JSP/servlet engine and is therefore not recommended.

import=”importList” Defines the list of Java packages that will be imported

into this JSP. It will be a comma−separated list of

package names and fully qualified Java classes.

session=”true|false” Determines whether the session data will be available

to this page. The default is true. If your JSP is not

planning on using the session, then this attribute

should be set to false for better performance.

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

buffer=”none|size in kb” Determines whether the output stream is buffered.

The default value is 8KB.

autoFlush=”true|false” Determines whether the output buffer will be flushed

automatically, or whether it will throw an exception

when the buffer is full. The default is true.

isThreadSafe=”true|false” Tells the JSP engine that this page can service

multiple requests at one time. By default, this value is

true. If this attribute is set to false, the

SingleThreadModel is used.

info=”text” Represents information about the JSP page that can be

accessed by invoking the page’s

Servlet.getServletInfo() method.

errorPage=”error_url” Represents the relative URL to a JSP that will handle

JSP exceptions.

isErrorPage=”true|false” States whether the JSP is an errorPage. The default is

false.

contentType=”ctinfo” Represents the MIME type and character set of the

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

response sent to the client.

The following code snippet includes a page directive that imports the java.util package:

<%@ page import="java.util.*" %>

The include Directive

The include directive is used to insert text and/or code at JSP translation time. The syntax of the include

directive is shown in the following code snippet:

<%@ include file="relativeURLspec" %>

The file attribute can reference a normal text HTML file or a JSP file, which will be evaluated at translation

time. This resource referenced by the file attribute must be local to the Web application that contains the

include directive. Here’s a sample include directive:

<%@ include file="header.jsp" %>

Note Because the include directive is evaluated at translation time, this included text will be evaluated only

once. Thus, if the included resource changes, these changes will not be reflected until the JSP/servlet

container is restarted or the modification date of the JSP that includes that file is changed.
The taglib Directive

The taglib directive states that the including page uses a custom tag library, uniquely identified by a URI and

associated with a prefix that will distinguish each set of custom tags to be used in the page.

Note If you are not familiar with JSP custom tags, you can learn what they are and how they are used in my

book “Mastering JSP Custom Tags and Tag Libraries,” also published by Wiley.

The syntax of the taglib directive is as follows:

<%@ taglib uri="tagLibraryURI" prefix="tagPrefix" %>

The taglib attributes are described in Table 2.3.

Table 2.3: Attributes for the taglib Directive

Attribute Definition

uri A URI that uniquely names a custom tag library

prefix The prefix string used to distinguish a custom tag

instance

The following code snippet includes an example of how the taglib directive is used:

<%@ taglib

uri="http://jakarta.apache.org/taglibs/random−1.0"

prefix="rand" %>

http://jakarta.apache.org/taglibs/random
http://jakarta.apache.org/taglibs/random

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

JSP Scripting

Scripting is a JSP mechanism for directly embedding Java code fragments into an HTML page. Three

scripting language components are involved in JSP scripting. Each component has its appropriate location in

the generated servlet. This section examines these components.

Declarations

JSP declarations are used to define Java variables and methods in a JSP. A JSP declaration must be a complete

declarative statement.

JSP declarations are initialized when the JSP page is first loaded. After the declarations have been initialized,

they are available to other declarations, expressions, and scriptlets within the same JSP. The syntax for a JSP

declaration is as follows:

<%! declaration %>

A sample variable declaration using this syntax is shown here:

<%! String name = new String("BOB"); %>

A sample method declaration using the same syntax is as follows:

<%! public String getName() { return name; } %>

To get a better understanding of declarations, let’s take the previous string declaration and embed it into a JSP

document. The sample document would look similar to the following code snippet:

<HTML>

<BODY>

<%! String name = new String("BOB"); %>

</BODY>

</HTML>

When this document is initially loaded, the JSP code is converted to servlet code and the name declaration is

placed in the declaration section of the generated servlet. It is now available to all other JSP components in the

JSP.

Note It should be noted that all JSP declarations are defined at the class level, in the servlet generated from

the JSP, and will therefore be evaluated prior to all JSP expressions and scriptlet code.

Expressions

JSP expressions are JSP components whose text, upon evaluation by the container, is replaced with the

resulting value of the container evaluation. JSP expressions are evaluated at request time, and the result is

inserted at the expression’s referenced position in the JSP file. If the resulting expression cannot be converted

to a string, then a translation−time error will occur. If the conversion to a string cannot be detected during

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

translation, a ClassCastException will be thrown at request time.

The syntax of a JSP expression is as follows:

<%= expression %>

A code snippet containing a JSP expression is shown here:

Hello <%= getName() %>

Here is a sample JSP document containing a JSP expression:

<HTML>

<BODY>

<%! public String getName() { return "Bob"; } %>

Hello <%= getName() %>

</BODY>

</HTML>

Scriptlets

Scriptlets are the JSP components that bring all the JSP elements together. They can contain almost any

coding statements that are valid for the language referenced in the language directive. They are executed at

request time, and they can make use of all the JSP components. The syntax for a scriptlet is as follows:

<% scriptlet source %>

When JSP scriptlet code is converted into servlet code, it is placed into the generated servlet’s service()

method. The following code snippet contains a simple JSP that uses a scripting element to print the text

“Hello Bob” to the requesting client:

<HTML>

<BODY>

<% out.println("Hello Bob"); %>

</BODY>

</HTML>

You should note that while JSP scriplet code can be very powerful, composing all your JSP logic using

scriptlet code can make your application difficult to manage. This problem led to the creation of custom tag

libraries.

JSP Error Handling

Like all development methods, JSPs need a robust mechanism for handling errors. The JSP architecture

provides an error−handling solution through the use of JSPs that are written exclusively to handle JSP errors.

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

The errors that occur most frequently are runtime errors that can arise either in the body of the JSP page or in

some other object that is called from the body of the JSP page. Request−time errors that result in an exception

being thrown can be caught and handled in the body of the calling JSP, which signals the end of the error.

Exceptions that are not handled in the calling JSP result in the forwarding of the client request, including the

uncaught exception, to an error page specified by the offending JSP.

Creating a JSP Error Page

Creating a JSP error page is a simple process: create a basic JSP and then tell the JSP engine that the page is

an error page. You do so by setting the JSP’s page directive attribute, isErrorPage, to true. Listing 2.6

contains a sample error page.

Listing 2.6: Creating a JSP error page: errorpage.jsp.

<html>

<%@ page isErrorPage="true" %>

Error: <%= exception.getMessage() %> has been reported.

</body>

</html>

The first JSP−related line in this page tells the JSP compiler that this JSP is an error page. This code snippet is

<%@ page isErrorPage="true" %>

The second JSP−related section uses the implicit exception object that is part of all JSP error pages to output

the error message contained in the unhandled exception that was thrown in the offending JSP.

Using a JSP Error Page

To see how an error page works, let’s create a simple JSP that throws an uncaught exception. The JSP shown

in Listing 2.7 uses the error page created in the previous section.

Listing 2.7: Using a JSP error page: testerror.jsp.

<%@ page errorPage="errorpage.jsp" %>

<%

if (true) {

// Just throw an exception

throw new Exception("An uncaught Exception");

}

%>

Notice in this listing that the first line of code sets errorPage equal to errorpage.jsp, which is the name of the

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

error page. To make a JSP aware of an error page, you simply need to add the errorPage attribute to the page

directive and set its value equal to the location of your JSP error page. The rest of the example simply

throws an exception that will not be caught. To see this example in action, copy both JSPs to the

<CATALINA_HOME>/webapps/wileyapp/ directory, and open the testerror.jsp page in your browser. You

will see a page similar to Figure 2.10.

Figure 2.10: The output of the testerror.jsp example.

Implicit Objects

As a JSP author, you have implicit access to certain objects that are available for use in all JSP documents.

These objects are parsed by the JSP engine and inserted into the generated servlet as if you defined them

yourself.

out

The implicit out object represents a JspWriter (derived from a java.io.Writer) that provides a stream back

to the requesting client. The most common method of this object is out.println(), which prints text that will

be displayed in the client’s browser. Listing 2.8 provides an example using the implicit out object.

Listing 2.8: Using the out object: out.jsp.

<%@ page errorPage="errorpage.jsp" %>

<html>

<head>

<title>Use Out</title>

</head>

<body>

<%

// Print a simple message using the implicit out object.

out.println("<center>Hello Wiley" +

" Reader!</center>");

%>

</body>

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

</html>

To execute this example, copy this file to the <CATALINA_HOME>/webapps/ wileyapp/ directory and then

open your browser to the following URL:

http://localhost:8080/wileyapp/out.jsp

You should see a page similar to Figure 2.11.

Figure 2.11: The output of out.jsp.

request

The implicit request object represents the javax.servlet.http.HttpServletRequest interface, discussed later in

this chapter. The request object is associated with every HTTP request.

One of the more common uses for the request object is to access request parameters. You can do this by

calling the request object’s getParameter() method with the parameter name you are seeking. It will return a

string with the value matching the named parameter. An example using the implicit request object appears in

Listing 2.9.

Listing 2.9: Using the request object: request.jsp.

<%@ page errorPage="errorpage.jsp" %>

<html>

<head>

<title>UseRequest</title>

</head>

<body>

<%

out.println("Welcome: " +

request.getParameter("user") + "");

%>

</body>

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

</html>

This JSP calls the request.getParameter() method, passing it the parameter user. This method looks for the

key user in the parameter list and returns the value, if it is found. Enter the following URL into your browser

to see the results from this page:

http://localhost:8080/wileyapp/request.jsp?user=Robert

After loading this URL, you should see a page similar to Figure 2.12.

Figure 2.12: The output of request.jsp.

response

The implicit response object represents the javax.servlet.http.HttpServletResponse object. The response

object is used to pass data back to the requesting client. This implicit object provides all the functionality of

the HttpServletRequest, just as if you were executing in a servlet. One of the more common uses for the

response object is writing HTML output back to the client browser; however, the JSP API already provides

access to a stream back to the client using the implicit out object, as described in the previous implicit out

discussion.

pageContext

The pageContext object provides access to the namespaces associated with a JSP page. It also provides

accessors to several other JSP implicit objects. A common use for the pageContext is setting and retrieving

objects using the setAttribute() and getAttribute() methods.

session

The implicit session object represents the javax.servlet.http.HttpSession object. It’s used to store objects

between client requests, thus providing an almost stateful HTTP interactivity.

An example of using the session object is shown in Listing 2.10.

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

Listing 2.10: Using the session object: session.jsp.

<%@ page errorPage="errorpage.jsp" %>

<html>

<head>

<title>Session Example</title>

</head>

<body>

<%

// get a reference to the current count from the session

Integer count = (Integer)session.getAttribute("COUNT");

if (count == null) {

// If the count was not found create one

count = new Integer(1);

// and add it to the HttpSession

session.setAttribute("COUNT", count);

}

else {

// Otherwise increment the value

count = new Integer(count.intValue() + 1);

session.setAttribute("COUNT", count);

}

out.println("You have accessed this page: "

+ count + " times.");

%>

</body>

</html>

To use this example, copy the JSP to the <CATALINA_HOME>/wileyapp/ directory, and open your browser

to the following URL:

http://localhost:8080/wileyapp/session.jsp

If everything went okay, you should see a page similar to Figure 2.13.

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

Figure 2.13: The output of session.jsp.

Click the Reload button a few times to see the count increment.

application

The application object represents the javax.servlet.ServletContext, discussed earlier in this chapter. The

application object is most often used to access objects stored in the ServletContext to be shared between Web

components in a global scope. It is a great place to share objects between JSPs and servlets. An example using

the application object can be found earlier in this chapter, in the section “The ServletContext.”

config

The implicit config object holds a reference to the ServletConfig, which contains configuration information

about the JSP/servlet engine containing the Web application where this JSP resides.

page

The page object contains a reference to the current instance of the JSP being accessed. The page object is used

just like this object, to reference the current instance of the generated servlet representing this JSP.

exception

The implicit exception object provides access to an uncaught exception thrown by a JSP. It is available only in

JSPs that have a page with the attribute isErrorPage set to true.

Standard Actions

JSP standard actions are predefined custom tags that can be used to encapsulate common actions easily. There

are two types of JSP standard actions: the first type is related to JavaBean functionality, and the second type

consists of all other standard actions. Each group will be defined and used in the following sections.

Three predefined standard actions relate to using JavaBeans in a JSP: <useBean>, <setProperty>, and

<getProperty>. After we define these tags, we will create a simple example that uses them.

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

<jsp:useBean>

The <jsp:useBean> JavaBean standard action creates or looks up an instance of a JavaBean with a given ID

and scope. Table 2.4 contains the attributes of the <jsp:useBean> action, and Table 2.5 defines the scope

values for that action. The <jsp:useBean> action is very flexible. When a <useBean> action is encountered,

the action tries to find an existing object using the same ID and scope. If it cannot find an existing instance, it

will attempt to create the object and store it in the named scope associated with the given ID. The syntax of

the <jsp:useBean> action is as follows:

<jsp:useBean id="name"

scope="page|request|session|application"

typeSpec>

body

</jsp:useBean>

typeSpec ::=class="className" |

class="className" type="typeName" |

type="typeName" class="className" |

beanName="beanName" type="typeName" |

type="typeName" beanName="beanName" |

type="typeName"

Table 2.4: Attributes for the <jsp:useBean> Standard Action

Attribute Definition

id The key associated with the instance of the object in

the specified scope. This key is case−sensitive. The id

attribute is the same key as used in the

page.getAttribute() method.

scope The life of the referenced object. The scope options

are page, request, session, and application. They are

defined in Table 2.5.

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

class The fully qualified class name that defines the

implementation of the object. The class name is

case−sensitive.

beanName The name of the JavaBean.

type The type of scripting variable defined. If this attribute

is unspecified, then the value is the same as the value

of the class attribute.

The scope attribute listed in Table 2.4 can have four possible values, which are described in Table 2.5.

Table 2.5: Scope Values for the <jsp:useBean> Standard Action

Value Definition

page Beans with page scope are accessible only within the

page where they were created. References to an object

with page scope will be released when the current JSP

has completed its evaluation.

request Beans with request scope are accessible only within

pages servicing the same request, in which the object

was instantiated, including forwarded requests. All

references to the object will be released after the

request is complete.

session Beans with session scope are accessible only within

pages processing requests that are in the same session

as the one in which the bean was created. All

references to beans with session scope will be

released after their associated session expires.

application Beans with application scope are accessible within

pages processing requests that are in the same Web

application. All references to beans will be released

when the JSP/servlet container is shut down.

<jsp:setProperty>

The <jsp:setProperty> standard action sets the value of a bean’s property. Its name attribute represents an

object that must already be defined and in scope. The syntax for the <jsp:setProperty> action is as follows:

<jsp:setProperty name="beanName" propexpr />

In the preceding syntax, the name attribute represents the name of the bean whose property you are setting,

and propexpr can be represented by any of the following expressions:

property="*" |

property="propertyName" |

property="propertyName" param="parameterName" |

property="propertyName" value="propertyValue"

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

Table 2.6 contains the attributes and their descriptions for the <jsp:setProperty> action.

Table 2.6: Attributes for the <jsp:setProperty> Standard Action

Attribute Definition

name The name of the bean instance defined by a

<jsp:useBean> action or some other action.

property The bean property for which you want to set a value.

If you set propertyName to an asterisk (*), then the

action will iterate over the current ServletRequest

parameters, matching parameter names and value

types to property names and setter method types, and

setting each matched property to the value of the

matching parameter. If a parameter has an empty

string for a value, the corresponding property is left

unmodified.

param The name of the request parameter whose value you

want to set the named property to. A

<jsp:setProperty> action cannot have both param and

value attributes referenced in the same action.

value The value assigned to the named bean’s property.

<jsp:getProperty>

The last standard action that relates to integrating JavaBeans into JSPs is <jsp:getProperty>. It takes the value

of the referenced bean’s instance property, converts it to a java.lang.String, and places it on the output stream.

The referenced bean instance must be defined and in scope before this action can be used. The syntax for the

<jsp:getProperty> action is as follows:

<jsp:getProperty name="name" property="propertyName" />

Table 2.7 contains the attributes and their descriptions for the <jsp:getProperty> action.

Table 2.7: Attributes for the <jsp:getProperty> Standard Action

Attribute Definition

name The name of the bean instance from which the

property is obtained, defined by a <jsp:useBean>

action or some other action.

property The bean property for which you want to get a value.

A JavaBean Standard Action Example

To learn how to use the JavaBean standard actions, let’s create an example. This example uses a simple

JavaBean that acts as a counter. The Counter bean has a single int property, count, that holds the current

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

number of times the bean’s property has been accessed. It also contains the appropriate methods for getting

and setting this property. Listing 2.11 contains the source code for the Counter bean.

Listing 2.11: Example of a Counter bean: Counter.java.

package chapter2;

public class Counter {

int count = 0;

public Counter() {

}

public int getCount() {

count++;

return count;

}

public void setCount(int count) {

this.count = count;

}

}

Let’s look at integrating this sample JavaBean into a JSP, using the JavaBean standard actions. Listing 2.12

contains the JSP that leverages the Counter bean.

Listing 2.12: A JSP that uses the Counter bean: counter.jsp.

<!−− Set the scripting language to java −−>

<%@ page language="java" %>

<HTML>

<HEAD>

<TITLE>Bean Example</TITLE>

</HEAD>

<BODY>

<!−− Instantiate the Counter bean with an id of "counter" −−>

<jsp:useBean id="counter" scope="session"

class="chapter2.Counter" />

<%

// write the current value of the property count

out.println("Count from scriptlet code : "

+ counter.getCount() + "
");

%>

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

<!−− Get the the bean’s count property, −−>

<!−− using the jsp:getProperty action. −−>

Count from jsp:getProperty :

<jsp:getProperty name="counter" property="count" />

</BODY>

</HTML>

Counter.jsp has four JSP components. The first component tells the JSP container that the scripting language

is Java:

<%@ page language="java" %>

The next step uses the standard action <jsp:useBean> to create an instance of the class Counter with a scope

of session and ID of counter. Now you can reference this bean using the name counter throughout the rest of

the JSP. The code snippet that creates the bean is as follows:

<jsp:useBean id="counter" scope="session"

class="chapter2.Counter" />

The final two actions demonstrate how to get the current value of a bean’s property. The first of these two

actions uses a scriptlet to access the bean’s property, using an explicit method call. It simply accesses the bean

by its ID, counter, and calls the getCount() method. The scriptlet snippet is listed here:

<%

// write the current value of the property count

out.println("Count from scriptlet code : "

+ counter.getCount() + "
");

%>

The second example uses the <jsp:getProperty> standard action, which requires the ID of the bean and the

property to be accessed. The action takes the attribute, calls the appropriate accessor, and embeds the results

directly into the resulting HTML document, as follows:

<!−− Get the bean’s count property, −−>

<!−− using the jsp:getProperty action. −−>

Count from jsp:getProperty :

<jsp:getProperty name="counter" property="count" />

When you execute the Counter.jsp, notice that the second reference to the count property results in a value

that is one greater than the first reference. This is the case because both methods of accessing the count

property result in a call to the getCount() method, which increments the value of count.

To see this JSP in action, compile the Counter class, move it to the

<CATALINA_HOME>/wileyapp/WEB−INF/classes/chapter2/ directory, and copy the Counter.jsp file to the

<CATALINA_HOME>/wileyapp/ directory. Then, open your browser to the following URL:

http://localhost:8080/wileyapp/counter.jsp

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

Once the JSP is loaded, you should see an image similar to Figure 2.14.

Figure 2.14: The results of counter.jsp.

The remaining standard actions are used for generic tasks, from basic parameter action to an object plug−in

action. These actions are described in the following sections.

<jsp:param>

The <jsp:param> action provides parameters and values to the JSP standard actions <jsp:include>,

<jsp:forward>, and <jsp:plugin>. The syntax of the <jsp:param> action is as follows:

<jsp:param name="name" value="value"/>

Table 2.8 contains the attributes and their descriptions for the <jsp:param> action.

Table 2.8: Attributes for the <jsp:param> Action

Attribute Definition

name The name of the parameter being referenced

value The value of the named parameter

<jsp:include>

The <jsp:include> standard action provides a method for including additional static and dynamic Web

components in a JSP. The syntax for this action is as follows:

<jsp:include page="urlSpec" flush="true">

<jsp:param ... />

</jsp:include>

Table 2.9 contains the attributes and their descriptions for the <jsp:include> action.

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

Table 2.9: Attributes for the <jsp:include> Action

Attribute Definition

page The relative URL of the resource to be included

flush A mandatory Boolean value stating whether the

buffer should be flushed

Note It is important to note the difference between the include directive and the include standard action. The

directive is evaluated only once, at translation time, whereas the standard action is evaluated with

every request.

The syntax description shows a request−time inclusion of a URL that is passed an optional list of param

subelements used to argument the request. An example using the include standard action can be found in

Listing 2.13.

Listing 2.13: Example of the include action: include.jsp.

<html>

<head>

<title>Include Example</title>

</head>

<body>

<table width="100%" cellspacing="0">

<tr>

<td align="left">

<jsp:include page="header.jsp" flush="true">

<jsp:param name="user"

value=’<%= request.getParameter("user") %>’ />

</jsp:include>

</td>

</tr>

</table>

</body>

</html>

This file contains a single include action that includes the results of evaluating the JSP header.jsp, shown in

Listing 2.14.

Listing 2.14: The JSP evaluated in include.jsp: header.jsp.

<%

out.println("Welcome: " +

request.getParameter("user"));

%>

This JSP simply looks for a parameter named user, and outputs a string containing a welcome message. To

deploy this example, copy these two JSPs to the <CATALINA_HOME>/webapps/wileyapp/ directory. Open

your browser to the following URL:

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

http://localhost:8080/wileyapp/include.jsp?user=Bob

The results should look similar to Figure 2.15.

Figure 2.15: The results of include.jsp.

<jsp:forward>

The <jsp:forward> standard action enables the JSP engine to execute a runtime dispatch of the current request

to another resource existing in the current Web application, including static resources, servlets, or JSPs. The

appearance of <jsp:forward> effectively terminates the execution of the current JSP.

Note A <jsp:forward> action can contain <jsp:param> subattributes. These subattributes act as parameters

that will be forwarded to the targeted resource.

The syntax of the <jsp:forward> action is as follows:

<jsp:forward page="relativeURL">

<jsp:param .../>

</jsp:forward>

Table 2.10 contains the attribute and its description for the <jsp:forward> action.

Table 2.10: Attribute for the <jsp:forward> Action

Attribute Definition

page The relative URL of the target of the forward

The example in Listing 2.15 contains a JSP that uses the <jsp:forward> action. This example checks a request

parameter and forwards the request to one of two JSPs based on the value of the parameter.

Listing 2.15: Example of the forward action: forward.jsp.

<html>

<head>

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

<title>JSP Forward Example</title>

</head>

<body>

<%

if ((request.getParameter("role")).equals("manager")) {

%>

<jsp:forward page="management.jsp" />

<%

}

else {

%>

<jsp:forward page="welcome.jsp">

<jsp:param name="user"

value=’<%=request.getParameter("user") %>’ />

</jsp:forward>

<%

}

%>

</body>

</html>

The forward.jsp simply checks the request for the parameter role, and forwards the request, along with a set of

request parameters, to the appropriate JSP based on this value. Listings 2.16 and 2.17 contain the source of the

targeted resources.

Listing 2.16: welcome.jsp.

<html>

<!−− Set the scripting language to java −−>

<%@ page language="java" %>

<HTML>

<HEAD>

<TITLE>Welcome Home</TITLE>

</HEAD>

<BODY>

<table>

<tr>

<td>

Welcome User: <%= request.getParameter("user") %>

</td>

</tr>

</table>

Listing 2.17: management.jsp.

<html>

<!−− Set the scripting language to java −−>

<%@ page language="java" %>

<HTML>

<HEAD>

STURTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

<TITLE>Management Console</TITLE>

</HEAD>

<BODY>

<table>

<tr>

<td>

Welcome Manager: <%= request.getParameter("user") %>

</td>

</tr>

51

STURTS FRAMEWORK 18CAU304B

</table>

To test this example, copy all three JSPs to the <CATALINA_HOME>/webapps/ wileyapp/ directory and open

your browser to the following URL:

http://localhost:8080/wileyapp/forward.jsp?role=user&user=Bob

You will see an image similar to Figure 2.16.

Figure 2.16: The output of forward.jsp.

You can also change the value of the role parameter to manager, to change the forwarded target.

<jsp:plugin>

The last standard action we will discuss is <jsp:plugin>. This action enables a JSP author to generate the

required HTML, using the appropriate client−browser independent constructs, to result in the download and

subsequent execution of the specified applet or JavaBeans component.

The <jsp:plugin> tag, once evaluated, will be replaced by either an <object> or <embed> tag, as appropriate

for the requesting user agent. The attributes of the <jsp:plugin> action provide configuration data for the

presentation of the embedded element. The syntax of the <jsp:plugin> action is as follows:

<jsp:plugin type="pluginType"

code="classFile"

codebase="relativeURLpath">

<jsp:params>

</jsp:params>

</jsp:plugin>

Table 2.11 contains the attributes and their descriptions for the <jsp:plugin> action.

Table 2.11: Attributes for the <jsp:plugin> Action

Attribute Definition

52

STURTS FRAMEWORK 18CAU304B

type The type of plug−in to include (an applet, for

example)

code The name of the class that will be executed by the

plug−in

codebase The base or relative path where the code attribute can

be found

The <jsp:plugin> action also supports the use of the <jsp:params> tag to supply the plug−in with parameters,

if necessary.

Chapter 3: Getting Started with Struts

In this chapter, we begin our Jakarta Struts coverage. First, we explain the steps that you must perform when

installing and configuring a Struts application. Then, we create a sample application that displays the

components of a working Struts application. We conclude this chapter by walking through our sample

application.

The goal of this chapter is to provide you with a quick introduction to the components of a Struts application.

Obtaining and Installing the Jakarta Struts Project

Before we can get started with our Struts development, we need to obtain the latest release of the Struts

archive and all of its supporting archives. The following list contains all of the items you need to acquire:

 The latest−release Jakarta Struts binary for your operating system. For these examples, we are using

Struts 1.1, which can be found at http://jakarta.apache.org/

 The latest Xerces Java parser. We are using Xerces 1.3, which you can find at http://xml.apache.org/

Note For our example, we will use Tomcat 4, which comes packaged with a Xerces parser. If

you choose to use another JSP/servlet container, you may need to acquire and install the

latest Xerces parser.

Once you have the latest Struts release, you need to complete the following steps to prepare for the remainder

of the text. You will have to complete these steps for each Struts Web application that you intend to deploy.

1. Uncompress the Struts archive to your local disk.

2. Create a new Web application, using the directory structure described in Chapter 1, “Introducing the

Jakarta Struts Project and Its Supporting Components.” Make sure you substitute the name of your

Web application for the value wileyapp. For our example, the name of our Web application is

wileystruts.

3. Copy the following JAR files, extracted from the Jakarta Struts archive, to the

<CATALINA_HOME>/webapps/wileystruts/WEB−INF/lib directory:

 struts.jar

 commons−beanutils.jar

 commons−collections.jar

 commons−dbcp.jar

 commons−digester.jar

 commons−logging.jar

 commons−pool.jar

 commons−services.jar

http://jakarta.apache.org/
http://jakarta.apache.org/
http://xml.apache.org/

53

STURTS FRAMEWORK 18CAU304B

 commons−validator.jar

4. Uncompress the Xerces archive to your local disk, if necessary.

5. Copy the xerces.jar file from the Xerces root directory to the

<CATALINA_HOME>/webapps/wileystruts/WEB−INF/lib/ directory.

6. Create an empty web.xml file, and copy it to the

<CATALINA_HOME>/webapps/wileystruts/WEB−INF/ directory. A sample web.xml file is shown in

the following code snippet:

<?xml version="1.0" encoding="ISO−8859−1"?>

<!DOCTYPE web−app

PUBLIC "−//Sun Microsystems, Inc.//DTD Web Application

2.3//EN"

"http://java.sun.com/j2ee/dtds/web−app_2_3.dtd">

<web−app>

</web−app>

1. Create a basic strut−config.xml file, and copy it to the

<CATALINA_HOME>/webapps/wileystruts/WEB−INF/ directory. The struts−config.xml file is the

deployment descriptor for Struts applications. It is the file that glues all of the MVC

(Model−View−Controller) components together. Its normal location is in the

<CATALINA_HOME>/webapps/ webappname/WEB−INF/ directory. We will be using this file

extensively throughout the remainder of this text. An empty struts−config.xml file is listed here:

<?xml version="1.0" encoding="ISO−8859−1" ?>

<!DOCTYPE struts−config

PUBLIC

"−//Apache Software Foundation//DTD Struts Configuration 1.1//EN"

"http://jakarta.apache.org/struts/dtds/struts−config_1_1.dtd">

<struts−config>

<message−resources

parameter="wiley.ApplicationResources"/>

</struts−config>

Note As of Struts 1.1 b1, you are required to have a <message−resources /> element defined in your

struts−config.xml file. For now, you simply need to create the struts−config.xml file as shown

previously. We will discuss this element’s purpose in Chapter 6, "Internationalizing Your Struts

Applications."

At this point, you have all of the necessary components to build the simplest of Struts applications. As you

begin the design and development of your Struts application, you will need to install and configure further

Struts components as necessary. In the next section, we take you through the steps that must be accomplished

when developing a Struts application.

Creating Your First Struts Application

Now that you have Struts downloaded and installed, we can begin the development of our own sample Struts

application. Our application consists of a simple set of JSP screens that queries a user for a stock symbol,

performs a simple stock lookup, and returns the current price of the submitted stock. We will use this example

http://java.sun.com/j2ee/dtds/web
http://jakarta.apache.org/struts/dtds/struts
http://jakarta.apache.org/struts/dtds/struts

54

STURTS FRAMEWORK 18CAU304B

to describe the steps that must be performed when creating any Struts application.

Because Struts is modeled after the MVC design pattern, you can follow a standard development process for

all of your Struts Web applications. This process begins with the identification of the application Views, the

Controller objects that will service those Views, and the Model components being operated on. This process

can be described using the following steps:

1. Define and create all of the Views, in relation to their purpose, that will represent the user interface of

our application. Add all ActionForms used by the created Views to the struts−config.xml file.

2. Create the components of the application’s Controller.

3. Define the relationships that exist between the Views and the Controllers (struts−config.xml).

4. Make the appropriate modifications to the web.xml file; describe the Struts components to the Web

application.

5. Run the application.

These steps provide a high−level description of the Struts development process. In the sections that follow, we

will describe each of these steps in much greater detail.

Creating the Views

When creating Views in a Struts application, you are most often creating JSPs that are a combination of

JSP/HTML syntax and some conglomeration of prepackaged Struts tag libraries. The JSP/HTML syntax is

similar to any other Web page and does not merit discussion, but the specialized Struts custom tag libraries

do. Currently, there are three major Struts tag libraries: Bean, HTML, and Logic. We will focus on all of these

libraries and more View details in Chapter 5, “The Views,” but for now we will use some of the HTML tags

in the Views we define in this section. For those tags that we do use, we will include a brief explanation.

To begin the development of our application, we need to first describe the Views that will represent the user

interface of our application. Two Views are associated with our sample application: index.jsp and quote.jsp.

Note In our sample application, we do use a single image. This image file, hp_logo_wiley.gif,

can be found in the images directory of our sample application's source tree.

The Index View

The Index View, which is represented by the file index.jsp, is our starting View. It is the first page our

application users will see, and its purpose is to query the user for a stock symbol and submit the inputted

symbol to the appropriate action. The source for index.jsp is found in Listing 3.1.

Listing 3.1: index.jsp.

<%@ page language="java" %>

<%@ taglib

uri="/WEB−INF/struts−html.tld"

prefix="html" %>

<html>

<head>

<title>Wiley Struts Application</title>

</head>

<body>

<table width="500"

55

STURTS FRAMEWORK 18CAU304B

border="0" cellspacing="0" cellpadding="0">

<tr>

<td> </td>

</tr>

<tr bgcolor="#36566E">

<td height="68" width="48%">

<div align="left">

<img src="images/hp_logo_wiley.gif"

width="220"

height="74">

</div>

</td>

</tr>

<tr>

<td> </td>

</tr>

</table>

<html:form action="Lookup"

name="lookupForm"

type="wiley.LookupForm" >

<table width="45%" border="0">

<tr>

<td>Symbol:</td>

<td><html:text property="symbol" /></td>

</tr>

<tr>

<td colspan="2" align="center"><html:submit /></td>

</tr>

</table>

</html:form>

</body>

</html>

As you look over the source for the Index View, you will notice that it looks much like any other HTML page

containing a form used to gather data, with the exception of the actual form tags. Instead of using the standard

HTML Form tag, like most HTML pages, the index.jsp uses a Struts−specific Form tag: <html:form />. This

tag, with its child tags, encapsulates Struts form processing. The form tag attributes used in this example are

described in Table 3.1.

Table 3.1: Attributes of the Form Tag Used in Our Example

Attribute Description

action Represents the URL to which this form will be

submitted. This attribute is also used to find the

appropriate ActionMapping in the Struts configuration

file, which we will describe later in this section. The

value used in our example is Lookup, which will map

to an ActionMapping with a path attribute equal to

Lookup.

56

STURTS FRAMEWORK 18CAU304B

name Identifies the key that the ActionForm will be

referenced by. We use the value LookupForm. An

ActionForm is an object that is used by Struts to

represent the form data as a JavaBean. It main

purpose is to pass form data between View and

Controller components. We will discuss LookupForm

later in this section.

type Names the fully qualified class name of the form bean

to use in this request. For this example, we use the

57

STURTS FRAMEWORK 18CAU304B

value wiley.LookupForm, which is an ActionForm

object containing data members matching the inputs

of this form.

This instance of the <html:form /> tag is also the parent to two other HTML tags. The first of the tags is the

<html:text /> tag. This tag is synonymous with the HTML text input tag; the only difference is the property

attribute, which names a unique data member found in the ActionForm bean class named by the form’s type

attribute. The named data member will be set to the text value of the corresponding input tag.

The second HTML tag that we use is the <html:submit /> tag. This tag simply emulates an HTML submit

button. The net effect of these two tags is

 Upon submission, the ActionForm object named by the <html:form /> tag will be created,

populated with the value of the <html:text /> tags, and stored in the session.

 Once the ActionForm object is populated with the appropriate values, the action referenced by the

<html:form /> will be invoked and passed a reference to the populated ActionForm.

To use the previous two HTML tags, you must first add a taglib entry in the wileystruts application’s web.xml

file that references the URI /WEB−INF/struts−html.tld. This TLD describes all of the tags in the HTML tag

library. The following snippet shows the <taglib> element that must be added to the web.xml file:

<taglib>

<taglib−uri>/WEB−INF/struts−html.tld</taglib−uri>

<taglib−location>/WEB−INF/struts−html.tld</taglib−location>

</taglib>

Second, you must copy the struts−html.tld from the lib directory of the extracted Struts archive to the

<CATALINA_HOME>/webapps/wileystruts/ WEB_INF/ directory.

Note The previous two steps are used to deploy all of the Struts tag libraries. The only difference between

each library's deployment is the name of the TLD. We will discuss additional Struts tag libraries in

Chapter 5, "The Views."

The ActionForm

The ActionForm used in this example contains a single data member that maps directly to the symbol input

parameter of the form defined in the Index View. As I stated in the previous section, when an <html:form /> is

submitted, the Struts framework populates the matching data members of the ActionForm with the values

entered into the <html:input /> tags. The Struts framework does this by using JavaBean reflection; therefore,

the accessors of the ActionForm must follow the JavaBean standard naming convention. An example of this

naming convention is shown here:

private String symbol;

public void setSymbol(String symbol);

public String getSymbol();

In this example, we have a single data member symbol. To satisfy the JavaBean standard, the accessors used

to set the data member must be prefixed with set and get, followed by the data member name with its first

letter capitalized. Listing 3.2 contains the source for our ActionForm.

Listing 3.2: The LookupForm implementation LookupForm.java.
package wiley;

58

STURTS FRAMEWORK 18CAU304B

import javax.servlet.http.HttpServletRequest;

import org.apache.struts.action.ActionForm;

import org.apache.struts.action.ActionMapping;

public class LookupForm extends ActionForm {

private String symbol = null;

public String getSymbol() {

return (symbol);

}

public void setSymbol(String symbol) {

this.symbol = symbol;

}

public void reset(ActionMapping mapping,

HttpServletRequest request) {

this.symbol = null;

}

}

There is really nothing special about this class. It is a simple bean that extends

org.apache.struts.action.ActionForm, as must all ActionForm objects, with get and set accessors that match

each of its data members. It does have one method that is specific to an ActionForm bean: the reset() method.

The reset() method is called by the Struts framework with each request that uses the LookupForm. The

purpose of this method is to reset all of the LookupForm’s data members and allow the object to be pooled for

reuse.

Note The reset() method is passed a reference to an ActionMapping class. At this point, you can ignore this

class; we will fully describe it in Chapters 4 and 5.

To deploy the LookupForm to our Struts application, you need to compile this class, move it to the

<CATALINA_HOME>/webapps/wileystruts/WEB−INF/classes/wiley directory, and add the following line to

the <form−beans> section of the <CATALINA_HOME>/webapps/wileystruts/WEB−INF/struts−config.xml

file:

<form−bean name="lookupForm" type="wiley.LookupForm"/>

This entry makes the Struts application aware of the LookupForm and how it should be referenced.

The Quote View

The last of our Views is the quote.jsp. This View is presented to the user upon successful stock symbol

lookup. It is a very simple JSP with no Struts specific functionality. Listing 3.3 contains its source.

Listing 3.3: quote.jsp.

<head>

<title>Wiley Struts Application</title>

59

STURTS FRAMEWORK 18CAU304B

</head>

<body>

<table width="500"

border="0" cellspacing="0" cellpadding="0">

<tr>

<td> </td>

</tr>

<tr bgcolor="#36566E">

<td height="68" width="48%">

<div align="left">

<img src="images/hp_logo_wiley.gif"

width="220" height="74">

</div>

</td>

</tr>

<tr>

<td> </td>

</tr>

<tr>

<td> </td>

</tr>

<tr>

<td> </td>

</tr>

<tr>

<td>

Current Price : <%= request.getAttribute("PRICE") %>

</td>

</tr>

<tr>

<td> </td>

</tr>

</table>

</body>

</html>

As you look over this JSP, you will notice that it contains a single JSP functional line of code. This line of

code retrieves the current price from the HttpServletRequest of the submitted stock symbol. This value is

placed in the HttpServletRequest by the Action object that services this request, as shown in the next section.

Creating the Controller Components

In a Struts application, two components make up the Controller. These two components are the

org.apache.struts.action.ActionServlet and the org.apache. struts.action.Action classes. In most Struts

applications, there is one org. apache.struts.action.ActionServlet implementation and many org.apache.

struts.action.Action implementations.

The org.apache.struts.action.ActionServlet is the Controller component that handles client requests and

determines which org.apache.struts.action.Action will process the received request. When assembling simple

applications, such as the one we are building, the default ActionServlet will satisfy your application needs,

and therefore, you do not need to create a specialized org.apache.struts.action.ActionServlet implementation.

When the need arises, however, it is a very simple process. For our example, we will stick with the

ActionServlet as it is delivered in the Struts packages. We will cover the process of extending the

org.apache.struts.action.ActionServlet in Chapter 4, “The Controller.”

60

STURTS FRAMEWORK 18CAU304B

The second component of a Struts Controller is the org.apache.struts. action.Action class. As opposed to the

ActionServlet, the Action class must be extended for each specialized function in your application. This class

is where your application’s specific logic begins.

For our example, we have only one process to perform: looking up the value of the submitted stock symbol.

Therefore, we are going to create a single org.apache.struts.action.Action bean named LookupAction. The

source for our Action is shown in Listing 3.4. As you examine this listing, be sure to pay close attention to the

execute() method.

Listing 3.4: The LookupAction bean.

package wiley;

import java.io.IOException;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.apache.struts.action.Action;

import org.apache.struts.action.ActionForm;

import org.apache.struts.action.ActionForward;

import org.apache.struts.action.ActionMapping;

public class LookupAction extends Action {

protected Double getQuote(String symbol) {

if (symbol.equalsIgnoreCase("SUNW")) {

return new Double(25.00);

}

return null;

}

public ActionForward execute(ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

Double price = null;

// Default target to success

String target = new String("success");

if (form != null) {

// Use the LookupForm to get the request parameters

LookupForm lookupForm = (LookupForm)form;

String symbol = lookupForm.getSymbol();

price = getQuote(symbol);

}

// Set the target to failure

if (price == null) {

61

Walking through the wileystruts Web Application

target = new String("failure");

}

else {

request.setAttribute("PRICE", price);

}

// Forward to the appropriate View

return (mapping.findForward(target));

}

}

After examining this class, you will notice that it extends the org.apache.struts.action.Action class and

contains two methods: getQuote() and execute(). The getQuote() method is a simple method that will return a

fixed price (if SUNW is the submitted symbol).

The second method is the execute() method, where the main functionality of the LookupAction is found.

This is the method that must be defined by all Action class implementations. Before we can examine how the

logic contained in the execute() method works, we need to examine the four parameters passed to it. These

parameters are described in Table 3.2.

Table 3.2: The Parameters of the Action.execute() Method

Component Description

ActionMapping The ActionMapping class contains all of the

deployment information for a particular Action bean.

This class will be used to determine where the results

of the LookupAction will be sent once its processing

is complete.

ActionForm The ActionForm represents the form inputs containing

the request parameters from the View referencing this

Action bean. The reference being passed to our

LookupAction points to an instance of our

LookupForm.

HttpServletRequest The HttpServletRequest attribute is a reference to the

current HTTP request object.

HttpServletResponse The HttpServletResponse is a reference to the current

HTTP response object.

Now that we have described the parameters passed to the execute() method, we can move on to describing

the actual method body. The first notable action taken by this method is to create a String object named

target with a value of success. This object will be used to determine the View that will present successful

results of this action.

The next step performed by this method is to get the request parameters contained in the LookupForm. When

the form was submitted, the ActionServlet used Java’s reflection mechanisms to set the values stored in this

object. You should note that the reference passed to the execute() method is an ActionForm that must be cast

to the ActionForm implementation used by this action. The following code snippet contains the source used

to access the request parameters:

// Use the LookupForm to get the request parameters

LookupForm lookupForm = (LookupForm)form;

String symbol = lookupForm.getSymbol();

62

Walking through the wileystruts Web Application

Once we have references to the symbol parameters, we pass these values to the getQuote() method. This

method is a simple user−defined method that will return the Double value 25.00. If the symbol String contains

any values other than SUNW, then null is returned, and we change the value of our target to failure. This will

have the effect of changing the targeted View. If the value was not null, then we add the returned value to the

request with a key of PRICE.

At this point, the value of target equals either success or failure. This value is then passed to the

ActionMapping.findForward() method, which returns an ActionForward object referencing the physical View

that will actually present the results of this action. The final step of the execute() method is to return the

ActionForward object to the invoking ActionServlet, which will then forward the request to the referenced

View for presentation. This step is completed using the following line of code:

return (mapping.findForward(target));

To deploy the LookupAction to our Struts application, you need to compile the LookupAction class, move the

class file to the <CATALINA_HOME>/webapps/ wileystruts/WEB−INF/classes/wiley directory, and add the

following entry to the <action−mappings> section of the <CATALINA_HOME>/webapps/wileystruts/

WEB−INF/struts−config.xml file:

<action path="/Lookup"

type="wiley.LookupAction"

name="lookupForm"

input="/index.jsp">

<forward name="success" path="/quote.jsp"/>

<forward name="failure" path="/index.jsp"/>

</action>

This entry contains the data that will be stored in the ActionMapping object that is passed to the execute()

method of the LookupAction. It contains all of the attributes required to use this instance of the

LookupAction, including a collection of keyed <forward> subelements representing the possible Views that

can present the results of the LookupAction.

Deploying Your Struts Application

Now we have all of the necessary Struts components deployed and modified. Next, we need to tell the Web

application itself about our application components. To do this, we must make some simple changes to the

web.xml file.

The first change we must make is to tell the Web application about our ActionServlet. This is accomplished

by adding the following servlet definition to the

<CATALINA_HOME>/webapps/wileystruts/WEB−INF/web.xml file:

<servlet>

<servlet−name>action</servlet−name>

<servlet−class>

org.apache.struts.action.ActionServlet

</servlet−class>

<init−param>

<param−name>config</param−name>

<param−value>/WEB−INF/struts−config.xml</param−value>

</init−param>

<load−on−startup>1</load−on−startup>

</servlet>

This entry tells the Web application that we have a servlet named action that is implemented by the class

63

Walking through the wileystruts Web Application

org.apache.struts.action.ActionServlet, which, as we stated earlier, is the default ActionServlet provided with

Struts. The entry defines a single servlet initialization parameter, config, that tells the ActionServlet where to

find the struts−config.xml file. It also includes a load−on−startup element that tells the JSP/servlet container

that we want this servlet to be preloaded when the Web application starts. You must pre−load the

ActionServlet, or your Struts Views will not load all of their necessary resources.

Once we have told the container about the ActionServlet, we need to tell it when the action should be

executed. To do this, we have to add a <servlet−mapping> element to the

<CATALINA_HOME>/webapps/wileystruts/WEB−INF/ web.xml file:

<servlet−mapping>

<servlet−name>action</servlet−name>

<url−pattern>*.do</url−pattern>

</servlet−mapping>

Note You will notice in the previously listed index.jsp that our action does not include a .do at the end of the

URL. We do not have to append the .do because it is automatically appended if we use the <html:form

/> tag. If you do not use the <html:form /> tag, then you will need to append .do to the action's URL.

This mapping tells the Web application that whenever a request is received with .do appended to the URL, the

servlet named action should service the request.

Walking through the wileystruts Web Application

At this point, you should have completed all of the steps described in the previous section and have a

deployed wileystruts Web application. In this section, we will go through this sample application and discuss

each of the steps performed by Struts along the way. The purpose of this section is to provide you with a

walkthrough that ties together all of the previously assembled components.

To begin using this application, you need to restart Tomcat and open your Web browser to the following

URL:

http://localhost:8080/wileystruts/

If everything went according to plan, you should see a page similar to Figure 3.1.

64

Walking through the wileystruts Web Application

Figure 3.1: The wileystruts Index View.

When this page loads, the following actions occur:

1. The <html:form> creates the necessary HTML used to represent a form and then checks

for an instance of the wiley.LookupForm in session scope. If there was an instance of

the wiley.LookupForm, then the value stored in the ActionForm’s data member will be

mapped to the input element value on the form and the HTML form will be written to

the response. This is a very handy technique that can be used to handle errors in form

data. We will see examples of handling form errors in Chapter 7, “Managing Errors.”

2. The Index View is then presented to the user.

To move on to the next step, enter the value SUNW into the Symbol text box, and click the Submit

button. This will invoke the following functionality:

8. The Submit button will cause the browser to invoke the URL named in the <html:form />

tag’s action attribute, which in this case is Lookup. When the JSP/servlet container receives

this request, it looks in the web.xml file for a <servlet−mapping> with a <url−pattern> that

ends with .do. It will find the following entry, which tells the container to send the request

to a servlet that has been deployed with a

<servlet−name> of action:

<!−− Standard Action Servlet Mapping −−>

<servlet−mapping>

<servlet−name>action</servlet−name>

<url−pattern>*.do</url−pattern>

</servlet−mapping>

9. The container will find the following <servlet> entry with a <servlet−name> of action

that points to the ActionServlet, which acts as the Controller for our Struts application:

<servlet>

<servlet−name>action</servlet−name>

<servlet−class>

org.apache.struts.action.ActionServlet

</servlet−class>

</servlet>

10. The ActionServlet then takes over the servicing of this request by retrieving the previously

65

Walking through the wileystruts Web Application

created

LookupForm, populating its symbol data member with the value passed on the request, and

adding the LookupForm to the session with a key of lookupForm.

11. At this point, the ActionServlet looks for an <ActionMapping> entry in the

struts−config.xml file with a <path> element equal to Lookup. It finds the following

entry:

<action

path="/Lookup"

type="wiley.Lookup

Action"

name="lookupForm"

input="/index.jsp"

>

<forward name="success" path="/quote.jsp"/>

<forward name="failure" path="/index.jsp"/>

</action>

12. It then creates an instance of the LookupAction class named by the type attribute. It also

creates an ActionMapping class that contains all of the values in the <ActionMapping>

element.

Note The Struts framework does pool instances of Action classes; therefore, if the

wiley.LookupAction had already been requested, then it will be retrieved from the

instance pool as opposed to being created with every request.

13. It then invokes the LookupAction.execute() with the appropriate parameters. The

LookupAction.execute() method performs its logic, and calls the

ActionMapping.findForward() method with a String value of either success or

failure.

14. The ActionMapping.findForward() method looks for a <forward> subelement with a

name attribute matching the target value. It then returns an ActionForward object

containing the results of the lookup, which is the value of the path attribute /quote.jsp

(upon success) or /index.jsp (upon failure).

15. The LookupAction then returns the ActionForward object to the ActionServlet,

which in turn forwards the request object to the targeted View for presentation.

The results of a successful transaction are shown in Figure 3.2.

Figure 3.2: The wileystruts Quote View.

Note If you submit any value other than SUNW, you will be sent back index.jsp, which is

66

Walking through the wileystruts Web Application

the failure path of the LookupAction. If this does happen, you will see that the input

value on the index page is prepopulated with your originally submitted value. This

is one of the handy error−handling techniques provided by the Struts application.

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act, 1956)

COIMBATORE – 641 021.

 DEPARTMENT OF COMPUTER APPLICATIONS
Course Code : 18CAU304B Course Title : STRUTS FRAME WORK

UNIT I – Multiple Choice Questions

S.No

.

Question Option1 Option2 Option3 Option4 Answer

1 Struts is a Technology Frame Work Java development tool kit Language Frame Work

2 Which of the following feature is present

in Struts 2?

POJO forms and POJO

actions

Tag support AJAX support All the above All the above

3 Who developed the Struts project? Craig McClanahan Dennis Ritchie Dennis Ritchie Charles Craig McClanahan

4 Struts Framework is based on Java, JSP,XML Servelt, JSP,XML and Java Servelet,Java, HTML,JSP HTML,XML,Java,JSP Servelt, JSP,XML and
Java

5 To use Struts add____ file in our

development environment
struts.war struts.ini struts.jar Struts.xml Struts.jar

6 ____files are used for mapping between

URL and action
Strut-cfg.xml struts.xml Struts-config.xml web.xml struts.xml

7 The limitation of creating Action

Servlet instance for web applications
Two Three One Four One

8 ____ method is necessary for ActionClass service() execute() run() destroy() execute()
9 ____ acts as a bridge between user

invoked URI and a business method
HTTP Request Action Class Action Servlet Request Processor Action Class

10 Action Servlet, Request Processor and

Action Classes are the components of
controller Deployment model view Controller

11 Return type of execute() method in Struts void string int Action Forward string
12 _____ is the container that holds the

components of a Web application.

Folder Directory Structure Files Frame Directory Structure

13 ___file is used for storing JSP

configuration information in struts
web.xml struts-config.xml struts-cfg.xml web.cfg.xml web.xml

14 The ___ method used to avoid duplicate

form submissions
SaveToken IsTokenValid() Token() Option 1 & 2 Option 1 & 2

15 ___ is used to access JavaBeans and their

properties
Row Library Tag Library Column Library Table Library Tag Library

16 ____technology can be used at view layer. J2EE DHTML XML/XSLT Javascript XML/XSLT

17 Method used to clear the values of a form

before initiation of new request
unset delete submit reset reset

18 Which method is NOT used in Action

Form
validate reset unset set unset

19 Which class is used to handle the request? Action Servlet Actice Forward Class Action Class Action Form Class Action Class

20 How many xml files must have use in

validate form
one Two three four two

21 Application module selection is done by Action Class Request processor Action Servlet All All

22 The a root directory of the web

application is
/wileyapp /wileyapp/WEB−INF /wileyapp/WEB−INF/class

es
/wileyapp/WEB−INF/
lib

/wileyapp

23 This directory is where servlet and utility
classes are located.

/wileyapp /wileyapp/WEB−INF /wileyapp/WEB−INF/class
es

/wileyapp/WEB−INF/
lib

/wileyapp/WEB−IN

F/classes

24 This directory contains Java Archive (JAR)
files that the Web application is
dependent on.

/wileyapp /wileyapp/WEB−INF /wileyapp/WEB−INF/class
es

/wileyapp/WEB−INF/
lib

/wileyapp/WEB−IN

F/lib

25 This is where your Web application

deployment descriptor is located.

/wileyapp /wileyapp/WEB−INF /wileyapp/WEB−INF/class
es

/wileyapp/WEB−INF/
lib

/wileyapp/WEB−IN

F

26 Which is the backbone of all Web

applications?

Folder Directory Structure Deployment Descriptor Frame

Deployment

Descriptor

27 The standard packaging format for a

Web application is a

WAR JAR JPEG PNG WAR

28 All _______ files are stored in
/wileyapp.

JSP HTML JSP & HTML PING JSP & HTML

29 The ______file describes all of

components in the Web application

Web.xml HTML JSP & HTML JAR Web.xml

30 The _____ performs its logic on the

Model components.

Action Servlet ActionClass View Actionservlet ActtionClass

31 Which command is used to start the

Tomcat server

\bin\startup.bat \bin\tc\startup.bat \bin\begin.bat \bin\start.bat \bin\startup.bat

32 The ______ method services all requests

received from a client using a simple

request/response pattern.

Perorm() Service() Destroy() Init() Service()

33 A ServletContext is an object that is

defined in the package.

Java.awt Java.util Java.io Javax.servlet Javax.servlet

34 ____are the JSP components that bring

all the JSP elements together.

Servlets Scripts Java Script Scriplets Scriplets

35 The directive is used to insert text include taglib session info include

and/or code at JSP translation time.
36 Which tag enables a JSP author to

generate the required HTML, using the

appropriate client−browser

independent constructs?

<jsp:setProperty> <jsp:forward> <jsp.plugin> <jsp.param> <jsp.plugin>

37 Which sets the value of a bean’s property?

<jsp:setProperty> <jsp:forward> <jsp.plugin> <jsp.param> <jsp:setProperty>

38 Which is the Controller component? org.apache.struts.action
.ActionServlet

org.apache.struts.action.Ac
tion

org.apache.struts.action.
Servlet

org.apache.struts.act
ion.Activeservlet

org.apache.struts.ac
tion.ActionServlet

39 All JSPs should be deployed to a Struts

application by using a element.
<setProperty> <forward> <plugin> <param> <setProperty>

40 MVC Model View Controller ModernVirtual Control Model View Controller Module Virtual

Control
Model View

Controller

41 The _____is being manipulated and

presented to the user.

Model View Controller JSP Model

42 _____ presents current state of the data

objects

Model View Action Class Controller View

43 _____ defines the way the user interface

reacts to the user’s input.

Model View Action Server Controlle Controller

44 The benefits of MVC Reliability High reuse and adaptability Maintability All the above All the above

 The syntax for a JSP declaration is <%! declaration %> <% declaration %> <%! jsp.declaration %> <<%! declaration

!%>
<%! declaration

%>

45 WAP allow users to access information

via wireless communication.

Wireless Application

Protocol

Wireless Access point Wireless Active Point Wireless Attach

Point
Wireless

Application

Protocol

46 The backbone of the struts Framework is Directory Structure The Controller The model The View The Controller

47 A collection of servlets, HTML pages,

Classes and other resources called

Web Browser Web Server Web Applications Website Web Applications

48 WAR Web Archive File Web Application Resource Web Access Resource Both a & b Both a & b

49 ____ are JSP elements that provide

global information about a JSP page.

JSP directives JSP Classes Java Java Class JSP directives

50 The ___ method is used to create and

initialize the resources.

service() init() doget() dopost() init()

51 The method signifies the end of

servlets life is____

service() init() destroy() delete() destroy()

52 ___ is used to generate dynamic

HTML on the server side.

JSP JAVA Servlet Javaserver JSP

53 JSP stands for JavaServer Pages Java Servlet Port Jarkata Struts Page Jarkata Struts Port JavaServer Pages

54 Java Servlet is a platform____ web

application component.

independent dependent free oriented independent

55 ____ method is used to create and

initialize the resources while handling

requests.

init() service() execute() destroy() init()

56 ____ elements that provide global

information about a JSP Page

 directives script objects actions directives

57 The request processor contains ___

methods

2 1 n 3 n

58 ServletRequest, ServletResponse are

the parameters of ___ method

init() destroy() execute() service() service()

59 The doGet() method will be executed

when ____ request is sent to the

container

GET POST START STOP GET

60 The doPost() method will service the

request when ____ received.

GET POST START STOP POST

STRUTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

Chapter 4: The Controller

In this chapter, we dig further into the Controller components of the Struts framework. We begin by looking at

three distinct Struts Controller components, including the ActionServlet class, the Action class, Plugins, and

the RequestProcesser.

The goal of this chapter is to provide you with a solid understanding of the Struts Controller components, and

how they can be used and extended to create a robust and easily extended Web application.

The ActionServlet Class

The org.apache.struts.action.ActionServlet is the backbone of all Struts applications. It is the main Controller

component that handles client requests and determines which org.apache.struts.action.Action will process

each received request. It acts as an Action factory by creating specific Action classes based on the user’s

request.

While the ActionServlet sounds as if it might perform some extraordinary magic, it is a simple servlet. Just

like any other HTTP servlet, it extends the class javax.servlet.http.HttpServlet and implements each of the

HttpServlet’s life−cycle methods, including the init(), doGet(), doPost(), and destroy() methods.

The special behavior begins with the ActionServlet’s process() method. The process() method is the method

that handles all requests. It has the following method signature:

protected void process(HttpServletRequest request,

HttpServletResponse response);

When the ActionServlet receives a request, it completes the following steps:

1. The doPost() or doGet() methods receive a request and invoke the process() method.

2. The process() method gets the current RequestProcessor, which is discussed in the final section of this

chapter, and invokes its process() method.

Note If you intend to extend the ActionServlet, the most logical place for customization is in the

RequestProcessor object. It contains the logic that the Struts controller performs with each

request from the container. We will discuss the RequestProcessor in the final section of

this chapter.

3. The RequestProcessor.process() method is where the current request is actually serviced. The

RequestProcessor.process() method retrieves, from the struts−config.xml file, the <action> element

that matches the path submitted on the request. It does this by matching the path passed in the

<html:form /> tag’s action element to the <action> element with the same path value. An example of

this match is shown below:

<html:form action="/Lookup"

name="lookupForm"

type="wiley.LookupForm" >

<action path="/Lookup"

type="wiley.LookupAction"

name="lookupForm" >

<forward name="success" path="/quote.jsp"/>

<forward name="failure" path="/index.jsp"/>

STRUTS FRAMEWORK 18CAU304B

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

</action>

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

4. When the RequestProcessor.process() method has a matching <action>, it looks for a <form−bean>

entry that has a name attribute that matches the <action> element’s name attribute. The following

code snippet contains a sample match:

<form−beans>

<form−bean name="lookupForm"

type="wiley.LookupForm"/>

</form−beans>

<action path="/Lookup"

type="wiley.LookupAction"

name="lookupForm" > <forward name="success" path="/quote.jsp"/>

<forward name="failure" path="/index.jsp"/>

</action>

5. When the RequestProcessor.process() method knows the fully qualified name of the FormBean, it

creates or retrieves a pooled instance of the ActionForm named by the <form−bean> element’s type

attribute, and populates its data members with the values submitted on the request.

6. After the ActionForm’s data members are populated, the RequestProcessor.process() method calls the

ActionForm.validate() method, which checks the validity of the submitted values.

Note There is more to the validate() method than we are discussing in this chapter. We will see

exactly how this method is configured and performs in Chapter 7, "Managing Errors."

7. At this point, the RequestProcessor.process() method knows all that it needs to know, and it is time to

actually service the request. It does this by retrieving the fully qualified name of the Action class from

the <action> element’s type attribute, creating or retrieving the named class, and calling the

Action.execute() method. We will look at this method in the section titled “The Action Class,” later in

this chapter.

8. When the Action class returns from its processing, its execute() method returns an ActionForward

object that is used to determine the target of this transaction. The RequestProcessor.process() method

resumes control, and the request is then forwarded to the determined target.

9. At this point, the ActionServlet instance has completed its processing for this request and is ready to

service future requests.

Extending the ActionServlet

Now that you have seen what the ActionServlet is and how it is configured, let’s look at how it can be

extended to provide additional functionality. As you might have guessed, there are several different ways in

which the ActionServlet can be extended, and we are going to examine just one of them. This examination,

however, should provide the foundation you need to extend the ActionServlet for your own uses.

To develop your own ActionServlet, you must complete the following four steps. We will perform each of

these steps when creating our custom ActionServlet.

1. Create a class that extends the org.apache.struts.action.ActionServlet class.

2. Implement the methods specific to your business logic.

3. Compile the new ActionServlet and move it into the Web application’s classpath.

4. Add a <servlet> element to the application’s web.xml file; name the new ActionServlet as the

mapping to the .do extension.

In the 1.0x version of Struts, this was very common method of extending the ActionServlet. As of Struts 1.1,

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

it is more appropriate to extend a RequestProcessor to modify the default ActionServlet processing. We will

Configuring the ActionServlet

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

discuss extending these components later in this chapter.

Configuring the ActionServlet

Now that you have a solid understanding of how the ActionServlet performs its duties, let’s take a look at how

it is deployed and configured. The ActionServlet is like any other servlet and is configured using a web.xml

<serlvet> element.

You can take many approaches when setting up an ActionServlet. You can go with a bare−bones approach, as

we did in Chapter 3, “Getting Started with Struts,” or you can get more serious and include any combination

of the available initialization parameters described in Table 4.1.

Table 4.1: The Initialization Parameters of the ActionServlet (continues)

Parameter Description

bufferSize Names the size of the input buffer used when uploading files.

The default value is 4096 bytes. (optional)

config Names the context−relative path to the struts−config.xml file.

The default location is in the /WEB−INF/struts−config.xml

directory. (optional)

content Names the content type and character encoding to be set on each

response. The default value is text/html. (optional)

debug Determines the debugging level for the ActionServlet. The

default value is 0, which turns debugging off. (optional)

detail Sets the debug level for the Digester object, which is used during

ActionServlet initialization. The default value is 0. (optional)

factory Names the fully qualified class name of the object used to create

the application's MessageResources object. The default value is

org.apache.struts.util.PropertyMessageResourcesFactory. In

most cases, the default class will handle your application needs.

(optional)

locale If set to true and the requesting client has a valid session, then the

Locale object is stored in the user's session bound to the key

Action.LOCALE_KEY. The default value is true. (optional)

mapping Names the fully qualified class name of the ActionMapping

implementation used to describe each Action deployed to this

application. The default value is

org.apache.struts.action.ActionMapping. We will create our own

ActionMapping extension in Chapter 8, "Creating Custom

ActionMappings." (optional)

maxFileSize Names the maximum file size (in bytes) of a file to be uploaded

to a Struts application. This value can be expressed using K, M,

or G, understood as kilobytes, megabytes, or gigabytes,

respectively. The default size is 250M. (optional)

Configuring the ActionServlet

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

multipartClass Names the fully qualified class of the MultipartRequestHandler

implementation to be used when file uploads are being

processed. The default value is

The Action Class

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

 org.apache.struts.upload.DiskMultipartRequestHandler.

(optional)

nocache If set to true, will add the appropriate HTTP headers to every

response, turning off browser caching. This parameter is very

useful when the client browser is not reflecting your application

changes. The default value is false. (optional)

null If set to true, will cause the Struts application resources to return

null, as opposed to an error message, if it cannot find the

requested key in the application resource bundle. The default

value for this parameter is true. (optional)

tempDir Names a directory to use as a temporary data store when file

uploads are being processed. The default value is determined by

the container hosting the application. (optional)

validate If set to true, tells the ActionServlet that we are using the

configuration file format defined as of Struts 1.0. The default

value is true. (optional)

validating If set to true, tells the ActionServlet that we want to validate the

strut−config.xml file against its DTD. While this parameter is

optional, it is highly recommended, and therefore the default is

set to true.

While none of these initialization parameters are required, the most common ones include the config,

application, and mapping parameters. It is also common practice to use a <load−on−startup> element to

ensure that the ActionServlet is started when the container starts the Web application. An example <serlvet>

entry, describing an ActionServlet, is shown in the following code snippet:

<servlet>

<servlet−name>action</servlet−name>

<servlet−class>

org.apache.struts.action.ActionServlet

</servlet−class>

<init−param>

<param−name>config</param−name>

<param−value>/WEB−INF/struts−config.xml</param−value>

</init−param>

<init−param>

<param−name>mapping</param−name>

<param−value>wiley.WileyActionMapping</param−value>

</init−param>

<load−on−startup>1</load−on−startup>

</servlet>

We will use all of these <init−param> elements in subsequent chapters of this book.

The Action Class

The second component of a Struts Controller is the org.apache.struts.action. Action class. As we stated in

Chapter 3, the Action class must and will be extended for each specialized Struts function in your application.

The collection of the Action classes that belong to your Struts application is what defines your Web

application.

The execute() Method

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

To begin our discussion of the Action class, we must first look at some of the Action methods that are more

commonly overridden or leveraged when creating an extended Action class. The following sections describe

five of these methods.

The execute() Method

The execute() method is where your application logic begins. It is the method that you need to override when

defining your own Actions. The Struts framework defines two execute() methods.

The first execute() implementation is used when you are defining custom Actions that are not HTTP−specific.

This implementation of the execute() method would be analogous to the javax.serlvet.GenericServlet class.

The signature of this execute() method is

public ActionForward execute(ActionMapping mapping,

ActionForm form,

ServletRequest request,

ServletResponse response)

throws IOException, ServletException

You will notice that this method receives, as its third and fourth parameter, a ServletRequest and a

ServletResponse object, as opposed to the HTTP−specific equivalents HttpServletRequest and

HttpServletResponse.

The second execute() implementation is used when you are defining HTTP− specific custom Actions. This

implementation of the execute() method would be analogous to the javax.serlvet.http.HttpServlet class. The

signature of this execute() method is

public ActionForward execute(ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException

You will notice that this method receives, as its third and fourth parameter, a HttpServletRequest and a

HttpServletResponse object, as opposed to the previously listed execute() method. This implementation of the

execute() method is the implementation that you will most often extend. Table 4.2 describes all of the

parameters of the Action.execute() method.

Table 4.2: The Parameters of the Action.execute() Method

Component Description

ActionMapping Contains all of the deployment information for a

particular Action bean. This class will be used to

determine where the results of the LoginAction will

be sent after its processing is complete.

ActionForm Represents the Form inputs containing the request

parameters from the View referencing this Action

bean. The reference being passed to our LoginAction

points to an instance of our LoginForm.

The execute() Method

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

HttpServletRequest Is a reference to the current HTTP request object.

Extending the Action Class

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

Extending the Action Class

Now that you have seen the Action class and some of its configuration options, let’s see how we can create

our own Action class.

To develop your own Action class, you must complete the following steps. These steps describe the minimum

actions that must be completed when creating a new Action:

1. Create a class that extends the org.apache.struts.action.Action class.

2. Implement the appropriate execute() method and your specific to your business logic.

3. Compile the new Action and move it into the Web application’s classpath.

4. Add an <action> element to the application’s struts−config.xml file describing the new Action.

An example execute() implementation is listed in the following snippet. We will be extending the Action class

throughout the remainder of this text.

public ActionForward execute(ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

Double price = null;

// Default target to success

String target = new String("success");

if (form != null) {

// Use the LookupForm to get the request parameters

LookupForm lookupForm = (LookupForm)form;

String symbol = lookupForm.getSymbol();

price = getQuote(symbol);

}

// Set the target to failure

if (price == null) {

target = new String("failure");

}

else {

request.setAttribute("PRICE", price);

}

// Forward to the appropriate View

return (mapping.findForward(target));

}

Configuring the Action Class

Now that you have seen the major methods of the Action class, let’s examine its configuration options. The

HttpServletResponse Is a reference to the current HTTP response object.

Extending the Action Class

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

Action class is a Struts−specific object, and therefore must be configured using the struts−config.xml file.

Extending the Action Class

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

The element that is used to configure a Struts action is an <action> element. The class that defines the

<action> element’s attributes is the org.apache. struts.action.ActionMappings class. We will look at how this

class can be extended to define additional <action> attributes in Chapter 8, “Creating Custom

ActionMappings.” Table 4.3 describes the attributes of an <action> element as they are defined by the default

ActionMappings class.

Note When using an <action> element to describe an Action class, you are describing only one instance of the

named Action class. There is nothing stopping you from using n−number of <action> elements that

describe the same Action class. The only restriction is that the path attribute must be unique for each

<action> element.

Table 4.3: Attributes of an <action> Element

Attribute Description

path Represents the context−relative path of the submitted

request. The path must be unique and start with a /

character. (required)

type Names the fully qualified class name of the Action

class being described by this ActionMapping. The

type attribute is valid only if no include or forward

attribute is specified. (optional)

name Identifies the name of the form bean, if any, that is

coupled with the Action being defined. (optional)

scope Names the scope of the form bean that is bound to the

described Action. The default value is session.

(optional)

input Names the context−relative path of the input form to

which control should be returned if a validation error

is encountered. The input attribute is where control

will be returned if ActionErrors are returned from the

ActionForm or Action objects. (optional)

className Names the fully qualified class name of the

ActionMapping implementation class to use in when

invoking this Action class. If the className attribute

is not included, the ActionMapping defined in the

ActionServlet's mapping initialization parameter is

used. (optional)

forward Represents the context−relative path of the servlet or

JSP resource that will process this request. This

attribute is used if you do not want an Action to

service the request to this path. The forward attribute

is valid only if no include or type attribute is

specified. (optional)

Extending the Action Class

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

include Represents the context−relative path of the servlet or

JSP resource that will process this request. This

attribute is used if you do not want an Action to

service the request to this path. The include attribute

is valid only if no forward or type attribute is

Struts Plugins

Prepared by K. Geetha, Asst. Prof., Department of CS, CA & IT, KAHE

 specified. (optional)

validate If set to true, causes the ActionForm.validate()

method to be called on the form bean associated to the

Action being described. If the validate attribute is set

to false, then the ActionForm.validate() method is not

called. The default value is true. (optional)

A sample <action> subelement using some of the previous attributes is shown here:

<action−mappings>

<action path="/Lookup"

type="wiley.LookupAction"

name="lookupForm"

input="/index.jsp">

<forward name="success" path="/quote.jsp"/>

<forward name="failure" path="/index.jsp"/>

</action>

</action−mappings>

This <action> element tells the ActionServlet the following things about this Action instance:

 The Action class is implemented by the wiley.LookupAction class.

 This Action should be invoked when the URL ends with the path /Lookup.

 This Action class will use the <form−bean> with the name lookupForm.

 The originating resource that submitted the request to this Action is the JSP index.jsp.

 This Action class will forward the results of its processing to either the quote.jsp or the index.jsp.

The previous <action> element uses only a subset of the possible <action> element attributes, but the

attributes that it does use are some of the more common.

Struts Plugins

Struts Plugins are modular extensions to the Struts Controller. They have been introduced in Struts 1.1, and

are defined by the org.apache.struts.action.Plugin interface. Struts Plugins are useful when allocating

resources or preparing connections to databases or even JNDI resources. We will look at an example of

loading application properties on startup later in this section.

This interface, like the Java Servlet architecture, defines two methods that must be implemented by all

used−defined Plugins: init() and destroy(). These are the life−cycle methods of a Struts Plugin.

init()

The init() method of a Struts Plugin is called whenever the JSP/Servlet container starts the Struts Web

application containing the Plugin. It has a method signature as follows:

public void init(ApplicationConfig config)

throws ServletException;

destroy()

70

This method is convenient when initializing resources that are important to their hosting applications. As you

will have noticed, the init() method receives an ApplicationConfig parameter when invoked. This object

provides access to the configuration information describing a Struts application. The init() method marks the

beginning of a Plugin’s life.

destroy()

The destroy() method of a Struts Plugin is called whenever the JSP/Servlet container stops the Struts Web

application containing the Plugin. It has a method signature as follows:

public void destroy();

This method is convenient when reclaiming or closing resources that were allocated in the Plugin.init()

method. This method marks the end of a Plugin’s life.

Creating a Plugin

Now that we have discussed what a Plugin is, let’s look at an example Plugin implementation. As we stated

earlier, all Plugins must implement the two Plugin methods init() and destroy(). To develop your own Plugin,

you must complete the following steps. These steps describe the minimum actions that must be completed

when creating a new Plugin:

1. Create a class that implements the org.apache.struts.action.Plugin interface.

2. Add a default empty constructor to the Plugin implementation. You must have a default constructor

to ensure that your Plugin is properly created by the ActionServlet.

3. Implement both the init() and destroy() methods and your implementation.

4. Compile the new Plugin and move it into the Web application’s classpath.

5. Add an <plug−in> element to the application’s struts−config.xml file describing the new Plugin. We

will look at this step in the next section.

An example Plugin implementation is listed in the following snippet.

package wiley;

import java.util.Properties;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import javax.servlet.ServletException;

import javax.servlet.ServletContext;

import org.apache.struts.action.PlugIn;

import org.apache.struts.config.ApplicationConfig;

import org.apache.struts.action.ActionServlet;

public class WileyPlugin implements PlugIn {

public static final String PROPERTIES = "PROPERTIES";

public WileyPlugin() {

}

Configuring a Plugin

71

public void init(ActionServlet servlet,

ApplicationConfig applicationConfig)

throws javax.servlet.ServletException {

System.err.println("−−−−>The Plugin is starting<−−−−");

Properties properties = new Properties();

try {

// Build a file object referening the properties file

// to be loaded

File file =

new File("PATH TO PROPERTIES FILE");

// Create an input stream

FileInputStream fis =

new FileInputStream(file);

// load the properties

properties.load(fis);

// Get a reference to the ServletContext

ServletContext context =

servlet.getServletContext();

// Add the loaded properties to the ServletContext

// for retrieval throughout the rest of the Application

context.setAttribute(PROPERTIES, properties);

}

catch (FileNotFoundException fnfe) {

throw new ServletException(fnfe.getMessage());

}

catch (IOException ioe) {

throw new ServletException(ioe.getMessage());

}

}

public void destroy() {

// We don't have anything to clean up, so

// just log the fact that the Plugin is shutting down

System.err.println("−−−−>The Plugin is stopping<−−−−");

}

}

As you look over our example Plugin, you will see just how straightforward Plugin development can be. In

this example, we create a simple Plugin that extends the init() method, which contains the property loading

logic, and the destroy() method, which contains no specialized implementation. The purpose of this Plugin is

to make a set of properties available upon application startup. To make the wiley.WileyPlugin available to

your Struts application, you need to move on to the following section on Plugin configuration.

Configuring a Plugin

Now that you have seen a Plugin and understand how they can be used, let’s take a look at how a Plugin is

deployed and configured. To deploy and configure our wiley.WileyPlugin, you must

72

The RequestProcessor

1. Compile and move the Plugin class file into the classpath.

2. Add a <plug−in> element to your struts−config.xml file. An example <plug−in> entry, describing the

previously defined Plugin, is shown in the following code snippet:

<plug−in className="wiley.WileyPlugin"/>

Note The <plug−in> element must follow all <message−resources /> elements in the struts−config.xml.

3. Restart the Struts Web application.

When this deployment is complete, this Plugin will begin its life when the hosting application restarts.

The RequestProcessor

As we stated previously, the org.apache.struts.action.RequestProcessor contains the logic that the Struts

controller performs with each servlet request from the container. The RequestProcessor is the class that you

will want to override when you want to customize the processing of the ActionServlet.

Creating a New RequestProcessor

Now that we have discussed what the RequestProcessor is, let’s look at an example Plugin implementation.

The RequestProcessor contains n−number of methods that you can override to change the behavior of the

ActionServlet.

To create your own RequestProcessor, you must follow the steps described in the following list:

1. Create a class that extends the org.apache.struts.action.RequestProcessor class.

2. Add a default empty constructor to the RequestProcessor implementation.

3. Implement the method that you want to override. Our example overrides the processPreprocess()

method.

In our example, we are going to override one of the more useful RequestProcessor methods, the

processPreprocess() method, to log information about every request being made to our application.

The processPreprocess() method is executed prior to the execution of every Action.execute() method. It

allows you to perform application−specific business logic before every Action. The method prototype for the

processPreprocess() method is shown below:

protected boolean processPreprocess(HttpServletRequest request,

HttpServletResponse response)

The default implementation of the processPreprocess() method simply returns true, which tells the framework

to continue its normal processing. You must return true from your overridden processPreprocess() method if

you want to continue processing the request.

Note If you do choose to return false from the processPreprocess() method, then the

RequestProcessor will stop processing the request and return control back to the doGet() or

doPost() of the ActionServlet.

73

The RequestProcessor

To see how all of this really works, take a look at our example RequestProcessor implementation, which is

listed in the following snippet.

package wiley;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpServlet;

import javax.servlet.ServletException;

import javax.servlet.http.Cookie;

import java.io.IOException;

import java.util.Enumeration;

import org.apache.struts.action.RequestProcessor;

public class WileyRequestProcessor extends RequestProcessor {

public WileyRequestProcessor() {

}

public boolean processPreprocess(HttpServletRequest request,

HttpServletResponse response) {

log("−−−−−−−−−−processPreprocess Logging−−−−−−−−−−−−−−");

log("Request URI = " + request.getRequestURI());

log("Context Path = " + request.getContextPath());

Cookie cookies[] = request.getCookies();

if (cookies != null) {

for (int i = 0; i < cookies.length; i++) {

log("Cookie = " + cookies[i].getName() + " = " +

cookies[i].getValue());

}

}

Enumeration headerNames = request.getHeaderNames();

while (headerNames.hasMoreElements()) {

String headerName =

(String) headerNames.nextElement();

Enumeration headerValues =

request.getHeaders(headerName);

while (headerValues.hasMoreElements()) {

String headerValue =

(String) headerValues.nextElement();

log("Header = " + headerName + " = " + headerValue);

}

}

log("Locale = " + request.getLocale());

log("Method = " + request.getMethod());

log("Path Info = " + request.getPathInfo());

log("Protocol = " + request.getProtocol());

log("Remote Address = " + request.getRemoteAddr());

74

Configuring an Extended RequestProcessor

log("Remote Host = " + request.getRemoteHost());

log("Remote User = " + request.getRemoteUser());

log("Requested Session Id = "

+ request.getRequestedSessionId());

log("Scheme = " + request.getScheme());

log("Server Name = " + request.getServerName());

log("Server Port = " + request.getServerPort());

log("Servlet Path = " + request.getServletPath());

log("Secure = " + request.isSecure());

log("−−−");

return true;

}

}

In our processPreprocess() method, we are retrieving the information stored in the request and logging it to the

ServletContext log. Once the logging is complete, the processPreprocess() method returns the Boolean value

true, and normal processing continues. If the processPreprocess() method had returned false, then the

ActionServlet would have terminated processing, and the Action would never have been performed.

Configuring an Extended RequestProcessor

Now that you have seen a Plugin and understand how it can be used, let’s take a look at how a Plugin is

deployed and configured. To deploy and configure our wiley.WileyPlugin, you must

1. Compile the new RequestProcessor and move it into the Web application’s classpath.

2. Add a <controller> element to the application’s struts−config.xml file describing the new

RequestProcessor. An example <controller> entry, describing the our new RequestProcessor, is

shown in the following code snippet:

<controller

processorClass="wiley.WileyRequestProcessor" />

Note The <controller> element must follow the <action−mappings> element and precede the

<message−resources /> elements in the struts−config.xml. A full description of the

<controller> element and its attributes is included in Chapter 12, “The struts−config.xml

File.”

3. Restart the Struts Web application.

When this deployment is complete, the new RequestProcessor will take effect. To see the results of these log

statements, open the <CATALINA_HOME>/ logs/localhost_log.todaysdate.txt file, and you will see the

logged request at the bottom of the log file.

Summary

In this chapter, we described the different Controller components, and discussed how and when they should be

extended. In the next chapter, we will discuss the presentation layer of the Struts framework. We will describe

the major components of the Struts View, including ActionForm beans and the Struts tag libraries, and how

each of these components fit into the Struts framework.

75

Chapter 5: The Views

In this chapter, we examine the View component of the Struts framework. Some of the topics that we discuss

are using tags from Struts tag libraries, using ActionForms, and deploying Views to a Struts application.

The goal of this chapter is to give you an understanding of the Struts View and the components that can be

leveraged to construct the View.

Building a Struts View

As we discussed in Chapter 1, “Introducing the Jakarta Struts Project and Its Supporting Components,” the

Struts View is represented by a combination of JSPs, custom tag libraries, and optional ActionForm objects.

In the sections that follow, we examine each of these components and how they can be leveraged.

At this point, you should have a pretty good understanding of what JSPs are and how they can be used. We

can now focus on how JSPs are leveraged in a Struts application.

JSPs in the Struts framework serve two main functions. The first of these functions is to act as the

presentation layer of a previously executed Controller Action. This is most often accomplished using a set of

custom tags that are focused around iterating and retrieving data forwarded to the target JSP by the Controller

Action. This type of View is not Struts−specific, and does not warrant special attention.

The second of these functions, which is very much Struts−specific, is to gather data that is required to perform

a particular Controller Action. This is done most often with a combination of tag libraries and ActionForm

objects. This type of View contains several Struts−specific tags and classes, and is therefore the focus of this

chapter.

Deploying JSPs to a Struts Application

Before we can begin looking at the role of a JSP in the Struts framework, we must take a look at how JSPs are

deployed to the framework. JSPs are most often the target of a previous request; whether they are gathering or

presenting data usually makes no difference as to how they are deployed. All JSPs should be deployed to a

Struts application by using a <forward> element. This element is used to define the targets of Struts Actions,

as shown in the following code snippet:

<forward name="login" path="/login.jsp"/>

In this example, the <forward> element defines a View named login with a path of /login.jsp.

To make this <forward> element available to a Struts application, we must nest it within one of two possible

Struts elements. You can make a JSP available globally to the entire application. This type of JSP deployment

is useful for error pages and login pages. You perform this type of deployment by adding the JSP to the

<global−forwards> section of the struts−config.xml file. An example of this is shown in the following code

snippet:

<global−forwards>

<forward name="login" path="/login.jsp"/>

</global−forwards>

76

JSPs that Gather Data

The previous <forward> element states that /login.jsp will be the target of all Struts Actions that return an

ActionForward instance with the name login, as shown here:

return (mapping.findForward("login"));

Note The only time that a global forward is not used is when an <action> element has a <forward> declaration

with the same name. In this instance, the <action> element’s <forward> will take precedence.

The second type of <forward> declaration is defined as an Action <forward>. These types of <forward>

elements are defined as subelements of an <action> definition, and are accessible only from within that

<action>. The following code snippet shows an example of this type of <forward> declaration:

<action path="/Login"

type="com.wiley.LoginAction"

validate="true"

input="/login.jsp"

name="loginForm"

scope="request" >

<forward name="success" path="/employeeList.jsp"/>

<forward name="failure" path="/login.jsp"/>

</action>

This <forward> definition states that /login.jsp will be the target of com.wiley.LoginAction when this Action

returns an ActionForward instance with the name “failure”, as shown here:

return (mapping.findForward("failure"));

JSPs that Gather Data

Now that you know how JSPs are deployed in a Struts application, let’s take a look at one of the two most

common uses of a JSP in a Struts application: using JSPs to gather data.

There are several methods that can be leveraged when gathering data using a JSP. The most common of these

methods includes using the HTML <form> element and any combination of <input> subelements to build a

form. While Struts uses this exact methodology, it does so with a set of JSP custom tags that emulate the

HTML <form> and <input> elements, but also includes special Struts functionality. The following code

snippet contains a JSP that uses the Struts tags to gather data:

<html:form action="/Login"

name="loginForm"

type="com.wiley.LoginForm" >

<table width="45%" border="0">

<tr>

<td>Username:</td>

<td><html:text property="username" /></td>

</tr>

<tr>

<td>Password:</td>

<td><html:password property="password" /></td>

</tr>

<tr>

<td colspan="2" align="center"><html:submit /></td>

</tr>

</table>

</html:form>

77

JSPs that Gather Data

If we break this JSP into logical sections, you will first take notice of the four Struts HTML tags: <html:form

/>, <html:text />, <html:password />, and <html:submit />. These tags include special Struts functionality that

is used to gather HTML form data. We look at each of these tags in the sections that follow.

Note The Struts library that includes the HTML tags listed in our JSP is named the HTML Tag Library. It

includes tags that closely mimic the same functionality common to HTML form elements. In our

example, we saw only a small fraction of the entire HTML tag library. The remaining tags are

discussed in Chapter 14, "HTML Tag Library."

The <html:form /> Tag

The first of these tags is the <html:form /> tag. This tag serves as the container for all other Struts HTML

input tags. It renders an HTML <form> element, containing all of the child elements associated with this

HTML form. While the <html:form /> tag does serve as an HTML input container, it is also used to store and

retrieve the data members of the named ActionForm bean. This tag, with its children, encapsulates the

presentation layer of Struts form processing. The form tag attributes used in this example are described in

Table 5.1.

Table 5.1: The Attributes of the Form Tag Used in this Example

Attribute Description

action Represents the URL to which this form will be

submitted. This attribute is also used to find the

appropriate ActionMapping in the Struts configuration

file, which we describe later in this section. The value

used in our example is /Login, which will map to an

ActionMapping with a path attribute equal to /Login.

name Identifies the key that the ActionForm that we will be

using in this request to identify the FormBean

associated with this Form. We use the value

loginForm. ActionForms are described in the

following section.

type Provides the fully qualified class name of the

ActionForm bean used in this request. For this

example, we use the value com.wiley.LoginForm,

which is described following.

ActionForm Beans

Before we can move on to examining the rest of this form, we must discuss the

org.apache.struts.action.ActionForm object. ActionForms are JavaBeans that are used to encapsulate and

validate the request parameters submitted by an HTTP request. A sample ActionForm, named LoginForm, is

listed in the following code snippet:

package com.wiley;

import javax.servlet.http.HttpServletRequest;

import org.apache.struts.action.ActionForm;

import org.apache.struts.action.ActionMapping;

import org.apache.struts.action.ActionErrors;

import org.apache.struts.action.ActionError;

78

JSPs that Gather Data

public class LoginForm extends ActionForm {

private String password = null;

private String username = null;

public String getPassword() {

return (this.password);

}

public void setPassword(String password) {

this.password = password;

}

public String getUsername() {

return (this.username);

}

public void setUsername(String username) {

this.username = username;

}

public void reset(ActionMapping mapping,

HttpServletRequest request) {

this.password = null;

this.username = null;

}

public ActionErrors validate(ActionMapping mapping,

HttpServletRequest request) {

ActionErrors errors = new ActionErrors();

if ((username == null) || (username.length() == 0)) {

errors.add("username",

new ActionError("errors.username.required"));

}

if ((password == null) || (password.length() == 0)) {

errors.add("password",

new ActionError("errors.password.required"));

}

return errors;

}

}

As you look over this class, you should first notice that it extends the org.apache.struts.action.ActionForm

class; all ActionForm beans must extend this class. After this, you will notice that the LoginForm definition

itself contains two data members−−username and password−−as well as six methods.

The first four of these methods are simple setters and getters used to access and modify the two data members.

Each of these setter methods is called by the Struts framework when a request is submitted with a parameter

79

JSPs that Gather Data

matching the data member’s name. This is accomplished using JavaBean reflection; therefore, the accessors of

the ActionForm must follow the JavaBean standard naming convention. In the next section, we learn how

these data members are mapped to request parameters.

The last two methods of this ActionForm are probably the most important. These methods are defined by the

ActionForm object, and are used to perform request−time processing.

The reset() method is called by the Struts framework with each request that uses the defined ActionForm. The

purpose of this method is to reset all of the LoginForm’s data members prior to the new request values being

set. You should implement this method to reset your form’s data members to their original values; otherwise,

the default implementation will do nothing.

As you look over our reset() method, you will note that it sets both of our data members back to null. This

method guarantees that our data members are not holding stale data.

The last method defined by our LoginForm is validate(). This method should be overridden when you are

interested in testing the validity of the submitted data prior to the invocation of the Action.execute() method.

The proper use of this method is to test the values of the data members, which have been set to the matching

request parameters. If there are no problems with the submitted values, then the validate() method should

return null or an empty ActionErrors object, and the execution of the request will continue with normal

operation.

If the values of the data members are invalid, then it should create a collection of ActionErrors containing an

ActionError object for each invalid parameter and then return this ActionErrors instance to the Controller. If

the Controller receives a valid ActionErrors collection, it will forward the request to the path identified by the

<action> element’s input attribute. If your ActionForm does not implement the validate() method, then the

default implementation will simply return null, and processing will continue normally.

Note We will discuss the error management process in much more detail in Chapter 7, "Managing Errors."

After looking at the LoginForm’s validate() method, you will see that the request using this ActionForm must

contain a username and password that is not null or a 0 length string.

The Input Tags

Once you get past the attributes of this instance of the <html:form /> tag, you will see that it also acts as a

parent to three other HTML tags. These tags are synonymous with the HTML input elements.

The <html:text /> Tag

The first of the HTML input tags is the <html:text /> tag. This tag is equivalent to the HTML text input tag,

with the only difference being the property attribute, which names a unique data member found in the

ActionForm bean class named by the form’s type attribute. The following code snippet contains our

<html:text /> tag.

<html:text property="username" />

As you can see, the property attribute of this instance is set to the value username; therefore, when the form is

submitted, the value of this input tag will be stored in the LoginForm’s username data member.

JSPs that Gather Data

80

The <html:password /> Tag

The second of the HTML tags is the <html:password /> tag. This tag is equivalent to the HTML password

input tag. It functions in the same way as <html:text />; the only difference is that its value is not displayed to

the client. The following code snippet contains our <html:password /> tag:

<html:password property="password" />

As you can see, the property attribute of this instance is set to the value password, which results in the

LoginForm’s password data member being set to the value of this input parameter.

The <html:submit />Tag

The last HTML tag that we use is the <html:submit /> tag. This tag simply emulates an HTML submit button

by submitting the request to the targeted action:

<html:submit />

The Steps of a Struts Form Submission

When a View containing this type of <html:form /> is requested, it will be evaluated and the resulting HTML

will look similar to this:

<form name="loginForm"

method="POST"

action="/employees/Login.do">

<table width="45%" border="0">

<tr>

<td>User Name:</td>

<td>

<input type="text"

name="username"

value=""></td>

</tr>

<tr>

<td>Password:</td>

<td>

<input type="password"

name="password"

value=""></td>

</tr>

<tr>

<td colspan="2" align="center">

<input type="submit"

name="submit"

value="Submit"></td>

</tr>

</table>

</form>

Note As you examine the evaluated form, you will notice that the value of the <input> elements is an

empty string. This will not always be the case. If the session already includes an instance of the

ActionForm named by the <form> element's name attribute, then the values stored in its data

members will be used to prepopulate the input values. We will see an example of this in

Chapter 7.

Summary

81

Once the user of this form has entered the appropriate values and clicked the Submit button, the following

actions take place:

1. The Controller creates or retrieves (if it already exists) an instance of the com.wiley.LoginForm

object, and stores the instance in the appropriate scope. The default scope is session. To change the

scope of the ActionForm, you use the <html:form /> attribute scope.

2. The Controller then calls the com.wiley.LoginForm.reset() method to set the form’s data members

back to their default values.

3. The Controller next populates the com.wiley.LoginForm username and password data members with

the values of the <html:text /> and <html:password /> tags, respectively.

4. Once the data members of the com.wiley.LoginForm have been set, the Controller invokes the

com.wiley.LoginForm.validate() method.

5. If the validate() method does not encounter problems with the data, then the Action referenced by the

<html:form />’s action attribute is invoked and passes a reference to the populated ActionForm.

Processing then continues normally.

That’s about it. There is almost no limit to the type of Views that can exist in a Struts application, but this type

of View is most tightly bound to the Struts framework. This is also the type of View that you will see evolve

throughout the remainder of this text.

Summary

In this chapter, we discussed the View component of the Struts framework, and examined how to use tags

from Struts tag libraries, use ActionForms, and deploy Views to a Struts application. The next chapter focuses

on how to make use of the internationalization (i18n) features in Struts.

82

Chapter 6: Internationalizing Your Struts Applications

Overview

In this chapter, we look at the internationalization (i18n) features of the Struts Framework. We begin by

defining each Struts i18n component and how it is used and configured. We then examine the steps involved

when internationalizing our existing stock lookup application.

The goal of this chapter is to cover all of the required components and processes involved when

internationalizing a Struts application. At the end of this chapter, you should feel comfortable with

internationalizing your own Struts applications.

Note In this chapter, you will notice that I use the terms i18n and internationalization

interchangeably. While i18n looks like an acronym, we use it simply to represent

"Internationalization," because 18 is the number of letters between the alphabetical

characters i and n in the word internationalization.

I18N Components of a Struts Application

Two i18n components are packaged with the Struts Framework. The first of these components, which is

managed by the application Controller, is a Message class that references a resource bundle containing

Locale−dependent strings. The second i18n component is a JSP custom tag, <bean:message />, which is used

in the View layer to present the actual strings managed by the Controller. We examine each of these

components in the following sections.

The Controller

The standard method used when internationalizing a Struts application begins with the creation of a set of

simple Java properties files. Each file contains a key/value pair for each message that you expect your

application to present, in the language appropriate for the requesting client.

Defining the Resource Bundles

The first of these files is one that contains the key/value pairs for the default language of your application. The

naming format for this file is ResourceBundleName.properties. An example of this default file, using English

as the default language, would be

ApplicationResources.properties

A sample entry in this file would be

app.symbol=Symbol

This combination tells Struts that when the client has a default Locale that uses English as the language, and

the key for app.symbol exists in the requested resource, then the value Symbol will be substituted for every

occurrence of the app.symbol key.

Note In the following section, which describes the i18n View component, we see how these keys are

83

The Controller

requested.

Once you have defined the default properties file, you must define a properties file for each language that your

application will use. This file must follow the same naming convention as the default properties file, except

that it must include the two−letter ISO language code of the language that it represents. An example of this

naming convention for an Italian−speaking client would be

ApplicationResources_it.properties

And a sample entry in this file would be

app.symbol=Simbolo

Note You can find all of the two−letter ISO language codes at

www−old.ics.uci.edu/pub/ietf/http/related/iso639.txt.

This combination tells Struts that when the client has a Locale that uses the Italian language, and the key for

app.symbol exists in the requested resource, then the value Simbolo will be substituted for every occurrence of

the app.symbol key.

Note The ApplicationResources.properties files are loaded upon application startup. If

you make changes to this file, you must reload the properties file, either by

restarting the entire container or by restarting the Web application referencing the

properties files.

Deploying the Resource Bundles

Once you have defined all of the properties files for your application, you need to make Struts aware of them.

Prior to 1.1, this was accomplished by setting the application servlet <init−parameter> of the

org.apache.struts.actions.ActionServlet. As of Struts 1.1, this is achieved by adding a <message−resources>

sub−element to the struts−config.xml file. The Struts 1.1 method of configuring a resource bundle will be the

focus of the following section.

To make the Struts Framework aware of your application resource bundles, you must copy all of your

resource bundles into the application classpath, which in this case is

<CATALINA−HOME>/webapps/webapplicationname/ WEB−INF/classes/wiley, and then use the package

path plus the base file name as the value of the <message−resources> subelement. The following snippet

shows an example of using the <message−resources> subelement to configure a resource bundle, using the

properties files described in the previous section:

<message−resources

parameter="wiley.ApplicationResources"/>

This <message−resource> subelement tells the Struts Controller that all of our properties’ files exist in the

<CATALINA_HOME>/webapps/web applicationname/WEB−INF/classes/wiley directory, and are named

ApplicationResources_xx.properties.

Note You will notice that the <param−value> contains only the default filename. This is

because Struts will get the Locale of the client and append it to the filename, if it uses a

language other than the default language. The behavior is the default method used when

loading resource bundles.

84

The View

The View

The second i18n component defined by the Struts Framework is a JSP custom tag, <bean:message />, which is

used to present the actual strings that have been loaded by the Controller. This section will describe the

<bean:message /> tag and how it is configured for use.

Deploying the bean Tag Library

Before we can use <bean:message />, we must first deploy the bean tag library, which contains the

<bean:message /> tag. Deploying a tag library is a very simple process that requires only the addition of a new

<taglib> entry in the web.xml file of the Web application using the bean library. Here is an example of this

entry:

<taglib>

<taglib−uri>/WEB−INF/struts−bean.tld</taglib−uri>

<taglib−location>/WEB−INF/struts−bean.tld</taglib−location>

</taglib>

This entry simply tells the JSP/servlet container that this Web application uses a tag library, which exists in

the classpath and is described by the TLD located in the

<CATALINA_HOME>/webapps/webappname/WEB−INF/struts−bean.tld file. To make this a true statement,

you need to copy this TLD from the Struts archive to this directory, and make sure the struts.jar file exists in

the <CATALINA_HOME>/webapps/webapplicationname/WEB−INF/lib directory.

That's all there is to deploying the bean tag library. To make this change effective, you must restart Tomcat or

the Web application that contains the newly deployed bean tag library.

Using the <bean:message /> Tag

The <bean:message /> tag is a useful tag that retrieves keyed values from a previously defined resource

bundle—specifically, the properties files defined in the <message−resources> subelement—and displays them

in a JSP. The <bean:message /> tag defines nine attributes and has no body. Of these nine attributes, we are

interested in only three: key, bundle, and locale:

key—The key attribute is the unique value that is used to retrieve a message from the

previously defined resource bundle. The key attribute is a request time attribute that is

required.

bundle—The bundle attribute is the name of the bean under which messages are stored. This

bean is stored in the ServletContext. If the bundle is not included, the default value of

Action.MESSAGES_KEY is used. This attribute is an optional request time attribute. If you

use the ActionServlet to manage your resource bundles, you can ignore this attribute.

locale—The locale attribute names the session bean that references the requesting client's

Locale. If the bundle is not included, the default value of Action.LOCALE_KEY is used.

Now that we have described the <bean:message /> tag, it is time to take a look at how it is used. The

following code snippet contains a simple example of using the <bean:message /> tag:

<%@ taglib uri="/WEB−INF/struts−bean.tld" prefix="bean" %>

<html>

85

Internationalizing the wileystruts Application

<head>

<title><bean:message key="app.title"/></title>

</head>

<body>

</body>

</html>

As you look over the previous snippet, you will see two lines in bold. We need to focus on these two areas.

The first of these lines is a JSP taglib directive that must be included by all JSPs that will use the

<bean:message /> tag.

Note The URI defined in the previous taglib directive should match the <taglib−uri> defined in the previously

defined web.xml file.

The second line that we need to look at is the actual <bean:message /> tag. The <bean:message /> instance

that we use in this snippet contains only the key attribute; it retrieves the value stored in the resource bundle

that is referenced by the key app.title, and substitutes it for the occurrence of the <bean:message /> tag. The

result of this is a JSP that will have an HTML <title> that matches the Locale of the requesting client.

Internationalizing the wileystruts Application

Now that we have seen all of the components involved in internationalizing a Struts application, we can apply

them to our wileystruts application. In this section, we take you through the step−by−step process that is

required when internationalizing a Struts Web application. Each of these steps is described as follows:

1. Create the resource bundles that will contain the key/value pairs used in your application. For our

application, we will have two properties files that contain our resource bundles. These properties files

appear in Listings 6.1 and 6.2.

Listing 6.1: The Italian ApplicationResources_it.properties file.

app.symbol=Simbolo

app.price=Prezzo Corrente

Listing 6.2: The English ApplicationResources.properties file.

app.symbol=Symbol

app.price=Current Price

2. Copy all of the properties files to the

<CATALINA_HOME>/webapps/webappname/WEB−INF/classes/wiley directory.

3. Add an application <message−resources /> subelement, naming the wiley. ApplicationResources to

the struts−config.xml file, as shown in Listing 6.3.

<?xml version="1.0" encoding="ISO−8859−1" ?>

<!DOCTYPE struts−config PUBLIC

"−//Apache Software Foundation//DTD Struts Configuration 1.1//EN"

"http://jakarta.apache.org/struts/dtds/struts−config_1_1.dtd">

http://jakarta.apache.org/struts/dtds/struts
http://jakarta.apache.org/struts/dtds/struts

86

Internationalizing the wileystruts Application

<struts−config>

<form−beans>

<form−bean name="lookupForm"

type="wiley.LookupForm"/>

</form−beans>

<action−mappings>

<action path="/Lookup"

type="wiley.LookupAction"

name="lookupForm" >

<forward name="success" path="/quote.jsp"/>

<forward name="failure" path="/index.jsp"/>

</action>

</action−mappings>

<message−resources

parameter="wiley.ApplicationResources"/>

</struts−config>

4. Add a <taglib> entry, describing the bean tag library to the application's web.xml file, as shown in

Listing 6.4.

Listing 6.3: The Modified web.xml file.

<?xml version="1.0" encoding="ISO−8859−1"?>

<!DOCTYPE web−app

PUBLIC

"−//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

"http://java.sun.com/dtd/web−app_2_3.dtd">

<web−app>

<servlet>

<servlet−name>action</servlet−name>

<servlet−class>

org.apache.struts.action.ActionServlet</servlet−class>

<init−param>

<param−name>config</param−name>

<param−value>/WEB−INF/struts−config.xml</param−value>

</init−param>

<load−on−startup>1</load−on−startup>

</servlet>

<!−− Standard Action Servlet Mapping −−>

<servlet−mapping>

<servlet−name>action</servlet−name>

<url−pattern>*.do</url−pattern>

</servlet−mapping>

<!−− The Usual Welcome File List −−>

<welcome−file−list>

<welcome−file>index.jsp</welcome−file>

</welcome−file−list>

http://java.sun.com/dtd/web
http://java.sun.com/dtd/web

87

Internationalizing the wileystruts Application

<!−− Struts Tag Library Descriptors −−>

<taglib>

<taglib−uri>/WEB−INF/struts−html.tld</taglib−uri>

<taglib−location>/WEB−INF/struts−html.tld</taglib−location>

</taglib>

<taglib>

<taglib−uri>/WEB−INF/struts−bean.tld</taglib−uri>

<taglib−location>/WEB−INF/struts−bean.tld</taglib−location>

</taglib>

</web−app>

Note Make sure that you are using the <load−on−startup> element when describing the ActionServlet. This

will ensure that all of the key/value pairs are loaded prior to any requests.

5. Modify your JSP files to include a taglib directive referencing the bean tag library, and replace all text

strings presented to the user with matching <bean:message /> tags. Listings 6.4 and 6.5 show our

modified JSPs. You will notice that all of the formerly presented strings have been placed in the

properties files, listed earlier, and are now referenced using a <bean:message /> tag with the

appropriate key.

Listing 6.4: The Internationalized index.jsp.

<%@ taglib uri="/WEB−INF/struts−html.tld" prefix="html" %>

<%@ taglib uri="/WEB−INF/struts−bean.tld" prefix="bean" %>

<html>

<head>

<title>Wiley Struts Application</title>

</head>

<body>

<table width="500"

border="0" cellspacing="0" cellpadding="0">

<tr>

<td> </td>

</tr>

<tr bgcolor="#36566E">

<td height="68" width="48%">

<div align="left">

<img src="images/hp_logo_wiley.gif"

width="220"

height="74">

</div>

</td>

</tr>

<tr>

<td> </td>

</tr>

</table>

<html:form action="Lookup"

name="lookupForm"

type="wiley.LookupForm" >

<table width="45%" border="0">

<tr>

88

Internationalizing the wileystruts Application

<td><bean:message key="app.symbol" />:</td>

<td><html:text property="symbol" /></td>

</tr>

<tr>

<td colspan="2" align="center"><html:submit /></td>

</tr>

</table>

</html:form>

</body>

</html>

Listing 6.5: The Internationalized quote.jsp.

<%@ taglib uri="/WEB−INF/struts−bean.tld" prefix="bean" %>

<html>

<head>

<title>Wiley Struts Application</title>

</head>

<body>

<table width="500"

border="0" cellspacing="0" cellpadding="0">

<tr>

<td> </td>

</tr>

<tr bgcolor="#36566E">

<td height="68" width="48%">

<div align="left">

<img src="images/hp_logo_wiley.gif"

width="220" height="74">

</div>

</td>

</tr>

<tr>

<td> </td>

</tr>

<tr>

<td> </td>

</tr>

<tr>

<td> </td>

</tr>

<tr>

<td>

<bean:message key="app.price" />:

<%= request.getAttribute("PRICE") %>

</td>

</tr>

<tr>

<td> </td>

</tr>

</table>

</body>

</html>

That's all there is to it. To see these changes take effect, restart Tomcat, and open the following URL:

89

Summary

file:///M:/For_pouellette/Text/outputImages

You should see results that look exactly like your previous encounters with the wileystruts application, except

that now all user−presented strings are retrieved from the ApplicationResources.properties file that matched

the requesting client's Locale.

Summary

In this chapter, we took a look at the internationalization (i18n) features of the Struts Framework. We began

by defining each Struts i18n component, and discussed how it is used and configured. We then went through

the steps involved when internationalizing an existing Struts application.

In the next chapter, we will discuss how errors are managed by the Struts framework. We will be discussing

how errors are both managed and presented to the user.

90

Chapter 7: Managing Errors

In this chapter, we look at some of the methods available when managing errors in a Struts application. We

begin by discussing the various error classes provided by the Struts Framework. We also examine how errors

are managed in both the Controller and Views of a Struts application by adding error handling to our

wileystruts stock quote application.

The goal of this chapter is to show you how errors can be managed in a Struts application. At the end of this

chapter, you will know how and where the Struts error−management component can be leveraged.

Struts Error Management

The Struts Framework is packaged with two main classes that are intended for error management. The first of

these classes is the ActionError class, which represents an encapsulation of an error message. The second

error management class is the ActionErrors class, which acts as a container for a collection of ActionError

instances. We look at both of these classes in this section.

ActionError

The first of our error−management classes, the org.apache.struts.action.ActionError class, represents a single

error message. This message—most often created in either an Action or an ActionForm instance—is

composed of a message key, which is used to look up a resource from the application resource bundle, and up

to four replacement values, which can be used to dynamically modify an error message.

Note The methods of the ActionError class are used by the Struts Framework to assemble the

human−readable message and are not often used by the Struts developer; therefore, we will focus only

on the constructors of this object.

The ActionError class can be instantiated using one of five different constructors. The method signatures for

each of these constructors are shown here:

public ActionError(java.lang.String key)

public ActionError(java.lang.String key,

java.lang.Object value0)

public ActionError(java.lang.String key,

java.lang.Object value0,

java.lang.Object value1)

public ActionError(java.lang.String key,

java.lang.Object value0,

java.lang.Object value1,

java.lang.Object value2)

public ActionError(java.lang.String key,

java.lang.Object value0,

java.lang.Object value1,

java.lang.Object value2,

java.lang.Object value3)

The key attribute of the ActionError class is used to look up a resource from the application resource bundle

described in Chapter 6, “Internationalizing Your Struts Applications.” This allows you to provide error

messages that are i18n− enabled. We will see examples of this when we add error management to our

wileystruts application.

91

ActionErrors

The value0..3 attributes allow you to pass up to four replacement objects that can be used to dynamically

modify messages. This allows you to parameterize an internationalized message.

Here’s an example of constructing an ActionError:

ActionError error = new ActionError("errors.lookup.unknown",

symbol);

This ActionError instance would look up the resource bundle string with the key errors.lookup.unknown, and

substitute the value of the symbol object as the retrieved resource's first parameter. If we were to assume our

resource bundle contained the entry

errors.lookup.unknown=Unknown Symbol : {0}and the symbol object was a String containing the val

Unknown Symbol : BOBCO

Note The placeholders used by the ActionError class are formatted according the standard JDK's

java.text.MessageFormat, using the replacement symbols of {0}, {1}, {2}, and {3}.

ActionErrors

The second of our error−management classes, the org.apache.struts.action. ActionErrors class, represents a

collection of ActionError classes. This class contains an internal HashMap of ActionError objects that are

keyed to a property or the global application.

The ActionErrors class is composed of a single default constructor and eight methods that are used to query

and manipulate the contained ActionError instances. Table 7.1 describes the methods of the ActionErrors

class.

Table 7.1: The Methods of the ActionErrors Class

Method Description

add() Adds an ActionError instance, associated with a

property, to the internal ActionErrors HashMap. You

should note that the internal HashMap contains an

ArrayList of ActionErrors. This allows you to add

multiple ActionError objects bound to the same

property.

clear() Removes all of the ActionError instances currently

stored in the ActionErrors object.

empty() Returns true if no ActionError objects are currently

stored in the ActionErrors collection; otherwise,

returns false.

get() Returns a Java Iterator referencing all of the current

ActionError objects, without regard to the property

they are bound to.

get(java.lang.String) Returns a Java Iterator referencing all of the current

ActionError objects bound to the property represented

by the String value passed to this method.

properties() Returns a Java Iterator referencing all of the current

properties bound to ActionError objects.

92

Adding Error Handling to the wileystruts Application

size() Returns the number of ActionError objects, without

regard to the property they are bound to.

size(java.lang.String) Returns the number of ActionError objects bound to

the property represented by the String value passed to

this method.

The add() method is the method most often used when managing collections of errors. The following code

snippet contains two add() methods, and shows how ActionError objects can be added to the ActionErrors

collection:

ActionErrors errors = new ActionErrors();

errors.add("propertyname",

new ActionError("key");

errors.add(ActionErrors.GLOBAL_ERROR,

new ActionError("key");

As you can see, the only difference between these two add()s is the first parameter. This parameter represents

the property to which the ActionError being added should be bound. The first add() example uses a String as

the property value. This tells Struts that this error is bound to an input property from the HTML form that

submitted this request. This method is most often used to report errors that have occurred when validating the

form in the ActionForm.validate() method.

The second add() example uses the value ActionErrors.GLOBAL_ERROR as the property value. This tells

Struts that this error is not bound to any input property. This method is most often used to report errors that

have occurred in an Action.perform() method. We will see examples of both of these methods when we

modify the wileystruts application.

Adding Error Handling to the wileystruts Application

Now that we have seen the classes involved in Struts error management, let’s look at how they are actually

used. We will do this by adding the Struts error−management components to our wileystruts Web application.

Before you can leverage the Struts error−management classes, you must add two attributes to the <action>

element that describe the wiley.LookupAction. The following code snippet shows the changes to the

struts−config.xml file:

<action path="/Lookup"

type="wiley.LookupAction"

name="lookupForm"

validate="true"

input="/index.jsp">

<forward name="success" path="/quote.jsp"/>

<forward name="failure" path="/index.jsp"/>

</action>

The new attributes are the validate and input attributes. The first attribute, validate, when set to true tells the

Struts framework that validation should be performed. The second attribute tells the Struts frame where the

error originated and where the action should be redirected, if any errors have occurred. You must add these

attributes to all <action> elements that will use the ActionForm.validate() mechanism described in the

following section.

93

The ActionForm.validate() Method

The ActionForm.validate() Method

The first area where we are going to apply error−management techniques is in the ActionForm object. This is

probably the best place to begin, because it is the first chance you will have to test the incoming request for

errors. The errors that we are checking for are validation errors that occur when the user submitting an HTML

form enters incorrect data. The Struts Framework allows us to do this by simply overriding the

ActionForm.validate() method. The signature of this method is as follows:

public ActionErrors validate(ActionMapping mapping,

HttpServletRequest request)

The ActionForm.validate() method is called by the ActionServlet after the matching HTML input properties

have been set. It provides you with the opportunity to test the values of the input properties before the targeted

Action.perform() method is invoked. If the validate() method finds no errors in the submitted data, then it

returns either an empty ActionErrors object or null, and processing continues normally.

If the validate() method does encounter errors, then it should add an ActionError instance describing each

encountered error to an ActionErrors collection, and return the ActionErrors instance. When the ActionServlet

receives the returned ActionErrors, it will forward the collection to the JSP that is referenced by the input

attribute described previously, which in our case is the index.jsp. We will see what the index.jsp View will do

with the ActionErrors collection later in this section. Listing 7.1 contains the changes we have made to our

LookupForm to perform input validation.

Listing 7.1: The Modified LookupForm.java.

package wiley;

import javax.servlet.http.HttpServletRequest;

import org.apache.struts.action.ActionForm;

import org.apache.struts.action.ActionMapping;

import org.apache.struts.action.ActionError;

import org.apache.struts.action.ActionErrors;

public class LookupForm extends ActionForm {

private String symbol = null;

public String getSymbol() {

return (symbol);

}

public void setSymbol(String symbol) {

this.symbol = symbol;

}

public void reset(ActionMapping mapping,

HttpServletRequest request) {

this.symbol = null;

}

public ActionErrors validate(ActionMapping mapping,

HttpServletRequest request) {

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act, 1956)

COIMBATORE – 641 021.

DEPARTMENT OF COMPUTER APPLICATIONS

 STRUTS FRAME WORK – UNIT II

S.No. Question Option1 Option2 Option3 Option4 Answer

1 ___ defines the availability of struts JSP

custom tag libraries

Struts-taglib JSP-taglib taglib tagLibrary taglib

2 ___ file is used by controller to get

mapping information for request routing

Struts.xml Struts-cfg.xml Struts-config.xml config.xml Struts-config.xml

3 ____is used to present the actual strings

that have been loaded by the controller

<message/> <bean:text/> <bean:message/> <text/> <bean:message/>

4 <bean:message/> tag has __ attributes 9 2 8 4 9

5 The Struts Framework packaged with __
main classes for error management.

1 2 3 4 2

6 ____ represents an encapsulation of an
error message

ActionErrorClass ActionErrorsClass ActionSupport ActionClass ActionErrorClass

7 ____ acts as a container for collection of

ActionError instances

ActionErrorsClass ActionErrorClass ActionClass ActionSupport ActionErrorsClass

8 ____ contains an internal HashMap of

ActionError objects.

ActionClass ActionSupport ActionErrorClass ActionErrorsClass ActionErrorClass

9 The ActionForm.validate() method is

called by the ActionServlet

after matching HTML

input properties

Before targeted

Action.perform() invoked

Option 1 only Option 1 & 2 Option 1 & 2

10 To way to display any errors resulting

from our validation.

<html:errors/> html error html text html header <html:error/>

11 The header and footer values are

identified using

header footer header & footer text keys text keys

12 An ___object describes an Action instance
to the ActionServlet.

ActionErrorClass ActionInstance ActionServlet ActionMapping ActionMapping

13 The <action/> subelement is used to

describe an Action instance to the ___

action Class action-mappings actionServlet application actionServlet

14 ____ is designed to provide

functionalities required by action

request processor interceptor stack actionserver interceptor

15 Interceptor approach helps in modularizing code into

reusable classes

Used to provide required

functionalities

Provide all preprocessing of

the request

All the above All the above

16 Interceptor is unpluggable portable pluggable unportable pluggable

11 Interceptor must be declared in struts.config..xml struts.xml struts.cfg.xml struts-default.xml struts.xml

13 The <action/> subelement is used to

describe an Action instance to the ___

action Class action-mappings actionServlet application actionServlet

14 ____ is designed to provide

functionalities required by action

request processor interceptor stack actionserver interceptor

15 Interceptor approach helps in modularizing code into

reusable classes

Used to provide required

functionalities

Provide all preprocessing of

the request

All the above All the above

16 Interceptor is unpluggable portable pluggable unportable pluggable

18 Interceptor must be declared in struts.config..xml struts.xml struts.cfg.xml struts-default.xml struts.xml

19 The tag enables developers to call

actions directly from a JSPpage

generator tag Action tag Include tag Bean tag Action Tag

20 The _____ tag assigns a value to a

variable in a specified scope

set tag Text tag url tag Push tag settag

21 Types of Validator in struts date Validator double validator email validator all the above all the above

 Tag to get the property of a value date tag param tag property tag push tag property tag

22. ________ container that holds the

components of a web aplication

Sub directory Class API Directory Structure Directory Structure

23 All the web applications are packaged

into standard

Directory Structure browser interceptor server Directory Structure

24. Web application invoked by Web Browser Web Server Web component Web application Web Browser

25 Web application executed by Web Browser Web Server Web component Web application Web Server

26 ___ oriented web application contains

static and dynamic web pages

Presentation Service Server browser Presentation

27 ____ oriented web applications are

implemented as an end point of web

service

Presentation Service Server browser Service

28 ___ method requests the server to

provide the information.

POST PUT GET POST GET

29 ____ submits the server the data to be

processed by the resource

POST PUT GET POST POST

30 The web server recognizes the request

for Java Server Pages by the ___ file

extension.

.java .jsp .jdk .js .jsp

31 The JSP engine translates the JSP page

into a

Java class JSP class JDK class JSF class Java Class

32 To bind values into views, the ___

technology used

ServletRequest DefaultStack ValueStack InterceptorStack ValueStack

33 OGNL Object Graphics Net

Language

Object Graph Notation

Language

Object Graphical Notation

Language

Graphics Oriented Net

Language

Object Graph Notation

Language

34 __ file is used to generate input screen. error.jsp web.xml struts.xml index.jsp index.jsp

35 __ file is used to display an error

message.

error.jsp web.xml struts.xml index.jsp error.jsp

36 ___containing action mappings error.jsp web.xml struts.xml index.jsp struts.xml

37 ____ is the deployment descriptor of

web application.

error.jsp web.xml struts.xml index.jsp web.xml

38 Interceptors are used to ____ a request. pre-process post-process pre-process and post-process process pre-process and post-process

39 The __ attribute of package acts as the

key

extends namespace name abstract name

40 __ gets message based on a message

key

String getText Stringkey ResourceBundle getTexts Stringobj String getText

41 ____ tags are used to control the

behavior of data in a page.

control bean data html control

42 ___ tags are used for creating and

manipulating data.

control bean data html data

43 ___ tag is used to include the Servlet. insert include infix includeServlet include

44 The ___ configurations are the basic

unit of struts

action

45 The element of action attribute is class name result name & class name and class

46 The subelement of action attribute is class name result name & class result

47 ___ acts as an action factory by

creating action classes.

Action servlet Action class JSP Servlet HTTP Servlet Action Servlet

48 The process method gets the current browser processor Request processor server Request processor

49 The input buffersize is 4096 bytes 4096 KB 4096 MB 4096 GB 4096 bytes

50 Struts ___ are modular extensions to

the Struts controller.

actionservlet action plugin actionclass plugin

51 Struts ____ are useful when allocating

resources to databases.

actionservlet action plugin actionclass plugin

52 The description property of a

datasource instance is________

text sting character instance text

53 The add method of action error class

add ___

Action error instance Action error object Action error Arraylist Action error instance

54 ___ returns a java iterator referencing

all of the current actionerror without

regard to the property

get() get(java.lang.string) properties() add() get()

55 ___ method returns the number of

Actionerror objects.

get() add() size() properties() size()

56 The first area to apply error

management technique is ___

Actionform object ActionServlet object ActionError object Actionmapping object Actionform object

57 The Actionform validate() method is

called by

ActionServlet ActionError Validate Actionmapping ActionServlet

58 The ___ tag used to display the

Actionerror objects

html logic control bean html

59 The ___method is used to report errors report errors add perform perform

60 Action mapping extension allows us to

turn on and off action debug on ___

action debug class extension action

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act, 1956)

COIMBATORE – 641 021.

DEPARTMENT OF COMPUTER APPLICATIONS

 STRUTS FRAME WORK – UNIT III

S.No. Question Option1 Option2 Option3 Option4 Answer

1 The major subelements of Stuts

componenets.

<icon/>,<display-name/>,

<set-property />

<bean:cookie/>

<icon/>,<bean:define/>

<set-property />

<description/>

<icon/>,<display-name/>,

<bean:stuts /> <description/>

<icon/>,<display-name/>,

<set-property />

<description/>

<icon/>,<display-name/>,

<set-property />

<description/>

2 The ____ subelement used to graphically

represent its parent element

<display-name/> <icon/> <description/> <set-property/> <icon/>

3 The ____ subelement contains a short

texual description.

<display-name/> <icon/> <description/> <set-property/> <display-name>

4 The ____subelement contains a full

length textual description.

<display-name/> <icon/> <description/> <set-property/> <description/>

5 The ____ element contain-number if

<data-source> subelements.

<data-source/> <set-property> <data-sources/> <icon/> <data-sources/>

6 JDBC Java DataBase
Connectivity

Java Driver Class Java Data Beans Connector Java Data Base Connector Java DataBase Connectivity

7 JDBC is a Data Source Data Base Driver Class Data Connector Data Source

8 Types of datasource implementation 2 3 4 5 3

9 ____data source generates standard

JDBC connection objects

basic pooled distributed connector basic

10 The <form-bean/> subelement is used to

describe _____

an element a form an instance a subelement an instance

11 <global-forwards> acts as a container
for public ____ subelements.

<global/> <forward/> <global-forward> <global-forwards> <forward/>

12 The container for <form-bean/>
subelements is

<form-bean> <global-forwards> <form-beans> <form:bean> <form-beans>

13 <action-mapping> subelement is

used to define n number of

<data-source/> <action/> <forward/> <controller/> <action/>

14 ____ is used to modify the default

behavior of the Struts Controller.

<data-source/> <action/> <forward/> <controller/> <controller/>

15 ___ subelement is used to define the

collection of messages.

<data-source/> <message-resources/> <resources-msg/> <msg-resources/> <message-resources/>

16 <controller/> subelement define a m request Processor plug-in action Request processor

11 ____ provides a group of tags

encapsulate and manipulate

JavaBeans.

Bean tags Control tag General tag Html tag Bean tag

12 All bean tags should be prefixed with

a string ____

action html bean bean tag bean

13 The ___ tag is used to retrieve the value

of an HTTP Cookie.

<bean:cookie/> <bean||cookie/> <bean::cookie/> <bean//cookie/> <bean:cookie>

14 The ____ tag is used to retrieve the value

of named bean property.

<bean:name/> <bean:property/> <bean:define/> <bean:value/> <bean:define/>

15 <bean:header/> tag functions like <bean:include/> <bean:define/> <bean:message> <bean:cookie/> <bean:cookie/>

16 <bean:header/> tag stores header values

in

Message Header Page PageContext PageHeader PageContext

17 ___tag is used to evaluate and retrieve

the results of a web application resource.

<bean:name> <bean:include/> <bean:message> <bean:cookie/> <bean:include/>

18 The <bean:message/> tag has no body attributes header files body

19 The ___ tag is used to retrieve the

value of JSP object stores in page

context.

<bean:message> <bean:parameter> <bean:resoure> <bean:page> <bean:page>

20 <bean:parameter/> tag retrieve the

value of a

request parameter response parameter resource parameter retrieve parameter request parameter

21 <bean:resource> tag is used to retrieve

the value of web application resource

by__ attribute

name input id property name

22 <bean:size/> tag is used to retrieve

the number of elements in

an array a collection map all the above all the above

23 ____ tag is used to copy a specified

struts internal component

<bean:struts/> <beans:formbean/> <bean:component/> <bean:write/> <bean:struts/>

24 ____ tag is used to retrieve and print the

value of a named bean property

<beans:formbean/> <bean:struts/> <bean:write/> <bean:cookie> <bean:write/>

25

26

27

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act, 1956)

COIMBATORE – 641 021.

DEPARTMENT OF COMPUTER APPLICATIONS

 STRUTS FRAME WORK – UNIT III

S.No. Question Option1 Option2 Option3 Option4 Answer

1 The major subelements of Stuts

componenets.

<icon/>,<display-name/>,

<set-property />

<bean:cookie/>

<icon/>,<bean:define/>

<set-property />

<description/>

<icon/>,<display-name/>,

<bean:stuts /> <description/>

<icon/>,<display-name/>,

<set-property />

<description/>

<icon/>,<display-name/>,

<set-property />

<description/>

2 The ____ subelement used to graphically

represent its parent element

<display-name/> <icon/> <description/> <set-property/> <icon/>

3 The ____ subelement contains a short

textual description.

<display-name/> <icon/> <description/> <set-property/> <display-name>

4 The ____subelement contains a full

length textual description.

<display-name/> <icon/> <description/> <set-property/> <description/>

5 The ____ element contain-number of

<data-source> subelements.

<data-source/> <set-property> <data-sources/> <icon/> <data-sources/>

6 JDBC Java DataBase

Connectivity

Java Driver Class Java Data Beans Connector Java Data Base Connector Java DataBase Connectivity

7 JDBC is a Data Source Data Base Driver Class Data Connector Data Source

8 Types of data source implementation 2 3 4 5 3

9 ____data source generates standard

JDBC connection objects

basic pooled distributed connector basic

10 The <form-bean/> subelement is used to

describe _____

an element a form an instance a subelement an instance

11 <global-forwards> acts as a container for

public ____ subelements.

<global/> <forward/> <global-forward> <global-forwards> <forward/>

12 The container for <form-bean/>

subelements is

<form-bean> <global-forwards> <form-beans> <form:bean> <form-beans>

13 <action-mapping> subelement is

used to define n number of

<data-source/> <action/> <forward/> <controller/> <action/>

14 ____ is used to modify the default

behavior of the Struts Controller.

<data-source/> <action/> <forward/> <controller/> <controller/>

15 ___ subelement is used to define the

collection of messages.

<data-source/> <message-resources/> <resources-msg/> <msg-resources/> <message-resources/>

16 <controller/> subelement define a m request Processor plug-in action Request processor

11 _provides a group of tags encapsulate

and manipulate JavaBeans.

Bean tags Control tag General tag Html tag Bean tag

12 All bean tags should be prefixed with

a string ____

action html bean bean tag bean

13 The ___ tag is used to retrieve the value

of an HTTP Cookie.

<bean:cookie/> <bean||cookie/> <bean::cookie/> <bean//cookie/> <bean:cookie>

14 The ____ tag is used to retrieve the value

of named bean property.

<bean:name/> <bean:property/> <bean:define/> <bean:value/> <bean:define/>

15 <bean:header/> tag functions like <bean:include/> <bean:define/> <bean:message> <bean:cookie/> <bean:cookie/>

16 <bean:header/> tag stores header values

in

Message Header Page PageContext PageHeader PageContext

17 ___tag is used to evaluate and retrieve

the results of a web application resource.

<bean:name> <bean:include/> <bean:message> <bean:cookie/> <bean:include/>

18 The <bean:message/> tag has no body attributes header files body

19 The ___ tag is used to retrieve the

value of JSP object stores in page

context.

<bean:message> <bean:parameter> <bean:resoure> <bean:page> <bean:page>

20 <bean:parameter/> tag retrieve the

value of a

request parameter response parameter resource parameter retrieve parameter request parameter

21 <bean:resource> tag is used to retrieve

the value of web application resource

by_____ attribute

name input id property name

22 <bean:size/> tag is used to retrieve

the number of elements in

an array a collection map all the above all the above

23 ____ tag is used to copy a specified

struts internal component

<bean:struts/> <beans:formbean/> <bean:component/> <bean:write/> <bean:struts/>

24 ____ tag is used to retrieve and print the

value of a named bean property

<beans:formbean/> <bean:struts/> <bean:write/> <bean:cookie> <bean:write/>

25 The <display-name> subelement

contains a____ textual description.

short long brief label short

26 The <description> subelement

contains a____ textual description.

short long brief label long

27 The <icon> subelement used to

graphically represent its ___ element.

child sub parent icon parent

28 Basic data source generates standard

_____connection objects.
database JDBC data java JDBC

29 The ____ subelement is used to describe

instance.
<forward> <form-instance> <form-bean/> <icon> <form-bean/>

30 <global-forwards> acts as a container

for ___subelements.

public private global all <forward/>

31 The <form-beans> is the container

for ____ subelements

<form-bean> <global-forwards> <form-beans> <form:bean> <form-bean>

32 <action-mapping> is used as the

container for ___ subelements.

<data-source/> <action/> <forward/> <controller/> <action/>

33 ____ is used to modify the default

behavior of the Struts Controller.

<data-source/> <action/> <forward/> <controller/> <controller/>

34 Small icon subelement names a

graphics file that contains a _____

pixel iconic image.

32 x 32 pixel 16 x 16 pixel 8 x 8 pixel 24 x 24 pixel 16 x 16 pixel

35 Large-icon subelement names a

graphics file that contains a _____

pixel iconic image

32 x 32 16 x 16 8 x 8 24 x 24 32 x 32 pixel

36 The images referenced in

configuration files are NOT intended

for ___ display

Client- side Server- side View side Model side Client side

37 The ___ attribute of data-source entry

is used to set minimum number of

connections open at any time

mincount maxcount maximumcount minimumcount mincount

38 The ___ attribute of data-source entry

is used to set maximum number of

connections open at any time

mincount maxcount maximumcount minimumcount maxcount

39 The unique key bound the datasource

instance will be ____

data-key data-source key database key data-snippet data-source key

40 The data-source key bound in the servlet server serveletcontext servletcontent serveletcontext

41 The original values stored in the

httpservletrequest will be lost if the

___ method used.

path name redirect type redirect

42 The maximum file size to be

uploaded can be expressed by __

bytes.

K, M or G M,G or T G,T or P K,G or T K, M or G

43 The default value of file size

uploaded is

250 GB 250 PB 250 MB 250 TB 250 MB

44 The ___ attribute used to store file

being uploaded.

tempDir temporary directory tempdirectory Tempdir tempDir

45 The ___ attribute returns null string

for unknown message keys.

null string empty zero null

46 The ___ attribute identifies the scope

of newly defined bean.

scope toscope newscope define toscope

47 The ___ attribute identifies the scope

of the bean specified by name

attribute.

scope toscope namescope define scope

48 ___ projects are used to manage

application information

Application information Class path Source path All the above All the above

49 ____ are like stop signs to the IDE

debugger.

Jbuilder Breakpoints debugger Startpoint breakpoint

50 The toscope attribute identifies the

scope of _____.

newly defined bean specified by name bean existing bean defined bean newly defined bean

51 The mincount attribute of data-source

entry is used to set ____ number of

connections open at any time

minimum maximum limited restricted minimum

52 The <description> subelement

contains a_long textual description.

<display-name> <description>

<text> <longtext> <description>

53 The ____ bound the datasource

instance will be data source key.___

data unique key key primary Unique key

54 Controller is used to modify the

___behavior of the Struts Controller.

dynamic present default static default

55 _______ acts as a container for

forward subelements.

<forwards> <global-forward> <global-forwards> <global> <global-forwards>

56 Breakpoints are like _____ signs to

the IDE debugger.

restart start break stop stop

57 The ___ subelement used to

graphically represent its parent

element.

<child> <graphic> <icon>

58 <bean-write> tag is used to name the

value of a named bean property
write print retrieve retrieve and print retrieve and print

59 ____tag retrieve the value of a

request parameter.

<bean:parameter/> <bean:parameter/> <bean:retrieveparameter/> <bean:requestparameter/> <bean:parameter/>

60 <bean:resource> tag is used to

retrieve the value of web application

____ by name attribute.

response request retrieve resource resource

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act, 1956)

COIMBATORE – 641 021.

DEPARTMENT OF COMPUTER APPLICATIONS

 STRUTS FRAME WORK – UNIT IV

S.No. Question Option1 Option2 Option3 Option4 Answer

1 To include html tags we should add

taglib subelement to the

web.xml web.html config.xml Cfg.xml web.xml

2 HTML Tags should be prefixed with the

string

htmltag web xml html html

3 The ____ tag is used to insert an HTML

base element

<html:base/> <html:base-element/> <html:element/> <base/> <html:base/>

4 The <html:button/> tag is used to render

an input element with type of ____

input button body form button

5 The <html:button/> tag nested inside the

body of an ___ tag.

<html:base/> <html:buttons/> <html:form/> <html:base/> <html:form/>

6 The <html:cancel> tag is used to render

an input element with the type of

input cancel button element cancel

7 The _____ tag has a body type of JSP. <html:body/> <html:write/> <html:cancel/> <html:base/> <html:cancel/>

8 The ___ is used to render an HTML

input element with an input type of

checkbox.

<html:input/> <html:checkbox/> <html:inputelement/> <html::checkbox/> <html:checkbox/>

9 The <html:errors/> tag is used to display

the ActionError ____.

objects classes collections errors objects

10 To create an HTML form <html:forms/> <html:formbean/> <html:form/> <html:form-create/> <html:form/>

11 The <html:hidden> tag is used to render

the input element with input type of

hide hidden input-hide input-hidden hidden

12 To render the top level element ___ tag

is used.

<html:toplevel/> <html:html/> <html:hidden/> <html:element/> <html:html>

13 To render an html input element with

image ___ tag is used

<html:image> <html:input-image> <html-image> <html:img> <html:image>

14 The image tag must specify __

attrubutes

url src or page altkey accesskey src or page

15. The <html:image/> tag nested inside

the body of an

<html:html/> <html:image/> <html:form/> <html:forms> <html:form/>

15 ___ tag is used to render an html

 element.

<html:image> <html:img> <html:images> <html:form/> <html:img>

16 <html:link/> tag is used to generate

an HTML ____

url link hyperlink href hyperlink

11 <html:multibox/> tag is used to

generate type of __

multibox option button checkbox forms multibox

12 Access key attribute identifies ___

character.

keyboard ASCII unicode string keyboard

13 ___ attribute defines an alternate text

string

alt altkey accesskey name alt

14 __ attribute specify a javascript function

that will be executed when this element

is under the mouse pointer and button is

pressed

onmousedown onmousemove onmouseout onmouseover onmousedown

15 __ attribute specify a javascript function

that will be executed when this element

is under the mouse pointer and pointer is

moved.

onmousedown onmousemove onmouseout onmouseover onmousemove

16 __ attribute specify a javascript function

that will be executed when this element

is under the mouse pointer and pointer is

moved outside the element.

onmousedown onmousemove onmouseout onmouseover onmouseout

17 _____ attribute identify a data member

of the bean

property style styleclass title property

18 <html:select> is used to render an

html input element with a type of

Select-input property elements select select

19 The ____attribute used to identify the

tab order of the elements in the form

tab taborder tabindex tabform tabindex

20 The attribute ___ specifies a

cascading style sheet to apply to the

HTML element.

style sheet style styleld stylecss style

21 The tag is used to generate an html input

element of type option

<html:option/> <html::option/> <html:type/> <html:type-option/> <html:option/>

22 The parent element for html input

option element

<html:option/> <html:input/> <html:select/> <select/> <select/>

23 <html:options> is used to list the

HTML ____ elements

option select input value option

24 The ____ tag is used to render the html

input element with the type of password.
<html:pwd/> <html:password/> <html:pwd/> <html:paswd/> <html:password/>

25 ___ tag is used to render an html with

input type of radio.

<html::radio/> <html||radio/> <html//reset/> <html:radio/> <html:radio/>

26 ____ tag is used to render an html

with an input type of reset.

<html::radio/> <html:reset/> <html:resetting/> <html:rewrite/> <html:reset/>

27 ___ tag is used to create a URI

request.

<html::radio/> <html:reset/> <html:request/> <html:rewrite/> <html:rewrite/>

28 ____ tag is used to render the html

input with a type of submit

<html:submit/> <html:rewrite/> <html:resubmit/> <html:submission/> <html:submit/>

29 ____ tag is used to render the html

input element with the type of text.

<html:textarea/> <html:character> <html:text> <html:string> <html:text>

30 ___tag is used to render an html input

element with type of texarea.

<html:textarea/> <html:character> <html:text> <html:str> <html:textarea>

31 To include html tags we should add

__ subelement to the web.xml

taglib request processor global forward struts-tag taglib

32 ____ should be prefixed with the

string html

html tag bean tag control tag logic Html tag

33 The <html:base/> tag is used to insert

an HTML ____ element

input sub base output base

34 The ___ tag is used to render an input

element with type of button.

<html:button> <html:optionbutton> <html:checkbox> <html:html> <html:button>

35 The <html:button/> tag nested inside

the ___ of an <html:form/> tag.

title body head form body

36 ___attribute specifies an HTML

identifier to be associated with this

HTML element.

styleId style styleclass stylesheet styleid

37 __ attribute specifies the label to be

placed on this button.

label name value display value

38 alt attribute defines an alternate ___

string for this element.

text image video audio text

39 ___ attribute defines the width, in

pixels, of the image border.

height width border image border

40 <img src="/webappname/images/

add.gif" alt="Add to Basket">

What will be the output when the

image cannot be found?

add.gif image will be

display

any image will be display image will not display Add to Basket Add to Basket

41 ____ specifies a JavaScript function

that will be executed when the

containing element loses its focus

onblur onfocus onclick click onblur

42 The ____ tag is used to render the input

element with input type of hidden.
<html:hide> <html:hidden> <html:input-hide> <html:input-hidden> <html:hidden>

43 ___ tag is used to associate the array

of strings

<html:multibox/> <html:checkbox/> <html:option/> <html:array/> <html:multibox>

44 ___ property is used to determine the

currently selected <option> of the

<select> element,

checkbox option image select select

45 It the ___attribute set to true, the

input field generated by this tag sets

to uneditable.

write enable edit readonly readonly

46 Anchor attribute is used to ___ an

HTML anchor to the end of a

generated hyperlink.

Insert add append remove append

47 HTML tags acts as a bridge between JSP & model Client & server View & model Controller & model Jsp & model

48 Which of the following tags in struts

configuration file defines the

JSPavailability of necessary Struts JSP

custom tag libraries?

jsplib taglib JSP-lib Struts-taglib taglib

49 HTML is a subset of linux SGML Unix XML SGML

50 _____ attribute identifies keyboard

character.

Access key Console Keyboard Char Access key

51 Alt attribute defines an alternate text __. char special character text numeric text

52 Onmousedown attribute specify a

javascript function that will be executed

when this element is _____ and button is

pressed

under the mouse pointer under the mouse pointer

and pointer is moved

under the mouse pointer and

pointer is moved outside the

element

on the mouse button under the mouse pointer

53 Onmousemove attribute specify a

javascript function that will be executed

when this element is

under the mouse pointer under the mouse pointer

and pointer is moved

under the mouse pointer and

pointer is moved outside the

element

on the mouse button under the mouse pointer
and pointer is moved

54 Onmouseout attribute specify a

javascript function that will be executed

when this element is

under the mouse pointer under the mouse pointer

and pointer is moved

under the mouse pointer and

pointer is moved outside the

element

on the mouse button under the mouse pointer
and pointer is moved
outside the element.

55 Property attribute identify a ___ of the

bean
data data member class object data member

56 ____ is used to render an html input

element with a type of select

<html:element> <html:html> <html:select> <html:input> <html:select>

57 The tabindex attribute used to

identify the tab order of the elements

in the form

tab tab order tab index tab form Tab order

58 CSS ____ Continuous Style Sheet Cascading Sheet Style Cascading String Style Cascading Style Sheet Cascading Style Sheet

59 The <html:option>tag is used to

generate an html ____ element of

type option

input optional process output input

60 ___ attribute specifies a JavaScript

function that will be executed when

this element loses input focus and its

value has changed.

onmouseout onfocus onchange onclick onchange

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act, 1956)

COIMBATORE – 641 021.

DEPARTMENT OF COMPUTER APPLICATIONS

 STRUTS FRAME WORK – UNIT IV

S.No. Question Option1 Option2 Option3 Option4 Answer

1 To include html tags we should add

taglib subelement to the

web.xml web.html config.xml Cfg.xml web.xml

2 HTML Tags should be prefixed with the

string

htmltag web xml html html

3 The ____ tag is used to insert an HTML

base element

<html:base/> <html:base-element/> <html:element/> <base/> <html:base/>

4 The <html:button/> tag is used to render

an input element with type of ____

input button body form button

5 The <html:button/> tag nested inside the

body of an ___ tag.

<html:base/> <html:buttons/> <html:form/> <html:base/> <html:form/>

6 The <html:cancel> tag is used to render

an input element with the type of

input cancel button element cancel

7 The _____ tag has a body type of JSP. <html:body/> <html:write/> <html:cancel/> <html:base/> <html:cancel/>

8 The ___ is used to render an HTML

input element with an input type of

checkbox.

<html:input/> <html:checkbox/> <html:inputelement/> <html::checkbox/> <html:checkbox/>

9 The <html:errors/> tag is used to display

the ActionError ____.

objects classes collections errors objects

10 To create an HTML form <html:forms/> <html:formbean/> <html:form/> <html:form-create/> <html:form/>

11 The <html:hidden> tag is used to render

the input element with input type of

hide hidden input-hide input-hidden hidden

12 To render the top level element ___ tag

is used.

<html:toplevel/> <html:html/> <html:hidden/> <html:element/> <html:html>

13 To render an html input element with

image ___ tag is used

<html:image> <html:input-image> <html-image> <html:img> <html:image>

14 The image tag must specify __

attrubutes

url src or page altkey accesskey src or page

15. The <html:image/> tag nested inside

the body of an

<html:html/> <html:image/> <html:form/> <html:forms> <html:form/>

15 ___ tag is used to render an html

 element.

<html:image> <html:img> <html:images> <html:form/> <html:img>

16 <html:link/> tag is used to generate

an HTML ____

url link hyperlink href hyperlink

11 <html:multibox/> tag is used to

generate type of __

multibox option button checkbox forms multibox

12 Access key attribute identifies ___

character.

keyboard ASCII unicode string keyboard

13 ___ attribute defines an alternate text

string

alt altkey accesskey name alt

14 __ attribute specify a javascript function

that will be executed when this element

is under the mouse pointer and button is

pressed

onmousedown onmousemove onmouseout onmouseover onmousedown

15 __ attribute specify a javascript function

that will be executed when this element

is under the mouse pointer and pointer is

moved.

onmousedown onmousemove onmouseout onmouseover onmousemove

16 __ attribute specify a javascript function

that will be executed when this element

is under the mouse pointer and pointer is

moved outside the element.

onmousedown onmousemove onmouseout onmouseover onmouseout

17 _____ attribute identify a data member

of the bean

property style styleclass title property

18 <html:select> is used to render an

html input element with a type of

Select-input property elements select select

19 The attribute used to identify the tab

order of the elements in the form

tab taborder tabindex tabform tabindex

20 The attribute ___ specifies a

cascading style sheet to apply to the

HTML element.

style sheet style styleld stylecss style

21 The tag is used to generate an html input

element of type option

<html:option/> <html::option/> <html:type/> <html:type-option/> <html:option/>

22 The parent element for html input

option element

<html:option/> <html:input/> <html:select/> <select/> <select/>

23 <html:options> is used to list the

HTML ____ elements

option select input value option

24 The ____ tag is used to render the html

input element with the type of password.
<html:pwd/> <html:password/> <html:pwd/> <html:paswd/> <html:password/>

25 ___ tag is used to render an html with

input type of radio.

<html::radio/> <html||radio/> <html//reset/> <html:radio/> <html:radio/>

26 ____ tag is used to render an html

with an input type of reset.

<html::radio/> <html:reset/> <html:resetting/> <html:rewrite/> <html:reset/>

27 ___ tag is used to create a URI

request.

<html::radio/> <html:reset/> <html:request/> <html:rewrite/> <html:rewrite/>

28 ____ tag is used to render the html

input with a type of submit

<html:submit/> <html:rewrite/> <html:resubmit/> <html:submission/> <html:submit/>

29 ____ tag is used to render the html

input element with the type of text.

<html:textarea/> <html:character> <html:text> <html:string> <html:text>

30 ___tag is used to render an html input

element with type of texarea.

<html:textarea/> <html:character> <html:text> <html:str> <html:textarea>

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act, 1956)

COIMBATORE – 641 021.

DEPARTMENT OF COMPUTER APPLICATIONS

 STRUTS FRAME WORK – UNIT V

S.No. Question Option1 Option2 Option3 Option4 Answer

1 The ___ is on decision making and

object evaluation

Html tag Logic tag Control tag Generic tag Logic tag

2 logic Tags should be prefixed with the

string

htmltag logic xml html logic

3 The logic taglib contains ____ tags. 12 13 14 15 14

4 The _____ tag evaluates the named

scripting variable is equal to null or an

empty string.

<logic:empty/> <logic:null/> <logic:emptystring/> <logic:nullstring/> <logic:empty/>

5 The ___ tag evaluates if the named

scripting variable is not equal to null or

does not contain an empty string

<logic:null/> <logic:notEmpty/> <logic:empty/> <logic:nullstring> <logic:notEmpty>

6 The <logic:equal/> tag evaluates the

variable equals the ___ value

constant Integer double String constant

7 The ____ tag evaluates the variable not

equals the constant value

<logic:notEqual/> <logic:nonequal> <logic:notEqual/> <logic:equal/> <logic:notEqual/>

8 <logic:forward> tag is used to ____

control of the current request to

previously identified element.

next previous forward globalforward forward

9 <logic:redirect> tag uses to redirect the

current ____ to a resource.

response request action element request

10 The ___ tag evaluates if the variable is

greater than the constant value
<logic:isgreaterThan> <logic:greater> <logic:isgreaterThan> <logic:greaterThan> <logic:greaterThan>

11 ___ attribute specifies an HTTP Cookie

to be used as a variable.

variable cookie property value cookie

12 ___ attribute indicates the iteration

begin.

iteration offset begin scope offset

13 <logic:iterate> tag is used to iterate over

a named collection which contains

Enumerator,iterator,map,

array

Enumerator,map, array iterator,map, array Enumerator,iterator, array Enumerator,iterator,map,

array

14 The ____ tag evaluates if the variable

is less than or equal to the constant

value.

<logic:lessThan> <logic:islessEqual> <logic:lessEqual> <logic:islessThan> <logic:lessEqual>

15. <logic:lessThan> tag evaluates if the

is less than the constant value.

<logic:lessEqual> <logic:lessThan> <logic:islessThan> <logic:islessEqual> <logic:lessThan>

15 ___ attribute specify the data member

of scripting variable.

property scope parameter value property

16 The ____ tag evaluates if the variable

contains the specified constant

values.

<logic:mismatch> <logic:notMatch> <logic:contain> <logic:match> <logic:match>

11 The ____ tag evaluates if the variable

not contains the specified constant

values.

<logic:mismatch> <logic:notMatch> <logic:contain> <logic:match> <logic:notMatch>

12 The <logic:present> tag evaluates if

the variable present in the applicable

Constant attribute scope property scope

13 The <logic:notPresent> tag evaluates

if the variable ____ in the applicable

scope.

not present present match not match not present

14 ___ attribute is used to determine if the

currently authenticated user has the

specified name.

author name user currentuser user

15 Eg: Google Search Engine

If the match tag with an attribute

location= “start”, the output is

Goog gine error search Goog

16 Eg: Google Search Engine

If the match tag with an attribute

location= “end”, the output is

Goog gine error search gine

17 The logic tag is used for____ and object

evaluation

enhancement logic control decision making decision making

18 Logic tags are used to manage

conditional checking of _____.

output text input text tiles form output text

19 ____ tag is used to iterate over a

named collection which contains

enumerator,iterator,map, array.

<logic:map> <logic:iterate> <logic:array> <logic:enumerator> <logic:iterate>

20 The <logic:empty/>tag evaluates the

named scripting variable is __ or an

empty string.

present equal to null notpresent equal to zero equal to null

21 The ___ tag evaluates if the named <logic:null/> <logic:notEmpty/> <logic:empty/> <logic:nullstring> <logic:notEmpty>

scripting variable is neither null or

nor an empty string.
22 The <logic:equal/> tag evaluates the

__ variable equals the specified value

required numeric requested string requested

23 The <logic:notEqual> tag evaluates

the variable ____ the constant value

equal empty notEqual null notEqual

24 <logic:forward> tag is used to

forward control of the current

request to previously identified

element.

action request element member element

25 <logic:redirect> tag uses to redirect

the current request to a ____

response request resource element resource

26 The <logic:greaterThan>tag evaluates

if the variable is ____the constant value

equal to greater than or equal to less than greater than greater than

27 Offset attribute indicates the iteration

iteration offset begin scope begin

28 The <logic:lessEqual> tag evaluates

if the variable is ___the constant

value.

lessThan lessEqual less than or equal to greater than or equal to less than or equal to

29 The property attribute specify the

data member of scripting variable.

property class variable value variable

30 The<logic:match>tag evaluates if the

variable contains the specified

constant ____

values property class variable values

31 ___ attribute is used to append an

HTML anchor to the end of a

generated resource.

scope name value anchor anchor

32 scope

33 not present

34 user

35 Goog

36 gine

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act, 1956)

COIMBATORE – 641 021.

DEPARTMENT OF COMPUTER APPLICATIONS

 STRUTS FRAME WORK – UNIT V

S.No. Question Option1 Option2 Option3 Option4 Answer

1 The ___ is on decision making and

object evaluation

Html tag Logic tag Control tag Generic tag Logic tag

2 logic Tags should be prefixed with the

string

htmltag logic xml html logic

3 The logic taglib contains ____ tags. 12 13 14 15 14

4 The _____ tag evaluates the named

scripting variable is equal to null or an

empty string.

<logic:empty/> <logic:null/> <logic:emptystring/> <logic:nullstring/> <logic:empty/>

5 The ___ tag evaluates if the named

scripting variable is not equal to null or

does not contain an empty string

<logic:null/> <logic:notEmpty/> <logic:empty/> <logic:nullstring> <logic:notEmpty>

6 The <logic:equal/> tag evaluates the

variable equals the ___ value

constant Integer double String constant

7 The ____ tag evaluates the variable not

equals the constant value

<logic:notEqual/> <logic:nonequal> <logic:notEqual/> <logic:equal/> <logic:notEqual/>

8 <logic:forward> tag is used to ____

control of the current request to

previously identified element.

next previous forward globalforward forward

9 <logic:redirect> tag uses to redirect the

current ____ to a resource.

response request action element request

10 The ___ tag evaluates if the variable is

greater than the constant value
<logic:isgreaterThan> <logic:greater> <logic:isgreaterThan> <logic:greaterThan> <logic:greaterThan>

11 ___ attribute specifies an HTTP Cookie

to be used as a variable.

variable cookie property value cookie

12 ___ attribute indicates the iteration

begin.

iteration offset begin scope offset

13 <logic:iterate> tag is used to iterate over

a named collection which contains

Enumerator,iterator,map,

array

Enumerator,map, array iterator,map, array Enumerator,iterator, array Enumerator,iterator,map,

array

14 The ____ tag evaluates if the variable

is less than or equal to the constant

value.

<logic:lessThan> <logic:islessEqual> <logic:lessEqual> <logic:islessThan> <logic:lessEqual>

15. <logic:lessThan> tag evaluates if the

is less than the constant value.

<logic:lessEqual> <logic:lessThan> <logic:islessThan> <logic:islessEqual> <logic:lessThan>

15 ___ attribute specify the data member

of scripting variable.

property scope parameter value property

16 The ____ tag evaluates if the variable

contains the specified constant

values.

<logic:mismatch> <logic:notMatch> <logic:contain> <logic:match> <logic:match>

11 The ____ tag evaluates if the variable

not contains the specified constant

values.

<logic:mismatch> <logic:notMatch> <logic:contain> <logic:match> <logic:notMatch>

12 The <logic:present> tag evaluates if

the variable present in the applicable

Constant attribute scope property scope

13 The <logic:notPresent> tag evaluates

if the variable ____ in the applicable

scope.

not present present match not match not present

14 ___ attribute is used to determine if the

currently authenticated user has the

specified name.

author name user currentuser user

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

The Struts Implementation of the MVC

Reg No. ………………………

 [18CAU301]

 Karpagam Academy Of Higher Education

 (Established Under Section 3 of UGC Act 1956)

COIMBATORE – 64 021

BCA Degree Examination

(For the candidates admitted from 2018 onwards)

THIRD SEMESTER

First Internal Exam July 2019

 DATA STRUCTURES

Time: 2 Hours Maximum: 50 Marks

Date&Session: CLASS: II BCA(A&B)

Part – A (20 X 1 = 20 Marks)

Answer ALL Questions

1.Who developed the struts project?

 a) Craig McClanahan b) Dennis Ritchie c) Tim Bernerslee d) Charles

2. _____ is the container that holds the components of a Web application.

 a) Folder b) Directory Structure c) Files d) Frame

3. Which is a root directory of Tim Bernerslee the web application?

 a) /wileyapp b) /wileyapp/WEB−INF

 c) / wileyapp/WEB−INF/classes d) / wileyapp/WEB−INF/lib

4. This directory is where servlet and utility classes are located.
 a) /wileyapp b) /wileyapp/WEB−INF

 c) / wileyapp/WEB−INF/classes d) / wileyapp/WEB−INF/lib

5. This directory contains Java Archive (JAR) files that the Web application is dependent on.
 a) /wileyapp b) /wileyapp/WEB−INF

 c) / wileyapp/WEB−INF/classes d) / wileyapp/WEB−INF/lib

6. This is where your Web application deployment descriptor is located.
a) /wileyapp b) /wileyapp/WEB−INF

 c) / wileyapp/WEB−INF/classes d) / wileyapp/WEB−INF/lib

7. Which is the backbone of all Web applications? is its
 a) Folder b) Directory Structure c) Deployment Descriptor d) Frame

8. The standard packaging format for a Web application is a
 a) WAR b) JAR c) JPEG d) PNG

9. All __________ files are stored /wileyapp.

 a) JSP b) HTML c) JSP & HTML d) JAR

10. The _________file describes all of the components in the Web application.

 a) web.xml b) HTML c) JSP & HTML d) JAR

11. The performs its logic on the Model components.

 a) Action Servlet b) Action class c) View d) ActiveServlet

The Struts Implementation of the MVC

12. Which command is used to start the Tomcat server

 a) \bin\startup.bat b) \bin\tc\startup.bat c) \bin\begin.bat d) \bin\start.bat

13. The ______ method services all requests received from a client using a simple request/response

pattern.
 a) Perform() b) Service() c) Destroy() d) init()

14. A ServletContext is an object that is defined in the package.
 a) Java.awt b) java.util c) java.io d) javax.servlet
15. _______are the JSP components that bring all the JSP elements together.
 a) Servlets b) Scripts c) Java Script d) Scriptlets

16. The directive is used to insert text and/or code at JSP translation time.
 a) include b) taglib c) session d) info
17. Which tag enables a JSP author to generate the required HTML, using the appropriate client−browser
independent constructs?
 a) <jsp:setProperty> b) <jsp:forward> c) <jsp:plugin> d) <jsp:param>
18. Which sets the value of a bean’s property?
 a) <jsp:setProperty> b) <jsp:forward> c) <jsp:plugin> d) <jsp:param>
19. Which is the Controller component?
 a) org.apache.struts.action.ActionServlet b) org.apache.struts.action.Action
 c) org.apache.struts.action. Servlet d) org.apache.struts.action.Activeservlet
20. All JSPs should be deployed to a Struts application by using a element.
 a) <setProperty> b) <forward> c) <plugin> d) <param>

Part – B (3X 2= 6 Marks)

Answer ALL Questions

21. Name the common components of Web Application.

 Java Servlets, JSP (Java Server Pages), Custom Tags and Message Resources

22. Define Directory Structure.

Directory Contains

/wileyapp This is the root directory of the Web application. All JSP and HTML

files are stored here.

/wileyapp/WEB−INF This directory contains all resources related to the application that

are not in the document root of the application. This is where your

Web application deployment descriptor is located. You should note

that the WEB−INF directory is not part of the public document. No

files contained in this directory can be served directly to a client.

/ wileyapp/WEB−INF/classes This directory is where servlet and utility classes are located.

/ wileyapp/WEB−INF/lib This directory contains Java Archive (JAR) files that the Web

application is dependent on.

23. Write any 2 usages of JSP.

JavaServer Pages, or JSPs, are a simple but powerful technology used most often to generate dynamic HTML on
the server side. JSPs are a direct extension of Java servlets designed to let the developer embed Java logic
directly into a requested document.
.

The Struts Implementation of the MVC

Part – C(3X 8= 24 Marks)

Answer ALL Questions

24.(a) Explain the struts implementation of the MVC.

The Struts Framework models its server−side implementation of the MVC using a combination of JSPs,

custom JSP tags, and Java servlets. In this section, we briefly describe how the Struts Framework maps to

each component of the MVC. When we have completed this discussion, we will have drawn a portrait similar

to Figure 1.1.

Figure 1.1: The Struts implementation of the MVC.

Figure 1.1 depicts the route that most Struts application requests follow. This process can be broken down into

five basic steps. Following these steps is a description of the ActionServlet and Action classes.

1. A request is made from a previously displayed View.

destroy()

70

2. The request is received by the ActionServlet, which acts as the Controller, and the ActionServlet

looks up the requested URI in an XML file (described in Chapter 3, “Getting Started with Struts”),

and determines the name of the Action class that will perform the necessary business logic.

3. The Action class performs its logic on the Model components associated with the application.

4. Once the Action has completed its processing, it returns control to the ActionServlet. As part of the

return, the Action class provides a key that indicates the results of its processing. The ActionServlet

uses this key to determine where the results should be forwarded for presentation.

5. The request is complete when the ActionServlet responds by forwarding the request to the View that

was linked to the returned key, and this View presents the results of the Action.

The Model

The Struts Framework does not provide any specialized Model components; therefore, we will not dedicate an

entire chapter to the Model component. Instead, we will reference Model components as they fit into each

example.

The View

Each View component in the Struts Framework is mapped to a single JSP that can contain any combination of

Struts custom tags.

The Controller

The Controller component of the Struts Framework is the backbone of all Struts Web applications. It is

implemented using a servlet named org.apache.struts.action.ActionServlet. This servlet receives all requests

from clients, and delegates control of each request to a user−defined org.apache.struts.action.Action class. The

ActionServlet delegates control based on the URI of the incoming request. Once the Action class has

completed its processing, it returns a key to the ActionServlet, which is then used by the ActionServlet to

determine the View that will present the results of the Action’s processing. The ActionServlet is similar to a

factory that creates Action objects to perform the actual business logic of the application. The Controller of

the Struts Framework is the most important component of the Struts MVC.

(OR)

 (b) Discuss about the lifecycle of a Servlet.

The life cycle of a Java servlet follows a very logical sequence. The interface that declares the life−cycle

methods is the javax.servlet.Servlet interface. These methods are the init(), the service(), and the destroy()

methods. This sequence can be described in a simple three−step process:

1. A servlet is loaded and initialized using the init() method. This method will be called when a servlet is

preloaded or upon the first request to this servlet.

2. The servlet then services zero or more requests. The servlet services each request using the service()

method.

3. The servlet is then destroyed and garbage collected when the Web application containing the servlet

shuts down. The method that is called upon shutdown is the destroy() method.

destroy()

70

init() Method

The init() method is where the servlet begins its life. This method is called immediately after the servlet is

instantiated. It is called only once. The init() method should be used to create and initialize the resources that

it will be using while handling requests. The init() method’s signature is defined as follows:

public void init(ServletConfig config) throws ServletException;

The init() method takes a ServletConfig object as a parameter. This reference should be stored in a member

variable so that it can be used later. A common way of doing this is to have the init() method call super.init()

and pass it the ServletConfig object.

The init() method also declares that it can throw a ServletException. If for some reason the servlet cannot

initialize the resources necessary to handle requests, it should throw a ServletException with an error message

signifying the problem.

service() Method

The service() method services all requests received from a client using a simple request/response pattern. The

service() method’s signature is shown here:

public void service(ServletRequest req, ServletResponse res)

throws ServletException, IOException;

The service() method takes two parameters:

 A ServletRequest object, which contains information about the service request and encapsulates

information provided by the client

 A ServletResponse object, which contains the information returned to the client

You will not usually implement this method directly, unless you extend the GenericServlet abstract class. The

most common implementation of the service() method is in the HttpServlet class. The HttpServlet class

implements the Servlet interface by extending GenericServlet. Its service() method supports standard

HTTP/1.1 requests by determining the request type and calling the appropriate method.

destroy() Method

This method signifies the end of a servlet’s life. When a Web application is shut down, the servlet’s

destroy() method is called. This is where all resources that were created in the init() method should be

cleaned up. The following code snippet contains the signature of the destroy() method:
public void destroy();

25.(a) Explain the components of JavaServer Page.

The Components of a JavaServer Page

This section discusses the components of a JSP, including directives, scripting, implicit objects, and standard

actions.

JSP Directives

destroy()

70

JSP directives are JSP elements that provide global information about a JSP page. An example would be a

directive that included a list of Java classes to be imported into a JSP. The syntax of a JSP directive follows:
<%@ directive {attribute="value"} %>

Three possible directives are currently defined by the JSP specification v1.2: page, include, and taglib. These

directives are defined in the following sections.

The page Directive

The page directive defines information that will globally affect the JSP containing the directive. The syntax

of a JSP page directive is
<%@ page {attribute="value"} %>

<%@ page import="java.util.*" %>

The include Directive

The include directive is used to insert text and/or code at JSP translation time. The syntax of the include

directive is shown in the following code snippet:
<%@ include file="relativeURLspec" %>

The file attribute can reference a normal text HTML file or a JSP file, which will be evaluated at translation

time. This resource referenced by the file attribute must be local to the Web application that contains the

include directive. Here’s a sample include directive:
<%@ include file="header.jsp" %>

The taglib Directive

The taglib directive states that the including page uses a custom tag library, uniquely identified by a URI and

associated with a prefix that will distinguish each set of custom tags to be used in the page.

The syntax of the taglib directive is as follows:
<%@ taglib uri="tagLibraryURI" prefix="tagPrefix" %>

The taglib attributes are described in Table 2.3.

JSP Scripting
Scripting is a JSP mechanism for directly embedding Java code fragments into an HTML page. Three

scripting language components are involved in JSP scripting. Each component has its appropriate location in

the generated servlet. This section examines these components.
Declarations

JSP declarations are used to define Java variables and methods in a JSP. A JSP declaration must be a complete

declarative statement.

JSP declarations are initialized when the JSP page is first loaded. After the declarations have been initialized,

they are available to other declarations, expressions, and scriptlets within the same JSP.

When this document is initially loaded, the JSP code is converted to servlet code and the name declaration is

placed in the declaration section of the generated servlet. It is now available to all other JSP components in the

JSP.

Expressions

JSP expressions are JSP components whose text, upon evaluation by the container, is replaced with the

resulting value of the container evaluation. JSP expressions are evaluated at request time, and the result is

inserted at the expression’s referenced position in the JSP file. If the resulting expression cannot be converted

to a string, then a translation−time error will occur. If the conversion to a string cannot be detected during

translation, a ClassCastException will be thrown at request time.

destroy()

70

The syntax of a JSP expression is as follows:

<%= expression %>

A code snippet containing a JSP expression is shown here:
Hello <%= getName() %>

Here is a sample JSP document containing a JSP expression:
<HTML>

<BODY>

<%! public String getName() { return "Bob"; } %>

Hello <%= getName() %>

</BODY>

</HTML>

Scriptlets

Scriptlets are the JSP components that bring all the JSP elements together. They can contain almost any

coding statements that are valid for the language referenced in the language directive. They are executed at

request time, and they can make use of all the JSP components. The syntax for a scriptlet is as follows:

<% scriptlet source %>

When JSP scriptlet code is converted into servlet code, it is placed into the generated servlet’s service()

method. The following code snippet contains a simple JSP that uses a scripting element to print the text

“Hello Bob” to the requesting client:
<HTML>

<BODY>

<% out.println("Hello Bob"); %>

</BODY>

</HTML>

You should note that while JSP scriplet code can be very powerful, composing all your JSP logic using

scriptlet code can make your application difficult to manage. This problem led to the creation of custom tag

libraries.

 (OR)

 (b) Explain the Java Servlet Architecture.

The Java Servlet Architecture

A Java servlet is a platform−independent Web application component that is hosted in a JSP/servlet container.

Servlets cooperate with Web clients by means of a request/response model managed by a JSP/servlet

container. Figure 2.1 depicts the execution of a Java servlet.

destroy()

70

The execution of a Java servlet.

Two packages make up the servlet architecture: javax.servlet and javax. servlet.http. The first of these, the

javax.servlet package, contains the generic interfaces and classes that are implemented and extended by all

servlets. The second, the javax.servlet.http package, contains all servlet classes that are HTTP

protocol−specific. An example of this would be a simple servlet that responds using HTML.

At the heart of this architecture is the interface javax.servlet.Servlet. It is the base class interface for all

servlets. The Servlet interface defines five methods. The three most important of these methods are the

 init() method, which initializes a servlet

 service() method, which receives and responds to client requests

 destroy() method, which performs cleanup

These are the servlet life−cycle methods. We will describe these methods in a subsequent section. All servlets

must implement the Servlet interface, either directly or through inheritance. Figure 2.2 is an object model that

gives you a very high−level view of the servlet framework.

The GenericServlet and HttpServlet Classes

destroy()

70

: A simple object model showing the servlet framework.

26.(a) Explain the controller in JSP.

In this chapter, we dig further into the Controller components of the Struts framework. We begin by looking at

three distinct Struts Controller components, including the ActionServlet class, the Action class, Plugins, and

the RequestProcesser.

The goal of this chapter is to provide you with a solid understanding of the Struts Controller components, and

how they can be used and extended to create a robust and easily extended Web application.

The ActionServlet Class

The org.apache.struts.action.ActionServlet is the backbone of all Struts applications. It is the main Controller

component that handles client requests and determines which org.apache.struts.action.Action will process

each received request. It acts as an Action factory by creating specific Action classes based on the user’s

request.

While the ActionServlet sounds as if it might perform some extraordinary magic, it is a simple servlet. Just

like any other HTTP servlet, it extends the class javax.servlet.http.HttpServlet and implements each of the

HttpServlet’s life−cycle methods, including the init(), doGet(), doPost(), and destroy() methods.

The special behavior begins with the ActionServlet’s process() method. The process() method is the method

that handles all requests. It has the following method signature:
protected void process(HttpServletRequest request,

HttpServletResponse response);

When the ActionServlet receives a request, it completes the following steps:

1. The doPost() or doGet() methods receive a request and invoke the process() method.

2. The process() method gets the current RequestProcessor, which is discussed in the final section of this

chapter, and invokes its process() method.

3. The RequestProcessor.process() method is where the current request is actually serviced. The

RequestProcessor.process() method retrieves, from the struts−config.xml file, the <action> element

that matches the path submitted on the request. It does this by matching the path passed in the

<html:form /> tag’s action element to the <action> element with the same path value. An example of

this match is shown below:

4. When the RequestProcessor.process() method has a matching <action>, it looks for a <form−bean>

entry that has a name attribute that matches the <action> element’s name attribute. The following

code snippet contains a sample match:

5. When the RequestProcessor.process() method knows the fully qualified name of the FormBean, it

creates or retrieves a pooled instance of the ActionForm named by the <form−bean> element’s type

attribute, and populates its data members with the values submitted on the request.

6. After the ActionForm’s data members are populated, the RequestProcessor.process() method calls the

ActionForm.validate() method, which checks the validity of the submitted values.

7. At this point, the RequestProcessor.process() method knows all that it needs to know, and it is time to

actually service the request. It does this by retrieving the fully qualified name of the Action class from

the <action> element’s type attribute, creating or retrieving the named class, and calling the

destroy()

70

Action.execute() method. We will look at this method in the section titled “The Action Class,” later in

this chapter.

8. When the Action class returns from its processing, its execute() method returns an ActionForward

object that is used to determine the target of this transaction. The RequestProcessor.process() method

resumes control, and the request is then forwarded to the determined target.

9. At this point, the ActionServlet instance has completed its processing for this request and is ready to

service future requests.

The Action Class

The second component of a Struts Controller is the org.apache.struts.action. Action class. As we stated in

Chapter 3, the Action class must and will be extended for each specialized Struts function in your

application. The collection of the Action classes that belong to your Struts application is what defines your

Web application.

To begin our discussion of the Action class, we must first look at some of the Action methods that are more

commonly overridden or leveraged when creating an extended Action class. The following sections describe

five of these methods.

The execute() Method

The execute() method is where your application logic begins. It is the method that you need to override when

defining your own Actions. The Struts framework defines two execute() methods.

The first execute() implementation is used when you are defining custom Actions that are not HTTP−specific.

This implementation of the execute() method would be analogous to the javax.serlvet.GenericServlet class.

You will notice that this method receives, as its third and fourth parameter, a HttpServletRequest and a

HttpServletResponse object, as opposed to the previously listed execute() method. This implementation of the

execute() method is the implementation that you will most often extend. Table 4.2 describes all of the

parameters of the Action.execute() method.

Struts Plugins
Struts Plugins are modular extensions to the Struts Controller. They have been introduced in Struts 1.1, and

are defined by the org.apache.struts.action.Plugin interface. Struts Plugins are useful when allocating

resources or preparing connections to databases or even JNDI resources. We will look at an example of

loading application properties on startup later in this section.

This interface, like the Java Servlet architecture, defines two methods that must be implemented by

all used−defined Plugins: init() and destroy(). These are the life−cycle methods of a Struts Plugin.

init()

The init() method of a Struts Plugin is called whenever the JSP/Servlet container starts the Struts

Web application containing the Plugin. This method is convenient when initializing resources that

are important to their hosting applications. As you will have noticed, the init() method receives an

ApplicationConfig parameter when invoked. This object provides access to the configuration

information describing a Struts application. The init() method marks the beginning of a Plugin’s life.

destroy()

The destroy() method of a Struts Plugin is called whenever the JSP/Servlet container stops the Struts Web

application containing the Plugin. It has a method signature as follows:
public void destroy();

This method is convenient when reclaiming or closing resources that were allocated in the Plugin.init()

method. This method marks the end of a Plugin’s life.

The Life Cycle of a Servlet

70

The RequestProcessor

As we stated previously, the org.apache.struts.action.RequestProcessor contains the logic that the

Struts controller performs with each servlet request from the container. The RequestProcessor is the

class that you will want to override when you want to customize the processing of the ActionServlet.

 (OR)

 (b) Explain the view in JSP.

The Views

In this chapter, we examine the View component of the Struts framework. Some of the topics that we

discuss are using tags from Struts tag libraries, using ActionForms, and deploying Views to a Struts

application.

The goal of this chapter is to give you an understanding of the Struts View and the components that

can be leveraged to construct the View.

Building a Struts View

As we discussed in Chapter 1, “Introducing the Jakarta Struts Project and Its Supporting Components,”

the Struts View is represented by a combination of JSPs, custom tag libraries, and optional

ActionForm objects. In the sections that follow, we examine each of these components and how they

can be leveraged.

At this point, you should have a pretty good understanding of what JSPs are and how they can be used.

We can now focus on how JSPs are leveraged in a Struts application.

JSPs in the Struts framework serve two main functions. The first of these functions is to act as the

presentation layer of a previously executed Controller Action. This is most often accomplished using a

set of custom tags that are focused around iterating and retrieving data forwarded to the target JSP by

the Controller Action. This type of View is not Struts−specific, and does not warrant special attention.

The second of these functions, which is very much Struts−specific, is to gather data that is required to

perform a particular Controller Action. This is done most often with a combination of tag libraries and

ActionForm objects. This type of View contains several Struts−specific tags and classes, and is

therefore the focus of this chapter.

	1.pdf (p.1-2)
	2.pdf (p.3-7)
	3.pdf (p.8-71)
	4.pdf (p.72-75)
	5.pdf (p.76-113)
	6.pdf (p.114-117)
	7.pdf (p.118-120)
	8.pdf (p.121-124)
	9.pdf (p.125-129)
	10.pdf (p.130-132)
	11.pdf (p.133-135)
	12.pdf (p.136-138)
	13.pdf (p.139-149)

