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S.No | Lecture Duration Topics to be Covered Support
Period Material/Page Nos
UNIT -1
1. 1 Introduction about set theory T1:3-5
2. 1 Basic concepts on sets with examples T1:5-7
3. 1 Some general properties on sets T1:8-12
4. 1 Mappings- Definition and Types of T1:19-23
mappings with example
5. 1 Theorems on mapping T1: 25-29
6. 1 Binary operations-Types of binary T1:33-35
operations
7. 1 Relations T1:37-38
8. 1 Properties of relation in a set T1: 38-40
Q. 1 Equivalence Relation T1: 40-41
10. 1 Basic concepts on groups T1:48-50
11. 1 Some examples on groups T1:50-53
12. 1 Definition of abelian and symmetric R5: 3.6-3.7, 3.12-3.13
group with example
13. 1 General properties of groups T1: 55-57
14, 1 Continuation of general properties on T1:57-59
groups
15. 1 Examples on groups T1:59-61
16. 1 Continuation of examples on groups T1:61-65
17. 1 Examples on finite groups T1:70-72
18. 1 Recapitulation and discussion of possible
questions
Total No of Hours Planned For Unit | =18
UNIT - II
1. 1 Subgroups: Definition and some T1:137-138
examples of subgroups
2. 1 Theorems on subgroups T1:139-143
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3. 1 Intersection of subgroups T1: 145-146
4. 1 Order of an element with example T1:113-118
5. 1 Cosets- Theorems on cosets T1:152-155
6. 1 Index of a subgroup in a group T1:157-159
7. 1 Fermat theorem T1:159-162
8. 1 A counting principle- Theorems R1: 44-46
9. 1 Cyclic group T1:170-177
10. 1 Normal subgroup T1:188-191
11. 1 Quotient groups R2: 66-69
12. 1 Theorems on normal subgroups and R5: 3.33-3.36

quotient groups
13. 1 Some examples on normal subgroup. T1:191-193
14. Continuation of examples on normal T1:193-196

subgroup
15. 1 Some examples on Quotient groups T1: 205-208
16. 1 Recapitulation and discussion of possible

questions .

Total No of Hours Planned For Unit Il =16
UNIT —I11

1. 1 Basic concepts on homomorphisms R2:51-52
2. 1 Examples of homomorphisms T1:211-213
3. 1 Theorems on homomorphisms T1:213-216
4. 1 Isomomorphism R3: 307-308
5. 1 Automorphisms T1:221-224
6. 1 Inner automorphisms, Theorems on T1: 224-226

automorphism
7. 1 Cauchy’s theorem for abelian groups T1: 249-250
8. 1 Cauchy’s theorem T1: 251
9. 1 Sylow’s theorem for abelian groups T1:251-253
10. 1 Examples of Sylow’s theorem T1: 253
11. 1 Permutation groups T1:93-95
12. 1 Some examples of permutation groups T1:95-96
13. 1 Theorems on permutation groups R5: 3.15-3.17
14. 1 Recapitulation and discussion of possible

questions .

Total No of Hours Planned For Unit 11l =14
UNIT-IV

1. 1 Basic concepts on ring theory T1: 254
2. 1 Elementary properties of a ring T1: 255-256
3. 1 Examples of rings T1: 257-258
4. 1 Some special classes of rings T1: 259-261
5. 1 Integral domain-Definition and examples | T1: 261-262
6. 1 Fields and Skew Fields R4:1-3
7. 1 Theorems on Integral domain and fields | T1: 263-265
8. 1 Homomorphisms of rings- Lemma T1: 354-356
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9. 1 Theorems on Homomorphisms of rings T1: 356-358
10. 1 Continuation of theorems on T1: 358-360

Homomorphisms of rings
11. 1 Recapitulation and discussion of possible

questions

Total No of Hours Planned For Unit 1V =11
UNIT -V

1. 1 Ideal-Definition and examples R5:4.18-4.19
2. 1 Theorems on ideals R5: 4.19-4.20
3. 1 Quotient rings R5:4.20-4.21
4. 1 Maximal ideal T1: 361-362
5. 1 Theorems on maximal ideals T1: 364-366
6. 1 Fields of quotients of an integral domain | R5: 4.27-4.28
7. 1 Continuation of fields of quotients of an R5: 4.28-4.29

integral domain
8. 1 Euclidean Rings: Definition and T1: 370-373

examples
9. 1 Properties of Euclidean rings T1: 373-374
10. 1 Theorems on Euclidean rings T1: 374-375
11. 1 Continuation of theorems on Euclidean T1: 375-377

rings
12. 1 Unique Factorization theorem T1:377-378
13. 1 Recapitulation and discussion of possible

questions
14. 1 Discussion of previous ESE question

papers.
15. 1 Discussion of previous ESE question

papers.
16. 1 Discussion of previous ESE question

papers.

Total No of Hours Planned For Unit V=16

Total No of Hours Planned =75
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Scope: After completing this course, the student will be enriched with the knowledge of
concepts of groups, rings and fields etc which are very useful for their future study in accordance
with research.

Objectives: To enable the students to understand the concepts of sets,groups ,rings and various
properties of those structures.

UNIT I
Sets — Mappings — Binary operations and Relations. Groups — Abelian group, Symmetric Group
— Definitions and Examples — Basic properties.

UNIT 11
Subgroups — Cyclic subgroup — Index of a group — Order of an element — Fermat theorem —A
Counting Principle - Normal Subgroups and Quotient Groups.

UNIT 111
Homomorphisms — Cauchy’s theorem for Abelian groups — Sylow’s theorem for Abeliangroups
Automorphisms — Inner automorphism — Cayley’s theorem, permutation groups.

UNIT IV
Rings: Definition and Examples —Some Special Classes of Rings — Commutative ring — Field —
Integral domain - Homomorphisms of Rings.

UNIT V
Ideals and Quotient Rings — More Ideals and Quotient Rings — Maximal ideal - The field of
Quotients of an Integral Domain — Euclidean rings.

TEXT BOOK
1. Vasishtha.A.R., 2005. Modern Algebra, Krishna Prakasam Mandir , Meerut .

REFERENCES
1. Herstein. I.N. 2010.Topics in Algebra, John Wiley & Sons, New York.

2. Artin.M., 2008. Algebra, Pearson Prentice-Hall of India, New Delhi.

3. Fraleigh.J.B., 2004. A First Course in Abstract Algebra , Seventh edition , Pearson
Education Ltd, Singapore.

4. Kenneth Hoffman., Ray Kunze., 2003. Linear Algebra, Second edition, Pearson Prentice
Hall of India Pvt Ltd, New Delhi.

Prepared By Dr.M.M.Shanmugapriya, Asst.Prof, Department of Mathematics, KAHE 1



Sy||abu5 2015-2018

Prepared By Dr.M.M.Shanmugapriya, Asst.Prof, Department of Mathematics, KAHE 2



UNIT - 1 /2015-2018 Batch

\‘_é%/ KARPAGAM ACADEMY OF HIGHER EDUCATION
KA R PAGAM (Deemed to be University Established Under Section 3 of UGC Act 1956)
ACADEMY OF WS RR SDUSAIGN Pollachi Main Road, Eachanari (Po),
stbiekiol A Coimbatore —641 021
Class : III B.Sc Mathematics Semester : VI
Subject: Modern Algebra Subject Code: 15SMMU603
Unit I
Part A (20x1=20 Marks)
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
A - is a collection of well defined objects. set function relation group set
The sum of two natural number is also --------- number real odd natural even natural
A set consisting of one element is called a ------ set. singleton null equal sub singleton
The set which contains no element at all is called the ------ set. singleton null equal sub null
The number of power set in S= {a,b,c} is ------------ 4 7 9 8 8
If ACB and BEA then ---------- A=B A'B A=0 B=0 A=B
If BCA then AUB= --—----- A A' B A
If A and B are two sets then (AﬂB)1 = - ANB A'NB' A'UB' AUB A'UB'
(AUB) N
If A,B and C are three sets then AN(BUC) = ----—---- (ANB)U(ANC) |(AUC) (ANB)N(ANC) | (ANB)U(AUC) | (ANB)U(ANC)
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If A,B and C are three sets then AU (BNC) = --------- (ANB)U(ANC) (%5(133)) " (ANB)N(ANC) | (ANB)U(AUC) | (AUB) N (AUC)
If A,B and C are three sets then AU (BUC) = --------- (AN B)UC ANBNC) [|AN(BUC) (AU B)uC (AU B)uC
If A,B and C are three sets then (AN B) N C = --—--—--- (AN B)UC AN (BNC) (AU B)UC (ANB)UC AN (BNC)
If BCA then ANB= -—-—-—-- A A' B [0) B

If a finite set S has n elements, then the power set has ---- elements. 2" 2! 2! 2" 2"

If A and B are two sets then (AUB)1 = oo ANB A'NB' A'UB' AUB A'NB'

The symmetric difference of two set A & B is defined by --------- (A-B)U(B-A) (A-B)N(B-A) [(B-A)U(A-B) |(B-A)N(A-B) [(A-B)U(B-A)
If A and B are two sets, B CA then ANB =-—-——————-- A {} 1 B singleton
One to one mapping is also known as ------------- injective bijective surjective 1-1 onto injective

On to mapping is also known as ------------- injective bijective surjective 1-1 onto surjective
Two sets are said to be ------------- if their intersection is empty. union disjoint difference superset disjoint
Two sets A and B are said to ---------- set, if every element of A is an element of

B. equal infinite null singleton equal

A set consisting of a number of sets is called --------- set. union disjoint power superset power

If the range of the function has one element , then the function is ------ onto one -one constant identity onto
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Composition of mapping is not ---------- commutative equal well defined set commutative
neither 1-1 nor

The function f : Z—Z defined by f(x) = 3x is ------ bijection 1-1 and onto  [not 1-1 but onto |onto bijection

The set of natural number is a -------------- group with respect to the operation

addition semi normal symmetric abelian semi

An infinite group is said to be --------------- order identity finite infinite symmetric infinite

If G is a group, then the identity element of G is ---------- Zero two unique one unique

If G is a group, then every a€G has a --------- inverse in G Z€ero two unique one unique

The equivalence relation has -------- distinct equivalence classes. one n n! no n

If every element of the group G is its own inverse, then G is -------- abelian finite infinite subgroup abelian

Two integers a and b are said to be relatively prime , if (a,b) = -------- 0 1 2 3 1

A Group G is said to be -----------—-—— if for every a,b in G ,a.b =b.a Non-abelian abelian unity inverse abelian

The number of elements in a finite group is called ------------ of the group order infinite abelian Non-abelian order

If G is a group, then the identity element of G is ---------- Zero two unique one unique

For every aeG (a'l)'1 = e a’ a 1 0 a

The --------- identity element is also right identity left normal right coset left
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If s is a set with n elements then A(S) has ------- elements. one n n! Zero n!

The number of elements in a group is called the -------- of the group finite order semi symmetric order

The identity element in a group is --------- unique disjoint symmetric not equal unique

The inverse of each element of a group is -------- . symmetric disjoint unique not equal unique

The --------- element of a group has its own inverse single identity two no identity

The left identity element is also ------------ identity left normal right same right

The right inverse of an element is ----------- inverse. left normal right same left

If a, b €G, then (a'l)'1 —————————— a’ a 1 0 a

If a, beG, then(a.b)'=--m-meee- a’! a'b! b'a’ b! b'a’

Cartesian

————————————— is the binary operation on the set N of natural numbers Subtraction Division product Addition Addition
reflexive, reflexive, anti reflexive,
symmetry and reflexive and  |symmetry and |symmetry and [symmetry and

The properties of an equivalence relation are ------------ . transitive transitive transitive anti transitive  |transitive

One to one on to mapping is also known as ------------- bijective injective surjective transitive injective

If different elements in A have different f-images in B, then the function is said to

be ------ one-one onto one-one on to | inverse one-one

The identity mapping f: A—A is defined by --------- f(x") =x f(x) = f(x) f(x) =x' f(x)=x f(x)=x
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reflexive, reflexive, anti reflexive, anti
symmetry and reflexive and  |symmetry and |symmetry and [symmetry and
The relation is said to be a partial order relation if it satisfies ------------ transitive transitive transitive anti transitive  |transitive
——————————— is a binary operation on the set of natural numbers. Addition Subtraction Division equation Addition
If ab=ba, Va,b €G, then G is said to be --------- group. symmetric abelian sub semi abelian
The number of elements in a ---------- group is called the order of the group. sub infinite finite semi finite
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CLASS: III BSC MATHEMATICS COURSE NAME: MODERN ALGEBRA
COURSE CODE: 15MMU603 UNIT: 1 BATCH-2015-2018
UNIT-I
SYLLABUS

Sets — Mappings — Binary operations and Relations. Groups — Abelian group, SymmetricGroup —
Definitions and Examples — Basic properties.

Introduction to set theory

The algebra of sets defines the properties and laws of sets, the set-theoretic operations of

union, intersection, and complementation and the relations of set equality and set inclusion. It

also provides systematic procedures for evaluating expressions, and performing calculations,

involving these operations and relations.

Preliminary notations:

Set theory:

1. Asetis any well defined class or collection of objects.
2. A set ‘A’ is said to be a subset of s. if every element in A is an element of s. if
agA=ags.
3. A setis said to be a finite if it consists of a specific number of different elements,
otherwise it is called as an infinite set.
4. Two sets A and B are said to be equal if and only if every element of A is an
element of B, and also every element of B is an element of A.
If the two sets A and B are equal then we write it as A=B.
If the two sets A and B are not equal then we write it as A#B.
5. A set which contains no element is called as null set or an empty set.
6. A set consisting of a single element is called singleton set.
7. Given a set S we use the notations as,

A={aes/p(a)} means that A is the set of all the elements in s for which the

property p holds
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8. The union of the two sets A and B is denoted as AUB the set is {x/xzA or xzB}.

9. The intersection of the two sets A and B is denoted as ANB is the set
{X/xcA and xzB}.

10. The two sets A and B have no elements is then we say that A and B are disjoint or

mutually exclusive.

Prepositions:

1. Forany 3 sets A,B,C we have
AN(BUC)=( ANB)U(ANC)

First we try to prove that
(ANB)U(ANC)c AN(BUC)
Now B ¢ BUC

ANB ¢ AN(BUCy———> 1
ccBUC

ANC ¢ AN(BUCy—— 2
1 and 2 (ANB)U(ANC) ¢c AN(BUC)—— 3
Next we try to prove
ANBUC) ¢(ANB)U(ANC)
xeA ANBUC)—/———> 4
Let xeA and (xeB or xeC)
xeA and xeB or xeA and xeC

xe ANB or x¢ ANC
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xe(ANB)U(ANCy—— 5
from 4 and 5 AN(BUC) ¢(ANB)U(ANCy———> 6
Definitions:

1. Given a set T we say that T serves as an index set for the family f.f={A.} of sets if for
every 0T, there is a set of A, is the family of F.The index set T can be any finite set or

infinite.

2. By the union of sets A, where a is in T, we mean the set
{x/xe A, for atleast one a in T} we denote it by U A, aeT.

3. By the intersection of he sets A, where o is in T we mean that the set
{ x/x¢ A, for every a €T } we denote it by N aeT A..

4. The sets A, are mutually disjoint if o£B A«NAg is the null set.

5. Given the two sets A and B then the difdferenc set A-B is the set {xeA/xeB} then
B is a subset of A in this case we call A-B is the complement of B in A.

6. Let A and B be any two given sets then their Cartesian product A*B is defined as
the set of all ordered pairs(a,b) where acA and beB.

Note:

1) (a1,b1)=(az,b.) iff a;=a» and bi=b given any index set T we can define the Cartesian

product of the sets A, as a varies over T.

i) If the set A is a finite set having elements then the set A*A is also a finite set but
has n? elements.

1ii) The set of all elements (a,a) is A*A is called the diaponal of A*A.
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Definition:

The binary relation ~ on A is said to be a equivalence relation if for all a,b,c is A.
i) a~a reflexing
i) a~b=b~a symmetry
Iii) a~b and b~c=a~c transistivity

Example:
Let s be the set of all integers given a,bes defines a~b if a-b is even integer.

Solution:

1) since 0=a-a is even a~a

i) if a~b then a-b is even —(b-a) is also even=b~a.

1i)if a~b then a-b is even and b~c then (b-c) is even.

a-c=(a-b)+(b-c) is also even=a~c.

The given relation is equivalence relation.
Definition:
If A is a set and if ~ is an equivalence relation on A then the equivalence class of agA is

the set {xeA/a~x} we write it as cl(a).
Fundamental theorem on equivalence relation:

Theorem 1.1.1

The distinct equivalence classes of an equivalence relation A provide us with a
decomposition of A as a union of mutually disjoint subsets. Conversely given a
decomposition of A as union of mutually disjoint, non empty subsets we can define an

equivalence relation on A for which these subsets are the distinct equivalence classes.
Proof:
Let the equivalence relation on A be denoted by ‘~’ since for any agA, a~a.

A must be in cl(a).
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Hence the union of the cl(a) is all of A we now try to prove that given two equivalence
classes they are either equal or disjoint.

Now we suppose that cl(a) and cl(b) are not disjoint then f an element.
xecl(a)Ncl(b)

Since xecl(a) a~x

Since xecl(b) b~x

But by the symmetry of relation we have x~b.

a~x and x~b=a~b— 1

Now we suppose that yecl(b)

b~y — 2

1 and 2 a~y=yecl(a).

Every element in cl(b) is in cl(a) cl(b)ccl(a) —> 3

In a similar way we can prove that

Cl(a)ccl(b)—>4

3 and 4 cl(a)=cl(b)

Thus we have shown that the distinct cl(a) are either they are equal or disjoint.

Let us suppose that A=uA, where A, mutually disjoint non empty set[a is in the some

index set]. Given an element a is A is exactly in one A..
We define for a,beA,a~b if a and b are in the same A..

We now prove that this is an equivalence relations on a and that the distinct equivalence

classes on the A..
Now a and a are in the same A.. a~a.
Now assume that a~b, then by definition a and b are in the same A..

b~a hence if a~b=b~a then it follows that a and b are in the same A..

Prepared by Dr.M.M.Shanmugapriya, Asst.Prof, Department of Mathematics, KAHE Page 5/21




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III BSC MATHEMATICS COURSE NAME: MODERN ALGEBRA
COURSE CODE: 15MMU603 UNIT: 1 BATCH-2015-2018

B and c are in the same As.
Now suppose that A.# Ag since be Apg.= AcNAp#0

Which is a contradiction. Since A, and Ag. Are distinct A,=Ag. Hence a and c are in the

same A..

a~c thus a~b and b~c=a~c. thus the relation defined above satisfies reflexity symmetry

and transitivity. Hence the above relation is an equivalence relation.

Lat agA let A, be the unique no of the partition such that ag A, then by definition of ~ we
get cl(a)= A..

Thus distinct equivalence classes are Aq.

State And Prove Demorgan’s Theorem:

Statement:

For a subset ¢ of s let ¢! denotes the complement of ¢ in s. for any two subsets A,B of s
we have,

i) (ANB)=AlUB' ii) (AUB)= Al N B
Proof:

Dlet xe(ANB) — 1

x&5(ANB)

xsA and xsB

xeAl and xeB!

xeAlU Bl— 2

from 1 and 2 we get (ANBh¢ AlU Bl —> 3
now let xeAlU Bl — 4

xeAl or xeBl!
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xsA or xsB
x8(ANB)

x3(ANB)l — 5

from 4 and 5we get (Al U B)¢(ANB)\—— 6

from 3 and 6 we get (ANB)= (Al U B))

ii)(AUB)=AINB!

let x¢(AUB)—— 1

x3(AUB)

x8A and xsB

xeAl and xeB!

xeAlN Bl —— 2

from 1 and 2 we get (AUB)\c ANB——> 3

now let xeAIN Bl — 4

xeAland xeB!

x8A and xsB

x5AUB

xe(AUB) — 5

from 4 and 5 we get ANBI((AUB) — 6

from 3 and 6 we get (AUB)= AINB!.

Problem:

1. If A is a finite set having n elements then prove that A has exactly 2" distinct subsets.
Solution:
Given that A is a finite set with n elements
Thus A contains obviously the empty set also that it contains the following subsets.

nci=number of 1 element subsets.
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ncz=number of 2 element subsets.
nch=number of n element subsets.
The total number of subsets=nco+nci+nca+....... +ncn
=1l+ncitncot.......... +1

From binomial theorem we know that

nimn—

(A+X)"=1+nxX+———X+...........

-

When x=1 we have,

nim—1%

2"=1+n+——

From these both we have the total no of subsets=2".

Introduction to Mappings

In mathematics, the term mapping, usually shortened to map, refers to either
A function, often with some sort of special structure, or
A morphism in category theory, which generalizes the idea of a function.
Mappings:

A mapping from a set S is a rule that associates with each element s in s a unique element
tinT.

Note:
In the above case way that t is the unique of s under the mapping.
Definition:

If S and T are non empty sets then a mapping from s to T is a subset of M of s*t such that
for every seS there is a unique teT such that the ordered pairs(s, t) is in M.

Note:

Let o be a mapping from S to T we denote this by 6 : ST or T=So.
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Examples:

1. Let S be any set. Define 1:S == by s=si for any sets ses. This mapping I is called the
identity mapping.

2. Let Sand T be any two sets and let to be an element of T. define y:S ==>T by an
y(s)=to for every ses then y is a mapping.

3. Let S and T be any two sets. Define 1t by (a, b)t = a for any (a, b)eS*T. this 1 is called
as the projection of S*T on S. in a similarity we can define the projectionof S* Ton T.

Note: .

Let S be any set we construct a new set s”, the set whose elements are the subsets of S
then we call S™ the set of subsets of S.

Example:
1. If S={Xx1, X2}

Then s™= {{}, {x1}, {x2}, S}

2.Given a mapping t: T, we define for teT, the inverse of t w.r.to 7 to be the
set {seS/t=ST}.
Definition:

1.The mapping t of S into T is said to be onto T if given teT, F an element seS
such that t=st.
2. The mapping 1 of s into T is said to be a one to one mapping. If whenever si#s2
then sit # s2t.
3. The two mappings ¢ and 1 of s into T are said to be equal is sc=st for every ses.
4, If 6:S==> T and :T ==> U then the composition (or product) of t andc is the
mapping cot: S——=> U.
5. Defined by s(cot) =(so)t fro every s € S
=tt for every teT
=u for every ueU.

Example:
Let S = {X1, X2, X3} and T=S.

Let 6 : S==>S be defined by x16 = X2, X26 = X3, X36 = x and t : S==>S§ be defined by
X1T = X1, X2T = X3, X3T = X2

thus X1(cot)=(x10)1
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= XoT = =X3

Xa(oo0t)=(x20)T
= X3T==X2
X3(oo0t)=(x30)T
= X1T==X1
X1(100)=(X1T)0
= X206 = =X2
X2(t00)=(x21)0
= X30 ==X1
X3(t00)=(x31)0
= X206 = =X3

So from above resets we conclude that is general 6ot # 100.

Lemma 1.2.1: Associative law:
Ifo: S ==>t,t: T =—=>U and u: U =—=>V then

(coT)opt =Go(Topt)

Proof:

We know that ot makes sense and takes S into U.
Thus (oot) opt also makes sense and takes S into V.
Now let us prove for any seS,
S[(cot)op]=s[co(Top)]

L.h.s =s[(c0T)op]

=s(coT)p

=((so)r)n
=s0(Top)

= s[oo(Top)]=r.h.s.= associative property.
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Lemmal.2.2:

Let 6:S=—>T and t:T==> U then
1) oot is onto if each of ¢ and 7 is onto.
i) oot is one to one if each of ¢ and 7 is one to one.
Proof:
Since ©: T ==>U is onto for a given ueU , F a teT such that
tt=u —> 1
since 6:S—==> T is onto
for given teT F a seS such that
so=t —> 2
now s (cot)=(so)t
=tt by 2
=uby1l
Thus for every ugU F a seS such that s (cot)=u
Then by definition oot is onto
Let si, S2 € s and s1 # s2
Since ¢ is one to one s16#820
S16&s20 are distinct elements in T.
since T is one to one S1T#S2T
= S1(00T)=(510)T#( S26)T1=S2(G0T)
= S1(00T)# S2(GoT)
=(oot) is one to one by definition.
Note:
The converse of above lemma is false.
) If(cot) is onto then o and 7 is need not be onto.

i) oot is one to one if each of ¢ and t is need not be one to one.
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Definition:

Let 6:S T if o is both one to one and on to then we say the mapping ¢ is one to one
correspondence between S and T.

Lemma 1.2.3:

Statement:

The mapping : S =——=>T is one to one correspondence between S and T iff there exists a
mapping LL:T::> S such that cop and poo are the identity mappings on S and T
respectively.

Proof:

First let us assume that the mapping 6: S—> T is a one t0 one correspondence between
SandT.

Since o is onto, for given teT, F an element seS such that se=t — 1

Since 6 is one to one this s in must be unique now we define the mapping

o 1 T—=—>S by s=t ¢ ! iff t=sc the mapping o ! is the inverse of .

Letooo 1 s=>S

Now for any seS, s (6o 6 1) = (s6) ¢ *

=tclhy 1

=S

=si

oo ¢ 1 is the identity mapping on s.
if we take p= o * then

ool is the identity mapping on s.
Now 6 oo: T=>T then for any teT.
t(c Yo0)=( tc Yo

=s0

=t

=ti

o Yoo is the identity mapping on T.

Conversely if 6: S==> T is such that F a mapping on u: ==> S with the property that
oop and poc are the identity mapping on S and T respectively. Then we have to show that
o is a one to one correspondence between S and T. we have to show 6 is both one to one

and onto.
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Let teT then t=t1

=t (Loo)=(tp)o

Now tu is an element of S. so t is the image under o of the element tp in s. for a given teT
F a tueS such that (tn) o=t by definition o is onto.

Let s1, S2 € S assume that s16=s20
Now consider s1=S1(cop)

= (s10) p

= (S20) p

=52 (op)

=S2 (oop 1s the identity on s)
Whenever s16=s26=s1=52

Then by definition ¢ is one to one.
Definition:

A binary operation 0 on a non empty set A is a mapping which associates each pair (a, b)
of elements of A an uniquely defined element CeA thus 0 is a mapping of product of the
set A*A to A symbolically a map 0: A*A—> A is called a binary operation on the set A.

Example:
Addition and multiplication on binary operation on N.

If S is non empty set then A(s) is the set of all one to one mappings of s onto itself.
Theorem: 1.2.1:

If 6, 7, n are elements of A(S) then i) oot is in A(S)

ii) (c0t) Op=c0 (Top)

ii1) F an element I the identity map in A(S) such that coi=ioc

iv)F an element 6 "1A(S) such that 6oc =6 100 =i

Proof:

l.Lemmal.2.2
2.Lemmal.2.1

3.Clearly the identity map ‘i’ is both one to and on to ieA(S) let seS

Now consider s(co1)=(s0)i
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=sG ¥ seS=G01=0
Lemma 1.2.3(write the first part only).

Lemma: 1.2.4:

If s has more than two elements we can find two elements c*t in A(S) such that
GOT#T0O.
Proof:
Let us assume that S has more than two elements let X1, X2, and x3 be three distinct
elements in s.
Now we define 6: S—=>8S
By X16=x2
X26=X3
X30=X1
So=s for only seS different from x1, X2, X3
Define 1: S==>8S
By Xo1=x3
X3T=X2
and st=s for any seS different from x2, and x3 clearly both ¢ and t are one to one and
on to and hence in A(S)

NOW X1(coT)=(X10)T

And X1(to0)=(x17)0
=X10
=Xz —» 2

Comparing 1 and 2 we observe that Got#T00.
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Problem1:

If the set S has n elements then prove that A(S) has n! Elements.
Solution:
When S={X1, X2, X3...Xn}

Any one to one mapping on S onto itself is given by specifying the image of each
elements.

The image of x; can be chosen is different ways. Since the image of x; is different
from image of x; it can be chosen in n — 1 different ways and so on. Hence the total
no of one to one mapping of s onto itself is n(n-1)(n-2)......3.2.1=n!.

Problem2:
If f: A—>B is a map and E, E are any two subsets of A then show that
i) f(E1UE2)=f(E1)Uf(E2)
i) f(EiNE2)g f(E1)N1(E2)
Solution:
1) Let bef(E1UE>)
b=f(a) for some ag E{UE,—> 1
b=f(a) for some acE1 or agE>
b=f(a) and f(a)ef(E1)or f(a)ef(E2)
b=f(a) and f(a)e f(E1)U f(E2) — 2
from 1 and 2 we get f(E1UE2)g f(E1)Uf(E2)—> 3
now let blef(B1)Uf(E2) — 4
blef(E1) or blef(E>)
bl=f(al) for some aleE; or E;

bi=f(a!) for some ale(E1UE>)
bi=f(al) for some f(al)ef(E1UE,) — 5

from 4 and 5 we get f(E1)Uf(E2)g f(ELUE2)—> 6
from 3 and 6 we get f(E1UE2)= f(E1)Uf(E>)
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ii) Letbe f(E:NE)) —> 7
bef(a) for some agE1NE>
b=f(a) for some a¢ E; and ag E;
b=f(a) and f(a)ef(E1) and f(a)ef(E2)
b=f(a) and f(a)ef(E1)Nf(E2) —> 8
from 7 and 8 we get f(E1NE2)c f(E1)Nf(E2)
Introduction to Group Theory

In mathematics, a group is a set of elements together with an operation that combines any
two of its elements to form a third element satisfying four conditions called the group axioms,
namely closure, associativity, identity and invertibility. One of the most familiar examples of a
group is the set of integers together with the addition operation; the addition of any two integers
forms another integer. The abstract formalization of the group axioms, detached as it is from the
concrete nature of any particular group and its operation, allows entities with highly diverse
mathematical origins in abstract algebra and beyond to be handled in a flexible way, while
retaining their essential structural aspects. The ubiquity of groups in numerous areas within and

outside mathematics makes them a central organizing principle of contemporary mathematics.

Group theory:

Definition of a group:

A non empty set G is called a group if in G there is defined a binary operation

called a product and denoted by ‘.” Such that

i) Fora, beG a.beG *(closure property)

i) a,b,ceG a.(b.c)=(a.b).c(associative property)

i) F an element ecG such that a.e=e.a ¥ agG ¢ is called the identity of
the element in G.

iv) For every acG F an element a "'¢G such that a.a "=a "l.a=e eixtence of
inverse.

The algebra structure of the group is given by (G,.).

Definition:
1) A group G is said to be an abelian group or commutative if for every a,beG
a.b=b.a
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i) A group which is not abelian is called a non abelian group.

1ii) The order of a group G, denoted by o(G) is the no of elements in G.

iv) If G contains finite no of elements we say that G is a finite group otherwise it is
called as an infinite group.

v) We know that if a set S contains ‘n’ elements then A(S) contains n! elements amd
A(S) is a group. This group is called as the symmetric group of degree n
denoted by s.

Some examples of groups.

Let G consists of the integers 0, 1, £2,...... where we means by a.b foe a,beG the
usually sum of integers that is a.b=a+b.

Solution:

Closure property:

Let a, b €G then a+beG, since the sum of two integers is also an integer in G.

Associative property:

Let a,b,ceG then (at+b)+c=a+(b+c) since the associative property is true in the case of
integers.

Existence of identity elements:

OeG, now ato=a ¥aeG o is the additive identity element in G.

Existence of inverse element:

For any aecG we can find an element —a in G such that a+(-a)=0

-aacts as the inverse forain G (G, +) is a group.

Examples:
1. The set of all 2*2 matrices . fj a,b,c,deR is a group under matrix addition.

2. Q,R,C groups are all under usual add#ion.
3. Let G consists of real nos (1, -1) under the binary operation multiplication then G

is an abelian group of order 2.
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4. Since sum of two integers is commutative for any a,beG atb=b+a G is an
abelian group. Also G contains infinite number of elements. G is an infinite

abelian group to the binary operation addition.

Some preliminary lemmas:

Lemma 2.3.1:

If G is a group then
1. The identity element of G is unique.
2. Every aeG has an unique inverse in G.
3. Left and right cancellation laws hold
a.b=a.c b=c
b.a=c.a b=c
4. for every aeG (a™!) 1=a
5. for all aeG(a.b) *=bta!
Proof:
If possible let there be two | denoted elements e, f in G.
Let aeG since e is the identity. Consider f as an ordinary elements in G. then by the
definition,
a.e=e.a=a
f.e=e.f=f
since f is the identity consider e as an ordinary element in G. then by definition
a.f=f.a=a
e.f=f.e=e
we know that e.f=f and e.f=e f=e hence the identity element is unique.
2. let aeG

If possible let there be two inverses al and all for a in G. then by definition we know that
a.al=al.a=e

a.al=al.a=e
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Since e is the identity element we can wriye

al=ale

= al.(a.a)

= (al.a).al

=e.al

— al

al = all hence every element in G has a unique inverse.
3.. let a,b,ceG let us suppose that a.b=a.c

Since aeG  a“leG

Now premultiplying by a* we get

al(ab)=al(ac)

(at.a).b=(ata).c

e.b=e.c

b=c

left cancellation law is true.

Since acG  a'eG now post multiplying by a* we get
(b.a). a'=(c.a).a*

b.(at.a)=c.(at.a)

b.e=c.e

right cancellation law is true.

4. let agG let a ™ be the inverse of a in G then (a ) - will be the inverse of a in G.
Since G is a group we have

a.a’=ala=e and al(@?bl=(at)lal=e

we have ata=al(a?l)

using left cancellation law we have a=(at) .
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5.. let a,beG let a"*' b be the inverse of a and b in G.
Then a.b and b, a! exists in G by closure property
Now we consider

(a.b).(bt. at=a.(b.b?).a?

=a.e.at!

=a.a’t

=e

(a.b)t=bt at

Lemma 2.3.2:
Given a,b in the group G then the equations a.x=b and y.a=b have unique solutions for x
andyinG.

Proof:

Given that a,beG

Since a,beG, a G

. x=a 1beG

Now consider

a.x=a.(a 1.b)

=(a. al).b

=e.b

=b

X satisfies the given equation and hence x=a1.b is a solution.

To establish the uniqueness of the solution, let there be two solution x; and x> for the
equation a.x=b

We have a.x1=a.x»
X1=X2

henc x=a "L.b is a unique solution for a.x=b. in a similar way we can prove that y=b.a ! is
a unique solution for y.a=b.
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POSSIBLE QUESTIONS:
Part-B( 5X8 = 40 Marks)
Answer all the questions:

1. i) Prove that An(BUC) = (AnB) U (ANC)
i) If a finite set S has n elements, then prove that the power set S has 2" elements.

2. Write about the types of binary operations.

3. If G is a group ,then prove that
i)the identity element of G is unique
ii)every aeG has a unique inverse in G
iii)for every acG, (a)'=a

iv)for all a,beG, (a.b)?=bta?

4. If a,b are any two elements of a group G, then prove that the equations ax =b andya=b
have unique solutions in G.

5. Show that the set G ={ a+bV2: a,bQ} is a group with respect to addition.

6. i) Prove that the inverse of the product of two elements of a group G is the product of the
inverse taken in the reverse order.
i)Show that if every element of the group G is its own inverse , then G is abelian.

7. Let G be a group. Then prove that i) identity element of G is unique
ii) for any aeG, the inverse of a is unique.
8. Prove that if G is an abelian group, then for all a,beG and all integers n, (a.b)"=a".b".

9. If G is a group, in which (a.b)' = a'b' for three consecutive integers i for all a,beG. Show
that G is abelian.

10. If a.b.c are any elements of G, then prove thatab =ac = b=c andba=ca=b=c .
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Unit I
Part A (20x1=20 Marks)
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
Every subgroup of an abelian group is ----------- cyclic normal ring field normal
Every subgroup of an ---------- group is normal cyclic abelian non- abelian  |order abelian
Every subgroup of a ---------- group is normal abelian cyclic ring field cyclic
An infinite group is said to be --------------- order identity finite infinite symmetric infinite
If G is a group, then the identity element of G is ---------- Zero two unique none unique
HuK is a HNK is a HXKisa HK is a subgroup |HNK is a subgroup

Let H and K be subgroups of a group G, then-------- subgroup of G subgroup of G [subgroup of G |of G of G
If G is a finite group and H is a subgroup of G then --------
divisor of o(G) o(G) o(S) o(H) o(A) o(H)
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normal-
N(a) is a ------------- of G coset subset subgroup subgroup normal-subgroup
If H 1s a subgroup of G, the -------- of H in G is the number of]
distinct right cosets of H in G. ideal index coset congruent index
If G is a finite group and a€G the order of ‘a’ is least
positive integer m such that 8" =------- 1 0 e a e
If ae@G, then N(a)={xeG: ax = xa} is called the ---------- ofa
in G. normalizer centralizer eitheraorb none eitheraor b
If o(G) = P where p is a prime number then G is ----------- cyclic abelian non- abelian  |order cyclic
If H, and H, are two subgroups of a group G,then ------------
that 1s also a subgroup of G H, " H, H, UH, H, c H, H, o H, H, nH,
The ------ of a group G is defined by Z = {zeG: zx = xz, all
xeG}. normal subgroup |center ideal ring center
If ‘n’ 1s a positive integer and ‘a’ is relatively prime to ‘n’
then ap(n)=1 mod n.This is called ------- theorem Euler’s Fermat Lagrange sylow Euler’s
Any two ------- in a group is either identical (or) disjoint. left coset center coset subgroup right coset right coset
Every group is a --------- group of itself. semi sub finite abelian sub
Every complex is not always a -------- group. normal semi sub abelian sub
Every -------- 1s a subset of itself. function relation group set set
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The identity of a subgroup is the -------- as that of the group [different inverse same not equal same

A subgroup other than group G and an element e is called ----

--- subgroup. proper improper normal trivial proper
Improper subgroup is also called--------- subgroup. proper quotient trivial normal trivial
The inverse of an element of a subgroup is the --------- as an

element of the group. different identity same not equal same

The relation of congruency in a group G is an ---------

relation. symmetric equivalence partial order anti symmetric equivalence
If H is a subgroup of G, a€G, then Ha={ha: h e H} is called -- right left

------- of Hin G left coset cancellation cancellation right coset right coset
If H is a subgroup of G, a€G then aH={ah: heH}is called ---- right left

-—--of Hin G. left coset cancellation cancellation right coset left coset
A nonempty subset H of a group G is said to be ------------- of] normal-

G H itself forms a group coset subset subgroup subgroup subgroup
Any two right cosets are ----------- common identical unity Zero identical
Any two left cosets are ----------- disjoint equal unity Zero disjoint

If H is a subgroup of G, there is a --------- correspondence

between any two right cosets of H in G onto one-one one-one onto  [one-one into one-one
The number of distinct right cosets of H in G 1§ ----------- equal Zero finite infinite finite
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The number of distinct right cosets of H in G is called--------- cardinal

-of Hin G index order number finite index

The order of each subgroup of a -------- group is a divisor of

the order of the group. infinite finite normal semi finite

If G is a finite group and H is a subgroup of G then --------

divisor of o(QG) o(G) o(S) o(H) o(A) o(H)

If G is a finite group and a€G the --------- of ‘a’ is least

positive integer m such that a" =e coset subset order infinite-order order
The---------- of each subgroup of a finite group is a divisor of cardinal

the order of the group index order number infinite-order index

If H 1s a subgroup of a finite group G, then the index of H in

G = o(H)[o(G) 0o(G) [o(H) 0(G) o(H) o(G)|o(H)
If p is a prime number, then ¢(p)= ------- p-1 pt+1 pt+2 pt+3 p-1

The Euler ¢ function, ¢(n) is defined by -------- 0 1 2 3 1

A non empty subset H of a group G is said to be a subgroup,

if a€H, bEH= - abeH ba€H ab’'eH b acH ab”'eH

If G 1s a finite group and a€G the order of a is least positive

integer m such that 8" = ------ e 1 0 2 e

If a is congruent to b mod H , then------ abeH ba€H ab"'€H b acH ab'eH
The relation a=b mod H is an ------------- relation. binary equivalence partial order symmetric equivalence
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If H is any subgroup of G and heH, then Hh= ---------- G h H h' H

If H 1s any subgroup of G and heH, then hH= ---------- G h H h' H

If a,b are any two elements of a group G and H is any
subgroup of G then,Ha=Hb <------- abeH ba€H ab"'€H b'acH ab'eH

If a,b are any two elements of a group G and H is any
subgroup of G then,aH=bH <------- abeH baeH ab'eH a’ beH a’ beH

If G is a finite group of order n and a€G, then an = ------- 1 0 e a e

If H, K are subgroup of the abelian group G, then HK is a ----

--—-group of G. sub semi normal isomorphic sub
A subgroup N of a group G is said to be ------------- of G if normal-
gng'1 eN coset subset subgroup subgroup normal-subgroup

A subgroup N of a group G is said to be normal subgroup of

G if------—-- gng’leG gng'leN gneN )ng'leN gng’leN

If G is a group, N normal subgroup of G then G/N is called -- normal-

o quotient group ring subgroup subgroup quotient group
normal-

N(a) is a ------------- of G coset subset subgroup subgroup normal-subgroup

A normal subgroup is ---------- with every complex commutative equal unity Z€ero commutative

If N 1s a normal subgroup of G and H is any subgroup of G,
then NH is a ------- group of G. normal sub semi abelian normal
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If N is a normal subgroup of G iff gNg'1 = e g g N n N

The ------------- of any two normal subgroups of a group is a

normal subgroup. intersection union addition subtraction intersection
The subgroup N of G is a normal subgroup of G iff left coset normal

of Nin Gis a ------- of Nin G left coset right coset subgroup subgroup right coset
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Every subgroup of an abelian group is ----------- cyclic normal ring field normal
Every subgroup of an ---------- group is normal cyclic abelian non- abelian  |order abelian
Every subgroup of a ---------- group is normal abelian cyclic ring field cyclic
An infinite group is said to be --------------- order identity finite infinite symmetric infinite
If G is a group, then the identity element of G is ---------- Zero two unique none unique
HuK is a HNK is a HXKisa HK is a subgroup |HNK is a subgroup

Let H and K be subgroups of a group G, then-------- subgroup of G subgroup of G [subgroup of G |of G of G
If G is a finite group and H is a subgroup of G then --------
divisor of o(G) o(G) o(S) o(H) o(A) o(H)
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normal-
N(a) is a ------------- of G coset subset subgroup subgroup normal-subgroup
If H 1s a subgroup of G, the -------- of H in G is the number of]
distinct right cosets of H in G. ideal index coset congruent index
If G is a finite group and a€G the order of ‘a’ is least
positive integer m such that 8" =------- 1 0 e a e
If ae@G, then N(a)={xeG: ax = xa} is called the ---------- ofa
in G. normalizer centralizer eitheraorb none eitheraor b
If o(G) = P where p is a prime number then G is ----------- cyclic abelian non- abelian  |order cyclic
If H, and H, are two subgroups of a group G,then ------------
that 1s also a subgroup of G H, " H, H, UH, H, c H, H, o H, H, nH,
The ------ of a group G is defined by Z = {zeG: zx = xz, all
xeG}. normal subgroup |center ideal ring center
If ‘n’ 1s a positive integer and ‘a’ is relatively prime to ‘n’
then ap(n)=1 mod n.This is called ------- theorem Euler’s Fermat Lagrange sylow Euler’s
Any two ------- in a group is either identical (or) disjoint. left coset center coset subgroup right coset right coset
Every group is a --------- group of itself. semi sub finite abelian sub
Every complex is not always a -------- group. normal semi sub abelian sub
Every -------- 1s a subset of itself. function relation group set set
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The identity of a subgroup is the -------- as that of the group [different inverse same not equal same

A subgroup other than group G and an element e is called ----

--- subgroup. proper improper normal trivial proper
Improper subgroup is also called--------- subgroup. proper quotient trivial normal trivial
The inverse of an element of a subgroup is the --------- as an

element of the group. different identity same not equal same

The relation of congruency in a group G is an ---------

relation. symmetric equivalence partial order anti symmetric equivalence
If H is a subgroup of G, a€G, then Ha={ha: h e H} is called -- right left

------- of Hin G left coset cancellation cancellation right coset right coset
If H is a subgroup of G, a€G then aH={ah: heH}is called ---- right left

-—--of Hin G. left coset cancellation cancellation right coset left coset
A nonempty subset H of a group G is said to be ------------- of] normal-

G H itself forms a group coset subset subgroup subgroup subgroup
Any two right cosets are ----------- common identical unity Zero identical
Any two left cosets are ----------- disjoint equal unity Zero disjoint

If H is a subgroup of G, there is a --------- correspondence

between any two right cosets of H in G onto one-one one-one onto  [one-one into one-one
The number of distinct right cosets of H in G 1§ ----------- equal Zero finite infinite finite
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The number of distinct right cosets of H in G is called--------- cardinal

-of Hin G index order number finite index

The order of each subgroup of a -------- group is a divisor of

the order of the group. infinite finite normal semi finite

If G is a finite group and H is a subgroup of G then --------

divisor of o(QG) o(G) o(S) o(H) o(A) o(H)

If G is a finite group and a€G the --------- of ‘a’ is least

positive integer m such that a" =e coset subset order infinite-order order
The---------- of each subgroup of a finite group is a divisor of cardinal

the order of the group index order number infinite-order index

If H 1s a subgroup of a finite group G, then the index of H in

G = o(H)[o(G) 0o(G) [o(H) 0(G) o(H) o(G)|o(H)
If p is a prime number, then ¢(p)= ------- p-1 pt+1 pt+2 pt+3 p-1

The Euler ¢ function, ¢(n) is defined by -------- 0 1 2 3 1

A non empty subset H of a group G is said to be a subgroup,

if a€H, bEH= - abeH ba€H ab’'eH b acH ab”'eH

If G 1s a finite group and a€G the order of a is least positive

integer m such that 8" = ------ e 1 0 2 e

If a is congruent to b mod H , then------ abeH ba€H ab"'€H b acH ab'eH
The relation a=b mod H is an ------------- relation. binary equivalence partial order symmetric equivalence
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If H is any subgroup of G and heH, then Hh= ---------- G h H h' H

If H 1s any subgroup of G and heH, then hH= ---------- G h H h' H

If a,b are any two elements of a group G and H is any
subgroup of G then,Ha=Hb <------- abeH ba€H ab"'€H b'acH ab'eH

If a,b are any two elements of a group G and H is any
subgroup of G then,aH=bH <------- abeH baeH ab'eH a’ beH a’ beH

If G is a finite group of order n and a€G, then an = ------- 1 0 e a e

If H, K are subgroup of the abelian group G, then HK is a ----

--—-group of G. sub semi normal isomorphic sub
A subgroup N of a group G is said to be ------------- of G if normal-
gng'1 eN coset subset subgroup subgroup normal-subgroup

A subgroup N of a group G is said to be normal subgroup of

G if------—-- gng’leG gng'leN gneN )ng'leN gng’leN

If G is a group, N normal subgroup of G then G/N is called -- normal-

o quotient group ring subgroup subgroup quotient group
normal-

N(a) is a ------------- of G coset subset subgroup subgroup normal-subgroup

A normal subgroup is ---------- with every complex commutative equal unity Z€ero commutative

If N 1s a normal subgroup of G and H is any subgroup of G,
then NH is a ------- group of G. normal sub semi abelian normal
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If N is a normal subgroup of G iff gNg'1 = e g g N n N

The ------------- of any two normal subgroups of a group is a

normal subgroup. intersection union addition subtraction intersection
The subgroup N of G is a normal subgroup of G iff left coset normal

of Nin Gis a ------- of Nin G left coset right coset subgroup subgroup right coset
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Every permutation can be uniquely expressed as a product of -
-------- cycles. disjoint 2 3 m disjoint
Every permutation is a product of --------- cycles. disjoint 2 3 m 2
A group is said to be --------- if it has trivial normal subgroup | finite infinite simple subgroup simple
The product of two disjoint cycles is -------- 2 cycles m cycles commutative equal commutative
A cycle of length --------- is called a transposition. 3 2 1 0 2
Two cycles are said to -------- if they have no symbols in
common disjoint transposition |2 cycles m cycles disjoint
Every transposition is an --------- permutation even odd Zero unit odd
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either odd or

The inverse of even permutation is ---------- permutation. odd even Zero even even
either odd or
The inverse of odd permutation is ---------- permutation odd even Zero even odd
The group Sn has ------ elements. n!/2 n!/3 n! (n+1)! n!/2
A mapping ¢ from a group G into a group G is said to be -----
-—-if for all a, b €G, p(ab)=¢(a)p(b) automorphism isomorphism  [homomorphism |endomorphism |homomorphism
A mapping ¢ from a group G into a group G is said to be
homoorphism if for all a , beG, then ¢ (ab)= -------- o(a) ¢ (b) o(a)- ¢ (b) o(a)yt o(b) o(a)/ p(b) o(a) ¢ (b)
A homomorphism of a group into itself is called -------- automorphism isomorphism  |homomorphism |endomorphism |endomorphism
either odd or
The Product of two even permutation is ------ odd even Zero even even
either odd or
The Product of two odd permutation is ------ odd even Zero even even
The product of even permutation and odd permutation is ---- either odd or
-- permutation. odd even Zero even odd
The product of odd permutation and even permutation is ---- either odd or
-- permutation odd even Zero even odd
If o(x)=x for every Xx€G is a ------------ automorphism isomorphism  [homomorphism |endomorphism |homomorphism
If ¢ is a homomorphismof G into G with kernal K, then K is
a -------- group of G. sub semi normal sub quotient normal sub
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A homomorphism ¢ from G into G is said to be

isomorphism if ¢ is ---- one-to-one onto into one-one onto one-to-one
Every ------- group having more than two elements has a
nontrivial automorphism infinite finite normal sub finite
. Every finite group G is --------- to a permutation group. homomorphic automorphic isomorphic endomorphic isomorphic
The number of elements in the finite set S is known as the ----
---- of permutation. degree equality symmetric product degree
A - of a group into itself is called endomorphism  |automorphism isomorphism  |homomorphism |endomorphism [homomorphism
If ¢ is a homomorphismof G into Gwith ------- K, thenK is a
normal subgroup of G. kernal isomorphism  |homomorphism |endomorphism [kernal
Every permutation is the product of its -------- . ring kernal group cycle cycle

even
Every -------------- is an odd permutation cycle transposition  [permutation odd permutation |transposition
A - of length 2 is called a transposition. ring kernal group cycle cycle
A homomorphism ¢ from G into Gis said to be --------- if @ is
one-to-one automorphism isomorphism  |homomorphism |endomorphism [isomorphism
If ¢ is a homomorphism of G into G then ¢(e) =-------- e 0 1 e e
If ¢ is a homomorphism of G into G then ¢ (x'l) = - (o (x))'1 0 (x) x' X (o (x))'1
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The mapping f: G->G/N is called a ------- mapping. one-one onto natural into natural
Every homomorphic image of a group G is ----------- to some

quotient group of G. automorphism isomorphism  |homomorphism |endomorphism [isomorphism
Every homomorphic image of an abelian group is --------- finite infinite normal abelian abelian

An isomorphic mapping of a group G onto itself is called ----

----- automorphism isomorphism  |homomorphism |endomorphism |automorphism
If G is a group, then A(G), the set of automorphism of G is

also a -------- subgroup group normal group  [semi group group

Every group is ------------ to a subgroup of A(S) for some

appropriate S 1somorphism automorphic homomorphic [endomorphic isomorphism
Every --------- is the product of its cycles. cyclic group sub group semi group permutation permutation
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Every permutation can be uniquely expressed as a product of -
-------- cycles. disjoint 2 3 m disjoint
Every permutation is a product of --------- cycles. disjoint 2 3 m 2
A group is said to be --------- if it has trivial normal subgroup | finite infinite simple subgroup simple
The product of two disjoint cycles is -------- 2 cycles m cycles commutative equal commutative
A cycle of length --------- is called a transposition. 3 2 1 0 2
Two cycles are said to -------- if they have no symbols in
common disjoint transposition |2 cycles m cycles disjoint
Every transposition is an --------- permutation even odd Zero unit odd
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either odd or

The inverse of even permutation is ---------- permutation. odd even Zero even even
either odd or
The inverse of odd permutation is ---------- permutation odd even Zero even odd
The group Sn has ------ elements. n!/2 n!/3 n! (n+1)! n!/2
A mapping ¢ from a group G into a group G is said to be -----
-—-if for all a, b €G, p(ab)=¢(a)p(b) automorphism isomorphism  [homomorphism |endomorphism |homomorphism
A mapping ¢ from a group G into a group G is said to be
homoorphism if for all a , beG, then ¢ (ab)= -------- o(a) ¢ (b) o(a)- ¢ (b) o(a)yt o(b) o(a)/ p(b) o(a) ¢ (b)
A homomorphism of a group into itself is called -------- automorphism isomorphism  |homomorphism |endomorphism |endomorphism
either odd or
The Product of two even permutation is ------ odd even Zero even even
either odd or
The Product of two odd permutation is ------ odd even Zero even even
The product of even permutation and odd permutation is ---- either odd or
-- permutation. odd even Zero even odd
The product of odd permutation and even permutation is ---- either odd or
-- permutation odd even Zero even odd
If o(x)=x for every Xx€G is a ------------ automorphism isomorphism  [homomorphism |endomorphism |homomorphism
If ¢ is a homomorphismof G into G with kernal K, then K is
a -------- group of G. sub semi normal sub quotient normal sub
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A homomorphism ¢ from G into G is said to be

isomorphism if ¢ is ---- one-to-one onto into one-one onto one-to-one
Every ------- group having more than two elements has a
nontrivial automorphism infinite finite normal sub finite
. Every finite group G is --------- to a permutation group. homomorphic automorphic isomorphic endomorphic isomorphic
The number of elements in the finite set S is known as the ----
---- of permutation. degree equality symmetric product degree
A - of a group into itself is called endomorphism  |automorphism isomorphism  |homomorphism |endomorphism [homomorphism
If ¢ is a homomorphismof G into Gwith ------- K, thenK is a
normal subgroup of G. kernal isomorphism  |homomorphism |endomorphism [kernal
Every permutation is the product of its -------- . ring kernal group cycle cycle

even
Every -------------- is an odd permutation cycle transposition  [permutation odd permutation |transposition
A - of length 2 is called a transposition. ring kernal group cycle cycle
A homomorphism ¢ from G into Gis said to be --------- if @ is
one-to-one automorphism isomorphism  |homomorphism |endomorphism [isomorphism
If ¢ is a homomorphism of G into G then ¢(e) =-------- e 0 1 e e
If ¢ is a homomorphism of G into G then ¢ (x'l) = - (o (x))'1 0 (x) x' X (o (x))'1
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The mapping f: G->G/N is called a ------- mapping. one-one onto natural into natural
Every homomorphic image of a group G is ----------- to some

quotient group of G. automorphism isomorphism  |homomorphism |endomorphism [isomorphism
Every homomorphic image of an abelian group is --------- finite infinite normal abelian abelian

An isomorphic mapping of a group G onto itself is called ----

----- automorphism isomorphism  |homomorphism |endomorphism |automorphism
If G is a group, then A(G), the set of automorphism of G is

also a -------- subgroup group normal group  [semi group group

Every group is ------------ to a subgroup of A(S) for some

appropriate S 1somorphism automorphic homomorphic [endomorphic isomorphism
Every --------- is the product of its cycles. cyclic group sub group semi group permutation permutation
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A field which has only a finite number of elements is called ------
finite field sub field skew field integral domain | finite field
Right distributive law is defined by (b+c).a = ------------- (a.b) -(a.c) (b.a) + (b.c) (a.b)/ (a.c) (a.b) *(a.c) (b.a) + (b.c)
The ring of integers is a ring --------- divisor. with equal to without not equal to without
.If Ris aring, for all a, b, ¢ €R then a(b-¢c) = --------- -ab+tbc ab-bc ab+bc ac-bc ab-bc
. If Risaring, for all a, b, c € R then a(0) = --------- a 1 0 00 0

a =eforallaeR,
where e is the

a’=0forallae

a =0 forallae

a2 =aforall a

A ring is called a Boolean ring if ------- . multiplicative a’=aforallaeR |R R eR
A ring is called ------ if it 1s commutative, unit element and integral
without zero divisors. finite field sub field skew field integral domain [domain
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The set R consisting of a single element ------ with two binary

operations is called zero ring. 1 2 0 0 0

If isa-------------- of R into R' then ¢(0)=0 automorphism 1somorphism automorphism [homomorphism [homomorphism
IfRis a--------- ring, a#0€ R is said to be zero divisor , such

that ab= 0 Z€ero commutative division Euclidean ring |commutative
Every -------------- ring of a ring is a homomorphic image of the

ring. quotient euclidean ring division proper quotient

The -------------- is also known as skew field. division ring euclidean ring sub ring simple ring division ring
The product of two non zero element is equal to the -----------

element of the ring. equal unit Zero finite Zero

The product of two non zero integers cannot equal to the ----------

- integers. Z€ero unit equal finite Zero

If R is a commutative ring, a#0€ R is said to be zero divisor ,

such that ab= --------- 1 2 0 o0 0

A commutative ring with unity ------------ is called integral without zero without zero without zero
domain divisors divisors Zero identity divisors

A commutative ring is an ---------- if it has no zero divisors division ring field integral domain |eucledian ring |integral domain
A finite integral domain is a ---------- division ring field integral domain |Eucledian ring |field

A - 1s a commutative division ring division ring field integral domain |Eucledian ring |field
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A finite commutative ring without zero divisor is a--------- . field division ring integral domain |Eucledian ring |field
A ring R is called a -------------- ring if all its elements are
idempotent division boolean commutative Eucledian boolean
Every field is also a ---------- ring division boolean commutative Eucledian division
If in a ring R there is an element 1 in R such that a.1=1.a=a then |ring with unit ring with unit
R is -------- element commutative ring |zero division ring element

ring with unit commutative
If the multiplication of R such that a.b=b.a then R is -------- element commutative ring |zero division ring ring
A ring in which the non zero elements form a group is called a ---|ring with unit
----- element commutative ring |zero division ring division ring
The set R consisting of a single element 0 with two binary
operations is called------- ring. skew field commutative ring |zero ring division ring Zero ring
The set I of all integers with two binary operations is called the
ring of ------- skew field commutative integers division ring integers
The product of two integers is also an -------- skew field commutative integers division ring integers
An element a of aring R is said to be idempotent if ------- a=1 a’=1 a’=a a’=0 a’=a
An element a of a ring R is said to be ------------- ifa’=a idempotent nilpotent identity unity idempotent
A ring is said to be ----------------—- if its nonzero elements form a
group under multiplication division ring field integral domain |Euclidian ring |division ring
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A ring is an algebraic structure with --------- binary operations. |one two three no two

Left distributive law is defined by a.(b+c) = ------------- (a.b) + (a.c) (a.b) - (a.c) (a.b)/ (a.c) (a.b) *(a.c) (a.b) + (a.c)
If ¢ is a homomorphism of R into R' then ¢(0)= ------ 1 2 0 o0 0

A homomorphism of R into R' is said to be an --------- ifitisa

one-one mapping automorphism 1somorphism endomorphism |kernal isomorphism
A homomorphism of R into R' is an isomorphism iff I(¢) = ------

- 1 2 0 00 0

If ¢ is a homomorphism of R into R' then ¢(-a)= ------ o(a) -op(a) 0 00 -p(a)

Every quotient ring of a ring is a --------- image of the ring. automorphic isomorphic automorphic homomorphic | homomorphic
In a group, the identity element is ------ . unique different Zero one unique

.If Risaring, for all a, b, ¢ € R then (-a)(-b) = --------- -ab ab atb a-b ab

Division ring is also known as -------- finite field sub field skew field integral domain | skew field
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Rings: Definition and Examples —Some Special Classes of Rings — Commutative ring — Field —
Integral domain - Homomorphisms of Rings.

INTRODUCTION TO RING THEORY

In algebra, ring theory is the study of rings—algebraic structures in which addition and
multiplication are defined and have similar properties to those operations defined for the
integers. Ring theory studies the structure of rings, their representations, or, in different
language, modules, special classes of rings (group rings, division rings, universal enveloping
algebras), as well as an array of properties that proved to be of interest both within the theory
itself and for its applications, such as homological properties and polynomial identities .

Definition

A non empty set R is said to be an associative ring if in R these are defined two
operations denoted by ‘+’ and ‘.” Called addition and multiplication respectively such that for all
a,b,c eR

i. atbeR
ii. a+b=b+a
iii.  at+(b+c)=(atb)+c
iv.  Thereisan element 0 in R such that a+0=0+a=a ¥ a ¢ R
v.  There exist an element —a in R such that a+(-a)=0=(-a)+a
vii abeR
vii.  (a.b).c=a.(b.c)

viii. (i) Left Distributive law:
a.(b+c)=a.b+a.c

(i) Right distributive law:
(b=c).a=b.a=c.a
Definition
A nonempty set R is called a ring, if it has two binary operations called addition

denoted by a + b and multiplication denoted by ab for a, b € R satisfying the following axioms:

Multiplication is associative, i.e. a(bc) = (ab)c forall a, b, c € R.
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Distributive laws hold: a(b +c) =ab +acand (b + c)a=ba+caforalla, b,c € R.
Definition
Let R be aring.
(1) If multiplication in R is commutative, it is called a commutative ring.
(2) If there is an identity for multiplication, then R is said to have identity.
(3) A nonzero element a € R is said to have a left (resp. right) inverse b if ba =1
(resp. ab = 1) We say that a is invertible or a unit in R if it has a left and a right inverse.
(4)A commutative division ring is called a field.
(5)An element a of a commutative ring R is called a zerodivisor if there is a nonzero b € R
such that ab = 0. An element a € R that is not a zerodivisor is called a nonzerodivisor. If all
nonzero elements of a commutative ring are nonzerodivisors, then R is called an integral
domain.
(6) A nonempty subset S of a ring R is called a subring of R if S is a ring with respect to
addition and multiplication in R.
Example of rings
The set of integers Z, the set of rational numbers Q, the set of real numbers R and the

set of complex numbers C are commutative rings with identity.
NOTE
i.  Inthis case we also say that (R,+,.) is a ring
ii. 0Oiscalled the zero element of the ring and it is the additive identity element
iii.  If there is an element 1 in R such that a.1=1.a=a ¥ a € R then R is called a ring with unit
element.

iv. Ifforall a,beR a.b=b.athen R is called a commutative ring

Some Special Classes Of Rings

Definition

If R is a commutative ring then a#0 € R is said to be a zero-devisor if there exist a,b €

R,b# 0 such that ab=0

[Eg : define (al,bl,cl) (a2,b2,c2)=(ala2,b1lb2,c1c2)
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(1,2,0) (0,0,7)=(0,0,0)]

Examples

1.Some M is a ring of 2*2 matrices with their elements as integers, the addition and
multiplication of matrices being the two ring composition then M is a ring with zero-devisors

2.The ring of integer is a ring without zero-devisors
Definition
A commutative ring is an integral domain if it has no zero devisors
Example : The ring of integers
Definition

A ring is said to be a division ring if its non-zero element form a group under
multiplication

Remark

Sometimes a division ring is called a skew field.
Definition

A field is a commutative division ring
Lemma4.l
If R is ring, then for all a,b € R

1. a0 =0.a=0
2. a(-b)=(-a)b=-(ab)
3. (-a)(-b)=ab

If in addition,R has a unit element 1 then

4. (-l)a=-a
5 (-1)(-1)=1

1) Let a € R then consider
a.0 = a.(0+0)
=a.0+a.0 (L.D.L)
(i.e)a.0=0=A.+A0
=>0=a0(byL.C.L)
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Since R is a group under addition we have

a.0=0
Similarly we can prove 0.a=0

Thus we have a.0=0.a=0

2) We shall first show that a(-b) = -(ab)

(ie) ToP.Ta(-b) +ab=0
Now consider, a(-b) + ab = a(-b + b)
=a(0)
=0by1
(i.e)a(-b)+ab=0
(i.e) a(-b) = -ab
Similarly we can P.T (-a)b = -ab
= a(-b)=(-a)b=-ab
3)Now consider (-a)(-b)
(-a) (-b) =-(a(-b)) by 2
= -(-ab)
=ab
4)Given that R has a unit element 1
By definition lL.a=al=awvaeR
Now consider (-10a=a=(-a)a+ l.a
=(-1+1)a
=0a=0
= (-kl)a=-a
5)In a proof of fourth result we have,

(-(l)a=-avaeR

If we take a = -1 then we have (-1)(-1) = -(-1)

COURSE NAME: MODERN ALGEBRA
BATCH-2015-2018
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The Pigeon Hole Principle

Definition

If n objects are distributed over m places and if n > m then some places receives at least
two objects.

Equivalently, if n objects are distributed over n places in such a way that no place receive
more than one object, then each place receives exactly one object.

Lemma: 4.2
A finite integral domain is a field.
Proof
An integral domain is a commutative ring such that ab=0 if atleast one of a or b is 0.

A field is a commutative ring with unit element in which every non zero element has a
multiplicative inverse in the ring.

Let D be the finite integral domain with n elements
In order to show that D is a field we have to P.T
I.  There existan element 1 € D such that
al=la=awvavD
I[l.  Forevery element a # 0 € D #a b € D show that ab=1
Let x1,x2...xn be the n elements of D
Leta#0eD

Consider the elements,
xla,x2a,...xna they are in D

we claim that they are all distinct
if possible let us assume that

xia = xja fori#]

then xia—xja=0
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(xi—xj)a=0(R.D.L)
Since D is an integral domain and a # 0 (by assumption )
We have xi — x] =0 => xi — X]
This is contradiction since 1 #j
Our assumption that xia = xja is false
xia # xja for i#j
xla,x2a...xna are distinct and these n-distinct elements lie in D.
therefore by the pigeon hole principle these elements are the elements of D
if Y € D then y=xia for some xi
in particular since a € D we must have
a=x a for some xi0 € D
since D is commutative we have
a = xi0 a=axi0
we shall P.T xi0 is a unit element for every element of D
now yxi0 = (xi a)xi0
=xi(axi0)
=xi.a
=y
Xi0 is the unit element of D and we write it as 1

xi0=1
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NowleD.al=avaeD
1 must be of the form xia for some xi € D
1 =xia
# a,b ebsuch that 1 =ba
Ab =ba =1 => Innverse exist
Thus we proved two conditions
Hence every finite integral domain is a field
Corollary:
If p is a prime no then jp, the ring of integers mod p is a field.

Proof:

Jp has a finite no of elements 0, 1, 2, 3, (» — 1) where 1, is the class of integers which

give remainder i on division by p.

Then by the above lemma it is enough to prove that jp is an integral domain but we know

that jp is a commutative ring. Let a,b € jp and ab = 0 then p must divide a or b
Eithera=0mod p or b =0 mod p

(ie)a=0o0rb=0

Jp has no zero divisor

By definition jp is a finite integral domain

Hence by the above lemma, jp is a field

NOTE

Lo%t)f be an finite field having m elements like jp, by corollary (ii) of lagranges theorem we have
a' =e
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Under addition we have
ata+...=0

<+—>

m terms

(i.,eyma=0

Definition

An integral domain D is said to be of characteristic ‘0’ in the relation ma = 0 where a #
0 is in D and where m is an integer can hold only if m =0

Example

I. Thering of integers
ii. The ring of even integers
iii. The ring of rationals

Definition

An integral domain D is said to be of finite characteristic if # a +ve integer ‘m’ such that
ma=0 forallaeD

NOTE
1. If D is of finite characteristic then we define the characteristic of D to be the
smallest the integer p, S Tpa=0wvaeD
2. If D is of finite characteristic then its characteristics is a prime number
3. An integral domain which has an finite characteristics
Definition

An element ‘a’ of a ring R is said to be Idompotent if a’=a
A ring R is called a Boolean ring if all elements are idempotent

Homomorphisms

Definition
A mapping from ring R into the ring R is said to be a homomorphism if
i. ®(a+b)=d()+ D)
ii. ®(ab)=®d(a). D (b) vabeR

Lemma 4.3

If @ is a homo morphism of R into R then
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i. ®(0)=0

ii. @ (-a)=-d(a)foreveryaeR

Proof

i.  LetaeR then ®(a) € R now d(a) + 0 = d(a)
(i.c) D(a) + 0 = D(a + 0)
(i.) (a) + 0 = D(a) + D(0)
=>®(0)=0by L.C.L

ii.  From (i) we have ®(0) =0
(i.e) 0 = ®(o)

= ®d(a + -a)
= ®d(a) + O(-a)
= @(-a) = - d(a)
Hence the proof
NOTE

If both R and R’ have the respective unit element as 1 and 1’ for their multiplication, it

need not follow that ®(1)=1"
However if R’ is a integral domain (or) R’ is arbitrary but @ is onto then ®(1) =1’
Definition

If @ is a homomorphism of R onto R’ then the kernel of @, denoted by I(®) is the set of

all elements a € R such that ®9a)=0 where 0 is the zero element of R’.

(i.e) [(®) ={ a e R / ®(a)=0,the zero element of R’}
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Lemma: 4.4

If @ is a homomorphism of R into R* with kernel I(®),then

1. I(®) is a subgroup of R under addition
2. Ifael(®) and r € R then both ar and ra are in I(D)

Proof

1. We know that ®(0) = 0 by lemma3.3.3
0€el(D)

I(®) is a non-empty subset of R

Let a,b € (D)

®(a) =0 and ©(b) =0

Since @ is a homomorphism we have,
®(atb) = d(a) + vob)

=0+0

= atbel(D)
let a € [(D)

d(a)=0
But we know ®(-a) = - ®(a)
=0
-a € [(®) whenever a € I[(®) then by a lemma I(®) is a subgroup of R under addition.

Since a € I(®) by definition ®(a)=0
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Now consider ®(ar)
®(ar)= ®(a). D(r)
=0
= arel(®)
similarly ®(ra) = ® (). d(a)
= d(1).0
=0

= rae (D)
Hence if a € [(®) and r € R, then both ar and ra are in [(D)

Definition

1. A homomorphism of R into r’ is said to be an isomorphism if it is a one to one

mapping.
2. Two rings are said to be isomorphic if ther is an isomorphism of one onto the
other

Lemma:4.5
The homomorphism @ of R in R’ is an isomorphism iff I(v) = {0}
Proof
Let us assume that @ is an isomorphism of R into R’. then by definition @ is one to one.
Let a € [(D)
®(a) = 0 where 0 is the identity element of R’
O(a) = D(0) [P(0)=0]

= a=0[d is one to one]

Conversely,
Assume that [(®)={0}

It is enough to prove that @ is one to one.
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4 & 4 4

Letx,y €R

Then ®(x), D(y) € R’

Now ®(x) — D(y) = D(x) + D(-y)
=D(x-Y)

If d(x) = O(y) then

D(x) - D(y)=0

Thus ®(x—y) =0

X —y e I(®) = {0}
x-y=0
X=y

@ is one to one

Hence the homomorphism @ of R into R’ is an isomorphism iff [{ ®}=0 .
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POSSIBLE QUESTIONS:
Part-B( 5X8 = 40 Marks)

Answer all the questions:
1. IfRis aring, then foe all a,b ER,

(a0 =0a=0.

(ii) a(-b) = (-a)b = -(ab)

(iii) (-a)(-b) = ab.

(iv) a(b-c) = ab - ac

2. 1) Define Integral domain with example.

i) Prove that every finite integral domain is a field.
3. Prove that every field is an integral domain.
4. 1) Define field with example.

ii) Prove that a skew field has no divisors of zero.

5. Show that the set of numbers of the form a+bv2, with a and b as rational numbers
is a field.

6. Prove that a ring R has zero divisors iff cancellation law is valid in R.

7. Prove that a finite commutative ring R without zero divisors is a field.

8. Let R and R' be a rings and f:R—R" be an isomorphism. Then prove that
i) R is commutative = R' is commutative
i) R is ring with identity = R" is ring with identity
iii) R is an integral domain—= R’ is an integral domain
iv) Ris afield= R'is a field

9. Prove that the homomorphism ¢ of a ring into a ring R' is an isomorphism of R into R’
iff 1(¢) =(0), where I(¢) denotes the kernel of ¢.

10. State and Prove fundamental theorem on homomorphism of rings.
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Unit V
Part A (20x1=20 Marks)
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

Every field is a ---------- field commutative ring |integral domain |Euclidean ring  |Euclidean ring
Any other ---------- of R are called proper ideals. right left prime ideal ideal
Every sub ring is not an --------- . division ring ideal group boolean ideal
Every subgroup of a cyclic group is ----------- abelian normal ring field normal
Every cyclic group is ----------- abelian normal ring field abelian
The ring of integers is a ring --------- divisor. with equal to without not equal to without
The product of two integers is also an -------- skew field commutative integers division ring integers
If R is a commutative ring, then every left ideal will also -------
ideal. right left prime proper right
A non empty subset S of a ring R is said to be -------- ideal of R
if sreS. right left prime proper right
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Every ideal of a ring R is also a --------- ring of R. division boolean sub simple sub

Every subring is not an --------- . ideal division ring group boolean ideal

. A non empty subset S of a ring R is said to be -------- ideal of R

if rseS. right left prime proper left

A ring having no proper ideal is -------- ring division boolean commutative simple simple

Any other ideal of R are called--------- ideals. right left prime proper proper

The intersection of any two left ideals of a ring is again ---------

ideal of the ring. right left prime proper left

Every ------------ can be embedded in the field. field commutative ring |integral domain |Euclidian ring integral domain
A ring of integers is a ---------—-- ideal ring. right left prime principal principal
Every ------- is a principal ideal ring field commutative ring |integral domain [Euclidian ring field

The quotient field of a --------- integral domain coincides with

itself. infinite finite single Zero finite

Any two isomorphic integral domain have -------- quotient field | automorphic isomorphic automorphic homomorphic  |isomorphic

A - ring possesses a unit element. Zero commutative division Euclidean ring  |commutative
The ring of integers is a -------- field commutative ring [integral domain [Euclideanring [Euclidean ring
Every ------- is a Euclidian ring. field commutative ring [integral domain |Euclidean ring |field
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The set of integer is not an ------ of the ring of rational numbers ([division ring ideal sub ring simple ring ideal

If U is an ideal of the ring R, then R/U is a ring and is a ----------

image of R. automorphic isomorphic automorphic homomorphic homomorphic
A - has no proper ideals. right ideal prime field field

A commutaive ring with unity is a field if it has no ----------

ideals division boolean proper simple proper

If R is a commutative ring with unit element and M is an ideal of
R, then M i8------mmm--- of R iff R/M is a field.

maximal ideal

division ring

integral domain

Eucledian ring

maximal ideal

A ring R can be imbedded in a------- R'if there is an

isomorphism of R intoR'. automorphism ring automorphism  |kernal ring

Any two ----------- integral domain have isomorphic quotient

field. automorphic isomorphic automorphic homomorphic  |isomorphic
A - of integers is a principal ideal ring. right left prime ring ring

A commutative ring possesses a -------- element. Zero unit prime ideal unit

The integral domain of Gausian integers is an ------------ . division ring euclidean ring sub ring simple ring euclidean ring
If R is a commutative ring with unit element, then a and b are

said to be associates if --------- . a=utb a=u/b a=u-b a=u.b a=u.b

If U is an ideal of a ring R with unity, then --------- U=R U=0 R=0 U=R U=R

The set of integers I is only a ---------- ring. division boolean sub simple sub

The set Q of rational numbers is only a ---------- division ring ideal sub ring simple ring sub ring
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The set Q of rational numbers is not an --------------- of the ring

of real numbers division ring ideal sub ring simple ring ideal

The intersection of any two ideals of a ring is again --------- of

the ring right ideal prime proper ideal

A field has no ---------- ideals. right ideal prime proper proper

A e ring with unity is a field if it has no proper ideals division boolean commutative simple commutative
If R is a commutative ring with unit element and M is an ideal of

R, then M is a maximal ideal of R iff R/M is a ------------—--- field division ring integral domain |Eucledian ring  |field

A ring R can be imbedded in a ring R’ if there is an ----------- of

R intoR'. automorphism isomorphism automorphism  [kernal isomorphism
An integral domain R with unit element is a ---------- ideal ring if

every ideal A in R is of the form A =(a), aeR. right left prime principal principal

. A non empty subset S of a -------- R is said to be left ideal of R

if rseS. ring ideal sub ring simple ring ring
Every ------------ is not an ideal. division ring sub ring group boolean sub ring

A ring having no proper --------- is simple ring division boolean commutative ideal ideal

Any other ideal of R are called--------- ideals right left prime proper proper
The -------------- of any two left ideals of a ring is again left ideal

of the ring. union intersecton prime proper intersecton
If U is an ideal of a ring R with -------- , then U=R Unity Zero ideal ring Unity

The set Q of rational numbers is not an ideal of the ------- of real

numbers division ring ring sub ring simple ring ring
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The------------- of any two ideals of a ring is again ideal of the

ring. right intersection prime proper intersection
A commutative ring with identity is a field iff it has no ----------

ideals division boolean proper simple proper

A - ring with identity is a field iff it has no proper ideals |division boolean commutative simple commutative
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UNIT-V
SYLLABUS

Ideals and Quotient Rings — More Ideals and Quotient Rings — Maximal ideal - The field of Quotients
of an Integral Domain — Euclidean rings.

INTRODUCTION TO IDEALS AND QUOTIENT RINGS

In ring theory, an ideal is a special subset of a ring. Ideals generalize certain subsets of the
integers, such as the even numbers or the multiples of 3. Addition and subtraction of even
numbers preserves evenness, and multiplying an even number by any other integer results in
another even number; these closure and absorption properties are the defining properties of an
ideal. Among the integers, the ideals correspond one-for-one with the non-negative integers: in
this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative
number. However, in other rings, the ideals may be distinct from the ring elements, and certain
properties of integers, when generalized to rings, attach more naturally to the ideals than to the
elements of the ring. For instance, the prime ideals of a ring are analogous to prime numbers, and
the Chinese remainder theorem can be generalized to ideals. There is a version of unique prime
factorization for the ideals of a Dedekind domain (a type of ring important in number theory). An
ideal can be used to construct a quotient ring similarly to the way that modular arithmetic can be
defined from integer arithmetic, and also similarly to the way that, in group theory, a normal

subgroup can be used to construct a quotient group.

IDEALS AND QUOTIENT RINGS

Definition
If R is any ring then a subset L of R is called a left Ideal of R, if

i. L isasubgroup of R under addition
ii. reR,aeL=>raelL

In a similar way we can define a right ideal
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Definition

A non empty subset u of R is said to be a (two sided) ideal of R if

I.  uisasubgroup of R under addition
ii. ForeveryueUandreR,bothurandrueU
NOTE

I.  Anideal is thus simultaneously a left ideal and right ideal of R
ii.  Since the ring R is an abelian group w.r.to addition it follows that any ideal U is normal

subgroup of r (since any subgroup of an abelian group is normal)

iii.  Ifuisan ideal of the ring R then % is a ring and is homomorphic of R

Lemma:5.1

If U is an ideal of R, U is a normal subgroup of R (by note (i) )

w.r.to addition % is the set of all distinct cosets of U in R, mearly we say that coset and we donot

say left coset or right coset. Since R is an abelian group w.r.to addition,

atU=U+a

% consists of all cosets atu,a € R

From a theorem 2.6.1 we know that % IS a group under addition (prove here), where the
composition lawis (a+u)+(b+tu)=(a+b)+UwabeR

% is also abelian since R is abelian w.r.t.addition. let us define the multiplication in % as follows
(@+u)+(b+u)=ab+uwvabeR

Now we prove, the above said multiplication is well defined

Ifatu=a>+u

Andb+u=b’+u
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Then by our definition of multiplication ,we have to prove that
(atu)(btu)=@ +u) (b’ +u)
(i.e) to prove that (ab + u ) =(a’b’ + u)
Sincea+u=a’+0
We have
A=2a’ +ul whereul eu
Similarly since b+u=b’+u
We have b= b’+u2 where u2 e u
ab=(a’ +ul) (b’ +u2)
=a’b’ +a’u2 +b’ul +ulu2
Since u is an ideal of R we have
a’u2 +b’ul andulu2 eu
a’u2 +b’ul +ulu2eU
ab=a’b’ + u3 where u3=a’u2 + b’ul +ulu2 eu
ab+tu=a’b’+u3=u
=a’b’ +u
= abtu=a’b’=u

The multiplication defined above is well defined now (a+u ) (b +u ) =ab+ue %

As a,b € R by closure property ab e u

% is closed with respect is multiplication
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Since R is associative w.r.to multiplication,

R
0 is also associative w. r.to multiplication

Let x,y,z € %

Thenx =a+u

y=b+u

z=c +u where a,b,c ¢ R

now we P.T x(y + z) =xy + Xz

LHS =x(y+2z)
=(@a+u)(b+u+c+u)

=@+u)[(b+c)+u]

=(a(b +c) +u)

=ab+ac+u

=(ab + u) + (ac + u)

=@+u)(b+u)+(a+u) 9c+u)

=Xy +yz

=R.H.S

Similarly we prove that (y + z) X =yx + zy

. . R . .
If R is commutative then s also commutative as seen below,

Consider (a+u) (b+u)=ab+u
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=ba + u ( R is commutative ab=Dba)
=(b+u)(a+u)

% is also commutative, if R is commutative
If R has an unit element 1, then % has unit element 1 + u

Define a mapping ¢:R -> %

By p(a)=a=uforaeR
LetabeR
Then (@a+b)=(a+b)+U
=(@a+u)+(b+u)
= ¢ (a) + d((b)
And ¢ (ab)=ab +u
=(@+u) (b +u)
@ (a). b (b)

= by def ¢ is a homomorphism
letycgthen};aJruforaeRand(p(a)=a+u=Y

a is the pre image of Y in %

¢ is onto

Ifu € U then ¢(u) =u + U =u whih is the identity element of %

The kernel of ¢ is exactly U

Hence the lemma

Remark :

The ring % is known as quotient Ring
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Theorem 5.1

let R, R’ be ring and ¢ a homomorphism of R onto R’ with kernel U. then R’ is isomorphic
ToZ
u

Moreover there is a one to one correspondence between the set of ideals of R’ and the set of
ideals of R which contain U. this correspondence can be achieved by associating with an idel W’
in R’, the ideal W in R defined by

W= {xeR/d(x)eW so defined - -> R by

¥ (uta)= (@) e 1

Where u + a is an arbitrary element of % and a e R

Let us prove that the mapping is well defined (i.e) to show thatU+a=U +b
= yut+a)=vy(u +b)Vu+a,U+b€§wherea,b€R
let us prove that the mapping is well defined

(ie)toshowthatU+a=U+Db

=>\|/(u+a)=\|1(U+b)Vu+a,U+b€%Wherea,bcR

Now assume thatu+a=u+Db
Sincea=0=aeu+ta...... (o€u)
aeu+a=u+b by an assumption
a=u-+b forsomeuelU
now vy (u + a) =(a)
=d(u+b)
=®(u) + ¢d(b)
=07+ d(b)
=y (utb)byl
vy is well defined

y[(uta)=(u+b)] = y(u+(ath))

Prepared by Dr.M.M.Shanmugapriya, Asst Prof, Department of Mathematics, KAHE Page 6/25




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III BSC MATHEMATICS COURSE NAME: MODERN ALGEBRA
COURSE CODE: 15MMU603 UNIT:V BATCH-2015-2018

=¢d(a+b)

=®(a) + ¢(b)

=y (uta)+y(utb)
y[(uta)=(+b)] = y(utab)

= ¢(ab)

=(a) . d(b)

=y (uta) y(utb)
¥ is a homomorphism
Given that ¢ is onto’.
Foreveryr’ e R’ #are R suchthatd(r)=r
Y(u+r)=r
U + r is thepre image of r’ under y
¥ is onto
Let us now show that y is one to one
Now we prove the result by proving that the kernel of y namely U,, consist of only one element

U which is the identity element of %

By definition of kernel we have,

U={U+ae % / y(u + a) " the zero element of R’}
={utae=/d@) }byl

={u} since ¢(a) =0’
= a€u
= u+a=U

y 1s one to one

R . . .
Vg -> R’ is an onto isomorphism
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ELR
i)

. , R .. . . . .
(i.e) R ~3 (isomorphism is an equivalence relation)

(i) Given that W = { x e R/ p(x) W’} and W’ is an ideal of R’
To prove

U C W and W is an ideal of R

LetxeU

O(x)=0"eW’

2 xeW
xeU=>xeW

Uucw

Now ¢(0) =0’ € W’ (W’ is an ideal of R’)

O0)e W’

0 € W... W is an non empty subset of R

Letx,ye W,

DO(x) e W, D(y) e W’

D(x +y) =D(x) + D(y) e W (W’ is closed under addition)

= X +ye W whenever x,y e W
letx e W

D(x) ew’
Now ®D(-x) =- O(x) e W’
DO(-x) e W’

= -x € W’ whenever x e W
Then by a lemma W is a subgroup of R under addition

Next we prove that W is an ideal of R letr e R and x e W
O(r)eR’>and D(x) e W’ ....x€R

Xr and rx € R (R is closed under multiplication)
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D(xr) = O(x). D(r) e W’ (W’ is an ideal of R)

xre W

similarly we can prove that

XeWwvreW,xeW

W is an ideal of R containing U

(i.e) inverse image of an ideal W’ of R’ is also an ideal W of R containing U
Conversely assume that w is an ideal of R and we prove that w’ is an ideal of R’
Define W={ x’ e R’/ x’=((y), y eW}

Now 0 € W ¢(0) =0’ e w’

W’ is a non empty subset of R’

Letx1’,x2’ ew’

x1’=d(y1)

x2= ¢(y2)

Y1, Yoe W

X17+x2°= p(y)+ d(y2)

= ((y1ty2)

€ W’ since y1+ty, e w

thus X;” +x2” e W’

then x’= d(y), yew

-YyEW
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x'= - b(y)

=d(-y) ew ....(-yew)

-x” € w’ whenever x’ e w’

Then by lemma w’ is a subgroup of R’ under addition
Letx’ew, 1’ e R’

Let reR, ¢(r)=r’

X= (y), y e w

d(yr)= d(y)- d(x)

=x’r’

yr € w as w is an ideal of R

P(yr) € W’

X1’ ew’

Similarly we can prove that r’x’ € w’

w’ 1s an ideal of R’

next we prove that the ideal w of R is unique
let T be another ideal of R

T={yeR/ d(y)ew’}

We have to prove that W=T

Letyew

b(y) ew’ (by def of W)
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y € T (by def of T)
WCT

LetteT

db(t) ew’

tew

TCW

= W=T
Thus W is unique

Thus there is a one to one correspondence between the ideals of R’ and the ideals of R containing
U

(iii ) Now we define a mapping F : R -> %

By F(a) =W’ +d(a), ae R
Since ¢ is onto,for every a’ € R’ # an element a € R s.t p(a) =a’
Now W’ + ¢p(a) =W’ +a’
= F9a)
A is the pre image of w’ + ¢(a)
F is onto
Letx,y e R
Fx+y) =W +d(x+y)
=W+ d)+ d(y)

=W+ o)W+ d(y)
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=F(X) + F (y) ¥ x,y € R

We shall show that the kernel of F namely K¢ is W
Assume that L is the kernel of F and we prove that W = L
Now by def L={xeR/FXx)=w’}

LetxeL ... Fx)=w’

w+ h(x)=w’

b(x) ew’

XeEwW

LCW

LetxeW ... p(x) ew’

w+ h(x)=w’

Fx)=w’

xel

WCL

Hence w =L

The kernel of F is W and is unique

F is a homo of R onto % with kernel W

Then by a theorem (2.7.1) — is isomorphic to =
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Lemmab.2

Let R be a commutative ring with unit element whose only ideas are {0} and R itself
then R is a field

Proof

In order to prove this result, it is enough if we prove thatvaZ0eR7%ab#0€R s.t
ab=1
Leta#0eR
Consider the set Ra= { xa/x e R}
We claim that Ra is an ideal of R
Since 0 =0.a € Ra
Ra is a non empty subset of R
Letu,veRa
Then u =x" aand v = x2a for some x1,x2 € R)
Now u — Vv = xla —x2a
= (x1-x2)a
€ ...[xI-x2 e Ra]
Ra is a subgroup of R under addition
LetreR Ietu=xa
Then consider ru = r(xa) = (rx) a € Ra (rx € R)
Similarly we can prove that ur € Ra

By deff Ra is an ideal of R

Prepared by Dr.M.M.Shanmugapriya, Asst Prof, Department of Mathematics, KAHE Page 13/25




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III BSC MATHEMATICS COURSE NAME: MODERN ALGEBRA
COURSE CODE: 15MMU603 UNIT:V BATCH-2015-2018

From the given hypothesis it follows that Ra={ 0} or Ra=R
(i.e) every multiply of R is a multiple of a by some element of R
There exist an element b # 0 s.T ab=1

R is a field

Definition

An ideal M # R in a ring R is said to be a maximal ideal of R, if whenever u is an ideal

of R such that M C U C R then either R=UorM=U

In otherwords, an ideal of R is a maximal ideal, if it is impossible to sqneeze an ideal

between it and full ring.

NOTE

i.  Anring need not have a maximal ideal

ii.  Ring in the unit element has maximal ideals

Examples

1) Let R be the ring of integers and U be an ideal of R. since U is a subgroup of R under
addition from group theory (eg subgroup of even integersg) we know that U consists of
all multiples of a fixed integer say ng (i.e) u = (np) if P is a prime no we claim that p = (p)
is a maximal ideal of R

Proof

If Uis an ideal of R and U ) R then U = (ng) for some integer ng
Since p € P C U, p=m no for some integer m

since p is a prime no,

p=mny =>ng=lornyg=p

ifng=1thenu=(p)=p
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u="~r

If np=1 then le U

LetreR,thenr=1reUforallreR

[ Uisan ideal of R]

RCU

Since u is an ideal other than R (or) P itself between them
P is a maximal ideal of R

2) Let R be the ring of all real valued continous functions on the closed unit interval
Let M = { f(x) e R/ f(u2)=0} M is certainly an ideal of R. then M is a maximal ideal of R

Proof

If there is an ideal U of R such that m ¢ u and m # u, then there is a function g(x) € u and g(x) €

m
Since g(x) em ,g(*/5 ) =a#0
Let h(x) =g(X) —a

Now h(l.f';g )= g(l.f'flg )—a

h(x)emcu (i.e) h(x) eu
o=g(x)—h(x)eu....[uis an ideal of r so a subgroup of r]

1
now l=oaacu
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since a’t = 1/
1

=———eR ... o is continuous and u is an ideal of R

Thus for any t(x) € R we have
t(x) = L.t(x) €u ...[u is an ideal of R]
RCU
But U CR [uis an ideal of R]
U=R
Thus m is a maximal ideal of R
Theorem 5.2
If R is a commutative ring with unit element and m is an ideal of R then m is a maximal
ideal of Riff &/, is a field
Proof

Given that m is an ideal of R

Assume that & /4, is a field

We shall P.T m is a maximal field of R

Since R.,-“'M is a field , its only ideals are {0} and R.,-“'M

Then by theorem 93.4.1) there | a one to one correspondence between the set of ideals of R.,-“'M

and the set of ideals of R which contain m. the ideal M of R corresponds to the ideal {0} of R,-“'M

whereas the ideal R of R corresponds to the ideal E,-“'M of R;“'M in this one to one

correspondence. Thus there is no ideal between m and R other than these two
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Hence m is a maximal ideal of R

Conversely assume that m is a maximal ideal of R

Then by the correspondence mentioned above E,-“'M has only {0} and itself an ideals. Further

since R is a commutative ring with unit element hen by lemma 3.5.1, R,-“'M is a field.

Definition .
If all ideals of a ring R are finitely generated then R is called a Noetherian ring.
Theroem 5.3
A commutative ring with identity is Noetherian if and only if given any ascending chain of
idealslL, € I, € --- € I, € -+, there exists an m such that I, = I+ for all i > 0.
Proof.

Let R be Noetherian. Since {l1,}”n=1 is an ascending chain, | =

U”n=1ly is an ideal of R. Hence we can find a3, a,, ..., 8g € Isuchthat | = (aj, a, . . ., ag). Itis
easy to see that there isan m such that a; € I, foralli=1,2, ..., 9. Hence |l € I, which implies

that I, = I+ for all i > 0.

Conversely let every ascending chain of ideals be stationary. Let | be an ideal of R which is not

finitely generated. Then I is nonzero and | < R.
Inductively, we can find a;, a, . . . € I such that I, = (a;, a, . . ., a,) and the chain I,,n =1, 2, ..
. 1S not stationary. This is a contradiction.

Hence | is finitely generated.

THE FIELD OF QUOTIENTS OF AN INTEGRAL DOMAIN

Definition

A ring R can be imbedded in a ring R’ if there is an isomorphism of R into R’.
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If R and R’ have unit elements 1 and 1’ we insist in addition that this isomorphism takes

land 1’
R’ is called an over ring or extension of R . if R can be imbedded in 1’
Definition
Let R be an integral domain. A nonzero element a € R is called irreducible if it is not a

unit and whenever a = bc then either b or ¢ is a unit. We say a is a prime if (a) is a prime ideal.
Theorem 5.4

Every integral domain can be imbedded in a field
Proof
let d be an integral domain

Let m, be the set of all ordered pairs(a,b) where a,b € D and b # 0 [consider (a,b) as E ]

In my we define a relation ‘~’ as follows

(a,b) ~ (c,d) iff ad = bc ------------=--mmm oo 1

We claim that this is an equivalence reletion on m,
Let (a,b), (c,d) , (e,f) e m,

Since ab= ba

We can write (a,b) ~ (a,b)

(i.e) reflexivity is satisfied

Now let us assume that (a,b) ~ (c,d)

Then by the definition ad=bc

Cb=da (the ring is commutativeO
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= (c,d)~ (a,b)

Summary is true

Let (a,b) ~ (c,d) and (c,d) ~ (e,f)
(ie) ad=bc and cf = de

a== and f="=

he de

now consider af = —

(i.e) af = be

(i.e) (a,b) ~ (e,f)

(i.e) transitivity is true

Hence the relation ‘~ defined above is an equivalence relation on mg

Let [a,b] be the equivalence class of (a,b) in Mg

Let F be the set of all such equivalence classes [a,b] where a,b e D and b # 0
We shall prove that F is a field w.r.to two operations addition and multiplication defined below
[a,b] + [c,d] =[ad + bc + bd]

[a,b] . [c,d] = [ac,bd]

Since D is an integral domain and both d #0 and b # 0

We have bd # 0

[ad + be,bd ] € F and

[ac ,bd] € F

We now P.T the addition defined above is well defined
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(le) if [a,p] =[a’, b’]

[c,d] =[c’,d’]
Then we have to prove that
[a,b] +[c,d] =[a’,b’] +[c’,d’]
Top.T
[ad + bc, bd] =(a’d’ + b’c’, b’d’]
(i.e)toP.T
(ad +bo)b’d’ = (a’d” + b’c’+ bd
Since [a,b] =[a’b’]

We have E = §=> ab’=a’b

Similarly [c.d] = [¢’,d"] £ = £=>cd" = ¢'d

:

Now consider

(ad + be)b’d’ = ad b’d + beb’d’
=ab’dd’ + bb’cd’
=ba’dd’ + bbb’d¢’
=bd(a’d’ = b’c’)

Addition defined above well defined

[0,b] acts as a zero element for this addition and [-a,b] is the additive inverse of [a,b]. then we
can verify that F is an abelian group under the addition defined above.we can also verify that the
non-zero elements of F namely the elements [a,b] , a # 0 form an abelian group under

multiplication
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Here [d,d] acts as the unit element and [c,d] * =[d,e] { ¢ #0, [d,c] is in F}
The distributive laws also hold in F
F is a field
We have to s.t D can be imbedded in F for x #0, y # 0 in D, we note that
[ax,x] =[ay.y]
Let us denote [ax,x] by [a,1]
Define ¢ : D->F by d(a) =[a,1]¥aeD
LetabeD
Then ¢p(a+b)=[a+b,1]
=[a,1] + [b,1]
=d(a) + d(b)
@ is homomorphism of D into F
Let y € F then Y=[a,1] € F,a €D and ¢(a)=[a,1]=y
A 1s the pre image of Y under ¢
Then by def ¢ is onto.
Now ¢(a) = d(b)

= [a,1] =[b,1]
= a=b

¢ is onto
¢ is an homomorphism of D into F

F is the homomorphic image of D under ¢
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If 1 is the unit element of D then ¢(1) € F
Let a’ be any element of F then
¢d(a)=a’ forsomeaeD
now consider ¢(1).a> = d(1). d(a)
=¢(1.2)
=d(a)
=3’
Also a’. o(1)= d(a). p(1)
=d(a.l)
= {(a)
=3’
¢(1) is the unit element of F
thus every integral domain can be imbedded in a field
Definition

Let R be a commutative ring. An ideal P of R is said to be a prime ideal of R. If ab e P, ab € R

=>aecPorbeP

Theorem 5.5

Let R be a commutative ring and S an ideal of R then the ring of residue classes % is an integral

domain iff S is a prime ideal
Proof

Let R be a commutative ring and S an ideal of R.
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Then == {S+a/acR}

Let S + a, s + b be any two elements of E

Then ab € R
R . . .
S is also a commutative ring

Now let S be a prime ideal of R

Then we have to prove that% is an integral domain
The zero element of% is the residue class S itself
LetS+a,S+b€%

Then(s+a)(s+b)=s

s+ab=s
abes
eitheraorbisins ...(s is a prime ideal)

githers=a=sors+b=s

4 4 4 4 7

. . R
either s +a or s + b is the zero element of =

R . . -
S is without zero divisor

. R . . . . .. g . . .
Since Sisa commutative ring without zero divisor, Zisa integral domain

Conversely, Iet% be an integral domain then we have to P.T S is an prime ideal of R

Let a,b be any two elementinrs.t abes

We have abes
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= s+ab=s

= (s+a)(s+b)=s
% is an integral domain it is without zerp divisor
Eithers+a=sors+ b=s
Eitheraesorbes
Then by def s is a prime ideal of R

IMPORTANT RESULTS.
Let R be an integral domain and a, b € R. Then

(1) aisaunitin R if and only if (a) = R.

(2) aand b are associates if and only if (a) = (b)

(3) a|bifand only if (b) c (a)

(4) ais a proper divisor of b if and only if (b) < (a) <R.

(5) ais irreducible if and only if (a) is maximal among proper principal ideals.

Definition
An integral domain R is called a factorization domain, abbreviated as FD, if every non-
zero element of R can be expressed as a product of irreducible elements.
Definition
. Aring R is said to satisfy ascending chain condition
(acc) on principal ideals if for any chain (a;) c (az) < . . . of principal ideals of R, there exists an

nsuch that (a,) = (an+) foralli=1,2,3,....
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POSSIBLE QUESTIONS:
Part-B( 5X8 = 40 Marks)

Answer all the questions:

1. i) Define an ideal. Prove that the intersection of any two left ideals of a ring is again a
left ideal of the ring.
2. Prove that every integral domain can be imbedded into a field.
3. 1) If U is an ideal of a ring R with unity and 1€U, prove that U=R.
ii) If F is a field then prove that its only ideals are (0) and F itself
4. If R is a commutative ring with unit element and M is an ideal of R, then prove
that M is a maximal ideal of R iff R | M is a field.

5. Prove that a commutative ring without zero divisor can be imbedded in a field

6. Let R be a commutative ring and S an ideal of R. Then prove that the ring of residue
classes R/S is an integral domain iff S is a prime ideal.

7. State and prove unique factorization theorem.

8. Prove that the ring of Gaussian integers is a Euclidean ring.

9. 1) Prove that a Euclidian ring possesses a unit element

ii) Prove that every field is a Euclidean ring.

10.Prove that every euclidean ring is a principal ideal ring.
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