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COURSE OBJECTIVES
e To provides a deep knowledge to the learners to develop and analyze algorithms as well as enable them
to think about and solve problems in new ways.
e To express ideas using mathematical notation and solve problems using the tools of mathematical
analysis.

COURSE OUTCOME

On successful completion of the course,students will be able to

1.Familiar with elementary algebraic set theory

2.Acquire a fundamental understanding of the core concepts in growth of functions.

3.Describe the method of recurrence relations

4.get wide knowledge about graphs and trees

5.initiate to knowledge from inference theory
UNIT I
Sets: Introduction, Sets , finite and infinite sets, uncountably infinite sets, functions, relations, properties of
binary relations, closure, partial ordering relations.
UNIT 11
Pigeonhole principle, Permutation and Combination, Mathematical Induction, Principle of inclusion and
Exclusion.
UNIT I
Recurrences: Recurrence relations, generating functions, linear recurrence relations with constant coefficients
and their solution, Substitution Method, recurrence trees, Master theorem.
UNIT IV
Graph Theory : Basic terminology, models and types, multigraphs and weighted graphs, graph
representation, graph isomorphism, connectivity, Euler and Hamiltonian Paths and circuits, Planar graphs,
graph coloring, trees, basic terminology and properties of trees, introduction to Spanning trees
UNIT V
Prepositional Logic: Logical Connectives, Well-formed Formulas, Tautologies, Equivalences, Inference
Theory.
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UNIT -1

Sets: Introduction, Sets , finite and infinite sets, uncountably infinite sets, functions, relations, properties of
binary relations, closure, partial ordering relations.
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1. Introduction
Set: any collection of objects (individuals)
Naming sets: A, B. C.....
Members of a set: the objects 1 the set
Naming objects: a. b, ¢, ....
Notation: Let A be a set of 3 letters a, b. c.
We write A = {a, b, ¢}

aisamemberof A,aisin A.wewritea€ A
d is not a member of A, we writed ¢ A

Important: 1. {a}#a

{a} - a set consisting of one element a.
a - the element itself

2. A set can be a member of another set:
B={1,2. {1}, {2}. {1.2}}

Finite sets: finite number of elements
Infinite sets: infinite number of elements
Cardinality of a finite set A: the number of elements in A: #A. or |A|

Describing sets:
a. by enumerating the elements of A:
for finite sets: {red. blue. yellow}. {1.2,3.4.5.6,7.8.9.0}

for infinite sets we write: {1,2.3.4.5,....}

b. by property. using predicate logic notation
Let P(x) 1s a property. D - universe of discourse
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The set of all objects in D. for which P(x) 1s true. 1s :

A= {x|PXx)}
we read: A consists of all objects x i D such that P(x) 1s true

¢. by recursive definition. ¢.2. sequences
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Examples:

1. The set of the days of the week:
{Sunday. Monday, Tuesday, Wednesday. Thursday, Friday, Saturday)
2. The set of all even numbers :

{ x| even(x) }
{2.4.68.....}

3. The set of all even numbers, greater than 100:

{ x| even(x) A x > 100}
{ 102. 104. 106, 108.....}

4. The set of integers defined as follows:
a;=1. aps) =ay +2 (the odd natural numbers)
Universal set: U - the set of all objects under consideration

Empty set: O set without elements.

2. Relations between sets

2.1. Equality

Let A and B be two sets.
We say that A 1s equal to B, A = B if and only if they have the same members.

Example:
A={246}.B= {246} A=B

A={a b c}.B={c.a,b} A=B

A

{123}, B={1.3.5). A#B
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Written 1n predicate notation:

A=Bifandonlyif Vx,x€ A<~ x€ B

2.2, Subsets

The set of all numbers contains the set of all positive numbers. We say that the set of all
positive numbers is a subset of the set of all numbers.

Definition: A is a subset of B if all elements of A are in B. However B may contain
elements that are not in A

Notation: A < B
Formal definition:

Ac Bifandonlyif Vx,x€A-2>x€ B

Example: A ={2,4,6},B={1,23456},A cB
Definition: if A is a subset of B, B is called a superset of A,

Other definitions and properties:

a.IfA cBandBc AthenA=B

If A 1s a subset of B. and B 1s a subset of A. A and B are equal.

b. Proper subsets: A is a proper subset of B. A © B, if and only if A is a subset of B and
there is at least one element in B that 1s not in A.

AcBiff Yx,x€ A2>x€ B A3Jx, x€ BA x¢A
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2.3. Disjoint sets
Definition: Two sets A and B are disjoint if and only if they have no common elements

A and B are disjoint if and onlyif ~Ix, (x€ A)A(x€ B)
ieeVx, xegAVxeB

If two sets are not disjoint they have common elements.

Picturing sets: Venn diagrams - used to represent relations between sets

B
@ A 15 a (proper) subset of B

All elements in the set A are
also elements in the set B

Disjoint sets

0’ Not disjoint sets
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3. Operations on sets

3.1. Intersections

The set of all students at Simpson and the set of all majors in CS have some clements in
common - the set of all students in Simpson that are majoring in CS. This set 1s formed as

the intersection of all students in CS and all students at Simpson.

Definition: Let A and B are two sets. The set of all elements common to A and B 1s
called the intersection of A and B

Notation;: A~ B
Formal definition:

AnB={x|(x€ A)A(x€ B)}

Venn diagram:

Example: A = {2,4,6}, B={1,25,6}, An B={2,6}
Other properties:

AnBc AL AnBcgcB
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The intersection of two sets A and B 1s a subset of A. and a subset of B

A N0 =0 The intersection of any set A with the empty set is the empty set
A n U =A The intersection of any set A with the universal set is the set A itself.

Intersection corresponds to conjunction in logic.
Let A= {x|P(x)}. B= {x| Q(x)}
An B={x| P(x) A Q(x)}

3, 2. Unions

The set of all rational numbers and the set of all irrational numbers taken together form
the set of all real numbers - as a union of the rational and irrational numbers.

All classes at Simpson consist of students. If we take the elements of all classes, we will
get all students - as the union of all classes.

Definition: The union of two sets A and B consists of all elements that are in A
combined with all elements that are in B.
(note that an element may belong both to A and B)

Notation: A UB
Formal definition:

AuB={x|(x€ A)V(x€ B)}

Venn diagram:
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Example: A = {2,4,6,8,10}, B = {1,2,3,4,5,6},A v B = {1,2,3,4,5,6,8,10}

A U B contains all elements in A and B without repetitions.
Other properties of unions:
Ac AuB Bc AuB

A is a subset of the union of A and B.
B 1s a subset of the union of A and B

A U O = A The union of any set A with the empty setis A
A U U =U The union of any set A with the universal set E 1s the universal set.

Union corresponds to disjunction in logic.
Let A= {x|P(x)}.B={x|Q(x)}
A u B ={x|Px)VQXx)}

3.3. Differences

Definition: Let A and B be two sets, The set A - B, called the difference between A and
B. 1s the set of all elements that are in A and are not in B.

Notation: A— B or A\B
Formal definition:

A-B={x|(x€ A)A(xe B)}

Venn diagram:
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Example: A={2,4,6},B={1,56}, A-B={2,4}

A-0O =A The difference between A and the empty set 1s A
A-U =0 The difference between A and the universal set 1s the empty set.

3.4, Complements

Definition: Let A be a set. The set of all objects within the universal set that are not 1 A,
is called the complement of A.

Notation: ~A
Formal definition:

Venn diagram:

O

SETS IDENTITIES

Using the operation unions, intersection and complement we can build expressions ov
sets.

Example:
A - set of all black objects

B - set of all cats
A N B -set of all black cats

The set identities are used to manipulate set expressions
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A vu~A=1U Complementation Law
A Nn~A=0 Exclusion Law
A nU=A Identity Laws
A uvO=A
A woU=U Domination Laws
A nNn©O=09
A UA=A Idempotent Laws
A nA=A
~(~A)=A Double Complementation Law
AuB=BUA Commutative Laws

A NnB=BnA
(A uB)uC=A u (B u(Q Associative Laws
ANnBnC=An(B nnQO

A u (BnO=AuBnAuO Distributive Laws
An BulO=(AnBu(AnO

~(A n B) =~Au-~B De Morgan's Laws
(A v B)=~An~B

A-B=A~n-~B Alternate representation for set difference

Proof problems for sets
A. Element Proofs

Definitions used in the proofs
Defl: AuB={x|xeA V x € B}
Def2: AnB={x|xe€ A A x € B}
Def3: A- B={x|xe A A x ¢ B}
Def4:.~A ={x|xeA}
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Inference rules often used:

PAQ =P Q
P.Q |=PAQ
P =P VQ

How to prove that two sets are equal:

A=B

1) show that A < B. 1.c. choose an arbitrary element in A and show that it1s in B
2) show that B ¢ A. i.e. choose an arbitrary element in B and show that itis in A

The element was chosen arbitrary, hence any element that is a member of the left se
also a member of the right set, and vice versa.

Example:
Provethat A-B=A n~B

1. Show that A-Bc An~B

let xeA-B
By Def 3:

xeAAxeB (1)
By(l) xe A (2)
By(l) xeB (3)
By (3) and Def4: x € ~B (4)
By (2). (4)

xeAAxe-~B (5)
By (5) and Def 2:

xe An~B

X was an arbitrary element in A — B, thereforc A-Bc A~ ~B  (6)
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2. Showthat An~B < A-B
[etxeAn~B
By Def 2:
xeA Axe~B (7)
By(7) xe A (8)
By (7) x € ~B (9)
By(9)and Def4: x ¢ B (10)
By (8). (10)
xeAAxeB (11)

By (11) and Def 3:
xeA-B

x was an arbitrary element in A n ~B, therefore An~B c A-B (12)
by (6) and (12):
A-BcAn~B
Q.ED.
B. Using set identities

Provethat An(~AUB)=AnNB

Method: Apply the set identities to the expression on the left, until the expression on th
right is obtained.

By Distribution Laws: An(~AuB)=(An~A) U(ANnB)
By the Exclusion Law A N~A=0

Hence An(AuB)=0 v (AnB)

By the Identity Law: OQu(AnB)=AnB

Hence An(~kAuB)=AnB
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1. Set partitions

Two sets are disjoint if they have no elements in common. i.¢. their intersection is the
empty set.

A and B are disjoint sets iff AnNB =0
Definition: Consider a set A. and sets Aj. Ay, ... Ap. such that;
a. AfjUuA v ..u A=A

b. Ay Aj. ... Ap are mutually disjoint, 1.¢. foralliand), Ai nA; =0

The set {A1. Ay. ... Ay} is called a partition of A
Example:

l.LA={a.b.c.d.c. £, g}
A; ={a.c.d}
Ay = {b. £}
Az = {¢c. g}

The set {{a. c. d}, {b. f}. {e. g} } 1s a partition of A.
2. Cartesian product

Consider the identification numbers on license plates: xixox3 Yi1Y2Y3
where x1x7x3 15 a 3-digit number and Y1Y2Y3 1s a combination of 3 letters

How do we make sure that each license plate would have a different identification
number?

The program that assigns numbers uses Cartesian product of sets.

Definition: Let A and B be two sets. The Cartesian product of A and B 1s defined as
set

AxB={(xy)|x€A A yeB}
Example 1:
A={0.1.2 3}
B = {a. b}

A x B = {(0.a). (0.b). (1.a). (L.b). (2.a). (2.b). (3.a). (3.b)}
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Example 2:

A=1{0,1.2,3.4,5,6,7. 8.9}
A x A = {(0.0).(0.1), (0.2). .... (0.9).
(1,0).(1,1), (1.2). ....... (1,9).

(9.0).(9.1). (9.2). ... (9.9)}

We can consider the result to be the set of all 2-digit numbers.

3. Power sets
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Definition: The set of all subsets of a given set A is called power set of A.
Notation 2* . or (P(A)

Example:

A-{ab.cd}

P(A) = {@. {a}.{b}.{c}.{d)
{ab}.{a.c}.{a.d},{b.c}.{b.d}.{c.d)
{a.b.c}.{a.b.d}.{a.c.d}, {b.c. d}
{a.b.c.d}}

Number of elements in (P(A) is 2N where N = number of elements in A
Why 2 %2

Bit notation: For a set A with n elements, each subset of A can be represented by a string
of length n over {0.1}. 1.c. a string consisting of 0s and 1s.

For example:
fab} =1100

fac}=1010
{bed}=0111

The i-th element in the string is 1 if the element a; is in the subset, otherwise it is 0.
Thus the subset {a.b.d} of the set {a.b.c.d} can be represented by the string '1101'

There are 2" different strings with length n over {0.1}(why?). hence the number of the
subsets is 2" .

Set Relations

2. Definition

Let A and B be two sets. A relation R from A to B is any set of pairs (x.y).
x € A.veB. ie. any subset of A x B.
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If x and y are in relation R. we write xRy. or (x.y) € R..
R is a set defined as

R={(x,y) | x€ A,y € B, xRb.}

3. Relations and Cartesian products

Relations between two sets A and B are sets of pairs of ¢lements of A and B.
The Cartesian product A x B consists of all pairs of elements of A and B.

Thus relations between two sets are subsets of the Cartesian product of the sets.

Example:

Il
- -
o

. 5)

)

Let A .
B i

.4
. 8

3w

The relation R1 :"less than" from set A to set B 1s defined by the following set:
R1={(1,2). (1, 7). (L, 8). (3. 7). (3. 8). (4. 7). (4, 8). (5. 7). (5. 8)}
This set is a subset of the Cartesian product of A and B:
A x B = {(1,2),(1,7),(1,8),
(3.2). 3.7), (3.8),
(4.2). (4,7), (4.8).

(5.2),(5,7),(5,8)}
(the members of R1 are in boldface)

The relation R2: "greater than" from set A to set B 1s defined by the set:
R2 = {(3,2). (4. 2). (5. 2)}
It is also a subset of A x B.

The relation R3 "equal to" from A to B is the empty set, since no element in A is equal to
an element 1n B.
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7. Domains and ranges

Let R be a relation from X to Y,

the domain of R is the set of all elements in X that occur in at least one pair of the
relation.

the range of R is the set of all elements in Y that occur 1n at least one pair of the relation.

In the above example. the domain of R: choose(x,y) 1s the set of students {Ann, Tom .
Paul}. and the range is the set of food 1tems: {spaghetti, fish. pie. cake}.

The domain and the range are casily found using the matrix or the graph representations
of the relation.

1. Definition
Let A and B be two sets. A relation R from A to B 1s any set of pairs (x.y).
x € A, y e B, 1.e. any subset of A x B.
The empty set is a subset of the Cartesian product — the empty relation

2. How to write relations

a. as sct of pairs
A= {123}, {B=456)
R = {{1.4). (1.5).(1.6). (2.4).(2.6). (3.6)}

b. using predicates
A=1{123}. {B=45.6}
R={(xy)|x € A,y € B. y1s a multiple of x}

3. Graph and matrix representation
A={123} {B=4556])
R = {{1.4).(1.5).(1.6), (2.4). (2.6). (3.6)}
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1. Set operations and relations

Relations are sets. All set operations are applicable to relations

Examples:

Let A= {3, 5

6,7}
B={4,5,9)

Consider two relations R and S from A to B:
R={Xy)|xeA yvyeB x<yj}
If (x.y) € R we write XRy
R is a finite set and we can write down explicitly its elements:
= {(3.4).(3.5).(3.9).(5.9). (6.9).(7.9)}
S={xy)|xeA yeB, [x-y/ =2
If (x.y) € S we write xSy

S is a finite set and we can write down explicitly its elements:
S ={(3.5), (6.4), (7.5). (7.9)}

For R and S the universal set 1s A x B:
{(3.4),(3.5),(3,9);
(9.4).05.9). (5.9).
(6, 4). (6, 5), (6.9).
(7,4), (7, 95), (7, 9)}
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a) intersection of R and S:

RN S={(xy)| xRy A xSy} RN S={3.5).7.9)}

b) union of R and S:
RUS={(xy)| xRy V xSy}
RuUS={(3.4).(3.5).(3.9).(5.9). (6.9).(7.9). (6.4). (7.5) }

¢) complementation:
~R = {(x.y) | ~(xRy)}

~-R=U-R
The universal set for R is the Cartesian product A x B
A={35,67}
B = {4.5.9}

U=AxB={(3.4). (3.5). (3.9). (5.4). (5.5). (5.9).
(6.4). (6.5). (6.9). (7.4). (7.5). (7.9)}

R = {(3.4). (3.5). (3.9). (5.9). (6.9), (7.9)}
U-R={(5.4). (5.5). (6.4), (7.4). (7.5)}

Note that forany twosets Aand B.A-B=A n~B

d) difference R-S,S -R:
R-S={(x.y) | xRy A~(xSy)}

R -S = {(3.4).(3.9).(5.9). (6.9)}
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2. Inverse relation

Let R: A—B be arelation from A to B. The inverse relation R : B—A
is defined as in the following way:

R':B-A {(vX)| (x.y) € R}

Thus xRy =yR x

Examples:
a. LetA={123}.B= {149}

Let R: B—A be the set {(1,1). (1.4). (2.2). (2.4). (3.3)
R : B—A is the relation {(1.1). (4.1). (2.2). (4.2). (

1
S
3.3)}
b. Let A= {1.2.3}. R: A—>A be the relation {(1.2). (1.3). (2,3)}
T R isthe relation: {(2.1). (3.1). (3.2)}
3. Composition of relations
Let X, Y and Z be three sets, R be a relation from X to Y, S be a relation from Y to Z.
A composition of R and S is a relation from X to Z :

S°R={(x.z)) x € X,z € Z. ye Y, such that xRy, and ySz}

Note that the operation is right-associative, i.e. we first apply R and then S

Example 1:

LetX.Y,and Z be the sets:
X413,
ey 4
A

o |\)
.&

N oo 'Jl

han o A S S

-
o J8
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LetR: X —>Y.and S : Y — Z. be the relation "less than":

R = {(1.2).(1.4).(1.8).(3.4).(3.8).(5.8)}
S = {(2.3).(2.6).(4.6)}

SR :{(1.3). (1.6). (3.6)}

The element (1.3) 1s formed by combining (1.2) from R and (2.3) from S
The element (1.6) is formed by combining (1.2) from R and (2.6) from S
Note. that (1.6) can also be obtained by combining (1.4) from R and (4.6) from S.

The element (3.6) is formed by combining (3.4) from R and (4.6) from S

4. Identity relation
Identity relation on a set A is defined in the following way:
I={(xXx)x €A}
Example:

Let A= {a. b, ¢}, = {(a.a). (b.b). (c.c)}

5. Problems:

LetA={1.2.3}.B={a.b}.C={x.v, z}
a. Let R = {(l.a). (2.b). (3.a)} and S = {(a.y).(a.2).(b.x).(b.2)}

FindS°R
b. Let R= {(1.a). (2.b). (3.a)} and S = {(a.y).(a.2)}

Find S°R
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a. LetR= {(l.a),(2.b)} and S = {(a.y). (b. y). (b.2)}
Find S°R

b. LetR = {(1.a). gl.b). (3.a)} and S = {(a.y).(a.z).(b.x).(b.2)}
FindR",$" and R ° 5

Solutions
LetA={1.2.3}.B={ab}.C={xy. 2]
a. Let R = {(1,a), (2.b), (3.2)} and S = {(a%).(2.2).b.x),(b.2)}
FindS°R
Solution: {(1.y). (1. ). (2x).2.2). (3:3). (3. 2))
b. Let R = {(1.a).(2.b). (3.a)} and S = {(a.y).(a,2)}
Find S °R Solution: {(1.y):(1, z). B.¥). (3, 2)}

c. LetR = {(1.a). (2.b)} and S = {(a.y). (b. ¥). (b.2)}
FindS°R

Solution: {(1.¥). (2.¥). (2. 2)}

d. LetR = {(1.a), (2.b). (3.a)} and S = {(a.y).(a.z).(b.x).(b.2)}
FindR?,S" and R ° S

Solution:
R = {(a.1). (b.2). (a.3)}
s! = {(v.a).(z.a).(x.b).(z.b)}

Rlest= {(.1), (¥.3). (x.2), (z.1), (z.3). (z.2)}
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Definitions:

Let R be a bimnary relation on a set A.

1. R s reflexive, iff for all x € A. (x.x) € R, 1.e. xRx 1s true.

o

R is symmetric, iff forall x, y e A, if (x,y) € R.then (y.x) e R
1.¢ xRy — yRx s true
3. Ristramsitive iff forallx. y.z e A, if(x.y) e Rand (v.z) e R .then (x.z) e R

i.e. (xXRy A yRz) - xRz is true

A. Reflexive relations

Let R be a binary relation on a set A.

R is reflexive, iff for all x € A, (x.x) € R. i.e. xRx is true.

1. Examples:

1. Equality is a reflexive relation
for any object x: X =x1s true.

2. "less then" (defined on the set of real numbers) 1s not a reflexive relation.
for any number x:  x < x is not true

3. "less then or equal to" (defined on the set of real numbers) is a reflexive relation
for any number x X <X 1S true

4. Reflexive and irreflexive relations

Compare the three examples below:
1. A={123.4}. Rl ={(1,1),(1.2).(2.2), (2.3). 3.3), (3.4). (4.4)}

2. A={123.4}.R2={(1.2), (2.3). (3.4). (4.1)}
3. A={123.4}.R3={(1.1). (1.2). (3.4), (4.9))

R1 1s a reflexive relation. R2?2R3 ?
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Definition: Let R be a binary relation on a set A.
R 1s irreflexive iff forall x € A. (x.x) ¢ R

Definition: Let R be a binary relation on a set A.

R is neither reflexive, nor irreflexive iff
there 1s x € A, such that (x. x) € R. and there 1s y € A such that (y.y) € R

Thus R2 1s ureflexive,. R3 1s neither reflexive nor urreflexive.
reflexive: for all x: xRx

ureflexive: for no x: xRx

neither: for some x: xRx 1s true, for some y: yRy 1s false
B. Symmetric relations

R is symmetric, iff forallx. v € A if (x.y) e R.then (v. x) e R

1.c xRy — yRx is true

This means: if two elements x and y are 1 relation R. then y and x are also in R. 1.e. if
xRy 1s true, yRx 1s also true.

1. Examples:

1. equality 1s a symumetnie relation: ifa=bthenb=a

2. "less than" is not a symmetric relation : if a <b is true then b <ais false
3. "sister" on the set of females 1s symmetric

4. "“sister" on the set of all human beings is not symmetric
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4. Symmetric and anti-symmetric relations

Compare the relations:

1. A= {l 2.3.4}. R1={(1.1), (1.2). (2.1),(2.3). (3.2). (4.4)}
2341 R2={(1.1). (1.2). (2.3). (4.4)}

3. A={1.234}.R3={(1.1).(1.2). (2.1) .(2.3). (4.4)}

(3
=
I
f-’-\

Definition: Let R be a binary relation on a set A.
R 1s anti-symmetric if forall x, ye A.x#y.if(x,¥) € R, then (yv,x) ¢ R.

Definition: R is neither symmetric nor anti-symmetric iff it is not symmetric and not
anti-symmetric.

Symmetric: xRy 2 yRx forallx and y
anti-symmetric: xRyand yRx 2 x=y
neither: for some x and y: xRy. and yRx

for others xRy i1s true, yRx 1s not true

C. Transitive relations

Let R be a binary relation on a set A.
R 1s transitive iff forall x. y.z € A if (x, y) € Rand (y.z) e R. then(x.z) e R

1e. (xXRy A yRz) - xRz 1s true

1. Examples:

1. Equality is a transitive relationa=b.b=c. hence a=c¢

2. "less than" 1s a transitive relationa <b. b <c, hencea<c

3. mother of(x.y) is not a transitive relation

4. sister(x.y) 1s a transitive relation

5. brother (x.y) 1s a transitive relation.

6. A={1.2.3.4} R={(1.1), (1.2). (1.3). (2.3), (4.3)} - transitive

7. A={1.2.3.4} R= {(1.1). (1.2). (1.3). (2.3). (3.4)} - not transitive
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Equivalence Relations. Partial Orders

Compvare the relations:
1. Equivalence relations

Definition: A relation R is an equivalence relation if and only if it 1s reflexive,
symmetric. and transitive.

Examples:

Let m and n be integers and let d be a positive integer. The notation
m=n (mod d)
is read "m is congruent to n modulo d".

The meaning is: the integer division of d into m gives the same remainder as the integer
division of d into n.

Consider the relation

R={(x.y)| x mod 3 = ymod 3}

4mod3=1 7mod3=1, hence (4.7) eR

The relation is reflexive: x mod 3 = x mod 3
symmetric:  1fx mod 3 = ymod 3. theny mod 3 = x mod 3
transitive: ifx mod 3 =y mod 3. and y mod 3 = zmod 3.

then x mod 3 =z mod 3

Consider the sets [x] = {y | yRx}

[0]= {0.3.69.12.....}
[1]={1.4.7.10.13.....}
[2]= {2.5.8.11,14,...)

From the definition of [x] it follows that
[0]=[3]=I[6] ...
[1]=[4]=...
[2]1=[5]=...
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Thus the relation R produces three different sets [0]. [1] and [2].
Each number 1s exactly in one of these sets. Thus {[0]. [1]. [2]} 1s a partition of the set
of non-negative integers.

2. Partial Orders

Definition: Let R be a binary relation defined on a set A, R 1s a partial order relation iff R
1s transitive and anti-symumetric

Examples:

1. Let A be a set, and P(A) be the power set of A. The relation 'subset of on P (A) is a
partial order relation
It 1s reflexive, anti-symmetric, and transitive

2. Let N be the set of positive integers. and R be a relation defined as follows:
(x.y) € Riff yis a multiple of x
e.g (3.12) eR while (3.4) € R
R 15 a partial order relation. It 1s reflexive, anti-symmetric, and transitive

Functions

1. Definition: A function f from a set X to a set Y is a subset of the Cartesian p1
XxY,fcXxY, such that
V x € X dye Y.such that (x,y) € f. and

yDef ARWR)el »>yl=y2
ie. if (x.yl) € fand (x.y2) € £, then yl =y2

Thus all elements in X can be found in exactly one pair of f.
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Notation: Let f be a function from A to B. We write

1. A—B
a€ A flay=b. beB

Examples:
A={123}, B={ab}

R = {(1.a),(2.a),(3.b)} 1s a function

Other definitions:
Let f be a function from A to B.

1. Domain of f: the set A
2. Rangeoff: {b:beBandthereisana € A, f(a)=Db}
3

Image of a under f: f(a)

A= {123}, B= {ab)

f={(L.a).(2.2).(3.b)}
domain: {1.2.3}.
range: {a.b}
aisimageof 1 underf: f(1)=a,.f(2)=..... {3)=......
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2. Functions with more arguments

Let A=Al X A2, and f be a function from A to B

We write: f(al.a2) =1

[fA=AlXA2X ... X An, we write f(al.a2.....an)=Db

al, a2, ..an: arguments of f
b: value of f

3. Functions of special interest

a. one-to-one
distinct elements have distinct inages
if al # a2, then f(al) # f(a2)

Example:
A={123}.B={ab.cd}

one-to-one function f= {(1.a). (2.c). (3.b)}
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b. onto

Every element in B is an image of some element in A
Example:

A={1.23},B={ab}

onto function f= {(1.a). (2.b). (3.b)}

c. bijection
f is bijection iff £ 1s a one-to-one function and f 1s a onto function
Example:
A={123}, B={ab,c}

bijection f= {(1.,a), (2.c), (3.b)}

4. Inverse function

If fis a bijection, I isa function. also a bijection.

' ={(y.x)| (x.y) e f}

Example:
A={123},B={ab,c}

(1), (2.¢), (3.b)}
@.1). (b.3).(c.2)}
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5. Composition of functions

Letf: A— B,g:B— C be two functions.
The composition h =g ° fis a function from A to C such that h(a) = g(f(a)

Example: Let f (x) =x +1. g(x) =x".
The composition h(x) = (x) ° g(x) = f(g(x)) = (x*)+1
The composition p(xX) = g(X) ° f(x) = g(f(x))= (x+1)*

When f is a bijection and f* exists. we have:
f'(fla))=a., f(f' (b))=b.a€ A beB.

Counting Principles

The Multiplication Principle

The Multiplication Principle

Let m € M. For a procedure of m successive distinct and independent steps with |
outcomes possible for the first step, n2 outcomes possible for the second step, ..., and
n, outcomes possible for the mth step, the total number of possible outcomes 1s

ny*n2---Mm

Addition Principle
The Addition Principle

For a collection of m disjoint sets with n; elements in the first, n; elements in the
second, . .., and n, elements in the mth, the number of ways to choose one element
from the collection is

ny4mny 44 ny
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POSSIBLE QUESTIONS

TWO MARKS
1. Define finite set .
2. Define partial order Relations.
3. Define Equivalence Relations
4. Define Equal function.
5. Define constant function.
SIX MARKS

1. Explain about types of relation with examples.
2. Explain types of sets .
3.Explain types of functions .
4. If A,B,C,D of four sets and f,g and h are 3 functions defined as
f:A— B g: B = C &h: C — A then prove that( hog)of=ho(gof).
5. If f:X— Y and A,B are two sunsets of Y , then prove that (a) f*(AUB) =f*(A) U f*(B)
b) F1(ANB) =FY(A) n F1(B)
6. If R is the set of real numbers, then show that the function ,f:R—R defined by f(x) 5x° -1 is one-one onto function.
7. Let A={1,2,3,4} ,B={a,b,c,d} and C={x,y,z}.Consider the function f:A—B and g:B—~C
defined by f={ (1,a),(2,¢),(3,b),(4,a)} and g={ (a,x),(b,x),(c,y),(d,y) }.Find the Composition
function (gof).
8.) Let A={1,2,3} and f,g,h and s be functions from A to A given by

f={(12),(23),E81}; 9={(12),(21),(33)};
h={(11), (2,2), (3,1) }ands={(1,1), (2,2), (3,3) }. Find f.,g, g.f, foh.g, g.s,
SoS, fos.
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UNIT -1l

Growth of Functions: Pigeonhole principle,permutation and combination,Mathematical Induction,Principle of
Inclusion and Exclusion.
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Growth of Functions

e We will use something called big-O notation (and some siblings described later) to
describe how a function grows.
o What we're trying to capture here is how the function grows.

o ... without capturing so many details that our analysis would depend on processor
speed, etc.

o ... without worrying about what happens for small inputs: they should always be
fast.

« For functions f{x) and g(x), we will say that “f{x) is O(g(x))” [pronounced “f{x) is
big-oh of g(x)”] if there are positive constants C and K such that

[fx)|<Clg(x)| for all x>k.

o The big-O notation will give us a order-of-magnitude kind of way to describe a
function's growth (as we will see in the next examples).

o Roughly speaking, the X lets us only worry about big values (or input sizes when

we apply to algorithms), and C lets us ignore a factor difference (one, two, or ten
steps in a loop).

o I might also say “f{x) is in Q(g(x))”, then thinking of O(g(x)) as the set of all
functions with that property.

«  Example: The function f{x)=2x3+10x is O(x3).

Proof: To satisfy the definition of big-O, we just have to find values for C and & that
meet the condition.

Let C=12 and k=2. Then for x>k,
|2x3+10x|=2x3+10x<2x3+10x3=|12x3|.1

« Note: there's nothing that says we have to find the best C and k. Any will do.
o Also notice that the absolute value doesn't usually do much: since we're worried
about running times, negative values don't usually come up. We can just demand

that X is big enough that the function is definitely positive and then remove the

« Now it sounds too easy to put a function in a big-O class. But...
« Example: The function f{x)=2x3+10x is not in O(x2).
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p

Proof: Now we must show that no C and k exist to meet the condition from the
definition.

For any candidate C and k, we can take x>k and x>0 and we would have to satisfy

|2x3+10x]|2x3+10x2x3x<Clx2|<Cx2<Cx2<C/2

So no such C and K can exist to let the inequality hold for large X.m
« Example: The function f{x)=2x3+10x is O(x4).

Proof idea: For large X, we know that X4>X3. We could easily repeat the ((x3) proof
above, applying that inequality in a final step.

« Example: The function f{x)=5x2—10000x+7 is O(x2).

Proof: We have to be a little more careful about negative values here because of the
“—=10000x" term, but as long as we take £>2000, we won't have any negative values

since the Sx2 term is larger there.

Let C=12 and k=2000. Then for x>k,
|5x2—10000x+7|=5x2—10000x+7<5x2+7x2=|12x2|.1
o It probably wouldn't take many more proofs to convince you that X» is always in O(xn)

but never in Q(xn-1).
o We can actually do better than that...

e The big-O operates kind of like a < for growth rates.
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Big-O Results

e Theorem: Any degree-n polynomial, f{X)=anxntan-1xn—1++--+aix+ao is in O(xn).
Proof: As before, we can assume that X>1 and then,

Ax)|=|anxntan—1xn—1+++-+arx+ao|<|an|xnt|an—1|xn-1++-+|ai|x+|ao[=xn(|an
[H|an—1|/x+--+a1|/xn—1+|aol/xn)<xn(|an|+|an-1|+---+|a1|+|aol).

Now, if we let C=7,|ai| and k=1, we have satisfied the definition for O(xn).m
e Theorem: If we have two functions fi(x) and f2(x) both O(g(x)), then fi(x)+£2(x) is

also O(g(x)).

Proof: From the definition of big-O, we know that there are C'1 and k1 that make
[f1(x)|<ClA(x)| for x>k1, and similar C2 and A2 for f2(x).

Let C=C1+C2 and k=max(k1,k2). Then for x>£k,
[fi(x)H2(x) |=lfi(x)H200)|<Crlg(x) [+ C2ig(x) = Clg(x)].
Thus, fi(x)+/2(x) is O(g(x)).m
«  The combination of functions under big-O is generally pretty sensible. ..

o Theorem: If for large enough X, we have f{xX)<g(x), then f{x) is O(g(x)).
= Sometimes the big-O proof is even easier.

o Theorem: If we have two functions f1(x) which is Q(g1(x)) and f2(x) which is

O(g2(x)). then f{x)*g(x) is O(max(|g1(x)|,|g2(x)])).

* When adding, the bigger one wins.
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o Theorem: If we have three functions f,2,/ where f{x) is O(g(x)) and g(x) is
O(h(x)), then f{x) is O(h(x)).
= Approximately: if /1 is bigger than @ and @ is bigger than f, then / is
bigger than f
o Corollary: Given fi(x) which is Q(g1(x)) and f2(x) which is O(g2(x)) and
g1(x) is O(g2(x)) then fi(x)+/2(x) is O(g2(x)).
= That is, if we have two functions we know a big-O bound for, and we add
them together, we can ignore the smaller one in the big-O.

o Theorem: If we have two functions f1(x) which is O(g1(x)) and f2(x) which is
O(g2(x)). then f{x)g(x) is O(g1(x)g2(x)).
* Multiplication happens in the obvious way.
o Theorem: Any constant value is is O(1).
* Aside: You will often hear a constant running time algorithm described as

o Corollary: Given j(x ) which is Q(g(x)) and a constant @, we know that aj(x )
is O(g(x)).

= That is, if we have a function multiplied by a constant, we can ignore the
constant in the big-O.
e All of that means that it's usually pretty easy to guess a good big-O category for a
function.

o Ax)=2xtx2is in O(max(|2x|,}x2|))=0(2x), since 2x is larger than X2 for
large X.
o flx)=110ax12+100x11—87 is in O(x12).

= Directly from the theorem about polynomials.

= For small x, the 100x11 is the largest, but as X grows, the 1100X12 term
takes over.

o Alx)=14x2xtxis in O(x2x).

o What is a good big-O bound for 17x4—12x2+log2x?
o We can start with the obvious:

17x4—12x2+1log2x is in O(17x4—12x2+log2x).

o From the above, we know we can ignore smaller-order terms:

17x4—12x2+1log2x 1s in O(17x4).
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o And we can ignore leading constants:

17x4—12x2+log2x is in O(x4).

o The “ignore smaller-order terms and leading constants™ trick is very useful and comes up
a lot.

Big-Q

e As mentioned earlier, big-O feels like < for growth rates.
o ... then there must be = and = versions.

« We will say that a function f{x) is (g(x)) (“big-omega of g(x)”) if there are positive
constants C and k such that when x>k,

[f)[=Clg(x)]-

o This is the same as the big-O definition, but with a = instead of a <.
e Example: The function 3x2+19x is Q(x2).

Proof: If we let C=3 and k=1 then for x>k,
|3x2+19x[>3x2+19x>3|x2|.

From the definition, we have that 3x2+19x is QQ(x2).m

e As you can guess, the proofs of big-Q are going to look just about like the big-O ones.
o We have to be more careful with negative values: in the big-O proofs, we could

just say that the absolute value was bigger and ignore it. Now we need smaller
values, so can't be so quick.

o But the basic ideas are all the same.

Theorem: f(x) is O(g(x)) iff g(x) is Q(f(x)).

Proof: First assume we have f{x) in O(g(x)). Then there are positive C and £ so that
when x>k, we know [f{x)|<C|g(x)|. Then for x>k, we have |g(x)[>1c|f{x)| and we
can use k and 1C as constants for the definition of big-Q.

Similarly, if we assume that g(x) is Q(f{x)), we have positive C and k so that when
x>k, we have |g(x)[>Cl|f(x)|. As above we then have for x>k, |[f(x)|<1c|g(x)|.m
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Big-O

We will say that a function f{x) is @(g(x)) (“big-theta of 2(x)") if f{x) is both

O(g(x)) and (g(x)).
o For a function that is ©(g(x)), we will say that that function “is order g(x).”
Example: The function 2x+x2 is order 2x.

Proof: To show that 2x+x2 is O(2x), we can take C=2 and k=4. Then for x>k,
|2x+x2[=2x+x2<2 - 2.
To show that 2x+x2 is £(2x), we can use C=1 and k=1. For x>k,
|2xtx2|=2x+x2>2x.
Thus, 2x+x2 is O(2x).m

The above theorem gives another way to show big-©: if we can show that_f(x) is
O(g(x)) and g(x) is O(f(x)), then f{x) is O(g(x)).
Theorem: Any degree-n polynomial with an#0, ﬂx)=a;:.x::+m:—lx;:—1+-- +aix+ao

with @n>0 is in @(x").
A few results on big-0©...
o Theorem: If we have two functions fl (x) which is @(g1(x)) and fz(x) which is

O(g2(x)). and g2(x) is O(g1(x)). then fi(x)+£2(x) is O(g1(x))).

= That is, when adding two functions together, the bigger one “wins”.

Theorem: If we have two functions f1(x) which is @(g(x)) and f2(x) which is
O(g(x)). then fix)+g(x) is O(g(x))).

Theorem: for a positive constant @, a function af{x) is @(g(x)) iff f{x) is
O(g(x)).

= That is, leading constants don't matter.
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o Corollary: Any degree-n polynomial, /(X)=anXntan—1Xn—11F++-+aix+ao
with @n>0 is in O(xn).
e What functions have a “higher” big-© than others is usually fairly obvious from a graph,

but “I looked at a graph™ isn't very much of a proof.
Y

Source: Wikipedia Exponential.svg

e The big-O notation sets up a hierarchy of function growth rates. Here are some of the
important “categories’:

n'2mn3n2nlognnn——\=n12logn1

o Each function here is big-O of ones above it, but not below.
o eg nlogn is O(n2), but n2 is not O(nlogn).
o So in some important way, 12 grows faster than nlogn.
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o Where we are headed: we will be able to look at an algorithm and say that one

that takes Q(n1ogn) steps is faster than one that takes ((712) steps (for large
input).

Asymptotic Notation
9.7.1 Little Oh

Definition 9.7.1. For functions f g : R — R, with g nonnegative, we say f is
asymptotically smaller than g, in symbols,

f(x) = o(g(x)).
iff
lim f(x)/g(x)=0.
X—>00

For example, 1000x'-® = o(x?), because 1000x'®/x2 = 1000/x°! and since
x ! goes to infinity with x and 1000 is constant, we have limy— o 1000x"?/x% =
0. This argument generalizes directly to yield

9.7.2 Big Oh

Big Oh is the most frequently used asymptotic notation. It is used to give an upper
bound on the growth of a function, such as the running time of an algorithm.

Definition 9.7.5. Given nonnegative functions f, g : R — R, we say that

f=0(g)
iff
limsup f(x)/g(x) < .

X—00

This definition'> makes it clear that
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Definition 9.7.12. Given functions f, g : R — R, we say that

f=9(g)
iff there exists a constant ¢ > 0 and an xq such that for all x = x,, we have
f(x) =z c|g(x)].

In other words, f(x) = Q(g(x)) means that f(x) is greater than or equal
to g(x), except that we are willing to ignore a constant factor and to allow ex-
ceptions for small x.

If all this sounds a lot like big-Oh, only in reverse, that’s because big-Omega is
the opposite of big-Oh. More precisely,

Little Omega

There is also a symbol called little-omega, analogous to little-oh, to denote that one
function grows strictly faster than another function.

Definition 9.7.14. For functions f, g : R — R with f nonnegative, we say that
J(x) = w(g(x))
iff
gx) _
x—=o0 f(x) o

In other words,
f(x) = w(g(x))

iff
g(x) = o(f(x)).
Definition 9.7.15.
f=0@) iff f=0(g) andg= 0(f).

The statement f = ©(g) can be paraphrased intuitively as “ f and g are equal
to within a constant factor.” Indeed, by Theorem 9.7. 13, we know that

f=0(g) iff f=0(g)and f = Q(g).
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Example: n? +n = O(n?)

Proof:
e Here, we have f(n) = n? + n. and g(n) = n°
e Notice that if n > 1. n < n® is clear.
e Also. notice thatif n > 1, n? < n” is clear.

e Side Note: In general. if a < b, then n® < n?
whenever n > 1. This fact 1s used often 1n these
types of proofs.

e Therefore,
n2+n<n®+nd=2n°
e We have just shown that
n?+n<2nforalln>1

e Thus. we have shown that n> + n = O(n?)
(by definition of Big-O. with ng = 1. and ¢ = 2))

Example: n° + 4n* = Q(n?)
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Proof:

e Here. we have f(n) = n® + 4n°. and g(n) = n*

e It 1s not too hard to see that if n = (0.

nd < nd + 4n?

e We have already seen that if n = 1.
n’ = n’
e Thus whenn > 1.

n? < n° < n + An?
e Therefore.

1n? < n + 4n? foralln > 1

e Thus. we have shown that n* + 4n® = (}(n?)

(by definition of Big-f{). withnpg = l.and c = 1.)

Example: n° + 5n + 7 = O(n?)
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Proof:
e Whenn > 1.

) - - - 9 . 9 - 2
n? +5n+7<n%+5n2+ T2 < 13n2

e Thus. whenn > 1
2 . 2, = i
In"<n"+5n+7<13n

Thus, we have shown that n? + 5n + 7 = O(n?)
(by definition of Big-O_withng = 1. ¢y = 1, and
c = 13)

Show that 3n° + 3n = ©(n?)

Proof:
e Notice thatif n > 1.

X & -
- 4+ IM
o B

-—

| -
5
e Thus.

—n? + 3n = 0O(n?)

-—

e Also. whenn = 0,
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Loy o B
— - 3n

- -

e So 1
3712 + 3n = Q(n?)

-

e Since %n"’ +3n = O(n?) and %n"’ +3n = Q(n?),

1 - , _
= + 3n = 0(n")

B
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Show that (nlogn — 2n + 13) = Q(nlogn)

Proof: We need to show that there exist positive
constants ¢ and ng such that

O<cnlogn <nlogn —2n+ 13 forall n > ny.

Since nlogn —2n < nlogn —2n + 13,

we will instead show that
cnlogn < nlogn — 2n,

which 15 equivalent to

2

c<1

— ., whenn > 1.
log n

If n > 8, then 2/(logn) < 2/3, and picking ¢ = 1/3
suffices. Thus if ¢ = 1/3 and ng = 8, then for all
n = ng., we have
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D<enlogn <nlogn—2n<nlogn —2n+ 13.

Thus (nlogn — 2n + 13) = Q(nlogn).

Show that 1n? — 3n = O(n?)

Proof:

e We need to find positive constants ¢y, ¢, and ng
such that

. 1 . ;
0 < (‘1112 < —n®*—-3n < (.'-2712 forall n = ng

b

e Dividing by n°, we get

R S
D€ €£=—— <
2 n
e 5%—%holdsforn >10and ¢, =1/5
e 35— 2 < crholdsforn > 10and ¢ = 1.

e Thus. ifcy = 1/5. e2 = 1. and ng = 10, then for
alln > ng,

. § ,
0 < (:17'1.'2 < _—nz —-3n < c~2712 forall n > nyp.

~

k

Thus we have shown that 1n? — 3n = O(n?).
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Summary of the Notation

® f(n)=0(g(n))= f=g
* f(n)=(g(n))=f=g
* f(n)=0(gn))= f=g

e It 1s important to remember that a Big-O bound 1s
only an upper bound. So an algorithm that 1s
O(n?) might not ever take that much time. It may
actually run in O(n) time.

e Conversely, an {) bound 1s only a lower bound. So

an algorithm that 1s (2(n log n) might actually be
o(27").

e Unlike the other bounds. a ©-bound 1s precise. So.
if an algorithm is ©O(n?), it runs in quadratic time.
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POSSIBLE QUESTION
TWO MARKS

1. Prove that the function f(x) = 2x3+10x is O(x°).
2. Prove that the function 3x*+19x is Q(x°).

3. Prove that n” + 5n + 7 = @ (n?).
4. Evaluate 29 (5k + 8).

k= (2n+1)?2
5. Evaluate the limit n tends to infinity llllloém
SIX MARKS

1.Show that (nlogn-2n+ 13) n logn).
2.Evaluate the sum Z 1( + 1C)’

3.Evaluate the sum Z}fzgk +1)
4.Evaluate the sum -5-4-3-2-1+0+1+2+3+4+,...+30 ;2

-~ o limT Y (k)
5.Evaluate the limit n tends to infinity =1

n—oon n
6. The function f(x)=2x3+10x is o(x").
7.Evaluate the limit n tends to infinity lim Z” Y
n—oon k=14,

8.Show that if we have two functions fi(x) and f,(x) both O(g(x)), then fi(x)+f2(x) is also

0
(Zg(r)l()) 4 4n (n+1)(2n+1)(3n%+3n—1)

_ ind A?
9.1f k=1 k = B then find A?
10.Show that 2—3n =0 (n).
x 2dx yn A( kA)Z
11. The integral [, is computed as the limit of the sum “—1, " ‘What value of A

must appear in the sum ?

Prepared by:].JANSI ,Asst Prof,Department of Mathematics ,KAHE.

Page 35/18




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME:DISCRETE STRUCTURES
COIIRSE CODE- 19CA11202 LINIT- 11 BATCH-2019-2022

Prepared by:].JANSI ,Asst Prof,Department of Mathematics ,KAHE. Page 36/18




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I BCA COURSE NAME:DISCRETE STRUCTURES
COIIRSE CODE- 19CA11202 LINIT- 111 BATCH-2019-2022

UNIT -1

Recurrences: Recurrence relations, generating functions, linear recurrence relations with constant
coefficients and their solution.
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Solving the Recurrence

Claim 10.1.1. T,, = 2" — | satisfies the recurrence:

) =1
Tn =2Tw—1+1 (forn=2)

Proof. The proof is by induction on z#. The induction hypothesis is that 7,, =
2" — 1. Thisis true forn = 1 because 73 = | = 2! — 1. Now assume that
Tn—1 = 2"~ — 1 in order to prove that 7, = 2" — 1, where n > 2:

Tn == 2Tn—| + ]

=90 = D=1
=21

Linear Recurrences

In general, a homogeneous linear recurrence has the form

fmy=a1fm—D+afn—-2)+...+agf(n—d)

where a;,az,..., a4 and d are constants. The order of the recurrence is d. Com-
monly, the value of the function f is also specified at a few points; these are called
boundary conditions. For example, the Fibonacci recurrence has order d = 2 with
coefficients a; = a2 = 1 and g(n) = 0. The boundary conditions are f(0) = 1
and f(1) = 1. The word “homogeneous” sounds scary, but effectively means “the
simpler kind”. We’ll consider linear recurrences with a more complicated form
later.

Theorem 10.3.1. If f(n) and g(n) are both solutions to a homogeneous linear
recurrence, then h(n) = sf(n) + tg(n) is also a solution for all s, t € R.

Proof.
h(n) =sf(n)+tg(n)
=s(ayfn—1D)+...+agf(n—=d))+t(agh—1)+...+ayg(n—d))

=a(sfn—D+rgmn—-1)+...+ag(sf(n—d)+1g(n—d))
=arhin—1)+...+agh(n—-d)
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Solving First-Order Recurrences Using Back Substitution

Theorem 2. (Solution of First-Order Recurrence Relations) The solution of

cTn—1)+ f(n) forn=k

Fla)= fik) forn=k

where ¢ is a constant and f is a nonzero function of n forn > k is
n
Ty = "' f(l)
I=k

Motivation for the Proof. First, use back substitution 10 decide what the general form
of the selution might be, and then prove by induction that this is the solution:

T'n)=cTn—-1)+ f(n)
=cleT{n-2)+ f(n=1)) + f(n)
=c*Tn—2+cftn— 1)+ f(n)
=T =3+ fln—2)+cfn—1)+ fin)
=T =3+ fin—2 +efin—1)+ fln)

Using back substitution one more time gives

T)=c[cTh-4+ fin—3)]+ E c"_{f(f)
—n2

=c'Ta—-H+S fn=3+ Y ")
I=p=2

n

=T —4) + Z " F ()

l=n—3

If back substitution is continued until the argument of T is k—that is, forn — k steps—then
the expression for T (n) becomes

n

Tin)=c"*Tn —(n—k) + E e 1)

I=n=k+]

=" TR+ Y MO

{=m—k+1




KARPAGAM ACADEMY

A IDQE NIARAC. N
CUURSCE NAIVIE.UI

l— ST OTHDRER
S TRUCTURES

OF HIGHER EDUCATION
T BATCH-2019-2022

€ —BEC
COURSE CODE: 19CAU202 UNIT: 111

Prepared by:M.SANGEETHA,Asst Prof,Department of Mathematics Page 5/14




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASSHBCA COURSENAME:D1 E-STRUCTURES
COURSE CODE: 19CAU202 UNIT: 1 BATCH-2019-2022
KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I B.SC(IT) COURSE NAME:DISCRETE STRUCTURES
COURSE CODE: 191TU202 UNIT: 11 BATCH-2019-2022
Since T (k) = f(k), replace the reference to T on the right-hand side of the equation,
getting

R

Tm=c""*f&y+ Y "fo)

[=n—k+1
R
—_ Z Cn_’f(!)
{=n=k

Proof. By induction, show that

To)=Y ' i)
1=k

letng=k letT =[neWN:n>kand T(n)is asolution}.
(Base step) First, show that

"

2w

[k
is a solution forn = k so thatk e 7.

k
Yo =t = fio =T
=k
(Inductive step) Now, assume that T'(n) is given by this expression for n > ny, that is,
Tn)= ZL& <™ £ (1. Now prove that T'(n + 1) is also given by this expression: In this
case, prove that T(n + 1) = 3 ;7 e g 1),

T+ 1)y=cT(n)+ f(n+1) (Definition of recurrence relation)

C‘Z L f(+ f(mn+1) (Inductive hypothesis)
I=k

=Y O+ fr+ )
=k
n+1

— Zcﬂ‘-f-l—lff(’}
1=k

This provesn + 1 € T.
By the Principle of Mathematical Induction, 7 = [# € N : n > k}. |
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Example 1, Solve

Tin— 1 +n? forn>1

Tin)= {0 forn =0

Solution. In the general formula, f(n) = n? forn > 0,¢ =1, and k = 0. Since T(0) =
f10), by Corollary | the solution is

T(n) = ZF @+ Dns(n4 1)
See Theorem 9(b) in Section 7.10 for a derivation of this formula. 1]

Example 2. Solve

T(n) = 3Tn—=14+4 forn=1
=14 forn =0

Solution. In the general formula, f(n) =4 forn = O, ¢ = 3, and k = (). By Corollary 2,
the solution is

3"+I—l
el

T'in) =4

- anl
=2-(3" 1) &

Rules for Solving Second-Order Recurrence Relations

Solving Second-Order Homogeneous Recurrence Relations
with Constant Coefficients Using the Complementary Equation
with Distinct Real Roots
H(m + AH(n—1) + BH(n - 2) = 0,

Hiny) = D, and H(ny) = E.

STEP 1: Assume f(n) = ¢ is a solution, and substitute for H (n), vielding the char-
acteristic equation

C‘2+AC+B=0

STEP 2: Find the roots of the characteristic equation: ¢; and ¢7. Use the quadratic
formula if the equation does not factor. If ¢ s ¢z, then the general solution is

S(n) = AcT + Bcel
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STEP 3: Use the initial conditions to form the system of equations
Hin)=D= Ac’l" + Bch?
H(nz) = E = Ac|? + Bcy’

STEP 4: Solve the system of equations found in step 3, getting Ay and By as the two
solutions. Form the particular solution

H(n) = Agc1” + Byed”

Example 1. Solve the recurrence relation a; — 6a,_} — 7a,_2 = 0 for n > 5 where
a3 = 344 and ag = 2400,

Selufion. Form the characteristic equation and then factor it:
(."2 — 6(‘ == 7 — 0
c=1T7, —1

Form the general solution of the recurrence relation a, = A7" + B(—1)", and solve
the system of equations determined by the boundary values a3 = 344 and a4 = 2400 to get

the particular solution:
a3 = AT + B(-1)?
ag = ATV + B(—1)*
Now, substituting 344 and 2400 for a3 and as gives

344 = 343A - B
2400 = 2401A+ B

Prepared by:M.SANGEETHA,Asst Prof,Department of Mathematics Page 10/14




KARPAGAM ACADEMY OF HIGHER EDUCATION

ELASSHBCA COURSENAME:D1 E-STRUECTURES
COURSE CODE: 19CAU202 UNIT: 111 BATCH-2019-2022

Prepared by:M.SANGEETHA,Asst Prof,Department of Mathematics Page 11/14




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASSHBEA COURSE NAME: E-STRUETURES

COURSE CODE: 19CAU202 UNIT: H1 BATCH-2019-2022
KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASSI TB.SC(IT) COURSE NAME:DISCRETE STRUCTURES

COURSE CODE: 191TU202 UNIT: 1 BATCH-2019-2022

Adding the two equations gives

2744 = 2744 A
1=A

It follows that B = —1. Therefore, a, = 7" + (—1)**! for n > 3 is the particular
solution. |

Substitution Method

e Guess the form of solution and use induction to find constants

e Determine upper bound on the recurrence
W = QTl“n_J +n

Guess the solution as: T, = O(nlgn)

Now, prove that T}, < enlgn for some ¢ > 0
Assume that the bound holds for | % |
Substituting into the recurrence

In < 2fc [%J lg( \\%J )) +n

cenlg (%) +n
enlgn —enlg2 4+ n

A

enlgn —en +n

< enlgn Ye>1
Boundary condition: Let the only bound be T, =1

Ac | T £cllgl =0
Problem overcome by the fact that asymptotic notation requires us to prove

T, <cnlgn for n > ng

Include T3 and T3 as boundary conditions for the proof
a5 = T3==8

Choose ¢ such that T, < 2lg2 and T35 < 31g 3
True for any ¢ > 2
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- If a recurrence is similar to a known recurrence, it is reasonable to guess a similar solution
1= QT& |+

I n s large, difference between T g and T[%J 417 15 relatively small

~ Prove upper and lower bounds on a recurrence and reduce the range of uncertainty.

Start with a lower bound of T,, = {)(n) and an initial upper bound of T, = O(n?). Gradually lower the upy

bound and raise the lower bound to get asymptotically tight solution of T;, = 6(nlgn)

e Recursion trees

— Recurrence

Assume n to be an exact power of 2.

T, = n?+2T;

= n®+2 ((g)- - ‘ZT%)

[l
=
X]
t
| 3
U —
7,
=) S
N
(X
_+
| S\
—~
w2
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The values above decrease geometrically by a constant factor.

Recurrence

Tn=Tg + T +n

9 2
n—(‘i)n—o( ) n— -1

Longest path from root to a leaf

wl o
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(3’)" n =1 when k = logg n, k being the height of the tree
Upper bound to the solution to the recurrence — nlogg n, or O(nlogn)

The Master Method

e Suitable for recurrences of the form
I-n = (lT.’E‘. i f(")

where @ > 1 and b > 1 are constants, and
f(n) is an asymptotically positive function

o For mergesort, a=2,b=2, and f(n) = B(n)

¢ Master Theorem

Theorem 2 Leta > 1 and b > 1 be constants, let f(n) be a function, and let T,, be defined on the nonnegative
integers by the recurrence

= aT'- + f(n)
where we interpret § to mean either ['—b'J %‘l Then Ty, can be bounded asymptotically as follows

1. If f(n) = O(n'*5 %) for some constant € > 0, then T, = O(n'*Es*)
2. If f(n) = ©(n'o%s9), then T, = ©(n'o8s%1gn)

3. If f(n) = Q(n]°“°°“‘ for some constant € > 0, and if af (}) < cf(n) for some constant ¢ < 1 and all
sufficiently large n, then T,, = ©(f(n))

— In all three cases, compare f(n) with nlogy
— Solution determined by the larger of the two

+ Case 1: n'& > f(n)
Solution T}, = O(nlo&s )

+ Case 2. n'*®% = f(n)
Multiply by a logarithmic factor
Solution T}, = O(n'&* lgn) = O(f(n)lgn)

+ Case 3: f(n) > n'ons®
SOlUtion Tn - e(f(n))

~ In case 1, f(n) must be asymptotically smaller than n'“% ¢ by a factor of n* for some constant ¢ > 0

~ In case 3, f, must be polynomially larger than n'*%*“ and satisfy the “regularity” condition that af(%) <cf(n)
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e Using the master method

— Recurrence
I, =9T3 +n
a=90=3, fin)=n
n'oB @ = plogs 9 = Q(n?)
f(n) = O(n'*%29-¢), where e = 1
Apply case 1 of master theorem and conclude T}, = ©(n*)

— Recurrence
T =Ta2 +1

K 3

a=1, b——-%, f(n)=1
nlogsd — nlogg =0 = |

f(n) = 6(_-121"‘*5”.) = 6(1)
Apply case 2 of master theorem and conclude T;, = O(lgn)

— Recurrence
T, =3T3 +nlgn

a=3,b=4, f(n)=nlgn

nlogb a — nl(-g_, - ()(’1()_7!]:{)

f(n) = Q(n'*823+¢) where € ~ 0.2

Apply case 3, if regularity condition holds for f(n)
For large n, af(%) = 33 1g(F
Therefore, T,, = O(nlgn)

) < 3nlgn=cf(n) forc=3%
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POSSIBLE QUESTIONS
TWO MARKS

1. Define characteristics equation.

2.Solvea, — 4a,_1 =0forn > 2withagy =1,a; = 1.

3. State Fibonacci sequence.

4.Write the methods for solving recurrence.

5. If the sequence a,, = 3.2™,n > 1 then find the corresponding recurrence relation.

SIX MARKS

1.Solve the recurrence relation a, = a,.1+2a,, with a,=2 and a,;=7.

2. Solve the Fibonacci recurrence a,, = a,_1 + a, _, with the initial condition ay = a; = 1.
3. Solve the recurrence relation a,+2-6a,+1+9a,=0 with a;=1 & a; = 4,

4. Solve the Recurrence Relation a, =6a,.; -9a,., with a,=1 and a;=6.

5. Find the recurrence relation which satisfies yn-A 3"+B(-4)"

7. Solve the recurrence relation a,, — 7a,,_1 + 10an_2 = 0 forn > 2 given that ay; = 10,
a; = 41 using generating function.

8. Solve the recurrence relation a,.,-an+1-6a,=0 given a,;=2 and a;=1 using generating functions.
9. Using the generating function, solve the recurrence relation a, =3a,;, for n>1 with a,=2.
10. Using generating function, solve the recurrence relation a, =3a,.; +1 for n> 1 with a,=1

Prepared by:M.SANGEETHA,Asst Prof,Department of Mathematics Page 26/14




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:I BCA COURSE NAME:DISCRETE STRUCTURES
COURSE CODE:19CAU202 UNIT: IV BATCH-2019-2022

UNIT -1V

Graph Theory : Basic terminology, models and types, multigraphs and weighted graphs, graph
representation, graph isomorphism, connectivity, Euler and Hamiltonian Paths and circuits, Planar
graphs, graph coloring, trees, basic terminology and properties of trees, introduction to Spanning trees
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INTRODUCTION : GRAPH THEORY

Graph theory is used to analyses problems of combinatorial nature that
arise in computer science, operations research , physical science and economics .
The term graph is familiar to you because it has been used in the context of
straight lines and linear in equalities .In this chapter, first we will combine the
concepts of graph theory with digraph of a relation to define a more general type
of graph that has more than one edge between a pair of vertices. Second , we will
identify basic components of a graph ,its features any many applications of
graphs.

Definitions and Examples

Definition: A graph G = (V.E) is a mathematical structure consisting of two
finite sets V and E. The elements of V are called Vertices (or nodes) and the
elements of E are called Edges. Each edge

is associated with a set consisting of either one or two vertices called its
endpoints.

The correspondence from edges to endpoints is called edge-endpoint
function. This function is generally denoted by y. Due to this function, some
author denote graph by G = (V. E. 7).

Definition: A graph consisting of one vertex and no edges is called a trivial
graph.

Definition: A graph whose vertex and edge sets are empty is called a null
graph.

Definition: An edge with just one end point is called a loop or a self loop.
Thus, a loop is an edge that joins a single endpoint to itself.

Definition: An edge that is not a self-loop is called a proper edge.
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Definition: If two or more edges of a graph G have the same vertices, then
these edges are said to be
parallel or multi-edges.

Definition: Two vertices that are connected by an edge are called adjacent.
Definition: An endpoint of a loop is said to be adjacent to itself.

Definition: An edge is said to be incident on each of its endpoints.

Definition: Two edges incident on the same endpoint are called adjacent
edges.

Definition: The number of edges in a graph G which are incident on a vertex is
called the degree of

that vertex.

Definition: A vertex of degree zero is called an isolated vertex.

Thus, a vertex on which no edges are incident is called isolated.

Definition: A graph without multiple edges (parallel edges) and loops is
called Simple graph.

Notation: In pictorial representations of a graph, the vertices will be denoted
by dots and edges by line segments.

€5
] 2
S|
or €3 €4
3 4
€2
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The edges e, and ez are adjacent edges because they are incident on the same
vertex B.

2. Consider the graph with the vertices A, B , C, D and E pictured in the figure
below.

D ok
In this graph, we note that
No. of edges =5

Degree of vertex A

Il
Fe

Degree of vertex B =

(9]

Degree of vertex C = 3

Degree of vertex D = 1
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Degree of vertex E =0

Sum of the degree of vertices=4+2+3+1+0=10
Thus, we observe that

5
D, deg(vi)=2e ,
i=1

where deg(v;) denotes the degree of vertex v; and e denotes the number of
edges.

Euler’s Theorem: (The First Theorem of Graph Theory): The sum of the
degrees of the vertices of a graph G is equal to twice the number of edges
in G.

(Thus, total degree of a graph is even)

Proof: Each edge in a graph contributes a count of 1 to the degree of two
vertices (end points of

the edge), That is, each edge contributes 2 to the degree sum. Therefore the
sum of degrees of the

vertices is equal to twice the number of edges.

Corollary: There must be an even number of vertices of odd degree in a given
graph G.
Proof: We know, by the Fundamental Theorem, that

n

D deg(vi) = 2 x no. of edges

i=1
Thus the right hand side is an even number. Hence to make the left-hand side
an even number there
can be only even number of vertices of odd degree.

Theorem: A non-trivial simple graph G must have at least one pair of vertices
whose degrees are
equal.

Proof: Let the graph G has n vertices. Then there appear to be n possible
degree values, namely O, 1. .....n — 1. But there cannot be both a vertex of
degree 0 and a vertex of degree n — | because if there is a vertex of degree 0
then each of the remaining n — 1 vertices is adjacent to atmost n—2 other
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vertices. Hence the n vertices of G can realize atmost n—1 possible values for
their degrees. Hence the pigeonhole principle implies that at least two of the
vertices have equal degree.

Definition: A graph G is said to simple if it has no parallel edges or loops. In a
simple graph, an edge with endpoints v and w is denoted by {v, w}.
Definition: For each integer n > 1, let D, denote the graph with n vertices and
no edges. Then D, is called the discrete graph on n vertices.

For example, we have

° ® @ and ® ® @ ® @

D; Ds

Definition: Let n > 1 be an integer. Then a simple graph with n vertices in
which there is an edge between each pair of distinct vertices is called the
complete Graph on n vertices. It is denoted by K,.

For example. the complete graphs K,, K3 and K4 are shown in the
figures below:

\,7 l \‘7 " \r l \," ~ \'l ] \,' )

Definition: If each vertex of a graph G has the same degree as every other
vertex, then G is called a regular graph.
A K-regular graph is a regular graph whose common degree is k.

But this graph is not complete because v, and v4 have not been connected
through an edge. Similarly. v; and v3 are not connected by any edge.
Thus

A Complete graph is always regular but a regular graph need not

be complete.

Prepared by:].JANSI,Assistant professor,Department of Mathematics/KAHE. Page 6/26



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:1 BCA COURSE NAME:DISCRETE STRUCTURES

COURSECODET9CAD262 ONTT 1V BATCH-201Y9-2022

Definition: If G is a simple graph, the complement of G, (Edge
complement), denoted by G” or G° is a graph such that

(i) The vertex set of G’ is identical to the vertex set of G, thatis Vg = Vg

(ii) Two distinct vertices v and w of G” are connected by an edge if and only if
v and w are not connected by an edge in G.
For example. consider the graph G

Va
Vi V3
V4
G

Then complement G” of G is the graph

oV,

Vi V3

V4
GI

Definition: The property of mapping endpoints to endpoints is called
preserving incidence or the

continuity rule for graph mappings.

As a consequence of this property, a self-loop must map to a self-loop.

Thus, two isomorphic graphs are same except for the labeling of their vertices
and edges.
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Walks, Paths and Circuits

Definition: In a graph G. a walk from vertex v, to vertex v, is a finite alternating
sequence:
{vo, €1, V1, €2,.....,Vn-1, €n, Vn}
of vertices and edges such that v;_; and v; are the endpoints of e;.
The trivial walk from a vertex v to v consists of the single vertex v.
Definition: In a graph G, a path from the vertex vy to the vertex v, is a walk
from vg to v, that does not contain a repeated edge.
Thus a path from vy to v, is a walk of the form
{Ni0; 81, V1589, Voo Vit B Varks
where all the edges ey are distinct.
Definition: In a graph, a simple path from vg to v, is a path that does not contain a
repeated vertex.
Thus a simple path is a walk of the form
{Vo. €1:5V15: €95 V2suwnwaes Vizls: Ens Vn},

where all the e; are distinct and all the v; are distinct.

Definition: A walk in a graph G that starts and ends at the same vertex is
called a closed walk.
Definition: A closed walk that does not contain a repeated edge is called a
circuit.
Thus, closed a closed path is called a circuit (or a cycle) and so a circuit is a
walk of the form

{Vo. €15 V15825V s aumas ,Vn-1. €n. an §

where vg = v, and all the e; are distinct.
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CONNECTED AND DISCONNECTED GRAPHS :

Definition: Two vertices vy and v, of a graph G are said to be connected if and
only if there is a walk from v, to v.

Definition: A graph G is said to be connected if and only if given any two
vertices vy and v, in G, there is a walk from v, to v,.

Thus, a graph G is connected if there exists a walk between every two
vertices in the graph.
Definition: A graph which is not connected is called Disconnected Graph.

Example: Which of the graph below are connected?
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Definition: If a graph G is disconnected. then the various connected pieces of
G are called the connected components of the graph.

Example: Consider the graph given below:

Vs
€4

Ve

This graph is disconnected and have two connected components:

€]
H; : vy e %)
with vertex set {vy. vz, v3} and edge set {e;, e2. e3}
(S)) €3
.\.’3
Hz : €4 LA
T es with vertex set {v4, Vs, v} and edge set {ey, es, €¢}.
(&1'3 LAYS

Solution: The connected components are :

and
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Example: Find the number of connected components in the graph

XVX

Eulerian Paths And Circuits

Definition: A path in a graph G is called an Euler Path if it includes every
edge exactly once.

Definition: A graph is called Eulerian graph if there exists a Euler circuit for

that graph.

Definition: A circuit in a graph G is called an Euler Circuit if it includes
every edge exactly once. Thus, an Euler circuit (Eulerian trail) for a graph G is
a sequence of adjacent vertices and edges in G that starts and ends at the same

vertex, uses every vertex of G at least once, and uses every edge of G exactly
once.
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Theorem 1. If a graph has an Euler circuit, then every vertex of the graph has
even degree.

Proof: Let G be a graph which has an Euler circuit. Let v be a vertex of G. We
shall show that degree of v is even. By definition, Euler circuit contains every
edge of graph G. Therefore the Euler circuit contains all edges incident on v.
We start a journey beginning in the middle of one of the edges adjacent to the
start of Euler circuit and continue around the Euler circuit to end in the middle
of the starting edge. Since Euler circuit uses every edge exactly once, the edges
incident on v occur

Starting point

in entry / exist pair and hence the degree of v is a multiple of 2. Therefore the
degree of v is even. This completes the proof of the theorem.

We know that contrapositive of a conditional statement is logically equivalent
to statement. Thus the above theorem is equivalent to:

Theorem:2. If a vertex of a graph is not of even degree. then it does not have
an Euler circuit.

or
“If some vertex of a graph has odd degree. then that graph does not have an

Euler circuit™.

Example: Show that the graphs below do not have Euler circuits.
(a)

Vi Vs

V3 V4
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V2
Vi
\/'4 \f3

Solution: In graph (a). degree of each vertex is 3. Hence this does not have a
Euler circuit.
In graph (b), we have

deg(va)=3

deg(vs) =3
Since there are vertices of odd degree in the given graph. therefore it does not
have an Euler circuit.

are graphs in which each vertex has degree 2 but these graphs do not have
Euler circuits since there is no path which uses each vertex at least once.
Theorem 3. If G is a connected graph and every vertex of G has even degree,
then G has an Euler circuit.

Proof: Let every vertex of a connected graph G has even degree. If G consists
of a single vertex, the trivial walk from v to v is an Euler circuit. So suppose G
consists of more than one vertices. We start from any verted v of G. Since the
degree of each vertex of G is even. if we reach each vertex other than v by
travelling on one edge, the same vertex can be reached by travelling on another
previously unused edge. Thus a sequence of distinct adjacent edges can be
produced indefinitely as long as v is not reached. Since number of edges of the
graph is finite (by definition of graph), the sequence of distinct edges will
terminate. Thus the sequence must return to the starting vertex. We thus obtain
a sequence of adjacent vertices and edges starting and ending at v without
repeating any edge. Thus we get a circuit C.

Prepared by:].JANSI,Assistant professor,Department of Mathematics/KAHE. Page 13/26



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:1 BCA COURSE NAME:DISCRETE STRUCTURES

COURSE-CODE-19CAT262 ONTT 1V BATCH-2019-2022
If C contains every edge and vertex of G, then C is an Eular circuit.
If C does not contain every edge and vertex of G, remove all edges of C from
G and also any vertices that become isolated when the edges of C are removed.
Let the resulting subgraph be G". We note that when we removed edges of C,
an even number of edges from each vertex have been removed. Thus degree of
each remaining vertex remains even.

Further since G is connected, there must be at least one vertex common to both
C and G’. Let it be w(in fact there are two such vertices). Pick any sequence of
adjacent vertices and edges of G” starting and ending at w without repeating an
edge. Let the resulting circuit be C’.

Join C and C’ together to create a new circuit C”. Now, we observe that if we
start from v and follow C all the way to reach w and then follow C” all the way
to reach back to w. Then continuing travelling along the untravelled edges of
C, we reach v.

: /’\ oo

<
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Theorem 5. If a graph G has more than two vertices of odd degree. then there
can be no Euler path in G.

Proof : Let vy. vz and v3 be vertices of odd degree. Since each of these vertices
had odd degree, any possible Euler path must leave (arrive at) each of vy, va, v3
with no way to return (or leave). One vertex of these three vertices may be the

beginning of Euler path and another the end but this leaves the third vertex at
one end of an untravelled edge. Thus there is no Euler path.

(Graphs having more than two vertices of odd degree).

Theorem 6. If G is a connected graph and has exactly two vertices of odd
degree, then there is an Euler path in G. Further, any Euler path in G must
begin at one vertex of odd degree and end at the other.

Proof: Let u and v be two vertices of odd degree in the given connected graph
G.

u

Vv
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If we add the edge e to G, we get a connected graph G” all of whose vertices
have even degree. Hence there will be an Euler circuit in G”. If we omit e from
Euler circuit, we get an Euler path beginning at u(or v) and edning at v(or u).

Examples. Has the graph given below an Eulerian path?

Ae 2 C
D
Solution: In the given graph.
deg(A) =1

deg(B) =2

deg(C)=2

Thus the given connected graph has exactly two vertices of odd degree. Hence,
it has an Eulerian path.

If it starts from A(vertex of odd degree), then it ends at D(vertex of odd
degree). If it starts from D(vertex of odd degree), then it ends at A(vertex of
odd degree).

But on the other hand if we have the graph as given below :

e] B e4 .C
€2
D
€3

Ae
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then deg(A) = 1, deg(B) = 3 deg(C) = 1. degree of D = 3 and so we have four
vertices of odd degree. Hence it does not have Euler path.

Example: Does the graph given below possess an Euler circuit?

Solution: The given graph is connected. Further
deg(vy) =3
deg(vy) =4
deg(v3) =3
deg(v4) =4
Since this connected graph has vertices with odd degree. it cannot have Euler

circuit. But this graph has Euler path, since it has exactly two vertices of odd
degree. For example, vie; Va@7 V4€e V2 €1 V1 €4 V4€3 V3€5 V]

Example:  Consider the graph

V4
Here, deg(vy) = 4. deg(va) = 4, deg(v3) = 2, deg(v4) = 2. Thus degree of each
vertex is even. But the graph is not Eulerian since it is not connected.
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Example 4:. The bridges of Konigsberg: The graph Theory began in 1736
when Leonhard Euler solved the problem of seven bridges on Pregel river in
the town of Konigsberg in Prussia (now Kaliningrad in Russia). The two
islands and seven bridges are shown below:

o
Bridge
D

Bridge

Bridge—

\

"~ Bridge

. Bridge
<

C

Bridge

Bridge

\ -
~ River
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Thus the graph of the problem is

A(island)

(side of the river) C(side of the river)

B(Island)
(Euler’s graphical representation of seven bridge problem)

The problem then reduces to

“Is there any Euler’s path in the above diagram?”.

To find the answer, we note that there are more than two vertices having odd
degree. Hence there exist no Euler path for this graph.

Definition: An edge in a connected graph is called a Bridge or a Cut Edge if
deleting that edge creates a disconnected graph.

In this graph, if we remove the edge es, then the graph breaks into two
Connected Component given below:

€1

vie® V2
€5

Vs

Hence the edge es is a bridge in the given graph.
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METHOD FOR FINDING EULER CIRCUIT

We know that if every vertex of a non empty connected graph has even degree,
then the graph has an Euler circuit. We shall make use of this result to find an
Euler path in a given graph.

Consider the graph

We note that
deg(vy) = deg(vy) = deg(ve) = deg(v) = 2
deg(vi) = deg(vs) = deg(vs) = deg(v7) = 4

Hence all vertices have even degree. Also the given graph is connected. Hence
the given has an Euler circuit. We start from the vertex vy and let C be

C:vivavivg

Then C is not an Euler circuit for the given graph but C intersect the rest of the
graph at vy and v;. Let C” be
€z V1V4 V3 V5 V7 Vg V5 Vg V7 Vi

(In case we start from vs, then C” will be v3 v4 V| V7 Vg V5 V7 Vg Vs)
Path C’ into C and obtain

C” : ViV2 V3 V1 V4 V3 V5 V7 Vg V5 Vg V7 Vi

Or we can write

C”: ejez2e3e4 €56 €7 €8 €9 €10€11 €12
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(If we had started from v,, then C” : v{Vy V3 V4 V| V7 Vg V5 V7 Vg V5 V3 V| OF
€1€2€5e4 €123 €9 €7 €11 €10€6 €3 )

In C” all edges are covered exactly once. Also every vertex has been covered at
ast once. Her ” is a Euler circuit.
least once. Hence C

Hamiltonian Circuits

Definition: A Hamiltonian Path for a graph G is a sequence of adjacent
vertices and distinct edges in which every vertex of G appears exactly once.

Definition: A Hamiltonian Circuit for a graph G is a sequence of adjacent
vertices and distinct edges in which every vertex of G appears exactly once,
except for the first and the last which are the same.

Definition: A graph is called Hamiltonian if it admits a Hamiltonian circuit.

Example 1 : A complete graph K, has a Hamiltonian Circuit. In particular the

graphs

<I and
K3

are Hamiltonian.

Ky

Theorem: Let G be a connected graph with n vertices and let u and v be two
vertices of G that are not adjacent. If

deg(u) + deg(v) = n,
then G has a Hamiltonian circuit.
Matrix Representation of Graphs
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THEOREM:

A graph G with e = v — 1, that has no circuit is a tree.
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Definition: The level (or path length) of a vertex u in a rooted tree is the
number of edges along the unique path between u and the root.

Definition: The height of a rooted tree is the maximum level to any vertex of
the tree.
As an example of these terms consider the rooted tree shown below:

(30 111 R 3 i |

Prepared by:].Jansi,Assistant professor,Department of Mathematics/KAHE. Page 25/26



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:I1 BCA COURSE NAME:DISCRETE STRUCTURES
COURSECODEI9CAT202 N1V BATCH-2019-2022
POSSIBLE QUESTIONS

PART-B (TWO MARKS)
1. Define directed graph.
2.How many vertices does a regular graph of degree 4 with 10 edges have
3.Define Hamiltonian path
4.Define isomorphic graph.
5.Define chromatic number

PART — C(SIX MARKS)

1. State and prove handshaking lemma
2.Define (i) Proper coloring graph (ii) Chromatic Number (iii) Independent set.
3.Give an example of a graph whichiis
(i).Eulerian but not Hamiltonian
(ii).Hamiltonian but not Eulerian
(iii).Both eulerian and Hamiltonian
(iv).Non Eulerian and non Hamiltonian
4.Show that if a fully binary tree has i internal vertices then it has (i+1) terminal vertices and
(2i+1) total vertices.
5.Describe about konigsberg bridge problem.
6.Find the eccentricity of all vertices, center, radius and diameter of the followinggraph.

7
-

v
Ve vy
7.Prove that the number of vertices of odd degree in a graph is always even.
+
8.Prove that the number of pendent vertices of a tree is equalto 5

9. Define graph. Explain the various types of graph with an example.
10.In a undirected graph,the number of odd degree vertices are even.
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Prepositional Logic: Logical Connectives, Well-formed Formulas, Tautologies, Equivalences, Inference
Theory.
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Propositions. Compound Statements. Truth Tables

Statements (Propositions ): Sentences that claim certain things, either true or false
Notation: A.B, ...P,Q.R. ....,p. q. 1, etc.

Examples of statements: Today is Monday. This book is expensive
If a number 1s smaller than 0 then it is positive.

Examples of sentences that are not statements: Close the door! What is the time?

Propositional variables: A, B, C, ..., P., Q, R, ... Stand for statements. May have true or
false value.
Propositional constants:
T —true
F - false
Basic logical connectives: NOT, AND, OR
Other logical connectives can be represented by means of the basic connectives

Logical connectives | pronounced Symbol in Logic
Negation NOT =, ~, ¢
Conjunction AND A

Disjunction OR V

Conditional if then —

Biconditional if and only if VRN

Exclusive or Exclusive or @®

Truth tables - Define formally the meaning of the logical operators.
The abbreviation iff means if and only if

a. Negation (NOT,~, —, ¢

T ~P is true if and only if P is false
T F
F T
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b. Conjunction (AND, A, &&)

\'4

E--------_?-________I_,_A ° P A Q 1s true iff both P and Q are true. In all other
T T T cases P A Q 1s false

T IE =

= T IE

F I F

¢. Disjunction / Inclusive OR (OR, V, ||)

P Q PVQ P VQ istrueiff P is true or Q is true or both are
e true.

T T T

T F T P WV Q is false iff both P and Q are false

F T T

F F F

d. Conditional , known also as implication (—)

P Q P—Q The implication P— Q 1s false iff P is true however
e Q is false.
T T T
T IE F In all other cases the implication 1s true
F T T
F F T
€. Biconditional (=)
P Q P&Q P« Q 1s true iff P and Q have same values - both are
— true or both are false.
T T T
- . . If P and Q have different values, the biconditional 1s
- d - false.
F F T
f. Exclusive OR (@)
P Q PEQ P® Q 1s true iff P and Q have different values
J J - We say: “P or Q but not both”
T F T
F T T
= IE IE
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Precedence of the logical connectives:

Connectives within parentheses, innermost parentheses first

3 negation

A conjunction

s disjunction

- conditional

©, D biconditional, exclusive OR

Compound Statements: Logical expressions that consist of propositional variables and logical
connectives. They may contain also propositional constants.

Evaluating compound statements : by building their truth tables

Example: ~PV Q

P Q -P -PVQ
T T F ¥
T F F F
F T T T
F F T T

PVQA-(PAQ

P Q PVQ PAQ ~-(PAQ EPVQA—-(PAQ
A B -B A A-B (the letters A and B
are used as shortcuts)

R S
s I R
oo

e B s B |
o B B e
s I R Me |
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1. Tautologies and Contradictions

A propositional expression is a tautology if and only if for all possible assignments of truth
values to its variables its truth value is T

Example: P V — P is a tautology

P P PV

T F i)
F ] ¥

A propositional expression is a contradiction if and only if for all possible assignments of
truth values to its variables its truth value is F

Example: P A — P is a contradiction

P =P BASE

T F E
F T E

Usage of tautologies and contradictions - in proving the validity of arguments; for rewriting
expressions using only the basic connectives.

Definition: Two propositional expressions P and Q are logically equivalent,
if and only if P <> Q 1s a tautology. We write P=Qor P & Q.

Note that the symbols = and < are not logical connectives
Exercise:
a) Show that P — Q <&~ PV Q is a tautology.1.e. P—Q =—PVQ

P Q -P -PVQ P—-Q P—Q&-PVQ

s e s I |
Mo
— =
= =
- =
EETRTEE
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2. Logical equivalences

Similarly to standard algebra, there are laws to manipulate logical expressions, given as
logical equivalences.

1. Commutative laws PVQ=QV P
PAQ=QAP

(3]

. Associative laws PVQVR=PV(Q VR
(PAQAR=PA(QAR)

3. Distributive laws: PVQA®VR=PV (Q A R)
PAQV®PAR=EPA(Q V R

4. Identity PV F=P
PN TEP

5. Complement properties PV-P=T (excluded middle)
P A—P=F (contradiction)

6. Double negation —(—P)=P

7. Idempotency (consumption) PV P=P
PA P=P

8. De Morgan's Laws “PVQ=—P A Q

~(PAQ="P V Q

9. Universal bound laws (Domination) P V T=T

P AF=F

10. Absorption Laws PV (PAQ=P
PAPV Q=P

11. Negation of T and F: —-T =F
-F =T
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1. Truth table of the conditional statement

2 Q P—Q
E ¥ 'k
b F F
& £ ¢
F B )

P is called antecedent
Q is called consequent
Meaning of the conditional statement: The truth of P implies (leads to) the truth of Q

Note that when P is false the conditional statement is true no matter what the value of Q is. We say that in this
case the conditional statement is true by default or vacuously true.

2. Representing the implication by means of disjunction

P—Q="PVQ
2 Q P P—Q —"PVQ
T 4 3 F T T
T F F F F
F ) > T K
F F £ T R
Same truth tables
Usage:
1. To rewrite "OR" statements as conditional statements and vice versa (for better
understanding)

2. To find the negation of a conditional statement using De Morgan's Laws
3. Rephrasing "or" sentences as "if-then" sentences and vice versa

Consider the sentence:
(1) "The book can be found in the library or in the bookstore".

Let
A =The book can be found in the library

B = The book can be found in the bookstore

Logical form of (1): AVB
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Rewrite AV B as a conditional statement

In order to do this we need to use the commutative laws, the equivalence — (— P) =P, and the
equivalence P— Q = PV Q

Thus we have:
AVB=—-(—A)VB=—-A—B
The last expression — A — B is translated into English as

"If the book cannot be found in the library,
it can be found in the bookstore".

Here the statement "The book cannot be found in the library" is represented by — A

There i1s still one more conditional statement to consider.
AV B =B V A (commutative laws)

Then, following the same pattern we have:
BVA=—-(—"B)VA=—-B—A

The English sentence is: "'If the book cannot be found in the bookstore, it can be found in the
library.

We have shown that:

AVB= ~(~A)VB=—A—B
AVB=BVA =—-(—-B)VA=—-B—A

Thus the sentence "The book can be found in the library or in the bookstore"

can be rephrased as:
"If the book cannot be found in the library, it can be found in the bookstore".
""If the book cannot be found in the bookstore, it can be found in the library.

4. Negation of conditional statements

Positive: The sun shines
Negative: The sun does not shine

Positive: " If the temperature is 250°F then the compound is boiling "
Negative: ?

In order to find the negation, we use De Morgan's Laws.

Let

P = the temperature is 250°F
Q = the compound is boiling

]
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Positive: P Q = =PV Q
Negative: ~(P— Q) = ~(—PVQ)=—(—P)A—Q= PAQ

Negative: The temperature is 250°F however the compound is not boiling
IMPORTANT TO KNOW:

The negation of a disjunction is a conjunction.
The negation of a conjunction is a disjunction

The negation of a conditional statement is a conjunction. not another if-then statement

Question: Which logical connective when negated will result in a conditional statement?

5. Necessary and sufficient conditions

Definition:
"P is a sufficient condition for Q" means : if Pthen Q, P — Q
"P is a necessary condition for Q" means: if not P then not Q, ~P — ~Q
The statement ~P — ~Q is equivalent to Q — P

Hence given the statement P — Q,
P is a sufficient condition for Q, and Q is a necessary condition for P.

Examples:

If » 1s divisible by 6 then 7 is divisible by 2.
The sufficient condition to be divisible by 2 is to be divisible by 6.
The necessary condition to be divisible by 6 is to be divisible by 2

If n 1s odd then n is an integer.
The sufficient condition to be an integer to be odd.

The necessary condition to be odd is to be an integer.

If and only if - the biconditional

P Q PsQ
B W
T B B
F T F
¥ O T

P < Q 1s true whenever P and Q have same values. Otherwise it is false.
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This means that both P — Q and Q — P have to be true

P Q P—-Q Q—P PsQ

T T T T T

T F F T F

F T T F F

F F T T T
Contrapositive

Definition: The expression ~Q — ~P is called contrapositive of P — Q

The conditional statement P — Q and its contrapositive ~Q — ~P are equivalent.
The proof is done by comparing the truth tables

The truth table for P— Qand ~Q — —Pis:

T T F F ik T
T F F T F F
F i ) T E T i )
F F T T l i )

We can also prove the equivalence by using the disjunctive representation:
P—Q=-PVQ=QV—-P=—(—-Q V-P=-Q——P

Converse and inverse

Definition: The converse of P — Q is the expression Q — P

Definition: The inverse of P — Q is the expression ~P — ~Q
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Neither the converse nor the inverse are equivalent to the original implication.
Compare the truth tables and you will see the difference.

P Q 7P ~Q P-Q Q=P ~P—7Q
T T F F T T T
T F F T F T T
F T T F T F F
F F T T T T T

Valid and Invalid Arguments.

Definition: An argument is a sequence of statements. ending in a conclusion. All the statements
but the final one (the conclusion) are called premises(or assumptions. hypotheses)

Verbal form of an argument:
(1) If Socrates 1s a human being then Socrates is mortal.
(2) Socrates 1s a human being

Therefore (3) Socrates 1s mortal

Another way to write the above argument:
P—Q
P
S Q
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2. Testing an argument for its validity

Three ways to test an argument for validity:

A. Critical rows

1. Identify the assumptions and the conclusion and assign variables to them.

2. Construct a truth table showing all possible truth values of the assumptions and the
conclusion.
3. Find the critical rows - rows in which all assumptions are true

4. For each critical row determine whether the conclusion 1s also true.
a. If the conclusion is true in all critical rows. then the argument is valid
b. If there is at least one row where the assumptions are true, but the conclusion is
false. then the argument is invalid
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B. Using tautologies
The argument is true if the conclusion is true whenever the assumptions are true.
This means: If all assumptions are true. then the conclusion is true.
"All assumptions" means the conjunction of all the assumptions.
Thus, let Al. A2. ... An be the assumptions, and B - the conclusion.
For the argument to be valid. the statement
If (A1 A A2 A... A An) then B must be a tautology - true for all assignments of values to
its variables. 1.e. its column in the truth table must contain only T
1.e.
(AIAA2A...AAn)—B=T
C. Using contradictions
If the argument is valid. then we have (A1 AA2 A... AAn)—B=T
This means that the negation of (A1 A A2 A... A An) — B should be a contradiction -

containing only F 1n its truth table

In order to find the negation we have first to represent the conditional statement as a
disjunction and then to apply the laws of De Morgan

(AlAA2A...AAn)—B=~(A1AA2A...AAn)VB=
~Al1V~A2V...V~AnVB.

The negation is:

~((A1AA2A... AAn)—B)=~(~A1V~A2V ... V~An VB)
=AlAA2A...AAnA-~B

The argument is valid if AIAA2A ... AAnA~-B=F

There are two ways to show that a logical form is a tautology or a contradiction:

a. by constructing the truth table
b. by logical transformations applying the logical equivalences (logical identities)
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Examples:

1. Consider the argument:

P—Q
P
5 Q

Testing 1ts validity:

a. by examining the truth table:

P Q P—Q
T T T
T F F
F T T
F F T
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b. By showing that the statement 'If all premises then the conclusion" is a tautology:
The premises are P and P— Q. The statement to be considered is:

PAP—Q)—Q

We shall show that it is a tautology by using the following identity laws:
(HP—-Q=~PVQ
2Q)(PVQ VR =PV(QVR) commutative laws
(PAQ)AR=PAQAR)
BPAQVR=(PVR)AQVR) distributive law
(4)PA~P=F
Q) BN ~=P=T
G)PVE =P
(PN =E
(8)PAT=P
QPAF=F
(10) (PAQ)=~PV ~Q De Morgan's Laws

PAP—=Q)—Q
by() | = |(PAP=Q)VQ
by(0) | = | (-PV~(P—=Q))VQ
by | = [(-PV~(-PVQ)VQ
by(10) | = |[:PVEPA~Q)VQ
by (3) = |[((PVPACPV-Q)VQ
by(S) | = |[(TACPV-Q)VQ
by@® | = [ -PV-QVQ
by | = | -PV(QVQ
by(5) | = |[~-PVT
by(7) = | T
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2. Consider the argument

P—Q

Q
P

We shall show that this argument is invalid by examining the truth tables of the assumptions and
the conclusion. The critical rows are in boldface.

P Q P—Q

T T T

f & F F

F T T here the assumptions are true, however the
conclusion is false

F F B
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Exercise:

Show the validity of the argument:

1. PVQ (premise)
2. ~Q (premise)
Therefore P (conclusion)

a. by using critical rows
b. by contradiction using logical identities

Solution:

a. by critical rows

conclusion Premises

P Q PVQ ~Q

T T T F

T F T T Critical row
F T T F

F F F T

b. By contradiction using identities

(PVQA~Q)A ~P=
(PA~Q)V(QA-~Q)NA ~P=
(PA-Q)V F)A ~P=
(PA-Q)A ~P=

PA-P A ~-Q=FA ~Q=F
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POSSIBLE QUESTIONS

2 MARKS

1. Construct the truth table for 1(PAQ).

2. Define tautology .

3. Prove that without using truth table ( 1Q A (P >Q))-> 1P is atautology.

4. Prove that P->(QVR) & (P—Q) V (P=>R).

5. Construct the truth table for 1(P) vV 1(Q).

6 MARKS

1.construct the truth table | (P v(QA R)

2.show that (x)(H(x) =>M(x)) AH(S) =>M(S)

3. Define disjunctive normal form and conjunctive normal form. Also obtain disjunctive

normal form of (PAQ) v(|PAR) V(QAR)
4.Prove that (PvQ) Al PA(TaVvIR) v (P AlQ) v (1P ATR))is a tautology.

5.Verify that a proposition P v | (PAQ) is atautology.

6.0btain the PDNF of (PAQ) v( IPAR) v(QAR).

7.Lions are dangerous animals. There are lions. There are dangerous animals.
8.Construct the truth table for (P<>R) A (1Q—>S)

9.0btain PDNF of (] ((P vQ) AR)) A (PVRY))

10.Demonstrate that R is a valid inference from the premises P— Q, Q — R, and P.
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