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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS -II
RSE CODE:1 2 UNIT: I BATCH-2015-2018

UNIT-I

SYLLABUS

Zero“s of a function-Cauchy"“s inequality-Liouville“s theorem-Fundamental
theorem of Algebra- Maximum modulus theorem- Gauss mean value theorem-
Mean value of the value- of a harmonic function on a circle-Term by term
differentiation and integration of uniformly convergent series .

Zeros of Analytic Functions

Suppose that a function f is analytic at a point z;. Since f(z) is analytic at z,
all of the derivatives f'(z) (n = 1,2,...) exist at z. If f(z5) = 0 and if there is
a positive integer m such that £ (z +0) # 0 and each derivative of lower order
vanishes at zy , then f is said to have a zero of order m at z;. The following
theorem provides an alternative characterization of zeros of order m.

1. Zeros of Analvtic function

A zero of an analytic function fz) is the value of z such that fz) = 0.
Suppose f1z) 15 analytic in a domain D and a 15 any point in D. Then. by Taylor's theorem,

J1z) can be expanded about z = a in the form

2@ W
n

Suppose ap=arj=a=......=ap =0, ap=0 (2)

so that fla) = '(a) =..... =" a) = 0./ %) = 0

In this case, we say that f{z) has a zero of order m at z=a and thus (1) takes the form

f)= % a(z-af

D=1

D)= T a(z-a)f ag=
D=

(]

T apw(z-a)"m
n={

(z —a)™ E Apem(Z —2)"
o=0
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Taking T g (2-2)°= §(2) (3)
o=
we get
D =-2" ) @
Now d(a)= I i a,..(z —a)”}
Lo=d Tmil
= [am +";“ a,.p(z-a)* =a,
n=l

Since am =0, s0 dfa)=0
Thus, an analvtic function f{z) is said to have a zero of order m at z = a if f{z) is expressible as
f2)=(z-a)" i2)
where (z) is analytic and ¢(a) = 0.
Also, f1z) is said to have a simple zero at z=a if z =a is a zero of order one.
1.1. Theorem. Zeros are isolated points.

Proof. Let us take the analytic function f{z) which has a zero of order m at z = a. Then, by
definifion_f'(Z) can be expressed as
fiz) = (z —a)™ p(z). where () is analytic and d(a) = 0.

Let ¢fa) = 2E_ Since {(z) is analytic in sufficiently small neighbourhood of a, if follows from
the continuity of §(z) in this neighbourhood that we can choose & so small that, for |z—a| < §,

P(z) — @) = | K
Hence $(2) | = [¢(2) + $(Z) — ¢(a)
= | dfa) — |d(z) — da) |
=|2K |- K

=Kl forlz—a|=<d
and thus, since K = 0, §(z) does not vanish in the region |z —a | < 4.
Since f{z) = (z — a)™ ¢(z). it follows at once that fz) has no zero other than a in the same region.
Thus we conclude that there exists a obd of a in which the onlv zero of f{z) is the point a itself
1e. ais an isolated zero.

The above theorem can also be stated as “Let f1z) be analytic in a domain D, then unless fz) is
identically zero, there exists a neighbourhood of each pomnt in D throughout which the function
has no zero except possibly af the point itself”

From the isolated nature of zeros of an analytic function, we are able to deduce the following
remarkable result.

1.2, Theorem. If f/(z) is an analytic function, regular in a domain D and if 73, 75.....Zp.... 152
sequence of zeros of f (z), having a limiting point in the inferior of D, then f (z) vanishes
identically in D.

Proof. Let a be the limiting pomnt of the sequence of zeros z;, za,..., Zy.... of f{z). Then virtue of
continuity of /({z), la) =0. Again, since f{z) is regular in the domain D and a is an interior point
of D, we can expand fTz) as a power series in powers of z — a as

D)= ¥ au(z-a)* (1)
=]
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which converges in the neighbourhood of a. Now, either fz) is identically zero in this region on
account of the vanishing of all co-efficient a,, or else there exists a first co-efficient a, (say)
which does not vanish. But if the latfer is the case, we have already seen that there is a
neighbourhood of which does not contain any zero of f{z) other than a itself This confradicts the
hypothesis that a is the limiting point of the sequence of zeros z), za,....z;. We are thus led to the
conclusion that fz) is identically zero in the circle of convergence of the series (1) .

We are now free to repeat the same reasoning, starting with any point inside this circle, as the
hypothesis now holds for any such point. In this manner by repeated employment of the same
reasoning, it can be shown that f{z) is identically zero throughout the interior of D.

Example

L 2

) . Ccas Z . . . )
Consider the function f(z) = cotz = ——, which is a quotient of the entire
SN Z

functions p(z) = cos z and gq(z) = sin z. Its singularities occur at the zeros of
q. i.e., at the points z = n7 (n = 0, +1,+2,..). Since p(nm) = (=1)" #£ 0,

g(nm) =0, and ¢'(n7) = (—1)" # 0, each singular point z = n7 of f is a simple
plnm) _ (-1)
qg(nm) (=1)"

n

pole, with residue = =1

2. Complex Integration
Let [a. b] be a closed interval, where a, b are real numbers. Divide [a, b] into subintervals

[a=1to. 1i]. [ti. ©].-- . [te. ta =] (1)
by mserting n—1 points . t,..., ;) satisfing the inequalities

a=tp<h <th <t g<tg=b
Then the set P = {t;, t,.... ty} 15 called the partition of the interval [a, b] and the greatest of the
mumbers t; f, tz — f1,..., fz — fo— 15 called the norm of the partition P. Thus the norm of the
partition P is the maximum length of the subintervals in (1).

1.3. Remarlks. The following two results are direct consequences of the above theorem

(1) If a function is regular in a region and vanishes at all points of a subregion of the given
region, or along any arc of a confinuous curve in the region. then it must be identically zero
throughout the interior of the given region.

(11) If two functions are regular in a region, and have idenfical values at an infinite
number of points which have a limiting point in the region. they must be equal fo each other
throughout the interior of the given region.

1.e. If two functions, which are analytic in a domain, coincide in a part of that domain, then they
coincide in the whole domain.

For this, we take fTz) =f1(z) — fA(2).
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2.29, Cauchy’s Inequality (Cauchy’s Estimate). If f{z) is analytic within and on a circle C
given by |z — 25| = R and if |fTz)| = M for every z on C, then
a . Min
If (@) = RE
Proof. Since fz) is analytic inside C. we have by Cauchv’s integral fornmila for nth derivative of
an analytic function

n o Jiz)
==| ———dr
I @) 2mic (z-2zy)*"
Since on the circle [z — z| =K.
z -z =Re”®, dz=Re” idd
and the length of the circle is 27R. therefore

z (ol f(z)dz
z) [=—=||
7@ 2|z (zzy)™!
o /@
e |z-zy [
_|n 3 M|Re®id8| [n ;; M a8
=5 TR AT gl g
n M Min
- =" g-—=
2‘_{ RD RD
M
Hence IF™zo)| = =

2.30. Liouville’s Theorem. A function which is analytic in all finite regions of the complex
plane, and is bounded, is identically equal to a consfant.
or
If an integral function fz) is bounded for all values of z. then 1t is constant
or
The only bounded entire functions are the constant functions.

Proof. Let z;. z; be arbitrary distinct points in z-plane and let C be a large circle with centre at
origin and radms B such that C encloses z) and z; 1.e. |73 = B, [z| < R

Since fz) is bounded, there exists a positive number M such that [f{z)| =M 7 z.
By Cauchy’s infegral formula,
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1 . fiz)dz
oy - L L@
2mc z-g
1 . dz
ﬂzl:l — — f[:Z}
2mic z-1Z,

Az) Ay = — [ LB =7) 4

mic (z-z:)z-7,)

Thus
L lZa=7| - | f(Z)] dz
Rz2) = Az)] < 2n ¢ z-zlz-z,|
. M|z, -z, |' |dz |
- It ¢ |lz-zllz-z;
& M Z3—I |, |dZ|

z—-F |2zl —-|Z
n 'c(ZI—Z-_)ElzI—zzlJ| ' !

Now, on the circle C, z= Reja: z|=FR.

dz = Re" id#f
Therefore,
Mizi-z |2 |Re®ide
Az2) - flz) = 7m0 (R- 7y D(R—|z, ]
I'lr'I Z,—Z; R 2
— 2 1 LJ‘T
I (B—|z; |[(B—=|z1 ]}
_ Miz-z| 1
(1-alj;_ =) R
\ | :

which tends to zero as E—ac.

Hence f{z)) - flz) =0 ie. flzy) = flz)

But z;, 2, are arbifrary, this holds for all couples of points z;. z; in the z-plane. therefore
flZ) = constant.

2.31. The Fundamental Theorem of Algebra. Any polynomial

P(z)=ag+ajz+.+2,2" az =0, n = 1 has at least one point z = z; such
that P(z;) = 0 i.e. P(z) has at least one zero.

Proof. We establish the proof by contradiction.
If P(z) does not vanish, then the function fz) = %is analvtic in the finite z-plane. Also when
z

z|—x, P(z)—x and hence f{z) is bounded in entire complex plane, including infinity.
Liouville’s theorem then implies that fz) and hence P(z) is a constant which violates n = 1 and

thus contradicts the assumption that P(z) does not vanish. Hence it is concluded that P(z)
vanishes af some point Z = z;

2.32. Remark. The above form of fundamental theorem of algebra does not tell about the
number of zeros of P(z). Another form which fells that P(z) has exactly o zeros, will be

discussed later on. Of course, here we can prove this result by using the process of algebra as
follows :
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(Gauss's mean value theorem) If f is analytic in a sim-

ply connected domain D) that contains the circle CR (z0) = {2 : |z — 20| = R},
then

2

flz0) = % ; f (20 + Re™®) df.

Proof We parametrize the circle Cpg (zp) by
Cr(z0):2(0) =2 + Re® and dz=iRedf, for 0 <8 < 2nm,
and use this parametrization along with Cauchy’s integral formula to obtain

1 [ f(z+ Re®)iRe®® df 1 %"
flz0) =5= { ) =

il
2mwi Jo Ret? T 2r Sy bt

HARMONIC FUNCTIONS

In this section we return to one aspect of the theory that concerns the analysis of harmonic
functions, subject often called potential theory.

Recall that a €2 function u on an open set A C R2Z is said to be harmonic on A if Au =0
on A, where A = djz. + 83 is the Laplacian. The next lemma collects the first elementary but
fundamental facts about the relation between harmonic and holomorphic functions.

Lemma

If f = u+ iv is holomorphic on an open set A C C then its real and imaginary

parts u and v are harmonic on A.

If u is a real harmonic function on a simply connected open set D, then there erists a real
harmonie function v on T such that w+ iv is holomorphic on D, In this case, we will say that
v is the harmonic conjugate of u on D.

Proof. The first part follows from Subsection 1.2 .
Suppose now wu is a real harmonic function on a simply connected open set D. We wish to
veC? (D) satisfying the CR-equations on D, that is, such that

dv = (—dyu)dr + (Jru)dy .
The one on the right hand side is a closed differential since w is harmonic. Since D is simply

connected, it is an exact differential, so such a v exists. It immediately follows that u + iv is
holomorphic. O

We remark that the hypothesis of D being simply connected cannot be relaxed. As an
example, consider A = C '\ {0} and u(z,y) = %lu:;g(:::2 + 4?). Then u is real and harmonic. On
An{z+iy:x >0} is the real part of log 2, that cannot be extended to all of A. Hence, there
exists no function holomorphic on A whose real part is w.
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7.1. Maximum principle. We now prove the maximum principle for (real) harmonic functions.

Theorem 7.2. Let @ C C = R? be a domain (connected open set), u: @ — R be harmonic. If
there exists zp € £ and ry > 0 such that D(zg,rg) C € and u(zg) = supfu(z) : 2 € D(zp, 1)},
then w is constant on 1.

Proof. Let
(Y = {2 €Q: there exists r. > 0 such that for w € D(2,7.), u(w) = u(z0)} .

We wish to show that €2 is open, closed in £ and non-empty, thus showing that Q' = 2.

On D(zp,r0) we can find h holomorphic such that Ref = u. Take f = e, Since |fl=e
e, |f| attains its maximum at z5. Henee f is constant on D{zg,7g), so is w. Thus, @' # 0.
Moreover, £ is open by construction.

Finally, let z € . Let D(z,r,) C 2. Since z € TV, there exists some open disk on which u
is constant. Let h; be the holomorphic function on D(z,r,} whose real part is u. Then, h, is
constant on an open disk, hence on all of D(z,7,), so is . Thus, z € ', £ is closed, that is,
Q=0 0O

Reh _

Theorem 7.5. (The mean value property) Let A € C be open, D(zg,v) € A, u be harmonic
on A. Then

1 2w _
u(z0) = 52 £ u(z0 + re’) df.

Proof. Let s = r be such that D(z,s) C A and let h be holomorphic on Dz, s) and such that
u = Reh, h = u +iv. We can apply Cauchy’s formula to h on v = 8D(z0.7), 7(0) = 20 + re®,
# = [0,2x]. We have

1 h(¢)

h(zo) = Ef c EE[} d(

1 [* h{z+re?).

hlzo + re”) e )freTﬂ
2mi Jgy ret?

2w

_QTL_U

By passing to the real and imaginary part we obtain the conclusion. O

dfl

. 1 2 .
u(zo +re’’) do + iﬂf v(z0 +re'?) dd.
T Jo

Although worth be to stated separately, the mean value property can be obtained as a par-
ticular case of the next result.

Term by term integration and differentiation

Sometimes the caleulus one needs to do involves funetions which cannot be defined in a traditional
way by a formula, but only in terms of convergent series of ‘elementary’ functions. This then
poses a question:
When is the formal term by term integration or differentiation of a series of functions valid (i.e.
will give the same result as the integration or differentiation applied directly to the sum of the
series)?

Earlier we proved the following.
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Theorem 1. Suppose that f, @ [a,b] — R, for each k = 1,2,..., 1s integrable on [a,b] and that
falz) — f(z) uniformly on [a,b] as n — .
Then the limit function f(x) is integrable on [a,b] and f;f(;l‘}d;l‘ = limy_, fab fnlz)dz.

This can be easily converted into a version for the series.
Theorem 1’ (Term by term integration). Suppose that uy @ [a,b] — R, for each b =1,2,..., is
integrable on [a,b] and 3" | up(z) converges uniformly on [a,b].

Then the sum f(z) =35, ug(z) is integrable on [a,b] and f;f(x}d:r =3 ff ().

Proof. Put s,(z) =3 _; ug(r) and apply Theorem 1 to the sequence (s,). H

Thus uniformly convergent series can be integrated term by term.

What about term by term differentiation? Here the situation is somewhat less elegant than
with integration and there is a good reason for that.

Very informally, the integration is a ‘bounded’ operation whereas the differentiation is not.
If u(x) is ‘small’, say |u(x)| < £ for each 2, then the integral |f01 u(x)dr| < £ is also ‘small’, hut
the derivative |u’(z)| may be arbitrary ‘large’, consider e.g. u(x) = ¢ sin(z/c?) and let £ — 0.

The next theorem is essentially a result for integration in disguise (as yvou will see from the
proof}). We can assume very little on the initial series, but the term by term differentiated series
must satisfy a strong condition of being uniformly convergent.

Cauchy’s Integral Formula

Let f be analytic everywhere inside and on a simple closed contour C, taken in
flz)d=

Z—Zg‘

1
the positive sense. If zy is any point interior to C, then f(z) = 5 ﬂ
w7

Proof.

Let C; denote a positively oriented circle |z — zo| = r, where r is small enough

o : z) . .
that (7, is interior to C'. Then, the quotient f(— is analytic between and on
Z— Zp

the contours €, and C'.
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DE: 1

[ ER—C :/ @ .
(z — z0) Jo, (2 — z0)
flz)— f{;?{ﬂdz_

This implies that,
[ f(z) ——dz — f(?g][ —dz. =
c (2 — ) c. \z— ) Je, (z— =)

1
{ dz = 2w, so that
z— zp
f(ch}d

As in Problem 17. we obtain L
— zp)

/() ————dz —2m f(=) = / f(z)

/( (z — z0)

Since f is analytie, and therefore continuous, at z; ensures that corresponding
i ) —flz <

to each positive number £, there is a positive number & such that | f(z)—f(z)| < £
—zp| < 4. Let the radius r of the circle €, be smaller than the number
¢ when z is

whenever |z —:
8. Then |z — z5| = r < & when z is on C}, so that |f(z) — f(zo)]
such a point. Therefore, by Theorem 2.1.4, we obtain

flz) , _ .
.

[

ﬂd: — zﬁ?:f{z{]} = 27"

Jo (2 — z)

Thus,
|

Since, £ > 0 is arbitrary, it follows that
, 1 f(z)
201 = ;
fl; 0) 21 Jo z— :'{]
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Cauchy’s integral formula for Derivatives

The Cauchy’s integral formula can be extended to provide an integral repre-

sentation for derivatives of f at z;. We assume that the function f is analytic

everywhere inside and on a simple closed contour ', taken in the positive sense

and zp is any point interior to €. Then, forn = 1,2, 3, ...,

£ (50) = n! / flz)dz

271 Jo (2 — zp)" 1

This is known as Cauchy’s integral formula for derivatives.

Problem

2
zt—z+1 . . . .
Evaluate ﬁ —ldz, where C'is (a). |z| = % and (b). [z| = 2, oriented

in the positive sense.

Solution.
. 22—z 41, . . .
a). Here. f(z) = ————— is analytic at all points except the point z = 1 and
] \ I P p
z = 1 lies outside C'.
22— z4+1
Therefore by Cauchy — Goursat theorem, f(, —ld: = 0.
Je ™

(b). Here f(z) = z* — z + 1 is analytic everywhere and €' encloses the point

z = 1. Therefore, by Canchy’s integral formula, we get

z—1

22— 241 .
/ = mif(1) = 2,
JO
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Problem

Evaluate jr 0 } P —dz, where C' is the positively oriented
Jefg _ )

circle |z

Solution.

.\ Z i . .
Here, f(z) = {g =y is analytic within and on €', and z = —: lies inside C'.

Therefore by Cauchy’s integral formula, we get

1

-  —1,
./;['9—7‘-’);-—: /{ _{_? dz =2mif(—i) = 2mi(—) =

t::t|

Problem

Evaluate jf, z, where ' is the positively oriented unit cirele.

Solution.

Here, f(z) = ¢ is analytic within and on ', and z; = 0 lies inside .

Therefore by Cauchy’s integral formula for derivatives, we get

&2 e22 9 _ 8mi
C = [ —5 g ®)(0) .
A ,[c{z—n;ﬂﬂf 3 f 0) =3

Problem
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2=z
€

Evaluate [
valuate 'L-'{,z— 092

dz, where C' i1s the positively oriented

i< J‘.-'“\."' — &l
circle |z| = 3.
Solution.
g2z
Here, { D=2 is analytic everywhere, except the points z = 1 and
z— z— .

z = 2, and both of these points lies inside €. Using partial fractions, we have

1 1 1
(z—1)(z—-2) z—-2 =z—-1

Therefore by Cauchy’s integral formula, we get

e e ) 5.
/ dz = / dz — / —dz = 27‘5[::’1 — &%),
(z lé— ) Jez—12 Joz—1

Theorem

Let | be continuous on a domain D. If jl_, f(z)dz = 0 for every closed contour

C'in D, then [ is analytic throughout D.

Proof.

By Theorem 2.2.1, f has an antiderivative in D). i.e., there exists an analytic
function F such that F'(z) = f(z) at each point in D. Since f is the derivative
of an analytic function F, it follows that (See the Remark above) f is analvtic

in D. [
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4. Maximum Modulus Principle. Here, we continue the study of properties of analytic
functions. Contrary to the case of real functions, we camnot speak of maxima and minima of a
complex function fz), since 7 is not an ordered field. However, if i1s meaningful fo consider
maximm and mininmm values of the modulus | fz) of the complex function fz). real part of

fz) and imaginary part of fz). The following theorem known as maximmum modulus principle, is
also true if /{z) 15 not cne-valued, provided | f1z)| is one-valued.

4.3. Theorem. Let fiz) be an analytic function. regular for |z| < R and let M(1) denote the
maximmm of | fz)| on |z| =, then M(r) is a steadily increasing function of r for r << B
Proof. By maximum modulus principle. for two circles
|z| =1 and |z| = 1z, we have
| ffz)| = Mir), where 1; <13
which implies M{n) =Min).n <n
and Mir) = Miry) if fiz) is constant.

Also Mir) cannot be bounded because if it were so, then f{z) is a constant (by Lioureille’s
theorem). Hence M(T) is a steadily increasing function of r.
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PART -B (EIGHT MARKYS)
1.State and prove Cauchy’s inequality.
2.State and prove weierstrass theorem.

3. If u(x,y) is a function harmonic in a simply connected region D, then prove that the mean
value of u(x,y) taken along a circle in D is always equal to its value at the centre.

4. State and prove poisson’s integral.

5. State and prove Liouville’s theorem.

6. State and prove fundamental theorem of algebra.

7. State and prove Maximum modulus theorem.

8.State and prove Gauss mean value theorem.

9.Prove that Zero’s of an analytic function are isolated.

10. Show that the values of the following integrals are zero, where c is the circle |z| = 3

i) [—— dz i) [—— dz

z2 z2+4
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UNIT-111

SYLLABUS

Singularities—IsolatedSingularities-RemovableSingularity-Pole-Essential
Singularity-Behaviour of a function at an isolated Singularity-Determination of the

nature of Singularity -Problems-Residues- Residues Residues theorem(statement
only)-problems

Singular Points and Residues

Recall that a point zg is called a singular point of a function f if f fails to be

analytic at zy but is analytic at some point in every neighborhood of z;.

A singular point zp is said to be 2solated if there is a deleted neighborhood
0 < |z — zg| < € of z throughout which f is analytic.
If there is a positive number R, such that f is analytic for Ry < |z| < o,

then f is said to have an isolated singular point at z5 = cco.

i . z+1 . :
For example, the function f(z) = ———— has the three isolated singular
' (22 + 1)
points z = () and z = +1.
. . 1 . : :
The function f(z) = ————— has the singular points z = 0 and z = 1/n,
' sin(m/z) '

(n = £1,£2,...), all lying on the segment of the real axis from z = —1 to
z = 1. Each singular point except z = 0 is isolated. The singular point z = 0

is not isolated because every deleted =-neighborhood of the origin contains other

singular points of the function (since 1/n — 0 as n — o).
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Now, suppose that z; is an isolated singular point of a function f. Then there
exists £ > 0 such that f is analytic in the anmlus 0 < |z — zp| < £. Hence f(z)

has a Laurent series representation

) . . . b
= Eﬂ” n\< — Z . EC‘J_ ;
f(z) =X pan(z — 20)" + =15 )"

U'J < |,Z — Zp| =< SJ
Let €' is any positively oriented simple closed contour around z; that lies in the
punctured disk 0 < |z — zp| < &.

¥

Since [.(z—z)"dz = 0when z #£ —1, and [, ﬁdz = 2m1, by integrating
Jo Je Z=%

the above Laurent series, term by term around €', we obtain:

/ f(z)dz = 2m1 by.
J07

The complex number by, which is the coefficient of 1/(z— z,) in the above Laurent
series expansion of f(z), is called the residue of f at the isolated singular point
zn, and we denote it as Res._., f(z).

Therefore, we have [, f(z2)dz = 2mi Res._,, f(z).

This provides a powerful method for evaluating certain integrals around simple

closed contours.
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Example

Consider the integral j( 2% sin i dz where C' is the positively oriented unit
circle |z| = 1. Since the integrand is analytic everywhere in the finite complex
plane except at z = (), it has a Laurent series representation that is valid in the
region () < |z| < oc. Therefore by the equation [( flz)dz = 2mi Res,_, f(z),
the value of integral f( 2% sin é dz 18 27 1 times the residue of its integrand af

z=10.

Note that

s . 1,1 1 1 1 1 11 11 i

Z"sin — =2 [;—5;4—5;—] — —E——Fﬁ—q— 0 < |z|] < cc.
.. 1. -1 s . 1 -1

Here, the coefficient of — i1s —. =Res,_,,2" sin — = —-. Therefore,

3 z 3!

v J. _J. il ?

2 - g

2 S j: = 2”. . — .
./(_‘.'d s Z ‘ ! 3' 3

(Cauchy’s Residue Theorem)

Let C' be a simple closed contour, described in the positive sense. If a function
f s analytic inside and on C except for a finite number of singular points z
(k=1,2,....n) mnside C, then
o F(2)d= = 2mi S Ress_ (2)

Proof.
Let the points z; (k= 1.2, ..., n) be centers of positively oriented circles Cj,

which are interior to €' and are so small that no two of them have points in
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common. The circles Cy, together with the simple closed contour ', form the
boundary of a closed region throughout which f is analytic and whose interior
iz a multiply connected domain consisting of the points inside €’ and exterior to

each Cl. 5

) x

Hence, by the Cauchy—Goursat theorem for multiply connected domains,

. But, f( flz)dz = 2mi Res,_,, f(z) (k=1,2,...,n).

2=z

Therefore, [, f(z)dz = 2mi ¥} Res._., f(z). O

Residue at Infinity

Suppose that a function f is analytic throughout the finite plane except for
a finite number of singular points interior to a positively oriented simple closed
contour C'. Let R; denote a positive number which is large enough that C' lies

inside the circle

z| = Ry. Then, the function f is clearly analytic throughout
the domain Ry < |z| < oo and in this case, the point at infinity is said to be an
isolated singular point of f. Now, let Cjy denote a circle |z| = Ry, oriented in the

clockwise direction, where Ry > Hy.
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The residue of f at infinity is defined by means of the equation

f(z)dz =271 Res,—oo f(z2) ——— —— (1)

S

Since f is analytic throughout the closed region bounded by €' and Co, the

principle of deformation of paths implies that
[ flz)dz = flz)dz = — f(z)d=.
JO J—Cg

Therefore, [, f(z)dz = —2m i Res._f(z) ————— (2).

Now to find this residue,we write the Laurent series
flz) =00 oen 2" (Ry < [z] < o0),

where

G

2mi | g, 21

Replacing z by 1/z in the above Laurent series and then multiplying by 1/22, we

see that

11 . . 1
Y e . +2 _ g . ] .
_gf{;J = X _Cn z" = E:I:"[L:—'LC?I—Q 2" (0<z| < E]
.. . 1 1
Therefore, by definition of residues, ¢_; = Rcss:{][—z f(=)]. But, by the above
22" 'z
formula to compute the coefficients of Laurent series,
— [ f
1 = — Z Zz
' o J-c, (
. o 1,1 o
L = jC-"c:. f(z)dz = —2m i Rf-_ss:={][;ﬂ;}] ————— (3).
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Now from equations (1) and (3), it follows that
1 .1
Res;oof(2) = —Ressol 5 f(0)] ————~ (4)

From equations (2) and (4), we obtain the following theorem, which is sometimes
more efficient to use than Cauchy’s residue theorem since it involves only one

residue.

Problem

, . bz —2 . . : i
Evaluate the integral j I dz, where C' is the positively oriented circle
Je S, —

Z
|z| = 2.
Solution.
: ) 5z —2 : : .
Here, the integrand f(z) = ﬁ has the two isolated singularities z = 0
Z\Zz —
. . . - . Sz —2
and z = 1, both of which are interior to C'. We first expand f(z) = ﬁ as
Nz —

a Laurent series about z = 0 as follows:

bz -2 bz -2 —1 L2
—— . :l;,'_)——
=

- 2 o .
- 1) . 1 —1l—z—2"—..) (0<|z| <1).

Therefore, the Res,_yf(z) is the coefficient of 1/z in this Laurent series expan-

sion, 1.e., Res,_gf(z) = 2.
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) o 5z — 2 _
Now we expand f(z) = {—l] as a Laurent series about z = 1 as follows:
Nz —
bz—2  H(z—1)+3 1 . 3 L a2
G- -0 1+re_p 0t pl-GE-D+lE-D7-]

when 0 < |z—1| < 1. From this expansion, we get Res,_; f(z) = 3, the coefficient

of i/(z — 1). Therefore, by Cauchy’s residue theorem,

/ bz — !
Ji :( -

}dz = 2mi [Res,—_of(z) + Res,—1 f(z)] = 2m [2+ 3] = 107 «.

el L

[

Remark.

The above problem can also be solved by using Theorem 4.1.2. Here,

{ 1. 5-2: 5-22 1 5 _ ,
—f(=)=—= _ 2 e (2 ) (1) (0< 2] < 1)

z2" 2 z(1 — z) z 1—=z z

Therefore, Re sv_g[—f{ )] is the coefficient of 1/z in the above Laurent series

expansion. i.e., Res,_g —f{ )] = 5. Therefore,

1
[ ?}d7—7*ipfs_[]—f—]_=2ﬁé-5:10?.’?.
Jo z
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EXAMPLE 7.2.1 Let us find [f )dz, where f(z) = ﬁ

and I' is the positively oriented circle with centre 0 and radius 2.
By residue theorem,

[% = 2mi[Res(f,z1) + Res(f, z2)]. 21 =10, 29 = 1.
Jr z(z — 1,

Since z; = 0 and zo = 1 are simple poles of the function
Res(f,2z) = lim zf(z) = —1,
) z—0 )
Res(f g]_llrr{ z—1)f(z) = 1.

Hence, [{d—ﬂ = 0. O]
Jr A

1
2(z —1)2
and I' is the positively oriented circle with centre () and mdluk 2. By
residue theorem,

EXAMPLE 7.2.2 Let us find f f(z)dz, where f(z) =

1z . .
f ﬁ = 2mi[Res(f,z1) + Res(f,z2)], 21 =0, 20 = 1.
r<iz— 1
Since z; = 0 18 a simple pole and 22 = 1 is a pole of order 2,

Res(f.z1) = lir[l}"f{”] =1, Res(f.z2) = ¢'(1)

where p(z) = % so that ¢'(1) = —1. Thus, / W = 0. L]
Jr Az — 4

Example

(Simple Pole)

Dz — 2
z— 1"

Consider the function f(z) =
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i 5z—2 B(z—1)+3 _ 3 S
Note that f(z) = — = ( ] =5+ , which is the Laurent
z—1 (z—1) (z—1)
bz — 2 . . .
about the isolated singular point z = 1. Here,

series expansion of f(z) =

. and hence

the principal part contains only one nonzero term namely

Hz — 2

z = 1 is a simple pole of f(z) and Res,_; .= 3.
T —
Example
(Pole of Order 2 )
Consider the function f(z) = ! Note that
5 : - ‘[Z}—ZQ{Z——I_J-]._J, ¢
. 1 1 1 1 | 5 o
f[LZ}_T—U_;m ?—:—l—z-‘-d— ..... {Uh|zj|<;l].
Thus, the principal part of the Laurent series expansion of f(z) = ﬁ
o o o
about the isolated singular point z = 0 shows that z = 0 is a pole of order 2,
1
and Res,_y —— = —1.
z(z+1)
Example
(Removable Singular Point )
: : . SiT 2
Consider the function f(z) =
B sin z 1 B B 2? : o
Note that = [z — o + i ] =1— a1 + ETR (0 < |z|_ < 00).
sz

has no

Thus, the principal part of the Laurent series expansion of f(z) =
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S g and if

terms. = z = (0 1s a removable singular point of f(z), Res,_g

we set f(0) = 1, f(z) becomes an entire function.
Example

(Essential Singular Point )

We have

1 1 1 1 1
- e
€z = Yoo =1+ - - —+.... (0 < |z| < o0)
n=Onl o 11z 21227 3153 |
Thus, the principal part of the Laurent series expansion of f(z) = e= con-
tains infinitely many terms. = z = 0 is an essential singular point of f(z)

1
and Res,_g ez = 1.

Problem 31.

, . . , 1 —cos z
Show that z = 0 is a removable singularity of the function f(z) = ——

Solution.
We have the Macalurin’ series expansion

22 24 28
cos z=1— S - T (|z] < o).

Therefore, for 0 < |z| < oo, we have
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L 1 —ros z B 1 i { 1 1 1 . 1 22 2
f@)=——F—=5l-Utqotgamtgazt-=ggtgt—

The principal part of the Laurent series expansion has no terms. = z =01is a

. . 1 —vcos =
removable singular point of ———.
Z

If we set f(0) = 1/2, f(z) becomes an

entire function. |

Problem 32.

—1

Evaluate [ e Zsin ( i) dz where C' is the positively oriented unit circle.

C
Solution.
We have the series expansions

PR S B B B
e :l——+§;_§_;+([}i Z|&’.‘-CJI

and

= The principal part of the Laurent series expansion of e~/ sin (1) has infinitely

many terms. = z = 0 is an essential singular point with residue 1. Hence

f( e /2sin (%] dz=2mi-1=2ma.
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Problem 34.

, , . 323 42 ,
Find the value of the integral [, - — dz, taken counterclockwise
S z—=1)(z2+9)
around the circle |z — 2| = 2.
Solution.
32842 . : .
Here, f(z) = — - has the singular points z =1 and z = £3 ¢ and
(z—1)(224+9)
all these are simple poles.
Here, C'is |z — 2| = 2. The simple poles z = 1 lies inside C' , whereas z — —31

and z = 3 2 lies out side .

As in above problem, we find that Res,_f(z) = 1/2. By Cauchy’s residue
theorem,

32% + 2
|G eyt = 2 e f () =

Problem 35.

. i - . .

Evaluate | o Wd z, along the circle |z — 1| = 3 taken in counterclockwise
direction.
Solution.

: es . .
Note that f(z) = ——— is analytic at all points except z = —1.
(z4+1) ’
Here, C'is |z — 1| = 3. = The singular point z = —1 lies inside C' .
o(z)

Also, we can write f(z) = where ¢(z) = .

(z + l','l2
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Since ¢(z) is analytic and non zero at z = —1, it is a double pole of f, and
@'(—1)
Res,__1f(z) {U =e L.
L€ 2w 1
Hence, [, ————=dz =2mi Res,— 1f(z) =2ri-e ' =
Je Gy esz=-1]{ e
Theorem

Let two functions p and q be analytic at a point zy . If p(z) # 0, g(z) = 0,

and q'(zp) # 0, then zy is a simple pole of the quotient p(z)/q(z) and

Example

Cas Z . . . .
, which is a quotient of the entire

Consider the function f(z) = cotz = —
517 2

functions p(z) = cos z and g(z) = sin z. Its singularities occur at the zeros of

g. i.e., at the points z = nw (n = 0,+1,+2,...). Since p(nw) = (—1)* # 0,
g(nm) =0, and ¢'(n7) = (—1)" # 0, each singular point z = nm of f is a simple
T' 1
pole, with residue = pam) _ (1) =1
¢(nm) (=1
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Problems:

Find the residues of f(z) =

1 : :
O at singular points.

Solution.

z+1
Here, f(z) = 54—
ere, f(z) 710
_ h(z _ z+1 . - . . :
flz) = #z) where ¢(z) = -. Since ¢(z) Is analytic at 3 ¢ and ¢(3 ) # 0,
' z— 3 z+ 31 q_;
O — 1

z =3 1 1s a simple pole of f, and Res, 5 ;f(z) =¢(3 1) = 5

1s analytic at all points except z = &3 . We can write

3L

Similarly, z = —3 7 is also a simple pole of f, and Res._ 5 ;f(z) = ;

PART-B(EIGHT MARKYS)

1.prove that If z = a is a pole of order m of a function f(z), then z = a is a zero of order m of the
function 1/f(z2).

2.A function has an isolated singularity at z=a but is analytic in the deleted neighbourhood

0<|z — a|<R. If the function is bounded in the deleted neighbourhood, then prove that
the singularity is a removable singularity.

3.Find the residues of f(z) =

Z M - -y .
S Y—y: at its singularities.

4. State and prove Weierstrass theorem.
5. If z = ais a pole of a function f(z), then prove that lim f(z) = oo,
Z—>a

1
z(eZ-1)"

6.Find the orders of poles of f(z) =

7.State and prove residue theorem.

8.1f z = a is a removable singularity of a function f(z), then prove that there exist a deleted
neighbourhood of z = a in which f(z) is bounded.
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9. If a function f(z) is analytic in a deleted neighbourhood of z = a and if lim f(z) = o,
zZ—>a
then prove that z=a is a pole of f(z).

10. If z=a is a zero of order m of an analytic function f(z), then z=a is a pole of order m of
he function —.
the functio @

11.1f a function f(z) is analytic in the extended plane except at a finite number of singularities
including z = oo, then the sum of the residues of f(z) is zero.

12.State the nature of singularity of f (z) in the following cases:

z_ g
i)e 1 II)smz

1
iii) cosec z —=
zZ z
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UNIT-V
SYLLABUS

Meromorphic functions: Theorem on number of zeros minus number of poles
Principle of argument: Rouche"s theorem- Theorem that a function which is
meromorphic in the extended plane is a rational function.

5. Meromorphic Function. A function fz) is said to be meromorphic in a region D if it is
analytic in D except at a finite number of poles. In other words, a function f{z) whose only
singularities in the entire complex plane are poles, 1s called a meromorphic function. The word
meromorphic is used for the phrase “analytic except for poles”. The concept of meromorphic is
used in contrast to holomorphic. A meromorphic function is a ratio of entire funcfions.

Rational functions are meromorphic functions.
2
z- -1
eg. &= —5—
z°+27° +7
_ (z+Diz-1) (z+Diz-1)
z(zJ' +2z° +1) z{zl —1:|l

_ (z+D(z-1)
z(z+i)* (z-1)°
has poles at z =0 (simple). at z =+1 (both double) and zeros at z = + 1 (both simple)

Since only singularities of /{z) are poles, therefore f1z) is a meromorphic function.
Similarly, tan z, cot z, sec z are all meromorphic functions.

A meromorphic funcfion does not have essential singularity. The following theorem tells about
the number of zeros and poles of a meromorphic function.

5.1. Theorem. Let flz) be analytic inside and on a simple closed contour C except for a finite

mumber of poles inside C and let f{z) = 0 on C, then ! - @ dz=N-P
m™ f(2)

where N and P are respectively the total mumber of zeros and poles of f{z) inside C, a zero (pole)
of order m being counted m times.

Proof. Suppose that fz) is analytic within and on a simple closed confour C except at a pole
z =a of order p inside C and also suppose that f{z) has a zero of ordern at z =0 inside C.
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Then, we have to prove that
1, /@
2mC f(z)

Let v; and T be the circles mnside C with centre at z = a and z = b respectively.

dz=n-p

|k | .4 Tl (_1}:) III|C
\__J/

Then, by cor. to Cauchy’s theorem. we have
L I @ 1 1@, 1, 7@, O
2m™ f(z) 2miy, f(2) mir, f(2)
Wow, flz) has pole of order patz=a, so
g(z) 4
)= —=—— 2
=25 @)
where g(z) is analytic and non-zero within and on 1. Taking logarithm of (2) and differentiating,
we get

log fiz) = log g(z) — p log (z — a)
Sz _g@_ p

o /@ @ z-a
Therefore,
[N LI 3)
T f(z) 1 g(z) 1 I3
Since % 15 analytic within and on v, by Cauchy theorem,
gz
- 22
I dz=0
':'.'_ g(z)
Thus (3) gives | @ dz=-2mip 4
-:"_ f{z:]
Again f{z) has a zero of order n at z = b, so we can write
flz) =(z-1)" i(2) ()

where {(z) 15 analvtic and non-zero within and on T,
Taking logarithm then differentiating, we get

f'z) __n 9@

flz)y z-b oz
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or
- 'z - dz z
[22gon 2.1 18, ©
1, f(@ R Z-0 3 "1‘{2:'
Since @ 1s analytic within and on T, therefore
(z)
| V() ——dz=0 and thus (§) becomes
T ‘1”:
i L@ g5~ 27in @
7 Jf(2)
Writing (1) with the help of (4) and (7), we get
e ®)
2m ¢ f(2)
Now, suppose that f{z) has poles of order py atz =ag form=1, 2,. .1 and zeros of order oy at
z=bpform=1 2. s within C. We enclose each pole and zero by circles vy, va...., v and Ty,
T...... T:. Thus {E) becomes
'l . _}" () r
dz= E n ¥
27 fl:Z} = m~ = PII
Taking ¥ n_=N. i p,, = P.we obtain
il
1 | f (2) +——dz=N — P which proves the theorem. This theorem is also known
2m ¢ f(z)

as the argument principle which can be put in a more explicit mamner as follows :

5.2. Theorem (The Argument Principle). Let flz) be meromorphic inside a closed contour C
and analvtic on C where f{z) = 0. When f{z) describes C, the argument of f{z) increases by a
multiple of 27, namely

Ap arg flz) =2x (N-P)
where N and P are respectively the total mumber of zeros and poles of /{z) mnside C, a zero (pole)
of order m being counted m times.

Proof. Let arg flz) = ¢

S0. we can write
fz) =|f2)| e*
le. log flz) = log | fiz)| + i (1)

Then as proved in the above theorem 4.1,
N-p-L | [P
2ni ¢ f(2)
[ d(logfz)
m ¢
1

[ d(log |flz)| +1d)
2m ¢

[
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1 . 1 .
= — [ d(og| i+ db )
LM ¢ LI ¢

The first integral in (2) vanishes, since log | fz)| is single valued, ie . it refurns to its original

value at z goes round C. Now, | df is the variation in the argument of f{z) in describing the
c

contour C.
Therefore [dd = Ac arg fz)
Thus, (2) becomes

Aparg fiz)=2n (N -P)
This formmla makes it possible to compute the number N-P from the variation of the argument
of flz) along the boundary of the closed contour C and 1s known as argument principle.

In particular, if f{z) is analytic inside and on C, then P =10
and N= L_"u: arg flz).
2n

5.3. Rouche’s Theorem. If f1z) and g(z) are analytic inside and on a closed contour C and
g(z)| = | fiz)| on C, then fiz) and fz) + g(z) have the same number of zeros inside C.

Proof, First we prove that neither f{z) nor f{z) + g(z) has a zero on C.

Ifflz)hasazeroatz=aon C, then fla)=10
Thus @) < |flz) = |g@)] <A2)=0
= g@=0 = |fla)=lg(a)

1e |fiz)|=lg(z)|atz=a
which 1s contrary to the assumption that
lg(2)| < Az)| on C.
Again ifflz)+g(z) hasazeroatz=bon C,
then flb) +gb)=0 = flb) =—g(b)
ie. | L) = (L)

again a contradiction.
Thus, neither f{z) nor f{z) = g(z) has a zeroon C.

WNow, let N and W' be the oumber of zeros of f{z) and f{z) + g(z) respectively inside C. We are fo
prove that N=N".

Since fz) and flz) + g(z) both are analytic within and on C and have no pole inside C, therefore
the argument principle

L N—P with P=0. gives
Im o f

Lifpon Ly 2w
Imip f my f+g

Subtracting these two results, we get

L [ﬂ—i}jzﬂ\“ -N

mc [ f+g f
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Let us take ¢z =£50 thatg =7
P ) g=f

Now, |g| <[l = lgiff<1ie. |p<|

Therefore,
flvg _ 49+ _ A+ )+ £
f+g f+fih f(1+d)
_F, ¢
f 1+
ie. fl+gl_ E_i @)
f+g £ 1+¢
Using (2) in (1), we get
. 1. ¢ 1 . ., a
N'-N=—| —dz=—| &'(1 dz 3
2L T ) YA (3)

Since we have observed that |§| < 1. so binomial expansion of (1 + ¢)" is possible and this
expansion in powers of § is uniformly convergent and hence term by term integration is possible.
Thus, | ¢ (1+)ldz= | &'(1-d+b" — " +..) dz
c c
=] ¢dz— [ d¢'dz+ ] ¢ ¢'dz 4
c c C
Now, the functions /" and g both are analytic within and on C and /= 0 g = 0 for any point on C,
therefore ¢ = g/f is analvfic and non-zero for any point on C. Thus & and its all derivatives are
analytic and so by Cauchy’s theorem, each integral on R H 5. of (4) vanishes. Thus
[ o1+ dz=0
and therefore from (3), we conclude N' - N =10
le. N=N

5.5. Example. Determine the number of roots of the equation
-4 +7-1=0
that lie inside the cirele [z|=1

Solution. Let C be the circle defined by z|=1
Let us take flz) =2° — 4. g(z) = -1

On the circle C,
g(z)| zt -1 _ z|* +1
f@| |Ff-42° | |zf14-2 |
oIk 2 2,
4|z 4-1 3
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Thus |g(z)| <|fz)| and both fz) and g(z) are analytic within and on C, Rouche’s theorem implies
that the required number of roots is the same as the number of roots of the equation z° — 42" =0
in the region lz| = 1. Since z° — 4 = 0 for |z| < 1. therefore the required number of roots is found to
be 5.
5.6. Inverse Function. If Tz) = whas a solution z = F{w), then we may write

AFw) } =w. F{ flz)} = z. The function F defined in this way, is called inverse
function of 7

5.7. Theorem. (Inverse Function Theorem). Let a function w = f{z) be analytic at a point z=z;
where f'(zo) = 0 and wo = flzo).

Then there exists a neighbourhood of wy in the w-plane in which the function w = flz) has a
unique inverse z = F(w) in the sense that the function F is single-valved and analvtic in that
neighbourhood such that F{wy) = z; and

Fiw)= L

f(@

Proof. Consider the function f{z) — wy. By hypothesis, fzg) — wy = 0. Since f'(zg) =0, fis not a
constant function and therefore. neither fz) — wo not f'(z) is identically zero. Also fiz) — wo 1s
analytic at z = zg and so it is analvtic in some neighbourhood of zp. Again, since zeros are
1solated, neither f{z) — wy nor /7 '(z) has any zero in some deleted neighbourhood of z;. Hence
there exists = = 0 such that f{z) — wy 15 analytic for |z — zg| £ = and f{z) — wy = 0, £'(z) = 0 for
0 < |z—zg| = = . Let D denote the open disc

{z: |z -7y < =}
and C denotes its boundary

{z:|z—zg| = =}.
Since flz) — wy for |z — zg| £ =, we conclude that | fTz) —w;| has a positive nuninmm on the circle
C. Let

Ticﬂ Az)—wol=m

and choose & such that 0 < & <m.

We now show that the function f1z) assumes exactly once in D every value wi in the open disc
T={w:|w-wp =&} We apply Rouche’s theorem to the functions wy — w; and
flz}—wy. The condition of the theorem are satisfied, since
[Wo—wn| < d<m= IEEJ;[ |flz) —wry| = [fiz) — wy| on C.

Thus we conclude that the functions.

Sz —wo and (f{z) —wo) + (wo —an) =fz) —wi
have the same number of zeros in D. But the function fz) — wy has only one zeroin D 1e a
simple zeros at zg, since (fiz) —wy) =7(z) = 0 at z;.
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Hence flz)—w, nmst also have onlv one zero, say z; in D. This means that the function fz)
assumes the value w, exactly once in D. It follows that the fonction w = f{z) has a unique
inverse, say z = F(w) in D such that F is single-valued and w =f {F(w)}. We now show that the
function F is analvtic in D. For fix wy in D, we have fiz) =w; foraunique zy m D. If wisin T
and F(w) =g, then

F(w)—-F(w,) _ z-z; 1)

W-W, f@)-Flzy)

It is noted that T is continuous. Hence z — z; whenever w—w;. Since z; D, as shown above [
"(z1) exists and is zero. If we let w—w, then (1) shows that

Fiw;) = .1 i
F'(z)
Thus F'{w) exists in the neighbourthood T of wy so that the function F 1s analytic there.

Lemma 0.1. A rational function has a pole or removable singularity af
infinity. It has a removable singularity if and only if deg () = deg P.

Theorem 0.1. The only meromorphic functions on C are rational func-
tions.

Proof. Let F : C—-Chea meromorphic function.

Claim-1. F has only finitely many poles {p1,--- ,pn} in the complex plane
.
To see this, note that F'(1/z) has either a pole or zero at z = 0. In either

case there is a small neighborhood |z| < ¢ which has no other pole. Which
is the same as saying that F' has no finite pole in |2| = 1/z. But |2| < 1/c
is compact, and since all poles are isolated, this shows that there are only
finitely many poles. Now, corresponding to each of the poles pr. € C there
exists a polynomial P, (see Remark 0.2 in Lecture-20) such that

F(z) = B ) + Gi(2).

z— Pk

where (7. is holomorphic on a whole neighhorhood around py. (including at
the point pr). Similarly, we can write

F(3) = Po(3) +G=(2).

¥

where as before, G(z) is holomorphic in a neighborhood of 2 = 0.
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Claim-2. The funetion

H(2) = F(2) — Py(2) — i A ! )

v o
k=1 - Pk

is an entire and bounded function.

Assuming the claim, by Liouville’s theorem, H (2 is a constant, and hence
F(2) must be rational, and the theorem is proved. To prove the claim, first
note that clearly, H(2) is holomorphic away from {p1,--- ,pn}. At some
2 = P, P;(1/2 — p;) is holomorphic for all j # k. On the other hand, near

Pk

F(z) = B(——) = Gi(2)

z = Pk

which is holomorphie. This shows that H(z) is entire. As a consequence, to
show boundedness, we only need to show boundedness on |2| = R for some
large R. To see, first observe that since Fp are polynomials,

1
lim Pk( ) — 0.
Hence it is enough to show that F(2) — Pa(2) is bounded near infinity. But
this follows immediately from noting that

Gol2) = F(3) = P (3)

”

is holomorphic near 2 = 0 and hence is bounded on |z| < ¢ for some £ > 0.
In particular F'(z) — Py (2) is bounded on |2| > 1/s. This proves the claim,
and hence completes the proof of the theorem.

O

A simple consequence of the proof is the following theorem on partial
fraction decomposition that we take for granted as an important tool in
integration theory, but never see the proof of.

Corollary 0.1. For any rational function R(z) = P(z)/(}(z) has a partial
fraction decomposition of the form

R(z):Pmiz-HiPk( ! ).
k=1

2= Pk

where p is a oot of Q(z) of order my., P is a polynomial of degree my,
and deg P, = deg P — deg ().
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS -I1
RSE DE: 1 2 UNIT: V BATCH-2015-2018

PART - B (EIGHT MARKY)
1.State and prove the principle of argument in meromorphic function.
2.State and prove fundamental theorem of algebra in meromorphic function.
3. Prove that

i) D is a simply connected region,

i) f(z) is a meromorphic function in D
iii) C is a scro curve in D, not passing through a pole or zero of (z).

Then prove that [ C%dz = 2mni[n(Z,f) — n(P,f)], where n(Z,f) and n(P,f) denote

respectively the number of zeros and number of poles of f(z) in C;, the zeros and poles
being counted as many times as their orders.
4. Show that one root of z*+ z3+1 = 0 lies in the first quadrant.

5. State and prove Rouche’s theorem.

6. Show that the number of zeros of the function f(z) = z* — 5z + 1 which lie in the
annulus region 1<|z| < 2.

7. Prove that a function which is meromorphic in the extended plane is a rational function.
8. State and prove Hurwitz’s theorem.

9. State and prove Rouche’s theorem.
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KARPAGAM UNIVERSITY
Karpagam Academy of Higher Education
(Established Under Section 3 of UGC Act 1956)
COIMBATORE - 641 021
(For the candidates admitted from 2013 onwards)

B.Sc., DEGREE EXAMINATION, APRIL 2016
Sixth Semester

MATHEMATICS

- COMPLEX ANALYSIS - II
Time: 3 hours Maximum : 60 marks

PART — A (20 x 1 =20 Marks) (30 Minutes)
(Question Nos. 1 to 20 Online Examinations)

PART B (5 x 8 =40 Marks) (2 ¥ Hours)
Answer ALL the Questions

21. a) State and prove Cauchy’s inequality.
Or
b) If u(x,y) is a function harmonic in a simply connected region D, then prove
that the mean value of u(x,y) taken along a circle in D is always equal to its
value at the centre.

22. a) State and prove Laurent’s theorem.
Or
b) Prove that fi(z) and fy(z) are two functions analytic in a reglon D such that,
for all zq, fi(z.) = fy(z,), where { z, } is a sequence of points in D coverging to
a point in D. then fi(z) = fy(z) inD.

23.a) If z=a is a pole of order m of a function f{z), thenz=2a is a zero of order m of

the function 1/f{z).
Or

. i _ z! t its sineularities.
b) Find the residues of f(2) --——————(z_z) @D E) at its singularities.

1
24. a) Evaluate fm ax
X" +4)

Or

2%
b) Show that I md‘ —mz>'\bl\>g

25. a) Prove that i) D is a simply connected region, ii) f(z) is 2 meromorphic function
in D iii) C is a scro curve in D, not passing through 2 pole or zeto of f{z). Then
prove that [’;EZ) 4= 27 [8(Z, ) n(P, D), where n(Z.) and r(P,) denote
respectively the number of zeros and number of poles of f{z) in C,, the zeros
and poles being counted as many times as their orders.
Or
b) Show that the number of zeros of the function f(z) =z — 5z + 1 which lie in the
annulus region 1<z} < 2.
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Reg. NOwitisiiitoiiiiiiiiistassisarssasse
[1IMCUGOL)
KARPAGAM UNIVERSITY
(Under Section 3 of UGC Act 1956)
COIMBATORE - 641 021
(For the candidates admitted from 2011 onwards)

B.Sc. DEGREE EXAMINATION, APRIL 2014
Sixth Semester
MATHEMATICS
COMPLEX ANALYSIS

Maximum : 100 marks

PART - A (15 x 2 =30 Marks)
Answer ALL the Questions

Z alnd Z,are two complex numbers, then prove that mg(%}: argZ, —arg Z,.
2

Z+

that the equation arg( )= K represent orthogonal circle.

md the locus of Z if lm[g_—_z,_)=o
] Z-Z,

that 7(Z)=Z = x—iy is not differentiable at Zero
that f'(2)=£(9”—+i@).
! z oér or
that the function /(z) =e*(cos y+isin y) is analytic.
at under a bilinear transformation no two points in the Z plane go to same
the W plane. :
cross ratio is preserved by a bilinear transformation.
1 ilinear transformation which maps Z=2,1,0 to ¥ = 1,0,i.

ntre is z=a.

chy’s integral formula for n" derivative.

Zero’s of a function.

aylor’s series for the function log(1-2)-

a zero of order m of an analytic function f(z) then p
i 1

of order m of s

rove that z=ais a

|
i

' e S ——

15. Find the residue of /(2 - _.‘1,.’_".'“ .
Poz-2

PART B(5X 14=70 Marks)
Answer ALL the Questions

16. (a) Explain stereographic projection.
Or
(b) State and prove Heine-Borel Theorem
17. (a) State and prove sufficient condition for differentiabily.
Or
(b) If f(=) is a function analytic in 2 region D, then prove that f(z) 13 constant in
D, ifin D, either (i) it’s real part is constant {or) {i1) it's imaginary partis
constant (or) (iii) | f(=)}is constant (iv) arg f(=) is constant.
18 (a) If p,q are fixed point’s under a bilinear transformation, thea prove that the
transformation can be expressed in the form ~—E= k=2 (i) I 7 isthe
w=q z-q
1

z-p

coincident fixed point then prove that —‘—P= k+
w—
Or
(b) Discuss the mapping of w==z*.

19. (a) State and prove Cauchy’s theorem using Goursat lemma.
Or
(b) State and prove Cauchy’s integral formula.

20. (a) State and prove Taylor’s series.
Or
(b) State and prove Weierstrass theorem.
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Class : 111 B.Sc Mathematics

[15MMU602]

KARPAGAM ACADEMY OF HIGHER EDUCATION
COIMBATORE -21
DEPARTMENT OF MATHEMATICS
SIXTH SEMESTER
I INTERNAL TEST-Jan’18
COMPLEX ANALYSIS-II

Time: 2 Hours
Maximum: 50 Marks

.01.2018

PART — A(20X1=20 Marks)

Answer all the questions

1.

If a is one zero, then P(a) equal to ...............
a)Singular b)analytic c)non zero d)zero
Ifa/an .............coo..... is bounded in the finite plane,

then it is a constant.

a) simple function b)analytic function
c)complex function d)entire function

Every function analytic in the extended plane is a

a) constant b)zero c)non zero  d)analytic
Every polynomial in z of degree equal to or greater than
1, has at least............... Zero

a)two b)three c)one
Zeros of an analytic functions are................
a)constant b) isolated  c)non zero d)singular
If f(z) is analytic inside and on an scr curve C,then the
maximum always occurs at a ......point.

d)four

10.

11.

12.

13.

a)interior b)boundary

c)singular d)analytic

If f(z) = (z — a)"[ao + a1(z-a)......... ],a0#0,thenz=aisa
zero of order .....

a)m b)1 C)2 d)o

The function (z —i)? (z+1)3e ? has a zero i of order 2 and
azero-loforder.............

a)l b)2 )3 d)0
Maclaurin's series expansion of the function coshz is
validin ....................l

a)lz| <0 b)|z| <o OlzZ=0  d)zf<1
In maximum modulus theorem, the maximum of modulus
f(z) in the whole of C;and C occurs only on C unless (z)

a)analytic b)function

c)constant d)maximum

If a function f(z) is such that f(z) = (z - a)* g(z), where k
is a positive integer and g(a) not equal to zero, then a is
saidtobea............. of f(z) of order k.

a)Constant b)zero

c)function d)analytic

The function (z-i)?> have a zero i of order.....

a)2 b)1 c)0 d)3
The functions of the form, Pn(Z)=ap+a1z+a2z+...... +anZ",

a0 iscalleda.....................
a)polynomial of degree n b) polynomial of degree 5
c)polynomial of degree 2n  d)polynomial of degree n-1



14.

15.

16.

17.

18.

19.

20.

The power series of the form ao+ a1(z —a) + ax(z — a)?
+....i1ssaid tobe a seriesabout ......................

a)zeros b)poles c)residues d)points
The multiplicity of a zero a is also known as
the ................. of the function at a.

a)order of analytic b)order of vanishing
c)order of pole d)order of singularity
A bounded entire functionis ...................oii
a)analytic b)function
c)Constant d)zero
A zero of order 1 is also calleda ..............
a)simple analytic b)simple pole
c)simple zero d)simple function

If D is a simply-connected region, f(z) is analytic and a is
a point in D and C is the largest circle whose interior lies
in D then the power series is... and its sum is f(z).
a)Convergent b)uniformly convergent
c)divergent d)absolutely convergent
In Gauss’ mean value theorem, mean of the values of the
function on C is the value of the function at its.............

a)radius b)centre c)diameter  d)points
f(z) =sin z has a zero of order ........................... at
z=0.

a)0 b)1 )2 d)oo

PART - B (3X10=30 Marks)
Answer all the questions

21. a) State and prove Cauchy’s inequality.

(OR)

b) If u(x,y) is a function harmonic in a simply connected
region D, then prove that the mean value of u(x,y) taken
along a circle in D is always equal to its value at the
centre.

22. a) State and prove fundamental theorem of algebra.
(OR)
b) State and prove Laurent’s theorem.
23. a) State and prove uniqueness theorem.

(OR)
b) Find the Taylor’s expansion about z = 0 of
z
f(Z) T (z+1)(z-3)
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[15SMMU602]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari Post, Coimbatore — 641 021.
(For the candidates admitted from 2015 onwards)

B.Sc., DEGREE EXAMINATION, APRIL 2018
Sixth Semester

MATHEMATICS

COMPLEX ANALYSIS - IT

Time: 3 hours Maximum : 60 marks

PART — A (20 x 1 = 20 Marks) (30 Minutes)

(Question Nos. 1 to 20 Online Examinations)

PART B (5 x 8 =40 Marks) 2 ¥ Hours)
Answer ALL the Questions

21.a. If u(x,y) is a function harmonic in a simply connected region D, then prove
that the mean value of u(x,y) taken along a circle in D is always equal to its

value at the centre.
Or

b. State and prove poisson’s integral.

22.a. State and prove Laurent’s theorem.

Or
b. Expand cos z as Taylor’s about the points given below.
i) z=0 i) z= % i) =5
at its singularities.

Z‘
(z-2Xz-3Xz-D*
Or
b. State and prove Weierstrass theorem.

23.a. Find the residues of f(z) =

248 Evaluate I:' 1
(a+boosgy 99 - 8> W1 >0

b-USing contourintegation show that

E Co8 mx
e —— - x
(x? +a'y d-"-~—4a,(\+ma)¢",m>0,a >0.

25.8. State and prove Hurwitz's theorem.

Or
b.State and prove Rouche’s theorem.
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KARPAGAM ACADEMY OF HIGHER EDUCATION
COIMBATORE - 21
DEPARTMENT OF MATHEMATICS
SIXTH SEMESTER
I INTERNAL TEST
COMPLEX ANALYSIS -1

Date :27.02.2018 (FN )
Class: ITI B.Sc Mathematics

Time: 2 Hours
Maximum: 50 Marks

PART - A (20 x 1 = 20 Marks)
Answer all the questions

1)The sum f{z) of a powerseries is analytic in ............
a) |z|>R  b)[z]<R ¢ |z| <R d)]|z]=R

2) suppose f{z) is analytic in a region D and z, , n=1,2,3,....,in D
are the zeros of f{z), where the sequence {z,} converges to-a

limit z=a in D then f{2).... in D.

a) constant b) vanishes identically
¢) analytic d) bounded
DA e of a function is a point at which the
function ceases to be analytic.
a) singular point b) analytic point
c)pole point d)essential point
4) A singular point zy of fis said to be.............cccoenen. if

there is a neighborhood of zo which contains no singular
points of f ( zp).

a) isolated b) Constant

¢) hounded d) analytic

S)As; ,
_____ ’?gul" 1ty that is neither a pole or removable is called an
a) Dol'e‘”"'b' """ singularity.
6)Ifz2~,, Janalytic  cjessential  d)singular
deleteq 'S @ pole of f(z), then f(z)is ................ in every
Neighbourhood of z=a

7 ?;:::v bnot bounded  cjconstant d)bounded
8) trigo erse fU'ﬂCtion of the exponential function isthe ......

Mometric functions
©) hamopic functions

8) The expansion with positive and
called . series about z = a.
8) Laurent’s series b) Taylor’s series
¢) Convergent series d) Power series

9) Classification of isolated singularities is done with reference to

the s of the Laurent's expansion of the
function about the singular point.

a) positive power b) zero
¢) constant d) negative power
10) Isolated singularities are classified into
a)two  b)three c)many d)five
11) The function f(z) = |z| is differentiable -—
a) on real part b) on imaginary part
c) at the origin d) at the point 2
12) If C is the largest circle with z=a as its center such that f{z) is
analyticin C butisnot ............... somewhere on C.
a) analytic  b)singular c)zero  d)constant

b) hyperbolic functions
d) logarithmic functions
negative powers of z—a is
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13.The point z=a is a singular point of f{z) if f(z) ig Ot defing
B eereeranrneeenrnaaan
a)y=a b) x=a cju=a d)z=a
14. If z = a is an isolated singular point of a functiop f(z)
singularity is called..... according as the Laurent's Sex:i
z=a of f{z), valid in a deleted neighbourhood of
finite number of negative powers
a) a removable singularity b)an essentia] Singularity
c)a pole d) isolated singularity
15.When the order of a pole is 1, the pole is said to be g
.......................... Pole.
a)zero  b)double c) simple d) finite
16.The entire function f(z) = € is not defined at z= anq 7=co is
theonly ................ Point

then the
s about
Z=a has a

a) singular b)analytic = c)pole  d) essential
17. The point .................. is a singular point of all the

trigonometric function and hyperbolic functions because they
are function of e”.
a)z=0 b)z=1 c) z=o d)z=a

18.The logarithmic functionisa..................... valued function
a) single b) multiple ¢) two d) zero

19. cos (Z] F2Z2) = ceererienintiienennins

a) cosz; co0sz; - sinz, sinz; b) cosz; sinz; - sinz, cosz;
€) cosz; cosz; + sinz; sinz; d) sinz; cosz; - cosz; $inz;

20. The residue of f(z) = cosz/z at its pole is ..............c.ent
a)2 b)3 0  d)l

PART-B (3x 10=30Marks)
Answer all the questions

21.(a) If z= a is a pole of order m of a function (z), then prove that

z=ais a zero of order m of the function 1/f(z).

(OR)
(b) Find the Laurent’s expansion forf (z) =
i)2<|zl<3 ii) |z] > 3.

221 .
(z+2)(z+3) in

22.(a) State and prove residue theorem.

(OR)
(b) Find the residues of f (2) =

z* .
EDEHE-

singularities.

23.(a) State and prove Weierstrass theorem.
(OR)
(b) (DIf z=a is a pole of a function f(z), then prove that
limz—m f(z) = w’

ii) Find the orders of poles of f(z) = —

z(e2-1)'
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ﬁ KARPAGAM ACADEMY OF HIGHER EDUCATION
= (Deemed to be University Established Under Section 3 of UGC Act 1956)
K A‘EPA (;;\ M Coimbatore — 641 021.

ACADEMY OF HIGHER EDUCATION
(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956 ) L ECT U R E P LAN
DEPARTMENT OF MATHEMATICS

STAFF NAME: M.Sangeetha
SUBJECT NAME: Complex Analysis-11 SUB.CODE:15MMU602
SEMESTER: VI CLASS: 11l B.Sc (MATHS)

Lecture plan

UNIT-I
S.No Lecture Topics to be Covered Support Materials
Hour
1 1 T1:Ch:8:P.No:157-
Zero’s of a function 158
2 1 Cauchy’s inequality T1:Ch:8:P.N0:158-
159
3 1 T1:Ch:8:P.N0:159-
Liouville’s theorem 161
4 1 R4:Ch:6:P.N0:366-
Fundamental theorem of Algebra 367
5 1 Continuation of fundamental theorem of R2:Ch:8:P.N0:220-
Algebra 221
6 1 T1:Ch:8:P.N0:161-
Maximum modulus theorem 162
7 1 T1:Ch:8:P.No: 161-
Gauss mean value theorem 162
8 1 Mean value of the values of a harmonic | T1:Ch:8:P.No: 162-
function on a circle 163
9 1 T1:Ch:8:P.No: 163-
Poisson’s integral 164
10 1 T1:Ch:8:P.No: 164-
Term by term differentiation and 166
integration of uniformly convergent
series
11 1 T1:Ch:8:P.No:177-
Problem on related integral theorem 178

Prepared by: M. SANGEETHA, Asst Prof, Department of
MATHEMATICS, KAHE 1
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integral theorem

12 1 Continuation of problem on related T1:Ch:8:P.N0:178-
Integral theorem 179
13 1 Recapitulation and discussion of
possible questions
Total Hours 13
UNIT-II
S.No | Lecture Topics to be Covered Support Materials
Hour
1 1 T1:Ch:9:P.N0:179-
Taylor’s series:Introduction 181
2 1 R2:Ch:7:P.N0:173-
Theorem on Taylor’s series 175
3 1 T1:Ch:9:P.No:181-
Uniqueness Theorem 182
4 1 Continuation of Uniqueness Theorem T1:Ch:9:P.N0:183-
184
5 1 R2:Ch:7:P.N0:197-
Zero’s of an analytic function 198
6 1 Continuation of Zero’s of an analytic function | R2:Ch:9:P.N0:199
7 1 Problems on Taylor’s series T1:Ch:9:P.N0:199-
202
8 1 Continuation on Problems on Taylor’s series | R2:Ch:9:P.N0:176-
180
9 1 Laurent’s series:Introduction R1:Ch:5:P.N0:184-
186
R2:Ch:7:P.No0:181-
182
10 1 Theorem on Laurent’s series T1:Ch:9:P.No0:184-
186
R2:Ch:7:P.No:182-
184
11 1 Problems on Laurent’s series T1:Ch:9:P.N0:187-
188
12 1 Continuation of problems on Laurent’s series | T1:Ch:9:P.No:202-
series 205
13 1 Continuation of problems on Laurent’s series | R2:Ch:7:P.N0:185-

series

189

Prepared by: M. SANGEETHA, Asst Prof, Department of
MATHEMATICS, KAHE
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14 1 Continuation of problems on Laurent’s series | R2:Ch:7:P.N0:190-
series 194
15 1 Continuation of problems on Laurent’s series | R2:Ch:7:P.N0:195-
series 197
16 1 Cauchy product and division T1:Ch:9:P.N0:188-
189
17 1 Problems on Cauchy product and division T1:Ch:9:P.No:211-
212
18 1 Recapitulation and discussion of possible
questions.
Total Hours 18
UNIT-III
S.No | Lecture Topics to be Covered Support Materials
Hour
1 1 Singularity:Introduction R2:Ch:7:P.No:200-
201
2 1 T1:Ch:9:P.N0:190-
Isolated singularities:Definition and examples 191
R3:Ch:7:P.N0:105-
107
3 1 T1:Ch:9:P.No:191-
Removable singularity:Definition and examples 192
4 1 Theorems on Removable Singularities R1:Ch:4:P.No:124-
126
5 1 Pole:Definition and examples T1:Ch:9:P.N0:192
6 1 Theorems on pole ans its problems R1:Ch:4:P.No0:126-
128
7 1 Essential singularity: Definition and examples | T1:Ch:9:P.N0:192-
193
8 1 Behaviour of a function at an isolated T1:Ch:9:P.N0:193-
singularity 195
9 1 Theorem on Behaviour of a function at an T1:Ch:9:P.N0:196-
isolated singularity 197
10 1 Determination of the nature of singularities T1:.Ch:9:P.N0:197-
199
11 1 Residues:Definition and examples R3:Ch:8:P.No:112-
114
12 1 Continuation of problems on Residues R2:Ch:8:P.N0:209-
210
13 1 Continuation of problems on Residues R2:Ch:8:P.No:211-

217

Prepared by: M. SANGEETHA, Asst Prof, Department of
MATHEMATICS, KAHE




Lesson Plan

2015-2018
Batch

14 1 Residue theorem T1:Ch:10:P.No:217-
220
15 1 Problem on Residue theorem T1:Ch:10:P.No0:236-
237
16 Continuation of problem on Residues R1:Ch:4:P.No:152-
154
1 Recapitulation and discussion of possible
17 questions.
Total Hours 17
UNIT-IV
S.No | Lecture Topics to be Covered Support Materials
Hour
1 1 Real definite integrals:Introduction and types | T1:Ch:10:P.No:220-
of integrals 221
2 1 Type 1:Integral with 0 and 27 as lower and | T1:Ch:10:P.No:221-
upper limit of f(cos 0,sin0) 222
3 1 Problems on Integral with 0 and 2x as lower | T1:Ch:10:P.N0:222-
and upper limit of f(cos 0,sin0) 223
4 1 Type 2:Integral with -oo and o as lower and | T1:Ch:10:P.N0:223-
upper limit of P(x)/Q(x) 224
5 1 Problems on Integral with -co and oo as lower | T1:Ch:10:P.N0:224-
and upper limit of P(x)/Q(X) 225
6 1 Type 3:Integral of the form with -co and co as | T1:Ch:10:P.N0:225-
lower and upper limit of sin ax f(x) dx and cos| 226
ax f(x) dx
7 1 Problems on Integral of the form with -cc and | T1:Ch:10:P.No:226-
o as lower and upper limit of sin ax f(x) dx | 227
and cos ax f(x) dx
8 1 Type 4:Integrals of the form with -0 and o | T1:Ch:10:P.N0:227-
as lower and upper limit of f(x) dx 228
9 1 Problems on Integrals of the form with -oo T1:Ch:10:P.No0:228-
and o as lower and upper limit of f(x) dx 229
10 1 T1:Ch:10:P.N0:230-
Integrals of the type x | x*(a-1)/(1+x) dx 231
11 1 Problems on Integrals of the type x | x"(a- T1:Ch:10:P.No:231-
1)/(1+x) dx 232
12 1 Recapitulation and discussion of possible

questions.

Total Hours

12
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UNIT-V
S. No Lecture Topics to be Covered Support Materials
Hour
1 1 Meromorphic functions:Introduction T1:Ch:11:P.No:249
2 1 Continuation of problems on meromorphic | R3:Ch:7:P.N0:108-
functions 109
3 1 Theorem on number of zeros minus T1:Ch:11:P.N0:249-
number of poles 250
4 1 Continuation of number on zeros minus R3:Ch:7:P.No:110-
number of poles 112
5 1 T1:Ch:11:P.No:250-
Principle of argument 251
6 1 T1:Ch:11:P.No:251-
Rouche’s theorem 252
7 1 T1:Ch:11:P.No:252-
Continuation of Rouche’s theorem 253
8 1 T1:Ch:11:P.N0:253-
Fundamental theorem of algebra 254
9 1 T1:Ch:11:P.No:254-
Hurwitz’s theorem 255
10 1 Theorem on function which is meromorphic | T1:Ch:11:P.No:255-
in the extended plane 256
11 1 Continuation of theorem on function which is| T1:Ch:11:P.No:256-
meromorphic in the extended plane 257
12 1 Recapitulation and discussion of
possible questions
13 1 Discussion of previous ESE question
papers.
14 1 Discussion of previous ESE question
papers.
15 1 Discussion of previous ESE question
papers.
Total Hours 15
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TEXT BOOK

T1. Duraipandian.P., Lakshmi Duraipandian.,1997.Complex Analysis, Emerald
publishers, Chennai-2

REFERENCES

R1. Lars V.Ahlfors.,1979. Complex Analysis, Third edition, Mc-Graw Hill Book
Company,New Delhi.

R2. Arumugam.S., Thangapandi Isaac., and A.Somasundaram., 2002. Complex Analysis,
SCITECH Publications Pvt. Ltd,Chennai.

R3. Choudhary.B., 2003. The Elements of Complex Analysis ,New Age International
Pvt.Ltd , New Delhi.

R4. Vasishtha A.R ., 2005. Complex Analysis, Krishna Prakashan Media Pvt. Ltd.,
Meerut.
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KARPAGAM ACADEMY OF HIGHER EDUCATION
COIMBATORE-21
Department of Mathematics
SIXTH SEMESTER
Model Examination-Mar’18
COMPLEX ANALYSIS-II
Time: 3 hours
Maximum Marks: 60

Date: .03.18( )
Class: 111 B.Sc Mathematics

PART - A (20X1 = 20 Marks)
Answer all the Questions

1) In maximum modulus theorem, the maximum of modulus f(z) in
the whole of Cjand C occurs only on C unless f(z) is a
a) analytic b) function C) constant
2) The derivative of an analytic function is also ...
a) analytic b) continuous ) derivative d) bounded
3) Zeros of an analytic functions are................
a) constant b) isolated c) singular  d) non zero
4) A function which is analytic everywhere in the finite plane is

d) maximum

called an ------------------ function.

a) single b) multi c) continuous d) entire
5) The binomial series is valid when | z | ...............

a)<1 b) equal to 1 c)>1 d)>0

6) The functions of the form, Pn(Z)= ap+aiz+a2z+...... +anz", an0
iscalleda............
a) polynomial of degree n b) polynomial of degree 5
c) polynomial of degree 2n  d) polynomial of degree n-1
7) The inverse function of the exponential function is the ......
a) trigonometric functions b) hyperbolic functions
¢) harmonic functions d) logarithmic functions
8) The expansion with positive and negative powers of z — a is
called ......... series about z = a.
a) laurent’s series b) taylor’s series
C) convergent series d) Power series
9) Classification of isolated singularities is done with reference to
the ..o of the Laurent's expansion of the
function about the singular point.

a) positive power b) zero
C) constant d) negative power
10) Isolated singularities are classified into ............ different
groups.
a) two b) three ) many d) five

11) The function f(z) = |z| is differentiable -----
a) on real part b) on imaginary part
c) at the origin d) at the point 2
12) If C is the largest circle with z=a as its center such that f(z) is
analytic in Cj but is not ......... somewhere on C.
a) analytic b) singular  c) zero d) constant
13) If a function h(z) is analytic at z=a and h(a) not equal to zero
thenz=aisa................ of the function f(z)=h(z)/(z-a).
a) simple zero b) double pole
¢) simple pole d) finite pole



14) Principle value of log z is obtained whenn=............
a)0 b) -1 c)1 d) 2
15) Cot z and cosec z are analytic in a bounded region in which

a)cotz#0 b) cosecz # 0
C) sinz#0 d) cosz #0
16) The Value ofcosizis = ............coeieiinnnn.
a) cosz b) icosz c) icoshz d) coshz

17) Find the number of zeros of the function f(z) = z*6+z"3 -6z
+9 which lie inside the unit circle C:|z| =1
a)l b) 2 c)0 d) 4
18) z*+2z3+47%+2z+3 has two zeros each in the ...... quadrants.
a) first and fourth b) first and second
c) second and third d) third and fourth
19) A function which is meromorphic in the extended plane is a --
a) real function b) irrational function
c) rational function d) complex function
20) The zeros and poles being counted as many times as their

a) zeros  b) orders c) poles d) ones
PART -B( 5X8= 40 Marks)

ANSWER ALL THE QUESTIONS:

21. a) If u(x,y) is a function harmonic in a simply connected
region D, then prove that the mean value of u(x,y) taken
along a circle in D is always equal to its value at the centre.

(OR)
b) State and prove poisson’s integral.

22

23.

24.

25.

.a) State and prove uniqueness theorem.

(OR)

b) Expand cos z as Taylor’s about the points given below.

i) z=0 ii) 2=7 iii) z= g

74

(z-2)(z-3)(z—1)* at its

a) Find the residues of f(z) =

singularities.

(OR)

b) State and prove Weierstrass theorem.

a) Evaluate foznw-l-btl:TG)zde ,a>|b| > 0.

(OR)

- - - ZTE . 2 9
b) Using contour integration evaluate [, ailbnwse

a) State and prove Hurwitz’s theorem.
(OR)
b) State and prove Rouche’s theorem.
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SQ KARPAGAM ACADEMY OF HIGHER EDUCATION
Erae 1 nigan | v (Deemed to be University Established Under Section 3 of UGC Act 1956)
,!SAQMBOE”&ES%D&M Coimbatore — 641 021.
(stbishd gndrScton 5 f G Ac, 1956) Semester IV
L TPC
15MMU602 COMPLEX ANALYSIS-II 5 0 0 5

Scope: This course will enhance the learner to understand the extended concepts of
analytic function of complex variables and the application of residues etc which
plays a crucial role in the field of applied mathematics.

Objectives: To enable the students to learn complex number system, complex
function and complex integration, Singularitie, real definite integrals,
Meromorphic functions etc.

UNIT I

Zero’s of a function-Cauchy*s inequality-Liouville*s theorem-Fundamental
theorem of Algebra-

Maximum modulus theorem- Gauss mean value theorem- Mean value of the value
of a harmonic function on a circle- Term by term differentiation and integration of
uniformly convergent series.

UNIT 1l

Taylor*s series and Laurent™s series : Taylor*s series-Theorems and some related
problems- Zero*s of an analytic function- Laurent™s series — Theorems and some
related problems- Cauchy product and division.

UNIT I

Singularities — Isolated Singularities- Removable Singularity- Pole-Essential
Singularity-Behaviour of a function at an isolated Singularity-Determination of the
nature of Singularity-Problems-Residues- Residues theorem(statement only)-
Problems.

UNIT IV

Real definite integrals: Evaluation using the calculus of residues — Integration on
the unit circle —Integral with - co and + oo as lower and upper limits with the
following integrals:

1) P(X) /Q(x) where the degree of Q(x) exceeds that of P(x) at least 2.

Prepared By PAVITHRA K, Asst.Prof, Department of Mathematics, KAHE 1
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i1) (sin ax ).f(x), (cos ax).f(x), where a>0 and f(z) —0 as z—o and f(z) does not
have a pole

on the real axis.

i) f(x) where f(z) has a finite number of poles on the real axis.

UNIT V

Meromorphic functions: Theorem on number of zeros minus number of poles —
Principle of argument: Rouche™s theorem — Theorem that a function which is
meromorphic in the extended plane is a rational function.

TEXT BOOK

1. Duraipandian.P., Lakshmi Duraipandian.,1997.Complex Analysis, Emerald
publishers, Chennai-2

REFERENCES
1. Lars V.Ahlfors.,1979. Complex Analysis, Third edition, Mc-Graw Hill Book
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Subject: COMPLEX ANALYSIS-II Subject Code: 1SMMU602

Class : III B.Sc Mathematics Semester : VI

UNIT -1
PART A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

If a is one zero, then P (a) equal to ............... Singular analytic non zero Zero Zero
Ifa/an ..................... is bounded in the finite plane, . . analytic complex . . . .

.. simple function . : entire function entire function
then it is a constant function function
Every function analytic in the extended plane is a )

Constant Zero non zero analytic Constant

Every polynomial in z of degree equal to or greater than 1, wo three one four one
has at least............... Zero
Zeros of an analytic functions are................ constant isolated non zero singular isolated
If f(z) is analytic inside and on an scr curve C, then the L ) .

. . interior boundary singular analytic boundary
maximum always occurs ata ..................... point
If f(z) = (z — a)"[ay . a,(z-a)......... ],a0#0 ,thenz=ais a m | ) 0 m
zero of order .....
The function (z — i)2 (erl)3 e ” has a zero i of order 2 and | 2 3 0 3
azero -1 oforder .............
In maximum modulus theorem, the maximum of modulus
f(z) in the whole of C; and C occurs only on C unless f(z)  analytic function constant maximum constant
188 . iiiiiiinnn,
If a function f(z) is such that f(z) = (z - a)k g(z), where k is
a positive integer and g(a) not equal to zero, then a is said  Constant zero function analytic zZero
tobea............. of f(z) of order k.

Prepared by: PAVITHRA K M.SANGEETHA, ASST PROF, Department of Mathematics, KAHE




UNIT - 1/2015-2018 Batch

The function (z-i)2 have a zero i of order..... 2 1 0 3 2
If f(z) = (z— a)"[ay . a,(z-a)......... 1,a#0,thenz=ais a m ! 5 0 m
zero of order .....
............ of an analytic function are isolated ZEros poles residues points ZETros
The multiplicity of a zero a is also known as ) order of order of order of

. order of analytic . order of pole . . .
the ....oooovvviiinin, of the function at a vanishing singularity vanishing
A bounded entire function is ...............ceeeviinnn... analytic function Constant Zero Constant

A zero of order 1 is also called a ..............

simple analytic

simple pole

simple zero

simple function

simple zero

In Gauss’ mean value theorem, mean of the values of the

. ) . . radius centre diameter oints centre

function on C is the value of the function at its............. P
f(z) =sinzhasazerooforder ............................. atz
@ 0 1 2 o0 1
=0.
A function analyticin D has .............. of all orders in D  derivatives points curves Zeros derivatives
The square of real number is --------- Non negative Non positive ~ Negative absolute value  absolute value
A function which is analytic everywhere in the finite plane = . . . . .
) . single multi entire continuous entire
is called an ---------------—-- function.
C Tl R T — everywhere analytic not analytic continuous exist not analytic

. C Exponential logarithmic Continuous ) ) . .
The quotient of two polynomials is called a PO gar . rational function rational function

function function function

. postively oriented negatively . postively

It the region lies to the left of a person when he travels . . . simple closed . .
: simple closed oriented simple open curve oriented simple
along C, then the curve Ciscalleda ........................ curve
curve closed curve closed curve

The simple closed rectifible curve is abbreviated
as curve scr curve SCro curve arc SCr curve
The set of complex points is called ........................ arc simple arc closed arc open arc simple arc
In cauchy’s fundamental theorem, o f(z

4 @ 1 2 0 4 0
dz=..........ci
The simple closed rectifiable positively oriented curve is

) curve scr curve SCro curve arc SCro curve
abbreviated as ....................
. . o . interior nor interior and o

The bounded region of C is called ............... interior exterior interior

exterior

exterior
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Aregion Dissaidtobe............... for every closed simply - . . simply -
g .. . . Yy connected Py disconnected disjoint Py
curve in D, Ci is contained in D connected connected
In cauchy’s fundamental theorem, 0 f(z) dz=... 1 2 0 4 0
If f(z) is analytic in a simply connected domain , then the
values of the integrals of f(z) along all paths in the region  one two three multiple two
joining ------ fixed points are the same
. . o . interior nor interior and o
The bounded region of C is called ............... interior exterior . . interior
exterior exterior
Aregion Dissaidtobe............... for every closed simply - . . simply -
g .. . . Yy connected Py disconnected disjoint Py
curve in D, Ci is contained in D connected connected
The set of complex points is called .... arc simple arc closed arc open arc simple arc
If a curve intersects itself at a point then the point is said to | . . . ) . )
be a single multiple points double valued trile multiple points
The equation z = cost+isint, 0<t<m represents a . .
arc simple arc closed arc curve simple arc
o .. ositivel negativel ) o ositivel
The unit circle z=cost+isint, 0<t<2w are p' y g y circle unit circle p' y
oriented circle oriented circle oriented circle
o .. ositivel negativel ) o negativel
The unit circle z = cos(-t) +isin(-t), 0<t<2m are ........ p' y g y circle unit circle g ’
oriented circle oriented circle oriented circle
The simple closed rectifible curve is abbreviated as...... curve scr curve SCro curve arc SCr curve
The simple arc is also known as .... multiple Jordan double multiple Jordan
The derivative of an analytic function is also ... analytic continuous derivative bounded continuous
The function (z-i)> have a zero i of order..... 2 1 0 3 2
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UNIT -1
PART A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
If f(z) can be expanded as a series of non- negative
integral powers which is convergent for all z in C; then the Power series Taylor’s series  Laurent’s series coqvergent Taylor’s series
series is called .......... for f(z) about z=a. series
If C is the largest circle with z=a as its center such that f(z) ) ) )
is analytic in C; butis not ............... somewhere on C. analytic singular zero constant analytic
....................... is the expansion of f(z) about z = 0. convergent series taylor’s series  Power series ma.claurm’s ma.claurm’s
series series
The binomial series is valid when [z ] ............... <1 equal to 1 >1 >0 <1
Maclaurin's series expansion of the function cosz is valid
Mo 21> 1 2= 0 oA < o0 <1 o< o0
Suppose f(z) is not identically zero and analytic in a region
D. In any closed bounded region D, f(z) has infinite only a finite many finite and many only a finite
.................... number of zeros
suppose f(z) is analytic in a region D and z, , n=1,2,3,...., . .
in D are the zeros of f(z), where the sequence {z,} Constant Yamsh e bounded analytic Yamsh ©s
o ) ) identically identically
converges to a limit z=a in D then {(z).... in D.
Maclaurin's series expansion of the function e”(-z) is valid
M 2= 0 <1 o) < o0 21> 1 7)< o0
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If D is a simply-connected region, f(z) is analytic and a is

a point in D and C is the largest circle whose interior lies ~ Convergent uniformly divergent absolutely absolutely
) . . . convergent convergent convergent
in D then the power series is... and its sum is f(z)
The function €” — 1 has a zero z = 0 of order........... two one three Zero one
Maclaurin's series expansion of the function log(1+z) and
log(1-z) isvalidin ...........................
The whole series is absolutely convergent if both the absolutely uniformly . absolutely
o . . Convergent divergent
positive and negative series are................... convergent convergent convergent
The logarithmic series is valid when |z | ............... <1 equal to 1 >1 >0 <1
The functions of the form, P (Z)= a0+alz+a222+ ...... +a,z", polynomial of polynomial of polynomial of polynomial of  polynomial of
a70iscalleda................cooviiiiiiil. degree n degree 5 degree 2n degree n-1 degree n
. 2
+ —a) + —a) +
The Power series ‘ofthe form a,+a,(z—a)+a,(z—a) +.... 7=0 , = -a S 7= oo s=a
is said to be a series about ...
If R =0 the series is divergent in the extended plane 720 s -1 I A 720
exceptat ....oevviiiiiiiiiian,
The inverse function of the exponential function is the ...... Trlgn'ometrlc hyber'bohc harm9n1c Logarlthmlc Logarlthmlc
functions functions functions functions functions
Maclaurin's series expansion of the function coshz is valid
0 lz] <0 jz] < o0 lz[=0 lz] <1 2] < o0
. The function f(z) = |z| is differentiable ----- on real part O TMABIALY " ot the origin at the point 2 at the origin

part

The expansion of f(z) = e”z is valid in the

partial complex

entire real

entire complex

partial real

entire complex

The region of validity for Taylor’s series about z = 0 of the

. . z|=0 z| <1 7| < oo z|>1 7| <1
function €’z 1S ........ceueenn. 2 2 2 2 2
Maclaurin's series expansion of the function sinz is valid
0 2] < o0 [z <1 |z <0 |z > 1 2] < o0
The sum f(z) of a powerseries is analyticin ............ |z|>R |z| <R |z| <R |z|=R |z|<R
If f(z) is analytic in an open circular disc with center at z = .
@) n P . .. , . . Convergent Maclaurin’s , )
a, then the ...... about z = a is the only power series in z—  Taylor’s series Power series series serics Taylor’s series

a which converges to f(z) in that disc.
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Maclaurin's series expansion of the function sinhz is valid

|z <0 |z <0 lz] <1 lz| > 1 |z] <0
111 I
The expansion with positive and negative powers of z — a , ) , . convergent . , .
. . Laurent’s series  Taylor’s series . Power series Laurent’s series
iscalled ............... series about z = a. series
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CLASS: II BSC MATHS COURSE NAME: COMPLEX ANALYSIS-II
—COURSE CODEIOMMUG02 ______ UNITZIL __ BATCH-2015:-2018
NIT-11
SYLLABUS

Taylor’s series and Laurent’s series : Taylor’s series-
Theorems and some related problems- Zero’s of an analytic
function- Laurent’s series - Theorems and some related
problems- Cauchy product and division.

Taylor and Laurent Series

Taylor series. Suppose f'is analytic on the open disk |z — zp| < 7. Let z be any point in

this disk and choose C to be the positively oriented circle of radius p. where
z—zo| < p < r. Then for seC we have

= j
L 1 _ 1 [ 1 J Y =y
5—Z o\ (-~ 5 —Zg _ %o NS
(5 —z0) — (z —z20) 1-= =0 (s—Z2o)
since | 5= | < 1. The convergence is uniform. so we may integrate

J. sﬂ—g): ds = Z( (S{(_fsg)f_lds)(:—:o)kor
v

c =0

i .’}rz‘ Z{ Sﬂf): &= Z( l}ri -~ dS)(—"—Zo)j-

- =+l
j=0 c 5—20)
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We have thus produced a power series having the given analytic function as a limit:

oo

fz) = ch(:—:o)f. lz—2z0| < 1.

=0

where
¢ = =1 '[ 1) ds
J 2ri J (s—zoytt
C
This is the celebrated Taylor Series for fat z = Zg.
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We know we may differentiate the series to get

f@ =) jelz—20)"!
J=l

and this one converges uniformly where the series for f does. We can thus differentiate
again and again to obtain

fO@) =Y jG~ 1) ~2)... G —n+ 1)z~ 2oy ™.

Jj=n
Hence.
f™(z0) = n'cy. or
n)(-
gy )
n'
But we also know that
n= 7}”' (s _{(f))n—l ds.
i C Z0
This gives us
"(zo) = 1 Js) ds, forn=0.1.2
e =" [ PRI 1,25 s

This is the famous Generalized Cauchy Integral Formula. Recall that we previously
derived this formula for » = O and 1.

What does all this tell us about the radius of convergence of a power series? Suppose we
have

f2) =D ez -z0).
j=0
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and the radius of convergence is R. Then we know. of course. that the limit function f is

analytic for |z —2zo| < R. We showed that if f is analytic in |z —Zzo| < 7. then the series
converges for |z —zo| < r. Thus r < R. and so f cannot be analytic at any point z for which

z—Zp| > R. In other words. the circle of convergence is the largest circle centered at zg
inside of which the limit fis analytic.

Example
Let f{z) = exp(z) = €°. Then f{0) = f(0) =...= f"(0) =...= 1. and the Taylor series for f
atzo=01s

and this is valid for all values of z since f is entire. (We also showed earlier that this
particular series has an infinite radius of convergence.)
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Exercises

1. Show that for all z.

e = eZ jl!(:- 1y.

n
2. What is the radius of convergence of the Taylor series (Z cj:f) for tanhz ?
J=0

3. Show that

1 =x (z=B)
142 onu_i;f-i

4. Ifflz) = 5. what is f19(i) 2

5. Suppose f is analytic at z = 0 and fl0) = f(0) = f'(0) = 0. Prove there is a function g
analytic at 0 such that f{z) = z3g(z) in a neighborhood of 0.

6. Find the Taylor series for f{z) = sinzatzg = 0.
7. Show that the function f defined by

m: o for z# 0

1 for z=10

is analytic at z = 0. and find f'(0).
<|z—Zzol < Ry.and let Cbe a

~

Laurent series. Suppose fis analytic in the region R;
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positively oriented sim}-)l-e closed curve around zo in this region. (Note: we include the
possiblites that Ry can be 0. and R, = «.) We shall show that for z ¢ C in this region

flz) = Za}‘(:—:O)j + Z _L_,
j=0 j=1 (-——'0)

where

sonc 1 f(S) ds. fori=0.1.2
a4 == i T s, forj = 0§12, ...

and

- fis) B ;5
b; 3 _([ oz ds,forj=1,2,....

The sum of the limits of these two series is frequently written

fe) = Z ¢j(z - zo).

where

. | Q) i = 0.41.42
gp= J e J=0,+1,42, ...

This recipe for f{Z) is called a Laurent series. although it is important to keep in mind that
it is really two series.
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Okay. now let’s derive the above formula. First. let 71 and 7> be so that
Ry <11 =|z—2p| £ 12 < Ry and so that the point z and the curve C are included in the
region 7y = |[z—2zg| < r2. Also, let I' be a circle centered at z and such that I is included in

this region.

Then 1{_5_)_ is an analytic function (of 5) on the region bounded by Cy.C>. and I'. where C| is

~
5

the circle |z| = r; and C; is the circle |z| = 72. Thus.

[ L) as = [ £Las [ S as

(&) C I
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(All three circles are positively oriented. of course.) But j %ds = 2xif(z). and so we have
r

27if(z) = [ - f)__ ds — [ j(s)_ ds.

s S—2Z
Ca C:

Look at the first of the two integrals on the right-hand side of this equation. For seC>. we
have |z —zo| < |s— Zp|. and so

1 1
$=Z2  (s—z0)—(z—20)

o 1
A T- G

Jj=0

o

= Z%(:_:O)]"

j=0 ($—Zo)
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Hence.

For the second of these two integrals, note that for seC; we have |s — Zg| < |z — Zo|, and so

i} -1 =_—1_[ 1 J
$7Z 0 (z-z)-(s—z0) TR 1-(£)

LY (322 Z<}—),

]_

= _Z(s—_o)f b2t — = _Z( pri ) (:——lzo)j

As before.

fs) . N 1 __As) 1
[ o5 | e |t

G =L\ ¢

= - j Ns) = ds 1
S\ ¢ 6—20)7 (z—zoY

Putting this altogether. we have the Laurent series:

flz) = 1 Jﬂs).df— 1. |' f(_S):dS

2mi $—Z 2mi J S
Ca Cy

= - ) _gs |(z—zoy V[ 1 ) g4 1
;( 278 (s =20y S)(— —O)J+JZ=1:( oL o -za) 7" S)(:_:o)j'
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Let f'be defined by
o 1
7) = ——.
y z(z-1)

First. observe that f'is analytic in the region 0 < |z| < 1. Let’s find the Laurent series for f
valid in this region. First.

N — 1 . 1
ﬂ“)_:(:—l) 7 2 g

From our vast knowledge of the Geometric series, we have

Now let’s find another Laurent series for f. the one valid for the region 1 < |z| < .

First.
1 :L[ 1 J
z41 z 1.
Now since |-1| < 1. we have
TR 1 o | s ”
ﬁ—?[l_;J—T_ 7= 77
z J=0 Jj=1
and so
ST 4 N -
ﬂ—)__:+:_1_ :+Z—J
Jj=1
ﬂ:)zZ:f.
J=2

Prepared by PAVITHRA K & M. SANGEETHA, Asst Prof, Department of MATHEMATICS, KAHE Page 10/12




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHS COURSE NAME: COMPLEX ANALYSIS-II
—COURSE CODEIOMMUG02 ______ UNITZIL __ BATCH-2015:-2018

Exercises
8. Find two Laurent series in powers of z for the function f defined by

= 1
/o) 22(1-2)

and specify the regions in which the series converge to f{z).

9. Find two Laurent series in powers of z for the function f defined by

L TIPS
1) z(1+2%)

and specify the regions in which the series converge to f{2).

L

10. Find the Laurent series in powers of z — 1 for f{z) = + intheregion 1 < |z — 1| < 0.
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POSSIBLE QUESTIONS

1.State and prove Taylor’s theorem.

2.Prove that if f1(z) and f2(z) are two functions analytic in a region D such that, for all zn, f1(zn) = f2(zn),
where { z, } is a sequence of points in D converging to a point in D. then fi(z) = f2(z) in D.

3.State and prove Laurent’s theorem.

4. Expand cos z as Taylor’s about the points given below.
i) z=0 ii) 2=7 iii) z= g

5. State and prove uniqueness theorem.

6.Expand log(1+z) as a taylor’s series about z = 0.

7.1f () is analytic in a region D and zo, n=1,2,3...... in D are the zeros of f(z),
where the sequence {zn} converges to a limit z=a in D then prove that f(z) vanishes
identically in D.

z

8. Find the Taylor’s expansion about z =0 of f(z) = GO

1
9. Expand D=2}

Yo as a power series in z valid in i)|z| < 1 ii)1 < |z]| < 2 iii) |z| > 2.

z%-1

(z+2)(z+3) ini) 2 <z <3 ii) |z| > 3.

10.Find the Laurent’s expansion forf (z) =
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UNIT -I11

PART A (20x1=20 Marks)

(Question Nos. 1 to 20 Online Examinations)

Possible Questions

because they are function of e”

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
A of a function is a point at sinoular voint analvtic point ole point essential point  sineular point
which the function ceases to be analytic guarp ytiep polep P gularp
Ifz=ai le of f(z), then f(z) is .....cevviiiiiiini i
z=als apole o (2), then f(z) is M ero not bounded Constant bounded not bounded
every deleted neighbourhood of z=a
The point z=a i ingul int of f(z) if f(z) = s . e
¢ point z=a s a singular point of f(z) if f(z) one infinity Zero finite infinity
The point z=a i ingul int of f(z) if f(z) is not defi
| e point z=a is a singular point of f(z) if f(z) is not defined y=a x=a u=a J—a y—a
Ifz=ais .....ooiiiiiii of f(z), then f(z) is not a removable an essential isolated
. . a pole ) . ) . . i a pole
bounded in every deleted neighbourhood of z=a singularity singularity singularity
The entire function f(z) = €” is not defined at z=o0 and z=0 | . . . .
. . singular analytic pole essential singular
istheonly ...........ooiiiii, Point
The point .......ccoooviiiiiiiiiiin., is a singular point of
all the trigonometric function and hyperbolic functions z=0 z=1 Z=00 z=a Z=00

If z = a is an isolated singular point of a function f(z), then
the singularity is called......... according as the Laurent's an essential isolated
series about z=a of f(z), valid in a deleted neighbourhood of a pole
z=a has an infinite number of negative powers

singularity singularity

a removable
singularity

an essential
singularity
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A singular point z0 of fissaidtobe......................... if
there is a neighborhood of z0 which contains no singular isolated Constant bounded analytic isolated
points of f save z0.
If z=a is an isolated singular point of a function f(z), then
the singularity is called..... according as the Laurent's series a removable an essential isolated
I ) . . . . a pole . i a pole
about z=a of f(z), valid in a deleted neighbourhood of z=a  singularity singularity singularity
has a finite number of negative powers
A singularity that is neither a pole or removable is called an . . . .
. . pole analytic essential singular essential
..................... singularity.
If z = a is a singularity of f(z), then it is . .
gularity of (z), . ) a removable isolated an essential a removable
..................................... If limit z tends to a pointa  a pole sinoularit sinoularit sinoularit sinoularit
of f(z) exists and is finite gulartty & Y & Y & Y
Classification of isolated singularities is done with
reference tothe ... of the positive power Zero constant negative power negative power
Laurent's expansion of the function about the singular point
If z = a is an isolated singular point of a function f(z), then
the singularity is called..... according as the Laurent's series an essential a removable isolated 4 vole a removable
about z=a of f{(z), valid in a deleted neighbourhood of z=a  singularity singularity singularity P singularity
has no negative powers
A point z0 is a singular point of a function f'if f not . . . .
at 70 singular analytic pole essential analytic
An isolated singular point z0 of f such that the Laurent
series at z0 includes only a finite number of terms . . )
. . . . essential singular analytic pole pole
involving negative powers of z - z0 is called a
If z = a is a singularity of f(z), then it is ) ) )
gularity of f(z) .. ) an essential isolated a removable an essential
..................................... If limit z tends to a point a sinoularit a pole sinoularit sinoularit sinoularit
of f(z) does not exists £ Y £ Y £ Y gulartty
Isolated singularities are classified into
. two three many five three
................................. different groups
If z=a is a singular point of a function and if the limit of the . .
. ) : . . a removable isolated an essential a removable
function as z tends to a exists and is finite, then z=a is . . a pole . . . . . .
singularity singularity singularity singularity

............................... of the function
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The removable singularities and the poles are . . non-isolated isolated an essential isolated
singularity . . . i . . . :

.......................................... singularity singularity singularity singularity

Ifz=ais ....ooooiiiiiiiii of f(z), then f(z) is an essential isolated a removable a4 vole a removable

bounded in every deleted neighbourhood of z=a singularity singularity singularity P singularity

REITIT TP TP TP PRP PR are the singular points of the 5 and 0 5 and 3 0and 1 L and 2 0and 1

function 1/z(z-1)

Ifz=ais........ooooeiiiiinl. of f(z) , then the behaviour of ) ) .

. . . . anessential isolated a removable an essential

f(z), close to z=a is complicated and at z=a the function is sinoularit a pole sinoularit sinoularit sinoularit

not defined & Y & Y £ Y gulattty

When the order of a pole is 1, Ij:il; pole is said to be a Jero double simple finite simple

If z=a is a zero of order m of an analytic function f(z), then ) .

. a removable an essential isolated

i B I D of order m of the apole sinoularit sinoularit sinoularit apole

function 1/f(z) guiattty gulattty gulattty

When the order of a pole is 2,Pt(1)1£ce pole is said to be a double finite simple Jero double

Ifz=aisa........oooooiiiiiiin of order m of an analytic

function f(z), then z=a is a pole of order m of the function a pole Zero analytic singular Z€ero

1/1(z)

The point z=a is a 51ng1;lta;£(;mt of f(z) 1f f(z) 1s not continuous not continuous differentiable =~ bounded differentiable

Ifz=ais a singularity of f(z), theg lt.ls . a removable an essential isolated

..................................... if limit z tends to a point a sinoularit sinoularit apole sinoularit apole

of f(z) exists and equals infinity £ Y giattty £ Y

lfz=ais a removal?le singularity of f(.z ), then f(z) Is bounded Constant Zero not bounded bounded

........................ in every deleted neighbourhood of z=a

Ifzisa......ooooiiiiii [f(z)| tends oo as z tends to a Constant singular double pole pole

singular points of logz are...........................

z=0and z=o

z=1and z=0

z=0and z=-1

z=land z= o0

z=0and z= o0

The limit point of zero’s of an analytic function is a
................ point of the function

singular

nonsingular

poles

Z€Tros

singular

A region which has only one hole is an
....................... region

origin

set

annular

moment

annular
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tanz and secz are analytic in a bounded region in which

tanz #0 secz#£0 sinz#0 cosz#0 sinz#0

Ivtic ] o in which .
cot z and cosecz are analytic in a bounded region in whic cotz 40 cosecz 0 sinz £ 0 cosz 20 cosz 20
The poles of an analytic functionare ........................ essential removable pole isolated isolated
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KARPAGAM ACADEMY OF HIGHER EDUCATION
KARPAGAM

ACADEMY OF HIGHER EDUCATION

OrHGHER Pollachi Main Road, Eachanari (Po),
bl UndecSction 3o GC it 1956 Coimbatore —641 021

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Subject: COMPLEX ANALYSIS-II

Subject Code: 1SMMU602

Class : III B.Sc Mathematics Semester : VI

UNIT -1V

PART A (20x1=20 Marks)

(Question Nos. 1 to 20 Online Examinations)

Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
Principle value of logz is obtai h =
rinciple value of logz is obtained when n 0 1 | ) 0
If a function h(z) is analytic at z=a and h(a) not equal to
zero then the residue of function f(z)=h(z)/(z-a) at z=ais  h(z) h(a) f(a) z(a) h(a)
From x= rcosf and y = rsinf weget 0 = 1 1 1 1 1
sin” y/x cos y/x tan y/x cot y/x tan y/x
The complex integration along the scro curve used in
. o . . _ contour contour . . contour
evaluating the definite integral is differentiation . . . . Integration . .
differentiation integration Integration
called.........c.ooo
COSIZ = tuiiiiiii i cosz icosz icoshz coshz coshz
If a function h(z) is analytic at z=a and h(a) not equal to
zerothenz=aisa...................... of the function simple zero double pole simple pole finite pole simple pole
f(z)=h(z)/(z-a)
In a compact set every continuous function is . uniformly . .
bounded in s . ) unique does not exist
.............................. continuous 1n s
SINIZ = .o.iiiiiii e sinz sinhz isinz isinhz isinhz
Principle value of logz is obtained when n = 0 | 1 5 0
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To show that the integral along gamma vanishes as R tends

to infinity, a result called

origin lemma

jacobi's lemma

annular lemma

jordan's lemma

jordan's lemma

cosh’z —sinh®z=.............................. 0 1 -1 o0 1

The logarithmic functionis a ............c.ocoiiiiii.n . . .
valued function single multiple two zero multiple
In a complex field z=x +iythen0=.............. sin” (y/x) cos” (y/x) tan” (y/x) cot (y/x) tan” (y/x)
The function f(z) = 27is valued function single multi double triple double
The sum f(z) of a powerseries is analyticin .............. |z|>R |z|<R |z| <R |z|=R |z|<R

COSZ; COSZ, -

cosz; sinz, -

C0SZ; c0sz, +

sinz; cosz, -

COSZ; COSZ, -

sinz;sinz, sinz,cosz, sinz;sinz, C0SZ;SInz, sinz;sinz,
The residue of f(z) = cosz/z at its pole is .................... 2 3 0 1 1
The residues at z=0 of the function f(z)=e"(1/z) is 0 ) ) 3 )
The residue of f(z) = 1/(z"2+a"2)"2 at its singularities is
ne of flz) = 1z"2+a"2) . ifa® 3i/a* i/4a’ 5i/a’ i/4a’
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I1I BSC MATHS COURSE NAME: COMPLEX ANALYSIS-II
RSE CODE: 1 2 UNIT: 1V BATCH-2015-2018
UNIT-1V
SYLLABUS

Real definite integrals: Evaluation using the calculus of residues — Integration on
the unit circle —Integral with - co and + oo as lower and upper limits with the
following integrals:

1) P(x) /Q(x) where the degree of Q(X) exceeds that of P(x) at least 2.

11) (sin ax ).f(x), (cos ax).f(x), where a>0 and f(z) —0 as z—o0 and f(z) does not
have a pole

on the real axis.

i) f(x) where f(z) has a finite number of poles on the real axis

Residues and Real Integrals

Residue theorem

Detfinition

Suppose f is holomorphic in a deleted neighour-
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hood Dy of zp e Cand I'y := {2z € C: |2 — 2| = r} C Dyp. Then

residue of f at zp is defined by
) 1 .
Res(f,zg) = — / f(z)dz.
2me [y,
¢

Recall that if f is holomorphic in a deleted neighourhood Dy of
zg € C, then f has Laurent series expansion

f(z)= Z an(z — 20)", z € Do,

n=—00

and we know that
1 (2)
ap = - - (2 1r£.“:. ne
2mi Jp, (2 —z0)"F

Res(f,z0) = a—1.

S

Thus,

The following theorem, known as residue theorem follows from
Cauchy’s theorem.

Theorem (Residue theorem) Suppose I' is a simple closed
contour and zy,...,z; are points in I'p which are the only singular
points of f in I' Up. Then
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Calculation of Residues
Suppose zp is a pole of order m of a holomorphic function f. Then we

know that there exists a holomorphic funetion ¢ in a neighourhood
D of zp such that

flz)=(2—2) "p(z) V2€Dy:=D\{z}

Let
o0
p(2) =) an(z—2)",  z€D.
n=0
Then we have
'™ (2g) ]
iy = —r neMp:=HNU {ﬂ}
!
s0 that
ffﬂ:] = {.-: - f{]_\]_ntﬁ‘g[f.\l = Z n'n[_f - f[}}n_?n - Z ﬂn[ﬁ" — f“f{]_]n_
n=0 =—1m
Hence,
Alm—1}r,,
- z0)
Rffﬁ[f, H:[}::I - I:-'[—'I_ — (.T-r-n_'l — ﬁ

Thus, we have proved the following theorem.

Theorem Suppose zp is a pole of order m of a holomorphic

funetion f. Then the function
2 (2) 1= (2 — 20)™ f(2)

defined in a deleted neighourhood of zp has a holomorphic ertension
to a neighourhood D of zy, again denoted by ¢, and
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[m 1) f ]
=0
Res( L. wi
f,20) = (m —1)!

In particular, if zo is a simple pole of f, then

Res(f,zg) = lm z —zp)f(2).

Corollary 7.2.2 Suppose g and h are holomorphic in a neigbourhood
D of zo and zy is a zero of b of order m. If h(z) = (z — z0)™ho(z)
with hg(2g) # 0, then

Alm—1})¢ .,
(9 sy ¢ (20)
ftes [F_ 0) = (m—1)! °

where @(2) = g(z)/ho(2). In particular, if m =1, then

9(zo) _ 9(z0)
ho(zo)  R'(20)°

Rf:‘ﬁ[%._ ) =

EXAMPLE Let us find /f[f.‘ldf-. where f(z) = ﬁ
r s — 1)

and I' is the positively oriented eircle with centre 0 and radius 2.
By residue theorem,

[.L—ET?[RH z1) + Res(f, z2)]. 21 =0, 20 = 1.
Jr z(z —1)

Since z; = 0 and zo = 1 are simple poles of the function

Res(f,z) = lirr[l} zf(z) = —1,
Res(f g]_hrr% z—1)f(z) = 1.

Hence, /d—~=ﬂ ]
Jr z(z —1)

1

EXAMPLE Let us find f f(z)dz, where f(z) = W
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and I is the positively oriented circle with centre 0 and radius 2. By

residue theorem,
dz , . .
f ErEh 2mi[Res(f, z1) + Res(f, z2)], 21 =0, 20 =1,
Az L
Since z1 = 0 is a simple pole and z2 = 1 is a pole of order 2,

Res(f.z1) = IE}I[I} 2f(2) =1, Res(f,z2) = ¢'(1)

< ___, n

where @(z) = % so that ¢'(1) = —1. Thus, /W =
JIT == 7 4

Exercise 1 pig Res(f, 20), where

(a) f(z)==ze?, zp=0.

. . 4+ 2
(b) f(z) =ﬁ (i) 20 =0, (ii) z0=—L1.

2. Evaluate f f(z)dz, where
.

(a) % and I' = {2 : |z| = 2}.

z+1 and I' = {z : |z| = 1}.

(b) 223 — 322 — 22
: z+1/z
- and I'=1{z:|z| =1}
) @i ™ =il =1
o log(z+2) T
(d) i1 and I' = {2z : |z]| = 1}.
(e) %’{Ul) and ' = {z : |z| = 1}.

Evaluation of Improper Integrals
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In this section we shall evaluate integrals of the form

fmf[_x}di' and fm flx)dx,
] —o0

where f is a continuous function.

s ]

EXAMPLE 7.3.1 Let us evaluate f d_:rg For this consider
oo 1+

the function f(z) = dr 5 for z # 0. Note that z = 1 is the only

singularity of f in the up[;er half plane and it is a simple pole. Con-
sider the positively oriented curve I'p consisting of the semicircle
with centre 0 and radius R, i.e., Sp := {2z : |z| = R,Im(z) > 0} and
the line segment Ly := [—R, R|. Then, by Cauchy’s thf_w:-rcm,

fE)z = | S

I'm

where Cp = {z: |z —i| = r} with 0 < r < R. But,

f f(z)dz = 2mi Res(f,i) = 2milim(z — i) f(2) ==
[ z—¥i

Thus,
flz)dz = .
SR
Also, we have
f(z)dz = / f(z)dz + A flz f f(z)dz + f{_x}d-,r.
I'r R
But, for z € Sg,
. 1
A | .
N <
Hence,
| f ((Sg) i
RE 1 R-1
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Hence,
lim [ f(z)dz = lim f(2)dz + lim [ f(z)dz
R—eo 'R ' Ao Sk ' H—oo Li !

— U-I—/ f(z)dzx.
wf — 0
Thus,

[a- )
[ flx)dr = lim flz)dz = m.
S —o0 ' I '

i—oo Jpp

CcOsST ,
—grirs'. Sinece
— J"

EXAMPLE Let us evaluate / ]

o —00

l='s S =% ST
/ o J, dr = Re / " _dw
Jooo 1422 Jooo 1+ 22

we consider the funetion

e iz

Following the arguments as in the previous example, one arrive at

o glr ]
sdr = —.
oo 1+ 2% £

|

But.,

o0 J1E = TR
Im ([ f'—f,d:r) = [ bm'tf, dr = 0.
Jono 1+ 27 Jone 1 +2°

Hence,

dr. Since

EXAMPLE 1t s evaluate / 51?.1I;z'

of — 0
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o0 oo iT
sin T e
/ dr = Re (/ ti;z')
—sa T —oo T

we consider the function
flz) = —, z # 0.
Forr > 0,let Sy := {2 : |z| = r} with positive orientation. Then, tak-

ing 0 < ¢ < Rand I' as the curve consisting of S, [—R, —¢, S-. e, R,
using Cauchy’s theorem,

0 = /f[?:]tf?:
I

£ R
= f(z)dz + f[_:::_]ti’:r:—f_ f[_rf_]u:irr—f flz)dz
Sc E

Si J—R
- R
= flz)dz + f[_:;:_]ti’:f:—/ f[_.’;'_]lif.’;'—[ flz)dz
Sn J—R s £
But,
—5 R
Cos T COS T
f dr + / dr =10
-R € Je r
and 0 .
“Fanzx sin.T sin r
/ dr + / dr = 2] dx.
J—R I Je r c r
Hence,
i —E R
. . sin T
flz)dz + flz)dze = :}.r'/ dr.
£ —-R E T
Thus,

R
2-:'.[ el =f flz)dz — f(z)dz
Je T Sc Sg
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Now, we note that with the parametrization v(t) = Re®. 0 <t <«
of Sg,

T t.JifE(-:'mLHH'LnE} _ T .
[ ff“:]tf“f _ f - fR(:'rHELEf _ ?-f E?fﬂ[:.t}s!—rsmt]dt
Sk 0 Re 0

Hence,
n .'I'J-"E .
‘ f f d ‘ < f H'ﬂntdt _ Ef (:'_Hsm!fff.
0
sint . . sint _ sinw/2
), /2], we have ; = ; E so that
. ﬂ—.
sint > 2t /mw.Thus,
_ w2 ) .
| flz)dz| < Ef e 2RUT gt — Ll e ) 50 as R— o
Sg ]
Next, we observe that
!,:.i: 1
S =~ +e(2)

where  is an entire function. Hence, there exists M > 0 such that

lp(2)] < M for all 2 with |z| < 1. Thus,
[ f(z)dz = f & j: w(z)dz,
where :
‘/; p["’hd“‘ < Mme, D<e<1.
Hence,

R _: -
g-j.f e / :—I—f p(z)dz — fl(z)dz
e T S = Se Sr
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where
[ p(z)dz —0 as £—0 and f(z)dz =0 as R — oc.
i3 VSR
Thus,

R ginx T
dr = —.
J= T 2

Problems

1. Find the residues of the following functions:
»3 »3
ii) ——
z—1 U, (z—1)2

2. If f and g are holomorphic in a neighourhood of zp, and z5 is a
simple a pole of g, then prove that Res(f/g.20) = f(z0)/d'(20).

3. Determine the residues of each of the following functions at
each of their singularities:

I

3 =z COS 2
Lllﬁlm I:;11[_\] T . 3

4. If f is holomorphic in a neighourhood of zp, and zj is a zero of
f order m, then prove that Res(f'/f,zg) = m.

Evaluate the following using complex integrals:

. %0 gl < dr
i —dr, ii =
(i) L e (i) ﬁ s

> gin? COS T
(1ii) f dr, (iii) — 3 2 z, a=0b=0.
' 0 I )] r= + IEF

[y |
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POSSIBLE QUESTIONS

2

o x
1. Evaluate fO m

2. showthat [;" —=——df= == a> |b| > 0.
3. Evaluate ["————d@ ,a > |b| > 0.

0 (a+bcosB)?

4. Using contour integration show that [~

W T -ma
0 (x2+a2)2 dx v 4(13 (1 + ma’)e lm > Ola > 0 .

2

00 x
5. Evaluate fO m

2w sin?0

()]

. Using contour integration evaluate fo o

2

\l

0o x
. Evaluate fO m

2m sin?0

oo

. Using contour integration evaluate fo pT—

. Evaluate:

©

e x2
fo (x2+a?)? dx

10. Evaluate [*" ——~——d@ , a > |b| > 0.

0 (a+bsinB)?2
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\%/ KARPAGAM ACADEMY OF HIGHER EDUCATION
KA RP A G AM (Deemed to be University Established Under Section 3 of UGC Act 1956)
ACADEMY OF HIGHER EDUCATION Pollachi Main Road, Eachanari (PO),
G o 3 Coimbatore —641 021
Subject: COMPLEX ANALYSIS-II Subject Code: 15SMMU602
Class : III B.Sc Mathematics Semester : VI
UNIT -V

PART A (20x1=20 Marks)

(Question Nos. 1 to 20 Online Examinations)

Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
A function which has no singularities in a region other than
a finite number of poles is said to be analytic meromorphic  isomorphic morphic meromorphic
.............................. in that region
Find the number of roots of the function f(z) = z"8 - 525 -
2z+1 which lie inside the unit circle C:|z| = 1 2 4 6 5 5
n(P,f) denotes the number of ......................... of f(z)
0 Ci ones constants Zeros poles poles
Find the number of zeros of the function f(z) = z"6+z"3 -
6z +9 which lie inside the unit circle C:|z| = 1 1 2 0 4 0
i >
A polynomial of degree n > 1 has 02 01 - N N
.................................. Zeros
N8+323+7z+ i
z"8+32"3+7z+5 has two zeros inthe ..................... ... Jeros first third second first
quadrant
By Hurwitz's theorem, f(z) has .......................oele.
. no Zeros poles orders Zeros no zeros
in D.
z"3+iz+1=0 has one root in the .................. quadrant.  first fourth third second first
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Find the number of zeros of the function f(z) = z\7 - 425

+z/2 -1 which lie inside the unit circle C:|z| = 1 5 2 4 3 5
A7\ 3+472"2+27+ i
2PAFzh 3477242253 has t\ziazgrrgljtse%h in the first and fourth ~ first and second second and third third and fourth | second and third
A function which is meromorphic in the extended plane is real function 1rrat19nal rational function complex rational function
R function function
Find the number of zeros of the function f(z) = 2z"9 - 525
+z”2 -1 which lie inside the unit circle C:|z| =1 2 1 5 3 5
By i - ...theorem, f(z) and g(z) Fundamental Hurwitz's Rouche's principle of Rouche's
have the same number of zeros inside C. argument
The zeros and poles being counted as many times as their
Zeros orders poles ones orders
A + A +1 = 1 1
one root of z4+z73+1 =0 lies in the Zeros second third first first
........................ quadrant
The number of zeros of the function f(z)= z*4-5z+1 which . .
.. .. mner annular domain outer annular
liesinthe .............oooiiiiiiiini, region is 3
The equation e™(z-a) - z=0, a> 1 has just one root in the . L L
: exterior poles interior orders interior
.......................... of the circle C: |z]=1
The fi tal th fal inciple of . . .
e gndamen al theorem of algebra can be proved by principle o isomorphic Rouche's Hurwitz's Rouche's
APPLYING © oo Theorem argument
The equation e”(z-a) - z=0, a> 1 has
............................. root in the interior of the circle C: 4 2 1 0 1

=1

The equation e”(z-a) - z=0, a> 1 has just one root and it is

real and negative

imaginary and

imaginary and

real and positive

real and positive

................................................. positive negative
zM8+32"3+T7z+5has ... zeros in the

2 1 5 3 2
first quadrant
n(Z,f) denotes the numberof ......................... of f(z)
e poles Zeros ones constants Zeros
in C1
zM-z"2+1=0has ................. root in first

one two Zeros three one
quadrant
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Find the number of zeros of the function f(z) = z"8 - 4z"*4
+z/2 -1 which lie inside the unit circle C:|z| = 1 6 2 4 5 4
ZMA7N3+47272+27+3 has oo zeros each
in the second and third quadrants

Find the number of zeros of the function f(z) = z"4 - 5z +1
which lie inside the unit circle C:|z| =1 0 4 1 2 1

two three ZEros one two
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