
SEMESTER-V

17CAP504W RUBY PROGRAMMING 4H - 4C

Instruction Hours / week: L: 4 T: 0 P: 0 Marks: Internal: 40 External: 60 Total: 100

 End Semester Exam: 3Hours

Scope:
This course covers the fundamental components of the Ruby Programming Language.

Emphasis is placed on the object oriented aspects of Ruby. Topics include arrays, hashes, regular

expressions, I/O, exceptions, modules, and applications areas. Ruby is a programming language

with a focus on simplicity and productivity.

Objective: To help students to

 Develop server-side Ruby scripts for publishing on the Web

 Employ control structures, methods, procs, arrays and hashes to create Ruby programs

 Distinguish and use various Ruby datatypes

 Master the use of arrays and hashes

 Use the extensive pre bundled classes

 Use the I/O facilities of Ruby to read and write binary and text files

 Master the use of Iterators to loop through various data structures

 Use Exceptions in handling various run time errors

 Create Ruby modules

 Use the wide variety of Ruby Modules that come with the Ruby distribution

 Use object-oriented programming conventions to develop dynamic interactive Ruby

applications

UNIT I

Introduction to Ruby: Installing Ruby - THE STRUCTURE AND EXECUTION OF RUBY

PROGRAMS: Lexical Structure- Syntactic Structure - Block Structure in Ruby- File Structure -

Program Execution. DATA TYPES: Numbers - Text - String Literals - Character Literals -

String Operators - Accessing Characters and Substrings - Iterating Strings – Arrays – Hashes –

Ranges – Symbols – True & False – Ruby Documentation: RDoc and ri.

UNIT II

STATEMENTS AND CONTROL STRUCTURES: Conditionals – Loops - Iterators and

Enumerable objects: custom iterators – enumerators – External iterators – Blocks: Variable scope

– passing argument to blacks. Flow-altering statements like return and break- The special-case

BEGIN and END statements. CLASSES : Creating and initializing class – Accessor and

attributes – class methods – class variables – Defining operators. SUBCLASSING AND

INHERITANCE: visibility – Overriding methods. OBJECTS: Object creation and initialization.

UNIT III

METHODS: Defining a Method, Calling a Method; Undefining methods – Methods with

Exception – Operator methods and names – Method Arguments – Method objects - Defining

Attribute Accessor Methods - Dynamically Creating Methods. EXCEPTIONS AND

EXCEPTION HANDLING: Hierarchy – Exception classes and objects – Raising Exception with

raise – Handling Exception with rescue – Exception propagation – Else clause and ensure class.

SEMESTER-V

16CAP504W RUBY PROGRAMMING

UNIT IV

MODULES: Namespaces - Modules as Mixins - Includable Namespace Modules - Loading and

Requiring Modules - Executing Loaded Code. Reflection and Meta programming: Evaluating

Strings and Blocks - Querying, Setting, and Testing Variables – Regular Expressions. FILES

AND DIRECTORIES: Listing and manipulating Directories and testing files. BASIC INPUT

AND OUTPUT: Opening Stream – Reading from a Stream – Writing to a stream – Random

Access Methods – Closing, Flusing and testing streams.

UNIT V

THREADS AND PROCESSES: Thread Life Cycle – Thread scheduling – Thread Exclusion –

Deadlock. Ruby Tk: Introduction- Widgets and classes. Networks: A Very Simple Client - A

Very Simple Server – Datagram - A Multiplexing Server - Fetching Web Pages. Ruby on Rails:

Building a development Environment: Installation – Installing Databases – Code editors – web

server Configuration – Creating an web application.

SUGGESTED READINGS:

1. Dave Thomas, Andrew Hunt (2013), Programming Ruby 1.9 & 2.0: The Pragmatic

Programmers Guide, 2
nd

 Edition, The Pragmatic Bookshelf.

2. David Flanagan, (2008), “The Ruby Programming Language”, 1
st
 Edition, O'Reilly Media.

3. Eldon Alameda (2011), “Practical Rails Projects” Apress, Berkeley, CA, USA.

4. David Black, (2006), “Ruby for Rails”, Manning Publications.

WEB SITES :

1. http://www.tutorialspoint.com/ruby/ruby_tk_guide.htm

2. www.fincher.org/tips/Languages/Ruby

3. www.troubleshooters.com/codecorn/ruby/basictutorial.htm

4. www.ruby-lang.org/en/documentation/quickstart

http://www.fincher.org/tips/Languages/Ruby
http://www.troubleshooters.com/codecorn/ruby/basictutorial.htm

Karpagam Academy of Higher Education

(Established Under Section 3 of UGC Act 1956)

Eachanari (po), Coimbatore-21

COURSE: RUBY PROGRAMMING [17CAP504W]

LECTURE PLAN - UNIT I

 Textbooks (T1) : Dave Thomas, Andrew Hunt, 2013, Programming Ruby 1.9 & 2.0: The Pragmatic

Programmers Guide 2nd Edition, The Pragmatic Bookshelf.

Ref erence Book (R1): David Flanagan, 2008, ”The Ruby Programming Language”, 1st Edition, O'Reilly

Media.

Website (W1) : WWW.ruby_doc.org/docs/Tutorials

Journal (J1) : Problem discovery comes before problem solving issue 8.1:: Published by

 Greerry Brown on March 2015

S.No.
Lecture

Duration (Hr)
Topics to be Covered Support Materials

1 1 Introduction to Ruby R1: 1-17

2 1 Installing Ruby, W1, J1

3 1 The structure and execution of ruby programs,

Lexical Structure,-
R1:P(25-35)

4 1 Syntactic Structure W1

 Block Structure in Ruby R1:P(26-33)

 File Structure R1:P(35-36)

 Program Execution.

R1:P(39-42)

5 1 Data types: Numbers, Text,

6 1 String Literals ,

 Character Literals

 String Operators , Accessing Characters and Substrings,

,
W1

 , Iterating Strings ,Arrays R1:P(46-64)

7 1 Hashes ,Ranges , Symbols : True & False , R1:P(67-71)

8 1 Ruby Documentation: RDoc and ri. T1:9-11

9 1 Recapitulation and Discussion of important questions

Total no. of periods planned for Unit I : 9

Karpagam Academy of Higher Education

(Established Under Section 3 of UGC Act 1956)

Eachanari (po), Coimbatore-21

COURSE: RUBY PROGRAMMING [17CAP504W]

LECTURE PLAN - UNIT II

Textbooks (T1) : Dave Thomas, Andrew Hunt, 2013, Programming Ruby 1.9 & 2.0: The Pragmatic

Programmers Guide 2nd Edition, The Pragmatic Bookshelf.

Reference Book (R1): David Flanagan, 2008, ”The Ruby Programming Language”, 1st Edition, O'Reilly

Media.

Website (W3) : www.ruby_doc.org/docs/Tutorials

Website (W4) : www.codeacademy.com/Tracks/ruby/resource

Website (W5) : www.ruby.doc.org/core/objects.html

S.No.
Lecture

Duration (Hr)
Topics to be Covered Support Materials

1 1 statements and control structures: Conditionals , Loops R1:P(117-127)

2 1
Iterators and Enumerable objects: custom iterators –

enumerators – External iterators
R1:P(130-140)

3 1 Blocks: Variable scope R1:P(140-146)

 passing argument to blocks W1

4 1 The special-case BEGIN and END statements R1:P(165-166)

5 1 Flow-altering statements like return and break R1:P(146-154)

6 1 CLASSES : Creating and initializing class W3, W4

 Accessor and attributes W4

7 1 class methods – class variables – Defining operators. W5

SUBCLASSING AND INHERITANCE: visibility –

Overriding methods.
W3

8 1 OBJECTS: Object creation and initialization W3

9 1 Recapitulation and Discussion of important question W4

Total no. of periods planned for Unit II : 9

http://www.ruby_doc.org/docs/Tutorials

Karpagam Academy of Higher Education

(Established Under Section 3 of UGC Act 1956)

Eachanari (po), Coimbatore-21

COURSE: RUBY PROGRAMMING [17CAP504W]

LECTURE PLAN - UNIT III

Textbooks (T1) : Dave Thomas, Andrew Hunt, 2013, Programming Ruby 1.9 & 2.0: The Pragmatic

Programmers Guide 2nd Edition, The Pragmatic Bookshelf.

Reference Book (R1): David Flanagan, 2008, ”The Ruby Programming Language”, 1st Edition, O'Reilly

Media.

Website (W6) : www.tutorials.com/ruby/ruby_regular

Website (W7) : rubyamqp.info/articles/error_handling/
1.

2.

S.No.
Lecture

Duration (Hr)
Topics to be Covered Support Materials

1 1
METHODS: Defining a Method, Calling a Method;

Undefining methods
T1:P(74-76)

2 1 Methods with Exception R1:P(240-241)

3 1 Operator methods and names R1:P(243-253)

4 1 Defining Attribute Accessor Methods W6,W7

5 1 Method Arguments Method objects W6,W7

6 1 Dynamically Creating Methods W7

 Hierarchy – Exception classes and objects T1: P(23-27)

7 1 EXCEPTIONS AND EXCEPTION HANDLING W6

 Raising Exception with raise W6

8 1 Handling Exception with rescue
R1:P(154-165),T1:

P(109-113)

 Exception propagation – Else clause and ensure class W7

9 1 Recapitulation and important questions discussion

Total no. of periods planned for Unit III : 9

Karpagam Academy of Higher Education

(Established Under Section 3 of UGC Act 1956)

Eachanari (po), Coimbatore-21

COURSE: RUBY PROGRAMMING [17CAP504W]

LECTURE PLAN - UNIT IV

Textbooks (T1) : Dave Thomas, Andrew Hunt, 2013, Programming Ruby 1.9 & 2.0: The Pragmatic

 Programmers Guide 2nd Edition, The Pragmatic Bookshelf.

Reference Book (R1): David Flanagan, 2008, ”The Ruby Programming Language”, 1st Edition, O'Reilly

 Media.

Website (W8) : www.newcircle.com/bookshelf/ruby_tutorial

Website (W9) : https://www.sitepoint.com/ruby-mixins-2/

Journal(J2) : A self guided course on streams, files, file formats and sockets issue 79::

 Published by Gregary brown.2014

S.No.
Lecture

Duration (Hr)
Topics to be Covered Support Materials

1 1 MODULES: Namespaces T1:P(113-116)

2 1 Modules as Mixins - Includable Namespace Modules R1:P(337-344)

 Loading and Requiring Modules W9

3 1 Executing Loaded Code R1:P(357-364)

4 1
Reflection and Meta programming: Evaluating Strings

and Blocks
W8

5 1 Querying, Setting, and Testing Variables W8

 Regular Expressions W9

6 1
FILES AND DIRECTORIES: Listing and manipulating

Directories and testing files.
R1:P(417-426)

7 1
BASIC INPUT AND OUTPUT: Opening Stream,

Reading from a Stream
R1:P(461-466)

8 1 Writing to a stream ,Random Access Methods W8,W9

 Closing, Flusing and testing streams W8,W9

9 1 Recapitulation and important questions discussion

Total no. of periods planned for Unit IV : 9

http://www.newcircle.com/bookshelf/ruby_tutorial
https://www.sitepoint.com/ruby-mixins-2/

Karpagam Academy of Higher Education

(Established Under Section 3 of UGC Act 1956)

Eachanari (po), Coimbatore-21

 COURSE: RUBY PROGRAMMING [17CAP504W]

LECTURE PLAN - UNIT V

Textbooks (T1) : Dave Thomas, Andrew Hunt, 2013, Programming Ruby 1.9 & 2.0: The Pragmatic

 Programmers Guide 2nd Edition, The Pragmatic Bookshelf.

Reference Book (R1): David Flanagan, 2008, ”The Ruby Programming Language”, 1st Edition, O'Reilly

 Media.

Website (W10) : www.sitepoint.com/threads-ruby

Website (W11) : www.ruby-doc.org/docs/test.html

S.No.

Lecture

Duration

(Hr)

Topics to be Covered Support Materials

 1 1
THREADS AND PROCESSES: Thread Life

Cycle
W6,W10

 2
– Thread scheduling – Thread Exclusion –Dead

lock
W6,W11

3 Ruby Tk: Introduction, Widgets and classes W1,W6

 4
Networks: A Very Simple Client, Avery simple

server

W1,W6

5
Datagram - A Multiplexing Server - Fetching

Web Pages.
W6

6 Ruby on Rails: Building a development W6

7 1 Environment: Installation – Installing Databases W6

8 1
Code editors – web server Configuration,

Creating an web application
W10,W6

9 1
Recapitulation and Discussion on important

questions

10 1 Discussion of previous ESE question papers

11 1 Discussion of previous ESE question papers

12 1 Discussion of previous ESE question papers

Total no. of periods planned for Unit V : 12

http://www.sitepoint.com/threads-ruby
http://www.ruby-doc.org/docs/test.html

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 1/49

Unit I

Introduction to Ruby: Installing Ruby - THE STRUCTURE AND

EXECUTION OF RUBY PROGRAMS: Lexical Structure- Syntactic

Structure - Block Structure in Ruby- File Structure - Program Execution.

DATA TYPES: Numbers - Text - String Literals - Character Literals -

String Operators - Accessing Characters and Substrings - Iterating Strings

– Arrays – Hashes – Ranges – Symbols – True & False – Ruby

Documentation: RDoc and ri.

Introduction to Ruby

Ruby is a pure object-oriented programming language. It was created in

1993 by Yukihiro Matsumoto of Japan.

Installing Ruby

You can download Ruby from https://www.ruby-lang.org/en/downloads/

The Structure and Execution of Ruby Programs: Lexical Structure

The Ruby interpreter parses a program as a sequence of tokens. Tokens

include com3ments, literals, punctuation, identifiers, and keywords. This

section introduces these types of tokens and also includes important

information about the characters that comprise the tokens and the

whitespace that separates the tokens.

Comments

Comments in Ruby begin with a # character and continue to the end of the

line. The Ruby interpreter ignores the # character and any text that follows

it (but does not ignore the newline character, which is meaningful

whitespace and may serve as a statement terminator). If a # character

appears within a string or regular expression literal (see Chapter 3), then it

is simply part of the string or regular expression and does not introduce a

comment:

This entire line is a comment

x = "#This is a string" # And this is a comment

Embedded documents

https://www.ruby-lang.org/en/downloads/

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 2/49

Ruby supports another style of multiline comment known as an embedded

document. These start on a line that begins =begin and continue until (and

include) a line that begins =end. Any text that appears after =begin or

=end is part of the comment and is also ignored, but that extra text must be

separated from the =begin and =end by at least one space.

Embedded documents are a convenient way to comment out long blocks

of code with-out prefixing each line with a # character:

=begin Someone needs to fix the broken code below!

 Any code here is commented out

=end

Note that embedded documents only work if the = signs are the first

characters of each line:

 =begin This used to begin a comment. Now it is itself commented

out! The code that goes here is no longer commented out

 =end

Documentation comments

Ruby programs can include embedded API documentation as specially

formatted com-ments that precede method, class, and module definitions.

The rdoc tool extracts doc-umentation comments from Ruby source and

formats them as HTML or prepares them for display by ri. Documentation

of the rdoc tool is beyond the scope of this book; see the file

lib/rdoc/README in the Ruby source code for details.

Documentation comments must come immediately before the module,

class, or method whose API they document. They are usually written as

multiline comments where each line begins with #, but they can also be

written as embedded documents that start =begin rdoc. (The rdoc tool will

not process these comments if you leave out the ―rdoc‖.)

Literals

Literals are values that appear directly in Ruby source code. They include

numbers, strings of text, and regular expressions. (Other literals, such as

array and hash values, are not individual tokens but are more complex

expressions.)

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 3/49

Punctuation

Ruby uses punctuation characters for a number of purposes. Most Ruby

operators are written using punctuation characters, such as + for addition,

* for multiplication, and for the Boolean OR operation. See §4.6 for a

complete list of Ruby operators. Punc-tuation characters also serve to

delimit string, regular expression, array, and hash literals, and to group

and separate expressions, method arguments, and array indexes. We’ll see

miscellaneous other uses of punctuation scattered throughout Ruby syntax.

Identifiers

An identifier is simply a name. Ruby uses identifiers to name variables,

methods, classes, and so forth. Ruby identifiers consist of letters, numbers,

and underscore characters, but they may not begin with a number.

Identifiers may not include whitespace or nonprinting characters, and they

may not include punctuation characters except as described here.

Identifiers that begin with a capital letter A–Z are constants, and the Ruby

interpreter will issue a warning (but not an error) if you alter the value of

such an identifier. Class and module names must begin with initial capital

letters. The following are identifiers:

i
x2

old_value_internal# Identifiers may begin with underscores

PI # Constant

By convention, multiword identifiers that are not constants are written

with under-scores like_this, whereas multiword constants are written

LikeThis or LIKE_THIS.

Case sensitivity

Ruby is a case-sensitive language. Lowercase letters and uppercase letters

are distinct.

The keyword end, for example, is completely different from the keyword

END.

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 4/49

Unicode characters in identifiers

Ruby’s rules for forming identifiers are defined in terms of ASCII

characters that are not allowed. In general, all characters outside of the

ASCII character set are valid in identifiers, including characters that

appear to be punctuation. In a UTF-8 encoded file, for example, the

following Ruby code is valid:

def ×(x,y) # The name of this method is the Unicode multiplication

sign

x*y # The body of this method multiplies itsarguments

end

The special rules about forming identifiers are based on ASCII characters

and are not enforced for characters outside of that set. An identifier may

not begin with an ASCII digit, for example, but it may begin with a digit

from a non-Latin alphabet. Similarly, an identifier must begin with an

ASCII capital letter in order to be considered a constant. The identifier Å,

for example, is not a constant.

Two identifiers are the same only if they are represented by the same

sequence of bytes. Some character sets, such as Unicode, have more than

one codepoint that represents the same character. No Unicode

normalization is performed in Ruby, and two distinct codepoints are

treated as distinct characters, even if they have the same meaning or are

represented by the same font glyph.

2.1.4.3 Punctuation in identifiers

Punctuation characters may appear at the start and end of Ruby identifiers.

They have the following meanings:

Global variables are prefixed with a dollar sign. Following Perl’s example,

Rubydefines a number of global variables that include other punctuation

characters, such as $_ and $-K. See Chapter 10 for a list of these special

globals.

As a helpful convention, methods that return Boolean values often have

names that end with a question mark. Method names may end with an

exclamation point to indicate that they should be used cautiously. This

naming convention is often to distinguish mutator methods that alter the

object on which they are invoked from variants that return a modified

copy of the original object.

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 5/49

Here are some example identifiers that contain leading or trailing

punctuation characters:

$files # A global variable
@data # An instance variable
@@counter # A class variable
empty? # A Boolean-valued method or predicate

sort! # An in-place alternative to the regular sort method

timeout= # A method invoked by assignment

A number of Ruby’s operators are implemented as methods, so that

classes can redefine them for their own purposes. It is therefore possible to

use certain operators as method names as well. In this context, the

punctuation character or characters of the operator are treated as identifiers

rather than operators.

Syntactic Structure

The basic unit of syntax in Ruby is the expression. The Ruby interpreter

evaluates ex-pressions, producing values. The simplest expressions are

primary expressions, which represent values directly. Number and string

literals, described earlier in this chapter, are primary expressions. Other

primary expressions include certain keywords such as true, false, nil, and

self. Variable references are also primary expressions; they evaluate to the

value of the variable.

more complex values can be written as compound expressions:

[1,2,3] # An Array literal

{1=>"one",

2=>"two"} # A Hash literal

1..3 # A Range literal

Operators are used to perform computations on values, and compound

expressions are built by combining simpler subexpressions with operators:

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 6/49

 = 1 # An assignment expression

 = x + 1 # An expression with two operators

 Expressions can be combined with Ruby’s keywords to

create statements, such as the if statement for conditionally

executing code and the while statement for repeatedly executing

code:

if x < 10 then # If this expression is true

x = x + 1 # Then execute this tatement

end # Marks the end of the conditional

 while x

<

 10

do # While this expression is true...

print x # Execute this statement

x = x + 1

Then execute this

statement

end # Marks the end of the loop

 Block Structure in Ruby

Ruby programs have a block structure. Module, class, and method

definitions, and most of Ruby’s statements, include blocks of nested code.

These blocks are delimited by keywords or punctuation and, by

convention, are indented two spaces relative to the delimiters. There are

two kinds of blocks in Ruby programs. One kind is formally called a

―block.‖ These blocks are the chunks of code associated with or passed to

iterator methods:

 3.times { print "Ruby! " }

 In this code, the curly braces and the code inside them are

the block associated with the iterator method invocation 3.times.

Formal blocks of this kind may be delimited with curly braces, or

they may be delimited with the keywords do and end:

 1.upto(10) do |x|

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 7/49

 print x
 end

 do and end delimiters are usually used when the block is

written on more than one line.

 To avoid ambiguity with these true blocks, we can call the

other kind of block a body (in practice, however, the term ―block‖

is often used for both). A body is just the list of statements that

comprise the body of a class definition, a method definition, a while

loop, or whatever. Bodies are never delimited with curly braces in Ruby—key-

words usually serve as the delimiters instead. The specific syntax

for statement bodies, method bodies, and class and module bodies

are documented in Chapters 5, 6, and 7.

 Bodies and blocks can be nested within each other, and

Ruby programs typically have several levels of nested code, made

readable by their relative indentation. Here is a schematic example:

module Stats # A module

class Dataset # A class in the module

def initialize(filename) # A method in the class

IO.foreach(filename) do |line| # A block in the method

 if line[0,1] == "#" # An if statement in the block

 next # A simple statement in the if

 end # End the if body

end # End the block

end # End the method body

end # End the class body

end # End the module body

 File Structure

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 8/49

There are only a few rules about how a file of Ruby code must be

structured. These rules are related to the deployment of Ruby programs

and are not directly relevant to the language itself.

First, if a Ruby program contains a ―shebang‖ comment, to tell the

(Unix-like) operating system how to execute it, that comment must

appear on the first line.

 Second, if a Ruby program contains a ―coding‖ comment that

comment must appear on the first line or on the second line if the first

line is a shebang.

 Third, if a file contains a line that consists of the single token

__END__ with no whitespace before or after, then the Ruby interpreter

stops processing the file at that point. The remainder of the file may

contain arbitrary data that the program can read using the IO stream

object DATA. (See Chapter 10 and §9.7 for more about this global

constant.)

 Ruby programs are not required to fit in a single file. Many

programs load additional Ruby code from external libraries, for

example. Programs use require to load code from another file.

require searches for specified modules of code against a search

path, and prevents any given module from being loaded more than

once. See §7.6 for details.

 The following code illustrates each of these points of Ruby

file structure:

 #!/usr/bin/ruby -w shebang comment
 # -*- coding: utf-8 -*- coding comment
 require 'socket' load networking library

 ... program code goes here

 __END__ mark end of code

 ... program data goes here

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 9/49

Program Execution

Ruby is a scripting language. This means that Ruby programs are simply

lists, or scripts, of statements to be executed. By default, these statements

are executed sequentially, in the order they appear. Ruby’s control

structures (described in Chapter 5) alter this default execution order and

allow statements to be executed conditionally or repeat-edly, for example.

Programmers who are used to traditional static compiled languages like C

or Java may find this slightly confusing. There is no special main method

in Ruby from which exe-cution begins. The Ruby interpreter is given a

script of statements to execute, and it begins executing at the first line and

continues to the last line.

(Actually, that last statement is not quite true. The Ruby interpreter first

scans the file for BEGIN statements, and executes the code in their bodies.

Then it goes back to line 1 and starts executing sequentially. See §5.7 for

more on BEGIN.)

Another difference between Ruby and compiled languages has to do with

module, class, and method definitions. In compiled languages, these are

syntactic structures that are processed by the compiler. In Ruby, they are

statements like any other. When the Ruby interpreter encounters a class

definition, it executes it, causing a new class to come into existence.

Similarly, when the Ruby interpreter encounters a method definition, it

executes it, causing a new method to be defined. Later in the program, the

interpreter will probably encounter and execute a method invocation

expression for the method, and this invocation will cause the statements in

the method body to be executed.

The Ruby interpreter is invoked from the command line and given a script

to execute. Very simple one-line scripts are sometimes written directly on

the command line. More commonly, however, the name of the file

containing the script is specified. The Ruby interpreter reads the file and

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 10/49

executes the script. It first executes any BEGIN blocks. Then it starts at

the first line of the file and continues until one of the following happens:

 It executes a statement that causes the Ruby program to terminate.

 It reaches the end of the file.

 It reads a line that marks the logical end of the file with the token
__END__.

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 11/49

Before it quits, the Ruby interpreter typically (unless the exit! method was

called) executes the bodies of any END statements it has encountered and

any other ―shutdown hook‖ code registered with the at_exit function.

DATA TYPES: Numbers

Numbers

Ruby includes five built-in classes for representing numbers, and the

standard library includes three more numeric classes that are sometimes

useful.

All number objects in Ruby are instances of Numeric. All integers are

instances of Integer. If an integer value fits within 31 bits (on most

implementations), it is an instance of Fixnum. Otherwise, it is a Bignum.

Bignum objects represent integers of arbi-trary size, and if the result of an

operation on Fixnum operands is too big to fit in a Fixnum, that result is

transparently converted to a Bignum. Similarly, if the result of an

operation on Bignum objects falls within the range of Fixnum, then the

result is a Fixnum. Real numbers are approximated in Ruby with the Float

class, which uses the native floating-point representation of the platform.

The Complex, BigDecimal, and Rational classes are not built-in to Ruby

but are distrib-uted with Ruby as part of the standard library. The

Complex class represents complex numbers, of course. BigDecimal

represents real numbers with arbitrary precision, using a decimal

representation rather than a binary representation. And Rational represents

rational numbers: one integer divided by another.

All numeric objects are immutable; there are no methods that allow you to

change the value held by the object. If you pass a reference to a numeric

object to a method, you need not worry that the method will modify the

object. Fixnum objects are commonly used, and Ruby implementations

typically treat them as immediate values rather than as references. Because

numbers are immutable, however, there is really no way to tell the

difference.

 Integer Literals

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 12/49

An integer literal is simply a sequence of digits:

0

123

12345678901234567890

If the integer values fit within the range of the Fixnum class, the value is a

Fixnum. Otherwise, it is a Bignum, which supports integers of any size.

Underscores may be inserted into integer literals (though not at the

beginning or end), and this feature is sometimes used as a thousands

separator:

1_000_000_000 # One billion (or 1,000 million in the UK)

If an integer literal begins with zero and has more than one digit, then it is

interpreted in some base other than base 10. Numbers beginning with 0x

or 0X are hexadecimal (base 16) and use the letters a through f (or A

through F) as digits for 10 through 15. Numbers beginning 0b or 0B are

binary (base 2) and may only include digits 0 and 1. Numbers beginning

with 0 and no subsequent letter are octal (base 8) and should consist of

digits between 0 and 7. Examples:

0377 # Octal representation of 255

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 13/49

0b1111_11

11 #

Binary representation of

255

0xFF #

Hexadecimal representation of

255

To represent a negative number, simply begin an integer literal with a

minus sign. Literals may also begin with a plus sign, although this never

changes the meaning of the literal.

Floating-Point Literals

A floating-point literal is an optional sign followed by one or more

decimal digits, a decimal point (the . character), one or more additional

digits, and an optional expo-nent. An exponent begins with the letter e or

E, and is followed by an optional sign and one or more decimal digits. As

with integer literals, underscores may be used within

floating-point literals. Unlike integer literals, it is not possible to express

floating-point values in any radix other than base 10. Here are some

examples of floating-point literals:

0.0

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 14/49

-3.14

6.02e23 # This means 6.02 × 10
23

1_000_000.01 # One million and a little bit more

Ruby requires that digits appear before and after the decimal point. You

cannot simply write .1, for example; you must explicitly write 0.1. This is

necessary to avoid ambiguity in Ruby’s complex grammar. Ruby differs

from many other languages in this way.

Text

Text is represented in Ruby by objects of the String class. Strings are

mutable objects, and the String class defines a powerful set of operators

and methods for extracting substrings, inserting and deleting text,

searching, replacing, and so on. Ruby provides a number of ways to

express string literals in your programs, and some of them support a

powerful string interpolation syntax by which the values of arbitrary Ruby

expressions can be substituted into string literals. The sections that follow

explain string and character literals and string operators.

Textual patterns are represented in Ruby as Regexp objects, and Ruby

defines a syntax for including regular expressions literally in your

programs. The code /[a-z]\d+/, for example, represents a single lowercase

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 15/49

letter followed by one or more digits. Regular expressions are a commonly

used feature of Ruby, but regexps are not a fundamental datatype in the

way that numbers, strings, and arrays are.

String Literals

Ruby provides quite a few ways to embed strings literally into your

programs.

 Single-quoted string literals

The simplest string literals are enclosed in single quotes (the apostrophe

character).

The text within the quote marks is the value of the string:

'This is a simple Ruby string literal'

If you need to place an apostrophe within a single-quoted string literal,

precede it with a backslash so that the Ruby interpreter does not think that

it terminates the string:

'Won\'t you read O\'Reilly\'s book?'

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 16/49

The backslash also works to escape another backslash, so that the second

backslash is not itself interpreted as an escape character. Here are some

situations in which you need to use a double backslash:

'This string literal ends with a single backslash: \\'

'This is a backslash-quote: \\\''

'Two backslashes: \\\\'

In single-quoted strings, a backslash is not special if the character that

follows it is anything other than a quote or a backslash. Most of the time,

therefore, backslashes need not be doubled (although they can be) in string

literals. For example, the following two string literals are equal:

'a\b' == 'a\\b'

Single-quoted strings may extend over multiple lines, and the resulting

string literal includes the newline characters. It is not possible to escape

the newlines with a backslash:

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 17/49

'This is a long string literal \

that includes a backslash and a newline'

If you want to break a long single-quoted string literal across multiple

lines without embedding newlines in it, simply break it into multiple

adjacent string literals; the Ruby interpreter will concatenate them during

the parsing process. Remember, though, that you must escape the newlines

(see Chapter 2) between the literals so that Ruby does not interpret the

newline as a statement terminator:

message =

'These three literals are '\

'concatenated into one by the interpreter. '\

'The resulting string contains no newlines.'

Double-quoted string literals

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 18/49

String literals delimited by double quotation marks are much more flexible

than single-quoted literals. Double-quoted literals support quite a few

backslash escape sequences, such as \n for newline, \t for tab,

and \" for a quotation mark that does not terminate the string:

"\t\"This quote begins with a tab and ends with

a newline\"\n"

"\\" # A single backslash

Character Literals

Single characters can be included literally in a Ruby program by

preceding the character with a question mark. No quotation marks

of any kind are used:

?A # Character literal for the ASCII character

A

?" # Character literal for the double-quote

character

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 19/49

 # Character literal for the question mark

character

Although Ruby has a character literal syntax, it does not have a

special class to represent single characters.

String Operators

The String class defines several useful operators for

manipulating strings of text. The

 operator concatenates two strings and returns the result as a new

String object:

planet = "Earth"

"Hello" + " " + planet # Produces "Hello Earth"

Java programmers should note that the + operator does not convert

its righthand operand to a string; you must do that yourself:

"Hello planet #" + planet_number.to_s # to_s converts to a string

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 20/49

Of course, in Ruby, string interpolation is usually simpler than string

concatenation with +. With string interpolation, the call to to_s is done

automatically:

"Hello planet ##{planet_number}"

The << operator appends its second operand to its first, and should be

familiar to C++ programmers. This operator is very different from +; it

alters the lefthand operand rather than creating and returning a new object:

greeting = "Hello"

greeting << " " << "World"

puts greeting # Outputs "Hello World"

Like +, the << operator does no type conversion on the righthand operand.

If the right-hand operand is an integer, however, it is taken to be a

character code, and the corresponding character is appended. In Ruby 1.8,

only integers between 0 and 255 are allowed. In Ruby 1.9, any integer that

represents a valid codepoint in the string’s encoding can be used:

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 21/49

alphabet =

"A"

alphabet

<< ?B

Alphabet is now "AB"

alphabe

t

<

< 67 #

And now it

is "ABC"

alphabe

t

<

<

25

6 # Error in

Rub

y

1.8: codes must be >=0 and <

256

The * operator expects an integer as its righthand operand. It returns a

String that repeats the text specified on the lefthand side the number of

times specified by the righthand side:

ellipsis = '.'*3 # Evaluates to '...'

If the lefthand side is a string literal, any interpolation is performed just

once before the repetition is done. This means that the following too-

clever code does not do what you might want it to:

a = 0;

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 22/49

"#{a=a+1} " * 3 # Returns "1 1 1 ", not "1 2

3 "

String defines all the standard comparison operators. == and != compare

strings for equality and inequality. Two strings are equal if—and only if—

they have the same length and all characters are equal. <, <=, >, and >=

compare the relative order of strings by comparing the character codes of

the characters that make up a string. If one string

is a prefix of another, the shorter string is less than the longer string.

Comparison is based strictly on character codes. No normalization is done,

and natural language col-lation order (if it differs from the numeric

sequence of character codes) is ignored.

String comparison is case-sensitive.
*
 Remember that in ASCII, the

uppercase letters all have lower codes than the lowercase letters. This

means, for example, that "Z" < "a". For case-insensitive comparison of

ASCII characters, use the casecmp method (see §9.1) or convert your

strings to the same case with downcase or upcase methods before

comparing them. (Keep in mind that Ruby’s knowledge of upper- and

lowercase letters is limited to the ASCII character set.)

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 23/49

Accessing Characters and Substrings

Perhaps the most important operator supported by String is the

square-bracket array-index operator [], which is used for

extracting or altering portions of a string. This operator is quite

flexible and can be used with a number of different operand types.

It can also be used on the lefthand side of an assignment, as a way

of altering string content.

In Ruby 1.8, a string is like an array of bytes or 8-bit character

codes. The length of this array is given by the length or size

method, and you get or set elements of the array simply by

specifying the character number within square brackets:

s = 'hello'; # Ruby 1.8

s[0] # 104: the ASCII character code for the

first character 'h'

s[s.length-1] # 111: the character code of

the last character 'o'

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 24/49

s[-1] # 111: another way of accessing the

last character

s[-2] # 108: the second-to-last character

s[-s.length] # 104: another way of accessing

the first character

s[s.length] # nil: there is no character at

that index

Notice that negative array indexes specify a 1-based position from

the end of the string. Also notice that Ruby does not throw an

exception if you try to access a character beyond the end of the

string; it simply returns nil instead.

Ruby 1.9 returns single-character strings rather than character

codes when you index a single character. Keep in mind that when

working with multibyte strings, with char-acters encoded using

variable numbers of bytes, random access to characters is less

efficient than access to the underlying bytes:

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 25/49

s =

'hello';

Ruby 1.9

s[0]

'h':

the first character of the

string, as a string

s[s.leng

th-1]

'o': the last character 'o'

s[-1] #

'o

':

another way of accessing the

last character

s[-2] #

'l

':

the second-to-last

character

 In Ruby 1.8, setting the deprecated global variable $= to true

makes the ==, <, and related comparison operators perform case-

insensitive comparisons. You should not do this, however; setting

this variable produces a warning message, even if the Ruby

interpreter is invoked without the -w flag. And in Ruby 1.9, $= is

no longer supported.

s[-s.length] # 'h': another way of accessing

the first character

s[s.length] # nil: there is no character at

that index

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 26/49

To alter individual characters of a string, simply use brackets on the

lefthand side of an assignment expression. In Ruby 1.8, the

righthand side may be an ASCII character code or a string. In Ruby

1.9, the righthand side must be a string. You can use character

literals in either version of the language:

s[0] =

?H #

Replace first

character with a capital H

s[-1] =

?O #

Replace

last

character with a

capital O

s[s.length]

= ?! #

ERROR!

Can't

assign

beyond the

end

of

the

string

The righthand side of an assignment statement like this need not

be a character code: it may be any string, including a multicharacter

string or the empty string. Again, this works in both Ruby 1.8 and

Ruby 1.9:

s =

"hello"

Begin

with a greeting

s[-
= "" #

Dele th last character; s is now

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 27/49

1] te e "hell"

s[-

1] =

"p!

" #

Chan

ge

ne

w

last character and add one; s

is now "help!"

More often than not, you want to retrieve substrings from a string

rather than individual character codes. To do this, use two comma-

separated operands between the square brackets. The first

operand specifies an index (which may be negative), and the

second specifies a length (which must be nonnegative). The result

is the substring that begins at the specified index and continues for

the specified number of characters:

s =

"hello"

s[0,2] # "he"

s[-1,1]

"o": returns a string, not the

character code ?o

s[0,0]

"": a zero-length substring

is always empty

s[0,10]

"hello": returns all the characters

that are available

s[s.leng # "": there is an empty string

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 28/49

th,1] immediately beyond the end

s[s.length

+1,1]

nil: it is an error to read

past that

s[0,-1]

nil: negative lengths don't

make any sense

If you assign a string to a string indexed like this, you replace the

specified substring with the new string. If the righthand side is the

empty string, this is a deletion, and if the lefthand side has zero-

length, this is an insertion:

s =

"hello"

s[0,

1] = "H"

Replace first

letter with a

capital

letter

s[s.length,0] = " world" # Append by

assigning beyond the

end of the

string

s[5,

0] = "," #

Insert a comma, without

deleting anything

s[5,

6] = "" #

Delete with no

insertion; s

=

= "Hellod"

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 29/49

Another way to extract, insert, delete, or replace a substring is by

indexing a string with a Range object. We’ll explain ranges in detail

in §3.5 later. For our purposes here,

 Range is two integers separated by dots. When a Range is

used to index a string, the return value is the substring whose

characters fall within the Range:

s =

"hello"

s[2..3]

"ll":

characters 2 and

3

s[-3..-

1] #

"llo":

negative

indexes work,

too

s[0..0] #

"h": this

Range

inclu

des

one

character

index

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 30/49

s[0...0

]

"": this

Range is Empty

s[2..1] #

"": this

Range is also empty

s[7..10

] #

nil: this Range is outside

the string bounds

s[-2..-

1] =

"p!" #

Replacement: s becomes

"help!"

It is also possible to index a string with a string. When you do this, the return value is

the first substring of the target string that matches the index string, or nil, if no match is

found. This form of string indexing is really only useful on the lefthand side of an

assignment statement when you want to replace the matched string with some other

string:

s =

"hello"

Star

t

with the word

"hello"

while(s["

l"])

Whil

e

the string contains the

substring "l"

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 31/49

s["l"] =

"L"; #

Replace first occurrence

of "l" with "L"

end # Now we have "heLLo"

Iterating Strings

In Ruby 1.8, the String class defines an each method that iterates a string line-by-

line. The String class includes the methods of the Enumerable module, and they can

be used to process the lines of a string. You can use the each_byte iterator in Ruby

1.8 to iterate through the bytes of a string, but there is little advantage to using

each_byte over the [] operator because random access to bytes is as quick as

sequential access in 1.8.

The situation is quite different in Ruby 1.9, which removes the each method, and in

which the String class is no longer Enumerable. In place of each, Ruby 1.9 defines

three clearly named string iterators: each_byte iterates sequentially through the

individual bytes that comprise a string; each_char iterates the characters; and

each_line iterates the lines. If you want to process a string character-by-character, it

may be more efficient to use each_char than to use the [] operator and character

indexes:

s = "¥1000"

s.each_char {|x| print "#{x} " } # Prints "¥ 1 0 0 0". Ruby

1.9

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 32/49

0.upto(s.size-1) {|i| print "#{s[i]} "} # Inefficient with

multibyte chars

Arrays

An array is a sequence of values that allows values to be accessed by their position, or

index, in the sequence. In Ruby, the first value in an array has index 0. The size and

length methods return the number of elements in an array. The last element of the

array is at index size-1. Negative index values count from the end of the array, so the

last element of an array can also be accessed with an index of –1. The second-to-last

has an index of –2, and so on. If you attempt to read an element beyond the end of an

array (with an index >= size) or before the beginning of an array (with an index < -

size), Ruby simply returns nil and does not throw an exception.

Ruby’s arrays are untyped and mutable. The elements of an array need not all be of the

same class, and they can be changed at any time. Furthermore, arrays are dynamically

resizeable; you can append elements to them and they grow as needed. If you assign a

value to an element beyond the end of the array, the array is automatically extended

with nil elements. (It is an error, however, to assign a value to an element before the

beginning of an array.)

An array literal is a comma-separated list of values, enclosed in square brackets:

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 33/49

[1, 2, 3]

An

array that

holds three

Fixn

um objects

[-10...0,

0..10,] #

A

n

array

of

two ranges;

trailing

commas are

allowed

[[1,2],[3,4

],[5]] #

A

n

array

of

nested

arrays

Ruby includes a special-case syntax for expressing array literals whose elements are

short strings without spaces:

words =

%w[this is

a

test

]

Same

as:

['this', 'is',

'a', 'test']

open = %w|

([{ < | #

Same

as:

['(', '[',

'{', '<']

white =

%W(\s \t

\r

\n) #

Same

as:

["\s", "\t",

"\r", "\n"]

You can also create arrays with the Array.new constructor, and this provides options

for programmatically initializing the array elements:

empty =

Array.new #

[]: returns

a new

emp

ty

arr

ay

ni

ls

=

Array.new(

3) #

[nil,

nil,

nil]

:

new array with 3

nil elements

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 34/49

 zeros =

Array.new(4, 0) #

[0,

0,

0, 0]:

new

arr

ay

with

4

0

elements

co

py

=

Array.new(n

ils) #

Ma

ke a

ne

w

copy

of

an

existin

g array

count =

Array.new(3)

{|i|

i+

1}

[1,2,3]

: 3

elements computed

from index

To obtain the value of an array element, use a single integer within square brackets:

a = [0,

1, 4,

9,

16]

Array holds the squares

of the indexes

a[0] # First element is 0

a[-1] #

Last

element is 16

a[-2] # Second to last element is 9

a[a.siz

e-1] #

Another way to query the

last element

a[-

a.size

] #

Another way to query the

first element

a[8] #

Query

ing

beyo

nd

the end returns

nil

a[-8] #

Query

ing

befo

re

the start returns

nil, too

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 35/49

Like strings, arrays can also be indexed with two integers that represent a starting index

and a number of elements, or a Range object. In either case, the expression returns the

specified subarray:

a = ('a'..'e').to_a # Range converted to ['a', 'b', 'c',

'd', 'e']

a[0,0]

[]: this subarray has

zero elements

a[1,1]

['b']: a one-element

array

a[-2,2]

['d','e']: the last two

elements of the array

a[0..2]

['a', 'b', 'c']: the first

three elements

a[-2..-

1]

['d','e']: the last two

elements of the array

a[0...-

1]

['a', 'b', 'c', 'd']: all but

the last element

When used on the lefthand side of an assignment, a subarray can be replaced by the

elements of the array on the righthand side. This basic operation works for insertions

and deletions as well:

a[0,2] =

['A',

'B'

] #

a becomes

['A',

'B'

,

'c', 'd',

'e']

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 36/49

a[2...5]=

['C',

'D',

'E'] #

a becomes

['A',

'B'

,

'C', 'D',

'E']

a[0,0] =

[1,2,3] #

Insert

elements

at the

beginning of a

a[0.

.2]

=

[] #

Delete

those

eleme

nts

a[-

1,1]

=

['Z'

] #

Replace

last

eleme

nt with another

a[-

1,1]

=

'Z' #

For single

elements,

the array is

optional

a[-

2,2]

=

nil

Delete last 2

elements

i

n

1.8

;

replace with

nil in 1.9

In addition to the square bracket operator for indexing an array, the Array class defines

a number of other useful operators. Use + to concatenate two arrays:

a =

[1,

2, 3] +

[4, 5]

[1,

2

,

3

,

4,

5]

a

=

a +

[[6, 7,

8]] #

[1

,

2

,

3

,

4,

5,

[6, 7,

8]]

a

=

a + 9 #

Erro

r:

righthand

side must

be an

array

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 37/49

The - operator subtracts one array from another. It begins by making a copy of its

lefthand array, and then removes any elements from that copy if they appear anywhere

in the righthand array:

['a', 'b', 'c', 'b', 'a'] - ['b', 'c', 'd'] # ['a', 'a']

The + operator creates a new array that contains the elements of both its operands.

Use

 to append elements to the end of an existing array:

a =

[]

Start with an

empty array

a

<< 1

a

is [1]

a

<

< 2

<<

3

a

i

s [1, 2, 3]

a

<

<

[4,5

,6]

a

i

s

[1, 2, 3, [4,

5, 6]]

Like the String class, Array also uses the multiplication operator for repetition:

a = [0] * 8 # [0, 0, 0, 0, 0, 0, 0, 0]

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 38/49

The Array class borrows the Boolean operators | and & and uses them for union and

intersection. | concatenates its arguments and then removes all duplicate elements

from the result. & returns an array that holds elements that appear in both of the

operand arrays. The returned array does not contain any duplicate elements:

a =

[1, 1, 2, 2, 3, 3, 4]

b =

[5, 5, 4, 4, 3, 3, 2]

a |

b #

[1, 2, 3, 4, 5]: duplicates are

removed

b |

a #

[5, 4, 3, 2, 1]: elements are the same,

but order is different

a &

b # [2, 3, 4]

b &

a # [4, 3, 2]

Note that these operators are not transitive: a|b is not the same as b|a, for example. If

you ignore the ordering of the elements, however, and consider the arrays to be unor-

dered sets, then these operators make more sense. Note also that the algorithm by

which union and intersection are performed is not specified, and there are no

guarantees about the order of the elements in the returned arrays.

The Array class defines quite a few useful methods. The only one we’ll discuss here is

the each iterator, used for looping through the elements of an array:

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 39/49

a = ('A'..'Z').to_a # Begin with an array of letters

a.each {|x| print x } # Print the alphabet, one letter at a

time

Hashes

A hash is a data structure that maintains a set of objects known as keys, and associates

a value with each key. Hashes are also known as maps because they map keys to

values. They are sometimes called associative arrays because they associate values

with each of the keys, and can be thought of as arrays in which the array index can be

any object instead of an integer. An example makes this clearer:

This hash will map the names of digits to the digits

themselves

numbers = Hash.new # Create a new, empty, hash object

numbers["one"] = 1 # Map the String "one" to the Fixnum 1

numbers["two"] = 2 # Note that we are using array

notation here numbers["three"] = 3

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 40/49

sum = numbers["one"] + numbers["two"] # Retrieve values like

this

Hash Literals

A hash literal is written as a comma-separated list of key/value pairs, enclosed within

curly braces. Keys and values are separated with a two-character “arrow”: =>. The

Hash object created earlier could also be created with the following literal:

numbers = { "one" => 1, "two" => 2, "three" => 3 }

In general, Symbol objects work more efficiently as hash keys than strings do:

numbers = { :one => 1, :two => 2, :three => 3 }

Symbols are immutable interned strings, written as colon-prefixed identifiers; they are

explained in more detail in §3.6 later in this chapter.

Ruby 1.8 allows commas in place of arrows, but this deprecated syntax is no longer

supported in Ruby 1.9:

numbers = { :one, 1, :two, 2, :three, 3 } # Same, but harder

to read

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 41/49

Ranges

 Range object represents the values between a start value and an end value. Range

literals are written by placing two or three dots between the start and end value. If two

 The result is a syntax much like that used by JavaScript objects.

 dots are used, then the range is inclusive and the end value is part of the

range. If three dots are used, then the range is exclusive and the end value is not

part of the range:

 1..10 # The integers 1 through 10, including 10

 1.0...10.0 # The numbers between 1.0 and 10.0,

excluding 10.0 itself

 Test whether a value is included in a range with the include? method

(but see below for a discussion of alternatives):

 cold_war = 1945..1989

 cold_war.include? birthdate.year

 Implicit in the definition of a range is the notion of ordering. If a range is

the values between two endpoints, there obviously must be some way to

compare values to those endpoints. In Ruby, this is done with the comparison

operator <=>, which compares its two operands and evaluates to –1, 0, or 1,

depending on their relative order (or equality). Classes such as numbers and

strings that have an ordering define the <=> operator. A value can only be used

as a range endpoint if it responds to this operator. The endpoints of a range and

the values “in” the range are typically all of the same class. Technically, however,

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 42/49

any value that is compatible with the <=> operators of the range endpoints can

be considered a member of the range.

 The primary purpose for ranges is comparison: to be able to determine

whether a value is in or out of the range. An important secondary purpose is

iteration: if the class of the endpoints of a range defines a succ method (for

successor), then there is a discrete set of range members, and they can be

iterated with each, step, and Enumerable methods. Consider the range

'a'..'c', for example:

r = 'a'..'c'

r.each {|l| print

"[#{l}]"} # Prints "[a][b][c]"

r.step(2) { |l| print

"[#{l}]"} # Prints "[a][c]"

r.to_a #

=> ['a','b','c']:

Enumerable defines to_a

 The reason this works is that the String class defines a succ method

and 'a'.succ is 'b' and 'b'.succ is 'c'. Ranges that can be iterated like

this are discrete ranges. Ranges whose endpoints do not define a succ

method cannot be iterated, and so they can be called continuous. Note that

ranges with integer endpoints are discrete, but floating-point numbers as

endpoints are continuous.

 Ranges with integer endpoints are the most commonly used in typical

Ruby programs. Because they are discrete, integer ranges can be used to index

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 43/49

strings and arrays. They are also a convenient way to represent an enumerable

collection of ascending values.

 Notice that the code assigns a range literal to a variable, and then invokes

methods on the range through the variable. If you want to invoke a method

directly on a range literal, you must parenthesize the literal, or the method

invocation is actually on the endpoint of the range rather than on the Range

object itself:

 1..3.to_a # Tries to call to_a on the number 3

 (1..3).to_a # => [1,2,3]

Symbols

A typical implementation of a Ruby interpreter maintains a symbol table in which it

stores the names of all the classes, methods, and variables it knows about. This allows

such an interpreter to avoid most string comparisons: it refers to method names (for

example) by their position in this symbol table. This turns a relatively expensive string

operation into a relatively cheap integer operation.

These symbols are not purely internal to the interpreter; they can also be used by Ruby

programs. A Symbol object refers to a symbol. A symbol literal is written by prefixing an

identifier or string with a colon:

:symbol

A

Symbol literal

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 44/49

:"symbol"

The

sa

me literal

:'another long

symbol' #

Quotes

are

useful for symbols

with spaces

s = "string"

sym = :"#{s}" #

Th

e

Symb

ol :string

Symbols also have a %s literal syntax that allows arbitrary delimiters in the same way

that %q and %Q can be used for string literals:

%s["] # Same as :'"'

Symbols are often used to refer to method names in reflective code. For example,

suppose we want to know if some object has an each method:

o.respond_to? :each

Here’s another example. It tests whether a given object responds to a specified method,

and, if so, invokes that method:

name = :size

if o.respond_to? name

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 45/49

o.send(name)

end

You can convert a String to a Symbol using the intern or to_sym methods. And

you can convert a Symbol back into a String with the to_s method or its alias

id2name:

str =

"string"

Begin

with a

Strin

g

sym =

str.intern

Convert

to a

Symbo

l

sym =

str.to_sym

Another

way

t

o do

the same

thing

str

=

sym.to

_s #

Convert

back

to

a String

str

=

sym.id2

name #

Another

way

t

o do It

Two strings may hold the same content and yet be completely distinct objects. This is

never the case with symbols. Two strings with the same content will both convert to

exactly the same Symbol object. Two distinct Symbol objects will always have different

content.

Whenever you write code that uses strings not for their textual content but as a kind of

unique identifier, consider using symbols instead. Rather than writing a method that

expects an argument to be either the string “AM” or “PM”, for example, you could

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 46/49

True, False, and Nil

We saw in §2.1.5 that true, false, and nil are keywords in Ruby. true and false

are the two Boolean values, and they represent truth and falsehood, yes and no, on and

off. nil is a special value reserved to indicate the absence of value.

Each of these keywords evaluates to a special object. true evaluates to an object that

is a singleton instance of TrueClass. Likewise, false and nil are singleton

instances of FalseClass and NilClass. Note that there is no Boolean class in

Ruby. TrueClass and FalseClass both have Object as their superclass.

If you want to check whether a value is nil, you can simply compare it to nil, or use

the method nil?:

o == nil # Is o nil?

o.nil? # Another way to test

Note that true, false, and nil refer to objects, not numbers. false and nil are not

the same thing as 0, and true is not the same thing as 1. When Ruby requires a

Boolean value, nil behaves like false, and any value other than nil or false

behaves like true.

RDoc and ri

RDoc is a documentation system. If you put comments in your program files

(Ruby or C) in the prescribed RDocformat, rdoc scans your files, extracts the

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 47/49

comments, organizes them intelligently (indexed according to what they

comment on), and creates nicely formatted documentation from them. You can

see RDoc markup in many of the C files in the Ruby source tree and many of the

Ruby files in the Ruby installation.

The Ruby ri tool is used to view the Ruby documentation off-line. Open a

command window and invoke ri followed by the name of a Ruby class, module

or method. ri will display documentation for you. You may specify a method

name without a qualifying class or module name, but this will just show you a

list of all methods by that name (unless the method is unique). Normally, you

can separate a class or module name from a method name with a period. If a

class defines a class method and an instance method by the same name, you

must instead use :: to refer to a class method or # to refer to the instance

method. Here are some example invocations of ri

1. :ri Array

2. ri Array.sort

3. ri Hash#each

4. ri Math::sqrt

ri dovetails with RDoc: It gives you a way to view the information that RDoc has

extracted and organized. Specifically (although not exclusively, if you

customize it), ri is configured to display the RDoc information from the Ruby

source files. Thus on any system that has Ruby fully installed, you can get

detailed information about Ruby with a simple command-line invocation of ri.

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 48/49

POSSIBLE QUESTIONS

UNIT 1

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. List out the major characteristics of the database approach.

2. Discuss on the different categories of data model.

3. Write short notes on schemas, instances and database state.

4. Elaborate the three schema architecture of DBMS in detail.

5. Write a detailed note on the two types of data independence.

6. Discuss on DBMS languages.

7. What is meant by DBMS interfaces? Explain them in detail.

8. Illustrate the main phases of database design.

9. Describe the different types of attributes in the ER model.

10. Write short notes on entity types and entity sets.

PART – C (10 MARKS)

1. Design an application form using tk classes and validate all fields on Rails framework

2. Explain about different Data Types in Ruby.

3. Explain in detail about Object creation and initialization in Ruby

4. Write a ruby program to create a main thread and execute multiple process through the main
thread.

5. Write a note on Defining, Calling and Undefining methods in Ruby

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 49/49

Subject:RUBY PROGRAMMING SUBJECT CODE: 17CAP504W

CLASS: III MCA SEMESTER: V

QESTIONS OPTION1 OPTION2 OPTION3 OPTIONS4 ANS

 is the developer of ruby programming language. Yukihiro "Matz"
Matsumoto

Charles babbage William stallings David Flanagan Yukihiro
"Matz"

Ruby is a programming language static dynamic realistic static and dynamic dynamic

Ruby is very strict about of its objects. encapsulation abstraction dynamic binding

43.times { print "Ruby! " } output: # Prints "Ruby! Ruby!

Ruby! "

Prints "3! 3! 3! " # Prints "30! 30!

30! "

Prints "Compiler

Exception "

Prints

"Ruby! Ruby!

Ruby! "

1.upto(9) {|x| print x } output: # Prints "123456789" # Prints "123499999" # Prints
"xxxxxxxxx"

Prints
"9999999999"

Prints
"123456789"

The causes the interpreter to execute a single specified line of Ruby code. -f command-line

option

-e command-line option -eee command-

line option

–ae dos command-

line option

-e

command-
line option

irb stand for It is a Ruby shell. interactive Ruby innovative ruby irregular ruby shell immediate ruby interactive
Ruby

ri on the command line followed by the name of a will display documentation.\ Ruby implementation Ruby installation Ruby class,

module, or method,

and ri

Ruby Interaction Ruby class,

module, or

method, and
ri

Ruby is a ----------- programming paradigm
Procedural
Programming Functional Programming

Object Oriented
Programming

Conventional
Programming

OOP is a programming paradigm that uses ----------- to design applications and computer programs Objects Classes Inheritance Polymorphism Objects

Everything in Ruby Programming Language can be treated as ---------- Classes Constructors Objects Classes Objects

Which of the following is NOT a programming concept in OOP? Methods Abstraction Polymorphism Inheritance Methods

The ----------- is simplifying complex reality by modeling classes appropriate to the problem Abstraction Polymorphism Encapsulation Inheritance Abstraction

The ----------- is the process of using an operator or function in different ways for different data input Abstraction Polymorphism Encapsulation Inheritance
Polymorphis
m

The ---------- hides the implementation details of a class from other objects

Abstraction

Polymorphism

Encapsulation

Inheritance

Encapsulatio

n
The ---------- is a way to form new classes using a classes that have been already defined Abstraction Polymorphism Encapsulation Inheritance Inheritance

Objects are -----------of a Ruby OOP Program

Methods

Classes

Basic Building

Blocks

Constructors

Basic

Building
Blocks

An object is a combination of ---------- and ---------- Data, Methods Classes, Methods
Polymorphism,

Inheritance
Data, Encapsulation

Data,
Methods

Objects communicate together through ---------- Classes Data Methods Templates Methods

A --------- is a template for an object Methods Data Variables Class Class

----------is a special kind of a method Object Class Constructor Data Constructor

---------- is automatically called when an object is created Constructor Class Data Object

The Constructor in Ruby is called ---------- Initialize Constructor Init Object Initialize

---------- do not return values

Objects

Methods

Abstract Classes

Constructors

Constructors

Constructors cannot be ---------- Inherited Called Created Initiated Inherited

The constructor of a parent object is called with a ------------ method Initialize Super Inherit Special Super

An instance variable is a variable defined in a ---------- Object Class Method Abstract Class Class

Ruby has no ----------

Inheritance

Constructor Overloading

Abstraction

Encapsulation

Constructor

Overloading

---------- is the ability to have multiple types of constructors in a class

Constructor

Overloading

Initializing

Method

Overloading

Inheritance

Constructor

Overloading
---------- are functions defined inside the body of a class Objects Classes Methods Variables Methods

Methods are used to perform operations within the ----------- of our objects Attributes Features Arguments Parameters Attributes

Methods are essential in ----------- concept

Abstraction

Encapsulation

Inheritance

Polymorphism

Encapsulatio

n
In Ruby, data is accessible only through ---------- Methods Classes Objects Constructors Methods

Class Variables start with ----------- sigils in Ruby @@ @ ! # @@

---------- set the visibility of methods and member fields

Keywords

Access modifiers

Objects

Classes

Access
modifiers

Ruby has----------- access modifiers one Two Three Four Three

Which of the following is NOT an access modifier? Public Private Default Protected Default

Access Modifiers can be used only on ---------- Classes Objects Constructors Methods Methods

By Default Ruby methods are ---------- Public Private Protected Default Public

The ---------- methods can be accessed from inside the definition of the class as well as from the outside of the class Private Public Protected Default Public

---------- protects data against accidental modifications

Default

Class

Objects

Access Modifiers

Access
Modifiers

---------- are the only methods that can be called outside the definition of a class

Public Methods

Private Methods

Protected Methods

Default Methods

Public
Methods

---------- are the only methods that can be called inside the definition of a class

Public Methods

Private Methods

Protected Methods

Default Methods

private
methods

---------- methods can be called with the self keyword specified

Public Methods

Private Methods

Protected Methods

Default Methods

Protected
Methods

In Inheritance, the classes we derive from are called ---------- Base Class Derive Class Abstract Class Default Class Base Class

In Inheritance, the newly formed classes are called ----------

Base Class

Derive Class

Abstract Class

Default Class

Derive Class

---------- is used to reduce code reuse and reduction of complexity of a program Abstraction encapsulation Inheritance Polymorphism Inheritance

In Ruby --------- operator is used to create inherit relations < > @@ @ <

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 1/49

Unit I

Introduction to Ruby: Installing Ruby - THE STRUCTURE AND

EXECUTION OF RUBY PROGRAMS: Lexical Structure- Syntactic

Structure - Block Structure in Ruby- File Structure - Program Execution.

DATA TYPES: Numbers - Text - String Literals - Character Literals -

String Operators - Accessing Characters and Substrings - Iterating Strings

– Arrays – Hashes – Ranges – Symbols – True & False – Ruby

Documentation: RDoc and ri.

Introduction to Ruby

Ruby is a pure object-oriented programming language. It was created in

1993 by Yukihiro Matsumoto of Japan.

Installing Ruby

You can download Ruby from https://www.ruby-lang.org/en/downloads/

The Structure and Execution of Ruby Programs: Lexical Structure

The Ruby interpreter parses a program as a sequence of tokens. Tokens

include com3ments, literals, punctuation, identifiers, and keywords. This

section introduces these types of tokens and also includes important

information about the characters that comprise the tokens and the

whitespace that separates the tokens.

Comments

Comments in Ruby begin with a # character and continue to the end of the

line. The Ruby interpreter ignores the # character and any text that follows

it (but does not ignore the newline character, which is meaningful

whitespace and may serve as a statement terminator). If a # character

appears within a string or regular expression literal (see Chapter 3), then it

is simply part of the string or regular expression and does not introduce a

comment:

This entire line is a comment

x = "#This is a string" # And this is a comment

Embedded documents

https://www.ruby-lang.org/en/downloads/

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 2/49

Ruby supports another style of multiline comment known as an embedded

document. These start on a line that begins =begin and continue until (and

include) a line that begins =end. Any text that appears after =begin or

=end is part of the comment and is also ignored, but that extra text must be

separated from the =begin and =end by at least one space.

Embedded documents are a convenient way to comment out long blocks

of code with-out prefixing each line with a # character:

=begin Someone needs to fix the broken code below!

 Any code here is commented out

=end

Note that embedded documents only work if the = signs are the first

characters of each line:

 =begin This used to begin a comment. Now it is itself commented

out! The code that goes here is no longer commented out

 =end

Documentation comments

Ruby programs can include embedded API documentation as specially

formatted com-ments that precede method, class, and module definitions.

The rdoc tool extracts doc-umentation comments from Ruby source and

formats them as HTML or prepares them for display by ri. Documentation

of the rdoc tool is beyond the scope of this book; see the file

lib/rdoc/README in the Ruby source code for details.

Documentation comments must come immediately before the module,

class, or method whose API they document. They are usually written as

multiline comments where each line begins with #, but they can also be

written as embedded documents that start =begin rdoc. (The rdoc tool will

not process these comments if you leave out the ―rdoc‖.)

Literals

Literals are values that appear directly in Ruby source code. They include

numbers, strings of text, and regular expressions. (Other literals, such as

array and hash values, are not individual tokens but are more complex

expressions.)

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 3/49

Punctuation

Ruby uses punctuation characters for a number of purposes. Most Ruby

operators are written using punctuation characters, such as + for addition,

* for multiplication, and for the Boolean OR operation. See §4.6 for a

complete list of Ruby operators. Punc-tuation characters also serve to

delimit string, regular expression, array, and hash literals, and to group

and separate expressions, method arguments, and array indexes. We’ll see

miscellaneous other uses of punctuation scattered throughout Ruby syntax.

Identifiers

An identifier is simply a name. Ruby uses identifiers to name variables,

methods, classes, and so forth. Ruby identifiers consist of letters, numbers,

and underscore characters, but they may not begin with a number.

Identifiers may not include whitespace or nonprinting characters, and they

may not include punctuation characters except as described here.

Identifiers that begin with a capital letter A–Z are constants, and the Ruby

interpreter will issue a warning (but not an error) if you alter the value of

such an identifier. Class and module names must begin with initial capital

letters. The following are identifiers:

i
x2

old_value_internal# Identifiers may begin with underscores

PI # Constant

By convention, multiword identifiers that are not constants are written

with under-scores like_this, whereas multiword constants are written

LikeThis or LIKE_THIS.

Case sensitivity

Ruby is a case-sensitive language. Lowercase letters and uppercase letters

are distinct.

The keyword end, for example, is completely different from the keyword

END.

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 4/49

Unicode characters in identifiers

Ruby’s rules for forming identifiers are defined in terms of ASCII

characters that are not allowed. In general, all characters outside of the

ASCII character set are valid in identifiers, including characters that

appear to be punctuation. In a UTF-8 encoded file, for example, the

following Ruby code is valid:

def ×(x,y) # The name of this method is the Unicode multiplication

sign

x*y # The body of this method multiplies itsarguments

end

The special rules about forming identifiers are based on ASCII characters

and are not enforced for characters outside of that set. An identifier may

not begin with an ASCII digit, for example, but it may begin with a digit

from a non-Latin alphabet. Similarly, an identifier must begin with an

ASCII capital letter in order to be considered a constant. The identifier Å,

for example, is not a constant.

Two identifiers are the same only if they are represented by the same

sequence of bytes. Some character sets, such as Unicode, have more than

one codepoint that represents the same character. No Unicode

normalization is performed in Ruby, and two distinct codepoints are

treated as distinct characters, even if they have the same meaning or are

represented by the same font glyph.

2.1.4.3 Punctuation in identifiers

Punctuation characters may appear at the start and end of Ruby identifiers.

They have the following meanings:

Global variables are prefixed with a dollar sign. Following Perl’s example,

Rubydefines a number of global variables that include other punctuation

characters, such as $_ and $-K. See Chapter 10 for a list of these special

globals.

As a helpful convention, methods that return Boolean values often have

names that end with a question mark. Method names may end with an

exclamation point to indicate that they should be used cautiously. This

naming convention is often to distinguish mutator methods that alter the

object on which they are invoked from variants that return a modified

copy of the original object.

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 5/49

Here are some example identifiers that contain leading or trailing

punctuation characters:

$files # A global variable
@data # An instance variable
@@counter # A class variable
empty? # A Boolean-valued method or predicate

sort! # An in-place alternative to the regular sort method

timeout= # A method invoked by assignment

A number of Ruby’s operators are implemented as methods, so that

classes can redefine them for their own purposes. It is therefore possible to

use certain operators as method names as well. In this context, the

punctuation character or characters of the operator are treated as identifiers

rather than operators.

Syntactic Structure

The basic unit of syntax in Ruby is the expression. The Ruby interpreter

evaluates ex-pressions, producing values. The simplest expressions are

primary expressions, which represent values directly. Number and string

literals, described earlier in this chapter, are primary expressions. Other

primary expressions include certain keywords such as true, false, nil, and

self. Variable references are also primary expressions; they evaluate to the

value of the variable.

more complex values can be written as compound expressions:

[1,2,3] # An Array literal

{1=>"one",

2=>"two"} # A Hash literal

1..3 # A Range literal

Operators are used to perform computations on values, and compound

expressions are built by combining simpler subexpressions with operators:

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 6/49

 = 1 # An assignment expression

 = x + 1 # An expression with two operators

 Expressions can be combined with Ruby’s keywords to

create statements, such as the if statement for conditionally

executing code and the while statement for repeatedly executing

code:

if x < 10 then # If this expression is true

x = x + 1 # Then execute this tatement

end # Marks the end of the conditional

 while x

<

 10

do # While this expression is true...

print x # Execute this statement

x = x + 1

Then execute this

statement

end # Marks the end of the loop

 Block Structure in Ruby

Ruby programs have a block structure. Module, class, and method

definitions, and most of Ruby’s statements, include blocks of nested code.

These blocks are delimited by keywords or punctuation and, by

convention, are indented two spaces relative to the delimiters. There are

two kinds of blocks in Ruby programs. One kind is formally called a

―block.‖ These blocks are the chunks of code associated with or passed to

iterator methods:

 3.times { print "Ruby! " }

 In this code, the curly braces and the code inside them are

the block associated with the iterator method invocation 3.times.

Formal blocks of this kind may be delimited with curly braces, or

they may be delimited with the keywords do and end:

 1.upto(10) do |x|

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 7/49

 print x
 end

 do and end delimiters are usually used when the block is

written on more than one line.

 To avoid ambiguity with these true blocks, we can call the

other kind of block a body (in practice, however, the term ―block‖

is often used for both). A body is just the list of statements that

comprise the body of a class definition, a method definition, a while

loop, or whatever. Bodies are never delimited with curly braces in Ruby—key-

words usually serve as the delimiters instead. The specific syntax

for statement bodies, method bodies, and class and module bodies

are documented in Chapters 5, 6, and 7.

 Bodies and blocks can be nested within each other, and

Ruby programs typically have several levels of nested code, made

readable by their relative indentation. Here is a schematic example:

module Stats # A module

class Dataset # A class in the module

def initialize(filename) # A method in the class

IO.foreach(filename) do |line| # A block in the method

 if line[0,1] == "#" # An if statement in the block

 next # A simple statement in the if

 end # End the if body

end # End the block

end # End the method body

end # End the class body

end # End the module body

 File Structure

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 8/49

There are only a few rules about how a file of Ruby code must be

structured. These rules are related to the deployment of Ruby programs

and are not directly relevant to the language itself.

First, if a Ruby program contains a ―shebang‖ comment, to tell the

(Unix-like) operating system how to execute it, that comment must

appear on the first line.

 Second, if a Ruby program contains a ―coding‖ comment that

comment must appear on the first line or on the second line if the first

line is a shebang.

 Third, if a file contains a line that consists of the single token

__END__ with no whitespace before or after, then the Ruby interpreter

stops processing the file at that point. The remainder of the file may

contain arbitrary data that the program can read using the IO stream

object DATA. (See Chapter 10 and §9.7 for more about this global

constant.)

 Ruby programs are not required to fit in a single file. Many

programs load additional Ruby code from external libraries, for

example. Programs use require to load code from another file.

require searches for specified modules of code against a search

path, and prevents any given module from being loaded more than

once. See §7.6 for details.

 The following code illustrates each of these points of Ruby

file structure:

 #!/usr/bin/ruby -w shebang comment
 # -*- coding: utf-8 -*- coding comment
 require 'socket' load networking library

 ... program code goes here

 __END__ mark end of code

 ... program data goes here

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 9/49

Program Execution

Ruby is a scripting language. This means that Ruby programs are simply

lists, or scripts, of statements to be executed. By default, these statements

are executed sequentially, in the order they appear. Ruby’s control

structures (described in Chapter 5) alter this default execution order and

allow statements to be executed conditionally or repeat-edly, for example.

Programmers who are used to traditional static compiled languages like C

or Java may find this slightly confusing. There is no special main method

in Ruby from which exe-cution begins. The Ruby interpreter is given a

script of statements to execute, and it begins executing at the first line and

continues to the last line.

(Actually, that last statement is not quite true. The Ruby interpreter first

scans the file for BEGIN statements, and executes the code in their bodies.

Then it goes back to line 1 and starts executing sequentially. See §5.7 for

more on BEGIN.)

Another difference between Ruby and compiled languages has to do with

module, class, and method definitions. In compiled languages, these are

syntactic structures that are processed by the compiler. In Ruby, they are

statements like any other. When the Ruby interpreter encounters a class

definition, it executes it, causing a new class to come into existence.

Similarly, when the Ruby interpreter encounters a method definition, it

executes it, causing a new method to be defined. Later in the program, the

interpreter will probably encounter and execute a method invocation

expression for the method, and this invocation will cause the statements in

the method body to be executed.

The Ruby interpreter is invoked from the command line and given a script

to execute. Very simple one-line scripts are sometimes written directly on

the command line. More commonly, however, the name of the file

containing the script is specified. The Ruby interpreter reads the file and

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 10/49

executes the script. It first executes any BEGIN blocks. Then it starts at

the first line of the file and continues until one of the following happens:

 It executes a statement that causes the Ruby program to terminate.

 It reaches the end of the file.

 It reads a line that marks the logical end of the file with the token
__END__.

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 11/49

Before it quits, the Ruby interpreter typically (unless the exit! method was

called) executes the bodies of any END statements it has encountered and

any other ―shutdown hook‖ code registered with the at_exit function.

DATA TYPES: Numbers

Numbers

Ruby includes five built-in classes for representing numbers, and the

standard library includes three more numeric classes that are sometimes

useful.

All number objects in Ruby are instances of Numeric. All integers are

instances of Integer. If an integer value fits within 31 bits (on most

implementations), it is an instance of Fixnum. Otherwise, it is a Bignum.

Bignum objects represent integers of arbi-trary size, and if the result of an

operation on Fixnum operands is too big to fit in a Fixnum, that result is

transparently converted to a Bignum. Similarly, if the result of an

operation on Bignum objects falls within the range of Fixnum, then the

result is a Fixnum. Real numbers are approximated in Ruby with the Float

class, which uses the native floating-point representation of the platform.

The Complex, BigDecimal, and Rational classes are not built-in to Ruby

but are distrib-uted with Ruby as part of the standard library. The

Complex class represents complex numbers, of course. BigDecimal

represents real numbers with arbitrary precision, using a decimal

representation rather than a binary representation. And Rational represents

rational numbers: one integer divided by another.

All numeric objects are immutable; there are no methods that allow you to

change the value held by the object. If you pass a reference to a numeric

object to a method, you need not worry that the method will modify the

object. Fixnum objects are commonly used, and Ruby implementations

typically treat them as immediate values rather than as references. Because

numbers are immutable, however, there is really no way to tell the

difference.

 Integer Literals

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 12/49

An integer literal is simply a sequence of digits:

0

123

12345678901234567890

If the integer values fit within the range of the Fixnum class, the value is a

Fixnum. Otherwise, it is a Bignum, which supports integers of any size.

Underscores may be inserted into integer literals (though not at the

beginning or end), and this feature is sometimes used as a thousands

separator:

1_000_000_000 # One billion (or 1,000 million in the UK)

If an integer literal begins with zero and has more than one digit, then it is

interpreted in some base other than base 10. Numbers beginning with 0x

or 0X are hexadecimal (base 16) and use the letters a through f (or A

through F) as digits for 10 through 15. Numbers beginning 0b or 0B are

binary (base 2) and may only include digits 0 and 1. Numbers beginning

with 0 and no subsequent letter are octal (base 8) and should consist of

digits between 0 and 7. Examples:

0377 # Octal representation of 255

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 13/49

0b1111_11

11 #

Binary representation of

255

0xFF #

Hexadecimal representation of

255

To represent a negative number, simply begin an integer literal with a

minus sign. Literals may also begin with a plus sign, although this never

changes the meaning of the literal.

Floating-Point Literals

A floating-point literal is an optional sign followed by one or more

decimal digits, a decimal point (the . character), one or more additional

digits, and an optional expo-nent. An exponent begins with the letter e or

E, and is followed by an optional sign and one or more decimal digits. As

with integer literals, underscores may be used within

floating-point literals. Unlike integer literals, it is not possible to express

floating-point values in any radix other than base 10. Here are some

examples of floating-point literals:

0.0

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 14/49

-3.14

6.02e23 # This means 6.02 × 10
23

1_000_000.01 # One million and a little bit more

Ruby requires that digits appear before and after the decimal point. You

cannot simply write .1, for example; you must explicitly write 0.1. This is

necessary to avoid ambiguity in Ruby’s complex grammar. Ruby differs

from many other languages in this way.

Text

Text is represented in Ruby by objects of the String class. Strings are

mutable objects, and the String class defines a powerful set of operators

and methods for extracting substrings, inserting and deleting text,

searching, replacing, and so on. Ruby provides a number of ways to

express string literals in your programs, and some of them support a

powerful string interpolation syntax by which the values of arbitrary Ruby

expressions can be substituted into string literals. The sections that follow

explain string and character literals and string operators.

Textual patterns are represented in Ruby as Regexp objects, and Ruby

defines a syntax for including regular expressions literally in your

programs. The code /[a-z]\d+/, for example, represents a single lowercase

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 15/49

letter followed by one or more digits. Regular expressions are a commonly

used feature of Ruby, but regexps are not a fundamental datatype in the

way that numbers, strings, and arrays are.

String Literals

Ruby provides quite a few ways to embed strings literally into your

programs.

 Single-quoted string literals

The simplest string literals are enclosed in single quotes (the apostrophe

character).

The text within the quote marks is the value of the string:

'This is a simple Ruby string literal'

If you need to place an apostrophe within a single-quoted string literal,

precede it with a backslash so that the Ruby interpreter does not think that

it terminates the string:

'Won\'t you read O\'Reilly\'s book?'

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 16/49

The backslash also works to escape another backslash, so that the second

backslash is not itself interpreted as an escape character. Here are some

situations in which you need to use a double backslash:

'This string literal ends with a single backslash: \\'

'This is a backslash-quote: \\\''

'Two backslashes: \\\\'

In single-quoted strings, a backslash is not special if the character that

follows it is anything other than a quote or a backslash. Most of the time,

therefore, backslashes need not be doubled (although they can be) in string

literals. For example, the following two string literals are equal:

'a\b' == 'a\\b'

Single-quoted strings may extend over multiple lines, and the resulting

string literal includes the newline characters. It is not possible to escape

the newlines with a backslash:

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 17/49

'This is a long string literal \

that includes a backslash and a newline'

If you want to break a long single-quoted string literal across multiple

lines without embedding newlines in it, simply break it into multiple

adjacent string literals; the Ruby interpreter will concatenate them during

the parsing process. Remember, though, that you must escape the newlines

(see Chapter 2) between the literals so that Ruby does not interpret the

newline as a statement terminator:

message =

'These three literals are '\

'concatenated into one by the interpreter. '\

'The resulting string contains no newlines.'

Double-quoted string literals

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 18/49

String literals delimited by double quotation marks are much more flexible

than single-quoted literals. Double-quoted literals support quite a few

backslash escape sequences, such as \n for newline, \t for tab,

and \" for a quotation mark that does not terminate the string:

"\t\"This quote begins with a tab and ends with

a newline\"\n"

"\\" # A single backslash

Character Literals

Single characters can be included literally in a Ruby program by

preceding the character with a question mark. No quotation marks

of any kind are used:

?A # Character literal for the ASCII character

A

?" # Character literal for the double-quote

character

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 19/49

 # Character literal for the question mark

character

Although Ruby has a character literal syntax, it does not have a

special class to represent single characters.

String Operators

The String class defines several useful operators for

manipulating strings of text. The

 operator concatenates two strings and returns the result as a new

String object:

planet = "Earth"

"Hello" + " " + planet # Produces "Hello Earth"

Java programmers should note that the + operator does not convert

its righthand operand to a string; you must do that yourself:

"Hello planet #" + planet_number.to_s # to_s converts to a string

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 20/49

Of course, in Ruby, string interpolation is usually simpler than string

concatenation with +. With string interpolation, the call to to_s is done

automatically:

"Hello planet ##{planet_number}"

The << operator appends its second operand to its first, and should be

familiar to C++ programmers. This operator is very different from +; it

alters the lefthand operand rather than creating and returning a new object:

greeting = "Hello"

greeting << " " << "World"

puts greeting # Outputs "Hello World"

Like +, the << operator does no type conversion on the righthand operand.

If the right-hand operand is an integer, however, it is taken to be a

character code, and the corresponding character is appended. In Ruby 1.8,

only integers between 0 and 255 are allowed. In Ruby 1.9, any integer that

represents a valid codepoint in the string’s encoding can be used:

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 21/49

alphabet =

"A"

alphabet

<< ?B

Alphabet is now "AB"

alphabe

t

<

< 67 #

And now it

is "ABC"

alphabe

t

<

<

25

6 # Error in

Rub

y

1.8: codes must be >=0 and <

256

The * operator expects an integer as its righthand operand. It returns a

String that repeats the text specified on the lefthand side the number of

times specified by the righthand side:

ellipsis = '.'*3 # Evaluates to '...'

If the lefthand side is a string literal, any interpolation is performed just

once before the repetition is done. This means that the following too-

clever code does not do what you might want it to:

a = 0;

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 22/49

"#{a=a+1} " * 3 # Returns "1 1 1 ", not "1 2

3 "

String defines all the standard comparison operators. == and != compare

strings for equality and inequality. Two strings are equal if—and only if—

they have the same length and all characters are equal. <, <=, >, and >=

compare the relative order of strings by comparing the character codes of

the characters that make up a string. If one string

is a prefix of another, the shorter string is less than the longer string.

Comparison is based strictly on character codes. No normalization is done,

and natural language col-lation order (if it differs from the numeric

sequence of character codes) is ignored.

String comparison is case-sensitive.
*
 Remember that in ASCII, the

uppercase letters all have lower codes than the lowercase letters. This

means, for example, that "Z" < "a". For case-insensitive comparison of

ASCII characters, use the casecmp method (see §9.1) or convert your

strings to the same case with downcase or upcase methods before

comparing them. (Keep in mind that Ruby’s knowledge of upper- and

lowercase letters is limited to the ASCII character set.)

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 23/49

Accessing Characters and Substrings

Perhaps the most important operator supported by String is the

square-bracket array-index operator [], which is used for

extracting or altering portions of a string. This operator is quite

flexible and can be used with a number of different operand types.

It can also be used on the lefthand side of an assignment, as a way

of altering string content.

In Ruby 1.8, a string is like an array of bytes or 8-bit character

codes. The length of this array is given by the length or size

method, and you get or set elements of the array simply by

specifying the character number within square brackets:

s = 'hello'; # Ruby 1.8

s[0] # 104: the ASCII character code for the

first character 'h'

s[s.length-1] # 111: the character code of

the last character 'o'

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 24/49

s[-1] # 111: another way of accessing the

last character

s[-2] # 108: the second-to-last character

s[-s.length] # 104: another way of accessing

the first character

s[s.length] # nil: there is no character at

that index

Notice that negative array indexes specify a 1-based position from

the end of the string. Also notice that Ruby does not throw an

exception if you try to access a character beyond the end of the

string; it simply returns nil instead.

Ruby 1.9 returns single-character strings rather than character

codes when you index a single character. Keep in mind that when

working with multibyte strings, with char-acters encoded using

variable numbers of bytes, random access to characters is less

efficient than access to the underlying bytes:

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 25/49

s =

'hello';

Ruby 1.9

s[0]

'h':

the first character of the

string, as a string

s[s.leng

th-1]

'o': the last character 'o'

s[-1] #

'o

':

another way of accessing the

last character

s[-2] #

'l

':

the second-to-last

character

 In Ruby 1.8, setting the deprecated global variable $= to true

makes the ==, <, and related comparison operators perform case-

insensitive comparisons. You should not do this, however; setting

this variable produces a warning message, even if the Ruby

interpreter is invoked without the -w flag. And in Ruby 1.9, $= is

no longer supported.

s[-s.length] # 'h': another way of accessing

the first character

s[s.length] # nil: there is no character at

that index

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 26/49

To alter individual characters of a string, simply use brackets on the

lefthand side of an assignment expression. In Ruby 1.8, the

righthand side may be an ASCII character code or a string. In Ruby

1.9, the righthand side must be a string. You can use character

literals in either version of the language:

s[0] =

?H #

Replace first

character with a capital H

s[-1] =

?O #

Replace

last

character with a

capital O

s[s.length]

= ?! #

ERROR!

Can't

assign

beyond the

end

of

the

string

The righthand side of an assignment statement like this need not

be a character code: it may be any string, including a multicharacter

string or the empty string. Again, this works in both Ruby 1.8 and

Ruby 1.9:

s =

"hello"

Begin

with a greeting

s[-
= "" #

Dele th last character; s is now

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 27/49

1] te e "hell"

s[-

1] =

"p!

" #

Chan

ge

ne

w

last character and add one; s

is now "help!"

More often than not, you want to retrieve substrings from a string

rather than individual character codes. To do this, use two comma-

separated operands between the square brackets. The first

operand specifies an index (which may be negative), and the

second specifies a length (which must be nonnegative). The result

is the substring that begins at the specified index and continues for

the specified number of characters:

s =

"hello"

s[0,2] # "he"

s[-1,1]

"o": returns a string, not the

character code ?o

s[0,0]

"": a zero-length substring

is always empty

s[0,10]

"hello": returns all the characters

that are available

s[s.leng # "": there is an empty string

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 28/49

th,1] immediately beyond the end

s[s.length

+1,1]

nil: it is an error to read

past that

s[0,-1]

nil: negative lengths don't

make any sense

If you assign a string to a string indexed like this, you replace the

specified substring with the new string. If the righthand side is the

empty string, this is a deletion, and if the lefthand side has zero-

length, this is an insertion:

s =

"hello"

s[0,

1] = "H"

Replace first

letter with a

capital

letter

s[s.length,0] = " world" # Append by

assigning beyond the

end of the

string

s[5,

0] = "," #

Insert a comma, without

deleting anything

s[5,

6] = "" #

Delete with no

insertion; s

=

= "Hellod"

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 29/49

Another way to extract, insert, delete, or replace a substring is by

indexing a string with a Range object. We’ll explain ranges in detail

in §3.5 later. For our purposes here,

 Range is two integers separated by dots. When a Range is

used to index a string, the return value is the substring whose

characters fall within the Range:

s =

"hello"

s[2..3]

"ll":

characters 2 and

3

s[-3..-

1] #

"llo":

negative

indexes work,

too

s[0..0] #

"h": this

Range

inclu

des

one

character

index

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 30/49

s[0...0

]

"": this

Range is Empty

s[2..1] #

"": this

Range is also empty

s[7..10

] #

nil: this Range is outside

the string bounds

s[-2..-

1] =

"p!" #

Replacement: s becomes

"help!"

It is also possible to index a string with a string. When you do this, the return value is

the first substring of the target string that matches the index string, or nil, if no match is

found. This form of string indexing is really only useful on the lefthand side of an

assignment statement when you want to replace the matched string with some other

string:

s =

"hello"

Star

t

with the word

"hello"

while(s["

l"])

Whil

e

the string contains the

substring "l"

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 31/49

s["l"] =

"L"; #

Replace first occurrence

of "l" with "L"

end # Now we have "heLLo"

Iterating Strings

In Ruby 1.8, the String class defines an each method that iterates a string line-by-

line. The String class includes the methods of the Enumerable module, and they can

be used to process the lines of a string. You can use the each_byte iterator in Ruby

1.8 to iterate through the bytes of a string, but there is little advantage to using

each_byte over the [] operator because random access to bytes is as quick as

sequential access in 1.8.

The situation is quite different in Ruby 1.9, which removes the each method, and in

which the String class is no longer Enumerable. In place of each, Ruby 1.9 defines

three clearly named string iterators: each_byte iterates sequentially through the

individual bytes that comprise a string; each_char iterates the characters; and

each_line iterates the lines. If you want to process a string character-by-character, it

may be more efficient to use each_char than to use the [] operator and character

indexes:

s = "¥1000"

s.each_char {|x| print "#{x} " } # Prints "¥ 1 0 0 0". Ruby

1.9

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 32/49

0.upto(s.size-1) {|i| print "#{s[i]} "} # Inefficient with

multibyte chars

Arrays

An array is a sequence of values that allows values to be accessed by their position, or

index, in the sequence. In Ruby, the first value in an array has index 0. The size and

length methods return the number of elements in an array. The last element of the

array is at index size-1. Negative index values count from the end of the array, so the

last element of an array can also be accessed with an index of –1. The second-to-last

has an index of –2, and so on. If you attempt to read an element beyond the end of an

array (with an index >= size) or before the beginning of an array (with an index < -

size), Ruby simply returns nil and does not throw an exception.

Ruby’s arrays are untyped and mutable. The elements of an array need not all be of the

same class, and they can be changed at any time. Furthermore, arrays are dynamically

resizeable; you can append elements to them and they grow as needed. If you assign a

value to an element beyond the end of the array, the array is automatically extended

with nil elements. (It is an error, however, to assign a value to an element before the

beginning of an array.)

An array literal is a comma-separated list of values, enclosed in square brackets:

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 33/49

[1, 2, 3]

An

array that

holds three

Fixn

um objects

[-10...0,

0..10,] #

A

n

array

of

two ranges;

trailing

commas are

allowed

[[1,2],[3,4

],[5]] #

A

n

array

of

nested

arrays

Ruby includes a special-case syntax for expressing array literals whose elements are

short strings without spaces:

words =

%w[this is

a

test

]

Same

as:

['this', 'is',

'a', 'test']

open = %w|

([{ < | #

Same

as:

['(', '[',

'{', '<']

white =

%W(\s \t

\r

\n) #

Same

as:

["\s", "\t",

"\r", "\n"]

You can also create arrays with the Array.new constructor, and this provides options

for programmatically initializing the array elements:

empty =

Array.new #

[]: returns

a new

emp

ty

arr

ay

ni

ls

=

Array.new(

3) #

[nil,

nil,

nil]

:

new array with 3

nil elements

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 34/49

 zeros =

Array.new(4, 0) #

[0,

0,

0, 0]:

new

arr

ay

with

4

0

elements

co

py

=

Array.new(n

ils) #

Ma

ke a

ne

w

copy

of

an

existin

g array

count =

Array.new(3)

{|i|

i+

1}

[1,2,3]

: 3

elements computed

from index

To obtain the value of an array element, use a single integer within square brackets:

a = [0,

1, 4,

9,

16]

Array holds the squares

of the indexes

a[0] # First element is 0

a[-1] #

Last

element is 16

a[-2] # Second to last element is 9

a[a.siz

e-1] #

Another way to query the

last element

a[-

a.size

] #

Another way to query the

first element

a[8] #

Query

ing

beyo

nd

the end returns

nil

a[-8] #

Query

ing

befo

re

the start returns

nil, too

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 35/49

Like strings, arrays can also be indexed with two integers that represent a starting index

and a number of elements, or a Range object. In either case, the expression returns the

specified subarray:

a = ('a'..'e').to_a # Range converted to ['a', 'b', 'c',

'd', 'e']

a[0,0]

[]: this subarray has

zero elements

a[1,1]

['b']: a one-element

array

a[-2,2]

['d','e']: the last two

elements of the array

a[0..2]

['a', 'b', 'c']: the first

three elements

a[-2..-

1]

['d','e']: the last two

elements of the array

a[0...-

1]

['a', 'b', 'c', 'd']: all but

the last element

When used on the lefthand side of an assignment, a subarray can be replaced by the

elements of the array on the righthand side. This basic operation works for insertions

and deletions as well:

a[0,2] =

['A',

'B'

] #

a becomes

['A',

'B'

,

'c', 'd',

'e']

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 36/49

a[2...5]=

['C',

'D',

'E'] #

a becomes

['A',

'B'

,

'C', 'D',

'E']

a[0,0] =

[1,2,3] #

Insert

elements

at the

beginning of a

a[0.

.2]

=

[] #

Delete

those

eleme

nts

a[-

1,1]

=

['Z'

] #

Replace

last

eleme

nt with another

a[-

1,1]

=

'Z' #

For single

elements,

the array is

optional

a[-

2,2]

=

nil

Delete last 2

elements

i

n

1.8

;

replace with

nil in 1.9

In addition to the square bracket operator for indexing an array, the Array class defines

a number of other useful operators. Use + to concatenate two arrays:

a =

[1,

2, 3] +

[4, 5]

[1,

2

,

3

,

4,

5]

a

=

a +

[[6, 7,

8]] #

[1

,

2

,

3

,

4,

5,

[6, 7,

8]]

a

=

a + 9 #

Erro

r:

righthand

side must

be an

array

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 37/49

The - operator subtracts one array from another. It begins by making a copy of its

lefthand array, and then removes any elements from that copy if they appear anywhere

in the righthand array:

['a', 'b', 'c', 'b', 'a'] - ['b', 'c', 'd'] # ['a', 'a']

The + operator creates a new array that contains the elements of both its operands.

Use

 to append elements to the end of an existing array:

a =

[]

Start with an

empty array

a

<< 1

a

is [1]

a

<

< 2

<<

3

a

i

s [1, 2, 3]

a

<

<

[4,5

,6]

a

i

s

[1, 2, 3, [4,

5, 6]]

Like the String class, Array also uses the multiplication operator for repetition:

a = [0] * 8 # [0, 0, 0, 0, 0, 0, 0, 0]

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 38/49

The Array class borrows the Boolean operators | and & and uses them for union and

intersection. | concatenates its arguments and then removes all duplicate elements

from the result. & returns an array that holds elements that appear in both of the

operand arrays. The returned array does not contain any duplicate elements:

a =

[1, 1, 2, 2, 3, 3, 4]

b =

[5, 5, 4, 4, 3, 3, 2]

a |

b #

[1, 2, 3, 4, 5]: duplicates are

removed

b |

a #

[5, 4, 3, 2, 1]: elements are the same,

but order is different

a &

b # [2, 3, 4]

b &

a # [4, 3, 2]

Note that these operators are not transitive: a|b is not the same as b|a, for example. If

you ignore the ordering of the elements, however, and consider the arrays to be unor-

dered sets, then these operators make more sense. Note also that the algorithm by

which union and intersection are performed is not specified, and there are no

guarantees about the order of the elements in the returned arrays.

The Array class defines quite a few useful methods. The only one we’ll discuss here is

the each iterator, used for looping through the elements of an array:

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 39/49

a = ('A'..'Z').to_a # Begin with an array of letters

a.each {|x| print x } # Print the alphabet, one letter at a

time

Hashes

A hash is a data structure that maintains a set of objects known as keys, and associates

a value with each key. Hashes are also known as maps because they map keys to

values. They are sometimes called associative arrays because they associate values

with each of the keys, and can be thought of as arrays in which the array index can be

any object instead of an integer. An example makes this clearer:

This hash will map the names of digits to the digits

themselves

numbers = Hash.new # Create a new, empty, hash object

numbers["one"] = 1 # Map the String "one" to the Fixnum 1

numbers["two"] = 2 # Note that we are using array

notation here numbers["three"] = 3

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 40/49

sum = numbers["one"] + numbers["two"] # Retrieve values like

this

Hash Literals

A hash literal is written as a comma-separated list of key/value pairs, enclosed within

curly braces. Keys and values are separated with a two-character “arrow”: =>. The

Hash object created earlier could also be created with the following literal:

numbers = { "one" => 1, "two" => 2, "three" => 3 }

In general, Symbol objects work more efficiently as hash keys than strings do:

numbers = { :one => 1, :two => 2, :three => 3 }

Symbols are immutable interned strings, written as colon-prefixed identifiers; they are

explained in more detail in §3.6 later in this chapter.

Ruby 1.8 allows commas in place of arrows, but this deprecated syntax is no longer

supported in Ruby 1.9:

numbers = { :one, 1, :two, 2, :three, 3 } # Same, but harder

to read

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 41/49

Ranges

 Range object represents the values between a start value and an end value. Range

literals are written by placing two or three dots between the start and end value. If two

 The result is a syntax much like that used by JavaScript objects.

 dots are used, then the range is inclusive and the end value is part of the

range. If three dots are used, then the range is exclusive and the end value is not

part of the range:

 1..10 # The integers 1 through 10, including 10

 1.0...10.0 # The numbers between 1.0 and 10.0,

excluding 10.0 itself

 Test whether a value is included in a range with the include? method

(but see below for a discussion of alternatives):

 cold_war = 1945..1989

 cold_war.include? birthdate.year

 Implicit in the definition of a range is the notion of ordering. If a range is

the values between two endpoints, there obviously must be some way to

compare values to those endpoints. In Ruby, this is done with the comparison

operator <=>, which compares its two operands and evaluates to –1, 0, or 1,

depending on their relative order (or equality). Classes such as numbers and

strings that have an ordering define the <=> operator. A value can only be used

as a range endpoint if it responds to this operator. The endpoints of a range and

the values “in” the range are typically all of the same class. Technically, however,

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 42/49

any value that is compatible with the <=> operators of the range endpoints can

be considered a member of the range.

 The primary purpose for ranges is comparison: to be able to determine

whether a value is in or out of the range. An important secondary purpose is

iteration: if the class of the endpoints of a range defines a succ method (for

successor), then there is a discrete set of range members, and they can be

iterated with each, step, and Enumerable methods. Consider the range

'a'..'c', for example:

r = 'a'..'c'

r.each {|l| print

"[#{l}]"} # Prints "[a][b][c]"

r.step(2) { |l| print

"[#{l}]"} # Prints "[a][c]"

r.to_a #

=> ['a','b','c']:

Enumerable defines to_a

 The reason this works is that the String class defines a succ method

and 'a'.succ is 'b' and 'b'.succ is 'c'. Ranges that can be iterated like

this are discrete ranges. Ranges whose endpoints do not define a succ

method cannot be iterated, and so they can be called continuous. Note that

ranges with integer endpoints are discrete, but floating-point numbers as

endpoints are continuous.

 Ranges with integer endpoints are the most commonly used in typical

Ruby programs. Because they are discrete, integer ranges can be used to index

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 43/49

strings and arrays. They are also a convenient way to represent an enumerable

collection of ascending values.

 Notice that the code assigns a range literal to a variable, and then invokes

methods on the range through the variable. If you want to invoke a method

directly on a range literal, you must parenthesize the literal, or the method

invocation is actually on the endpoint of the range rather than on the Range

object itself:

 1..3.to_a # Tries to call to_a on the number 3

 (1..3).to_a # => [1,2,3]

Symbols

A typical implementation of a Ruby interpreter maintains a symbol table in which it

stores the names of all the classes, methods, and variables it knows about. This allows

such an interpreter to avoid most string comparisons: it refers to method names (for

example) by their position in this symbol table. This turns a relatively expensive string

operation into a relatively cheap integer operation.

These symbols are not purely internal to the interpreter; they can also be used by Ruby

programs. A Symbol object refers to a symbol. A symbol literal is written by prefixing an

identifier or string with a colon:

:symbol

A

Symbol literal

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 44/49

:"symbol"

The

sa

me literal

:'another long

symbol' #

Quotes

are

useful for symbols

with spaces

s = "string"

sym = :"#{s}" #

Th

e

Symb

ol :string

Symbols also have a %s literal syntax that allows arbitrary delimiters in the same way

that %q and %Q can be used for string literals:

%s["] # Same as :'"'

Symbols are often used to refer to method names in reflective code. For example,

suppose we want to know if some object has an each method:

o.respond_to? :each

Here’s another example. It tests whether a given object responds to a specified method,

and, if so, invokes that method:

name = :size

if o.respond_to? name

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 45/49

o.send(name)

end

You can convert a String to a Symbol using the intern or to_sym methods. And

you can convert a Symbol back into a String with the to_s method or its alias

id2name:

str =

"string"

Begin

with a

Strin

g

sym =

str.intern

Convert

to a

Symbo

l

sym =

str.to_sym

Another

way

t

o do

the same

thing

str

=

sym.to

_s #

Convert

back

to

a String

str

=

sym.id2

name #

Another

way

t

o do It

Two strings may hold the same content and yet be completely distinct objects. This is

never the case with symbols. Two strings with the same content will both convert to

exactly the same Symbol object. Two distinct Symbol objects will always have different

content.

Whenever you write code that uses strings not for their textual content but as a kind of

unique identifier, consider using symbols instead. Rather than writing a method that

expects an argument to be either the string “AM” or “PM”, for example, you could

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 46/49

True, False, and Nil

We saw in §2.1.5 that true, false, and nil are keywords in Ruby. true and false

are the two Boolean values, and they represent truth and falsehood, yes and no, on and

off. nil is a special value reserved to indicate the absence of value.

Each of these keywords evaluates to a special object. true evaluates to an object that

is a singleton instance of TrueClass. Likewise, false and nil are singleton

instances of FalseClass and NilClass. Note that there is no Boolean class in

Ruby. TrueClass and FalseClass both have Object as their superclass.

If you want to check whether a value is nil, you can simply compare it to nil, or use

the method nil?:

o == nil # Is o nil?

o.nil? # Another way to test

Note that true, false, and nil refer to objects, not numbers. false and nil are not

the same thing as 0, and true is not the same thing as 1. When Ruby requires a

Boolean value, nil behaves like false, and any value other than nil or false

behaves like true.

RDoc and ri

RDoc is a documentation system. If you put comments in your program files

(Ruby or C) in the prescribed RDocformat, rdoc scans your files, extracts the

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 47/49

comments, organizes them intelligently (indexed according to what they

comment on), and creates nicely formatted documentation from them. You can

see RDoc markup in many of the C files in the Ruby source tree and many of the

Ruby files in the Ruby installation.

The Ruby ri tool is used to view the Ruby documentation off-line. Open a

command window and invoke ri followed by the name of a Ruby class, module

or method. ri will display documentation for you. You may specify a method

name without a qualifying class or module name, but this will just show you a

list of all methods by that name (unless the method is unique). Normally, you

can separate a class or module name from a method name with a period. If a

class defines a class method and an instance method by the same name, you

must instead use :: to refer to a class method or # to refer to the instance

method. Here are some example invocations of ri

1. :ri Array

2. ri Array.sort

3. ri Hash#each

4. ri Math::sqrt

ri dovetails with RDoc: It gives you a way to view the information that RDoc has

extracted and organized. Specifically (although not exclusively, if you

customize it), ri is configured to display the RDoc information from the Ruby

source files. Thus on any system that has Ruby fully installed, you can get

detailed information about Ruby with a simple command-line invocation of ri.

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 48/49

POSSIBLE QUESTIONS

UNIT 1

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. List out the major characteristics of the database approach.

2. Discuss on the different categories of data model.

3. Write short notes on schemas, instances and database state.

4. Elaborate the three schema architecture of DBMS in detail.

5. Write a detailed note on the two types of data independence.

6. Discuss on DBMS languages.

7. What is meant by DBMS interfaces? Explain them in detail.

8. Illustrate the main phases of database design.

9. Describe the different types of attributes in the ER model.

10. Write short notes on entity types and entity sets.

PART – C (10 MARKS)

1. Design an application form using tk classes and validate all fields on Rails framework

2. Explain about different Data Types in Ruby.

3. Explain in detail about Object creation and initialization in Ruby

4. Write a ruby program to create a main thread and execute multiple process through the main
thread.

5. Write a note on Defining, Calling and Undefining methods in Ruby

Unit 1- An Introduction to Ruby Ruby Programming (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 49/49

UNIT 2

Sno
QESTIONS

OPTION1 OPTION2 OPTION3 OPTIONS4 ANS

1 If a class defines a class method ___________ must be used to refer the class method. :: ;: c|| ?/ ::

2

If a class defines an instance method ___________must be used to refer the instance method. % && # <> #

3

Ruby's package management system is known as _________ ri RDoc RubyGems Ruby Interactives RubyGems

4 The ______________command installs the most recent version of the gem we request. gem install package install gems install gem cmd gem install

5

 ____________ is the command which is used to Display RubyGems configuration information. gem install package install gem

environment

 gem cmd gem environment

6 The Ruby interpreter parses a program as a sequence of_________. Statements commands keyword tokens tokens

7 The Ruby interpreter ignores the ___________ character and any text that follows it. @ * // # #

8 Any text that appears after ___________is part of the comment and is also ignored. =begin or =end begin or end =start or =end =begin or end= =begin or =end

9 ______________are values that appear directly in Ruby source code. String Command Literals Modules Literals

10

 Identifiers that begin with a ________________which are constants. capital letter A–Z small letter a–z Numerical Alpha Numeric capital letter A–Z

11

 ___________names must begin with initial capital letters. Strings Class and module Literals Expressions Class and module

12

_________________that are not constants and has been written with underscores. identifiers Keyword multiword

identifiers

 tokens multiword

identifiers

13

Two identifiers are the same only if they are represented by the same ______________. sequence of bytes sequence of bits sequence of

literals

 sequence of

tokens.

 sequence of bytes

14

 ____________________is not performed in Ruby. byte code

normalization

 Unicode

normalization

 normalization boyce code

normalization

 Unicode

normalization

15

 _______________may appears at the start and end of Ruby identifiers. String characters special characters Punctuation

characters

 Numeric Punctuation

characters

16

 _____________ are the keyword-like tokens that are treated specially by the Ruby parser when they

appear at the beginning of a line.

 =begin =end

__END__

 begin exit do not do match iterate end not =begin =end

__END__

17

Features of the Ruby language are actually implemented as methods of the ______________classes. Kernel, Module Kernel, Module,

Class

 Kernel,Object Kernel, Module,

Class, and Object

 Kernel, Module,

Class, and Object

18

Without_______________, the Ruby interpreter must figure out on its own where statements end. explicit semicolons colon implicit

semicolons

 Expression explicit

semicolons

19

If the Ruby code on a line is a syntactically complete statement, Ruby uses the ___________as the

statement terminator.

 semicolon Exit newline tab newline

20

28. ______________statements are optionally be followed by an expression that provides a return

value.

 return and break return and stop block and return block and stop return and break

21

 If the first non-space character on a line is a_______, then the line is considered a continuation line. dash white space period dollar sign period

22

 Ruby's grammar allows the __________around method invocations to be omitted in certain

circumstances.

 () [] {} <> ()

23

_________ are packaged bits of Ruby code that you can install to extend or add functionality. modules Gems classes methods Gems

24

________are used to perform computations on values, and compound expressions are built by

combining simpler sub-expressions with operators.

 Keywords Expressions Regular

expressions

 Operators Operators

25 33. _______are delimited by keywords or punctuation. class method module blocks blocks

26

 Explain this ruby idiom: a ||= b a = 1 b = 2 a ||= b

#=> a = 1

 a = 0 b = 0 a ||= b

#=> a = 1

 a = 1 b = 1 a ||=

b #=> a = 1

 a = 2 b = 2 a ||=

b #=> a = 1

 a = 1 b = 2 a ||= b

#=> a = 1

27 ____ always refers to the current object in Ruby. this self object self this to self

28 If the integer values fit within the range of the _______class, the value is a Fixnum. Fixnum bignum ranges numeric Fixnum

29 Numbers beginning with ____________are hexadecimal. 0x or 0X gff oct base 10 0x or 0X

30 Numbers beginning ________________are binary. 0b or 0B hexa decimal octet base 19 0b or 0B

31 6.02e23 # This means ________ 6.02 + 1023 6.02 x 1023 6.02 / 1023 6.02 % 1023 6.02 x 1023

32 Float objects cannot represent numbers larger than__________. Float::MAX Float::MIN 10,000 Float#MAX Float::MAX

33 Text is represented in Ruby by objects of the ___________ class. Character Boolean String ASCII String

34

 Single-quoted strings may extend over ______, and the resulting string literal includes the ________

characters.

 multiple lines,

period

 single line, newline multiple lines,

tab

 multiple lines,

newline

 multiple lines,

newline

35 $salutation = 'hello' # Define a __________ global variable instance variable local variable class variable global variable

36 Here documents begin with __________. << or << << or >>> << or <<-. << or >>-. << or <<-.

37 s = 'hello';s[0] s[s.length-1]s[-1] output:____________ hll hlo hoo how hoo

38

__________________objects define the normal === operator for testing equality. Regexp and Range Reg and Range Regexp and

Operator

 exp and Range Regexp and

Range

39

 Ruby's case statement matches its expression against each of the possible cases using ===, so this

operator is often called the __________________.

 equality operator comparison

operator

 case equality

operator

 case inequality

operator

 case equality

operator

40 A ______________is a collection of related methods that operate on the state of an object. class blocks module package class

41

 The ___________allows you to alter the characters of a string or to insert, delete, and replace

substrings.

 === operator [][] operator []= operator %= operators []= operator

42 The _______________allows you to append to a string. << operator >> operator ++ operator && operator << operator

43 Double-quoted strings can include arbitrary Ruby expressions delimited by ___________. #(and) +{and } #{ and } #[and] #{ and }

44

The = operator in Ruby assigns a value to a variable and it is called_____________ operator. overridable equal assignment nonoverridable nonoverridable

45

 Ruby supports_____________, allowing more than one value and more than one variable in

assignment expressions.

 parallel

assignment

 distributed

assignment

 unique

assignment

 bypassed

assignment

 parallel

assignment

46

 YARV stands for ________________________. "Yet Another

Regular Virtual

machine"

 "Yet Another Ruby

Virtual machine"

 "Yet Another

Ruby Virtual

mechanism"

 "Yet Another

Request Virtual

machine"

 "Yet Another

Ruby Virtual

machine"

47

 MRI stands for__________________. "Matz's Ruby

Implementation."

 "Memory Ruby

Implementation."

 "Matz's Ruby

Interface."

 "Matz's Request

Implementation."

 "Matz's Ruby

Implementation."

48 Method names may end with an ________to indicate that they should be used cautiously. $$ ## %% !

49 All number objects in Ruby are instances of ______________. Numeric Real Integer String Numeric

50

 A ____________is an optional sign followed by one or more decimal digits, a decimal point, one or

more additional digits, and an optional exponent.

 Integer-point

literal

 floating-point literal decimal-point

literal

 character literal floating-point

literal

51

When text is enclosed in________________, that text is treated as a double-quoted string literal. backquotes parenthesis braces brackets backquotes

52 The String class defines an _______________ that iterates a string line-by-line. for method such method each method while method each method

53

The String class includes the methods of the____________, and they can be used to process the lines of

a string.

 Extending module Enlarge module Enrich module Enumerable

module

 Enumerable

module

54

 ___________encoding of Unicode characters use variable numbers of bytes for each character. UTF-8 USF-8 UTFF-8 UUTF-8 UTF-8

55

The ___________methods return the number of characters in a string. count and size long and size length and esum length and size length and size

56 You can explicitly set the encoding of a string with _____________. force_encoding force_dncoding free_encoding force_encoding force_encoding

57

a = [1, 1, 2, 2, 3, 3, 4] b = [5, 5, 4, 4, 3, 3, 2] a | b output: _________________ [1, 2, 3, 4, 5] [1, 2, 2, 3, 4, 5] [1, 2, 3, 4, 5, 5] [1, 1, 2, 2, 3, 3, 4,

4, 5, 5]

 [1, 2, 3, 4, 5]

58 a = [1, 1, 2, 2, 3, 3, 4] b = [5, 5, 4, 4, 3, 3, 2] a & b ___________? b & a ___________? [2, 3, 3][4, 2, 2] [2, 5, 4][4, 3, 1] [2, 3, 4][4, 3, 2] [2, 3, 6][4, 3, 6] [2, 3, 4][4, 3, 2]

59

A __________is a data structure that maintains a set of objects known as keys, and associates a value

with each key.

 hash array dictionary mixin hash

Unit III- METHODS RUBY PROGRAMMING (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 1/11

METHODS: Defining a Method, Calling a Method; Undefining methods – Methods with
Exception – Operator methods and names – Method Arguments – Method objects -
Defining Attribute Accessor Methods - Dynamically Creating Methods. EXCEPTIONS AND
EXCEPTION HANDLING: Hierarchy – Exception classes and objects – Raising Exception
with raise – Handling Exception with rescue – Exception propagation – Else clause and
ensure class.

Methods

Methods are defined with the def keyword. This is followed by the method

name and an optional list of parameter names in parentheses. The Ruby

code that constitutes the method body follows the parameter list, and the

end of the method is marked with the end keyword. Parameter names can

be used as variables within the method body, and the values of these

named parameters come from the arguments to a method invocation. Here

is an example method:

Define a method named 'factorial' with a single parameter 'n' def

factorial(n)
if n < 1 # Test the argument value for validity

raise "argument must

be > 0"

elsif n == 1 # If the argument is 1

1 # then the value of the method invocation is 1

else # Otherwise, the factorial of n is n times

n * factorial(n-1) # the factorial of n-1

end
end

This code defines a method named factorial. The method has a single

parameter named n. The identifier n is used as a variable within the body

of the method. This is a recursive method, so the body of the method

includes an invocation of the method. The invocation is simply the name

of the method followed by the argument value in parentheses.

Method Return Value

Methods may terminate normally or abnormally. Abnormal termination

occurs when the method raises an exception. The factorial method shown

earlier terminates abnormally if we pass it an argument less than 1. If a

method terminates normally, then the value of the method invocation

expression is the value of the last expression evaluated within the method

Unit III- METHODS RUBY PROGRAMMING (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 2/11

body. In the factorial method, that last expression will either be 1 or

n*factorial(n-1).

The return keyword is used to force a return prior to the end of the

method. If an expression follows the return keyword, then the value of that

expression is returned. If no expression follows, then the return value is

nil. In the following variant of the factorial method, the return keyword is

required:

def factorial(n)
raise "bad argument" if n < 1

return 1 if n == 1
n * factorial(n-1)

end

We could also use return on the last line of this method body to emphasize

that this expression is the method’s return value. In common practice,

however, return is omitted where it is not required.

Ruby methods may return more than one value. To do this, use an explicit

return statement, and separate the values to be returned with commas:

Convert the Cartesian point (x,y) to polar (magnitude, angle)

coordinates def polar(x,y)
return Math.hypot(y,x),

Math.atan2(y,x) end

When there is more than one return value, the values are collected into an

array, and the array becomes the single return value of the method. Instead

of using the return statement with multiple values, we can simply create an

array of values ourselves:

 Convert polar coordinates to Cartesian

coordinates def cartesian(magnitude,

angle)
[magnitude*Math.cos(angle),

magnitude*Math.sin(angle)] end

Methods and Exception Handling

def statement that defines a method may include exception-handling code

in the form of rescue, else, and ensure clauses, just as a begin statement

can. These exception-handling clauses go after the end of the method body

but before the end of the def statement. In short methods, it can be

particularly tidy to associate your rescue clauses with the def statement.

This also means you don’t have to use a begin statement and the extra

level of indentation that comes with it.

Unit III- METHODS RUBY PROGRAMMING (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 3/11

Invoking a Method on an Object

Methods are always invoked on an object. (This object is sometimes called

the receiver in a reference to an object-oriented paradigm in which

methods are called ―messages‖ and are ―sent to‖ receiver objects.) Within

the body of a method, the key-word self refers to the object on which the

method was invoked. If we don’t specify an object when invoking a

method, then the method is implicitly invoked on self.

Notice, however, that you’ve already seen examples of invoking methods

on objects, in code like this:

first = text.index(pattern)

Like most object-oriented languages, Ruby uses to separate the object

from the method to be invoked on it. This code passes the value of the

variable pattern to the method named index of the object stored in the

variable text, and stores the return value in the variable first.

Method Names

By convention, method names begin with a lowercase letter. (Method

names can begin with a capital letter, but that makes them look like

constants.) When a method name is longer than one word, the usual

convention is to separate the words with underscores like this rather than

using mixed case likeThis.

Method names may (but are not required to) end with an equals sign, a

question mark, or an exclamation point. An equals sign suffix signifies

that the method is a setter that can be invoked using assignment syntax.’

The first convention is that any method whose name ends with a question

mark returns a value that answers the question posed by the method

invocation. The empty method of an array, for example, returns true if the

array has no elements. Methods like these are called predicates and.

Predicates typically return one of the Boolean values true or false, but this

is not required, as any value other than false or nil works like true when a

Boolean value is required. (The Numeric method nonzero?, for example,

returns nil if the number it is invoked on is zero, and just returns the

number otherwise.)

The second convention is that any method whose name ends with an

exclamation mark should be used with caution. The Array object, for

example, has a sort method that makes a copy of the array, and then sorts

that copy. It also has a sort! method that sorts the array in place. The

Unit III- METHODS RUBY PROGRAMMING (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 4/11

exclamation mark indicates that you need to be more careful when using

that version of the method.

Often, methods that end with an exclamation mark are mutators, which

alter the in-ternal state of an object. But this is not always the case; there

are many mutators that do not end with an exclamation mark, and a

number of nonmutators that do. Mutating methods (such as Array.fill) that

do not have a nonmutating variant do not typically have an exclamation

point.

Consider the global function exit: it makes the Ruby program stop running

in a con-trolled way. There is also a variant named exit! that aborts the

program immediately without running any END blocks or shutdown

hooks registered with at_exit. exit! isn’t a mutator; it’s the ―dangerous‖

variant of the exit method and is flagged with to remind a programmer

using it to be careful.

Operator Methods

Many of Ruby’s operators, such as +, *, and even the array index operator

[], are implemented with methods that you can define in your own classes.

You define an operator by defining a method with the same ―name‖ as the

operator. (The only exceptions are the unary plus and minus operators,

which use method names +@ and -@.) Ruby allows you to do this even

though the method name is all punctuation. You might end up with a

method definition like this:

def +(other) # Define binary plus operator: x+y is x.+(y)
self.concatenate(other)

end

Methods that define a unary operator are passed no arguments. Methods

that define binary operators are passed one argument and should operate

on self and the argument. The array access operators [] and []= are special

because they can be invoked with any number of arguments. For []=, the

last argument is always the value being assigned.

Mapping Arguments to Parameters

When a method definition includes parameters with default values or a

parameter pre-fixed with an *, the assignment of argument values to

parameters during method invocation gets a little bit tricky.

In Ruby 1.8, the position of the special parameters is restricted so that

argument values are assigned to parameters from left to right. The first

arguments are assigned to the ordinary parameters. If there are any

Unit III- METHODS RUBY PROGRAMMING (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 5/11

remaining arguments, they are assigned to the parameters that have

defaults. And if there are still more arguments, they are assigned to the

array argument.

Ruby 1.9 has to be more clever about the way it maps arguments to

parameters because the order of the parameters is no longer constrained.

Suppose we have a method that is declared with o ordinary parameters, d

parameters with default values, and one array parameter prefixed with *.

Now assume that we invoke this method with a arguments.

If a is less than o, an ArgumentError is raised; we have not supplied the

minimum required number of arguments.

If a is greater than or equal to o and less than or equal to o+d, then the

leftmost a–o parameters with defaults will have arguments assigned to

them. The remaining (to the right) o+d–a parameters with defaults will not

have arguments assigned to them, and will just use their default values.

If a is greater than o+d, then the array parameter whose name is prefixed
with an * will have a–o–d arguments stored in it; otherwise, it will be
empty.

Once these calculations are performed, the arguments are mapped to

parameters from left to right, assigning the appropriate number of

arguments to each parameter.

Method Objects

Ruby’s methods and blocks are executable language constructs, but they

are not objects. Procs and lambdas are object versions of blocks; they can

be executed and also manipulated as data. Ruby has powerful meta

programming (or reflection) capabilities, and methods can actually be

represented as instances of the Method class. You should note that

invoking a method through a Method object is less efficient than invoking

it directly. Method objects are not typically used as often as lambdas and

procs.

The Object class defines a method named method. Pass it a method name,

as a string or a symbol, and it returns a Method object representing the

named method of the receiver (or throws a NameError if there is no such

method). For example:

m = 0.method(:succ) # A Method representing the succ method of

Fixnum 0

Unit III- METHODS RUBY PROGRAMMING (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 6/11

The Method class is not a subclass of Proc, but it behaves much like it.
Method objects are invoked with the call method (or the [] operator), just
as Proc objects are. And Method defines an arity method just like the arity
method of Proc. To invoke the Method m:

puts m.call # Same as puts 0.succ. Or use puts m[].

Invoking a method through a Method object does not change the

invocation semantics, nor does it alter the meaning of control-flow

statements such as return and break. The

Unit III- METHODS RUBY PROGRAMMING (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 7/11

call method of a Method object uses method-invocation semantics, not yield semantics.
Method objects, therefore, behave more like lambdas than like procs.

Method objects work very much like Proc objects and can usually be used in place of them.

When a true Proc is required, you can use Method.to_proc to convert a Method to a Proc. This is

why Method objects can be prefixed with an ampersand and passed to a method in place of a

block. For example:

def square(x); x*x; end
puts (1..10).map(&method(:square))

One important difference between Method objects and Proc objects is that Method objects are

not closures. Ruby’s methods are intended to be completely self-contained, and they never have

access to local variables outside of their own scope. The only binding retained by a Method

object, therefore, is the value of self—the object on which the method is to be invoked.

Raising An Exception

An exception is a special kind of object, an instance of the class Exception or a descendant of

that class that represents some kind of exceptional condition; it indicates that something has gone

wrong. When this occurs, an exception is raised (or thrown). By default, Ruby programs

terminate when an exception occurs. But it is possible to declare exception handlers. An

exception handler is a block of code that is executed if an exception occurs during the execution

of some other block of code. Raising an exception means stopping normal execution of the

program and transferring the flow-of-control to the exception handling code where you either

deal with the problem that's been encountered or exit the program completely. Which of these

happens - dealing with it or aborting the program - depends on whether you have provided

a rescue clause (rescue is a fundamental part of the Ruby language). If you haven't provided

such a clause, the program terminates; if you have, control flows to the rescue clause.

Ruby has some predefined classes - Exception and its children - that help you to handle errors

that can occur in your program. The following figure shows the Ruby exception hierarchy.

The chart above shows that most of the subclasses extend a class known as StandardError.

These are the "normal" exceptions that typical Ruby programs try to handle. The other

exceptions represent lower-level, more serious, or less recoverable conditions, and normal Ruby

programs do not typically attempt to handle them.

The raise method is from the Kernel module. By default, raise creates an exception of

the RuntimeError class. To raise an exception of a specific class, you can pass in the class

name as an argument to raise.

http://ruby-doc.org/core-2.3.0/Exception.html

Unit III- METHODS RUBY PROGRAMMING (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 8/11

Class Exception

Ruby's standard classes and modules raise exceptions. All the exception classes form a

hierarchy, with the class Exception at the top. The next level contains seven different types −

 Interrupt

 NoMemoryError

 SignalException

 ScriptError

 StandardError

Unit III- METHODS RUBY PROGRAMMING (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 9/11

 SystemExit

There is one other exception at this level, Fatal, but the Ruby interpreter only uses this

internally.

Both ScriptError and StandardError have a number of subclasses, but we do not need to go into

the details here. The important thing is that if we create our own exception classes, they need to

be subclasses of either class Exception or one of its descendants.

Let's look at an example −

class FileSaveError < StandardError

 attr_reader :reason

 def initialize(reason)

 @reason = reason

 end

end

Exception handling in Ruby with begin, rescue, and ensure

Begin, rescue, and ensure provide flexible exception handling. Supposed we have the following

method:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

def divide(a, b)

 begin

 a / b

 rescue TypeError => e

 puts "I am rescuing from a TypeError"

 puts e

 puts e.class

 puts e.backtrace

 rescue ZeroDivisionError => e

 puts "I am rescuing from a ZeroDivisionError"

 puts e

 puts e.class

 puts e.backtrace

 else

 puts "No exception was raised"

 ensure

 puts "BLAH BLAH BLAH"

 end

end

Let’s examine what this method outputs with various inputs.

Unit III- METHODS RUBY PROGRAMMING (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 10/11

1

2

3

>> divide(4, 2)

No exception was raised

BLAH BLAH BLAH

If the function is passed valid output, the code in else is executed and so is the code in ensure.

The code in ensure is executed regardless, but else is only executed if there are no exceptions.

1

2

3

4

5

6

7

8

>> divide(1, "cat")

I am rescuing from a TypeError

String can't be coerced into Fixnum

TypeError

lib/begin_rescue.rb:3:in `/'

lib/begin_rescue.rb:3:in `divide'

lib/begin_rescue.rb:22:in `<main>'

BLAH BLAH BLAH

Where there is a TypeError, the code in the TypeError rescue block and the ensure block are

executed. By passing => e to the rescue TypeError => e line, we have access to the error

message, error class, and error backtrace – useful stuff for debugging purposes.

1

2

3

4

5

6

7

8

>> divide(1, 0)

I am rescuing from a ZeroDivisionError

divided by 0

ZeroDivisionError

lib/begin_rescue.rb:3:in `/'

lib/begin_rescue.rb:3:in `divide'

lib/begin_rescue.rb:23:in `<main>'

BLAH BLAH BLAH

Curiously, the following code does not execute the code in the ensure block (didn’t we

previously establish that the code in the ensure block is always executed under all conditions).

1

2

lib/begin_rescue.rb:1:in `divide': wrong number of arguments (0 for 2)

(ArgumentError)

 from lib/begin_rescue.rb:21:in `<main>'

In this case the ArgumentError is raised before the function is executed, so the ensure never gets

the chance to run. We can rescue from an ArgumentError (rescuing from ArgumentErrors is not

a good idea, BTW), by putting the method call in another begin/rescue block:

1

2

3

4

5

Begin

 divide

rescue ArgumentError

 puts "Ahhhhh, that's better"

end

Unit III- METHODS RUBY PROGRAMMING (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE 11/11

POSSIBLE QUESTIONS

UNIT 1

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. Discuss in detail about Exceptions and Exception handling in Ruby

2. RR Group of Companies is off on Fridays at any cost. If an employee wants

to login on Friday, the system has to report an error and display “You can’t

login on Friday.” Create a Ruby Class to handle the exception.

3. Describe about exception handling with rescue in detail.

4. Write a ruby script for following problems.

i) Choose random numbers and display the behavior the number. (7)
ii) Design a grade sheet using case statement.(7)

5. Write a method called age that calls a private method to calculate the age

of the vehicle. Make sure the private method is not available from outside

of the class. Use Ruby’s build in time class.

6. Describe about raising an exception with raise in detail.

7. Explain about the Dynamically Creating Methods in Ruby

8. Explain about defining, calling and undefining a method with suitable

examples.

PART – C (10 MARKS)

1. Design an application form using tk classes and validate all fields on Rails
framework

2. Explain about different Data Types in Ruby.

3. Explain in detail about Object creation and initialization in Ruby

4. Write a ruby program to create a main thread and execute multiple process through
the main thread.

5. Write a note on Defining, Calling and Undefining methods in Ruby

Sno. QUESTIONS OPTION1 OPTION2 OPTION3 OPTION4 ANS

1

 mode used to Open file for writing, but append to the end of the file if it

already exists.
"a" ”f” ”w” ”R” "a"

2

 mode used for Open for writing. Create a new file or truncate an existing

one.
"a"

”w” ”f” ”w”

3

 mode is used to Open for reading and writing. Start at beginning of file. Fail

if file does not exist.
"a" ”r+” ”w” ”f” ”r+”

4

 stream has special behavior intended to make it simple to write scripts

that read the files specified on the command line or from standard input.

ARGF, or

$<

ARGFILE,

or $<>

ARGF, or

$<>>

ARGF and

$$<

ARGF, or

$<

5

Specify the encoding of any IO object with the method.

set_decod

ing

set_encod

ing

get_encod

ing

not_enco

ding

set_encod

ing

6

File.open("data", "r:binary") # Open a file for .

deleting

binary

data

writing

binary

data

reading

binary

data

renaming

binary

data

reading

binary

data

7

 disables the automatic newline conversion performed by Windows,

and is only necessary on that platform.

binary

decimal

readmode

binmode

binmode

8

The and methods read a single byte and return it as a Fixnum.
getc

readchar

getchar

readchar

get

readch

string

readchar

getc

readchar

9

 Reads exactly n bytes and return them as a string.

readbytes

;

read

(bytes(n))

;

bytes ;

readbytes

(n) ;

readbytes

(n) ;

10

 Read the bytes (up to a maximum of n) that are currently available

for reading, and return them as a string, using the buffer string if it is specified.

read_non

block(n,

buffer=nil)

read_bloc

k(n,

buffer=nil)

read_non

block(n,

buffer)

read_non

block(nil)

read_non

block(n,

buffer=nil)

11

The method converts its arguments to strings, and outputs them to the

stream.
printf filef print pts print

12

 output method converts each of its arguments to a string, and writes each

one to the stream.
puts printf pts file puts

13

The method expects a format string as its first argument, and interpolates

the values of any additional arguments into that format string using

the operator.

Printf

String %

Print

String ^

Puts

String %

Printf

Str##

Printf

String %

14

 is a low-level, unbuffered, nontranscoding version of write.

systemwri

te

systemgc

syswrite

sysprint

syswrite

15

f = File.open("test.txt") f.seek(10, IO::SEEK_SET) output # Skip to .

absolute

position

10

absolute

position

100

binary 10

rollback

position

10

absolute

position

10

16

f = File.open("test.txt") f.seek(-10, IO::SEEK_EN output # .

Skip to

10 bytes

from end

Skip to

10 bytes

from

beginning

removes

10 bytes

from end

updates

to 10

bytes

from end

Skip to

10 bytes

from end

17

f = File.open("test.txt") pos = f.sysseek(0, IO::SEEK_CUR) output #

Get

previous

position

Get

current

position

Set

current

position

Get next

position

Get

current

position

18

f = File.open("test.txt") f.sysseek(0, IO::SEEK_SET) output:#

Rewind

stream

forward

stream

fast

forward

stream

stop

stream

Rewind

stream

19

f = File.open("test.txt") f.sysseek(pos, IO::SEEK_SET) output:#

Return to

original

position

move to

next

position

Return to

last

position

Return to

previous

position

Return to

original

position

20

When you are done reading from or writing to a stream, you must close it with the

 method.
out finish close done close

21

To write Internet client applications, use the class.

TCPSocket

client

TCPclient

TCPserver

TCPSocket

22

Obtain a TCPSocket instance with the class method.

TCPSocket

.read

TCPSocket

.open

TCP.open

TCPSocket

.start

TCPSocket

.open

23

A TCPServer object is a factory for objects.

TCPSocket

client

TCPclient

TCPserver

TCPSocket

24

Call to specify a port for your service and create a TCPServer object.

TCPSocket

.read

TCPSocket

.open

TCP.open

TCPServer

.open

TCPServer

.open

25

The module defines a handful of low-level methods that can be occasionally

useful for debugging or metaprogramming.

ObjectSpa

ce

class

root

object

ObjectSpa

ce

26

 is an iterator that can yield every object.

each_class

each_oper

ator

each_obje

ct

for_object

each_obje

ct

27

 is the inverse of Object.object_id.

Object_id

2ref

ObjectSpa

ce._id2ref

ObjectSpa

ce._id

ObjectSpa

ceref

ObjectSpa

ce._id2ref

28

Object.object_id, it takes an object ID as its argument and raises a if

there is no object with that ID.

RangeErro

r

stderror

typeerror

logical

error

RangeErro

r

29

 allows a block of code to be invoked when a specified object is

garbage collected.

define_fin

alizer

ObjectSpa

ce.define_

final

ObjectSpa

ce.finalize

r

ObjectSpa

ce.define_

finalizer

ObjectSpa

ce.define_

finalizer

30

 to delete all finalizer blocks registered for an object.

define_fin

alizer

ObjectSpa

ce.define_

final

ObjectSpa

ce.undefin

e_finalizer

ObjectSpa

ce.define_

finalizer

ObjectSpa

ce.undefin

e_finalizer

31

Garbage collection functionality is also available through the

 module.
GC AC SC SYSGC GC

32

 method, which forces Ruby's garbage collector to run.

GC.start

GC_finaliz

er

ObjectSpa

ce.GC_fin

alizer

ObjectSpa

ce.define_

finalizer

GC.start

33

The combination of the methods allows the definition of "weak

reference" objects.

_id2ref

and

define_fin

alizer

_GCref

and

define_fin

al

_id2ref

and

finalizer

_id8ref

and

GC_final

_id2ref

and

define_fin

alizer

34

The provides a powerful way to catch and handle arbitrary

invocations on an object.

method_a

ccuring

method_

missing

method_u

nwanted

GC

method_

missing

35

The const_missing method calls to define a real constant to refer to

each value it computes.

Module.c

onst_missi

ng

class.cons

t_set

Module.c

onst_set

const_set

Module.c

onst_set

36 The method returns an instance of TracedObject. trace find search catch trace

37

Global method , which accepts an object and executes a block under the

protection of the Mutex associated with that object.

synchroniz

ed

attached

merged

joining

synchroniz

ed

38

Synchronized method consisted of the implementation of the
method.

mutex

Object.mu

tex

attached

thread

Object.mu

tex

39

 is a delegating wrapper class based on method_missing.

Synchroni

zed_mute

x

thread

Synchroni

zedObject

object

Synchroni

zedObject

40

 like this incurs the slight overhead of parsing the string of code.

class_chec

k

class_eval

class_mod

ifies

level_class

class_eval

41

The attr_reader and attr_accessor method They accept attribute names as their

arguments, and ndynamically create methods with those names.

reader

and

accessor

attr_reade

r and

attr_write

r

attr_acces

s and

attr_check

er

attr_reade

r and

attr_acces

sor

attr_reade

r and

attr_acces

sor

42

The method defines class attributes rather than instance attributes.

class_attrs

class_read

er

class_writ

er

attr_reade

r

class_attrs

43

The option loads the specified library before it starts running the

program.
-q -w –r -a –r

44

Kernel.require and Kernel.load methods defines an hook to track

definitions of new classes.

Object.inh

erited

Object.spe

cified

class.inher

ited

kernel

specifier

Object.inh

erited

45

 # Matches the text "Rub" followed by an optional "y".

/Ruby/

/Ruby?/

/ruby?/

/Ruby?/m

/Ruby?/

46 # Matches Unicode characters in Multiline mode. /./mu /…./mu /./m /./\n /./mu

47

 # Matches a single slash character, no escape required.

%r|/.,|

%r|/|

%W|/|

%r|/RR/|

%r|/|

48

 # Matches open and close parentheses.

/\(\\\)/

/\(\)/mul

/\(\)/

/\(\)/P

/\(\)/

49

prefix = "," # Matches a single backslash. /\\/ / \ / / ss\\ / /\\dd?>/ /\\/

50

 # Matches a comma followed by an ASCII TAB character

/#{prefix}\

t/

/#{,}\t/

/#{\t}\t/

/ascii\t/

/#{prefix}\

t/

51

[1,2].map{|x| /#{x}/} output: .
=> [/1/,

/1/]

=> [/2/,

/2/]

=> [/1/,

/2/]

=> [/1/,

/0/]

=> [/1/,

/2/]

52

[1,2].map{|x| /#{x}/o} output:

=> [/1/,

/1/]

=>

[/01/,

/01/]

=> [/o/,

/1/]

=> [/o/,

/o/]

=> [/1/,

/1/]

53

Regexp.new("ruby?", Regexp::IGNORECASE) equivalent to .

/ruby?/ing

o

/ruby?/I

/ruby?/i

/ruby/i

/ruby?/i

54 # Match a digit /[0-9]/ /\d/ /\ddd/ /\0-9/ /\D/ /\d/

55 # Match a nondigit: /[^0-9]/ /\D/ /\ddd/ /\0-9/ /read/ /\D/

56

Match a whitespace character: /[\t\r\n\f]/ /\space/ /\white/ /\s/ /\ws/ /\s/

57 # Match "rub" plus 0 or more ys. /ruby?/ /ruby+/ /ruby>/ /ruby*/ /ruby*/

58

Match "rub" plus 1 or more ys. \/ruby^/ /ruby*/ /ruby+/ /ruby@/ /ruby+/

59

 # Match "Ruby", "Ruby, ruby, ruby", etc.

/([Rr]uby(,

)?)+/

/([R][r]uby

(,)?)+/

/([Rr]uby)

+/

/([Rr]uby(,

)?)/

/([Rr]uby(,

)?)+/

60

 # Match ruby&rails or Ruby&Rails.

/([Rr])uby

&\1ails/

/([Ruby&\

1ails/

/([Ruby&R

ails/

/([R])uby&

ails/

/([Rr])uby

&\1ails/

Unit IV- MODULES RUBY PROGRAMMING (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE PAGE 1/11

MODULES: Namespaces - Modules as Mixins - Includable Namespace Modules - Loading
and Requiring Modules - Executing Loaded Code. Reflection and Meta programming:
Evaluating Strings and Blocks - Querying, Setting, and Testing Variables – Regular
Expressions. FILES AND DIRECTORIES: Listing and manipulating Directories and testing
files. BASIC INPUT AND OUTPUT: Opening Stream – Reading from a Stream – Writing to
a stream – Random Access Methods – Closing, Flusing and testing streams.

Modules

Like a class, a module is a named group of methods, constants, and class

variables. Modules are defined much like classes are, but the module

keyword is used in place of the class keyword. Unlike a class, however, a

module cannot be instantiated, and it cannot be subclassed. Modules stand

alone; there is no “module hierarchy” of inheritance.

Modules are used as namespaces and as mixins. The subsections that

follow explain these two uses.

Just as a class object is an instance of the Class class, a module object is

an instance of the Module class. Class is a subclass of Module. This means

that all classes are modules, but not all modules are classes. Classes can be

used as namespaces, just as modules can. Classes cannot, however, be

used as mixins.

Modules as Namespaces

Modules are a good way to group related methods when object-oriented

programming is not necessary. Suppose, for example, you were writing

methods to encode and decode binary data to and from text using the

Base64 encoding. There is no need for special encoder and decoder

objects, so there is no reason to define a class here. All we need are two

methods: one to encode and one to decode. We could define just two

global methods:

def base64_encode
end

def base64_decode
end

To prevent namespace collisions with other encoding and decoding

methods, we’ve given our method names the base64 prefix. This solution

works, but most programmers prefer to avoid adding methods to the global

Unit IV- MODULES RUBY PROGRAMMING (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE PAGE 2/11

namespace when possible. A better sol-ution, therefore, is to define the

two methods within a Base64 module:

module Base64
def self.encode
end

def self.decode
end

end

Note that we define our methods with a self. prefix, which makes them

“class meth-ods” of the module. We could also explicitly reuse the module

name and define the methods like this:

module Base64
def Base64.encode
end

def Base64.decode
end

end

Defining the methods this way is more repetitive, but it more closely

mirrors the invocation syntax of these methods:

This is how we invoke the methods of the

Base64 module text = Base64.encode(data)
data = Base64.decode(text)

Note that module names must begin with a capital letter, just as class

names do. Defining a module creates a constant with the same name as the

module. The value of this constant is the Module object that represents the

module.

Modules may also contain constants. Our Base64 implementation would

likely use a constant to hold a string of the 64 characters used as digits in

Base64:

module Base64
DIGITS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' \

'abcdefghijklmnopqrstuvwxyz' \
'0123456789+/'

end

Unit IV- MODULES RUBY PROGRAMMING (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE PAGE 3/11

Outside the Base64 module, this constant can be referred to as

Base64::DIGITS. Inside the module, our encode and decode methods can

refer to it by its simple name DIGITS. If the two methods had some need

to share nonconstant data, they could use a class variable (with a @@

prefix), just as they could if they were defined in a class.

Modules As Mixins

The second use of modules is more powerful than the first. If a module

defines instance methods instead of the class methods, those instance

methods can be mixed in to other classes. Enumerable and Comparable are

well-known examples of mixin modules. Enumerable defines useful

iterators that are implemented in terms of an each iterator. Enumerable

doesn’t define the each method itself, but any class that defines it can mix

in the Enumerable module to instantly add many useful iterators.

Comparable is similar; it defines comparison operators in terms of the

general-purpose comparator <=>. If your class defines <=>, you can mix

in Comparable to get <, <=, == >, >=, and between? for free.

To mix a module into a class, use include. include is usually used as if it

were a language keyword:

class Point
include Comparable

end

In fact, it is a private instance method of Module, implicitly invoked on

self—the class into which the module is being included. In method form,

this code would be:

class Point
include(Comparable)

end

Because include is a private method, it must be invoked as a function, and

we cannot write self.include(Comparable). The include method accepts

any number of Module objects to mix in, so a class that defines each and

<=> might include the line:

include Enumerable, Comparable. The inclusion of a module affects

the type-checking method is_a? and the switch-equality operator ===.

Unit IV- MODULES RUBY PROGRAMMING (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE PAGE 4/11

For example, String mixes in the Comparable module and, in Ruby

1.8, also mixes in the Enumerable module:

"text".is_a? Comparable # => true
Enumerable === "text" # => true in Ruby 1.8, false in 1.9

Note that instanceof? only checks the class of its receiver, not superclasses

or modules, so the following is false:

"text".instance_of? Comparable # => false

Although every class is a module, the include method does not allow a

class to be included within another class. The arguments to include must

be modules declared with module, not classes.

It is legal, however, to include one module into another. Doing this simply

makes the instance methods of the included modules into instance

methods of the including module. As an example, consider this code

module Iterable # Classes that define next can include this module

include

Enumerable # Define iterators on top of each

def each # And define each on top of next
loop { yield self.next }

end
end

The normal way to mix in a module is with the Module.include method.

Another way is with Object.extend. This method makes the instance

methods of the specified mod-ule or modules into singleton methods of

the receiver object. (And if the receiver object is a Class instance, then the

methods of the receiver become class methods of that class.) Here is an

example:

countdown =

Object.new # A plain old object

def countdown.each #

The each iterator as a singleton

method

yield 3

yield 2

yield 1

end

countdown.extend(Enumerabl

e) #

Now the object has all Enumerable

methods

print countdown.sort #

Prints "[1, 2, 3]"

Unit IV- MODULES RUBY PROGRAMMING (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE PAGE 5/11

Includable Namespace Modules

It is possible to define modules that define a namespace but still allow

their methods to be mixed in. The Math module works like this:

Math.sin(0)

=> 0.0: Math is a namespace

include 'Math' # The Math namespace can be included

sin(0) #

=

>

0.0: Now we have easy access to the

functions

The Kernel module also works like this: we can invoke its methods
through the Kernel namespace, or as private methods of Object, into
which it is included.

Like the public, protected, and private methods, the module_function

method can also be invoked with no arguments. When invoked in this

way, any instance methods sub-sequently defined in the module will be

module functions: they will become public class methods and private

instance methods. Once you have invoked module_function with no

arguments, it remains in effect for the rest of the module definition—so if

you want to define methods that are not module functions, define those

first.

Loading and Requiring Modules

Ruby programs may be broken up into multiple files, and the most natural

way to partition a program is to place each nontrivial class or module into

a separate file. These separate files can then be reassembled into a single

program (and, if well-designed, can be reused by other programs) using

require or load. These are global functions defined in Kernel, but are used

like language keywords. The same require method is also used for loading

files from the standard library.

load and require serve similar purposes, though require is much more

commonly used than load. Both functions can load and execute a specified

file of Ruby source code. If the file to load is specified with an absolute

path, or is relative to ~ (the user’s home directory), then that specific file is

loaded. Usually, however, the file is specified as a relative path, and load

and require search for it relative to the directories of Ruby’s load path

(details on the load path appear below).

Unit IV- MODULES RUBY PROGRAMMING (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE PAGE 6/11

Despite these overall similarities, there are important differences between
load and require:

 In addition to loading source code, require can also load binary

extensions to Ruby. Binary extensions are, of course, implementation-

dependent, but in C-based implementations, they typically take the

form of shared library files with exten-sions like .so or .dll.

 load expects a complete filename including an extension. require is

usually passed a library name, with no extension, rather than a

filename. In that case, it searches for a file that has the library name as

its base name and an appropriate source or native library extension. If

a directory contains both an .rb source file and a binary extension file,

require will load the source file instead of the binary file.

 load can load the same file multiple times. require tries to prevent

multiple loads of the same file. (require can be fooled, however, if you

use two different, but equivalent, paths to the same library file. In

Ruby 1.9, require expands relative paths to absolute paths, which

makes it somewhat harder to fool.) require keeps track of the files that

have been loaded by appending them to the global array $" (also

known as $LOADED_FEATURES). load does not do this.

 load loads the specified file at the current $SAFE level. require loads

the specified library with $SAFE set to 0, even if the code that called

require has a higher value for that variable. See §10.5 for more on

$SAFE and Ruby’s security system. (Note that if $SAFE is set to a

value higher than 0, require will refuse to load any file with a tainted

filename or from a world-writable directory. In theory, therefore, it

should be safe for require to load files with a reduced $SAFE level.)

Executing Loaded Code

load and require execute the code in the specified file immediately.
Calling these meth-ods is not, however, equivalent to simply replacing the
call to load or require with the code contained by the file.

*

Files loaded with load or require are executed in a new top-level scope

that is different from the one in which load or require was invoked. The

loaded file can see all global variables and constants that have been

defined at the time it is loaded, but it does not have access to the local

scope from which the load was initiated. The implications of this include

the following:

Unit IV- MODULES RUBY PROGRAMMING (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE PAGE 7/11

 The local variables defined in the scope from which load or require is

invoked are not visible to the loaded file.

 Any local variables created by the loaded file are discarded once the

load is complete; they are never visible outside the file in which they

are defined.

 At the start of the loaded file, the value of self is always the main

object, just as it is when the Ruby interpreter starts running. That is,

invoking load or require within a method invocation does not

propagate the receiver object to the loaded file.

Reflection and Meta programming

Evaluating Strings and Blocks

One of the most powerful and straightforward reflective features of Ruby

is its eval method. If your Ruby program can generate a string of valid

Ruby code, the Kernel.eval method can evaluate that code:

x = 1
eval "x + 1" # => 2

eval is a very powerful function, but unless you are actually writing a shell

program (like irb) that executes lines of Ruby code entered by a user you

are unlikely to really need it. (And in a networked context, it is almost

never safe to call eval on text received from a user, as it could contain

malicious code.) Inexperienced programmers some-times end up using

eval as a crutch. If you find yourself using it in your code, see if there isn’t

a way to avoid it. Having said that, there are some more useful ways to use

eval and eval-like methods.

Querying, Setting, and Testing Variables

In addition to listing defined variables and constants, Ruby Object and

Module also define reflective methods for querying, setting, and removing

instance variables, class variables, and constants. There are no special

purpose methods for querying or setting local variables or global

variables, but you can use the eval method for this purpose:

x = 1
varname = "x"
eval(varname) # => 1
eval("varname = '$g'") # Set varname to "$g"
eval("#{varname} = x") # Set $g to 1

Unit IV- MODULES RUBY PROGRAMMING (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE PAGE 8/11

eval(varname) # => 1

Note that eval evaluates its code in a temporary scope. eval can alter the

value of instance variables that already exist. But any new instance

variables it defines are local to the invocation of eval and cease to exist

when it returns. (It is as if the evaluated code is run in the body of a

block—variables local to a block do not exist outside the block.)

You can query, set, and test the existence of instance variables on any

object and of class variables and constants on any class or module:

o = Object.new
o.instance_variable_set(:@x, 0) # Note required @ prefix
o.instance_variable_get(:@x) # => 0

o.instance_variable_defined?(:@x) #

=> True

Object.class_variable_set(:@@x, 1)

Private in Ruby 1.8

Object.class_variable_get(:@

@x) # Private in Ruby 1.8

Object.class_variable_defined?(:@@

x) # => true; Ruby 1.9 and later

Math.const_set(:EPI,

Math::E*Math::PI)

Math.const_get(:EPI) # => 8.53973422267357

Math.const_defined? :EPI # => true

Regular Expressions

A regular expression (also known as a regexp or regex) describes a textual
pattern. Ruby’s Regexp class

*
 implements regular expressions, and both

Regexp and String de-fine pattern matching methods and operators. Like
most languages that support regular expressions, Ruby’s Regexp syntax
follows closely (but not precisely) the syntax of Perl 5.

Regexp Literals

Regular expression literals are delimited by forward slash characters:

/Ruby?/ # Matches the text "Rub" followed by an optional "y"

The closing slash character isn’t a true delimiter because a regular

expression literal may be followed by one or more optional flag characters

Unit IV- MODULES RUBY PROGRAMMING (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE PAGE 9/11

that specify additional infor-mation about the how pattern matching is to

be done. For example:

/ruby?/i # Case-insensitive: matches "ruby" or "RUB", etc.
/./mu # Matches Unicode characters in Multiline mode

The allowed modifier characters are shown in following Table

 Regular expression modifier characters
Modifier Description

 Ignore case when matching text.

 The pattern is to be matched against multiline text, so treat newline

as an ordinary character: allow . to match newlines.

 Extended syntax: allow whitespace and comments in regexp.

 Perform #{} interpolations only once, the first time the regexp literal is

evaluated.

u,e,s,n Interpret the regexp as Unicode (UTF-8), EUC, SJIS, or ASCII. If

none of these modifiers is specified, the regular expression is

assumed to use the source encoding.

Like string literals delimited with %Q, Ruby allows you to begin your regular

expres-sions with %r followed by a delimiter of your choice. This is useful when

the pattern you are describing contains a lot of forward slash characters that you

don’t want to escape:

%r|/| # Matches a single slash character, no escape required
%r[</(.*)>]i # Flag characters are allowed with this syntax, too

Regular expression syntax gives special meaning to the characters (), [], {}, ., ?,

+, *, |, ^, and $. If you want to describe a pattern that includes one of these

characters literally, use a backslash to escape it. If you want to describe a pattern

that includes a backslash, double the backslash:

/\(\)/ # Matches open and close parentheses
/\\/ # Matches a single backslash

Regular expression literals behave like double-quoted string literals and can

include escape characters such as \n, \t, and (in Ruby 1.9) \u (see Table 3-1 in

Chapter 3 for a complete list of escape sequences):

money = /[$\u20AC\u{a3}\u{a5}]/ # match dollar,euro,pound, or yen sign

Also like double-quoted string literals, Regexp literals allow the interpolation of

arbi-trary Ruby expressions with the #{} syntax:

prefix = ","
/#{prefix}\t/ # Matches a comma followed by an ASCII TAB character

Unit IV- MODULES RUBY PROGRAMMING (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE PAGE

10/11

Note that interpolation is done early, before the content of the regular expression

is parsed. This means that any special characters in the interpolated expression

become part of the regular expression syntax. Interpolation is normally done

anew each time a regular expression literal is evaluated. If you use the o

modifier, however, this interpo-lation is only performed once, the first time the

code is parsed. The behavior of the o modifier is best demonstrated by example:

[1,2].map{|x| /#{x}/} # => [/1/, /2/]
[1,2].map{|x| /#{x}/o} # => [/1/, /1/].

Unit IV- MODULES RUBY PROGRAMMING (PG 2017-2020)

A. JENNETH DEPT. OF CS, CA & IT KAHE PAGE 11/11

POSSIBLE QUESTIONS

UNIT 1

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. Discuss in detail about mixins in modules.

2. Describe about creating, deleting and renaming files and directories in detail.

3. Explain about Files and Directories with examples.

4. Discuss in detail about Basic input and output in Ruby with suitable examples.

5. Write a Ruby program for the situation given below.

A primary school in a rural village of Coimbatore has 3 sections of second standard.

Unfortunately you have to engage all the three sections simultaneously. The students of the

three sections should get an impression that the teacher will visit our classroom for every five

minutes.

 6. Discuss in detail about Basic input and output statements in Ruby.

 7. Write a ruby script to read a file, writing into a file and Count the number of lines and

characters in a file.

 8. Explain about Modules as Mixins in Ruby

 9. Discuss in detail about listing and manipulating directories and testing files in Ruby

10. Explain about composing the modules and inclusion of files with suitable example.

PART – C (10 MARKS)

1. Design an application form using tk classes and validate all fields on Rails framework

2. Explain about different Data Types in Ruby.

3. Explain in detail about Object creation and initialization in Ruby

4. Write a ruby program to create a main thread and execute multiple process through the main thread.

5. Write a note on Defining, Calling and Undefining methods in Ruby

Sno QESTIONS OPTION1 OPTION2 OPTION3 OPTIONS4 ANS

1
Procs are containing code. They can be placed inside a variable and passed around like any other
object

anonymous or
nameless methods

True methods naming methods mixins anonymous or nameless methods

2 is the process of reclaiming the memory space. Garbage collection scheduling cleaning threading Garbage collection

3 Ruby's are defined using characters of the ASCII character set. Syntactic rules lexical rules Semantic procedures lexical rules

4
To run a Ruby program that includes Unicode characters encoded in , invoke the interpreter with the
option.

UTF-8, -Ku UTF-9 , -Kuf UTF-10 , -Kuf UTF-10 , -K UTF-8, -Ku

5 The Ruby reads the file and executes the script. compiler module interpreter virtual machine interpreter

6
A hash literal is written as a of key/value pairs, enclosed within .

comma-separated list
,curly braces

period-separated list
,curly braces

colon-separated list ,curly
braces

semi colon-separated
list ,brackets

comma-separated list ,curly braces

7 The objects work more efficiently as hash keys than strings. array Symbol number alpha-numeric Symbol

8
Symbols are , written as colon-prefixed identifiers.

mutable interned
strings

immutable external
strings

immutable interned strings immutable interned
numbers

immutable interned strings

9 Objects used as keys in a hash that returns a hashcode for the key. Fixnum Bignum Equal Slashed Fixnum

10 Changing the content of an object typically its hash code. Not changes changes Grouping isolates changes

11
If mutable hash keys are used, method of the Hash must be called every time to mutate a key.

Hashing rebuild rehash bind rehash

12 A object represents the values between a start value and an end value. Value Range String class Range
13 Range literals are written by placing dots between the start and end value one or two five or six two or three ten to twelve two or three

14 If two dots are used, then the range is and the value is part of the range. inclusive, end exclusive, end inclusive, start exclusive, start inclusive, end

15 The comparison operator <=>, which compares its two operands and evaluates to . –2, 0, or 2 –3, 1, or 3 –10, 0, or 100 –1, 0, or 1 –1, 0, or 1

16 33. r = 'a'..'c' r.each {|l| print "[#{l}]"} output” Prints"[a][b][c]" Prints"[a][a][a]" Prints"[a][1][1]" Prints"[1][1][1]" Prints"[a][b][c]"

17 34. r = 'a'..'c' r.step(2) { |l| print "[#{l}]"} output; Prints "[a][d]" Prints "[a][b]" Prints "[a][b][c]" Prints "[a][c]" Prints "[a][c]"

18
Ruby interpreter maintains a in which it stores the names of all the classes, methods, and variables. symbol table array table hash table relational table symbol table

19 All objects inherit from a class named and share the methods defined by that class. root base Object dynamic Object
20 The and methods provide the default technique for creating new classes. new initialize start initialize new mute new start new initialize

21

Ruby uses a technique called to automatically destroy objects that are no longer needed. Allocated garbage collection synchronization normalization garbage collection

22
The Ruby class represents an error or unexpected condition in a program and encapsulates an error
message.

Exception Arrar thread error Exception

23
The module defines four conversion methods that behave as global conversion functions. Module Class Kernel Mixin Kernel

24
Classes can also override the and methods directly to produce any kind of copy they desire. clone dup copy dup clone dos clone similar clone dup

25 Exception objects are instances of the class or one of its subclasses. Root class Exception Error Restricted Exception
26 Ruby uses the Kernel method clause to handle exceptions. Raise Block rescue Handle rescue

27 The most of Exception subclasses extend a class known as Standard StandardError Error FormalError. StandardError

28
The method returns a string that may provide human-readable details about what went wrong. message information mode clue message

29
 method returns an array of strings that represents the call stack at the point that the exception was
raised.

backtrace information mode message backtrace

30 Exception objects are typically created by the method. message rescue raise begin raise

31
If you create your own exception object, you can set the stack trace with the method. set_backtrace get_backtrace set_backerase stop_backtrace set_backtrace

32 If raise is called with no arguments, it creates a new object (with no message) stdError RuntimeError static error root clause RuntimeError

33
if raise is used with no arguments inside a clause, it simply re-raises the exception that was being
handled.

message fail mute rescue rescue

34 If raise is called with a Exception object as its argument, it raises that exception. double single null multiple single

35
If is called with a single string argument, it creates a new exception object, with the
specified string as its message, and raises that exception.

raise, RuntimeError rescue RuntimeError raise stdError raise StaticError raise, RuntimeError

36 raise accepts a string as its optional argument. third first second forth second

37
The statement exists simply to delimit the block of code within which exceptions are to be handled. begin start first remote begin

38
In a rescue clause, the global variable refers to the Exception object that is being handled. $$ $~ $! ^! $!

39
The clause is an alternative to the rescue clauses; it is used if none of the rescue clauses are needed. not else irrelevant alter else

40
If the code executes a return statement, then the execution skips the else clause and jumps directly to the
 clause before returning.

ensure raise caller kernel ensure

41 The purpose of the clause is to ensure that housekeeping details get taken care of. raise ensure caller kernel ensure

42
A of execution is a sequence of Ruby statements that run in parallel with the main sequence of
statements that the interpreter is running.

series block thread set thread

43
The return value of the block becomes available through the method of the Thread object. main rule break value value

44
c.superclass ; Returns the superclass of a class c. subclass of a class c. relevant class of a class c.

irrelevant class of a class
c.

superclass of a class c.

45 o.instance_of? c ; Determines whether the object class == c. o == c. o.class == c. class == 0. o.class == c.

46 The object returns the bindings in effect at the location of the call. Kernel.binding Kernel.joining Kernel.mergeing Kernel Kernel.binding

47 The class defines quite a few class methods for working with files as entries in a filesystem. Object module File Directory File
48 The method converts a relative path to a fully qualified path. File.extend_path File.expand_path File.dir_path Dir.expand_path File.expand_path

49 The method tests whether two filenames refer to the same file. File.identical? File.same? File.ideal? File.union? File.identical?

50 tests whether a filename matches a specified pattern. File.match File.fnmatch Dir.fnmatch File.charmatch File.fnmatch

51

Add if you want "hidden" files and directories whose names begin with "." to match. File::FNM_MATCH File::DOTMATCH File::FNM_DOTMATCH

File::FNM_periodMATCH
File::FNM_DOTMATCH

52 The method is used to list the contents of a directory. Dir.List List.entries File.entries Dir.entries Dir.entries

53
puts Dir.getwd # Print

current working
directory

stop working directory List working directory
remove working

directory
current working directory

54
If you pass a block to the method, the directory will be restored to its original value when the block
exits.

cdir chdir adder create dir chdir

55 Two threads may not call with a block at the same time. Dir.threadfile chdir Dir.chdir thread.chdir Dir.chdir

56
The efficiency of using is that Ruby only has to make one call to the OS to obtain all file metadata. stat status rule effect stat

57 File.utime (atime, mtime, f) output: update times Change times remove times rollup Change times

58
The module in the standard library allows us to create a stream wrapper around a string object. stringio stringclass charIO IOFile stringio

59
 objects represent the "standard input" and "standard output" streams used to read from and
write to the console.

ReadWrite File class IO IO

60
The class defines some utility methods that read the entire contents of a file with one call. Abstract Nodal File Dir File

UNIT 5 – THREADS AND PROCESSES RUBY PROGRAMMING YEAR (2017-2020 PG)

A.JENNETH DEPT OF CS, CA & IT KAHE PAGE 1/22

THREADS AND PROCESSES: Thread Life Cycle – Thread scheduling – Thread Exclusion – Deadlock. Ruby

Tk: Introduction- Widgets and classes. Networks: A Very Simple Client - A Very Simple Server – Datagram

- A Multiplexing Server - Fetching Web Pages. Ruby on Rails: Building a development Environment:

Installation – Installing Databases – Code editors – web server Configuration – Creating an web

application.

Thread Life cycle

A new threads are created with Thread.new. You can also use the

synonyms Thread.start and Thread.fork.

There is no need to start a thread after creating it, it begins running automatically when CPU

resources become available.

The Thread class defines a number of methods to query and manipulate the thread while it is

running. A thread runs the code in the block associated with the call to Thread.new and then it

stops running.

The value of the last expression in that block is the value of the thread, and can be obtained by

calling the value method of the Thread object. If the thread has run to completion, then the

value returns the thread's value right away. Otherwise, the value method blocks and does not

return until the thread has completed.

The class method Thread.current returns the Thread object that represents the current thread.

This allows threads to manipulate themselves. The class method Thread.main returns the

Thread object that represents the main thread. This is the initial thread of execution that began

when the Ruby program was started.

You can wait for a particular thread to finish by calling that thread's Thread.join method. The

calling thread will block until the given thread is finished.

Threads and Exceptions

If an exception is raised in the main thread, and is not handled anywhere, the Ruby interpreter

prints a message and exits. In threads, other than the main thread, unhandled exceptions cause

the thread to stop running.

If a thread t exits because of an unhandled exception, and another thread scalls t.join or

t.value, then the exception that occurred in t is raised in the thread s.

UNIT 5 – THREADS AND PROCESSES RUBY PROGRAMMING YEAR (2017-2020 PG)

A.JENNETH DEPT OF CS, CA & IT KAHE PAGE 2/22

If Thread.abort_on_exception is false, the default condition, an unhandled exception simply

kills the current thread and all the rest continue to run.

If you would like any unhandled exception in any thread to cause the interpreter to exit, set the

class method Thread.abort_on_exception to true.

t = Thread.new { ... }

t.abort_on_exception = true

Thread Variables

A thread can normally access any variables that are in scope when the thread is created.

Variables local to the block of a thread are local to the thread, and are not shared.

Thread class features a special facility that allows thread-local variables to be created and

accessed by name. You simply treat the thread object as if it were a Hash, writing to elements

using []= and reading them back using [].

In this example, each thread records the current value of the variable count in a threadlocal

variable with the key mycount.

 Live Demo

#!/usr/bin/ruby

count = 0

arr = []

10.times do |i|

 arr[i] = Thread.new {

 sleep(rand(0)/10.0)

 Thread.current["mycount"] = count

 count += 1

 }

end

http://tpcg.io/oVib5c

UNIT 5 – THREADS AND PROCESSES RUBY PROGRAMMING YEAR (2017-2020 PG)

A.JENNETH DEPT OF CS, CA & IT KAHE PAGE 3/22

arr.each {|t| t.join; print t["mycount"], ", " }

puts "count = #{count}"

This produces the following result −

8, 0, 3, 7, 2, 1, 6, 5, 4, 9, count = 10

The main thread waits for the subthreads to finish and then prints out the value

of count captured by each.

Thread Priorities

The first factor that affects the thread scheduling is the thread priority: high-priority threads are

scheduled before low-priority threads. More precisely, a thread will only get CPU time if there

are no higher-priority threads waiting to run.

You can set and query the priority of a Ruby Thread object with priority = and priority. A

newly created thread starts at the same priority as the thread that created it. The main thread

starts off at priority 0.

There is no way to set the priority of a thread before it starts running. A thread can, however,

raise or lower its own priority as the first action it takes.

Thread Exclusion

If two threads share access to the same data, and at least one of the threads modifies that data,

you must take special care to ensure that no thread can ever see the data in an inconsistent state.

This is called thread exclusion.

Mutex is a class that implements a simple semaphore lock for mutually exclusive access to

some shared resource. That is, only one thread may hold the lock at a given time. Other threads

may choose to wait in line for the lock to become available, or may simply choose to get an

immediate error indicating that the lock is not available.

By placing all accesses to the shared data under control of a mutex, we ensure consistency and

atomic operation. Let's try to examples, first one without mutax and second one with mutax −

Example without Mutax

 Live Demo

http://tpcg.io/ZN9FmX

UNIT 5 – THREADS AND PROCESSES RUBY PROGRAMMING YEAR (2017-2020 PG)

A.JENNETH DEPT OF CS, CA & IT KAHE PAGE 4/22

#!/usr/bin/ruby

require 'thread'

count1 = count2 = 0

difference = 0

counter = Thread.new do

 loop do

 count1 += 1

 count2 += 1

 end

end

spy = Thread.new do

 loop do

 difference += (count1 - count2).abs

 end

end

sleep 1

puts "count1 : #{count1}"

puts "count2 : #{count2}"

puts "difference : #{difference}"

This will produce the following result −

count1 : 1583766

count2 : 1583766

difference : 0

 Live Demo

#!/usr/bin/ruby

http://tpcg.io/yd9dWW

UNIT 5 – THREADS AND PROCESSES RUBY PROGRAMMING YEAR (2017-2020 PG)

A.JENNETH DEPT OF CS, CA & IT KAHE PAGE 5/22

require 'thread'

mutex = Mutex.new

count1 = count2 = 0

difference = 0

counter = Thread.new do

 loop do

 mutex.synchronize do

 count1 += 1

 count2 += 1

 end

 end

end

spy = Thread.new do

 loop do

 mutex.synchronize do

 difference += (count1 - count2).abs

 end

 end

end

sleep 1

mutex.lock

puts "count1 : #{count1}"

puts "count2 : #{count2}"

puts "difference : #{difference}"

UNIT 5 – THREADS AND PROCESSES RUBY PROGRAMMING YEAR (2017-2020 PG)

A.JENNETH DEPT OF CS, CA & IT KAHE PAGE 6/22

This will produce the following result −

count1 : 696591

count2 : 696591

difference : 0

Handling Deadlock

When we start using Mutex objects for thread exclusion we must be careful to avoid deadlock.

Deadlock is the condition that occurs when all threads are waiting to acquire a resource held by

another thread. Because all threads are blocked, they cannot release the locks they hold. And

because they cannot release the locks, no other thread can acquire those locks.

This is where condition variables come into picture. A condition variable is simply a

semaphore that is associated with a resource and is used within the protection of a

particular mutex. When you need a resource that's unavailable, you wait on a condition variable.

That action releases the lock on the corresponding mutex. When some other thread signals that

the resource is available, the original thread comes off the wait and simultaneously regains the

lock on the critical region.

Example

 Live Demo

#!/usr/bin/ruby

require 'thread'

mutex = Mutex.new

cv = ConditionVariable.new

a = Thread.new {

 mutex.synchronize {

 puts "A: I have critical section, but will wait for cv"

 cv.wait(mutex)

 puts "A: I have critical section again! I rule!"

 }

http://tpcg.io/E92cwJ

UNIT 5 – THREADS AND PROCESSES RUBY PROGRAMMING YEAR (2017-2020 PG)

A.JENNETH DEPT OF CS, CA & IT KAHE PAGE 7/22

}

puts "(Later, back at the ranch...)"

b = Thread.new {

 mutex.synchronize {

 puts "B: Now I am critical, but am done with cv"

 cv.signal

 puts "B: I am still critical, finishing up"

 }

}

a.join

b.join

This will produce the following result −

A: I have critical section, but will wait for cv

(Later, back at the ranch...)

B: Now I am critical, but am done with cv

B: I am still critical, finishing up

A: I have critical section again! I rule!

Thread States

There are five possible return values corresponding to the five possible states as shown in the

following table. The status method returns the state of the thread.

Thread state Return value

Runnable run

Sleeping Sleeping

UNIT 5 – THREADS AND PROCESSES RUBY PROGRAMMING YEAR (2017-2020 PG)

A.JENNETH DEPT OF CS, CA & IT KAHE PAGE 8/22

Aborting aborting

Terminated normally false

Terminated with exception nil

Thread Class Methods

Following methods are provided by Thread class and they are applicable to all the threads

available in the program. These methods will be called as using Thread class name as follows −

Thread.abort_on_exception = true

Here is the complete list of all the class methods available −

Thread Instance Methods

These methods are applicable to an instance of a thread. These methods will be called as using

an instance of a Thread as follows −

#!/usr/bin/ruby

thr = Thread.new do # Calling a class method new

 puts "In second thread"

 raise "Raise exception"

end

thr.join # Calling an instance method join

Ruby - Tk

Introduction

The standard graphical user interface (GUI) for Ruby is Tk. Tk started out as the GUI for the

Tcl scripting language developed by John Ousterhout.

UNIT 5 – THREADS AND PROCESSES RUBY PROGRAMMING YEAR (2017-2020 PG)

A.JENNETH DEPT OF CS, CA & IT KAHE PAGE 9/22

Tk has the unique distinction of being the only cross-platform GUI. Tk runs on Windows, Mac,

and Linux and provides a native look-and-feel on each operating system.

The basic component of a Tk-based application is called a widget. A component is also

sometimes called a window, since, in Tk, "window" and "widget" are often used

interchangeably.

Tk applications follow a widget hierarchy where any number of widgets may be placed within

another widget, and those widgets within another widget, ad infinitum. The main widget in a Tk

program is referred to as the root widget and can be created by making a new instance of the

TkRoot class.

 Most Tk-based applications follow the same cycle: create the widgets, place them in the

interface, and finally, bind the events associated with each widget to a method.

 There are three geometry managers; place, grid and pack that are responsible for

controlling the size and location of each of the widgets in the interface.

Installation

The Ruby Tk bindings are distributed with Ruby but Tk is a separate installation. Windows

users can download a single click Tk installation from ActiveState's ActiveTcl.

Mac and Linux users may not need to install it because there is a great chance that its already

installed along with OS but if not, you can download prebuilt packages or get the source from

the Tcl Developer Xchange.

Simple Tk Application

A typical structure for Ruby/Tk programs is to create the main or root window (an instance of

TkRoot), add widgets to it to build up the user interface, and then start the main event loop by

calling Tk.mainloop.

The traditional Hello, World! example for Ruby/Tk looks something like this −

require 'tk'

root = TkRoot.new { title "Hello, World!" }

http://aspn.activestate.com/ASPN/Downloads/ActiveTcl/
https://www.tcl.tk/software/tcltk/downloadnow84.tml

UNIT 5 – THREADS AND PROCESSES RUBY PROGRAMMING YEAR (2017-2020 PG)

A.JENNETH DEPT OF CS, CA & IT KAHE PAGE 10/22

TkLabel.new(root) do

 text 'Hello, World!'

 pack { padx 15 ; pady 15; side 'left' }

end

Tk.mainloop

Here, after loading the tk extension module, we create a root-level frame using TkRoot.new. We

then make a TkLabel widget as a child of the root frame, setting several options for the label.

Finally, we pack the root frame and enter the main GUI event loop.

If you would run this script, it would produce the following result −

Ruby/Tk Widget Classes

There is a list of various Ruby/Tk classes, which can be used to create a desired GUI using

Ruby/Tk.

 TkFrame Creates and manipulates frame widgets.

 TkButton Creates and manipulates button widgets.

 TkLabel Creates and manipulates label widgets.

 TkEntry Creates and manipulates entry widgets.

 TkCheckButton Creates and manipulates checkbutton widgets.

 TkRadioButton Creates and manipulates radiobutton widgets.

 TkListbox Creates and manipulates listbox widgets.

 TkComboBox Creates and manipulates listbox widgets.

 TkMenu Creates and manipulates menu widgets.

https://www.tutorialspoint.com/ruby/ruby_tk_frame.htm
https://www.tutorialspoint.com/ruby/ruby_tk_button.htm
https://www.tutorialspoint.com/ruby/ruby_tk_label.htm
https://www.tutorialspoint.com/ruby/ruby_tk_entry.htm
https://www.tutorialspoint.com/ruby/ruby_tk_checkbutton.htm
https://www.tutorialspoint.com/ruby/ruby_tk_radiobutton.htm
https://www.tutorialspoint.com/ruby/ruby_tk_listbox.htm
https://www.tutorialspoint.com/ruby/ruby_tk_combobox.htm
https://www.tutorialspoint.com/ruby/ruby_tk_menu.htm

UNIT 5 – THREADS AND PROCESSES RUBY PROGRAMMING YEAR (2017-2020 PG)

A.JENNETH DEPT OF CS, CA & IT KAHE PAGE 11/22

 TkMenubutton Creates and manipulates menubutton widgets.

 Tk.messageBox Creates and manipulates a message dialog.

 TkScrollbar Creates and manipulates scrollbar widgets.

 TkCanvas Creates and manipulates canvas widgets.

 TkScale Creates and manipulates scale widgets.

 TkText Creates and manipulates text widgets.

 TkToplevel Creates and manipulates toplevel widgets.

 TkSpinbox Creates and manipulates Spinbox widgets.

 TkProgressBar Creates and manipulates Progress Bar widgets.

 Dialog Box Creates and manipulates Dialog Box widgets.

 Tk::Tile::Notebook Display several windows in limited space with notebook metaphor.

 Tk::Tile::Paned Displays a number of subwindows, stacked either vertically or

horizontally.

 Tk::Tile::Separator Displays a horizontal or vertical separator bar.

 Ruby/Tk Font, Colors and Images Understanding Ruby/Tk Fonts, Colors and Images

Standard Configuration Options

All widgets have a number of different configuration options, which generally control how they

are displayed or how they behave. The options that are available depend upon the widget class

of course.

Here is a list of all the standard configuration options, which could be applicable to any

Ruby/Tk widget.

There are other widget specific options also, which would be explained along with widgets.

Ruby/Tk Geometry Management

Geometry Management deals with positioning different widgets as per requirement. Geometry

management in Tk relies on the concept of master and slave widgets.

https://www.tutorialspoint.com/ruby/ruby_tk_menubutton.htm
https://www.tutorialspoint.com/ruby/ruby_tk_messagebox.htm
https://www.tutorialspoint.com/ruby/ruby_tk_scrollbar.htm
https://www.tutorialspoint.com/ruby/ruby_tk_canvas.htm
https://www.tutorialspoint.com/ruby/ruby_tk_scale.htm
https://www.tutorialspoint.com/ruby/ruby_tk_text.htm
https://www.tutorialspoint.com/ruby/ruby_tk_toplevel.htm
https://www.tutorialspoint.com/ruby/ruby_tk_spinbox.htm
https://www.tutorialspoint.com/ruby/ruby_tk_progressbar.htm
https://www.tutorialspoint.com/ruby/ruby_tk_dialogbox.htm
https://www.tutorialspoint.com/ruby/ruby_tk_notebook.htm
https://www.tutorialspoint.com/ruby/ruby_tk_paned.htm
https://www.tutorialspoint.com/ruby/ruby_tk_separator.htm
https://www.tutorialspoint.com/ruby/ruby_tk_fonts_colors_images.htm

UNIT 5 – THREADS AND PROCESSES RUBY PROGRAMMING YEAR (2017-2020 PG)

A.JENNETH DEPT OF CS, CA & IT KAHE PAGE 12/22

A master is a widget, typically a top-level window or a frame, which will contain other widgets,

which are called slaves. You can think of a geometry manager as taking control of the master

widget, and deciding what will be displayed within.

The geometry manager will ask each slave widget for its natural size, or how large it would

ideally like to be displayed. It then takes that information and combines it with any parameters

provided by the program when it asks the geometry manager to manage that particular slave

widget.

There are three geometry managers place, grid and pack that are responsible for controlling the

size and location of each of the widgets in the interface.

 grid Geometry manager that arranges widgets in a grid.

 pack Geometry manager that packs around edges of cavity.

 place Geometry manager for fixed or rubber-sheet placement.

Ruby/Tk Event Handling

Ruby/Tk supports event loop, which receives events from the operating system. These are

things like button presses, keystrokes, mouse movement, window resizing, and so on.

Ruby/Tk takes care of managing this event loop for you. It will figure out what widget the event

applies to (did the user click on this button? if a key was pressed, which textbox had the

focus?), and dispatch it accordingly. Individual widgets know how to respond to events, so for

example a button might change color when the mouse moves over it, and revert back when the

mouse leaves.

At a higher level, Ruby/Tk invokes callbacks in your program to indicate that something

significant happened to a widget For either case, you can provide a code block or a Ruby

Proc object that specifies how the application responds to the event or callback.

Let's take a look at how to use the bind method to associate basic window system events with

the Ruby procedures that handle them. The simplest form of bind takes as its inputs a string

indicating the event name and a code block that Tk uses to handle the event.

For example, to catch the ButtonRelease event for the first mouse button on some widget, you'd

write −

https://www.tutorialspoint.com/ruby/ruby_tk_grid.htm
https://www.tutorialspoint.com/ruby/ruby_tk_pack.htm
https://www.tutorialspoint.com/ruby/ruby_tk_place.htm

UNIT 5 – THREADS AND PROCESSES RUBY PROGRAMMING YEAR (2017-2020 PG)

A.JENNETH DEPT OF CS, CA & IT KAHE PAGE 13/22

someWidget.bind('ButtonRelease-1') {

 code block to handle this event...

}

An event name can include additional modifiers and details. A modifier is a string

like Shift, Control or Alt, indicating that one of the modifier keys was pressed.

So, for example, to catch the event that's generated when the user holds down the Ctrl key and

clicks the right mouse button.

someWidget.bind('Control-ButtonPress-3', proc { puts "Ouch!" })

Many Ruby/Tk widgets can trigger callbacks when the user activates them, and you can use

the command callback to specify that a certain code block or procedure is invoked when that

happens. As seen earlier, you can specify the command callback procedure when you create the

widget −

helpButton = TkButton.new(buttonFrame) {

 text "Help"

 command proc { showHelp }

}

Or you can assign it later, using the widget's command method −

helpButton.command proc { showHelp }

Since the command method accepts either procedures or code blocks, you could also write the

previous code example as −

helpButton = TkButton.new(buttonFrame) {

 text "Help"

 command { showHelp }

}

You can use the following basic event types in your Ruby/Tk application −

UNIT 5 – THREADS AND PROCESSES RUBY PROGRAMMING YEAR (2017-2020 PG)

A.JENNETH DEPT OF CS, CA & IT KAHE PAGE 14/22

The configure Method

The configure method can be used to set and retrieve any widget configuration values. For

example, to change the width of a button you can call configure method any time as follows −

require "tk"

button = TkButton.new {

 text 'Hello World!'

 pack

}

button.configure('activebackground', 'blue')

Tk.mainloop

To get the value for a current widget, just supply it without a value as follows −

color = button.configure('activebackground')

You can also call configure without any options at all, which will give you a listing of all

options and their values.

The cget Method

For simply retrieving the value of an option, configure returns more information than you

generally want. The cget method returns just the current value.

color = button.cget('activebackground')

Networks

Ruby provides two levels of access to network services. At a low level, you can access the basic

socket support in the underlying operating system, which allows you to implement clients and

servers for both connection-oriented and connectionless protocols.

UNIT 5 – THREADS AND PROCESSES RUBY PROGRAMMING YEAR (2017-2020 PG)

A.JENNETH DEPT OF CS, CA & IT KAHE PAGE 15/22

Ruby also has libraries that provide higher-level access to specific application-level network

protocols, such as FTP, HTTP, and so on.

What are Sockets?

Sockets are the endpoints of a bidirectional communications channel. Sockets may

communicate within a process, between processes on the same machine, or between processes

on different continents.

Sockets may be implemented over a number of different channel types: Unix domain sockets,

TCP, UDP, and so on. The socket provides specific classes for handling the common transports

as well as a generic interface for handling the rest.

Sockets have their own vocabulary −

Sr.No. Term & Description

1 domain

The family of protocols that will be used as the transport mechanism.

These values are constants such as PF_INET, PF_UNIX, PF_X25,

and so on.

2 type

The type of communications between the two endpoints, typically

SOCK_STREAM for connection-oriented protocols and

SOCK_DGRAM for connectionless protocols.

3 protocol

Typically zero, this may be used to identify a variant of a protocol

within a domain and type.

4 hostname

The identifier of a network interface −

A string, which can be a host name, a dotted-quad address, or an

IPV6 address in colon (and possibly dot) notation

A string "<broadcast>", which specifies an

INADDR_BROADCAST address.

A zero-length string, which specifies INADDR_ANY, or

UNIT 5 – THREADS AND PROCESSES RUBY PROGRAMMING YEAR (2017-2020 PG)

A.JENNETH DEPT OF CS, CA & IT KAHE PAGE 16/22

An Integer, interpreted as a binary address in host byte order.

5 port

Each server listens for clients calling on one or more ports. A port

may be a Fixnum port number, a string containing a port number, or

the name of a service.

A Simple Client

Here we will write a very simple client program, which will open a connection to a given port

and given host. Ruby class TCPSocket provides open function to open such a socket.

The TCPSocket.open(hosname, port) opens a TCP connection to hostnameon the port.

Once you have a socket open, you can read from it like any IO object. When done, remember to

close it, as you would close a file.

The following code is a very simple client that connects to a given host and port, reads any

available data from the socket, and then exits −

require 'socket' # Sockets are in standard library

hostname = 'localhost'

port = 2000

s = TCPSocket.open(hostname, port)

while line = s.gets # Read lines from the socket

 puts line.chop # And print with platform line terminator

end

s.close # Close the socket when done

A Simple Server

To write Internet servers, we use the TCPServer class. A TCPServer object is a factory for

TCPSocket objects.

Now call TCPServer.open(hostname, port function to specify a port for your service and

create a TCPServer object.

UNIT 5 – THREADS AND PROCESSES RUBY PROGRAMMING YEAR (2017-2020 PG)

A.JENNETH DEPT OF CS, CA & IT KAHE PAGE 17/22

Next, call the accept method of the returned TCPServer object. This method waits until a client

connects to the port you specified, and then returns a TCPSocket object that represents the

connection to that client.

require 'socket' # Get sockets from stdlib

server = TCPServer.open(2000) # Socket to listen on port 2000

loop { # Servers run forever

 client = server.accept # Wait for a client to connect

 client.puts(Time.now.ctime) # Send the time to the client

 client.puts "Closing the connection. Bye!"

 client.close # Disconnect from the client

}

Now, run this server in background and then run the above client to see the result.

Multi-Client TCP Servers

Most servers on the Internet are designed to deal with large numbers of clients at any one time.

Ruby's Thread class makes it easy to create a multithreaded server.one that accepts requests and

immediately creates a new thread of execution to process the connection while allowing the

main program to await more connections −

require 'socket' # Get sockets from stdlib

server = TCPServer.open(2000) # Socket to listen on port 2000

loop { # Servers run forever

 Thread.start(server.accept) do |client|

 client.puts(Time.now.ctime) # Send the time to the client

 client.puts "Closing the connection. Bye!"

 client.close # Disconnect from the client

 end

}

UNIT 5 – THREADS AND PROCESSES RUBY PROGRAMMING YEAR (2017-2020 PG)

A.JENNETH DEPT OF CS, CA & IT KAHE PAGE 18/22

In this example, you have a permanent loop, and when server.accept responds, a new thread is

created and started immediately to handle the connection that has just been accepted, using the

connection object passed into the thread. However, the main program immediately loops back

and awaits new connections.

Using Ruby threads in this way means the code is portable and will run in the same way on

Linux, OS X, and Windows.

A Tiny Web Browser

We can use the socket library to implement any Internet protocol. Here, for example, is a code

to fetch the content of a web page −

require 'socket'

host = 'www.tutorialspoint.com' # The web server

port = 80 # Default HTTP port

path = "/index.htm" # The file we want

This is the HTTP request we send to fetch a file

request = "GET #{path} HTTP/1.0\r\n\r\n"

socket = TCPSocket.open(host,port) # Connect to server

socket.print(request) # Send request

response = socket.read # Read complete response

Split response at first blank line into headers and body

headers,body = response.split("\r\n\r\n", 2)

print body # And display it

To implement the similar web client, you can use a pre-built library like Net::HTTP for

working with HTTP. Here is the code that does the equivalent of the previous code −

require 'net/http' # The library we need

host = 'www.tutorialspoint.com' # The web server

path = '/index.htm' # The file we want

UNIT 5 – THREADS AND PROCESSES RUBY PROGRAMMING YEAR (2017-2020 PG)

A.JENNETH DEPT OF CS, CA & IT KAHE PAGE 19/22

http = Net::HTTP.new(host) # Create a connection

headers, body = http.get(path) # Request the file

if headers.code == "200" # Check the status code

 print body

else

 puts "#{headers.code} #{headers.message}"

end

Please check similar libraries to work with FTP, SMTP, POP, and IMAP protocols.

Ruby on Rails: Building a development Environment: Installation

Ruby on Rails recommends to create three databases - a database each for development, testing,

and production environment. According to convention, their names should be −

 library_development

 library_production

 library_test

You should initialize all three of them and create a user and password for them with full read

and write privileges. We are using the root user ID for our application.

Rails Active Record is the Object/Relational Mapping (ORM) layer supplied with Rails. It

closely follows the standard ORM model, which is as follows −

 tables map to classes,

 rows map to objects and

 columns map to object attributes.

Rails Active Records provide an interface and binding between the tables in a relational

database and the Ruby program code that manipulates database records. Ruby method names

are automatically generated from the field names of database tables.

Each Active Record object has CRUD (Create, Read, Update, and Delete) methods for database

access. This strategy allows simple designs and straight forward mappings between database

tables and application objects.

UNIT 5 – THREADS AND PROCESSES RUBY PROGRAMMING YEAR (2017-2020 PG)

A.JENNETH DEPT OF CS, CA & IT KAHE PAGE 20/22

Translating a Domain Model into SQL

Translating a domain model into SQL is generally straight forward, as long as you remember

that you have to write Rails-friendly SQL. In practical terms, you have to follow certain rules −

 Each entity (such as book) gets a table in the database named after it, but in the plural

(books).

 Each such entity-matching table has a field called id, which contains a unique integer for

each record inserted into the table.

 Given entity x and entity y, if entity y belongs to entity x, then table y has a field called

x_id.

 The bulk of the fields in any table store the values for that entity's simple properties

(anything that's a number or a string).

Creating Active Record Files (Models)

To create the Active Record files for our entities for library application, introduced in the

previous chapter, issue the following command from the top level of the application directory.

library\> rails script/generate model Book

library\> rails script/generate model Subject

Using HTTPs with Ruby on Rails

Obtaining an SSL certificate

There are several different types of SSL certificates . You can group them by validation level

(domain validated, organization validated, extended validation), by coverage (single-name,

wildcard, multi-domains, etc.) and authenticity (self-signed vs publicly-trusted certificate

authorities).

In general, single-name or wildcard certificates are the most common choices. They allow you to

secure a single hostname (such as www.example.com) or an entire subdomain level (such

as *.example.com). Unless you need some extra level of validation, domain validated

certificates are the cheapest and most common solution. The second most-popular alternative are

the extended validation certificates, which are generally recognized by the green bar displayed by

the browsers in the address bar.

For production environments, you are required to purchase an SSL certificate issued by a trusted

certificate authority (e.g. Digicert , Comodo , Let's Encrypt) or a reseller (e.g. DNSimple). To

purchase a trusted SSL certificate, follow the instructions provided by the certificate provider.

For non-production applications, you can avoid the costs associated with the SSL certificate by

using a self-signed SSL certificate. If you use a self-signed certificate the connection will still be

encrypted, however your browser will likely display a security warning because the certificate is not

https://simonecarletti.com/blog/2013/11/ssl-certificate-types/
http://www.example.com/
http://example.com/
https://www.digicert.com/
https://www.comodo.com/
https://letsencrypt.org/
https://dnsimple.com/ssl-certificates

UNIT 5 – THREADS AND PROCESSES RUBY PROGRAMMING YEAR (2017-2020 PG)

A.JENNETH DEPT OF CS, CA & IT KAHE PAGE 21/22

issued by a trusted certification authority. You can follow these instructions to generate a self-

signed certificate.

Regardless the type of certificate, at the end of the issuance process you should obtain the following

files:

1. The public SSL certificate

2. The private key

3. Optionally, a list of intermediate SSL certificates or an intermediate SSL certificate bundle

These files are required to proceed to the next step and configure the web server to support HTTPS.

Configuring the web server to support HTTPS

In this section we'll learn how to configure the most common Ruby on Rails web servers to serve an

application under HTTPS. We'll use the public SSL certificate, the private key and the intermediate

SSL chain we obtained at the previous step.

For the purpose of the examples, I'll use the following file names:

 certificate.crt - the public SSL certificate

 private.key - the private key

Depending on the web server, you may need to supply the SSL intermediate chain in a single file

along with the public SSL certificate, or use two separate files:

 chain.pem - the intermediate SSL certificate bundle

 certificate_and_chain.pem - the SSL certificate and intermediate SSL certificate bundle

Intermediate and SSL Certificate Bundle

The creation of the intermediate SSL certificate bundle is generally one of the most confusing step,

therefore it deserves a special mention.

The bundle is just a simple text file that contains the concatenation of all the intermediate SSL

certificates. The order is generally in reverse order, from the most specific intermediate SSL

certificate to the most generic (and/or the root certificate).

The root certificate is generally omitted as it should be bundle in the browser or in the operating

system. If the bundle has to contain the server SSL certificate, then this must appear as the first

certificate in the list (as this is the most specific).

SERVER CERTIFICATE

INTERMEDIATE CERTIFICATE 1

INTERMEDIATE CERTIFICATE 2

INTERMEDIATE CERTIFICATE N

ROOT CERTIFICATE

https://devcenter.heroku.com/articles/ssl-certificate-self

UNIT 5 – THREADS AND PROCESSES RUBY PROGRAMMING YEAR (2017-2020 PG)

A.JENNETH DEPT OF CS, CA & IT KAHE PAGE 22/22

You can use a text editor to concatenate the files together, or the cat unix utility.

cat certificate.crt interm1.crt intermN.crt root.csr > certificate_and_chain.pem

cat interm1.crt intermN.crt root.csr > chain.pem

POSSIBLE QUESTIONS

UNIT 1

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. Write a brief note on Spawing new process and private thread variables.

2. Discuss in detail about the thread life cyclewith suitable examples.

3. Create a class called MyCar. Move all the methods from MyCar class that also pertains to
the MyTruck class into the vehicle class. Make sure that all the previous method calls are
executing when you exit from the application.

4. Explain about Ruby’s networking capabilities

5. Describe in detail about controlling thread scheduler with suitable example.

6. Describe about Widgets and classes with suitable example

7. Write a ruby program to display notebook widget

8. Explain about Thread life cycle and thread scheduling

9. Discuss about creation of thread with suitable example.

10. Explain server multiplexing with suitable example.

PART – C (10 MARKS)

1. Design an application form using tk classes and validate all fields on Rails framework

2. Explain about different Data Types in Ruby.

3. Explain in detail about Object creation and initialization in Ruby

4. Write a ruby program to create a main thread and execute multiple process through the main
thread.

5. Write a note on Defining, Calling and Undefining methods in Ruby

Sno QUESTIONS OPTION1 OPTION2 OPTION3 OPTIONS4 ANS

1 ___________ # Match "ruby" or "rube"
 /ruby or

rube/

/ruby|rub

e/

/ruby||ru

be/

/ru[b][y]e/

/ruby|rub

e/

2 _____________________# Case-insensitive while matching "uby".

 /R(i)uby/ /R[i]uby/

/R(?i)uby/

/Ruby|rub

y/

/R(?i)uby/

3 A ________________ object is more powerful when the Regexp that was matched contains subexpressions in

parentheses.

MatchDat

a

CatchData

MatchObj

ect

 Match

regExp

MatchDat

a

4 s = "one, two, three" s.split output:______________ #

["one,","t

wo,","thre

e"]

 #

["onetwot

hree"]

 [123]

 #

[‘one,’,’tw

o,’,’three’]

 #

["one,","t

wo,","thre

e"]

5 ______________ allows computers to send individual packets of data to other computers, without the overhead

of establishing a persistent connection.
 TCP UDP SDK PGP UDP

6 The argument to _______________ specifies the maximum amount of data we are interested in receiving.
 recvto reform recvfrom receiver recvfrom

7 The server code uses the _____________ class without special UDPServer class for datagram-based servers.

UDPSocke

t

TCPSocket

UDPconne

ct

disconnec

t

UDPSocke

t

8 The __________ method is used to write a multiplexing server.

Kernel.des

elect

Kernel.con

nect

Servercod

e

Kernel.sel

ect

Kernel.sel

ect

9 We can use the __________ to implement any Internet protocol. socket

library

 server

library

 header

library

 TCP and

UDP

 socket

library

10 __________ are used if two threads are performing regular expression matching concurrently. $SAFE

and $^

 $SAFE

and $~

 &&SAFE

and $~

 $SAFE

and &~

 $SAFE

and $~

11 The ____________ class provides hash-like behavior.

Exception

Expressio

n

 Thread Mutex Thread

12 Set and query the priority of a Ruby Thread object with _____________.
 priority##

and

priority.

==priority

and

priority~.

 priority

and

=priority=.

 priority=

and

priority.

 priority=

and

priority.

13 When multiple threads of the same priority need to share the CPU, it is up to the _________to decide when, and

for how long, each thread runs.
 thread

scheduler

 thread

setter

 thread

runner

 thread

cycle

 thread

scheduler

14 schedulers are__________, which means that they allow a thread to run only for a fixed amount of time before

allowing another thread of the same priority to run.

 non

preemptin

g

preemptin

g

 thread

scheduler
 priority

preemptin

g

15 Long-running compute-bound threads should periodically call _____________to ask the scheduler to yield the CPU

to another thread.

Thread.st

op

Thread.hal

t

Thread.pa

ss

Thread.m

ove

Thread.pa

ss

16 A thread can pause itself—enter the sleeping state—by calling _________.

Thread.st

op

Thread.hal

t

Thread.pa

ss

Thread.m

ove

Thread.st

op

17 Threads are created in the ___________ state, and are eligible to run right away.

 runnable movable

executabl

e

throwable
 runnable

18 ____________ class method that operates on the current thread—there is no equivalent instance method, so one

thread cannot force another thread to pause.

Thread.st

op

Thread.hal

t

Thread.pa

ss

Thread.m

ove

Thread.st

op

19 A thread that has paused itself with Thread.stop or Kernel.sleep can be started again with the instance methods

__________.
 wakeup run.

 wakeup

and run.

 sleep and

run.

 wakeup

and run.

20 A thread is terminate normally by calling ________________.

Thread.ter

minate

Thread.exi

t

Thread.m

ute

 destroy

Thread.exi

t

21 A thread can switch itself from the runnable state to one of the terminated states simply by exiting by

______________. ensuring

an

exception.

 stoping

an

exception.

 raising an

exception.

 catching

an

exception

 raising an

exception.

22 A thread can forcibly terminate another thread by invoking the instance method ________on the thread to be

terminated. kill

Thread.exi

t

Thread.m

ute

 destroy kill

23 The _____________ method returns an array of Thread objects representing all live threads.

Thread.co

unt

Thread.rol

lout

Thread.list

Thread.ret

urnall

Thread.list

24 If you want to impose some order onto a subset of threads, you can create a ____________object and add threads

to it.

ThreadGr

oup

ThreadJoi

n

ThreadMe

rge

Threadspli

t

ThreadGr

oup

	1.pdf (p.1-2)
	2.pdf (p.3-7)
	3.pdf (p.8-56)
	4.pdf (p.57)
	5.pdf (p.58-106)
	6.pdf (p.107-108)
	7.pdf (p.109-119)
	8.pdf (p.120-125)
	9.pdf (p.126-136)
	10.pdf (p.137)
	11.pdf (p.138-159)
	12.pdf (p.160-161)

