

Syllabus 2018 -2021
Batch

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University)

 (Established Under Section 3 of UGC Act, 1956)

Coimbatore-21

LECTURE PLAN

COMPUTER APPLICATIONS

SUBJECT NAME: ADVANCED JAVA AND SPRINGS SUBJECT CODE: 18CAP303

SEMESTER: III CLASS: II MCA

Scope: The course covers both core and advanced Java concepts like Database connectivity,

Threads, Exception Handling, Collections, JSP, Servlets, XMLHandling etc. students will also

learn various Java frameworks like Spring.

Course Objective: After the completion of the Advance Java Course, students will be able to:

1. Develop the code with various Java data types, conditions and loops.

2. Implement arrays, functions and string handling techniques.

3. Understand object oriented programming through Java using Classes, Objects and various

Java concepts like Abstract, Final etc.

4. Implement multi-threading and exception handling.

5. Write a code in JDBC to communicate with Database.

6. Write code with spring framework components.

UNIT I

Exception Handling, Exception-Handling Fundamentals, Exception Types- checked &

unchecked, Uncaught Exceptions, Using try and catch, Multiple catch Clauses, Nested try

Statements, throw, throws and finally. Multithreaded Programming: Introduction to Threads,

Creating and Running Threads, Volatile Variables, Life Cycle of a Thread, Thread Priorities and

Thread Scheduling – Creating and Executing Thread – Thread Synchronization Runnable

Interface

UNIT II

Files and Streams: Advanced Input/output Streams, Readers and Writers, Character and Byte

Streams, PrintWriter, Reading Text, Scanner Class, Reading and Writing Files, Copying a File,

Class File, Creating a Sequential, Access File, Reading Data from a Sequential, Access File,

Random-Access Files, Creating/Writing/Reading Random-Access Files, New I/O APIs for the

Java Platform.

Syllabus 2018 -2021
Batch

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 2

UNIT III

Framework: Overview, Generics Fundamentals, Autoboxing, The Collection Interfaces-List

Interface, Set Interface, SortedSet Interface, NavigableSet Interface, The Collection Classes-

ArrayList, LinkedList, HashSet, LinkedHashSet, TreeSet, Accessing a Collection via an Iterator,

Enumeration Interface, Vector, HashTable, Properties, StringTokenizer and Date Class.

Serialization: Serializable, Externalizable.

UNIT IV
Introducing the Spring Framework, Spring Framework RunTime & architecture, Inversion of

Control (IoC), Dependency Injection, Different Forms of Dependency Injection, Dependency

Injection variants, DI classes & Parameter in Spring framework, Bean naming, @Autorwired

annotation, The Bean Factory, XML Bean Configuration, Managing the Bean Lifecycle, Basics

of Aspect-Oriented Programming (AOP), AOP concepts - Join point, Pointcut, Advice, Types of

advice, @AspectJ support

UNIT V
DAO Support and JDBC Framework, Operations with JdbcTemplate, JdbcTemplate

Convenience Methods, Basic Queries Using the JdbcTemplate, Batch Updates, Transaction and

Resource Management, Global transaction vs. local transaction, Declarative transaction

management, XML-based, Annotation-based, Object/Relational Mapping, Basic O/R Mapping,

Object Query Languages, Data Access Objects, Setup in a Spring Context, Introduction to Spring

MVC, DispatchServlet, Context configuration, Identify the design goals and core concepts of

Spring MVC, Spring MVC controllers & Views

SUGGESTED READINGS

1. Deitel & Deitel. (2014), Java How to Program, 10
th

 Edition, Pearson Education Asia, New

Delhi.

2. Craig Walls (2014), Spring in Action, 4
th

 Edition

3. Herbert Schildt (2014), “Java Complete Reference”, 9
th

 edition. Tata McGraw Hill, New

Delhi.

4. Balagurusamy.E (2012), “Programming with Java”, 3
rd

 edition ,Tata Mc-Graw Hill, New

Delhi.

5. ISRD Group (2012), “Introduction to Object Oriented Programming through Java”, 1
st

Edition, Tata Mc- Graw Hill, New Delhi.

6. Aaron walsh, Justin couch & Daniel H.Steinberg. (2000),” Java 2 Programming”, IDG Books

India (P) Ltd., New Delhi.

7. Rod Johnson, Jurgen Holler & Alef Arendsen. Professional Java Development with the

Spring Framework

WEB SITES

1. java.sun.com/docs/books/tutorial/

2. www.en.wikipedia.org/wiki/Java

3. www.java.net/

http://www.java.net/

Syllabus 2018 -2021
Batch

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 3

CIA Max.Marks(50)

Part A Objective type questions - 20 x 1 = 20 Marks

Part B Answer all the questions - 3 x 2 = 6 Marks

Part C Answer all the questions Either/Or - 3 x 8 = 24 Marks

ESE Max.Marks(60)

Part A Objective type questions -20 x 1 = 20 Marks

Part B Answer all the questions Either/Or -5 x 6 = 30 Marks

Part C Answer all the questions Compulsory-1 x 10 = 10Marks

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University)

 (Established Under Section 3 of UGC Act, 1956)

Coimbatore-21

Department of Computer Applications

Course Code: 18CAP303 Course Name: Advanced Java and Springs

LECTURE PLAN

UNIT-I

Sl.

No.

Lecture

Duration

(Hr)

 Topics to be Covered Support Materials

1 1 Exception Handling Fundamentals, Exception Types-

Checked &unchecked

R1-P(120-122)

2 1 Uncaught Exceptions using try & catch, Multiple

catch classes

J1, R1-P(123-128)

3 1 Nested try Statements , throw, throws and finally R1-P(128-133)

4 1 Introduction to threads, Creating and Running Threads,

Volatile Variables

R1-P(138-146)

5 1 Life Cycle of a Thread , Thread priorities and Thread

Scheduling

R1-P(146-149)

6 1 Creating and Executing Thread R1-P(144-146)

7 1 Thread Synchronization W1,R1-P(149-152)

8 1 Runnable Interface W1,R1-P(149-152)

9 1 Recapitulation and discussion on important questions

Total no. of Hours planned for Unit-I - 9

TextBooks: R1:ISRD Group(2012),”Introduction to Object Oriented Programming through Java” ,1st

Edition,Tata Mc-Graw Hill, New Delhi.

Websites: W1-www.javatpoint.com.

Journals:J1-International Journal of Computer science and information technology and security.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University)

 (Established Under Section 3 of UGC Act, 1956)

Coimbatore-21

Department of Computer Applications

Course Code: 18CAP303 Course Name: Advanced Java and Springs

LECTURE PLAN

UNIT-II

Sl.

No.

Lecture

Duration(Hr)

Topics to be covered Support Materials

1. 1 Advanced Input/output streams, Readers and

writers

R1-P(258-269)

2. 1 Character and Byte Streams, Print writer R2-P(838-840)

3. 1 Reading text, Scanner class, Reading and

Writing Files

R1-P(259-261)

4. 1 Copying a file, Class file, Creating a sequential

Access Files

R1-P261

R2-P(846-857)

5. 1 Reading Data from a Sequential Access File R2-P(857-870)

6. 1 Random Access Files R2-P(857-870)

7. 1 Creating/Writing/Reading Random Access

Files

R2-P(870-885),J1

8. 1 New I/O APIs for the Java Platform R2-P(897-903),W1

9. 1 Recapitulation and discussion on important

questions

Total no. of Hours planned for Unit-II - 9

Textbooks: R1-ISRD Group(2012),”Introduction to Object Oriented Programming through Java “,1st

Edition Tata-Mc Graw Hill,New Delhi.

R2-Deitel and Deitel(2014)Java How to program 10
th

 Edition,Pearson Education Asia New Delhi.

Websites: W1-www.javatpoint.com

Journals:J1-International Journal of Computer science and information technology and security.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University)

 (Established Under Section 3 of UGC Act, 1956)

Coimbatore-21

Department of Computer Applications

Course Code: 18CAP303 Course Name: Advanced Java and Springs

LECTURE PLAN

UNIT-III

Sl. No. Lecture

Duration(Hr)

Topics to be covered Support Materials

1. 1 Collections-Overview, Generics

Fundamentals, Autoboxing

R2-P(1- 42)

W2-protechtraining.com

W3-tutorialspoint.com

W1-javapoint.com

2. 1 Generics Fundamentals, Autoboxing R2-P(1- 42)

W2-protechtraining.com

W3-tutorialspoint.com

W1-javapoint.com

3 1 Collection interface :List interface, Set

interface,

R1-P(232-233)

R1-P(224-225)

4. 1 Sorted set Interface, Navigable Set Interface R1-P(232-233)

R1-P(224-225)

5. 1 Collection classes-Array List, Linked List,

Hashset ,Linked Hashset, Tree Set

R1-P(225-228)

 R1-P(233-234)

J1

6. 1 Accessing a Collection-an Iterator ,

Enumeration interface, Vector

R1-P(223-224)

R1-P(228-230)

7. 1 Hashtable, Properties, String Tokenizer and

Data class

R1-P(237-240)

R1-P(246-247),P242

8. 1 Serializable, Externalizable W3

9. 1 Recapitulation and discussion on important

questions

 Total no. of Hours planned for Unit-III - 9

Textbooks: R1-ISRD Group(2012),”Introduction to Object Oriented Programming through Java “,1st

Edition Tata-Mc Graw Hill,New Delhi.

R2-Deitel and Deitel(2014)Java How to program 10
th

 Edition,Pearson Education Asia New Delhi.

Websites: W2-protechtraining.com, W3-tutorialspoint.com

Journals:J1-International Journal of Computer science and information technology and security.

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University)

 (Established Under Section 3 of UGC Act, 1956)

Coimbatore-21

Department of Computer Applications

Course Code: 18CAP303 Course Name: Advanced Java and Springs

LECTURE PLAN

UNIT-IV

Sl No. Lecture

Duration(Hr)

Topics to be covered Support Materials

1. 1 Introduction to Spring Framework, R3-P(1-27)

2. 1 Spring Framework RunTime and architecture R3-P(1-27)

3. 1 Inversion of Control, Dependency injection,

Different Forms of Dependency injection

R3-P(39-43)

4. 1 Dependency injection variants, DI Classes and R3,J2

5. Parameter in Spring Framework W3

6. 1 Bean naming@ Autowired annotation, the Bean

Factory, XML Bean Configuration

R3-P(47-53)

7. 1 Managing the Bean Lifecycle, Basics of Aspect-

Oriented programming(AOP)

R3-P64,P(118-161)

8. 1 AOP Concepts-Join point, Pointcut ,Advice,

Types of advice, @ Aspect J Support

R3-P(119-125)

W3

9 1 Recapitulation and discussion on important

questions

Total no. of Hours planned forUunit-IV -9

Textbooks: R3-Rod Johnson ,Jurgen Holler and Alef Arendsen, ”Professional Java Development with

the Spring Framework”.

Websites: W3-tutorialspoint.com

Journals:J2-International Journal of Engineering innovative technology

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed to be University)

 (Established Under Section 3 of UGC Act, 1956)

Coimbatore-21

Department of Computer Applications

Course Code: 18CAP303 Course Name: Advanced Java and Springs

LECTURE PLAN

UNIT-V

SI No. Lecture

Duration(Hr)

Topics to be covered Support Materials

1. 1 DAO Support and JDBC Framework operations

with JdbcTemplate

R3-P(173)

P-184

2. 1 JdbcTemplate Convenience Methods R3-P(173)

P-184

3. 1 Basic Queries Using the Jdbc Template Batch

Updates, Transaction and Resource Management

R3-P(185-186)

P(217-253)

4. 1 Global transaction vs local transaction , W3

5. Declarative transaction Management W3

6. 1 XML-Based, Annotation-based, object/Relational

Mapping

R3-P(255-302)

7. 1 Basic O/R Mapping, object query languages R3-P(256-257)

8. 1 Data Access objects, setup in a Spring context

Introduction to Spring MVC DispatchServlet

Context configuration, Identify the design goals

and core concept of Spring MVC, Spring MVC

Controls and views

J2,R3-P(270-273)

R3-P431

W3

9. 1 Discussion of previous ESE question papers

10 1 Discussion of previous ESE question papers

11. 1 Discussion of previous ESE question papers

12. 1 Recapitulation and discussion on important

questions

Total no. of Hours planned for Unit-V -12

Textbooks: R3-Rod Johnson ,Jurgen Holler and Alef Arendsen, ”Professional Java Development with

the Spring Framework”.

Websites: W3-tutorialspoint.com

Journals:J2-International Journal of Engineering innovative technology.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: I BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 1/19

UNIT: I

SYLLABUS

Exception Handling, Exception-Handling Fundamentals, Exception Types- checked &

unchecked, Uncaught Exceptions, Using try and catch, Multiple catch Clauses, Nested try

Statements, throw, throws and finally. Multithreaded Programming: Introduction to Threads,

Creating and Running Threads, Volatile Variables, Life Cycle of a Thread, Thread Priorities and

Thread Scheduling – Creating and Executing Thread – Thread Synchronization Runnable

Interface

Exceptional handling:

Exception handling is a mechanism to handle runtime errors, so that normal flow of the program

can be maintained.

Exception Hierarchy:

Throwable is the super class.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: I BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 2/19

 Advantages/Benefits of exceptional handling:

1. Using exceptional handling we can separate the error handling code from normal code.

2. Using exceptional handling we can differentiate the error types.

3. Normal flow of program can be maintained.

Types of Exception:

1. Checked exception.

2. Unchecked exception.

3. Error.

Checked exceptions:

Checked exceptions are those exceptional conditions that are checked by compiler at the compile

time. A checked exception forces you to either use try-catch or throws. All exceptions except

Error, RuntimeException, and their subclasses are checked exceptions.

e.g. – IOException, SQLException etc.

Unchecked exceptions:

Unchecked exceptions are those exceptional conditions that are not checked by compiler at the

compile time. Unchecked exceptions are checked at runtime. An unchecked exception not forces

you to either use try-catch or throws. RuntimeException and their subclasses are unchecked

exceptions. This Exception can be avoided by programmer.

e.g. – NullPointerException, ArithmeticException etc.

Error:

Errors are those exceptional conditions that are not checked by compiler at the compile time.

Errors are checked at runtime. An error not forces you to either use try-catch or throws. Error

and their subclasses are represents errors. Error can’t be avoided by programmer, it is

irrecoverable.

e.g. – OutOfMemoryError etc.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: I BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 3/19

Exception -handling fundamentals :

A java exception is an object that describes an exceptional condition that has occurred in the

piece of the code> When an exceptional condition arises an object representing the exception is

created and thrown in the method that caused the error. that method may choose to handle the

exception itself or pass it on. Either way at some point the exception is caught and processed.

Exception can be generated by the java run time system or they can be manually generated by

the code. Exception thrown by the java relate to the fundamental errors that violate the rules of

the java languages or the constraints of the java execution environment. Manually generated

exception is typically used to report some error conditions to the caller of the method.

Java exception handling is managed via five keywords: try, catch, throw, throws and finally.

Briefly here is how it works. Program statements that you want to monitor for the exception are

contained within the try blocks. if an exception is occurred within the try block, it is thrown.

Your code can catch this exception using the catch and handle it in some rational manner.

System generated exception are automatically thrown by the java run time system. To manually

throw an exception use the keyword throw. An Exception that is thrown out of a method should

must be specified as such by the throw clause. Any code that absolutely must be executed after

the try block completes is put in a finally block.

This is the general form of the exception handling block:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: I BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 4/19

try{

// block of the code to monitor for the errors

}

catch(Exception Type1 exOb){

Exception handler for the Exception Type1

}

catch (Exception Type2 exOb)

//Exception handeler for the Exception Type2

}

//…

finally{

// block of the code to be executed after the try blocks end

}

Multithreading :

Multithreading is a conceptual programming concept where a program (process) is

divided into two or more subprograms (process), which can be implemented at the

same time in

parallel.Amultithreadedprogramcontainstwoormorepartsthatcanrunconcurrently.Eac

h

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: I BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 5/19

partofsuchaprogramiscalledathread,andeachthreaddefinesaseparatepathofexecution.

A process consists of the memory space allocated by the operating system that can

contain one or more threads. A thread cannot exist on its own; it must be a part of

aprocess.

There are two distinct types of Multitasking i.e. Processor-Based and Thread-Based

multitasking.

 Processes are heavyweight tasks where threads arelightweight

 Processes require their own separate address space where threads share the

address space

 Interprocess communication is expensive and limited where Interthread

communication is inexpensive, and context switching from one thread to the

next is lower incost.

Benefits of Multithreading

1. Enables programmers to do multiple things at onetime

2. Programmers can divide a long program into threads and execute them in

parallel which eventually increases the speed of the programexecution

3. Improved performance andconcurrency

4. Simultaneous access to multipleapplications

Life Cycle of Thread

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: I BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 6/19

A thread can be in any of the five following states

1. Newborn State: When a thread object is created a new thread is born and

said to be in Newbornstate.

2. Runnable State: If a thread is in this state it means that the thread is ready for

executionandwaitingfortheavailabilityoftheprocessor.Ifallthreadsinqueueareo

f same priority then they are given time slots for execution in round

robinfashion

3. Running State: It means that the processor has given its time to the thread for

execution. A thread keeps running until the following conditionsoccurs

a. Thread give up its control on its own and it can happen in the

following situations

i. A thread gets suspended using suspend() method which can

only be revived with resume()method

ii. A thread is made to sleep for a specified period of time using

sleep(time) method, where time inmilliseconds

iii. Athreadismadetowaitforsomeeventtooccurusingwait()method.

In this case a thread can be scheduled to run again using

notify () method.

b. A thread is pre-empted by a higher prioritythread

4. Blocked State: If a thread is prevented from entering into runnable state and

subsequently running state, then a thread is said to be in Blockedstate.

5. DeadState:ArunnablethreadenterstheDeadorterminatedstatewhenitcompletes

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: I BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 7/19

its task or otherwiseterminates.

Create Thread by Implementing Runnable

The easiest way to create a thread is to create a class that implements the Runnable

interface.

ToimplementRunnable,aclassneedonlyimplementasinglemethodcalledrun(),whichis

declared likethis:

You will define the code that constitutes the new thread inside run() method. It is

important

tounderstandthatrun()cancallothermethods,useotherclasses,anddeclarevariables,just

like the main threadcan.

After you create a class that implements Runnable, you will instantiate an object of

type

Threadfromwithinthatclass.Threaddefinesseveralconstructors.Theonethatwewillusei

s shownhere:

Thread(Runnable threadOb, String threadName);

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: I BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 8/19

HerethreadObisaninstanceofaclassthatimplementstheRunnableinterfaceandthename

of the new thread is specified by threadName. After the new thread is created, it will

not start running until you call its start() method, which is declared within Thread.

The start() method is shownhere:

Example to Create a Thread using Runnable Interface

Output:

Create Thread by Extending Thread

The second way to create a thread is to create a new class that extends Thread, and

then to create an instance of that class. The extending class must override the run()

method,

void start();

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: I BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 9/19

which is the entry point for the new thread. It must also call start() to begin execution

of the new thread.

Example to Create a Thread by Extending Thread Class

Output:

Thread Methods

SN Methods with Description

1 public void start()

Starts the thread in a separate path of execution, then invokes the run() method

on this Thread object.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: I BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 10/19

2 public void run()

If this Thread object was instantiated using a separate Runnable target, the run()

method is invoked on that Runnable object.

3 public final void setName(String name)

Changes the name of the Thread object. There is also a getName()

method for retrieving the name.

4 public final void setPriority(int priority)

Sets the priority of this Thread object. The possible values are between 1 and 10.

5 public final void setDaemon(boolean on)

A parameter of true denotes this Thread as a daemon thread.

6 public final void join(long millisec)

The current thread invokes this method on a second thread, causing the current

thread

 to block until the second thread terminates or the specified number of

milliseconds

passes.

7 public void interrupt()

Interrupts this thread, causing it to continue execution if it was blocked for any

reason.

8 public final boolean isAlive()

Returns true if the thread is alive, which is any time after the thread has been

started but before it runs to completion.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: I BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 11/19

Example:

Use of Yield() Method

Causes the currently running thread to yield to any other threads of the same priority

that are waiting to be scheduled

Asyoucanseetwostatementstostart a

same thread is written in the code

which will not give error during

compilation but when you run it you can

see an Exception as shown in the

OutputScreenshot.

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: I BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 12/19

Example

As you can see in the output below, thread A gets started and when condition

if(i==2) gets satisfied yield() method gets evoked and the control is relinquished

from thread

AtothreadBwhichruntoitscompletionandonlyafterthatthreadaregainthecontrol back

Condition is checked and when i==2

yield() method is evoked taking control

to thread B

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: I BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 13/19

Output

Use of stop() Method

The stop() method kills the thread on execution

Example

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: I BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 14/19

Output

Use of sleep() Method

Causes the currently running thread to block for at least the specified number of

milliseconds. You need to handle exception while using sleep() method.Example

Condition is checked and when i==2

stop() method is evoked causing

termination of thread execution

8

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: I BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 15/19

Output

Use of suspend() and resume() method

A suspended thread can be revived by using the resume() method. This approach is

useful when we want to suspend a thread for some time due to certain reason but do

not want to kill it.

Condition is checked and when i==2

sleep() method is evoked which halts the

execution of the thread for 1000

milliseconds. When you see output there

is no change but there is delay in

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: I BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 16/19

 is the example in which two threads C and A are created. Thread C is started ahead

Although Thread ‘C’ is started earlier than

Thread ‘A’ but due to suspend method

Thread ‘A’ gets completed ahead of

Thread ‘C’

Output

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: I BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 17/19

of Thread A, but C is suspended using suspend() method causing hread A to get hold of

Although Thread ‘C’ is started earlier than

Thread ‘A’ but due to suspend method

Thread ‘A’ gets completed ahead of

Thread ‘C’

Output

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: I BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 18/19

the processor allowing it to run and when Thread C is resumed using resume() method it runs

to its completion

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: I BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 19/19

 POSSIBLE QUESTIONS

PART-A (20 Marks)

(Q.No 1 to 20 Online Examination)

PART-B (6 Marks)

1. Discuss Thread Priorities and Thread Scheduling

2. List out the various Exceptions in java.

3. Explain Life Cycle of Thread and Runnable Interface

4. Write a java program to handle the Arithmetic Exception.

5. Explain why exception handling is an effective means for dealing with constructor

failure.

6. Name three threads that are created automatically by the java virtual machine and discuss

the purpose of each thread

7. Discuss the Exception types and Uncaught Exceptions

8. Explain Thread Synchronization with suitable examples

9. Discuss how to create and run a Thread

10. Explain the following i) try..catch block ii) throw iii) throws iv)finally

PART – C (10 marks)

1.What is synchronization and why is it important

QUESTION OPT 1 OPT 2 OPT 3 OPT 4 OPT 4 OPT 5 ANSWER

_________keyword is used to specify the exception thrown by method. catch throws finally throw throws

________blocks execute compulsorily whether exception is catch or not. finally catch throw throws throws

__________exception is thrown when divide by zero statement. NumberFormatException ArithmeticException NullPointerException Exception ArithmeticException

__________exception in java arises in code sequence. RunTime CompilationTime can occur any time does not occur RunTime

___________keywords is not a part of exception handling. try finally thrown catch thrown

Super class of all exceptional type classes is_________ string RunTimeException throwable catchable throwable

______class is related to all the exceptional that can be catch by using catch. Error Exception RunTimeException CompileTime Exception

_____keyword is used to manually throw an exception. try catch throw finally throw

Operator used to generate an instance of an exception than can be thrown by using throw

is___________
new malloc alloc thrown new

_______handles the exception when no catch is used. default handler finally throw handler final default handler

_________JVM runs out of memory which exception will be thrown. Memory Bound Exception Out of memory error Out of range exception NullReference Exception. Out of memory error

In java____________ programming environment,the throw keyword is used.
to generate exception

programatically
to throw exception object to catch exception object to terminate exception to generate exception programatically

Exception __________is thrown by read() method. Exception file not found ReadException IOException IOException

Exception and error are immediate sub classes of a class called _________ object Throwable AWT panel Throwable

__________does not deal with exception. throws throw finallize finally finallize

URL throws an exception called________ illegalURLException URLException malformedhostException malformedURLException malformedURLException

___________class is base class for all exception. string error throwable RunTimeException throwable

A program can be _______
single threaded and multi

threaded
finally try catch single threaded and multi threaded

When the event for __________a thread is blocked.
thread moves to the ready

queue
thread blocked ready thread completes thread moves to the ready queue

Termination of the process terminates when_______ first thread of the process first two threads of the process all threads within the process
no threads within the

process
all threads within the process

___________is not a valid state of a thread. running parsing ready blocked parsing

The register context and stacks of a thread are deallocated when the thread is___ terminates blocks unblocks spawns terminates

__________of predefined class thread is used to check whether current thread being checked is

still running.
isAlive() join() isRunning() Alive() isAlive()

_______are types of multitasking. Thread based Process and Thread based Process based RunTime Process and Thread based

_________is not a part of exception handling. try catch finally thrown thrown

____________keywords must be used for monitoring the exception. try catch finally throw try

_________handles the exception when no catch is used. default handler finally throw handler java run time default handler

________class is related to all the exceptions that cannot be caught. error exception RunTimeException Exception handling error

The packages contain all the Java's built in exceptions is_________ java.io java.util java.lang java.net java.lang

Thread Priority in Java is________ Integer Float Double Long Integer

The default priority of a newly created thread is___________ MIN_PRIORITY MAX_PRIORITY NORM_PRIORITY PRIORITY NORM_PRIORITY

Two threads cannot simultaneously enter into the methods of the same object if the methods are static Synchronized Private Package Synchronized

The name of the method which is used to schedule a thread for execution is_________ init() start() run() resume() run()

The default priority of a thread in Java is__________ 10 5 3 1 5

The maximum thread priority in Java is_________ 10 12 5 8 10

A thread becomes not runnable when its sleep method is invoked program terminates an event occurs An event Suspend its sleep method is invoked

___________ is the static member of thread? Current Thread() Join() getName() interrupt() Current Thread()

Select the valid thread state transition. ready to running ready to waiting waiting to running running to ready ready to running

The dead thread in Java is_________
Thead waiting Thread is in sleep

Thread completed its run

method

Thread Suspended Thread completed its run method

___________ are types of multitasking. Process based Thread based Process & Thread based P-Thread Process & Thread based

____________packages contain all the Java's built in exceptions. java.io java.util java.lang java.net java.lang

The name of the method used to start a thread execution is__________ resume() run() start() init() start()

The method ________is used to find out that a thread is still running or not. run() Alive() isAlive() checkRun() isAlive()

_________ waits for the thread to terminate. sleep() join() isAlive() stop() join()

_________is used to explicitly set the priority of a thread. set() make() SetPriority() run() SetPriority()

AWT stands for All Window Tools Abstract Window Toolkit All Writing Tools Absract Writing Toolkit Abstract Window Toolkit

Thread Priority in Java is______ Double long Integer Float Integer

_________will not directly cause a thread to stop? InputStream wait() sleep() notify() notify()

____________will directly stop the execution of a thread? wait() notifyall() notify() sleep() wait()

_________registers a thread in a thread scheduler. start() construct() register() run() start()

__________contain the body of the thread. stop() run() main() start() run()

___________class is used to read characters and strings in Java from Console. Bufferedreader StringReader InputStreamReader BufferedWriter Bufferedreader

_______ is used to read a string from the input stream. get() getline() read() readline() read()

________ class is used to read from byte array. InputStream BufferedInputStream both a& b ByteArrayInputStream ByteArrayInputStream

___________is a type of stream in Java. Integer stream Short stream Byte stream Long stream Byte stream

________ is used to perform all input & output operations in Java. Streams Variables Classes None Streams

________classes are used by character streams for input and output operations. InputStream Writer ReadStream OutputStream Writer

______contain the body of the thread. stop() run() main() start() run()

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: II BATCH: 2018-2021

Prepared by Dr.G.Anitha , Asst. Prof., Department of CS, CA & IT, KAHE 1/19

UNIT: II

SYLLABUS

Files and Streams: Advanced Input/output Streams, Readers and Writers, Character and Byte

Streams, PrintWriter, Reading Text, Scanner Class, Reading and Writing Files, Copying a File,

Class File, Creating a Sequential, Access File, Reading Data from a Sequential, Access File,

Random-Access Files, Creating/Writing/Reading Random-Access Files, New I/O APIs for the

Java Platform

Java files and streams

The java.io package contains nearly every class you might ever need to perform input and

output I/O in Java. All these streams represent an input source and an output destination. The

stream in the java.io package supports many data such as primitives, Object, localized characters,

etc.

Stream

A stream can be defined as a sequence of data. There are two kinds of Streams InPutStream: The

InputStream is used to read data from a source. OutPutStream: the OutputStream is used for

writing data to a destination. Java provides strong but flexible support for I/O related to Files.

Byte Streams

Java byte streams are used to perform input and output of 8-bit bytes. Though there are many

classes related to byte streams but the most frequently used classes are , FileInputStream and

FileOutputStream. Following is an example which makes use of these two classes to copy an

input file into an output file:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: II BATCH: 2018-2021

Prepared by Dr.G.Anitha , Asst. Prof., Department of CS, CA & IT, KAHE 2/19

im port java.io.* ;

public class CopyFile{

public static void m ain(String args[]) throws IOException

{

FileInputStreamin = null;

FileOutputStreamout = null;

try{

in= new FileInputStream("input.txt");

out= new FileOutputStream("output.txt");

intc;

while((c = in.read()) != -1) {

out.write(c);

}

}finally{

if(in != null) {

in.close();

}

if(out != null) {

out.close();

}

}

}

}

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: II BATCH: 2018-2021

Prepared by Dr.G.Anitha , Asst. Prof., Department of CS, CA & IT, KAHE 3/19

Now let's have a file input.txt with the following content:

This is test for copy file.

As a next step, compile above program and execute it, which will result in creating output.txt file

with the same content as we have in input.txt. So let's put above code in CopyFile.java file and

do

the following:

$ javacCopyFile.java

$ javaCopyFile

Character Streams

Java Byte streams are used to perform input and output of 8-bit bytes, where as Java Character

streams are used to perform input and output for 16-bit unicode. Though there are many classes

related to character streams but the most frequently used classes are , FileReader and FileWriter..

Though internally FileReader uses FileInputStream and FileWriter uses FileOutputStream but

here major difference is that FileReader reads two bytes at a time and FileWriter writes two bytes

at a time.

We can re-write above example which makes use of these two classes to copy an input file

havingunicodecharactersinto an output file:

im port java.io.* ;

public class CopyFile{

public static void m ain(String args[]) throws IOException

{

FileReaderin = null;

FileWriterout = null;

try{

in= new FileReader("input.txt");

out= new FileWriter("output.txt");

intc;

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: II BATCH: 2018-2021

Prepared by Dr.G.Anitha , Asst. Prof., Department of CS, CA & IT, KAHE 4/19

while((c = in.read()) != -1) {

out.write(c);

}

}finally{

if(in != null) {

in.close();

}

if(out != null) {

out.close();

}

}

}

}

Now let's have a file input.txt with the following content:

This is test for copy file.

As a next step, compile above program and execute it, which will result in creating output.txt file

with the same content as we have in input.txt. So let's put above code in CopyFile.java file and

do

the following:

$ javacCopyFile.java

$ javaCopyFile

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: II BATCH: 2018-2021

Prepared by Dr.G.Anitha , Asst. Prof., Department of CS, CA & IT, KAHE 5/19

Standard Streams

All the programming languages provide support for standard I/O where user's program can take

input from a keyboard and then produce output on the computer screen. If you are aware if C or

C++ programming languages, then you must be aware of three standard devices STDIN,

STDOUT and STDERR. Similar way Java provides following three standard streams Standard

Input: This is used to feed the data to user's program and usually a keyboard is used as standard

input stream and represented as System.in.

Standard Output:

This is used to output the data produced by the user's program and usually a computer screen is

used to standard output stream and represented as System.out.

Standard Error:

This is used to output the error data produced by the user's program and usually a computer

screen is used to standard error stream and represented as System.err. Following is a simple

program which creates InputStreamReaderto read standard input stream

until the user types a "q":

im port java.io.* ;

public class ReadConsole{

public static void m ain(String args[]) throws IOException

{

InputStream Reader cin= null;

try{

cin= new InputStream Reader(System .in);

System .out.println("Enter characters, 'q' to quit.");

charc;

do{

c = (char) cin.read();

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: II BATCH: 2018-2021

Prepared by Dr.G.Anitha , Asst. Prof., Department of CS, CA & IT, KAHE 6/19

System .out.print(c);

} while(c != 'q');

}finally{

if(cin!= null) {

cin.close();

}

}

}

}

Let's keep above code in ReadConsole.java file and try to compile and execute it as below. This

program continues reading and outputting same character until we press 'q':

$ javacReadConsole.java

$ javaReadConsole

Enter characters, 'q' to quit.

1

1

e

e

q

q

Reading and Writing Files:

As described earlier, A stream can be defined as a sequence of data. The InputStreamis used to

read data from a source and the OutputStreamis used for writing data to a destination. Here is a

hierarchy of classes to deal with Input and Output streams. The two important streams are

FileInputStreamand FileOutputStream.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: II BATCH: 2018-2021

Prepared by Dr.G.Anitha , Asst. Prof., Department of CS, CA & IT, KAHE 7/19

FileInputStream

This stream is used for reading data from the files. Objects can be created using the keyword new

and there are several types of constructors available. Following constructor takes a file name as a

string to create an input stream object to read the file.:

InputStreamf = new FileInputStream("C:/java/hello");

Following constructor takes a file object to create an input stream object to read the file. First we

create a file object using File method as follows:

File f = new File("C:/java/hello");

InputStreamf = new FileInputStream(f);

Once you have InputStreamobject in hand, then there is a list of helper methods which can be

used to read to stream or to do other operations on the stream.

SN Methods with Description

1 public void close throws IOException{}

This method closes the file output stream. Releases any system resources associated with the file.

Throws an IOException.

2 protected void finalizethrowsIOException {}

This method cleans up the connection to the file. Ensures that the close method of this file output

stream is called when there are no more references to this stream. Throws an IOException.

3 public intreadintrthrowsIOException{}

This method reads the specified byte of data from the InputStream. Returns an int. Returns the

next byte of data and -1 will be returned if it's end of file.

4 public intreadbyte[]r throws IOException{}

This method reads r.length bytes from the input stream into an array. Returns the total number of

bytes read. If end of file -1 will be returned.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: II BATCH: 2018-2021

Prepared by Dr.G.Anitha , Asst. Prof., Department of CS, CA & IT, KAHE 8/19

5 public int available throws IOException{}

Gives the number of bytes that can be read from this file input stream.Returns an int.

There are other important input streams available, for more detail you can refer to the following

links:

ByteArrayInputStream

DataInputStream

FileOutputStream:

FileOutputStream is used to create a file and write data into it. The stream would create a file, if

it doesn't already exist, before opening it for output. Here are two constructors which can be used

to create a FileOutputStream object. Following constructor takes a file name as a string to create

an input stream object to write the file:

OutputStreamf = new FileOutputStream("C:/java/hello")

Following constructor takes a file object to create an output stream object to write the file. First,

we create a file object using File method as follows:

File f = new File("C:/java/hello");

OutputStreamf = new FileOutputStream(f);

Once you have OutputStreamobject in hand, then there is a list of helper methods, which can be

used to write to stream or to do other operations on the stream.

SN Methods with Description

1 public void close throws IOException{}

This method closes the file output stream. Releases any system resources associated with the file.

Throws an IOException

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: II BATCH: 2018-2021

Prepared by Dr.G.Anitha , Asst. Prof., Department of CS, CA & IT, KAHE 9/19

2 protected void finalizethrowsIOException {}

This method cleans up the connection to the file. Ensures that the close method of this file output

stream is called when there are no more references to this stream. Throws an IOException.

3 public void writeintwthrowsIOException{} This methods writes the specified byte to the

output stream.

4 public void writebyte[]w

Writes w.length bytes from the mentioned byte array to the OutputStream.

There are other important output streams available, for more detail you can refer to the following

links:

ByteArrayOutputStream

DataOutputStream

Example:

Following is the example to demonstrate InputStream and OutputStream:

im port java.io.* ;

public class fileStream Test{

public static void m ain(String args[]){

try{

bytebWrite[] = {11,21,3,40,5};

OutputStreamos= new FileOutputStream("test.txt");

for(intx=0; x <bWrite.length; x++){

os.write(bWrite[x]); // writes the bytes

}

os.close();

InputStreamis = new FileInputStream("test.txt");

intsize = is.available();

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: II BATCH: 2018-2021

Prepared by Dr.G.Anitha , Asst. Prof., Department of CS, CA & IT, KAHE 10/19

for(inti=0; i<size; i++){

System .out.print((char)is.read() + " ");

}

is.close();

}catch(IOExceptione){

System .out.print("Exception");

}

}

}

The above code would create file test.txt and would write given numbers in binary format. Same

would be output on the stdout screen.

File Navigation and I/O:

There are several other classes that we would be going through to get to know the basics of File

Navigation and I/O.

 File Class

 FileReader Class

 FileWriter Class

Directories in Java:

A directory is a File which can contains a list of other files and directories. You use File object to

create directories, to list down files available in a directory. For complete detail check a list of all

the methods which you can call on File object and what are related to directories.

Creating Directories:

There are two useful File utility methods, which can be used to create directories: The

mkdirmethod creates a directory, returning true on success and false on failure. Failure indicates

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: II BATCH: 2018-2021

Prepared by Dr.G.Anitha , Asst. Prof., Department of CS, CA & IT, KAHE 11/19

that the path specified in the File object already exists, or that the directory cannot be created

because the entire path does not exist yet.

Following example creates "/tmp/user/java/bin" directory:

im port java.io.File;

public class CreateDir{

public static void m ain(String args[]) {

String dirnam e = "/tm p/user/java/bin";

File d = new File(dirnam e);

// Create directory now.

d.mkdirs();

}

}

Compile and execute above code to create "/tmp/user/java/bin".

Note: Java automatically takes care of path separators on UNIX and Windows as per

conventions.

If you use a forward slash / on a Windows version of Java, the path will still resolve correctly.

Listing Directories:

You can use list method provided by File object to list down all the files and directories available

in a directory as follows:

im port java.io.File;

public class ReadDir{

public static void m ain(String[] args) {

File file= null;

String[] paths;

try{

// create new file object

file= new File("/tm p");

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: II BATCH: 2018-2021

Prepared by Dr.G.Anitha , Asst. Prof., Department of CS, CA & IT, KAHE 12/19

// array of files and directory

paths= file.list();

// for each nam e in the path array

for(String path:paths)

{

// prints filenam e and directory nam e

System .out.println(path);

}

}catch(Exception e){

// if any error occurs

e.printStackTrace();

}

}

}

This would produce following result based on the directories and files available in your /tmp

directory:

test1.txt

test2.txt

ReadDir.java

ReadDir.class

Loading [MathJax]/jax/output/HTML-CSS/jax.js

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: II BATCH: 2018-2021

Prepared by Dr.G.Anitha , Asst. Prof., Department of CS, CA & IT, KAHE 13/19

 POSSIBLE QUESTIONS

PART-A (20 Marks)

(Q.No 1 to 20 Online Examination)

PART-B (6 Marks)

1.Develop a program in File Class to obtain file and directory information

2. Explain how to read Data from Sequential Access File

3. Discuss how to create / read / write Random Access Files in java.

4. Explain Character and Byte Streams

5. Discuss the methods of Reader and Writer Class

6. How to read data from the console without using InputStreamReader Class.

7. Develop a java program to read and write data from console using Scanner Class

8. Discuss New I/O APIs

9. Develop a java program for PrintWriter Class

10. Discuss how to write data randomly to a Random-Access File

PART-C(10 marks)

1.Develop a java program to read text from the console

CLASS : II MCA BATCH : 2017-2020

S.NO QUESTIONS (UNIT 2) OPTION A OPTION B OPTION C OPTION D ANSWER

1 ________ contains the classes can work on character stream Input Stream Output stream character stream Buffered input Stream character stream

2 __________ class is used to read characters in a file. FileReader FileWriter FileInputStream InputStreamReader FileReader

3 __________method of FileReader class is used to read characters from a file. read() scanf() get() getInteger() read()

4 _________class can be used to implement input stream that uses a character array as the source BufferedReader FileReader charArrayReader FileArrayReader charArrayReader

5 __________is a method to clear all the data present in output buffers clear() flush() fflush() close() flush()

6 _________classes can return more than one character to be returned to input stream BufferedReader BufferedWriter PushbachReader CharArrayReader PushbachReader

7 ________class contains the methods used to write in a file FileStream FileInputStream BufferedOutputStream FileBufferStream FileInputStream

8 __________exception is thrown in cases when the file specified for writing it not found IOException FileException FileNotFoundException FileInputException FileNotFoundException

9 ________methods are used to read in from file get() read() scan() readFileInput() read()

10 __________values is returned by read() method is end of file(EOF) is encountered 0 1 -1 NULL -1

11 _________exception is thrown by close() and read() methods IOException FileException FileNotFoundException FileInputOutputException IOException

12 _________ methods is used to write() into a file put() putFile() write() writeFile() write()

13 ______ is the value of "d" after this line of code has been executed. Double d=Math.round (2.5+ Math.random()); 2 3 4 2.5 3

14 ____________is used to compile the program without error int a=Math.abs(-5); int b=Math.abs(5.0); int c=Math.abs(5.5F); int d=Math.abs(5L); int a=Math.abs(-5);

15 __________ are valid calls to Math.max 1) Math.max(1,4) 2) Math.max(2.3,5) 3) Math.max(1,3,5,7) 4) Math.max(-1.5,-2.8f)1,2 and 4 2,3 and 4 1,2 and 3 3 and 4 1,2 and 4

16 __________is superclass of every class in java String class Object class Abstract class ArrayList class Object class

17 ___________method of Object class can clone an object Objectcopy() copy() Object clone() clone() Object clone()

18 __________ method of Object class is used to obtain class of an object at run time get() void getclass() Class getclass() getInteger() Class getclass()

19 ____________ keywords can be used to prevent inheritance of a class super constant Class final final

20 ________keywords cannot be used for a class which has been declared final abstract extends abstract and extends Object abstract

21 __________ relies upon its subclasses for complete implementation of its methods Object class abstract class ArrayList class File class abstract class

22 ____________keywords is used to define packages in java pkg Pkg package Package package

23 ____________is a mechanism for naming and visibilty control of a class and its content Object Packages Interfaces class Packages

24 _________ access specifiers can be used for a class so that it's members can be accessed by a different class in the different packagePublic Protected Private No Modifier Public

25 ______is correct way of importing an entire package 'pkg' import pkg. Import pkg. import pkg.* Import pkg.* import pkg.*

26 ________package stores all the standard java classes lang java util java.packages java

27 __________ is used to access the datbase server at time of executing the program and get the data from the server accordinglyEmbedded SQL Dynamic SQL SQL declarations SQL data analysis Dynamic SQL

28 __________ header must be included in java program to establish database connectivity using JDBCImport java.sql.*; Import java.sql.odbc.jdbc.*; Import java.jdbc.*; Import java.spl.jdbc.*; Import java.sql.*;

29 _________________function is used to find the column count of the particular resultset getMetaData() Metadata() getColumn() getCount() getMetaData()

30 ____________ statement is a prepared statements Insert into department values(?,?,?)Insert into department values(x,x,x).SQLSetConnectOption(conn, SQL AUTOCOMMIT,0)SQLTransact(conn, SQL ROLLBACK)Insert into department values(?,?,?)

31 _______ is used as the embedded SQL in COBOL EXEC SQL; EXEC SQL END-EXEC EXEC SQL EXEC SQL END EXEC; EXEC SQL END-EXEC

32 ___________ is used to distngush the variables in SQL from the host language variables . - : , -

33 __________ is used to perform all input & output operations in java streams Variables classes Methods streams

34 AWT stands for_____________ All window Tools All Writing Tools Abstract Window Toolkit Abstract Writing Toolkit Abstract Window Toolkit

35 _________ is a type of stream in java Integer stream Short stream Byte stream Long stream Byte stream

36 ___________ classes are used by character streams for input and output operations InputStream Writer ReadStream InputOutputStream Writer

37 _____________ classes are used by byte streams for input and output operation InputStream InputOutputStream Reader outputStream InputStream

38 In object class parent class reference variable can refer the child class object, known as_____________Upcasting Impilicit casting Expilicit casting Boolean casting Upcasting

39 ________ method compares the given object to this object public boolean equals(Object obj)public final void notifyAll() public final void notify() public final ClassgetClass() public boolean equals(Object obj)

40 The clone() method is defined in__________ Abstract class Object class ArrayList class Fileclass Object class

41 ________method of object class can clone an object copy() Objectcopy() Objectclone() Clone() Objectclone()

42 _______ is an acronym for, it physically exists; it contains JRE+ development tools JRE JVM JDK JDBC JDK

43 In ________ standard collection classes implements a linked list data structure LinkedList AbstractList HashSet ArrayList LinkedList

44 _______ extends the AbstractList class and implements List and Deque interfaces AbstractList LinkedList HashSet ArrayList LinkedList

45 Generally string is a sequence of characters, But in java, string is an______ Object Class Package long stream Object

46 In ________ string class function returns the number of characters in a string length() replace() charAt() equalIgnoreCase() length()

47 String class in encapsulated under _______ package java.lang java.util java.io java.awt java.lang

48 Java defines a peer class of String, called___________ StringBuffer StringBuilder StringReader String Literal StringBuffer

49 _____________ concept is used to make Java more memory efficient (because no new objects are created if it exists already in string constant pool)String literal By new keyword StringBuffer StringBuilder String literal

50 A pool of strings, initially empty, is maintained privately by the class String is_________ intern() method length() method trim() method charAt() method intern() method

51 _____________ is thread-safe i.e.multiple threads cannot access it simultaneously, So it is safe and will result in an orderStringBuffer class StringBuilder class StringReader class StringLiteral class StringBuffer class

52 _________ constructor creates an empty string buffer with the specified capacity as length StringBuffer() StringBuffer(String str) StringBuffer(int capacity) StringBuffer(int) StringBuffer(int capacity)

53 _________constructors are defined in StringTokenizer class 2 3 4 5 3

54 __________method of class string is used to obtain length of string object get() sizeof() length() length length

55 _______method of class string is used to extract a single character from a string object CHARAT() charat() charAt() CharAt() charAt()

56 ________constructer is used to create an empty string object String String(void) String(0) String(int) String

SUBJECT: ADVANCED JAVA AND SPRING

KARPAGAM ACADEMY OF HIGHER EDUCATION

COIMBATORE - 21

DEPARTMENT OF COMPUTER APPLICATIONS

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: III BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 1/21

UNIT: III

SYLLABUS

Framework: Overview, Generics Fundamentals, Autoboxing, The Collection Interfaces-List

Interface, Set Interface, SortedSet Interface, NavigableSet Interface, The Collection Classes-

ArrayList, LinkedList, HashSet, LinkedHashSet, TreeSet, Accessing a Collection via an Iterator,

Enumeration Interface, Vector, HashTable, Properties, StringTokenizer and Date Class.

Serialization: Serializable, Externalizable.

Collections in Java

1. Java Collection Framework

2. Hierarchy of Collection Framework

3. Collection interface

4. Iterator interface

Collections in java is a framework that provides an architecture to store and manipulate the

group of objects.

All the operations that you perform on a data such as searching, sorting, insertion, manipulation,

deletion etc. can be performed by Java Collections.

Java Collection simply means a single unit of objects. Java Collection framework provides many

interfaces (Set, List, Queue, Deque etc.) and classes (ArrayList, Vector, LinkedList,

PriorityQueue, HashSet, LinkedHashSet, TreeSetetc).

What is Collection in java

Collection represents a single unit of objects i.e. a group.

https://www.javatpoint.com/collections-in-java
https://www.javatpoint.com/collections-in-java#collectionhierarchy
https://www.javatpoint.com/collections-in-java#collectionmethods
https://www.javatpoint.com/collections-in-java#collectioniterator

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: III BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 2/21

What is framework in java

o provides readymade architecture.

o represents set of classes and interface.

o is optional.

What is Collection framework

Collection framework represents a unified architecture for storing and manipulating group of

objects. It has:

1. Interfaces and its implementations i.e. classes

2. Algorithm

Hierarchy of Collection Framework

Let us see the hierarchy of collection framework.The java.util package contains all the classes

and interfaces for Collection framework.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: III BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 3/21

Methods of Collection interface

There are many methods declared in the Collection interface. They are as follows:

No. Method Description

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: III BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 4/21

1 public boolean add(Object element) is used to insert an element in this collection.

2 public booleanaddAll(Collection c) is used to insert the specified collection elements in the

invoking collection.

3 public boolean remove(Object

element)

is used to delete an element from this collection.

4 public

booleanremoveAll(Collection c)

is used to delete all the elements of specified collection

from the invoking collection.

5 public booleanretainAll(Collection

c)

is used to delete all the elements of invoking collection

except the specified collection.

6 public int size() return the total number of elements in the collection.

7 public void clear() removes the total no of element from the collection.

8 public boolean contains(Object

element)

is used to search an element.

9 public

booleancontainsAll(Collection c)

is used to search the specified collection in this

collection.

10 public Iterator iterator() returns an iterator.

11 public Object[] toArray() converts collection into array.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: III BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 5/21

12 public booleanisEmpty() checks if collection is empty.

13 public boolean equals(Object

element)

matches two collection.

14 public inthashCode() returns the hashcode number for collection.

Iterator interface

Iterator interface provides the facility of iterating the elements in forward direction only.

Methods of Iterator interface

There are only three methods in the Iterator interface. They are:

No. Method Description

1 public

booleanhasNext()

It returns true if iterator has more elements.

2 public Object next() It returns the element and moves the cursor pointer to the next

element.

3 public void remove() It removes the last elements returned by the iterator. It is rarely used.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: III BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 6/21

Hierarchy of Collection Framework

Let us see the hierarchy of collection framework.The java.util package contains all the classes

and interfaces for Collection framework.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: III BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 7/21

Methods of Collection interface

There are many methods declared in the Collection interface. They are as follows:

No. Method Description

1 public boolean add(Object element) is used to insert an element in this collection.

2 public booleanaddAll(Collection c) is used to insert the specified collection elements in the

invoking collection.

3 public boolean remove(Object

element)

is used to delete an element from this collection.

4 public

booleanremoveAll(Collection c)

is used to delete all the elements of specified collection

from the invoking collection.

5 public booleanretainAll(Collection

c)

is used to delete all the elements of invoking collection

except the specified collection.

6 public int size() return the total number of elements in the collection.

7 public void clear() removes the total no of element from the collection.

8 public boolean contains(Object

element)

is used to search an element.

9 public is used to search the specified collection in this

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: III BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 8/21

booleancontainsAll(Collection c) collection.

10 public Iterator iterator() returns an iterator.

11 public Object[] toArray() converts collection into array.

12 public booleanisEmpty() checks if collection is empty.

13 public boolean equals(Object

element)

matches two collection.

14 public inthashCode() returns the hashcode number for collection.

Iterator interface

Iterator interface provides the facility of iterating the elements in forward direction only.

Methods of Iterator interface

There are only three methods in the Iterator interface. They are:

No. Method Description

1 public

booleanhasNext()

It returns true if iterator has more elements.

2 public Object next() It returns the element and moves the cursor pointer to the next

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: III BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 9/21

element.

3 public void remove() It removes the last elements returned by the iterator. It is rarely used.

Java List Interface

List Interface is the subinterface of Collection.It contains methods to insert and delete elements

in index basis.It is a factory of ListIterator interface.

List Interface declaration

1. public interface List<E> extends Collection<E>

Methods of Java List Interface

Method Description

void add(intindex,Object element) It is used to insert element into the invoking list at the index

passed in the index.

booleanaddAll(intindex,Collection

c)

It is used to insert all elements of c into the invoking list at the

index passed in the index.

object get(int index) It is used to return the object stored at the specified index

within the invoking collection.

object set(intindex,Object element) It is used to assign element to the location specified by index

within the invoking list.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: III BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 10/21

object remove(int index) It is used to remove the element at position index from the

invoking list and return the deleted element.

ListIteratorlistIterator() It is used to return an iterator to the start of the invoking list.

ListIteratorlistIterator(int index) It is used to return an iterator to the invoking list that begins at

the specified index.

Java List Example

1. import java.util.*;

2. public class ListExample{

3. public static void main(String args[]){

4. ArrayList<String> al=new ArrayList<String>();

5. al.add("Amit");

6. al.add("Vijay");

7. al.add("Kumar");

8. al.add(1,"Sachin");

9. System.out.println("Element at 2nd position: "+al.get(2));

10. for(String s:al){

11. System.out.println(s);

12. }

13. }

14. }

Output:

Element at 2nd position: Vijay

Amit

Sachin

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: III BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 11/21

Vijay

Kumar

Java List Interface

List Interface is the subinterface of Collection.It contains methods to insert and delete elements

in index basis.It is a factory of ListIterator interface.

List Interface declaration

1. public interface List<E> extends Collection<E>

Methods of Java List Interface

Method Description

void add(intindex,Object element) It is used to insert element into the invoking list at the index

passed in the index.

booleanaddAll(intindex,Collection

c)

It is used to insert all elements of c into the invoking list at the

index passed in the index.

object get(int index) It is used to return the object stored at the specified index

within the invoking collection.

object set(intindex,Object element) It is used to assign element to the location specified by index

within the invoking list.

object remove(int index) It is used to remove the element at position index from the

invoking list and return the deleted element.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: III BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 12/21

ListIteratorlistIterator() It is used to return an iterator to the start of the invoking list.

ListIteratorlistIterator(int index) It is used to return an iterator to the invoking list that begins at

the specified index.

Java List Example

1. import java.util.*;

2. public class ListExample{

3. public static void main(String args[]){

4. ArrayList<String> al=new ArrayList<String>();

5. al.add("Amit");

6. al.add("Vijay");

7. al.add("Kumar");

8. al.add(1,"Sachin");

9. System.out.println("Element at 2nd position: "+al.get(2));

10. for(String s:al){

11. System.out.println(s);

12. }

13. }

14. }

Output:

Element at 2nd position: Vijay

Amit

Sachin

Vijay

Kumar

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: III BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 13/21

Java TreeSet class

Java TreeSet class implements the Set interface that uses a tree for storage. It inherits AbstractSet

class and implements NavigableSet interface. The objects of TreeSet class are stored in

ascending order.

The important points about Java TreeSet class are:

o Contains unique elements only like HashSet.

o Access and retrieval times are quiet fast.

o Maintains ascending order.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: III BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 14/21

Hierarchy of TreeSet class

As shown in above diagram, Java TreeSet class implements NavigableSet interface. The

NavigableSet interface extends SortedSet, Set, Collection and Iterable interfaces in hierarchical

order.

TreeSet class declaration

Let's see the declaration for java.util.TreeSet class.

1. public class TreeSet<E> extends AbstractSet<E> implements NavigableSet<E>, Cloneable, Seri

alizable

Constructors of Java TreeSet class

Constructor Description

TreeSet() It is used to construct an empty tree set that will be sorted in an ascending

order according to the natural order of the tree set.

TreeSet(Collection c) It is used to build a new tree set that contains the elements of the collection

c.

TreeSet(Comparator

comp)

It is used to construct an empty tree set that will be sorted according to

given comparator.

TreeSet(SortedSetss) It is used to build a TreeSet that contains the elements of the given

SortedSet.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: III BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 15/21

Methods of Java TreeSet class

Method Description

booleanaddAll(Collection

c)

It is used to add all of the elements in the specified collection to this

set.

boolean contains(Object o) It is used to return true if this set contains the specified element.

booleanisEmpty() It is used to return true if this set contains no elements.

boolean remove(Object o) It is used to remove the specified element from this set if it is present.

void add(Object o) It is used to add the specified element to this set if it is not already

present.

void clear() It is used to remove all of the elements from this set.

Object clone() It is used to return a shallow copy of this TreeSet instance.

Object first() It is used to return the first (lowest) element currently in this sorted set.

Object last() It is used to return the last (highest) element currently in this sorted set.

int size() It is used to return the number of elements in this set.

Java TreeSet Example

1. import java.util.*;

2. class TestCollection11{

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: III BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 16/21

3. public static void main(String args[]){

4. //Creating and adding elements

5. TreeSet<String> al=new TreeSet<String>();

6. al.add("Ravi");

7. al.add("Varun Vijay");

8. al.add("Ravi");

9. al.add("Ajay");

10. //Traversing elements

11. Iterator<String> itr=al.iterator();

12. while(itr.hasNext()){

13. System.out.println(itr.next());

14. }

15. }

16. }

Test it Now

Output:

Ajay

Ravi

Varun Vijay

Serialization in Java

1. Serialization

2. Serializable Interface

3. Example of Serialization

4. Deserialization

5. Example of Deserialization

6. Serialization with Inheritance

7. Externalizable interface

http://www.javatpoint.com/opr/test.jsp?filename=TestCollection11
https://www.javatpoint.com/serialization-in-java#serialization
https://www.javatpoint.com/serialization-in-java#serializable
https://www.javatpoint.com/serialization-in-java#serializationex
https://www.javatpoint.com/serialization-in-java#deserialization
https://www.javatpoint.com/serialization-in-java#deserializationex
https://www.javatpoint.com/serialization-in-java#serializationinheritance
https://www.javatpoint.com/serialization-in-java#serializationextern

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: III BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 17/21

8. Serialization and static datamember

Serialization in java is a mechanism of writing the state of an object into a byte stream.

It is mainly used in Hibernate, RMI, JPA, EJB and JMS technologies.

The reverse operation of serialization is called deserialization.

Advantage of Java Serialization

It is mainly used to travel object's state on the network (known as marshaling).

java.io.Serializable interface

Serializable is a marker interface (has no data member and method). It is used to "mark" java

classes so that objects of these classes may get certain capability. The Cloneable and Remote are

also marker interfaces.

It must be implemented by the class whose object you want to persist.

https://www.javatpoint.com/serialization-in-java#serializationstatic

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: III BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 18/21

The String class and all the wrapper classes implements java.io.Serializable interface by default.

Let's see the example given below:

1. import java.io.Serializable;

2. public class Student implements Serializable{

3. int id;

4. String name;

5. public Student(int id, String name) {

6. this.id = id;

7. this.name = name;

8. }

9. }

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: III BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 19/21

 POSSIBLE QUESTIONS

PART-A (20 Marks)

(Q.No 1 to 20 Online Examination)

PART-B (6 Marks)

1. Describe the methods of List Interface

2. Differentiate between Enumeration and Iterator interface

3. What is Java Collections Framework?. List out some benefits of Collections

framework

4. Mention the methods to add, remove and locate elements in a Vector class with

suitable example

5. Explain SortedSet Interface

6. Discuss the methods of HashTable

7. Explain the operation of each of the following methods of class Hashtable.

 i) put ii) get iii) isEmpty iv) containsKey v)keyset

8. Discuss Serializable and Externalizable with suitable examples

9. Explain the constructors and methods of Set Interface

10. List out the difference between Serializable and Externalizable

PART-C(10 MARKS)

1. Use an ArrayList to demonstrate several Collection Interface capabilities and use an

Iterator to remove the strings from the ArrayList Collection

QUESTIONS OPT 1 OPT 2 OPT 3 OPT 4 OPT 5 OPT 6 ANSWER
The__________________ packages contain all the collection classes. java.lang java.util java.net java.awt java util

A __________ class is not a part of java collection framework Maps Array Stack Queue Maps

____________Interface is not a part java collection framework List Set SortedMap SortedList SortedList

A__________ methods is used to deletes all the element invoking collection. clear() reset() delete() refresh() clear()

A group __________ is a collection in java. Objects Classes interface Abstract classes Objects

The _____________ class is a superclass of String and StringBuffered class java.lang java.util ArrayList Object java.lang

The _____________ operator is used to concatenate two or more String Objects. + = & || +

A_________ method is used to extract a single character from a string Object get() sizeof() lengthof() length() length()

_________________ constructors is used to create an empty string Object String() String(void) String(0) String(char) String()

A stream Process of extracting/removing the state of an object is

called_____________________. Serialization Externalization File Filtering Deserialization Deserialization

A__________ process occur automatically by java run time system. Serialization ObjectStream ObjectOutput ObjectInput serialization

_______________ types cannot be used to initiate a generic type Interger class Float class Primitive types collection Primitive types

A_______________ type of interface is used to extends DataOutput interfaces Serialization Externalization Objectoutput ObjectInput ObjectOutput

A____________class is used to extend InputStream class. ObjectStream ObjectStreamInput Objectoutput ObjectInput ObjectStreamInput

_____________ is a method of ObjectInput interface used to deserializa an object from a

stream int read() void class object read object object write object Object read Object

The_______________ collection classes implements a LinkedList data structure. AbstractList LinkedList HashSet AbstractSet LinkedList

___________ class implements set interface. AbstractList LinkedList HashSet Dynamic List HashSet

A___________ method is used to add an elements to start a LinkedList object. add() First() addFirst() AddFirst() addFirst()

____________ method is used to add the elements in HASHSET class. add() Add() addFirst() insert() add()

which of the following classes directly implement set interface? Vector HashSet LinkedList HashTable HashSet

A group of ----------------- is a collection in java. Objects Classes interface String Objects

A ___________ method is used to delete the last element in a LinkedList Object remove() delete() removeLast() deleteLast() removeLast()

______________ method of class string is used to obtain length of string object. get() sizeof() lengthof() length() length()

A__________keywords is used to define interface in java. interface Interface intf Intf interface

___________ can be used to fully abstract a class from its implementation. Object Packages interface String interface

A__________ package store all the standard java classes. lang java util .net java

A________ class must be extends by all event classes. java.util.EventListner java.util.EventObject java.awt.AWTEvent java.awt.Event.InputEvent java..util.EventObject

________ access specifies can be used to for an interface. public private protected none public

A _________package class belongs to the math. java.math java.lang java.util java.net java.math

A____________instance cannot be created interger instance generic class instance generic type instance collection instance generic type instance

________ keywords is used as a class interface to defined previously. import Import implements Implements implements

Treemap class is used to implement __________ collection interface. Set SortedSet SortedMap List SortedSet

__________is the name of the collection interface used to represent elements in a sequence. Collection Set List Map List

A_____________ classes directly implement set interface. Vector HashSet LinkedList HashTable HashSet

Treemap class is used to implement ____________ collection interface. Set SortedSet SortedMap List SortedSet

The first statement in java source file _____________. import statement package statement main statement try{} and catch{} package statement

A package is a collection of______. classes interface editing file classes and interface classes and interface

For which purpose packages are used in java? categorizes data

Organizing java classes into

namespace for faster compilation Terminate the process

Organizing java classes into

namespaces

A________ parameter is used for a generic methods to return &acceptvany type of object. K N T V T

A__________ type parameter is used for a generic methods to return &acceptvany type of a

number. K N T V N

______________ allows us to call generate methods as a normal method. Type interface Interface Inner class Outer class Type interface

A__________ iteration can be used only with List. Setiteration ListIterator Literator iterator() Listiterator

A____________ methods can be used to move to next elements in a collection. next move shuffle() hasNext() next

____________ return type of hasNext() method of an iterator. Interger Double Boolean Collection Object Boolean

A_____ methods is used to obtain an iterator to the start ofb collection start() begin() iterator()Set iterator() iterator()

_________ exception is thrown by remove method. IoException SystemException ObjectNotFoundException IllegalStateException IllegalStateException

Interface which declares core method that all collection is ____________. Set EventLister Comparator Collection Collection

A_________ interface handle sequences Set List Collection Comparator List

_________ interface must contains a unique element. List Set Array Collection Set

____________ is basic interafce that all other interface inherits. Set Array Collection list Collection

A_________ interface is implemented by timer task class Runnable Thread Observer Threadcount Runnable

_____________ package provides the ability to read and write in zip format. java.lang java.io java.util.zip java.util.zar java.util.zip

________ type of data canot be type parameterized. Array List Map Set Array

A____________instance cannot be created interger instance generic class instance generic type instance collection instance generic type instance

A__________ is static variable which is defined in collection. EMPTY_SET EMPTY_LIST EMPTY_MAP All of these all of these

A_______________ types cannot be used to initiate a generic type Interger class Float class Primitive types collection Primitive types

___________ class is used to extend InputStream class. ObjectStream ObjectStreamInput Objectoutput ObjectInput ObjectStreamInput

__________ interface for control overs serialization and deserialization. Serialization Externalization File Filtering ObjectInput Externalization

A group ______________ is a collection in java. Objects Classes interface String Objects

A__________ class directly implement set interface. Vector HashSet LinkedList HashTable HashSet

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: IV BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 1/15

UNIT IV

SYLLABUS

Introducing the Spring Framework, Spring Framework RunTime & architecture, Inversion of

Control (IoC), Dependency Injection, Different Forms of Dependency Injection, Dependency

Injection variants, DI classes & Parameter in Spring framework, Bean naming, @Autorwired

annotation, The Bean Factory, XML Bean Configuration, Managing the Bean Lifecycle, Basics

of Aspect-Oriented Programming (AOP), AOP concepts - Join point, Pointcut, Advice, Types of

advice, @AspectJ support

1. Introduction to Spring Framework

Spring Framework is a Java platform that provides comprehensive infrastructure support for

developing Java applications. Spring handles the infrastructure so you can focus on your

application.

Spring enables you to build applications from “plain old Java objects” (POJOs) and to apply

enterprise services non-invasively to POJOs. This capability applies to the Java SE programming

model and to full and partial Java EE.

Examples of how you, as an application developer, can use the Spring platform advantage:

Make a Java method execute in a database transaction without having to deal with transaction

APIs.

Make a local Java method a remote procedure without having to deal with remote APIs.

Make a local Java method a management operation without having to deal with JMX APIs.

Make a local Java method a message handler without having to deal with JMS APIs.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: IV BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 2/15

Spring architecture

Spring could potentially be a one-stop shop for all your enterprise applications. However,

Spring is modular, allowing you to pick and choose which modules are applicable to you,

without having to bring in the rest. The following section provides details about all the

modules available in Spring Framework.

The Spring Framework provides about 20 modules which can be used based on an

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: IV BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 3/15

application requirement.

Core Container

The Core Container consists of the Core, Beans, Context, and Expression Language

modules the details of which are as follows:

 Core module provides the fundamental parts of the framework, including the

IoC and Dependency Injection features.

3on.

Spring IOC Container

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: IV BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 4/15

The Spring container is at the core of the Spring Framework. The container will create the

objects, wire them together, configure them, and manage their complete life cycle from creation

till destruction. The Spring container uses DI to manage the components that make up an

application. These objects are called Spring Beans, which we will discuss in the next chapter.

The container gets its instructions on what objects to instantiate, configure, and assemble by

reading the configuration metadata provided. The configuration metadata can be represented

either by XML, Java annotations, or Java code. The following diagram represents a high-level

view of how Spring works. The Spring IoC container makes use of Java POJO classes and

configuration metadata to produce a fully configured and executable system or application.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: IV BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 5/15

Spring provides the following two distinct types of containers.

S.No Container & Description

1 Spring BeanFactory Container

This is the simplest container providing the basic support for DI and is defined by the

org.springframework.beans.factory.BeanFactoryinterface. The BeanFactory and related

interfaces, such as BeanFactoryAware, InitializingBean, DisposableBean, are still present in

Spring for the purpose of backward compatibility with a large number of third-party

frameworks that integrate with Spring.

5. Spring ─ IoC Containers

Spring Framework

18

2 Spring ApplicationContext Container

This container adds more enterprise-specific functionality such as the ability to resolve textual

messages from a properties file and the ability to publish application events to interested event

listeners. This container is defined by theorg.springframework.context.ApplicationContext

interface.

Dependency injection

Every Java-based application has a few objects that work together to present what the end-user

sees as a working application. When writing a complex Java application, application classes

should be as independent as possible of other Java classes to increase the possibility to reuse

these classes and to test them independently of other classes while unit testing. Dependency

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: IV BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 6/15

Injection (or sometime called wiring) helps in gluing these classes together and at the same time

keeping them independent.

Consider you have an application which has a text editor component and you want to provide a

spell check. Your standard code would look something like this −

public class TextEditor {

privateSpellCheckerspellChecker;

publicTextEditor() {

spellChecker = new SpellChecker();

 }

}

What we've done here is, create a dependency between the TextEditor and the SpellChecker. In

an inversion of control scenario, we would instead do something like this −

public class TextEditor {

privateSpellCheckerspellChecker;

publicTextEditor(SpellCheckerspellChecker) {

this.spellChecker = spellChecker; } }

Here, the TextEditor should not worry about SpellChecker implementation. The SpellChecker

will be implemented independently and will be provided to the TextEditor at the time of

TextEditor instantiation. This entire procedure is controlled by the Spring Framework.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: IV BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 7/15

Here, we have removed total control from the TextEditor and kept it somewhere else (i.e. XML

configuration file) and the dependency (i.e. class SpellChecker) is being injected into the class

TextEditor through a Class Constructor. Thus the flow of control has been "inverted" by

Dependency Injection (DI) because you have effectively delegated dependances to some external

system.

The second method of injecting dependency is through Setter Methods of the TextEditor class

where we will create a SpellChecker instance. This instance will be used to call setter methods to

initialize TextEditor's properties.

Thus, DI exists in two major variants and the following two sub-chapters will cover both of them

with examples −

S.No Dependency Injection Type & Description

1

 Constructor-based dependency injection

Constructor-based DI is accomplished when the container invokes a class constructor with a

number of arguments, each representing a dependency on the other class.

2

Setter-based dependency injection

Setter-based DI is accomplished by the container calling setter methods on your beans after

invoking a no-argument constructor or no-argument static factory method to instantiate your

bean....

Types of dependency Injection in Spring

There are two main types of dependency injections in spring and one other less used type.

1.Constructor based injection

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: IV BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 8/15

In spring Constructor injection the dependent objects are injected into the client using the client’s

constructor. this tutorial looks into more details into the constructor injection.

2.Setter based injection

In this type of injection the dependencies are injected after the client object has been created. The

dependencies are injected using the setter method of the client. This tutorials looks into details of

Setter injection.

Wiring with annotations

 Since Spring 2.5, one of the most interesting ways of wiring beans in Spring has been to use

annotations to automatically wire bean properties. Autowiring with annotations isn’t much

different than using the autowire attribute in XML. But it does allow for more fine-grained

autowiring, where you can selectively annotate certain properties for autowiring. Annotation

wiring isn’t turned on in the Spring container by default. So, before we can use annotation-based

autowiring, we’ll need to enable it in our Springconfigura- tion. The simplest way to do that is

with the <context:annotation-config> element from Spring’s context configuration namespace:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:context="http://www.springframework.org/schema/context"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<context:annotation-config />

<!-- bean declarations go here -->

</beans><context:annotation-config>

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: IV BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 9/15

tells Spring that you intend to use annotation-based wiring in Spring. Once it’s in place you can

start annotating your code to indicate that Spring should automatically wire values into

properties, methods, and constructors. Spring 3 supports a few different annotations for

-

The @Resource annotation from JSR-250 We’ll look at how to use Spring’s @Autowired first.

Then we’ll try out standards-based dependency injection with JSR-330’s @Inject and JSR-250’s

@Resource.

Wiring with annotations

3.2.1 Using @Autowired Suppose that you want to use @Autowired to have Springautowire the

instrument property of the Instrumentalist bean. You could annotate the setInstrument() method

like this:

@Autowired public void setInstrument(Instrument instrument) { this.instrument = instrument; }

Now you can get rid of the <property> element that wires the Instrumentalist with an instrument.

When Spring sees that you’ve annotated setInstrument() with @Autowired it’ll try to perform

byTypeautowiring on the method. What’s especially interesting about @Autowired is that you

don’t have to use it with a setter method. You can use it on any method to automatically wire in

bean references:

@Autowired public void heresYourInstrument(Instrument instrument) { this.instrument =

instrument; } The @Autowired annotation can even be used on constructors:

@Autowired public Instrumentalist(Instrument instrument) { this.instrument = instrument; }

When used with constructors, @Autowired indicates that the constructor should be autowired

when creating the bean, even if no <constructor-arg> elements are used to configure the bean in

XML. What’s more, you can directly annotate properties and do away with the setter methods

altogether:

@Autowired private Instrument instrument; As you can see, @Autowired won’t even be

thwarted by the private keyword. Even though the instrument property is private, it’ll still be

autowired. Is there no limit to @Autowired’s reach? Actually, there are a couple of

circumstances that could keep @Autowired from get- ting its job done. Specifically, there must

be exactly one bean that’s applicable for wir- ing into the @Autowired property or parameter. If

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: IV BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 10/15

there are no applicable beans or if multiple beans could be autowired, then @Autowired will run

into some trouble. Fortunately, there’s a way that we can help @Autowired out in those

circumstances. First, let’s look at how to keep @Autowired from failing when there isn’t a

matching bean.

Bean- LifeCycle

The life cycle of a Spring bean is easy to understand. When a bean is instantiated, it may be

required to perform some initialization to get it into a usable state. Similarly, when the bean is no

longer required and is removed from the container, some cleanup may be required.

Though, there are lists of the activities that take place behind the scene between the time of bean

Instantiation and its destruction, this chapter will discuss only two important bean life cycle

callback methods, which are required at the time of bean initialization and its destruction.

To define setup and teardown for a bean, we simply declare the <bean> with init- method and/or

destroy-method parameters. The init-method attribute specifies a method that is to be called on

the bean immediately upon instantiation. Similarly, destroy- method specifies a method that is

called just before a bean is removed from the container.

Initialization CallbacksTheorg.springframework.beans.factory.InitializingBean interface

specifies a single method:

voidafterPropertiesSet() throws Exception;

Thus, you can simply implement the above interface and initialization work can be done inside

afterPropertiesSet() method as follows:

public class ExampleBean implements InitializingBean

 {

public void afterPropertiesSet() {

 // do some initialization work

 }

}

In the case of XML-based configuration metadata, you can use the init-method attribute to

specify the name of the method that has a void no-argument signature. For example:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: IV BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 11/15

<bean id="exampleBean"

class="examples.ExampleBean" init-method="init"/>

8. Spring – Bean Life Cycle

Spring Framework

34

Following is the class definition:

public class ExampleBean {

public void init() {

 // do some initialization work

 }

}

Destruction CallbacksTheorg.springframework.beans.factory.DisposableBean interface specifies

a single method:

void destroy() throws Exception;

Thus, you can simply implement the above interface and finalization work can be done inside

destroy() method as follows:

public class ExampleBean implements DisposableBean {

public void destroy() {

 // do some destruction work

 }

}

In the case of XML-based configuration metadata, you can use the destroy- method attribute to

specify the name of the method that has a void no-argument signature. For example:

<bean id="exampleBean"

class="examples.ExampleBean" destroy-method="destroy"/>

Following is the class definition:

public class ExampleBean {

public void destroy() {

 // do some destruction work

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: IV BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 12/15

 }

}

If you are using Spring'sIoC container in a non-web application environment; for example, in a

rich client desktop environment, you register a shutdown hook with the JVM. Doing so ensures a

graceful shutdown and calls the relevant destroy methods on your singleton beans so that all

resources are released.

Spring Framework

35

It is recommended that you do not use the InitializingBean or DisposableBeancallbacks, because

XML configuration gives much flexibility in terms of naming your method.

Example Let us have a working Eclipse IDE in place and take the following steps to create a

Spring application:

Steps Description

1

Create a project with a name SpringExample and create a packagecom.tutorialspoint under the

src folder in the created project.

2

Add required Spring libraries using Add External JARs option as explained in the Spring Hello

World Example chapter.

3

Create Java classes HelloWorld and MainApp under the com.tutorialspointpackage.

4 Create Beans configuration file Beans.xml under the src folder.

5

The final step is to create the content of all the Java files and Bean Configuration file and run the

application as explained below.

Here is the content of HelloWorld.java file:

packagecom.tutorialspoint;

public class HelloWorld {

private String message;

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: IV BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 13/15

public void setMessage(String message){

this.message = message;

 }

public void getMessage(){

System.out.println("Your Message : " + message);

 }

public void init(){

System.out.println("Bean is going through init.");

 }

public void destroy(){

System.out.println("Bean will destroy now.");

 }

}

AOP WITH SPRING FRAMEWORK

One of the key components of Spring Framework is the Aspect oriented programming (AOP) framework.

Aspect-Oriented Programming entails breaking down program logic into distinct parts called so-called

concerns. The functions that span multiple points of an application are called cross-cutting concerns and

these cross-cutting concerns are conceptually separate from the application's business logic. There are

various common good examples of aspects like logging, auditing, declarative transactions, security,

caching, etc.

The key unit of modularity in OOP is the class, whereas in AOP the unit of modularity is the aspect.

Dependency Injection helps you decouple your application objects from each other and AOP helps you

decouple cross-cutting concerns from the objects that they affect. AOP is like triggers in programming

languages such as Perl, .NET, Java, and others.

Spring AOP module provides interceptors to intercept an application. For example, when a method is

executed, you can add extra functionality before or after the method execution..

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: IV BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 14/15

Types of Advice

Spring aspects can work with five kinds of advice mentioned as follows −

Sr.No Advice & Description

1

before

Run advice before the a method execution.

2

after

Run advice after the method execution, regardless of its outcome.

3

after-returning

Run advice after the a method execution only if method completes successfully.

4

after-throwing

Run advice after the a method execution only if method exits by throwing an exception.

5

Around

Run advice before and after the advised method is invoked.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: IV BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 15/15

 POSSIBLE QUESTIONS

PART-A (20 Marks)

(Q.No 1 to 20 Online Examination)

PART-B (6 Marks)

1. Discuss the Spring Framework Architecture

2. Write the steps to create the Spring Application

3. What are the different types of Inversion of control (IoC)?

4. Discuss BeanFactory implementation with suitable example

5. What are the benefits of Spring Framework?

6. Explain the Aspect-Oriented Programming (AOP) Module.

7. Which DI would you suggest Constructor-based or setter-based DI?Justify

8. Explain Bean lifecycle in Spring Framework

9. Explain Bean naming and @Autowired Annotation

10. Explain annotation-based (@AspectJ based) aspect implementation

PART-C(10 Marks)

 1. What is the concept of AOP? Which problem does it solve?.

CLASS : II MCA BATCH : 2017-2020

S.NO QUESTION OPTION A OPTION B OPTION C OPTION D ANSWER

1 Beans can be created by ________ property Scope Property Class own constructor own constructor

2 _______ attribute is used to specify classname of the bean name id class constructor-args class

3 _______ method can be used to instantiate a method static factory method default-init method destroy method lazy-init method static factory method

4 ________ attribute is used to specify static factory-method factory-method default-init method destroy method lazy-init method factory-method

5 Static Factory Method is used to __________ to create an object Initialize bean Initialize class to create a class to create an object

6 Exception thrown by factory method is ________ IllegalArgumentException IndexOutofBoundException ClassPathNotFoundException BeanCreationException BeanCreationException

7 __________ factory class can also hold more than one factory method TRUE FALSE FALSE and TRUE TRUE/FALSE TRUE

8 _______ Attribute is used to specify the bean declared factory-bean scope getBean declareBean factory-bean

9 _______Tag used to enable AspectJ annotation Introduction aop:aspectj-autowire aop:aspectj-autoproxy AfterSpecial aop:aspectj-autoproxy

10 Spring AOP configurations is defined by ________ tag aop:config aop:configregister aop:configbeans aop:bean aop:config

11 _______ way to declare an advice pointcut-ref attribute pointcut attribute jointpoint advice all of the mentioned

12 _______ aspects is used to your target objects AspectJ Annotation Weaving AspectJ AspectJ Support Weaving

13 Special compiler used during weaving is _______ jvm gcc ajc cc ajc

14 Target classes are loaded into JVM by ________ process load-time weaving process-time weaving load-process weaving process-delivery weaving load-time weaving

15 ________ is used to weave your classes using argument while compiling javaagent:CLASSPATH javaagent:PackgePath javaweave:CLASSPATH javaweave:PackagePath javaagent:CLASSPATH

16 ________XML Element is used to include the load-time weaver aop:config aop:auto-wire context:load-time-weaver aop:load-time-weaver context:load-time-weaver

17 ________Library is used to AspectJ weaver spring-instrument.jar spring-introduction.jar spring-aop.jar spring-weave.jar spring-instrument.jar

18 _______Object is created by outside the container Domain Objects User Objects SpringVisitor Objects domain Domain Objects

19 To inject the Spring bean into _______domain objects AOP XML AspectJ Java Based AOP

20 The scope does @Configurable instantiated class look for ________ Singleton Prototype scope spring Prototype

21 ______ class acts as IoC Container ServletContext DispatcherServlet ApplicationContext Servlet ApplicationContext

22 _______ class is used to map a database to row a java object in spring ResultSet RowMapper RowSetMapper ResultSetMapper RowMapper

23 ______is used to BeanPostProcessor concrete class interface abstract class class interface

24 The _______helps in gluing the class togeather at the same time keeping them independent Dependency Injection Annotation Aspect AspectJ Dependency Injection

25 The dependency is being injected into the class through a __________ Setter Method Getter Method Class Constructor Setter/Getter Method Class Constructor

26

___________ is accomplished when the container invokes a class constructor with a number of

arguments of another class Setter Based DI Constructor Based DI Getter Based DI Getter/Setter DI Constructor Based DI

27 _______________are bean that are defined within the scope of another bean spellchecker bean inner bean XmlBean Inner bean

28 ________________helps in wiring that is injecting a list of values <map> <list> <set> <props> <list>

29 DI is a process where by the objects defines by_________ dependencies injection IOC DI dendencies

30 _______is an application framework and IOC container of the java platform SpringVisitor Objects Java Based XML Spring Framework Spring Framework

31 The Spring Framework consists of features organized by________modules 5 20 15 30 20

32 The order of bean intialization is the same,as it's defined in the__________file Spring Bean Configuration XML class jar Spring Bean Configuration

33 In a case of XML based configuration meta data,_________method is used factory destroy init bean factory destroy

34 The most commonly used BeanFactory implementation is the __________ class thread exception XML BeanFactory bean XML BeanFactory

35 ________is the simplest container providing the basic suppport of DI SpringBeanFactoryContainer SpringApplicationContextContainerSpring ApplicationContext SpringBeanFactoryContainer

36 ________attribute is mandatory and specifies the bean class to be used to create a bean properties class name scope class

37 The execution of the method or handling of an exception is__________ SpringFramework DI Spring AOP Aspect Spring AOP

38 All modules are built on __________ of its core container Top Bottom Center Down Top

39 The Spring Framework is__________ Freeware open source Software Hardware open source

40 _________control is getting freedom, more flexibility,and less dependency Inversion of control bean Java Based AOP Inversion of control

41 ________is a container SpringFramework bean factory XmlBean SQL bean factory

42 _______is a method that set the name of the bean in bean factory setMessageSource() setBeanClassLoader() setResourceLoader() setBeanName() setBeanName()

43 ________is a specification in the corresponding main program the aspect code should be executed Join Point Point cut Advice AOP Join point

44 One of the key components of spring is________ Spring Framework AOP Framework Spring AOP DI Spring Framework

45 ________is a (AOP) extension created at PARC of the java programming language AspectJ Aspect AspectJ Annotation DI AspectJ

46 After instance creation _______will be injected thread Dependency DI IOC Dependency

47 Beans are instantiated & managed by______ Spring IOC Container Java code XML Bean Class Spring IOC Container

48 DI is a design pattern is used to _______ SpringFramework IOC Software Object Dependencies Object Dependencies

49 Design pattern is used to________ dependency of the Programming code Create Remove Delete Destroy Remove

50 _______accompolish the constructor invokes a class constructor with a no. of arguments Getter based DI Setter based DI Constructor based DI Constructor based DI

51 ________is an action taken by an aspect at the particular join point Advice Join point Point cut IOC Advice

52 _______allows introduce the new interface and a corresponding implementation to any advised objectSpring IOC Container Spring AOP SpringFramework Spring Bean Configuration Spring AOP

53 DI is a also a software pattern that’s implements for IOC for ______Dependencies resolving creating manipulating invokes resolving

54 Spring 2.0 interprets the same annotations as_______ AspectJ5 AspectJ jar init AspectJ5

55 Domain Objects created outside the Domain Objects User Objects Container object Container

56 Exception thrown by _____ method Factory method bean method run method compile Factory method

KARPAGAM ACADEMY OF HIGHER EDUCATION

COIMBATORE - 21

DEPARTMENT OF COMPUTER APPLICATIONS

SUBJECT: ADVANCED JAVA AND SPRING

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: V BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 1/19

UNIT – V

SYLLABUS

DAO Support and JDBC Framework, Operations with JdbcTemplate, JdbcTemplate

Convenience Methods, Basic Queries Using the JdbcTemplate, Batch Updates, Transaction and

Resource Management, Global transaction vs. local transaction, Declarative transaction

management, XML-based, Annotation-based, Object/Relational Mapping, Basic O/R Mapping,

Object Query Languages, Data Access Objects, Setup in a Spring Context, Introduction to Spring

MVC, DispatchServlet, Context configuration, Identify the design goals and core concepts of

Spring MVC, Spring MVC controllers & Views

SPRING - JDBC FRAMEWORK

While working with database using plain old JDBC, it becomes cumbersome to write

unnecessary code to handle exceptions, opening and closing database connections etc. But

Spring JDBC Framework takes care of all the low-level details starting from opening the

connection, prepare and execute the SQL statement, process exceptions, handle transactions and

finally close the connection.So what you have do is just define connection parameters and

specify the SQL statement to be executed and do the required work for each iteration while

fetching data from the database.

Spring JDBC provides several approaches and correspondingly different classes to interface with

the database. I'm going to take classic and the most popular approach which makes use of

JdbcTemplate class of the framework. This is the central framework class that manages all the

database communication and exception handling.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: V BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 2/19

JDBCTEMPLATE CLASS

The JdbcTemplate class executes SQL queries, update statements and stored procedure calls,

performs iteration over ResultSets and extraction of returned parameter values. It also catches

JDBC exceptions and translates them to the generic, more informative, exception hierarchy

defined in the org.springframework.dao package.

Instances of the JdbcTemplate class are threadsafe once configured. So you can configure a

single instance of a JdbcTemplate and then safely inject this shared reference into multiple

DAOs. A common practice when using the JdbcTemplate class is to configure a DataSource in

your Spring configuration file, and then dependency-inject that shared DataSource bean into

your DAO classes, and the JdbcTemplate is created in the setter for the DataSource.

CONFIGURING DATA SOURCE

Let us create a database table Student in our database TEST. I assume you are working with

MySQL database, if you work with any other database then you can change your DDL and SQL

queries accordingly.

CREATE TABLE Student(

ID INT NOT NULL AUTO_INCREMENT,

NAME VARCHAR(20) NOT NULL,

AGE INT NOT NULL,

PRIMARY KEY (ID)

);

Now we need to supply a DataSource to the JdbcTemplate so it can configure itself to get

database access. You can configure the DataSource in the XML file with a piece of code as

shown below:

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: V BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 3/19

<bean

>

<property nam e="driverClassNam e" value="com .m ysql.jdbc.Driver"/>

<property nam e="url" value="jdbc:m ysql://localhost:3306/TEST"/>

<property nam e="usernam e" value="root"/>

<property nam e="password" value="password"/>

</bean>

DATA ACCESS OBJECT DAO

DAO stands for data access object which is commonly used for database interaction. DAOs exist

to provide a means to read and write data to the database and they should expose this

functionality through an interface by which the rest of the application will access them.

The Data Access Object DAO support in Spring makes it easy to work with data access

technologies like JDBC, Hibernate, JPA or JDO in a consistent way.

EXECUTING SQL STATEMENTS

Let us see how we can perform CRUD Create, Read, UpdateandDelete operation on database

tables using SQL and jdbcTemplate object.

Querying for an integer:

String SQL = "select count(*) from Student";

int rowCount = jdbcTem plateObject.queryForInt(SQL);

Querying for a long:

String SQL = "select count(*) from Student";

long rowCount = jdbcTem plateObject.queryForLong(SQL);

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: V BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 4/19

A simple query using a bind variable:

String SQL = "select age from Student where id = ?";

int age = jdbcTem plateObject.queryForInt(SQL, new Object[]{10});

Querying for a String:

String SQL = "select nam e from Student where id = ?";

String nam e = jdbcTem plateObject.queryForObject(SQL, new Object[]{10}, String.class);

Querying and returning an object:

String SQL = "select * from Student where id = ?";

Student student = jdbcTem plateObject.queryForObject(SQL,

new Object[]{10}, new StudentMapper());

public class StudentMapper im plem ents RowMapper<Student> {

public Student m apRow(ResultSet rs, int rowNum) throws SQLException {

Student student = new Student();

student.setID(rs.getInt("id"));

student.setNam e(rs.getString("nam e"));

student.setAge(rs.getInt("age"));

return student;

}

}

++

Querying and returning multiple objects:

String SQL = "select * from Student";

List<Student>students = jdbcTem plateObject.query(SQL,

new StudentMapper());

public class StudentMapper im plem ents RowMapper<Student> {

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: V BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 5/19

public Student m apRow(ResultSet rs, int rowNum) throws SQLException {

Student student = new Student();

student.setID(rs.getInt("id"));

student.setNam e(rs.getString("nam e"));

student.setAge(rs.getInt("age"));

return student;

}

}

Inserting a row into the table:

String SQL = "insert into Student (nam e, age) values (?, ?)";

jdbcTem plateObject.update(SQL, new Object[]{"Zara", 11});

Updating a row into the table:

String SQL = "update Student set nam e = ? where id = ?";

jdbcTem plateObject.update(SQL, new Object[]{"Zara", 10});

Deletng a row from the table:

String SQL = "delete Student where id = ?";

jdbcTem plateObject.update(SQL, new Object[]{20});

Executing DDL Statements

You can use the execute. . method from jdbcTemplate to execute any SQL statements or DDL

statements. Following is an example to use CREATE statement to create a table:

String SQL = "CREATE TABLE Student(" +

"ID INT NOT NULL AUTO_INCREMENT, " +

"NAME VARCHAR(20) NOT NULL, " +

"AGE INT NOT NULL, " +

"PRIMARY KEY (ID));"

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: V BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 6/19

jdbcTem plateObject.execute(SQL);

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: V BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 7/19

Spring JDBC Framework Examples:

Based on the above concepts, let us check few important examples which will help you in

understanding usage of JDBC framework in Spring:

S.N. Example & Description

1 Spring JDBC Example

This example will explain how to write a simple a JDBC based Spring application.

2 SQL Stored Procedure in Spring

Learn how to call SQL stored procedure while using JDBC in Spring.

Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Spring JDBC - JdbcTemplate Class

The org.springframework.jdbc.core.JdbcTemplate class is the central class in the JDBC core

package. It simplifies the use of JDBC and helps to avoid common errors. It executes core JDBC

workflow, leaving the application code to provide SQL and extract results. This class executes SQL

queries or updates, initiating iteration over ResultSets and catching JDBC exceptions and translating

them to the generic, more informative exception hierarchy defined in the org.springframework.dao

package.

Class Declaration

Following is the declaration for org.springframework.jdbc.core.JdbcTemplate class −

public class JdbcTemplate

 extends JdbcAccessor

 implements JdbcOperations

 Usage

Step 1 − Create a JdbcTemplate object using a configured datasource.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: V BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 8/19

Step 2 − Use JdbcTemplate object methods to make database operations.

Example

Following example will demonstrate how to read a query using JdbcTemplate class. We'll read the

available records in Student Table.

Syntax

String selectQuery = "select * from Student";

List <Student> students = jdbcTemplateObject.query(selectQuery, new StudentMapper());

Where,

 selectQuery − Select query to read students.

 jdbcTemplateObject − StudentJDBCTemplate object to read student object from the database.

 StudentMapper − StudentMapper is a RowMapper object to map each fetched record to the

student object.

To understand the above-mentioned concepts related to Spring JDBC, let us write an example which

will select a query. To write our example, let us have a working Eclipse IDE in place and use the

following steps to create a Spring application.

Step Description

1 Update the project Student created under chapter Spring JDBC - First Application.

2 Update the bean configuration and run the application as explained below.

Following is the content of the Data Access Object interface file StudentDAO.java.

package com.tutorialspoint;

https://www.tutorialspoint.com/springjdbc/springjdbc_first_application.htm

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: V BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 9/19

import java.util.List;

import javax.sql.DataSource;

public interface StudentDAO {

 /**

 * This is the method to be used to initialize

 * database resources ie. connection.

 */

 public void setDataSource(DataSource ds);

 /**

 * This is the method to be used to list down

 * all the records from the Student table.

 */

 public List<Student> listStudents();

}

JDBC - Batch Processing

Batch Processing allows you to group related SQL statements into a batch and submit them with one

call to the database.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: V BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 10/19

When you send several SQL statements to the database at once, you reduce the amount of

communication overhead, thereby improving performance.

 JDBC drivers are not required to support this feature. You should use the

DatabaseMetaData.supportsBatchUpdates() method to determine if the target database supports

batch update processing. The method returns true if your JDBC driver supports this feature.

 The addBatch() method of Statement, PreparedStatement, and CallableStatement is used to add

individual statements to the batch. The executeBatch() is used to start the execution of all the

statements grouped together.

 The executeBatch() returns an array of integers, and each element of the array represents the

update count for the respective update statement.

 Just as you can add statements to a batch for processing, you can remove them with the

clearBatch() method. This method removes all the statements you added with the addBatch()

method. However, you cannot selectively choose which statement to remove.

Batching with Statement Object

Here is a typical sequence of steps to use Batch Processing with Statement Object −

 Create a Statement object using either createStatement() methods.

 Set auto-commit to false using setAutoCommit().

 Add as many as SQL statements you like into batch using addBatch() method on created

statement object.

 Execute all the SQL statements using executeBatch() method on created statement object.

 Finally, commit all the changes using commit() method.

Example

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: V BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 11/19

The following code snippet provides an example of a batch update using Statement object −

// Create statement object

Statement stmt = conn.createStatement();

// Set auto-commit to false

conn.setAutoCommit(false);

// Create SQL statement

String SQL = "INSERT INTO Employees (id, first, last, age) " +

 "VALUES(200,'Zia', 'Ali', 30)";

// Add above SQL statement in the batch.

stmt.addBatch(SQL);

// Create one more SQL statement

String SQL = "INSERT INTO Employees (id, first, last, age) " +

 "VALUES(201,'Raj', 'Kumar', 35)";

// Add above SQL statement in the batch.

stmt.addBatch(SQL);

// Create one more SQL statement

String SQL = "UPDATE Employees SET age = 35 " +

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: V BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 12/19

 "WHERE id = 100";

// Add above SQL statement in the batch.

stmt.addBatch(SQL);

// Create an int[] to hold returned values

int[] count = stmt.executeBatch();

//Explicitly commit statements to apply changes

conn.commit();

For a better understanding, let us study the Batching - Example Code

JDBC - TRANSACTIONS

If your JDBC Connection is in auto-commit mode, which it is by default, then every SQL statement

is committed to the database upon its completion.

That may be fine for simple applications, but there are three reasons why you may want to turn off

the auto-commit and manage your own transactions −

 To increase performance.

 To maintain the integrity of business processes.

 To use distributed transactions.

Transactions enable you to control if, and when, changes are applied to the database. It treats a

single SQL statement or a group of SQL statements as one logical unit, and if any statement fails,

the whole transaction fails.

https://www.tutorialspoint.com/jdbc/statement-batching-example.htm

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: V BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 13/19

To enable manual- transaction support instead of the auto-commit mode that the JDBC driver uses

by default, use the Connection object's setAutoCommit() method. If you pass a boolean false to

setAutoCommit(), you turn off auto-commit. You can pass a boolean true to turn it back on

again.

For example, if you have a Connection object named conn, code the following to turn off auto-

commit −

conn.setAutoCommit(false);

 Commit & Rollback

Once you are done with your changes and you want to commit the changes then call commit()

method on connection object as follows −

conn.commit();

Otherwise, to roll back updates to the database made using the Connection named conn, use the

following code −

conn.rollback();

The following example illustrates the use of a commit and rollback object −

try{

 //Assume a valid connection object conn

 conn.setAutoCommit(false);

 Statement stmt = conn.createStatement();

 String SQL = "INSERT INTO Employees " +

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: V BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 14/19

 "VALUES (106, 20, 'Rita', 'Tez')";

 stmt.executeUpdate(SQL);

 //Submit a malformed SQL statement that breaks

 String SQL = "INSERTED IN Employees " +

 "VALUES (107, 22, 'Sita', 'Singh')";

 stmt.executeUpdate(SQL);

 // If there is no error.

 conn.commit();

}catch(SQLException se){

 // If there is any error.

 conn.rollback();

}

In this case, none of the above INSERT statement would success and everything would be rolled back.

For a better understanding, let us study the Commit - Example Code.

Using Savepoints

The new JDBC 3.0 Savepoint interface gives you the additional transactional control. Most modern

DBMS, support savepoints within their environments such as Oracle's PL/SQL.

When you set a savepoint you define a logical rollback point within a transaction. If an error occurs past

a savepoint, you can use the rollback method to undo either all the changes or only the changes made

after the savepoint.

The Connection object has two new methods that help you manage savepoints −

https://www.tutorialspoint.com/jdbc/commit-rollback.htm

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: V BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 15/19

 setSavepoint(String savepointName): Defines a new savepoint. It also returns a Savepoint object.

 releaseSavepoint(Savepoint savepointName): Deletes a savepoint. Notice that it requires a

Savepoint object as a parameter. This object is usually a savepoint generated by the

setSavepoint() method.

There is one rollback (String savepointName) method, which rolls back work to the specified savepoint.

The following example illustrates the use of a Savepoint object −

try{

 //Assume a valid connection object conn

 conn.setAutoCommit(false);

 Statement stmt = conn.createStatement();

 //set a Savepoint

 Savepoint savepoint1 = conn.setSavepoint("Savepoint1");

 String SQL = "INSERT INTO Employees " +

 "VALUES (106, 20, 'Rita', 'Tez')";

 stmt.executeUpdate(SQL);

 //Submit a malformed SQL statement that breaks

 String SQL = "INSERTED IN Employees " +

 "VALUES (107, 22, 'Sita', 'Tez')";

 stmt.executeUpdate(SQL);

 // If there is no error, commit the changes.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: V BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 16/19

 conn.commit();

}catch(SQLException se){

 // If there is any error.

 conn.rollback(savepoint1);

}

In this case, none of the above INSERT statement would success and everything would be rolled back.

Local vs. Global Transactions

Local transactions are specific to a single transactional resource like a JDBC connection, whereas global

transactions can span multiple transactional resources like transaction in a distributed system.

Local transaction management can be useful in a centralized computing environment where application

components and resources are located at a single site, and transaction management only involves a local

data manager running on a single machine. Local transactions are easier to be implemented.

Global transaction management is required in a distributed computing environment where all the

resources are distributed across multiple systems. In such a case, transaction management needs to be

done both at local and global levels. A distributed or a global transaction is executed across multiple

systems, and its execution requires coordination between the global transaction management system and

all the local data managers of all the involved systems.

Spring Declarative Transaction Management

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: V BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 17/19

Declarative transaction management approach allows you to manage the transaction with the help of

configuration instead of hard coding in your source code. This means that you can separate transaction

management from the business code. You only use annotations or XML-based configuration to manage

the transactions. The bean configuration will specify the methods to be transactional. Here are the steps

associated with declarative transaction −

 We use <tx:advice /> tag, which creates a transaction-handling advice and at the same time we

define a pointcut that matches all methods we wish to make transaction and reference the

transactional advice.

 If a method name has been included in the transactional configuration, then the created advice

will begin the transaction before calling the method.

 Target method will be executed in a try / catch block.

 If the method finishes normally, the AOP advice commits the transaction successfully otherwise it

performs a rollback.

Let us see how the above-mentioned steps work but before we begin, it is important to have at least two

database tables on which we can perform various CRUD operations with the help of transactions. Let us

take a Student table, which can be created in MySQL TEST database with the following DDL −

CREATE TABLE Student(

 ID INT NOT NULL AUTO_INCREMENT,

 NAME VARCHAR(20) NOT NULL,

 AGE INT NOT NULL,

 PRIMARY KEY (ID)

);

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: V BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 18/19

Second table is Marks in which we will maintain marks for the students based on years. Here SID is the

foreign key for the Student table.

CREATE TABLE Marks(

 SID INT NOT NULL,

 MARKS INT NOT NULL,

 YEAR INT NOT NULL

);

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II MCA COURSE NAME: ADVANCED JAVA AND SPRINGS

COURSE CODE: 18CAP303 UNIT: V BATCH: 2018-2021

Prepared by Dr.G.Anitha, Asst. Prof., Department of CS, CA & IT, KAHE 19/19

 POSSIBLE QUESTIONS

PART-A (20 Marks)

(Q.No 1 to 20 Online Examination)

PART-B (6 Marks)

1. Describe JdbcTemplate Convenience Methods

2. Discuss Spring MVC Controllers.

3. Discuss Basic O/R Mapping

4. Explain the design goals and core concepts of SpringMVC

5. Explain the JDBC abstraction and DAO module

6. Discuss Declarative transaction Management

7. Explain Operations with JdbcTemplate

8. Discuss the following i) DispatchServlet ii) context configuration

9. Discuss the types of Transaction management supported by Spring with suitable example

10. Explain Spring MVC controllers and Views.

PART-C(10 Marks)

1. Develop a java program to Execute select Query using JDBC Connection

CLASS : II MCA BATCH : 2017-2020

SNO UNIT-V QUESTION OPTION A OPTION B OPTION C OPTION D ANSWER

1 __________Jdbc Template class offers template method for batch update operations. batchUpdate() update() batch() batchUpdate()&update() batchUpdate()&update()

2 _______ implement this interface to override the statement creation task. PreparedStatement PreparedStatementCreator PreparedCreator PreparedStatement PreparedStatementCreator

3 _________primary interface that allows you to process the current row of the result set. PreparedStatementSetter PreparedStatementCreator RowCallbackHandler Callback RowCallbackHandler

4 RowMapper implementation ________ can automatically map a row to a new instance of the specified class.BeanPropertyRowMapper BeanPropertyRow BeanFactory BeanProperty BeanPropertyRowMapper

5 _______Method provides list of maps. queryForList() update query() batch() queryForList()

6 ________Method to retrieve the JDBC template. setJdbcTemplate() getTemplate() getJdbc() getJdbcTemplate() getJdbcTemplate()

7 SimpleJdbcTemplate offers a convenient batch update method in the form of ________ Vector Set Map List List

8 An unchecked conversion from List to List_________Method has a warning from the Java compiler.findAll() query update batchupdate findAll()

9 The direct parent class of DataAccessException is_____________ RuntimeException NestedRuntimeException Exception Throwable NestedRuntimeException

10 The Spring JDBC frameworkthe state of 23505 mapped to DuplicateKeyException is __________error code SQL state error code&Sql State error error code&Sql State

11 ________Class represents a real-world entity and its instances will be persisted to a database. entity persistent entity & persistent db entity & persistent

12 primitive wrapper type to allow the identifier to be null is __________ java.lang.Integer java.lang.Long java.lang.Integer&java.lang.Longjava.io java.lang.Integer&java.lang.Long

13 A set of persistent annotations ___________ define mapping metadata. JPA JSR XML SQL JPA

14 Core Programming Elements for Different Data Access Strategie is __________ Resource Resource Factory Session All of the above all of the above

15 Interface__________ instance can be obtained from a SessionFactory instance. Session Session Factory interface factory Session

16 Interface____________ instances can be obtained from an EntityManagerFactory instance. Entity EntityManager entity&entitymanager transaction EntityManager

17 A session factory via dependency injection is _________ HibernateCourseDao HibernateCourse HibernateDao hibernate HibernateCourseDao

18 Property of the factory bean to load _____________ Hibernate configuration file. config.xml config configLocation configuration configLocation

19 FactoryBean to create an _________entity manager factory in the IoC container. LocalEntityManagerFactoryBeanLocalEntityManagerFactory LocalEntityManager LocalContainer LocalEntityManagerFactoryBean

20 To override some of the configurations in the JPA configuration file is _______________ LocalEntityManagerFactoryBeanLocalContainerEntityManagerFactoryBeanLocalEntity LocalContainer LocalContainerEntityManagerFactoryBean

21 Method to retrieve the JDBC template is _________ setJdbcTemplate() getTemplate() getJdbc() getJdbcTemplate() getJdbcTemplate()

22 Transaction key property is ____________ Atomicity Consistency Isolation All of the above all of the above

23 To access a database running on the Derby server to add is ___________ Derby client library Tomcat client library Derby server library tomcat server library Derby client library

24 Spring’s core transaction management abstraction is based on the _________interface PlatformTransaction PlatformTransactionManager TransactionManager PlatformManager PlatformTransactionManager

25 A transaction manager is declared in the Spring IoC container as a normal bean. TRUE FALSE TRUE&FALSE NULL TRUE

26 _________Method that allows to start a new transaction getTransaction commit rollback Transaction getTransaction

27 __________Method to start a new transaction with that definition getTransaction commit rollback TransactionTemplate getTransaction

28 ______ control the overall transaction management process & transaction exception handling SpringTransactionTemplate TransactionTemplate Transaction Template TransactionTemplate

29 A transaction callback object that implements_____ TransactionCallback TransactionCallbackWithoutResult classSpringTransactionTemplate TransactionCallback &TransactionCallbackWithoutResult class

TransactionCallback

&TransactionCallbackWithoutResult class

30 Spring offers a transaction advice that can be easily configured via the______ rx:advice bx:advice tx:advice txrx:advice tx:advice

31 ______ method need to surround the code with a try/catch block nor declare throwing an exception in the method signature.DAO AOP AOI MVC DAO

32 Named parameters are supported only in SimpleJdbcTemplate TRUE FALSE TRUE&FALSE TRUE/FALSE TRUE

33 The return type of the _____ method will be determined by the class argument query() queryForObject() update() findAll() queryForObject()

34 JdbcTemplate require statement _____ to be passed as an object array. arguments parameters array function parameters

35 Named parameters are supported only in ___________ MultipleJdbcTemplate SingleJdbcTemplate SimpleJdbcTemplate. inhertance SimpleJdbcTemplate.

36 The org.springframework.jdbc.core.support.JdbcDaoSupport class has a ________and_______ methodsetDataSource() setJdbcTemplate() setDataSource()& setJdbcTemplate()setDateTemplate() setDataSource()& setJdbcTemplate()

37 Named SQL parameters are specified by ____rather than by position. name class file array name

38 ____framework offers a consistent data access exception-handling mechanism for its data access module.Spring bean JDBC Thread Spring

39 PlatformTransactionManager is an abstract unit for _______ resource management transaction management. process platform management transaction management.

40 Session Interface ______ can be obtained from a SessionFactory instance. Session Instance Factory Independent Instance

41 The____ interface that allows to process the current row of the result set. Primary Secondary Local paramater Primary

42 DI makes the_____to test the application intermediate easy hard normal easy

43 Spring framework provides_______implementation POJO JMS JDBC JTA POJO

44 _____provoides the JavaEE Specification Spring framework POJO JDBC MVC web Spring framework

45 ____provides the support for caching validation, transaction and formatting Development support Declarative suuport package support validation support Declarative suuport

46 POJO is abbrivated as Program oriented java object Platform oriented java object Plain old Java Object Process old java object Plain old Java Object

47 MVC frame work is a Light weight process resource process method process Process Light weight process

48 MVC abbrivated as Monitor view controller Model view controller Model vehicle commision mountain view controller Model view controller

49 The job of the Dispatcher servlet is to take an incoming URI AOI MVC JSP URI

50 Dispatcher servlet is based on ____configuration Java bean spring Thread JDBC JavaBeans

51 getTransaction Method that allows you to start a New transaction Old transaction rollback Transaction New transaction

52 In _____ methods, you neither need to surround the code with a try/catch block nor declare throwing an exception in the method signature.DOA AOI IOC AOP DOA

53 The direct parent class of DataAccessException is:- RuntimeException NestedRuntimeException Exception Throwable NestedRuntimeException

54 Session Interface whose______ can be obtained from a SessionFactory instance. Session Instance Interface Independent Instance

SUBJECT: ADVANCED JAVA AND SPRING

KARPAGAM ACADEMY OF HIGHER EDUCATION

COIMBATORE - 21

DEPARTMENT OF COMPUTER APPLICATIONS

Scanned by CamScanner

	1.pdf (p.1-3)
	2.pdf (p.4-8)
	3.pdf (p.9-27)
	4.pdf (p.28)
	5.pdf (p.29-41)
	6.pdf (p.42)
	7.pdf (p.43-61)
	8.pdf (p.62)
	9.pdf (p.63-77)
	10.pdf (p.78)
	11.pdf (p.79-97)
	12.pdf (p.98)
	13.pdf (p.99)

