
2019-2022
Batch

Programming in Java - Syllabus

Department of Computer Science, CA & IT, KAHE 1/3

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2019 onwards)

DEPARTMENT OF COMPUTER SCIENCE,CA & IT

SUBJECT : PROGRAMMING IN JAVA

SEMESTER : II L T P C

SUBJECT CODE: 19CAU201 CLASS : I BCA 4 0 0 4

COURSE OBJECTIVES:

 know the java path setting and programming techniques
 basic java programming and Applet programming
 understand the fundamental of Packages and access modifiers and interface in java
 understand the fundamental of Exception Handling and AWT component and AWT

classes

COURSE LEARNING OUTCOMES:

Activities in this module map directly to the following three outcomes proposed in our grant
proposal:

 Demonstrate in-depth understanding of the cyber security First Principles.
 Explore the use of various operating systems commands on different platforms.
 Have a better understanding of essential problem solving and programming concepts.

UNIT-I

Introduction to Java : Java Architecture and Features, Understanding the semantic and syntax

differences between C++ and Java, Compiling and Executing a Java Program, Variables,

Constants, Keywords Data Types, Operators (Arithmetic, Logical and Bitwise) and Expressions,

Comments, Doing Basic Program Output, Decision Making Constructs (conditional statements

and loops) and Nesting, Java Methods (Defining, Scope, Passing and Returning Arguments,

Type Conversion and Type and Checking, Built-in Java Class Methods),

2019-2022
Batch

Programming in Java - Syllabus

Department of Computer Science, CA & IT, KAHE 2/3

UNIT-II

Arrays, Strings and I/O Creating & Using Arrays (One Dimension and Multi-dimensional),

Referencing Arrays Dynamically, Java Strings: The Java String class, Creating & Using String

Objects, Manipulating Strings, String Immutability & Equality, Passing Strings To & From

Methods, String Buffer Classes. Simple I/O using System. out and the Scanner class, Byte and

Character streams, Reading/Writing from console and files. Object-Oriented Programming

Overview Principles of Object-Oriented Programming, Defining & Using Classes, Controlling

Access to Class Members, Class Constructors, Method Overloading, Class Variables & Methods,

Objects as parameters, final classes, Object class, Garbage Collection.

UNIT-III

Inheritance, Interfaces, Packages, Enumerations, Auto boxing and Metadata

Inheritance: (Single Level and Multilevel, Method Overriding, Dynamic Method Dispatch,

Abstract Classes), Interfaces and Packages, Extending interfaces and packages, Package and

Class Visibility, Using Standard Java Packages (util, lang, io, net), Wrapper Classes, Auto

boxing/Unboxing, Enumerations and Metadata.

UNIT-IV

Exception Handling, Threading, Networking and Database Connectivity Exception types,

uncaught exceptions, throw, built-in exceptions, Creating your own exceptions; Multi-threading:

The Thread class and Runnable interface, creating single and multiple threads, Thread

prioritization, synchronization and communication, suspending/resuming threads. Using java.net

package, Overview of TCP/IP and Datagram programming. Accessing and manipulating

databases using JDBC.

UNIT-V

Java Applets: Introduction to Applets, Writing Java Applets, Working with Graphics,

Incorporating Images & Sounds. Event Handling Mechanisms, Listener Interfaces, Adapter and

Inner Classes. The design and Implementation of GUIs using the AWT controls, Swing

2019-2022
Batch

Programming in Java - Syllabus

Department of Computer Science, CA & IT, KAHE 3/3

components of Java Foundation Classes such as labels, buttons, text fields, layout managers,

menus, events and listeners; Graphic objects for drawing figures such as lines, rectangles, ovals,

using different fonts. Overview of servlets.

Suggested Readings:

1. Ken Arnold, James Gosling, David Homes, 2005,The Java Programming Language,

4th Edition.

2. James Gosling, Bill Joy, Guy L Steele Jr,Gilad Bracha, Alex Buckley, 2014, The Java

Language Specification, Java SE 8th Edition (Java Series), Published by Addison Wesley.

3. Joshua Bloch, 2008, Effective Java, 2nd Edition,Publisher: Addison-Wesley.

4. Cay S. Horstmann, Gary Cornell, 2012, Core Java 2 Volume 1 ,9th Edition,Printice Hall.

5. Cay S. Horstmann, Gary Cornell, 2013,Core Java 2 Volume 2 - Advanced Features, 9th

Edition,Printice Hall.

6. Bruce Eckel, 2002,Thinking in Java, 3rd Edition, PHI.

7. E. Balaguruswamy, 2009,Programming with Java, 4th Edition, McGraw Hill.

8. Paul Deitel, Harvey Deitel, 2011, Java: How to Program, 10th Edition, Prentice Hall.

9. David J. Eck, 2009,Introduction to Programming Using Java, Published by CreateSpace

Independent Publishing Platform.

10. John R. Hubbard, 2004,Programming with JAVA, Schaum's Series, 2nd Edition.

WEBSITES

1. java.sun.com/docs/books/tutorial/

2. www.en.wikipedia.org/wiki/Java

3. www.java.net/

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

UNIT – I

SYLLABUS

Introduction to Java : Java Architecture and Features, Understanding the semantic and syntax

differences between C++ and Java, Compiling and Executing a Java Program, Variables,

Constants, Keywords Data Types, Operators (Arithmetic, Logical and Bitwise) and Expressions,

Comments, Doing Basic Program Output, Decision Making Constructs (conditional statements

and loops) and Nesting, Java Methods (Defining, Scope, Passing and Returning Arguments,

Type Conversion and Type and Checking, Built-in Java Class Methods)

Introduction to Java

Java Architecture:

1. Compilation and interpretation in Java

Java combines both the approaches of compilation and interpretation. First, java compiler

compiles the source code into byte code. At the run time, Java Virtual Machine (JVM) interprets

this byte code and generates machine code which will be directly executed by the machine in

which java program runs. So java is both compiled and interpreted language.

Figure 1.1: Java Architecture

Prepared by Dr. K.Ramesh , Department of CS, CA & IT, KAHE Page 1/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

2. Java Virtual Machine (JVM)

JVM is a component which provides an environment for running Java programs. JVM interprets

the byte code into machine code which will be executed the machine in which the Java program

runs. Java was developed with the concept of WORA (Write Once Run Anywhere) which runs

on a VM. The compiler will be compiling the java file into a java .class file. The .class file is

input to JVM which Loads and executes the class file. Below goes the Architecture of JVM.

Java Environment

The Java Virtual Machine

At the heart of Java's network-orientation is the Java virtual machine, which supports all

three prongs of Java's network-oriented architecture: platform independence, security, and

network-mobility.

The Java virtual machine is an abstract computer. Its specification defines certain features

every Java virtual machine must have, but leaves many choices to the designers of each

implementation. For example, although all Java virtual machines must be able to execute Java

byte codes, they may use any technique to execute them. Also, the specification is flexible

enough to allow a Java virtual machine to be implemented either completely in software or to

varying degrees in hardware. The flexible nature of the Java virtual machine's specification

enables it to be implemented on a wide variety of computers and devices.

A Java virtual machine's main job is to load class files and execute the byte codes they

contain. As you can see in Figure 1-3, the Java virtual machine contains a class loader, which

loads class files from both the program and the Java API. Only those class files from the Java

API that are actually needed by a running program are loaded into the virtual machine. The byte

codes are executed in an execution engine.

 Page 2/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

Figure 1-2. A basic block diagram of the Java virtual machine.

The execution engine is one part of the virtual machine that can vary in different

implementations. On a Java virtual machine implemented in software, the simplest kind of

execution engine just interprets the byte codes one at a time. Another kind of execution engine,

one that is faster but requires more memory, is a just-in-time compiler. In this scheme, the byte

codes of a method are compiled to native machine code the first time the method is invoked.

Java architecture

Java's architecture arises out of four distinct but interrelated technologies:

 the Java programming language


 the Java class file format


 the Java Application Programming Interface


 the Java virtual machine

When you write and run a Java program, you are tapping the power of these four technologies.

You express the program in source files written in the Java programming language, compile the

source to Java class files, and run the class files on a Java virtual machine. When you write your

program, you access system resources (such as I/O, for example) by calling methods in the

classes that implement the Java Application Programming Interface, or Java API. As your

program runs, it fulfills your program's Java API calls by invoking methods in class files that

implement the Java API. You can see the relationship between these four parts in Figure 1-1.

 Page 3/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

Figure 1-3. The Java programming environment.

Together, the Java virtual machine and Java API form a "platform" for which all Java programs

are compiled. In addition to being called the Java runtime system, the combination of the Java

virtual machine and Java API is called the Java Platform (or, starting with version 1.2, the Java

2 Platform). Java programs can run on many different kinds of computers because the Java

Platform can itself be implemented in software. As you can see in Figure 1- 2, a Java program

can run anywhere the Java Platform is present.

Figure 1-4. Java programs run on top of the Java Platform.

 Page 4/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

1.3.4 Java development kit

The Java Development Kit (JDK) is a Sun Microsystems product aimed at Java developers. Since the

introduction of Java, it has been by far the most widely used Java SDK. On 17 November 2006, Sun

announced that it would be released under the GNU General Public License (GPL), thus making it free

software. This happened in large part on 8 May 2007[3]; Sun contributed the source code to the OpenJDK.

The JDK has as its primary components a collection of programming tools, including:

 java – the loader for Java applications. This tool is an interpreter and can interpret the class files

generated by the javac compiler. Now a single launcher is used for both development and

deployment. The old deployment launcher, jre, no longer comes with Sun JDK.

 javac – the compiler, which converts source code into Java byte code

 applet viewer – this tool can be used to run and debug Java applets without a web browser

Features of Java

There is given many features of java. They are also known as java buzzwords. The Java Features
given below are simple and easy to understand.

1. Simple

 Page 5/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

2. Object-Oriented

3. Portable

4. Platform independent

5. Secured

6. Robust

7. Architecture neutral

8. Dynamic

9. Interpreted

10. High Performance

11. Multithreaded

12. Distributed

1. Simple

 According to Sun, Java language is simple because:
 Syntax is based on C++ (so easier for programmers to learn it after C++).
 Removed many confusing and/or rarely-used features e.g., explicit pointers, operator

overloading etc.
 No need to remove unreferenced objects because there is Automatic Garbage

Collection in java.

2. Object-oriented

 Object-oriented means we organize our software as a combination of different types of

objects that incorporates both data and behavior.
 Object-oriented programming (OOPs) is methodologies that simplify software

development and maintenance by providing some rules.
Basic concepts of OOPs are:

1. Object

2. Class

3. Inheritance

4. Polymorphism

5. Abstraction

 Page 6/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

6. Encapsulation

3. Platform Independent

A platform is the hardware or software environment in which a program runs.

There are two types of platforms software-based and hardware-based. Java provides software-
based platform.

The Java platform differs from most other platforms in the sense that it is a software-based
platform that runs on the top of other hardware-based platforms. It has two components:

1. Runtime Environment

2. API(Application Programming Interface)

Java code can be run on multiple platforms e.g. Windows, Linux, Sun Solaris, Mac / OS etc.
Java code is compiled by the compiler and converted into byte code. This byte code is a
platform-independent code because it can be run on multiple platforms i.e. Write Once and Run
Anywhere (WORA).

4. Secured

Java is secured because:

o No explicit pointer

o Java Programs run inside virtual machine sandbox

 Page 7/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

o Classloader: adds security by separating the package for the classes of the local file
system from those that are imported from network sources.

o Bytecode Verifier: checks the code fragments for illegal code that can violate access

right to objects.

o Security Manager: determines what resources a class can access such as reading and
writing to the local disk.

These securities are provided by java language. Some security can also be provided by
application developer through SSL, JAAS, and Cryptography etc.

5. Robust

Robust simply means strong. Java uses strong memory management. There are lack of pointers
that avoids security problem. There is automatic garbage collection in java. There is exception
handling and type checking mechanism in java. All these points makes java robust.

6. Architecture-neutral

There are no implementation dependent features e.g. size of primitive types is fixed.

In C programming, int data type occupies 2 bytes of memory for 32-bit architecture and 4 bytes
of memory for 64-bit architecture. But in java, it occupies 4 bytes of memory for both 32 and 64
bit architectures.

7. Portable

We may carry the java bytecode to any platform.

 Page 8/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

8. High-performance

Java is faster than traditional interpretation since byte code is "close" to native code still

somewhat slower than a compiled language (e.g., C++)

9. Distributed

We can create distributed applications in java. RMI and EJB are used for creating distributed

applications. We may access files by calling the methods from any machine on the internet.

10. Multi-threaded

A thread is like a separate program, executing concurrently. We can write Java programs that
deal with many tasks at once by defining multiple threads. The main advantage of multi-
threading is that it doesn't occupy memory for each thread. It shares a common memory area.
Threads are important for multi-media, Web applications etc.

Introduction to OOP

Object Oriented Programming or OOP is the technique to create programs based on the

real world. Unlike procedural programming, here in the OOP programming model programs are

organized around objects and data rather than actions and logic. Objects represent some concepts

or things and like any other objects in the real Objects in programming language have certain

behavior, properties, type, and identity. In OOP based language the principal aim is to find out

the objects to manipulate and their relation between each other.

Class - It is the central point of OOP and that contains data and codes with behavior. In Java

everything happens within class and it describes a set of objects with common behavior. The

class definition describes all the properties, behavior, and identity of objects present within that

class. As far as types of classes are concerned, there are predefined classes in languages like C++

and Pascal. But in Java one can define his/her own types with data and code.

Object - Objects are the basic unit of object orientation with behavior, identity. As we

mentioned above, these are part of a class but are not the same. An object is expressed by the

 Page 9/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

variable and methods within the objects. Again these variables and methods are distinguished

from each other as instant variables, instant methods and class variable and class methods.

Methods - We know that a class can define both attributes and behaviors. Again attributes are

defined by variables and behaviors are represented by methods. In other words, methods define

the abilities of an object.

Inheritance - This is the mechanism of organizing and structuring software program. Though

objects are distinguished from each other by some additional features but there are objects that

share certain things common. In object oriented programming classes can inherit some common

behavior and state from others. Inheritance in OOP allows to define a general class and later to

organize some other classes simply adding some details with the old class definition. This saves

work as the special class inherits all the properties of the old general class and as a programmer

you only require the new features. This helps in a better data analysis, accurate coding and

reduces development time.

Abstraction - The process of abstraction in Java is used to hide certain details and only show the

essential features of the object. In other words, it deals with the outside view of an object

(interface).

Encapsulation - This is an important programming concept that assists in separating an object's

state from its behavior. This helps in hiding an object's data describing its state from any further

modification by external component. In Java there are four different terms used for hiding data

constructs and these are public, private, protected and package. As we know an object can

associated with data with predefined classes and in any application an object can know about the

data it needs to know about. So any unnecessary data are not required by an object can be hidden

by this process. It can also be termed as information hiding that prohibits outsiders in seeing the

inside of an object in which abstraction is implemented.

Polymorphism - It describes the ability of the object in belonging to different types with specific

behavior of each type. So by using this, one object can be treated like another and in this way it

 Page 10/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

can create and define multiple level of interface. Here the programmers need not have to know

the exact type of object in advance and this is being implemented at runtime.

C++ vs. Java

There are many differences and similarities between C++ programming language and Java. A list
of top differences between C++ and Java are given below:

S.NO Comparison Index C++ Java

C++ is platform-

1 Platform-independent Java is platform-independent.

 dependent.

2 Mainly used for C++ is mainly used Java is mainly used for application

 for system programming. It is widely used in

 programming. window, web-based, enterprise and

 mobile applications.

3

Goto

C++ supports goto

Java doesn't support goto

 statement. statement.

4 Multiple inheritance C++ supports Java doesn't support multiple

 multiple inheritance through class. It can be

 inheritance. achieved by interfaces in java.

5 Operator Overloading C++ supports Java doesn't support operator

 operator overloading.

 overloading.

 Page 11/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

 6 Pointers C++ supports Java supports pointer internally.

 pointers. You can But you can't write the pointer

 write pointer program in java. It means java has

 program in C++. restricted pointer support in java.

 7 Compiler and C++ uses compiler Java uses compiler and interpreter

 Interpreter only. both.

 8 Call by Value and Call C++ supports both Java supports call by value only.

 by reference call by value and There is no call by reference in

 call by reference. java.

9

Structure and Union

C++ supports

Java doesn't support structures and

 structures and unions.

 unions.

 10 Thread Support C++ doesn't have Java has built-in thread support.

 built-in support for

 threads. It relies on

 third-party libraries

 for thread support.

 11 Documentation C++ doesn't Java supports documentation

 comment support comment (/** ... */) to create

 documentation documentation for java source

 comment. code.

 12 Virtual Keyword C++ supports Java has no virtual keyword. We

 virtual keyword so can override all non-static methods

 that we can decide by default. In other words, non-

 whether or not static methods are virtual by

 override a

 Page 12/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

 function. default.

13 unsigned right shift

C++ doesn't

Java supports unsigned right shift

 >>> support >>> >>> operator that fills zero at the

 operator. top for the negative numbers. For

 positive numbers, it works same

 like >> operator.

 14 Inheritance Tree C++ creates a new Java uses single inheritance tree

 inheritance tree always because all classes are the

 always. child of Object class in java.

 Object class is the root of

 inheritance tree in java.

Compiling and Executing a Java Program

1. Write source code

The following Java program is developed under Microsoft Windows. The process on other

operating system should be similar but will not be covered here. Select a directory which should

contain your code. I will use the directory c:\temp\java which will be called "javadir".

Open a text editor which supports plain text, e.g. notepad under Windows and write the

following source code. You can start notepad via Start->Run-> notepad and pressing enter.

// The smallest Java program possible

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello”); }}

 Page 13/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

Save the source code in your directory "javadir" under the name "HelloWorld.java".The name of

a Java source file must always equals the class name (within the source code) and end with .java.

In our case the filename must be HelloWorld.java because the class is called HelloWorld.

2. Compile the code

Switch to the command line, e.g. under Windows Start-> Run -> cmd. Switch to the

"javadir" directory with the command cd javadir, for example in my case cd c:\temp\java. Use

the command dir to see that the source file is in the directory.

Type javac Hello.java.

Check the content of the directory with the command "dir". The directory contains now a file

"HelloWorld.class". If you see this file you have successfully compiled your first Java source

code into byte-code.

3. Run the code

Switch again to the command line, e.g. under Windows Start-> Run -> cmd. Switch to the

directory jardir.

Type java Hello.

The system should write "Hello World" on the command line.

4. Using the classpath

You can use the classpath to run the program from another place in your directory.

Switch to the command line, e.g. under Windows Start-> Run -> cmd. Switch to any directory

you want.

Type java Hello.

 Page 14/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

If you are not in the directory in which the compiled class is stored then the system should result

an error message Exception in thread "main" java.lang.NoClassDefFoundError:

test/TestClass

Type java -classpath "mydirectory" HelloWorld . Replace "mydirectory" with the directory

which contains the test directory. You should again see the "HelloWorld" output.

Variable declaration

A variable is a container that stores a meaningful value that can be used throughout a

program. For example, in a program that calculates tax on items you can have a few variables -

one variable that stores the regular price of an item and another variable that stores the total price

of an item after the tax is calculated on it. Variables store this information in a computer's

memory and the value of a variable can change all throughout a program.

One variable in your program can store numeric data while another variable can store text

data. Java has special keywords to signify what type of data each variable store. Use these

keywords when declaring your variables to set the data type of the variable.

 J a v a d a t a t yp e s

 Keyword Type of data the variable will store Size in memory

 boolean true/false value 1 bit

 byte byte size integer 8 bits

 char a single character 16 bits

 Page 15/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

double double precision floating point decimal number 64 bits

float single precision floating point decimal number 32 bits

int a whole number 32 bits

long a whole number (used for long numbers) 64 bits

short a whole number (used for short numbers) 16 bits

Variable Declaration:

To declare a variable, you must specify the data type & give the variable a unique name.

Examples of other Valid Declarations are,

int a,b,c;

float pi;

double d;

 Page 16/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

char a;

2) Variable Initialization:

To initialize a variable you must assign it a valid value.

Example of other Valid Initializations are

pi =3.14f;

do =20.22d;

a=’v’;

You can combine variable declaration and initialization.

Example:

int a=2,b=4,c=6;

 Page 17/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

float pi=3.14f;

double do=20.22d;

char a=’v’;

Data types

Java programming language is a language in which all the variables must be declared

first and then to be used. That means to specify the name and the type of the variable. This

specifies that Java is a strongly-typed programming language. Like

int pedal = 1;

This shows that there exists a field named 'pedal' that holds a data as a numerical value '1'. The

values contained by the variables determines its data type and to perform the operations on it.

There are seven more primitive data types which are supported by Java language

programming in addition to int.

A primitive data type is a data type which is predefined in Java. Following are the eight

primitive data types:

int

It is a 32-bit signed two's complement integer data type. It ranges from -2,147,483,648 to

2,147,483,647. This data type is used for integer values. However for wider range of values

use

byte

The byte data type is an 8-bit signed two's complement integer. It ranges from -128 to127

(inclusive). We can save memory in large arrays using byte. We can also use byte instead of

int to increase the limit of the code.

short

The short data type is a 16-bit signed two's complement integer. It ranges from -32,768 to

32,767. short is used to save memory in large arrays.

 Page 18/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

long

The long data type is a 64-bit signed two's complement integer. It ranges from -

9,223,372,036,854,775,808 to 9,223,372,036,854,775,807. Use this data type with larger range

of values.

float

The float data type is a single-precision 32-bit IEEE 754 floating point. It ranges from

1.40129846432481707e-45 to 3.40282346638528860e+38 (positive or negative). Use a float

(instead of double) to save memory in large arrays. We do not use this data type for the exact

values such as currency. For that we have to use java.math.BigDecimal class.

double

This data type is a double-precision 64-bit IEEE 754 floating point. It ranges from

4.94065645841246544e-324d to 1.79769313486231570e+308d (positive or negative). This

data type is generally the default choice for decimal values.

boolean

The boolean data type is 1-bit and has only two values: true and false. We use this data type

for conditional statements. true and false are not the same as True and False. They are defined

constants of the language.

char

The char data type is a single 16-bit, unsigned Unicode character. It ranges from 0 to 65,535.

They are not same as ints, shorts etc.

The following table shows the default values for the data types:

 Keyword Description Size/Format

byte
Byte-length 8-bit two's

integer complement

 short Short integer 16-bit two's

 Page 19/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

int

long

float

double

char

boolean

complement

32-bit two's
Integer

complement

64-bit two's
Long integer

complement

Single-precision
32-bit IEEE

floating point

Double-precision
64-bit IEEE

floating point

A single 16-bit Unicode

character character

A boolean value

true or false
(true or false)

Java Tokens

In a Java program, all characters are grouped into symbols called tokens. Larger

language features are built from the first five categories of tokens (the sixth kind of token is

recognized, but is then discarded by the Java compiler from further processing). We must learn

how to identify all six kinds of tokens that can appear in Java programs. In EBNF we write one

simple rule that captures this structure:

token = identifier | keyword | separator | operator | literal | comment

The different types of Tokens are:

1. Identifiers: names the programmer chooses

2. Keywords: names already in the programming language

 Page 20/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

3. Separators (also known as punctuators): punctuation characters and paired-delimiters

4. Operators: symbols that operate on arguments and produce results

5. Literals (specified by their type)

o Numeric: int and double

o Logical: boolean

o Textual: char and String
o Reference: null

6. Comments

o Line

Operators in Java

Java provides many types of operators which can be used according to the need. They are
classified based on the functionality they provide. Some of the types are-

1. Arithmetic Operators
2. Logical Operators
3. Bitwise Operators

Let’s take a look at them in detail.

Arithmetic Operators: They are used to perform simple arithmetic operations on primitive data
types.

1. : Multiplication
2. / : Division
3. % : Modulo
4. + : Addition
5. : Subtraction

// Java program to illustrate

// arithmetic operators

public class operators

{

public static void main(String[] args)

{

int a = 20, b = 10, c = 0, d = 20, e = 40, f = 30;

 Page 21/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

String x = "Thank", y = "You";

// + and - operator

System.out.println("a + b = "+(a + b));

System.out.println("a - b = "+(a - b));

// + operator if used with strings

// concatenates the given strings.

System.out.println("x + y = "+x + y);

// * and / operator

System.out.println("a * b = "+(a * b));

System.out.println("a / b = "+(a / b));

// modulo operator gives remainder

// on dividing first operand with second

System.out.println("a % b = "+(a % b));

// if denominator is 0 in division

// then Arithmetic exception is thrown.

// uncommenting below line would throw

// an exception

// System.out.println(a/c);

}

}

Output:
a+b = 30

a-b = 10

x+y = ThankYou

a*b = 200

a/b = 2

 Page 22/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

a%b = 0

Decision-making statements

A Java decision-making statement allows you to make decision, based upon the result of a

condition.

All the programs in Java have set of statements, which are executed sequentially in the order in

which they appear. This happens when jumping of statements or repetition of certain calculations is

not necessary. However there may arise some situations where programmers have to change the

order of execution of statements based on certain conditions which involves kind of decision-making

statements. In this chapter you will learn about how the control flow statements works.

The flowchart of Decision making technique in Java can be expressed as:

Java has such decision making capabilities within its program by the use of following decision

making statements:

 Page 23/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

Decision Making Statements in Java

 if Statement

o if statement

o if-else statement

o else-if statement

 Conditional Operator


 switch statement

Java if Statements

If a statement in Java is used to control the program flow based on some condition, it’s
used to execute some statement code block if expression is evaluated to true, otherwise it will get
skipped. This is an simplest way to modify the control flow of the program.

The basic format of if statement is:

Syntax:

if(test_expression)

{

statement 1;

statement 2;

...

}

‘Statement n’ can be a statement or a set of statements and if the test expression is evaluated to
true, the statement block will get executed or it will get skipped.

Figure – Flowchart of if Statement:

 Page 24/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

Example of a Java Program to Demonstrate If statements

Example:

public class Sample{

public static void main(String args[]){

int a=20, b=30;

if(b>a)

System.out.println("b is greater");

}}

Program Output:

Java if-else Statement

 Page 25/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

If else a statement in Java is also used to control the program flow based on some
condition, only the difference is: it’s used to execute some statement code block if expression is
evaluated to true, otherwise executes else statement code block.

The basic format of if else statement is:

Syntax:

if(test_expression)

{

//execute your code

}

else

{

//execute your code

}

Figure – Flowchart of if else Statement:

 Page 26/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

Example of a Java Program to Demonstrate If else statements

public class Sample {

public static void main(String args[]) {

int a = 80, b = 30;

if (b & gt; a) {

System.out.println("b is greater");

} else {

System.out.println("a is greater");

} }}

Program Output:

Java else-if Statements

else if statements in Java is like another if condition, it’s used in program when if
statement having multiple decisions.

The basic format of else if statement is:

Syntax:

if(test_expression)

{

//execute your code

}

else if(test_expression n)

{

 Page 27/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

//execute your code

}

else

{

//execute your code

}

Example of a Java Program to Demonstrate else If statements

Example:

public class Sample {

public static void main(String args[]) {

int a = 30, b = 30;

if (b > a) {

System.out.println("b is greater");

}

else if(a > b){

System.out.println("a is greater");

}

else {

System.out.println("Both are equal");

}}}

Program Output:

Java switch Statements

 Page 28/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

Java switch statement is used when you have multiple possibilities for the if statement.

The basic format of switch statement is:

Syntax:

switch(variable)

{

case 1:

//execute your code

break;

case n:

//execute your code

break;

default:

//execute your code

break;

}

After the end of each block it is necessary to insert a break statement because if the programmers
do not use the break statement, all consecutive blocks of codes will get executed from each and
every case onwards after matching the case block.

Example of a Java Program to Demonstrate Switch Statement

Example:

public class Sample {

public static void main(String args[]) {

int a = 5;

 Page 29/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

switch (a) {

case 1:

System.out.println("You chose One");

break;

case 2:

System.out.println("You chose Two");

break;

case 3:

System.out.println("You chose Three");

break;

case 4:

System.out.println("You chose Four");

break;

case 5:

System.out.println("You chose Five");

break;

default:

System.out.println("Invalid Choice. Enter a no between 1 and

5"); break;

} }}

Program Output:

 Page 30/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

When none of the case is evaluated to true, then default case will be executed, and break
statement is not required for default statement.

Java Loops

Sometimes it is necessary in the program to execute the statement several times, and Java loops
execute a block of commands a specified number of times, until a condition is met. In this
chapter you will learn about all the looping statements of Java along with their use.

What is Loop?

A computer is the most suitable machine to perform repetitive tasks and can tirelessly do a task
tens of thousands of times. Every programming language has the feature to instruct to do such
repetitive tasks with the help of certain form of statements. The process of repeatedly executing a
collection of statement is called looping. The statements gets executed many number of times
based on the condition. But if the condition is given in such a logic that the repetition continues
any number of times with no fixed condition to stop looping those statements, then this type of
looping is called infinite looping.

Java supports many looping features which enable programmers to develop concise Java
programs with repetitive processes.

Java supports following types of loops:

 while loops

 do while loops

 for loops


All are slightly different and provides loops for different situations.


Figure – Flowchart of Looping: 








 Page 31/51 

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

Java Loop Control Statements

A Loop control statement is used to change normal sequence of execution of loop.

Statement Syntax Description

break break; Is used to terminate loop or switch
statement statements.

continue continue; Is used to suspend the execution of current
statement loop iteration and transfer control to the loop

 for the next iteration.

goto goto labelName;labelName: statement; It’s transfer current program execution
statement sequence to some other part of the program.

Java while loops

 Page 32/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

Java while loops statement allows to repeatedly running the same block of code, until a condition
is met.

While loop is most basic loop in Java. It has one control condition, and executes as long the
condition is true. The condition of the loop is tested before the body of the loop is executed,
hence it is called an entry-controlled loop.

The basic format of while loop statement is:

Syntax:

While (condition)

{

statement(s);

incrementation;

}

Figure – Flowchart of while loop:

 Page 33/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

Example of a Java Program to Demonstrate while loop

Example:

public class Sample {

public static void main(String args[]) {

/* local variable Initialization */

int n = 1, times = 5;

/* while loops execution */

while (n <= times) {

System.out.println("Java while loops:" + n);

n++;

} }}

Program Output:

Java do while loops

Java do while a loop is very similar to the while loops, but it always executes the code block at
least once and further more as long as the condition remains true. This is exit-controlled loop.

The basic format of do while loop statement is:

Syntax:

do

 Page 34/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

{ statement(s);

}while(condition);

Figure – Flowchart of do while loop:

Example of a Java Program to Demonstrate do while loop

public class Sample {

public static void main(String args[]) {

/* local variable Initialization */

int n = 1, times = 0;

/* do-while loops execution */

do {

System.out.println("Java do while loops:" + n);

n++;

} while (n <= times); }}

Program Output:

 Page 35/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

Java for loops

Java for loops is very similar to Java while loops in that it continues to process a block of
code until a statement becomes false, and everything is defined in a single line.

The basic format of for loop statement is:

Syntax:

for (init; condition; increment)

{

statement(s);

}

Figure – Flowchart of for loop:

 Page 36/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

Example of a Java Program to Demonstrate for loop

Example:

public class Sample {

public static void main(String args[]) {

/* local variable Initialization */

int n = 1, times = 5;

/* for loops execution */

for (n = 1; n <= times; n = n + 1) {

System.out.println("Java for loops:" + n); } }}

Program Output:

What is a Method in Java?

In Java programming language, a method is a section of the program that contains a set of

instructions or code. In a Java program, similar to a cake recipe, a method has a set of
instructions. When the method is called, the set of instructions within the method is executed.

Broke our list of activities and group them.

 Page 37/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

Here, the name of the method is addNumbers. When the method addNumbers is called, the code
within the method is executed, and the variable z is printed.

Parameters of a Method

When following the method to make cake, the ingredients like sugar and butter are combined and
processed to make the final product. Similarly, Java methods have parameters (like ingredients)
or data that are inputted or passed into the method. The method uses these parameter values to do
the necessary data manipulation and processing. The method then usually returns the final value
after all the necessary data processing is successfully performed.

Example:

In this example, m and n are parameters. The Java method subtractNumbers finds the difference
between m and n and saves the result in a new variable p. The values of the parameters m and n
are used to generate the new variable p that is printed out on the computer screen.

The parameters of a method are declared within parentheses following the method name. If there
is more than one parameter, they are separated by commas. Both the data type and the variable
name (int m, int n) are specified for the parameters.

 Page 38/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

Returning a value from a Java method

When the method to make cake is completed using the necessary ingredients, the final result is a
new product that is the cake. By using the parameters that are passed into the method, the
method generates a new product or result. The result returned by the method is also available for
use by the java program to which this method belongs.

Example:

In this example, the variable p is returned by the method. The return statement is a java keyword
return followed by the variable name.

When the method is declared, the return type of the variable is listed just before the name of the
method. Here, the name of the method is subtractNumbers, and the data type of the variable
being returned, p, is int, so the method declaration states:

Where int is the return type of the method subtractNumbers.

Java Variable Type Conversion & Type Casting

A variable of one type can receive the value of another type. Here there are 2 cases - case 1)
Variable of smaller capacity is be assigned to another variable of bigger capacity.

 Page 39/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

This process is Automatic, and non-explicit is known as Conversion case 2) Variable of larger
capacity is be assigned to another variable of smaller capacity

In such cases you have to explicitly specify the type cast operator. This process is known
as Type Casting.

In case, you do not specify a type cast operator, the compiler gives an error. Since this rule is
enforced by the compiler, it makes the programmer aware that the conversion he is about to do
may cause some loss in data and prevents accidental losses.

Example: To Understand Type Casting
class Demo{

public static void main(String args[]){

byte x;

int a=270;

double b =128.128;

System.out.println("int converted to byte");

x=(byte) a;

System.out.println("a and x "+ a +" "+x);

 Page 40/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

System.out.println("double converted to int");

a=(int) b;

System.out.println("b and a "+ b +" "+a);

System.out.println("\n double converted to byte");

x= b;

System.out.println("b and x "+b +" "+x);

} }

Built-in Java Class Methods

i) String Methods

ii) Number Methods

iii) Character methods

iv) Array methods Etc...

i) String Methods

1) compareTo() Method

The java string compareTo() method compares the given string with current string lexicographically. It
returns positive number, negative number or 0.

It compares strings on the basis of Unicode value of each character in the strings.

If first string is lexicographically greater than second string, it returns positive number (difference of
character value). If first string is less than second string lexicographically, it returns negative number and
if first string is lexicographically equal to second string, it returns 0.

1. if s1 > s2, it returns positive number

2. if s1 < s2, it returns negative number

3. if s1 == s2, it returns 0

Signature

1. public int compareTo(String anotherString)

Parameters

 Page 41/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

anotherString: represents string that is to be compared with current

string Returns an integer value

Java String compareTo() method example

public class CompareToExample{

public static void main(String args[]){

String s1="hello";

String s2="hello";

String s3="meklo";

String s4="hemlo";

String s5="flag";

System.out.println(s1.compareTo(s2));//0 because both are equal

System.out.println(s1.compareTo(s3));//-5 because "h" is 5 times lower than "m"

System.out.println(s1.compareTo(s4));//-1 because "l" is 1 times lower than "m"

System.out.println(s1.compareTo(s5));//2 because "h" is 2 times greater than "f"

}} h I j k l m

Output:

0

-5

-1

2

2) equals() Method

The java string equals() method compares the two given strings based on the content of the string. If any
character is not matched, it returns false. If all characters are matched, it returns true.

The String equals() method overrides the equals() method of Object class.

Signature

 Page 42/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

1. public boolean equals(Object anotherObject)

Parameter

anotherObject : another object i.e. compared with this string.

Returns

true if characters of both strings are equal otherwise false.

Overrides

equals() method of java Object class.

Java String equals() method example

public class EqualsExample{

public static void main(String args[]){

String s1="javatpoint";

String s2="javatpoint";

String s3="JAVATPOINT";

String s4="python";

System.out.println(s1.equals(s2));//true because content and case is same

System.out.println(s1.equals(s3));//false because case is not same

System.out.println(s1.equals(s4));//false because content is not same

}}

Output:

true

false

false

3) Concat() Method

The java string concat() method combines specified string at the end of this string. It returns
combined string. It is like appending another string.

 Page 43/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

Signature

The signature of string concat() method is given below:

public String concat(String anotherString)

Parameter

anotherString : another string i.e. to be combined at the end of this string.

Returns combined string

Java String concat() method example

public class ConcatExample{
public static void main(String args[]){
String s1="java string";
s1.concat("is immutable");
System.out.println(s1);
s1=s1.concat(" is immutable so assign it explicitly");
System.out.println(s1);
}}

Output:
java string
java string is immutable so assign it explicitly

4) charAt() Method

Returns a character value by index...

Example:

String str1 = "Selenium";

System.out.println(str1.charAt(1));//e

System.out.println(str1.charAt(7));//m

5) equalsIgnoreCase()

It compares two strings and ignores letters (Upper case or Lower case...) Example:

 Page 44/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

String str1 = "Selenium";

String str2 = "SELENIUM";

String str3 = "UFT";

System.out.println(str1.equalsIgnoreCase(str2));//true
System.out.println(str2.equalsIgnoreCase(str3));//False

6) toUpperCase() Method

It Converts values to Upper case...

Example:

String str1 = "Selenium";

String str2 = "SELENIUM";

String str3 = "SELEnium";

String str4 = "selenium123";

System.out.println(str1.toUpperCase());//SELENIUM
System.out.println(str2.toUpperCase());//SELENIUM
System.out.println(str3.toUpperCase());//SELENIUM
System.out.println(str4.toUpperCase());//SELENIUM123 }

7) toLowerCase() Method

It converts values to Lower Case...

Example: String str1 = "selenium";

String str2 = "SELENIUM";

String str3 = "SELEnium";

String str4 = "selenium123";

System.out.println(str1.toLowerCase());//selenium System.out.println(str2.toLowerCase());//slenium
System.out.println(str3.toLowerCase());//selenium System.out.println(str4.toLowerCase());//selenium123

8) trim() Method

Removes spaces from both sides of a String...

Example:

 Page 45/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

String str1 = " Selenium ";

System.out.println(str1);

System.out.println(str1.trim());

9) subString() Method

Returns part of the string based on index position/s

Example:

String str1 = "Welcome to Selenium Testing"; System.out.println(str1.substring(11));//Selenium Testing
System.out.println(str1.substring(20));//Testing System.out.println(str1.substring(11, 19));//Selenium
System.out.println(str1.substring(8, 10));//to

10) endsWith() Method

It checks if the string Ends with specified suffix or not? And supports 2-way comparison (True/False)

String str1 = "Welcome to Selenium Testing"; System.out.println(str1.endsWith("Selenium Testing"));
//True System.out.println(str1.endsWith("Testing")); //True
System.out.println(str1.endsWith("Selenium")); //False

11) length property

Returns length of a String

String str1 = "Selenium Testing";

String str2 = "Testing";

System.out.println(str1.length());//16

System.out.println(str2.length());//7

ii) Number methods

1) compareTo() methods

// Integer Class wraps a value of primitive Data Type int is an Object

//An Object of Integer contains a single field whose type is int...

Assignment to Sirisha - Compare two numbers - Numbers with decimal places... Number1 = Number2
then 0

 Page 46/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

Number1 > Number2 then 1

Number1 < Number2 then -1

Example:

int x = 5;

Integer a = x;

System.out.println(a.compareTo(5));//0

System.out.println(a.compareTo(4));//1

System.out.println(a.compareTo(7));//-1

2) equals() Method

It compares two numbers and it supports 2-way comparison

int a =10;

Integer b = a;

System.out.println(b.equals(10));//True

System.out.println(b.equals(7));//False

System.out.println(b.equals(14));//False

3) abs() Method

Returns absolute value....

double a = 10.234;

double b = 10.789;

double c =-20.345;

System.out.println(Math.abs(a));//10.234 System.out.println(Math.abs(b));//10.789
System.out.println(Math.abs(c));//20.345

4) round() Method

It Rounds the value to nearest Integer...

double a = 10.234;

 Page 47/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

double b = 10.789;

double c =-20.345;

System.out.println(Math.round(a));//10

System.out.println(Math.round(b));//11

System.out.println(Math.round(c));//-20

5) min() Method

It returns minimum value between two numbers...

Example:

int a = 5;

int b = 7;

double c = 10.234;

double d = 10.794;

System.out.println(Math.min(a, b));//5

System.out.println(Math.min(c, d));//10.234

System.out.println(Math.min(10, 17));//10

System.out.println(Math.min(1.34, 2.3));//1.34

6) max() Method

It returns maximum vale between two numbers...

Example:

int a = 5;

int b = 7;

double c = 10.234;

double d = 10.794;

System.out.println(Math.max(a, b));//7

System.out.println(Math.max(c, d));//10.794

 Page 48/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

System.out.println(Math.max(10, 17));//17

System.out.println(Math.max(1.34, 2.3));//2.3

7) random() Method

It generates a random Number...

Example:

System.out.println(Math.random());

iii) Character Methods

1) isLetter() method

Checks if the value is Alpha byte or not? And it returns Boolean Result / Logical Result (True/False)

Example: char a = 'Z';

char b = '1';

System.out.println(Character.isLetter(a));//True System.out.println(Character.isLetter(b));//False
System.out.println(Character.isLetter('A'));//True System.out.println(Character.isLetter('7'));//False
System.out.println(Character.isLetter('*'));//False

2) isDigit() Method

Checks if the value is Number or not? and it reruns Boolean / Logical Result

char a = 'Z';

char b = '1';

System.out.println(Character.isDigit(a));//False System.out.println(Character.isDigit(b));//True
System.out.println(Character.isDigit('A'));//False System.out.println(Character.isDigit('1'));//True
System.out.println(Character.isDigit('&'));//False

3) isLowerCase() Method

4) isUpperCase()

iv) Array Methods

1) length()

2) toString() etc...

 Page 49/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

POSSIBLE QUESTIONS

2 MARKS

1. Give any 4 differences between C++ and Java.

2. Write a Java code for Basic Program Output.

3. How to Compile and Execute a Java Program.

4. What is the result of the following

program? public class test

{

public static void main (string args[])

{

int i = -1;

i = i>>1 ;

}

}

5. What gives java it’s “write once and run anywhere” nature?

6. What is random() method?

7. What is Java Development Kit (JDK) ?

8. What is Data types?

9. What is Tokens?

10. Mention the Operators in Java?
11. What is Loop?

 Page 50/51

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME: PROGRAMMING IN JAVA

COURSE CODE: 19CAU201 UNIT: I(Introduction to Java)BATCH-2019-2022

12. Define Type Conversion with example.

6 MARKS

1. List and explain the features of java and say why it is important?

2. Explain type conversions in java with suitable example program

3. Discuss operators in java with example.

4. Explain the following with suitable program. I) Nested if II)Switch

5. Define Methods. Illustrate Call by value and call by reference

6. Discuss Loops in java with example.

7. Discuss Java Methods with example program.

8. Illustrate the working of control statements in JAVA with appropriate examples.

9. Explain in detail about the features and architecture of JAVA.

10. Explain the following with example. i) Variable declaration ii) Expressions

11. Mention the Features of Java.

12. Explain in detail about Built-in Java Class Methods with examples

 Page 51/51

Questions opt1 opt2 opt3 opt4 opt5

Java is a ___________ language structured
programming

object oriented procedural
oriented

machine

OOPS follows______________ approach in program design bottom_up top_down middle top

Objects take up ______________in the memory Space Address Memory bytes

 _________________is a collection of objects of similar type Objects methods classes messages

The wrapping up of data & function into a single unit is known as

Polymorphism encapsulation functions data members

__________________refers to the act of representing essential features
without including the background details or explanations

Encapsulation inheritance Dynamic
binding

Abstraction

Attributes are sometimes called______________ data members methods messages functions

The functions operate on the data are called______________ Methods data members messages classes

______________is the process by which objects of one class acquire the
properties of objects of another class

Polymorphism encapsulation data binding Inheritance

__________________means the ability to take more than one form Polymorphism encapsulation data binding Inheritance

The process of making an operator to exhibit different behaviors in different
instances is known as ________________

function
overloading

operator
overloading

method
overloading

message
overloading

Single function name can be used to handle different types of tasks is known
as ___________

function
overloading

operator
overloading

polymorphism encapsulation

Variables are declared in_________________ only in main() anywhere in
the scope

before the
main() only

only at the
beginning

 ____________________refers to permit initialization of the variables at run
time

Dynamic
initialization

 Dynamic
binding

Data binding Dynamic message

Keyword _________ indicates that method do not return any value. Static Final void null

_________ is used to define the objects class functions methods none

An _________ is a single instance of a class that retains the structure and
behaivour as defined by a class

 class member object instances none

A _________ is a message to take some action on an object member variable method class

Java does not have _________ statement goto if do do while

_________ is used to separate package names from sub_packages and classes : , . !

The ________ is the basic unit of storage in a Java program identifier variable class object

byte belongs to _________ type. character Boolean floating integer

In Java an int is _____ bits 16 64 52 32

byte is a signed ______ type 16 bit 8 bit 32 bit 64 bit

The ________ statement is often used in switch statement break end do none

The keywords private and public are known as _________ labels Static Dynamic Visibility const

The class members that have been declared as ________ can be accessed only
from within the class

 Private Public Static protected

The class members that have been declared as ________ can be accessed from
outside the class also

 Private Public Static protected

The class variables are known as ________ Functions members objects none of the above

The ____________ command from J2SDK compiles a Java program. Java Appletviewer Javac javad

File produced by the java compiler contains _________ ASCII Class Pnemonics ByteCodes

The file produced by java compiler ends with _______ file extension Java html class applet

Objects are instantiated from__________ Java methods groups classes

Which of the following lines is not a Java comment? /** comments
*/

 // comments – comments /* comments */

Which of the following statements is correct? system.out.prin
tln('Welcome

System.out.prin
tln("Welcome

System.println('
Welcome to

System.out.print('
Welcome to

A block is enclosed inside __________. Parentheses Braces Brackets Quotes

Wich of the following is a correct signature for the main method? static void
main(String[]

public static
void

public void
main(String[]

public static void
main(Strings[]

 Which of the following lines is not a Java comment? /** comments
*/

 // comments . – comments /* comments */

 __________ translates the Java sourcecode to bytecode files that the
interpreter can understand

 javac java javap jdk

 In java the functions are called as _________ fields method variables none

 _________ an object is also called as instantiating an objects deleting creating destroy none

Keyword _________ indicates that method do not return any value. Static Final void null

Java interpreter is JVM Javac Compiler JAR

The __________ method terminates the program. System.termina
te(0);

System.halt(0); System.exit(0); System.stop(0);

 Java has no ______ function. malloc free both a & b none

 Java supports __________ inheritance single multiple both a & b none

Java does not have _________ struct header files union all the above

 __________ is a access specifier static void main public none

Java is a __________ type language. Weak strong correct incorrect

Data type Short occupies _________ bytes. 1 2 4 8

Code Reusability is characterized by baseclass Subclass Derived class Inheritance

Classes are the Members Algorithms Templates Methods

The Properties used to describe an object are known as Data Attributes Entities Relations

It enables us to ignore the non_essential Inheritance Encapsulation Abstraction DataBinding

It is the most powerful feature of any programming technique top_down bottom up Code
reusability

Security

Encapsulation is also known as Abstraction Information
hiding

Polymorphism Inheritence

Well defined entities that are capable of interacting with themselves Encapsulation Message
Passing

Abstraction Binding

The data or variables,defined within a class are called Variables Class variables Data variables Instance Variables

Class is a _______Construct Hierarchical Logical Physical Hybrid

To access instance variables of an object______operator is used Dot Operator Logical
operator

Relational
Operator

Boolean Operator

Variables declared as static are______variables Member
variables

Instance Global Local

These are the foundation of encapsulation Functions Instance
methods

procedures None

It is used to initialize the member variables when we create an object Constructors destructors Overloading Overriding

opt6 answer

object oriented

bottom_up

 Space

classes

encapsulation

Abstraction

data members

Methods

Inheritance

Polymorphism

operator
overloading

function
overloading

 anywhere in the
scope

Dynamic
initialization

void

class

 object

method

goto

 .

 variable

 integer

32

8 bit

 break

 Visibility

 Private

 Public

 objects

Javac

ByteCodes

class

class

– comments

System.out.println(
"Welcome to

Braces

public static void
main(String[] args)

 – comments

 javac

method

creating

void

JVM

System.exit(0);

both a & b

 single

All Options

 public

strong

2

Inheritance

Templates

Data

Abstraction

Code reusability

Information hiding

Message Passing

Instance Variables

Logical

Dot Operator

Global

Instance methods

Constructors

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA

UNIT: II(Arrays & Strings) BATCH-2019-2022

UNIT-II

SYLLABUS

Arrays, Strings and I/O Creating & Using Arrays (One Dimensional and Multi-dimensional),

Referencing Arrays Dynamically, Java Strings: The Java String class, Creating & Using String

Objects, Manipulating Strings, String Immutability & Equality, Passing Strings To & From

Methods, String Buffer Classes. Simple I/O using System. out and the Scanner class, Byte and

Character streams, Reading/Writing from console and files. Object-Oriented Programming

Overview Principles of Object-Oriented Programming, Defining & Using Classes, Controlling

Access to Class Members, Class Constructors, Method Overloading, Class Variables & Methods,

Objects as parameters, final classes, Object class, Garbage Collection.

Java Arrays

Normally, array is a collection of similar type of elements that have contiguous memory location.

Java array is an object the contains elements of similar data type. It is a data structure where we
store similar elements. We can store only fixed set of elements in a java array.

Array in java is index based; first element of the array is stored at 0 index.

Example:

int age[5]={22,25,30,32,35};

Initializing each element separately in loop.

Prepared by Dr K.Ramesh, Department of CS, CA & IT, KAHE Page 1/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA

UNIT: II(Arrays & Strings) BATCH-2019-2022

A Pictorial Representation of Array

Advantage of Java Array

Code Optimization: It makes the code optimized; we can retrieve or sort the data easily.

Random access: We can get any data located at any index position.

Disadvantage of Java Array

Size Limit: We can store only fixed size of elements in the array. It doesn't grow its size at

runtime. To solve this problem, collection framework is used in java.

Types of Array in java

There are two types of array.

1. Single Dimensional Array

2. Multidimensional Array

Single Dimensional Array in java

Syntax to Declare an Array in java

dataType[] arr; (or)

dataType []arr; (or)

dataType arr[];

Instantiation of an Array in java

arrayRefVar=new datatype[size];

 Page 2/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA

UNIT: II(Arrays & Strings) BATCH-2019-2022

Example of single dimensional java array

Let's see the simple example of java array, where we are going to declare instantiate, initialize
and traverse an array.

class Testarray{

public static void main(String args[]){
int a[]=new int[5];//declaration and instantiation

a[0]=10;//initialization

a[1]=20;

a[2]=70;

a[3]=40;

a[4]=50;

//printing array

for(int i=0;i<a.length;i++)//length is the property of array
System.out.println(a[i]); }}
Example:

Output:
10
20
70
40
50

Multidimensional array in java

In such case, data is stored in row and column based index (also known as matrix form).

Syntax to Declare Multidimensional Array in java

dataType[][] arrayRefVar; (or)

dataType [][]arrayRefVar; (or)

dataType arrayRefVar[][]; (or)

 Page 3/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA

UNIT: II(Arrays & Strings) BATCH-2019-2022

dataType []arrayRefVar[];

Example to instantiate Multidimensional Array in

java int[][] arr=new int[3][3];//3 row and 3 column

Example to initialize Multidimensional Array in java

arr[0][0]=1;

arr[0][1]=2;

arr[0][2]=3;

arr[1][0]=4;

arr[1][1]=5;

arr[1][2]=6;

arr[2][0]=7;

arr[2][1]=8;

arr[2][2]=9;

Example of Multidimensional java array

Let's see the simple example to declare instantiate, initialize and print the 2Dimensional array.

class Testarray3{

public static void main(String args[]){

//declaring and initializing 2D array

int arr[][]={{1,2,3},{2,4,5},{4,4,5}};

//printing 2D array

for(int i=0;i<3;i++){

 Page 4/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA

UNIT: II(Arrays & Strings) BATCH-2019-2022

for(int j=0;j<3;j++){

System.out.print(arr[i][j]+" "); }

System.out.println(); } }}

Example:

Output:

1 2 3

2 4 5

4 4 5

Design a Class for Dynamic Arrays

In Java, the size of an array is fixed when it is created. Elements are not allowed to be inserted or
removed. However, it is possible to implement a dynamic array by allocating a new array and
copying the contents from the old array to the new one.

A dynamic array has variable size and allows elements to be added or removed. For this, we can
allocate a fixed-size array and divide it into two parts:

 the first part stores the elements of the dynamic array and


 The second part is reserved, but not used.

Then we can add or remove elements at the end of the array by using the reserved space, until
this space is completely consumed. After that, we create a bigger array and copy the contents of
the old array to the new one.

 Logical size (size): the number of elements in the dynamic array


 Capacity: the physical size of the internal array (the maximum possible size without

relocating storage)

We now design a class DynamicArray represents dynamic arrays of integers. It has two
attributes:

 Page 5/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA

UNIT: II(Arrays & Strings) BATCH-2019-2022

 int[] data: an integer array, and


 int size: the logical size, the number of elements used

The capacity of this dynamic array is simply data. Length.

An important method we need is to add elements to the end of the dynamic array. This method
should provide automatic extension if the capacity is not large enough to hold the added element.

In summary, we wish to design the class DynamicArray with the following members:

 int[] data: the array storing the elements


 int size: the number of elements


 DynamicArray(): initialize this dynamic array with size 0


 DynamicArray(int capacity): initialize this dynamic array with the capacity


 int get(int index): get the element at the specified index


 int set(int index, int element): set the value of the element at the specified index


 boolean add(int element): add the element to the end of the array


 void ensureCapacity(int minCapacity): increase the capacity


 int size(): return the size of the dynamic array


 boolean isEmpty(): check whether the array is empty


 void clear(): clean up the elements

 Page 6/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA

UNIT: II(Arrays & Strings) BATCH-2019-2022

Java String Class

String is a sequence of characters, for e.g. “Hello” is a string of 5 characters. In java,
string is an immutable object which means it is constant and can cannot be changed once it has
been created. In this tutorial we will learn about String class and String methods in detail along
with many other Java String tutorials.

Creating a String

There are two ways to create a String in Java

1. String literal

2. Using new keyword

String literal

In java, Strings can be created like this: Assigning a String literal to a String instance:

String str1 = "Welcome";

String str2 = "Welcome";

Using New Keyword

As we saw above that when we tried to assign the same string object to two different
literals, compiler only created one object and made both of the literals to point the same
object. To overcome that approach we can create strings like this:

String str1 = new String("Welcome");

 Page 7/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA

UNIT: II(Arrays & Strings) BATCH-2019-2022

String str2 = new String("Welcome");

In this case compiler would create two different objects in memory having the same string.

A Simple Java String Example

public class Example{

public static void main(String args[]){

//creating a string by java string literal

String str = "Beginnersbook";

char arrch[]={'h','e','l','l','o'};

//converting char array arrch[] to string str2

String str2 = new String(arrch);

//creating another java string str3 by using new keyword

String str3 = new String("Java String Example");

//Displaying all the three strings System.out.println(str);

System.out.println(str2);

System.out.println(str3); }}

 Page 8/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA

UNIT: II(Arrays & Strings) BATCH-2019-2022

Output:

Beginnersbook

hello

Creating and using String Objects

String class

It is a predefined class in java.lang package can be used to handle the String. String

class is immutable that means whose content cannot be changed at the time of execution of

program.

String class object is immutable that means when we create an object of String class it

never changes in the existing object.

Example:

classStringHandling{ Output:

publicstaticvoid main(String arg[]){ java

String s=newString("java");

s.concat("software");

System.out.println(s);}}

Explanation: Here we cannot change the object of String class so output is only java not java

software.

Manipulating String

1. length()

length(): This method is used to get the number of character of any string.
 Page 9/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA

UNIT: II(Arrays & Strings) BATCH-2019-2022

Example

classStringHandling { Output

 publicstaticvoid main(String arg[]) { Length: 4

 int l;

 String s=newString("Java");

 l=s.length();

 System.out.println("Length: "+l);}}

2. charAt(index)

charAt(): This method is used to get the character at a given index value.
Example

classStringHandling{ Output

publicstaticvoid main(String arg[]){ Character: v

char c;

String s=newString("Java");

c=s.charAt(2);

System.out.println("Character: "+c);}}

3. toUpperCase()

toUpperCase(): This method is use to convert lower case string into upper case.

Example Output

classStringHandling{ String: JAVA

publicstaticvoid main(String arg[]){

String s="Java";

System.out.println("String: "+s.toUpperCase());}}

 Page 10/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA

UNIT: II(Arrays & Strings) BATCH-2019-2022

4. toLowerCase()

toLowerCase(): This method is used to convert lower case string into upper case.

Example Output

 classStringHandling{ String: java

 publicstaticvoid main(String arg[]){

 String s="JAVA";

 System.out.println("String: "+s.toLowerCase());}}

5. concat()

 concat(): This method is used to combined two string.

Example Output

classStringHandling{ Combined String: HiteshRaddy

publicstaticvoid main(String arg[]){
String s1="Hitesh";
String s2="Raddy";
System.out.println("Combined String: "+s1.concat(s2));}}

6. equals()

equals(): This method is used to compare two strings, It return true if strings are same

otherwise return false. It is case sensitive method.

 Example Output

 classStringHandling{ Compare String: false

 Page 11/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA

UNIT: II(Arrays & Strings) BATCH-2019-2022

publicstaticvoid main(String arg[]){

Compare String: true

String s1="Hitesh";
String s2="Raddy";
String s3="Hitesh";
System.out.println("Compare String: "+s1.equals(s2));
System.out.println("Compare String: "+s1.equals(s3));}}

7. equalsIgnoreCase()

equalsIgnoreCase(): This method is case insensitive method, It return true if the contents of

both strings are same otherwise false.

Example Output

classStringHandling{ Compare String: true

publicstaticvoid main(String arg[]){ Compare String: false

String s1="Hitesh";
String s2="HITESH";
String s3="Raddy";
System.out.println("Compare String: "+s1.equalsIgnoreCase(s2));
System.out.println("Compare String: "+s1.equalsIgnoreCase(s3));}}

8. compareTo()

compareTo(): This method is used to compare two strings by taking unicode values, It return

0 if the string are same otherwise return +ve or -ve integer values.

 Example Output

 classStringHandling{ Strings are not same

 Page 12/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA

UNIT: II(Arrays & Strings) BATCH-2019-2022

publicstaticvoid main(String arg[]){
String s1="Hitesh";
String s2="Raddy";
int i;
i=s1.compareTo(s2);
if(i==0){
System.out.println("Strings are same");}
else{
System.out.println("Strings are not same");}}}

9.startsWith()

startsWith(): This method return true if string is start with given another string, otherwise it

returns false.
Example Output

classStringHandling{ true

publicstaticvoid main(String arg[]){

String s="Java is programming language";

System.out.println(s.startsWith("Java"));}}

10. endsWith()

endsWith(): This method return true if string is end with given another string, otherwise it

returns false.
Example Output

classStringHandling{ true

publicstaticvoid main(String arg[]){

String s="Java is programming language";

System.out.println(s.endsWith("language"));}}

 Page 13/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME:PROGRAMMING IN JAVA
COURSE CODE: 19CAU201 UNIT: II(Arrays & Strings)BATCH-2019-2022

 11. subString()

 subString(): This method is used to get the part of given string.

 Example:1 Output

 classStringHandling{ programming language

 publicstaticvoid main(String arg[]){

 String s="Java is programming language";

 System.out.println(s.substring(8));// 8 is starting index}}

 Example:2 Output

 classStringHandling{ prog

 publicstaticvoid main(String arg[]){

 String s="Java is programming language";

 System.out.println(s.substring(8,12));}}

12. trim()

trim(): This method remove space which are available before starting of string and after

ending of string.

 Example Output

 classStringHandling{ Java is programming language

 publicstaticvoid main(String arg[]){

 String s=" Java is programming language ";

 System.out.println(s.trim());}}

 13. split()

 Page 14/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA

UNIT: II(Arrays & Strings) BATCH-2019-2022

split(): This method is used to divide the given string into number of parts based on delimiter

(special symbols like @ space ,).

 Example Output

 classStringHandling{ contact

 publicstaticvoid main(String arg[]){ @tutorial4us.com

 String s="contact@tutorial4us.com";

 String[] s1=s.split("@");// divide string based on @

 for(String c:s1)// foreach loop {

 System.out.println(c);}}}

14. replace()

replace(): This method is used to return a duplicate string by replacing old character with new

character.

Note: In this method data of original string will never be modify.

Example Output

classStringHandling{ kava

publicstaticvoid main(String arg[]){

String s1="java";

String s2=s1.replace('j','k');

System.out.println(s2);}}

Immutable String in Java

In java, string objects are immutable. Immutable simply means unmodifiable or unchangeable.

Once string object is created its data or state can't be changed but a new string object is created.

 Page 15/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA

UNIT: II(Arrays & Strings) BATCH-2019-2022

Let's try to understand the immutability concept by the example given below:

class Testimmutablestring{

public static void main(String args[]){

String s="Sachin";

s.concat(" Tendulkar");//concat() method appends the string at the end

System.out.println(s);//will print Sachin because strings are immutable objects } }

Example:

Output:Sachin

Now it can be understood by the diagram given below. Here Sachin is not changed but a new
object is created with sachintendulkar. That is why string is known as immutable.

 Page 16/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA

UNIT: II(Arrays & Strings) BATCH-2019-2022

As you can see in the above figure that two objects are created but s reference variable still refers
to "Sachin" not to "Sachin Tendulkar".

But if we explicitely assign it to the reference variable, it will refer to "Sachin Tendulkar"
object.For example:

class Testimmutablestring1{

public static void main(String args[]){

String s="Sachin";

s=s.concat(" Tendulkar");

System.out.println(s); } }

Example:

Output:Sachin Tendulkar

In such case, s points to the "Sachin Tendulkar". Please notice that still sachin object is not
modified.

Passing Strings To & From Methods

Java StringBuffer class

Java StringBuffer class is used to create mutable (modifiable) string. The StringBuffer class in
java is same as String class except it is mutable i.e. it can be changed.

Important Constructors of StringBuffer class

 Constructor Description

StringBuffer() Creates an empty string buffer with the initial capacity of 16.

StringBuffer(String str) Creates a string buffer with the specified string.

 Page 17/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I BCA COURSE NAME:PROGRAMMING IN JAVA
COURSE CODE: 19CAU201 UNIT: II(Arrays & Strings)BATCH-2019-2022

 StringBuffer(int Creates an empty string buffer with the specified capacity as
 capacity) length.

Important methods of StringBuffer class

What is mutable string?

A string that can be modified or changed is known as mutable string. StringBuffer and
StringBuilder classes are used for creating mutable string.

1) StringBuffer append() method

The append() method concatenates the given argument with this string.

Example:

class StringBufferExample{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello ");

sb.append("Java");//now original string is changed

System.out.println(sb);//prints Hello Java } }

2) StringBuffer insert() method

The insert() method inserts the given string with this string at the given position.

Example:

class StringBufferExample2{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello ");

 Page 18/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA

UNIT: II(Arrays & Strings) BATCH-2019-2022

sb.insert(1,"Java");//now original string is changed

System.out.println(sb);//prints HJavaello } }

3) StringBuffer replace() method

The replace() method replaces the given string from the specified beginIndex and endIndex.

Example:

class StringBufferExample3{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello");

sb.replace(1,3,"Java");

System.out.println(sb);//prints HJavalo } }

4) StringBuffer delete() method

The delete() method of StringBuffer class deletes the string from the specified beginIndex to
endIndex.

Example:

class StringBufferExample4{

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello"); sb.delete(1,3);

System.out.println(sb);//prints Hllo } }

5) StringBuffer reverse() method

The reverse() method of StringBuilder class reverses the current string.

Example:

class StringBufferExample5{

 Page 19/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA

UNIT: II(Arrays & Strings) BATCH-2019-2022

public static void main(String args[]){

StringBuffer sb=new StringBuffer("Hello");

sb.reverse();

System.out.println(sb);//prints olleH } }

6) StringBuffer capacity() method

The capacity() method of StringBuffer class returns the current capacity of the buffer. The
default capacity of the buffer is 16. If the number of character increases from its current capacity,
it increases the capacity by (oldcapacity*2)+2. For example if your current capacity is 16, it will
be (16*2)+2=34.

Example:

class StringBufferExample6{

public static void main(String args[]){

StringBuffer sb=new StringBuffer();

System.out.println(sb.capacity());//default 16

sb.append("Hello");

System.out.println(sb.capacity());//now 16

sb.append("java is my favourite language");

System.out.println(sb.capacity());//now (16*2)+2=34 i.e (oldcapacity*2)+2 } }

Java Scanner class

There are various ways to read input from the keyboard; the java.util.Scanner class is one of
them.

The Java Scanner class breaks the input into tokens using a delimiter that is whitespace by
default. It provides many methods to read and parse various primitive values.

 Page 20/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA

UNIT: II(Arrays & Strings) BATCH-2019-2022

Java Scanner class is widely used to parse text for string and primitive types using regular
expression.

Java Scanner class extends Object class and implements Iterator and Closeable interfaces.

Commonly used methods of Scanner class

There is a list of commonly used Scanner class methods:

 Method Description

 public String next() it returns the next token from the scanner.

 public String nextLine() it moves the scanner position to the next line and returns the
 value as a string.

 public byte nextByte() it scans the next token as a byte.

 public short nextShort() it scans the next token as a short value.

 public int nextInt() it scans the next token as an int value.

 public long nextLong() it scans the next token as a long value.

 public float nextFloat() it scans the next token as a float value.

 public double nextDouble() it scans the next token as a double value.

 Page 21/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME:PROGRAMMING IN JAVA
COURSE CODE: 19CAU201 UNIT: II(Arrays & Strings) BATCH-2019-2022

Java Scanner Example to get input from console

Let's see the simple example of the Java Scanner class which reads the int, string and double
value as an input:

import java.util.Scanner; System.out.println("Rollno:"+rollno+" nam

class ScannerTest{
e:"+name+" fee:"+fee);

public static void main(String args[]){
sc.close(); } }

Scanner sc=new Scanner(System.in);
Output:

Enter your rollno
System.out.println("Enter your rollno");

int rollno=sc.nextInt();
111

System.out.println("Enter your name");
Enter your name

String name=sc.next();
Ratan

System.out.println("Enter your fee");
Enter

double fee=sc.nextDouble();
450000

 Rollno:111 name:Ratan fee:450000

Java Scanner Example with delimiter

Let's see the example of Scanner class with delimiter. The \s represents whitespace.

import java.util.*;

public class ScannerTest2{

public static void main(String args[]){

String input = "10 tea 20 coffee 30 tea buisc
uits";

Scanner s = new
Scanner(input).useDelimite r("\\s");

System.out.println(s.nextInt());

System.out.println(s.next());

System.out.println(s.nextInt());

System.out.println(s.next()); s.close(); }}

Output:

 Page 22/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA
UNIT: II(Arrays & Strings) BATCH-2019-2022

10

20

tea

coffee

Simple I/O using System. out

Java I/O (Input and Output) is used to process the input and produce the output.

Java uses the concept of stream to make I/O operation fast. The java.io package contains all the classes
required for input and output operations.

We can perform file handling in java by Java I/O API.

Stream

A stream is a sequence of data. In Java a stream is composed of bytes. It's called a stream because it is like a
stream of water that continues to flow.

In java, 3 streams are created for us automatically. All these streams are attached with console.

1) System.out: standard output stream

2) System.in: standard input stream

3) System.err: standard error stream

Let's see the code to print output and error message to the console.

System.out.println("simple message");

System.err.println("error message");

Let's see the code to get input from console.

int i=System.in.read();//returns ASCII code of 1st character

System.out.println((char)i);//will print the character

 Page 23/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA
UNIT: II(Arrays & Strings) BATCH-2019-2022

OutputStream vs InputStream

The explanation of OutputStream and InputStream classes are given below:

OutputStream

Java application uses an output stream to write data to a destination, it may be a file, an array, peripheral
device or socket.

InputStream

Java application uses an input stream to read data from a source, it may be a file, an array, peripheral device
or socket.

Let's understand working of Java OutputStream and InputStream by the figure given below.

OutputStream class

OutputStream class is an abstract class. It is the super class of all classes representing an output stream of
bytes. An output stream accepts output bytes and sends them to some sink.

Useful methods of OutputStream

Method

Description

 Page 24/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I BCA COURSE NAME:PROGRAMMING IN JAVA
COURSE CODE: 19CAU201 UNIT: II(Arrays & Strings)BATCH-2019-2022

 1) public void write(int)throws IOException is used to write a byte to the current output stream.

 2) public void write(byte[])throws IOException is used to write an array of byte to the current

 output stream.

 3) public void flush()throws IOException flushes the current output stream.

 4) public void close()throws IOException is used to close the current output stream.

OutputStream Hierarchy

 Page 25/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA
UNIT: II(Arrays & Strings) BATCH-2019-2022

InputStream class

InputStream class is an abstract class. It is the super class of all classes representing an input stream of bytes.

Useful methods of InputStream

Method

Description

1) public abstract int read()throws

reads the next byte of data from the input stream. It

 IOException returns -1 at the end of file.

2) public int available()throws

returns an estimate of the number of bytes that can be

 IOException read from the current input stream.

 3) public void close()throws is used to close the current input stream.

 IOException

 InputStream Hierarchy

 Page 26/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA
UNIT: II(Arrays & Strings) BATCH-2019-2022

Java FileOutputStream class

Character Stream Vs Byte Stream in Java

I/O Stream
A stream is a method to sequentially access a file. I/O Stream means an input source or output destination
representing different types of sources e.g. disk files.The java.io package provides classes that allow you to
convert between Unicode character streams and byte streams of non-Unicode text.

Stream – A sequence of data.
Input Stream: reads data from source.
Output Stream: writes data to destination.

Character Stream
In Java, characters are stored using Unicode conventions (Refer this for details). Character stream

automatically allows us to read/write data character by character. For example FileReader and FileWriter are

 Page 27/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA
UNIT: II(Arrays & Strings) BATCH-2019-2022

character streams used to read from source and write to destination.

// Java Program illustrating that we can read a file in

// a human readable format using FileReader

importjava.io.*; // Accessing FileReader, FileWriter, IOException

publicclassGfG{

publicstaticvoidmain(String[] args) throwsIOException {

FileReader sourceStream = null;

try

{

sourceStream = newFileReader("test.txt");

// Reading sourcefile and writing content to

// target file character by

character. inttemp;

 Page 28/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA
UNIT: II(Arrays & Strings) BATCH-2019-2022

while((temp = sourceStream.read()) != -1)

System.out.println((char)temp); }

finally {

// Closing stream as no longer in

use if(sourceStream != null)

sourceStream.close(); } }}

Output:

Shows contents of file test.txt

Byte Stream
Byte streams process data byte by byte (8 bits). For example FileInputStream is used to read from source and
FileOutputStream to write to the destination.

// Java Program illustrating the Byte Stream to copy

 Page 29/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA
UNIT: II(Arrays & Strings) BATCH-2019-2022

// contents of one file to another

file. importjava.io.*;

publicclassBStream{

publicstaticvoidmain(String[] args) throwsIOException {

FileInputStream sourceStream = null; FileOutputStream

targetStream = null;

try {

sourceStream = newFileInputStream("sorcefile.txt");

targetStream = newFileOutputStream ("targetfile.txt");

// Reading source file and writing content to target

// file byte by byte

inttemp;

while((temp = sourceStream.read()) != -1)

targetStream.write((byte)temp); }

finally {

if(sourceStream != null)

sourceStream.close();

if(targetStream != null)

targetStream.close(); } }}

 Page 30/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA
UNIT: II(Arrays & Strings) BATCH-2019-2022

When to use Character Stream over Byte Stream?

 In Java, characters are stored using Unicode conventions. Character stream is useful when we want to

process text files. These text files can be processed character by character. A character size is typically

16 bits.

When to use Byte Stream over Character Stream?

 Byte oriented reads byte by byte. A byte stream is suitable for processing raw data like binary files.

 Page 31/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA
UNIT: II(Arrays & Strings) BATCH-2019-2022

Notes:

 Names of character streams typically end with Reader/Writer and names of byte streams end with

InputStream/OutputStream


 The streams used in example codes are unbuffered streams and less efficient. We typically use

them with buffered readers/writers for efficiency. We will soon be discussing use

BufferedReader/BufferedWriter (for character stream) and

BufferedInputStream/BufferedOutputStream (for byte stream) classes.


 It is always recommended to close the stream if it is no longer in use. This ensures that the streams

won’t be affected if any error occurs.


 The above codes may not run in online compilers as files may not exist.

File I/O

In Java, we can read data from files and also write data in files.

 Page 32/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA
UNIT: II(Arrays & Strings) BATCH-2019-2022

We do these using streams. Java has many input and output streams that are used to read and write data.

Same as a continuous flow of water is called water stream, in the same way input and output flow of data is

called stream.

Stream

Java provides many input and output stream classes which are used to read and write.

Streams are of two types.

 Byte Stream


 Character Stream

Let's look at the two streams one by one.

Byte Stream

It is used in the input and output of byte.

We do this with the help of different Byte stream classes. Two most commonly used Byte stream

classes are FileInputStream and FileOutputStream. Some of the Byte stream classes are listed below.

Byte Stream class

Description

 BufferedInputStream handles buffered input stream

 BufferedOutputStream handles buffered output stream

 FileInputStream used to read from a file

 FileOutputStream used to write to a file

 Page 33/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

 Character Stream class Description

 CLASS: I BCA COURSE NAME:PR
 UNIT: II(Arrays & Strings)BATCH-2018-2021

 BufferedReader handles buffered input stream

InputStream Abstract class that describe input stream

OutputStream Abstract class that describe output stream

Character Stream

It is used in the input and output of characters.

For input and output of characters, we have Character stream classes. Two most commonly used Character

stream classes are FileReader and FileWriter. Below is the list of some Character Stream classes.

 Page 34/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CLASS: I BCA COURSE NAME:PROGRAMMING IN JAVA
COURSE CODE: 19CAU201 UNIT: II(Arrays & Strings)BATCH-2019-2022

9

 BufferedWriter handles buffered output stream

 FileReader used to read from a file

 FileWriter used to write to a file

 InputStreamReader translate input from byte to character

 OutputStreamReader translate character to byte output

 Reader Abstract class that describe input stream

 Writer Abstract class that describe output stream

Java OOPs Concepts

Object Oriented Programming is a paradigm that provides many concepts such as inheritance, data
binding, polymorphism etc.

Simula is considered as the first object-oriented programming language. The programming paradigm where
everything is represented as an object, is known as truly object-oriented programming language.

Smalltalk is considered as the first truly object-oriented programming language.

 Page 35/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA
UNIT: II(Arrays & Strings) BATCH-2019-2022

OOPs (Object Oriented Programming System)

Object means a real word entity such as pen, chair, table etc. Object-Oriented Programming is a
methodology or paradigm to design a program using classes and objects. It simplifies the software
development and maintenance by providing some concepts:

o Object
o Class

o Inheritance

o Polymorphism

o Abstraction

o Encapsulation

Object

Any entity that has state and behavior is known as an object. For example: chair, pen, table, keyboard, bike
etc. It can be physical and logical.

Class

Collection of objects is called class. It is a logical entity.

Inheritance

When one object acquires all the properties and behaviors of parent object i.e. known as inheritance. It
provides code reusability. It is used to achieve runtime polymorphism.

 Page 36/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA
UNIT: II(Arrays & Strings) BATCH-2019-2022

Polymorphism

When one task is performed by different ways i.e. known as polymorphism. For example: to convince the
customer differently, to draw something e.g. shape or rectangle etc.

In java, we use method overloading and method overriding to achieve polymorphism.

Another example can be to speak something e.g. cat speaks meaw, dog barks woof etc.

Abstraction

Hiding internal details and showing functionality is known as abstraction. For example: phone call, we
don't know the internal processing.

In java, we use abstract class and interface to achieve abstraction.

Encapsulation

Binding (or wrapping) code and data together into a single unit is known as encapsulation. For
example: capsule, it is wrapped with different medicines.

 Page 37/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA
UNIT: II(Arrays & Strings) BATCH-2019-2022

A java class is the example of encapsulation. Java bean is the fully encapsulated class because all the data
members are private here.

Defining & Using Classes

Declaration of Class:

A class is declared by use of the class keyword. The class body is enclosed between curly braces {and}. The
data or variables, defined within a class are called instance variables. The code is contained within methods.
Collectively, the methods and variables defined within a class are called members of the class.

Declaration of Instance Variables:

Variables defined within a class are called instance variables because each instance of the class (that is, each
object of the class) contains its own copy of these variables. Thus, the data for one object is separate and
unique from the data for another. An instance variable can be declared public or private or default (no
modifier). When we do not want our variable’s value to be changed out-side our class we should declare
them private. public variables can be accessed and changed from outside of the class. We will have more
information in OOP concept tutorial. The syntax is shown below.

 Page 38/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA
UNIT: II(Arrays & Strings) BATCH-2019-2022

Access Modifiers in java

There are two types of modifiers in java: access modifiers and non-access modifiers.

The access modifier in java specifies accessibility (scope) of a data member, method, constructor or class.

There are 4 types of java access modifiers:

1. private

2. default

3. protected

4. public

There are many non-access modifiers such as static, abstract, synchronized, native, volatile, transient etc.
Here, we will learn access modifiers.

Constructor in Java

Constructor in java is a special type of method that is used to initialize the object.

Java constructor is invoked at the time of object creation. It constructs the values i.e. provides data for the
object that is why it is known as constructor.

Rules for creating java constructor

 Page 39/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA
UNIT: II(Arrays & Strings) BATCH-2019-2022

There are basically two rules defined for the constructor.

1. Constructor name must be same as its class name

2. Constructor must have no explicit return type

Types of java constructors

There are two types of constructors:

1. Default constructor (no-arg constructor)

2. Parameterized constructor

Java Default Constructor

A constructor that has no parameter is known as default constructor.

Syntax of default constructor:

1. <class_name>(){}

Example of default constructor

In this example, we are creating the no-arg constructor in the Bike class. It will be invoked at the time of
object creation.

class Bike1{

Bike1(){System.out.println("Bike is created");}

public static void main(String args[]){

 Page 40/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA
UNIT: II(Arrays & Strings) BATCH-2019-2022

Bike1 b=new Bike1(); } }

Output:

Bike is created

Rule: If there is no constructor in a class, compiler automatically creates a default constructor.

What is the purpose of default constructor?

Default constructor provides the default values to the object like 0, null etc. depending on the

type. Example of default constructor that displays the default values

class Student3{

int id;

String name;

void display(){System.out.println(id+" "+name);}

public static void main(String args[]){

Student3 s1=new Student3();

Student3 s2=new Student3();

s1.display();

s2.display(); }

Output:

 Page 41/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA
COURSE CODE: 19CAU201

COURSE NAME:PROGRAMMING IN JAVA
UNIT: II(Arrays & Strings) BATCH-2019-2022

0 null

0 null

Explanation: In the above class, you are not creating any constructor so compiler provides you a default
constructor. Here 0 and null values are provided by default constructor.

Java parameterized constructor

A constructor that has parameters is known as parameterized constructor.

Why use parameterized constructor?

Parameterized constructor is used to provide different values to the distinct objects.

Example of parameterized constructor

In this example, we have created the constructor of Student class that has two parameters. We can have any
number of parameters in the constructor.

class Student4{

int id;

String name;

Student4(int i,String n){

id = i;

name = n; }

void display(){System.out.println(id+" "+name);}

public static void main(String args[]){

Student4 s1 = new Student4(111,"Karan");

Student4 s2 = new Student4(222,"Aryan");

s1.display();

s2.display(); } }

 Page 42/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

Output:

111 Karan

222 Aryan

Declaration of Methods:

A method is a program module that contains a series of statements that carry out a task. To execute a method,
you invoke or call it from another method; the calling method makes a method call, which invokes the called
method. Any class can contain an unlimited number of methods, and each method can be called an unlimited
number of times. The syntax to declare method is given below.

Method Overloading in Java

If a class has multiple methods having same name but different in parameters, it is known as Method
Overloading.

If we have to perform only one operation, having same name of the methods increases the readability of the
program.

Suppose you have to perform addition of the given numbers but there can be any number of arguments, if
you write the method such as a(int,int) for two parameters, and b(int,int,int) for three parameters then it may
be difficult for you as well as other programmers to understand the behavior of the method because its name
differs.

So, we perform method overloading to figure out the program quickly.

Advantage of method overloading

Method overloading increases the readability of the program.

 Page 43/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

Different ways to overload the method

There are two ways to overload the method in java

1. By changing number of arguments

2. By changing the data type

In java, Method Overloading is not possible by changing the return type of the method only.

1) Method Overloading: changing no. of arguments

In this example, we have created two methods, first add () methods perform addition of two numbers and
second add method performs addition of three numbers.

In this example, we are creating static methods so that we don't need to create instance for calling methods.

class Adder{

static int add(int a,int b){return a+b;}

static int add(int a,int b,int c){return a+b+c;}

}

class TestOverloading1{
public static void main(String[] args){
System.out.println(Adder.add(11,11));

System.out.println(Adder.add(11,11,11)); }}

Output:

22
33

2) Method Overloading: changing data type of arguments

In this example, we have created two methods that differ in data type. The first add method receives two
integer arguments and second add method receives two double arguments.

class Adder{

static int add(int a, int b){return a+b;}

 Page 44/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

static double add(double a, double b){return a+b;}

}

class TestOverloading2{

public static void main(String[] args){

System.out.println(Adder.add(11,11));

System.out.println(Adder.add(12.3,12.6)); }}

Output:
22
24.9
Java passing object as parameter

Passing Object as Parameter:

 package com.pritesh.programs;

 class Rectangle {

 int length;

 int width;

 Rectangle(int l, int b) {

 length = l;

 width = b; }

 void area(Rectangle r1) {

 int areaOfRectangle = r1.length * r1.width;

 System.out.println("Area of Rectangle : " + areaOfRectangle); }}

 class RectangleDemo {

 publicstatic void main(String args[]) {

 Rectangle r1 = newRectangle(10, 20);

 r1.area(r1); }}

 Output of the program:

 Page 45/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

Area of Rectangle: 200

Explanation:

We can pass Object of any class as parameter to a method in java.

1. We can access the instance variables of the object passed inside the called

method. area = r1.length * r1.width

3. It is good practice to initialize instance variables of an object before passing object as parameter to

method otherwise it will take default initial values.

 Different Ways of Passing Object as Parameter:

 Way 1 : By directly passing Object Name

 void area(Rectangle r1) {

 int areaOfRectangle = r1.length * r1.width;

 System.out.println("Area of Rectangle : " + areaOfRectangle); }

 class RectangleDemo {

 public staticvoid main(String args[]) {

 Rectangle r1 = new Rectangle(10, 20);

 r1.area(r1); }

 Way 2 : By passing Instance Variables one by one

 package com.pritesh.programs;

 class Rectangle {

 int length;

 int width;

 void area(int length, int width) {

 int areaOfRectangle = length * width;

 Page 46/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

System.out.println("Area of Rectangle : " + areaOfRectangle); }}

class RectangleDemo {

public staticvoid main(String args[]) {

Rectangle r1 = new Rectangle();

Rectangle r2 = new Rectangle();

r1.length = 20;

r1.width = 10;

r2.area(r1.length, r1.width); }}

Actually this is not a way to pass the object to method. but this program will explain you how to pass

instance variables of particular object to calling method.

Way 3 : We can pass only public data of object to the Method.

Suppose we made width variable of a class private then we cannot update value in a main method since it

does not have permission to access it.

private int width;

after making width private –

class RectangleDemo {

public staticvoid main(String args[]) {

Rectangle r1 = new Rectangle();

Rectangle r2 = new Rectangle();

r1.length = 20;

r1.width = 10;

r2.area(r1.length, r1.width); }}

Final Keyword in Java

The final keyword in java is used to restrict the user. The java final keyword can be used in many context.
Final can be:

1. variable

 Page 47/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

2. method

3. class

The final keyword can be applied with the variables, a final variable that have no value it is called blank final
variable or un initialized final variable. It can be initialized in the constructor only. The blank final variable
can be static also which will be initialized in the static block only. We will have detailed learning of these.
Let's first learn the basics of final keyword.

Java final class

If you make any class as final, you cannot extend it.

Example of final class

final class Bike{}
class Honda1 extends Bike{

void run(){System.out.println("running safely with 100kmph");}

public static void main(String args[]){ Honda1 honda= new

Honda1();

honda.run(); } }
Output: Compile Time Error

Object class in Java:

The Object class is the parent class of all the classes in java by default. In other words, it is the topmost class
of java.

The Object class is beneficial if you want to refer any object whose type you don't know. Notice that parent
class reference variable can refer the child class object, know as upcasting.

Let's take an example, there is getObject() method that returns an object but it can be of any type like
Employee,Student etc, we can use Object class reference to refer that object.

For example:

Object obj=getObject();//we don't know what object will be returned from this method

 Page 48/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

The Object class provides some common behaviors to all the objects such as object can be compared, object
can be cloned, object can be notified etc.

Methods of Object class:

The Object class provides many methods. They are as follows:

Method

Description

 public final Class getClass() Returns the Class class object of this
 object. The Class class can further be
 used to get the metadata of this class.

 public int hashCode() returns the hashcode number for this
 object.

 public boolean equals(Object obj) compares the given object to this
 object.

protected Object clone() throws

creates and returns the exact copy

 Page 49/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

 CloneNotSupportedException (clone) of this object.

 public String toString() returns the string representation of this
 object.

public final void notify()

wakes up single thread, waiting on this

 object's monitor.

 public final void notifyAll() wakes up all the threads, waiting on
 this object's monitor.

 public final void wait(long causes the current thread to wait for
 timeout)throws InterruptedException the specified milliseconds, until
 another thread notifies (invokes
 notify() or notifyAll() method).

public final void wait(long

causes the current thread to wait for

 timeout,int nanos)throws the specified milliseconds and
 InterruptedException nanoseconds, until another thread
 notifies (invokes notify() or notifyAll()
 method).

 public final void wait()throws causes the current thread to wait, until
 InterruptedException another thread notifies (invokes
 notify() or notifyAll() method).

protected void finalize()throws

is invoked by the garbage collector
 Throwable before object is being garbage
 collected.

Java Garbage Collection:

 Page 50/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

In java, garbage means unreferenced objects.

Garbage Collection is process of reclaiming the runtime unused memory automatically. In other words, it is a
way to destroy the unused objects.

To do so, we were using free() function in C language and delete() in C++. But, in java it is performed
automatically. So, java provides better memory management.

Advantage of Garbage Collection

o It makes java memory efficient because garbage collector removes the unreferenced objects from

heap memory.

o It is automatically done by the garbage collector(a part of JVM) so we don't need to make extra
efforts.

How can an object be unreferenced?

There are many ways:

 By nulling the reference



 By assigning a reference to another




 By annonymous object etc.







1) By nulling a reference:

Employee e=new Employee();

e=null;

2) By assigning a reference to another:

Employee e1=new Employee();

Employee e2=new Employee();

e1=e2;//now the first object referred by e1 is available for garbage collection

3) By annonymous object:

 Page 51/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

new Employee();

finalize() method

The finalize() method is invoked each time before the object is garbage collected. This method can be
used to perform cleanup processing. This method is defined in Object class
as:https://www.javatpoint.com/Garbage-Collectionhttps://www.javatpoint.com/Garbage-
Collectionhttps://www.javatpoint.com/Garbage-Collection

protected void finalize(){}

Note: The Garbage collector of JVM collects only those objects that are created by new keyword. So if you
have created any object without new, you can use finalize method to perform cleanup processing (destroying
remaining objects).

gc() method

The gc() method is used to invoke the garbage collector to perform cleanup processing. The gc() is found in
System and Runtime classes.https://www.javatpoint.com/Garbage-
Collectionhttps://www.javatpoint.com/Garbage-Collectionhttps://www.javatpoint.com/Garbage-Collection

public static void gc(){}

Note: Garbage collection is performed by a daemon thread called Garbage Collector (GC). This thread calls
the finalize() method before object is garbage collected.

 Simple Example of garbage collection in java

 public class TestGarbage1{

 public void finalize(){System.out.println("object is garbage collected");} Output:

 public static void main(String args[]){ object is garbage collected

 TestGarbage1 s1=new TestGarbage1(); object is garbage collected

 TestGarbage1 s2=new TestGarbage1();

 s1=null;

 s2=null;

 Page 52/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

System.gc(); } }

Note: Neither finalization nor garbage collection are guaranteed.

POSSIBLE QUESTIONS

2 MARKS

1. What is Java Array and its types?

2. What are the Advantage of Java Array?

3. Mention the Disadvantage of Java Array?

4. What is Dynamic Arrays?

5. Define Java String Class?

6. What is Immutable String in Java give example.

7. What is mutable string?

8. What is Stream?

9. What is OutputStream?

10. What is InputStream?

11. Define I/O Stream?

12. Define Character Stream and Byte Stream?

13. What are the Access Modifiers in java?

14. Mention the Types of java constructors.

15. What is the purpose of default constructor

 Page 53/54

KARPAGAM ACADEMY OF HIGHER EDUCATION

6 MARKS

1. Differentiate between String and String Buffer classes. Also write a program to append a given string.

2. Describe Class Constructors with example.

3. Illustrate Method Overloading with suitable program.

4. Explain 1-dimensional and multi-dimensional arrays in detail.

5. Explain the following with suitable program i) Garbage Collection ii) final classes

6. Write any five methods available in StringBuffer and write a program to reverse a string
using StringBuffer class.

7. Enlighten about the String Immutability & Equality with appropriate examples.

8. Explain the types of Array in a JAVA with examples.

9. Elaborate creation and operation on Strings with examples.

10. Explain OOPs (Object Oriented Programming System) in Java with example.

 Page 54/54

Questions opt1 opt2 opt3 opt4 opt5 opt6 answer

It takes no parameters Default Constructors Copy Constructors Parameter
Constructor

Function Default
Constructors

It is required when objects are required to perform a
similar task

Method Overriding Polymorphism Static Binding Method
Overloading

Method
Overloading

It is used to refer to the current object this reference that reference dot Arrow this reference

Which of the following is a valid identifier? area Class 9X 8+9 area

 A literal character is represented inside a pair of ______ single quotes double quotes brackets paraenthesis single quotes

 short is a signed _________ type 8 bit 16 bit 32 bit 64 but 16 bit

Single precision is specified by ________keyboard int double float char float

 An _________ is a group of like_typed variables that are
referred to by a common name

instance array class object instance

 The operators which have single operand is called

binary unary ternary logical binary

 The operators which come after the operand is called __ postfix prefix superfix infix postfix

 A ________ is the one that describes the general
attributes of an object, including types of each attribute

 object variable methods functions object

 Which is invalid? int a; float x,y,z; INT abc; double a; INT abc;

Which of these data type requires the most amount of
memory?

long Int Short byte long

To declare an int variable number with initial value 2, you
write

int number = 2L; int number = 2l; int number = 2; int number = 2.0; int number = 2;

What is result of 45 / 4? 10 11 11.25 12 11

Which of the following assignment statements is correct? char c = 'd'; char c = =100; char c = "d"; char c = "100"; char c = 'd';

The equal comparison operator in Java is __________. <> != == ^= ==

To add number to sum, you write (Note: Java is
case_sensitive).

 number += sum; number = sum +
number;

 sum = Number +
sum;

 sum += number; sum += number;

A___________ variable is known only in the method that
declares the variable.

 Local Global Static Auto Local

Which of the following is a valid identifier? $343 Class 9X 8+9 $343

To declare a constant MAX_LENGTH inside a method
with value 99.98, you write

 final
MAX_LENGTH =

 final float
MAX_LENGTH

 double
MAX_LENGTH

 final double
MAX_LENGTH

 final double
MAX_LENGTH =

Which of the following is a constant, according to Java
naming conventions?

 MAX_VALUE Test read ReadInt MAX_VALUE

Which of these data type requires the most amount of
memory?

 long int short byte long

To declare an int variable number with initial value 2, you
write

 int number = 2L; int number = 2l; int number = 2; int number =
2.0;

 int number = 2;

Which of the following expression results in a value 1? 2 % 1 15 % 4 25 % 5 37 % 6 37 % 6

To assign a double variable d to an float variable x, you
write

 x = (long)d x = (int)d; x = d; x = (float)d; x = (float)d;

Which of the following assignment statements is illegal? float f = _34; int t = 23; short s = 10; int t = (int)false; int t = (int)false;

If you attempt to add an int, a byte, a long, and a double,
the result will be a _____ value.

 byte int; long; double; double;

Which of the following is the correct expression of
character 4?

4 "4" '\0004' ‘4’ ‘4’

An int variable can hold __________. 'x' “120” 120 none none

Which of the following assignment statements is correct? char c = 'd'; char c = =100; char c = "d"; char c = "100"; char c = 'd';

Which of the Boolean expressions below is incorrect? (true) && (3 => 4) !(x > 0) && (x >
0)

 (x > 0) || (x < 0) (x !== 0) || (x =
0)

 (true) && (3 => 4)

Which of the following is the correct expression that
evaluates to true if the number x is between 1 and 100 or

 1 < x < 100 && x <
0

 ((x < 100) && (x
> 1)) || (x < 0)

 ((x < 100) && (x
> 1)) && (x < 0)

 (1 > x > 100) ||
(x < 0)

 ((x < 100) && (x >
1)) || (x < 0)

The "less than or equal to" comparison operator in Java is
__________.

 < <= =< << <=

The equal comparison operator in Java is __________. <> != == ^= ==

Suppose x=10 and y=10 what is x after evaluating the
expression (y > 10) & (x++ > 10).

9 10 11 12 11

Suppose x=10 and y=10 what is x after evaluating the
expression (y > 10) && (x++ > 10).

9 10 11 12 10

The __________ method parses a string s to a double
value.

 double.parseDouble(s); Double.parsedouble(s); double.parseDouble(s); Double.parseDouble(s); Double.parseDouble(s);

The __________ method returns a raised to the power of Math.power(a,b)
Math.exponent(a,

 Math.pow(a,b) ; math() Math.pow(a,b) ;

If a program compiles fine, but it produces incorrect
result, then the program suffers __________.

 compilation error runtime error logic error Syntax error logic error

Analyze the following code: boolean even = false; if
(even = true) { System.out.println("It is even!"); }

 The program has a
syntax error.

 The program has
a runtime error.

 The program
runs fine, but

 The program
runs fine and

 The program runs
fine and displays It

Variables of type boolean are given the value ________
by default.

1 0 true FALSE FALSE

Which one of the following is conditional operator? ?: ?; ?. :? ?:

The number used to refer to a particular element of an
array is called the element’s _________

 Pointer Index 0 1 Index

________ is an object that contains elements of same data
type.

 Array Structure Class Object Array

What is the representation of the third element in an array
called a?

 a[2] a(2) a[3] a(3) a[2]

Which of the following is correct? int[] a = new int[2]; int a[] = new
int[2];

 int[] a = new
int(2);

 int a() = new
int[2];

 int[] a = new int[2];

Which of the following statements is valid? int i = new int(30); double d[] = new
double[30];

 char[] c = new
char[4]{'a', 'b', 'c',

 char[] c = new
char();

 double d[] = new
double[30];

the length of a string by calling the ____ method strlen() len() length() string() length()

the character at a specified index within a string by
calling ____

charAt() chatat() char() character() charAt()

 _________ is a keyword import loop export finally import

A built_in class which encapsulates the data structure of
a string is ___________

 java io String Character Char String

The instances of the class String is created using

 new free object class new

To extract a single character from a string , the
___________ method is used.

 charAt Stringto charone Charater charAt

To get the substring from a string ___________ method
is used.

 getchars substr extract substring getchars

 The ___________ method compares the characters
inside the string.

 = = equivalent equals equalsto equals

The ___________ operator compares two objects
references to see if they refer to the exact same instance.

 = = equivalent equals equalsto = =

The String method ___________ can be used to
determine ordering.

 StringTo CompareTo Compare CompareOf CompareTo

If the integer result of CompareTo is negative, then the
string is ___________ than the parameter.

 Equal Less Greater positive Less

If the integer result of CompareTo is positive, then the
string is ___________ than the parameter.

 Equal Less Greater equalsto Greater

The search for a certain character or substring is done
using ___________ & ___________.

 index & indexof index &
lastindex

 indexof &
lastindexof

index indexof &
lastindexof

The replace method takes ___________ characters as
parameters.

1 2 3 4 2

___________ represents fixed length immutable
character sequences.

 String Characters Variable Identifier String

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 1/28

Inheritance, Interfaces, Packages, Enumerations, Auto boxing and Metadata

Inheritance: (Single Level and Multilevel, Method Overriding, Dynamic Method Dispatch,

Abstract Classes), Interfaces and Packages, Extending interfaces and packages, Package and

Class Visibility, Using Standard Java Packages (util, lang, io, net), Wrapper Classes, Auto

boxing/Unboxing, Enumerations and Metadata.

UNIT-III

SYLLABUS

Inheritance in Java

Inheritance in java is a mechanism in which one object acquires all the properties and

behaviors of parent object.

The idea behind inheritance in java is that you can create new classes that are built upon

existing classes. When you inherit from an existing class, you can reuse methods and fields of

parent class, and you can add new methods and fields also.

Inheritance represents the IS-A relationship, also known as parent-child relationship.

Why use inheritance in java

o For Method Overriding (so runtime polymorphism can be achieved).

o For Code Reusability.

Syntax of Java Inheritance

class Subclass-name extends Superclass-name

{

//methods and fields

}

The extends keyword indicates that you are making a new class that derives from an existing

class. The meaning of "extends" is to increase the functionality.

In the terminology of Java, a class which is inherited is called parent or super class and the new

class is called child or subclass.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 2/28

Java Inheritance Example

As displayed in the above figure, Programmer is the subclass and Employee is the super class.

Relationship between two classes is Programmer IS-A Employee. It means that Programmer is

a type of Employee.

class Employee{

float salary=40000;

}

class Programmer extends Employee{

int bonus=10000;

public static void main(String args[]){

Programmer p=new Programmer();

System.out.println("Programmer salary is:"+p.salary);

System.out.println("Bonus of Programmer is:"+p.bonus); } }

Example:

Programmer salary is:40000.0

Bonus of programmer is:10000

In the above example, Programmer object can access the field of own class as well as of

Employee class i.e. code reusability.

Types of inheritance in java

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 3/28

On the basis of class, there can be three types of inheritance in java: single, multilevel

and hierarchical.

In java programming, multiple and hybrid inheritance is supported through interface only.

Note: Multiple inheritances are not supported in java through class.

When a class extends multiple classes i.e. known as multiple inheritance.

For Example:

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 4/28

Single Inheritance Example

File: TestInheritance.java

class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void bark(){System.out.println("barking...");}

}

class TestInheritance{

public static void main(String args[]){

Dog d=new Dog();

d.bark();

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 5/28

d.eat(); }}

Output:

barking...

eating...

Multilevel Inheritance Example

File: TestInheritance2.java

class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void bark(){System.out.println("barking...");}

}

class BabyDog extends Dog{

void weep(){System.out.println("weeping...");}

}

class TestInheritance2{

public static void main(String args[]){

BabyDog d=new BabyDog();

d.weep();

d.bark();

d.eat(); }}

Output:

weeping...

barking...

eating...

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 6/28

Method Overriding in Java

If subclass (child class) has the same method as declared in the parent class, it is known

as method overriding in java.

In other words, if subclass provides the specific implementation of the method that has been

provided by one of its parent class, it is known as method overriding.

Usage of Java Method Overriding

o Method overriding is used to provide specific implementation of a method that is already

provided by its super class.

o Method overriding is used for runtime polymorphism

Rules for Java Method Overriding

1. method must have same name as in the parent class

2. Method must have same parameter as in the parent class.

3. Must be IS-A relationship (inheritance).

Understanding the problem without method overriding

Let's understand the problem that we may face in the program if we don't use method

overriding.

class Vehicle{

void run(){System.out.println("Vehicle is running");}

}

class Bike extends Vehicle{

public static void main(String args[]){

Bike obj = new Bike();

obj.run(); } }

Output: Vehicle is running

Problem is that I have to provide a specific implementation of run() method in subclass that is

why we use method overriding.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 7/28

Example of method overriding

In this example, we have defined the run method in the subclass as defined in the parent class

but it has some specific implementation. The name and parameter of the method is same and

there is IS-A relationship between the classes, so there is method overriding.

class Vehicle{

void run(){System.out.println("Vehicle is running");}

}

class Bike2 extends Vehicle{

void run(){System.out.println("Bike is running safely");}

public static void main(String args[]){

Bike2 obj = new Bike2();

obj.run();

}

Output: Bike is running safely

Real example of Java Method Overriding

Consider a scenario, Bank is a class that provides functionality to get rate of interest. But,

rate of interest varies according to banks. For example, SBI, ICICI and AXIS banks could

provide 8%, 7% and 9% rate of interest.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 8/28

class Bank{

int getRateOfInterest(){return 0;}

}

class SBI extends Bank{

int getRateOfInterest(){return 8;}

}

class ICICI extends Bank{

int getRateOfInterest(){return 7;}

}

class AXIS extends Bank{

int getRateOfInterest(){return 9;}

}

class Test2{

public static void main(String args[]){

SBI s=new SBI();

ICICI i=new ICICI();

AXIS a=new AXIS();

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 9/28

System.out.println("SBI Rate of Interest: "+s.getRateOfInterest());

System.out.println("ICICI Rate of Interest: "+i.getRateOfInterest());

System.out.println("AXIS Rate of Interest: "+a.getRateOfInterest()); } }

Output:

SBI Rate of Interest: 8

ICICI Rate of Interest: 7

AXIS Rate of Interest: 9

Can we override static method?

No, static method cannot be overridden. It can be proved by runtime polymorphism, so we will

learn it later.

Why we cannot override static method?

Because static method is bound with class whereas instance method is bound with object.

Static belongs to class area and instance belongs to heap area.

Can we override java main method?

No, because main is a static method.

Difference between method Overloading and Method Overriding in java

There are many differences between method overloading and method overriding in java. A list of

differences between method overloading and method overriding are given below:

No. Method Overloading Method Overriding

1) Method overloading is used to increase the

readability of the program.

Method overriding is used to

provide the specific

implementation of the method

that is already provided by its

super class.

2) Method overloading is performed within Method overriding occurs in

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 10/28

 class. two classes that have IS-A

(inheritance) relationship.

3) In case of method overloading, parameter

must be different.

In case of method overriding,

parameter must be same.

4) Method overloading is the example

of compile time polymorphism.

Method overriding is the

example of run time

polymorphism.

5) In java, method overloading can't be

performed by changing return type of the

method only. Return type can be same or

different in method overloading. But you

must have to change the parameter.

Return type must be same or

covariant in method

overriding.

Java Method overloading example

class OverloadingExample{

static int add(int a,int b){return a+b;}

static int add(int a,int b,int c){return a+b+c;} }

Java Method Overriding example

class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void eat(){System.out.println("eating bread...");}

}

Polymorphism in Java

Polymorphism in java is a concept by which we can perform a single action by different

ways. Polymorphism is derived from 2 greek words: poly and morphs. The word "poly" means

many and "morphs" means forms. So polymorphism means many forms.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 11/28

There are two types of polymorphism in java:

1. Compile time polymorphism

2. Runtime polymorphism.

We can perform polymorphism in java by method overloading and method overriding.

If you overload static method in java, it is the example of compile time polymorphism. Here, we

will focus on runtime polymorphism in java.

Runtime Polymorphism in Java

Runtime polymorphism or Dynamic Method Dispatch is a process in which a call to

an overridden method is resolved at runtime rather than compile-time.

In this process, an overridden method is called through the reference variable of a superclass.

The determination of the method to be called is based on the object being referred to by the

reference variable.

Let's first understand the upcasting before Runtime Polymorphism.

Upcasting

When reference variable of Parent class refers to the object of Child class, it is known as

upcasting.

For example:

class A{}

class B extends A{}

A a=new B();//upcasting

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 12/28

Java Runtime Polymorphism Example: Shape

class Shape{

void draw(){System.out.println("drawing...");}

}

class Rectangle extends Shape{

void draw(){System.out.println("drawing rectangle...");}

}

class Circle extends Shape{

void draw(){System.out.println("drawing circle...");}

}

class Triangle extends Shape{

void draw(){System.out.println("drawing triangle...");}

}

class TestPolymorphism2{

public static void main(String args[]){

Shape s;

s=new Rectangle();

s.draw();

s=new Circle();

s.draw();

s=new Triangle();

s.draw();

}

}

Output:

drawing rectangle...

drawing circle...

drawing triangle...

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 13/28

Abstract class in Java

A class that is declared with abstract keyword is known as abstract class in java. It can

have abstract and non-abstract methods (method with body).

Abstraction in Java

Abstraction is a process of hiding the implementation details and showing only

functionality to the user.

Another way, it shows only important things to the user and hides the internal details for

example sending sms, you just type the text and send the message. You don't know the internal

processing about the message delivery.

Abstraction lets you focus on what the object does instead of how it does it.

Ways to achieve Abstraction

There are two ways to achieve abstraction in java

1. Abstract class (0 to 100%)

2. Interface (100%)

Abstract class in Java

A class that is declared as abstract is known as abstract class. It needs to be extended

and its method implemented. It cannot be instantiated.

Example abstract class

abstract class A{ }

Abstract method

A method that is declared as abstract and does not have implementation is known as

abstract method.

Example abstract method

abstract void printStatus();//no body and abstract

Example of abstract class that has abstract method

In this example, Bike the abstract class that contains only one abstract method run. It

implementation is provided by the Honda class.

abstract class Bike{

abstract void run();

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 14/28

}

class Honda4 extends Bike{

void run(){System.out.println("running safely..");}

public static void main(String args[]){

Bike obj = new Honda4();

obj.run(); } }

Output: running safely.

Another example of abstract class in java

File: TestBank.java

abstract class Bank{

abstract int getRateOfInterest();

}

class SBI extends Bank{

int getRateOfInterest(){return 7;}

}

class PNB extends Bank{

int getRateOfInterest(){return 8;}

}

class TestBank{

public static void main(String args[]){

Bank b;

b=new SBI();

System.out.println("Rate of Interest is: "+b.getRateOfInterest()+" %");

b=new PNB();

System.out.println("Rate of Interest is: "+b.getRateOfInterest()+" %"); }}

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 15/28

Output:

Rate of Interest is: 7 %

Rate of Interest is: 8 %

Abstract class having constructor, data member, methods etc.

An abstract class can have data member, abstract method, method body, constructor and

even main() method.

File: TestAbstraction2.java

//example of abstract class that have method body

abstract class Bike{

Bike(){System.out.println("bike is created");}

abstract void run();

void changeGear(){System.out.println("gear changed");}

}

class Honda extends Bike{

void run(){System.out.println("running safely..");}

}

class TestAbstraction2{

public static void main(String args[]){

Bike obj = new Honda();

obj.run();

obj.changeGear();

}

}

Output:

bike is created

running safely..

gear changed

Rule: If there is any abstract method in a class, that class must be abstract.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 16/28

class Bike12{

abstract void run();

}

Output: compile time error

Rule: If you are extending any abstract class that has abstract method, you must either

provide the implementation of the method or make this class abstract.

Java Package

A java package is a group of similar types of classes, interfaces and sub-packages.

Package in java can be categorized in two form, built-in package and user-defined package.

There are many built-in packages such as java, lang, awt, javax, swing, net, io, util, sql etc.

Here, we will have the detailed learning of creating and using user-defined packages.

Advantage of Java Package

1) Java package is used to categorize the classes and interfaces so that they can be easily

maintained.

2) Java package provides access protection.

3) Java package removes naming collision.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 17/28

Simple example of java package

The package keyword is used to create a package in java.

//save as Simple.java

package mypack;

public class Simple{

public static void main(String args[]){

System.out.println("Welcome to package"); } }

How to compile java package

If you are not using any IDE, you need to follow the syntax given below:

javac -d directory javafilename

For example

javac -d . Simple.java

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 18/28

The -d switch specifies the destination where to put the generated class file. You can use any

directory name like /home (in case of Linux), d:/abc (in case of windows) etc. If you want to

keep the package within the same directory, you can use . (dot).

How to run java package program

You need to use fully qualified name e.g. mypack. Simple etc to run the class.

To Compile: javac -d . Simple.java

To Run: java mypack.Simple

Output: Welcome to package

The -d is a switch that tells the compiler where to put the class file i.e. it represents destination.

The . represents the current folder.

How to access package from another package?

There are three ways to access the package from outside the package.

1. import package.*;

2. import package.classname;

3. fully qualified name.

1) Using packagename.*

If you use package.* then all the classes and interfaces of this package will be accessible

but not subpackages.

The import keyword is used to make the classes and interface of another package accessible to

the current package.

Example of package that import the packagename.*

//save by A.java

package pack;

public class A{

public void msg(){System.out.println("Hello");}

}

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 19/28

//save by B.java

package mypack;

import pack.*;

class B{

public static void main(String args[]){

A obj = new A();

obj.msg(); } }

Output: Hello

2) Using packagename.classname

If you import package.classname then only declared class of this package will be

accessible.

Example of package by import package.classname

//save by A.java

package pack;

public class A{

public void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.A;

class B{

public static void main(String args[]){

A obj = new A();

obj.msg(); } }

Output: Hello

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 20/28

3) Using fully qualified name

If you use fully qualified name then only declared class of this package will be

accessible. Now there is no need to import. But you need to use fully qualified name every time

when you are accessing the class or interface.

It is generally used when two packages have same class name e.g. java.util and java.sql packages

contain Date class.

Example of package by import fully qualified name

//save by A.java

package pack;

public class A{

public void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

class B{

public static void main(String args[]){

pack.A obj = new pack.A();//using fully qualified name

obj.msg(); } }

Output: Hello

Note: If you import a package, subpackages will not be imported.

If you import a package, all the classes and interface of that package will be imported excluding

the classes and interfaces of the subpackages. Hence, you need to import the subpackage as well.

Note: Sequence of the program must be package then import then class.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 21/28

Subpackage in java

Package inside the package is called the subpackage. It should be created to categorize

the package further.

Let's take an example; Sun Microsystem has definded a package named java that contains many

classes like System, String, Reader, Writer, Socket etc. These classes represent a particular group

e.g. Reader and Writer classes are for Input/Output operation, Socket and ServerSocket classes

are for networking etc and so on. So, Sun has subcategorized the java package into subpackages

such as lang, net, io etc. and put the Input/Output related classes in io package, Server and

ServerSocket classes in net packages and so on.

The standard of defining package is domain.company.package e.g. com.javatpoint.bean or

org.sssit.dao.

Example of Subpackage

package com.javatpoint.core;

class Simple{

public static void main(String args[]){

System.out.println("Hello subpackage"); } }

To Compile: javac -d . Simple.java

To Run: java com.javatpoint.core.Simple

Output: Hello subpackage

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 22/28

How to send the class file to another directory or drive?

There is a scenario; I want to put the class file of A.java source file in classes’ folder of c: drive.

For example:

//save as Simple.java

package mypack;

public class Simple{

public static void main(String args[]){

System.out.println("Welcome to package"); } }

To Compile:

e:\sources> javac -d c:\classes Simple.java

To Run:

To run this program from e:\source directory, you need to set classpath of the directory where the

class file resides.

e:\sources> set classpath=c:\classes;.;

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 23/28

e:\sources> java mypack.Simple

Another way to run this program by -classpath switch of java:

The -classpath switch can be used with javac and java tool.

To run this program from e:\source directory, you can use -classpath switch of java that tells

where to look for class file. For example:

e:\sources> java -classpath c:\classes mypack.Simple

Output: Welcome to package

Ways to load the class files or jar files

There are two ways to load the class files temporary and permanent.

o Temporary

o By setting the classpath in the command prompt

o By -classpath switch

o Permanent

o By setting the classpath in the environment variables

o By creating the jar file, that contains all the class files, and copying the jar file in

the jre/lib/ext folder.

Interface in Java

1. An interface in java is a blueprint of a class. It has static constants and abstract methods.

2. The interface in java is a mechanism to achieve abstraction. There can be only abstract

methods in the java interface not method body. It is used to achieve abstraction and

multiple inheritance in Java.

3. Java Interface also represents IS-A relationship.

4. It cannot be instantiated just like abstract class.

Why use Java interface?

There are mainly three reasons to use interface. They are given below.

o It is used to achieve abstraction.

o By interface, we can support the functionality of multiple inheritance.

o It can be used to achieve loose coupling.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 24/28

In other words, Interface fields are public, static and final by default, and methods are public and

abstract.

Wrapper class in Java

Wrapper class in java provides the mechanism to convert primitive into object and

object into primitive.

Since J2SE 5.0, autoboxing and unboxing feature converts primitive into object and object into

primitive automatically. The automatic conversion of primitive into object is known as

autoboxing and vice-versa unboxing.

The eight classes of java.lang package are known as wrapper classes in java.

The list of eight wrapper classes is given below:

Primitive Type Wrapper class

boolean Boolean

char Character

byte Byte

short Short

int Integer

long Long

float Float

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 25/28

double Double

Wrapper class Example: Primitive to Wrapper

public class WrapperExample1{

public static void main(String args[]){

//Converting int into Integer

int a=20;

Integer i=Integer.valueOf(a);//converting int into Integer

Integer j=a;//autoboxing, now compiler will write Integer.valueOf(a) internally

System.out.println(a+" "+i+" "+j);

}}

Output:

20 20 20

Wrapper class Example: Wrapper to Primitive

public class WrapperExample2{

public static void main(String args[]){

//Converting Integer to int

Integer a=new Integer(3);

int i=a.intValue();//converting Integer to int

int j=a;//unboxing, now compiler will write a.intValue() internally

System.out.println(a+" "+i+" "+j);

}}

Output:

3 3 3

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 26/28

Autoboxing and Unboxing:

The automatic conversion of primitive data types into its equivalent Wrapper type is

known as boxing and opposite operation is known as unboxing. This is the new feature of Java5.

So java programmer doesn't need to write the conversion code.

Advantage of Autoboxing and Unboxing:

No need of conversion between primitives and Wrappers manually so less coding is required.

Simple Example of Autoboxing in java:

class BoxingExample1{

public static void main(String args[]){

int a=50;

Integer a2=new Integer(a);//Boxing

Integer a3=5;//Boxing

System.out.println(a2+" "+a3);

}

}

1.

Output: 50 5

Simple Example of Unboxing in java:

The automatic conversion of wrapper class type into corresponding primitive type, is known

as Unboxing.

Example of unboxing:

class UnboxingExample1{

public static void main(String args[]){

Integer i=new Integer(50);

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 27/28

int a=i;

System.out.println(a);

}

}

Output: 50

Java Enumeration (enum)

Enum in java is a data type that contains fixed set of constants.

It can be used for days of the week (SUNDAY, MONDAY, TUESDAY, WEDNESDAY,

THURSDAY, FRIDAY and SATURDAY) , directions (NORTH, SOUTH, EAST and WEST)

etc. The java enum constants are static and final implicitly. It is available from JDK 1.5.

Java Enums can be thought of as classes that have fixed set of constants.

Points to remember for Java Enum

o enum improves type safety

o enum can be easily used in switch

o enum can be traversed

o enum can have fields, constructors and methods

o enum may implement many interfaces but cannot extend any class because it internally

extends Enum class

Simple example of java enum

class EnumExample1{

public enum Season { WINTER, SPRING, SUMMER, FALL }

public static void main(String[] args) {

for (Season s : Season.values())

System.out.println(s);

}}

Output:

WINTER

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME: PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IIIInheritance) BATCH-2019-2022

Prepared by Dr.K.Ramesh , Department of CS, CA & IT, KAHE Page 28/28

SPRING

SUMMER

FALL

Metadata:

The metadata means data about data i.e. we can get further information from the data.

POSSIBLE QUESTIONS

2 MARKS

1. What is Inheritance?

2. Define Interfaces?

3. What is Packages?

4. Define Enumerations?

5. Write about Auto boxing and Metadata.

6. What is Method Overriding?

7. Define Dynamic Method Dispatch?

8. What is Java Enumeration?

9. Write about Abstract classes.

6 MARKS
1. Explain Multilevel Inheritance with example program.

2. Explain the following: i)Auto boxing/Unboxing ii) Wrapper Classes

3. What is Inheritance? Briefly explain importance of abstract Classes in Java.

4. Describe interfaces & how to implement it with a Java Program?

5. What is a package? What are the benefits of using package? Write down the steps in creating a
package and using it in a java program with an example.

6. List and Explain Inheritance with example.

7. Explain Multilevel Inheritance with an example Program

8. How will you declare a package and import it, Explain.

9. Discuss in detail about the core interfaces and collections in JAVA utility package.

10. Write a JAVA program to create and using inheritance

Questions opt1 opt2 opt3 opt4 opt5 opt6 answer

___________ is an explicit specification of a set of methods Interface package Statement values
Interface

___________ are containers for classes that are used to keep the
class namespace compartmenterised.

 Interface package Statement values
Package

All of the Java “built-in” classes included in the java distribution are
stored in a package called ___________.

 Header Java Package Files
Package

___________ are the means of encapsulation and containing the
namespace and scope of variables and methods.

 Class Package Classes and Package objects
Class and
Package

___________ act as containers for classes and other packages. Container Classes Java Packages
Packages

___________ act as containers for data and code Container Classes Java Packages
Classes

Java’s ___________ are designed to support dynamic method
resolution at runtime.

 Interface Class Package methods
Class

___________ is a sequence of characters Variable String Values methods
String

The instances of the class String is created using ___________ new free object methods
new

To extract a single character from a string , the ___________
method is used.

 charAt Stringto charone methods
charAt

To get the substring from a string ___________ method is used. getchars substr extract substring
getchars

 The ___________ method compares the characters inside the string. = = equivalent equals None
equals

The ___________ operator compares two objects references to see if
they refer to the exact same instance.

 = = equivalent equals None = =

The String method ___________ can be used to determine ordering. StringTo CompareTo Compare CompareOf CompareTo

If the integer result of CompareTo is negative, then the string is
___________ than the parameter.

 Equal Less Greater Identifier Less

If the integer result of CompareTo is positive, then the string is
___________ than the parameter.

 Equal Less Greater Identifier Greater

The search for a certain character or substring is done using
___________ & ___________.

 index &
indexof

 index &
lastindex

 indexof &
lastindexof

 Identifier
 indexof &
lastindexof

The replace method takes ___________ characters as parameters. 1 2 3 4 2

___________ represents fixed length immutable character
sequences.

 String Characters Variable Identifier String

The append method on StringBuffer is most often called through the
___________ operator.

 - + add None +

A group of Character is Called _____________ function arrays data types strings

Which of the following control expressions are valid for an if
statement ?

an integer
expression

a Boolean
expression

either A or B Neither A nor B a Boolean
expression

Which of the following cannot be passed to a function? reference
variables

arrays class objects header files header files

The class _________ describes the type and scope of its members Functions declaration objects methods declaration

The _________ statement stops the execution of the current iteration
and causes control to begin with the next iteration.

break continue exit while break

In _________statements will be executed as long as Boolean
Expression evaluates to true

do while switch while do while

A __________never returns a value class function method constructor constructor

 ___________can be used to initialize the fields in the object instance
variables

constructors methods classes constructors

Once you have an object, you can call its methods and access its
fields, by using the __________

 object reference class variables data types object reference

 We can use the ____keyword from any method or constructor to
refer to the current object.

 this try new throw this

_________ is used to extend a class by creating a new class constructors method
overloading

 inheritance overriding inheritance

When you extends a class, you can change the behavior of a method
in the parent class. This is called __________

 method
overriding.

 object refernce method overloading polymorphism method
overriding.

The ________ operator creates a single instances of a named class
and returns a reference to that object

 dot new super this new

 The ________ operator is used to access the instance variables and
method within an object

new dot this super dot

 Methods are called on an instance of a class using the _________
operator

new dot this super dot

 _________ is used inside of any method to refer to the current
object.

 new dot this super this

The data, or variables, defined within a class are called ____. instance
variables

reference
variables

methods classes instance variables

 __________ initializes an object overloading constructors overriding classes constructors

To add a finalizer to a class, you simply define the ______ method finalize() stop() exit() methods() finalize()

the new operator dynamically ________memory for an object. free allocates delete final allocates

________control to transfer back to the caller of the method continue return jump goto return

a ______ statement causes control to be transferred directly to the
conditional expression that controls the loop

continue return jump goto continue

a method in a subclass has the same name and type signature as a
method in its superclass, then the method in the subclass is said

 override overload function method override

________ dispatch is the mechanism by which a call to an
overridden method is resolved at run time, rather than compile time.

Static method Dynamic method overload overriding Dynamic method

 __________ is the one, which creates more than one methods with
the same name but different parameter list

method
overriding

method
overloading

 function call inheritance method
overloading

 static methods will not refer the __________ this dot new public this

._________ is used to allocate memory in the constructor Delete Binding Free new new

 Java supports a concept called _______ which is just opposite to
initialization.

free finalization delete new finalization

 A class that cannot be subclassed is called as _________ class. abstract final static methods final

.__________ enables an object to initialize itself when it is created Destructor constructor overloading overriding constructor

Subclass constructors can call superclass constructors via the
________ keyword

 final protected inherit super super

.The __________ is special because its name is the same as the class
name.

 Destructor static constructor methods constructor

.A constructor that accepts no parameters is called the __________
constructor

 Copy default multiple methods default

.Constructors are invoked automatically when the ________ are
created

 Datas classes objects methods objects

.Constructors cannot be _________ Inherited destroyed both a & b methods Inherited

The constructors that can take arguments are called _________
constructors

 Copy multiple parameterized methods parameterized

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 1/47

UNIT-IV

SYLLABUS

Exception Handling in Java

Exception Handling

Java - Exceptions. An exception (or exceptional event) is a problem that arises during the
execution of a program. When an Exception occurs the normal flow of the program is disrupted
and the program/Application terminates abnormally, which is not recommended, therefore,
these exceptions are to be handled.

The exception handling in java is one of the powerfulmechanisms to handle the runtime
errors so that normal flow of the application can be maintained.

Exception Handling, Threading, Networking and Database Connectivity Exception types,

uncaught exceptions, throw, built-in exceptions, Creating your own exceptions; Multi-threading:

The Thread class and Runnable interface, creating single and multiple threads, Thread

prioritization, synchronization and communication, suspending/resuming threads. Using java.net

package, Overview of TCP/IP and Datagram programming. Accessing and manipulating

databases using JDBC.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 2/47

What is exception?

Dictionary Meaning: Exception is an abnormal condition.

In java, exception is an event that disrupts the normal flow of the program. It is an object which
is thrown at runtime.

What is exception handling?

Exception Handling is a mechanism to handle runtime errors such as ClassNotFound, IO, SQL,
Remote etc.

Advantage of Exception Handling

The core advantage of exception handling is to maintain the normal flow of the application.
Exception normally disrupts the normal flow of the application that is why we use exception
handling. Let's take a scenario:

statement 1;

statement 2;

statement 3;

statement 4;

statement 5;//exception occurs

statement 6;

statement 7;

statement 8;

statement 9;

statement 10;

Suppose there is 10 statements in your program and there occurs an exception at statement5, rest
of the code will not be executed i.e. statement 6 to 10 will not run. If we perform exception
handling, rest of the statement will be executed. That is why we use exception handling in java.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 3/47

Hierarchy of Java Exception classes

Types of Exception

There are mainly two types of exceptions: checked and unchecked where error is considered as
unchecked exception. The sun microsystem says there are three types of exceptions:

1. Checked Exception

2. Unchecked Exception

3. Error

Difference between checked and unchecked exceptions

1) Checked Exception

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 4/47

The classes that extend Throwable class except RuntimeException and Error are known as
checked exceptions e.g.IOException, SQLException etc. Checked exceptions are checked at
compile-time.

2) Unchecked Exception

The classes that extend RuntimeException are known as unchecked exceptions e.g.
ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException etc. Unchecked
exceptions are not checked at compile-time rather they are checked at runtime.

3) Error

Error is irrecoverable e.g. OutOfMemoryError, VirtualMachineError, AssertionError etc.

Common scenarios where exceptions may occur

There are given some scenarios where unchecked exceptions can occur. They are as follows:

1) Scenario where ArithmeticException occurs

If we divide any number by zero, there occurs an ArithmeticException.

int a=50/0;//ArithmeticException

2) Scenario where NullPointerException occurs

If we have null value in any variable, performing any operation by the variable occurs an
NullPointerException.

String s=null;

System.out.println(s.length());//NullPointerException

3) Scenario where NumberFormatException occurs

The wrong formatting of any value, may occur NumberFormatException. Suppose I have a
string variable that have characters, converting this variable into digit will occur
NumberFormatException.

String s="abc";

int i=Integer.parseInt(s);//NumberFormatException

4) Scenario where ArrayIndexOutOfBoundsException occurs

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 5/47

If you are inserting any value in the wrong index, it would result
ArrayIndexOutOfBoundsException as shown below:

1. int a[]=new int[5];

2. a[10]=50; //ArrayIndexOutOfBoundsException

Java Exception Handling Keywords

There are 5 keywords used in java exception handling.

1. try

2. catch

3. finally

4. throw

5. throws

Java try block

Java try block is used to enclose the code that might throw an exception. It must be used within
the method.

Java try block must be followed by either catch or finally block.

Syntax of java try-catch

try{

//code that may throw exception

}catch(Exception_class_Name ref){}

Syntax of try-finally block

try{

//code that may throw exception

}finally{}

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 6/47

Java catch block

Java catch block is used to handle the Exception. It must be used after the try block only.

You can use multiple catch block with a single try.

Problem without exception handling

Let's try to understand the problem if we don't use try-catch block.

public class Testtrycatch1{

public static void main(String args[]){

int data=50/0;//may throw exception

System.out.println("rest of the code..."); } }

Output:

Exception in thread main java.lang.ArithmeticException:/ by zero

As displayed in the above example, rest of the code is not executed (in such case, rest of the
code... statement is not printed).

There can be 100 lines of code after exception. So all the code after exception will not be
executed.

Solution by exception handling

Let's see the solution of above problem by java try-catch block.

public class Testtrycatch2{

public static void main(String args[]){

try{

int data=50/0;

}catch(ArithmeticException e){System.out.println(e);}

System.out.println("rest of the code..."); } }

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 7/47

Exception in thread main java.lang.ArithmeticException:/ by zero

rest of the code...

Now, as displayed in the above example, rest of the code is executed i.e. rest of the code...
statement is printed.

Internal working of java try-catch block

The JVM firstly checks whether the exception is handled or not. If exception is not handled,
JVM provides a default exception handler that performs the following tasks:

 Prints out exception description.

 Prints the stack trace (Hierarchy of methods where the exception occurred).

 Causes the program to terminate.

But if exception is handled by the application programmer, normal flow of the application is
maintained i.e. rest of the code is executed.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 8/47

Java throw keyword

The Java throw keyword is used to explicitly throw an exception.

We can throw either checked or unchecked exception in java by throw keyword. The throw
keyword is mainly used to throw custom exception. We will see custom exceptions later.

The syntax of java throw keyword is given below.

throw exception;

Let's see the example of throw IOException.

throw new IOException("sorry device error);

Java throw keyword example

In this example, we have created the validate method that takes integer value as a parameter. If
the age is less than 18, we are throwing the ArithmeticException otherwise print a message
welcome to vote.

public class TestThrow1{

static void validate(int age){

if(age<18)

throw new ArithmeticException("not valid");

else

System.out.println("welcome to vote"); }

public static void main(String args[]){

validate(13);

System.out.println("rest of the code..."); } }

Output:

Exception in thread main java.lang.ArithmeticException:not valid

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 9/47

Java throws keyword

The Java throws keyword is used to declare an exception. It gives information to the programmer
that there may occur an exception so it is better for the programmer to provide the exception
handling code so that normal flow can be maintained.

Exception Handling is mainly used to handle the checked exceptions. If there occurs any
unchecked exception such as NullPointerException, it is programmers fault that he is not
performing check up before the code being used.

Syntax of java throws

return_type method_name() throws exception_class_name{

//method code

}

Which exception should be declared

Ans) checked exception only, because:

o unchecked Exception: under your control so correct your code.

o error: beyond your control e.g. you are unable to do anything if there occurs

VirtualMachineError or StackOverflowError.

Advantage of Java throws keyword

Now Checked Exception can be propagated (forwarded in call stack).

It provides information to the caller of the method about the exception.

Java throws example

Let's see the example of java throws clause which describes that checked exceptions can be

propagated by throws keyword.

import java.io.IOException;

class Testthrows1{

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 10/47

void m()throws IOException{

throw new IOException("device error");//checked exception }

void n()throws IOException{

m(); }

void p(){

try{

n(); }catch(Exception e){System.out.println("exception handled");} }

public static void main(String args[]){

Testthrows1 obj=new Testthrows1();

obj.p();

System.out.println("normal flow..."); } }

Output:

exception handled

normal flow...

Rule: If you are calling a method that declares an exception, you must either caught or declare

the exception.

There are two cases:

Case1: You caught the exception i.e. handle the exception using try/catch.

Case2: You declare the exception i.e. specifying throws with the method.

Case1: You handle the exception

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 11/47

In case you handle the exception, the code will be executed fine whether exception occurs during

the program or not.

import java.io.*;

class M{

void method()throws IOException{

throw new IOException("device error"); } }

public class Testthrows2{

public static void main(String args[]){

try{

M m=new M();

m.method();

}catch(Exception e){System.out.println("exception handled");}

System.out.println("normal flow..."); } }

Output:

exception handled

normal flow...

Case2: You declare the exception

A) In case you declare the exception, if exception does not occur, the code will be executed fine.

B) In case you declare the exception if exception occurs, an exception will be thrown at runtime

because throws does not handle the exception.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 12/47

A) Program if exception does not occur

import java.io.*;

class M{

void method()throws IOException{

System.out.println("device operation performed"); } }

class Testthrows3{

public static void main(String args[])throws IOException{//declare exception

M m=new M();

m.method();

System.out.println("normal flow..."); } }

Output: device operation performed

normal flow...

B) Program if exception occurs

import java.io.*;

class M{

void method()throws IOException{

throw new IOException("device error"); } }

class Testthrows4{

public static void main(String args[])throws IOException{//declare exception

M m=new M();

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 13/47

m.method();
System.out.println("normal flow..."); } }

Output: Runtime Exception

Difference between throw and throws in Java

There are many differences between throw and throws keywords. A list of differences between

throw and throws are given below:

No. throw throws

1) Java throw keyword is used to

explicitly throw an exception.

Java throws keyword is used to declare an

exception.

2) Checked exception cannot be

propagated using throw only.

Checked exception can be propagated with

throws.

3) Throw is followed by an instance. Throws is followed by class.

4) Throw is used within the method. Throws is used with the method signature.

5) You cannot throw multiple

exceptions.

You can declare multiple exceptions e.g.

public void method()throws

IOException,SQLException.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 14/47

Types of Exception in Java with Examples

Java defines several types of exceptions that relate to its various class libraries. Java also
allows users to define their own exceptions.

Built-in Exceptions

Built-in exceptions are the exceptions which are available in Java libraries. These exceptions
are suitable to explain certain error situations. Below is the list of important built-in exceptions in
Java.

1. Arithmetic Exception
It is thrown when an exceptional condition has occurred in an arithmetic operation.
2. ArrayIndexOutOfBoundException
It is thrown to indicate that an array has been accessed with an illegal index. The index is either
negative or greater than or equal to the size of the array.
3. ClassNotFoundException
This Exception is raised when we try to access a class whose definition is not found
4. FileNotFoundException
This Exception is raised when a file is not accessible or does not open.
5. IOException
It is thrown when an input-output operation failed or interrupted
6. InterruptedException
It is thrown when a thread is waiting, sleeping, or doing some processing, and it is interrupted.
7. NoSuchFieldException
It is thrown when a class does not contain the field (or variable) specified
8. NoSuchMethodException
It is thrown when accessing a method which is not found.
9. NullPointerException
This exception is raised when referring to the members of a null object. Null represents nothing
10. NumberFormatException
This exception is raised when a method could not convert a string into a numeric format.
11. RuntimeException
This represents any exception which occurs during runtime.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 15/47

12. StringIndexOutOfBoundsException
It is thrown by String class methods to indicate that an index is either negative than the size of
the string
Examples of Built-in Exception:
Arithmetic exception
// Java program to demonstrate ArithmeticException

classArithmeticException_Demo{

publicstaticvoidmain(String args[]) {

try{

inta = 30, b = 0;

intc = a/b; // cannot divide by zero

System.out.println ("Result = "+ c); }

catch(ArithmeticException e) {

System.out.println ("Can't divide a number by 0"); } }}

Output:
Can't divide a number by 0

NullPointer Exception
//Java program to demonstrate NullPointerException

classNullPointer_Demo{

publicstaticvoidmain(String args[])

{

try{

String a = null; //null value

System.out.println(a.charAt(0));

} catch(NullPointerException e) {

System.out.println("NullPointerException.."); } }}

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 16/47

NullPointerException..

StringIndexOutOfBound Exception
// Java program to demonstrate StringIndexOutOfBoundsException

classStringIndexOutOfBound_Demo{

publicstaticvoidmain(String args[])

{

try{

String a = "This is like chipping "; // length is 22

charc = a.charAt(24); // accessing 25th element

System.out.println(c); }

catch(StringIndexOutOfBoundsException e) {

System.out.println("StringIndexOutOfBoundsException"); } }}

Output:
StringIndexOutOfBoundsException

FileNotFound Exception
//Java program to demonstrate FileNotFoundException

importjava.io.File;

importjava.io.FileNotFoundException;

importjava.io.FileReader;

classFile_notFound_Demo {

publicstaticvoidmain(String args[]) {

try{

// Following file does not exist

File file = newFile("E://file.txt");

FileReader fr = newFileReader(file);

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 17/47

} catch(FileNotFoundException e) {

System.out.println("File does not exist"); } }}

Output:
File does not exist

NumberFormat Exception
// Java program to demonstrate NumberFormatException

class NumberFormat_Demo

{

publicstaticvoidmain(String args[]) {

try{

// "akki" is not a number

intnum = Integer.parseInt ("akki") ;

System.out.println(num);

} catch(NumberFormatException e) {

System.out.println("Number format exception"); } }}

Output:
Number format exception

ArrayIndexOutOfBounds Exception
// Java program to demonstrate ArrayIndexOutOfBoundException

classArrayIndexOutOfBound_Demo

{

publicstaticvoidmain(String args[]) {

try{

inta[] = newint[5];

a[6] = 9; // accessing 7th element in an array of

// size 5 }

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 18/47

catch(ArrayIndexOutOfBoundsException e){

System.out.println ("Array Index is Out Of Bounds"); } }}

Output:
Array Index is Out Of Bounds

Java Custom Exception

If you are creating your own Exception that is known as custom exception or user-

defined exception. Java custom exceptions are used to customize the exception according to user

need.

By the help of custom exception, you can have your own exception and message.

Let's see a simple example of java custom exception.

class InvalidAgeException extends Exception{

InvalidAgeException(String s){

super(s); } }

class TestCustomException1{

static void validate(int age)throws InvalidAgeException{

if(age<18)

throw new InvalidAgeException("not valid");

else

System.out.println("welcome to vote"); }

public static void main(String args[]){

try{

validate(13);

}catch(Exception m){System.out.println("Exception occured: "+m);}

System.out.println("rest of the code..."); } }

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 19/47

Output:

Exception occured: InvalidAgeException:not valid

rest of the code...

Multithreading

Itis a process of executing multiple threads simultaneously.

Thread is basically a lightweight sub-process, a smallest unit of processing. Multiprocessing and
multithreading, both are used to achieve multitasking.

But we use multithreading than multiprocessing because threads share a common memory area.
They don't allocate separate memory area so saves memory, and context-switching between the
threads takes less time than process.

Java Multithreading is mostly used in games, animation etc.

Advantages of Java Multithreading

1) It doesn't block the user because threads are independent and you can perform multiple
operations at same time.

2) You can perform many operations together so it saves time.

3) Threads are independent so it doesn't affect other threads if exception occur in a single
thread.

How to create thread?

There are two ways to create a thread:

1. By extending Thread class

2. By implementing Runnable interface.

Thread class:

Thread class provide constructors and methods to create and perform operations on a
thread.Thread class extends Object class and implements Runnable interface.

Commonly used Constructors of Thread class:

o Thread()

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 20/47

o Thread(String name)

o Thread(Runnable r)

o Thread(Runnable r,String name)

Commonly used methods of Thread class:

1. public void run(): is used to perform action for a thread.

2. public void start(): starts the execution of the thread.JVM calls the run() method on the
thread.

3. public void sleep(long miliseconds): Causes the currently executing thread to sleep
(temporarily cease execution) for the specified number of milliseconds.

4. public void join(): waits for a thread to die.

5. public void join(long miliseconds): waits for a thread to die for the specified
miliseconds.

6. public int getPriority(): returns the priority of the thread.

7. public int setPriority(int priority): changes the priority of the thread.

8. public String getName(): returns the name of the thread.

9. public void setName(String name): changes the name of the thread.

10. public Thread currentThread(): returns the reference of currently executing thread.

11. public int getId(): returns the id of the thread.

12. public Thread.State getState(): returns the state of the thread.

13. public boolean isAlive(): tests if the thread is alive.

14. public void yield(): causes the currently executing thread object to temporarily pause and
allow other threads to execute.

15. public void suspend(): is used to suspend the thread(depricated).

16. public void resume(): is used to resume the suspended thread(depricated).

17. public void stop(): is used to stop the thread(depricated).

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 21/47

18. public boolean isDaemon(): tests if the thread is a daemon thread.

19. public void setDaemon(boolean b): marks the thread as daemon or user thread.

20. public void interrupt(): interrupts the thread.

21. public boolean isInterrupted(): tests if the thread has been interrupted.

22. public static boolean interrupted(): tests if the current thread has been interrupted.

Runnable interface:

The Runnable interface should be implemented by any class whose instances are intended to be
executed by a thread. Runnable interface have only one method named run().

1. public void run(): is used to perform action for a thread.

Starting a thread:

start() method of Thread class is used to start a newly created thread. It performs following
tasks:

o A new thread starts(with new callstack).

o The thread moves from New state to the Runnable state.

o When the thread gets a chance to execute, its target run() method will run.

1) Java Thread Example by extending Thread class

class Multi extends Thread{

public void run(){

System.out.println("thread is running..."); }

public static void main(String args[]){

Multi t1=new Multi();

t1.start(); } }

Output:

thread is running...

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 22/47

2) Java Thread Example by implementing Runnable interface

class Multi3 implements Runnable{

public void run(){

System.out.println("thread is running..."); }

public static void main(String args[]){

Multi3 m1=new Multi3();

Thread t1 =new Thread(m1);

t1.start(); } }

Output:

thread is running...

If you are not extending the Thread class,your class object would not be treated as a thread
object.So you need to explicitly create Thread class object.We are passing the object of your
class that implements Runnable so that your class run() method may execute.

Priority of a Thread (Thread Priority):

Each thread have a priority. Priorities are represented by a number between 1 and 10. In most
cases, thread schedular schedules the threads according to their priority (known as preemptive
scheduling). But it is not guaranteed because it depends on JVM specification that which
scheduling it chooses.

3 constants defined in Thread class:

public static int MIN_PRIORITY

public static int NORM_PRIORITY

public static int MAX_PRIORITY

Default priority of a thread is 5 (NORM_PRIORITY). The value of MIN_PRIORITY is 1 and
the value of MAX_PRIORITY is 10.

Example of priority of a Thread:

class TestMultiPriority1 extends Thread{

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 23/47

public void run(){

System.out.println("running thread name is:"+Thread.currentThread().getName());

System.out.println("running thread priority is:"+Thread.currentThread().getPriority()); }

public static void main(String args[]){

TestMultiPriority1 m1=new TestMultiPriority1();

TestMultiPriority1 m2=new TestMultiPriority1();

m1.setPriority(Thread.MIN_PRIORITY);

m2.setPriority(Thread.MAX_PRIORITY);

m1.start();

m2.start(); } }

Output:

running thread name is:Thread-0

running thread priority is:10

running thread name is:Thread-1

running thread priority is:1

Synchronization

Synchronization in java is the capability to control the access of multiple threads to any shared
resource.

Java Synchronization is better option where we want to allow only one thread to access the
shared resource.

Why use Synchronization?

The synchronization is mainly used to

1. To prevent thread interference.

2. To prevent consistency problem.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 24/47

Types of Synchronization

There are two types of synchronization

1. Process Synchronization

2. Thread Synchronization

Here, we will discuss only thread synchronization.

Thread Synchronization

There are two types of thread synchronization mutual exclusive and inter-thread communication.

1. Mutual Exclusive

1. Synchronized method.

2. Synchronized block.

3. static synchronization.

2. Cooperation (Inter-thread communication in java)

Mutual Exclusive

Mutual Exclusive helps keep threads from interfering with one another while sharing data. This
can be done by three ways in java:

1. by synchronized method

2. by synchronized block

3. by static synchronization

Concept of Lock in Java

Synchronization is built around an internal entity known as the lock or monitor. Every object has
an lock associated with it. By convention, a thread that needs consistent access to an object's
fields has to acquire the object's lock before accessing them, and then release the lock when it's
done with them.

From Java 5 the package java.util.concurrent.locks contains several lock implementations.

Understanding the problem without Synchronization

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 25/47

In this example, there is no synchronization, so output is inconsistent. Let's see the example:

class Table{

void printTable(int n){//method not synchronized

for(int i=1;i<=5;i++){

System.out.println(n*i);

try{

Thread.sleep(400);

}catch(Exception e){System.out.println(e);} } } }

class MyThread1 extends Thread{

Table t;

MyThread1(Table t){

this.t=t; }

public void run(){

t.printTable(5); } }

class MyThread2 extends Thread{

Table t;

MyThread2(Table t){

this.t=t; }

public void run(){

t.printTable(100); } }

class TestSynchronization1{

public static void main(String args[]){

Table obj = new Table();//only one object

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 26/47

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

}

}

Output:

5

100

10

200

15

300

20

400

25

500

Java synchronized method

If you declare any method as synchronized, it is known as synchronized method.

Synchronized method is used to lock an object for any shared resource.

When a thread invokes a synchronized method, it automatically acquires the lock for that object
and releases it when the thread completes its task.

//example of java synchronized method

class Table{

synchronized void printTable(int n){//synchronized method

for(int i=1;i<=5;i++){

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 27/47

System.out.println(n*i);

try{

Thread.sleep(400);

}catch(Exception e){System.out.println(e);} } } }

class MyThread1 extends Thread{

Table t;

MyThread1(Table t){

this.t=t; }

public void run(){

t.printTable(5); } }

class MyThread2 extends Thread{

Table t;

MyThread2(Table t){

this.t=t; }

public void run(){

t.printTable(100); } }

public class TestSynchronization2{

public static void main(String args[]){

Table obj = new Table();//only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start(); } }

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 28/47

Output:

5

10

15

20

25

100

200

300

400

500

Inter-thread communication in Java

Inter-thread communication or Co-operation is all about allowing synchronized threads to
communicate with each other.

Cooperation (Inter-thread communication) is a mechanism in which a thread is paused running in
its critical section and another thread is allowed to enter (or lock) in the same critical section to
be executed.It is implemented by following methods of Object class:

o wait()

o notify()

o notifyAll()

1) wait() method

Causes current thread to release the lock and wait until either another thread invokes the notify()
method or the notifyAll() method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor, so it must be called from the synchronized
method only otherwise it will throw exception.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 29/47

Method

Description

public final void wait()throws InterruptedException

waits until object is notified.

public final void wait(long timeout)throws InterruptedException

waits for the specified amount of time.

2) notify() method

Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on
this object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the
discretion of the implementation. Syntax:

public final void notify()

3) notifyAll() method

Wakes up all threads that are waiting on this object's monitor. Syntax:

public final void notifyAll()

Understanding the process of inter-thread communication

The point to point explanation of the above diagram is as follows:

1. Threads enter to acquire lock.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 30/47

2. Lock is acquired by on thread.

3. Now thread goes to waiting state if you call wait() method on the object. Otherwise it
releases the lock and exits.

4. If you call notify() or notifyAll() method, thread moves to the notified state (runnable
state).

5. Now thread is available to acquire lock.

6. After completion of the task, thread releases the lock and exits the monitor state of the
object.

Why wait(), notify() and notifyAll() methods are defined in Object class not Thread class?

It is because they are related to lock and object has a lock.

Difference between wait and sleep?

Let's see the important differences between wait and sleep methods.

wait() sleep()

wait() method releases the lock sleep() method doesn't release the

lock.

is the method of Object class is the method of Thread class

is the non-static method is the static method

is the non-static method is the static method

should be notified by notify() or

notifyAll() methods

after the specified amount of time,

sleep is completed.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 31/47

Example of inter thread communication in java

class Customer{

int amount=10000;

synchronized void withdraw(int amount){

System.out.println("going to withdraw...");

if(this.amount<amount){

System.out.println("Less balance; waiting for deposit...");

try{wait();}catch(Exception e){}

}

this.amount-=amount;

System.out.println("withdraw completed..."); }

synchronized void deposit(int amount){

System.out.println("going to deposit...");

this.amount+=amount;

System.out.println("deposit completed... ");

notify(); } }

class Test{

public static void main(String args[]){

final Customer c=new Customer();

new Thread(){

public void run(){c.withdraw(15000);}

}.start();

new Thread(){

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 32/47

public void run(){c.deposit(10000);}

}.start(); }}

Output:

going to withdraw...

Less balance; waiting for deposit...

going to deposit...

deposit completed...

withdraw completed

Suspending/resuming threads:

Suspending

The suspend() method of theThread class was deprecated by Java 2 several years ago. This was
done because suspend() can sometimes cause serious system failures. Assume that a
thread has obtained locks on critical data structures. If that thread is suspended atthat point, those
locks are not relinquished. Other threads that may be waiting for those resources can be
deadlocked.

Resuming

The resume() method is also deprecated. It does not cause problems, but cannot be used without
the suspend() method as its counterpart.

Stopping

The stop() method of theThread class, too, was deprecated by Java 2. This was done because
this method can sometimes cause serious system failures. Assume that a thread is writing to a
critically important data structure and has completed only part of its changes.If that thread is
stopped at that point, that data structure might be left in a corrupted state.

Because you can’t now use the suspend(),resume(), or stop() methods to control a thread, you
might be thinking that no way exists to pause, restart, or terminate a thread.But, fortunately, this
is not true. Instead, a thread must be designed so that the run() method periodically checks to
determine whether that thread should suspend, resume, or stop its own execution. Typically, this
is accomplished by establishing a flag variable that indicates the execution state of the thread. As

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 33/47

long as this flag is set to “running,” the run() method must continue to let the thread execute. If
this variable is set to “suspend,” the thread must pause. If it is set to “stop,” the thread must
terminate.

Example:Suspending, resuming, and stopping a thread.

// Suspending, resuming, and stopping a thread.

using System;

using System.Threading;

class MyThread

{

public Thread thrd;

public MyThread(string name)

{

thrd = new Thread(new ThreadStart(this.run));

thrd.Name = name;

thrd.Start();

}

// This is the entry point for thread.

void run() {

Console.WriteLine(thrd.Name + " starting.");

for(int i = 1; i <= 1000; i++){

Console.Write(i + " ");

if((i%10)==0) {

Console.WriteLine();

Thread.Sleep(250); } }

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 34/47

Console.WriteLine(thrd.Name + " exiting."); } }

public class SuspendResumeStop {

public static void Main() {

MyThread mt1 = new MyThread("My Thread");

Thread.Sleep(1000); // let child thread start executing

mt1.thrd.Suspend();

Console.WriteLine("Suspending thread.");

Thread.Sleep(1000);

mt1.thrd.Resume();

Console.WriteLine("Resuming thread.");

Thread.Sleep(1000);

mt1.thrd.Suspend();

Console.WriteLine("Suspending thread.");

Thread.Sleep(1000);

mt1.thrd.Resume();

Console.WriteLine("Resuming thread.");

Thread.Sleep(1000);

Console.WriteLine("Stopping thread.");

mt1.thrd.Abort();

mt1.thrd.Join(); // wait for thread to terminate

Console.WriteLine("Main thread terminating."); } }

When you run this program,you will see the output shown here:

My Thread starting.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 35/47

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40

Supending thread.
Resuming Thread.

41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 64 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80

The java.net Package

Java Networking is a concept of connecting two or more computing devices together so that we
can share resources.

Java socket programming provides facility to share data between different computing devices.

Advantage of Java Networking

1. sharing resources

2. centralize software management

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 36/47

Figure 1. The classes of the java.net package

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 37/47

Figure 2. The exceptions of the java.net package

Java Networking Terminology

The widely used java networking terminologies are given below:

1. IP Address

2. Protocol

3. Port Number

4. MAC Address

5. Connection-oriented and connection-less protocol

6. Socket

1) IP Address

IP address is a unique number assigned to a node of a network e.g. 192.168.0.1 . It is composed
of octets that range from 0 to 255.

It is a logical address that can be changed.

2) Protocol

A protocol is a set of rules basically that is followed for communication. For example:

o TCP

o FTP

o Telnet

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 38/47

o SMTP

o POP etc.

3) Port Number

The port number is used to uniquely identify different applications. It acts as a communication
endpoint between applications.

The port number is associated with the IP address for communication between two applications.

4) MAC Address

MAC (Media Access Control) Address is a unique identifier of NIC (Network Interface
Controller). A network node can have multiple NIC but each with unique MAC.

5) Connection-oriented and connection-less protocol

In connection-oriented protocol, acknowledgement is sent by the receiver. So it is reliable but
slow. The example of connection-oriented protocol is TCP.

But, in connection-less protocol, acknowledgement is not sent by the receiver. So it is not
reliable but fast. The example of connection-less protocol is UDP.

6) Socket

A socket is an endpoint between two way communications.

Java Socket Programming

Java Socket programming is used for communication between the applications running on
different JRE.

Java Socket programming can be connection-oriented or connection-less.

Socket and ServerSocket classes are used for connection-oriented socket programming and
DatagramSocket and DatagramPacket classes are used for connection-less socket programming.

The client in socket programming must know two information:

1. IP Address of Server, and

2. Port number.

3.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 39/47

Socket class

A socket is simply an endpoint for communications between the machines. The Socket class can
be used to create a socket.

Important methods

Method Description

1) public InputStream
getInputStream()

returns the InputStream attached with
this socket.

2) public OutputStream
getOutputStream()

returns the OutputStream attached with
this socket.

3) public synchronized void close() closes this socket

ServerSocket class

The ServerSocket class can be used to create a server socket. This object is used to establish
communication with the clients.

Important methods

Method Description

1) public Socket accept() returns the socket and establish a connection
between server and client.

2) public synchronized
void close()

closes the server socket.

Example of Java Socket Programming

File: MyServer.java

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 40/47

import java.io.*;

import java.net.*;

public class MyServer {

public static void main(String[] args){

try{

ServerSocket ss=new ServerSocket(6666);

Socket s=ss.accept();//establishes connection

DataInputStream dis=new DataInputStream(s.getInputStream());

String str=(String)dis.readUTF();

System.out.println("message= "+str);

ss.close();

}catch(Exception e){System.out.println(e);} } }

File: MyClient.java

import java.io.*;

import java.net.*;

public class MyClient {

public static void main(String[] args) {

try{

Socket s=new Socket("localhost",6666);

DataOutputStream dout=new DataOutputStream(s.getOutputStream());

dout.writeUTF("Hello Server");

dout.flush();

dout.close();

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 41/47

s.close(); }catch(Exception e){System.out.println(e);} } }

Java URL

The Java URL class represents an URL. URL is an acronym for Uniform Resource Locator.
It points to a resource on the World Wide Web. For example:

http://www.javatpoint.com/java-tutorial

A URL contains much information:

1. Protocol: In this case, http is the protocol.

2. Server name or IP Address: In this case, www.javatpoint.com is the server name.

3. Port Number: It is an optional attribute. If we write
http//ww.javatpoint.com:80/sonoojaiswal/ , 80 is the port number. If port number is not
mentioned in the URL, it returns -1.

4. File Name or directory name: In this case, index.jsp is the file name.

Commonly used methods of Java URL class

The java.net.URL class provides many methods. The important methods of URL class are
given below.

Method Description

public String getProtocol() it returns the protocol of the URL.

public String getHost() it returns the host name of the URL.

public String getPort() it returns the Port Number of the URL.

public String getFile() it returns the file name of the URL.

public URLConnection
openConnection()

it returns the instance of
URLConnection i.e. associated with this

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 42/47

URL.

Example of Java URL class

//URLDemo.java

import java.io.*;

import java.net.*;

public class URLDemo{

public static void main(String[] args){

try{

URL url=new URL("http://www.javatpoint.com/java-tutorial");

System.out.println("Protocol: "+url.getProtocol());

System.out.println("Host Name: "+url.getHost());

System.out.println("Port Number: "+url.getPort());

System.out.println("File Name: "+url.getFile());

}catch(Exception e){System.out.println(e);} } }

Output:

Protocol: http

Host Name: www.javatpoint.com

Port Number: -1

File Name: /java-tutorial

Java URLConnection class

The Java URLConnection class represents a communication link between the URL and the
application. This class can be used to read and write data to the specified resource referred by
the URL.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 43/47

How to get the object of URLConnection class

The openConnection() method of URL class returns the object of URLConnection class.
Syntax:

public URLConnection openConnection()throws IOException{}

Displaying source code of a webpage by URLConnecton class

The URLConnection class provides many methods, we can display all the data of a webpage
by using the getInputStream() method. The getInputStream() method returns all the data of
the specified URL in the stream that can be read and displayed.

Example of Java URLConnection class

import java.io.*;

import java.net.*;

public class URLConnectionExample {

public static void main(String[] args){

try{

URL url=new URL("http://www.javatpoint.com/java-tutorial");

URLConnection urlcon=url.openConnection();

InputStream stream=urlcon.getInputStream();

int i;

while((i=stream.read())!=-1){

System.out.print((char)i); }

}catch(Exception e){System.out.println(e);} }}

Java HttpURLConnection class

The Java HttpURLConnection class is http specific URLConnection. It works for HTTP
protocol only.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 44/47

By the help of HttpURLConnection class, you can information of any HTTP URL such as header
information, status code, response code etc.

The java.net.HttpURLConnection is subclass of URLConnection class.

How to get the object of HttpURLConnection class

The openConnection() method of URL class returns the object of URLConnection class. Syntax:

public URLConnection openConnection()throws IOException{}

You can typecast it to HttpURLConnection type as given below.

URL url=new URL("http://www.javatpoint.com/java-tutorial");

HttpURLConnection huc=(HttpURLConnection)url.openConnection();

Java InetAddress class

Java InetAddress class represents an IP address. The java.net.InetAddress class provides
methods to get the IP of any host name for example www.javatpoint.com, www.google.com,
www.facebook.com etc.

Commonly used methods of InetAddress class

Method Description

public static InetAddress
getByName(String host) throws
UnknownHostException

it returns the instance of
InetAddress containing
LocalHost IP and name.

public static InetAddress getLocalHost()
throws UnknownHostException

it returns the instance of
InetAdddress containing local
host name and address.

public String getHostName() it returns the host name of the IP
address.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 45/47

public String getHostAddress() it returns the IP address in string
format.

Java DatagramSocket and DatagramPacket

Java DatagramSocket and DatagramPacket classes are used for connection-less socket
programming.

Java DatagramSocket class

Java DatagramSocket class represents a connection-less socket for sending and receiving
datagram packets.

A datagram is basically an information but there is no guarantee of its content, arrival or arrival
time.

Commonly used Constructors of DatagramSocket class

o DatagramSocket() throws SocketEeption: it creates a datagram socket and binds it

with the available Port Number on the localhost machine.

o DatagramSocket(int port) throws SocketEeption: it creates a datagram socket and
binds it with the given Port Number.

o DatagramSocket(int port, InetAddress address) throws SocketEeption: it creates a
datagram socket and binds it with the specified port number and host address.

Java DatagramPacket class

Java DatagramPacket is a message that can be sent or received. If you send multiple packet, it
may arrive in any order. Additionally, packet delivery is not guaranteed.

Commonly used Constructors of DatagramPacket class

o DatagramPacket(byte[] barr, int length): it creates a datagram packet. This constructor
is used to receive the packets.

o DatagramPacket(byte[] barr, int length, InetAddress address, int port): it creates a
datagram packet. This constructor is used to send the packets.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 46/47

UNIT -IV

POSSIBLE QUESTIONS

2 MARKS

1. What is an Exception?

2. Distinguish between init () and start () methods.

3. What is the difference between exception and error?

4. Differentiate wait and sleep methods in java?

5. Define Exception Handling.

6. What is Thread prioritization?

7. Difference between throw and throws in Java

8. Types of Exception in Java with Examples

9. Mention the Java Exception Handling Keywords.

10. What is Synchronization?

11. What are the advantages of Java Networking?

6 MARKS

1. Explain the use of thread methods yield(), stop() and sleep().

2. Discuss built-in exceptions with suitable example program.

3. What is an Exception? Explain how to throw, catch and handle Exceptions

4. Explain creating a thread, extending the thread class and an example of using the thread class.

5. Explain following keywords used in Exception Handling. (i) try (ii) catch(iii) throw

6. Discuss in detail about java.net package with example

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Exception Handling) BATCH-2019 - 2022

Prepared by K.RAMESH, Department of CS, CA & IT, KAHE Page 47/47

7. What is a package? What are the benefits of using package? Write down the steps in creating a
package and using it in a java program with an example.

8. List and Explain Inheritance with example.

9. Clarify in detail about the basics of exception with its types and an example program

10. Define threads. Explain multiplication table using multithreading with suitable program.

11. Clarify in detail about the types of exception with an example program to handle array out of
bounds exception.

12. Describe creating multiple Threads with example program.

13. Explain Inter-thread communication in Java

Questions opt1 opt2 opt3 opt4 opt5

1
The concept of reading and writing data as ______________ of
either bytes or characters

stream file java.io reader

2
Java also uses the ______ class to manipulate files stream File String Array

3
To support input and output package ________is used java.util java.awt java.lang java.io

4
 ______________ support 8_bit input and output operations ByteStreams InputStream OutputStream Writer

5
 ______________ support 16_bit Unicode character input and output ByteStreams InputStream OutputStream Character streams

6
Streams can be chained with ______________ to provide enhanced
functionality

DataInput DataOutput filters serializable

7
 ________ class in java does not specify how information is retrieved
from or stored in files

stream File String Array

8
The ________ class also defines platform_dependent constants that
can be used to separate the diredtory and the file components in

stream File java.io reader

9
The method to check for directory is _________ isFile() isDirectory() File String

10
 ___________ returns file size in bytes long float() long length() boolean delete() boolean mkdir()

11
 _____________ class defines Java's model of streaming byte input ByteStreams InputStream OutputStream Character streams

12
InputStream suports certain methods, all of which throw an
IOException on error conditions

ByteStreams InputStream OutputStream Character streams

13
The ________ class define byte input streams that are connected to
files

InputStream OutputStream FileInputStream FileOutputStream

14
The ________ class define byte output streams that are connected to
files

InputStream OutputStream FileInputStream FileOutputStream

15
The FileInputStream class provides an implementation for the
_________ methods defined in its superclass InputStream

read() write() update() replace()

16
The FileOutputStream class provides an implementation for the
_________ methods defined in its superclass OutputStream

read() write() update() replace()

17
 ________ is an implementation of an input stream that uses a byte
array as the source

InputStream OutputStream ByteArrayInputStr
eam

ByteArrayOutputSt
ream

18
 ________ is an implementation of an output stream that uses a byte
array as the destination

InputStream OutputStream ByteArrayInputStr
eam

ByteArrayOutputSt
ream

19
Methods of DataOutputStream for writing are named

readX() writeX() updateX() replaceX()

20
DataOutputStream classes implement ______ interfaces InputStream DataOutput OutputStream DataInput

21
DataInputStream classes implement ______ interfaces InputStream DataOutput OutputStream DataInput

22
The method __________ is used to write string value readChars() writeChars() read() write()

23
The ________ class provides a buffered stream of input DataInputStrea

m
DataOutputStr

eam
BufferedInputStrea

m
BufferedOutputStr

eam

24
The ________ class maintains a buffer that is written to when you
write to the stream

DataInputStrea
m

DataOutputStr
eam

BufferedInputStrea
m

BufferedOutputStr
eam

25
The _____________ class is designed primarily for printing output
data as text

print primtln PrintStream write

26
The method provided by the Reader class is _______________ skip() write() flush() writeX()

27
The method provided by the Writer class is _______________ read() flush() reset() skip()

28
 _________ some input implies reducing it to a simpler stream of
tokens

length tokenizing Stream Exception

29
DataInput is __________________ an abstract

class
used to read

primitive data
an interface that

defines method to
an interface that

defines method to

30
Which of the following statements are valid? new

DataInputStrea
new

DataInputStre
new

DataInputStream("
new

DataInputStream(n

31
 __________ are small applicationsthat are accessed on an internet
server

utilities networks applets bean

32
The compiled applet is tested using ___________ word dos notepad applet viewer

33
The __________ tag is used to start an applet from both HTML and
JDK applet viewer

Html JDK applet title

34
 ____________ method gets called first paint start init update

35
Applet basically is a Java class defined in the _____ package of JDK java.awt java.lang java.applet java.util

36
The Applet class which is in the java.applet package inherits the
properties of the _______ class which is in the java.awt package

Container Componenet Panel List

37
The Panel class inherits the properties of the _________ class in the
java.awt package

Container Componenet Panel List

38
The container class inherits the properties of the ______________
class

Container Componenet Panel List

39
An _______ is a window based event driven program Html JDK applet title

40
The _______ and _______ method executes only once stop() and

destroy()
start() and

stop()
init() and paint() init() and destroy()

41
Immediately after calling init() methodthe browser calls the
__________________ method

stop() start() init() destroy()

42
The ________ method also called when the user returns to an HTML
page that contains the applet

paint() init() destroy() start()

43
The ________ methodis called each time your applet's output is
redrawn

stop() start() init() paint()

44
The ________ method acalled when the user moves from the HTML
page that contains an applet

paint() init() stop() destroy()

45
The _______ method that is used to release additional resource paint() init() destroy() start()

46
There are ______ main methods defined in java.awt.Component 2 4 5 3

47
The _____ method is defined by the AWT and is usually called by
the applet for screen updating

paint() init() stop() repaint()

48
 ________ class cannot be created directly by using constructors Panel Container Componenet Graphics

49
In java color is encapsulated by the ________ class Container Componenet Graphics Color

50
Color class also defines _________ common colors as constants 10 13 12 14

51
Methods of ________ class can also be used in the Graphiocs class
methods to set and get the background and foreground colors

Container Componenet Panel List

52
There are ___________ common terms that are used when
describing fonts

2 4 5 3

53
The java.applet package defines _______ inetrfaces 2 4 5 3

54
The user cannot have their HTML document,applet code,data and
web browser at _____________ different locations

2 4 5 3

55
The loop() method plays the audio clip automatically while
__________ plays it only once

paint() play() init() start()

56
The audio clip can be stopped by calling the ______ method paint() init() stop() repaint()

57
The _________ interface provides the inter_communication between
an applet and the parent container

AppletContext AppletStub getApplet showDocument

58
The _________ inetface gives the information about the applet's
execution environment

AppletStub getApplet AppletContext showDocument

59
The setBackground() is the part of the class ______ Graphics AppletStub Component Container

60
If you want to assign a vlaue 99 to a variable called number, which
of the following lines you will use within an applet tag?

number=99 param =
number

param name =
number value=99

param number =99

opt6 answer

stream

File

java.io

ByteStreams

Character streams

filters

File

File

isDirectory()

long length()

InputStream

InputStream

FileInputStream

FileOutputStream

read()

write()

ByteArrayInputStr
eam

ByteArrayOutputS
tream

writeX()

DataOutput

DataInput

writeChars()

BufferedInputStre
am

BufferedOutputStr
eam

PrintStream

skip()

flush()

tokenizing

an interface that
defines method to

new
DataInputStream()

applets

applet viewer

applet

init

java.applet

Panel

Container

Componenet

applet

init() and destroy()

start()

start()

paint()

stop()

destroy()

3

repaint()

Grapahics

Color

13

Componenet

5

3

4

play()

stop()

AppletStub

AppletContext

Component

param name =
number value=99

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 1/59

UNIT-V

SYLLABUS

INTRODUCTION TO APPLETS

Java Applet

Applet is a special type of program that is embedded in the webpage to generate the dynamic
content. It runs inside the browser and works at client side.

Advantage of Applet

There are many advantages of applet. They are as follows:

 It works at client side so less response time.

 Secured

 It can be executed by browsers running under many plateforms, including Linux,
Windows, Mac Os etc.

Drawback of Applet

 Plugin is required at client browser to execute applet.

Java Applets: Introduction to Applets, Writing Java Applets, Working with Graphics,
Incorporating Images & Sounds. Event Handling Mechanisms, Listener Interfaces, Adapter and
Inner Classes. The design and Implementation of GUIs using the AWT controls, Swing
components of Java Foundation Classes such as labels, buttons, text fields, layout managers,
menus, events and listeners; Graphic objects for drawing figures such as lines, rectangles, ovals,
using different fonts. Overview of servlets.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 2/59

As displayed in the above diagram, Applet class extends Panel. Panel class extends Container
which is the subclass of Component.

Hierarchy of Applet

Lifecycle of Java Applet

1. Applet is initialized.

2. Applet is started.

3. Applet is painted.

4. Applet is stopped.

5. Applet is destroyed.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 3/59

Lifecycle methods for Applet:

The java.applet.Applet class 4 life cycle methods and java.awt.Component class provides 1 life
cycle methods for an applet.

java.applet.Applet class

For creating any applet java.applet.Applet class must be inherited. It provides 4 life cycle
methods of applet.

1. public void init(): is used to initialized the Applet. It is invoked only once.

2. public void start(): is invoked after the init() method or browser is maximized. It is used
to start the Applet.

3. public void stop(): is used to stop the Applet. It is invoked when Applet is stop or
browser is minimized.

4. public void destroy(): is used to destroy the Applet. It is invoked only once.

Java.awt.Component class

The Component class provides 1 life cycle method of applet.

1. public void paint(Graphics g): is used to paint the Applet. It provides Graphics class
object that can be used for drawing oval, rectangle, arc etc.

Who is responsible to manage the life cycle of an applet?

Java Plug-in software.

How to run an Applet?

There are two ways to run an applet

1. By html file.

2. By appletViewer tool (for testing purpose).

Simple example of Applet by html file:

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 4/59

To execute the applet by html file, create an applet and compile it. After that create an html file
and place the applet code in html file. Now click the html file.

//First.java

import java.applet.Applet;

import java.awt.Graphics;

public class First extends Applet

{

public void paint(Graphics g){

g.drawString("welcome",150,150);

}

}

Note: class must be public because its object is created by Java Plugin software that resides
on the browser.

myapplet.html

<html>

<body>

<applet code="First.class" width="300" height="300">

</applet>

</body>

</html>

Simple example of Applet by appletviewer tool:

To execute the applet by appletviewer tool, create an applet that contains applet tag in comment
and compile it. After that run it by: appletviewer First.java. Now Html file is not required but it
is for testing purpose only.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 5/59

//First.java

import java.applet.Applet;

import java.awt.Graphics;

public class First extends Applet

{

public void paint(Graphics g){

g.drawString("welcome to applet",150,150); } }

/*

<applet code="First.class" width="300" height="300">

</applet>

*/

To execute the applet by appletviewer tool, write in command prompt:

c:\>javac First.java

c:\>appletviewer First.java

Java AWT

Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-based
applications in java.

Java AWT components are platform-dependent i.e. components are displayed according to the
view of operating system. AWT is heavyweight i.e. its components are using the resources of
OS.

The java.awt package provides classes for AWT api such as TextField, Label, TextArea,
RadioButton, CheckBox, Choice, List etc.

Java AWT Hierarchy

The hierarchies of Java AWT classes are given below.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 6/59

Container

The Container is a component in AWT that can contain another components like buttons,
textfields, labels etc. The class that extends Container class are known as container such as
Frame, Dialog and Panel.

Window

The window is the containers that have no borders and menu bars. You must use frame, dialog or
another window for creating a window.

Panel

The Panel is the container that doesn't contain title bar and menu bars. It can have other
components like button, textfield etc.

Frame

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 7/59

The Frame is the container that contain title bar and can have menu bars. It can have other
components like button, textfield etc.

Useful Methods of Component class

Method Description

public void add(Component c) Inserts a component on this component.

public void setSize(int width,int
height)

Sets the size (width and height) of the
component.

public void
setLayout(LayoutManager m)

Defines the layout manager for the
component.

public void setVisible(boolean
status)

Changes the visibility of the component,
by default false.

Java AWT Example

To create simple awt example, you need a frame. There are two ways to create a frame in AWT.

o By extending Frame class (inheritance)

o By creating the object of Frame class (association)

AWT Example by Inheritance

Let's see a simple example of AWT where we are inheriting Frame class. Here, we are showing
Button component on the Frame.

import java.awt.*;

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 8/59

class First extends Frame{

First(){

Button b=new Button("click me");

b.setBounds(30,100,80,30);// setting button position

add(b);//adding button into frame

setSize(300,300);//frame size 300 width and 300 height

setLayout(null);//no layout manager

setVisible(true);//now frame will be visible, by default not visible

}

public static void main(String args[]){

First f=new First();

}}

The setBounds(int xaxis, int yaxis, int width, int height) method is used in the above example
that sets the position of the awt button.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 9/59

AWT Example by Association

Let's see a simple example of AWT where we are creating instance of Frame class. Here, we are
showing Button component on the Frame.

import java.awt.*;

class First2{

First2(){

Frame f=new Frame();

Button b=new Button("click me");

b.setBounds(30,50,80,30);

f.add(b);

f.setSize(300,300);

f.setLayout(null);

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 10/59

f.setVisible(true); }

public static void main(String args[]){

First2 f=new First2();

}}

Working with Graphics

The AWT supports a rich assortment of graphics method.All graphics are drawn reative

to window. This can be a main window of an applet,a child window of an applet,or stand alone
application of window.The origin of each window is at the top-left corner and is 0,0. Coordinates
are specified in pixels. All output to a window takes place through a graphics context.

A graphics context is encapsulated by the Graphics class and is obtained in two ways:

• It is passed to a method, such as paint() or update(), as an argument.

• It is returned by the getGraphics() method of Component.

The Graphics class defines a number of drawing functions.Each shape can be drawn edge only or
filled.Several drawing methods are:

1. Drawing Lines

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 11/59

Lines are drawn by means of the drawLine() method,shown here:

void drawLine(int startX,int startY,int endX,int endY)

Simple applet program to drawn a line

import java.applet.*;

import java.awt.*;

public class DrawingLines extends Applet

{

int width, height;

public void init()

{

width = getSize().width;

height = getSize().height;

setBackground(Color.black);

}

public void paint(Graphics g)

{

g.setColor(Color.green);

for (int i = 0; i < 10; ++i)

{

g.drawLine(width, height, i * width / 10, 0); } }}

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 12/59

Sample output from this program is shown here:

2. Drawing Rectangles

The drawRect() and fillRect() methods display an outlined and filled rectangle, respectively.

Syntax:
void drawRect(int top,int left,int width,int height)

void fillRect(int top,int left,int width,int height)

The upper left corner of the rectangle is at top,left.The dimensions of the rectangle are specified
by the width,height.To draw rounded rectangle,use drawRoundRect()or fillRoundRect().

Syntax:
void drawRoundRect(int top,int left,int width,int height,int xDiam,int yDiam)
void fillRoundRect(int top,int left,int width,int height,int xDiam,int yDiam)

A rounded rectangle has rounded corners. The upper-left corner of the rectangle is at top,left.
The dimensions of the rectangle are specified by width and height.The diameter of the rounding
arc along the X axis is specified by Diam. The diameter of the rounding arc along the Y axis is
specified by Diam.

applet program to draws several rectangles:

// Draw rectangles

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 13/59

import java.awt.*;
import java.applet.*;
/*
<applet code="Rectangles" width=300 height=200>
</applet>
*/
public class Rectangles extends Applet
{
public void paint(Graphics g)
{
g.drawRect(10, 10, 60, 50);
g.fillRect(100, 10, 60, 50);
g.drawRoundRect(190, 10, 60, 50, 15, 15);
g.fillRoundRect(70, 90, 140, 100, 30, 40);
}
}

Sample output from this program is shown here:

3. Drawing Ellipses and Circles

To draw an ellipse, use drawOval(). To fill an ellipse, use fillOval().
Syntax:

void drawOval(int top, int left, int width, int height)

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 14/59

void fillOval(int top, int left, int width, int height)

The ellipse is drawn within a bounding rectangle whose upper-left corner is specified by top,left
and whose width and height are specified by width and height. To draw a circle, specify a square
as the bounding rectangle.

The following program draws several ellipses:

// Draw Ellipses
import java.awt.*;
import java.applet.*;
/*
<applet code="Ellipses" width=300 height=200>
</applet>
*/
public class Ellipses extends Applet {
public void paint(Graphics g) {
g.drawOval(10, 10, 50, 50);
g.fillOval(100, 10, 75, 50);
g.drawOval(190, 10, 90, 30);
g.fillOval(70, 90, 140, 100);
}
}

Sample output from this program is shown here:

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 15/59

4. Drawing Arcs

Arcs can be drawn with drawArc() and fillArc(), shown here:

Syntax:
void drawArc(int top, int left, int width, int height, intstartAngle,intsweepAngle)
void fillArc(int top, int left, int width, int height, intstartAngle,intsweepAngle)

The arc is bounded by the rectangle whose upper-left corner is specified by top,left and whose
width and height are specified by width and height. The arc is drawn from startAnglethrough the
angular distance specified by sweepAngle. Angles are specified in degrees. Zero degrees are on
the horizontal, at the three o’clock position. The arc is drawn counterclockwise ifsweepAngleis
positive,and clockwise ifsweepAngleis negative. Therefore, to draw an arc from twelve o’clock
to six o’clock, the start angle would be 90 and the sweep angle 180.

The following applet draws several arcs:

// Draw Arcs
import java.awt.*;
import java.applet.*;
/*
<applet code="Arcs" width=300 height=200>
</applet>
*/
public class Arcs extends Applet
{
public void paint(Graphics g)
{
g.drawArc(10, 40, 70, 70, 0, 75);
g.fillArc(100, 40, 70, 70, 0, 75);
g.drawArc(10, 100, 70, 80, 0, 175);
g.fillArc(100, 100, 70, 90, 0, 270);
g.drawArc(200, 80, 80, 80, 0, 180);
}

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 16/59

}

Sample output from this program is shown here:

5. Drawing Polygons

It is possible to draw arbitrarily shaped figures using drawPolygon() and fillPolygon(),
shown here:
Syntax:

void drawPolygon(int x[], int y[], int numPoints)
void fillPolygon(int x[], int y[], int numPoints)

The polygon’s endpoints are specified by the coordinate pairs contained within the x and y
arrays. The number of points defined by x and y is specified by numPoints. There are alternative
forms of these methods in which the polygon is specified by a Polygon object.

The following applet draws an polygon

// Draw Polygon
import java.awt.*;
import java.applet.*;
/*
<applet code="HourGlass" width=230 height=210>
</applet>
*/

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 17/59

public class HourGlass extends Applet
{
public void paint(Graphics g)
{
int xpoints[] = {30, 200, 30, 200, 30};
int ypoints[] = {30, 30, 200, 200, 30};
int num = 5;
g.drawPolygon(xpoints, ypoints, num);
}
}

Sample output from this program is shown here:

Incorporating Images & Sounds:

Displaying Image in Applet

Applet is mostly used in games and animation. For this purpose image is required to be
displayed. The java.awt.Graphics class provide a method drawImage() to display the image.

Syntax of drawImage() method:

public abstract boolean drawImage(Image img, int x, int y, ImageObserver observer)

is used draw the specified image.

How to get the object of Image?

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 18/59

The java.applet.Applet class provides getImage() method that returns the object of Image.

Syntax:

public Image getImage(URL u, String image){}

Other required methods of Applet class to display image:

public URL getDocumentBase(): is used to return the URL of the document in which applet
is embedded.

public URL getCodeBase(): is used to return the base URL.

Example of displaying image in applet:

import java.awt.*;

import java.applet.*;

public class DisplayImage extends Applet {

Image picture;

public void init() {

picture = getImage(getDocumentBase(),"sonoo.jpg"); }

public void paint(Graphics g) {

g.drawImage(picture, 30,30, this); }

}

In the above example, drawImage() method of Graphics class is used to display the image. The
4th argument of drawImage() method of is ImageObserver object. The Component class
implements ImageObserver interface. So current class object would also be treated as
ImageObserver because Applet class indirectly extends the Component class.

myapplet.html

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 19/59

<html>

<body>

<applet code="DisplayImage.class" width="300" height="300">

</applet>

</body>

</html>

How to play sound using Applet?

Following example demonstrates how to play a sound using an applet image using
getAudioClip(), play() & stop() methods of AudioClip() class.

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

public class PlaySoundApplet extends Applet implements ActionListener {

Button play,stop;

AudioClip audioClip;

public void init() {

play = new Button(" Play in Loop ");

add(play);

play.addActionListener(this);

stop = new Button(" Stop ");

add(stop);

stop.addActionListener(this);

audioClip = getAudioClip(getCodeBase(), "Sound.wav");

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 20/59

}

public void actionPerformed(ActionEvent ae) {

Button source = (Button)ae.getSource();

if (source.getLabel() == " Play in Loop ") {

audioClip.play();

} else if(source.getLabel() == " Stop "){

audioClip.stop(); } }}

Result

The above code sample will produce the following result in a java enabled web browser.

View in Browser.

EventHandling Mechanisms:

As we perform event handling in AWT or Swing, we can perform it in applet also. Let's see the
simple example of event handling in applet that prints a message by click on the button.

Example of EventHandling in applet:

import java.applet.*;

import java.awt.*;

import java.awt.event.*;

public class EventApplet extends Applet implements ActionListener{

Button b;

TextField tf;

public void init(){

tf=new TextField();

tf.setBounds(30,40,150,20);

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 21/59

b=new Button("Click");

b.setBounds(80,150,60,50);

add(b);add(tf);

b.addActionListener(this);

setLayout(null);

}

public void actionPerformed(ActionEvent e){

tf.setText("Welcome"); } }

In the above example, we have created all the controls in init() method because it is invoked only
once.

myapplet.html

<html>

<body>

<applet code="EventApplet.class" width="300" height="300">

</applet>

</body> </html>

Listener Interfaces:
Java AWT Listeners are a group of interfaces from java.awt.event package. Listeners

are capable to handle the events generated by the components like button, choice, frame etc.
These listeners are implemented to the class which requires handling of events.

public class ButtonDemo1 extends Frame implements ActionListener
The class ButtonDemo1 implements ActionListener as ButtonDemo1 includes some

buttons which require event handling. The button events (known as action events) are handled
byActionListener.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 22/59

Even though, some listeners handle the events of a few components, generally every
component event is handled by a separate listener. For example, the ActionListener handles the
events of Button, TextField, List and Menu. But these types are very rare.
Table giving list of few Java AWT Listeners and components whose events the
listeners can handle.

LISTENER
INTERFACE

COMPONENT

WindowListener Frame

ActionListener

Button, TextField, List,
Menu

ItemListener Checkbox, Choice, List

AdjustmentListener Scrollbar

MouseListener Mouse (stable)

MouseMotionListener Mouse (moving)

KeyListener Keyboard

Adapter and Inner Classes:

Java Adapter Classes:

Java adapter classes provide the default implementation of listener interfaces. If you
inherit the adapter class, you will not be forced to provide the implementation of all the methods
of listener interfaces. So, it saves code.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 23/59

The adapter classes are found
in java.awt.event, java.awt.dnd and javax.swing.event packages. The Adapter classes with
their corresponding listener interfaces are given below.

java.awt.event Adapter classes

Adapter class Listener interface

WindowAdapter WindowListener

KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener

FocusAdapter FocusListener

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

HierarchyBoundsAdapter HierarchyBoundsListener

java.awt.dnd Adapter classes

Adapter class Listener interface

DragSourceAdapter DragSourceListener

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 24/59

DragTargetAdapter DragTargetListener

javax.swing.event Adapter classes

Adapter class Listener interface

MouseInputAdapter MouseInputListener

InternalFrameAdapter InternalFrameListener

Java WindowAdapter Example

import java.awt.*;
import java.awt.event.*;
public class AdapterExample{

Frame f;
AdapterExample(){

f=new Frame("Window Adapter");
f.addWindowListener(new WindowAdapter(){

public void windowClosing(WindowEvent e) {
f.dispose(); } }
f.setSize(400,400);

f.setLayout(null);
f.setVisible(true); }

public static void main(String[] args) {
new AdapterExample(); } }

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 25/59

Java MouseAdapter Example
https://www.javatpoint.com/java-adapter-classeshttps://www.javatpoint.com/java-
adapter- classeshttps://www.javatpoint.com/java-adapter-classes

import java.awt.*;
import java.awt.event.*;
public class MouseAdapterExample extends MouseAdapter{

Frame f;
MouseAdapterExample(){

f=new Frame("Mouse Adapter");
f.addMouseListener(this);

f.setSize(300,300);
f.setLayout(null);
f.setVisible(true);

}
public void mouseClicked(MouseEvent e) {

Graphics g=f.getGraphics();
g.setColor(Color.BLUE);
g.fillOval(e.getX(),e.getY(),30,30);

}
public static void main(String[] args) {

new MouseAdapterExample(); } }

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 26/59

Java MouseMotionAdapter Example
https://www.javatpoint.com/java-adapter-classeshttps://www.javatpoint.com/java-
adapter- classeshttps://www.javatpoint.com/java-adapter-classes

import java.awt.*;
import java.awt.event.*;
public class MouseMotionAdapterExample extends MouseMotionAdapter{

Frame f;
MouseMotionAdapterExample(){

f=new Frame("Mouse Motion Adapter");
f.addMouseMotionListener(this);

f.setSize(300,300);
f.setLayout(null);
f.setVisible(true);

}
public void mouseDragged(MouseEvent e) {

Graphics g=f.getGraphics();
g.setColor(Color.ORANGE);
g.fillOval(e.getX(),e.getY(),20,20);

}
public static void main(String[] args) {

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 27/59

new MouseMotionAdapterExample();
}
}

Output:

Java KeyAdapter Example
https://www.javatpoint.com/java-adapter-classeshttps://www.javatpoint.com/java-
adapter- classeshttps://www.javatpoint.com/java-adapter-classes

import java.awt.*;
import java.awt.event.*;
public class KeyAdapterExample extends KeyAdapter{

Label l;
TextArea area;
Frame f;
KeyAdapterExample(){

f=new Frame("Key Adapter");
l=new Label();
l.setBounds(20,50,200,20);

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 28/59

area=new TextArea();
area.setBounds(20,80,300, 300);
area.addKeyListener(this);

f.add(l);f.add(area);
f.setSize(400,400);
f.setLayout(null);
f.setVisible(true);

}
public void keyReleased(KeyEvent e) {

String text=area.getText();
String words[]=text.split("\\s");
l.setText("Words: "+words.length+" Characters:"+text.length());

}

public static void main(String[] args) {
new KeyAdapterExample();

}
}

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 29/59

Java Inner Classes

Java inner class or nested class is a class which is declared inside the class or interface.

We use inner classes to logically group classes and interfaces in one place so that it can be more
readable and maintainable.

Additionally, it can access all the members of outer class including private data members and
methods.

Syntax of Inner class

class Java_Outer_class{

//code

class Java_Inner_class{

//code

}

}

Advantage of java inner classes

There are basically three advantages of inner classes in java. They are as follows:

1) Nested classes represent a special type of relationship that is it can access all the
members (data members and methods) of outer class including private.

2) Nested classes are used to develop more readable and maintainable code because it
logically group classes and interfaces in one place only.

3) Code Optimization: It requires less code to write.

Difference between nested class and inner class in Java

Inner class is a part of nested class. Non-static nested classes are known as inner classes.

Types of Nested classes

There are two types of nested classes non-static and static nested classes.The non-static nested
classes are also known as inner classes.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 30/59

o Non-static nested class (inner class)

1. Member inner class

2. Anonymous inner class

3. Local inner class

o Static nested class

Type Description

Member Inner Class A class created within class and outside method.

Anonymous Inner

Class

A class created for implementing interface or

extending class. Its name is decided by the java

compiler.

Local Inner Class A class created within method.

Static Nested Class A static class created within class.

Nested Interface An interface created within class or interface.

Java Swing

Java Swing is a part of Java Foundation Classes (JFC) that is used to create window-
based applications. It is built on the top of AWT (Abstract Windowing Toolkit) API and entirely
written in java.

Unlike AWT, Java Swing provides platform-independent and lightweight components.

The javax.swing package provides classes for java swing API such as JButton, JTextField,
JTextArea, JRadioButton, JCheckbox, JMenu, JColorChooser etc.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 31/59

Difference between AWT and Swing

There are many differences between java awt and swing that are given below.

No. Java AWT Java Swing

1) AWT components are platform-

dependent.

Java swing components are platform-

independent.

2) AWTcomponents are heavyweight. Swing components are lightweight.

3) AWT doesn't support pluggable look

and feel.

Swing supports pluggable look and

feel.

4) AWT provides less components than

Swing.

Swing provides more powerful

componentssuch as tables, lists,

scrollpanes, colorchooser, tabbedpane

etc.

5) AWT doesn't follows MVC(Model

View Controller) where model

represents data, view represents

presentation and controller acts as an

interface between model and view.

Swing follows MVC.

What is JFC

The Java Foundation Classes (JFC) are a set of GUI components which simplify the
development of desktop applications.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 32/59

Hierarchy of Java Swing classes

The hierarchy of java swing API is given below.

Commonly used Methods of Component class

The methods of Component class are widely used in java swing that are given below.

Method Description

public void add(Component c) add a component on another component.

public void setSize(int width,int

height)

sets size of the component.

public void setLayout(LayoutManager sets the layout manager for the component.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 33/59

m)

public void setVisible(boolean b) sets the visibility of the component. It is by

default false.

Java Swing Examples

There are two ways to create a frame:

o By creating the object of Frame class (association)

o By extending Frame class (inheritance)

We can write the code of swing inside the main(), constructor or any other method.

Simple Java Swing Example

Let's see a simple swing example where we are creating one button and adding it on the JFrame
object inside the main() method.

File: FirstSwingExample.java

import javax.swing.*;

public class FirstSwingExample {

public static void main(String[] args) {

JFrame f=new JFrame();//creating instance of JFrame

JButton b=new JButton("click");//creating instance of JButton

b.setBounds(130,100,100, 40);//x axis, y axis, width, height

f.add(b);//adding button in JFrame

f.setSize(400,500);//400 width and 500 height

f.setLayout(null);//using no layout managers

f.setVisible(true);//making the frame visible

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 34/59

}

}

Example of Swing by Association inside constructor

We can also write all the codes of creating JFrame, JButton and method call inside the java
constructor.

File: Simple.java

import javax.swing.*;

public class Simple {

JFrame f;

Simple(){

f=new JFrame();//creating instance of JFrame

JButton b=new JButton("click");//creating instance of JButton

b.setBounds(130,100,100, 40);

f.add(b);//adding button in JFrame

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 35/59

f.setSize(400,500);//400 width and 500 height

f.setLayout(null);//using no layout managers

f.setVisible(true);//making the frame visible

}

public static void main(String[] args) {

new Simple();

}

}

The setBounds(int xaxis, int yaxis, int width, int height)is used in the above example that sets the
position of the button.

Simple example of Swing by inheritance

We can also inherit the JFrame class, so there is no need to create the instance of JFrame class
explicitly.

File: Simple2.java

import javax.swing.*;

public class Simple2 extends JFrame{//inheriting JFrame

JFrame f;

Simple2(){

JButton b=new JButton("click");//create button

b.setBounds(130,100,100, 40);

add(b);//adding button on frame

setSize(400,500);

setLayout(null);

setVisible(true);

}

public static void main(String[] args) {

new Simple2();

}}

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 36/59

Java JButton

The JButton class is used to create a labeled button that has platform independent
implementation. The application result in some action when the button is pushed. It inherits
AbstractButton class.

JButton class declaration

Let's see the declaration for javax.swing.JButton class.

public class JButton extends AbstractButton implements Accessible

Commonly used Constructors:

Constructor Description

JButton() It creates a button with no text and icon.

JButton(String s) It creates a button with the specified text.

JButton(Icon i) It creates a button with the specified icon object.

Commonly used Methods of AbstractButton class:

Methods Description

void setText(String s) It is used to set specified text on

button

String getText() It is used to return the text of

the button.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 37/59

void setEnabled(boolean b) It is used to enable or disable

the button.

void setIcon(Icon b) It is used to set the specified

Icon on the button.

Icon getIcon() It is used to get the Icon of the

button.

void setMnemonic(int a) It is used to set the mnemonic

on the button.

void

addActionListener(ActionListener a)

It is used to add the action

listener to this object.

Java JButton Example

import javax.swing.*;

public class ButtonExample {

public static void main(String[] args) {

JFrame f=new JFrame("Button Example");

JButton b=new JButton("Click Here");

b.setBounds(50,100,95,30);

f.add(b);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

}

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 38/59

Java JButton Example with ActionListener

import java.awt.event.*;

import javax.swing.*;

public class ButtonExample {

public static void main(String[] args) {

JFrame f=new JFrame("Button Example");

final JTextField tf=new JTextField();

tf.setBounds(50,50, 150,20);

JButton b=new JButton("Click Here");

b.setBounds(50,100,95,30);

b.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e){

tf.setText("Welcome to Javatpoint.");

}

});

f.add(b);f.add(tf);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

}

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 39/59

Output:

Java JLabel

The object of JLabel class is a component for placing text in a container. It is used to display a
single line of read only text. The text can be changed by an application but a user cannot edit it
directly. It inherits JComponent class.

JLabel class declaration

Let's see the declaration for javax.swing.JLabel class.

public class JLabel extends JComponent implements SwingConstants, Accessible

Commonly used Constructors:

Constructor Description

JLabel()

Creates a JLabel instance with no

image and with an empty string for the

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 40/59

title.

JLabel(String s) Creates a JLabel instance with the

specified text.

JLabel(Icon i) Creates a JLabel instance with the

specified image.

JLabel(String s, Icon i, int

horizontalAlignment)

Creates a JLabel instance with the

specified text, image, and horizontal

alignment.

Commonly used Methods:

Methods Description

String getText() t returns the text string that a label

displays.

void setText(String text) It defines the single line of text this

component will display.

void setHorizontalAlignment(int

alignment)

It sets the alignment of the label's

contents along the X axis.

Icon getIcon() It returns the graphic image that the

label displays.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 41/59

int getHorizontalAlignment() It returns the alignment of the

label's contents along the X axis.

Java JLabel Example

import javax.swing.*;

class LabelExample

{

public static void main(String args[])

{

JFrame f= new JFrame("Label Example");

JLabel l1,l2;

l1=new JLabel("First Label.");

l1.setBounds(50,50, 100,30);

l2=new JLabel("Second Label.");

l2.setBounds(50,100, 100,30);

f.add(l1); f.add(l2);

f.setSize(300,300);

f.setLayout(null);

f.setVisible(true);

}

}

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 42/59

Java JLabel Example with ActionListener

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class LabelExample extends Frame implements ActionListener{

JTextField tf; JLabel l; JButton b;

LabelExample(){

tf=new JTextField();

tf.setBounds(50,50, 150,20);

l=new JLabel();

l.setBounds(50,100, 250,20);

b=new JButton("Find IP");

b.setBounds(50,150,95,30);

b.addActionListener(this);

add(b);add(tf);add(l);

setSize(400,400);

setLayout(null);

setVisible(true);

}

public void actionPerformed(ActionEvent e) {

try{

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 43/59

String host=tf.getText();

String ip=java.net.InetAddress.getByName(host).getHostAddress();

l.setText("IP of "+host+" is: "+ip);

}catch(Exception ex){System.out.println(ex);}

}

public static void main(String[] args) {

new LabelExample();

} }

Output:

Java JTextField

The object of a JTextField class is a text component that allows the editing of a single line text. It
inherits JTextComponent class.

JTextField class declaration

Let's see the declaration for javax.swing.JTextField class.

public class JTextField extends JTextComponent implements SwingConstants

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 44/59

Commonly used Constructors:

Constructor Description

JTextField() Creates a new TextField

JTextField(String text) Creates a new TextField initialized with

the specified text.

JTextField(String text, int

columns)

Creates a new TextField initialized with

the specified text and columns.

JTextField(int columns) Creates a new empty TextField with the

specified number of columns.

Commonly used Methods:

Methods Description

void addActionListener(ActionListener

l)

It is used to add the specified

action listener to receive action

events from this textfield.

Action getAction() It returns the currently set

Action for this ActionEvent

source, or null if no Action is

set.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 45/59

void setFont(Font f) It is used to set the current

font.

void

removeActionListener(ActionListener

l)

It is used to remove the

specified action listener so that

it no longer receives action

events from this textfield.

Java JTextField Example

import javax.swing.*;

class TextFieldExample

{

public static void main(String args[])

{

JFrame f= new JFrame("TextField Example");

JTextField t1,t2;

t1=new JTextField("Welcome to Javatpoint.");

t1.setBounds(50,100, 200,30);

t2=new JTextField("AWT Tutorial");

t2.setBounds(50,150, 200,30);

f.add(t1); f.add(t2);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

}

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 46/59

Java JTextField Example with ActionListener

import javax.swing.*;

import java.awt.event.*;

public class TextFieldExample implements ActionListener{

JTextField tf1,tf2,tf3;

JButton b1,b2;

TextFieldExample(){

JFrame f= new JFrame();

tf1=new JTextField();

tf1.setBounds(50,50,150,20);

tf2=new JTextField();

tf2.setBounds(50,100,150,20);

tf3=new JTextField();

tf3.setBounds(50,150,150,20);

tf3.setEditable(false);

b1=new JButton("+");

b1.setBounds(50,200,50,50);

b2=new JButton("-");

b2.setBounds(120,200,50,50);

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 47/59

b1.addActionListener(this);

b2.addActionListener(this);

f.add(tf1);f.add(tf2);f.add(tf3);f.add(b1);f.add(b2);

f.setSize(300,300);

f.setLayout(null);

f.setVisible(true);

}

public void actionPerformed(ActionEvent e) {

String s1=tf1.getText();

String s2=tf2.getText();

int a=Integer.parseInt(s1);

int b=Integer.parseInt(s2);

int c=0;

if(e.getSource()==b1){

c=a+b;

}else if(e.getSource()==b2){

c=a-b;

}

String result=String.valueOf(c);

tf3.setText(result);

}

public static void main(String[] args) {

new TextFieldExample();

} }

Output:

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 48/59

Java JMenuBar, JMenu and JMenuItem

The JMenuBar class is used to display menubar on the window or frame. It may have several
menus.

The object of JMenu class is a pull down menu component which is displayed from the menu
bar. It inherits the JMenuItem class.

The object of JMenuItem class adds a simple labeled menu item. The items used in a menu must
belong to the JMenuItem or any of its subclass.

JMenuBar class declaration

public class JMenuBar extends JComponent implements MenuElement, Accessible

JMenu class declaration

public class JMenu extends JMenuItem implements MenuElement, Accessible

JMenuItem class declaration

public class JMenuItem extends AbstractButton implements Accessible, MenuElement

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 49/59

Java JMenuItem and JMenu Example

import javax.swing.*;

class MenuExample

{

JMenu menu, submenu;

JMenuItem i1, i2, i3, i4, i5;

MenuExample(){

JFrame f= new JFrame("Menu and

MenuItem Example");

JMenuBar mb=new JMenuBar();

menu=new JMenu("Menu");

submenu=new JMenu("Sub Menu");

i1=new JMenuItem("Item 1");

i2=new JMenuItem("Item 2");

i3=new JMenuItem("Item 3");

i4=new JMenuItem("Item 4");

i5=new JMenuItem("Item 5");

menu.add(i1); menu.add(i2); menu.a

dd(i3);

submenu.add(i4); submenu.add(i5);

menu.add(submenu);

mb.add(menu);

f.setJMenuBar(mb);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String args[])

{

new MenuExample();

}}

Output:

Example of creating Edit menu for Notepad:

import javax.swing.*;

import java.awt.event.*;

public class MenuExample implements A

ctionListener{

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 50/59

JFrame f;

JMenuBar mb;

JMenu file,edit,help;

JMenuItem cut,copy,paste,selectAll;

JTextArea ta;

MenuExample(){

f=new JFrame();

cut=new JMenuItem("cut");

copy=new JMenuItem("copy");

paste=new JMenuItem("paste");

selectAll=new JMenuItem("selectAll");

cut.addActionListener(this);

copy.addActionListener(this);

paste.addActionListener(this);

selectAll.addActionListener(this);

mb=new JMenuBar();

file=new JMenu("File");

edit=new JMenu("Edit");

help=new JMenu("Help");

edit.add(cut);edit.add(copy);

edit.add(paste);

edit.add(selectAll);
Output:

mb.add(file);mb.add(edit);mb.add(help);

ta=new JTextArea();

ta.setBounds(5,5,360,320);

f.add(mb);f.add(ta);

f.setJMenuBar(mb);

f.setLayout(null);

f.setSize(400,400);

f.setVisible(true);

}

public void actionPerformed(ActionEvent

e) {

if(e.getSource()==cut)

ta.cut();

if(e.getSource()==paste)

ta.paste();

if(e.getSource()==copy)

ta.copy();

if(e.getSource()==selectAll)

ta.selectAll();

}

public static void main(String[] args) {

new MenuExample(); } }

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 51/59

BorderLayout (LayoutManagers)

Java LayoutManagers

The LayoutManagers are used to arrange components in a particular manner. LayoutManager is an
interface that is implemented by all the classes of layout managers. There are following classes that
represents the layout managers:

1. java.awt.BorderLayout

2. java.awt.FlowLayout

3. java.awt.GridLayout

4. java.awt.CardLayout

5. java.awt.GridBagLayout

6. javax.swing.BoxLayout

7. javax.swing.GroupLayout

8. javax.swing.ScrollPaneLayout

9. javax.swing.SpringLayout etc.

Java BorderLayout

The BorderLayout is used to arrange the components in five regions: north, south, east, west and
center. Each region (area) may contain one component only. It is the default layout of frame or
window. The BorderLayout provides five constants for each region:

1. public static final int NORTH

2. public static final int SOUTH

3. public static final int EAST

4. public static final int WEST

5. public static final int CENTER

Constructors of BorderLayout class:

o BorderLayout(): creates a border layout but with no gaps between the components.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 52/59

o JBorderLayout(int hgap, int vgap): creates a border layout with the given horizontal and

vertical gaps between the components.

Example of BorderLayout class:

import java.awt.*;

import javax.swing.*;

public class Border {

JFrame f;

Border(){

f=new JFrame();

JButton b1=new JButton("NORTH");;

JButton b2=new JButton("SOUTH");;

JButton b3=new JButton("EAST");;

JButton b4=new JButton("WEST");;

JButton b5=new JButton("CENTER");;

f.add(b1,BorderLayout.NORTH);

f.add(b2,BorderLayout.SOUTH);

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 53/59

f.add(b3,BorderLayout.EAST);

f.add(b4,BorderLayout.WEST);

f.add(b5,BorderLayout.CENTER);

f.setSize(300,300);

f.setVisible(true);

}

public static void main(String[] args) {

new Border();

}

}

An Overview of Servlet

Servlet technology is used to create web application (resides at server side and generates dynamic
web page).

Servlet technology is robust and scalable because of java language. Before Servlet, CGI (Common
Gateway Interface) scripting language was popular as a server-side programming language. But
there was many disadvantages of this technology. We have discussed these disadvantages below.

There are many interfaces and classes in the servlet API such as Servlet, GenericServlet,
HttpServlet, ServletRequest, ServletResponse etc.

What is a Servlet?

Servlet can be described in many ways, depending on the context.

o Servlet is a technology i.e. used to create web application.

o Servlet is an API that provides many interfaces and classes including documentations.

o Servlet is an interface that must be implemented for creating any servlet.

o Servlet is a class that extend the capabilities of the servers and respond to the incoming

request. It can respond to any type of requests.

o Servlet is a web component that is deployed on the server to create dynamic web page.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 54/59

What is web application?

A web application is an application accessible from the web. A web application is composed of web
components like Servlet, JSP, Filter etc. and other components such as HTML. The web components
typically execute in Web Server and respond to HTTP request.

CGI(Commmon Gateway Interface)

CGI technology enables the web server to call an external program and pass HTTP request
information to the external program to process the request. For each request, it starts a new process.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 55/59

Disadvantages of CGI

There are many problems in CGI technology:

1. If number of clients increases, it takes more time for sending response.

2. For each request, it starts a process and Web server is limited to start processes.

3. It uses platform dependent language e.g. C, C++, perl.

Advantage of Servlet

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 56/59

There are many advantages of servlet over CGI. The web container creates threads for handling the
multiple requests to the servlet. Threads have a lot of benefits over the Processes such as they share a
common memory area, lightweight, cost of communication between the threads are low. The basic
benefits of servlet are as follows:

1. better performance: because it creates a thread for each request not process.

2. Portability: because it uses java language.

3. Robust: Servlets are managed by JVM so we don't need to worry about memory leak,

garbage collection etc.

4. Secure: because it uses java language.

Event and Listener in Servlet

Events are basically occurrence of something. Changing the state of an object is known as an
event.

We can perform some important tasks at the occurrence of these exceptions, such as counting total
and current logged-in users, creating tables of the database at time of deploying the project, creating
database connection object etc.

There are many Event classes and Listener interfaces in the javax.servlet and javax.servlet.http
packages.

Event classes

The event classes are as follows:

1. ServletRequestEvent

2. ServletContextEvent

3. ServletRequestAttributeEvent

4. ServletContextAttributeEvent

5. HttpSessionEvent

6. HttpSessionBindingEvent

Event interfaces

The event interfaces are as follows:

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 57/59

1. ServletRequestListener

2. ServletRequestAttributeListener

3. ServletContextListener

4. ServletContextAttributeListener

5. HttpSessionListener

6. HttpSessionAttributeListener

7. HttpSessionBindingListener

8. HttpSessionActivationListener

POSSIBLE QUESTIONS

2 MARKS

1. What are packages and how it is used?

2. Define and give the syntax for interface.

3. Write the difference between an applet and an application.

4. Draw the life cycle of Java Applets.

5. What are Java Packages?

6. What is Thread prioritization?

7. Write any two AWT Controls.

8. What is servelets?

9. What is web application?

10. Define CGI(Commmon Gateway Interface).

11. Mention the Disadvantages of CGI.

12. What are the Advantages of Servlet?

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 58/59

13. What is Java Swing?

14. Difference between AWT and Swing.

15. What is JFC?

16. Draw the Hierarchy of Java Swing classes.

17. What are the Advantage of Applet?

18. List the Drawback of Applet.

19. Draw the Hierarchy of Applet.

20. How to run an Applet?

6 MARKS

1. What are the different types of AWT components? How are these components added to
the container?

2. Write an applet that draws circle, a line, and a polygon inside the applet’s visible area.

3. What do you mean by an event? Explain different components of an event.

4. Define applet. Write an applet that draws circle, a line, and a polygon inside the applet’s visible
area

5. Explain the lifecycle of applet and Write an applet that draws circle, a line, and a polygon inside
the applet’s visible area

6. Discuss Graphic objects and methods with example.

7. Explain Event Handling Mechanism with an example.

8. Explain Graphic Object for drawing figures with example program.

9. Elucidate about Applets and its Life Cycle and Methods with appropriate examples.

10. Display various shapes in a window using menu as options for those shapes.

KARPAGAM ACADEMY OF HIGHER EDUCATION
COURSE NAME:PROGRAMMING IN JAVA CLASS: I BCA

COURSE CODE: 19CAU201 UNIT: IV(Java Applets) BATCH-2019-2022

Prepared by Dr. K.RAMESH , Department of CS, CA & IT, KAHE Page 59/59

11. Explain in detail about working with graphics with example.

12. Discuss in detail about Adapter and inner classes.

13. Enlighten incorporating images and sounds with example.

Questions opt1 opt2 opt3 opt4 opt5 opt6 answer

AWT stands for _________ Abstract Window
Toolkit

Absolute Window
Toolkit

Absolute
Windowing

Toolkit

Abstract
Windowing Toolkit

Abstract Window
Toolkit

The __________ class is an abstract class which includes large
number of methods for positioning and sizing components,
repainting, etc.

Container Component Swing Beans Component

The __________ class creates a push button that generates an
event when it is pressed

Label TextField Button Checkbox Button

In which class is the method setVisible() first defined Component Container Window Frame Component

While creating a window using Frame constructor, we can
specify ______________

Title Size Visibility
attribute

All Title

Color class also defines _________ common colors as constants Canvas Frame Dialog Panel Dialog

The most basic menu in an application consists of
_____________ main elements

2 4 3 5 3

The ________ class implements a scrollable list of text items Choice Checkbox List Scrollbar List

A TextField is a subclass of the _______________ class TextComponent Button Label TextArea TextComponent

Checkbox consists of _______ states 2 4 3 5 2

Checkbox can of __________ types 4 3 5 2 2

A ____________ list appears like a menu choice choice

 __________ are used to select continuous values bewtween a
specified minimum and maximum.

List Scrollbar TextField TextArea Scrollbar

 _____________ is an abstract subclass of the abstract class
component

Component Container Window Frame Container

Applet is a subclass of _______________ class List Scrollbar Panel Frame Panel

 _____ provides a basic file Open/Save dialog box that enables
accessibility to the file system

Dialog Frame FileDialog Container FileDialog

The frame must be closed explicitly by adding ______________
object to the frame

WindowListener FileDialog Dialog Applet WindowListener

 ____________ class provides a compact multiple choice
scrolling selection list.

 Scroll bar List menu bar Combo Box List

An _________ is a condition that is caused by a runtime error in
the program

throw exception handle catch exception

Exception can be generated by the ___________ or manually by
the code

Throwable class Java runtime
system

object catch Java runtime
system

All exception types are subclasses of the built_in class

Throwable RuntimeException StackTree LocalizedMessage Throwable

All exception classes are divided into ________ groups 3 4 2 6 2

The _______ defines the exceptions which are not expected to
be caught

java.lang.Error java.lang.Math java.lang.Throwa
ble

java.lang.IOExcepti
on

java.lang.Error

When an exception occurs within a java method, the method
creates an exception object and hands it over to the runtime
systewm is called ____

catching the
exception

throwing an
exception

handle the
exception

get the exception throwing an
exception

When java method throws an exception the java runtime system
searches all the methods in the call stack to find one that can
handle this type of exception is known as __________

catching the
exception

throwing an
exception

handle the
exception

get the exception catching the
exception

Exception performs ______________ tasks 3 4 5 2 4

Unchecked exceptions are extensions of __________ throws catch RuntimeExceptio
n

Error RuntimeException

Checked exceptions are extensions of ___________ throws catch Exception Error Exception

Each of Exception's predefined class provide ______________
constructors

3 4 5 2 2

The errors are printed by ____________ Stack Trace StackTree Message Error Stack Trace

AWT includes a very simple plain text,multiline editor called

Label TextField TextArea Option. TextArea

 __________ class is a button that is used to toggle the state of a
check mark.

 Label Option CheckBox Button CheckBox

 ______________ class is at the top of the exception class
hierarchy.

Exception Error Throws Throwable Throwable

 __________subclass of throwable defines exceptions that are
not expected to be caught under normal circumstances.

Exception Error Throws Throwable Error

 The _________ class is used for exceptional conditions that the
user programs should catch.

Exception Error Throws Throwable Exception

The two subclass of throwable class are __________ Exception and
Error

Exception and
handler

throw and
throwable

try and catch Exception and
Error

The ______________ Keyword is used to specify a block of
code that should be guarded against all exceptions.

Catch try exception block of code try

 ______________ specifies the type of exception to be caught. Catch try exception block of code Catch

 _____________ keyword is used to identify the list of possible
exceptions that a method might throw.

throw try catch throwable throw

Certain block of code necessarily has to be run no matter of what
exceptions occurs. Those codes are identified using the keyword

throw final finally throwable finally

There are ___________ ways of creating Throwable object 3 4 5 2 2

 ____________ is an important subclass of exception RuntimeExceptio
n

AarithmeticExcept
ion

NullException Subclasses of
Throwable

RuntimeException

____ parameters are passed to drawArc method 4 5 6 3 3

____ is the default color for drawing graphics color white black red green black

how many colors does a GIF image can have? 180 256 3600 4800 256

when a portion of a applet window is to be redrawn ____ method
is used

paint() start() update() repaint() update()

______ method is used set the background color setbackGround() Setcolor() setBackGround() setBackground() setBackground()

_______is the distance from the base line to the top of the
character

font size ascent descent baseline ascent

_____________is the distance from the base line to the bottom
of the character

font size ascent descent baseline descent

______is an abstract class which encapsulates all the attributes
of the visual component

component container applet both b and c component

To get the URL of the applet, you use __________. getCodeBase()
getDocumentBase

()

returnCodeBase(

)

returnDocumentBas

e()

 getCodeBase()

To get the image file at a specified URL, you use __________. getImage(url) createImage(url) url.getImage() url.createImage() getImage(url)

The ________ method of class Graphics draw a line between
two points.

Line Putline drawline getline drawline

What is the data type for the parameter of the sleep() method? long
int byte double

long

What is the mechanisam defind by java for the Resources to be used by only one Thread at a time?
priority parameters arguments

Synchronisation Synchronisation

Garbage collector thread belongs to which priority?
high-priority

low-priority middle-priority
highest-priority

low-priority
When a Java program starts up, ____ thread begins running
immediately

program main function input
main

The ____ method causes the thread from which it is called to
suspend execution for the specified period of milliseconds

wait() notify() sleep() run() sleep()

To implement Runnable, a class need only implement a single
method called ____

wait() notify() sleep() run() run()

A ____ is an object that is used as a mutually exclusive lock to
achieve synchronization

monitor thread process applet monitor

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)
 COIMBATORE – 641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Second Semester
FIRST INTERNAL EXAMINATION - December 2019

PROGRAMMING IN JAVA

Class & Section: I BCA Duration: 2 hours
Date & Session: 18.12.19 & FN Maximum marks: 50 marks
Subj.Code: 19CAU201

PART- A (20 * 1= 20 Marks)
Answer ALL the Questions

1. Java is a ___________ language

a. structured programming
b. object oriented

c. procedural oriented
d. machine

2. Variables are declared in_________________
a. only in main()
b. anywhere in the scope

c. before the main() only
d. only at the beginning

3. ____________________refers to permit initialization of the variables at run time
a. Dynamic initialization
b. Dynamic binding

c. Data binding
d. Dynamic message

4. Keyword _________ indicates that method do not return any value.
a. Static b. Final c. void d. null

5. Java does not have _________ statement
a. goto b. if c. do d. do while

6. byte belongs to _________ type.
a. character b. Boolean c. floating d. integer

7. In Java an int is _____ bits
a. 16 b. 64 c. 52 d. 32

8. byte is a signed ______ type
a. 16 bit b. 8 bit c. 32 bit d. 64 bit

9. The ________ statement is often used in switch statement
a. break b. end c. do d. none

10. __________ translates the Java source code to bytecode files that the interpreter can
understand
a. javac b. java c. javap d. jdk

11. In java the functions are called as _________
a. fields b. method c. variables d. none

12. Java does not have _________
a. struct b. header files c. union d. all

13. __________ is a access specifier
a. static b. void main c. public d. none

14. Data type Short occupies _________ bytes.
a. 1 b. 2 c. 4 d. 8

15. A built_in class which encapsulates the data structure of a string is ___________
a. java io b. String c. Character d. None

16. The instances of the class String is created using ___________
a. new b. free c. object d. None

17. To extract a single character from a string , the ___________ method is used.
a. charAt b. Stringto c. charOne d. None

18. To get the substring from a string ___________ method is used.
a. getchars b. substr c. extract d. substring

19. The ___________ method compares the characters inside the string.
a. = = b. equivalent c. equals d. None

20. The search for a certain character or substring is done using ___________ &
___________.
a. index & indexof
b. index & lastindex

c. indexof & lastindexof
d. None

PART- B (3 * 2= 6 Marks)
Answer ALL the Questions

21. What is mean by operator and its types ?

22. Give any 4 differences between C++ and Java.

23. Define Type Casting ?

PART C (3 * 8 = 24 Marks)
Answer ALL the Questions

24. a. Discuss operators in java with example.

 (OR)

 b. Explain in detail about Decision-making statements

25. a. Explain in detail about the features and architecture of JAVA.

 (OR)

b.. Illustrate the working of control statements in JAVA with appropriate examples.

26. a. Write a java program to find the factorial of a given number.

 (OR)

 b. How will you declare and initialize an array? Write a program for single

 dimensional array by defining the array dynamically.

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University)

(Established Under Section 3 of UGC Act 1956)
 COIMBATORE – 641 021

INFORMATION TECHNOLOGY/COMPUTER TECHNOLOGY/

COMPUTER SCIENCE/COMPUTER APPLICATIONS

Second Semester
FIRST INTERNAL EXAMINATION - December 2019

PROGRAMMING IN JAVA

Class & Section: I BCA Duration: 2 hours
Date & Session : 18.12.19 & FN Maximum marks: 50 marks
Subj.Code: 19CAU201

PART- A (20 * 1= 20 Marks)
Answer ALL the Questions

1. Java is a ___________ language

a. structured programming
b. object oriented

c. procedural oriented
d. machine

2. Variables are declared in_________________
a. only in main()
b. anywhere in the scope

c. before the main() only
d. only at the beginning

3. ____________________refers to permit initialization of the variables at run time
a. Dynamic initialization
b. Dynamic binding

c. Data binding
d. Dynamic message

4. Keyword _________ indicates that method do not return any value.
a. Static b. Final c. void d. null

5. Java does not have _________ statement
a. goto b. if c. do d. do while

6. byte belongs to _________ type.
a. character b. Boolean c. floating d. integer

7. In Java an int is _____ bits
a. 16 b. 64 c. 52 d. 32

8. byte is a signed ______ type
a. 16 bit b. 8 bit c. 32 bit d. 64 bit

9. The ________ statement is often used in switch statement
a. break b. end c. do d. none

10. __________ translates the Java source code to bytecode files that the interpreter can
understand
a. javac b. java c. javap d. jdk

11. In java the functions are called as _________
a. fields b. method c. variables d. none

12. Java does not have _________
a. struct b. header files c. union d. all

13. __________ is a access specifier
a. static b. void main c. public d. none

14. Data type Short occupies _________ bytes.
a. 1 b. 2 c. 4 d. 8

15. A built_in class which encapsulates the data structure of a string is ___________
a. java io b. String c. Character d. None

16. The instances of the class String is created using ___________
a. new b. free c. object d. None

17. To extract a single character from a string , the ___________ method is used.
a. charAt b. Stringto c. charOne d. None

18. To get the substring from a string ___________ method is used.
a. getchars b. substr c. extract d. substring

19. The ___________ method compares the characters inside the string.
a. = = b. equivalent c. equals d. None

20. The search for a certain character or substring is done using ___________ &
___________.
a. index & indexof
b. index & lastindex

c. indexof & lastindexof
d. None

PART- B (3 * 2= 6 Marks)
Answer ALL the Questions

21. What is Java Tokens?

In a Java program, all characters are grouped into symbols called tokens. Larger

language features are built from the first five categories of tokens (the sixth kind of token

is recognized, but is then discarded by the Java compiler from further processing). We

must learn how to identify all six kinds of tokens that can appear in Java programs. In

EBNF we write one simple rule that captures this structure:

token = identifier | keyword | separator | operator | literal | comment

The different types of Tokens are:

1. Identifiers: names the programmer chooses

2. Keywords: names already in the programming language

3. Separators (also known as punctuators): punctuation characters and paired-

delimiters

4. Operators: symbols that operate on arguments and produce results

5. Literals (specified by their type)

o Numeric: int and double

o Logical: boolean

o Textual: char and String

o Reference: null

6. Comments

o Line

22. Give any 4 differences between C++ and Java.

S.NO Comparison Index C++ Java

1 Platform-independent C++ is platform-

dependent.

Java is platform-independent.

2 Mainly used for C++ is mainly used

for system

programming.

Java is mainly used for application

programming. It is widely used in

window, web-based, enterprise and

mobile applications.

3 Goto C++ supports goto

statement.

Java doesn't support goto

statement.

4 Multiple inheritance C++ supports

multiple

inheritance.

Java doesn't support multiple

inheritance through class. It can be

achieved by interfaces in java.

5 Operator Overloading C++ supports

operator

overloading.

Java doesn't support operator

overloading.

23. Define Type Conversion with example.

A variable of one type can receive the value of another type. Here there are 2 cases -
case 1) Variable of smaller capacity is be assigned to another variable of bigger capacity.

This process is Automatic, and non-explicit is known as Conversion
case 2) Variable of larger capacity is be assigned to another variable of smaller capacity

In such cases you have to explicitly specify the type cast operator. This process is

known as Type Casting.

PART C (3 * 8 = 24 Marks)
Answer ALL the Questions

24. a. Discuss operators in java with example.

Operators in Java

Java provides many types of operators which can be used according to the need. They are
classified based on the functionality they provide. Some of the types are-

1. Arithmetic Operators
2. Logical Operators
3. Bitwise Operators

Let’s take a look at them in detail.

Arithmetic Operators: They are used to perform simple arithmetic operations on
primitive data types.

1. : Multiplication
2. / : Division
3. % : Modulo
4. + : Addition
5. : Subtraction

// Java program to illustrate
// arithmetic operators
publicclassoperators
{
 publicstaticvoidmain(String[] args)
 {
 inta = 20, b = 10, c = 0, d = 20, e = 40, f = 30;
 String x = "Thank", y = "You";

 // + and - operator
 System.out.println("a + b = "+(a + b));
 System.out.println("a - b = "+(a - b));

 // + operator if used with strings
 // concatenates the given strings.
 System.out.println("x + y = "+x + y);

 // * and / operator
 System.out.println("a * b = "+(a * b));
 System.out.println("a / b = "+(a / b));

 // modulo operator gives remainder
 // on dividing first operand with second
 System.out.println("a % b = "+(a % b));

 // if denominator is 0 in division
 // then Arithmetic exception is thrown.
 // uncommenting below line would throw
 // an exception
 // System.out.println(a/c);
 }
}

Output:
a+b = 30

a-b = 10

x+y = ThankYou

a*b = 200

a/b = 2

a%b = 0

Decision-making statements

A Java decision-making statement allows you to make decision, based upon the result of

a condition.

All the programs in Java have set of statements, which are executed sequentially in the

order in which they appear. This happens when jumping of statements or repetition of

certain calculations is not necessary. However there may arise some situations where

programmers have to change the order of execution of statements based on certain

conditions which involves kind of decision-making statements. In this chapter you will

learn about how the control flow statements works.

The flowchart of Decision making technique in Java can be expressed as:

Java has such decision making capabilities within its program by the use of following

decision making statements:

Decision Making Statements in Java
 if Statement

o if statement

o if-else statement

o else-if statement

 Conditional Operator

 switch statement

Java if Statements
If a statement in Java is used to control the program flow based on some

condition, it’s used to execute some statement code block if expression is evaluated to
true, otherwise it will get skipped. This is an simplest way to modify the control flow of
the program.
The basic format of if statement is:
Syntax:
if(test_expression)
{
 statement 1;
 statement 2;
 ...
}
‘Statement n’ can be a statement or a set of statements and if the test expression is
evaluated to true, the statement block will get executed or it will get skipped.

Figure – Flowchart of if Statement:

Example of a Java Program to Demonstrate If statements
 Example:
public class Sample{
 public static void main(String args[]){
 int a=20, b=30;
 if(b>a)
 System.out.println("b is greater");
 }}
Program Output:

Java if-else Statement

If else a statement in Java is also used to control the program flow based on some
condition, only the difference is: it’s used to execute some statement code block if
expression is evaluated to true, otherwise executes else statement code block.
The basic format of if else statement is:
Syntax:
if(test_expression)
{
 //execute your code
}
else
{
 //execute your code
}

Figure – Flowchart of if else Statement:

Example of a Java Program to Demonstrate If else statements
 Example:
public class Sample {
 public static void main(String args[]) {
 int a = 80, b = 30;
 if (b & gt; a) {
 System.out.println("b is greater");
 } else {
 System.out.println("a is greater");
 } }}

Program Output:

Java else-if Statements

else if statements in Java is like another if condition, it’s used in program when if
statement having multiple decisions.
The basic format of else if statement is:
Syntax:
if(test_expression)
{
 //execute your code
}
else if(test_expression n)
{

 //execute your code
}
else
{
 //execute your code
}
Example of a Java Program to Demonstrate else If statements
Example:
public class Sample {
 public static void main(String args[]) {
 int a = 30, b = 30;
 if (b > a) {
 System.out.println("b is greater");
 }
 else if(a > b){
 System.out.println("a is greater");
 }
 else {
 System.out.println("Both are equal");
 } }}
Program Output:

Java switch Statements

Java switch statement is used when you have multiple possibilities for the if
statement.
The basic format of switch statement is:
Syntax:
switch(variable)
{
case 1:
 //execute your code
break;

case n:
 //execute your code
break;

default:
 //execute your code
break;
}
After the end of each block it is necessary to insert a break statement because if the
programmers do not use the break statement, all consecutive blocks of codes will get
executed from each and every case onwards after matching the case block.

Example of a Java Program to Demonstrate Switch Statement
Example:
public class Sample {
 public static void main(String args[]) {
 int a = 5;
 switch (a) {
 case 1:
 System.out.println("You chose One");
 break;
 case 2:
 System.out.println("You chose Two");
 break;
 case 3:
 System.out.println("You chose Three");
 break;
 case 4:
 System.out.println("You chose Four");
 break;
 case 5:
 System.out.println("You chose Five");
 break;
 default:
 System.out.println("Invalid Choice. Enter a no between 1 and 5");
 break;
 } }}
Program Output:

When none of the case is evaluated to true, then default case will be executed, and break
statement is not required for default statement.

 (OR)

 b. Explain in detail about the features and architecture of JAVA.

Java Architecture:
1. Compilation and interpretation in Java

Java combines both the approaches of compilation and interpretation. First, java compiler

compiles the source code into byte code. At the run time, Java Virtual Machine (JVM)

interprets this byte code and generates machine code which will be directly executed by

the machine in which java program runs. So java is both compiled and interpreted

language.

Figure 1.1: Java Architecture

2. Java Virtual Machine (JVM)

JVM is a component which provides an environment for running Java programs. JVM

interprets the byte code into machine code which will be executed the machine in which

the Java program runs. Java was developed with the concept of WORA (Write Once

Run Anywhere) which runs on a VM. The compiler will be compiling the java file into

a java .class file. The .class file is input to JVM which Loads and executes the class file.

Below goes the Architecture of JVM.

Java Environment

The Java Virtual Machine

At the heart of Java's network-orientation is the Java virtual machine, which

supports all three prongs of Java's network-oriented architecture: platform independence,

security, and network-mobility.

The Java virtual machine is an abstract computer. Its specification defines certain

features every Java virtual machine must have, but leaves many choices to the designers

of each implementation. For example, although all Java virtual machines must be able to

execute Java byte codes, they may use any technique to execute them. Also, the

specification is flexible enough to allow a Java virtual machine to be implemented either

completely in software or to varying degrees in hardware. The flexible nature of the Java

virtual machine's specification enables it to be implemented on a wide variety of

computers and devices.

A Java virtual machine's main job is to load class files and execute the byte codes

they contain. As you can see in Figure 1-3, the Java virtual machine contains a class

loader, which loads class files from both the program and the Java API. Only those class

files from the Java API that are actually needed by a running program are loaded into the

virtual machine. The byte codes are executed in an execution engine.

Figure 1-2. A basic block diagram of the Java virtual machine.

The execution engine is one part of the virtual machine that can vary in different

implementations. On a Java virtual machine implemented in software, the simplest kind

of execution engine just interprets the byte codes one at a time. Another kind of execution

engine, one that is faster but requires more memory, is a just-in-time compiler. In this

scheme, the byte codes of a method are compiled to native machine code the first time

the method is invoked.

Java architecture

Java's architecture arises out of four distinct but interrelated technologies:

 the Java programming language

 the Java class file format

 the Java Application Programming Interface

 the Java virtual machine

When you write and run a Java program, you are tapping the power of these four

technologies. You express the program in source files written in the Java programming

language, compile the source to Java class files, and run the class files on a Java virtual

machine. When you write your program, you access system resources (such as I/O, for

example) by calling methods in the classes that implement the Java Application

Programming Interface, or Java API. As your program runs, it fulfills your program's

Java API calls by invoking methods in class files that implement the Java API. You can

see the relationship between these four parts in Figure 1-1.

Figure 1-3. The Java programming environment.

Together, the Java virtual machine and Java API form a "platform" for which all Java

programs are compiled. In addition to being called the Java runtime system, the

combination of the Java virtual machine and Java API is called the Java Platform (or,

starting with version 1.2, the Java 2 Platform). Java programs can run on many different

kinds of computers because the Java Platform can itself be implemented in software. As

you can see in Figure 1- 2, a Java program can run anywhere the Java Platform is present.

Figure 1-4. Java programs run on top of the Java Platform.

1.3.4 Java development kit

The Java Development Kit (JDK) is a Sun Microsystemsproduct aimed at Java

developers. Since the introduction of Java, it has been by far the most widely used Java

SDK. On 17 November 2006, Sun announced that it would be released under the GNU

General Public License (GPL), thus making it free software. This happened in large part

on 8 May 2007[3]; Sun contributed the source code to the OpenJDK.

The JDK has as its primary components a collection of programming tools, including:

 java – the loader for Java applications. This tool is an interpreter and can interpret

the class files generated by the javac compiler. Now a single launcher is used for

both development and deployment. The old deployment launcher, jre, no longer

comes with Sun JDK.

 javac – the compiler, which converts source code into Java byte code

 applet viewer – this tool can be used to run and debug Java applets without a web

browser

Features of Java

There is given many features of java. They are also known as java buzzwords. The Java
Features given below are simple and easy to understand.

1. Simple

2. Object-Oriented

3. Portable

4. Platform independent

5. Secured

6. Robust

7. Architecture neutral

8. Dynamic

9. Interpreted

10. High Performance

11. Multithreaded

12. Distributed

1. Simple

 According to Sun, Java language is simple because:

 Syntax is based on C++ (so easier for programmers to learn it after C++).

 Removed many confusing and/or rarely-used features e.g., explicit pointers,

operator overloading etc.

 No need to remove unreferenced objects because there is Automatic Garbage

Collection in java.
2. Object-oriented

 Object-oriented means we organize our software as a combination of different

types of objects that incorporates both data and behavior.

 Object-oriented programming (OOPs) is methodologies that simplify software

development and maintenance by providing some rules.

Basic concepts of OOPs are:

1. Object

2. Class

3. Inheritance

4. Polymorphism

5. Abstraction

6. Encapsulation

3. Platform Independent

A platform is the hardware or software environment in which a program runs.

There are two types of platforms software-based and hardware-based. Java provides
software-based platform.

The Java platform differs from most other platforms in the sense that it is a software-
based platform that runs on the top of other hardware-based platforms. It has two
components:

1. Runtime Environment

2. API(Application Programming Interface)

Java code can be run on multiple platforms e.g. Windows, Linux, Sun Solaris, Mac / OS
etc. Java code is compiled by the compiler and converted into byte code. This byte code
is a platform-independent code because it can be run on multiple platforms i.e. Write
Once and Run Anywhere (WORA).

4. Secured

Java is secured because:

o No explicit pointer

o Java Programs run inside virtual machine sandbox

o Classloader: adds security by separating the package for the classes of the local

file system from those that are imported from network sources.

o Bytecode Verifier: checks the code fragments for illegal code that can violate

access right to objects.

o Security Manager: determines what resources a class can access such as reading

and writing to the local disk.

These securities are provided by java language. Some security can also be provided by
application developer through SSL, JAAS, and Cryptography etc.

5. Robust

Robust simply means strong. Java uses strong memory management. There are lack of
pointers that avoids security problem. There is automatic garbage collection in java.
There is exception handling and type checking mechanism in java. All these points makes
java robust.

6. Architecture-neutral

There are no implementation dependent features e.g. size of primitive types is fixed.

In C programming, int data type occupies 2 bytes of memory for 32-bit architecture and 4
bytes of memory for 64-bit architecture. But in java, it occupies 4 bytes of memory for
both 32 and 64 bit architectures.

7. Portable

We may carry the java bytecode to any platform.

8. High-performance

Java is faster than traditional interpretation since byte code is "close" to native code still

somewhat slower than a compiled language (e.g., C++)
9. Distributed

We can create distributed applications in java. RMI and EJB are used for creating

distributed applications. We may access files by calling the methods from any machine

on the internet.
10. Multi-threaded

A thread is like a separate program, executing concurrently. We can write Java programs
that deal with many tasks at once by defining multiple threads. The main advantage of
multi-threading is that it doesn't occupy memory for each thread. It shares a common
memory area. Threads are important for multi-media, Web applications etc.

25. a. Illustrate the working of control statements in JAVA with appropriate examples.

Java Loops
Sometimes it is necessary in the program to execute the statement several times, and Java
loops execute a block of commands a specified number of times, until a condition is
met. In this chapter you will learn about all the looping statements of Java along with
their use.
What is Loop?
A computer is the most suitable machine to perform repetitive tasks and can tirelessly do
a task tens of thousands of times. Every programming language has the feature to instruct
to do such repetitive tasks with the help of certain form of statements. The process of
repeatedly executing a collection of statement is called looping. The statements gets
executed many number of times based on the condition. But if the condition is given in
such a logic that the repetition continues any number of times with no fixed condition to
stop looping those statements, then this type of looping is called infinite looping.
Java supports many looping features which enable programmers to develop concise Java
programs with repetitive processes.
Java supports following types of loops:

 while loops

 do while loops

 for loops

All are slightly different and provides loops for different situations.
Figure – Flowchart of Looping:

Java Loop Control Statements

A Loop control statement is used to change normal sequence of execution of loop.

Statement Syntax Description

break
statement

break; Is used to terminate loop or switch
statements.

continue
statement

continue; Is used to suspend the execution of current
loop iteration and transfer control to the loop
for the next iteration.

goto
statement

goto labelName;labelName: statement; It’s transfer current program execution
sequence to some other part of the program.

Java while loops
Java while loops statement allows to repeatedly running the same block of code, until a
condition is met.
While loop is most basic loop in Java. It has one control condition, and executes as long
the condition is true. The condition of the loop is tested before the body of the loop is
executed, hence it is called an entry-controlled loop.
The basic format of while loop statement is:
Syntax:
While (condition)
{
 statement(s);
incrementation;

}

Figure – Flowchart of while loop:

Example of a Java Program to Demonstrate while loop
 Example:
public class Sample {

 public static void main(String args[]) {
 /* local variable Initialization */
 int n = 1, times = 5;
 /* while loops execution */
 while (n <= times) {
 System.out.println("Java while loops:" + n);
 n++;
 } }}

Program Output:

Java do while loops
Java do while a loop is very similar to the while loops, but it always executes the code
block at least once and further more as long as the condition remains true. This is exit-
controlled loop.
The basic format of do while loop statement is:
Syntax:
do
{ statement(s);
}while(condition);

Figure – Flowchart of do while loop:

Example of a Java Program to Demonstrate do while loop
Example:
public class Sample {
 public static void main(String args[]) {
 /* local variable Initialization */
 int n = 1, times = 0;
 /* do-while loops execution */
 do {
 System.out.println("Java do while loops:" + n);
 n++;
 } while (n <= times); }}
Program Output:

Java for loops

Java for loops is very similar to Java while loops in that it continues to process a
block of code until a statement becomes false, and everything is defined in a single line.
The basic format of for loop statement is:
Syntax:
for (init; condition; increment)

{
 statement(s);
}

Figure – Flowchart of for loop:

Example of a Java Program to Demonstrate for loop
 Example:
public class Sample {
 public static void main(String args[]) {
 /* local variable Initialization */
 int n = 1, times = 5;
 /* for loops execution */
 for (n = 1; n <= times; n = n + 1) {
 System.out.println("Java for loops:" + n); } }}

Program Output:

(OR)

b. Write a java program to find the factorial of a given number.

Program:

import java.io.*;
class Factorial
{
public static void main(String args[])
{
int i,fact=1;
int number=5;
for(i=1;i<=number;i++)
{
fact=fact*i;
}
System.out.println("Factorial of "+number+" is: "+fact);
}
}

26. a. How will you declare and initialize an array? Write a program for single

dimensional array by defining the array dynamically.

Program:

class array1
{
public static void main(String[] args) throws IOException
{
int num[]=new int [20];
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int i,j,temp;
int x=Integer.parseInt(br.readLine());
System.out.println("\n Enter number:");
for(i=0;i<x;i++)
{
num[i] = Integer.parseInt(br.readLine());
}
for(i=0;i<x;i++)
{
for(j=0;j<i+1;j++)
{
if (num[i] < num[j])
{
temp = num[i];
num[i] = num[j];
num[j]= temp;
}
}

}
System.out.println(“Sorted array is”);
for(i=0;i<x;i++)
{
System.out.println(“ “+num[i]);
}
}
}

 (OR)

 b. How will you create strings? Explain any four string operations with

example.

 String Class

String is a sequence of characters, for e.g. “Hello” is a string of 5 characters. In java,

string is an immutable object which means it is constant and can cannot be changed once

it has been created. In this tutorial we will learn about String class and String methods in

detail along with many other Java String tutorials.

Creating a String

There are two ways to create a String in Java

 String literal

 Using new keyword

String literal

In java, Strings can be created like this: Assigning a String literal to a String

instance:String str1 = "Welcome";

String str2 = "Welcome";

Using New Keyword

As we saw above that when we tried to assign the same string object to two different

literals, compiler only created one object and made both of the literals to point the same

object. To overcome that approach we can create strings like this:

String str1 = new String("Welcome");

String str2 = new String("Welcome");

In this case compiler would create two different objects in memory having the same

string.

A Simple Java String Example

public class Example{

 public static void main(String args[]){

 //creating a string by java string literal

 String str = "Beginnersbook";

 char arrch[]={'h','e','l','l','o'};

 //converting char array arrch[] to string str2

 String str2 = new String(arrch);

 //creating another java string str3 by using new keyword

 String str3 = new String("Java String Example");

 //Displaying all the three strings

 System.out.println(str);

 System.out.println(str2);

 System.out.println(str3); }}

Output:

Beginnersbook

hello

Creating and using String Objects

String class

It is a predefined class in java.lang package can be used to handle the String.

String class is immutable that means whose content cannot be changed at the time of

execution of program.

String class object is immutable that means when we create an object of String class it

never changes in the existing object.

Example:

classStringHandling{ Output:

publicstaticvoid main(String arg[]){ java

String s=newString("java");

s.concat("software");

System.out.println(s);}}

Explanation: Here we cannot change the object of String class so output is only java

not java software.
Manipulating String

1. length()

length(): This method is used to get the number of character of any string.

Example

classStringHandling { Output

publicstaticvoid main(String arg[]) { Length: 4

int l;

String s=newString("Java");

l=s.length();

System.out.println("Length: "+l);}}
2. charAt(index)

charAt(): This method is used to get the character at a given index value.
Example

classStringHandling{ Output

publicstaticvoid main(String arg[]){ Character: v

char c;

String s=newString("Java");

c=s.charAt(2);

System.out.println("Character: "+c);}}
3. toUpperCase()

toUpperCase(): This method is use to convert lower case string into upper case.

Example Output

classStringHandling{ String: JAVA

publicstaticvoid main(String arg[]){

String s="Java";

System.out.println("String: "+s.toUpperCase());}}
4. toLowerCase()

toLowerCase(): This method is used to convert lower case string into upper case.

Example Output

classStringHandling{ String: java

publicstaticvoid main(String arg[]){

String s="JAVA";

System.out.println("String: "+s.toLowerCase());}}
5. concat()

concat(): This method is used to combined two string.

Example Output

classStringHandling{ Combined String:

HiteshRaddy

publicstaticvoid main(String arg[]){

String s1="Hitesh";

String s2="Raddy";

System.out.println("Combined String: "+s1.concat(s2));}}

	1.pdf (p.1-3)
	2.pdf (p.4-54)
	3.pdf (p.55-62)
	4.pdf (p.63-116)
	6.pdf (p.117-119)
	7.pdf (p.120-147)
	8.pdf (p.148-151)
	9.pdf (p.152-198)
	10.pdf (p.199-206)
	11.pdf (p.207-265)
	12.pdf (p.266-268)
	13.pdf (p.269-270)
	14.pdf (p.271-297)

