
Syllabus 2018 -2021`
Batch

`

 KARPAGAM ACADEMY OF HIGHER EDUCATION
 (Deemed to be University)

 (Established Under Section 3 of UGC Act, 1956)

Coimbatore-21

SYLLABUS

DEPARTMENT OF CS, CA & IT

SUBJECT NAME: SOFTWARE ENGINEERING SUBJECT CODE: 18CAU401

SEMESTER: IV CLASS: II BCA

Scope

This course sharpens the theoretical, technical, and practical knowledge of software

requirements, analysis, design, implementation, verification and validation, and documentation

skills of the students

Objectives

 Apply their knowledge of mathematics, sciences, and computer science to the modeling,

analysis, and measurement of software artifacts.

 Analyze, specify and document software requirements for a software system.

 Implement a given software design using sound development practices.

 Verify, validate, assess and assure the quality of software artifacts.

 Design, select and apply the most appropriate software engineering process for a given

project, plan for a software project, identify its scope and risks, and estimate its cost and

time.

Unit-I

Introduction: The Evolving Role of Software, Software Characteristics, Changing Nature of

Software, Software Engineering as a Layered Technology, Software Process Framework,

Framework and Umbrella Activities, Process Models, Capability Maturity Model Integration

(CMMI).

Unit-II
Requirement Analysis; Initiating Requirement EngineeringProcess- Requirement Analysis and

Modeling Techniques- FlowOriented Modeling- Need for SRS- Characteristics and

Components of SRS- Software Project Management: Estimation in Project Planning Process,

Project Scheduling.

Unit-III
Risk Management: Software Risks, Risk Identification Risk Projection and Risk Refinement,

RMMM plan, Quality Management- Quality Concepts, Software Quality Assurance, Software

Reviews, Metrics for Process and Projects

Syllabus 2018 -2021`
Batch

`

Unit-IV
Design Engineering-Design Concepts, Architectural Design Elements, Software

Architecture, Data Design at the Architectural Level and Component Level, Mapping of

Data Flow into Software Architecture, Modeling Component Level Design

Unit-V
Testing Strategies & Tactics: Software Testing Fundamentals, Strategic Approach to Software

Testing, Test Strategies for Conventional Software, Validation Testing, System testing Black-

Box Testing, White-Box Testing and their type, Basis Path Testing

Suggested Readings

1. Aggarwal K.K., Singh,Y., (2008). Software Engineering, (2nd ed.), New Age International

Publishers.

2. Bell,D., (2005). Software Engineering for Students, (4th ed.), Addison-Wesley.

3. Jalote,P., (2008). An Integrated Approach to Software Engineering (2nd ed.), New Age

International Publishers.

4. Mall,R.,(2004). Fundamentals of Software Engineering, (2nd ed.), Prentice-Hall of India.

5. Pressman, R.S.,(2009). Software Engineering: A Practitioner‘s Approach, (7th Edition),

McGraw-Hill.

6. Sommerville, I.,(2006), Software Engine8ering, (8th ed.), Addison Wesley.

Websites

1. http://en.wikipedia.org/wiki/Software_engineering

2. http://www.onesmartclick.com/engineering/software-engineering.html

3. http://www.CSU.gatech.edu/classes/AY2000/cs3802_fall/

Question Paper Pattern:

CIA Max.Marks : 50

Part A Objective type questions : 20 x 1 = 20 Marks

Part B Answer all the questions Either/Or : 3 x 2 = 6 Marks

Part C Answer all the questions : 3 x 8 = 24 Marks

ESE Max.Marks : 60

Part A Objective type questions : 20 x 1 = 20 Marks

Part B Answer all the questions Either/Or : 5 x 6 = 30 Marks

Part C Answer all the questions : 1 x 10 = 10 Marks

http://en.wikipedia.org/wiki/Software_engineering
http://www.onesmartclick.com/engineering/software-engineering.html
http://www.csu.gatech.edu/classes/AY2000/cs3802_fall/

LESSON PLAN[2018-2021 BATCH]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established under Section 3 of UGC Act 1956)

Pollachi Main Road, Eacharani Post, Coimbatore-641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Semester – IV

SOFTWARE ENGINEERING(18CAU401)

LESSON PLAN

UNIT-I

Prepared By: K. Geetha, Dept OF CS,CA & IT Page 1

S.NO DURATION TOPICS TO BE COVERED SUPPORTED

MATERIALS

1. 1
Introduction: The Evolving Role of

 Software,Software Characteristics
T1:34-40

2. 1 Changing The Nature of Software W1

3. 1 Software engineering as a Layered Technology T1:53,W1

4. 1 Software Process Framework T1:54-58

5. 1 Framework & Umberlla Activities W1

6. 1 Process Model W1

7. 1 Capability Maturity Model Integration(CMMI) T1:59-67

8. 1 RECAPITULATION OF IMPORTANT QUESTIONS

TOTAL HOURS: 8 HOURS

TEXTBOOK :

T1: Pressman, R.S.,(2009). Software Engineering: A Practitioner‘s Approach, (7th Edition), McGraw-Hill.

REFERENCE BOOKS:

R1: Aggarwal K.K., Singh,Y., (2008). Software Engineering, (2nd ed.), New Age International Publishers.

WEBSITE:

W1: http://en.wikipedia.org/wiki/Software_engineering

http://en.wikipedia.org/wiki/Software_engineering

Prepared By: K. Geetha, Dept OF CS,CA & IT Page 2

LESSON PLAN[2018-2021 BATCH]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established under Section 3 of UGC Act 1956)

Pollachi Main Road, Eacharani Post, Coimbatore-641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Semester – IV

SOFTWARE ENGINEERING(18CAU401)

LESSON PLAN

UNIT-II

S.NO DURATION TOPICS TO BE COVERED SUPPORTED

MATERIALS

1. 1
Requirement Analysis:Intiating

 Requirement Engineering Process
T1:208

2. 1 Requirrement Analysis & Modeling Techniques T1:211-215,W1

3. 1 FlowOriented Modelling T1:226-235,W1

4. 1 Need for SRS T1:254-258

5. 1 Characteristics & component of SRS W1

6. 1
Software Project management :Estimation In

Project Planning Process
T1:259-267,W1

7. 1 Project Scheduling T1:705-712,W1

8. 1 RECAPITULATION OF IMPORTANT QUESTIONS

TOTAL HOURS: 8 HOURS

TEXTBOOK :

T1: Pressman, R.S.,(2009). Software Engineering: A Practitioner‘s Approach, (7th Edition), McGraw-Hill.

REFERENCE BOOKS:

R1: Aggarwal K.K., Singh,Y., (2008). Software Engineering, (2nd ed.), New Age International Publishers.

WEBSITE:

W1: http://en.wikipedia.org/wiki/Software_engineering

http://en.wikipedia.org/wiki/Software_engineering

Prepared By: K. Geetha, Dept OF CS,CA & IT Page 3

LESSON PLAN[2018-2021 BATCH]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established under Section 3 of UGC Act 1956)

Pollachi Main Road, Eacharani Post, Coimbatore-641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Semester – IV

SOFTWARE ENGINEERING(18CAU401)

LESSON PLAN

UNIT-III

S.NO DURATION TOPICS TO BE COVERED SUPPORTED

MATERIALS

1. 1 Risk Management : Software Risk T1:728,W1

2. 1 Risk Identification , Risk Projection & Risk Refinement T1:729-737,W1

3. 1 RMMM Plan T1:740,W1

4. 1 Quality Management:Quality Concept

T1:745-

747,W1

R1:555-560

5. 1 Software Quality Assurance , Software Review T1:748-754,W1

6. 1 Metrics For Process & Projects
W1
R1:97-100

7. 1 RECAPITULATION OF IMPORTANT QUESTIONS

TOTAL HOURS: 7 HOURS

TEXTBOOK :

T1: Pressman, R.S.,(2009). Software Engineering: A Practitioner‘s Approach, (7th Edition), McGraw-Hill.

REFERENCE BOOKS:

R1: Aggarwal K.K., Singh,Y., (2008). Software Engineering, (2nd ed.), New Age International Publishers.

WEBSITE:

W1: http://en.wikipedia.org/wiki/Software_engineering

http://en.wikipedia.org/wiki/Software_engineering

Prepared By: K. Geetha, Dept OF CS,CA & IT Page 4

LESSON PLAN[2018-2021 BATCH]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established under Section 3 of UGC Act 1956)

Pollachi Main Road, Eacharani Post, Coimbatore-641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Semester – IV

SOFTWARE ENGINEERING(18CAU401)

LESSON PLAN
UNIT-IV

S.NO

DURATI

ON

TOPICS TO BE COVERED SUPPORTED

MATERIALS

1. 1 Design Engineering : Design Concept T1:261-264

2. 1 Architectural Design Elements T1:275,276

3. 1 Software Architecture T1:287-289

4. 1 Data Design At The Architectural Level & Component

Level

T1:289,290,

303 R1:300-

310

5. 1 Mapping Of DataFlow Into Software Architecture

T1:307-

320

R1:340
W1

6. 1 Modelling Component Level Design T1:324-346

7. 1 RECAPITULATION OF IMPORTANT QUESTIONS

TOTAL HOURS: 7 HOURS

TEXTBOOK :

T1: Pressman, R.S.,(2009). Software Engineering: A Practitioner‘s Approach, (7th Edition), McGraw-Hill.

REFERENCE BOOKS:

R1: Aggarwal K.K., Singh,Y., (2008). Software Engineering, (2nd ed.), New Age International Publishers.

WEBSITE:

W1: http://en.wikipedia.org/wiki/Software_engineering

http://en.wikipedia.org/wiki/Software_engineering

Prepared By: K. Geetha, Dept OF CS,CA & IT Page 5

LESSON PLAN[2018-2021 BATCH]

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established under Section 3 of UGC Act 1956)

Pollachi Main Road, Eacharani Post, Coimbatore-641 021

DEPARTMENT OF COMPUTER APPLICATIONS

Semester – IV

SOFTWARE ENGINEERING(18CAU401)

LESSON PLAN

UNIT-V

S.NO DURATION TOPICS TO BE COVERED SUPPORTED

MATERIALS

1. 1 Testing Strategies & Tactics: Software Testing

Fundamentals

T1:386,4

21 W1

2. 1 Strategic approach To Software Testing T1:387-392

3. 1 Test Strategies For Conventional Software T1:394-403

4. 1 Validation Testing, System Testing, Black-Box Testing
T1:406-410,434-

436 W1

5. 1 White-Box Testing & Their Types T1:436-440

6. 1 Basis Path Testing T1:425-431

7. 1 RECAPITULATION OF IMPORTANT QUESTIONS

8. 1 DISCUSSION OF ESE QUESTION PAPER

9. 1 DISCUSSION OF ESE QUESTION PAPER

10. 1 DISCUSSION OF ESE QUESTION PAPER

TOTAL HOURS: 10 HOURS

TEXTBOOK :

T1: Pressman, R.S.,(2009). Software Engineering: A Practitioner‘s Approach, (7th Edition), McGraw-Hill.

REFERENCE BOOKS:

R1: Aggarwal K.K., Singh,Y., (2008). Software Engineering, (2nd ed.), New Age International Publishers.

WEBSITE:

W1: http://en.wikipedia.org/wiki/Software_engineering

http://en.wikipedia.org/wiki/Software_engineering

Prepared by K. Geetha,Assistant Professor,Department of CS,CA,IT KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 18CAU401 UNIT: I BATCH-2017-2020

UNIT 1

SYLLABUS

Introduction: The Evolving Role of Software, Software Characteristics, Changing

Nature of Software, Software Engineering as a Layered Technology, Software

Process Framework, Framework and Umbrella Activities, Process Models,

Capability Maturity Model Integration (CMMI).

1.1 INTRODUCTION TO SOFTWARE ENGINEERING:

Software has become critical to advancement in almost all areas of human

Endeavour. The art of programming only is no longer sufficient to construct large

programs. There are serious problems in the cost, timeliness, maintenance and quality

of many software products. Software engineering has the objective of solving these

problems by producing good quality, maintainable software, on time, within budget.

To achieve this objective, we have to focus in a disciplined manner on both the quality

of the product and on the process used to develop the product.

Definition

At the first conference on software engineering in 1968, Fritz Bauer [FRIT68]

defined software engineering as ―The establishment and use of sound engineering

principles in order to obtain economically developed software that is reliable and

works efficiently on real machines‖. Stephen Schacht [SCHA90] defined the same

as ―A discipline whose aim is the production of quality software, software that is

delivered on time, within budget, and that satisfies its requirements‖. Both the

definitions are popular and acceptable to majority. However, due to increase in cost of

maintaining software, objective is now shifting to produce quality software that is

maintainable, delivered on time, within budget, and also satisfies its requirements.

What is Software?

The product that software professionals build and then support over the long term.

Software encompasses: (1) instructions (computer programs) that when executed

provide desired features, function, and performance; (2) data structures that enable the

programs to adequately store and manipulate information and (3) documentation that

describes the operation and use of the programs.

Prepared by K. Geetha,Assistant Professor,Department of CS,CA,IT KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 18CAU401 UNIT: I BATCH-2017-2020

Software products

• Generic products

• Stand-alone systems that are marketed and sold to any customer

who wishes to buy them.

• Examples – PC software such as editing, graphics programs, project

management tools; CAD software; software for specific markets such as

appointments systems for dentists.

• Customized products

• Software that is commissioned by a specific customer to meet their own

needs.

• Examples – embedded control systems, air traffic control software,

traffic monitoring systems.

Why Software is Important?

• The economies of ALL developed nations are dependent on software.

• More and more systems are software controlled (transportation, medical,

telecommunications, military, industrial, entertainment,)

• Software engineering is concerned with theories, methods and tools for

professional software development.

• Expenditure on software represents a significant fraction of GNP in all developed

countries.

Features of Software

• Its characteristics that make it different from other things human being build.

Features of such logical system:

• Software is developed or engineered; it is not manufactured in the classical

sense which has quality problem.

• Software doesn't "wear out.‖ but it deteriorates (due to change). Hardware has

bathtub curve of failure rate (high failure rate in the beginning, then drop to

steady state, then cumulative effects of dust, vibration, abuse occurs).

Although the industry is moving toward component-based construction (e.g.

standard screws and off-the-shelf integrated circuits), most software continues

to be custom-built. Modern reusable components encapsulate data and

processing into software parts to be reused by different programs. E.g.

graphical user interface E.g. graphical user interface, window, pull-down

menus in library etc.

Prepared by K. Geetha,Assistant Professor,Department of CS,CA,IT KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 18CAU401 UNIT: I BATCH-2017-2020

1.1.1 The Evolving Role of Software

Software takes on a dual role. It is a product and, at the same time, the

vehicle for delivering a product. As a product, it delivers the computing potential

embodied by computer hardware or, more broadly, a network of computers that are

accessible by local hardware. Whether it resides within a cellular phone or operates

inside a mainframe computer, software is information transformer— producing,

managing, acquiring, modifying, displaying, or transmitting information that can be as

simple as a single bit or as complex as a multimedia presentation. As the vehicle used

to deliver the product, software acts as the basis for the control of the computer

(operating systems), the communication of information (networks), and the creation

and control of other programs (software tools and environments). Software delivers

the most important product of our time—information.

Software transforms personal data (e.g., an individual‘s financial transactions) so

that the data can be more useful in a local context; it manages business information

to enhance competitiveness; it provides a gateway to worldwide information networks

(e.g., Internet) and provides the means for acquiring information in all

of its forms.

The role of computer software has undergone significant change over a time span

of little more than 50 years. Dramatic improvements in hardware performance, profound

changes in computing architectures, vast increases in memory and storage capacity, and

a wide variety of exotic input and output options have all precipitated more

sophisticated and complex computer- based systems. The lone programmer of an

earlier era has been replaced by a team of software specialists, each focusing on one

part of the technology required to deliver a complex application.

1.1.2 Software, Software Myths

Software

Computer software, or just software, is a collection of computer programs and

related data that provide the instructions for telling a computer

Prepared by K. Geetha,Assistant Professor,Department of CS,CA,IT KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 18CAU401 UNIT: I BATCH-2017-2020

what to do and how to do it. In other words, software is a conceptual entity which is a

set of computer programs, procedures, and associated documentation concerned with

the operation of a data processing system. We can also say software refers to one or

more computer programs and data held in the storage of the computer for some purposes.

In other words software is a set of programs, procedures, algorithms and its

documentation. Program software performs the function of the program it implements,

either by directly providing instructions to the computer hardware or by serving as input

to another piece of software.

The term was coined to contrast to the old term hardware (meaning physical

devices). In contrast to hardware, software is intangible, meaning it "cannot be

touched". Software is also sometimes used in a more narrow sense, meaning

application software only. Sometimes the term includes data that has not traditionally

been associated with computers, such as film, tapes, and records.

Software Myths

The following are different myths about software:

 If we get behind schedule, we can add more programmers and catch up.

 If we decide to outsource the software project to a third party, we can

just relax and let that firm build it.

 Project requirement continuously changes, but changes can be easily

accommodated because software is flexible.

 The only deliverable work product for a successful project is the

working program.

 Software with more features is better software.

 Once we write the program and get it to work, our job is done.

 Until we get the program running, we have no way of assessing its

quality.

 Software engineering will make us create voluminous and unnecessary

documentation and will invariably slow us down.

 A general statement of objectives is sufficient to begin writing

programs; we can fill in the details later.

Prepared by K. Geetha,Assistant Professor,Department of CS,CA,IT KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 18CAU401 UNIT: I BATCH-2017-2020

 A general statement of objectives is sufficient to begin writing programs;

we can fill in the details later.

 We already have a book that‘s full of standards and procedures for

building software. Won‘t that provide my people with everything

they need to know?

Software Myths Examples

• Myth 1: Once we write the program and get it to work, our job is done.

• Reality: the sooner you begin writing code, the longer it will take you to get

done. 60% to 80% of all efforts are spent after software is delivered to the

customer for the first time.

• Myth 2: Until I get the program running, I have no way of assessing its quality.

• Reality: technical review are a quality filter that can be used to find certain

classes of software defects from the inception of a project.

• Myth 3: software engineering will make us create voluminous and

unnecessary documentation and will invariably slow us down.

• Reality: it is not about creating documents. It is about creating a quality

product. Better quality leads to a reduced rework. Reduced work results in

faster delivery times.

• Many people recognize the fallacy of the myths. Regrettably, habitual attitudes

and methods foster poor management and technical practices, even when reality

dictates a better approach.

Wear vs. Deterioration

Prepared by K. Geetha,Assistant Professor,Department of CS,CA,IT KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 18CAU401 UNIT: I BATCH-2017-2020

Software Applications

1. System software: such as compilers, editors, file management utilities

2. Application software: stand-alone programs for specific needs.

3. Engineering/scientific software: Characterized by ―number

crunching‖algorithms. such as automotive stress analysis, molecular biology, orbital

dynamics etc

4. Embedded software resides within a product or system. (key pad control of a

microwave oven, digital function of dashboard display in a car)

5. Product-line software focus on a limited marketplace to address mass consumer

market. (word processing, graphics, database management)

6. WebApps (Web applications) network centric software. As web 2.0 emerges,

more sophisticated computing environments is supported integrated with remote

database and business applications.

7. AI software uses non-numerical algorithm to solve complex problem. Robotics,

expert system, pattern recognition game playing

1.2 A Generic View of Process

1.2.1 Software Engineering as a Layered Technology

Prepared by K. Geetha,Assistant Professor,Department of CS,CA,IT KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE

ENGINEERING COURSE CODE: 17CAU401 UNIT: I

 BATCH-2017-2020

Rests on organizational approach to quality, e.g. total quality management

and such emphasize continuous process improvement (that is increasingly more

effective approaches to software engineering)

Process layer provides a framework for effective use of software technologies.

Forms a basis for management control and establishes context in which technical

methods are applied, work products produced, milestones established, quality is

ensured and change is managed. Methods provide technical ―how to‘s‖. Methods

include a broad range of tasks that include communication, requirements analysis,

design modeling, programming, and testing. Software engineering methods rely on a

set of basic principles that govern each area of the technology. Tools provide

automated or semi automated support for the process and methods.

Process Framework

Identifies a small number of framework activities that are applicable to all

software projects. In addition the framework encompasses umbrella activities that are

applicable across the software process.

Generic Process Framework Activities

Each framework activity is populated by a set of software engineering actions. An

action, e.g. design, is a collection of related tasks that produce a major software

engineering work product.

Communication – lots of communication and collaboration with customer and other

stakeholders.. Encompasses requirements gathering.

Planning – establishes plan for software engineering work that follows. Describes

technical tasks, likely risks, required resources, works products and a work schedule

Modeling – encompasses creation of models that allow the developer and customer to

better understand software requirements and the design that will achieve those

requirements.

Construction – code generation and testing.

Deployment – software, partial or complete, is delivered to the customer who

evaluates it and provides feedback.

Modeling Activity – composed of two software engineering actions

Analysis – composed of work tasks (e.g. requirement gathering, elaboration,

specification and validation) that lead to creation of analysis model and/or

requirements specification.

Prepared by K. Geetha,Assistant Professor,Department of CS,CA,IT KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 18CAU401 UNIT: I BATCH-2017-2020

Design – encompasses work tasks such as data design, architectural design, interface design

and component level design. It leads to creation of design model and/or a design specification.

Different projects demand different task sets. Software team chooses task set based on problem

and project characteristics.

A Layered Technology

Quality, Process, Methods, and Tools

Software engineering is a layered technology. Most engineering approaches

(including software engineering) must rest on an organizational commitment to quality. The

bedrock that supports software engineering is a

‗quality focus‗layer.

-Quality: a product should meet its specification. This is problematical for software systems.

There is a tension between customer quality requirements (efficiency, reliability, etc.),

developer quality requirements (maintainability, reusability, etc.), users (usability, efficiency,

etc.), and etc. But note:

 Some quality requirements are difficult to specify in an unambiguous

way.

 Software specifications are usually incomplete and often

inconsistent.

-Process: The foundation for software engineering is the ‗process‗layer. Software

engineering process is the glue that holds the technology together and enables rational and

timely development of computer software. The work products are produced, milestones are

established, quality is ensured, and changes are properly managed.

-Methods: Software engineering methods provides the technical how-to‗s for building

software. Methods encompass a broad array of tasks that include the requirements analysis,

design, program construction, testing, and support.

-Tools: Software engineering tools provide automated or semi-automated supports for the

process and the methods. When the tools are integrated so that the information created by one

tool can be used by another, a system for the support of software development, called

computer-aided software engineering (CASE). CASE combine software, hardware, and

software engineering database.

Prepared by K. Geetha,Assistant Professor,Department of CS,CA,IT KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 18CAU401 UNIT: I BATCH-2017-2020

Fig 1.2.2. A Layered Technology

 Any engineering approach must rest on organizational commitment to quality

which fosters a continuous process improvement culture.

 Process layer as the foundation defines a framework with activities for effective

delivery of software engineering technology. Establish the context where

products (model, data, report, and forms) are produced, milestone are established,

quality is ensured and change is managed.

 Method provides technical how-to‘s for building software. It encompasses many

tasks including communication, requirement analysis, design modeling,

program construction, testing and support.

 Tools provide automated or semi-automated support for the process and

methods.

Five Activities of a Generic Process framework

• Communication: communicate with customer to understand objectives and gather

requirements

• Planning: creates a ―map‖ defines the work by describing the tasks,

risks and resources, work products and work schedule.

• Modeling: Create a ―sketch‖, what it looks like architecturally, how

the constituent parts fit together and other characteristics.

• Construction: code generation and the testing.

• Deployment: Delivered to the customer who evaluates the products and

provides feedback based on the evaluation.

• These five framework activities can be used to all software development

regardless of the application domain, size of the project, complexity of the

efforts etc, though the details will be different in each case.

Prepared by K. Geetha,Assistant Professor,Department of CS,CA,IT KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 18CAU401 UNIT: I BATCH-2017-2020

• For many software projects, these framework activities are applied iteratively

as a project progresses. Each iteration produces a software increment that

provides a subset of overall software features and functionality.

Umbrella Activities

Complement the five process framework activities and help team manage and control

progress, quality, change, and risk.

• Software project tracking and control: assess progress against the plan and take

actions to maintain the schedule.

• Risk management: assesses risks that may affect the outcome and quality.

• Software quality assurance: defines and conduct activities to ensure quality.

• Technical reviews: assesses work products to uncover and remove errors

before going to the next activity.

• Measurement: define and collects process, project, and product

measures to ensure stakeholder‘s needs are met.

• Software configuration management: manage the effects of change

throughout the software process.

• Reusability management: defines criteria for work product reuse and establishes

mechanism to achieve reusable components.

• Work product preparation and production: create work products such as models,

documents, logs, forms and lists.

Objectives

 To introduce software process models

 To describe three generic process models and when they may be used

 To describe outline process models for requirements engineering, software

development, testing and evolution

 To explain the Rational Unified Process model

 To introduce CASE technology to support software process activities

1.3 The Software Process Models

Prepared by K. Geetha,Assistant Professor,Department of CS,CA,IT KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 18CAU401 UNIT: I BATCH-2017-2020

 A structured set of activities required to develop a

software system

o Specification;

o Design;

o Validation;

o Evolution.

 A software process model is an abstract representation of a process. It presents a

description of a process from some particular perspective.

Generic software process models

 The waterfall model

o Separate and distinct phases of specification and development.

 Evolutionary development

o Specification, development and validation are interleaved.

 Component-based software engineering

o The system is assembled from existing components.

 There are many variants of these models e.g. formal development where a

waterfall-like process is used but the specification is a formal specification that is

refined through several stages to an implementable design.

1.3.1 Waterfall model

Prepared by K. Geetha,Assistant Professor,Department of CS,CA,IT KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 18CAU401 UNIT: I BATCH-2017-2020

Waterfall Model

The classic software life cycle is often represented as a simple prescriptive

waterfall software phase model, where software evolution proceeds through an orderly

sequence of transitions from one phase to the next in order (Royce 1970). Such

models resemble finite state machine descriptions of software evolution.

However, these models have been perhaps most useful in helping to structure,

staff, and manage large software development projects in complex organizational

settings, which was one of the primary purposes (Royce 1970, Boehm

1976).Alternatively, these classic models have been widely characterized as both poor

descriptive and prescriptive models of how software development "in-the-small" or "in-

the-large" can or should occur. Figure 1 provides a common view of the waterfall

model for software development attributed to Royce (1970).

Waterfall model phases

 Requirements analysis and definition

 System and software design

 Implementation and unit testing

 Integration and system testing

 Operation and maintenance

 The main drawback of the waterfall model is the difficulty of accommodating

change after the process is underway. One phase has to be complete before

moving onto the next phase.

Waterfall model problems

 Inflexible partitioning of the project into distinct stages makes it difficult

to respond to changing customer requirements.

 Therefore, this model is only appropriate when the requirements are well-

understood and changes will be fairly limited during the design process.

 Few business systems have stable requirements.

 The waterfall model is mostly used for large systems engineering projects

where a system is developed at several sites.

1.3.2 Evolutionary development

Prepared by K. Geetha,Assistant Professor,Department of CS,CA,IT KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 18CAU401 UNIT: I BATCH-2017-2020

 Exploratory development

o Objective is to work with customers and to evolve a final system from an

initial outline specification. Should start with well-understood
requirements and add new features as proposed by the customer.

 Throw-away prototyping

o Objective is to understand the system requirements. Should start with
poorly understood requirements to clarify what is really needed.

Evolutionary development

 Problems

o Lack of process visibility;

o Systems are often poorly structured;

o Special skills (e.g. in languages for rapid prototyping) may be required.

 Applicability

o For small or medium-size interactive systems;

o For parts of large systems (e.g. the user interface);

o For short-lifetime systems.

Component-based software engineering

 Based on systematic reuse where systems are integrated from existing components

or COTS (Commercial-off-the-shelf) systems.

Prepared by K. Geetha,Assistant Professor,Department of CS,CA,IT KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 18CAU401 UNIT: I BATCH-2017-2020

 Process stages

o Component analysis;

o Requirements modification;

o System design with reuse;

o Development and integration.

 This approach is becoming increasingly used as component standards have

emerged.

Reuse-oriented development

1.3.3 Incremental Process Model

Incremental Model : The incremental model combines elements of the linear

sequential model with the iterative philosophy of prototyping. The incremental

model applies linear sequences in a staggered fashion as calendar time progresses.

Each linear sequence produces a deliverable ―increment‖ of the software.

In incremental model, the first increment is often a core product. Here the

basic requirements are addressed, but many supplementary features remain undelivered.

The core product is used by the customer to develop a plan for the next increment. The

plan addresses the modification of the core product to better meet the needs of the

customer and the delivery of additional features and functionality. This process is

repeated following the delivery of each increment, until the complete product is

produced.

Prepared by R.NITHYA,Ass.prof,Department of CS,CA,IT KAHE Page 15

Prepared by K. Geetha,Assistant Professor,Department of CS,CA,IT KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 18CAU401 UNIT: I BATCH-2017-2020

Incremental development is particularly useful when staffing is unavailable for

a complete implementation. If the core product is well received with fewer staffs then

additional staff, if required), can be added to implement the next increment. Increments

can be planned to manage technical risks. For example, a major system might require

new hardware that is under development. Then it might be possible to plan early

increments in a way that avoids the use of this hardware.

1.3.4 Evolutionary Software Process Model

Model Types

Software Products can be perceived as evolving over a time period.

However, neither the Linear Sequential Model nor the Prototype Model applies

this aspect to software production. The Linear Sequential Model was designed for

straight-line development. The Prototype Model was designed to assist the customer

in understanding requirements and is designed to produce a visualization of the final

system.

But the Evolutionary Models take the concept of ―evolution‖ into the

engineering paradigm. Therefore Evolutionary Models are iterative. They are built in

a manner that enables software engineers to develop increasingly more complex versions

of the software.

1.3.4.1 Prototyping

Prepared by K. Geetha,Assistant Professor,Department of CS,CA,IT KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 18CAU401 UNIT: I BATCH-2017-2020

Prototyping Model: Often, a customer defines a set of general objectives for

software but does not identify detailed input, processing, or output requirements. In

other cases, the developer may be unsure of the efficiency of an algorithm, the

adaptability of an operating system, or the form that human/machine interaction

should take. In these, and many other situations, a prototyping paradigm may offer the

best approach.

(i) Communication: Firstly, developer and customer meet and define the overall

objectives, requirements, and outline areas where further definition is mandatory.

(ii) Quick Plan: Based on the requirements and others of the communication part a

quick plane is made to design the software.

(iii) Modeling Quick Design: Based on the quick plane, ‗A Quick Design‘ occurs.

The quick design focuses on a representation of those aspects of the software that will

be visible to the customer/user, such as input approaches and output formats.

(iv) Construction of Prototype: The quick design leads to the construction of a

prototype.

Prepared by K. Geetha,Assistant Professor,Department of CS,CA,IT KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 18CAU401 UNIT: I BATCH-2017-2020

(v) Deployment, delivery and feedback: The prototype is evaluated by the

customer/user and used to refine requirements for the software to be developed. All

these steps are repeated to tune the prototype to satisfy user‘s need. At the same time

enable the developer to better understand what needs to be done.

Problems with Prototype Model:

(i) In the rush to get the software working the overall software

quality or long-term maintainability will not get consideration. So software, in that

way, gets the need of excessive modification to ensure quality.

(ii) The developer may choose inappropriate operating

system, algorithms, language in the rush to make the prototype working.

Prototyping is an effective paradigm for software engineering. It necessary

to build the prototype to define requirements and then to engineer the software with a eye

toward quality.

1.3.4.2 The Spiral Model

Spiral Model: The spiral model is an evolutionary software process model that

combines the iterative nature of prototyping with the controlled and systematic

aspects of the linear sequential model. Using the spiral model, software is developed

in a series of incremental releases. During early iterations, the incremental release

might be a paper model or prototype. During later iterations, increasingly more

complete versions of the engineered system are produced.

A spiral model is divided into a number of framework activities, also called task

regions. Typically, there are between three and six task regions. Given figure is of a

spiral model that contains five task regions.

Prepared by K. Geetha,Assistant Professor,Department of CS,CA,IT KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 18CAU401 UNIT: I BATCH-2017-2020

Model that contains five task regions.

(i) Customer communication — Tasks required to establish effective

communication between developer and customer.

(ii) Planning — Tasks required to define resources, timelines, and other

project related information.

(iii) Modeling — Tasks required in building one or more representations of

the application.

(iv) Construction and release — Tasks required to construct, test, install.

(v) Deployment — Tasks required to deliver the software, getting feedbacks

etc.

Software engineering team moves around the spiral in a clockwise direction,

beginning at the center. The first circuit around the spiral might result in the

development of a product specification; subsequent passes around the spiral might

be used to develop a prototype and then progressively more sophisticated versions of

the software. Each pass through the planning region results in adjustments to the

project plan. Cost and schedule are adjusted based on feedback derived from customer

evaluation.

Prepared by K. Geetha,Assistant Professor,Department of CS,CA,IT KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 18CAU401 UNIT: I BATCH-2017-2020

In addition, the project manager adjusts the planned number of iterations required to

complete the software.

The spiral model is a realistic approach to the development of large- scale

systems and software. The spiral model enables the developer to apply the prototyping

approach at any stage in the evolution of the product. The spiral model demands a

direct consideration of technical risks at all stages of the project and, if properly applied,

should reduce risks before they become problematic. It demands considerable risk

assessment expertise and relies on this expertise for success.

Process activities

 Software specification

 Software design and implementation

 Software validation

 Software evolution

1.4 Specialized process model

Specialized process models take on many of the characteristics of one or more of the

traditional models presented in the preceding sections. However, these models tend to

be applied when a specialized or narrowly defined software engineering approach is

chosen.

1.4.1 Component-Based Development

• Consists of the following process steps

– Available component-based products are researched and

evaluated for the application domain in question

– Component integration issues are considered

– A software architecture is designed to accommodate the

components

– Components are integrated into the architecture

– Comprehensive testing is conducted to ensure proper

functionality

• Relies on a robust component library

• Capitalizes on software reuse, which leads to documented savings in

 project cost and time

Prepared by K. Geetha,Assistant Professor,Department of CS,CA,IT KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 18CAU401 UNIT: I BATCH-2017-2020

1.4.2 The Formal Methods Model

• Encompasses a set of activities that leads to formal mathematical

specification of computer software

• Enables a software engineer to specify, develop, and verify a computer-based

system by applying a rigorous, mathematical notation

• Ambiguity, incompleteness, and inconsistency can be discovered and corrected

more easily through mathematical analysis

• Offers the promise of defect-free software

• Used often when building safety-critical systems

• Development of formal methods is currently quite time-consuming and

expensive

• Because few software developers have the necessary background to apply

formal methods, extensive training is required

• It is difficult to use the models as a communication mechanism for

technically unsophisticated customers

1.4.3 Aspect-Oriented Software Development

Regardless of the software process that is chosen, the builders of complex software

invariably implement a set of localized features, functions, and information content.

These localized software characteristics are modeled as components (e.g., objectoriented

classes) and then constructed within the context of a system architecture. As modern

computer-based systems become more sophisticated (and complex), certain concerns—

customer required properties or areas of technical interest—span the entire

architecture. Some concerns are high-level properties of a system (e.g., security, fault

tolerance). Other concerns affect functions (e.g., the application of business rules),

while others are systemic (e.g., task synchronization or memory management).

When concerns cut across multiple system functions, features, and information, they are

often referred to as crosscutting concerns. Aspectual requirements define those

crosscutting concerns that have an impact across the software architecture.

Prepared by K. Geetha,Assistant Professor,Department of CS,CA,IT KAHE

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME: SOFTWARE ENGINEERING

COURSE CODE: 18CAU401 UNIT: I BATCH-2017-2020

Aspect-oriented software development (AOSD), often referred to as aspect- oriented

programming (AOP), is a relatively new software engineering paradigm that provides a

process and methodological approach for defining, specifying, designing, and

constructing aspects—―mechanisms beyond subroutines and inheritance for localizing

the expression of a crosscutting concern‖

1. Define software.
POSSIBLE QUESTIONS

2. define software engineering.

3. write about the characteristics of software.

4.write a note on nature of software.

5. what is meant by layered technology in software engineering? 6.what are the

process in software?

7.write a note about the software models.

8.what are the process activities in software?

9.why software is important?

10.what are the features of software?

Class: II BCA Semester : IV

S.No. Question Choice 1 Choice 2 Choice 3 Choice 4
1 Software takes on a ______________ role. single dual triple tetra
2 Software is a _______________. virtual system modifier framework

3
Instructions that when executed provide desired function and
performance is called software hardware firmware humanware

4 High quality of software is achieved through ________________. testing good design construction manufacture
5 Software doesn’t ________________. tearout wearout degrade deteriorate

6 Software is not susceptible to ______________. hardware defects environmental
melodies deterioration

7 Software will undergo __________. database testing enhancement manufacture

8
 _________ refers to the meaning and form of incoming and
outgoing information. content software hardware data

9
 _____________ refers to the predictability of the order and timing
of information. system software network software information

determinacy database

10 ____________ is not a system software. MS Office compiler editor file management
utility

11
Collection of programs written to service other programs are called
__________. system software business

software
embedded
software d. pc software

12 Which one is not coming under software myths Management myths customer myths product myths practitioners myths
13 _________ is a PC Software. MS word LISP CAD C

14
Software that monitors, analyses, controls real world events is called
_________. Business software real time

software
web based
software

d. embedded
software

15 The bedrock that supports software engineering is a______ tools methods process models a quality focus

16 A complete software process by identifying a small number of _____ framework activities
umbrella
activities

process
framework software process

17 The process framework encompassess a set of ________ framework activities
umbrella
activities

process
framework software process

18 software engineering action is________________ design chronic decision crisis

19 Which one is effect the outcome of the project? Risk management Measurement technical reviews Reusability
20 Continuing indefinitely is called ___________. crisis decision affliction chronic
21 Component based development uses ____________. functions subroutines procedures objects

SOFWARE ENGINEERING (17CAU401)

Unit - I

22 UML stands for ____________.
Universal Modelling
Language

User Modified
Language

Unified
Modelling
Language

User Model
Language

23
A model which uses formal mathematical specification is called
________. 4 GT model

Unified method
model

formal methods
model

component based
development

24 A variation of formal methods model is called _____________.
component based
development 4 GT model

unified method
model

cleanroom software
engineering

25 The development of formal methods is ___________. less time consuming
quite time
consuming

does not consume
time

very less time
consuming

26 The first step to develop software is ______________. analysis design
requirements
gathering coding

27 The waterfall model sometimes called as classic model
classic life cycle
model life cycle model cycle model

28 Software engineering activities include ____________ decision affliction hardware maintenance
29 all process model prescribes a ______________. circular elliptical spiral workflow

30

Component based development incorporates the characteristics of the
___________ model

circular elliptical spiral hierarchical
31 Prototype is a ______________. software hardware computer model

32
For small applications it is possible to move from requirement
gathering step to____________. analysis implementation design modeling

33 Software process model includes ________________. software analysis hardware computer

50 Software project management begins with a set of activities that are
collectively called ________________

project planning
software scope

software
estimation decomposition

51 ____________. project planning software scope estimation decomposition

52 The ease with which software can be transferred from one computer
to another. This quality attribute is called ______________. portability reliability efficiency accuracy

53
The ability of a program to perform a required function under stated
condition for a stated period of time. This quality attribute is called
____________.

portability reliability efficiency accuracy

54
The event to which software performs its intended function. This
quality attribute is called _________________. portability reliability efficiency accuracy

55
A qualitative assessments of freedom from errors. This quality
attribute is called ____________. portability reliability efficiency accuracy

56
The extent to which software can continue to operate correctly. This
quality attribute is called ______________. robustness correctness efficiency reliability

57 The extent to which the software is free from design and coding defects ie
fault free. This quality attribute is called _____________. robustness correctness efficiency reliability

58
System shall reside in 50KB of memory is an example of
_____________.

quantified
requirement

qualified
requirement

functional
requirement

performance
requirement

59
Accuracy shall be sufficient to support mission is an example of
___________.

quantified
requirement

qualified
requirement

functional
requirement

performance
requirement

60
System shall make efficient use of memory is an example of
______________.

quantified
requirement

qualified
requirement

functional
requirement

performance
requirement

Answer
dual
modifier

software

good design
wearout
environmental
melodies
enhancement

content

information
determinacy

MS Office

system software

product myths
MS word
real time
software
a quality focus
framework
activities
umbrella
activities
design
Risk
management
chronic
objects

Unified
Modelling
Language
formal methods
model
cleanroom
software
engineering
quite time
consuming
requirements
gathering
classic life cycle
model
maintenance
workflow

spiral
model

modeling

analysis

project planning

decomposition

portability

reliability

efficiency

accuracy

robustness

correctness

quantified
requirement
qualified
requirement
qualified
requirement

Unit - 2

1
The ________ as a bridge between the systm decription
and the design model design

analysis
model

2
The role of the software engineer in the requirement
analysis is called____ designer analyst

3 analysis modeling often begins with _______
data
modeling

function
modeling

4 A ____________ can be an external entity
function
object

structural
object

5 ________ defines the properities of a data object relationship cardinality

6
Data objects are connected to one another in different
ways is called __________ modality relationships

7

______ is the specification of the number of occurrences
of one object that can be related to the number of
occurrences of another object modality relationships

8
__________ defines the maximum number of objects that
can participate in a relationship modality relationships

9
________ provide an indication of whether or not a
particular data object must participate in the relationship Modality relationships

10
The _____ diagram takes an an input-process-output
view of sysytem

use-case
diagram

activity
diagram

11 The level 0 DFD is called as ______ diagram

contract
level
diagram

context level
diagram

12
The ______ describes the behavior of the system but not
the inner working of the processes PSPEC ASPEC

13
The _______ is used to describe all flow model processes
the appear in the final level of refinement CSPEC ASPEC

14
The _______ model indicates how software will respond
to external events data behavior

15
The _____ represents a sequence of activities that
involves actor and the system csase tool activity

16
The ______ diagram indicates how events cause
transitions from object to object

sequence
diagram activity

17
Which one depict the software requirements from the
user's point of view.

behavioral
based

flow based
model

18
Which model depicts how input is transformed into output
as data objects move through a system

behavioral
based

flow based
model

19
20

Unit 3

1

________is a iterativeprocess through which
requirements are translated into a blueprint for
constructing the software

requirements
gathering coding

2
Who developeda set of software quality attributefor the
software design Barry Boehm R.Pattis

3
Which quality attribute measure the response time,
throughput and effeciency of the sysytem Functionality Usability

4
The quality attribute, Usability is assessed by considering
the overall ________ of the system consistency Functionality

5
A _______ refers to a sequence of instructionsthat have a
specific and limited functions

procedural
abstraction

data
abstraction

6
______ represent architecture as an organized collection
of programs components

process
models

structural
models

7
_____ models address the behavioral aspects of the
program architecture

process
models

structural
models

8
Software is divided into separately named and
addressable components is called _______ process behavior

9
the ______ is a process of changing a software by which
doesnot alter the external behavior of the code refinement cohesion

10
_____ is an indication of the relative functional strength of
the module refinement cohesion

11
_____ is an indication of the relativeinterdependency
among modules cohesion patterns

12
Refinement is a top-down design strategy which is
actually a process of _____ eloboration abstraction

13
A __________ is a named collection of data that
describes a data object.

procedural
abstraction

data
abstraction

14
_________ implies a program control mechanism
without specifying internal detail.

procedural
abstraction

data
abstraction

15
software architecture consider ____ levels of the design
pyramid 3 2

16 Which action translates data objects into data structures data design
component
design

17

In data centered arcjitecture __________ resides at the
centre of the architecture which is accessed frequently by
other components

client
software data store

18

___________ represents the structure of data and
program components that are required to build a
computer-based syste,

architectural
design data design

19 KDD stand for

Knowledge
Discovery of
data
manipulatio

Knowledge
Discovery in
database

20
the ____________ classes defines all abstraction that are
necessary for human computer interaction

primitive
class user interface

21

The ________ classes implement lower level business
abstraction required to manage the business domain
class

primitive
class user interface

22
____________ suggest that a method should send or
receive messages from friend class

Law of
cohesion Law of meter

23

_____________ is achieve by developing modules with
single minded function and aversion of excessive
interaction refinement refactoring

24
______ suggest that the information contained in one
module is inaccesible to othe modules refinement refactoring

25 Refinement is a process of _____________ abstraction eloboration

26
____________ is a process of breaking up of complex
problem into a manageable piecies refinement refactoring

27
________ is evaluated by measuring the frequency and
severity of failure. Usability performance

28
iIn transform flow the information must entered and exit in
________ form

external
world internal world

29
Information flow is characterized by an single data item is
called context flow

transaction
flow

30
A _______ diagram is mapped into a program structure
using transform or transaction mapping data flow use case

31
______________ language provides a semantic and
syntax for describing a software architecture

architectural
description

architectural
design

32 Design begins with the __________ model. data requirements

33
___________ focus on the design of the business or
technical process that the system must accommodate.

framework
models

dynamic
models

34
_____________ can be used to represent the
functional hierarchy of a system.

framework
models

dynamic
models

35
____________ represent architecture as an organized
collection of program components.

dynamic
models

functional
models

36

____________ increases the level of design
abstraction by attempting to identity repeatable
architectural design frameworks that are encountered
in similar types of applications.

framework
models

dynamic
models

37

_________ address the behavioural aspects of the
program architecture, indicating how the structure or
system configuration may change as a function of
external events.

framework
models

dynamic
models

38
___________ is the place where quality is fostered
in software engineering model data

39
________ provides us with representations of
software that can be assessed for quality. design specification

40
_____________ describes a program should not
have any bugs that inhibit its function firmness commodity

41
A program should be suitable for the purposes for
which it is intended is called firmness commodity

42
The experience of using the program should be a
pleasurable one is called firmness commodity

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60

planning construction analysis model

programmer tester analyst
behavior
modling

structure
modeling

Data object flow object Data object

Data attributes modality Data attributes

cardinality Data attributes relationships

cardinality Data attributes Cardinality

Data attributes cardinality Cardinality

Data attributes cardinality Modality
data flow
diagram ERD data flow diagram

text level
diagram

zero level
diagram

context level
diagram

LSPEC CSPEC CSPEC

LSPEC PSPEC PSPEC

function structural behavior

use-case swimlane use-case

use-case swimlane sequence diagram

class based
scenario based
model

scenario based
model

class based
scenario based
model flow based model

software
design deployment software design

M.C.Escher
Hewlett-
Packard Hewlett-Packard

Performance Supportability Performance

Supportability Performance consistency
behavior
abstraction

structural
abstraction

procedural
abstraction

dynamic
models

framework
models structural models

dynamic
models

framework
models dynamic models

modules data Modules

patterns refactoring refactoring

patterns refactoring cohesion

coupling
functional
dependency coupling

refactoring
information
hiding eloboration

control
abstraction

behavior
abstraction data abstraction

control
abstraction

behavior
abstraction

control
abstraction

1 4 2
behavior
design

functional
design data design

filter pipes data store

software
design

behavioural
design

architectural
design

Knowing of
database
discovery

Knowing
discovery of
database

Knowledge
Discovery in
database

process
classes

business
domain user interface

process
classes System class process classes
Low of
completeness

law of
primitiveness Law of meter

functional
independence

information
hiding

functional
independence

functional
independence

information
hiding information hiding

architecture modularity eloboration

modularity arichiteture modularity

supportability reliability reliability

top down bottom up external world

transform flow contract flow transaction flow

state diagram
activity
diagram data flow

architectural
pattern

architecturaldef
inition

architectural
description

specification code requirements

process
models

functional
models process models

process
models

functional
models

functional
models

framework
models

structural
models structural models

process
models

functional
models

framework
models

process
models

functional
models dynamic models

design specification design

data prototype design

delight roman firmness

delight roman commodity

delight roman delight

Prepared by K. Geetha, Assistant Professor, Department of CS,CA,IT KAHE Page 17

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: II BATCH-2017-2020

UNIT 2

SYLLABUS
Requirement Analysis; Initiating Requirement EngineeringProcess- Requirement Analysis and
Modeling Techniques- FlowOriented Modeling- Need for SRS- Characteristics and Components of SRS-
Software Project Management: Estimation in Project Planning Process, Project Scheduling.

BUILDING THE ANALYSIS MODEL:

2.1 Requirements Analysis:
Requirements analysis in systems engineering and software engineering,

encompasses those tasks that go into determining the needs or conditions to meet for a

new or altered product, taking account of the possibly conflicting requirements of the

various stakeholders, such as beneficiaries or users. It is an early stage in the more

general activity of requirements engineering which encompasses all activities concerned

with eliciting, analyzing, documenting, validating and managing software or system

requirements.

Requirements analysis is critical to the success of a systems or software project.

The Requirements should be documented, actionable, measurable, testable, traceable,

related to identified business needs or opportunities, and defined to a level of detail

sufficient for system design.

Requirements Engineering Tasks:

Types of Requirements

Customer Requirements
Statements of fact and assumptions that define the expectations of the system in

terms of mission objectives, environment, constraints, and measures of

effectiveness and suitability (MOE/MOS). The customers are those that perform

the eight primary functions of systems engineering, with special emphasis on the

operator as the key customer. Operational requirements will define the basic need

and, at a minimum, answer the questions posed in the following listing

 Operational distribution or deployment: Where will the system be used?

 Mission profile or scenario: How will the system accomplish its mission

objective?

Prepared by K. Geetha, Assistant Professor, Department of CS,CA,IT KAHE Page 17

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: II BATCH-2017-2020

 Performance and related parameters: What are the critical systemparameters

to accomplish the mission?

 Utilization environments: How are the various system components to be used?

 Effectiveness requirements: How effective or efficient must the system be in

performing its mission?

 Operational life cycle: How long will the system be in use by the user?
 Environment: What environments will the system be expected to operate in an

effective manner?

Architectural Requirements
Architectural requirements explain what has to be done by identifying the

necessary system architecture of a system.

Structural Requirements

Structural requirements explain what has to be done by identifying the necessary

structure of a system.

Behavioral Requirements

Behavioral requirements explain what has to be done by identifying the necessary

behavior of a system.

Functional Requirements
Functional requirements explain what has to be done by identifying the necessary

task, action or activity that must be accomplished. Functional requirements

analysis will be used as the toplevel functions for functional analysis.

Non-functional Requirements

Non-functional requirements are requirements that specify criteria that can be

used to judge the operation of a system, rather than specific behaviors.

Performance Requirements
The extent to which a mission or function must be executed; generally measured

in terms of quantity, quality, coverage, timeliness or readiness. During

requirements analysis, performance (how well does it have to be done)

requirements will be interactively developed across all identified functions based

on system life cycle factors; and characterized in terms of the degree of certainty

in their estimate, the degree of criticality to system success, and their relationship

to other requirements.

Design Requirements
The ―build to,‖ ―code to,‖ and ―buy to‖ requirements for products and ―how to

execute‖ requirements for processes expressed in technical data packages and

technical manuals.

Derived Requirements

Prepared by K. Geetha, Assistant Professor, Department of CS,CA,IT KAHE Page 17

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: II BATCH-2017-2020

Requirements that are implied or transformed from higher-level requirement. For

example, a requirement for long range or high speed may result in a design

requirement for low weight.

Allocated Requirements
A requirement that is established by dividing or otherwise allocating a high-level

requirement into multiple lower-level requirements. Example: A 100-pound item

that consists of two subsystems might result in weight requirements of 70 pounds

and 30 pounds for the two lower-level items.

Building the Analysis Model:

Data Flow Diagram (DFD)

Represents how data objects are transformed as they move through the system

Input-Process-Output (I-P-O) view of software.

Flow model

computer

based

system

input output

Every computer-based system is an

Process

A data transformer (changes input to output)
Examples: compute taxes, determine area,format report, display graph Data must always

be processed in some way to achieve system function

Flow

Data flows through a system, beginning as input and be transformed into output.

Data Store

Data is often stored for later use.

look-up

sensor

data

sensor #

report required

sensor #, type,

location, age

sensor data

sensor number

type,

location, age

Prepared by K. Geetha, Assistant Professor, Department of CS,CA,IT KAHE Page 17

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: II BATCH-2017-2020

Guideline for DFD

• All icons must be labeled with meaningful names
• The DFD evolves through a number of levels of detail

• Always begin with a context level diagram (also called level 0)

• Always show external entities at level 0

• Always label data flow arrows

• do not represent procedural logic

Constructing DFD-1

• review the data model to isolate data objects and use a grammatical parse to determine

―operations‖
• determine external entities (producers and consumers of data)

Constructing DFD-2
• write a narrative describing the transform

• parse to determine next level transforms

• ―balance‖ the flow to maintain data flow continuity

• develop a level 1 DFD
Requirements are prone to issues of ambiguity, incompleteness, and

inconsistency. Techniques such as rigorous inspection have been shown to help deal with

these issues. Ambiguities, incompleteness, and inconsistencies that can be resolved in the

requirements phase typically cost orders of magnitude less to correct than when these

same issues are found in later stages of product development. Requirements analysis

strives to address these issues.

There is an engineering trade off to consider between requirements which are too

vague, and those which are so detailed that they

1. take a long time to produce - sometimes to the point of being obsolete once

completed

2. limit the implementation options available

3. Are costly to produce.
At a technical level, software engineering begins with a series of modeling tasks that

lead to a complete specification of requirements and a comprehensive design

representation for the software to be built. The analysis model, actually a set of models, is

the first technical representation of a system. Over the years many methods have been

proposed for analysis modeling.

However, two now dominate. The first, structured analysis is a classical modeling

method. The other approach, object oriented analysis.

Structured analysis is a model building activity. Applying the operational analysis

principles we create and partition data, functional, and behavioral models that depict the

essence of what must built.

The Elements of the Analysis Model

The analysis model must achieve three primary objectives:

1. To describe what the customer requires.

2. To establish a basis for the creation of a software design.

Prepared by K. Geetha, Assistant Professor, Department of CS,CA,IT KAHE Page 17

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: II BATCH-2017-2020

3. To define a set of requirements that can be validated once the software is built.

To accomplish these objectives, the analysis model derived during structured analysis

takes the form illustrated in

Prepared by K. Geetha, Assistant Professor, Department of CS,CA,IT KAHE Page 17

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: II BATCH-2017-2020

The structure of the analysis model

• At the core of the model lies the data dictionary—a repository that contains

descriptions of all data objects consumed or produced by the software.

• Three different diagrams surround the core.

• The entity relation diagram (ERD) depicts relationships between data objects. The

ERD is the notation that is used to conduct the data modeling activity.

The attributes of each data object noted in the ERD can be described using a data object

description.

• The data flow diagram (DFD) serves two purposes:

1. To provide an indication of how data are transformed as they move through the

system.

2. To depict the functions (and subfunctions) that transform the data flow.

The DFD provides additional information that is used during the analysis of the

information domain and serves as a basis for the modeling of function.

A description of each function presented in the DFD is contained in a process

specification (PSPEC).

• The state transition diagram (STD) indicates how the system behaves as a

consequence of external events. To accomplish this, the STD represents the

various modes of behavior (called states) of the system and the manner in which

transitions are made from state to state. The STD serves as the basis for

behavioral modeling.

Additional information about the control aspects of the software is contained in the

control specification (CSPEC).

The analysis model encompasses each of the diagrams, specifications, descriptions, and
the dictionary noted in Figure 1.

2.2 Analysis Modeling Approaches:

• Structured analysis
– Considers data and the processes that transform the data as separate

entities

– Data is modeled in terms of only attributes and relationships (but no

operations)

– Processes are modeled to show the 1) input data, 2) the transformation

that occurs on that data, and 3) the resulting output data

• Object-oriented analysis – Focuses on the definition of classes and the manner in

which they collaborate with one another to fulfill customer requirements

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: II BATCH-2017-2020

Prepared by K. Geetha, Assistant Professor, Department of CS,CA,IT KAHE Page 17

– Focuses on the definition of classes and the manner in which they

collaborate with one another to fulfill customer requirements

2.3 Data Modeling Concepts:
Data modeling is a process used to define and analyze data requirements needed to

support the business processes within the scope of corresponding information systems in

organizations. Therefore, the process of data modeling involves professional data

modelers working closely with business stakeholders, as well as potential users of the

information system. There are three different types of data models produced while

progressing from requirements to the actual database to be used for the information

system.

The data requirements are initially recorded as a conceptual data model which is

essentially a set of technology independent specifications about the data and is used to

discuss initial requirements with the business stakeholders.

The conceptual model is then translated into a logical data model, which documents

structures of the data that can be implemented in databases. Implementation of one

conceptual data model may require multiple logical data models. The last step in data

modeling is transforming the logical data model to a physical data model that organizes

the data into tables, and accounts for access, performance and storage details. Data

modeling defines not just data elements, but their structures and relationships between

them.

Data modeling techniques and methodologies are used to model data in a standard,

consistent, predictable manner in order to manage it as a resource. The use of data

modeling standards is strongly recommended for all projects requiring a standard means

of defining and analyzing data within an organization, e.g., using data modeling:

 to manage data as a resource;

 For the integration of information systems.

 For designing databases/data warehouses.
 Data modeling may be performed during various types of projects and in multiple

phases of projects. Data models are progressive; there is no such thing as the final

data model for a business or application. Instead a data model should be considered a

living document that will change in response to a changing business.

The data models should ideally be stored in a repository so that they can be retrieved,

expanded, and edited over time. Whitten (2004) determined two types of data modeling

Strategic data modeling: This is part of the creation of an information systems strategy,

which defines an overall vision and architecture for information systems is defined.

Information engineering is a methodology that embraces this approach.

Data modeling during systems analysis: In systems analysis logical data models are

created as part of the development of new databases.
Data modeling is also used as a technique for detailing business requirements for

specific databases. It is sometimes called database modeling because a data model is

eventually implemented in a database.

Data models
Data models provide a structure for data used within information systems by

providing specific definition and format. If a data model is used consistently across

systems then compatibility of data can be achieved. If the same data structures are used to

store and access data then different applications can share data seamlessly.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

Prepared by K. Geetha, Assistant Professor, Department of CS,CA,IT KAHE Page 17

COURSE CODE: 17CAU401 UNIT: II BATCH-2017-2020

The results of this are indicated in the diagram. However, systems and interfaces

often cost more than they should, to build, operate, and maintain. They may also

constrain the business rather than support it. This may occur when the quality of the data

models implemented in systems and interfaces is poor.

 Business rules, specific to how things are done in a particular place, are often fixed

in the structure of a data model. This means that small changes in the way business

is conducted lead to large changes in computer systems and interfaces. So,

business rules need to be implemented in a flexible way that does not result in

complicated dependencies, rather the data model should be flexible enough so that

changes in the business can be implemented within the data model in a relatively

quick and efficient way.

 Entity types are often not identified, or are identified incorrectly. This can lead to

replication of data, data structure and functionality, together with the attendant costs

of that duplication in development and maintenance. Therefore, data definitions

should be made as explicit and easy to understand as possible to minimize

misinterpretation and duplication.

 Data models for different systems are arbitrarily different. The result of this is that

complex interfaces are required between systems that share data. These interfaces can

account for between 25-70% of the cost of current systems. Required interfaces

should be considered inherently while designing a data model, as a data model on its

own would not be usable without interfaces within different systems.

 Data cannot be shared electronically with customers and suppliers, because the

structure and meaning of data has not been standardized. To obtain optimal value

from an implemented data model, it is very important to define standards that will

ensure that data models will both meet business needs and be consistent.

2.3.1 Data Objects, Data Attributes
Data Objects

A data object is a representation of almost any composite information that must

be understood by software. By composite information, we mean something that has a

number of different properties or attributes. Therefore, width (a single value) would not

be a valid data object, but dimensions (incorporating height, width, and depth) could be

defined as an object.

A data object can be an external entity (e.g., anything that produces or consumes

information), a thing (e.g., a report or a display), and an occurrence (e.g., a telephone

call)

EX:
A person or a car (Figure 2) can be viewed as a data object in the sense that either can be

defined in terms of a set of attributes. The data object description incorporates the data

object and all of its attributes. Or event (e.g., an alarm), a role (e.g., salesperson), an

organizational unit (e.g., accounting department), a place (e.g., a warehouse), or a

structure (e.g., a file).

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: II BATCH-2017-2020

Prepared by K. Geetha, Assistant Professor, Department of CS,CA,IT KAHE Page 17

Data objects (represented in bold) are related to one another. For example, person

can own car, where the relationship own connotes a specific "connection‖ between

person and car. The relationships are always defined by the context of the problem that

is being analyzed.

A data object encapsulates data only—there is no reference within a data object to

operations that act on the data (This distinction separates the data object from the class or

object defined as part of the object-oriented paradigm). Therefore, the data object can be

represented as a table as shown in Figure 3. The headings in the table reflect attributes of

the object. In this case, a car is defined in terms of make, model, ID number, body type

color and owner. The body of the table represents specific instances of the data object.

For example, a Chevy Corvette is an instance of the data object car.

Data Attributes
Attributes define the properties of a data object and take on one of three different

characteristics. They can be used to (1) name an instance of the data object, (2) describe

the instance, or (3) make reference to another instance in another table.

In addition, one or more of the attributes must be defined as an identifier—that is, the

identifier attribute becomes a "key" when we want to find an instance of the data object.

In some cases, values for the identifier(s) are unique, although this is not a requirement.

Referring to the data object car, a reasonable identifier might be the ID number.

The set of attributes that is appropriate for a given data object is determined

through an understanding of the problem context.

Data objects are connected to one another in different ways. Consider two data

objects, book and bookstore. These objects can be represented using the simple notation

illustrated in Figure 4a. A connection is established between book and bookstore

because the two objects are related. But what are the relationships? To determine the

Prepared by K. Geetha, Assistant Professor, Department of CS,CA,IT KAHE Page 17

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: II BATCH-2017-2020

answer, we must understand the role of books and bookstores within the context of the

software to be built. We can define a set of object/relationship pairs that define the

relevant relationships. For example,

• A bookstore orders books.

• A bookstore displays books.

• A bookstore stocks books.

• A bookstore sells books.
• A bookstore returns books.

2.3.2 Relationships Cardinality and Modality:

The elements of data modeling—data objects, attributes, and relationships—

provide the basis for understanding the information domain of a problem. However,

additional information related to these basic elements must also be understood.

We have defined a set of objects and represented the object/relationship pairs that bind

them. But a simple pair that states: object X relates to object Y does not provide enough

information for software engineering purposes. We must understand how many

occurrences of object X are related to how many occurrences of object Y. This leads to a

data modeling concept called cardinality.

Cardinality. The data model must be capable of representing the number of occurrences

objects in a given relationship. Tillmann defines the cardinality of an object/relationship

pair in the following manner:

Cardinality is the specification of the number of occurrences of one [object] that can be

related to the number of occurrences of another [object].

Cardinality is usually expressed as simply 'one' or 'many.'

Taking into consideration all combinations of 'one' and 'many,' two [objects] can be

related as

• One-to-one (l:l)—An occurrence of [object] 'A' can relate to one and only one

occurrence of [object] 'B,' and an occurrence of 'B' can relate to only one occurrence of

'A.'

Prepared by K. Geetha, Assistant Professor, Department of CS,CA,IT KAHE Page 17

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: II BATCH-2017-2020

• One-to-many (l:N)—One occurrence of [object] 'A' can relate to one or many

occurrences of [object] 'B,' but an occurrence of 'B' can relate to only one occurrence of

'A.'

• Many-to-many (M:N)—An occurrence of [object] 'A' can relate to one or more

occurrences of 'B,' while an occurrence of 'B' can relate to one or more occurrences of 'A.'

Cardinality defines ―the maximum number of objects that can participate in a

relationship‖. It does not, however, provide an indication of whether or not a particular

data object must participate in the relationship. To specify this information, the data

model adds modality to the object/relationship pair.

Modality. The modality of a relationship is 0 if there is no explicit need for the

relationship to occur or the relationship is optional. The modality is 1 if an occurrence of

the relationship is mandatory. To illustrate, consider software that is used by a local

telephone company to process requests for field service. A customer indicates that there

is a problem. If the problem is diagnosed as relatively simple, a single repair action

occurs. However, if the problem is complex, multiple repair actions may be required.

Figure 5 illustrates the relationship, cardinality, and modality between the data objects

customer and repair action.

Cardinality and modality

Referring to the figure, a one to many cardinality relationships is established. That

is, a single customer can be provided with zero or many repair actions. The symbols on

the relationship connection closest to the data object rectangles indicate cardinality.

The vertical bar indicates one and the three-pronged fork indicates many.
Modality is indicated by the symbols that are further away from the data object

rectangles. The second vertical bar on the left indicates that there must be a customer for

a repair action to occur. The circle on the right indicates that there may be no repair

action required for the type of problem reported by the customer.

2.4 Flow Oriented Modeling:
Flow models focus on the flow of data objects as they are transformed by

processing functions. Derived from structured analysis, flow models use the data flow

diagram, a modeling notation that depicts how input is transformed into output as data

objects move through the system. Each software function that transforms data is

Prepared by K. Geetha, Assistant Professor, Department of CS,CA,IT KAHE Page 17

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: II BATCH-2017-2020

described by a process specification or narrative. In addition to data flow, this modeling

element also depicts control flow.

Data flow oriented modeling is the most widely used analysis notation. Flow

oriented modeling focuses on structured analysis and design, follows a top to down

methodology and uses a graphical technique depicting information flows and the

transformations that are applied as data moves from input to output.

The modeling tools that are used to build a data flow oriented model include

context diagrams, data flow diagrams, entity relationship diagram, control flow diagram,

state transition diagram, data dictionary, process specification and control specification.

Steps to create a data flow model

- Diagram 0: develop a context diagram.

- Decompose the Process into high level processes.
- In parallel to this, develop data flow diagrams, entity relationship diagrams and state

transition diagrams.

- Define data stores which include normalization.

- Develop data dictionary.

- Finalize data flow diagrams, entity relationship diagram and state transition diagrams.

- Develop process specifications which include PDL, decision tables or trees.
- Perform transformational analysis which includes developing structure charts.

Information flow continuity must be maintained as each data flow diagram level is

refined. This means that input and output at one level must be the same as input and

output at a refined level.

2.4 1 Creating Data Flow Model:

Data Flow Diagram

A Data Flow Diagram (DFD) is a significant modeling technique for

analyzing and constructing information processes. DFD literally means an illustration

that explains the course or movement of information in a process. DFD illustrates this

flow of information in a process based on the inputs and outputs. A DFD can be

referred to as a Process Model.

Additionally, a DFD can be utilized to visualize data processing or a structured

design. A DFD illustrates technical or business processes with the help of the external

data stored, the data flowing from a process to another, and the results.

A designer usually draws a context-level DFD showing the relationship

between the entities inside and outside of a system as one single step. This basic DFD

can be then disintegrated to a lower level diagram demonstrating smaller steps

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: II BATCH-2017-2020

Prepared by K. Geetha, Assistant Professor, Department of CS,CA,IT KAHE Page 17

exhibiting details of the system that is being modelled. Numerous levels may be

required to explain a complicated system.

Data Flow Diagram Software
Data Flow Diagram software is also called as DFD software. With Edraw Max, the

designers can rapidly create structured analysis diagram, information flow diagram,

process-oriented diagram, data-oriented diagram and data process diagrams as well as

data flowcharts, business process diagrams, work flow diagrams, value stream maps,

TQM diagrams, and cause and effect diagrams.

Data flow diagram templates, symbols and samples are also provided with this dfd

tools; these ready-to-use dfd templates and symbols will enable rapid designing of

important complicated DFDs and process models.

Data Flow Diagram Template
Use the data flow diagram template to describe data processes. You can use this

diagram to assist in data analysis or show the flow of information for a process. The

Data Flow Diagram Shapes template includes shapes for entities, states, and data

processes. In general, you'll use this template to diagram the actions within a data flow,

rather than the static state of a database.

Examples of Data Flow Diagrams

The following example demonstrates how to draw a data flow diagram.
Before it was eventually replaced, a copy machine suffered frequent paper jams and

became a notorious troublemaker. Often, a problem could be cleared by simply

opening and closing the access panel. Someone observed the situation and flowcharted

the troubleshooting procedure used by most people.

When to use Data Flow Diagram

Prepared by K. Geetha, Assistant Professor, Department of CS,CA,IT KAHE Page 17

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: II BATCH-2017-2020

The DFD is an excellent communication tool for analysts to model processes

and functional requirements. One of the primary tools of the structured analysis efforts

of the 1970's it was developed and enhanced by the likes of Yourdon, McMenamin,

Palmer, Gane and Sarson. It is still considered one of the best modeling techniques for

eliciting and representing the processing requirements of a system.

Used effectively, it is a useful and easy to understand modeling tool. It has

broad application and usability across most software development projects. It is easily

integrated with data modeling, workflow modeling tools, and textual specs. Together

with these, it provides analysts and developers with solid models and specs. Alone,

however, it has limited usability. It is simple and easy to understand by users and can

be easily extended and refined with further specification into a physical version for the

design and development teams.

Principle for Creating Data Flow Diagrams
Therefore, the principle for creating a DFD is that one system may be

disintegrated into subsystems, which in turn can be disintegrated into subsystems at a

much lower level, and so on and so forth. Every subsystem in a DFD represents a

process. In this process or activity the input data is processed. Processes cannot be

decomposed after reaching a certain lower level. Each process in a DFD characterises an

entire system. In a DFD system, data is introduced into the system from the external

environment. Once entered the data flows between processes. And then the processed

data is produced as an output or a result.

Create a Data Flow Diagram
Data flow diagrams can be used to provide a clear representation of any

business function. The technique starts with an overall picture of the business and

continues by analyzing each of the functional areas of interest. This analysis can be

carried out to precisely the level of detail required. The technique exploits a method

called top-down expansion to conduct the analysis in a targeted way.

The result is a series of diagrams that represent the business activities in a way

that is clear and easy to communicate. A business model comprises one or more data

flow diagrams (also known as business process diagrams). Initially a context diagram

is drawn, which is a simple representation of the entire system under investigation.

This is followed by a level 1 diagram; which provides an overview of the major

Prepared by K. Geetha, Assistant Professor, Department of CS,CA,IT KAHE Page 17

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: II BATCH-2017-2020

functional areas of the business. Don't worry about the symbols at this stage, these are

explained shortly. Using the context diagram together with additional information from

the area of interest, the level 1 diagram can then be drawn.

The level 1 diagram identifies the major business processes at a high level and

any of these processes can then be analyzed further - giving rise to a corresponding

level 2 business process diagram. This process of more detailed analysis can then

continue - through level 3, 4 and so on. However, most investigations will stop at level

2 and it is very unusual to go beyond a level 3 diagram.

Identifying the existing business processes, using a technique like data flow

diagrams, is an essential precursor to business process re-engineering, migration to

new technology, or refinement of an existing business process. However, the level of

detail required will depend on the type of change being considered.

The process model is typically used in structured analysis and design methods.

Also called a data flow diagram (DFD), it shows the flow of information through a

system. Each process transforms inputs into outputs.

2.4 2 Creating a Control Flow Model
A control flow diagram (CFD) is a diagram to describe the control flow of a

business process, process or program.

A control flow diagram can consist of a subdivision to show sequential steps, with if-

then-else conditions, repetition, and/or case conditions. Suitably annotated geometrical

figures are used to represent operations, data, or equipment, and arrows are used to

indicate the sequential flow from one to another. There are several types of control flow

diagrams, for example:

 Change control flow diagram, used in project management

 Configuration decision control flow diagram, used in configuration management
 Process control flow diagram, used in process management

 Quality control flow diagram, used in quality control.
In software and systems development control flow diagrams can be used in control flow

analysis, data flow analysis, algorithm analysis, and simulation. Control and data flow

analysis are most applicable for real time and data driven systems. These flow analyses

transform logic and data requirements text into graphic flows which are easier to analyze

than the text. PERT, state transition and transaction diagrams are examples of control

flow diagrams.

Types of Control Flow Diagrams

Process Control Flow Diagram

A flow diagram can be developed for the process control system for each critical activity.

Process control is normally a closed cycle in which a sensor provides information to a

process control software application through a communications system. The application

determines if the sensor information is within the predetermined (or calculated) data

parameters and constraints. The results of this comparison are fed to an actuator, which

controls the critical component. This feedback may control the component electronically

or may indicate the need for a manual action.

This closed-cycle process has many checks and balances to ensure that it stays

safe. The investigation of how the process control can be subverted is likely to be

extensive because all or part of the process control may be oral instructions to an

individual monitoring the process. It may be fully computer controlled and automated, or

Prepared by K. Geetha, Assistant Professor, Department of CS,CA,IT KAHE Page 17

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: II BATCH-2017-2020

it may be a hybrid in which only the sensor is automated and the action requires manual

intervention.

2.4.3 The Control Specification

Control Specification (CSPEC)

Guidelines for Building a CSPEC

 List all sensors that are "read" by the software.

 List all interrupt conditions.

 List all "switches" that are actuated by the operator.

 List all data conditions.

 Recalling the noun-verb parse that was applied to the software statement ofscope,

review all "control items" as possible CSPEC inputs/outputs.

 Describe the behavior of a system by identifying its states; identify how each state is

reach and defines the transitions between states.

 Focus on possible omissions ... a very common error in specifying control, e.g., ask:

"Is there any other way I can get to this state or exit from it?"

2.4.4 The Process Specification
The Process Specification (PSPEC) is used to describe all flow model processes that

appear at the final level of refinement. It is a ―mini‖ specification for each transform at

the lowest refined of a DFD.

bubble

PSPEC

narrative

pseudocode (PDL)

equations

tables

diagrams and/or charts

combinatorial spec
state transitiontable

decision tables

activation tables

The CSPEC can be:

state diagram
(sequential spec)

Prepared by K. Geetha, Assistant Professor, Department of CS,CA,IT KAHE Page 17

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: II BATCH-2017-2020

DFDs: A Look Ahead

Control Flow Diagrams
The diagram represents ―events‖ and the processes that manage these events.

An ―event‖ is a Boolean condition that can be ascertained by:

 Listing all sensors that are "read" by the software.

 Listing all interrupt conditions.

 Listing all "switches" that are actuated by an operator.

 Listing all data conditions.

 Recalling the noun/verb parse that was applied to the processing narrative, review all

"control items" as possible CSPEC inputs/outputs.

The Control Model

 The control flow diagram is "superimposed" on the DFD and shows events that

control the processes noted in the DFD.

 Control flows—events and control items—are noted by dashed arrows.

 A vertical bar implies an input to or output from a control spec (CSPEC) — a

separate specification that describes how control is handled.

 A dashed arrow entering a vertical bar is an input to the CSPEC

 A dashed arrow leaving a process implies a data condition.

 A dashed arrow entering a process implies a control input read directly by the
process.

 Control flows do not physically activate/deactivate the processes—this is done via the

CSPEC.

analysis model

Maps into

design model

Prepared by K. Geetha, Assistant Professor, Department of CS,CA,IT KAHE Page 17

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: II BATCH-2017-2020

Control Flow Diagram

beeper on/off copies done full

read
operator

input start

manage

copying

problem light

empty
reload

process

jammed

perform

problem
diagnosis

create
user

displays

2.5 Creating a Behavioral Model:

display panel enabled

Prepared by K. Geetha, Assistant Professor, Department of CS,CA,IT KAHE Page 17

While other analysis modeling elements provides a static view of the software,

behavioral modeling depicts the dynamic behavior. The behavioral model uses input from

scenario based, flow oriented and class based elements to represent the states of analysis

classes and the system as a whole. To accomplish this, states are identified, the events

that cause a class to make a transition from one state to another are defined, and the

actions that occur as transition is accomplished are also identified.The behavioral model

is an indication showing how software responds to external event. Steps to be followed

are:

- All use cases are evaluated.

- Events are identified and their relations to classes are identified.

- An event occurs whenever the system and an user exchange information. An event is

not the information that is exchanged but a fact that information has been exchanged.

- A sequence is created for use-case.

- A state diagram is built.

There are two different characterizations of states in behavioral modeling:
State of class as system performs its function and the state of the system as seen

from outside. The system has states that represent specific externally observable behavior

whereas a class has states that represent its behavior as the system performs its functions.

Prepared by K. Geetha, Assistant Professor, Department of CS,CA,IT KAHE Page 17

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: II BATCH-2017-2020

POSSIBLE QUESTIONS

1.What is meant by requirement analysis?

2.what are the types of requirement analysis?

3.what is meant by architectural requirement?

4.what is meant by functional requirement?

5.what is meant by non-functional requirement?

6.differntiate functional & non-functional requirement.

7.write a note on data flow diagram in software.

 _____________ is a process of discovery, refinement, modeling, and software engineering software software analysis software design software
____________ is the systematic use of proven principles, techniques,
languages, and tools. software engineering software analysis software design

requirements
engineering

requirements
engineering

Requirement engineering is conducted in a _______________. sporadic way random way haphazard way
systematic use of
proven approaches

systematic use of
proven
approaches

Software requirements analysis work products must be reviewed for
_________. modeling completeness

information
processing

functional
requirement completeness

. __________ bridges the gap between system level requirement
engineering and software design. system engineering modeling

requirements
analysis software engineering

software
engineering

A ____________ can be an external entity function object structural object Data object flow object Data object
The ________ as a bridge between the systm decription and the design
model design analysis model planning construction analysis model

Software applications can be collectively called as ______________. data gathering
information
gathering data processing

information
processing data processing

__________ represents the individual data and control objects that
constitute some larger collection of information transformed by the
software. information content data content data model information model

information
content

__________ represents the manner in which data and control change
as each moves through a system. information content information flow

information
structure data structure information flow

____________ represents the internal organization of various data
and control items. information content information flow

information
structure data structure

information
structure

Entity is a __________. data information model physical thing physical thing
The first operational analysis principle requires an examination of the
information domain and the creation of a _____________. data model

information
model data structure information structure data model

To transform software into information, the system performs
_____________. input processing output

input, processing and
output

input, processing
and output

. To transform software into information, the system must perform
_________ generic functions. 2 3 4 5 3

There are ___________ types of models. 5 4 3 2 2
The horizontal partitioning of SafeHome function has
_____________ major functions on the first level of hierarchy. 2 3 4 5 3

The vertical partitioning of SafeHome function has _____________
major functions on the first level of hierarchy. 2 3 4 5 3

A model of the software to be built is called ______________. data model prototype
information
model software model prototype

Unit II

The ___________ of software requirements presents the real world
manifestation of processing functions and information structures implementation view essential view partitioning view evolutionary view

implementation
view

. The essential view of the SafeHome function _______________
does not concern itself with the physical form of the data that is used. identify event

read sensor
status activate sensor deactivate sensor

read sensor
status

A prototype is the ____________. data model
information
model software model evolution model

information
model

Data objects are represented by ________ labeled arrows bubbles entity label labeled arrows
Transformations are represented by ____ labeled arrows bubbles entity label bubbles
__________ enables the software engineer to generate executable
code quickly, they are ideal for rapid prototyping. 2 GT 3 GT 4 GT 5 GT 4 GT
The ___________ provides a detailed description of the problem that
the software must solve.

information
description software scope

function
description software description

information
description

______________ is probably the most important and, ironically, the
most often neglected section of software requirements specification.

behavioural
description

processing
narrative overall structure validation criteria validation criteria

The software requirements specification includes _____________. bibliography appendix
Bibliography and
appendix review

Bibliography and
appendix

The __________ section of the specification examines the operation
of the software as a consequence of external events and internally
generated control characteristics.

behavioural
description

representation
format

specification
principles

prototyping
environment

behavioural
description

The software requirements specification is developed as a
consequence of __________. review analysis prototyping

functional
description analysis

The role of the software engineer in the requirement analysis is called____ designer analyst programmer tester analyst

_____________ is the first technical step in the software process.
requirements
analysis

requirements
specification

information
description information domain

requirements
analysis

The close ended approach of the prototyping paradigm is called
________.

evolutionary
prototyping

simply
prototyping

open ended
prototyping

throwaway
prototyping

throwaway
prototyping

analysis modeling often begins with _______ data modeling function modeling behavior modling structure modeling data modeling
A ____________ can be an external entity function object structural object Data object flow object Data object
________ defines the properities of a data object relationship cardinality Data attributes modality Data attributes
The description of each function required to solve the problem is
presented in the _____________.

functional
description

behavioural
description data description program description

functional
description

One of the following is identified by eliciting information from the
customer. data description

program
description

behavioural
requirements functional model

behavioural
requirements

Software requirements analysis work products must be reviewed for
___________. system status completeness principles paycheck completeness

The overall role of software in a larger system is identified during the
_________. system engineering

software
planning

software
estimation documentation

system
engineering

The analyst finds that problems with the current manual system
include _________.

inability to obtain the
status of a component
rapidly

record the origin
of and the reason
for every
requirement rank requirement

work to eliminate
ambiguity

inability to obtain
the status of a
component rapidly

______ is the specification of the number of occurrences of one object that
can be related to the number of occurrences of another object modality relationships cardinality Data attributes Cardinality
__________ defines the maximum number of objects that can participate in
a relationship modality relationships Data attributes cardinality Cardinality
________ provide an indication of whether or not a particular data object
must participate in the relationship Modality relationships Data attributes cardinality Modality
The _____ diagram takes an an input-process-output view of sysytem use-case diagram activity diagram data flow diagram ERD data flow diagram

The level 0 DFD is called as ______ diagram contract level diagram
context level
diagram text level diagram zero level diagram

context level
diagram

The ______ describes the behavior of the system but not the inner working
of the processes PSPEC ASPEC LSPEC CSPEC CSPEC
The _______ is used to describe all flow model processes the appear in the
final level of refinement CSPEC ASPEC LSPEC PSPEC PSPEC
All software applications collectively called __________. packages programs software data processing data processing

The _______ model indicates how software will respond to external events data behavior function structural behavior
The _____ represents a sequence of activities that involves actor and the
system csase tool activity use-case swimlane use-case
The _____________ aids the analyst in understanding the
information, function and behaviour of a system, thereby making the
requirements analysis task easier and more systematic. prototype software model interface model
________ defines the properities of a data object relationship cardinality Data attributes modality Data attributes
Data objects are connected to one another in different ways is called
__________ modality relationships cardinality Data attributes relationships
the __________ is one method for representing the behavior of a
system by depicting its state and evevts state diagram use case diagram ER diagram DFD state diagram
When an sensor event is recognized, the ___________ invokes an
audible alarm attached to the system. model software delay prototype software
The requirements for SafeHome software may be analysed by
partitioning the __________ domains of the product prototype software behavioural interface behavioural
The ______ diagram indicates how events cause transitions from object to
object sequence diagram activity use-case swimlane sequence diagram

Which one depict the software requirements from the user's point of view. behavioral based flow based model class based scenario based model
scenario based
model

Which model depicts how input is transformed into output as data objects
move through a system behavioral based flow based model class based scenario based model flow based model

Unit - 2

1
The ________ as a bridge between the systm decription
and the design model design

analysis
model

2
The role of the software engineer in the requirement
analysis is called____ designer analyst

3 analysis modeling often begins with _______
data
modeling

function
modeling

4 A ____________ can be an external entity
function
object

structural
object

5 ________ defines the properities of a data object relationship cardinality

6
Data objects are connected to one another in different
ways is called __________ modality relationships

7

______ is the specification of the number of occurrences
of one object that can be related to the number of
occurrences of another object modality relationships

8
__________ defines the maximum number of objects that
can participate in a relationship modality relationships

9
________ provide an indication of whether or not a
particular data object must participate in the relationship Modality relationships

10
The _____ diagram takes an an input-process-output
view of sysytem

use-case
diagram

activity
diagram

11 The level 0 DFD is called as ______ diagram

contract
level
diagram

context level
diagram

12
The ______ describes the behavior of the system but not
the inner working of the processes PSPEC ASPEC

13
The _______ is used to describe all flow model processes
the appear in the final level of refinement CSPEC ASPEC

14
The _______ model indicates how software will respond
to external events data behavior

15
The _____ represents a sequence of activities that
involves actor and the system csase tool activity

16
The ______ diagram indicates how events cause
transitions from object to object

sequence
diagram activity

17
Which one depict the software requirements from the
user's point of view.

behavioral
based

flow based
model

18
Which model depicts how input is transformed into output
as data objects move through a system

behavioral
based

flow based
model

19
20

Unit 3

1

________is a iterativeprocess through which
requirements are translated into a blueprint for
constructing the software

requirements
gathering coding

2
Who developeda set of software quality attributefor the
software design Barry Boehm R.Pattis

3
Which quality attribute measure the response time,
throughput and effeciency of the sysytem Functionality Usability

4
The quality attribute, Usability is assessed by considering
the overall ________ of the system consistency Functionality

5
A _______ refers to a sequence of instructionsthat have a
specific and limited functions

procedural
abstraction

data
abstraction

6
______ represent architecture as an organized collection
of programs components

process
models

structural
models

7
_____ models address the behavioral aspects of the
program architecture

process
models

structural
models

8
Software is divided into separately named and
addressable components is called _______ process behavior

9
the ______ is a process of changing a software by which
doesnot alter the external behavior of the code refinement cohesion

10
_____ is an indication of the relative functional strength of
the module refinement cohesion

11
_____ is an indication of the relativeinterdependency
among modules cohesion patterns

12
Refinement is a top-down design strategy which is
actually a process of _____ eloboration abstraction

13
A __________ is a named collection of data that
describes a data object.

procedural
abstraction

data
abstraction

14
_________ implies a program control mechanism
without specifying internal detail.

procedural
abstraction

data
abstraction

15
software architecture consider ____ levels of the design
pyramid 3 2

16 Which action translates data objects into data structures data design
component
design

17

In data centered arcjitecture __________ resides at the
centre of the architecture which is accessed frequently by
other components

client
software data store

18

___________ represents the structure of data and
program components that are required to build a
computer-based syste,

architectural
design data design

19 KDD stand for

Knowledge
Discovery of
data
manipulatio

Knowledge
Discovery in
database

20
the ____________ classes defines all abstraction that are
necessary for human computer interaction

primitive
class user interface

21

The ________ classes implement lower level business
abstraction required to manage the business domain
class

primitive
class user interface

22
____________ suggest that a method should send or
receive messages from friend class

Law of
cohesion Law of meter

23

_____________ is achieve by developing modules with
single minded function and aversion of excessive
interaction refinement refactoring

24
______ suggest that the information contained in one
module is inaccesible to othe modules refinement refactoring

25 Refinement is a process of _____________ abstraction eloboration

26
____________ is a process of breaking up of complex
problem into a manageable piecies refinement refactoring

27
________ is evaluated by measuring the frequency and
severity of failure. Usability performance

28
iIn transform flow the information must entered and exit in
________ form

external
world internal world

29
Information flow is characterized by an single data item is
called context flow

transaction
flow

30
A _______ diagram is mapped into a program structure
using transform or transaction mapping data flow use case

31
______________ language provides a semantic and
syntax for describing a software architecture

architectural
description

architectural
design

32 Design begins with the __________ model. data requirements

33
___________ focus on the design of the business or
technical process that the system must accommodate.

framework
models

dynamic
models

34
_____________ can be used to represent the
functional hierarchy of a system.

framework
models

dynamic
models

35
____________ represent architecture as an organized
collection of program components.

dynamic
models

functional
models

36

____________ increases the level of design
abstraction by attempting to identity repeatable
architectural design frameworks that are encountered
in similar types of applications.

framework
models

dynamic
models

37

_________ address the behavioural aspects of the
program architecture, indicating how the structure or
system configuration may change as a function of
external events.

framework
models

dynamic
models

38
___________ is the place where quality is fostered
in software engineering model data

39
________ provides us with representations of
software that can be assessed for quality. design specification

40
_____________ describes a program should not
have any bugs that inhibit its function firmness commodity

41
A program should be suitable for the purposes for
which it is intended is called firmness commodity

42
The experience of using the program should be a
pleasurable one is called firmness commodity

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60

planning construction analysis model

programmer tester analyst
behavior
modling

structure
modeling

Data object flow object Data object

Data attributes modality Data attributes

cardinality Data attributes relationships

cardinality Data attributes Cardinality

Data attributes cardinality Cardinality

Data attributes cardinality Modality
data flow
diagram ERD data flow diagram

text level
diagram

zero level
diagram

context level
diagram

LSPEC CSPEC CSPEC

LSPEC PSPEC PSPEC

function structural behavior

use-case swimlane use-case

use-case swimlane sequence diagram

class based
scenario based
model

scenario based
model

class based
scenario based
model flow based model

software
design deployment software design

M.C.Escher
Hewlett-
Packard Hewlett-Packard

Performance Supportability Performance

Supportability Performance consistency
behavior
abstraction

structural
abstraction

procedural
abstraction

dynamic
models

framework
models structural models

dynamic
models

framework
models dynamic models

modules data Modules

patterns refactoring refactoring

patterns refactoring cohesion

coupling
functional
dependency coupling

refactoring
information
hiding eloboration

control
abstraction

behavior
abstraction data abstraction

control
abstraction

behavior
abstraction

control
abstraction

1 4 2
behavior
design

functional
design data design

filter pipes data store

software
design

behavioural
design

architectural
design

Knowing of
database
discovery

Knowing
discovery of
database

Knowledge
Discovery in
database

process
classes

business
domain user interface

process
classes System class process classes
Low of
completeness

law of
primitiveness Law of meter

functional
independence

information
hiding

functional
independence

functional
independence

information
hiding information hiding

architecture modularity eloboration

modularity arichiteture modularity

supportability reliability reliability

top down bottom up external world

transform flow contract flow transaction flow

state diagram
activity
diagram data flow

architectural
pattern

architecturaldef
inition

architectural
description

specification code requirements

process
models

functional
models process models

process
models

functional
models

functional
models

framework
models

structural
models structural models

process
models

functional
models

framework
models

process
models

functional
models dynamic models

design specification design

data prototype design

delight roman firmness

delight roman commodity

delight roman delight

Prepared by NITHYA.R Department of CS,CA,IT KAHE Page 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: III BATCH-2017-2020

UNIT 3
SYLLABUS

Risk Management: Software Risks, Risk Identification Risk Projection and Risk Refinement,

RMMM plan, Quality Management- Quality Concepts, Software Quality Assurance, Software

Reviews, Metrics for Process and Projects

MATERIAL

A common definition of risk is an uncertain event that if it occurs, can have a positive or

negative effect on a project’s goals. The potential for a risk to have a positive or negative effect

is an important concept. Why? Because it is natural to fall into the trap of thinking that risks have

inherently negative effects. If you are also open to those risks that create positive opportunities,

you can make your project smarter, streamlined and more profitable. Think of the adage –

“Accept the inevitable and turn it to your advantage.” That is what you do when you mine

project risks to create opportunities.

Uncertainty is at the heart of risk. You may be unsure if an event is likely to occur or not. Also,

you may be uncertain what its consequences would be if it did occur. Likelihood – the

probability of an event occurring, and consequence – the impact or outcome of an event, are the

two components that characterize the magnitude of the risk.

All risk management processes follow the same basic steps, although sometimes different jargon

is used to describe these steps. Together these 5 risk management process steps combine to

deliver a simple and effective risk management process.

Step 1: Identify the Risk. You and your team uncover, recognize and describe risksthat might

affect your project or its outcomes. There are a number of techniques you can use to find project

risks. During this step you start to prepare your Project Risk Register.

Step 2: Analyze the risk. Once risks are identified you determine the likelihood and

consequence of each risk. You develop an understanding of the nature of the risk and its

potential to affect project goals and objectives. This information is also input to your Project

Risk Register.

Step 3: Evaluate or Rank the Risk. You evaluate or rank the risk by determining the risk

magnitude, which is the combination of likelihood and consequence. You make decisions about

whether the risk is acceptable or whether it is serious enough to warrant treatment. These risk

rankings are also added to your Project Risk Register.

Step 4: Treat the Risk. This is also referred to as Risk Response Planning. During this step you

assess your highest ranked risks and set out a plan to treat or modify these risks to achieve

acceptable risk levels. How can you minimize the probability of the negative risks as well as

enhancing the opportunities? You create risk mitigation strategies, preventive plans and

contingency plans in this step. And you add the risk treatment measures for the highest ranking

or most serious risks to your Project Risk Register.

Step 5: Monitor and Review the risk. This is the step where you take your Project Risk

Register and use it to monitor, track and review risks.

Risk is about uncertainty. If you put a framework around that uncertainty, then you effectively

de-risk your project. And that means you can move much more confidently to achieve

your project goals. By identifying and managing a comprehensive list of project risks, unpleasant

surprises and barriers can be reduced and golden opportunities discovered. The risk management

process also helps to resolve problems when they occur, because those problems have been

envisaged, and plans to treat them have already been developed and agreed. You avoid impulsive

http://continuingprofessionaldevelopment.org/risk-management-process-practical-technique-identifying-risks/
http://continuingprofessionaldevelopment.org/risk-register-template-the-benefits-of-standardized-approach/
http://continuingprofessionaldevelopment.org/key-elements-project-risk-register-template/
http://continuingprofessionaldevelopment.org/setting-goals-and-objectives-for-projects-leads-to-successful-outcomes/

Prepared by NITHYA.R Department of CS,CA,IT KAHE Page 2

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: III BATCH-2017-2020

reactions and going into “fire-fighting” mode to rectify problems that could have been

anticipated. This makes for happier, less stressed project teams and stakeholders. The end result

is that you minimize the impacts of project threats and capture the opportunities that occur.

RISK IDENTIFICATION

Risk identification is a process for identifying and recording potential project risks that can

affect the project delivery. This step is crucial for efficient risk management throughout the

project. The outputs of the risk identification are used as an input for risk analysis, and they

reduce a project manager's uncertainty. It is an iterative process that needs to be continuously

repeated throughout the duration of a project. The process needs to be rigorous to make sure that

all possible risks are identified.

An effective risk identification process should include the following steps:

1. Creating a systematic process - The risk identification process should begin with

project objectives and success factors.

2. Gathering information from various sources - Reliable and high quality information is

essential for effective risk management.

3. Applying risk identification tools and techniques - The choice of the best suitable

techniques will depend on the types of risks and activities, as well as organizational

maturity.

4. Documenting the risks - Identified risks should be documented in a risk register and a
risk breakdown structure, along with its causes and consequences.

5. Documenting the risk identification process - To improve and ease the risk

identification process for future projects, the approach, participants, and scope of the

process should be recorded.

6. Assessing the process' effectiveness - To improve it for future use, the effectiveness of

the chosen process should be critically assessed after the project is completed.

RISK PROJECTION
Risk projection, also called risk estimation, attempts to rate each risk in two ways—the

likelihood or probability that the risk is real and the consequences of the problems associated

with the risk, should it occur. The project planner, along with other managers and technical staff,

performs four risk projection activities: (1) establish a scale that reflects the perceived likelihood

of a risk, (2) delineate the consequences of the risk, (3) estimate the impact of the risk on the

project and the product, and (4)note the overall accuracy of the risk projection so that there will

be no misunderstandings.

1. Define the risk referent levels for the project.

2. Attempt to develop a relationship between each (ri, li, xi) and each of the referent

levels.

3. Predict the set of referent points that define a region of termination, bounded by a

curve or areas of uncertainty.

4. Try to predict how compound combinations of risks will affect a referent level.

RISK REFINEMENT

This general condition can be refined in the following manner:

Subcondition 1. Certain reusable components were developed by a third party with no

knowledge of internal design standards.

Prepared by NITHYA.R Department of CS,CA,IT KAHE Page 3

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: III BATCH-2017-2020

Subcondition 2. The design standard for component interfaces has not been solidified and may

not conform to certain existing reusable components.

Subcondition 3. Certain reusable components have been implemented in a language that is not

supported on the target environment.

RMMM PLAN

A risk management strategy can be included in the software project plan or the risk

management steps can be organized into a separate Risk Mitigation, Monitoring and

Management Plan. The RMMM plan documents all work performed as part of risk analysis

and is used by the project manager as part of the overall project plan.

Some software teams do not develop a formal RMMM document. Rather, each risk is

documented individually using a risk information sheet . In most cases, the RIS is maintained

using a database system, so that creation and information entry, priority ordering, searches, and

other analysis may be accomplished easily.

Once RMMM has been documented and the project has begun, risk mitigation and monitoring

steps commence. As we have already discussed, risk mitigation is a problem avoidance activity.

Risk monitoring is a project tracking activity with three primary objectives:

(1) to assess whether predicted risks do, in fact, occur;

(2) to ensure that risk aversion steps defined for the risk are being properly applied; and

(3) to collect information that can be used for future risk analysis.

In many cases, the problems that occur during a project can be traced to more than one risk.

Another job of risk monitoring is to attempt to allocate origin (what risk(s) caused which

problemsthroughout the project).

QUALITY MANAGEMENT

The quality of software has improved significantly over the past two decades. One reason for this

is that companies have used new technologies in their software development process such as

object-oriented development, CASE tools, etc. In addition, a growing importance of software

quality management and the adoption of quality management techniques from manufacturing can

be observed. However, software quality significantly differs from the concept of quality

generally used in manufacturing mainly for the next reasons [1]:

1. The software specification should reflect the characteristics of the product that the

customer wants. However, the development organization may also have requirements

such as maintainability that are not included in the specification.

2. Certain software quality attributes such as maintainability, usability, reliability cannot be

exactly specified and measured.

3. At the early stages of software process it is very difficult to define a complete software

specification. Therefore, although software may conform to its specification, users don’t

meet their quality expectations.

Software quality management is split into three main activities:

http://moodle.autolab.uni-pannon.hu/Mecha_tananyag/szoftverfejlesztesi_folyamatok_angol/bi01.html#Bib_1

Prepared by NITHYA.R Department of CS,CA,IT KAHE Page 4

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: III BATCH-2017-2020

1. Quality assurance. The development of a framework of organizational procedures and
standards that lead to high quality software.

2. Quality planning. The selection of appropriate procedures and standards from this

framework and adapt for a specific software project.

3. Quality control. Definition of processes ensuring that software development follows the

quality procedures and standards.

Quality management provides an independent check on the software and software development

process. It ensures that project deliverables are consistent with organizational standards and

goals.

12.1. Process and product quality

It is general, that the quality of the development process directly affects the quality of delivered

products. The quality of the product can be measured and the process is improved until the

proper quality level is achieved. Figure 12.1. illustrates the process of quality assessment based

on this approach.

Figure 12.1. Process based quality assessment.

In manufacturing systems there is a clear relationship between production process and product

quality. However, quality of software is highly influenced by the experience of software

engineers. In addition, it is difficult to measure software quality attributes, such as

maintainability, reliability, usability, etc., and to tell how process characteristics influence these

attributes. However, experience has shown that process quality has a significant influence on the

quality of the software.

Process quality management includes the following activities:

1. Defining process standards.

2. Monitoring the development process.

3. Reporting the software.

12.2. Quality assurance and standards

12.2.1. ISO

12.2.2. Documentation standards
Quality assurance is the process of defining how software quality can be achieved and how the

development organization knows that the software has the required level of quality. The main

activity of the quality assurance process is the selection and definition of standards that are

applied to the software development process or software product. There are two main types of

standards. The product standards are applied to the software product, i.e. output of the software

process. The process standards define the processes that should be followed during software

development. The software standards are based on best practices and they provide a framework

for implementing the quality assurance process.

http://moodle.autolab.uni-pannon.hu/Mecha_tananyag/szoftverfejlesztesi_folyamatok_angol/ch12.html#d0e5864
http://moodle.autolab.uni-pannon.hu/Mecha_tananyag/szoftverfejlesztesi_folyamatok_angol/ch12.html#d0e5873

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: III BATCH-2017-2020

The development of software engineering project standards is a difficult and time consuming

process. National and international bodies such as ANSI and the IEEE develop standards that can

be applied to software development projects. Organizational standards, developed by quality

assurance teams, should be based on these national and international standards. Table 12.1.

shows examples of product and process standards.

Table 12.1. Examples of product and process standards.

Product standards

Requirements document structure

Method header format

Java programming style

Change request form

12.2.1. ISO

ISO 9000 is an international set of standards that can be used in the development of a quality

management system in all industries. ISO 9000 standards can be applied to a range of

organizations from manufacturing to service industries. ISO 9001 is the most general of these

standards. It can be applied to organizations that design, develop and maintain products and

develop their own quality processes. A supporting document (ISO 9000-3) interprets ISO 9001

for software development.

The ISO 9001 standard isn’t specific to software development but includes general principles

that can be applied to software development projects. The ISO 9001 standard describes various

aspects of the quality process and defines the organizational standards and procedures that a

company should define and follow during product development. These standards and procedures

are documented in an organizational quality manual.

The ISO 9001 standard does not define the quality processes that should be used in the

development process. Organizations can develop own quality processes and they can still be ISO

9000 compliant companies. The ISO 9000 standard only requires the definition of processes to

be used in a company and it is not concerned with ensuring that these processes provide best

practices and high quality of products. Therefore, the ISO 9000 certification doesn’t means

exactly that the quality of the software produced by an ISO 9000 certified companies will be

better than that software from an uncertified company.

12.2.2. Documentation standards

Documentation standards in a software project are important because documents can represent

the software and the software process. Standardized documents have a consistent appearance,

Prepared by NITHYA.R Department of CS,CA,IT KAHE Page 5

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: III BATCH-2017-2020

structure and quality, and should therefore be easier to read and understand. There are three types
of documentation standards:

1. Documentation process standards. These standards define the process that should be

followed for document production.

2. Document standards. These standards describe the structure and presentation of

documents.

3. Documents interchange standards. These standards ensure that all electronic copies of

documents are compatible.

12.3. Quality planning

Quality planning is the process of developing a quality plan for a project. The quality plan

defines the quality requirements of software and describes how these are to be assessed. The

quality plan selects those organizational standards that are appropriate to a particular product and

development process. Quality plan has the following parts:

1. Introduction of product.

2. Product plans.

3. Process descriptions.

4. Quality goals.

5. Risks and risk management.

The quality plan defines the most important quality attributes for the software and includes a

definition of the quality assessment process. Table 12.2. shows generally used software quality

attributes that can be considered during the quality planning process.

Table 12.2. Software quality attributes.

 Safety Understandability

Security Testability

Reliability Adaptability

Resilience Modularity

Robustness Complexity

Maintainability

12.4. Quality control

12.4.1. Quality reviews

Quality control provides monitoring the software development process to ensure that quality

assurance procedures and standards are being followed. The deliverables from the software

development process are checked against the defined project standards in the quality control

process. The quality of software project deliverables can be checked by regular quality reviews

and/or automated software assessment. Quality reviews are performed by a group of people.

They review the software and software process in order to check that the project standards have

been followed and that software and documents conform to these standards. Automated software

assessment processes the software by a program that compares it to the standards applied to the

development project.

12.4.1. Quality reviews

Quality reviews are the most widely used method of validating the quality of a process or

product. They involve a group of people examining part or all of a software process, system, or

its associated documentation to discover potential problems. The conclusions of the review are

Prepared by NITHYA.R Department of CS,CA,IT KAHE Page 6

http://moodle.autolab.uni-pannon.hu/Mecha_tananyag/szoftverfejlesztesi_folyamatok_angol/ch12.html#d0e6009

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: III BATCH-2017-2020

formally recorded and passed to the author for correcting the discovered problems. Table 12.3.
describes several types of review, including quality reviews.

Table 12.3. Types of review.

Review type

Design or program inspections

Progress reviews

Quality reviews

12.5. Software measurement and metrics

12.5.1. The measurement process

12.5.2. Product metrics

Prepared by NITHYA.R Department of CS,CA,IT KAHE Page 7

http://moodle.autolab.uni-pannon.hu/Mecha_tananyag/szoftverfejlesztesi_folyamatok_angol/ch12.html#d0e6080
http://moodle.autolab.uni-pannon.hu/Mecha_tananyag/szoftverfejlesztesi_folyamatok_angol/ch12.html#d0e6080
http://moodle.autolab.uni-pannon.hu/Mecha_tananyag/szoftverfejlesztesi_folyamatok_angol/ch12.html#d0e6112

Prepared by NITHYA.R Department of CS,CA,IT KAHE Page 8

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: III BATCH-2017-2020

Software measurement provides a numeric value for some quality attribute of a software product

or a software process. Comparison of these numerical values to each other or to standards draws

conclusions about the quality of software or software processes. Software product measurements

can be used to make general predictions about a software system and identify anomalous

software components.

Software metric is a measurement that relates to any quality attributes of the software system or

process. It is often impossible to measure the external software quality attributes, such as

maintainability, understandability, etc., directly. In such cases, the external attribute is related to

some internal attribute assuming a relationship between them and the internal attribute is

measured to predict the external software characteristic. Three conditions must be hold in this

case:

1. The internal attribute must be measured accurately.

2. A relationship must exist between what we can measure and the external behavioural

attribute.

3. This relationship has to be well understood, has been validated and can be expressed in

terms of a mathematical formula.

12.5.1. The measurement process

A software measurement process as a part of the quality control process is shown in Figure 12.2.

The steps of measurement process are the followings:

1. Select measurements to be made. Selection of measurements that are relevant to answer

the questions to quality assessment.

2. Select components to be assessed. Selection of software components to be measured.

3. Measure component characteristics. The selected components are measured and the
associated software metric values computed.

4. Identify anomalous measurements. If any metric exhibit high or low values it means that

component has problems.

5. Analyze anomalous components. If anomalous values for particular metrics have been

identified these components have to be examined to decide whether the anomalous metric

values mean that the quality of the component is compromised.

Generally each of the components of the system is analyzed separately. Anomalous

measurements identify components that may have quality problems.

Figure 12.2. The software measurement process.

12.5.2. Product metrics

Prepared by NITHYA.R Department of CS,CA,IT KAHE Page 9

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: III BATCH-2017-2020

The software characteristics that can be easily measured such as size do not have a clear and

consistent relationship with quality attributes such as understandability and maintainability.

Product metrics has two classes:

1. Dynamic metrics. These metrics (for example execution time) are measured during the

execution of a program.

2. Static metrics. Static metrics are based on measurements made of representations of the

system such as the design, program or documentation.

Dynamic metrics can be related to the efficiency and the reliability of a program. Static metrics

such as code size are related to software quality attributes such as complexity, understandability,

maintainability, etc.

POSSIBLE QUESTIONS
1. Write note on risk identification.

2.what is meant by software risk?

3.write note on risk projection.

4.write on risk refinement.

5.define software quality.

6.write note on software quality assurance.

7.discuss the metrics of software.

121 There are __________ major phases to any design process 2 3 4 5
122 Diversification is the ____________ of a repertoire of alternatives. component solution acquisition knowledge

123
During ____________, the designer chooses and combines
appropriate elements from the repertoire to meet the design
objectives. diversification convergence elimination creation

124
________ and __________ combine intuition and judgement based
on experience in building similar entities. elimination, convergencecreation, convergenceacquisition, creation

diversification and
convergence

125 __________ can be traced to a customer’s requirements and at the
same time assessed for quality against a set of predefined criteria. design analysis principles testing

126
The __________ must implement all of the explicit requirements
contained in the analysis model principles testing design component

127
A ___________ should exhibit an architectural structure that has
been created using recognizable design patterns. principles testing component design

128
A ___________ is composed of components that exhibit good design
characteristics. principles testing component design

129
A ___________ can be implemented in an evolutionary fashion
thereby facilitating implementation and testing. principles testing component design

130
A ___________ should be modular that is the software should be
logically partitioned into elements that perform specific functions and
sub functions. design principles component testing

131
A ___________ should contain distinct representations of data,
architecture, interfaces, and components. design principles component testing

132
A ___________ should lead to data structures that are appropriate
for the objects to be implemented and are drawn from recognizable
data patterns. design principles component testing

133
. A _____________ should lead to interfaces that reduce the
complexity of connections between modules and with the external
environment. design principles component testing

134 A ___________ should be derived using a repeatable method that is
driven by information obtained during software requirements analysis principles component design testing

UNIT III

135
The software __________ process encourages good design through
the application of fundamental design principles, systematic
methodology and thorough review. principles component design testing

136
The __________ must be a readable, understandable guide for those
who generate code and for those who test and subsequently support
the software. principles component design testing

137
The __________ should provide a complete picture of the software
addressing the data, functional and behavioral domains from an
implementation perspective. principles component design testing

138
The evolution of software __________ is a continuing process that
has spanned the past four decades. principles component design testing

139
Procedural aspects of design definition evolved into a philosophy
called ____________. top down programmingbottom up programmingstructured programmingobject oriented programming

140 The design process should not suffer from ___________. analysis tunnel vision conceptual errors integrity
141 The design should be __________ to the analysis model. consistent related traceable relevant
142 The design should not ___________ the wheel. minimize maximize integrate reinvent
143 The design should ___________ the intellectual distance maximize minimize integrate analyse
144 . The ___________ is represented at a high level of abstraction specification analysis quality design specification
145 The design should exhibit ___________ and integration. uniformity analysis quality review
146 The design should be ____________ to accommodate change. reviewed analysed assessed structured

147
The design should be ___________ to degrade gently, even when
aberrant data, events, or operating conditions are encountered. reviewed analysed assessed structured

148 Design is not ___________, coding is not design coding analysis review event
149 Design is not coding, __________ is not design. coding analysis review event

150
The design should be __________ for quality as it is being created
not after the fact. reviewed assessed structured integrated

151 The design should be ___________ to minimize conceptual errors. reviewed assessed structured integrated
152 Software design is both a _________ and a model. model process data function

153
__________ is the only way that we can accurately translate a
customer’s requirements into a finished software product or system. specification design data prototype

154
The design ___________ is the equivalent of an architect’s plan for a
house. analysis process model function

155
At the highest level of _________, a solution is stated in broad terms,
using the language of the problem environment. refinement modularity abstraction continuity

156
. A __________ is a named sequence of instructions that has a
specific and limited function.

procedural
abstraction data abstraction

control
abstraction all of the above

157
A __________ is a named collection of data that describes a data
object.

procedural
abstraction data abstraction

control
abstraction all of the above

158
_________ implies a program control mechanism without specifying
internal detail.

procedural
abstraction data abstraction

control
abstraction all of the above

159 ___________ is used to coordinate activities in an operating system.
synchronization
semaphore

control
abstraction data abstraction

procedural
abstraction

160
_________ is a top down design strategy originally proposed by
Niklaus Wirth. stepwise refinement

control
abstraction data abstraction

procedural
abstraction

161
The designer’s goal is to produce a model or representation of a
__________ that will later be built component entity data raw material

162
The second phase of any design process is the gradual ___________
of all but one particular configuration of components, and thus the
creation of the final product. acquisition addition elimination creation

163 Design begins with the __________ model. data requirements specification code

164
Software design methodologies lack the __________ that are
normally associated with more classical engineering design
disciplines. depth flexibility

quantitative
nature all of the above

165
Software requirements, manifested by the ___________ models, feed
the design task. data functional behavioral all of the above

166
___________ is the place where quality is fostered in software
engineering model data design specification

167
________ provides us with representations of software that can be
assessed for quality. design specification data prototype

168
Procedural aspects of design definition evolved into a philosophy
called __________.

procedural
programming

object oriented
programming

structured
programming all of the above

169
Meyer defines __________ criteria that enable us to evaluate a design
method with respect to its ability to define an effective modular
system.

2 3 4 5

170

. If a design method provides a systematic mechanism for
decomposing the problem into sub problems, it will reduce the
complexity of the overall problem, thereby achieving an effective
modular solution. This is called ____________.

modular
decomposability

modular
composability

modular
understandability modular continuity

171
If a design method enables existing (reusable) design components to
be assembled into a new system, it will yield a modular solution that
does not reinvent the wheel. This is called __________.

modular
decomposability

modular
composability

modular
understandability modular continuity

172
If a module can be understood as a stand alone unit (without
reference to other modules), it will be easier to build and easier to
change. This is called __________.

modular
decomposability

modular
composability

modular
understandability modular continuity

173

If small changes to the system requirements result in changes to
individual modules, rather than system wide changes, the impact of
change-induced side effects will be minimized. This is called
__________.

modular
decomposability

modular
composability

modular
understandability modular continuity

174
If an aberrant condition occurs within a module and its effects are
constrained within that module, the impact of error-induced side
effects will be minimized. This is called __________. modular protection

modular
composability

modular
understandability modular continuity

175

The aspect of the architectural design representation defines the
components of a system and the manner in which those components
are packaged and interact with one another. This property is called
_____________.

extra functional
property

structural
property

families of related
systems none of the above

176
____________ represent architecture as an organized collection of
program components. dynamic models

functional
models

framework
models structural models

177
____________ increases the level of design abstraction by attempting
to identity repeatable architectural design frameworks that are
encountered in similar types of applications. framework models dynamic models process models functional models

178
_________ address the behavioural aspects of the program
architecture, indicating how the structure or system configuration may
change as a function of external events. framework models dynamic models process models functional models

179
___________ focus on the design of the business or technical process
that the system must accommodate. framework models dynamic models process models functional models

180
_____________ can be used to represent the functional hierarchy of
a system. framework models dynamic models process models functional models

2
component

diversification

acquisition, creation

design

component

design

principles

testing

design

component

principles

design

principles

component

principles

design

principles

structured programming
analysis
related
minimize
integrate
specification
uniformity
reviewed

structured
coding
coding

assessed
integrated
process

prototype

function

modularity
procedural
abstraction

data abstraction

control
abstraction
synchronization
semaphore
stepwise
refinement

component

elimination
requirements

all of the above

all of the above

design

design
structured
programming

5

modular
decomposability

modular
composability

modular
understandability

modular
continuity

modular
protection

structural
property

structural models

framework
models

dynamic models

process models

functional
models

Unit - 2

1
The ________ as a bridge between the systm decription
and the design model design

analysis
model

2
The role of the software engineer in the requirement
analysis is called____ designer analyst

3 analysis modeling often begins with _______
data
modeling

function
modeling

4 A ____________ can be an external entity
function
object

structural
object

5 ________ defines the properities of a data object relationship cardinality

6
Data objects are connected to one another in different
ways is called __________ modality relationships

7

______ is the specification of the number of occurrences
of one object that can be related to the number of
occurrences of another object modality relationships

8
__________ defines the maximum number of objects that
can participate in a relationship modality relationships

9
________ provide an indication of whether or not a
particular data object must participate in the relationship Modality relationships

10
The _____ diagram takes an an input-process-output
view of sysytem

use-case
diagram

activity
diagram

11 The level 0 DFD is called as ______ diagram

contract
level
diagram

context level
diagram

12
The ______ describes the behavior of the system but not
the inner working of the processes PSPEC ASPEC

13
The _______ is used to describe all flow model processes
the appear in the final level of refinement CSPEC ASPEC

14
The _______ model indicates how software will respond
to external events data behavior

15
The _____ represents a sequence of activities that
involves actor and the system csase tool activity

16
The ______ diagram indicates how events cause
transitions from object to object

sequence
diagram activity

17
Which one depict the software requirements from the
user's point of view.

behavioral
based

flow based
model

18
Which model depicts how input is transformed into output
as data objects move through a system

behavioral
based

flow based
model

19
20

Unit 3

1

________is a iterativeprocess through which
requirements are translated into a blueprint for
constructing the software

requirements
gathering coding

2
Who developeda set of software quality attributefor the
software design Barry Boehm R.Pattis

3
Which quality attribute measure the response time,
throughput and effeciency of the sysytem Functionality Usability

4
The quality attribute, Usability is assessed by considering
the overall ________ of the system consistency Functionality

5
A _______ refers to a sequence of instructionsthat have a
specific and limited functions

procedural
abstraction

data
abstraction

6
______ represent architecture as an organized collection
of programs components

process
models

structural
models

7
_____ models address the behavioral aspects of the
program architecture

process
models

structural
models

8
Software is divided into separately named and
addressable components is called _______ process behavior

9
the ______ is a process of changing a software by which
doesnot alter the external behavior of the code refinement cohesion

10
_____ is an indication of the relative functional strength of
the module refinement cohesion

11
_____ is an indication of the relativeinterdependency
among modules cohesion patterns

12
Refinement is a top-down design strategy which is
actually a process of _____ eloboration abstraction

13
A __________ is a named collection of data that
describes a data object.

procedural
abstraction

data
abstraction

14
_________ implies a program control mechanism
without specifying internal detail.

procedural
abstraction

data
abstraction

15
software architecture consider ____ levels of the design
pyramid 3 2

16 Which action translates data objects into data structures data design
component
design

17

In data centered arcjitecture __________ resides at the
centre of the architecture which is accessed frequently by
other components

client
software data store

18

___________ represents the structure of data and
program components that are required to build a
computer-based syste,

architectural
design data design

19 KDD stand for

Knowledge
Discovery of
data
manipulatio

Knowledge
Discovery in
database

20
the ____________ classes defines all abstraction that are
necessary for human computer interaction

primitive
class user interface

21

The ________ classes implement lower level business
abstraction required to manage the business domain
class

primitive
class user interface

22
____________ suggest that a method should send or
receive messages from friend class

Law of
cohesion Law of meter

23

_____________ is achieve by developing modules with
single minded function and aversion of excessive
interaction refinement refactoring

24
______ suggest that the information contained in one
module is inaccesible to othe modules refinement refactoring

25 Refinement is a process of _____________ abstraction eloboration

26
____________ is a process of breaking up of complex
problem into a manageable piecies refinement refactoring

27
________ is evaluated by measuring the frequency and
severity of failure. Usability performance

28
iIn transform flow the information must entered and exit in
________ form

external
world internal world

29
Information flow is characterized by an single data item is
called context flow

transaction
flow

30
A _______ diagram is mapped into a program structure
using transform or transaction mapping data flow use case

31
______________ language provides a semantic and
syntax for describing a software architecture

architectural
description

architectural
design

32 Design begins with the __________ model. data requirements

33
___________ focus on the design of the business or
technical process that the system must accommodate.

framework
models

dynamic
models

34
_____________ can be used to represent the
functional hierarchy of a system.

framework
models

dynamic
models

35
____________ represent architecture as an organized
collection of program components.

dynamic
models

functional
models

36

____________ increases the level of design
abstraction by attempting to identity repeatable
architectural design frameworks that are encountered
in similar types of applications.

framework
models

dynamic
models

37

_________ address the behavioural aspects of the
program architecture, indicating how the structure or
system configuration may change as a function of
external events.

framework
models

dynamic
models

38
___________ is the place where quality is fostered
in software engineering model data

39
________ provides us with representations of
software that can be assessed for quality. design specification

40
_____________ describes a program should not
have any bugs that inhibit its function firmness commodity

41
A program should be suitable for the purposes for
which it is intended is called firmness commodity

42
The experience of using the program should be a
pleasurable one is called firmness commodity

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60

planning construction analysis model

programmer tester analyst
behavior
modling

structure
modeling

Data object flow object Data object

Data attributes modality Data attributes

cardinality Data attributes relationships

cardinality Data attributes Cardinality

Data attributes cardinality Cardinality

Data attributes cardinality Modality
data flow
diagram ERD data flow diagram

text level
diagram

zero level
diagram

context level
diagram

LSPEC CSPEC CSPEC

LSPEC PSPEC PSPEC

function structural behavior

use-case swimlane use-case

use-case swimlane sequence diagram

class based
scenario based
model

scenario based
model

class based
scenario based
model flow based model

software
design deployment software design

M.C.Escher
Hewlett-
Packard Hewlett-Packard

Performance Supportability Performance

Supportability Performance consistency
behavior
abstraction

structural
abstraction

procedural
abstraction

dynamic
models

framework
models structural models

dynamic
models

framework
models dynamic models

modules data Modules

patterns refactoring refactoring

patterns refactoring cohesion

coupling
functional
dependency coupling

refactoring
information
hiding eloboration

control
abstraction

behavior
abstraction data abstraction

control
abstraction

behavior
abstraction

control
abstraction

1 4 2
behavior
design

functional
design data design

filter pipes data store

software
design

behavioural
design

architectural
design

Knowing of
database
discovery

Knowing
discovery of
database

Knowledge
Discovery in
database

process
classes

business
domain user interface

process
classes System class process classes
Low of
completeness

law of
primitiveness Law of meter

functional
independence

information
hiding

functional
independence

functional
independence

information
hiding information hiding

architecture modularity eloboration

modularity arichiteture modularity

supportability reliability reliability

top down bottom up external world

transform flow contract flow transaction flow

state diagram
activity
diagram data flow

architectural
pattern

architecturaldef
inition

architectural
description

specification code requirements

process
models

functional
models process models

process
models

functional
models

functional
models

framework
models

structural
models structural models

process
models

functional
models

framework
models

process
models

functional
models dynamic models

design specification design

data prototype design

delight roman firmness

delight roman commodity

delight roman delight

Prepared by NITHYA.R Department of CS,CA,IT KAHE Page 39

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: IV BATCH-2017-2020

UNIT 4

SYLLABUS

Design Engineering-Design Concepts, Architectural Design Elements, Software

Architecture, Data Design at the Architectural Level and Component Level,

Mapping of Data Flow into Software Architecture, Modeling Component Level
Design

MATERIAL

4.1 Design Engineering:

The engineering design process is a formulation of a plan or scheme to assist an

engineer in creating a product. The engineering design is defined as:

The process of devising a system, component, or process to meet desired needs. It

is a decision making process (often iterative) in which the basic sciences, mathematics,

and engineering sciences are applied to convert resources optimally to meet a stated

objective. Among the fundamental elements of the design process are the establishment

of objectives and criteria, synthesis, analysis, construction, testing and evaluation.

The engineering design process is a multi-step process including the research,

conceptualization, feasibility assessment, establishing design requirements, preliminary

design, detailed design, production planning and tool design, and finally production.

The sections to follow are not necessarily steps in the engineering design process,

for some tasks are completed at the same time as other tasks. This is just a general

summary of each step of the engineering design process.

Research

A significant amount of time is spent on research, locating, applying, and

transferring information .Consideration should be given to the existing applicable

literature, problems and successes associated with existing solutions, costs, and

marketplace needs.

The source of information should be relevant, including existing solutions.

Reverse engineering can be an effective technique if other solutions are available on the

market. Other sources of information include the Internet, local libraries, available

government documents, personal organizations, trade journals, vendor catalogs and

individual experts available .

3.1.1 Design with the Context of Software Engineering:

Feasibility Assessment

The purpose of a feasibility assessment is to determine whether the engineer's

project can proceed into the design phase. This is based on two criteria: the project needs

to be based on an achievable idea, and it needs to be within cost constraints. It is of

utmost importance to have an engineer with experience and good judgment to be

involved in this portion of the feasibility study, for they know whether the engineer's

project is possible or not.

4.1.2 Design Process and Design Quality

Preliminary Design

http://en.wikipedia.org/wiki/Plan
http://en.wikipedia.org/wiki/Scheme
http://en.wikipedia.org/wiki/Engineer
http://en.wikipedia.org/wiki/Research
http://en.wikipedia.org/wiki/Reverse_engineering
http://en.wikipedia.org/wiki/Reverse_engineering
http://en.wikipedia.org/wiki/Libraries
http://en.wikipedia.org/wiki/Trade_journal
http://en.wikipedia.org/wiki/Experts

Prepared by NITHYA.R Department of CS,CA,IT KAHE Page 40

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: IV BATCH-2017-2020

The preliminary design bridges the gap between the design concept and the

detailed design phase. The preliminary design phase is also called embodiment design. In

this task, the overall system configuration is defined, and schematics, diagrams, and

layouts of the project will provide early project configuration. During detailed design and

optimization, the parameters of the part being created will change, but the preliminary

design focuses on creating the general framework to build the project on.

Detailed Design

The detailed design portion of the engineering design process is the task where the

engineer can completely describe a product through solid modeling and drawings. Some

specifications include:

 Operating parameters

 Operating and no operating environmental stimuli

 Test requirements

 External dimensions

 Maintenance and testability provisions

 Materials requirements

 Reliability requirements

 External surface treatment

 Design life

 Packaging requirements

 External marking

The advancement of computer-aided design, or CAD, programs have made the

detailed design phase more efficient. This is because a CAD program can provide

optimization, where it can reduce volume without hindering the part's quality. It can also

calculate stress and displacement using the finite element method to determine stresses

throughout the part. It is the engineer's responsibility to determine whether these stresses

and displacements are allowable, so the part is safe.

Production Planning and Tool Design

The production planning and tool design is nothing more than planning how to

mass produce the project and which tools should be used in the manufacturing of the part.

Tasks to complete in this step include selecting the material, selection of the production

processes, determination of the sequence of operations, and selection of tools, such as

jigs, fixtures, and tooling. This task also involves testing a working prototype to ensure

the created part meets qualification standards.

Production

With the completion of qualification testing and prototype testing, the engineering

design process is finalized. The part must now be manufactured, and the machines must

be inspected regularly to make sure that they do not break down and slow production

As a software developer the similarities between how we build and develop the

software and how architects design buildings has always struck me. In this blow, I’d like

to talk about how the architecture design concept of software engineering.

4.1.3 Design Concepts:

http://en.wikipedia.org/wiki/Schematic
http://en.wikipedia.org/wiki/Diagram
http://en.wikipedia.org/wiki/Layout
http://en.wikipedia.org/wiki/Solid_modeling
http://en.wikipedia.org/wiki/Drawings
http://en.wikipedia.org/wiki/Computer-aided_design
http://en.wikipedia.org/wiki/Optimization
http://en.wikipedia.org/wiki/Stress
http://en.wikipedia.org/wiki/Displacement
http://en.wikipedia.org/wiki/Finite_element_method
http://en.wikipedia.org/wiki/Prototype

Prepared by NITHYA.R Department of CS,CA,IT KAHE Page 41

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: IV BATCH-2017-2020

 Abstraction – allows designers to focus on solving a problem without being

concerned about irrelevant lower level details (procedural abstraction - named

sequence of events and data abstraction – named collection of data objects)

 Software Architecture – overall structure of the software components and the
ways in which that structure provides conceptual integrity for a system

o Structural models – architecture as organized collection of components

o Framework models – attempt to identify repeatable architectural patterns
o Dynamic models – indicate how program structure changes as a function

of external events

o Process models – focus on the design of the business or technical process
that system must accommodate

o Functional models – used to represent system functional hierarchy

 Design Patterns – description of a design structure that solves a particular design

problem within a specific context and its impact when applied

 Separation of concerns – any complex problem is solvable by subdividing it into

pieces that can be solved independently

 Modularity - the degree to which software can be understood by examining its

components independently of one another

 Information Hiding – information (data and procedure) contained within a

module is inaccessible to modules that have no need for such information

 Functional Independence – achieved by developing modules with single-minded

purpose and an aversion to excessive interaction with other models

o Cohesion - qualitative indication of the degree to which a module focuses
on just one thing

o Coupling - qualitative indication of the degree to which a module is
connected to other modules and to the outside world

 Refinement – process of elaboration where the designer provides successively

more detail for each design component

 Aspects – a representation of a cross-cutting concern that must be accommodated

as refinement and modularization occur

 Refactoring – process of changing a software system in such a way internal
structure is improved without altering the external behavior or code design

4.2 Creating an Architectural Design:

What is Software Architecture?

Software application architecture is the process of defining a structured solution that

meets all of the technical and operational requirements, while optimizing common quality

attributes such as performance, security, and manageability. It involves a series of

decisions based on a wide range of factors, and each of these decisions can have

considerable impact on the quality, performance, maintainability, and overall success of

the application.

Prepared by NITHYA.R Department of CS,CA,IT KAHE Page 42

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: IV BATCH-2017-2020

Philippe Kruchten, Grady Booch, Kurt Bittner, and Rich Reitman derived and refined a

definition of architecture based on work by Mary Shaw and David Garlan (Shaw and

Garlan 1996). Their definition is:

“Software architecture encompasses the set of significant decisions about the

organization of a software system including the selection of the structural elements and

their interfaces by which the system is composed; behavior as specified in collaboration

among those elements; composition of these structural and behavioral elements into

larger subsystems; and an architectural style that guides this organization. Software

architecture also involves functionality, usability, resilience, performance, reuse,

comprehensibility, economic and technology constraints, tradeoffs and aesthetic

concerns.”

Why is Architecture Important?

Like any other complex structure, software must be built on a solid foundation. Failing to

consider key scenarios, failing to design for common problems, or failing to appreciate

the long term consequences of key decisions can put your application at risk. Modern

tools and platforms help to simplify the task of building applications, but they do not

replace the need to design your application carefully, based on your specific scenarios

and requirements. The risks exposed by poor architecture include software that is

unstable, is unable to support existing or future business requirements, or is difficult to

deploy or manage in a production environment.

Systems should be designed with consideration for the user, the system (the IT

infrastructure), and the business goals. For each of these areas, you should outline key

scenarios and identify important quality attributes (for example, reliability or scalability)

and key areas of satisfaction and dissatisfaction. Where possible, develop and consider

metrics that measure success in each of these areas.

Figure 4.2 User, business, and system goals

Prepared by NITHYA.R Department of CS,CA,IT KAHE Page 43

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: IV BATCH-2017-2020

Tradeoffs are likely, and a balance must often be found between competing requirements

across these three areas. For example, the overall user experience of the solution is very

often a function of the business and the IT infrastructure, and changes in one or the other

can significantly affect the resulting user experience. Similarly, changes in the user

experience requirements can have significant impact on the business and IT infrastructure

requirements. Performance might be a major user and business goal, but the system

administrator may not be able to invest in the hardware required to meet that goal 100

percent of the time. A balance point might be to meet the goal only 80 percent of the

time.

Architecture focuses on how the major elements and components within an application

are used by, or interact with, other major elements and components within the

application. The selection of data structures and algorithms or the implementation details

of individual components are design concerns. Architecture and design concerns very

often overlap. Rather than use hard and fast rules to distinguish between architecture and

design, it makes sense to combine these two areas. In some cases, decisions are clearly

more architectural in nature. In other cases, the decisions are more about design, and how

they help you to realize that architecture.

By following the processes described in this guide, and using the information it contains,

you will be able to construct architectural solutions that address all of the relevant

concerns, can be deployed on your chosen infrastructure, and provide results that meet

the original aims and objectives.

Consider the following high level concerns when thinking about software architecture:

 How will the users be using the application?

 How will the application be deployed into production and managed?

 What are the quality attribute requirements for the application, such as security,

performance, concurrency, internationalization, and configuration?

 How can the application be designed to be flexible and maintainable over time?

 What are the architectural trends that might impact your application now or after

it has been deployed?

4.2.1 Software Architecture:

The Goals of Architecture

An ideal architecture should be a perfect conversion between business

requirements and technique requirements by understanding user cases and then defining a

clear and neat way to implement those requirements by programming the software.

A good design is sufficiently flexible to be able to handle all of the user case

studies and scenarios, both functional and quality requirements, efficient in

implementation details.

The Principles of Architecture Design

Design the architecture with evolution in mind so that it will be able to adapt to

requirements that are not fully known at the start of the design process, do not try to over

engineer the architecture, and make assumptions that you can’t verify.

Instead you should keep your options open for future changes, identify the

foundational parts of the architecture that represent the greatest risk if you get them

wrong.

Prepared by NITHYA.R Department of CS,CA,IT KAHE Page 44

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: IV BATCH-2017-2020

Key Architecture Principles

Building software for change instead of building to last. There are always new

requirements and feedbacks.

Identifying critical decisions. Identify the areas where mistakes and further

changes are most often made, getting these key engineering decisions right the first time

so the design is more flexible.

Start with base-line architecture to create the big picture, and then evolve the

details and iteratively test and improve the architecture. Do not try to get every tiny detail

right on the first attempt, get the big decision right first, and then focus on the details.

4.2.2 Data Design:

This section describes data design at both the architectural and component levels.

At the architecture level, data design is the process of creating a model of the information

represented at a high level of abstraction (using the customer's view of data).

Data Design at the Architectural Level

The challenge is extract useful information from the data environment,

particularly when the information desired is cross-functional.

To solve this challenge, the business IT community has developed data mining

techniques, also called knowledge discovery in databases (KDD), that navigate through

existing databases in an attempt to extract appropriate business-level information.

However, the existence of multiple databases, their different structures, the

degree of detail contained with the databases, and many other factors make data mining

difficult within an existing database environment.

An alternative solution, called a data warehouse, adds on additional layer to the

data architecture.

A data warehouse is a separate data environment that is not directly integrated

with day-to-day applications that encompasses all data used by a business.

In a sense, a data warehouse is a large, independent database that has access to

the data that are stored in databases that serve as the set of applications required by a

business.

Data Design at the Component Level

At the component level, data design focuses on specific data structures required to realize

the data objects to be manipulated by a component.

 refine data objects and develop a set of data abstractions

 implement data object attributes as one or more data structures

 review data structures to ensure that appropriate relationships have been established

NITH A.R De

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: IV BATCH-2017-2020

 simplify data structures as required

Set of principles for data specification:

1. The systematic analysis principles applied to function and behavior should also be

applied to data.

2. All data structures and the operations to be performed on each should be identified.

3. A data dictionary should be established and used to define both data and program

design.

4. Low level data design decisions should be deferred until late in the design process.

5. The representation of data structure should be known only to those modules that must

make direct use of the data contained within the structure.

6. A library of useful data structures and the operations that may be applied to them

should be developed.

7. A software design and programming language should support the specification and

realization of abstract data types.

4.2.3 Mapping Data Flow into Software Architecture:

This section describes the general process of mapping requirements into software

architectures during the structured design process. The technique described in this

chapter is based on analysis of the data flow diagram discussed in Chapter 8.

An Architectural Design Method

Customer requirements

Four bedrooms, three baths, lots of glass…

Deriving Program Architecture

Partitioning the Architecture

“Horizontal” and “Vertical” partitioning are required

Prepared by partment of CS,CA,IT K Page 45 AHE Y

Prepared by NITHYA.R Department of CS,CA,IT KAHE Page 46

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: IV BATCH-2017-2020

Horizontal Partitioning:

 define separate branches of the module hierarchy for each major function

 use control modules to coordinate communication between functions

ffuunnccttiioonn ffuunnccttiioonn

Vertical Partitioning:
Factoring

ffuunnccttiioonn

 design so that decision making and work are stratified

 decision making modules should reside at the top of the architecture

ddeecciissiioonn--mmaakkeerrss

wwoorrkkeerrss

Why Partitioned Architecture?

 results in software that is easier to test

 leads to software that is easier to maintain

 results in propagation of fewer side effects

 results in software that is easier to extend

 objective: to derive a program architecture that is partitioned

 approach:

 the DFD is mapped into a program architecture

 the PSPEC and STD are used to indicate the content of each module

 notation: structure chart

Flow Characteristics

Prepared by NITHYA.R Department of CS,CA,IT KAHE Page 47

f e

f

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: IV BATCH-2017-2020

General Mapping Approach

Isolate incoming and outgoing flow boundaries; for transaction flows, isolate the

transaction center.

Working from the boundary outward, map DFD transforms into corresponding modules.

Add control modules as required.

Refine the resultant program structure using effective modularity concepts.

Factoring

b g h

a d e

c i
j

data flow model

x1

x2 x3 x4

"Transform" mapping

b c d g i

a h j

direction of increasing
decision making

typical "decision
making" modules

First Level Factoring

main
program
controller

typical "worker" modules

Second Level

Mapping

output

controller
processing
controller

input
controller

Prepared by NITHYA.R Department of CS,CA,IT KAHE Page 48

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: IV BATCH-2017-2020

Transaction Flow

TTrraannssaaccttiioonn

FFflollwooww

action path

T

D

C

B
A

A

B

C

mapping from the
flow boundary outward

D

control

main

Prepared by NITHYA.R Department of CS,CA,IT KAHE Page 49

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: IV BATCH-2017-2020

Refining the Analysis Model

1. Write an English language processing narrative for the level 01 flow model

2. Apply noun/verb parse to isolate processes, data items, store and entities

3. Develop level 02 and 03 flow models

4. Create corresponding data dictionary entries

5. Refine flow models as appropriate

POSSIBLE QUESTIONS

1.what is meant by design engineering in software?

2.write a note on architecturai design.

3. what is meant by software architecture?

4. write note on data design at architectural design.

5.write a note on component level data design.

6.wnat is meant by dataflow mapping?

7.discuss about the design model.

181 Interface design focuses on __________ areas of concern. 2 3 4 5

182 __________ and anxiety are part of daily life for many users of
computerized information systems sadness frustration happiness enjoyment

183
. Frustration and ___________ are part of daily life for many users
of computerized information system sadness happiness enjoyment anxiety

184
___________ creates effective communication medium between a
human and a computer. user interface design

architectural
design code design procedure design

185 __________ identifies interface objects and actions and then creates
a screen layout that form the basis for a user interface prototype. design coding testing analysis

186
___________ begins with the identification of user, task and
environmental requirements. user interface design

architectural
design code design procedure design

187 There are _________ golden rules. 2 3 4 5

188
We should define interaction modes in a way that does not force a
user into unnecessary or undesired actions. interaction modes

interface
constraints design principles design analysis

189 We should provide ___________ interaction. rigid flexible encouraging enthusiastic

190
We should design for direct interaction with ________ that appear
on the screen code class objects user

191 We should hide technical ___________ from the casual user reactions actions internals interactions

192
We should streamline ___________ as skill levels advance and allow
the interaction to be customized. internals interaction actions reactions

193 . We should allow user interaction to be __________ and undoable interruptible flexible rigid encouraging
194 We should allow user interaction to interruptible and __________. undoable flexible rigid encouraging
195 We should define shortcuts that are _____________. encouraging intuitive default past actions

196 We should define __________ that are intuitive. shortcuts broad area
interruptible
actions interactions

197 We should disclose information in a ___________ fashion. open progressive streamline flexible

198
The visual layout of the __________ should be based on a real world
metaphor. interaction modes interface design structure

199
The interface should present and acquire _____________ in a
consistent fashion. information task knowledge idea

200
The interface should present and acquire information in a
___________ fashion. consistent inconsistent rigid flexible

UNIT IV

201 A ____________ of the entire system incorporates data, architectural
interface, and procedural representations of the software data model design model user model system image

202 The software engineer creates a ________________. design model data model interface model system image

203
The end user develops a mental image that is often called the
____________. design model user model data model system image

204 The implementers of the system create a _____________. design model system image data model user model
205 Users are categorized into __________ types. 2 3 4 5

206
Users with no syntactic knowledge of the system and little semantic
knowledge of the application or computer usage are called
___________.

knowledgeable
intermittent users

knowledgeable
frequent users novices all of the above

207
Users with reasonable semantic knowledge of the application but
relatively low recall of syntactic information necessary to use the
interface are called ___________. novices

knowledgeable,
intermittent users

knowledgeable,
frequent users all of the above

208
Users with good semantic and syntactic knowledge that often leads to
the “power-user syndrome” are called _________. novices

knowledgeable,
intermittent users

knowledgeable,
frequent users all of the above

209
Individuals who look for shortcuts and abbreviated modes of
interaction are called ___________. novices

knowledgeable,
intermittent users

knowledgeable,
frequent users all of the above

210
The __________ is the image of the system that end-users carry in
their heads. user’s model data model design model system image

211 Stepwise elaboration is called __________.
functional
decomposition data abstraction modularity modular protection

212
___________ is the only way that we can accurately translate a
customer’s requirements into a finished software product or system. specification design data prototype

213 Validation focuses on ___________ criteria. 2 3 4 5
214 Task analysis can be applied in ________ ways. 2 3 4 5

215 Task analysis for interface design used ___________ approach.
object oriented
approach

top down
approach

bottom up
approach all of the above

216
The overall approach to task analysis, a human engineer must first
________ and classify tasks. discuss define describe list

217 There are ___________ steps in interface design activities. 4 5 6 7

218 __________ refers to the deviation from average time. system response time variability system mean time all of the above
219 System response time has _________ important characteristics. 2 3 4 5

220 A ___________ is designed into the software from the beginning.
integrated help
facility

system response
time variability all of the above

221 Component level design also called __________.
procedural
abstraction

procedural
design

stepwise
refinement decomposition

222 ___________ must be translated into operational software data architectural interface design all of the above

223 A _________ performs component level design. user
top level
management software engineer

middle level
management

224
The ___________ represents the software in a way that allows one to
review the details of the design for correctness and consistency with
earlier design representations.

component level
design

procedural
design data design data design

225
Design, representations of data, architecture, and interfaces form the
foundation for _____________. procedural design

component level
design data design code design

226 __________ notation is used to represent the design. graphical tabular text-based all of the above

227
Any program, regardless of application area or technical complexity,
can be designed and implemented using only the __________
structured constructs.

2 3 4 5

228 A box in a flowchart is used to indicate a ___________. processing step logical condition flow of control start
229 A diamond in a flowchart is used to indicate a _________. processing step logical condition flow of control start
230 The arrows in a flowchart is used to indicate a __________. processing step logical condition flow of control start
231 A picture is worth a __________ words. 100 1000 10000 100000
232 The following construct is fundamental to structured programming. sequence condition repetition all of the above

233
___________ implements processing steps that are essential in the
specification of any algorithm. sequence condition repetition selection

234
__________ provides the facility for selected processing steps that
are essential in the specification of any algorithm sequence condition repetition selection

235 _________ allows for looping. sequence condition repetition selection

236
Another graphical design tool, the ________ evolved from a desire
to develop a procedural design representation that would not allow
violation of the structured constructs. box diagram flowchart

transition
diagram decision table

237
PDL is the abbreviation of _____________.

Process Design
Language

Program Design
Language

Program
Document
Language

Program Document
Language

238 A design language should have the ___________ characters. 2 3 4 5

239
Design notation should support the development of modular software
and provide a means for interface specification. This attribute of
design notation is called ___________. modularity simplicity ease of editing maintainability

240
. Design notation should be relatively simple to learn, relatively easy
to use, and generally easy to read. This attribute of the design
notation is called __________. modularity simplicity) ease of editing maintainability

241

The procedural design may require modification as the software
process proceeds. The ease with which a design representation can
be edited can help facilitate each software engineering task is called
___________. modularity simplicity ease of editing maintainability

242
Notation that can be input directly into a computer-based
development system offers significant benefits. This attribute of
design notation is called ___________. machine readability maintainability

structure
enforcement automatic processing

243
Maintenance of the software configuration nearly always means
maintenance of the procedural design representation. This attribute
of design notation is called ___________. machine readability maintainability

structure
enforcement automatic processing

244 Design notation that enforces the use of only the structured
constructs promotes good design practices is called ___________. machine readability maintainability

structure
enforcement automatic processing

245

A procedural design contains information that can be processed to
give the designer new or better insights into the correctness and
quality of a design. Such insight can be enhanced with reports
provides via software design tools is called ___________. machine readability maintainability

structure
enforcement automatic processing

246
. The ability to represent local and global data is an essential element
of component-level design. Ideally, design notation should represent
such data directly is called _______. automatic processing

data
representation logic verification code-to” ability

247
Automatic verification of design logic is a goal that is paramount
during software testing. Notation that enhances the ability to verify
logic greatly improves testing adequacy is called _____________. automatic processing

data
representation logic verification “code-to” ability

248

The software engineering task that follows component level design is
code generation. Notation that may be converted easily to source
code reduces effort and error. This attribute of design notation is
called __________. automatic processing

data
representation logic verification “code-to” ability

249
 The user interface design process encompasses __________ distinct
framework activities. 2 3 4 5

250

Validation focuses on ______________.

the ability of the
interface to
implement every
user task correctly,
to accommodate all
task variations, and
to achieve all
general user
requirements

the degree to
which the
interface is easy
to use and easy
to learn.

the user’s
acceptance of the
interface as a
useful tool in
their work. all of the above.

3

sadness

anxiety

user interface design

design
user interface
design

3
interaction
modes
flexible

objects
internals

interaction

interruptible
undoable
intuitive

shortcuts
progressive

interface

information

consistent

design model
design model

user model
system image

3

novices

knowledgeable,
intermittent users
knowledgeable,
frequent users
knowledgeable,
frequent users

user’s model
functional
decomposition

design
2
3

object oriented
approach

define
7

variability
2

integrated help
facility
procedural
design

all of the above
software
engineer

component level
design

component level design

graphical

3

processing step
logical condition
flow of control

1000
all of the above

sequence

condition
repetition

box diagram

Program Design
Language

4

modularity

simplicity

ease of editing

machine
readability

maintainability

structure
enforcement

automatic
processing

data
representation

logic verification

“code-to” ability

4

all of the above.

Unit - 2

1
The ________ as a bridge between the systm decription
and the design model design

analysis
model

2
The role of the software engineer in the requirement
analysis is called____ designer analyst

3 analysis modeling often begins with _______
data
modeling

function
modeling

4 A ____________ can be an external entity
function
object

structural
object

5 ________ defines the properities of a data object relationship cardinality

6
Data objects are connected to one another in different
ways is called __________ modality relationships

7

______ is the specification of the number of occurrences
of one object that can be related to the number of
occurrences of another object modality relationships

8
__________ defines the maximum number of objects
that can participate in a relationship modality relationships

9
________ provide an indication of whether or not a
particular data object must participate in the relationship Modality relationships

10
The _____ diagram takes an an input-process-output
view of sysytem

use-case
diagram

activity
diagram

11 The level 0 DFD is called as ______ diagram

contract
level
diagram

context level
diagram

12
The ______ describes the behavior of the system but not
the inner working of the processes PSPEC ASPEC

13
The _______ is used to describe all flow model
processes the appear in the final level of refinement CSPEC ASPEC

14
The _______ model indicates how software will respond
to external events data behavior

15
The _____ represents a sequence of activities that
involves actor and the system csase tool activity

16
The ______ diagram indicates how events cause
transitions from object to object

sequence
diagram activity

17
Which one depict the software requirements from the
user's point of view.

behavioral
based

flow based
model

18
Which model depicts how input is transformed into output
as data objects move through a system

behavioral
based

flow based
model

19
20

Unit 3

1

________is a iterativeprocess through which
requirements are translated into a blueprint for
constructing the software

requirements
 gathering coding

2
Who developeda set of software quality attributefor the
software design Barry Boehm R.Pattis

3
Which quality attribute measure the response time,
throughput and effeciency of the sysytem Functionality Usability

4
The quality attribute, Usability is assessed by considering
the overall ________ of the system consistency Functionality

5
A _______ refers to a sequence of instructionsthat have
a specific and limited functions

procedural
abstraction

data
abstraction

6
______ represent architecture as an organized collection
of programs components

process
models

structural
models

7
_____ models address the behavioral aspects of the
program architecture

process
models

structural
models

8
Software is divided into separately named and
addressable components is called _______ process behavior

9
the ______ is a process of changing a software by which
doesnot alter the external behavior of the code refinement cohesion

10
_____ is an indication of the relative functional strength
of the module refinement cohesion

11
_____ is an indication of the relativeinterdependency
among modules cohesion patterns

12
Refinement is a top-down design strategy which is
actually a process of _____ eloboration abstraction

13
A __________ is a named collection of data that
describes a data object.

procedural
abstraction

data
abstraction

14
_________ implies a program control mechanism
without specifying internal detail.

procedural
abstraction

data
abstraction

15
software architecture consider ____ levels of the design
pyramid 3 2

16 Which action translates data objects into data structures data design
component
design

17

In data centered arcjitecture __________ resides at the
centre of the architecture which is accessed frequently by
other components

client
software data store

18

___________ represents the structure of data and
program components that are required to build a
computer-based syste,

architectural
design data design

19 KDD stand for

Knowledge
Discovery of
data
manipulatio

Knowledge
Discovery in
database

20
the ____________ classes defines all abstraction that
are necessary for human computer interaction

primitive
class user interface

21

The ________ classes implement lower level business
abstraction required to manage the business domain
class

primitive
class user interface

22
____________ suggest that a method should send or
receive messages from friend class

Law of
cohesion Law of meter

23

_____________ is achieve by developing modules with
single minded function and aversion of excessive
interaction refinement refactoring

24
______ suggest that the information contained in one
module is inaccesible to othe modules refinement refactoring

25 Refinement is a process of _____________ abstraction eloboration

26
____________ is a process of breaking up of complex
problem into a manageable piecies refinement refactoring

27
________ is evaluated by measuring the frequency and
severity of failure. Usability performance

28
iIn transform flow the information must entered and exit in
________ form

external
world internal world

29
Information flow is characterized by an single data item is
called context flow

transaction
flow

30
A _______ diagram is mapped into a program structure
using transform or transaction mapping data flow use case

31
______________ language provides a semantic and
syntax for describing a software architecture

architectural
description

architectural
design

32 Design begins with the __________ model. data requirements

33
___________ focus on the design of the business or
technical process that the system must accommodate.

framework
models

dynamic
models

34
_____________ can be used to represent the
functional hierarchy of a system.

framework
models

dynamic
models

35
____________ represent architecture as an
organized collection of program components.

dynamic
models

functional
models

36

____________ increases the level of design
abstraction by attempting to identity repeatable
architectural design frameworks that are
encountered in similar types of applications.

framework
models

dynamic
models

37

_________ address the behavioural aspects of the
program architecture, indicating how the structure or
system configuration may change as a function of
external events.

framework
models

dynamic
models

38
___________ is the place where quality is fostered
in software engineering model data

39
________ provides us with representations of
software that can be assessed for quality. design specification

40
_____________ describes a program should not
have any bugs that inhibit its function firmness commodity

41
A program should be suitable for the purposes for
which it is intended is called firmness commodity

42
The experience of using the program should be a
pleasurable one is called firmness commodity

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60

planning construction analysis model

programmer tester analyst
behavior
modling

structure
modeling

Data object flow object Data object

Data attributes modality Data attributes

cardinality Data attributes relationships

cardinality Data attributes Cardinality

Data attributes cardinality Cardinality

Data attributes cardinality Modality
data flow
diagram ERD data flow diagram

text level
diagram

zero level
diagram

context level
diagram

LSPEC CSPEC CSPEC

LSPEC PSPEC PSPEC

function structural behavior

use-case swimlane use-case

use-case swimlane sequence diagram

class based
scenario
based model

scenario based
model

class based
scenario
based model flow based model

software
design deployment software design

M.C.Escher
Hewlett-
Packard Hewlett-Packard

Performance Supportability Performance

Supportability Performance consistency
behavior
abstraction

structural
abstraction

procedural
abstraction

dynamic
models

framework
models structural models

dynamic
models

framework
models dynamic models

modules data Modules

patterns refactoring refactoring

patterns refactoring cohesion

coupling
functional
dependency coupling

refactoring
information
hiding eloboration

control
abstraction

behavior
abstraction data abstraction

control
abstraction

behavior
abstraction

control
abstraction

1 4 2
behavior
design

functional
design data design

filter pipes data store

software
design

behavioural
design

architectural
design

Knowing of
database
discovery

Knowing
discovery of
database

Knowledge
Discovery in
database

process
classes

business
domain user interface

process
classes System class process classes
Low of
completeness

law of
primitiveness Law of meter

functional
independence

information
hiding

functional
independence

functional
independence

information
hiding information hiding

architecture modularity eloboration

modularity arichiteture modularity

supportability reliability reliability

top down bottom up external world

transform flow contract flow transaction flow

state diagram
activity
diagram data flow

architectural
pattern

architecturaldef
inition

architectural
description

specification code requirements

process
models

functional
models process models

process
models

functional
models

functional
models

framework
models

structural
models structural models

process
models

functional
models

framework
models

process
models

functional
models dynamic models

design specification design

data prototype design

delight roman firmness

delight roman commodity

delight roman delight

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 58

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

UNIT 5

SYLLABUS
Testing Strategies & Tactics: Software Testing Fundamentals, Strategic Approach to

Software Testing, Test Strategies for Conventional Software, Validation Testing,

System testing Black-Box Testing, White-Box Testing and their type, Basis Path

Testing

MATERIAL

5.1 Testing Tactics:

 The development of software systems involves a series of production activities where

opportunities for injection of human fallibilities are enormous.

 Errors may begin to occur at the very commencement of the process where the

objectives may be erroneously or imperfectly specified, as well as [in] later design

and development stages.

 Because of human inability to perform and communicate with perfection, software

development is accompanied by a quality assurance activity.

 Software testing is a critical element of software quality assurance and represents the

ultimate review of specification, design, and code generation.

 The increasing visibility of software as a system element and the attendant "costs"

associated with a software failure are motivating forces for well-planned, thorough

testing. It is not unusual for a software development organization to expend between

30 and 40 percent of total project effort on testing.

 In the extreme, testing of human-rated software (e.g., flight control, nuclear reactor

monitoring) can cost three to five times as much as all other software engineering

steps combined!

5.1.1 Software Testing Fundamentals:

 Testing presents an interesting anomaly for the software engineer. During earlier

software engineering activities, the engineer attempts to build software from an

abstract concept to a tangible product.

 The engineer creates a series of test cases that are intended to "demolish" the software

that has been built.

 In fact, testing is the one step in the software process that could be viewed

(psychologically, at least) as destructive rather than constructive.

 Software engineers are by their nature constructive people.

 Testing requires that the developer discard preconceived notions of the "correctness"

of software just developed and overcome a conflict of interest that occurs when errors

are uncovered.

 Beizer describes this situation effectively when he states: There's a myth that if we

were really good at programming, there would be no bugs to catch. If only we could

really concentrate, if only everyone used structured programming, top down design,

decision tables, if programs were written in SQUISH, if we had the right silver

bullets, then there would be no bugs. So goes the myth. There are bugs, the myth

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 59

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

says, because we are bad at what we do; and if we are bad at it, we should feel guilty

about it. Therefore, testing and test case design is an admission of failure, which

instills a goodly dose of guilt.

Testing Objectives

 Glen Myers states a number of rules that can serve well as testing objectives:

1. Testing is a process of executing a program with the intent of finding an

error.

2. A good test case is one that has a high probability of finding an as-yet

undiscovered error.

3. A successful test is one that uncovers an as-yet-undiscovered error.

 If testing is conducted successfully (according to the objectives stated previously), it

will uncover errors in the software.

 Also testing demonstrates that software functions appear to be working according to

specification, that behavioral and performance requirements appear to have been met.

 In addition, data collected as testing is conducted provide a good indication of

software reliability and some indication of software quality as a whole.

 But testing cannot show the absence of errors and defects, it can show only that
software errors and defects are present.

Testing Principles

 Before applying methods to design effective test cases, a software engineer must

understand the basic principles that guide software testing. Davis [DAV95] suggests a

set of testing principles.

• All tests should be traceable to customer requirements.
The objective of software testing is to uncover errors. It follows that the most severe

defects (from the customer’s point of view) are those that cause the program to fail to

meet its requirements.

• Tests should be planned long before testing begins.

Test planning can begin as soon as the requirements model is complete.
Detailed definition of test cases can begin as soon as the design model has been

solidified. Therefore, all tests can be planned and designed before any code has been

generated.

• The Pareto principle applies to software testing.
Pareto principle implies that 80 percent of all errors uncovered during testing will

likely be traceable to 20 percent of all program components. The problem, of course,

is to isolate these suspect components and to thoroughly test them.

• Testing should begin “in the small” and progress toward testing “in the large.”

The first tests planned and executed generally focus on individual components. As

testing progresses, focus shifts in an attempt to find errors in integrated clusters of

components and ultimately in the entire system.

• Exhaustive testing is not possible.

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 60

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

The number of path permutations for even a moderately sized program is

exceptionally large. For this reason, it is impossible to execute every combination of

paths during testing. It is possible, however, to adequately cover program logic and to

ensure that all conditions in the component-level design have been exercised.

• To be most effective, testing should be conducted by an independent third

party.

Testability

 Software testability is simply how easily a computer program can be tested.

 Since testing is so profoundly difficult, it pays to know what can be done to

streamline it.

 Sometimes programmers are willing to do things that will help the testing process and

a checklist of possible design points, features, etc., can be useful in negotiating with

them.

 “Testability” occurs as a result of good design. Data design, architecture, interfaces,

and component-level detail can either facilitate testing or make it difficult.

The checklist that follows provides a set of characteristics that lead to testable software.

Operability. "The better it works, the more efficiently it can be tested."

• The system has few bugs (bugs add analysis and reporting overhead to the

test process).

• No bugs block the execution of tests.

• The product evolves in functional stages (allows simultaneous development

and testing).

Observability. "What you see is what you test."

• Distinct output is generated for each input.

• System states and variables are visible or queriable during execution.

• Past system states and variables are visible or queriable (e.g., transaction logs).

• All factors affecting the output are visible.

• Incorrect output is easily identified.

• Internal errors are automatically detected through self-testing mechanisms.

• Internal errors are automatically reported.

• Source code is accessible.

Controllability. "The better we can control the software, the more the testing can be

automated and optimized."

• All possible outputs can be generated through some combination of input.

• All code is executable through some combination of input.

• Software and hardware states and variables can be controlled directly by the test

engineer.

• Input and output formats are consistent and structured.

• Tests can be conveniently specified, automated, and reproduced.

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 61

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

Decomposability. "By controlling the scope of testing, we can more quickly isolate

problems and perform smarter retesting."

• The software system is built from independent modules.

• Software modules can be tested independently.

Simplicity. "The less there is to test, the more quickly we can test it."

• Functional simplicity (e.g., the feature set is the minimum necessary to meet

requirements).

• Structural simplicity (e.g., architecture is modularized to limit the propagation of

faults).

• Code simplicity (e.g., a coding standard is adopted for ease of inspection and

maintenance).

Stability. "The fewer the changes, the fewer the disruptions to testing."

• Changes to the software are infrequent.

• Changes to the software are controlled.

• Changes to the software do not invalidate existing tests.

• The software recovers well from failures.

Understandability. "The more information we have, the smarter we will test."

• The design is well understood.

• Dependencies between internal, external, and shared components are well

understood.

• Changes to the design are communicated.

• Technical documentation is instantly accessible.

• Technical documentation is well organized.

• Technical documentation is specific and detailed.

• Technical documentation is accurate.

 Kaner, Falk, and Nguyen suggest the following attributes of a “good” test:

1. A good test has a high probability of finding an error.

 To achieve this goal, the tester must understand the software and attempt to

develop a mental picture of how the software might fail.

 Ideally, the classes of failure are probed. For example, one class of potential

failure in a GUI (graphical user interface) is a failure to recognize proper

mouse position.

 A set of tests would be designed to exercise the mouse in an attempt to

demonstrate an error in mouse position recognition.

2. A good test is not redundant.

 Testing time and resources are limited. There is no point in conducting a test

that has the same purpose as another test. Every test should have a different

purpose.

3. A good test should be “best of breed”.

 In a group of tests that have a similar intent, time and resource limitations may

mitigate toward the execution of only a subset of these tests.

 In such cases, the test that has the highest likelihood of uncovering a whole

class of errors should be used.

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 62

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

4. A good test should be neither too simple nor too complex.

 Although it is sometimes possible to combine a series of tests into one test

case, the possible side effects associated with this approach may mask errors.

 In general, each test should be executed separately.

5.1.2 White-Box Testing

 White-box testing, called glass-box testing is a test case design method that uses the

control structure of the procedural design to derive test cases.

 Using white-box testing methods, the software engineer can derive test cases that

1. guarantee that all independent paths within a module have been exercised at least

once,

2. exercise all logical decisions on their true and false sides,

3. execute all loops at their boundaries and within their operational bounds, and

4. exercise internal data structures to ensure their validity.

 "Why spend time and energy worrying about (and testing) logical minutiae when we

might better expend effort ensuring that program requirements have been met?" or

“Why don't we spend all of our energy on black-box tests?”

 The answer is :

o Logic errors and incorrect assumptions are inversely proportional to the
probability that a program path will be executed. Errors tend to creep into
our work when we design and implement function, conditions, or controls that
are out of the mainstream. Everyday processing tends to be well understood

(and well scrutinized), while "special case" processing tends to fall into the
cracks.

o We often believe that a logical path is not likely to be executed when, in
fact, it may be executed on a regular basis. The logical flow of a program is

sometimes counterintuitive, meaning that our unconscious assumptions about
flow of control and data may lead us to make design errors that are uncovered
only once path testing commences.

o Typographical errors are random. When a program is translated into
programming language source code, it is likely that some typing errors will
occur. Many will be uncovered by syntax and type checking mechanisms, but

others may go undetected until testing begins. It is as likely that a typo will
exist on an obscure logical path as on a mainstream path.

 Each of these reasons provides an argument for conducting white-box tests. Black-

box testing, no matter how thorough, may miss the kinds of errors noted here. White-
box testing is far more likely to uncover them.

5.1.3 Basis Path Testing

 Basis path testing is a white-box testing technique first proposed by Tom McCabe in

1976.

 The basis path method enables the test case designer to derive a logical complexity

measure of a procedural design and use this measure as a guide for defining a basis
set of execution paths.

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 63

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

 Test cases derived to exercise the basis set are guaranteed to execute every statement

in the program at least one time during testing.

Flow Graph Notation

 The flow graph depicts logical control flow using the notation illustrated in Fig 5.1.

Fig 5.1 Flow graph notation

 Each structured construct has a corresponding flow graph symbol. To illustrate the

use of a flow graph, we consider the procedural design representation in Fig 5.2A.

Here, a flowchart is used to depict program control structure.

Fig 5.2 Flowchart, (A) and flow graph (B)

 Fig 5.2B maps the flowchart into a corresponding flow graph (assuming that no

compound conditions are contained in the decision diamonds of the flowchart).

 Referring to Fig 5.2B, each circle, called a flow graph node, represents one or more

procedural statements.

 A sequence of process boxes and a decision diamond can map into a single node.

 The arrows on the flow graph, called edges or links, represent flow of control and are
analogous to flowchart arrows.

 An edge must terminate at a node, even if the node does not represent any procedural

statements (e.g., see the symbol for the if-then-else construct).

 Areas bounded by edges and nodes are called regions. When counting regions, we

include the area outside the graph as a region.4

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 64

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

 When compound conditions are encountered in a procedural design, the generation of

a flow graph becomes slightly more complicated.

 A compound condition occurs when one or more Boolean operators (logical OR,
AND, NAND, NOR) is present in a conditional statement.

 Referring to Fig 5.3, the PDL segment translates into the flow graph shown.

 Note: A separate node is created for each of the conditions a and b in the statement IF

a OR b. Each node that contains a condition is called a predicate node and is

characterized by two or more edges emanating from it.

Fig 5.3 Compound logic

Cyclomatic Complexity

 Cyclomatic complexity is a software metric that provides a quantitative measure of

the logical complexity of a program.

 Cyclomatic complexity has a foundation in graph theory and provides us with

extremely useful software metric.

 Cyclomatic complexity is defined by the number of independent paths in the basis set

of a program and provides us with an upper bound for the number of tests that must

be conducted to ensure that all statements have been executed at least once.

 An independent path is any path through the program that introduces at least one

new set of processing statements or a new condition. When stated in terms of a flow

graph, an independent path must move along at least one edge that has not been

traversed before the path is defined.

 For example, a set of independent paths for the flow graph illustrated in Fig 5.2B is

path 1: 1-11

path 2: 1-2-3-4-5-10-1-11

path 3: 1-2-3-6-8-9-10-1-11

path 4: 1-2-3-6-7-9-10-1-11

 Note: Each new path introduces a new edge.

 The path 1-2-3-4-5-10-1-2-3-6-8-9-10-1-11 is not considered to be an independent

path because it is simply a combination of already specified paths and does not

traverse any new edges.

 Paths 1, 2, 3, and 4 constitute a basis set for the flow graph in Fig 5.2B. That is, if

tests can be designed to force execution of these paths (a basis set), every statement in

the program will have been guaranteed to be executed at least one time and every

condition will have been executed on its true and false sides.

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 65

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

 Note: The basis set is not unique. In fact, a number of different basis sets can be

derived for a given procedural design.

 How do we know how many paths to look for? The computation of cyclomatic
complexity provides the answer.

 Complexity is computed in one of three ways:

1. The number of regions of the flow graph corresponds to the cyclomatic

complexity.

2. Cyclomatic complexity, V(G), for a flow graph, G, is defined as V(G) = E - N + 2

where E is the number of flow graph edges, N is the number of flow graph nodes.

3. Cyclomatic complexity, V(G), for a flow graph, G, is also defined as V(G) = P +1

where P is the number of predicate nodes contained in the flow graph G.

 The Cyclomatic complexity of the flow graph in Fig 5.2B, can be computed using

each of the algorithms just noted:

1. The flow graph has four regions.

2. V(G) = 11 edges - 9 nodes + 2 = 4.

3. V(G) = 3 predicate nodes + 1 = 4.

Therefore, the cyclomatic complexity of the flow graph in Figure 17.2B is 4.

 Important: the value for V(G) provides us with an upper bound for the number of

independent paths that form the basis set and, by implication, an upper bound on the

number of tests that must be designed and executed to guarantee coverage of all

program statements.

Deriving Test Cases

 The basis path testing method can be applied to a procedural design or to source code.

 The procedure average, depicted in PDL in Fig 5.4, will be used as an example to

illustrate each step in the test case design method.

 The following steps can be applied to derive the basis set:

Fig 5.4 PDL for test case design with nodes identified

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 66

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

1. Using the design or code as a foundation, draw a corresponding flow graph.

A flow graph is created using the symbols and construction rules. Referring to the PDL

for average in Fig 5.4, a flow graph is created by numbering those PDL statements that

will be mapped into corresponding flow graph nodes. The corresponding flow graph is in

Fig 5.5.

2. Determine the cyclomatic complexity of the resultant flow graph.
The Cyclomatic complexity, V(G), is determined by applying the data flow testing

algorithms. It should be noted that V (G) can be determined without developing a flow

graph by counting all conditional statements in the PDL (for the procedure average,

compound conditions count as two) and adding 1. Referring to Fig 5.5,

V(G) = 6 regions

V(G) = 17 edges - 13 nodes + 2 = 6

V(G) = 5 predicate nodes + 1 = 6

3. Determine a basis set of linearly independent paths.
The value of V(G) provides the number of linearly independent paths through the

program control structure. In the case of procedure average, we expect to specify six

paths:

path 1: 1-2-10-11-13

path 2: 1-2-10-12-13

path 3: 1-2-3-10-11-13

path 4: 1-2-3-4-5-8-9-2-. . .

path 5: 1-2-3-4-5-6-8-9-2-. . .

path 6: 1-2-3-4-5-6-7-8-9-2-. . .

The ellipsis (. . .) following paths 4, 5, and 6 indicates that any path through the

remainder of the control structure is acceptable. It is often worthwhile to identify

predicate nodes as an aid in the derivation of test cases. In this case, nodes 2, 3, 5, 6, and

10 are predicate nodes.

Fig 5.5 Flow graph for the procedure average

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 67

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

4. Prepare test cases that will force execution of each path in the basis set.

Data should be chosen so that conditions at the predicate nodes are appropriately set as

each path is tested. Test cases that satisfy the basis set just described are

Path 1 test case:

value(k) = valid input, where k < i for 2 ≤ i ≤ 100

value(i) = -999 where 2 ≤ i ≤ 100

Expected results: Correct average based on k values and proper totals.

Note: Path 1 cannot be tested stand-alone but must be tested as part of path 4, 5,

and 6 tests.

Path 2 test case:

value(1) = -999

Expected results: Average = -999; other totals at initial values.

Path 3 test case:

Attempt to process 101 or more values.

First 100 values should be valid.

Expected results: Same as test case 1.

Path 4 test case:

value(i) = valid input where i < 100

value(k) < minimum where k < i

Expected results: Correct average based on k values and proper totals.

Path 5 test case:

value(i) = valid input where i < 100

value(k) > maximum where k <= i

Expected results: Correct average based on n values and proper totals.

Path 6 test case:

value(i) = valid input where i < 100

Expected results: Correct average based on n values and proper totals.

 Each test case is executed and compared to expected results. Once all test cases have

been completed, the tester can be sure that all statements in the program have been

executed at least once.

 Note: Some independent paths (e.g., path 1 in our example) cannot be tested in stand-

alone fashion. That is, the combination of data required to traverse the path cannot be

achieved in the normal flow of the program. In such cases, these paths are tested as

part of another path test.

Graph Matrices

 The procedure for deriving the flow graph and determining a set of basis paths is
amenable to mechanization.

 To develop a software tool that assists in basis path testing, a data structure, called a

graph matrix, can be quite useful.

 A graph matrix is a square matrix whose size (i.e., number of rows and columns) is

equal to the number of nodes on the flow graph. Each row and column corresponds to

an identified node, and matrix entries correspond to connections (an edge) between

nodes.

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 68

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

 A simple example of a flow graph and its corresponding graph matrix is shown in Fig

5.6.

 Referring to the figure, each node on the flow graph is identified by numbers, while

each edge is identified by letters. A letter entry is made in the matrix to correspond to

a connection between two nodes. For example, node 3 is connected to node 4 by edge

b.

 So, the graph matrix is nothing more than a tabular representation of a flow graph.

However, by adding a link weight to each matrix entry, the graph matrix can become

a powerful tool for evaluating program control structure during testing.

 The link weight provides additional information about control flow. In its simplest

form, the link weight is 1 (a connection exists) or 0 (a connection does not exist). But

link weights can be assigned other interesting properties:

• The probability that a link (edge) will be executed.

• The processing time expended during traversal of a link.

• The memory required during traversal of a link.

• The resources required during traversal of a link

Fig 5.6 Graph matrix

Fig 5.7 Connection matrix

 To illustrate, we use the simplest weighting to indicate connections (0 or 1). The

graph matrix in Fig 5.6 is redrawn as shown in Fig 5.7. Each letter has been replaced

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 69

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

with a 1, indicating that a connection exists (zeros have been excluded for clarity).

Represented in this form, the graph matrix is called a connection matrix.

 Referring to Fig 5.7, each row with two or more entries represents a predicate node.

Therefore, performing the arithmetic shown to the right of the connection matrix

provides us with still another method for determining cyclomatic complexity.

Beizer [BEI90] provides a thorough treatment of additional mathematical algorithms that

can be applied to graph matrices. Using these techniques, the analysis required to design

test cases can be partially or fully automated.

5.2 Control Structure Testing

 The basis path testing technique is one of a number of techniques for control structure

testing.

 Other variations on control structure testing are discussed. These broaden testing

coverage and improve quality of white-box testing.

5.2.1 Condition Testing

 Condition testing is a test case design method that exercises the logical conditions

contained in a program module.

 A simple condition is a Boolean variable or a relational expression, possibly

preceded with one NOT (¬) operator.

 A relational expression takes the form E1 <relational-operator> E2 where E1 and
E2 are arithmetic expressions and <relational-operator> is one of the following: <, ≤,

=, ≠ (nonequality), >, or ≥.

 A compound condition is composed of two or more simple conditions, Boolean

operators, and parentheses. We assume that Boolean operators allowed in a

compound condition include OR (|), AND (&) and NOT (¬).

 A condition without relational expressions is referred to as a Boolean expression.

Therefore, the possible types of elements in a condition include a Boolean operator, a

Boolean variable, a pair of Boolean parentheses (surrounding a simple or compound

condition), a relational operator, or an arithmetic expression.

 If a condition is incorrect, then at least one component of the condition is incorrect.

Therefore, types of errors in a condition include the following:

• Boolean operator error (incorrect/missing/extra Boolean operators).

• Boolean variable error.

• Boolean parenthesis error.

• Relational operator error.

• Arithmetic expression error.

 The condition testing method focuses on testing each condition in the program.

 Condition testing strategies have two advantages.

1. Measurement of test coverage of a condition is simple.

2. Test coverage of conditions in a program provides guidance for the generation of

additional tests for the program.

 The purpose of condition testing is to detect not only errors in the conditions of a

program but also other errors in the program.

 A number of condition testing strategies have been proposed.

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 70

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

 Branch testing is probably the simplest condition testing strategy. For a compound

condition C, the true and false branches of C and every simple condition in C need to

be executed at least once.

 Domain testing requires three or four tests to be derived for a relational expression.

For a relational expression of the form E1 <relational-operator> E2 three tests are

required to make the value of E1 greater than, equal to, or less than that of E2. If

<relational-operator> is incorrect and E1 and E2 are correct, then these three tests

guarantee the detection of the relational operator error. To detect errors in E1 and E2,

a test that makes the value of E1 greater or less than that of E2 should make the

difference between these two values as small as possible.

5.2.2 Data Flow Testing

 The data flow testing method selects test paths of a program according to the

locations of definitions and uses of variables in the program.

 To illustrate the data flow testing approach, assume that each statement in a program

is assigned a unique statement number and that each function does not modify its
parameters or global variables.

 For a statement with S as its statement number,

DEF(S) = {X | statement S contains a definition of X}

USE(S) = {X | statement S contains a use of X}

If statement S is an if or loop statement, its DEF set is empty and its USE set is

based on the condition of statement S. The definition of variable X at statement S

is said to be live at statement S' if there exists a path from statement S to

statement S' that contains no other definition of X.

 A definition-use (DU) chain of variable X is of the form [X, S, S'], where S and S' are

statement numbers, X is in DEF(S) and USE(S'), and the definition of X in statement

S is live at statement S'.

 Data flow testing strategies are useful for selecting test paths of a program containing

nested if and loop statements. To illustrate this, consider the application of DU testing

to select test paths for the PDL that follows:

proc x

B1;

do while C1

if C2

then

else

endif;

if C4

then B4;

else B5;

endif;

if C3

then B2;

else B3;

endif;

enddo;

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 71

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

B6;

end proc;

 To apply the DU testing strategy to select test paths of the control flow diagram, we

need to know the definitions and uses of variables in each condition or block in the

PDL.

 Assume that variable X is defined in the last statement of blocks B1, B2, B3, B4, and

B5 and is used in the first statement of blocks B2, B3, B4, B5, and B6. The DU

testing strategy requires an execution of the shortest path from each of Bi, 0 < i ≤ 5, to

each of Bj, 1 < j ≤ 6. Although there are 25 DU chains of variable X, we need only

five paths to cover these DU chains. The reason is that five paths are needed to cover

the DU chain of X from Bi, 0 < i ≤ 5, to B6 and other DU chains can be covered by

making these five paths contain iterations of the loop.

 Since the statements in a program are related to each other according to the

definitions and uses of variables, the data flow testing approach is effective for error

detection.

 However, the problems of measuring test coverage and selecting test paths for data

flow testing are more difficult than the corresponding problems for condition testing.

5.2.3 Loop Testing

 Loops are the cornerstone for the vast majority of all algorithms implemented in

software.

 Loop testing is a white-box testing technique that focuses exclusively on the validity

of loop constructs.

 Four different classes of loops can be defined: simple loops, concatenated loops,

nested loops, and unstructured loops (Fig 5.8).

Simple loops.

 The following set of tests can be applied to simple loops, where n is the maximum
number of allowable passes through the loop.

1. Skip the loop entirely.

2. Only one pass through the loop.

3. Two passes through the loop.

4. m passes through the loop where m < n.

5. n -1, n, n + 1 passes through the loop.

Nested loops.

 If we were to extend the test approach for simple loops to nested loops, the number of

possible tests would grow geometrically as the level of nesting increases.

 Beizer suggests an approach that will help to reduce the number of tests:

1. Start at the innermost loop. Set all other loops to minimum values.

2. Conduct simple loop tests for the innermost loop while holding the outer loops

at their minimum iteration parameter (e.g., loop counter) values. Add other tests

for out-of-range or excluded values.

3. Work outward, conducting tests for the next loop, but keeping all other outer

loops at minimum values and other nested loops to "typical" values.

4. Continue until all loops have been tested.

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 72

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

Concatenated loops.

 Concatenated loops can be tested using the approach defined for simple loops, if each

of the loops is independent of the other. However, if two loops are concatenated and

the loop counter for loop 1 is used as the initial value for loop 2, then the loops are

not independent. When the loops are not independent, the approach applied to nested

loops is recommended.

Unstructured loops.

 Whenever possible, this class of loops should be redesigned to reflect the use of the

structured programming constructs.

Fig 5.8 Classes of loops

5.3 BLACK-BOX TESTING

 Black-box testing, also called behavioral testing, focuses on the functional

requirements of the software.

 That is, black-box testing enables the software engineer to derive sets of input

conditions that will fully exercise all functional requirements for a program. Black-

box testing is not an alternative to white-box techniques.

 Rather, it is a complementary approach that is likely to uncover a different class of
errors than white-box methods.

 Black-box testing attempts to find errors in the following categories:

1. Incorrect or missing functions,

2. Interface errors,

3. Errors in data structures or external data base access,

4. Behavior or performance errors, and

5. Initialization and termination errors.

 Unlike white-box testing, which is performed early in the testing process, blackbox

testing tends to be applied during later stages of testing.

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 73

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

 Black-box testing purposely disregards control structure, attention is focused on the

information domain.

 Tests are designed to answer the following questions:

• How is functional validity tested?

• How is system behavior and performance tested?

• What classes of input will make good test cases?

• Is the system particularly sensitive to certain input values?

• How are the boundaries of a data class isolated?

• What data rates and data volume can the system tolerate?

• What effect will specific combinations of data have on system operation?

 Black-box techniques, we derive a set of test cases that satisfy the following criteria:

1. Test cases that reduce, by a count that is greater than one, the number of

additional test cases that must be designed to achieve reasonable testing and

2. Test cases that tell us something about the presence or absence of classes of

errors, rather than an error associated only with the specific test at hand.

5.3.1 Graph-Based Testing Methods

 The first step in black-box testing is to understand the objects that are modeled in

software and the relationships that connect these objects.

 Next step is to define a series of tests that verify “all objects have the expected

relationship to one another”.

 To accomplish these steps, the software engineer begins by creating a graph—a

collection of nodes that represent objects; links that represent the relationships

between objects; node weights that describe the properties of a node (e.g., a specific

data value or state behavior); and link weights that describe some characteristic of a

link.

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 74

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

Fig 5.9 (A) Graph notation (B) Simple example

 The symbolic representation of a graph is shown in Fig 5.9A.

 Nodes are represented as circles connected by links that take a number of different
forms. A directed link (represented by an arrow) indicates that a relationship moves in

only one direction.

 A bidirectional link, called a symmetric link, implies that the relationship applies in

both directions. Parallel links are used when a number of different relationships are
established between graph nodes.

 Eg. consider a portion of a graph for a word-processing application (Fig 5.9B) where

Object #1 = new file menu select

Object #2 = document window

Object #3 = document text

 Referring to the figure, a menu select on new file generates a document window.

 The node weight of document window provides a list of the window attributes that
are to be expected when the window is generated.

 The link weight indicates that the window must be generated in less than 1.0 second.

 An undirected link establishes a symmetric relationship between the new file menu

select and document text, and parallel links indicate relationships between document

window and document text.

 In reality, a far more detailed graph would have to be generated as a precursor to test

case design.

 The software engineer then derives test cases by traversing the graph and covering

each of the relationships shown. These test cases are designed in an attempt to find

errors in any of the relationships.

 Beizer describes a number of behavioral testing methods that can make use of graphs:

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 75

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

o Transaction flow modeling. The nodes represent steps in some transaction
(e.g., the steps required to make an airline reservation using an on-line
service), and the links represent the logical connection between steps (e.g.,

flight.information.input is followed by validation/availability.processing).

o Finite state modeling. The nodes represent different user observable states of
the software (e.g., each of the “screens” that appear as an order entry clerk

takes a phone order), and the links represent the transitions that occur to move

from state to state (e.g., order-information is verified during inventory-

availability look-up and is followed by customer-billing-information input).

The state transition diagram can be used to assist in creating graphs of this
type.

o Data flow modeling. The nodes are data objects and the links are the
transformations that occur to translate one data object into another. For
example, the node FICA.tax.withheld (FTW) is computed from gross.wages
(GW) using the relationship, FTW = 0.62 - GW.

o Timing modeling. The nodes are program objects and the links are the
sequential connections between those objects. Link weights are used to
specify the required execution times as the program executes.

 Graph-based testing begins with the definition of all nodes and node weights. That is,

objects and attributes are identified. The data model can be used as a starting point,

but it is important to note that many nodes may be program objects (not explicitly

represented in the data model). To provide an indication of the start and stop points

for the graph, it is useful to define entry and exit nodes.

 Once nodes have been identified, links and link weights should be established.

 In general, links should be named, although links that represent control flow between

program objects need not be named.

 Each relationship is studied separately so that test cases can be derived.

 The transitivity of sequential relationships is studied to determine how the impact of

relationships propagates across objects defined in a graph. Transitivity can be

illustrated by considering three objects, X, Y, and Z. Consider the following

relationships:

X is required to compute Y

Y is required to compute Z

Therefore, a transitive relationship has been established between X and Z:

X is required to compute Z

 Based on this transitive relationship, tests to find errors in the calculation of Z must

consider a variety of values for both X and Y.

 The symmetry of a relationship (graph link) is also an important guide to the design

of test cases.

 As test case design begins, the first objective is to achieve node coverage. By this we

mean that tests should be designed to demonstrate that no nodes have been
inadvertently omitted and that node weights (object attributes) are correct.

 Next, link coverage is addressed. Each relationship is tested based on its properties.

For example, a symmetric relationship is tested to demonstrate that it is, in fact,

bidirectional. A transitive relationship is tested to demonstrate that transitivity is

present.

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 76

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

 A reflexive relationship is tested to ensure that a null loop is present. When link

weights have been specified, tests are devised to demonstrate that these weights are

valid. Finally, loop testing is invoked (Section 17.5.3).

5.3.2 Equivalence Partitioning

 Equivalence partitioning is a black-box testing method that divides the input domain

of a program into classes of data from which test cases can be derived.

 An ideal test case single-handedly uncovers a class of errors (e.g., incorrect

processing of all character data) that might otherwise require many cases to be

executed before the general error is observed.

 Equivalence partitioning strives to define a test case that uncovers classes of errors,

thereby reducing the total number of test cases that must be developed.

 Test case design for equivalence partitioning is based on an evaluation of equivalence

classes for an input condition.

 An equivalence class represents a set of valid or invalid states for input conditions.

Typically, an input condition is either a specific numeric value, a range of values, a

set of related values, or a Boolean condition.

 Equivalence classes may be defined according to the following guidelines:
1. If an input condition specifies a range, one valid and two invalid equivalence

classes are defined.

2. If an input condition requires a specific value, one valid and two invalid

equivalence classes are defined.

3. If an input condition specifies a member of a set, one valid and one invalid

equivalence class are defined.

4. If an input condition is Boolean, one valid and one invalid class are defined.

 Example, consider data maintained as part of an automated banking application.

The user can access the bank using a personal computer, provide a six-digit password,

and follow with a series of typed commands that trigger various banking functions.

During the log-on sequence, the software supplied for the banking application accepts

data in the form

area code—blank or three-digit number prefix—

three-digit number not beginning with 0 or 1

suffix—four-digit number

password—six digit alphanumeric string

commands—check, deposit, bill pay, and the like

The input conditions associated with each data element for the banking application can be
specified as

Area code: Input condition, Boolean—the area code may or may not be present.

Input condition, range—values defined between 200 and 999, with

specific exceptions.

Prefix: Input condition, range—specified value >200

Input condition, value—four-digit length

Password: Input condition, Boolean—a password may or may not be present.

Input condition, value—six-character string.

Command: Input condition, set—containing commands noted previously.

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 77

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

Applying the guidelines for the derivation of equivalence classes, test cases for each input

domain data item can be developed and executed. Test cases are selected so that the

largest number of attributes of an equivalence class are exercised at once.

5.3.3 Boundary Value Analysis

 Boundary value analysis leads to a selection of test cases that exercise bounding

values.

 Boundary value analysis is a test case design technique that complements equivalence

partitioning.

 Rather than selecting any element of an equivalence class, BVA leads to the selection

of test cases at the "edges" of the class. Rather than focusing solely on input

conditions, BVA derives test cases from the output domain as well.

 Guidelines for BVA are similar in many respects to those provided for equivalence
partitioning:

1. If an input condition specifies a range bounded by values a and b, test cases

should be designed with values a and b and just above and just below a and b.

2. If an input condition specifies a number of values, test cases should be

developed that exercise the minimum and maximum numbers.

3. Apply guidelines 1 and 2 to output conditions.

4. If internal program data structures have prescribed boundaries (e.g., an array

has a defined limit of 100 entries), be certain to design a test case to exercise

the data structure at its boundary.

 By applying these guidelines, boundary testing will be more complete, thereby having

a higher likelihood for error detection.

5.3.4 Comparison Testing

 There are some situations (e.g., aircraft avionics, automobile braking systems) in

which the reliability of software is absolutely critical.

 In such applications redundant hardware and software are often used to minimize the

possibility of error.

 When redundant software is developed, separate software engineering teams develop

independent versions of an application using the same specification.

 In such situations, each version can be tested with the same test data to ensure that all
provide identical output. Then all versions are executed in parallel with real-time

comparison of results to ensure consistency.

 Researchers have suggested that independent versions of software be developed for

critical applications, even when only a single version will be used in the delivered

computer-based system.

 These independent versions form the basis of a black-box testing technique called

comparison testing or back-to-back testing.

 When multiple implementations of the same specification have been produced, test

cases designed using other black-box techniques (e.g., equivalence partitioning) are

provided as input to each version of the software.

 If the output from each version is the same, it is assumed that all implementations are
correct. If the output is different, each of the applications is investigated to determine

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 78

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

if a defect in one or more versions is responsible for the difference. In most cases, the

comparison of outputs can be performed by an automated tool.

 Comparison testing is not foolproof. If the specification from which all versions have

been developed is in error, all versions will likely reflect the error. In addition, if each

of the independent versions produces identical but incorrect results, condition testing

will fail to detect the error.

Fig 5.10 A geometric view of test cases

5.3.5 Orthogonal Array Testing

 There are many applications in which the input domain is relatively limited. That is,

the number of input parameters is small and the values that each of the parameters

may take are clearly bounded. When these numbers are very small, it is possible to

consider every input permutation and exhaustively test processing of the input

domain.

 However, as the number of input values grows and the number of discrete values for

each data item increases, exhaustive testing become impractical or impossible.

 Orthogonal array testing can be applied to problems in which the input domain is

relatively small but too large to accommodate exhaustive testing. T

 he orthogonal array testing method is particularly useful in finding errors associated
with region faults—an error category associated with faulty logic within a software

component.

5.4 Quality Concepts:

"What is software quality?" Software quality assurance (SQA) is an umbrella activity

that is applied throughout the software process.

What is it? It’s not enough to tell ‘software quality is important’, you have to

(1) explicitly define what is meant when you say “software quality,”

(2) create a set of activities that will help ensure that every software engineering work

product exhibits high quality,

(3) perform quality assurance activities on every software project,

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 79

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

(4) use metrics to develop strategies for improving your software process and, as a

consequence, the quality of the end product.

Who does it? Everyone involved in the software engineering process is responsible for

quality.

Why is it important? You can do it right, or you can do it over again. If a software team

stresses quality in all software engineering activities, it reduces the amount of rework that

it must do. That results in lower costs, and more importantly, improved time-to-market.

What are the steps? Before software quality assurance activities can be initiated, it is

important to define ‘software quality’ at a number of different levels of abstraction. Once

you understand what quality is, a software team must identify a set of SQA activities that

will filter errors out of work products before they are passed on.

What is the work product? A Software Quality Assurance Plan is created to define a

software team’s SQA strategy. During analysis, design, and code generation, the primary

SQA work product is the formal technical review summary report. During testing, test

plans and procedures are produced. Other work products associated with process

improvement may also be generated.

How do I ensure that I’ve done it right? Find errors before they become defects! That

is, work to improve your defect removal efficiency, thereby reducing the amount of

rework that your software team has to perform.

Concepts

 Variation between samples, applies to all products of human as well as natural

creation. For example, if two “identical” circuit boards are examined closely enough,

we may observe that the copper pathways on the boards differ slightly in geometry,

placement, and thickness. In addition, the location and diameter of the holes drilled in

the boards varies as well.

 All engineered and manufactured parts exhibit variation.

 The variation between samples may not be obvious without the aid of precise

equipment to measure the geometry, electrical characteristics, or other attributes of

the parts.

 However, with sufficiently sensitive instruments, we will likely come to the

conclusion that no two samples of any item are exactly alike.

 Variation control is the heart of quality control. A manufacturer wants to minimize

the variation among the products that are produced, even when doing something

relatively simple like duplicating diskettes.

 Surely, this cannot be a problem—duplicating diskettes is a trivial manufacturing

operation, and we can guarantee that exact duplicates of the software are always

created. So even a “simple” process such as disk duplication may encounter problems

due to variation between samples.

 But how does this apply to software work? How might a software development

organization need to control variation? From one project to another, we want to

minimize the difference between the predicted resources needed to complete a project

and the actual resources used, including staff, equipment, and calendar time.

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 80

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

 In general, we would like to make sure our testing program covers a known

percentage of the software, from one release to another.

 Not only do we want to minimize the number of defects that are released to the field,
we’d like to ensure that the variance in the number of bugs is also minimized from

one release to another.

Quality:

 The American Heritage Dictionary defines quality as “a characteristic or attribute of

something.”

 As an attribute of an item, quality refers to measurable characteristics— things we are

able to compare to known standards such as length, color, electrical properties, and
malleability.

 However, software, largely an intellectual entity, is more challenging to characterize

than physical objects.

 These properties include cyclomatic complexity, cohesion, number of function points,

lines of code, and many others, discussed in Chapters 19 and 24. When we examine

an item based on its measurable characteristics, two kinds of quality may be

encountered: quality of design and quality of conformance.

 Quality of design refers to the characteristics that designers specify for an item. The

grade of materials, tolerances, and performance specifications all contribute to the

quality of design.

 As higher-grade materials are used, tighter tolerances and greater levels of

performance are specified, the design quality of a product increases, if the product is

manufactured according to specifications.

 Quality of conformance is the degree to which the design specifications are followed

during manufacturing. Again, the greater the degree of conformance, the higher is the

level of quality of conformance.

 In software development, quality of design encompasses requirements, specifications,

and the design of the system.

 Quality of conformance is an issue focused primarily on implementation. If the

implementation follows the design and the resulting system meets its requirements
and performance goals, conformance quality is high.

 But are quality of design and quality of conformance the only issues that software

engineers must consider? Robert Glass [GLA98] argues that a more “intuitive”

relationship is in order:

User satisfaction = compliant product + good quality + delivery within budget and

schedule

 DeMarco [DEM99] reinforces this view when he states: “A product’s quality is a

function of how much it changes the world for the better.” This view of quality

contends that if a software product provides substantial benefit to its end-users, they

may be willing to tolerate occasional reliability or performance problems.

5.4.2 Quality Control

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 81

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

 Quality control involves the series of inspections, reviews, and tests used throughout

the software process to ensure each work product meets the requirements placed upon

it.

 Quality control includes a feedback loop to the process that created the work product.

The combination of measurement and feedback allows us to tune the process when

the work products created fail to meet their specifications.

 This approach views quality control as part of the manufacturing process.

 Quality control activities may be fully automated, entirely manual, or a combination

of automated tools and human interaction.

 A key concept of quality control is that all work products have defined, measurable

specifications to which we may compare the output of each process. The feedback

loop is essential to minimize the defects produced.

5.4.3 Quality Assurance

 Quality assurance consists of the auditing and reporting functions of management.

 The goal of quality assurance is to provide management with the data necessary to be

informed about product quality, thereby gaining insight and confidence that product

quality is meeting its goals.

 Of course, if the data provided through quality assurance identify problems, it is

management’s responsibility to address the problems and apply the necessary

resources to resolve quality issues.

5.4.4 Cost of Quality

 The cost of quality includes all costs incurred in the pursuit of quality or in

performing quality-related activities.

 Cost of quality studies are conducted to provide a base-line for the current cost of

quality, identify opportunities for reducing the cost of quality, and provide a

normalized basis of comparison.

 The basis of normalization is almost always dollars. Once we have normalized quality

costs on a dollar basis, we have the necessary data to evaluate where the opportunities

lie to improve our processes.

 Furthermore, we can evaluate the effect of changes in dollar-based terms.

 Quality costs may be divided into costs associated with prevention, appraisal, and

failure. Prevention costs include

 quality planning

 formal technical reviews

 test equipment

 training

 Appraisal costs include activities to gain insight into product condition the “first time
through” each process. Examples of appraisal costs include

• In-process and interprocess inspection

• Equipment calibration and maintenance

• Testing

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 82

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

 Failure costs are those that would disappear if no defects appeared before shipping a

product to customers. Failure costs may be subdivided into internal failure costs and

external failure costs. Internal failure costs are incurred when we detect a defect in

our product prior to shipment. Internal failure costs include

• Rework

• Repair

• Failure mode analysis

 External failure costs are associated with defects found after the product has been

shipped to the customer. Examples of external failure costs are

• Complaint resolution

• Product return and replacement

• Help line support

• Warranty work

 As expected, the relative costs to find and repair a defect increase dramatically as we

go from prevention to detection to internal failure to external failure costs.

 Fig 5.11, based on data collected by Boehm and others, illustrates this phenomenon.

Anecdotal data reported by Kaplan, Clark, and Tang reinforces earlier cost statistics

and is based on work at IBM’s Rochester development facility:

Fig 5.11 Relative cost of correcting an error

A total of 7053 hours was spent inspecting 200,000 lines of code with the result that 3112

potential defects were prevented. Assuming a programmer cost of $40.00 per hour, the

total cost of preventing 3112 defects was $282,120, or roughly $91.00 per defect.

Compare these numbers to the cost of defect removal once the product has been shipped

to the customer. Suppose that there had been no inspections, but that programmers had

been extra careful and only one defect per 1000 lines of code [significantly better than

industry average] escaped into the shipped product. That would mean that 200 defects

would still have to be fixed in the field. At an estimated cost of $25,000 per field fix, the

cost would be $5 million, or approximately 18 times more expensive than the total cost of

the defect prevention effort.

It is true that IBM produces software that is used by hundreds of thousands of customers

and that their costs for field fixes may be higher than those for software organizations

that build custom systems. This in no way negates the results just noted.

Preparedby NITHYA.R Department of CS,CA,IT KAHE Page 83

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BCA COURSE NAME:SOFTWARE ENGINEERING

COURSE CODE: 17CAU401 UNIT: V BATCH-2017-2020

Even if the average software organization has field fix costs that are 25 percent of IBM’s,

the cost savings associated with quality control and assurance activities are compelling.

Testing is necessary, but it’s also a very expensive way to find errors. Spend time

finding errors early in the process and you may be able to significantly reduce

testing and debugging costs.

POSSIBLE QUESTIONS

1. define software testing.

2. wnat are the testing fundamentals?
3.note on testing approach.

4.note on testing strategy.

5.define validation testing.

6.define system testing.

7.define whitebox testing.

8.define blackbox testing.

9.compare white box testing & blackbox testing.

10.what are the types of testing in software?

251
__________ is a critical element of software quality assurance and
represents the ultimate review of specification, design, and code
generation.

software
specification

software
generation software coding software testing

252 Software is tested from ___________ different perspectives. 2 3 4 5
253 Software engineers are by their nature ___________ people. pessimistic optimistic constructive destructive

254
__________ is a process of executing a program with the intent of
finding an error. coding testing debugging designing

255 All tests should be _________ to customer requirements. traceable designed tested coded
256 Tests should be planned long before _____________ begins. testing coding specification requirements

257
Testing should begin in the _________ and progress toward testing in
the large. design beginning small big

258 The less there is to test, the more _________ we can test it. quickly shortly automatically hardly

259
________ is a process of executing a program with the intend of
finding an error. testing coding planning designing

260
A good _________ is one that has a high probability of finding an as-
yet-undiscovered error planning test case objective goal

261 All _________ should be traceable to customer-requirements. analysis designs tests plans

262 __________ is simple how easily a computer program can be tested. software operability
software
simplicity

software
decomposability software testability

263
The better it works, the more efficiently it can be testing. This
characteristic is called ___________. operability observability controllability decomposability

264 There are _________ characteristics in testability 5 6 7 8

265
What you see is what you test. This characteristic is called
__________. controllability observability decomposability stability

266 The better we can control the software, the more the testing can be
automated and optimized. This characteristic is called __________. operability stability understandability controllability

267
By controlling the scope of testing, we can more quickly isolate
problems and perform smarter retesting. This characteristic is called
_________. decomposability simplicity stability understandability

268
. The less there is to test, the more quickly we can test it. This
characteristic is called _________. controllability simplicity operability observability

269
The fewer the changes, the fewer the disruptions to testing. This
characteristic is called __________. controllability decomposability stability understandability

UNIT V

270
. The more information we have, the smarter we will test. This
characteristic is called _________. controllability decomposability stability understandability

271 A good test has a high ___________ of finding an error. probability simplicity understandability stability
272 A good test is not _________. stable redundant simple complex

273 White-box testing sometimes called _________.
control structure
testing condition testing glass-box testing black-box testing

274
Logic errors and incorrect assumptions are inversely proportional to
the ___________ that a program path will be executed simplicity probability understandability stability

275 Typographical errors are _________. redundant simple random complex

276
One often believes that a _________ path is not likely to be executed
when, in fact, it may be executed on a regular basis. control structural physical logical

277 Basic path testing is a __________. black-box testing white-box testing
control structure
testing control path testing

278
__________ is a software metric that provides a quantitative measure
of the logical complexity of a program.

cyclomatic
complexity flow graph

deriving test
cases graph matrices

279
An __________ is any path through the program that introduces
atleast one new set of processing statements or a new condition. dependent path independent path basic path control path

280 There are _________ steps to be applied to derive the basis set. 2 3 4 5
281 There are _________ test cases that satisfy the basis set. 3 4 5 6

282
. A ________ is a square matrix whose size is equal to the number of
nodes on the flow graph. graph matrix matrix flow graph

cyclomatic
complexity

283
To develop a software tool that assists in basis path testing, a data
structure called a ___________ is useful. matrix flow graph graph matrix cyclomatic omplexity

284
____________ requires three or four tests to be derived for a
relational expression. branch testing data flow testing

data control
testing domain testing

285 __________ is probably the simplest condition testing strategy. branch testing data flow testing condition testing domain testing

286
The __________ method selects test paths of a program according to
the locations of definitions and uses of variables in the program data flow testing condition testing loop testing black box testing

287
__________ is a white box testing technique that focuses exclusively
on the validity of loop constructions data flow testing loop testing condition testing control path testing

288
___________ is a test case design method that exercises the logical
conditions contained in a program module black box testing loop testing data flow testing condition testing

289 _____________ is called behavioral testing. black box testing loop testing data flow testing condition testing

290 The first step in __________ is to understand the objects that are
modeled in software and the relationships that connect these objects black box testing loop testing data flow testing condition testing

291
Equivalence partitioning is a ___________ method that divides the
input domain of a program into classes of data. black box testing loop testing data flow testing condition testing

292 Comparison testing is also called ____________. black box testing loop testing behavioral testing back-to-back testing

293
__________ testing can be applied to problems in which the input
domain is relatively small but too large to accommodate exhaustive
testing. orthogonal array loop behavioral back-to-back

294
__________ focuses verification effort on the smallest unit of
software design – the software component or module. module testing unit testing structure testing system testing

295 A driver is nothing more than a __________. subprogram main program stub subroutine

296
_____________ serve to replace modules that are subordinate called
by the component to be tested. subprograms main programs stubs subroutines

297 Drivers and _________ represent overhead. subprograms main programs stubs subroutines

298
___________ of execution paths is an essential task during the unit
test. unit testing module testing selective testing white box testing

299
Good _________ dictates that error conditions be anticipated and
error-handling paths set up to reroute or cleanly terminate processing
when an error does occur design testing code module

300
_________ is completely assembled as a package, interfacing errors
have been uncovered and corrected. software program code all of the above

software testing
2

constructive

testing
traceable
testing

small
quickly

testing

test case
tests
software
testability

operability
7

observability

controllability

decomposability

simplicity

stability

understandability
probability
redundant

glass-box testing

probability
random

logical

white-box testing
cyclomatic
complexity

independent path
4
6

graph matrix

graph matrix

domain testing
branch testing

data flow testing

loop testing

condition testing
black box testing

black box testing

black box testing

back-to-back
testing

orthogonal array

unit testing
main program

stubs
stubs

selective testing

design

software

Unit - 2

1
The ________ as a bridge between the systm decription
and the design model design

analysis
model

2
The role of the software engineer in the requirement
analysis is called____ designer analyst

3 analysis modeling often begins with _______
data
modeling

function
modeling

4 A ____________ can be an external entity
function
object

structural
object

5 ________ defines the properities of a data object relationship cardinality

6
Data objects are connected to one another in different
ways is called __________ modality relationships

7

______ is the specification of the number of occurrences
of one object that can be related to the number of
occurrences of another object modality relationships

8
__________ defines the maximum number of objects that
can participate in a relationship modality relationships

9
________ provide an indication of whether or not a
particular data object must participate in the relationship Modality relationships

10
The _____ diagram takes an an input-process-output
view of sysytem

use-case
diagram

activity
diagram

11 The level 0 DFD is called as ______ diagram

contract
level
diagram

context level
diagram

12
The ______ describes the behavior of the system but not
the inner working of the processes PSPEC ASPEC

13
The _______ is used to describe all flow model processes
the appear in the final level of refinement CSPEC ASPEC

14
The _______ model indicates how software will respond
to external events data behavior

15
The _____ represents a sequence of activities that
involves actor and the system csase tool activity

16
The ______ diagram indicates how events cause
transitions from object to object

sequence
diagram activity

17
Which one depict the software requirements from the
user's point of view.

behavioral
based

flow based
model

18
Which model depicts how input is transformed into output
as data objects move through a system

behavioral
based

flow based
model

19
20

Unit 3

1

________is a iterativeprocess through which
requirements are translated into a blueprint for
constructing the software

requirements
gathering coding

2
Who developeda set of software quality attributefor the
software design Barry Boehm R.Pattis

3
Which quality attribute measure the response time,
throughput and effeciency of the sysytem Functionality Usability

4
The quality attribute, Usability is assessed by considering
the overall ________ of the system consistency Functionality

5
A _______ refers to a sequence of instructionsthat have a
specific and limited functions

procedural
abstraction

data
abstraction

6
______ represent architecture as an organized collection
of programs components

process
models

structural
models

7
_____ models address the behavioral aspects of the
program architecture

process
models

structural
models

8
Software is divided into separately named and
addressable components is called _______ process behavior

9
the ______ is a process of changing a software by which
doesnot alter the external behavior of the code refinement cohesion

10
_____ is an indication of the relative functional strength of
the module refinement cohesion

11
_____ is an indication of the relativeinterdependency
among modules cohesion patterns

12
Refinement is a top-down design strategy which is
actually a process of _____ eloboration abstraction

13
A __________ is a named collection of data that
describes a data object.

procedural
abstraction

data
abstraction

14
_________ implies a program control mechanism
without specifying internal detail.

procedural
abstraction

data
abstraction

15
software architecture consider ____ levels of the design
pyramid 3 2

16 Which action translates data objects into data structures data design
component
design

17

In data centered arcjitecture __________ resides at the
centre of the architecture which is accessed frequently by
other components

client
software data store

18

___________ represents the structure of data and
program components that are required to build a
computer-based syste,

architectural
design data design

19 KDD stand for

Knowledge
Discovery of
data
manipulatio

Knowledge
Discovery in
database

20
the ____________ classes defines all abstraction that are
necessary for human computer interaction

primitive
class user interface

21

The ________ classes implement lower level business
abstraction required to manage the business domain
class

primitive
class user interface

22
____________ suggest that a method should send or
receive messages from friend class

Law of
cohesion Law of meter

23

_____________ is achieve by developing modules with
single minded function and aversion of excessive
interaction refinement refactoring

24
______ suggest that the information contained in one
module is inaccesible to othe modules refinement refactoring

25 Refinement is a process of _____________ abstraction eloboration

26
____________ is a process of breaking up of complex
problem into a manageable piecies refinement refactoring

27
________ is evaluated by measuring the frequency and
severity of failure. Usability performance

28
iIn transform flow the information must entered and exit in
________ form

external
world internal world

29
Information flow is characterized by an single data item is
called context flow

transaction
flow

30
A _______ diagram is mapped into a program structure
using transform or transaction mapping data flow use case

31
______________ language provides a semantic and
syntax for describing a software architecture

architectural
description

architectural
design

32 Design begins with the __________ model. data requirements

33
___________ focus on the design of the business or
technical process that the system must accommodate.

framework
models

dynamic
models

34
_____________ can be used to represent the
functional hierarchy of a system.

framework
models

dynamic
models

35
____________ represent architecture as an organized
collection of program components.

dynamic
models

functional
models

36

____________ increases the level of design
abstraction by attempting to identity repeatable
architectural design frameworks that are encountered
in similar types of applications.

framework
models

dynamic
models

37

_________ address the behavioural aspects of the
program architecture, indicating how the structure or
system configuration may change as a function of
external events.

framework
models

dynamic
models

38
___________ is the place where quality is fostered
in software engineering model data

39
________ provides us with representations of
software that can be assessed for quality. design specification

40
_____________ describes a program should not
have any bugs that inhibit its function firmness commodity

41
A program should be suitable for the purposes for
which it is intended is called firmness commodity

42
The experience of using the program should be a
pleasurable one is called firmness commodity

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60

planning construction analysis model

programmer tester analyst
behavior
modling

structure
modeling

Data object flow object Data object

Data attributes modality Data attributes

cardinality Data attributes relationships

cardinality Data attributes Cardinality

Data attributes cardinality Cardinality

Data attributes cardinality Modality
data flow
diagram ERD data flow diagram

text level
diagram

zero level
diagram

context level
diagram

LSPEC CSPEC CSPEC

LSPEC PSPEC PSPEC

function structural behavior

use-case swimlane use-case

use-case swimlane sequence diagram

class based
scenario based
model

scenario based
model

class based
scenario based
model flow based model

software
design deployment software design

M.C.Escher
Hewlett-
Packard Hewlett-Packard

Performance Supportability Performance

Supportability Performance consistency
behavior
abstraction

structural
abstraction

procedural
abstraction

dynamic
models

framework
models structural models

dynamic
models

framework
models dynamic models

modules data Modules

patterns refactoring refactoring

patterns refactoring cohesion

coupling
functional
dependency coupling

refactoring
information
hiding eloboration

control
abstraction

behavior
abstraction data abstraction

control
abstraction

behavior
abstraction

control
abstraction

1 4 2
behavior
design

functional
design data design

filter pipes data store

software
design

behavioural
design

architectural
design

Knowing of
database
discovery

Knowing
discovery of
database

Knowledge
Discovery in
database

process
classes

business
domain user interface

process
classes System class process classes
Low of
completeness

law of
primitiveness Law of meter

functional
independence

information
hiding

functional
independence

functional
independence

information
hiding information hiding

architecture modularity eloboration

modularity arichiteture modularity

supportability reliability reliability

top down bottom up external world

transform flow contract flow transaction flow

state diagram
activity
diagram data flow

architectural
pattern

architecturaldef
inition

architectural
description

specification code requirements

process
models

functional
models process models

process
models

functional
models

functional
models

framework
models

structural
models structural models

process
models

functional
models

framework
models

process
models

functional
models dynamic models

design specification design

data prototype design

delight roman firmness

delight roman commodity

delight roman delight

Scanned by CamScanner

Reg.No ----------------------

[18CAU402]

Time : 2 Hours
DATE & SESSION: 18

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

COIMBATORE – 641 021

BCA DEGREE EXAMINATION

(For the candidates admitted in 2018 onwards)

Fourth Semester

First Internal Examination – December 2019

SOFTWARE ENGINEERING

Maximum : 50Marks

PART-A (20 * 1 = 20Marks)

Answer ALL the questions

1.Software takes on a role.

a. Single b.Dual c.Triple d.Tetra

2.Software is a .

a.Virtual b.System c.Modifier d.Framework

3. Instructions that when executed provide desired function and performance is called .

a.Software b.Hardware c.Firmware d.Humanware

4.High quality of software is achieved through .

a.Testing b.Good Design c.Construction d.Manufacture

5.Software doesn’t .

a. Tearout b.Wearout c.Degrade d.Deteriorate

6.Software is not susceptible to .

a.Hardware b.Defects

7.Software will undergo .

c.Environmental

Melodies

d.Deterioration

a. Database b.Testing c.Enhancement d.Manufacture

8. refers to the meaning and form of incoming and outgoing information.

a. Content b.Software c.Hardware d.Data

9. refers to the predictability of the order and timing of information.

a. System Software b.Network Software c.Information Determinacy d.Database

10. is not a system software.

18-12-2019 & AN Class : II BCA A & B

a.MS Office b.Compiler c.Editor d.FileManagement Utility

11. is a process of discovery, refinement, modeling, and specification.

a.Software Engineering b.Software Requirement c.Software Analysis d.Software Design

12. is the systematic use of proven principles, techniques, languages, and tools.

a.Software

Engineering

b.Software

Analysis

c.Software

Design

d.Requirements

Engineering

13.Requirement engineering is conducted in a .

a. Sporadic Way b.Random Way c.Haphazard Way d.Systematic Approaches

14.Software requirements analysis work products must be reviewed for .

a. Modeling b.Completeness c.Information Processing d.Functional Requirement

15. bridges the gap between system level requirement engineering and software design.

a.System Engineering b.Modeling c.Requirements Analysis d.Software Engineering

16.A can be an external entity.

a. Function Object b.Structural Object c.Data Object d.Flow Object

17.The as a bridge between the systmdecription and the design model.

a. Design b.Analysis Model c.Planning d.Construction

18.Software applications can be collectively called as .

a.Data

Gathering

b.Information

Gathering

c.Data

Processing

d.Information

Processing

19. represents the individual data and control objects that constitute some larger

collection of information transformed by the software.

a.Information content b.Data content c. Data model d. Information model

20. represents the manner in which data and control change as each moves through a system.

a.Information content b.Information flow c.Information structure d.Data structure

Part – B(3X 2= 6 Marks)

Answer ALL Questions

21. Define Software.

Software, in its most general sense, is a set of instructions or programs instructing a

computer to do specific tasks. Software is a generic term used to describe computer programs.

Scripts, applications, programs and a set of instructions are all terms often used to describe software.

22. Define Software Engineering.

The systematic application of scientific and technological knowledge, methods, and

experience to the design, implementation, testing, and documentation of software

23. What is meant by Requirement Analysis?

Requirements analysis, also called requirements engineering, is the process of

determining user expectations for a new or modified product. ... In software engineering,

such requirements are often called functional specifications.Requirements analysis is an important

aspect of project management.

Part – C (3X 8= 24 Marks)

Answer ALL Questions

24. a. Write note on Applications of Software Engineering.

Different types of application software include:

• Application Suite: Has multiple applications bundled together. Related functions, features and

user interfaces interact with each other.

• Enterprise Software: Addresses an organization's needs and data flow in a huge distributed

environment

• Enterprise Infrastructure Software: Provides capabilities required to support enterprise

software systems

• Information Worker Software: Addresses individual needs required to manage and create

information for individual projects within departments

• Content Access Software: Used to access content and addresses a desire for published digital

content and entertainment

• Educational Software: Provides content intended for use by students

• Media Development Software: Addresses individual needs to generate and print electronic

media for others to consume

b. Write briefly about the Nature of Software.

A software product can be judged by what it offers and how well it can be

used. This software must satisfy on the following grounds:

• Operational

• Transitional

• Maintenance

Well-engineered and crafted software is expected to have the following characteristics:

(a) Operational

This tells us how well software works in operations. It can be measured on:

• Budget

• Usability

• Efficiency

• Correctness

• Functionality

• Dependability

• Security

• Safety

(b) Transitional

This aspect is important when the software is moved from one platform to another:

• Portability

• Interoperability

• Reusability

• Adaptability

(c) Maintenance

This aspect briefs about how well a software has the capabilities to maintain itself in the ever-

changing environment:

• Modularity

• Maintainability

• Flexibility

• Scalability

25. a.Brief about Waterfall Method.

It is a Generic software process models

o The waterfall model separate and distinct phases of specification and development.

Waterfall model

Waterfall Model

The classic software life cycle is often represented as a simple prescriptive waterfall

software phase model, where software evolution proceeds through an orderly sequence of

transitions from one phase to the next in order (Royce 1970). Such models resemble finite

state machine descriptions of software evolution.

However, these models have been perhaps most useful in helping to structure, staff, and

manage large software development projects in complex organizational settings, which was one

of the primary purposes (Royce 1970, Boehm 1976).Alternatively, these classic models have

been widely characterized as both poor descriptive and prescriptive models of how software

development "in-the-small" or "in-the-large" can or should occur. Figure 1 provides a common

view of the waterfall model for software development attributed to Royce (1970).

Waterfall model phases

• Requirements analysis and definition

• System and software design

• Implementation and unit testing

• Integration and system testing

• Operation and maintenance

• The main drawback of the waterfall model is the difficulty of accommodating change after

the process is underway. One phase has to be complete before moving onto the next phase.

Waterfall model problems

• Inflexible partitioning of the project into distinct stages makes it difficult to respond to

changing customer requirements.

• Therefore, this model is only appropriate when the requirements are well-understood

and changes will be fairly limited during the design process.

• Few business systems have stable requirements.

• The waterfall model is mostly used for large systems engineering projects where a

system is developed at several sites.

b. Write note on Spiral Model.

The Spiral Model

Spiral Model: The spiral model is an evolutionary software process model that combines the

iterative nature of prototyping with the controlled and systematic aspects of the linear

sequential model. Using the spiral model, software is developed in a series of incremental

releases. During early iterations, the incremental release might be a paper model or prototype.

During later iterations, increasingly more complete versions of the engineered system are

produced.

A spiral model is divided into a number of framework activities, also called task regions.

Typically, there are between three and six task regions. Given figure is of a spiral model that

contains five task regions.

Model that contains five task regions.

(i) Customer communication — Tasks required to establish effective communication

between developer and customer.

(ii) Planning — Tasks required to define resources, timelines, and other project related

information.

(iii) Modeling — Tasks required in building one or more representations of the

application.

(iv) Construction and release — Tasks required to construct, test, install.

(v) Deployment — Tasks required to deliver the software, getting feedbacks etc.

Software engineering team moves around the spiral in a clockwise direction, beginning

at the center. The first circuit around the spiral might result in the development of a product

specification; subsequent passes around the spiral might be used to develop a prototype

and then progressively more sophisticated versions of the software. Each pass through the

planning region results in adjustments to the project plan. Cost and schedule are adjusted

based on feedback derived from customer evaluation.

In addition, the project manager adjusts the planned number of iterations required to complete

the software.

The spiral model is a realistic approach to the development of large- scale systems and

software. The spiral model enables the developer to apply the prototyping approach at any stage

in the evolution of the product. The spiral model demands a direct consideration of technical

risks at all stages of the project and, if properly applied, should reduce risks before they become

problematic. It demands considerable risk assessment expertise and relies on this expertise for

success.

26.a. Explain about the Types of Requirement Analysis.

In systems engineering and software engineering, requirements

analysis encompasses those tasks that go into determining the needs or conditions to meet for a new

or altered product or project, taking account of the possibly conflicting requirements of the

various stakeholders, analyzing, documenting, validating and managingsoftware or system

requirements.
[2]

Requirements analysis is critical to the success or failure of a systems or software project.
[3]

The

requirements should be documented, actionable, measurable, testable, traceable, related to identified

business needs or opportunities, and defined to a level of detail sufficient for system design.

Customer requirements

Statements of fact and assumptions that define the expectations of the system in terms of

mission objectives, environment, constraints, and measures of effectiveness and suitability

(MOE/MOS). The customers are those that perform the eight primary functions of systems

engineering, with special emphasis on the operator as the key customer. Operational

requirements will define the basic need and, at a minimum, answer the questions posed in the

following listing:
[1]

• Operational distribution or deployment: Where will the system be used?

• Mission profile or scenario: How will the system accomplish its mission objective?

• Performance and related parameters: What are the critical system parameters to

accomplish the mission?

• Utilization environments: How are the various system components to be used?

• Effectiveness requirements: How effective or efficient must the system be in

performing its mission?

• Operational life cycle: How long will the system be in use by the user?

• Environment: What environments will the system be expected to operate in an effective

manner?

Architectural requirements

Architectural requirements explain what has to be done by identifying the necessary systems

architecture of a system.

Structural requirements

Structural requirements explain what has to be done by identifying the necessary structure of

a system.

Behavioral requirements

Behavioral requirements explain what has to be done by identifying the necessary

behavior of a system.

Functional requirements

Functional requirements explain what has to be done by identifying the necessary task,

action or activity that must be accomplished. Functional requirements analysis will be

used as the toplevel functions for functional analysis.
[1]

Non-functional requirements

Non-functional requirements are requirements that specify criteria that can be used to

judge the operation of a system, rather than specific behaviors.

Performance requirements

The extent to which a mission or function must be executed; generally measured in terms

of quantity, quality, coverage, timeliness or readiness. During requirements analysis,

performance (how well does it have to be done) requirements will be interactively

developed across all identified functions based on system life cycle factors; and

characterized in terms of

the degree of certainty in their estimate, the degree of criticality to system success, and

their relationship to other requirements.
[1]

Design requirements

The "build to", "code to", and "buy to" requirements for products and "how to execute"

requirements for processes expressed in technical data packages and technical manuals.
[1]

Derived requirements

Requirements that are implied or transformed from higher-level requirement. For example,

a requirement for long range or high speed may result in a design requirement for low

weight.
[1]

Allocated requirements

A requirement that is established by dividing or otherwise allocating a high-level

requirement into multiple lower-level requirements. Example: A 100-pound item that

consists of two subsystems might result in weight requirements of 70 pounds and 30

pounds for the two lower-level items

26.b.Write note on Software Layered Technology.

Software Engineering Layers

Software engineering can be viewed as a layered technology. Various layers are listed below.

The process layer allows the development of software on time. It defines an outline for a set of key

process areas that must be acclaimed for effective delivery of software engineering technology.

The method layer provides technical knowledge for developing software. This layer covers a broad

array of tasks that include requirements analysis, design, coding, testing, and maintenance phase of

the software development.

The tools layer provides computerized or semi-computerized support for the process and the method

layer. Sometimes tools are integrated in such a way that other tools can use information created by

one tool. This multi-usage is commonly referred to as Computer-Aided Software Engineering

(CASE).CASE combines software, hardware, and software engineering database to create software

engineering analogous to Computer-Aided Design (CAD) for hardware. CASE helps in application

development including analysis, design, code generation, and debugging and testing. This is possible

by using CASE tools, which provide automated methods for designing and documenting traditional-

structure programming techniques. For example, two prominent technologies using CASE tools are

PC-based workstations and application generators that provide graphics-based interfaces to automate

the development process.

Concepts of data modeling

• Analysis modeling starts with the data modeling.

• The software engineer defines all the data object that

proceeds within the system and the relationship

between data objects are identified.

Data objects

• The data object is the representation of composite

information.

• The composite information means an object has a

number of different properties or attribute.

For example, Height is a single value so it is not a valid data object, but dimensions contain the

height, the width and depth these are defined as an object.

Data Attributes
Each of the data object has a set of attributes.

Data object has the following characteristics:

• Name an instance of the data object.

• Describe the instance.

• Make reference to another instance in another table.

Relationship

Relationship shows the relationship between data objects and how they are related to each other.

Cardinality

Cardinality state the number of events of one object related to the number of events of another

object.

The cardinality expressed as:

One to one (1:1)
One event of an object is related to one event of another object.

For example, one employee has only one ID.

One to many (1:N)

One event of an object is related to many events.

For example, One collage has many departments.

Many to many(M:N)

Many events of one object are related to many events of another object.

For example, many customer place order for many products.

Modality

• If an event relationship is an optional then the modality

of relationship is zero.

• If an event of relationship is compulsory then modality

of relationship is one.

	1.pdf (p.1-2)
	2.pdf (p.3-7)
	3.pdf (p.8-28)
	4.pdf (p.29-41)
	Sheet1
	Sheet2

	5.pdf (p.42-61)
	6.pdf (p.62-71)
	Sheet1
	Sheet2

	7.pdf (p.72-80)
	12.1. Process and product quality
	12.2. Quality assurance and standards
	12.5.1. The measurement process
	12.5.2. Product metrics

	8.pdf (p.81-95)
	Sheet1
	Sheet2

	9.pdf (p.96-106)
	UNIT 4 SYLLABUS
	MATERIAL
	Research
	3.1.1 Design with the Context of Software Engineering:
	4.1.2 Design Process and Design Quality Preliminary Design
	Detailed Design
	Production Planning and Tool Design
	Production
	4.1.3 Design Concepts:
	4.2 Creating an Architectural Design:
	Why is Architecture Important?
	Figure 4.2 User, business, and system goals
	4.2.1 Software Architecture:
	The Principles of Architecture Design
	Key Architecture Principles
	4.2.2 Data Design:
	Data Design at the Architectural Level
	Data Design at the Component Level
	4.2.3 Mapping Data Flow into Software Architecture:
	An Architectural Design Method Customer requirements
	Horizontal Partitioning:
	function function
	Vertical Partitioning:

	decision-makers
	Why Partitioned Architecture?
	Flow Characteristics
	General Mapping Approach
	Factoring
	First Level Factoring
	Transaction Flow
	Refining the Analysis Model

	10.pdf (p.107-121)
	Sheet1
	Sheet2

	11.pdf (p.122-147)
	5.1 Testing Tactics:
	5.1.1 Software Testing Fundamentals:
	Testing Objectives
	Testing Principles
	• All tests should be traceable to customer requirements.
	• Tests should be planned long before testing begins.
	• The Pareto principle applies to software testing.
	• Exhaustive testing is not possible.
	• To be most effective, testing should be conducted by an independent third party.
	1. A good test has a high probability of finding an error.
	2. A good test is not redundant.
	3. A good test should be “best of breed”.
	4. A good test should be neither too simple nor too complex.
	5.1.2 White-Box Testing
	5.1.3 Basis Path Testing
	Flow Graph Notation
	Fig 5.1 Flow graph notation
	Fig 5.2 Flowchart, (A) and flow graph (B)
	Fig 5.3 Compound logic
	 Note: Each new path introduces a new edge.
	Deriving Test Cases
	Fig 5.4 PDL for test case design with nodes identified
	1. Using the design or code as a foundation, draw a corresponding flow graph.
	2. Determine the cyclomatic complexity of the resultant flow graph.
	3. Determine a basis set of linearly independent paths.
	Fig 5.5 Flow graph for the procedure average
	4. Prepare test cases that will force execution of each path in the basis set.
	Path 1 test case:
	Path 2 test case:
	Path 3 test case:
	Path 4 test case:
	Path 5 test case:
	Path 6 test case:
	Graph Matrices
	Fig 5.6 Graph matrix
	5.2 Control Structure Testing
	5.2.1 Condition Testing
	5.2.2 Data Flow Testing
	5.2.3 Loop Testing
	Simple loops.
	Nested loops.
	Concatenated loops.
	Unstructured loops.
	Fig 5.8 Classes of loops
	5.3.1 Graph-Based Testing Methods
	Fig 5.9 (A) Graph notation (B) Simple example
	5.3.2 Equivalence Partitioning
	5.3.3 Boundary Value Analysis
	5.3.4 Comparison Testing
	comparison testing or back-to-back testing.
	Fig 5.10 A geometric view of test cases
	5.4 Quality Concepts:
	Concepts
	Quality:
	5.4.2 Quality Control
	5.4.3 Quality Assurance
	5.4.4 Cost of Quality
	Fig 5.11 Relative cost of correcting an error
	Testing is necessary, but it’s also a very expensive way to find errors. Spend time finding errors early in the process and you may be able to significantly reduce testing and debugging costs.

	12.pdf (p.148-160)
	Sheet1
	Sheet2

	13.pdf (p.161)
	14.pdf (p.162-171)

