
Semester – IV

18CAU404A R PROGRAMMING 3H – 3C

Instruction Hours / week: L:3 T: 0 P: 0 Marks: Int : 40 Ext : 60 Total: 100

End Semester Exam: 3 Hours

Course Objectives :

Upon successful completion of this course, students will be able to:

• To acquire the computing tasks such as using conditional processing statements, loops,

and writing one's own functions.

• Perform basic and advanced graphing of data.

• Use statistical distribution functions in R

• Perform basic statistical modeling of data

Course Outcome:

• Learn how to install and configure software necessary for a statistical programming

environment.

• Discuss generic programming language concepts as they are implemented in a high-

level statistical language.

• The course covers practical issues in statistical computing which includes programming

in R, reading data into R, accessing R packages, writing R functions, debugging, and

organizing and commenting R code.

UNIT-I

History and Overview of R : The S Philosophy - Back to R -Basic Features of R - Free Software

-Design of the R System - Limitations of R- R Resources .Getting Started with R :Installation

- Getting started with the R interface -.R Nuts and Bolts :Entering Input - Evaluation -R Objects

- Numbers - Attributes - Creating Vectors - Mixing Objects - Explicit Coercion - Matrices -

Lists -Factors - Missing Values - Data Frames - Names .

UNIT-II

Getting Data In and Out of R :Reading and Writing Data - Reading Data Files with read.table()

- Reading in Larger Datasets with read.table - Calculating Memory Requirements for R

Objects . Using the readr Package .Using Textual and Binary Formats for Storing Data :Using

dput() and dump() – Binary Formats - Interfaces to the Outside World : File Connections -

Reading Lines of a Text File - Reading From a URL Connection - Subsetting R

Objects :Subsetting a Vector - Subsetting a Matrix - Subsetting Lists - Subsetting Nested

Elements of a List - Extracting Multiple Elements of a List - Partial Matching -Removing NA

Values .

UNIT-III

Vectorized Operations :Vectorized Matrix Operations .Dates and Times :Dates in R - Times in

R - Operations on Dates and Times .Managing Data Frames with the dplyr package :Data

Frames -The dplyr Package - dplyr Grammar - Installing the dplyr package

- select() - filter() -arrange() - rename() - mutate() - group_by()-%>%.Control Structures :if-

else - for Loops - Nested for loops - while Loops - repeat Loops - next, break .

UNIT-IV

Functions: Functions in R - Your First Function - Argument Matching - Lazy Evaluation – The

Argument - Arguments Coming After the Argument .Scoping Rules of R : A Diversion on

Binding Values to Symbol - Scoping Rules - Lexical Scoping: Why Does It Matter? -Lexical

vs. Dynamic Scoping -- Application: Optimization - Plotting the Likelihood. Coding Standards

for R .Loop Functions : Looping on the Command Line - lapply() - sapply() - split() - Splitting

a Data Frame - tapply - apply() - Col/Row Sums and Means -Other Ways to Apply - mapply()-

Vectorizing a Function .

UNIT-V

Debugging -:Something’s Wrong! - Figuring Out What’s Wrong - Debugging Tools in R .

Using traceback() - Using debug() - Using recover().Profiling R Code: Using system.time() .

Timing Longer Expressions - The R Profiler - Using summaryRprof().Simulation :Generating

Random Numbers - Setting the random number seed -Simulating a Linear Model - Random

Sampling .

Suggested Readings

1. Daniel Navarro, (2013). Learning Statistics with R. University of Adelaide

Publications.

2. Hadley Wickham, (2014). Advanced R Programming, (1st ed.)

3. Jeffrey Stanton, (2013). Introduction to Data Science, with Introduction to R, Version

3 ,

4. Roger.D.Peng, (2015). R Programming for Data Science

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - I BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 1/18

UNIT-I

SYLLABUS

 What is R?

HISTORY AND OVERVIEW OF R

 R is a dialect of S.

 It is a sophisticated computer language and environment for statistical analysis and

graphics.

 What is S?

 S is a language that was developed by John Chambers and others at the old Bell

Telephone Laboratories, originally part of AT&T Corp.

 S was initiated in 1976 as an internal statistical analysis environment—originally

implemented as FORTRAN libraries.

 Early versions of the language did not even contain functions for statistical modeling.

 In 1988 the system was rewritten in C and began to resemble the system that we have

today (this was Version 3 of the language).

 The book Statistical Models in S by Chambers and Hastie (the white book)

documents the statistical analysis functionality. Version 4 of the S language was

released in 1998 and is the version we use today.

 The book Programming with Data by John Chambers (the green book) documents

this version of the language.

 Since the early 90’s the life of the S language has gone down a rather winding path.

In 1993 Bell Labs gave StatSci (later Insightful Corp.) an exclusive license to develop

and sell the S language. In 2004 Insightful purchased the S language from Lucent for

$2 million. In 2006, Alcatel purchased Lucent Technologies and is now called

Alcatel-Lucent.

 Insightful sold its implementation of the S language under the product name S-PLUS

and built a number of fancy features (GUIs, mostly) on top of it—hence the ―PLUS‖.

In 2008 Insightful was acquired by TIBCO for $25 million. As of this writing TIBCO

is the current owner of the S language and is its exclusive developer.

 The fundamental of the S language itself has not changed dramatically since the

publication of the Green Book by John Chambers in 1998. In 1998, S won the

History and Overview of R: The S Philosophy - Back to R -Basic Features of R – Free

Software -Design of the R System - Limitations of R- R Resources. Getting Started with R:

Installation - Getting started with the R interface -.R Nuts and Bolts: Entering Input -Evaluation

-R Objects - Numbers - Attributes - Creating Vectors - Mixing Objects -Explicit Coercion -

Matrices -Lists -Factors - Missing Values - Data Frames - Names.

http://cm.bell-labs.com/stat/doc/94.11.ps

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - I BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 2/18

Association for Computing Machinery’s Software System Award, a highly

prestigious award in the computer science field.

THE S PHILOSOPHY

 The general S philosophy is important to understand for users of S and R because it sets

the stage for the design of the language itself, which many programming veterans find a

bit odd and confusing.

 In particular, it’s important to realize that the S language had its roots in data analysis,

and did not come from a traditional programming language background.

 Its inventors were focused on figuring out how to make data analysis easier, first for

themselves, and then eventually for others.

 The key part here was the transition from user to developer. They wanted to build a

language that could easily service both ―people‖.

 More technically, they needed to build language that would be suitable for interactive

data analysis (more command-line based) as well as for writing longer programs (more

traditional programming language-like).

BACK TO R

 The R language came to use quite a bit after S had been developed. One key limitation of

the S language was that it was only available in a commercial package, S-PLUS.

 In 1991, R was created by Ross Ihaka and Robert Gentleman in the Department of

Statistics at the University of Auckland. In 1993 the first announcement of R was made to

the public.

 In 1995, Martin Mächler made an important contribution by convincing Ross and Robert

to use the GNU General Public License to make R free software. This was critical

because it allowed for the source code for the entire R system to be accessible to anyone

who wanted to tinker with it (more on free software later).

 In 1996, a public mailing list was created (the R-help and R-devel lists) and in 1997 the R

Core Group was formed, containing some people associated with S and S-PLUS.

Currently, the core group controls the source code for R and is solely able to check in

changes to the main R source tree. Finally, in 2000 R version 1.0.0 was released to the

public.

http://www.gnu.org/licenses/gpl-2.0.html

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - I BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 3/18

BASIC FEATURES OF R

 In the early days, a key feature of R was that its syntax is very similar to S, making it

easy for S-PLUS users to switch over. While the R’s syntax is nearly identical to that of

S’s, R’s semantics, while superficially similar to S, are quite different.

 In fact, R is technically much closer to the Scheme language than it is to the original S

language when it comes to how R works under the hood.

 Today R runs on almost any standard computing platform and operating system. Its open

source nature means that anyone is free to adapt the software to whatever platform they

choose. Indeed, R has been reported to be running on modern tablets, phones, PDAs, and

game consoles.

 One nice feature that R shares with many popular open source projects is frequent

releases. These days there is a major annual release, typically in October, where major

new features are incorporated and released to the public.

 Throughout the year, smaller-scale bugfix releases will be made as needed. The frequent

releases and regular release cycle indicates active development of the software and

ensures that bugs will be addressed in a timely manner.

 Of course, while the core developers control the primary source tree for R, many people

around the world make contributions in the form of new feature, bug fixes, or both.

 Another key advantage that R has over many other statistical packages (even today) is its

sophisticated graphics capabilities.

 R’s ability to create ―publication quality‖ graphics has existed since the very beginning

and has generally been better than competing packages. Today, with many more

visualization packages available than before, that trend continues. R’s base graphics

system allows for very fine control over essentially every aspect of a plot or graph.

 Other newer graphics systems, like lattice and ggplot2 allow for complex and

sophisticated visualizations of high-dimensional data.

 R has maintained the original S philosophy, which is that it provides a language that is

both useful for interactive work, but contains a powerful programming language for

developing new tools. This allows the user, who takes existing tools and applies them to

data, to slowly but surely become a developer who is creating new tools.

 Finally, one of the joys of using R has nothing to do with the language itself, but rather

with the active and vibrant user community. In many ways, a language is successful

inasmuch as it creates a platform with which many people can create new things. R is that

platform and thousands of people around the world have come together to make

contributions to R, to develop packages, and help each other use R for all kinds of

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - I BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 4/18

applications. The R-help and R-devel mailing lists have been highly active for over a

decade now and there is considerable activity on web sites like Stack Overflow.

FREE SOFTWARE

 A major advantage that R has over many other statistical packages and is that it’s free in

the sense of frees software (it’s also free in the sense of free beer). The copyright for the

primary source code for R is held by the R Foundation and is published under the GNU

General Public License version.

 According to the Free Software Foundation, with free software, you are granted the

following four freedoms

 The freedom to run the program, for any purpose (freedom 0).

 The freedom to study how the program works, and adapt it to your needs

(freedom 1). Access to the source code is a precondition for this.

 The freedom to redistribute copies so you can help your neighbor (freedom 2).

 The freedom to improve the program, and release your improvements to the

public, so that the whole community benefits (freedom 3). Access to the source

code is a precondition for this.

DESIGN OF THE R SYSTEM

 The primary R system is available from the Comprehensive R Archive Network, also

known as CRAN. CRAN also hosts many add-on packages that can be used to extend the

functionality of R.

 The R system is divided into 2 conceptual parts:

1. The ―base‖ R system that you download from CRAN: Linux, Windows, Mac Source

Code

2. Everything else.

 R functionality is divided into a number of packages.

 The ―base‖ R system contains, among other things, the base package which is

required to run R and contains the most fundamental functions.

 The other packages contained in the ―base‖ system include utils, stats, datasets,

graphics, grDevices, grid, methods, tools, parallel, compiler, splines, tcltk,

stats4.There are also ―Recommended‖ packages: boot, class, cluster, codetools,

http://www.r-project.org/foundation/
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/philosophy/free-sw.html
http://cran.r-project.org/
http://cran.r-project.org/bin/linux/
http://cran.r-project.org/bin/linux/
http://cran.r-project.org/bin/macosx/

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - I BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 5/18

foreign, KernS-mooth, lattice, mgcv, nlme, rpart, survival, MASS, spatial, nnet,

Matrix.

 When you download a fresh installation of R from CRAN, you get all of the above,

which represents a substantial amount of functionality. However, there are many other

packages available:

 There are over 4000 packages on CRAN that have been developed by users and

programmers around the world.

 There are also many packages associated with the Bioconductor project.

 People often make packages available on their personal websites; there is no

reliable way to keep track of how many packages are available in this fashion.

 There are a number of packages being developed on repositories like GitHub and

BitBucket but there is no reliable listing of all these packages.

LIMITATIONS OF R

 No programming language or statistical analysis system is perfect. R certainly has a

number of drawbacks. For starters, R is essentially based on almost 50 year old

technology, going back to the original S system developed at Bell Labs.

 There was originally little built in support for dynamic or 3-D graphics (but things have

improved greatly since the ―old days‖).

 Another commonly cited limitation of R is that objects must generally be stored in

physical memory. This is in part due to the scoping rules of the language, but R generally

is more of a memory hog than other statistical packages.

 However, there have been a number of advancements to deal with this, both in the R

core and also in a number of packages developed by contributors.

 Also, computing power and capacity has continued to grow over time and amount of

physical memory that can be installed on even a consumer-level laptop is substantial.

While we will likely never have enough physical memory on a computer to handle the

increasingly large datasets that are being generated, the situation has gotten quite a bit

easier over time.

 At a higher level one ―limitation‖ of R is that its functionality is based on consumer

demand and (voluntary) user contributions. If no one feels like implementing your

favorite method, then it’s your job to implement it (or you need to pay someone to do it).

The capabilities of the R system generally reflect the interests of the R user community.

http://bioconductor.org/

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - I BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 6/18

As the community has ballooned in size over the past 10 years, the capabilities have

similarly increased.

 When I first started using R, there was very little in the way of functionality for the

physical sciences (physics, astronomy, etc.). However, now some of those communities

have adopted R and we are seeing more code being written for those kinds of

applications.

GETTING STARTED WITH R

INSTALLATION

 The first thing you need to do to get started with R is to install it on your computer. R

works on pretty much every platform available, including the widely available Windows,

Mac OS X, and Linux systems.

 Installing R on Windows

 Installing R on the Mac

 There is also an integrated development environment available for R that is built by

RStudio. I really like this IDE—it has a nice editor with syntax highlighting, there is an R

object viewer, and there are a number of other nice features that are integrated. You can

see how to install RStudio here

• Installing RStudio
 The RStudio IDE is available from RStudio’s web site.

GETTING STARTED WITH THE R INTERFACE

 After you install R you will need to launch it and start writing R code. Before we get to

exactly how to write R code, it’s useful to get a sense of how the system is organized. In

these two videos I talk about where to write code and how set your working directory,

which let’s R know where to find all of your files.

 Writing code and setting your working directory on the Mac

 Writing code and setting your working directory on Windows

http://youtu.be/Ohnk9hcxf9M
https://youtu.be/uxuuWXU-7UQ
https://youtu.be/bM7Sfz-LADM
http://rstudio.com/
https://youtu.be/8xT3hmJQskU
https://youtu.be/XBcvH1BpIBo

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - I BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 7/18

R NUTS AND BOLTS

ENTERING INPUT

 At the R prompt we type expressions. The <- symbol is the assignment operator.

> x <- 1

> print(x)

[1] 1

> x

[1] 1

> msg <- "hello"

 The grammar of the language determines whether an expression is complete or not.

x <- ## Incomplete expression

 The # character indicates a comment. Anything to the right of the # (including the #

itself) is ignored. This is the only comment character in R. Unlike some other languages,

R does not support multi-line comments or comment blocks.

EVALUATION

 When a complete expression is entered at the prompt, it is evaluated and the result of the

evaluated expression is returned. The result may be auto-printed.

> x <- 5 ## nothing printed
> x## auto-printing occurs

[1] 5

> print(x) ## explicit printing

[1] 5

 The [1] shown in the output indicates that x is a vector and 5 is its first element.

 Typically with interactive work, we do not explicitly print objects with the print function;

it is much easier to just auto-print them by typing the name of the object and hitting

return/enter. However, when writing scripts, functions, or longer programs, there is

sometimes a need to explicitly print objects because auto-printing does not work in those

settings.

 When an R vector is printed you will notice that an index for the vector is printed in

square brackets [] on the side. For example, see this integer sequence of length 20.

> x <- 10:30

> x

[1] 10 11 12 13 14 15 16 17 18 19 20

21 [13] 22 23 24 25 26 27 28 29 30

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - I BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 8/18

 The numbers in the square brackets are not part of the vector itself; they are merely part

of the printed output.

 With R, it’s important that one understand that there is a difference between the actual R

object and the manner in which that R object is printed to the console.

 Often, the printed output may have additional bells and whistles to make the output

friendlier to the users. However, these bells and whistles are not inherently part of the

object.

 Note that the “:” operator is used to create integer sequences.

R OBJECTS

 R has five basic or ―atomic‖ classes of objects:

 character

 numeric (real numbers)

 integer

 complex

 logical (True/False)

 The most basic type of R object is a vector. Empty vectors can be created with the

vector() function. There is really only one rule about vectors in R, which is that a vector

can only contain objects of the same class.

 But of course, like any good rule, there is an exception, which is a list, which we will get

to a bit later. A list is represented as a vector but can contain objects of different classes.

Indeed, that’s usually why we use them.

 There is also a class for ―raw‖ objects, but they are not commonly used directly in data

analysis and I won’t cover them here.

NUMBERS

 Numbers in R are generally treated as numeric objects (i.e. double precision real

numbers). This means that even if you see a number like ―1‖ or ―2‖ in R, which you

might think of as integers, they are likely represented behind the scenes as numeric

objects (so something like ―1.00‖ or ―2.00‖). This isn’t important most of the

time…except when it is.

 If you explicitly want an integer, you need to specify the L suffix. So entering 1 in R

gives you a numeric object; entering 1L explicitly gives you an integer object.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - I BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 9/18

 There is also a special number Inf which represents infinity. This allows us to represent

entities like 1 / 0. This way, Inf can be used in ordinary calculations; e.g. 1 / Inf is 0.

 The value NaN represents an undefined value (―not a number‖); e.g. 0 / 0; NaN can also

be thought of as a missing value (more on that later)

ATTRIBUTES

 R objects can have attributes, which are like metadata for the object. These metadata can

be very useful in that they help to describe the object. For example, column names on a

data frame help to tell us what data are contained in each of the columns. Some examples

of R object attributes are

 names, dimnames

 dimensions (e.g. matrices, arrays)

 class (e.g. integer, numeric)

 length

 other user-defined attributes/metadata

 Attributes of an object (if any) can be accessed using the attributes() function. Not all R

objects contain attributes, in which case the attributes() function returns NULL.

CREATING VECTORS

 The c() function can be used to create vectors of objects by concatenating things together.

x <- c(0.5, 0.6) ## numeric

> x <- c(TRUE, FALSE) ## logical

> x <- c(T, F) ## logical

> x <- c("a", "b", "c") ## character

> x <- 9:29 ## integer

> x <- c(1+0i, 2+4i) ##
Comple
x

 Note that in the above example, T and F are short-hand ways to specify TRUE and

FALSE. However, in general one should try to use the explicit TRUE and FALSE values

when indicating logical values.

 You can also use the vector() function to initialize vectors.

> x <- vector("numeric", length = 10)

> x

[1] 0 0 0 0 0 0 0 0 0 0

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - I BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 10/18

MIXING OBJECTS

 There are occasions when different classes of R objects get mixed together. Sometimes

this happens by accident but it can also happen on purpose. So what happens with the

following code?

> y <- c(1.7, "a") ## character

> y <- c(TRUE, 2) ## numeric

> y <- c("a", TRUE) ## character

 In each case above, we are mixing objects of two different classes in a vector. But

remember that the only rule about vectors says this is not allowed. When different objects

are mixed in a vector, coercion occurs so that every element in the vector is of the same

class.

 In the example above, we see the effect of implicit coercion. What R tries to do is find a

way to represent all of the objects in the vector in a reasonable fashion. Sometimes this

does exactly what you want and…sometimes not. For example, combining a numeric

object with a character object will create a character vector, because numbers can usually

be easily represented as strings.

> x <- 0:6

> class(x)

[1] "integer"

> as.numeric(x) [1] 0 1 2 3 4 5 6

> as.logical(x)

[1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE

> as.character(x)

[1] "0" "1" "2" "3" "4" "5" "6"

EXPLICIT COERCION

 Objects can be explicitly coerced from one class to another using the as.* functions, if

available.

 Sometimes, R can’t figure out how to coerce an object and this can result in NAs being

produced.

> x <- c("a", "b", "c")

> as.numeric(x)

Warning: NAs introduced by coercion [1] NA NA NA

> as.logical(x)

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - I BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 11/18

[1] NA NA NA

> as.complex(x)

Warning: NAs introduced by coercion

[1] NA NA NA

 When nonsensical coercion takes place, you will usually get a warning from R.

MATRICES

 Matrices are vectors with a dimension attribute. The dimension attribute is itself an

integer vector of length 2 (number of rows, number of columns)

> m <- matrix(nrow = 2, ncol = 3)

> m

[,1] [,2] [,3]
[1,] NA NA NA

[2,] NA NA NA

> dim(m) [1] 2 3

> attributes(m) $dim

[1] 2 3

 Matrices are constructed column-wise, so entries can be thought of starting in the ―upper

left‖ corner and running down the columns.

> m <- matrix(1:6, nrow = 2, ncol = 3)

> m

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

 Matrices can also be created directly from vectors by adding a dimension attribute.

> m <- 1:10

> m

[1] 1 2 3 4 5 6 7 8 9 10

> dim(m) <- c(2, 5)

> m

[, 1] [, 2] [, 3] [, 4] [, 5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - I BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 12/18

 Matrices can be created by column-binding or row-binding with the cbind() and rbind()

functions.

> x <- 1:3

> y <- 10:12

> cbind(x, y)

x y

[1,] 1 10

[2,] 2 11

[3,] 3 12

> rbind(x, y)

[,1] [,2] [,3]

x 1 2 3

y 10 11 12

LISTS

 Lists are a special type of vector that can contain elements of different classes. Lists are a

very important data type in R and you should get to know them well. Lists, in

combination with the various ―apply‖ functions discussed later, make for a powerful

combination.

 Lists can be explicitly created using the list() function, which takes an arbitrary number

of arguments.

> x <- list(1, "a", TRUE, 1 + 4i)

> x

[[1]]

[1] 1

[[2]]

[1]

"a"

[[3]]

[1]

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - I BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 13/18

TRU

E

[[4]]

[1]

1+4i

 We can also create an empty list of a prespecified length with the vector() function

> x <- vector("list", length = 5)

> x

[[1]]

NULL

[[2]]

NULL

[[3]]

NULL

[[4]]

NULL

[[5]]

NULL

FACTORS

 Factors are used to represent categorical data and can be unordered or ordered. One can

think of a factor as an integer vector where each integer has a label. Factors are important

in statistical modeling and are treated specially by modelling functions like lm() and

glm().

 Using factors with labels is better than using integers because factors are self-describing.

Having a variable that has values ―Male‖ and ―Female‖ is better than a variable that has

values 1 and 2.

 Factor objects can be created with the factor() function.

> x <- factor(c("yes", "yes", "no", "yes", "no"))

> x

[1] yes yes no yes no

Levels: no yes

> table(x)

x

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - I BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 14/18

no yes

2 3

> ## See the underlying representation of factor

> unclass(x)

[1] 2 2 1 2

1

attr(,"levels

") [1] "no"

"yes"

 Often factors will be automatically created for you when you read a dataset in using a

function like read.table(). Those functions often default to creating factors when they

encounter data that look like characters or strings.

 The order of the levels of a factor can be set using the levels argument to factor(). This

can be important in linear modelling because the first level is used as the baseline level.

> x <- factor(c("yes", "yes", "no", "yes", "no"))
> x ## Levels are put in alphabetical order

[1] yes yes no yes no Levels: no yes

> x <- factor(c("yes", "yes", "no",

"yes", "no"), + levels = c("yes", "no"))

> x

[1] yes yes no yes no Levels: yes no

MISSING VALUES

 Missing values are denoted by NA or NaN for q undefined mathematical operations.

 is.na() is used to test objects if they are NA

 is.nan() is used to test for NaN

 NA values have a class also, so there are integer NA, character NA, etc.

 A NaN value is also NA but the converse is not true

> ## Create a vector with NAs in it

> x <- c(1, 2, NA, 10, 3)

> ## Return a logical vector indicating which elements are NA

> is.na(x)

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - I BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 15/18

[1] FALSE FALSE TRUE FALSE FALSE

> ## Return a logical vector indicating which elements are NaN

> is.nan(x)

[1] FALSE FALSE FALSE FALSE FALSE

> ## Now create a vector with both NA and NaN values

> x <- c(1, 2, NaN, NA, 4)

> is.na(x)

[1]

FALSE

FALSE

TRUE TRUE FALSE

> is.nan(x)

[1]
FALSE

FALSE

TRUE FALSE FALSE

DATA FRAMES

 Data frames are used to store tabular data in R. They are an important type of object in R

and are used in a variety of statistical modeling applications. Hadley Wickham’s package

dplyr has an optimized set of functions designed to work efficiently with data frames.

 Data frames are represented as a special type of list where every element of the list has to

have the same length. Each element of the list can be thought of as a column and the

length of each element of the list is the number of rows.

 Unlike matrices, data frames can store different classes of objects in each column.

Matrices must have every element be the same class (e.g. all integers or all numeric).

 In addition to column names, indicating the names of the variables or predictors, data

frames have a special attribute called row.names which indicate information about each

row of the data frame.

 Data frames are usually created by reading in a dataset using the read.table() or

read.csv(). However, data frames can also be created explicitly with the data.frame()

function or they can be coerced from other types of objects like lists.

 Data frames can be converted to a matrix by calling data.matrix(). While it might seem

that the as.matrix() function should be used to coerce a data frame to a matrix, almost

always, what you want is the result of data.matrix().

> x <- data.frame(foo = 1:4, bar = c(T, T, F, F))

> x

https://github.com/hadley/dplyr

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - I BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 16/18

NAMES

foo bar

1 1 TRUE

2 2 TRUE

3 3 FALSE

4 4 FALSE

> nrow(x)

[1] 4

> ncol(x)

[1] 2

 R objects can have names, which is very useful for writing readable code and self-

describing objects. Here is an example of assigning names to an integer vector.

> x <- 1:3

> names(x)

NULL

> names(x) <- c("New York", "Seattle", "Los Angeles")

> x

New York Seattle Los Angeles

1 2 3

> names(x)

[1] "New York" "Seattle" "Los Angeles"

Lists can also have names, which is often very useful.

> x <- list("Los Angeles" = 1, Boston = 2, London = 3)

> x

$`Los

Angeles` [1]

1

$Boston

[1] 2

$London

[1] 3

> names(x)

[1] "Los Angeles" "Boston" "London"

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - I BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 17/18

> m <- matrix(1:4, nrow = 2, ncol = 2)

> dimnames(m) <- list(c("a", "b"), c("c", "d"))

> m

c d

a 1 3

b 2 4

 Column names and row names can be set separately using the colnames() and

rownames() functions.

> colnames(m) <- c("h", "f")

> rownames(m) <- c("x", "z")

> m

h f

x 1 3

z 2 4

 Note that for data frames, there is a separate function for setting the row names, the

row.names() function. Also, data frames do not have column names, they just have names

(like lists). So to set the column names of a data frame just use the names() function.

Object Set column names Set row names

data frame names() row.names()

matrix colnames() rownames(

 Matrices can have both column and row names.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - I BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 18/18

POSSIBLE QUESTIONS

UNIT – I

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. What is R?

2. What is S?

3. Define Vector

4. List the types of Data objects.

5. Define Matrices

6. Define List

7. Define Factor

8. List the data types in R

9. Define Data frame

10. How to create names in R programming?

PART – C (6 MARKS)

1. Explain the history and overview of R

2. Explain the Basic Features of R programming

3. Explain about Design of the R System

4. Write in detail: (i) Limitations of R (ii) R Resources

5. Explain the steps involved in R installation

6. Explain the data types or R objects

7. Explain the types of Data objects in R

8. Explain how to create vectors with suitable example

9. Write in detail (i) matrices (ii) Data Frames

10. Explain how to create number and Attributes in R programming

11. Write a R program to demonstrate Operators

KARPAGAM ACADEMY OF HIGHER EDUCATION

Coimbatore – 641 021.

(For the Candidates admitted from 2018 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

UNIT - I : (Objective Type Multiple choice Questions each Question carries one Mark)

R PROGRAMMING [18CAU404A]

PART - A (Online Examination)

Questions Opt1 Opt2 Opt3 Opt4 Key

 programming language is a dialect of S. B C R K R

Lucent for $2 million Insightful Amazon IBM Google Insightful

In 1991, R was created by Ross Ihaka and Robert

Gentleman in the Department of Statistics at the

University of

John Hopkins

California

Harvard

Auckland

Auckland

Finally, in R version 1.0.0 was released

to the public.

2000

2005

2010

2012

2000

R is technically much closer to the Scheme

language than it is to the original language.

B

C

C++

S

S

The R-help and mailing lists have been

highly active for over a decade now

R-mail

R-devel

R-dev

Rcell

R-devel

Which of the following describes R language ?

Free

Paid

Available for

free trial only

Trail

Free

The copyright for the primary source code for R is

held by the Foundation.

A

S

C++

R

R

They primary R system is available from the
CRAN

CRWO

GNU

RAN

CRAN

R functionality is divided into a number of

Packages

Functions

Domains

Library

Packages

The R system contains, among other

things, the base package which is required to run

R and

root

child

base

private

base

Which of the following is a base package for R

language ?

util

lang

tools

stats

tools

Which of the following is “Recommended”

package in R ?

util

lang

stats

spatial

spatial

How many packages exist in R language for

statistics ?

2000

3000

4000

5000

4000

Advanced users can write code to manipulate

R objects directly.

C

C++

Java

PHP

C

Which of the following is used for Statistical

analysis in R language ?

RStudio

Studio

Heck

Rstat

RStudio

R has how many atomic classes of objects ? 1 3 5 2 5

Numbers in R are generally treated as

precision real numbers.

single

double

real

integer

double

If you explicitly want an integer, you need to

specify the suffix.

D

R

L

T

L

R objects can have attributes, which are like

 for the object.

metadata

features

expression

data

metadata

What would be the result of following code ? > x<-

2 class(a)

"integer"

"numeric"

"logical"

"real"

"numeric"

Which of the following statement would print “0”

“1” “2” “3” “4” “5” “6” for the following code ?

as.character(x)

as.logical(x)

as.numeric(x)

as.integer(x)

as.character(x)

Point out the wrong statement :

The grammar of

the language

determines

whether an

expression is

complete or not

The <- symbol is

the assignment

operator in R

The ##

character

indicates a

comment

The = symbol is also

the assignment

operator in R

The ## character

indicates a comment

Files containing R scripts ends with extension :

.S

.R

.Rp

.RR

.R

Point out the wrong statement :

: operator is used

to create integer

sequences

The numbers in

the square

brackets are part

of the vector

itself

The numbers in

the paranthesis

are part of the

vector itself

There is a difference

between the actual

R object and the

manner in which

that R object is

printed to the

console

The numbers in the

square brackets are part

of the vector itself

The entities that R creates and manipulates are

known as

objects

task

container

function

objects

Which of the following can be used to display the

names of (most of) the objects which are

currently stored within R ?

object()

objects()

list()

data.frame()

objects()

Collection of objects currently stored in R is called

as :

package

workspace

list

objects

workspace

R objects can have attributes, which are like

 for the object

data

metadata

list

package

metadata

Matrices can be created by column-binding or

row-binding with the and

functions.

rowbind() and

columnbind()

r_bind() and

c_bind()

rbind() and

cbind()

rowbind() and

colbind()

rbind() and cbind()

 are a special type of vector that can

contain elements of different classes

factors

matrices

data frames

list

list

 are used to represent categorical

data and can be unordered or ordered

factors

matrices

data frames

list

factors

 is used to test objects if they are NA

is.nan()

is.na()

na()

as.na()

is.na()

 is used to test objects if they are NAN

is.nan()

is.na()

na()

as.na()

is.nan()

R objects can have , which is very useful

for writing readable code and self-describing

objects.

list

matrices

attributes

names

names

Column names and row names can be set

separately using the and

functions.

colnames() and

rownames()

cnames() and

rnames()

col_names()

and

row_names()

columnnames() and

rownames()

colnames() and

rownames()

A can only contain objects of the same

class.

list

vector

data frames

factor

vector

Point out the wrong statement :

Key feature of R

was that its

syntax is very

similar to S

R runs only on

Windows

computing

platform and

operating system

R has been

reported to be

running on

modern tablets,

phones, PDAs,

and game

consoles

R runs only on Windows

computing platform and

operating system

Who developed S?

Dennis Ritchie

Bjarne

Stroustrup

James Gosling

John Chambers

John Chambers

R is an Interpreted Language so it can access

through

Disk Operating

System

User Interface

Operating

System

Operating

System

Command Line

Interpreter

Command Line

Interpreter

R supports arithmetic logical basic matrix vector matrix

The sequence and number of observations in the

vectors must be the same for each vector in the

Data Frame to represent a

Record

Data object

Data

Data Sets

Data Sets

Matrices must have every element be the

class

same

different

literal

unique

same

Data frames can be converted to a matrix by

calling

data.frame()

data()

data.matrix()

frame()

data.matrix()

Matrices are vectors with a attribute

type

nrow

dimension

ncol

dimension

The <- Symbol is the operator

Comparison

Operator

Assignment

Operator

Logical

Operator

Boolean Operator

Assignment Operator

 can store different classes of objects

in each column

data frames

matrices

lists

factors

data frames

http://data-flair.training/blogs/r-matrices-operations-applications/

Factor objects can be created with the

function.

data()

factors()

fact()

factor()

factor()

Missing values are denoted by or for q

undefined mathematical operations.

NA or NaN

NA or AS

Naan or No

N or Naa

NA or NaN

Objects can be explicitly coerced from one class

to another using the functions

.(datatype)

as.*

.(datatype)as

as()

as.*

R does not support comments or

comment blocks.

single line

*

multi line

//

multi line

Attributes of an object (if any) can be accessed

using the function

attrib()

att()

attr()

attributes()

attributes()

Numbers in R are generally treated as

objects

integer

real

numeric

number

numeric

>m <- matrix(nrow = 2, ncol = 3) >m >

attributes(m)

2 3

3 2

dim

NA

dim

 function to find the data type of the

variable

datatype()

class()

type()

cls()

class()

The Function get the current working

directory

get()

getwd()

getw()

wd()

getwd()

To change current working directory use

function

set()

setw()

swd()

setwd()

setwd()

A is a vector object used to specify a

discrete classification (grouping) of the

components of other vectors of the same length

data frames

list

factor

vector

factor

 replicates the value repl rep replicate rep_c rep

Which function is used to transpose data frame?

t()

ti()

transpose()

trans()

t()

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - II BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 1/17

UNIT-II

SYLLABUS

GETTING DATA IN AND OUT OF R

READING AND WRITING DATA

 There are a few principal functions reading data into R.

 read.table, read.csv, for reading tabular data

 readLines, for reading lines of a text file

 source, for reading in R code files (inverse of dump)

 dget, for reading in R code files (inverse of dput)

 load, for reading in saved workspaces

 unserialize, for reading single R objects in binary form

 There are of course, many R packages that have been developed to read in all kinds of

other datasets, and you may need to resort to one of these packages if you are working in

a specific area.

 There are analogous functions for writing data to files

 write.table, for writing tabular data to text files (i.e. CSV) or connections

 writeLines, for writing character data line-by-line to a file or connection

 dump, for dumping a textual representation of multiple R objects

 dput, for outputting a textual representation of an R object

 save, for saving an arbitrary number of R objects in binary format (possibly

compressed) to a file.

 serialize, for converting an R object into a binary format for outputting to a

connection (or file).

Getting Data In and Out of R: Reading and Writing Data - Reading Data Files with

read.table() - Reading in Larger Datasets with read.table - Calculating Memory Requirements for

R Objects . Using the readr Package .Using Textual and Binary Formats for Storing Data:

Using dput() and dump() – Binary Formats - Interfaces to the Outside World : File

Connections - Reading Lines of a Text File - Reading From a URL Connection - Subsetting R

Objects :Subsetting a Vector - Subsetting a Matrix – Subsetting Lists - Subsetting Nested

Elements of a List - Extracting Multiple Elements of a List - Partial Matching -Removing NA

Values .

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - II BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 2/17

READING DATA FILES WITH read.table()

 The read.table() function is one of the most commonly used functions for reading data.

The help file for read.table() is worth reading in its entirety if only because the function

gets used a lot (run read.table in R).

 The read.table() function has a few important arguments:

 file, the name of a file, or a connection

 header, logical indicating if the file has a header line

 sep, a string indicating how the columns are separated

 colClasses, a character vector indicating the class of each column in the dataset

 nrows, the number of rows in the dataset. By default read.table() reads an entire

file.

 comment.char, a character string indicating the comment character. This defalts to

"#". If there are no commented lines in your file, it’s worth setting this to be the

empty string "".

 skip, the number of lines to skip from the beginning.

 stringsAsFactors, should character variables be coded as factors? This defaults to
TRUE because back in the old days, if you had data that were stored as strings, it

was because those strings represented levels of a categorical variable. Now we

have lots of data that is text data and they don’t always represent categorical

variables. So you may want to set this to be FALSE in those cases. If you always
want this to be FALSE, you can set a global option via options(stringsAsFactors =

FALSE). I’ve never seen so much heat generated on discussion forums about an R

function argument than the stringsAsFactors argument. Seriously.

 For small to moderately sized datasets, you can usually call read.table without

specifying any other argument.

> data <- read.table("foo.txt")

 In this case, R will automatically

 skip lines that begin with a #

 figure out how many rows there are (and how much memory needs to be allocated)

 figure what type of variable is in each column of the table.

 Telling R all these things directly makes R run faster and more efficiently. The

read.csv() function is identical to read.table except that some of the defaults are set

differently (like the sep argument).

READING IN LARGER DATASETS WITH read.table

 Read the help page for read.table, which contains many hints

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - II BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 3/17

 Make a rough calculation of the memory required to store your dataset (see the

next section for an example of how to do this). If the dataset is larger than the

amount of RAM on your computer, you can probably stop right here.

 Set comment.char = "" if there are no commented lines in your file.

 Use the colClasses argument. Specifying this option instead of using the default

can make ’read.table’ run MUCH faster, often twice as fast. In order to use this

option, you have to know the class of each column in your data frame. If all of the

columns are “numeric”, for example, then you can just set colClasses = "numeric".

A quick an dirty way to figure out the classes of each column is the following:

> initial <- read.table("datatable.txt", nrows = 100)

> classes <- sapply(initial, class)

> tabAll <- read.table("datatable.txt", colClasses = classes)

 In general, when using R with larger datasets, it’s also useful to know a few things about

your system.

 How much memory is available on your system?

 What other applications are in use? Can you close any of them?

 Are there other users logged into the same system?

 What operating system are you using? Some operating systems can limit the

amount of memory a single process can access

CALCULATING MEMORY REQUIREMENTS FOR R OBJECTS

 Because R stores all of its objects physical memory, it is important to be cognizant of

how much memory is being used up by all of the data objects residing in your

workspace. One situation where it’s particularly important to understand memory

requirements is when you are reading in a new dataset into R. Fortunately, it’s easy to

make a back of the envelope calculation of how much memory will be required by a new

dataset.

 For example, suppose I have a data frame with 1,500,000 rows and 120 columns, all of

which are numeric data. Roughly, how much memory is required to store this data

frame? Well, on most modern computers double precision floating point numbers³⁸ are

stored using 64 bits of memory, or 8 bytes. Given that information, you can do the

following calculation

1,500,000 × 120 × 8 bytes/numeric = 1,440,000,000 bytes

 = 1,440,000,000 / 220 bytes/MB
 = 1,373.29 MB

http://en.wikipedia.org/wiki/Double-precision_floating-point_format

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - II BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 4/17

= 1.34 GB

 So the dataset would require about 1.34 GB of RAM. Most computers these days have at

least that much RAM. However, you need to be aware of

 what other programs might be running on your computer, using up RAM

 what other R objects might already be taking up RAM in your workspace

 Reading in a large dataset for which you do not have enough RAM is one easy
way to freeze up your computer (or at least your R session).

 This is usually an unpleasant experience that usually requires you to kill the R process,

in the best case scenario, or reboot your computer, in the worst case. So make sure to do

a rough calculation of memory requirements before reading in a large dataset

USING THE readr PACKAGE

 The readr package is recently developed by Hadley Wickham to deal with reading in

large flat files quickly. The package provides replacements for functions like read.table()

and read.csv(). The analogous functions in readr are read_table() and read_csv(). These

functions are oven much faster than their base R analogues and provide a few other nice

features such as progress meters.

 For the most part, you can read use read_table() and read_csv() pretty much anywhere

you might use read.table() and read.csv(). In addition, if there are non-fatal problems

that occur while reading in the data, you will get a warning and the returned data frame

will have some information about which rows/observations triggered the warning. This

can be very helpful for “debugging” problems with your data before you get neck deep

in data analysis.

USING TEXTUAL AND BINARY FORMATS FOR STORING DATA

 There are a variety of ways that data can be stored, including structured text files like

CSV or tab-delimited or more complex binary formats. However, there is an

intermediate format that is textual, but not as simple as something like CSV. The format

is native to R and is somewhat readable because of its textual nature.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - II BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 5/17

 One can create a more descriptive representation of an R object by using the dput() or

dump() functions. The dump() and dput() functions are useful because the resulting

textual format is edit-able, and in the case of corruption, potentially recoverable.

 Unlike writing out a table or CSV file, dump() and dput() preserve the metadata

(sacrificing some readability), so that another user doesn’t have to specify it all over

again. For example, we can preserve the class of each column of a table or the levels of a

factor variable.

 Textual formats can work much better with version control programs like subversion or

git which can only track changes meaningfully in text files.

 There are a few downsides to using these intermediate textual formats. The format is not

very space-efficient, because all of the metadata is specified. Also, it is really only

partially readable. In some instances it might be preferable to have data stored in a CSV

file and then have a separate code file that specifies the metadata.

USING dput() AND dump()

 One way to pass data around is by deparsing the R object with dput() and reading it back

in (parsing it) using dget().

> ## Create a data frame

> y <- data.frame(a = 1, b = "a")

> ## Print 'dput' output to console

> dput(y)

structure(list(a = 1, b = structure(1L, .Label = "a", class = "factor")),

.Names\ = c("a",

"b"), row.names = c(NA, -1L), class = "data.frame")

 Notice that the dput() output is in the form of R code and that it preserves metadata like

the class of the object, the row names, and the column names.

 The output of dput() can also be saved directly to a file.

> ## Send 'dput' output to a file

> dput(y, file = "y.R")

> ## Read in 'dput' output from a file

> new.y <- dget("y.R")

> new.y

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - II BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 6/17

a b

1 1 a
 Multiple objects can be deparsed at once using the dump function and read back in using

source.

> x <- "foo"

> y <- data.frame(a = 1L, b = "a")

 We can dump() R objects to a file by passing a character vector of their names.

> dump(c("x", "y"), file = "data.R")

> rm(x, y)

 The inverse of dump() is source().

> source("data.R")

> str(y)

'data.frame': 1 obs. of 2 variables:

$ a: int 1

$ b: Factor w/ 1

level "a": 1 > x

[1] "foo"

BINARY FORMATS

 The complement to the textual format is the binary format, which is sometimes

necessary to use for efficiency purposes, or because there’s just no useful way to

represent data in a textual manner. Also, with numeric data, one can often lose precision

when converting to and from a textual format, so it’s better to stick with a binary format.

 The key functions for converting R objects into a binary format are save(), save.image(),

and serialize(). Individual R objects can be saved to a file using the save() function.

> a <- data.frame(x = rnorm(100), y = runif(100))

> b <- c(3, 4.4, 1 / 3)

> ## Save 'a' and 'b' to a file

> save(a, b, file = "mydata.rda")

>

> ## Load 'a' and 'b' into your workspace

> load("mydata.rda")

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - II BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 7/17

 If you have a lot of objects that you want to save to a file, you can save all objects in

your workspace using the save.image() function.

> ## Save everything to a file

> save.image(file = "mydata.RData")

>

> ## load all objects in this file

> load("mydata.RData")

 Notice that I’ve used the .rda extension when using save() and the .RData extension

when using save.image(). This is just my personal preference; you can use whatever file

extension you want. The save() and save.image() functions do not care. However, .rda

and .RData are fairly common extensions and you may want to use them because they

are recognized by other software.

 The serialize() function is used to convert individual R objects into a binary format that

can be communicated across an arbitrary connection. This may get sent to a file, but it

could get sent over a network or other connection.

 When you call serialize() on an R object, the output will be a raw vector coded in

hexadecimal format.

> x <- list(1, 2, 3)

> serialize(x, NULL)

[1] 58 0a 00 00 00 02 00 03 02 01 00 02 03 00 00 00 00 13 00 00 00

03 00 [24] 00 00 0e 00 00 00 01 3f f0 00 00 00 00 00 00 00 00 00 0e

00 00 00 01 [47] 40 00 00 00 00 00 00 00 00 00 00 0e 00 00 00 01 40

08 00 00 00 00 00 [70] 00

 If you want, this can be sent to a file, but in that case you are better off using something

like save().

 The benefit of the serialize() function is that it is the only way to perfectly represent an R

object in an exportable format, without losing precision or any metadata. If that is what

you need, then serialize() is the function for you.

INTERFACES TO THE OUTSIDE WORLD

 Data are read in using connection interfaces. Connections can be made to files (most

common) or to other more exotic things.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - II BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 8/17

 file, opens a connection to a file

 gzfile, opens a connection to a file compressed with gzip

 bzfile, opens a connection to a file compressed with bzip2

 url, opens a connection to a webpage

 In general, connections are powerful tools that let you navigate files or other external

objects. Connections can be thought of as a translator that lets you talk to objects that are

outside of R. Those outside objects could be anything from a data base, a simple text

file, or a a web service API. Connections allow R functions to talk to all these different

external objects without you having to write custom code for each object.

FILE CONNECTIONS

 Connections to text files can be created with the file() function.

> str(file)

function (description = "", open = "", blocking = TRUE, encoding

= getOption("en\ coding"), raw = FALSE)

 The file() function has a number of arguments that are common to many other

connection functions so it’s worth going into a little detail here.

 description is the name of the file

 open is a code indicating what mode the file should be opened in

 The open argument allows for the following options:

 “r” open file in read only mode

 “w” open a file for writing (and initializing a new file)

 “a” open a file for appending

 “rb”, “wb”, “ab” reading, writing, or appending in binary mode (Windows)

 For example, if one were to explicitly use connections to read a CSV file in to R, it

might look like this,

> ## Create a connection to 'foo.txt'

> con <- file("foo.txt")

>

> ## Open connection to 'foo.txt' in read-only mode

> open(con, "r")

>

> ## Read from the connection

> data <- read.csv(con)

>

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - II BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 9/17

> ## Close the connection

> close(con)

which is the same as

> data <- read.csv("foo.txt")

 In the background, read.csv() opens a connection to the file foo.txt, reads from it, and

closes the connection when it’s done.

 The above example shows the basic approach to using connections. Connections must be

opened, then they are read from or written to, and then they are closed.

 READING LINES OF A TEXT FILE

 Text files can be read line by line using the readLines() function. This function is useful

for reading text files that may be unstructured or contain non-standard data.

> ## Open connection to gz-compressed text file

> con <- gzfile("words.gz")

> x <- readLines(con, 10)

> x

[1] "1080" "10-point" "10th" "11-point" "12-point" "16-point"

[7] "18-point" "1st" "2" "20-point"

 For more structured text data like CSV files or tab-delimited files, there are other

functions like read.csv() or read.table().

 The above example used the gzfile() function which is used to create a connection to

files compressed using the gzip algorithm. This approach is useful because it allows you

to read from a file without having to uncompress the file first, which would be a waste of

space and time.

 There is a complementary function writeLines() that takes a character vector and writes

each element of the vector one line at a time to a text file.

READING FROM A URL CONNECTION

 The readLines() function can be useful for reading in lines of webpages. Since web

pages are basically text files that are stored on a remote server, there is conceptually not

much difference between a web page and a local text file. However, we need R to

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - II BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 10/17

negotiate the communication between your computer and the web server. This is what

the url() function can do for you, by creating a url connection to a web server.

 This code might take time depending on your connection speed.

> ## Open a URL connection for reading

> con <- url("http://www.jhsph.edu", "r")

>

> ## Read the web page

> x <- readLines(con)

>

> ## Print out the first few lines

> head(x)

[1]

"<!DOCTYPE

html>"

[2] "<html

lang=\"en\">"

[3] ""

[4] "<head>"

[5] "<meta charset=\"utf-8\" />"

[6] "<title>Johns Hopkins Bloomberg School of Public Health</title>"

 While reading in a simple web page is sometimes useful, particularly if data are

embedded in the web page somewhere. However, more commonly we can use URL

connection to read in specific data files that are stored on web servers.

 Using URL connections can be useful for producing a reproducible analysis, because the

code essentially documents where the data came from and how they were obtained.

 This is approach is preferable to opening a web browser and downloading a dataset by

hand. Of course, the code you write with connections may not be executable at a later

date if things on the server side are changed or reorganized.

SUBSETTING R OBJECTS

 There are three operators that can be used to extract subsets of R objects.

 The [operator always returns an object of the same class as the original. It can be

used to select multiple elements of an object

http://www.jhsph.edu/

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - II BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 11/17

 The [[operator is used to extract elements of a list or a data frame. It can only be

used to extract a single element and the class of the returned object will not

necessarily be a list or data frame.

 The $ operator is used to extract elements of a list or data frame by literal name. Its

semantics are similar to that of [[.

SUBSETTING A VECTOR

 Vectors are basic objects in R and they can be subsetted using the [operator.

> x <- c("a", "b", "c", "c", "d", "a")

> x[1]## Extract the first element

[1] "a"

> x[2]## Extract the second element

[1] "b"

 The [operator can be used to extract multiple elements of a vector by passing the

operator an integer sequence. Here we extract the first four elements of the vector.

> x[1:4]

[1] "a" "b" "c" "c"

 The sequence does not have to be in order; you can specify any arbitrary integer vector.

> x[c(1, 3, 4)]

[1] "a" "c" "c"
 We can also pass a logical sequence to the [operator to extract elements of a vector that

satisfy a given condition. For example, here we want the elements of x that come

lexicographically after the letter “a”.

> u <- x > "a"

> u

[1] FALSE TRUE TRUE TRUE TRUE FALSE

> x[u]

[1] "b" "c" "c" "d"

 Another, more compact, way to do this would be to skip the creation of a logical vector

and just subset the vector directly with the logical expression.

> x[x > "a"]

[1] "b" "c" "c" "d"

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - II BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 12/17

SUBSETTING A MATRIX

 Matrices can be subsetted in the usual way with (i,j) type indices. Here, we create simple

2×3 matrix with the matrix function.

> x <- matrix(1:6, 2, 3)

> x

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4

6

 We can access the $(1, 2)$ or the $(2, 1)$ element of this matrix using the appropriate

indices.

> x[1, 2]

[1] 3

> x[2, 1]

[1] 2

 Indices can also be missing. This behavior is used to access entire rows or columns of a

matrix.

> x[1,] ## Extract the first row

[1] 1 3 5

> x[, 2] ## Extract the second column

[1] 3 4

 Dropping matrix dimensions

 By default, when a single element of a matrix is retrieved, it is returned as a vector of

length 1 rather than a 1×1 matrix. Often, this is exactly what we want, but this

behavior can be turned off by setting drop = FALSE.

> x <- matrix(1:6, 2, 3)

> x[1, 2]

[1] 3

> x[1, 2, drop =FALSE] [,1] [1,] 3

 Similarly, when we extract a single row or column of a matrix, R by default drops the

dimension of length 1, so instead of getting a 1×3 matrix after extracting the first

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - II BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 13/17

row, we get a vector of length 3. This behavior can similarly be turned off with the drop

= FALSE option.

> x <- matrix(1:6, 2, 3)

> x[1,]

[1] 1 3 5

> x[1, , drop = FALSE]

[,1] [,2] [,3]

[1,] 1 3 5

 Be careful of R’s automatic dropping of dimensions. This is a feature that is often quite

useful during interactive work, but can later come back to bite you when you are writing

longer programs or functions.

SUBSETTING LISTS

 Lists in R can be subsetted using all three of the operators mentioned above, and all

three are used for different purposes.

> x <- list(foo = 1:4, bar = 0.6)

> x

$foo

[1] 1 2 3 4

$bar

[1] 0.6

 The [[operator can be used to extract single elements from a list. Here we extract the

first element of the list.

> x[[1]]

[1] 1 2 3 4

 The [[operator can also use named indices so that you don’t have to remember the exact

ordering of every element of the list. You can also use the $ operator to extract elements

by name.

> x[["bar"]]

[1] 0.6

> x$bar

[1] 0.6

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - II BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 14/17

 Notice you don’t need the quotes when you use the $ operator.

 One thing that differentiates the [[operator from the $ is that the [[operator can be used

with computed indices. The $ operator can only be used with literal names.

> x <- list(foo = 1:4, bar = 0.6, baz = "hello")

> name <- "foo"

>

> ## computed index for "foo"

> x[[name]]

[1] 1 2 3 4

>

> ## element "name" doesnâ€™t exist! (but no error here)

> x$name

NULL

>
> ## element "foo" does exist

> x$foo

[1] 1 2 3 4

SUBSETTING NESTED ELEMENTS OF A LIST

 The [[operator can take an integer sequence if you want to extract a nested element of a

list.

> x <- list(a = list(10, 12, 14), b = c(3.14, 2.81))

> ## Get the 3rd element of the 1st element

> x[[c(1, 3)]]

> ## Same as above

> x[[1]][[3]]

[1] 14

>

[1] 14

>

> ## 1st element of the 2nd element

> x[[c(2, 1)]]

[1] 3.14

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - II BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 15/17

EXTRACTING MULTIPLE ELEMENTS OF A LIST

 The [operator can be used to extract multiple elements from a list. For example, if you

wanted to extract the first and third elements of a list, you would do the following

> x <- list(foo = 1:4, bar = 0.6, baz = "hello")

> x[c(1, 3)]

$foo

[1] 1 2 3 4

$baz

[1] "hello"

 Note that x[c(1, 3)] is NOT the same as x[[c(1, 3)]].

 Remember that the [operator always returns an object of the same class as the

original. Since the original object was a list, the [operator returns a list. In the

above code, we returned a list with two elements (the first and the third).

PARTIAL MATCHING

 Partial matching of names is allowed with [[and $. This is often very useful during

interactive work if the object you’re working with has very long element names.

> x <- list(aardvark = 1:5)

> x$a

> x[["a"]]

[1] 1 2 3 4 5

NULL

> x[["a", exact = FALSE]]

5

REMOVING NA VALUES

[1] 1 2 3 4

 A common task in data analysis is removing missing values (NAs).

> x <- c(1, 2, NA, 4, NA, 5)

> bad <- is.na(x)

> print(bad)

[1] FALSE FALSE TRUE FALSE TRUE FALSE

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - II BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 16/17

>

x[!bad]

[1] 1

2 4 5

 What if there is multiple R objects and you want to take the subset with no missing

values in any of those objects?

> x <- c(1, 2, NA, 4, NA, 5)

> y <- c("a", "b", NA, "d", NA, "f")

> good <- complete.cases(x, y)

> good

[1] TRUE TRUE FALSE TRUE FALSE TRUE

>x[good]

[1]

1 2

4 5

> y[good]

[1] "a" "b" "d" "f"
> head(airquality)

Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6

> good <- complete.cases(airquality)

> head(airquality[good,])

Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

7 23 299 8.6 65 5 7

8 19 99 13.8 59 5 8

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - II BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 17/17

POSSIBLE QUESTIONS

UNIT – II

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. How to read a data using read.csv function?

2. How to read a data using read.table function?

3. List the functions for reading the data in R

4. List the functions for writing the data in R

5. What is meant by Subsetting?

6. Define dump()

7. Define dput()

8. Define source

9. How to create a vector using subset?

10. What is readr package?

PART – C (6 MARKS)

1. Explain the functions of reading and writing Data in R

2. Explain how to read large datasets using read.table function

3. Write in detail (i) dput() (ii)dump()

4. Explain how to describe the interfaces to the Outside world in R

5. Explain about Vector Subsetting

6. Explain about Matrix Subsetting

7. Explain how to create a list using Nested Elements in Subsetting

8. Write in detail (i) readr Package (ii) Removing NA Values

9. Explain about partial matching

10. Explain about List Subsetting

KARPAGAM ACADEMY OF HIGHER EDUCATION

Coimbatore – 641 021.

(For the Candidates admitted from 2018 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

UNIT - II : (Objective Type Multiple choice Questions each Question carries one Mark)

R PROGRAMMING [18CAU404A]

PART - A (Online Examination)

Questions Opt1 Opt2 Opt3 Opt4 Key

data read.csv dget readLines get read.csv

saved workspaces ? unserialize load get read load

Which of the following statement would read file

“foo.txt”

data <-

read.table(“foo.t

xt”)

read.data <-

read.table(“foo.t

xt”)

data <-

read.data(“foo.t

xt”)

data.read <-

read(“foo.txt”)

data <-

read.table(“foo.txt”)

Which of the following function is identical to

read.table

read.csv

read.data

read.tab

read.table

read.csv

Which of the following code would read 100 rows

initial <-

read.table(“datat

able.txt”, nrows

= 100)

tabAll <-

read.table(“datat

able.txt”,

colClasses =

classes)

initial <-

read.table(“dat

atable.txt”,

nrows = 99)

initial <-

read.table(“datatabl

e.txt”, ncols= 99)

initial <-

read.table(“datatable.tx

t”, nrows = 100)

Which of the following code opens a connection

to the file foo.txt, reads from it, and closes the

connection when its done ?

data <-

read.csvo(“foo.tx

t”)

data <-

read.csv(“foo.txt

”)

data <-

readonly.csv(“f

oo.txt”)

data <-

readcsv(“foo.txt”)

data <-

read.csv(“foo.txt”)

Which of the following extracts first element from

the following vector ? > x <- c("a", "b", "c", "c",

"d", "a")

x[10].

x[1].

x[0].

x[11].

x[1].

Point out the correct statement :

There are three

operators that

can be used to

extract subsets

of R objects

The [operator is

used to extract

elements of a list

or data frame by

literal name

The [[operator

is used to

extract

elements of a

list or data

frame by string

name

The ((operator is

used to extract

elements of a list or

data frame by string

name

There are three

operators that can be

used to extract subsets

of R objects

Which of the following extracts first four element

from the following vector ? > x <- c("a", "b", "c",

"c", "d", "a")

x[0:4].

x[0:3].

x[1:4].

x[1:3].

x[1:4].

What would be the output of the following code ?

x <- c("a", "b", "c", "c", "d", "a") > x[c(1, 3, 4)]

“a” “b” “c”

“a” “c” “c”

“a” “c” “b”

“a” “b” “b”

“a” “c” “c”

Point out the wrong statement :

$ operator

semantics are

similar to that of

[[

The [operator

always returns

an object of the

same class as the

original

The $ operator

is used to

extract

elements of a

list or a data

frame

The [[operator is

used to extract

elements of a list or

a data frame

The $ operator is used

to extract elements of a

list or a data frame

What would be the output of the following code ?

> x <- matrix(1:6, 2, 3) > x[1, 2]

3

2

1

0

3

What would be the output of the following code ?

> x <- matrix(1:6, 2, 3) > x[1,]

1 3 5

2 3 5

3 3 5

file

1 3 5

Which of the following code extracts the second

column for the following matrix ? > x <-

matrix(1:6, 2, 3)

x[2,].

x[1, 2].

x[, 2].

x[2, 2].

x[, 2].

Point out the wrong statement :

$ operator

semantics are

similar to that of

[[

The [[operator

can take an

integer sequence

if you want to

extract a nested

element of a list

The $ operator

can be used to

extract multiple

elements from

a list

There are three

operators that can

be used to extract

subsets of R objects

The $ operator can be

used to extract multiple

elements from a list

Which of the following code extracts 1st element

of the 2nd element ? > x <- list(a = list(10, 12, 14),

b = c(3.14, 2.81))

x[[c(2, 1)]].

x[[c(1, 2)]].

x[[c(2, 1,1)]].

x[[c(2, 0,1)]].

x[[c(2, 1)]].

 , for dumping a textual

representation of multiple R objects

dput

save

dump

serialize

dump

 , for outputting a textual representation

of an R object

dput

save

dump

serialize

dput

 , for saving an arbitrary number of R

objects in binary format (possibly compressed) to

a file.

dput

save

dump

serialize

save

 , for converting an R object into a binary

format for outputting to a connection (or file).

dput

save

dump

serialize

serialize

 string indicating how the columns are

separated

sep

colClasses

nrows

file

sep

 character vector indicating the

class of each column in the dataset

sep

colClasses

nrows

file

colClasses

 the number of rows in the dataset.

By default read.table() reads an entire file

sep

colClasses

nrows

file

nrows

 logical indicating if the file has a

header line

sep

colClasses

nrows

header

header

 character string indicating the

comment character

sep

colClasses

comment.char

header

comment.char

Partial matching of names is allowed with

and

[and $

[[and [

[[and [$

[[and $

[[and $

The operator can take an integer sequence

if you want to extract a nested element of a list.

$

[[

[

((

[[

The operator can be used to extract single

elements from a list

$

[

[[

((

[[

The operator to extract elements by name

$

[

[[

((

$

The function can be useful for reading

in lines of webpages

Load()

readLines()

read()

readpage()

readLines()

Text files can be read line by line using the

 function.

Load()

readpage()

read()

readLines()

readLines()

The package is recently developed by

Hadley Wickham to deal with reading in large flat

files quickly.

readr

dplyr

read

dr

readr

The and functions are useful

because the resulting textual format is editable,

and in the case of corruption, potentially

recoverable.

dump() and

dget()

dump() and

dput()

dget() and

dput()

dump() and dp()

dump() and dput()

 opens a connection to a file file gzfile bzfile url file

 opens a connection to a file

compressed with gzip

file

gzfile

bzfile

url

gzfile

 opens a connection to a file

compressed with bzip2

file

gzfile

bzfile

url

bzfile

 opens a connection to a webpage file gzfile bzfile url url

The function has a number of arguments

that are common to many other connection

f()

close()

file()

open()

file()

 open file in read only mode “r” “a” “w” "ab" “r”

 open a file for writing (and initializing a

new file)

“r”

“a”

“w”

"ab"

“w”

 open a file for appending “r” “a” “w” "ab" “a”

The operator can be used to extract

multiple elements of a vector by passing the

operator an integer sequence

$

[

[[

((

[

What would be the output of the following code ?

> x <- list(foo = 1:4, bar = 0.6, baz = "hello") >

name <- "foo" > x[[name]]

1 2 3 4

0 1 2 3

1 2 3 4 5

1 2 3 5

1 2 3 4

What would be the output of the following code ?

> x <- list(aardvark = 1:5) > x$a

2 3 5

1 3 3 5

1 2 3

1 2 3 4 5

1 2 3 4 5

What would be the output of the following code ?

> x <- list(foo = 1:4, bar = 0.6, baz = "hello") >

name <- "foo" > x$name

1

3

2

4

2

What would be the output of the following code ?

> x <- list(a = list(10, 12, 14), b = c(3.14, 2.81)) >

x[[c(1, 3)]]

13

14

15

16

14

The function is used to convert

individual R objects into a binary format that can

be communicated across an arbitrary connection.

dput()

save()

serialize()

dump()

serialize()

Matrices can be subsetted in the usual way with

(i,j) type

subset

subsetting

indices

sets

indices

The main functions for converting R objects into a

binary format are

save(), save.imag

e(),

and unserialize()

save(), save.imag

e(),

and serialize()

save(), unseriali

ze,

and serialize()

unserialize(), save.i

mage(),

and serialize()

save(), save.image(),

and serialize()

The function is one of the most

commonly used functions for reading data in R

read.csv()

read.table()

read.data()

read()

read.table()

 , a character vector indicating the

class of each column in the dataset

sep

header

file

colClasses

colClasses

The inverse of dump() is function file() dput() source() dum() source()

Vectors are basic objects in R and they can be

subsetted using the operator

((

[

[]

[[

[

The function is identical to read.table

except that some of the defaults are set

differently

read.csv()

read.table()

read()

read.data()

read.csv()

Factors are important in statistical modeling and

are treated specially by modelling functions like

 and .

l() and gl()

lm() and glm().

lme() and

glme()

m() and gm()

lm() and glm().

We can also create an empty list of a prespecified

length with the function

create()

file()

vector()

list()

vector()

The sequence does not have to be in order; you

can specify any integer vector.

specified

legel

unarbitrary

arbitrary

arbitrary

The [[operator can be used to extract

elements from a list.

no

all

single

double

single

The $ operator can only be used with

names.

different

literal

same

unique

literal

A common task in data analysis is removing

missing values

segments

changing values

names

missing values

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 1/27

UNIT-III

SYLLABUS

VECTORIZED OPERATIONS

 Many operations in R are vectorized, meaning that operations occur in parallel in certain

R objects.

 This allows you to write code that is efficient, concise, and easier to read than in non-

vectorized languages.

 The simplest example is when adding two vectors together.

> x <- 1:4

> y <- 6:9

> z <- x + y

> z

[1] 7 9 11 13

Without vectorization ,

z <- numeric(length(x))

for(i in seq_along(x)) {

z <- x[i] + y[i]

}

z

[1] 13

 Another operation can do in a vectorized manner is logical comparisons. So suppose we

wanted to know which elements of a vector were greater than 2. we could do the

following.

> x

Vectorized Operations : Vectorized Matrix Operations . Dates and Times :Dates in R - Times

in R - Operations on Dates and Times .Managing Data Frames with the dplyr package :Data

Frames -The dplyr Package - dplyr Grammar - Installing the dplyr package - select() - filter() -

arrange() - rename() - mutate() - group_by()-%>%.Control Structures :if-else - for Loops -

Nested for loops - while Loops - repeat Loops - next, break.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 2/27

[1] 1 2 3 4

> x > 2

[1] FALSE FALSE TRUE TRUE

 Here are other vectorized logical operations.

> x >= 2

[1] FALSE TRUE TRUE TRUE

> x < 3

[1] TRUE TRUE FALSE FALSE

> y == 8

[1] FALSE FALSE TRUE FALSE

 Notice that these logical operations return a logical vector of TRUE and FALSE.

 Of course, subtraction, multiplication and division are also vectorized.

> x - y

[1] -5 -5 -5 -5

> x * y

[1] 6 14 24 36

> x / y

[1] 0.1666667 0.2857143 0.3750000 0.4444444

VECTORIZED MATRIX OPERATIONS

 Matrix operations are also vectorized, making for nicly compact notation. This way, we can

do element-by-element operations on matrices without having to loop over every element.

> x <- matrix(1:4, 2, 2)

> y <- matrix(rep(10, 4), 2, 2)

> ## element-wise multiplication

> x * y

[,1] [,2]

[1,] 10 30

[2,] 20 40

> ## element-wise division

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 3/27

> x / y

[,1] [,2]

[1,] 0.1 0.3

[2,] 0.2 0.4

> ## true matrix multiplication

> x %*% y

[,1] [,2]

[1,] 40 40

[2,] 60 60

DATES AND TIMES

 R has developed a special representation for dates and times. Dates are represented by the

Date class and times are represented by the POSIXct or the POSIXlt class. Dates are

stored internally as the number of days since 1970-01-01 while times are stored internally

as the number of seconds since 1970-01-01.

 It‟s not important to know the internal representation of dates and times in order to use

them in R

DATES IN R

 Dates are represented by the Date class and can be coerced from a character string using

the as.Date() function. This is a common way to end up with a Date object in R.

> ## Coerce a 'Date' object from character

> x <- as.Date("1970-01-01")

> x

[1] "1970-01-01"

 We can see the internal representation of a Date object by using the unclass() function.

> unclass(x)

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 4/27

TIMES IN R

[1] 0

> unclass(as.Date("1970-01-02"))

[1] 1

 Times are represented by the POSIXct or the POSIXlt class. POSIXct is just a very large

integer under the hood. It uses a useful class when you want to store times in something

like a data frame. POSIXlt is a list underneath and it stores a bunch of other useful

information like the day of the week, day of the year, month, day of the month. This is

useful when you need that kind of information.

 There are a number of generic functions that work on dates and times to help you extract

pieces of dates and/or times.

 weekdays: give the day of the week

 months: give the month name

 quarters: give the quarter number (“Q1”, “Q2”, “Q3”, or “Q4”)

 Times can be coerced from a character string using the as.POSIXlt or as.POSIXct

function.

> x <- Sys.time()

> x

[1] "2015-04-13 10:09:17 EDT"

> class(x) ## 'POSIXct' object

[1] "POSIXct" "POSIXt"

The POSIXlt object contains some useful metadata.

> p <- as.POSIXlt(x)

> names(unclass(p))

[1] "sec" "min" "hour" "mday" "mon" "year" "wday"

[8] "yday" "isdst" "zone" "gmtoff"

> p$wday ## day of the week

[1] 1

 We can also use the POSIXct format.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 5/27

> x <- Sys.time()

> x ## Already in „POSIXct‟ format

[1] "2015-04-13 10:09:17 EDT"

> unclass(x) ## Internal representation

[1] 1428934157

> x$sec ## Can't do this with 'POSIXct'!

Error in x$sec: $ operator is invalid for atomic vectors

> p <- as.POSIXlt(x)

> p$sec ## That's better

[1] 17.16238

 Finally, there is the strptime() function in case your dates are written in a different

format.

strptime() takes a character vector that has dates and times and converts them into to a

POSIXlt object.

> datestring <- c("January 10, 2012 10:40", "December 9, 2011 9:10")

> x <- strptime(datestring, "%B %d, %Y %H:%M")

> x

[1] "2012-01-10 10:40:00 EST" "2011-12-09 09:10:00 EST"

> class(x)

[1] "POSIXlt" "POSIXt"

 The weird-looking symbols that start with the % symbol are the formatting strings for

dates and times

OPERATIONS ON DATES AND TIMES

 We can use mathematical operations on dates and times. Well, really just + and -. We can

do comparisons too (i.e. ==, <=)

> x <- as.Date("2012-01-01")

> y <- strptime("9 Jan 2011 11:34:21", "%d %b %Y %H:%M:%S")

> x-y

Warning: Incompatible methods ("-.Date", "-.POSIXt") for "-"

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 6/27

Error in x - y: non-numeric argument to binary operator

> x <- as.POSIXlt(x)

> x-y

Time difference of 356.3095 days

 The nice thing about the date/time classes is that they keep track of all the annoying

things about dates and times, like leap years, leap seconds, daylight savings, and time

zones.

 Here‟s an example where a leap year gets involved.

> x <- as.Date("2012-03-01")

> y <- as.Date("2012-02-28")

> x-y

Time difference of 2 days

> ## My local time zone

> x <- as.POSIXct("2012-10-25 01:00:00")

> y <- as.POSIXct("2012-10-25 06:00:00", tz = "GMT")

> y-x

Time difference of 1 hours

MANAGING DATA FRAMES WITH THE DPLYR PACKAGE

DATA FRAMES

 The data frame is a key data structure in statistics and in R. The basic structure of a data

frame is that there is one observation per row and each column represents a variable, a

measure, feature, or characteristic of that observation. R has an internal implementation

of data frames that is likely the one you will use most often.

 However, there are packages on CRAN that implement data frames via things like

relational databases that allow you to operate on very large data frames. Given the

importance of managing data frames, it‟s important that we have good tools for dealing

with them.

 In previous chapters we have already discussed some tools like the subset() function and

the use of [and $ operators to extract subsets of data frames. However, other operations,

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 7/27

like filtering, re-ordering, and collapsing, can often be tedious operations in R whose

syntax is not very intuitive.

 The dplyr package is designed to mitigate a lot of these problems and to provide a highly

optimized set of routines specifically for dealing with data frames.

THE dplyr PACKAGE

 The dplyr package was developed by Hadley Wickham of RStudio and is an optimized

and distilled version of his plyr package. The dplyr package does not provide any “new”

functionality to R per se, in the sense that everything dplyr does could already be done

with base R, but it greatly simplifies existing functionality in R.

 One important contribution of the dplyr package is that it provides a “grammar” (in

particular, verbs) for data manipulation and for operating on data frames. With this

grammar, you can sensibly communicate what it is that you are doing to a data frame that

other people can understand (assuming they also know the grammar).

 This is useful because it provides an abstraction for data manipulation that previously did

not exist. Another useful contribution is that the dplyr functions are very fast, as many

key operations are coded in C++

dplyr GRAMMAR

 Some of the key “verbs” provided by the dplyr package are

 select: return a subset of the columns of a data frame, using a flexible notation

 filter: extract a subset of rows from a data frame based on logical conditions

 arrange: reorder rows of a data frame

 rename: rename variables in a data frame

 mutate: add new variables/columns or transform existing variables

 summarise / summarize: generate summary statistics of different variables in

the data frame, possibly within strata

 %>%: the “pipe” operator is used to connect multiple verb actions together into

a pipeline

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 8/27

 The dplyr package as a number of its own data types that it takes advantage of. For

example, there is a handy print method that prevents you from printing a lot of data to the

console. Most of the time, these additional data types are transparent to the user.

 COMMON dplyr FUNCTION PROPERTIES

 All of the functions that we will discuss in this Chapter will have a few common

characteristics. In particular,

1. The first argument is a data frame.

2. The subsequent arguments describe what to do with the data frame specified in

the first argument, and you can refer to columns in the data frame directly without

using the $ operator (just use the column names).

3. The return result of a function is a new data frame

4. Data frames must be properly formatted and annotated for this to all be useful.

In particular, the data must be tidy. In short, there should be one observation per

row, and each column should represent a feature or characteristic of that

observation.

INSTALLING THE dplyr PACKAGE

 The dplyr package can be installed from CRAN or from GitHub using the devtools

package and the install_github() function. The GitHub repository will usually contain the

latest updates to the package and the development version.

 To install from CRAN, just run

> install.packages("dplyr")

 To install from GitHub you can run

> install_github("hadley/dplyr")

 After installing the package it is important that you load it into your R session with the

library() function.

> library(dplyr)

 Attaching package: 'dplyr'

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 9/27

 The following object is masked from 'package:stats':

filter

 The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

 We may get some warnings when the package is loaded because there are functions in the

dplyr package that have the same name as functions in other packages.

select()

 For the examples in this chapter we will be using a dataset containing air pollution and

temperature data for the city of Chicago in the U.S. The dataset is available from my web

site.

 After unzipping the archive, you can load the data into R using the readRDS() function.

> chicago <- readRDS("chicago.rds")

 We can see some basic characteristics of the dataset with the dim() and str() functions.

> dim(chicago)

[1] 6940 8

> str(chicago)

'data.frame': 6940 obs. of 8 variables:

$ city : chr "chic" "chic" "chic" "chic" ...

$ tmpd : num 31.5 33 33 29 32 40 34.5 29 26.5 32.5 ...

$ dptp : num 31.5 29.9 27.4 28.6 28.9 ...

$ date : Date, format: "1987-01-01" "1987-01-02" ...

$ pm25tmean2: num NA NA NA NA NA NA NA NA NA NA ...

$ pm10tmean2: num 34 NA 34.2 47 NA ...

$ o3tmean2 : num 4.25 3.3 3.33 4.38 4.75 ...

$ no2tmean2 : num 20 23.2 23.8 30.4 30.3 ...

 The select() function can be used to select columns of a data frame that you want to focus

on.

 Often you‟ll have a large data frame containing “all” of the data, but any given analysis

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 10/27

might only use a subset of variables or observations.

 The select() function allows you to get the few columns you might need. Suppose we

wanted to take the first 3 columns only. There are a few ways to do this. We could for

example use numerical indices. But we can also use the names directly.

> names(chicago)[1:3]

[1] "city" "tmpd" "dptp"

> subset <- select(chicago, city:dptp)

> head(subset)

city tmpd dptp

1 chic 31.5 31.500

2 chic 33.0 29.875

3 chic 33.0 27.375

4 chic 29.0 28.625

5 chic 32.0 28.875

6 chic 40.0 35.125

 Note that the: normally cannot be used with names or strings, but inside the select()

function you can use it to specify a range of variable names. You can also omit variables

using the select() function by using the negative sign.

 With select() you can do

> select(chicago, -(city:dptp))

 This indicates that we should include every variable except the variables city through

dptp. The equivalent code in base R would be

> i <- match("city", names(chicago))

> j <- match("dptp", names(chicago))

> head(chicago[, -(i:j)])

 Not super intuitive, right?

 The select() function also allows a special syntax that allows you to specify variable

names based on patterns. So, for example, if you wanted to keep every variable that ends

with a “2”, we could do

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 11/27

> subset <- select(chicago, ends_with("2"))

> str(subset)

'data.frame': 6940 obs. of 4 variables:

$ pm25tmean2: num NA NA NA NA NA NA NA NA NA NA ...

$ pm10tmean2: num 34 NA 34.2 47 NA ...

$ o3tmean2 : num 4.25 3.3 3.33 4.38 4.75 ...

$ no2tmean2 : num 20 23.2 23.8 30.4 30.3 ...

 Or if we wanted to keep every variable that starts with a “d”, we could do

> subset <- select(chicago, starts_with("d"))

> str(subset)

'data.frame': 6940 obs. of 2 variables:

$ dptp: num 31.5 29.9 27.4 28.6 28.9 ...

$ date: Date, format: "1987-01-01" "1987-01-02" ...

filter()

 The filter() function is used to extract subsets of rows from a data frame. This function is

similar to the existing subset() function in R but is quite a bit faster in my experience.

 Suppose we wanted to extract the rows of the chicago data frame where the levels of

PM2.5 are greater than 30 (which is a reasonably high level), we could do

> chic.f <- filter(chicago, pm25tmean2 > 30)

> str(chic.f)

'data.frame': 194 obs. of 8 variables:

$ city : chr "chic" "chic" "chic" "chic" ...

$ tmpd : num 23 28 55 59 57 57 75 61 73 78 ...

$ dptp : num 21.9 25.8 51.3 53.7 52 56 65.8 59 60.3 67.1 ...

$ date : Date, format: "1998-01-17" "1998-01-23" ...

$ pm25tmean2: num 38.1 34 39.4 35.4 33.3 ...

$ pm10tmean2: num 32.5 38.7 34 28.5 35 ...

$ o3tmean2 : num 3.18 1.75 10.79 14.3 20.66 ...

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 12/27

$ no2tmean2 : num 25.3 29.4 25.3 31.4 26.8 ...

 You can see that there are now only 194 rows in the data frame and the distribution of the

pm25tmean2 values is.

> summary(chic.f$pm25tmean2)

Min. 1st Qu. Median Mean 3rd Qu. Max.

30.05 32.12 35.04 36.63 39.53 61.50

 We can place an arbitrarily complex logical sequence inside of filter(), so we could for

example extract the rows where PM2.5 is greater than 30 and temperature is greater than

80 degrees Fahrenheit.

> chic.f <- filter(chicago, pm25tmean2 > 30 & tmpd > 80)

> select(chic.f, date, tmpd, pm25tmean2)

date tmpd pm25tmean2

1 1998-08-23 81 39.60000

2 1998-09-06 81 31.50000

3 2001-07-20 82 32.30000

4 2001-08-01 84 43.70000

5 2001-08-08 85 38.83750

6 2001-08-09 84 38.20000

7 2002-06-20 82 33.00000

8 2002-06-23 82 42.50000

9 2002-07-08 81 33.10000

10 2002-07-18 82 38.85000

11 2003-06-25 82 33.90000

12 2003-07-04 84 32.90000

13 2005-06-24 86 31.85714

14 2005-06-27 82 51.53750

15 2005-06-28 85 31.20000

16 2005-07-17 84 32.70000

17 2005-08-03 84 37.90000

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 13/27

 Now there are only 17 observations where both of those conditions are met.

arrange()

 The arrange() function is used to reorder rows of a data frame according to one of the

variables/- columns. Reordering rows of a data frame (while preserving corresponding

order of other columns) is normally a pain to do in R.

 The arrange() function simplifies the process quite a bit.

 Here we can order the rows of the data frame by date, so that the first row is the earliest

(oldest) observation and the last row is the latest (most recent) observation.

> chicago <- arrange(chicago, date)

 We can now check the first few rows

> head(select(chicago, date, pm25tmean2), 3)

date pm25tmean2

1 1987-01-01 NA

2 1987-01-02 NA

3 1987-01-03 NA

and the last few rows.

> tail(select(chicago, date, pm25tmean2), 3)

date pm25tmean2

6938 2005-12-29 7.45000

6939 2005-12-30 15.05714

6940 2005-12-31 15.00000

 Columns can be arranged in descending order too by useing the special desc() operator.

> chicago <- arrange(chicago, desc(date))

 Looking at the first three and last three rows shows the dates in descending order

> head(select(chicago, date, pm25tmean2), 3)

date pm25tmean2

1 2005-12-31 15.00000

2 2005-12-30 15.05714

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 14/27

3 2005-12-29 7.45000

> tail(select(chicago, date, pm25tmean2), 3)

date pm25tmean2

6938 1987-01-03 NA

6939 1987-01-02 NA

6940 1987-01-01 NA

rename()

 Renaming a variable in a data frame in R is surprisingly hard to do! The rename()

function is designed to make this process easier.

 Here you can see the names of the first five variables in the chicago data frame.

> head(chicago[, 1:5], 3)

city tmpd dptp date pm25tmean2

1 chic 35 30.1 2005-12-31 15.00000

2 chic 36 31.0 2005-12-30 15.05714

3 chic 35 29.4 2005-12-29 7.45000

 The dptp column is supposed to represent the dew point temperature adn the

pm25tmean2 column provides the PM2.5 data. However, these names are pretty obscure

or awkward and probably be renamed to something more sensible.

> chicago <- rename(chicago, dewpoint = dptp, pm25 = pm25tmean2)

> head(chicago[, 1:5], 3)

city tmpd dewpoint date pm25

1 chic 35 30.1 2005-12-31 15.00000

2 chic 36 31.0 2005-12-30 15.05714

3 chic 35 29.4 2005-12-29 7.45000

 The syntax inside the rename() function is to have the new name on the left-hand side of

the = sign and the old name on the right-hand side.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 15/27

mutate()

 The mutate() function exists to compute transformations of variables in a data frame.

Often, you want to create new variables that are derived from existing variables and

mutate() provides a clean interface for doing that.

 For example, with air pollution data, we often want to detrend the data by subtracting the

mean from the data. That way we can look at whether a given day‟s air pollution level is

higher than or less than average (as opposed to looking at its absolute level). Here we

create a pm25detrend variable that subtracts the mean from the pm25 variable.

> chicago <- mutate(chicago, pm25detrend = pm25 - mean(pm25, na.rm = TRUE))

> head(chicago)

city tmpd dewpoint date pm25 pm10tmean2 o3tmean2 no2tmean2

1 chic 35 30.1 2005-12-31 15.00000 23.5 2.531250 13.25000

2 chic 36 31.0 2005-12-30 15.05714 19.2 3.034420 22.80556

3 chic 35 29.4 2005-12-29 7.45000 23.5 6.794837 19.97222

4 chic 37 34.5 2005-12-28 17.75000 27.5 3.260417 19.28563

5 chic 40 33.6 2005-12-27 23.56000 27.0 4.468750 23.50000

6 chic 35 29.6 2005-12-26 8.40000 8.5 14.041667 16.81944

pm25detrend

1 -1.230958

2 -1.173815

3 -8.780958

4 1.519042

5 7.329042

6 -7.830958

 There is also the related transmute() function, which does the same thing as mutate() but

then drops all non-transformed variables.

 Here we detrend the PM10 and ozone (O3) variables.

> head(transmute(chicago,

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 16/27

+ pm10detrend = pm10tmean2 - mean(pm10tmean2, na.rm = TRUE),

+ o3detrend = o3tmean2 - mean(o3tmean2, na.rm = TRUE)))

pm10detrend o3detrend

1 -10.395206 -16.904263

2 -14.695206 -16.401093

3 -10.395206 -12.640676

4 -6.395206 -16.175096

5 -6.895206 -14.966763

6 -25.395206 -5.393846

 Note that there are only two columns in the transmuted data frame.

group_by()

 The group_by() function is used to generate summary statistics from the data frame

within strata defined by a variable. For example, in this air pollution dataset, you might

want to know what the average annual level of PM2.5 is. So the stratum is the year, and

that is something we can derive from the date variable.

 In conjunction with the group_by() function we often use the summarize() function (or

summarise() for some parts of the world). The general operation here is a combination of

splitting a data frame into separate pieces defined by a variable or group of variables

(group_by()), and then applying a summary function across those subsets (summarize()).

 First, we can create a year varible using as.POSIXlt().

> chicago <- mutate(chicago, year = as.POSIXlt(date)$year + 1900)

 Now we can create a separate data frame that splits the original data frame by year.

> years <- group_by(chicago, year)

 Finally, we compute summary statistics for each year in the data frame with the

summarize() function.

> summarize(years, pm25 = mean(pm25, na.rm = TRUE),

+ o3 = max(o3tmean2, na.rm = TRUE),

+ no2 = median(no2tmean2, na.rm = TRUE))

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 17/27

Source: local data frame [19 x 4]

year pm25 o3 no2

1 1987 NaN 62.96966 23.49369

2 1988 NaN 61.67708 24.52296

3 1989 NaN 59.72727 26.14062

4 1990 NaN 52.22917 22.59583

5 1991 NaN 63.10417 21.38194

6 1992 NaN 50.82870 24.78921

7 1993 NaN 44.30093 25.76993

8 1994 NaN 52.17844 28.47500

9 1995 NaN 66.58750 27.26042

10 1996 NaN 58.39583 26.38715

11 1997 NaN 56.54167 25.48143

12 1998 18.26467 50.66250 24.58649

13 1999 18.49646 57.48864 24.66667

14 2000 16.93806 55.76103 23.46082

15 2001 16.92632 51.81984 25.06522

16 2002 15.27335 54.88043 22.73750

17 2003 15.23183 56.16608 24.62500

18 2004 14.62864 44.48240 23.39130

19 2005 16.18556 58.84126 22.62387

 summarize() returns a data frame with year as the first column, and then the annual

averages of pm25, o3, and no2.

 In a slightly more complicated example, we might want to know what the average levels

of ozone (o3) are and nitrogen dioxide (no2) within quintiles of pm25. A slicker way to

do this would be through a regression model, but we can actually do this quickly with

group_by() and summarize().

 First, we can create a categorical variable of pm25 divided into quintiles.

> qq <- quantile(chicago$pm25, seq(0, 1, 0.2), na.rm = TRUE)

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 18/27

> chicago <- mutate(chicago, pm25.quint = cut(pm25, qq))

 Now we can group the data frame by the pm25.quint variable.

> quint <- group_by(chicago, pm25.quint)

 Finally, we can compute the mean of o3 and no2 within quintiles of pm25.

> summarize(quint, o3 = mean(o3tmean2, na.rm = TRUE),

+ no2 = mean(no2tmean2, na.rm = TRUE))

Source: local data frame [6 x 3]

pm25.quint o3 no2

1 (1.7,8.7] 21.66401 17.99129

2 (8.7,12.4] 20.38248 22.13004

3 (12.4,16.7] 20.66160 24.35708

4 (16.7,22.6] 19.88122 27.27132

5 (22.6,61.5] 20.31775 29.64427

6 NA 18.79044 25.77585

 From the table, it seems there isn‟t a strong relationship between pm25 and o3, but there

appears to be a positive correlation between pm25 and no2. More sophisticated statistical

modeling can help to provide precise answers to these questions, but a simple application

of dplyr functions can often get you most of the way there.

%>%

 The pipeline operator %> % is very handy for stringing together multiple dplyr functions

in a sequence of operations. Notice above that every time we wanted to apply more than

one function, the sequence gets buried in a sequence of nested function calls that is

difficult to read, i.e.

> third(second(first(x)))

 This nesting is not a natural way to think about a sequence of operations. The %>%

operator allows you to string operations in a left-to-right fashion, i.e.

> first(x) %>% second %>% third

 Take the example that we just did in the last section where we computed the mean of o3

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 19/27

and no2 within quintiles of pm25. There we had to

1. create a new variable pm25.quint

2. split the data frame by that new variable

3. compute the mean of o3 and no2 in the sub-groups defined by pm25.quint

 That can be done with the following sequence in a single R expression.

> mutate(chicago, pm25.quint = cut(pm25, qq)) %>%

+ group_by(pm25.quint) %>%

+ summarize(o3 = mean(o3tmean2, na.rm = TRUE),

+ no2 = mean(no2tmean2, na.rm = TRUE))

Source: local data frame [6 x 3]

pm25.quint o3 no2

1 (1.7,8.7] 21.66401 17.99129

2 (8.7,12.4] 20.38248 22.13004

3 (12.4,16.7] 20.66160 24.35708

4 (16.7,22.6] 19.88122 27.27132

5 (22.6,61.5] 20.31775 29.64427

6 NA 18.79044 25.77585

 This way we don‟t have to create a set of temporary variables along the way or create a

massive nested sequence of function calls. Notice in the above code that I pass the

chicago data frame to the first call to mutate(), but then afterwards I do not have to pass

the first argument to group_by() or summarize(). Once you travel down the pipeline with

%>%, the first argument is taken to be the output of the previous element in the pipeline.

 Another example might be computing the average pollutant level by month. This could

be useful to see if there are any seasonal trends in the data.

> mutate(chicago, month = as.POSIXlt(date)$mon + 1) %>%

+ group_by(month) %>%

+ summarize(pm25 = mean(pm25, na.rm = TRUE),

+ o3 = max(o3tmean2, na.rm = TRUE),

+ no2 = median(no2tmean2, na.rm = TRUE))

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 20/27

Source: local data frame [12 x 4]

month pm25 o3 no2

1 1 17.76996 28.22222 25.35417

2 2 20.37513 37.37500 26.78034

3 3 17.40818 39.05000 26.76984

4 4 13.85879 47.94907 25.03125

5 5 14.07420 52.75000 24.22222

6 6 15.86461 66.58750 25.01140

7 7 16.57087 59.54167 22.38442

8 8 16.93380 53.96701 22.98333

9 9 15.91279 57.48864 24.47917

10 10 14.23557 47.09275 24.15217

11 11 15.15794 29.45833 23.56537

12 12 17.52221 27.70833 24.45773

 Here we can see that o3 tends to be low in the winter months and high in the summer

while no2 is higher in the winter and lower in the summer.

CONTROL STRUCTURES

 Control structures in R allow you to control the flow of execution of a series of R

expressions.

 Basically, control structures allow you to put some “logic” into your R code, rather than

just always executing the same R code every time. Control structures allow you to

respond to inputs or to features of the data and execute different R expressions

accordingly.

 Commonly used control structures are

 if and else: testing a condition and acting on it

 for: execute a loop a fixed number of times

 while: execute a loop while a condition is true

 repeat: execute an infinite loop (must break out of it to stop)

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 21/27

 break: break the execution of a loop

 next: skip an iteration of a loop

 Most control structures are not used in interactive sessions, but rather when writing

functions or longer expressions. However, these constructs do not have to be used in

functions and it‟s a good idea to become familiar with them before we delve into

functions.

if-else

 The if-else combination is probably the most commonly used control structure in R (or

perhaps any language). This structure allows you to test a condition and act on it

depending on whether it‟s true or false.

 For starters, you can just use the if statement.

if(<condition>) {

do something

}

Continue with rest of code

 The above code does nothing if the condition is false. If you have an action you want to

execute when the condition is false, then you need an else clause.

if(<condition>) {

do something

}

else {

do something else

}

 You can have a series of tests by following the initial if with any number of else ifs.

if(<condition1>) {

do something

} else if(<condition2>) {

do something different

} else {

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 22/27

do something different

}

 Here is an example of a valid if/else structure.

Generate a uniform random number

x <- runif(1, 0, 10)

if(x > 3) {

y <- 10

} else {

y <- 0

}

 The value of y is set depending on whether x > 3 or not. This expression can also be

written a different, but equivalent, way in R.

y <- if(x > 3) {

10

} else {

0

}

 Neither way of writing this expression is more correct than the other. Which one you use

will depend on your preference and perhaps those of the team you may be working with.

 Of course, the else clause is not necessary. You could have a series of if clauses that

always get executed if their respective conditions are true.

if(<condition1>) {

}

if(<condition2>) {

}

for Loops

 For loops are pretty much the only looping construct that you will need in R.

 In R, for loops take an interator variable and assign it successive values from a sequence

or vector.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 23/27

 For loops are most commonly used for iterating over the elements of an object (list,

vector, etc.)

> for(i in 1:10) {

+ print(i)

+ }

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7

> for(letter in x) {

+ print(letter)

+ }

[1] "a"

[1] "b"

[1] "c"

[1] "d"

 For one line loops, the curly braces are not strictly necessary.

> for(i in 1:4) print(x[i])

[1] "a"

[1] "b"

[1] "c"

[1] "d"

 However, I like to use curly braces even for one-line loops, because that way if you

decide to expand the loop to multiple lines, you won‟t be burned because you forgot to

add curly braces.

Nested for loops

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 24/27

 for loops can be nested inside of each other.

x <- matrix(1:6, 2, 3)

for(i in seq_len(nrow(x))) {

for(j in seq_len(ncol(x))) {

print(x[i, j])

}

}

 Nested loops are commonly needed for multidimensional or hierarchical data structures

(e.g.matrices, lists). Be careful with nesting though. Nesting beyond 2 to 3 levels often

makes it difficult to read/understand the code. If you find yourself in need of a large

number of nested loops, you may want to break up the loops by using functions

while Loops

 While loops begin by testing a condition. If it is true, then they execute the loop body.

Once the loop body is executed, the condition is tested again, and so forth, until the

condition is false, after which the loop exits.

> count <- 0

> while(count < 10) {

+ print(count)

+ count <- count + 1

+ }

[1] 0

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 25/27

[1] 8

[1] 9

 While loops can potentially result in infinite loops if not written properly. > z <- 5

> set.seed(1)

> while(z >= 3 && z <= 10) {

+ coin <- rbinom(1, 1, 0.5)

+

+ if(coin == 1) { ## random walk

+ z <- z + 1

+ } else {

+ z <- z - 1

+ }

+ }

> print(z)

[1] 2

repeat Loops

 repeat initiates an infinite loop right from the start. These are not commonly used in

statistical or data analysis applications but they do have their uses. The only way to exit a

repeat loop is to call break.

 One possible paradigm might be in an iterative algorithm where you may be searching for

a solution and you don‟t want to stop until you‟re close enough to the solution. In this

kind of situation, you often don‟t know in advance how many iterations it‟s going to take

to get “close enough” to the solution.

x0 <- 1

tol <- 1e-8

repeat {

x1 <- computeEstimate()

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 26/27

if(abs(x1 - x0) < tol) { ## Close enough?

break

} else {

x0 <- x1

}

}

 Note that the above code will not run if the computeEstimate() function is not defined (I

just made it up for the purposes of this demonstration). The loop agove is a bit dangerous

because there‟s no guarantee it will stop. You could get in a situation where the values of

x0 and x1 oscillate back and forth and never converge. Better to set a hard limit on the

number of iterations by using a for loop and then report whether convergence was

achieved or not.

next, break.

 next is used to skip an iteration of a loop

for(i in 1:100) {

if(i <= 20) {

Skip the first 20 iterations

next

}

Do something here

}

 break is used to exit a loop immediately, regardless of what iteration the loop may be on.

for(i in 1:100) {

print(i)

if(i > 20) {

Stop loop after 20 iterations

break

}}

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - III BATCH: 2018 – 2021

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 27/27

POSSIBLE QUESTIONS

UNIT – III

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

1. What is Vectorized Operations?

2. How to create dates and times in R?

3. List the looping statements in R

4. Write the syntax of if else statement with suitable example

5. What is the use of dplyr package?

6. Write the syntax of for loop with suitable example

7. Write the syntax of if else statement with suitable example

8. Write the syntax of while loop with suitable example

9. Write the syntax of repeat loop with suitable example

10. Define select()

PART – C (6 MARKS)

1. Explain the Vectorized matrix Operations

2. Explain the Operations on Dates and Times

3. Explain how to manage the Data frames with dplyr package

4. Explain the process of select () function

5. Write in detail (i) mutate() (ii) group_by()

6. Write in detail (i) filter() (ii) arrange()

7. Write in detail (i) rename (ii) %>%

8. Discuss about Control Structures in R programming

9. Explain about dplyr Grammar

10. Explain about dplyr Package

KARPAGAM ACADEMY OF HIGHER EDUCATION

Coimbatore – 641 021.

(For the Candidates admitted from 2018 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

UNIT - III : (Objective Type Multiple choice Questions each Question carries one Mark)

R PROGRAMMING [18CAU404A]

PART - A (Online Examination)

Questions Opt1 Opt2 Opt3 Opt4 Key

operation as far as subtraction is concerned ? > x x+y x-y x*y x/y x-y

Point out the wrong statement : operations in R allows you to means that R are vectorized, are vectorized

What would be the output of the following code ?

> x <- 1:4

> y <- 6:9

> z <- x + y

> z

7 9 11 13

7 9 11 13 14

9 7 11 13

7 9 11 14

7 9 11 13

Which of the followin code represents internal

representation of a Date object ?

class(as.Date(“1

970-01-02”))

unclass(as.Date(“

1970-01-02”))

unclassint(as.Da

te(“1970-01-

02”))

classint(as.Date(“19

70-01-02”))

unclass(as.Date(“1970-

01-02”))

What would be the output of the following code ?

> x <- Sys.time()

> class(x)

“POSIXct”

“POSIXt”

“POSIXXt”

“POSIXt”

“POSIXct”

“POSIct”

“POSIXct”

“POSIXXct”

“POSIXct” “POSIXt”

Which of the following function gives the day of

the week ?

weekdays

months

quarters

years

weekdays

What would be the output of the following code ?

> p <- as.POSIXlt(x) > names(unclass(p))

> p$wday

1

2

3

0

1

What would be the output of the following code ?

> x <- as.Date("2012-03-01")

> y <- as.Date("2012-02-28")

> x-y

Time difference

of 3 days

Time difference

of 2 days

Time difference

of 1 day

Time difference of 4

days

Time difference of 2

days

Which of the following return a subset of the

columns of a data frame ?

select

retrieve

get

hold

select

 extract a subset of rows from a data

frame based on logical conditions.

rename

filter

set

subset

rename

 generate summary statistics of

different variables in the data frame, possibly

within strata

rename

summarize

set

subset

summarize

Point out the wrong statement :

The dplyr

package was

developed by

Hadley Wickham

of RStudio

The dplyr

packageis an

optimized and

distilled version

of his plyr

package

The dplyr

package

provideS any

“new”

functionality to

R

The dplyr package

does not provide

any “new”

functionality to R

The dplyr package

provideS any “new”

functionality to R

 add new variables/columns or

transform existing variables

mutate

add

apped

arrange

mutate

The operator is used to connect multiple

verb actions together into a pipeline

pipe

piper

start

end

pipe

The dplyr package can be installed from GitHub

using the package

dev

devtools

devtool

dtool

devtools

The dplyr package can be installed from CRAN

using :

installall.package

s(“dplyr”)

install.packages(“

dplyr”)

installed.packa

ges(“dplyr”)

installed.package(“d

plyr”)

install.packages(“dplyr”)

Which of the following object is masked from

‘package:stats’ ?

difference

setdifference

union

filter

filter

The function can be used to select

columns of a data frame that you want to focus

on.

filter

get

rename

select

select

Point out the correct statement :

You can also omit

variables using

the select()

function by using

the negative sign

The arrange()

function also

allows a special

syntax that

allows you to

specify variable

names based on

patterns

Reordering

rows of a data

frame is

normally easier

to do in R

The rename()

function is designed

to make this process

difficult.

You can also omit

variables using the

select() function by

using the negative sign

 function is similar to the existing subset()

function in R but is quite a bit faster.

rename

filter

set

subset

filter

Columns can be arranged in descending order too

by using the special operator.

asc()

desc()

descending()

subset

desc()

Point out the wrong statement :

Renaming a

variable in a data

frame in R is

surprisingly hard

to do

The mutate()

function exists to

compute

transformations

of variables in a

data frame

mute()

function, which

does the same

thing as

mutate() but

then drops all

non-

transformed

variables

The rename()

function is designed

to make this process

easier.

mute() function, which

does the same thing as

mutate() but then drops

all non-transformed

variables

The function is used to generate

summary statistics from the data frame within

strata defined by a variable.

groupby()

group()

group_by()

arrange

group_by()

The operator allows you to string

operations in a left-to-right fashion.

%>%>

%>%

>%>%

>%>%>

%>%

There is an SQL interface for relational databases

via the package.

DIB

DB2

DBI

DB

DBI

dplyr can be integrated with the

package for large fast tables.

data.table

read.table

data.data

read.data

data.table

Which of the following function is similar to

summarize ?

arrange_by()

group()

group_by()

arrange

group_by()

Which of the following is valid syntax for if else

statement in R ?

if(<condition>)
{ ## do

something } else

{ ## do

something else }

if(<condition>)
{ ## do

something }

elseif { ## do

something else

}

if(<condition>)
{ ## do

something }

else if { ##

do something

else }

if(<condition>) {
do something }
elsif{ ## do

something else }

if(<condition>) { ## do
something } else { ##

do something else }

Point out the correct statement :

Blocks are

evaluated until a

new line is

entered after the

closing brace

Single

statements are

evaluated when

a new line is

typed at the start

of the

syntactically

complete

statement

The if/else

statement

conditionally

evaluates two

statements

The jump statement

conditionally

evaluates two

statements

The if/else statement

conditionally evaluates

two statements

Which of the following syntax is correct for while

loop ?

while (

statement1)

statement2

while (

statement1) else

statement2

while (

statement1) do

statement2

while (statement1)

else if statement2

while (statement1)

statement2

 is used to break the execution of a loop.

next

skip

break

if

break

Which of the following statement can be used to

explicitly control looping ?

if

while

break

next

break

Which of the following should be preferred for

evaluation from list of alternatives ?

subsett

eval

switch

if

eval

 initiates an infinite loop right from the

start.

never

repeat

break

set

repeat

Which of the following code snippet stops loop

after 20 iterations ?

for(i in 1:100)
{ print(i)

if(i>20){ break

}}

for(i in 1:100)
{ print(i)

if(i>19){ break

}}

for(i in 1:100)
{ print(i)

if(i<19){

break }}

for(i in 1:100) {
print(i) if(i<20){

break }}

for(i in 1:100) {
print(i) if(i>20){

break }}

Point out the wrong statement :

Statements

cannot be

grouped together

using braces ‘{’

and ‘}’

Computation in R

consists of

sequentially

evaluating

statements

Computation in

R consists of

sequentially

evaluating

statements

Control structures in

R allow you to

control the flow of

execution of a series

of R expressions.

Statements cannot be

grouped together using

braces ‘{’ and ‘}’

 is used to skip an iteration of a loop.

group by

group

skip

next

next

R has statements that provide explicit

looping.

two

three

four

five

three

The syntax of the repeat loop is :

rep statement

repeat statement

repeat else

else statement

repeat statement

What will be the output of the following code ? >

x <- 3 > switch(2, 2+2, mean(1:10), rnorm(5))

5

5.5

0

5.3

5.5

Point out the correct statement :

The next

statement causes

an exit from the

innermost loop

that is currently

being executed

There are two

statements that

can be used to

explicitly control

looping

The break

statement

immediately

causes control

to return to the

start of the loop

There are two

statements that can

be used to implicitly

control looping

There are two

statements that can be

used to explicitly control

looping

What will be the output of the following code ? >

y <- "fruit" > switch(y, fruit = "banana", vegetable

= "broccoli", "Neither")

“banana”

“Neither”

“broccoli”

"fruit"

“banana”

R has basic indexing operators. two three four five three

The syntax of the for loop is :

for ($name in

vector)

statement1

for loop(name in

vector)

statement1

for (name in
vector)

statement1

for loop ($name in
vector) statement1

for (name in vector)
statement1

What would be the output of the following code ?

> x <- matrix(1:4, 2, 2)

> y <- matrix(rep(10, 4), 2, 2)

> x * y

[,1] [,2]

[1,] 10 30

[2,] 20 40

[,1] [,2]

[1,] 10 30

[2,] 30 40

[,1] [,2]

[1,] 20 30

[2,] 20 40

[,1] [,2]

[1,] 10 30

[2,] 30 40

[,1] [,2]

[1,] 10 30

[2,] 20 40

What would be the output of the following code ?

> x <- 1:4 > y <- 6:9 > x/y

0.1666667

0.2857143

0.4444444

0.1666667

0.2857143

0.3750000

0.4444444

0.2857143

0.3750000

0.4444444

0.2857143

0.3750000

0.1666667

0.1666667 0.2857143

0.3750000 0.4444444

What would be the output of the following code ?

> x <- as.Date("1970-01-01")

> x

“1970-01-01”

“1970-01-02”

“1970-02-01”

“1970-02-02”

“1970-01-01”

What would be the output of the following code ?

> x <- as.Date("2012-01-01")

> y <- strptime("9 Jan 2011 11:34:21", "%d %b %Y

%H:%M:%S")

> x-y

Time difference

of 356.3095 days

Warning

NULL

Error

Warning

What would be the output of the following code ?

> x <- as.POSIXct("2012-10-25 01:00:00")

> y <- as.POSIXct("2012-10-25 06:00:00", tz =

"GMT")

> y-x

Time difference

of 10 sec

Time difference

of 1 sec

Time difference

of 1 min

Time difference of 1

hour

Time difference of 1

hour

Which of the following code generate a uniform

random number ?

x <- runif(1, 0,

10) if(x > 3) { y <-

10 } else { y <- 0 }

x <- run(1, 0, 10)

if(x > 3) { y <- 10 }

else { y <- 0 }

x <- random(1,

0, 10) if(x > 3) {

y <- 10 } else { y

<- 0 }

x <-runn(1, 0, 10) if(x

> 3) { y <- 10 } else {

y <- 0 }

x <- runif(1, 0, 10) if(x >

3) { y <- 10 } else { y <- 0

}

Point out the wrong stateme

for will execute a

loop a fixed

number of times

break will

execute a loop

while a condition

is true

if and else tests

a condition and

acting on it

break will execute a

loop while a

condition is false

break will execute a

loop while a condition is

true

 initiates an infinite loop right from the

start.

next

for

repeat

while

repeat

 is used to exit a loop immediately,

regardless of what iteration the loop may be on.

next

break

repeat

while

break

 loops begin by testing a condition. next break repeat while while

The function is commonly used in

conjunction with for loops in order to generate an

integer sequence based on the length of an object

seq()

seq_long()

seq_along()

seq_alo()

seq_along()

The function is used to extract subsets of

rows from a data frame.

arrange()

filter()

select()

mutate()

filter()

The function is used to reorder

rows of a data frame according to one of the

variables/- columns

arrange()

filter()

select()

mutate()

arrange()

The function is designed to make this

process easier.

arrange()

rename()

select()

mutate()

rename()

The function is used to generate

summary statistics from the data frame within

strata defined by a variable.

subset()

summarize()

group_by()

group()

group_by()

The package provides a concise set of

operations for managing data frames.

summarize

dlyr

dpl

dplyr

dplyr

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 1/19

UNIT-V

SYLLABUS

DEBUGGING

SOMETHING’S WRONG!

 R has a number of ways to indicate to you that something’s not right. There are different

levels of indication that can be used, ranging from mere notification to fatal error.

 Executing any function in R may result in the following conditions.

• message: A generic notification/diagnostic message produced by the message()

function;

execution of the function continues

• warning: An indication that something is wrong but not necessarily fatal; execution of

the function continues. Warnings are generated by the warning() function

• error: An indication that a fatal problem has occurred and execution of the function

stops.Errors are produced by the stop() function.

• condition: A generic concept for indicating that something unexpected has occurred;

programmers can create their own custom conditions if they want.

 Here is an example of a warning that you might receive in the course of using R.

> log(-1)

Warning in log(-1): NaNs produced

[1] NaN

 This warning lets you know that taking the log of a negative number results in a NaN

value because you can’t take the log of negative numbers. Nevertheless, R doesn’t give

an error, because it has a useful value that it can return, the NaN value. The warning is

just there to let you know that something unexpected happens. Depending on what you

are programming, you may have intentionally taken the log of a negative number in order

to move on to another section of code.

 Here is another function that is designed to print a message to the console depending on

the nature of its input.

> printmessage <- function(x) {

+ if(x > 0)

+ print("x is greater than zero")

+ else

+ print("x is less than or equal to zero")

Debugging: Something’s Wrong! - Figuring Out What’s Wrong - Debugging Tools in R. Using

traceback() - Using debug() - Using recover(). Profiling R Code: Using system.time() . Timing

Longer Expressions - The R Profiler – Using summaryRprof().Simulation: Generating Random

Numbers - Setting the random number seed -Simulating a Linear Model - Random Sampling .

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 2/19

+ invisible(x)

+ }

 This function is simple—it prints a message telling you whether x is greater than zero or

less than or equal to zero. It also returns its input invisibly, which is a common practice

with ―print‖ functions.

 Returning an object invisibly means that the return value does not get auto-printed when

the function is called.

 Take a hard look at the function above and see if you can identify any bugs or problems.

 We can execute the function as follows.

> printmessage(1)

[1] "x is greater than zero"

 The function seems to work fine at this point. No errors, warnings, or messages.

> printmessage(NA)

Error in if (x > 0) print("x is greater than zero") else print("x is less than o\

r equal to zero"): missing value where TRUE/FALSE needed

 What happened?

o Well, the first thing the function does is test if x > 0. But you can’t do that test if x

is a NA or NaN value.

o R doesn’t know what to do in this case so it stops with a fatal error.

o We can fix this problem by anticipating the possibility of NA values and checking

to see if the input is NA with the is.na() function.

> printmessage2 <- function(x) {

+ if(is.na(x))

+ print("x is a missing value!")

+ else if(x > 0)

+ print("x is greater than zero")

+ else

+ print("x is less than or equal to zero")

+ invisible(x)

+ }

 Now we can run the following.

> printmessage2(NA)

[1] "x is a missing value!"

And all is fine.

 Now what about the following situation.

> x <- log(c(-1, 2))

Warning in log(c(-1, 2)): NaNs produced

> printmessage2(x)

Warning in if (is.na(x)) print("x is a missing value!") else if (x > 0)

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 3/19

print("x is greater than zero") else print("x is less than or equal to

zero"): the condition has length > 1 and only the first element will be

used

[1] "x is a missing value!"

 Now what?? Why are we getting this warning? The warning says ―the condition has

length > 1 and only the first element will be used‖.

 The problem here is that I passed printmessage2() a vector x that was of length 2 rather

than length

1. Inside the body of printmessage2() the expression is.na(x) returns a vector that is

tested in the if statement. However, if cannot take vector arguments so you get a

warning. The fundamental problem here is that printmessage2() is not vectorized.

2. We can solve this problem two ways. One is by simply not allowing vector

arguments. The other way is to vectorize the printmessage2() function to allow it

to take vector arguments.

 For the first way, we simply need to check the length of the input.

> printmessage3 <- function(x) {

+ if(length(x) > 1L)

+ stop("'x' has length > 1")

+ if(is.na(x))

+ print("x is a missing value!")

+ else if(x > 0)

+ print("x is greater than zero")

+ else

+ print("x is less than or equal to zero")

+ invisible(x)

+ }

 Now when we pass printmessage3() a vector we should get an error.

> printmessage3(1:2)

Error in printmessage3(1:2): 'x' has length > 1

Vectorizing the function can be accomplished easily with the Vectorize() function.

> printmessage4 <- Vectorize(printmessage2)

> out <- printmessage4(c(-1, 2))

[1] "x is less than or equal to zero"

[1] "x is greater than zero"

 You can see now that the correct messages are printed without any warning or error. Note

that I stored the return value of printmessage3() in a separate R object called out. This is

because when I use the Vectorize() function it no longer preserves the invisibility of the

return value

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 4/19

FIGURING OUT WHAT’S WRONG

 The primary task of debugging any R code is correctly diagnosing what the problem is.

When diagnosing a problem with your code (or somebody else’s), it’s important first

understand what you were expecting to occur. Then you need to identify what did occur

and how did it deviate from your expectations. Some basic questions you need to ask are

• What was your input? How did you call the function?
• What were you expecting? Output, messages, other results?

• What did you get?

• How does what you get differ from what you were expecting?

• Were your expectations correct in the first place?

• Can you reproduce the problem (exactly)?

 Being able to answer these questions is important not just for your own sake, but in

situations where you may need to ask someone else for help with debugging the problem.

Seasoned programmers will be asking you these exact questions.

DEBUGGING TOOLS IN R

 R provides a number of tools to help you with debugging your code. The primary tools

for debugging functions in R are

 traceback(): prints out the function call stack after an error occurs; does nothing if there’s

no error

 debug(): flags a function for ―debug‖ mode which allows you to step through execution

of a function one line at a time

 browser(): suspends the execution of a function wherever it is called and puts the function

in debug mode

 trace(): allows you to insert debugging code into a function a specific places

 recover(): allows you to modify the error behavior so that you can browse the function

call stack

 These functions are interactive tools specifically designed to allow you to pick through a

function.

 There’s also the more blunt technique of inserting print() or cat() statements in the

function.

Using traceback()

The traceback() function prints out the function call stack after an error has occurred. The

function

call stack is the sequence of functions that was called before the error occurred.

For example, you may have a function a() which subsequently calls function b() which calls c()

and

then d(). If an error occurs, it may not be immediately clear in which function the error occurred.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 5/19

The tracback() function shows you how many levels deep you were when the error occurred.

> mean(x)

Error in mean(x) : object 'x' not found

> traceback()

1: mean(x)

Here, it’s clear that the error occurred inside the mean() function because the object x does not

exist.

The traceback() function must be called immediately after an error occurs. Once another function

is called, you lose the traceback.

Here is a slightly more complicated example using the lm() function for linear modeling.

> lm(y ~ x)

Error in eval(expr, envir, enclos) : object ’y’ not found

> traceback()

7: eval(expr, envir, enclos)

6: eval(predvars, data, env)

5: model.frame.default(formula = y ~ x, drop.unused.levels = TRUE)

4: model.frame(formula = y ~ x, drop.unused.levels = TRUE)

3: eval(expr, envir, enclos)

2: eval(mf, parent.frame())

1: lm(y ~ x)

You can see now that the error did not get thrown until the 7th level of the function call stack, in

which case the eval() function tried to evaluate the formula y ∼ x and realized the object y did

not exist.

Looking at the traceback is useful for figuring out roughly where an error occurred but it’s not

useful

for more detailed debugging. For that you might turn to the debug() function.

Using debug()

The debug() function initiates an interactive debugger (also known as the ―browser‖ in R) for a

function. With the debugger, you can step through an R function one expression at a time to

pinpoint

exactly where an error occurs.

The debug() function takes a function as its first argument. Here is an example of debugging the

lm() function.

> debug(lm) ## Flag the 'lm()' function for interactive debugging

> lm(y ~ x)

debugging in: lm(y ~ x)

debug: {

ret.x <- x

ret.y <- y

cl <- match.call()

...

if (!qr)

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 6/19

z$qr <- NULL

z

}

Browse[2]>

Now, every time you call the lm() function it will launch the interactive debugger. To turn this

behavior off you need to call the undebug() function.

The debugger calls the browser at the very top level of the function body. From there you can

step

through each expression in the body. There are a few special commands you can call in the

browser:

• n executes the current expression and moves to the next expression

• c continues execution of the function and does not stop until either an error or the function

exits

• Q quits the browser

Here’s an example of a browser session with the lm() function.

Browse[2]> n ## Evalute this expression and move to the next one

debug: ret.x <- x

Browse[2]> n

debug: ret.y <- y

Browse[2]> n

debug: cl <- match.call()

Browse[2]> n

debug: mf <- match.call(expand.dots = FALSE)

Browse[2]> n

debug: m <- match(c("formula", "data", "subset", "weights", "na.action",

"offset"), names(mf), 0L)

While you are in the browser you can execute any other R function that might be available to you

in a regular session. In particular, you can use ls() to see what is in your current environment (the

function environment) and print() to print out the values of R objects in the function

environment.

You can turn off interactive debugging with the undebug() function.

undebug(lm) ## Unflag the 'lm()' function for debugging

Using recover()

The recover() function can be used to modify the error behavior of R when an error occurs.

Normally, when an error occurs in a function, R will print out an error message, exit out of the

function, and return you to your workspace to await further commands.

With recover() you can tell R that when an error occurs, it should halt execution at the exact

point

at which the error occurred. That can give you the opportunity to poke around in the environment

in which the error occurred. This can be useful to see if there are any R objects or data that have

been corrupted or mistakenly modified.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 7/19

> options(error = recover) ## Change default R error behavior

> read.csv("nosuchfile") ## This code doesn't work

Error in file(file, "rt") : cannot open the connection

In addition: Warning message:

In file(file, "rt") :

cannot open file ’nosuchfile’: No such file or directory

Enter a frame number, or 0 to exit

1: read.csv("nosuchfile")

2: read.table(file = file, header = header, sep = sep, quote = quote, dec =

3: file(file, "rt")

Selection:
The recover() function will first print out the function call stack when an error occurrs. Then, you

can choose to jump around the call stack and investigate the problem. When you choose a frame

number, you will be put in the browser (just like the interactive debugger triggered with debug())

and will have the ability to poke around.

PROFILING R CODE

 R comes with a profiler to help you optimize your code and improve its performance. In

generally, it’s usually a bad idea to focus on optimizing your code at the very beginning

of development. Rather, in the beginning it’s better to focus on translating your ideas into

code and writing code that’s coherent and readable. The problem is that heavily

optimized code tends to be obscure and difficult to read, making it harder to debug and

revise. Better to get all the bugs out first, and then focus on optimizing.

 Of course, when it comes to optimizing code, the question is what should you optimize?

Well, clearly should optimize the parts of your code that are running slowly, but how do

we know what parts those are? This is what the profiler is for. Profiling is a systematic

way to examine how much time is spent in different parts of a program.

 Sometimes profiling becomes necessary as a project grows and layers of code are placed

on top of each other. Often you might write some code that runs fine once. But then later,

you might put that same code in a big loop that runs 1,000 times. Now the original code

that took 1 second to run is taking 1,000 seconds to run! Getting that little piece of

original code to run faster will help the entire loop.

 It’s tempting to think you just know where the bottlenecks in your code are. I mean, after

all, you write it! But trust me, I can’t tell you how many times I’ve been surprised at

where exactly my code is spending all its time. The reality is that profiling is better than

guessing. Better to collect some data than to go on hunches alone. Ultimately, getting the

biggest impact on speeding up code depends on knowing where the code spends most of

its time. This cannot be done without some sort of rigorous performance analysis or

profiling.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 8/19

 We should forget about small efficiencies, say about 97% of the time: premature

optimization is the root of all evil —Donald Knuth

 The basic principles of optimizing your code are:

• Design first, then optimize

• Remember: Premature optimization is the root of all evil

• Measure (collect data), don’t guess.

• If you’re going to be scientist, you need to apply the same principles here!

Using system.time()

 They system.time() function takes an arbitrary R expression as input (can be wrapped in

curly braces) and returns the amount of time taken to evaluate the expression. The

system.time() function computes the time (in seconds) needed to execute an expression

and if there’s an error, gives the time until the error occurred. The function returns an

object of class proc_time which contains two useful bits of information:

• user time: time charged to the CPU(s) for this expression
• elapsed time: ―wall clock‖ time, the amount of time that passes for you as you’re

sitting there Usually, the user time and elapsed time are relatively close, for

straight computing tasks. But there are a few situations where the two can

diverge, sometimes dramatically.

The elapsed time may be greater than the user time if the CPU spends a lot of

time waiting around.

This commonly happens if your R expression involes some input or output, which

depends on the activity of the file system and the disk (or the Internet, if using a

network connection).

The elapsed time may be smaller than the user time if your machine has multiple

cores/processors (and is capable of using them).

 For example, multi-threaded BLAS libraries (vecLib/Accelerate, ATLAS, ACML, MKL)

can greatly speed up linear algebra calculations and are commonly installed on even

desktop systems these days. Also, parallel processing done via something like the parallel

package can make the elapsed time smaller than the user time.

 When you have multiple processors/- cores/machines working in parallel, the amount of

time that the collection of CPUs spends working on a problem is the same as with a

single CPU, but because they are operating in parallel, there is a savings in elapsed time.

 Here’s an example of where the elapsed time is greater than the user time.

Elapsed time > user time

system.time(readLines("http://www.jhsph.edu"))

user system elapsed

0.004 0.002 0.431

http://www.jhsph.edu/

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 9/19

 Most of the time in this expression is spent waiting for the connection to the web server

and waiting for the data to travel back to my computer. This doesn’t involve the CPU and

so the CPU simply waits around for things to get done. Hence, the user time is small.

 In this example, the elapsed time is smaller than the user time.

Elapsed time < user time

> hilbert <- function(n) {

+ i <- 1:n

+ 1 / outer(i - 1, i, "+")

+ }

> x <- hilbert(1000)

> system.time(svd(x))

user system elapsed

1.035 0.255 0.462

 In this case I ran singular value decomposition on the matrix in x, which is a common

linear algebra procedure. Because my computer is able to split the work across multiple

processors, the elapsed time is about half the user time.

TIMING LONGER EXPRESSIONS

 You can time longer expressions by wrapping them in curly braces within the call to

system.time().

> system.time({

+ n <- 1000

+ r <- numeric(n)

+ for(i in 1:n) {

+ x <- rnorm(n)

+ r[i] <- mean(x)

+ }

+ })

user system elapsed

0.086 0.001 0.088

 If your expression is getting pretty long (more than 2 or 3 lines), it might be better to

either break it into smaller pieces or to use the profiler. The problem is that if the

expression is too long, you won’t be able to identify which part of the code is causing the

bottleneck.

THE R PROFILER

 Using system.time() allows you to test certain functions or code blocks to see if they are

taking excessive amounts of time. However, this approach assumes that you already

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 10/19

know where the problem is and can call system.time() on it that piece of code. What if

you don’t know where to start?

 This is where the profiler comes in handy. The Rprof() function starts the profiler in R.

Note that R must be compiled with profiler support (but this is usually the case). In

conjunction with Rprof(), we will use the summaryRprof() function which summarizes

the output from Rprof() (otherwise it’s not really readable). Note that you should NOT

use system.time() and Rprof() together, or you will be sad.

 Rprof() keeps track of the function call stack at regularly sampled intervals and tabulates

how much time is spent inside each function. By default, the profiler samples the function

call stack every 0.02 seconds. This means that if your code runs very quickly (say, under

0.02 seconds), the profiler is not useful. But of your code runs that fast, you probably

don’t need the profiler.

 The profiler is started by calling the Rprof() function.

> Rprof() ## Turn on the profiler

 You don’t need any other arguments. By default it will write its output to a file called

Rprof.out. You can specify the name of the output file if you don’t want to use this

default.

 Once you call the Rprof() function, everything that you do from then on will be measured

by the profiler. Therefore, you usually only want to run a single R function or expression

once you turn on the profiler and then immediately turn it off. The reason is that if you

mix too many function calls together when running the profiler, all of the results will be

mixed together and you won’t be able to sort out where the bottlenecks are. In reality, I

usually only run a single function with the profiler on.

 The profiler can be turned off by passing NULL to Rprof().

> Rprof(NULL) ## Turn off the profiler

 The raw output from the profiler looks something like this. Here I’m calling the lm()

function on some data with the profiler running.

lm(y ~ x)

sample.interval=10000

"list" "eval" "eval" "model.frame.default" "model.frame" "eval" "eval" "lm"

"list" "eval" "eval" "model.frame.default" "model.frame" "eval" "eval" "lm"

"list" "eval" "eval" "model.frame.default" "model.frame" "eval" "eval" "lm"

"list" "eval" "eval" "model.frame.default" "model.frame" "eval" "eval" "lm"

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm"

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm"

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm"

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm"

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm"

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm"

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm"

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 11/19

"lm.fit" "lm"

"lm.fit" "lm"

"lm.fit" "lm"

 At each line of the output, the profiler writes out the function call stack. For example, on

the very first line of the output you can see that the code is 8 levels deep in the call stack.

This is where you need the summaryRprof() function to help you interpret this data.

Using summaryRprof()

 The summaryRprof() function tabulates the R profiler output and calculates how much

time is spendin which function. There are two methods for normalizing the data.

• ―by.total‖ divides the time spend in each function by the total run time
• ―by.self‖ does the same as ―by.total‖ but first subtracts out time spent in

functions above the current function in the call stack. I personally find this output

to be much more useful.

 Here is what summaryRprof() reports in the ―by.total‖ output.

$by.total

total.time total.pct self.time self.pct

"lm" 7.41 100.00 0.30 4.05

"lm.fit" 3.50 47.23 2.99 40.35

"model.frame.default" 2.24 30.23 0.12 1.62

"eval" 2.24 30.23 0.00 0.00

"model.frame" 2.24 30.23 0.00 0.00

"na.omit" 1.54 20.78 0.24 3.24

"na.omit.data.frame" 1.30 17.54 0.49 6.61

"lapply" 1.04 14.04 0.00 0.00

"[.data.frame" 1.03 13.90 0.79 10.66

"[" 1.03 13.90 0.00 0.00

"as.list.data.frame" 0.82 11.07 0.82 11.07

"as.list" 0.82 11.07 0.00 0.00

 Because lm() is the function that I called from the command line, of course 100% of the

time is spent somewhere in that function. However, what this doesn’t show is that if lm()

immediately calls another function (like lm.fit(), which does most of the heavy lifting),

then in reality, most of the time is spent in that function, rather than in the top-level lm()

function.

 The ―by.self‖ output corrects for this discrepancy.

$by.self

self.time self.pct total.time total.pct

"lm.fit" 2.99 40.35 3.50 47.23

"as.list.data.frame" 0.82 11.07 0.82 11.07

"[.data.frame" 0.79 10.66 1.03 13.90

"structure" 0.73 9.85 0.73 9.85

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 12/19

"na.omit.data.frame" 0.49 6.61 1.30 17.54

"list" 0.46 6.21 0.46 6.21

"lm" 0.30 4.05 7.41 100.00

"model.matrix.default" 0.27 3.64 0.79 10.66

"na.omit" 0.24 3.24 1.54 20.78

"as.character" 0.18 2.43 0.18 2.43

"model.frame.default" 0.12 1.62 2.24 30.23

"anyDuplicated.default" 0.02 0.27 0.02 0.27

 Now you can see that only about 4% of the runtime is spent in the actual lm() function,

whereas over 40% of the time is spent in lm.fit(). In this case, this is no surprise since the

lm.fit() function is the function that actually fits the linear model.

 You can see that a reasonable amount of time is spent in functions not necessarily

associated with linear modeling (i.e. as.list.data.frame, [.data.frame). This is because the

lm() function does a bit of pre-processing and checking before it actually fits the model.

This is common with modeling functions—the preprocessing and checking is useful to

see if there are any errors. But those two functions take up over 1.5 seconds of runtime.

What if you want to fit this model 10,000 times?

 You’re going to be spending a lot of time in preprocessing and checking.

 The final bit of output that summaryRprof() provides is the sampling interval and the

total runtime.

$sample.interval

[1] 0.02

$sampling.time

[1] 7.41

SIMULATION

GENERATING RANDOM NUMBERS

 Simulation is an important (and big) topic for both statistics and for a variety of other

areas where there is a need to introduce randomness. Sometimes you want to implement a

statistical procedure that requires random number generation or samplie (i.e. Markov

chain Monte Carlo, the bootstrap, random forests, bagging) and sometimes you want to

simulate a system and random number generators can be used to model random inputs.

 R comes with a set of pseudo-random number generators that allow you to simulate from

well known probability distributions like the Normal, Poisson, and binomial. Some

example functions for probability distributions in R

• rnorm: generate random Normal variates with a given mean and standard

deviation

• dnorm: evaluate the Normal probability density (with a given mean/SD) at a

point (or vector of points)

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 13/19

• pnorm: evaluate the cumulative distribution function for a Normal distribution

• rpois: generate random Poisson variates with a given rate

 For each probability distribution there are typically four functions available that start with

a ―r‖, ―d‖, ―p‖, and ―q‖. The ―r‖ function is the one that actually simulates random

numbers from that distribution. The other functions are prefixed with a

• d for density
• r for random number generation

• p for cumulative distribution

• q for quantile function (inverse cumulative distribution)

 If you’re only interested in simulating random numbers, then you will likely only need

the ―r‖ functions and not the others. However, if you intend to simulate from arbitrary

probability distributions using something like rejection sampling, then you will need the

other functions too.

 Probably the most common probability distribution to work with the Normal distribution

(also known as the Gaussian). Working with the Normal distributions requires using

these four functions

dnorm(x, mean = 0, sd = 1, log = FALSE)

pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

rnorm(n, mean = 0, sd = 1)

 Here we simulate standard Normal random numbers with mean 0 and standard deviation

1.

> ## Simulate standard Normal random numbers

> x <- rnorm(10)

> x

[1] 0.01874617 -0.18425254 -1.37133055 -0.59916772 0.29454513

[6] 0.38979430 -1.20807618 -0.36367602 -1.62667268 -0.25647839

 We can modify the default parameters to simulate numbers with mean 20 and standard

deviation 2.

> x <- rnorm(10, 20, 2)

> x

[1] 22.20356 21.51156 19.52353 21.97489 21.48278 20.17869 18.09011

[8] 19.60970 21.85104 20.96596

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

18.09 19.75 21.22 20.74 21.77 22.20

 If you wanted to know what was the probability of a random Normal variable of being

less than, say, 2, you could use the pnorm() function to do that calculation.

> pnorm(2)

[1] 0.9772499

 You never know when that calculation will come in handy

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 14/19

SETTING THE RANDOM NUMBER SEED

 When simulating any random numbers it is essential to set the random number seed.

Setting the random number seed with set.seed() ensures reproducibility of the sequence

of random numbers.

 For example, I can generate 5 Normal random numbers with rnorm()

> set.seed(1)

> rnorm(5)

[1] -0.6264538 0.1836433 -0.8356286 1.5952808 0.3295078

Note that if I call rnorm() again I will of course get a different set of 5

random numbers.

> rnorm(5)

[1] -0.8204684 0.4874291 0.7383247 0.5757814 -0.3053884

If I want to reproduce the original set of random numbers, I can just reset

the seed with set.seed().

> set.seed(1)

> rnorm(5) ## Same as before

[1] -0.6264538 0.1836433 -0.8356286 1.5952808 0.3295078

 In general, you should always set the random number seed when conducting a

simulation!

 Otherwise, you will not be able to reconstruct the exact numbers that you produced in an

analysis. It is possible to generate random numbers from other probability distributions

like the Poisson. The Poisson distribution is commonly used to model data that come in

the form of counts.

> rpois(10, 1) ## Counts with a mean of 1

[1] 0 0 1 1 2 1 1 4 1 2

> rpois(10, 2) ## Counts with a mean of 2

[1] 4 1 2 0 1 1 0 1 4 1

> rpois(10, 20) ## Counts with a mean of 20

[1] 19 19 24 23 22 24 23 20 11 22

plot of chunk Linear Model

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 15/19

SIMULATING A LINEAR MODEL

 Simulating random numbers is useful but sometimes we want to simulate values that

come from a specific model. For that we need to specify the model and then simulate

from it using the functions described above.

 Suppose we want to simulate from the following linear model

y = β0 + β1x + ε

where ε ∼ N (0, 2

2

). Assume x ∼ N (0, 1

2

), β0 = 0.5 and β1 = 2. The variable x might represent

an important predictor of the outcome y. Here’s how we could do that in R.

> ## Always set your seed!

> set.seed(20)

>

> ## Simulate predictor variable

> x <- rnorm(100)

>

> ## Simulate the error term

> e <- rnorm(100, 0, 2)

>

> ## Compute the outcome via the model

> y <- 0.5 + 2 * x + e

> summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-6.4080 -1.5400 0.6789 0.6893 2.9300 6.5050

We can plot the results of the model simulation.

> plot(x, y)

 What if we wanted to simulate a predictor variable x that is binary instead of having a

Normal distribution. We can use the rbinom() function to simulate binary random

variables.

> set.seed(10)

> x <- rbinom(100, 1, 0.5)

> str(x) ## 'x' is now 0s and 1s

int [1:100] 1 0 0 1 0 0 0 0 1 0 ...

Then we can procede with the rest of the model as before.

> e <- rnorm(100, 0, 2)

> y <- 0.5 + 2 * x + e

> plot(x, y)

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 16/19

plot of chunk Linear Model Binary

 We can also simulate from generalized linear model where the errors are no longer from

a Normal distribution but come from some other distribution. For examples, suppose we

want to simulate from a Poisson log-linear model where

Y ∼ P oisson(µ)

log µ = β0 + β1x

and β0 = 0.5 and β1 = 0.3. We need to use the rpois() function for this

> set.seed(1)

>

> ## Simulate the predictor variable as before

> x <- rnorm(100)

Now we need to compute the log mean of the model and then exponentiate it

to get the mean to

pass to rpois().

> log.mu <- 0.5 + 0.3 * x

> y <- rpois(100, exp(log.mu))

> summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 1.00 1.00 1.55 2.00 6.00

> plot(x, y)

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 17/19

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 17CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2017 – 2020

plot of chunk Poisson Log-Linear Model

 You can build arbitrarily complex models like this by simulating more predictors or

making transformations of those predictors (e.g. squaring, log transformations, etc.).

RANDOM SAMPLING

 The sample() function draws randomly from a specified set of (scalar) objects allowing

you to sample from arbitrary distributions of numbers.

> set.seed(1)

> sample(1:10, 4)

[1] 3 4 5 7

> sample(1:10, 4)

[1] 3 9 8 5

>

> ## Doesn't have to be numbers

> sample(letters, 5)

[1] "q" "b" "e" "x" "p"

>

> ## Do a random permutation

> sample(1:10)

[1] 4 7 10 6 9 2 8 3 1 5

> sample(1:10)

[1] 2 3 4 1 9 5 10 8 6 7

>

> ## Sample w/replacement

> sample(1:10, replace = TRUE)

[1] 2 9 7 8 2 8 5 9 7 8

 To sample more complicated things, such as rows from a data frame or a list, you can

sample the indices into an object rather than the elements of the object itself.

 Here’s how you can sample rows from a data frame.

> library(datasets)

> data(airquality)

> head(airquality)

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 18/19

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 17CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2017 – 2020

Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

5 NA NA 14.3 56 5 5

6 28 NA 14.9 66 5 6

 Now we just need to create the index vector indexing the rows of the data frame and

sample directly from that index vector.

> set.seed(20)

>

> ## Create index vector

> idx <- seq_len(nrow(airquality))

>

> ## Sample from the index vector

> samp <- sample(idx, 6)

> airquality[samp,]

Ozone Solar.R Wind Temp Month Day

135 21 259 15.5 76 9 12

117 168 238 3.4 81 8 25

43 NA 250 9.2 92 6 12

80 79 187 5.1 87 7 19

144 13 238 12.6 64 9 21

146 36 139 10.3 81 9 23

Other more complex objects can be sampled in this way, as long as there’s a way to index the

sub elements of the object.

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 19/19

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 17CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2017 – 2020

1. What is Debugging?

POSSIBLE QUESTIONS

UNIT – V

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

2. Define Random Samplings

3. What is the use of sample ()?

4. When the random number seed set?

5. Give some examples for probability distributions in R.

6. What are the Debugging tools in R programming

7. Define recover()

8. What is the process of debug ()?

9. What is meant by Simulation?

10. What is the use of traceback()?

PART – C (6 MARKS)

1. Explain the process of Debugging

2. Discuss the Debugging tools in R

3. Explain the process of traceback ()

4. Discuss in detail (i) recover () (ii) debug ()

5. Explain about system.time() with suitable examples

6. Explain about the R profiler

7. Explain how to simulate a linear model

8. Explain about Random Samplings

9. Explain about Simulation and its process

10. Explain the process of Using summaryRprof()

KARPAGAM ACADEMY OF HIGHER EDUCATION

Coimbatore – 641 021.

(For the Candidates admitted from 2018 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

UNIT - IV : (Objective Type Multiple choice Questions each Question carries one Mark)

R PROGRAMMING [18CAU404A]

PART - A (Online Examination)

Questions Opt1 Opt2 Opt3 Opt4 Key

Which of the following is apply function in R ? apply() tapply() fapply() sapply() tapply()

Functions are defined using the directive

and are stored as R objects

function()

funct()

functions()

func()

function()

Point out the wrong statement :

Functions in R

are “second class

objects”

The writing of a

function allows a

developer to

create an

interface to the

code, that is

explicitly

specified with a

set of

parameters

Functions

provides an

abstraction of

the code to

potential users

Functions in R are

“first class objects”

Functions in R

are “second

class objects”

What will be the output of the following code ? > f <-

function() { + ## This is an empty function

+ }

> class(f)

“data"

“procedure”

“function”

“class”

“function”

The function returns a list of all the formals() funct() formal() function() formals()

Point out the wrong statement :

Functions can be

nested, so that

you can define a

function inside of

another function

The value

returned by the

call to function is

not a function

A formal

argument can

be a symbol, a

statement of

the form

‘symbol =

expression’, or

the special

formal

argument

The first component

of the function

declaration is the

keyword function

A formal

argument can be

a symbol, a

statement of the

form ‘symbol =

expression’, or

the special

formal argument

You can check to see whether an R object is NULL is.null() is.nullobj() null() is.obj() is.null()

Which of the following code will print NULL ?

> args(pastebin)

> args(paste)

> args(pastebin)

> argc(pastebin)

> args(paste)

What will be the output of following code snippet ? “a+b” “a=b” “a:b” “a-b” “a:b”

What will be the output of following code ? > f <-

function(a, b) {

+ print(a)

+ print(b)

+ }

32

42

52

45

45

 is an indication that a fatal problem has

occurred and execution of the function stops

message

error

warning

stop

error

What would be the value of following expression ?

log(-1)

0

Null

Warning in log(-

1): NaNs

produced

1

Warning in log(-

1): NaNs

produced

Warnings are generated by the function warning() error() run() runif() warning()

Point out the correct statement :

POSIX represents

a portable

operating system

interface,

primarily for

UNIX systems

There are

different levels

of indication that

can be used,

ranging from

mere notification

to fatal error

The default

input format for

POSIX dates

consists of the

month,

followed by the

year and day,

separated by

slashes or

dashes

Dates are not stored

in the POSIX format

are date/time values

POSIX

represents a

portable

operating

system

interface,

primarily for

UNIX systems

To get the current date, the function will

return a Date object which can be converted to a

Sys.Time

Sys.Date

Sys.DateTime

Sys.TimeDate

Sys.Date

Which of the followin code represents internal

representation of a Date object ?

class(as.Date(“19

70-01-02”))

classint(as.Date(“

1970-01-02”))

unclass(as.Date

(“1970-01-02”))

unclassint(as.Date(“

1970-01-02”))

unclass(as.Date(

“1970-01-02”))

What will be the output of following code snippet ?

> lm <- function(x) { x * x }

function(x) { x * x

}

func(x) { x * x }

function(x) { x /

x }

funct(x) { x / x }

function(x) { x *

x }

Point out the correct statement :

The search list

can be found by

using the

searchlist()

function

The search list

can be found by

using the

search() function

The global

environment or

the user’s

workspace is

always the

second element

of the search

list

The search can be

found by using the

searchlt() function

The search list

can be found by

using the

search() function

A function, together with an environment, makes

up what is called a closure.

formal

function

reflective

unformal

function

R uses scoping or static scoping. reflective transitive lexical formal lexical

The only environment without a parent is the full half null empty empty

The for R are the main feature that make

it different from the original S language

scoping rules

closure rules

environment

rules

lexical rules

scoping rules

The function is a kind of “constructor

function” that can be used to construct other

make.pow()

make.power()

keep.power()

keep.pow()

make.power()

What will be the output of following code ? > g <-

function(x) {

+ a <- 3

+ x+a+y

+ ## 'y' is a free variable

+ }

9

42

8

Error

Error

 functions can be “built which contain all of

the necessary data for evaluating the function

Objective

reflective

Nested

lexical

Objective

 require you to pass a function whose

argument is a vector of parameters (

optimize()

optimise()

opt()

oplt()

opt()

The function is used to plot negative plot() graph() graph.plot() plot.graph() plot()

 loop over a list and evaluate a function on apply() lapply() sapply() mapply() apply()

Point out the wrong statement :

Multi-line

expressions with

curly braces are

just not that easy

to sort through

when working on

the command

line

lappy() loops

over a list,

iterating over

each element in

that list

lapply() does

not always

returns a list

lapply() always

returns a list,

regardless of the

class of the input.

lapply() does

not always

returns a list

 function is same as lapply in R apply() lapply() sapply() mapply() sapply()

Which of the following is multivariate version of apply() lapply() sapply() mapply() mapply()

Point out the correct statement :

lapply() takes

elements of the

list and passes

them as the first

argument of the

function you are

applying

You can use

lapply() to

evaluate a

function multiple

times each with

a different

argument

Functions that

you pass to

lapply() may

have other

arguments

The lapply() function

and its friends make

heavy use of

anonymous

functions.

The lapply()

function and its

friends make

heavy use of

anonymous

functions.

 applies a function over the margins of an apply() lapply() sapply() mapply() apply()

 is used to apply a function over subsets of apply() lapply() tapply() mapply() tapply()

lappy functions takes arguments in R two three four five four

Point out the wrong statement :

The sapply()

function behaves

similarly to

lapply()

With multiple

factors and many

levels, creating

an interaction

can result in

many levels that

are empty

apply() can be

thought of as a

combination of

split() and

sapply() for

vectors only

tapply() can be

thought of as a

combination of

split() and sapply()

for vectors only.

apply() can be

thought of as a

combination of

split() and

sapply() for

vectors only

The function takes a vector or other objects

and splits it into groups determined by a factor or

apply()

lsplit()

split()

mapply()

split()

What will be the output of the following code ? >

nLL <- make.NegLogLik(normals, c(1, FALSE))

> optimize(nLL, c(1e-6, 10))$minimum

1.217775

1.800596

3.73424

empty

1.800596

Point out the correct statement :

An environment

is a collection of

(symbol, value)

pairs, i.e. x is a

symbol and 3.14

might be its

value

If the value of a

symbol is not

found in the

environment in

which a function

was defined,

then the search

is continued in

the child

environment

After the top-

level

environment,

the search

continues down

the search list

until we hit the

parent

environment

Every environment

has a parent

environment and it

is not possible for an

environment to

have multiple

“children”.

An environment

is a collection of

(symbol, value)

pairs, i.e. x is a

symbol and 3.14

might be its

value

Point out the wrong statement :

Dynamic scoping

turns out to be

particularly

useful for

simplifying

statistical

computations

Lexical scoping

turns out to be

particularly

useful for

simplifying

statistical

computations

The scoping

rules of a

language

determine how

values are

assigned to free

variables

Free variables are

not formal

arguments and are

not local variables

Dynamic scoping

turns out to be

particularly

useful for

simplifying

statistical

computations

What would be the output of the following code ? >

printmessage <- function(x) {

+ if(x > 0)

+ print("x is greater than zero")

+ else

+ print("x is less than or equal to zero")

+ invisible(x)

+ }

> printmessage(NA)

Error

Warning

Messages

Data

Error

Arguments to functions are evaluated ,

so they are evaluated only as needed in the body of

completely

lazily

directly

inversely

lazily

In R the calling environment is known as the data frame child fram parent frame called frame parent frame

 turns out to be particularly useful for

simplifying statistical computations

scoping rules

Lexical scoping

dynamic

scoping

scoping

Lexical scoping

Optimization routines in R like , and

 require you to pass a function whose

argument is a vector of parameters

opti(), lm(), and

optimize()

opt(), nm(), and

optimi()

optim(), nlm(),

and optimize()

optim(), lmn(), and

optimize()

optim(), nlm(),

and optimize()

Optimization functions in R functions, so

you need to use the negative loglikelihood.

minimize

maximize

calling

return

minimize

The mapply() function can be use to automatically minimize maximize vectorize calling vectorize

The function can be used to divide an R

object in to subsets determined by another variable

which can subsequently be looped over using loop

apply()

lsplit()

split()

mapply()

split()

 expressions with curly braces are just

not that easy to sort through when working on the

looping

Multi-line

lexical

Single-line

Multi-line

we are passing the function as an mode() median() mean() split() mean()

The lapply() function and its friends make heavy use calling unanonymous anonymous member anonymous

What will be the output of the following code ? > f <-

function() {

+ ## This is an empty function

+ }

0

No result

NULL

Error

NULL

Which of the following code will print “Hello,

world!” ?

> f <- function() {

cat("Hello,

world!\n") } > f()

> f <- function() {

cat("Hello,

World!\n") } > f()

> f <- function()

{ cat("Hello

world!\n") } >

f()

> f <- function() {

cat("hello

World!\n") } > f()

> f <- function() {

cat("Hello,

world!\n") } > f()

What will be the output of following code ? > f <-

function(num) {

+ for(i in seq_len(num)) {

+ cat("Hello, world!\n")

+ }

+ }

Hello, world!

Hello, world!

Hello, world!

Hello, world!

Hello, world!

Hello, world!

Hello, world!

Hello, world!

Hello, world!

Hello, world!

Hello, world!

Hello, world!

Hello, world!

What will be the output of the following code ? > f <-

function(num = 1) {

+ hello <- "Hello, world!\n"

+ for(i in seq_len(num)) {

+ cat(hello)

+ }

+ chars <- nchar(hello) * num

+ chars

+ }

Hello, world! [1]
14

Hello, world!
[1] 15

Hello, world!
[1] 16

Hello, world! [1] 17

Hello, world!
[1] 14

What will be the output of following code ? > f <-

function(a, b) {

+ a^2

+ }

4

3

2

1

4

What will be the output of following code ? > f <-

function(a, b) {

+ print(a)

+ print(b)

+ }

32

42

52

45

45

What would be the output of the following code ? >

p <- as.POSIXlt(x)

> names(unclass(p))

1

2

3

4

1

 will not simplify the result and will apply() lapply() tapply() mapply() tapply()

 keeps track of the function call stack at

regularly sampled intervals and tabulates how much

summaryRprof()

Rprof()

system.time()

prof()

Rprof()

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 1/19

UNIT-V

SYLLABUS

DEBUGGING

SOMETHING’S WRONG!

 R has a number of ways to indicate to you that something’s not right. There are different

levels of indication that can be used, ranging from mere notification to fatal error.

 Executing any function in R may result in the following conditions.

• message: A generic notification/diagnostic message produced by the message()

function;

execution of the function continues

• warning: An indication that something is wrong but not necessarily fatal; execution of

the function continues. Warnings are generated by the warning() function

• error: An indication that a fatal problem has occurred and execution of the function

stops.Errors are produced by the stop() function.

• condition: A generic concept for indicating that something unexpected has occurred;

programmers can create their own custom conditions if they want.

 Here is an example of a warning that you might receive in the course of using R.

> log(-1)

Warning in log(-1): NaNs produced

[1] NaN

 This warning lets you know that taking the log of a negative number results in a NaN

value because you can’t take the log of negative numbers. Nevertheless, R doesn’t give

an error, because it has a useful value that it can return, the NaN value. The warning is

just there to let you know that something unexpected happens. Depending on what you

are programming, you may have intentionally taken the log of a negative number in order

to move on to another section of code.

 Here is another function that is designed to print a message to the console depending on

the nature of its input.

> printmessage <- function(x) {

+ if(x > 0)

+ print("x is greater than zero")

+ else

+ print("x is less than or equal to zero")

Debugging: Something’s Wrong! - Figuring Out What’s Wrong - Debugging Tools in R. Using

traceback() - Using debug() - Using recover(). Profiling R Code: Using system.time() . Timing

Longer Expressions - The R Profiler – Using summaryRprof().Simulation: Generating Random

Numbers - Setting the random number seed -Simulating a Linear Model - Random Sampling .

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 2/19

+ invisible(x)

+ }

 This function is simple—it prints a message telling you whether x is greater than zero or

less than or equal to zero. It also returns its input invisibly, which is a common practice

with ―print‖ functions.

 Returning an object invisibly means that the return value does not get auto-printed when

the function is called.

 Take a hard look at the function above and see if you can identify any bugs or problems.

 We can execute the function as follows.

> printmessage(1)

[1] "x is greater than zero"

 The function seems to work fine at this point. No errors, warnings, or messages.

> printmessage(NA)

Error in if (x > 0) print("x is greater than zero") else print("x is less than o\

r equal to zero"): missing value where TRUE/FALSE needed

 What happened?

o Well, the first thing the function does is test if x > 0. But you can’t do that test if x

is a NA or NaN value.

o R doesn’t know what to do in this case so it stops with a fatal error.

o We can fix this problem by anticipating the possibility of NA values and checking

to see if the input is NA with the is.na() function.

> printmessage2 <- function(x) {

+ if(is.na(x))

+ print("x is a missing value!")

+ else if(x > 0)

+ print("x is greater than zero")

+ else

+ print("x is less than or equal to zero")

+ invisible(x)

+ }

 Now we can run the following.

> printmessage2(NA)

[1] "x is a missing value!"

And all is fine.

 Now what about the following situation.

> x <- log(c(-1, 2))

Warning in log(c(-1, 2)): NaNs produced

> printmessage2(x)

Warning in if (is.na(x)) print("x is a missing value!") else if (x > 0)

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 3/19

print("x is greater than zero") else print("x is less than or equal to

zero"): the condition has length > 1 and only the first element will be

used

[1] "x is a missing value!"

 Now what?? Why are we getting this warning? The warning says ―the condition has

length > 1 and only the first element will be used‖.

 The problem here is that I passed printmessage2() a vector x that was of length 2 rather

than length

1. Inside the body of printmessage2() the expression is.na(x) returns a vector that is

tested in the if statement. However, if cannot take vector arguments so you get a

warning. The fundamental problem here is that printmessage2() is not vectorized.

2. We can solve this problem two ways. One is by simply not allowing vector

arguments. The other way is to vectorize the printmessage2() function to allow it

to take vector arguments.

 For the first way, we simply need to check the length of the input.

> printmessage3 <- function(x) {

+ if(length(x) > 1L)

+ stop("'x' has length > 1")

+ if(is.na(x))

+ print("x is a missing value!")

+ else if(x > 0)

+ print("x is greater than zero")

+ else

+ print("x is less than or equal to zero")

+ invisible(x)

+ }

 Now when we pass printmessage3() a vector we should get an error.

> printmessage3(1:2)

Error in printmessage3(1:2): 'x' has length > 1

Vectorizing the function can be accomplished easily with the Vectorize() function.

> printmessage4 <- Vectorize(printmessage2)

> out <- printmessage4(c(-1, 2))

[1] "x is less than or equal to zero"

[1] "x is greater than zero"

 You can see now that the correct messages are printed without any warning or error. Note

that I stored the return value of printmessage3() in a separate R object called out. This is

because when I use the Vectorize() function it no longer preserves the invisibility of the

return value

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 4/19

FIGURING OUT WHAT’S WRONG

 The primary task of debugging any R code is correctly diagnosing what the problem is.

When diagnosing a problem with your code (or somebody else’s), it’s important first

understand what you were expecting to occur. Then you need to identify what did occur

and how did it deviate from your expectations. Some basic questions you need to ask are

• What was your input? How did you call the function?
• What were you expecting? Output, messages, other results?

• What did you get?

• How does what you get differ from what you were expecting?

• Were your expectations correct in the first place?

• Can you reproduce the problem (exactly)?

 Being able to answer these questions is important not just for your own sake, but in

situations where you may need to ask someone else for help with debugging the problem.

Seasoned programmers will be asking you these exact questions.

DEBUGGING TOOLS IN R

 R provides a number of tools to help you with debugging your code. The primary tools

for debugging functions in R are

 traceback(): prints out the function call stack after an error occurs; does nothing if there’s

no error

 debug(): flags a function for ―debug‖ mode which allows you to step through execution

of a function one line at a time

 browser(): suspends the execution of a function wherever it is called and puts the function

in debug mode

 trace(): allows you to insert debugging code into a function a specific places

 recover(): allows you to modify the error behavior so that you can browse the function

call stack

 These functions are interactive tools specifically designed to allow you to pick through a

function.

 There’s also the more blunt technique of inserting print() or cat() statements in the

function.

Using traceback()

The traceback() function prints out the function call stack after an error has occurred. The

function

call stack is the sequence of functions that was called before the error occurred.

For example, you may have a function a() which subsequently calls function b() which calls c()

and

then d(). If an error occurs, it may not be immediately clear in which function the error occurred.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 5/19

The tracback() function shows you how many levels deep you were when the error occurred.

> mean(x)

Error in mean(x) : object 'x' not found

> traceback()

1: mean(x)

Here, it’s clear that the error occurred inside the mean() function because the object x does not

exist.

The traceback() function must be called immediately after an error occurs. Once another function

is called, you lose the traceback.

Here is a slightly more complicated example using the lm() function for linear modeling.

> lm(y ~ x)

Error in eval(expr, envir, enclos) : object ’y’ not found

> traceback()

7: eval(expr, envir, enclos)

6: eval(predvars, data, env)

5: model.frame.default(formula = y ~ x, drop.unused.levels = TRUE)

4: model.frame(formula = y ~ x, drop.unused.levels = TRUE)

3: eval(expr, envir, enclos)

2: eval(mf, parent.frame())

1: lm(y ~ x)

You can see now that the error did not get thrown until the 7th level of the function call stack, in

which case the eval() function tried to evaluate the formula y ∼ x and realized the object y did

not exist.

Looking at the traceback is useful for figuring out roughly where an error occurred but it’s not

useful

for more detailed debugging. For that you might turn to the debug() function.

Using debug()

The debug() function initiates an interactive debugger (also known as the ―browser‖ in R) for a

function. With the debugger, you can step through an R function one expression at a time to

pinpoint

exactly where an error occurs.

The debug() function takes a function as its first argument. Here is an example of debugging the

lm() function.

> debug(lm) ## Flag the 'lm()' function for interactive debugging

> lm(y ~ x)

debugging in: lm(y ~ x)

debug: {

ret.x <- x

ret.y <- y

cl <- match.call()

...

if (!qr)

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 6/19

z$qr <- NULL

z

}

Browse[2]>

Now, every time you call the lm() function it will launch the interactive debugger. To turn this

behavior off you need to call the undebug() function.

The debugger calls the browser at the very top level of the function body. From there you can

step

through each expression in the body. There are a few special commands you can call in the

browser:

• n executes the current expression and moves to the next expression

• c continues execution of the function and does not stop until either an error or the function

exits

• Q quits the browser

Here’s an example of a browser session with the lm() function.

Browse[2]> n ## Evalute this expression and move to the next one

debug: ret.x <- x

Browse[2]> n

debug: ret.y <- y

Browse[2]> n

debug: cl <- match.call()

Browse[2]> n

debug: mf <- match.call(expand.dots = FALSE)

Browse[2]> n

debug: m <- match(c("formula", "data", "subset", "weights", "na.action",

"offset"), names(mf), 0L)

While you are in the browser you can execute any other R function that might be available to you

in a regular session. In particular, you can use ls() to see what is in your current environment (the

function environment) and print() to print out the values of R objects in the function

environment.

You can turn off interactive debugging with the undebug() function.

undebug(lm) ## Unflag the 'lm()' function for debugging

Using recover()

The recover() function can be used to modify the error behavior of R when an error occurs.

Normally, when an error occurs in a function, R will print out an error message, exit out of the

function, and return you to your workspace to await further commands.

With recover() you can tell R that when an error occurs, it should halt execution at the exact

point

at which the error occurred. That can give you the opportunity to poke around in the environment

in which the error occurred. This can be useful to see if there are any R objects or data that have

been corrupted or mistakenly modified.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 7/19

> options(error = recover) ## Change default R error behavior

> read.csv("nosuchfile") ## This code doesn't work

Error in file(file, "rt") : cannot open the connection

In addition: Warning message:

In file(file, "rt") :

cannot open file ’nosuchfile’: No such file or directory

Enter a frame number, or 0 to exit

1: read.csv("nosuchfile")

2: read.table(file = file, header = header, sep = sep, quote = quote, dec =

3: file(file, "rt")

Selection:
The recover() function will first print out the function call stack when an error occurrs. Then, you

can choose to jump around the call stack and investigate the problem. When you choose a frame

number, you will be put in the browser (just like the interactive debugger triggered with debug())

and will have the ability to poke around.

PROFILING R CODE

 R comes with a profiler to help you optimize your code and improve its performance. In

generally, it’s usually a bad idea to focus on optimizing your code at the very beginning

of development. Rather, in the beginning it’s better to focus on translating your ideas into

code and writing code that’s coherent and readable. The problem is that heavily

optimized code tends to be obscure and difficult to read, making it harder to debug and

revise. Better to get all the bugs out first, and then focus on optimizing.

 Of course, when it comes to optimizing code, the question is what should you optimize?

Well, clearly should optimize the parts of your code that are running slowly, but how do

we know what parts those are? This is what the profiler is for. Profiling is a systematic

way to examine how much time is spent in different parts of a program.

 Sometimes profiling becomes necessary as a project grows and layers of code are placed

on top of each other. Often you might write some code that runs fine once. But then later,

you might put that same code in a big loop that runs 1,000 times. Now the original code

that took 1 second to run is taking 1,000 seconds to run! Getting that little piece of

original code to run faster will help the entire loop.

 It’s tempting to think you just know where the bottlenecks in your code are. I mean, after

all, you write it! But trust me, I can’t tell you how many times I’ve been surprised at

where exactly my code is spending all its time. The reality is that profiling is better than

guessing. Better to collect some data than to go on hunches alone. Ultimately, getting the

biggest impact on speeding up code depends on knowing where the code spends most of

its time. This cannot be done without some sort of rigorous performance analysis or

profiling.

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 8/19

 We should forget about small efficiencies, say about 97% of the time: premature

optimization is the root of all evil —Donald Knuth

 The basic principles of optimizing your code are:

• Design first, then optimize

• Remember: Premature optimization is the root of all evil

• Measure (collect data), don’t guess.

• If you’re going to be scientist, you need to apply the same principles here!

Using system.time()

 They system.time() function takes an arbitrary R expression as input (can be wrapped in

curly braces) and returns the amount of time taken to evaluate the expression. The

system.time() function computes the time (in seconds) needed to execute an expression

and if there’s an error, gives the time until the error occurred. The function returns an

object of class proc_time which contains two useful bits of information:

• user time: time charged to the CPU(s) for this expression
• elapsed time: ―wall clock‖ time, the amount of time that passes for you as you’re

sitting there Usually, the user time and elapsed time are relatively close, for

straight computing tasks. But there are a few situations where the two can

diverge, sometimes dramatically.

The elapsed time may be greater than the user time if the CPU spends a lot of

time waiting around.

This commonly happens if your R expression involes some input or output, which

depends on the activity of the file system and the disk (or the Internet, if using a

network connection).

The elapsed time may be smaller than the user time if your machine has multiple

cores/processors (and is capable of using them).

 For example, multi-threaded BLAS libraries (vecLib/Accelerate, ATLAS, ACML, MKL)

can greatly speed up linear algebra calculations and are commonly installed on even

desktop systems these days. Also, parallel processing done via something like the parallel

package can make the elapsed time smaller than the user time.

 When you have multiple processors/- cores/machines working in parallel, the amount of

time that the collection of CPUs spends working on a problem is the same as with a

single CPU, but because they are operating in parallel, there is a savings in elapsed time.

 Here’s an example of where the elapsed time is greater than the user time.

Elapsed time > user time

system.time(readLines("http://www.jhsph.edu"))

user system elapsed

0.004 0.002 0.431

http://www.jhsph.edu/

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 9/19

 Most of the time in this expression is spent waiting for the connection to the web server

and waiting for the data to travel back to my computer. This doesn’t involve the CPU and

so the CPU simply waits around for things to get done. Hence, the user time is small.

 In this example, the elapsed time is smaller than the user time.

Elapsed time < user time

> hilbert <- function(n) {

+ i <- 1:n

+ 1 / outer(i - 1, i, "+")

+ }

> x <- hilbert(1000)

> system.time(svd(x))

user system elapsed

1.035 0.255 0.462

 In this case I ran singular value decomposition on the matrix in x, which is a common

linear algebra procedure. Because my computer is able to split the work across multiple

processors, the elapsed time is about half the user time.

TIMING LONGER EXPRESSIONS

 You can time longer expressions by wrapping them in curly braces within the call to

system.time().

> system.time({

+ n <- 1000

+ r <- numeric(n)

+ for(i in 1:n) {

+ x <- rnorm(n)

+ r[i] <- mean(x)

+ }

+ })

user system elapsed

0.086 0.001 0.088

 If your expression is getting pretty long (more than 2 or 3 lines), it might be better to

either break it into smaller pieces or to use the profiler. The problem is that if the

expression is too long, you won’t be able to identify which part of the code is causing the

bottleneck.

THE R PROFILER

 Using system.time() allows you to test certain functions or code blocks to see if they are

taking excessive amounts of time. However, this approach assumes that you already

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 10/19

know where the problem is and can call system.time() on it that piece of code. What if

you don’t know where to start?

 This is where the profiler comes in handy. The Rprof() function starts the profiler in R.

Note that R must be compiled with profiler support (but this is usually the case). In

conjunction with Rprof(), we will use the summaryRprof() function which summarizes

the output from Rprof() (otherwise it’s not really readable). Note that you should NOT

use system.time() and Rprof() together, or you will be sad.

 Rprof() keeps track of the function call stack at regularly sampled intervals and tabulates

how much time is spent inside each function. By default, the profiler samples the function

call stack every 0.02 seconds. This means that if your code runs very quickly (say, under

0.02 seconds), the profiler is not useful. But of your code runs that fast, you probably

don’t need the profiler.

 The profiler is started by calling the Rprof() function.

> Rprof() ## Turn on the profiler

 You don’t need any other arguments. By default it will write its output to a file called

Rprof.out. You can specify the name of the output file if you don’t want to use this

default.

 Once you call the Rprof() function, everything that you do from then on will be measured

by the profiler. Therefore, you usually only want to run a single R function or expression

once you turn on the profiler and then immediately turn it off. The reason is that if you

mix too many function calls together when running the profiler, all of the results will be

mixed together and you won’t be able to sort out where the bottlenecks are. In reality, I

usually only run a single function with the profiler on.

 The profiler can be turned off by passing NULL to Rprof().

> Rprof(NULL) ## Turn off the profiler

 The raw output from the profiler looks something like this. Here I’m calling the lm()

function on some data with the profiler running.

lm(y ~ x)

sample.interval=10000

"list" "eval" "eval" "model.frame.default" "model.frame" "eval" "eval" "lm"

"list" "eval" "eval" "model.frame.default" "model.frame" "eval" "eval" "lm"

"list" "eval" "eval" "model.frame.default" "model.frame" "eval" "eval" "lm"

"list" "eval" "eval" "model.frame.default" "model.frame" "eval" "eval" "lm"

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm"

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm"

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm"

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm"

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm"

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm"

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm"

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 11/19

"lm.fit" "lm"

"lm.fit" "lm"

"lm.fit" "lm"

 At each line of the output, the profiler writes out the function call stack. For example, on

the very first line of the output you can see that the code is 8 levels deep in the call stack.

This is where you need the summaryRprof() function to help you interpret this data.

Using summaryRprof()

 The summaryRprof() function tabulates the R profiler output and calculates how much

time is spendin which function. There are two methods for normalizing the data.

• ―by.total‖ divides the time spend in each function by the total run time
• ―by.self‖ does the same as ―by.total‖ but first subtracts out time spent in

functions above the current function in the call stack. I personally find this output

to be much more useful.

 Here is what summaryRprof() reports in the ―by.total‖ output.

$by.total

total.time total.pct self.time self.pct

"lm" 7.41 100.00 0.30 4.05

"lm.fit" 3.50 47.23 2.99 40.35

"model.frame.default" 2.24 30.23 0.12 1.62

"eval" 2.24 30.23 0.00 0.00

"model.frame" 2.24 30.23 0.00 0.00

"na.omit" 1.54 20.78 0.24 3.24

"na.omit.data.frame" 1.30 17.54 0.49 6.61

"lapply" 1.04 14.04 0.00 0.00

"[.data.frame" 1.03 13.90 0.79 10.66

"[" 1.03 13.90 0.00 0.00

"as.list.data.frame" 0.82 11.07 0.82 11.07

"as.list" 0.82 11.07 0.00 0.00

 Because lm() is the function that I called from the command line, of course 100% of the

time is spent somewhere in that function. However, what this doesn’t show is that if lm()

immediately calls another function (like lm.fit(), which does most of the heavy lifting),

then in reality, most of the time is spent in that function, rather than in the top-level lm()

function.

 The ―by.self‖ output corrects for this discrepancy.

$by.self

self.time self.pct total.time total.pct

"lm.fit" 2.99 40.35 3.50 47.23

"as.list.data.frame" 0.82 11.07 0.82 11.07

"[.data.frame" 0.79 10.66 1.03 13.90

"structure" 0.73 9.85 0.73 9.85

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 12/19

"na.omit.data.frame" 0.49 6.61 1.30 17.54

"list" 0.46 6.21 0.46 6.21

"lm" 0.30 4.05 7.41 100.00

"model.matrix.default" 0.27 3.64 0.79 10.66

"na.omit" 0.24 3.24 1.54 20.78

"as.character" 0.18 2.43 0.18 2.43

"model.frame.default" 0.12 1.62 2.24 30.23

"anyDuplicated.default" 0.02 0.27 0.02 0.27

 Now you can see that only about 4% of the runtime is spent in the actual lm() function,

whereas over 40% of the time is spent in lm.fit(). In this case, this is no surprise since the

lm.fit() function is the function that actually fits the linear model.

 You can see that a reasonable amount of time is spent in functions not necessarily

associated with linear modeling (i.e. as.list.data.frame, [.data.frame). This is because the

lm() function does a bit of pre-processing and checking before it actually fits the model.

This is common with modeling functions—the preprocessing and checking is useful to

see if there are any errors. But those two functions take up over 1.5 seconds of runtime.

What if you want to fit this model 10,000 times?

 You’re going to be spending a lot of time in preprocessing and checking.

 The final bit of output that summaryRprof() provides is the sampling interval and the

total runtime.

$sample.interval

[1] 0.02

$sampling.time

[1] 7.41

SIMULATION

GENERATING RANDOM NUMBERS

 Simulation is an important (and big) topic for both statistics and for a variety of other

areas where there is a need to introduce randomness. Sometimes you want to implement a

statistical procedure that requires random number generation or samplie (i.e. Markov

chain Monte Carlo, the bootstrap, random forests, bagging) and sometimes you want to

simulate a system and random number generators can be used to model random inputs.

 R comes with a set of pseudo-random number generators that allow you to simulate from

well known probability distributions like the Normal, Poisson, and binomial. Some

example functions for probability distributions in R

• rnorm: generate random Normal variates with a given mean and standard

deviation

• dnorm: evaluate the Normal probability density (with a given mean/SD) at a

point (or vector of points)

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 13/19

• pnorm: evaluate the cumulative distribution function for a Normal distribution

• rpois: generate random Poisson variates with a given rate

 For each probability distribution there are typically four functions available that start with

a ―r‖, ―d‖, ―p‖, and ―q‖. The ―r‖ function is the one that actually simulates random

numbers from that distribution. The other functions are prefixed with a

• d for density
• r for random number generation

• p for cumulative distribution

• q for quantile function (inverse cumulative distribution)

 If you’re only interested in simulating random numbers, then you will likely only need

the ―r‖ functions and not the others. However, if you intend to simulate from arbitrary

probability distributions using something like rejection sampling, then you will need the

other functions too.

 Probably the most common probability distribution to work with the Normal distribution

(also known as the Gaussian). Working with the Normal distributions requires using

these four functions

dnorm(x, mean = 0, sd = 1, log = FALSE)

pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

rnorm(n, mean = 0, sd = 1)

 Here we simulate standard Normal random numbers with mean 0 and standard deviation

1.

> ## Simulate standard Normal random numbers

> x <- rnorm(10)

> x

[1] 0.01874617 -0.18425254 -1.37133055 -0.59916772 0.29454513

[6] 0.38979430 -1.20807618 -0.36367602 -1.62667268 -0.25647839

 We can modify the default parameters to simulate numbers with mean 20 and standard

deviation 2.

> x <- rnorm(10, 20, 2)

> x

[1] 22.20356 21.51156 19.52353 21.97489 21.48278 20.17869 18.09011

[8] 19.60970 21.85104 20.96596

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

18.09 19.75 21.22 20.74 21.77 22.20

 If you wanted to know what was the probability of a random Normal variable of being

less than, say, 2, you could use the pnorm() function to do that calculation.

> pnorm(2)

[1] 0.9772499

 You never know when that calculation will come in handy

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 14/19

SETTING THE RANDOM NUMBER SEED

 When simulating any random numbers it is essential to set the random number seed.

Setting the random number seed with set.seed() ensures reproducibility of the sequence

of random numbers.

 For example, I can generate 5 Normal random numbers with rnorm()

> set.seed(1)

> rnorm(5)

[1] -0.6264538 0.1836433 -0.8356286 1.5952808 0.3295078

Note that if I call rnorm() again I will of course get a different set of 5

random numbers.

> rnorm(5)

[1] -0.8204684 0.4874291 0.7383247 0.5757814 -0.3053884

If I want to reproduce the original set of random numbers, I can just reset

the seed with set.seed().

> set.seed(1)

> rnorm(5) ## Same as before

[1] -0.6264538 0.1836433 -0.8356286 1.5952808 0.3295078

 In general, you should always set the random number seed when conducting a

simulation!

 Otherwise, you will not be able to reconstruct the exact numbers that you produced in an

analysis. It is possible to generate random numbers from other probability distributions

like the Poisson. The Poisson distribution is commonly used to model data that come in

the form of counts.

> rpois(10, 1) ## Counts with a mean of 1

[1] 0 0 1 1 2 1 1 4 1 2

> rpois(10, 2) ## Counts with a mean of 2

[1] 4 1 2 0 1 1 0 1 4 1

> rpois(10, 20) ## Counts with a mean of 20

[1] 19 19 24 23 22 24 23 20 11 22

plot of chunk Linear Model

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 15/19

SIMULATING A LINEAR MODEL

 Simulating random numbers is useful but sometimes we want to simulate values that

come from a specific model. For that we need to specify the model and then simulate

from it using the functions described above.

 Suppose we want to simulate from the following linear model

y = β0 + β1x + ε

where ε ∼ N (0, 2

2

). Assume x ∼ N (0, 1

2

), β0 = 0.5 and β1 = 2. The variable x might represent

an important predictor of the outcome y. Here’s how we could do that in R.

> ## Always set your seed!

> set.seed(20)

>

> ## Simulate predictor variable

> x <- rnorm(100)

>

> ## Simulate the error term

> e <- rnorm(100, 0, 2)

>

> ## Compute the outcome via the model

> y <- 0.5 + 2 * x + e

> summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-6.4080 -1.5400 0.6789 0.6893 2.9300 6.5050

We can plot the results of the model simulation.

> plot(x, y)

 What if we wanted to simulate a predictor variable x that is binary instead of having a

Normal distribution. We can use the rbinom() function to simulate binary random

variables.

> set.seed(10)

> x <- rbinom(100, 1, 0.5)

> str(x) ## 'x' is now 0s and 1s

int [1:100] 1 0 0 1 0 0 0 0 1 0 ...

Then we can procede with the rest of the model as before.

> e <- rnorm(100, 0, 2)

> y <- 0.5 + 2 * x + e

> plot(x, y)

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 18CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2018 – 2021

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 16/19

plot of chunk Linear Model Binary

 We can also simulate from generalized linear model where the errors are no longer from

a Normal distribution but come from some other distribution. For examples, suppose we

want to simulate from a Poisson log-linear model where

Y ∼ P oisson(µ)

log µ = β0 + β1x

and β0 = 0.5 and β1 = 0.3. We need to use the rpois() function for this

> set.seed(1)

>

> ## Simulate the predictor variable as before

> x <- rnorm(100)

Now we need to compute the log mean of the model and then exponentiate it

to get the mean to

pass to rpois().

> log.mu <- 0.5 + 0.3 * x

> y <- rpois(100, exp(log.mu))

> summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 1.00 1.00 1.55 2.00 6.00

> plot(x, y)

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 17/19

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 17CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2017 – 2020

plot of chunk Poisson Log-Linear Model

 You can build arbitrarily complex models like this by simulating more predictors or

making transformations of those predictors (e.g. squaring, log transformations, etc.).

RANDOM SAMPLING

 The sample() function draws randomly from a specified set of (scalar) objects allowing

you to sample from arbitrary distributions of numbers.

> set.seed(1)

> sample(1:10, 4)

[1] 3 4 5 7

> sample(1:10, 4)

[1] 3 9 8 5

>

> ## Doesn't have to be numbers

> sample(letters, 5)

[1] "q" "b" "e" "x" "p"

>

> ## Do a random permutation

> sample(1:10)

[1] 4 7 10 6 9 2 8 3 1 5

> sample(1:10)

[1] 2 3 4 1 9 5 10 8 6 7

>

> ## Sample w/replacement

> sample(1:10, replace = TRUE)

[1] 2 9 7 8 2 8 5 9 7 8

 To sample more complicated things, such as rows from a data frame or a list, you can

sample the indices into an object rather than the elements of the object itself.

 Here’s how you can sample rows from a data frame.

> library(datasets)

> data(airquality)

> head(airquality)

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 18/19

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 17CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2017 – 2020

Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

5 NA NA 14.3 56 5 5

6 28 NA 14.9 66 5 6

 Now we just need to create the index vector indexing the rows of the data frame and

sample directly from that index vector.

> set.seed(20)

>

> ## Create index vector

> idx <- seq_len(nrow(airquality))

>

> ## Sample from the index vector

> samp <- sample(idx, 6)

> airquality[samp,]

Ozone Solar.R Wind Temp Month Day

135 21 259 15.5 76 9 12

117 168 238 3.4 81 8 25

43 NA 250 9.2 92 6 12

80 79 187 5.1 87 7 19

144 13 238 12.6 64 9 21

146 36 139 10.3 81 9 23

Other more complex objects can be sampled in this way, as long as there’s a way to index the

sub elements of the object.

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 19/19

KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: II BCA

COURSE CODE: 17CAU404A
COURSE NAME: R PROGRAMMING

UNIT - V BATCH: 2017 – 2020

1. What is Debugging?

POSSIBLE QUESTIONS

UNIT – V

PART – A (20 MARKS)

(Q.NO 1 TO 20 Online Examinations)

PART – B (2 MARKS)

2. Define Random Samplings

3. What is the use of sample ()?

4. When the random number seed set?

5. Give some examples for probability distributions in R.

6. What are the Debugging tools in R programming

7. Define recover()

8. What is the process of debug ()?

9. What is meant by Simulation?

10. What is the use of traceback()?

PART – C (6 MARKS)

1. Explain the process of Debugging

2. Discuss the Debugging tools in R

3. Explain the process of traceback ()

4. Discuss in detail (i) recover () (ii) debug ()

5. Explain about system.time() with suitable examples

6. Explain about the R profiler

7. Explain how to simulate a linear model

8. Explain about Random Samplings

9. Explain about Simulation and its process

10. Explain the process of Using summaryRprof()

KARPAGAM ACADEMY OF HIGHER EDUCATION

Coimbatore – 641 021.

(For the Candidates admitted from 2018 onwards)

DEPARTMENT OF COMPUTER SCIENCE, CA & IT

UNIT - V : (Objective Type Multiple choice Questions each Question carries one Mark)

R PROGRAMMING [18CAU404A]

PART - A (Online Examination)

Questions Opt1 Opt2 Opt3 Opt4 Key

 is an indication that a fatal problem has

occurred and execution of the function stops

message

error

warning

stop

error

What will be the value of following expression ?

Warning in log(c(-

1, 2)): NaNs

produced

Error in log(c(-1,

2)): NaNs

produced

Message

error

Error in log(c(-1, 2)):

NaNs produced

 prints out the function call stack after trace() traceback() back() backerror() traceback()

Point out the wrong statement :

The primary task

of debugging any

R code is

correctly

diagnosing what

the problem is

R provides only

two tools to help

you with

debugging your

code

print statement

can be used for

debugging

purpose

The traceback()

function must be

called immediately

after an error occurs

R provides only two

tools to help you

with debugging your

code

Which of the following is primary tool for debug() trace() browser() traceback() debug()

 allows you to insert debugging code into debug() trace() browser() traceback() trace()

Point out the correct statement :

The traceback()

function must be

called

immediately

after an error

occurs

The debugger

calls the browser

at the very low

level of the

function body

Every time you

call the mod()

function it will

launch the

interactive

debugger

R provides only two

tools to help you

with debugging your

code

The traceback()

function must be

called immediately

after an error occurs

 allows you to modify the error behavior so

that you can browse the function call stack

debug()

trace()

recover()

traceback()

recover()

 suspends the execution of a function

wherever it is called and puts the function in debug

debug()

trace()

recover()

browser()

browser()

debug() flags a function for mode in R debug run compile recover run

What would be the output of the following code ? >

mean(x)

Error in mean(x) : object 'x' not found

1: mean(x)

Null

0

1

1: mean(x)

The recover() function will first print out the

function call stack when an occurs.

Error

Warning

Messages

stop

Error

 is a systematic way to examine how

much time is spent in different parts of a program.

Profiling

Monitoring

Logging

Scheduling

Profiling

Point out the correct statement :

The Rprofiler()

function starts

the profiler in R

Using

system.time()

allows you to

test certain

functions or code

blocks to see if

they are taking

excessive

amounts of time

R must not be

compiled with

profiler support

Rprofiler() tabulates

how much time is

spent inside each

function

Using system.time()

allows you to test

certain functions or

code blocks to see if

they are taking

excessive amounts of

time

R comes with a to help you optimize your

code and improve its performance.

debugger

monitor

browser

profiler

debugger

http://s.igmhb.com/click?v=SU46MTE1MjE0OjI0NTU6Y2FsbCBhbmQgcHV0OjM4NWVhMGYzMDU1NDVkZWM1NzhmZTg1Y2I4NDI0NGQ2OnotMjQ0OS04ODI3OTE0MTp3d3cuc2FuZm91bmRyeS5jb206NDAyNDg4OmJlMGJlMTIwMWUyZWY2Yjk4MzMzMjBlMTgwZDk1YmQzOjYyNThhZTk0ZTlkYjQ0MWM4ZWZjZTk1YzAwNzNjNTdlOjE6ZGF0YV9zcyw3Mjh4MTM2NjtkYXRhX3JjLDI7ZGF0YV9mYixubzs6OTU1ODE4MjpvcHQzLDE6OjAuMjk&subid=g-88279141-ef2131d0d98f43c4b2f30a905c4dbf12-&data_ss=728x1366&data_rc=2&data_fb=no&data_tagname=A&data_ct=image_only&data_clickel=link
http://s.igmhb.com/click?v=SU46MTE1MjE0OjI0NTU6Y2FsbCBhbmQgcHV0OjM4NWVhMGYzMDU1NDVkZWM1NzhmZTg1Y2I4NDI0NGQ2OnotMjQ0OS04ODI3OTE0MTp3d3cuc2FuZm91bmRyeS5jb206NDAyNDg4OmJlMGJlMTIwMWUyZWY2Yjk4MzMzMjBlMTgwZDk1YmQzOjYyNThhZTk0ZTlkYjQ0MWM4ZWZjZTk1YzAwNzNjNTdlOjE6ZGF0YV9zcyw3Mjh4MTM2NjtkYXRhX3JjLDI7ZGF0YV9mYixubzs6OTU1ODE4MjpvcHQzLDE6OjAuMjk&subid=g-88279141-ef2131d0d98f43c4b2f30a905c4dbf12-&data_ss=728x1366&data_rc=2&data_fb=no&data_tagname=A&data_ct=image_only&data_clickel=link

The function computes the time (in

seconds) needed to execute an expression.

system.timedeb(

)

system.time()

system.datetim

e()

system.timedate()

system.time()

Point out the correct statement :

Rprofiler()

tabulates how

much time is

spent inside each

function

Rprof() keeps

track of the

function call

stack at regularly

sampled

intervals

By default, the

profiler samples

the function call

stack every 2

seconds

R must not be

compiled with

profiler support

Rprof() keeps track

of the function call

stack at regularly

sampled intervals

system.time function returns an object of class

 which contains two useful bits of

debug_time

proc_time

procedure_time

proced_time

proc_time

 time is time charged to the CPU(s) for elapsed user response request elapsed

The elapsed time may be than the user

time if your machine has multiple cores/processors

smaller

greater

equal to

not equal to

smaller

Parallel processing is done via package

can make the elapsed time smaller than the user

parallel

statistics

distributed

equal

parallel

You can time expressions by wrapping

them in curly braces within the call to

smaller

longer

error

warning

longer

The profiler can be turned off by passing 0 1 2 NULL NULL

Point out the correct statement :

Rprof() is used to

turn off the

profiler

At each line of

the output, the

profiler writes

out the function

call stack

The

summaryprof()

function

tabulates the R

profiler output

R must not be

compiled with

profiler support

At each line of the

output, the profiler

writes out the

function call stack

How many methods exist for normalizing the data ? one two three profiler two

 divides the time spend in each function by “by.sum” “by.total” “by.self” “by.mull” “by.total”

Point out the correct statement :

“by.total” first

subtracts out

time spent in

functions above

the current

function in the

call stack

The

summaryRprof()

function

calculates how

much time is

spend in which

function

By default, the

profiler samples

the function call

stack every 0.02

seconds

R must not be

compiled with

profiler support

By default, the

profiler samples the

function call stack

every 0.02 seconds

Which of the following function actually fits the lm.time() lm.date() lm.fit() lm.day() lm.fit()

 time is time charged to the CPU(s) for elapsed user response request elapsed

The final bit of output that summaryRprof()

provides is the interval and the total

response

sampling

processing

request

sampling

Which of the following statement gives sampling

interval ?

$sampling.interv

al

$sampling.time

$sampling.date

$sampling.day

$sampling.time

Which of the following code is not profiled ? C C++ Java .Net C

 generate random Normal variates with a

given mean and standard deviation

dnorm

rnorm

pnorm

rpois

rnorm

Point out the correct statement :

R comes with a

set of pseudo-

random number

generators

Random number

generators

cannot be used

to model random

inputs

Statistical

procedure does

not require

random

number

generation

For each probability

distribution there

are typically three

functions

R comes with a set of

pseudo-random

number generators

 evaluate the cumulative distribution function dnorm rnorm pnorm rpois pnorm

 generate random Poisson variates with a dnorm rnorm pnorm rpois rpois

Point out the wrong statement :

For each

probability

distribution there

are typically

three functions

For each

probability

distribution

there are

typically four

functions

r function is

sufficient for

simulating

random

numbers

R comes with a set

of pseudo-random

number generators

For each probability

distribution there are

typically three

functions

Which of the following evaluate the Normal

probability density (with a given mean/SD) at a

dnorm

rnorm

pnorm

rpois

dnorm

 is the most common probability Gaussian Parametric Paradox paradix Gaussian

What will be the output of the following code ? > 0.9772499 1.9772499 0.6772499 0.8772499 0.9772499

 ensures reproducibility of the sequence

of random numbers.

sets.seed()

set.seed()

set.seedvalue()

seedvalue()

set.seed()

Point out the correct statement :

It is not possible

to generate

random numbers

from other

probability

distributions like

the Poisson

When simulating

any random

numbers it is not

essential to set

the random

number seed

You should

always set the

random

number seed

when

conducting a

simulation

The sample()

function draws

randomly from a

specified set of

(scalar) objects

allowing you to

sample from

arbitrary

distributions of

numbers

You should always

set the random

number seed when

conducting a

simulation

5 Normal random numbers can be generated with

rnorm() by setting seed value to :

1

2

3

4

1

 function is used to simulate binary dnorm rbinom binom rpois rbinom

Point out the wrong statement :

Drawing samples

from specific

probability

distributions can

be done with “s”

functions

The sample()

function draws

randomly from a

specified set of

(scalar) objects

allowing you to

sample from

arbitrary

distributions of

numbers

The sampling()

function draws

randomly from

a specified set

of objects

You should always

set the random

number seed when

conducting a

simulation

The sample()

function draws

randomly from a

specified set of

(scalar) objects

allowing you to

sample from

arbitrary

distributions of

numbers

What will be the output of the following code ? >

set.seed(10)

> x <- rbinom(100, 1, 0.5)

int [1:100] 1 0 0
1 0 0 0 0 1 0

...

int [1:100] 10 0
01 1 0 0 01 0 1

0 ...

int [1:100] 1
03 0 1 0 0 0

02 1 0 ...

int [1:100] 1 2 3 1
1 0 0 0 1 0 ...

int [1:100] 1 0 0 1
0 0 0 0 1 0 ...

 distribution is commonly used to model

data that come in the form of counts.

Gaussian

Parametric

Poisson

Paradox

Poisson

What will be the output of the following code ? >
rpois(10, 1)

[1] 7 0 1 1 2 1
1 4 1 2

[1] 0 8 1 1 2 1
1 4 1 2

[1] 0 0 1 1 2 1
1 4 1 2

[1] 0 9 1 1 2 1 1 5
1 2

[1] 0 0 1 1 2 1 1 4
1 2

Which of the following code represents count with rpois(10, 2) rpois(10, 20) rpois(20, 2) rpois(2, 20) rpois(10, 2)

The function draws randomly from a

specified set of (scalar) objects allowing you to

sam()

seed()

sample()

samp()

sample()

 is an important (and big) topic for both

statistics and for a variety of other areas where

Simulation

samplie

distribution

normal

Simulation

Setting the number generator seed via

set.seed() is critical for reproducibility

arbitrary

sample

random

sequence

random

The function tabulates the R profiler

output and calculates how much time is spend in

prof()

summaryRprof()

Rprof()

Rpro()

summaryRprof()

Interactive debugging tools

 , , , and

 can be used to find problematic code in

functions

trace, debug,

browser,

backtrace, and

recover

traceback,

debug, browser,

trace, and

recover

traceback,

debug,

browser, trace,

and request

traceback, debug,

browser, request,

and recover

traceback, debug,

browser, trace, and

recover

The function will first print out the

function call stack when an error occurrs.

debug()

trace()

recover()

traceback()

recover()

In simulating linear model can also simulate

from where the errors are no

longer from a Normal distribution but come from

generalized

model

generalized

linear model

linear model

ungeneralized linear

model

generalized linear

model

Simulating numbers is useful but

sometimes we want to simulate values that come

arbitrary

sample

random

sequence

random

The function call stack is the of

functions that was called before the error occurred.

arbitrary

sample

random

sequence

sequence

In which case the function tried to

evaluate the formula y x and realized the object y

debug()

trace()

eval()

traceback()

eval()

 time charged to the CPU(s) for this sample.time user time elapsed time system.time user time

	1.pdf (p.1-2)
	2.pdf (p.3-20)
	UNIT-I SYLLABUS
	 What is S?
	THE S PHILOSOPHY
	BACK TO R
	BASIC FEATURES OF R
	FREE SOFTWARE
	DESIGN OF THE R SYSTEM
	LIMITATIONS OF R
	GETTING STARTED WITH R
	GETTING STARTED WITH THE R INTERFACE
	R NUTS AND BOLTS
	EVALUATION
	R OBJECTS
	NUMBERS
	ATTRIBUTES
	CREATING VECTORS
	MIXING OBJECTS
	[1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE
	EXPLICIT COERCION
	MATRICES
	LISTS
	TRU E
	NULL
	NULL (1)
	NULL (2)
	NULL (3)
	NULL FACTORS
	MISSING VALUES
	[1] FALSE FALSE TRUE FALSE FALSE
	[1] FALSE FALSE FALSE FALSE FALSE
	DATA FRAMES
	NAMES
	NULL (4)
	POSSIBLE QUESTIONS UNIT – I
	PART – C (6 MARKS)

	3.pdf (p.21-25)
	4.pdf (p.26-42)
	UNIT-II SYLLABUS
	READING DATA FILES WITH read.table()
	READING IN LARGER DATASETS WITH read.table
	CALCULATING MEMORY REQUIREMENTS FOR R OBJECTS
	USING THE readr PACKAGE
	USING TEXTUAL AND BINARY FORMATS FOR STORING DATA
	USING dput() AND dump()
	BINARY FORMATS
	INTERFACES TO THE OUTSIDE WORLD
	FILE CONNECTIONS
	 READING LINES OF A TEXT FILE
	READING FROM A URL CONNECTION
	SUBSETTING R OBJECTS
	SUBSETTING A VECTOR
	[1] FALSE TRUE TRUE TRUE TRUE FALSE
	SUBSETTING A MATRIX
	 Dropping matrix dimensions
	SUBSETTING LISTS
	NULL
	SUBSETTING NESTED ELEMENTS OF A LIST
	EXTRACTING MULTIPLE ELEMENTS OF A LIST
	PARTIAL MATCHING
	NULL (1)
	REMOVING NA VALUES
	[1] FALSE FALSE TRUE FALSE TRUE FALSE
	[1] TRUE TRUE FALSE TRUE FALSE TRUE
	POSSIBLE QUESTIONS UNIT – II
	PART – C (6 MARKS)

	5.pdf (p.43-48)
	6.pdf (p.49-75)
	UNIT-III SYLLABUS
	VECTORIZED MATRIX OPERATIONS
	DATES AND TIMES
	DATES IN R
	TIMES IN R
	OPERATIONS ON DATES AND TIMES
	MANAGING DATA FRAMES WITH THE DPLYR PACKAGE DATA FRAMES
	THE dplyr PACKAGE
	dplyr GRAMMAR
	 COMMON dplyr FUNCTION PROPERTIES
	INSTALLING THE dplyr PACKAGE
	select()
	filter()
	arrange()
	rename()
	mutate()
	group_by()
	%>%
	CONTROL STRUCTURES
	if-else
	if(<condition>) { ## do something
	if(<condition>) { ## do something (1)
	if(<condition1>) { ## do something
	## Generate a uniform random number x <- runif(1, 0, 10)
	y <- if(x > 3) { 10
	if(<condition1>) {
	> for(i in 1:10) {
	> for(i in 1:4) print(x[i])
	Nested for loops
	x <- matrix(1:6, 2, 3)
	while Loops
	> count <- 0
	> set.seed(1)
	x0 <- 1
	next, break.
	for(i in 1:100) { if(i <= 20) {
	for(i in 1:100) { print(i)
	POSSIBLE QUESTIONS UNIT – III
	PART – C (6 MARKS)

	7.pdf (p.76-82)
	8.pdf (p.83-101)
	> log(-1)
	> printmessage <- function(x) {
	> printmessage(1)
	> printmessage(NA)
	> printmessage2 <- function(x) {
	> printmessage2(NA)
	> x <- log(c(-1, 2))
	> printmessage3 <- function(x) {
	> printmessage4 <- Vectorize(printmessage2)
	> mean(x)
	> traceback() 1: mean(x)
	> lm(y ~ x)
	> traceback()
	> debug(lm) ## Flag the 'lm()' function for interactive debugging
	Browse[2]> n debug: ret.y <- y Browse[2]> n
	> options(error = recover) ## Change default R error behavior
	user system elapsed
	## Elapsed time < user time
	> system.time({
	> Rprof() ## Turn on the profiler
	> Rprof(NULL) ## Turn off the profiler
	## lm(y ~ x) sample.interval=10000
	$by.total
	$by.self
	$sample.interval [1] 0.02
	dnorm(x, mean = 0, sd = 1, log = FALSE)
	> ## Simulate standard Normal random numbers
	> x <- rnorm(10, 20, 2)
	> pnorm(2) [1] 0.9772499
	> set.seed(1)
	> rpois(10, 1) ## Counts with a mean of 1 [1] 0 0 1 1 2 1 1 4 1 2
	y = β0 + β1x + ε where ε ∼ N (0, 2
	> set.seed(10)
	Y ∼ P oisson(µ)
	> set.seed(1) (1)
	> library(datasets)
	> set.seed(20)
	POSSIBLE QUESTIONS UNIT – V
	PART – C (6 MARKS)

	9.pdf (p.102-109)
	10.pdf (p.110-128)
	> log(-1)
	> printmessage <- function(x) {
	> printmessage(1)
	> printmessage(NA)
	> printmessage2 <- function(x) {
	> printmessage2(NA)
	> x <- log(c(-1, 2))
	> printmessage3 <- function(x) {
	> printmessage4 <- Vectorize(printmessage2)
	> mean(x)
	> traceback() 1: mean(x)
	> lm(y ~ x)
	> traceback()
	> debug(lm) ## Flag the 'lm()' function for interactive debugging
	Browse[2]> n debug: ret.y <- y Browse[2]> n
	> options(error = recover) ## Change default R error behavior
	user system elapsed
	## Elapsed time < user time
	> system.time({
	> Rprof() ## Turn on the profiler
	> Rprof(NULL) ## Turn off the profiler
	## lm(y ~ x) sample.interval=10000
	$by.total
	$by.self
	$sample.interval [1] 0.02
	dnorm(x, mean = 0, sd = 1, log = FALSE)
	> ## Simulate standard Normal random numbers
	> x <- rnorm(10, 20, 2)
	> pnorm(2) [1] 0.9772499
	> set.seed(1)
	> rpois(10, 1) ## Counts with a mean of 1 [1] 0 0 1 1 2 1 1 4 1 2
	y = β0 + β1x + ε where ε ∼ N (0, 2
	> set.seed(10)
	Y ∼ P oisson(µ)
	> set.seed(1) (1)
	> library(datasets)
	> set.seed(20)
	POSSIBLE QUESTIONS UNIT – V
	PART – C (6 MARKS)

	11.pdf (p.129-134)

