
Semester – IV 

18CAU404A                      R PROGRAMMING                               3H – 3C 

Instruction Hours / week: L:3 T: 0 P: 0      Marks: Int : 40 Ext : 60 Total: 100 

End Semester Exam: 3 Hours   

Course Objectives : 

Upon successful completion of this course, students will be able to:  

• To acquire the computing tasks such as using conditional processing statements, loops, 

and writing one's own functions.  

• Perform basic and advanced graphing of data.  

• Use statistical distribution functions in R  

• Perform basic statistical modeling of data  

 

Course Outcome: 

• Learn how to install and configure software necessary for a statistical programming 

environment. 

• Discuss generic programming language concepts as they are implemented in a high-

level statistical language.  

• The course covers practical issues in statistical computing which includes programming 

in R, reading data into R, accessing R packages, writing R functions, debugging, and 

organizing and commenting R code.  

UNIT-I 

History and Overview of R : The S Philosophy - Back to R -Basic Features of R - Free Software 

-Design of the R System - Limitations of R- R Resources .Getting Started with R :Installation 

- Getting started with the R interface -.R Nuts and Bolts :Entering Input - Evaluation -R Objects 

- Numbers - Attributes - Creating Vectors - Mixing Objects - Explicit Coercion - Matrices -

Lists -Factors - Missing Values - Data Frames - Names . 

 

UNIT-II 

Getting Data In and Out of R :Reading and Writing Data - Reading Data Files with read.table() 

- Reading in Larger Datasets with read.table - Calculating Memory Requirements for R 

Objects . Using the readr Package .Using Textual and Binary Formats for Storing Data :Using 

dput() and dump() –  Binary Formats - Interfaces to the Outside World : File Connections - 

Reading Lines of a Text File -  Reading From a URL Connection - Subsetting R 

Objects :Subsetting a Vector - Subsetting a Matrix - Subsetting Lists -  Subsetting Nested 

Elements of a List - Extracting Multiple Elements of a List - Partial Matching -Removing NA 

Values .  

 

UNIT-III 

Vectorized Operations :Vectorized Matrix Operations .Dates and Times :Dates in R - Times in 

R - Operations on Dates and Times .Managing Data Frames with the dplyr package :Data 

Frames -The dplyr Package - dplyr Grammar - Installing the dplyr package  

- select() - filter() -arrange() - rename() -  mutate() - group_by()-%>%.Control Structures :if-

else - for Loops - Nested for loops - while Loops - repeat Loops - next, break . 



 

UNIT-IV 

Functions: Functions in R - Your First Function - Argument Matching - Lazy Evaluation – The  

Argument - Arguments Coming After the  Argument .Scoping Rules of R : A Diversion on 

Binding Values to Symbol - Scoping Rules - Lexical Scoping: Why Does It Matter? -Lexical 

vs. Dynamic Scoping -- Application: Optimization - Plotting the Likelihood. Coding Standards 

for R .Loop Functions : Looping on the Command Line - lapply() - sapply() - split() - Splitting 

a Data Frame - tapply - apply() -  Col/Row Sums and Means -Other Ways to Apply - mapply()-

Vectorizing a Function . 

 

UNIT-V 

Debugging -:Something’s Wrong! - Figuring Out What’s Wrong - Debugging Tools in R . 

Using traceback() - Using debug() - Using recover().Profiling R Code: Using system.time() . 

Timing Longer Expressions - The R Profiler - Using summaryRprof().Simulation :Generating 

Random Numbers - Setting the random number seed -Simulating a Linear Model - Random 

Sampling . 

 

 

Suggested Readings  

1. Daniel Navarro, (2013). Learning Statistics with R.  University of Adelaide 

Publications. 

2. Hadley Wickham, (2014). Advanced R Programming, (1st ed.) 

3. Jeffrey Stanton, (2013). Introduction to Data Science, with Introduction to R,  Version 

3 ,  

4. Roger.D.Peng, (2015). R Programming for Data Science 
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UNIT-I 

SYLLABUS 

 
 

 
 What is R? 

HISTORY AND OVERVIEW OF R 

 

 R is a dialect of S. 

 It is a sophisticated computer language and environment for statistical analysis and 

graphics. 

 

 What is S? 
 

 S is a language that was developed by John Chambers and others at the old Bell 

Telephone Laboratories, originally part of AT&T Corp. 

 S was initiated in 1976 as an internal statistical analysis environment—originally 

implemented as FORTRAN libraries. 

 Early versions of the language did not even contain functions for statistical modeling. 

 In 1988 the system was rewritten in C and began to resemble the system that we have 

today (this was Version 3 of the language). 

 The book Statistical Models in S by Chambers and Hastie (the white book) 

documents the statistical analysis functionality. Version 4 of the S language was 

released in 1998 and is the version we use today. 

 The book Programming with Data by John Chambers (the green book) documents 

this version of the language. 

 Since the early 90’s the life of the S language has gone down a rather winding path. 

In 1993 Bell Labs gave StatSci (later Insightful Corp.) an exclusive license to develop 

and sell the S language. In 2004 Insightful purchased the S language from Lucent for 

$2 million. In 2006, Alcatel purchased Lucent Technologies and is now called 

Alcatel-Lucent. 

 Insightful sold its implementation of the S language under the product name S-PLUS 

and built a number of fancy features (GUIs, mostly) on top of it—hence the ―PLUS‖. 

In 2008 Insightful was acquired by TIBCO for $25 million. As of this writing TIBCO 

is the current owner of the S language and is its exclusive developer. 

 The fundamental of the S language itself has not changed dramatically since the 

publication of the Green Book by John Chambers in 1998. In 1998, S won the 

History and Overview of R: The S Philosophy - Back to R -Basic Features of R – Free 

Software -Design of the R System - Limitations of R- R Resources. Getting Started with R: 

Installation - Getting started with the R interface -.R Nuts and Bolts: Entering Input -Evaluation 

-R Objects - Numbers - Attributes - Creating Vectors - Mixing Objects -Explicit Coercion - 

Matrices -Lists -Factors - Missing Values - Data Frames - Names. 

http://cm.bell-labs.com/stat/doc/94.11.ps
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Association for Computing Machinery’s Software System Award, a highly 

prestigious award in the computer science field. 

 
THE S PHILOSOPHY 

 

 The general S philosophy is important to understand for users of S and R because it sets 

the stage for the design of the language itself, which many programming veterans find a 

bit odd and confusing. 

  In particular, it’s important to realize that the S language had its roots in data analysis, 

and did not come from a traditional programming language background. 

 Its inventors were focused on figuring out how to make data analysis easier, first for 

themselves, and then eventually for others. 

 The key part here was the transition from user to developer. They wanted to build a 

language that could easily service both ―people‖. 

 More technically, they needed to build language that would be suitable for interactive 

data analysis (more command-line based) as well as for writing longer programs (more 

traditional programming language-like). 

BACK TO R 
 

 The R language came to use quite a bit after S had been developed. One key limitation of 

the S language was that it was only available in a commercial package, S-PLUS. 

 In 1991, R was created by Ross Ihaka and Robert Gentleman in the Department of 

Statistics at the University of Auckland. In 1993 the first announcement of R was made to 

the public. 

 In 1995, Martin Mächler made an important contribution by convincing Ross and Robert 

to use the GNU General Public License to make R free software. This was critical 

because it allowed for the source code for the entire R system to be accessible to anyone 

who wanted to tinker with it (more on free software later). 

 In 1996, a public mailing list was created (the R-help and R-devel lists) and in 1997 the R 

Core Group was formed, containing some people associated with S and S-PLUS. 

Currently, the core group controls the source code for R and is solely able to check in 

changes to the main R source tree. Finally, in 2000 R version 1.0.0 was released to the 

public. 

http://www.gnu.org/licenses/gpl-2.0.html
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BASIC FEATURES OF R 
 

 In the early days, a key feature of R was that its syntax is very similar to S, making it 

easy for S-PLUS users to switch over. While the R’s syntax is nearly identical to that of 

S’s, R’s semantics, while superficially similar to S, are quite different. 

 In fact, R is technically much closer to the Scheme language than it is to the original S 

language when it comes to how R works under the hood. 

 Today R runs on almost any standard computing platform and operating system. Its open 

source nature means that anyone is free to adapt the software to whatever platform they 

choose. Indeed, R has been reported to be running on modern tablets, phones, PDAs, and 

game consoles. 

 One nice feature that R shares with many popular open source projects is frequent 

releases. These days there is a major annual release, typically in October, where major 

new features are incorporated and released to the public. 

 Throughout the year, smaller-scale bugfix releases will be made as needed. The frequent 

releases and regular release cycle indicates active development of the software and 

ensures that bugs will be addressed in a timely manner. 

 Of course, while the core developers control the primary source tree for R, many people 

around the world make contributions in the form of new feature, bug fixes, or both. 

 Another key advantage that R has over many other statistical packages (even today) is its 

sophisticated graphics capabilities. 

 R’s ability to create ―publication quality‖ graphics has existed since the very beginning 

and has generally been better than competing packages. Today, with many more 

visualization packages available than before, that trend continues. R’s base graphics 

system allows for very fine control over essentially every aspect of a plot or graph. 

 Other newer graphics systems, like lattice and ggplot2 allow for complex and 

sophisticated visualizations of high-dimensional data. 

 R has maintained the original S philosophy, which is that it provides a language that is 

both useful for interactive work, but contains a powerful programming language for 

developing new tools. This allows the user, who takes existing tools and applies them to 

data, to slowly but surely become a developer who is creating new tools. 

 Finally, one of the joys of using R has nothing to do with the language itself, but rather 

with the active and vibrant user community. In many ways, a language is successful 

inasmuch as it creates a platform with which many people can create new things. R is that 

platform and thousands of people around the world have come together to make 

contributions to R, to develop packages, and help each other use R for all kinds of 
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applications. The R-help and R-devel mailing lists have been highly active for over a 

decade now and there is considerable activity on web sites like Stack Overflow. 

 
FREE SOFTWARE 

 

 A major advantage that R has over many other statistical packages and is that it’s free in 

the sense of frees software (it’s also free in the sense of free beer). The copyright for the 

primary source code for R is held by the R Foundation and is published under the GNU 

General Public License version. 

 According to the Free Software Foundation, with free software, you are granted the 

following four freedoms 

 The freedom to run the program, for any purpose (freedom 0). 

 The freedom to study how the program works, and adapt it to your needs 

(freedom 1). Access to the source code is a precondition for this. 

 The freedom to redistribute copies so you can help your neighbor (freedom 2). 

 The freedom to improve the program, and release your improvements to the 

public, so that the whole community benefits (freedom 3). Access to the source 

code is a precondition for this. 

 
DESIGN OF THE R SYSTEM 

 

 The primary R system is available from the Comprehensive R Archive Network, also 

known as CRAN. CRAN also hosts many add-on packages that can be used to extend the 

functionality of R. 

 The R system is divided into 2 conceptual parts: 

1. The ―base‖ R system that you download from CRAN: Linux, Windows, Mac Source 

Code 

2. Everything else. 

 R functionality is divided into a number of packages. 

 The  ―base‖  R  system  contains,  among  other  things,  the  base  package  which  is 

required to run R and contains the most fundamental functions. 

 The other packages contained in the ―base‖ system include utils, stats, datasets, 

graphics, grDevices, grid, methods, tools, parallel, compiler, splines, tcltk, 

stats4.There  are  also  ―Recommended‖  packages:  boot,  class,  cluster,  codetools, 

http://www.r-project.org/foundation/
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/philosophy/free-sw.html
http://cran.r-project.org/
http://cran.r-project.org/bin/linux/
http://cran.r-project.org/bin/linux/
http://cran.r-project.org/bin/macosx/
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foreign, KernS-mooth, lattice, mgcv, nlme, rpart, survival, MASS, spatial, nnet, 

Matrix. 

 When you download a fresh installation of R from CRAN, you get all of the above,  

which represents a substantial amount of functionality. However, there are many other 

packages available: 

 There are over 4000 packages on CRAN that have been developed by users and 

programmers around the world. 

 There are also many packages associated with the Bioconductor project. 

 People often make packages available on their personal websites; there is no 

reliable way to keep track of how many packages are available in this fashion. 

 There are a number of packages being developed on repositories like GitHub and 

BitBucket but there is no reliable listing of all these packages. 

 

LIMITATIONS OF R 
 

 No programming language or statistical analysis system is perfect. R certainly has a 

number of drawbacks. For starters, R is essentially based on almost 50 year old 

technology, going back to the original S system developed at Bell Labs. 

 There was originally little built in support for dynamic or 3-D graphics (but things have 

improved greatly since the ―old days‖). 

 Another commonly cited limitation of R is that objects must generally be stored in 

physical memory. This is in part due to the scoping rules of the language, but R generally 

is more of a memory hog than other statistical packages. 

  However, there have been a number of advancements to deal with this, both in the R 

core and also in a number of packages developed by contributors. 

 Also, computing power and capacity has continued to grow over time and amount of 

physical memory that can be installed on even a consumer-level laptop is substantial. 

While we will likely never have enough physical memory on a computer to handle the 

increasingly large datasets that are being generated, the situation has gotten quite a bit 

easier over time. 

 At  a  higher  level  one  ―limitation‖  of  R  is  that  its  functionality  is  based  on  consumer 

demand and (voluntary) user contributions. If no one feels like implementing your 

favorite method, then it’s your job to implement it (or you need to pay someone to do it). 

The capabilities of the R system generally reflect the interests of the R user community. 

http://bioconductor.org/
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As the community has ballooned in size over the past 10 years, the capabilities have 

similarly increased. 

 When I first started using R, there was very little in the way of functionality for the 

physical sciences (physics, astronomy, etc.). However, now some of those communities 

have adopted R and we are seeing more code being written for those kinds of 

applications. 

 

GETTING STARTED WITH R 

INSTALLATION 
 

 The first thing you need to do to get started with R is to install it on your computer. R 

works on pretty much every platform available, including the widely available Windows, 

Mac OS X, and Linux systems. 

 
 Installing R on Windows 

 Installing R on the Mac 

 There is also an integrated development environment available for R that is built by 

RStudio. I really like this IDE—it has a nice editor with syntax highlighting, there is an R 

object viewer, and there are a number of other nice features that are integrated. You can 

see how to install RStudio here 

• Installing RStudio 
 The RStudio IDE is available from RStudio’s web site. 

 

GETTING STARTED WITH THE R INTERFACE 
 

 After you install R you will need to launch it and start writing R code. Before we get to 

exactly how to write R code, it’s useful to get a sense of how the system is organized. In 

these two videos I talk about where to write code and how set your working directory, 

which let’s R know where to find all of your files. 

 Writing code and setting your working directory on the Mac 

 Writing code and setting your working directory on Windows 

http://youtu.be/Ohnk9hcxf9M
https://youtu.be/uxuuWXU-7UQ
https://youtu.be/bM7Sfz-LADM
http://rstudio.com/
https://youtu.be/8xT3hmJQskU
https://youtu.be/XBcvH1BpIBo
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R NUTS AND BOLTS 

ENTERING INPUT 
 

 At the R prompt we type expressions. The <- symbol is the assignment operator. 

> x <- 1 

> print(x) 

[1] 1 

> x 

[1] 1 

> msg <- "hello" 

 The grammar of the language determines whether an expression is complete or not. 

x <- ## Incomplete expression 

 The # character indicates a comment. Anything to the right of the # (including the # 

itself) is ignored. This is the only comment character in R. Unlike some other languages, 

R does not support multi-line comments or comment blocks. 

 
EVALUATION 

 

 When a complete expression is entered at the prompt, it is evaluated and the result of the 

evaluated expression is returned. The result may be auto-printed. 

> x <- 5 ## nothing printed 
> x## auto-printing occurs 

[1] 5 

> print(x) ## explicit printing 

[1] 5 

 The [1] shown in the output indicates that x is a vector and 5 is its first element. 

 Typically with interactive work, we do not explicitly print objects with the print function; 

it is much easier to just auto-print them by typing the name of the object and hitting 

return/enter. However, when writing scripts, functions, or longer programs, there is 

sometimes a need to explicitly print objects because auto-printing does not work in those 

settings. 

 When an R vector is printed you will notice that an index for the vector is printed in 

square brackets [] on the side. For example, see this integer sequence of length 20. 

> x <- 10:30 

> x 

[1] 10 11 12 13 14 15 16 17 18 19 20 

21 [13] 22 23 24 25 26 27 28 29 30 
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 The numbers in the square brackets are not part of the vector itself; they are merely part 

of the printed output. 

 With R, it’s important that one understand that there is a difference between the actual R 

object and the manner in which that R object is printed to the console. 

 Often, the printed output may have additional bells and whistles to make the output 

friendlier to the users. However, these bells and whistles are not inherently part of the 

object. 

 Note that the “:” operator is used to create integer sequences. 

 
R OBJECTS 

 R has five basic or ―atomic‖ classes of objects: 

 character 

 numeric (real numbers) 

 integer 

 complex 

 logical (True/False) 

 The most basic type of R object is a vector. Empty vectors can be created with the 

vector() function. There is really only one rule about vectors in R, which is that a vector 

can only contain objects of the same class. 

 But of course, like any good rule, there is an exception, which is a list, which we will get 

to a bit later. A list is represented as a vector but can contain objects of different classes. 

Indeed, that’s usually why we use them. 

 There is also a class for ―raw‖ objects, but they are not commonly used directly in data 

analysis and I won’t cover them here. 

 
NUMBERS 

 

 Numbers in R are generally treated as numeric objects (i.e. double precision real 

numbers).  This  means  that  even  if  you  see  a  number  like  ―1‖  or  ―2‖  in  R,  which  you 

might think of as integers, they are likely represented behind the scenes as numeric 

objects   (so   something   like   ―1.00‖   or   ―2.00‖).   This   isn’t   important   most   of   the 

time…except when it is. 

 If you explicitly want an integer, you need to specify the L suffix. So entering 1 in R 

gives you a numeric object; entering 1L explicitly gives you an integer object. 
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 There is also a special number Inf which represents infinity. This allows us to represent 

entities like 1 / 0. This way, Inf can be used in ordinary calculations; e.g. 1 / Inf is 0. 

 The value NaN represents an undefined value (―not a number‖); e.g. 0 / 0; NaN can also 

be thought of as a missing value (more on that later) 

 
ATTRIBUTES 

 

 R objects can have attributes, which are like metadata for the object. These metadata can 

be very useful in that they help to describe the object. For example, column names on a 

data frame help to tell us what data are contained in each of the columns. Some examples 

of R object attributes are 

 names, dimnames 

 dimensions (e.g. matrices, arrays) 

 class (e.g. integer, numeric) 

 length 

 other user-defined attributes/metadata 

 Attributes of an object (if any) can be accessed using the attributes() function. Not all R 

objects contain attributes, in which case the attributes() function returns NULL. 

 

CREATING VECTORS 

 The c() function can be used to create vectors of objects by concatenating things together. 
 

x <- c(0.5, 0.6)  ## numeric 

> x <- c(TRUE, FALSE) ## logical 

> x <- c(T, F)  ## logical 

> x       <- c("a", "b", "c") ## character 
 

> x <- 9:29 ## integer 

> x <- c(1+0i, 2+4i) ## 
Comple 
x 

 Note that in the above example, T and F are short-hand ways to specify TRUE and 

FALSE. However, in general one should try to use the explicit TRUE and FALSE values 

when indicating logical values. 

 You can also use the vector() function to initialize vectors. 

> x <- vector("numeric", length = 10) 

> x 

[1] 0 0 0 0 0 0 0 0 0 0 
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MIXING OBJECTS 

 There are occasions when different classes of R objects get mixed together. Sometimes 

this happens by accident but it can also happen on purpose. So what happens with the 

following code? 

> y <- c(1.7, "a") ## character 

> y <- c( TRUE, 2) ## numeric 

> y <- c("a", TRUE) ## character 

 In each case above, we are mixing objects of two different classes in a vector. But 

remember that the only rule about vectors says this is not allowed. When different objects 

are mixed in a vector, coercion occurs so that every element in the vector is of the same 

class. 

 In the example above, we see the effect of implicit coercion. What R tries to do is find a 

way to represent all of the objects in the vector in a reasonable fashion. Sometimes this 

does exactly what you want and…sometimes not. For example, combining a numeric 

object with a character object will create a character vector, because numbers can usually 

be easily represented as strings. 

> x <- 0:6 

> class(x) 

[1] "integer" 

> as.numeric(x) [1] 0 1 2 3 4 5 6 

> as.logical(x) 

[1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE 

> as.character(x) 

[1] "0" "1" "2" "3" "4" "5" "6" 

 

EXPLICIT COERCION 
 

 Objects can be explicitly coerced from one class to another using the as.* functions, if 

available. 

 Sometimes, R can’t figure out how to coerce an object and this can result in NAs being 

produced. 

> x <- c("a", "b", "c") 

> as.numeric(x) 

Warning: NAs introduced by coercion [1] NA NA NA 

> as.logical(x) 
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[1] NA NA NA 

> as.complex(x) 

Warning: NAs introduced by coercion 

[1] NA NA NA 

 When nonsensical coercion takes place, you will usually get a warning from R. 

 

MATRICES 
 

 Matrices are vectors with a dimension attribute. The dimension attribute is itself an  

integer vector of length 2 (number of rows, number of columns) 

> m <- matrix(nrow = 2, ncol = 3) 

> m 

[,1] [,2] [,3] 
[1,] NA NA NA 

[2,] NA NA NA 

> dim(m) [1] 2 3 

>  attributes(m) $dim 

[1] 2 3 

   Matrices are constructed column-wise, so entries can be thought of starting in the ―upper 

left‖ corner and running down the columns. 

> m <- matrix(1:6, nrow = 2, ncol = 3) 

> m 

[,1] [,2] [,3] 

[1,] 1 3 5 

[2,] 2 4 6 

 Matrices can also be created directly from vectors by adding a dimension attribute. 

 

> m <- 1:10 

> m 

[1]  1 2 3 4 5 6 7 8 9 10 

> dim(m) <- c(2, 5) 

> m 

[, 1] [, 2] [, 3] [, 4] [, 5] 
 

[1,] 1 3 5 7 9 

[2,] 2 4 6 8 10 
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 Matrices can be created by column-binding or row-binding with the cbind() and rbind() 

functions. 

> x <- 1:3 

> y <- 10:12 

> cbind(x, y) 

x y 

[1,] 1 10 

[2,] 2 11 

[3,] 3 12 

> rbind(x, y) 

[,1] [,2] [,3] 

x 1 2 3 

y 10 11 12 

 
LISTS 

 Lists are a special type of vector that can contain elements of different classes. Lists are a 

very important data type in R and you should get to know them well. Lists, in 

combination  with  the  various  ―apply‖  functions  discussed  later,  make  for  a  powerful 

combination. 

  Lists can be explicitly created using the list() function, which takes an arbitrary number  

of arguments. 

 

> x <- list(1, "a", TRUE, 1 + 4i) 

> x 

[[1]] 

[1] 1 

[[2]] 

[1] 

"a" 

 

[[3]] 

[1] 
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TRU 

E 

[[4]] 

[1] 

1+4i 

 

 We can also create an empty list of a prespecified length with the vector() function 

> x <- vector("list", length = 5) 

> x 

[[1]] 

NULL 

[[2]] 

NULL 

[[3]] 

NULL 

[[4]] 

NULL 

[[5]] 

NULL 

FACTORS 

 Factors are used to represent categorical data and can be unordered or ordered. One can 

think of a factor as an integer vector where each integer has a label. Factors are important 

in statistical modeling and are treated specially by modelling functions like lm() and 

glm(). 

 Using factors with labels is better than using integers because factors are self-describing. 

Having a variable that has values ―Male‖ and ―Female‖ is better than a variable that has 

values 1 and 2. 

 Factor objects can be created with the factor() function. 

> x <- factor(c("yes", "yes", "no", "yes", "no")) 

> x 

[1] yes yes no yes no 

Levels: no yes 

> table(x) 

x 
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no yes 

2 3 

> ## See the underlying representation of factor 

> unclass(x) 

[1] 2 2 1 2 

1 

attr(,"levels 

") [1] "no" 

"yes" 

 Often factors will be automatically created for you when you read a dataset in using a 

function like read.table(). Those functions often default to creating factors when they 

encounter data that look like characters or strings. 

 The order of the levels of a factor can be set using the levels argument to factor(). This 

can be important in linear modelling because the first level is used as the baseline level. 

> x <- factor(c("yes", "yes", "no", "yes", "no")) 
> x ## Levels are put in alphabetical order 

[1] yes yes no yes no Levels: no yes 

> x <- factor(c("yes", "yes", "no", 

"yes", "no"), + levels = c("yes", "no")) 

> x 

[1] yes yes no yes no Levels: yes no 

 

MISSING VALUES 
 

 

 Missing values are denoted by NA or NaN for q undefined mathematical operations. 

 is.na() is used to test objects if they are NA 

 is.nan() is used to test for NaN 

 NA values have a class also, so there are integer NA, character NA, etc. 

 A NaN value is also NA but the converse is not true 

> ## Create a vector with NAs in it 

> x <- c(1, 2, NA, 10, 3) 

> ## Return a logical vector indicating which elements are NA 

> is.na(x) 
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[1] FALSE FALSE TRUE FALSE FALSE 

> ## Return a logical vector indicating which elements are NaN 

> is.nan(x) 

[1] FALSE FALSE FALSE FALSE FALSE 

 
> ## Now create a vector with both NA and NaN values 

> x <- c(1, 2, NaN, NA, 4) 

> is.na(x) 
 

[1] 

FALSE 

 

FALSE 

 

TRUE TRUE FALSE 

> is.nan(x)   

[1] 
FALSE 

 

FALSE 
 

TRUE FALSE FALSE 

 
DATA FRAMES 

 Data frames are used to store tabular data in R. They are an important type of object in R 

and are used in a variety of statistical modeling applications. Hadley Wickham’s package 

dplyr has an optimized set of functions designed to work efficiently with data frames. 

 Data frames are represented as a special type of list where every element of the list has to 

have the same length. Each element of the list can be thought of as a column and the 

length of each element of the list is the number of rows. 

 Unlike matrices, data frames can store different classes of objects in each column. 

Matrices must have every element be the same class (e.g. all integers or all numeric). 

 In addition to column names, indicating the names of the variables or predictors, data 

frames have a special attribute called row.names which indicate information about each 

row of the data frame. 

 Data frames are usually created by reading in a dataset using the read.table() or 

read.csv(). However, data frames can also be created explicitly with the data.frame() 

function or they can be coerced from other types of objects like lists. 

 Data frames can be converted to a matrix by calling data.matrix(). While it might seem 

that the as.matrix() function should be used to coerce a data frame to a matrix, almost 

always, what you want is the result of data.matrix(). 

> x <- data.frame(foo = 1:4, bar = c(T, T, F, F)) 

> x 

https://github.com/hadley/dplyr
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NAMES 

foo bar 

1 1 TRUE 

2 2 TRUE 

3 3 FALSE 

4 4 FALSE 

> nrow(x) 

[1] 4 

> ncol(x) 

[1] 2 

 

 R objects can have names, which is very useful for writing readable code and self- 

describing objects. Here is an example of assigning names to an integer vector. 

 

> x <- 1:3 

> names(x) 

NULL 

> names(x) <- c("New York", "Seattle", "Los Angeles") 

> x 
 

New York Seattle Los Angeles 

1 2 3 

> names(x)   

[1] "New York" "Seattle" "Los Angeles" 

Lists can also have names, which is often very useful. 

 
> x <- list("Los Angeles" = 1, Boston = 2, London = 3) 

> x 

$`Los 

Angeles` [1] 

1 

$Boston 

[1] 2 

$London 

[1] 3 

> names(x) 

[1] "Los Angeles" "Boston" "London" 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
CLASS: II BCA 

COURSE CODE: 18CAU404A 
COURSE NAME: R PROGRAMMING 

UNIT - I BATCH: 2018 – 2021 

Prepared by Mr.S. KARTHIK  , Asst Prof, Dept of CS, CA & IT, KAHE Page 17/18 

 

 

 
 

> m <- matrix(1:4, nrow = 2, ncol = 2) 

> dimnames(m) <- list(c("a", "b"), c("c", "d")) 

> m 

c d 

a 1 3 

b 2 4 

 Column names and row names can be set separately using the colnames() and 

rownames() functions. 

 

 
> colnames(m) <- c("h", "f") 

> rownames(m) <- c("x", "z") 

> m 

h f 

x 1 3 

z 2 4 

 Note that for data frames, there is a separate function for setting the row names, the 

row.names() function. Also, data frames do not have column names, they just have names 

(like lists). So to set the column names of a data frame just use the names() function. 

 

 

 

Object Set column names Set row names 

data frame names() row.names() 

matrix colnames() rownames( 
 

 Matrices can have both column and row names. 
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POSSIBLE QUESTIONS 

UNIT – I 

PART – A (20 MARKS) 

(Q.NO 1 TO 20 Online Examinations) 
 

 

PART – B (2 MARKS) 

1. What is R? 

2. What is S? 

3. Define Vector 

4. List the types of Data objects. 

5. Define Matrices 

6. Define List 

7. Define Factor 

8. List the data types in R 

9. Define Data frame 

10. How to create names in R programming? 

 

 

PART – C (6 MARKS) 

1. Explain the history and overview of R 

2. Explain the Basic Features of R programming 

3. Explain about Design of the R System 

4. Write in detail: (i) Limitations of R (ii) R Resources 

5. Explain the steps involved in R installation 

6. Explain the data types or R objects 

7. Explain the types of Data objects in R 

8. Explain how to create vectors with suitable example 

9. Write in detail (i) matrices (ii) Data Frames 

10. Explain how to create number and Attributes in R programming 

11. Write a R program to demonstrate Operators 



 

KARPAGAM ACADEMY OF HIGHER EDUCATION 

Coimbatore – 641 021. 

(For the Candidates admitted from 2018 onwards) 
 

 

DEPARTMENT OF COMPUTER SCIENCE, CA & IT 

UNIT - I : (Objective Type Multiple choice Questions each Question carries one Mark) 

R PROGRAMMING [ 18CAU404A] 

PART - A (Online Examination) 

 
Questions Opt1 Opt2 Opt3 Opt4 Key 

  programming language is a dialect of S. B C R K R 

Lucent for $2 million Insightful Amazon IBM Google Insightful 

In 1991, R was created by Ross Ihaka and Robert 

Gentleman in the Department of Statistics at the 

University of    

 

 
John Hopkins 

 

 
California 

 

 
Harvard 

 

 
Auckland 

 

 
Auckland 

Finally, in  R version 1.0.0 was released 

to the public. 
 
2000 

 
2005 

 
2010 

 
2012 

 
2000 

 

R is technically much closer to the Scheme 

language than it is to the original  language. 

 

 
B 

 

 
C 

 

 
C++ 

 

 
S 

 

 
S 

The R-help and  mailing lists have been 

highly active for over a decade now 
 
R-mail 

 
R-devel 

 
R-dev 

 
Rcell 

 
R-devel 

 
Which of the following describes R language ? 

 
Free 

 
Paid 

Available for 

free trial only 
 
Trail 

 
Free 

The copyright for the primary source code for R is 

held by the  Foundation. 
 
A 

 
S 

 
C++ 

 
R 

 
R 

They primary R system is available from the  
CRAN 

 
CRWO 

 
GNU 

 
RAN 

 
CRAN 

R functionality is divided into a number of 

   
 
Packages 

 
Functions 

 
Domains 

 
Library 

 
Packages 



The  R system contains, among other 

things, the base package which is required to run 

R and 

 

 
root 

 

 
child 

 

 
base 

 

 
private 

 

 
base 

Which of the following is a base package for R 

language ? 
 
util 

 
lang 

 
tools 

 
stats 

 
tools 

Which of the following is “Recommended” 

package in R ? 
 
util 

 
lang 

 
stats 

 
spatial 

 
spatial 

How many packages exist in R language for 

statistics ? 
 
2000 

 
3000 

 
4000 

 
5000 

 
4000 

Advanced users can write  code to manipulate 

R objects directly. 
 
C 

 
C++ 

 
Java 

 
PHP 

 
C 

Which of the following is used for Statistical 

analysis in R language ? 
 
RStudio 

 
Studio 

 
Heck 

 
Rstat 

 
RStudio 

R has how many atomic classes of objects ? 1 3 5 2 5 

Numbers in R are generally treated as    

precision real numbers. 
 
single 

 
double 

 
real 

 
integer 

 
double 

If you explicitly want an integer, you need to 

specify the  suffix. 
 
D 

 
R 

 
L 

 
T 

 
L 

R objects can have attributes, which are like 

  for the object. 
 
metadata 

 
features 

 
expression 

 
data 

 
metadata 

What would be the result of following code ? > x<- 

2 class(a) 
 
"integer" 

 
"numeric" 

 
"logical" 

 
"real" 

 
"numeric" 

 

Which of the following statement would print “0” 

“1” “2” “3” “4” “5” “6” for the following code ? 

 

 
as.character(x) 

 

 
as.logical(x) 

 

 
as.numeric(x) 

 

 
as.integer(x) 

 

 
as.character(x) 

 

 

 

 

 

 

 

 

Point out the wrong statement : 

 

 
The grammar of 

the language 

determines 

whether an 

expression is 

complete or not 

 

 

 

 

 

The <- symbol is 

the assignment 

operator in R 

 

 

 

 
The ## 

character 

indicates a 

comment 

 

 

 

 

 

The = symbol is also 

the assignment 

operator in R 

 

 

 

 

 

 
 

The ## character 

indicates a comment 



 
Files containing R scripts ends with extension : 

 
.S 

 
.R 

 
.Rp 

 
.RR 

 
.R 

 

 

 

 

 

 

 

 

Point out the wrong statement : 

 

 

 

 

 

: operator is used 

to create integer 

sequences 

 

 

 
The numbers in 

the square 

brackets are part 

of the vector 

itself 

 

 

 

 

The numbers in 

the paranthesis 

are part of the 

vector itself 

 
There is a difference 

between the actual 

R object and the 

manner in which 

that R object is 

printed to the 

console 

 

 

 

 

 

The numbers in the 

square brackets are part 

of the vector itself 

The entities that R creates and manipulates are 

known as    
 
objects 

 
task 

 
container 

 
function 

 
objects 

Which of the following can be used to display the 

names of (most of) the objects which are 

currently stored within R ? 

 

 
object() 

 

 
objects() 

 

 
list() 

 

 
data.frame() 

 

 
objects() 

Collection of objects currently stored in R is called 

as : 
 
package 

 
workspace 

 
list 

 
objects 

 
workspace 

R objects can have attributes, which are like 

  for the object 
 
data 

 
metadata 

 
list 

 
package 

 
metadata 

Matrices can be created by column-binding or 

row-binding with the  and    

functions. 

 

rowbind() and 

columnbind() 

 

r_bind() and 

c_bind() 

 

rbind() and 

cbind() 

 

rowbind() and 

colbind() 

 

 
rbind() and cbind() 

  are a special type of vector that can 

contain elements of different classes 
 
factors 

 
matrices 

 
data frames 

 
list 

 
list 

 

  are used to represent categorical 

data and can be unordered or ordered 

 

 
factors 

 

 
matrices 

 

 
data frames 

 

 
list 

 

 
factors 

 
  is used to test objects if they are NA 

 
is.nan() 

 
is.na() 

 
na() 

 
as.na() 

 
is.na() 

 
  is used to test objects if they are NAN 

 
is.nan() 

 
is.na() 

 
na() 

 
as.na() 

 
is.nan() 

R objects can have  , which is very useful 

for writing readable code and self-describing 

objects. 

 

 
list 

 

 
matrices 

 

 
attributes 

 

 
names 

 

 
names 



Column names and row names can be set 

separately using the  and    

functions. 

 

colnames() and 

rownames() 

 

cnames() and 

rnames() 

col_names() 

and 

row_names() 

 

columnnames() and 

rownames() 

 

colnames() and 

rownames() 

A  can only contain objects of the same 

class. 
 
list 

 
vector 

 
data frames 

 
factor 

 
vector 

 

 

 

 

 

 

 

 

 
Point out the wrong statement : 

 

 

 

 

 

Key feature of R 

was that its 

syntax is very 

similar to S 

 

 

 

 
R runs only on 

Windows 

computing 

platform and 

operating system 

 

 
R has been 

reported to be 

running on 

modern tablets, 

phones, PDAs, 

and game 

consoles 

  

 

 

 

 

 
 

R runs only on Windows 

computing platform and 

operating system 

 
Who developed S? 

 
Dennis Ritchie 

Bjarne 

Stroustrup 
 
James Gosling 

 
John Chambers 

 
John Chambers 

 

R is an Interpreted Language so it can access 

through    

 

Disk Operating 

System 

User Interface 

Operating 

System 

 

Operating 

System 

 

Command Line 

Interpreter 

 

Command Line 

Interpreter 

R supports  arithmetic logical basic matrix vector matrix 

 

The sequence and number of observations in the 

vectors must be the same for each vector in the 

Data Frame to represent a     

 

 

 
Record 

 

 

 
Data object 

 

 

 
Data 

 

 

 
Data Sets 

 

 

 
Data Sets 

Matrices must have every element be the    

class 
 
same 

 
different 

 
literal 

 
unique 

 
same 

Data frames can be converted to a matrix by 

calling    
 
data.frame() 

 
data() 

 
data.matrix() 

 
frame() 

 
data.matrix() 

 
Matrices are vectors with a  attribute 

 
type 

 
nrow 

 
dimension 

 
ncol 

 
dimension 

 
The <- Symbol is the  operator 

Comparison 

Operator 

Assignment 

Operator 

Logical 

Operator 
 
Boolean Operator 

 
Assignment Operator 

  can store different classes of objects 

in each column 
 
data frames 

 
matrices 

 
lists 

 
factors 

 
data frames 

http://data-flair.training/blogs/r-matrices-operations-applications/


Factor objects can be created with the    

function. 
 
data() 

 
factors() 

 
fact() 

 
factor() 

 
factor() 

Missing values are denoted by  or  for q 

undefined mathematical operations. 
 
NA or NaN 

 
NA or AS 

 
Naan or No 

 
N or Naa 

 
NA or NaN 

Objects can be explicitly coerced from one class 

to another using the  functions 
 
.(datatype) 

 
as.* 

 
.(datatype)as 

 
as() 

 
as.* 

R does not support  comments or 

comment blocks. 
 
single line 

 
* 

 
multi line 

 
// 

 
multi line 

Attributes of an object (if any) can be accessed 

using the  function 
 
attrib() 

 
att() 

 
attr() 

 
attributes() 

 
attributes() 

Numbers in R are generally treated as    

objects 
 
integer 

 
real 

 
numeric 

 
number 

 
numeric 

>m <- matrix(nrow = 2, ncol = 3) >m > 

attributes(m) 
 
2 3 

 
3 2 

 
dim 

 
NA 

 
dim 

  function to find the data type of the 

variable 
 
datatype() 

 
class() 

 
type() 

 
cls() 

 
class() 

The  Function get the current working 

directory 
 
get() 

 
getwd() 

 
getw() 

 
wd() 

 
getwd() 

To change current working directory use    

function 
 
set() 

 
setw() 

 
swd() 

 
setwd() 

 
setwd() 

 

A  is a vector object used to specify a 

discrete classification (grouping) of the 

components of other vectors of the same length 

 

 

 
data frames 

 

 

 
list 

 

 

 
factor 

 

 

 
vector 

 

 

 
factor 

  replicates the value repl rep replicate rep_c rep 

 
Which function is used to transpose data frame? 

 
t() 

 
ti() 

 
transpose() 

 
trans() 

 
t() 
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UNIT-II 

SYLLABUS 

 

 

 

 

 

 

 

 

 

 

 

 
 

GETTING DATA IN AND OUT OF R 
 

READING AND WRITING DATA 
 

 There are a few principal functions reading data into R.

 read.table, read.csv, for reading tabular data 

 readLines, for reading lines of a text file 

 source, for reading in R code files (inverse of dump) 

 dget, for reading in R code files (inverse of dput) 

 load, for reading in saved workspaces 

 unserialize, for reading single R objects in binary form 

 There are of course, many R packages that have been developed to read in all kinds of 

other datasets, and you may need to resort to one of these packages if you are working in 

a specific area.

 There are analogous functions for writing data to files

 write.table, for writing tabular data to text files (i.e. CSV) or connections 

 writeLines, for writing character data line-by-line to a file or connection 

 dump, for dumping a textual representation of multiple R objects 

 dput, for outputting a textual representation of an R object 

 save, for saving an arbitrary number of R objects in binary format (possibly 

compressed) to a file. 

 serialize, for converting an R object into a binary format for outputting to a 

connection (or file). 

Getting Data In and Out of R: Reading and Writing Data - Reading Data Files with  

read.table() - Reading in Larger Datasets with read.table - Calculating Memory Requirements for 

R Objects . Using the readr Package .Using Textual and Binary Formats for Storing Data: 

Using dput() and dump() – Binary Formats - Interfaces to the Outside World : File 

Connections - Reading Lines of a Text File - Reading From a URL Connection - Subsetting R 

Objects :Subsetting a Vector - Subsetting a Matrix – Subsetting Lists - Subsetting Nested 

Elements of a List - Extracting Multiple Elements of a List - Partial Matching -Removing NA 

Values . 
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READING DATA FILES WITH read.table() 

 

 The read.table() function is one of the most commonly used functions for reading data. 

The help file for read.table() is worth reading in its entirety if only because the function 

gets used a lot (run read.table in R).

 The read.table() function has a few important arguments:

 file, the name of a file, or a connection 

 header, logical indicating if the file has a header line 

 sep, a string indicating how the columns are separated 

 colClasses, a character vector indicating the class of each column in the dataset 

 nrows, the number of rows in the dataset. By default read.table() reads an entire 

file. 

 comment.char, a character string indicating the comment character. This defalts to 

"#". If there are no commented lines in your file, it’s worth setting this to be the 

empty string "". 

 skip, the number of lines to skip from the beginning. 

 stringsAsFactors, should character variables be coded as factors? This defaults to 
TRUE because back in the old days, if you had data that were stored as strings, it 

was because those strings represented levels of a categorical variable. Now we 

have lots of data that is text data and they don’t always represent categorical 

variables. So you may want to set this to be FALSE in those cases. If you always 
want this to be FALSE, you can set a global option via options(stringsAsFactors = 

FALSE). I’ve never seen so much heat generated on discussion forums about an R 

function argument than the stringsAsFactors argument. Seriously. 

 For small to moderately sized datasets, you can usually call read.table without 

specifying any other argument. 

> data <- read.table("foo.txt") 

 In this case, R will automatically

 skip lines that begin with a # 

 figure out how many rows there are (and how much memory needs to be allocated) 

 figure what type of variable is in each column of the table. 

 

 Telling R all these things directly makes R run faster and more efficiently. The 

read.csv() function is identical to read.table except that some of the defaults are set 

differently (like the sep argument).

 
READING IN LARGER DATASETS WITH read.table 

 

 Read the help page for read.table, which contains many hints
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 Make a rough calculation of the memory required to store your dataset (see the 

next section for an example of how to do this). If the dataset is larger than the 

amount of RAM on your computer, you can probably stop right here. 

 Set comment.char = "" if there are no commented lines in your file. 

 Use the colClasses argument. Specifying this option instead of using the default 

can make ’read.table’ run MUCH faster, often twice as fast. In order to use this 

option, you have to know the class of each column in your data frame. If all of the 

columns are “numeric”, for example, then you can just set colClasses = "numeric". 

A quick an dirty way to figure out the classes of each column is the following: 

 

> initial <- read.table("datatable.txt", nrows = 100) 

> classes <- sapply(initial, class) 

> tabAll <- read.table("datatable.txt", colClasses = classes) 

 In general, when using R with larger datasets, it’s also useful to know a few things about 

your system.

 How much memory is available on your system? 

 What other applications are in use? Can you close any of them? 

 Are there other users logged into the same system? 

 What operating system are you using? Some operating systems can limit the 

amount of memory a single process can access 

 

CALCULATING MEMORY REQUIREMENTS FOR R OBJECTS 

 Because R stores all of its objects physical memory, it is important to be cognizant of 

how much memory is being used up by all of the data objects residing in your 

workspace. One situation where it’s particularly important to understand memory 

requirements is when you are reading in a new dataset into R. Fortunately, it’s easy to 

make a back of the envelope calculation of how much memory will be required by a new 

dataset.

 For example, suppose I have a data frame with 1,500,000 rows and 120 columns, all of 

which are numeric data. Roughly, how much memory is required to store this data 

frame? Well, on most modern computers double precision floating point numbers³⁸ are 

stored using 64 bits of memory, or 8 bytes. Given that information, you can do the 

following calculation

 
 

1,500,000 × 120 × 8 bytes/numeric = 1,440,000,000 bytes 

 = 1,440,000,000 / 220 bytes/MB 
 = 1,373.29 MB 

http://en.wikipedia.org/wiki/Double-precision_floating-point_format
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= 1.34 GB 

 So the dataset would require about 1.34 GB of RAM. Most computers these days have at 

least that much RAM. However, you need to be aware of

 
 what other programs might be running on your computer, using up RAM 

 what other R objects might already be taking up RAM in your workspace 

 Reading in a large dataset for which you do not have enough RAM is one easy 
way to freeze up your computer (or at least your R session). 

 

 This is usually an unpleasant experience that usually requires you to kill the R process, 

in the best case scenario, or reboot your computer, in the worst case. So make sure to do 

a rough calculation of memory requirements before reading in a large dataset

 
USING THE readr PACKAGE 

 

 The readr package is recently developed by Hadley Wickham to deal with reading in 

large flat files quickly. The package provides replacements for functions like read.table() 

and read.csv(). The analogous functions in readr are read_table() and read_csv(). These 

functions are oven much faster than their base R analogues and provide a few other nice 

features such as progress meters.

 For the most part, you can read use read_table() and read_csv() pretty much anywhere 

you might use read.table() and read.csv(). In addition, if there are non-fatal problems 

that occur while reading in the data, you will get a warning and the returned data frame 

will have some information about which rows/observations triggered the warning. This 

can be very helpful for “debugging” problems with your data before you get neck deep 

in data analysis.

 
USING TEXTUAL AND BINARY FORMATS FOR STORING DATA 

 

 There are a variety of ways that data can be stored, including structured text files like 

CSV or tab-delimited or more complex binary formats. However, there is an 

intermediate format that is textual, but not as simple as something like CSV. The format 

is native to R and is somewhat readable because of its textual nature.
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 One can create a more descriptive representation of an R object by using the dput() or 

dump() functions. The dump() and dput() functions are useful because the resulting 

textual format is edit-able, and in the case of corruption, potentially recoverable.

 Unlike writing out a table or CSV file, dump() and dput() preserve the metadata 

(sacrificing some readability), so that another user doesn’t have to specify it all over 

again. For example, we can preserve the class of each column of a table or the levels of a 

factor variable.

 Textual formats can work much better with version control programs like subversion or 

git which can only track changes meaningfully in text files.

 There are a few downsides to using these intermediate textual formats. The format is not 

very space-efficient, because all of the metadata is specified. Also, it is really only 

partially readable. In some instances it might be preferable to have data stored in a CSV 

file and then have a separate code file that specifies the metadata.

 
USING dput() AND dump() 

 

 One way to pass data around is by deparsing the R object with dput() and reading it back 

in (parsing it) using dget().

 
> ## Create a data frame 

> y <- data.frame(a = 1, b = "a") 

> ## Print 'dput' output to console 

> dput(y) 

structure(list(a = 1, b = structure(1L, .Label = "a", class = "factor")), 

.Names\ = c("a", 

"b"), row.names = c(NA, -1L), class = "data.frame") 

 Notice that the dput() output is in the form of R code and that it preserves metadata like 

the class of the object, the row names, and the column names.

 The output of dput() can also be saved directly to a file.

 
> ## Send 'dput' output to a file 

> dput(y, file = "y.R") 

> ## Read in 'dput' output from a file 

> new.y <- dget("y.R") 

> new.y 
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a b 

1 1 a 
 Multiple objects can be deparsed at once using the dump function and read back in using 

source.

> x <- "foo" 

> y <- data.frame(a = 1L, b = "a") 

 We can dump() R objects to a file by passing a character vector of their names.

> dump(c("x", "y"), file = "data.R") 

> rm(x, y) 

 

 The inverse of dump() is source().

> source("data.R") 

> str(y) 

'data.frame': 1 obs. of 2 variables: 

$ a: int 1 

$ b: Factor w/ 1 

level "a": 1 > x 

[1] "foo" 

 

BINARY FORMATS 

 The complement to the textual format is the binary format, which is sometimes 

necessary to use for efficiency purposes, or because there’s just no useful way to 

represent data in a textual manner. Also, with numeric data, one can often lose precision 

when converting to and from a textual format, so it’s better to stick with a binary format.

 The key functions for converting R objects into a binary format are save(), save.image(), 

and serialize(). Individual R objects can be saved to a file using the save() function.

> a <- data.frame(x = rnorm(100), y = runif(100)) 

> b <- c(3, 4.4, 1 / 3) 

 
> ## Save 'a' and 'b' to a file 

> save(a, b, file = "mydata.rda") 

> 

> ## Load 'a' and 'b' into your workspace 

> load("mydata.rda") 
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 If you have a lot of objects that you want to save to a file, you can save all objects in 

your workspace using the save.image() function. 

 
> ## Save everything to a file 

> save.image(file = "mydata.RData") 

> 

> ## load all objects in this file 

> load("mydata.RData") 

 
 Notice that I’ve used the .rda extension when using save() and the .RData extension 

when using save.image(). This is just my personal preference; you can use whatever file 

extension you want. The save() and save.image() functions do not care. However, .rda 

and .RData are fairly common extensions and you may want to use them because they 

are recognized by other software. 

 The serialize() function is used to convert individual R objects into a binary format that 

can be communicated across an arbitrary connection. This may get sent to a file, but it 

could get sent over a network or other connection. 

 When you call serialize() on an R object, the output will be a raw vector coded in 

hexadecimal format. 

> x <- list(1, 2, 3) 

> serialize(x, NULL) 

[1] 58 0a 00 00 00 02 00 03 02 01 00 02 03 00 00 00 00 13 00 00 00 

03 00 [24] 00 00 0e 00 00 00 01 3f f0 00 00 00 00 00 00 00 00 00 0e 

00 00 00 01 [47] 40 00 00 00 00 00 00 00 00 00 00 0e 00 00 00 01 40 

08 00 00 00 00 00 [70] 00 

 If you want, this can be sent to a file, but in that case you are better off using something 

like save(). 

 The benefit of the serialize() function is that it is the only way to perfectly represent an R 

object in an exportable format, without losing precision or any metadata. If that is what 

you need, then serialize() is the function for you. 

 
INTERFACES TO THE OUTSIDE WORLD 

 

 Data are read in using connection interfaces. Connections can be made to files (most 

common) or to other more exotic things. 
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 file, opens a connection to a file 

 gzfile, opens a connection to a file compressed with gzip 

 bzfile, opens a connection to a file compressed with bzip2 

 url, opens a connection to a webpage 

 In general, connections are powerful tools that let you navigate files or other external 

objects. Connections can be thought of as a translator that lets you talk to objects that are 

outside of R. Those outside objects could be anything from a data base, a simple text 

file, or a a web service API. Connections allow R functions to talk to all these different 

external objects without you having to write custom code for each object. 

 
FILE CONNECTIONS 

 

 Connections to text files can be created with the file() function. 

> str(file) 

function (description = "", open = "", blocking = TRUE, encoding 

= getOption("en\ coding"), raw = FALSE) 

 The file() function has a number of arguments that are common to many other 

connection functions so it’s worth going into a little detail here. 

 description is the name of the file 

 open is a code indicating what mode the file should be opened in 

 The open argument allows for the following options: 

 “r” open file in read only mode 

 “w” open a file for writing (and initializing a new file) 

 “a” open a file for appending 

 “rb”, “wb”, “ab” reading, writing, or appending in binary mode (Windows) 

 

 For example, if one were to explicitly use connections to read a CSV file in to R, it 

might look like this, 

> ## Create a connection to 'foo.txt' 

> con <- file("foo.txt") 

> 

> ## Open connection to 'foo.txt' in read-only mode 

> open(con, "r") 

> 

> ## Read from the connection 

> data <- read.csv(con) 

> 
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> ## Close the connection 

> close(con) 

which is the same as 

> data <- read.csv("foo.txt") 

 In the background, read.csv() opens a connection to the file foo.txt, reads from it, and 

closes the connection when it’s done. 

 The above example shows the basic approach to using connections. Connections must be 

opened, then they are read from or written to, and then they are closed. 

 
 READING LINES OF A TEXT FILE 

 

 Text files can be read line by line using the readLines() function. This function is useful 

for reading text files that may be unstructured or contain non-standard data. 

 
> ## Open connection to gz-compressed text file 

> con <- gzfile("words.gz") 

> x <- readLines(con, 10) 

> x 
 

[1] "1080" "10-point" "10th" "11-point" "12-point" "16-point" 

[7] "18-point" "1st" "2" "20-point" 

 
 For more structured text data like CSV files or tab-delimited files, there are other 

functions like read.csv() or read.table(). 

 The above example used the gzfile() function which is used to create a connection to 

files compressed using the gzip algorithm. This approach is useful because it allows you 

to read from a file without having to uncompress the file first, which would be a waste of 

space and time. 

 There is a complementary function writeLines() that takes a character vector and writes 

each element of the vector one line at a time to a text file. 

 
READING FROM A URL CONNECTION 

 The readLines() function can be useful for reading in lines of webpages. Since web 

pages are basically text files that are stored on a remote server, there is conceptually not 

much difference between a web page and a local text file. However, we need R to 
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negotiate the communication between your computer and the web server. This is what 

the url() function can do for you, by creating a url connection to a web server. 

 This code might take time depending on your connection speed. 

> ## Open a URL connection for reading 

> con <- url("http://www.jhsph.edu", "r") 

> 

> ## Read the web page 

> x <- readLines(con) 

> 

> ## Print out the first few lines 

> head(x) 

[1] 

"<!DOCTYPE 

html>" 

[2] "<html 

lang=\"en\">" 

[3] "" 

[4] "<head>" 

[5] "<meta charset=\"utf-8\" />" 

[6] "<title>Johns Hopkins Bloomberg School of Public Health</title>" 

 While reading in a simple web page is sometimes useful, particularly if data are 

embedded in the web page somewhere. However, more commonly we can use URL 

connection to read in specific data files that are stored on web servers. 

 Using URL connections can be useful for producing a reproducible analysis, because the 

code essentially documents where the data came from and how they were obtained. 

 This is approach is preferable to opening a web browser and downloading a dataset by 

hand. Of course, the code you write with connections may not be executable at a later 

date if things on the server side are changed or reorganized. 

 
SUBSETTING R OBJECTS 

 

 There are three operators that can be used to extract subsets of R objects. 

 The [ operator always returns an object of the same class as the original. It can be 

used to select multiple elements of an object 

http://www.jhsph.edu/
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 The [[ operator is used to extract elements of a list or a data frame. It can only be 

used to extract a single element and the class of the returned object will not 

necessarily be a list or data frame. 

 

 The $ operator is used to extract elements of a list or data frame by literal name. Its 

semantics are similar to that of [[. 

 

SUBSETTING A VECTOR 

 

 Vectors are basic objects in R and they can be subsetted using the [ operator. 

 
> x <- c("a", "b", "c", "c", "d", "a") 

> x[1]## Extract the first element 

[1] "a" 

> x[2]## Extract the second element 

[1] "b" 

 
 The [ operator can be used to extract multiple elements of a vector by passing the 

operator an integer sequence. Here we extract the first four elements of the vector. 

> x[1:4] 

[1] "a" "b" "c" "c" 

 The sequence does not have to be in order; you can specify any arbitrary integer vector. 

> x[c(1, 3, 4)] 

[1] "a" "c" "c" 
 We can also pass a logical sequence to the [ operator to extract elements of a vector that 

satisfy a given condition. For example, here we want the elements of x that come 

lexicographically after the letter “a”. 

> u <- x > "a" 

> u 

[1] FALSE TRUE TRUE TRUE TRUE FALSE 

> x[u] 

[1] "b" "c" "c" "d" 

 Another, more compact, way to do this would be to skip the creation of a logical vector 

and just subset the vector directly with the logical expression. 

 

> x[x > "a"] 

[1] "b" "c" "c" "d" 
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SUBSETTING A MATRIX 
 

 Matrices can be subsetted in the usual way with (i,j) type indices. Here, we create simple 

$2\times 3$ matrix with the matrix function. 

 
> x <- matrix(1:6, 2, 3) 

> x 

[,1] [,2] [,3] 

[1,] 1 3 5 

[2,] 2 4 

6 

 We can access the $(1, 2)$ or the $(2, 1)$ element of this matrix using the appropriate 

indices. 

> x[1, 2] 

[1] 3 

> x[2, 1] 

[1] 2 

 Indices can also be missing. This behavior is used to access entire rows or columns of a 

matrix. 

 

> x[1, ] ## Extract the first row 

[1] 1 3 5 

> x[, 2] ## Extract the second column 

[1] 3 4 

 Dropping matrix dimensions 
 

 By default, when a single element of a matrix is retrieved, it is returned as a vector of 

length 1 rather than a $1\times 1$ matrix. Often, this is exactly what we want, but this 

behavior can be turned off by setting drop = FALSE. 

> x <- matrix(1:6, 2, 3) 

> x[1, 2] 

[1] 3 

> x[1, 2, drop =FALSE] [,1] [1,] 3 

 Similarly, when we extract a single row or column of a matrix, R by default drops the 

dimension of length 1, so instead of getting a $1\times 3$ matrix after extracting the first 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
CLASS: II BCA 

COURSE CODE: 18CAU404A 
COURSE NAME: R PROGRAMMING 

UNIT - II BATCH: 2018 – 2021 

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 13/17 

 

 

 

row, we get a vector of length 3. This behavior can similarly be turned off with the drop 

= FALSE option. 

 
> x <- matrix(1:6, 2, 3) 

> x[1, ] 

[1] 1 3 5 

> x[1, , drop = FALSE] 

[,1] [,2] [,3] 

[1,] 1 3 5 

 
 Be careful of R’s automatic dropping of dimensions. This is a feature that is often quite 

useful during interactive work, but can later come back to bite you when you are writing 

longer programs or functions. 

 

SUBSETTING LISTS 
 

 Lists in R can be subsetted using all three of the operators mentioned above, and all 

three are used for different purposes. 

> x <- list(foo = 1:4, bar = 0.6) 

> x 

$foo 

[1] 1 2 3 4 

$bar 

[1] 0.6 

 The [[operator can be used to extract single elements from a list. Here we extract the 

first element of the list. 

> x[[1]] 

[1] 1 2 3 4 

 The [[operator can also use named indices so that you don’t have to remember the exact 

ordering of every element of the list. You can also use the $ operator to extract elements 

by name. 

> x[["bar"]] 

[1] 0.6 

> x$bar 

[1] 0.6 
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 Notice you don’t need the quotes when you use the $ operator. 

 One thing that differentiates the [[ operator from the $ is that the [[ operator can be used 

with computed indices. The $ operator can only be used with literal names. 

> x <- list(foo = 1:4, bar = 0.6, baz = "hello") 

> name <- "foo" 

> 

> ## computed index for "foo" 

> x[[name]] 

[1] 1 2 3 4 

> 

> ## element "name" doesnâ€™t exist! (but no error here) 

> x$name 

NULL 

> 
> ## element "foo" does exist 

> x$foo 

[1] 1 2 3 4 

 

SUBSETTING NESTED ELEMENTS OF A LIST 
 

 

 The [[operator can take an integer sequence if you want to extract a nested element of a 

list. 

> x <- list(a = list(10, 12, 14), b = c(3.14, 2.81)) 

> ## Get the 3rd element of the 1st element 

> x[[c(1, 3)]] 

 

 
> ## Same as above 

> x[[1]][[3]] 

[1] 14 

> 

 

 
[1] 14 

> 

> ## 1st element of the 2nd element 

> x[[c(2, 1)]] 

[1] 3.14 
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EXTRACTING MULTIPLE ELEMENTS OF A LIST 
 

 The [ operator can be used to extract multiple elements from a list. For example, if you 

wanted to extract the first and third elements of a list, you would do the following 

 
> x <- list(foo = 1:4, bar = 0.6, baz = "hello") 

> x[c(1, 3)] 

 
$foo 

[1] 1 2 3 4 

$baz 

[1] "hello" 

 Note that x[c(1, 3)] is NOT the same as x[[c(1, 3)]]. 

 Remember that the [ operator always returns an object of the same class as the 

original. Since the original object was a list, the [ operator returns a list. In the 

above code, we returned a list with two elements (the first and the third). 

 

PARTIAL MATCHING 
 

 Partial matching of names is allowed with [[ and $. This is often very useful during 

interactive work if the object you’re working with has very long element names. 

> x <- list(aardvark = 1:5) 

> x$a 

 
> x[["a"]] 

[1] 1 2 3 4 5 

 
NULL 

> x[["a", exact = FALSE]] 

 

 
5 

 
REMOVING NA VALUES 

[1] 1 2 3 4 

 

 A common task in data analysis is removing missing values (NAs). 

 
> x <- c(1, 2, NA, 4, NA, 5) 

> bad <- is.na(x) 

> print(bad) 

[1] FALSE FALSE TRUE FALSE TRUE FALSE 
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> 

x[!bad] 

[1] 1 

2 4 5 

 What if there is multiple R objects and you want to take the subset with no missing 

values in any of those objects? 

 
> x <- c(1, 2, NA, 4, NA, 5) 

> y <- c("a", "b", NA, "d", NA, "f") 

> good <- complete.cases(x, y) 

> good 

 

 
[1] TRUE TRUE FALSE TRUE FALSE TRUE 

>x[good] 

[1] 

1 2 

4 5 

> y[good] 

[1] "a" "b" "d" "f" 
> head(airquality) 

Ozone Solar.R Wind Temp Month Day 
1 41 190 7.4 67 5 1 
2 36 118 8.0 72 5 2 

3 12 149 12.6 74 5 3 

4 18 313 11.5 62 5 4 

5 NA NA 14.3 56 5 5 
6 28 NA 14.9 66 5 6 

> good <- complete.cases(airquality) 

> head(airquality[good, ]) 

 

Ozone Solar.R Wind Temp Month Day 
 

1 41 190 7.4 67 5 1 

2 36 118 8.0 72 5 2 

3 12 149 12.6 74 5 3 

4 18 313 11.5 62 5 4 

7 23 299 8.6 65 5 7 

8 19 99 13.8 59 5 8 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
CLASS: II BCA 

COURSE CODE: 18CAU404A 
COURSE NAME: R PROGRAMMING 

UNIT - II BATCH: 2018 – 2021 

Prepared by Mr.S. KARTHIK, Asst Prof, Dept of CS, CA & IT, KAHE Page 17/17 

 

 

 

POSSIBLE QUESTIONS 

UNIT – II 

PART – A (20 MARKS) 

(Q.NO 1 TO 20 Online Examinations) 

PART – B (2 MARKS) 

1. How to read a data using read.csv function? 

2. How to read a data using read.table function? 

3. List the functions for reading the data in R 

4. List the functions for writing the data in R 

5. What is meant by Subsetting? 

6. Define dump() 

7. Define dput() 

8. Define source 

9. How to create a vector using subset? 

10. What is readr package? 
 

PART – C (6 MARKS) 

1. Explain the functions of reading and writing Data in R 

2. Explain how to read large datasets using read.table function 

3. Write in detail (i) dput() (ii)dump() 

4. Explain how to describe the interfaces to the Outside world in R 

5. Explain about Vector Subsetting 

6. Explain about Matrix Subsetting 

7. Explain how to create a list using Nested Elements in Subsetting 

8. Write in detail (i) readr Package (ii) Removing NA Values 

9. Explain about partial matching 

10. Explain about List Subsetting 
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DEPARTMENT OF COMPUTER SCIENCE, CA & IT 

UNIT - II : (Objective Type Multiple choice Questions each Question carries one Mark) 

R PROGRAMMING [ 18CAU404A] 

PART - A (Online Examination) 

 
Questions Opt1 Opt2 Opt3 Opt4 Key 

data read.csv dget readLines get read.csv 

saved workspaces ? unserialize load get read load 

 

Which of the following statement would read file 

“foo.txt” 

data <- 

read.table(“foo.t 

xt”) 

read.data <- 

read.table(“foo.t 

xt”) 

data <- 

read.data(“foo.t 

xt”) 

 
data.read <- 

read(“foo.txt”) 

 
data <- 

read.table(“foo.txt”) 

Which of the following function is identical to 

read.table 
 
read.csv 

 
read.data 

 
read.tab 

 
read.table 

 
read.csv 

 

 

 

 

Which of the following code would read 100 rows 

 
initial <- 

read.table(“datat 

able.txt”, nrows 

= 100) 

tabAll <- 

read.table(“datat 

able.txt”, 

colClasses = 

classes) 

 
initial <- 

read.table(“dat 

atable.txt”, 

nrows = 99) 

 

 
initial <- 

read.table(“datatabl 

e.txt”, ncols= 99) 

 

 
initial <- 

read.table(“datatable.tx 

t”, nrows = 100) 

Which of the following code opens a connection 

to the file foo.txt, reads from it, and closes the 

connection when its done ? 

data <- 

read.csvo(“foo.tx 

t”) 

data <- 

read.csv(“foo.txt 

”) 

data <- 

readonly.csv(“f 

oo.txt”) 

 
data <- 

readcsv(“foo.txt”) 

 
data <- 

read.csv(“foo.txt”) 

Which of the following extracts first element from 

the following vector ? > x <- c("a", "b", "c", "c", 

"d", "a") 

 

 
x[10]. 

 

 
x[1]. 

 

 
x[0]. 

 

 
x[11]. 

 

 
x[1]. 



 

 

 

 

 

 

 

 

Point out the correct statement : 

 

 

 
There are three 

operators that 

can be used to 

extract subsets 

of R objects 

 

 

 
The [ operator is 

used to extract 

elements of a list 

or data frame by 

literal name 

 

The [[ operator 

is used to 

extract 

elements of a 

list or data 

frame by string 

name 

 

 

 
The (( operator is 

used to extract 

elements of a list or 

data frame by string 

name 

 

 

 

 
There are three 

operators that can be 

used to extract subsets 

of R objects 

Which of the following extracts first four element 

from the following vector ? > x <- c("a", "b", "c", 

"c", "d", "a") 

 

 
x[0:4]. 

 

 
x[0:3]. 

 

 
x[1:4]. 

 

 
x[1:3]. 

 

 
x[1:4]. 

 

What would be the output of the following code ? 

x <- c("a", "b", "c", "c", "d", "a") > x[c(1, 3, 4)] 

 

 
“a” “b” “c” 

 

 
“a” “c” “c” 

 

 
“a” “c” “b” 

 

 
“a” “b” “b” 

 

 
“a” “c” “c” 

 

 

 

 

 

 
 

Point out the wrong statement : 

 

 

 
$ operator 

semantics are 

similar to that of 

[[ 

 

 
The [ operator 

always returns 

an object of the 

same class as the 

original 

 
The $ operator 

is used to 

extract 

elements of a 

list or a data 

frame 

 

 

 
The [[ operator is 

used to extract 

elements of a list or 

a data frame 

 

 

 

 
The $ operator is used 

to extract elements of a 

list or a data frame 

What would be the output of the following code ? 

> x <- matrix(1:6, 2, 3) > x[1, 2] 
 
3 

 
2 

 
1 

 
0 

 
3 

What would be the output of the following code ? 

> x <- matrix(1:6, 2, 3) > x[1, ] 
 
1 3 5 

 
2 3 5 

 
3 3 5 

 
file 

 
1 3 5 

Which of the following code extracts the second 

column for the following matrix ? > x <- 

matrix(1:6, 2, 3) 

 

 
x[2, ]. 

 

 
x[1, 2]. 

 

 
x[, 2]. 

 

 
x[2, 2]. 

 

 
x[, 2]. 



 

 

 

 

 

 

 

 

 
Point out the wrong statement : 

 

 

 

 

 

$ operator 

semantics are 

similar to that of 

[[ 

 

 

 
The [[ operator 

can take an 

integer sequence 

if you want to 

extract a nested 

element of a list 

 

 

 

 
The $ operator 

can be used to 

extract multiple 

elements from 

a list 

 

 

 

 

 

There are three 

operators that can 

be used to extract 

subsets of R objects 

 

 

 

 

 

 
 

The $ operator can be 

used to extract multiple 

elements from a list 

Which of the following code extracts 1st element 

of the 2nd element ? > x <- list(a = list(10, 12, 14), 

b = c(3.14, 2.81)) 

 

 
x[[c(2, 1)]]. 

 

 
x[[c(1, 2)]]. 

 

 
x[[c(2, 1,1)]]. 

 

 
x[[c(2, 0,1)]]. 

 

 
x[[c(2, 1)]]. 

   , for dumping a textual 

representation of multiple R objects 
 
dput 

 
save 

 
dump 

 
serialize 

 
dump 

  , for outputting a textual representation 

of an R object 
 
dput 

 
save 

 
dump 

 
serialize 

 
dput 

  , for saving an arbitrary number of R 

objects in binary format (possibly compressed) to 

a file. 

 

 
dput 

 

 
save 

 

 
dump 

 

 
serialize 

 

 
save 

 

  , for converting an R object into a binary 

format for outputting to a connection (or file). 

 

 
dput 

 

 
save 

 

 
dump 

 

 
serialize 

 

 
serialize 

  string indicating how the columns are 

separated 
 
sep 

 
colClasses 

 
nrows 

 
file 

 
sep 

   character vector indicating the 

class of each column in the dataset 
 
sep 

 
colClasses 

 
nrows 

 
file 

 
colClasses 

 

  the number of rows in the dataset. 

By default read.table() reads an entire file 

 

 
sep 

 

 
colClasses 

 

 
nrows 

 

 
file 

 

 
nrows 

  logical indicating if the file has a 

header line 
 
sep 

 
colClasses 

 
nrows 

 
header 

 
header 

  character string indicating the 

comment character 
 
sep 

 
colClasses 

 
comment.char 

 
header 

 
comment.char 



Partial matching of names is allowed with    

and    
 
[ and $ 

 
[[ and [ 

 
[[ and [$ 

 
[[ and $ 

 
[[ and $ 

 

The  operator can take an integer sequence 

if you want to extract a nested element of a list. 

 

 
$ 

 

 
[[ 

 

 
[ 

 

 
(( 

 

 
[[ 

The  operator can be used to extract single 

elements from a list 
 
$ 

 
[ 

 
[[ 

 
(( 

 
[[ 

 
The  operator to extract elements by name 

 
$ 

 
[ 

 
[[ 

 
(( 

 
$ 

The  function can be useful for reading 

in lines of webpages 
 
Load() 

 
readLines() 

 
read() 

 
readpage() 

 
readLines() 

Text files can be read line by line using the 

  function. 
 
Load() 

 
readpage() 

 
read() 

 
readLines() 

 
readLines() 

The  package is recently developed by 

Hadley Wickham to deal with reading in large flat 

files quickly. 

 

 
readr 

 

 
dplyr 

 

 
read 

 

 
dr 

 

 
readr 

The  and  functions are useful 

because the resulting textual format is editable, 

and in the case of corruption, potentially 

recoverable. 

 

 
dump() and 

dget() 

 

 
dump() and 

dput() 

 

 
dget() and 

dput() 

 

 

 
dump() and dp() 

 

 

 
dump() and dput() 

  opens a connection to a file file gzfile bzfile url file 

  opens a connection to a file 

compressed with gzip 
 
file 

 
gzfile 

 
bzfile 

 
url 

 
gzfile 

  opens a connection to a file 

compressed with bzip2 
 
file 

 
gzfile 

 
bzfile 

 
url 

 
bzfile 

  opens a connection to a webpage file gzfile bzfile url url 

 

The  function has a number of arguments 

that are common to many other connection 

 

 
f() 

 

 
close() 

 

 
file() 

 

 
open() 

 

 
file() 

  open file in read only mode “r” “a” “w” "ab" “r” 

  open a file for writing (and initializing a 

new file) 
 
“r” 

 
“a” 

 
“w” 

 
"ab" 

 
“w” 

  open a file for appending “r” “a” “w” "ab" “a” 



The  operator can be used to extract 

multiple elements of a vector by passing the 

operator an integer sequence 

 

 
$ 

 

 
[ 

 

 
[[ 

 

 
(( 

 

 
[ 

What would be the output of the following code ? 

> x <- list(foo = 1:4, bar = 0.6, baz = "hello") > 

name <- "foo" > x[[name]] 

 

 
1 2 3 4 

 

 
0 1 2 3 

 

 
1 2 3 4 5 

 

 
1 2 3 5 

 

 
1 2 3 4 

What would be the output of the following code ? 

> x <- list(aardvark = 1:5) > x$a 
 
2 3 5 

 
1 3 3 5 

 
1 2 3 

 
1 2 3 4 5 

 
1 2 3 4 5 

What would be the output of the following code ? 

> x <- list(foo = 1:4, bar = 0.6, baz = "hello") > 

name <- "foo" > x$name 

 

 
1 

 

 
3 

 

 
2 

 

 
4 

 

 
2 

What would be the output of the following code ? 

> x <- list(a = list(10, 12, 14), b = c(3.14, 2.81)) > 

x[[c(1, 3)]] 

 

 
13 

 

 
14 

 

 
15 

 

 
16 

 

 
14 

 

The  function is used to convert 

individual R objects into a binary format that can 

be communicated across an arbitrary connection. 

 

 

 
dput() 

 

 

 
save() 

 

 

 
serialize() 

 

 

 
dump() 

 

 

 
serialize() 

Matrices can be subsetted in the usual way with 

(i,j) type    
 
subset 

 
subsetting 

 
indices 

 
sets 

 
indices 

 

 

The main functions for converting R objects into a 

binary format are 

 
save(), save.imag 

e(), 

and unserialize() 

 
save(), save.imag 

e(), 

and serialize() 

 
save(), unseriali 

ze, 

and serialize() 

 
unserialize(), save.i 

mage(), 

and serialize() 

 

 

save(), save.image(), 

and serialize() 

 

The  function is one of the most 

commonly used functions for reading data in R 

 

 
read.csv() 

 

 
read.table() 

 

 
read.data() 

 

 
read() 

 

 
read.table() 

  , a character vector indicating the 

class of each column in the dataset 
 
sep 

 
header 

 
file 

 
colClasses 

 
colClasses 

The inverse of dump() is  function file() dput() source() dum() source() 

Vectors are basic objects in R and they can be 

subsetted using the  operator 
 
(( 

 
[ 

 
[] 

 
[[ 

 
[ 



The  function is identical to read.table 

except that some of the defaults are set 

differently 

 

 
read.csv() 

 

 
read.table() 

 

 
read() 

 

 
read.data() 

 

 
read.csv() 

Factors are important in statistical modeling and 

are treated specially by modelling functions like 

  and  . 

 

 
l() and gl() 

 

 
lm() and glm(). 

 

lme() and 

glme() 

 

 
m() and gm() 

 

 
lm() and glm(). 

We can also create an empty list of a prespecified 

length with the  function 
 
create() 

 
file() 

 
vector() 

 
list() 

 
vector() 

 

The sequence does not have to be in order; you 

can specify any  integer vector. 

 

 
specified 

 

 
legel 

 

 
unarbitrary 

 

 
arbitrary 

 

 
arbitrary 

The [[ operator can be used to extract    

elements from a list. 
 
no 

 
all 

 
single 

 
double 

 
single 

The $ operator can only be used with    

names. 
 
different 

 
literal 

 
same 

 
unique 

 
literal 

A common task in data analysis is removing 

   
 
missing values 

 
segments 

 
changing values 

 
names 

 
missing values 
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UNIT-III 

SYLLABUS 

 

 

 

 

 

 

 

 

VECTORIZED OPERATIONS 

 Many operations in R are vectorized, meaning that operations occur in parallel in certain 

R objects. 

 This allows you to write code that is efficient, concise, and easier to read than in non- 

vectorized languages. 

 The simplest example is when adding two vectors together. 

> x <- 1:4 

> y <- 6:9 

> z <- x + y 

> z 

[1] 7 9 11 13 

Without vectorization , 

z <- numeric(length(x)) 

for(i in seq_along(x)) { 

z <- x[i] + y[i] 

} 

z 

[1] 13 

 Another operation can do in a vectorized manner is logical comparisons. So suppose we 

wanted to know which elements of a vector were greater than 2. we could do the 

following. 

> x 

Vectorized Operations : Vectorized Matrix Operations . Dates and Times :Dates in R - Times 

in R - Operations on Dates and Times .Managing Data Frames with the dplyr package :Data 

Frames -The dplyr Package - dplyr Grammar - Installing the dplyr package - select() - filter() - 

arrange() - rename() - mutate() - group_by()-%>%.Control Structures :if-else - for Loops - 

Nested for loops - while Loops - repeat Loops - next, break. 
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[1] 1 2 3 4 

> x > 2 

[1] FALSE FALSE TRUE TRUE 

 Here are other vectorized logical operations. 

> x >= 2 

[1] FALSE TRUE TRUE TRUE 

> x < 3 

[1] TRUE TRUE FALSE FALSE 

> y == 8 

[1] FALSE FALSE TRUE FALSE 

 Notice that these logical operations return a logical vector of TRUE and FALSE. 

 Of course, subtraction, multiplication and division are also vectorized. 

> x - y 

[1] -5 -5 -5 -5 

> x * y 

[1] 6 14 24 36 

> x / y 

[1] 0.1666667 0.2857143 0.3750000 0.4444444 

VECTORIZED MATRIX OPERATIONS 

 Matrix operations are also vectorized, making for nicly compact notation. This way, we can 

do element-by-element operations on matrices without having to loop over every element. 

> x <- matrix(1:4, 2, 2) 

> y <- matrix(rep(10, 4), 2, 2) 

> ## element-wise multiplication 

> x * y 

[,1] [,2] 

[1,] 10 30 

[2,] 20 40 

> ## element-wise division 
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> x / y 

[,1] [,2] 

[1,] 0.1 0.3 

[2,] 0.2 0.4 

> ## true matrix multiplication 

> x %*% y 

[,1] [,2] 

[1,] 40 40 

[2,] 60 60 

 
 

DATES AND TIMES 
 

 

 R has developed a special representation for dates and times. Dates are represented by the 

Date class and times are represented by the POSIXct or the POSIXlt class. Dates are 

stored internally as the number of days since 1970-01-01 while times are stored internally 

as the number of seconds since 1970-01-01. 

 It‟s not important to know the internal representation of dates and times in order to use 

them in R 

 
DATES IN R 

 

 

 Dates are represented by the Date class and can be coerced from a character string using 

the as.Date() function. This is a common way to end up with a Date object in R. 

> ## Coerce a 'Date' object from character 

> x <- as.Date("1970-01-01") 

> x 

[1] "1970-01-01" 

 We can see the internal representation of a Date object by using the unclass() function. 

> unclass(x) 
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TIMES IN R 

[1] 0 

> unclass(as.Date("1970-01-02")) 

[1] 1 

 Times are represented by the POSIXct or the POSIXlt class. POSIXct is just a very large 

integer under the hood. It uses a useful class when you want to store times in something 

like a data frame. POSIXlt is a list underneath and it stores a bunch of other useful 

information like the day of the week, day of the year, month, day of the month. This is 

useful when you need that kind of information. 

 There are a number of generic functions that work on dates and times to help you extract 

pieces of dates and/or times. 

 weekdays: give the day of the week 

 months: give the month name 

 quarters: give the quarter number (“Q1”, “Q2”, “Q3”, or “Q4”) 

 Times can be coerced from a character string using the as.POSIXlt or as.POSIXct 

function. 

> x <- Sys.time() 

> x 

[1] "2015-04-13 10:09:17 EDT" 

> class(x) ## 'POSIXct' object 

[1] "POSIXct" "POSIXt" 

The POSIXlt object contains some useful metadata. 

> p <- as.POSIXlt(x) 

> names(unclass(p)) 

[1] "sec" "min" "hour" "mday" "mon" "year" "wday" 

[8] "yday" "isdst" "zone" "gmtoff" 

> p$wday ## day of the week 

[1] 1 

 We can also use the POSIXct format. 
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> x <- Sys.time() 

> x ## Already in „POSIXct‟ format 

[1] "2015-04-13 10:09:17 EDT" 

> unclass(x) ## Internal representation 

[1] 1428934157 

> x$sec ## Can't do this with 'POSIXct'! 

Error in x$sec: $ operator is invalid for atomic vectors 

> p <- as.POSIXlt(x) 

> p$sec ## That's better 

[1] 17.16238 

 Finally, there is the strptime() function in case your dates are written in a different 

format. 

strptime() takes a character vector that has dates and times and converts them into to a 

POSIXlt object. 

> datestring <- c("January 10, 2012 10:40", "December 9, 2011 9:10") 

> x <- strptime(datestring, "%B %d, %Y %H:%M") 

> x 

[1] "2012-01-10 10:40:00 EST" "2011-12-09 09:10:00 EST" 

> class(x) 

[1] "POSIXlt" "POSIXt" 

 The weird-looking symbols that start with the % symbol are the formatting strings for 

dates and times 

OPERATIONS ON DATES AND TIMES 

 We can use mathematical operations on dates and times. Well, really just + and -. We can 

do comparisons too (i.e. ==, <=) 

> x <- as.Date("2012-01-01") 

> y <- strptime("9 Jan 2011 11:34:21", "%d %b %Y %H:%M:%S") 

> x-y 

Warning: Incompatible methods ("-.Date", "-.POSIXt") for "-" 
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Error in x - y: non-numeric argument to binary operator 

> x <- as.POSIXlt(x) 

> x-y 

Time difference of 356.3095 days 

 The nice thing about the date/time classes is that they keep track of all the annoying 

things about dates and times, like leap years, leap seconds, daylight savings, and time 

zones. 

 Here‟s an example where a leap year gets involved. 

> x <- as.Date("2012-03-01") 

> y <- as.Date("2012-02-28") 

> x-y 

Time difference of 2 days 

> ## My local time zone 

> x <- as.POSIXct("2012-10-25 01:00:00") 

> y <- as.POSIXct("2012-10-25 06:00:00", tz = "GMT") 

> y-x 

Time difference of 1 hours 

MANAGING DATA FRAMES WITH THE DPLYR PACKAGE 

DATA FRAMES 

 The data frame is a key data structure in statistics and in R. The basic structure of a data 

frame is that there is one observation per row and each column represents a variable, a 

measure, feature, or characteristic of that observation. R has an internal implementation 

of data frames that is likely the one you will use most often. 

 However, there are packages on CRAN that implement data frames via things like 

relational databases that allow you to operate on very large data frames. Given the 

importance of managing data frames, it‟s important that we have good tools for dealing 

with them. 

 In previous chapters we have already discussed some tools like the subset() function and 

the use of [ and $ operators to extract subsets of data frames. However, other operations, 
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like filtering, re-ordering, and collapsing, can often be tedious operations in R whose 

syntax is not very intuitive. 

 The dplyr package is designed to mitigate a lot of these problems and to provide a highly 

optimized set of routines specifically for dealing with data frames. 

THE dplyr PACKAGE 
 

 

 The dplyr package was developed by Hadley Wickham of RStudio and is an optimized 

and distilled version of his plyr package. The dplyr package does not provide any “new” 

functionality to R per se, in the sense that everything dplyr does could already be done 

with base R, but it greatly simplifies existing functionality in R. 

 One important contribution of the dplyr package is that it provides a “grammar” (in 

particular, verbs) for data manipulation and for operating on data frames. With this 

grammar, you can sensibly communicate what it is that you are doing to a data frame that 

other people can understand (assuming they also know the grammar). 

 This is useful because it provides an abstraction for data manipulation that previously did 

not exist. Another useful contribution is that the dplyr functions are very fast, as many 

key operations are coded in C++ 

dplyr GRAMMAR 
 

 

 Some of the key “verbs” provided by the dplyr package are 

 select: return a subset of the columns of a data frame, using a flexible notation 

 filter: extract a subset of rows from a data frame based on logical conditions 

 arrange: reorder rows of a data frame 

 rename: rename variables in a data frame 

 mutate: add new variables/columns or transform existing variables 

 summarise / summarize: generate summary statistics of different variables in 

the data frame, possibly within strata 

 %>%: the “pipe” operator is used to connect multiple verb actions together into 

a pipeline 
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 The dplyr package as a number of its own data types that it takes advantage of. For 

example, there is a handy print method that prevents you from printing a lot of data to the 

console. Most of the time, these additional data types are transparent to the user. 

 COMMON dplyr FUNCTION PROPERTIES 
 

 

 All of the functions that we will discuss in this Chapter will have a few common 

characteristics. In particular, 

1. The first argument is a data frame. 

2. The subsequent arguments describe what to do with the data frame specified in 

the first argument, and you can refer to columns in the data frame directly without 

using the $ operator (just use the column names). 

3. The return result of a function is a new data frame 

4. Data frames must be properly formatted and annotated for this to all be useful. 

In particular, the data must be tidy. In short, there should be one observation per 

row, and each column should represent a feature or characteristic of that 

observation. 

INSTALLING THE dplyr PACKAGE 
 

 

 The dplyr package can be installed from CRAN or from GitHub using the devtools 

package and the install_github() function. The GitHub repository will usually contain the 

latest updates to the package and the development version. 

 To install from CRAN, just run 

> install.packages("dplyr") 

 To install from GitHub you can run 

> install_github("hadley/dplyr") 

 After installing the package it is important that you load it into your R session with the 

library() function. 

> library(dplyr) 

 Attaching package: 'dplyr' 
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 The following object is masked from 'package:stats': 

filter 

 The following objects are masked from 'package:base': 

intersect, setdiff, setequal, union 

 We may get some warnings when the package is loaded because there are functions in the 

dplyr package that have the same name as functions in other packages. 

select() 
 

 

 For the examples in this chapter we will be using a dataset containing air pollution and 

temperature data for the city of Chicago in the U.S. The dataset is available from my web 

site. 

 After unzipping the archive, you can load the data into R using the readRDS() function. 

> chicago <- readRDS("chicago.rds") 

 We can see some basic characteristics of the dataset with the dim() and str() functions. 

> dim(chicago) 

[1] 6940 8 

> str(chicago) 

'data.frame': 6940 obs. of 8 variables: 

$ city : chr "chic" "chic" "chic" "chic" ... 

$ tmpd : num 31.5 33 33 29 32 40 34.5 29 26.5 32.5 ... 

$ dptp : num 31.5 29.9 27.4 28.6 28.9 ... 

$ date : Date, format: "1987-01-01" "1987-01-02" ... 

$ pm25tmean2: num NA NA NA NA NA NA NA NA NA NA ... 

$ pm10tmean2: num 34 NA 34.2 47 NA ... 

$ o3tmean2 : num 4.25 3.3 3.33 4.38 4.75 ... 

$ no2tmean2 : num 20 23.2 23.8 30.4 30.3 ... 

 The select() function can be used to select columns of a data frame that you want to focus 

on. 

 Often you‟ll have a large data frame containing “all” of the data, but any given analysis 
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might only use a subset of variables or observations. 

 The select() function allows you to get the few columns you might need. Suppose we 

wanted to take the first 3 columns only. There are a few ways to do this. We could for 

example use numerical indices. But we can also use the names directly. 

> names(chicago)[1:3] 

[1] "city" "tmpd" "dptp" 

> subset <- select(chicago, city:dptp) 

> head(subset) 

city tmpd dptp 

1 chic 31.5 31.500 

2 chic 33.0 29.875 

3 chic 33.0 27.375 

4 chic 29.0 28.625 

5 chic 32.0 28.875 

6 chic 40.0 35.125 

 Note that the: normally cannot be used with names or strings, but inside the select() 

function you can use it to specify a range of variable names. You can also omit variables 

using the select() function by using the negative sign. 

 With select() you can do 

> select(chicago, -(city:dptp)) 

 This indicates that we should include every variable except the variables city through 

dptp. The equivalent code in base R would be 

> i <- match("city", names(chicago)) 

> j <- match("dptp", names(chicago)) 

> head(chicago[, -(i:j)]) 

 Not super intuitive, right? 

 The select() function also allows a special syntax that allows you to specify variable 

names based on patterns. So, for example, if you wanted to keep every variable that ends 

with a “2”, we could do 
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> subset <- select(chicago, ends_with("2")) 

> str(subset) 

'data.frame': 6940 obs. of 4 variables: 

$ pm25tmean2: num NA NA NA NA NA NA NA NA NA NA ... 

$ pm10tmean2: num 34 NA 34.2 47 NA ... 

$ o3tmean2 : num 4.25 3.3 3.33 4.38 4.75 ... 

$ no2tmean2 : num 20 23.2 23.8 30.4 30.3 ... 

 Or if we wanted to keep every variable that starts with a “d”, we could do 

> subset <- select(chicago, starts_with("d")) 

> str(subset) 

'data.frame': 6940 obs. of 2 variables: 

$ dptp: num 31.5 29.9 27.4 28.6 28.9 ... 

$ date: Date, format: "1987-01-01" "1987-01-02" ... 

filter() 
 

 

 The filter() function is used to extract subsets of rows from a data frame. This function is 

similar to the existing subset() function in R but is quite a bit faster in my experience. 

 Suppose we wanted to extract the rows of the chicago data frame where the levels of 

PM2.5 are greater than 30 (which is a reasonably high level), we could do 

> chic.f <- filter(chicago, pm25tmean2 > 30) 

> str(chic.f) 

'data.frame': 194 obs. of 8 variables: 

$ city : chr "chic" "chic" "chic" "chic" ... 

$ tmpd : num 23 28 55 59 57 57 75 61 73 78 ... 

$ dptp : num 21.9 25.8 51.3 53.7 52 56 65.8 59 60.3 67.1 ... 

$ date : Date, format: "1998-01-17" "1998-01-23" ... 

$ pm25tmean2: num 38.1 34 39.4 35.4 33.3 ... 

$ pm10tmean2: num 32.5 38.7 34 28.5 35 ... 

$ o3tmean2 : num 3.18 1.75 10.79 14.3 20.66 ... 
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$ no2tmean2 : num 25.3 29.4 25.3 31.4 26.8 ... 

 You can see that there are now only 194 rows in the data frame and the distribution of the 

pm25tmean2 values is. 

> summary(chic.f$pm25tmean2) 

Min. 1st Qu. Median Mean 3rd Qu. Max. 

30.05 32.12 35.04 36.63 39.53 61.50 

 We can place an arbitrarily complex logical sequence inside of filter(), so we could for 

example extract the rows where PM2.5 is greater than 30 and temperature is greater than 

80 degrees Fahrenheit. 

> chic.f <- filter(chicago, pm25tmean2 > 30 & tmpd > 80) 

> select(chic.f, date, tmpd, pm25tmean2) 

date tmpd pm25tmean2 

1 1998-08-23 81 39.60000 

2 1998-09-06 81 31.50000 

3 2001-07-20 82 32.30000 

4 2001-08-01 84 43.70000 

5 2001-08-08 85 38.83750 

6 2001-08-09 84 38.20000 

7 2002-06-20 82 33.00000 

8 2002-06-23 82 42.50000 

9 2002-07-08 81 33.10000 

10 2002-07-18 82 38.85000 

11 2003-06-25 82 33.90000 

12 2003-07-04 84 32.90000 

13 2005-06-24 86 31.85714 

14 2005-06-27 82 51.53750 

15 2005-06-28 85 31.20000 

16 2005-07-17 84 32.70000 

17 2005-08-03 84 37.90000 
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 Now there are only 17 observations where both of those conditions are met. 

arrange() 
 

 

 The arrange() function is used to reorder rows of a data frame according to one of the 

variables/- columns. Reordering rows of a data frame (while preserving corresponding 

order of other columns) is normally a pain to do in R. 

 The arrange() function simplifies the process quite a bit. 

 Here we can order the rows of the data frame by date, so that the first row is the earliest 

(oldest) observation and the last row is the latest (most recent) observation. 

> chicago <- arrange(chicago, date) 

 We can now check the first few rows 

> head(select(chicago, date, pm25tmean2), 3) 

date pm25tmean2 

1 1987-01-01 NA 

2 1987-01-02 NA 

3 1987-01-03 NA 

and the last few rows. 

> tail(select(chicago, date, pm25tmean2), 3) 

date pm25tmean2 

6938 2005-12-29 7.45000 

6939 2005-12-30 15.05714 

6940 2005-12-31 15.00000 

 Columns can be arranged in descending order too by useing the special desc() operator. 

> chicago <- arrange(chicago, desc(date)) 

 Looking at the first three and last three rows shows the dates in descending order 

> head(select(chicago, date, pm25tmean2), 3) 

date pm25tmean2 

1 2005-12-31 15.00000 

2 2005-12-30 15.05714 
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3 2005-12-29 7.45000 

> tail(select(chicago, date, pm25tmean2), 3) 

date pm25tmean2 

6938 1987-01-03 NA 

6939 1987-01-02 NA 

6940 1987-01-01 NA 

rename() 
 

 

 Renaming a variable in a data frame in R is surprisingly hard to do! The rename() 

function is designed to make this process easier. 

 Here you can see the names of the first five variables in the chicago data frame. 

> head(chicago[, 1:5], 3) 

city tmpd dptp date pm25tmean2 

1 chic 35 30.1 2005-12-31 15.00000 

2 chic 36 31.0 2005-12-30 15.05714 

3 chic 35 29.4 2005-12-29 7.45000 

 The dptp column is supposed to represent the dew point temperature adn the 

pm25tmean2 column provides the PM2.5 data. However, these names are pretty obscure 

or awkward and probably be renamed to something more sensible. 

> chicago <- rename(chicago, dewpoint = dptp, pm25 = pm25tmean2) 

> head(chicago[, 1:5], 3) 

city tmpd dewpoint date pm25 

1 chic 35 30.1 2005-12-31 15.00000 

2 chic 36 31.0 2005-12-30 15.05714 

3 chic 35 29.4 2005-12-29 7.45000 

 The syntax inside the rename() function is to have the new name on the left-hand side of 

the = sign and the old name on the right-hand side. 
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mutate() 
 

 

 The mutate() function exists to compute transformations of variables in a data frame. 

Often, you want to create new variables that are derived from existing variables and 

mutate() provides a clean interface for doing that. 

 For example, with air pollution data, we often want to detrend the data by subtracting the 

mean from the data. That way we can look at whether a given day‟s air pollution level is 

higher than or less than average (as opposed to looking at its absolute level). Here we 

create a pm25detrend variable that subtracts the mean from the pm25 variable. 

> chicago <- mutate(chicago, pm25detrend = pm25 - mean(pm25, na.rm = TRUE)) 

> head(chicago) 

city tmpd dewpoint date pm25 pm10tmean2 o3tmean2 no2tmean2 

1 chic 35 30.1 2005-12-31 15.00000 23.5 2.531250 13.25000 

2 chic 36 31.0 2005-12-30 15.05714 19.2 3.034420 22.80556 

3 chic 35 29.4 2005-12-29 7.45000 23.5 6.794837 19.97222 

4 chic 37 34.5 2005-12-28 17.75000 27.5 3.260417 19.28563 

5 chic 40 33.6 2005-12-27 23.56000 27.0 4.468750 23.50000 

6 chic 35 29.6 2005-12-26 8.40000 8.5 14.041667 16.81944 

pm25detrend 

1 -1.230958 

2 -1.173815 

3 -8.780958 

4 1.519042 

5 7.329042 

6 -7.830958 

 There is also the related transmute() function, which does the same thing as mutate() but 

then drops all non-transformed variables. 

 Here we detrend the PM10 and ozone (O3) variables. 

> head(transmute(chicago, 
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+ pm10detrend = pm10tmean2 - mean(pm10tmean2, na.rm = TRUE), 

+ o3detrend = o3tmean2 - mean(o3tmean2, na.rm = TRUE))) 

pm10detrend o3detrend 

1 -10.395206 -16.904263 

2 -14.695206 -16.401093 

3 -10.395206 -12.640676 

4 -6.395206 -16.175096 

5 -6.895206 -14.966763 

6 -25.395206 -5.393846 

 Note that there are only two columns in the transmuted data frame. 

group_by() 
 

 

 The group_by() function is used to generate summary statistics from the data frame 

within strata defined by a variable. For example, in this air pollution dataset, you might 

want to know what the average annual level of PM2.5 is. So the stratum is the year, and 

that is something we can derive from the date variable. 

 In conjunction with the group_by() function we often use the summarize() function (or 

summarise() for some parts of the world). The general operation here is a combination of 

splitting a data frame into separate pieces defined by a variable or group of variables 

(group_by()), and then applying a summary function across those subsets (summarize()). 

 First, we can create a year varible using as.POSIXlt(). 

> chicago <- mutate(chicago, year = as.POSIXlt(date)$year + 1900) 

 Now we can create a separate data frame that splits the original data frame by year. 

> years <- group_by(chicago, year) 

 Finally, we compute summary statistics for each year in the data frame with the 

summarize() function. 

> summarize(years, pm25 = mean(pm25, na.rm = TRUE), 

+ o3 = max(o3tmean2, na.rm = TRUE), 

+ no2 = median(no2tmean2, na.rm = TRUE)) 
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Source: local data frame [19 x 4] 

year pm25 o3 no2 

1 1987 NaN 62.96966 23.49369 

2 1988 NaN 61.67708 24.52296 

3 1989 NaN 59.72727 26.14062 

4 1990 NaN 52.22917 22.59583 

5 1991 NaN 63.10417 21.38194 

6 1992 NaN 50.82870 24.78921 

7 1993 NaN 44.30093 25.76993 

8 1994 NaN 52.17844 28.47500 

9 1995 NaN 66.58750 27.26042 

10 1996 NaN 58.39583 26.38715 

11 1997 NaN 56.54167 25.48143 

12 1998 18.26467 50.66250 24.58649 

13 1999 18.49646 57.48864 24.66667 

14 2000 16.93806 55.76103 23.46082 

15 2001 16.92632 51.81984 25.06522 

16 2002 15.27335 54.88043 22.73750 

17 2003 15.23183 56.16608 24.62500 

18 2004 14.62864 44.48240 23.39130 

19 2005 16.18556 58.84126 22.62387 

 summarize() returns a data frame with year as the first column, and then the annual 

averages of pm25, o3, and no2. 

 In a slightly more complicated example, we might want to know what the average levels 

of ozone (o3) are and nitrogen dioxide (no2) within quintiles of pm25. A slicker way to 

do this would be through a regression model, but we can actually do this quickly with 

group_by() and summarize(). 

 First, we can create a categorical variable of pm25 divided into quintiles. 

> qq <- quantile(chicago$pm25, seq(0, 1, 0.2), na.rm = TRUE) 
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> chicago <- mutate(chicago, pm25.quint = cut(pm25, qq)) 

 Now we can group the data frame by the pm25.quint variable. 

> quint <- group_by(chicago, pm25.quint) 

 Finally, we can compute the mean of o3 and no2 within quintiles of pm25. 

> summarize(quint, o3 = mean(o3tmean2, na.rm = TRUE), 

+ no2 = mean(no2tmean2, na.rm = TRUE)) 

Source: local data frame [6 x 3] 

pm25.quint o3 no2 

1 (1.7,8.7] 21.66401 17.99129 

2 (8.7,12.4] 20.38248 22.13004 

3 (12.4,16.7] 20.66160 24.35708 

4 (16.7,22.6] 19.88122 27.27132 

5 (22.6,61.5] 20.31775 29.64427 

6 NA 18.79044 25.77585 

 From the table, it seems there isn‟t a strong relationship between pm25 and o3, but there 

appears to be a positive correlation between pm25 and no2. More sophisticated statistical 

modeling can help to provide precise answers to these questions, but a simple application 

of dplyr functions can often get you most of the way there. 

%>% 
 

 

 The pipeline operator %> % is very handy for stringing together multiple dplyr functions 

in a sequence of operations. Notice above that every time we wanted to apply more than 

one function, the sequence gets buried in a sequence of nested function calls that is 

difficult to read, i.e. 

> third(second(first(x))) 

 This nesting is not a natural way to think about a sequence of operations. The %>% 

operator allows you to string operations in a left-to-right fashion, i.e. 

> first(x) %>% second %>% third 

 Take the example that we just did in the last section where we computed the mean of o3 
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and no2 within quintiles of pm25. There we had to 

1. create a new variable pm25.quint 

2. split the data frame by that new variable 

3. compute the mean of o3 and no2 in the sub-groups defined by pm25.quint 

 That can be done with the following sequence in a single R expression. 

> mutate(chicago, pm25.quint = cut(pm25, qq)) %>% 

+ group_by(pm25.quint) %>% 

+ summarize(o3 = mean(o3tmean2, na.rm = TRUE), 

+ no2 = mean(no2tmean2, na.rm = TRUE)) 

Source: local data frame [6 x 3] 

pm25.quint o3 no2 

1 (1.7,8.7] 21.66401 17.99129 

2 (8.7,12.4] 20.38248 22.13004 

3 (12.4,16.7] 20.66160 24.35708 

4 (16.7,22.6] 19.88122 27.27132 

5 (22.6,61.5] 20.31775 29.64427 

6 NA 18.79044 25.77585 

 This way we don‟t have to create a set of temporary variables along the way or create a 

massive nested sequence of function calls. Notice in the above code that I pass the 

chicago data frame to the first call to mutate(), but then afterwards I do not have to pass 

the first argument to group_by() or summarize(). Once you travel down the pipeline with 

%>%, the first argument is taken to be the output of the previous element in the pipeline. 

 Another example might be computing the average pollutant level by month. This could 

be useful to see if there are any seasonal trends in the data. 

> mutate(chicago, month = as.POSIXlt(date)$mon + 1) %>% 

+ group_by(month) %>% 

+ summarize(pm25 = mean(pm25, na.rm = TRUE), 

+ o3 = max(o3tmean2, na.rm = TRUE), 

+ no2 = median(no2tmean2, na.rm = TRUE)) 
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Source: local data frame [12 x 4] 

month pm25 o3 no2 

1 1 17.76996 28.22222 25.35417 

2 2 20.37513 37.37500 26.78034 

3 3 17.40818 39.05000 26.76984 

4 4 13.85879 47.94907 25.03125 

5 5 14.07420 52.75000 24.22222 

6 6 15.86461 66.58750 25.01140 

7 7 16.57087 59.54167 22.38442 

8 8 16.93380 53.96701 22.98333 

9 9 15.91279 57.48864 24.47917 

10 10 14.23557 47.09275 24.15217 

11 11 15.15794 29.45833 23.56537 

12 12 17.52221 27.70833 24.45773 

 Here we can see that o3 tends to be low in the winter months and high in the summer 

while no2 is higher in the winter and lower in the summer. 

 
CONTROL STRUCTURES 

 Control structures in R allow you to control the flow of execution of a series of R 

expressions. 

 Basically, control structures allow you to put some “logic” into your R code, rather than 

just always executing the same R code every time. Control structures allow you to 

respond to inputs or to features of the data and execute different R expressions 

accordingly. 

 Commonly used control structures are 

 if and else: testing a condition and acting on it 

 for: execute a loop a fixed number of times 

 while: execute a loop while a condition is true 

 repeat: execute an infinite loop (must break out of it to stop) 
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 break: break the execution of a loop 

 next: skip an iteration of a loop 

 Most control structures are not used in interactive sessions, but rather when writing 

functions or longer expressions. However, these constructs do not have to be used in 

functions and it‟s a good idea to become familiar with them before we delve into 

functions. 

if-else 

 The if-else combination is probably the most commonly used control structure in R (or 

perhaps any language). This structure allows you to test a condition and act on it 

depending on whether it‟s true or false. 

 For starters, you can just use the if statement. 

if(<condition>) { 

## do something 

} 

## Continue with rest of code 

 The above code does nothing if the condition is false. If you have an action you want to 

execute when the condition is false, then you need an else clause. 

if(<condition>) { 

## do something 

} 

else { 

## do something else 

} 

 You can have a series of tests by following the initial if with any number of else ifs. 

if(<condition1>) { 

## do something 

} else if(<condition2>) { 

## do something different 

} else { 
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## do something different 

} 

 Here is an example of a valid if/else structure. 

## Generate a uniform random number 

x <- runif(1, 0, 10) 

if(x > 3) { 

y <- 10 

} else { 

y <- 0 

} 

 The value of y is set depending on whether x > 3 or not. This expression can also be 

written a different, but equivalent, way in R. 

y <- if(x > 3) { 

10 

} else { 

0 

} 

 Neither way of writing this expression is more correct than the other. Which one you use 

will depend on your preference and perhaps those of the team you may be working with. 

 Of course, the else clause is not necessary. You could have a series of if clauses that 

always get executed if their respective conditions are true. 

if(<condition1>) { 

} 

if(<condition2>) { 

} 

for Loops 

 For loops are pretty much the only looping construct that you will need in R. 

 In R, for loops take an interator variable and assign it successive values from a sequence 

or vector. 
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 For loops are most commonly used for iterating over the elements of an object (list, 

vector, etc.) 

> for(i in 1:10) { 

+ print(i) 

+ } 

[1] 1 

[1] 2 

[1] 3 

[1] 4 

[1] 5 

[1] 6 

[1] 7 

> for(letter in x) { 

+ print(letter) 

+ } 

[1] "a" 

[1] "b" 

[1] "c" 

[1] "d" 

 For one line loops, the curly braces are not strictly necessary. 

> for(i in 1:4) print(x[i]) 

[1] "a" 

[1] "b" 

[1] "c" 

[1] "d" 

 However, I like to use curly braces even for one-line loops, because that way if you 

decide to expand the loop to multiple lines, you won‟t be burned because you forgot to 

add curly braces. 

Nested for loops 
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 for loops can be nested inside of each other. 

x <- matrix(1:6, 2, 3) 

for(i in seq_len(nrow(x))) { 

for(j in seq_len(ncol(x))) { 

print(x[i, j]) 

} 

} 

 Nested loops are commonly needed for multidimensional or hierarchical data structures 

(e.g.matrices, lists). Be careful with nesting though. Nesting beyond 2 to 3 levels often 

makes it difficult to read/understand the code. If you find yourself in need of a large 

number of nested loops, you may want to break up the loops by using functions 

while Loops 
 
 

 While loops begin by testing a condition. If it is true, then they execute the loop body. 

Once the loop body is executed, the condition is tested again, and so forth, until the 

condition is false, after which the loop exits. 

> count <- 0 

> while(count < 10) { 

+ print(count) 

+ count <- count + 1 

+ } 

[1] 0 

[1] 1 

[1] 2 

[1] 3 

[1] 4 

[1] 5 

[1] 6 

[1] 7 
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[1] 8 

[1] 9 

 While loops can potentially result in infinite loops if not written properly. > z <- 5 

> set.seed(1) 

> while(z >= 3 && z <= 10) { 

+ coin <- rbinom(1, 1, 0.5) 

+ 

+ if(coin == 1) { ## random walk 

+ z <- z + 1 

+ } else { 

+ z <- z - 1 

+ } 

+ } 

> print(z) 

[1] 2 

repeat Loops 

 repeat initiates an infinite loop right from the start. These are not commonly used in 

statistical or data analysis applications but they do have their uses. The only way to exit a 

repeat loop is to call break. 

 One possible paradigm might be in an iterative algorithm where you may be searching for 

a solution and you don‟t want to stop until you‟re close enough to the solution. In this 

kind of situation, you often don‟t know in advance how many iterations it‟s going to take 

to get “close enough” to the solution. 

x0 <- 1 

tol <- 1e-8 

repeat { 

x1 <- computeEstimate() 
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if(abs(x1 - x0) < tol) { ## Close enough? 

break 

} else { 

x0 <- x1 

} 

} 

 Note that the above code will not run if the computeEstimate() function is not defined (I 

just made it up for the purposes of this demonstration). The loop agove is a bit dangerous 

because there‟s no guarantee it will stop. You could get in a situation where the values of 

x0 and x1 oscillate back and forth and never converge. Better to set a hard limit on the 

number of iterations by using a for loop and then report whether convergence was 

achieved or not. 

next, break. 

 next is used to skip an iteration of a loop 

for(i in 1:100) { 

if(i <= 20) { 

## Skip the first 20 iterations 

next 

} 

## Do something here 

} 

 break is used to exit a loop immediately, regardless of what iteration the loop may be on. 

for(i in 1:100) { 

print(i) 

if(i > 20) { 

## Stop loop after 20 iterations 

break 

}} 
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POSSIBLE QUESTIONS 

UNIT – III 

PART – A (20 MARKS) 

(Q.NO 1 TO 20 Online Examinations) 

PART – B (2 MARKS) 

1. What is Vectorized Operations? 
 

2. How to create dates and times in R? 
 

3. List the looping statements in R 
 

4. Write the syntax of if else statement with suitable example 
 

5. What is the use of dplyr package? 
 

6. Write the syntax of for loop with suitable example 
 

7. Write the syntax of if else statement with suitable example 
 

8. Write the syntax of while loop with suitable example 
 

9. Write the syntax of repeat loop with suitable example 
 

10. Define select() 
 

PART – C (6 MARKS) 

1. Explain the Vectorized matrix Operations 

2. Explain the Operations on Dates and Times 

3. Explain how to manage the Data frames with dplyr package 

4. Explain the process of select () function 

5. Write in detail (i) mutate() (ii) group_by() 

6. Write in detail (i) filter() (ii) arrange() 

7. Write in detail (i) rename (ii) %>% 

8. Discuss about Control Structures in R programming 

9. Explain about dplyr Grammar 

10. Explain about dplyr Package 
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Questions Opt1 Opt2 Opt3 Opt4 Key 

operation as far as subtraction is concerned ? > x x+y x-y x*y x/y x-y 

Point out the wrong statement : operations in R allows you to means that R are vectorized, are vectorized 

What would be the output of the following code ? 

> x <- 1:4 

> y <- 6:9 

> z <- x + y 

> z 

 

 

 

 

7 9 11 13 

 

 

 

 

7 9 11 13 14 

 

 

 

 

9 7 11 13 

 

 

 

 

7 9 11 14 

 

 

 

 

7 9 11 13 

 

Which of the followin code represents internal 

representation of a Date object ? 

 

class(as.Date(“1 

970-01-02”)) 

 

unclass(as.Date(“ 

1970-01-02”)) 

unclassint(as.Da 

te(“1970-01- 

02”)) 

 

classint(as.Date(“19 

70-01-02”)) 

 

unclass(as.Date(“1970- 

01-02”)) 

What would be the output of the following code ? 

> x <- Sys.time() 

> class(x) 

 

“POSIXct” 

“POSIXt” 

 

“POSIXXt” 

“POSIXt” 

 

“POSIXct” 

“POSIct” 

 

“POSIXct” 

“POSIXXct” 

 

 
“POSIXct” “POSIXt” 

Which of the following function gives the day of 

the week ? 
 
weekdays 

 
months 

 
quarters 

 
years 

 
weekdays 

 
What would be the output of the following code ? 

> p <- as.POSIXlt(x) > names(unclass(p)) 

> p$wday 

 

 

 
1 

 

 

 
2 

 

 

 
3 

 

 

 
0 

 

 

 
1 



What would be the output of the following code ? 

> x <- as.Date("2012-03-01") 

> y <- as.Date("2012-02-28") 

> x-y 

 

 
Time difference 

of 3 days 

 

 
Time difference 

of 2 days 

 

 
Time difference 

of 1 day 

 

 
Time difference of 4 

days 

 

 
Time difference of 2 

days 

Which of the following return a subset of the 

columns of a data frame ? 
 
select 

 
retrieve 

 
get 

 
hold 

 
select 

  extract a subset of rows from a data 

frame based on logical conditions. 
 
rename 

 
filter 

 
set 

 
subset 

 
rename 

  generate summary statistics of 

different variables in the data frame, possibly 

within strata 

 

 
rename 

 

 
summarize 

 

 
set 

 

 
subset 

 

 
summarize 

 

 

 

 

 

Point out the wrong statement : 

 

The dplyr 

package was 

developed by 

Hadley Wickham 

of RStudio 

The dplyr 

packageis an 

optimized and 

distilled version 

of his plyr 

package 

The dplyr 

package 

provideS any 

“new” 

functionality to 

R 

 

 
The dplyr package 

does not provide 

any “new” 

functionality to R 

 

 

 
The dplyr package 

provideS any “new” 

functionality to R 

  add new variables/columns or 

transform existing variables 
 
mutate 

 
add 

 
apped 

 
arrange 

 
mutate 

 

The  operator is used to connect multiple 

verb actions together into a pipeline 

 

 
pipe 

 

 
piper 

 

 
start 

 

 
end 

 

 
pipe 

The dplyr package can be installed from GitHub 

using the  package 
 
dev 

 
devtools 

 
devtool 

 
dtool 

 
devtools 

 

The dplyr package can be installed from CRAN 

using : 

 

installall.package 

s(“dplyr”) 

 

install.packages(“ 

dplyr”) 

 

installed.packa 

ges(“dplyr”) 

 

installed.package(“d 

plyr”) 

 

 
install.packages(“dplyr”) 

Which of the following object is masked from 

‘package:stats’ ? 
 
difference 

 
setdifference 

 
union 

 
filter 

 
filter 

The  function can be used to select 

columns of a data frame that you want to focus 

on. 

 

 
filter 

 

 
get 

 

 
rename 

 

 
select 

 

 
select 



 

 

 

 

 

 

 

 

 
Point out the correct statement : 

 

 

 

 
You can also omit 

variables using 

the select() 

function by using 

the negative sign 

 

The arrange() 

function also 

allows a special 

syntax that 

allows you to 

specify variable 

names based on 

patterns 

 

 

 

 
Reordering 

rows of a data 

frame is 

normally easier 

to do in R 

 

 

 

 

 

The rename() 

function is designed 

to make this process 

difficult. 

 

 

 

 

 

You can also omit 

variables using the 

select() function by 

using the negative sign 

 

  function is similar to the existing subset() 

function in R but is quite a bit faster. 

 

 
rename 

 

 
filter 

 

 
set 

 

 
subset 

 

 
filter 

 

Columns can be arranged in descending order too 

by using the special  operator. 

 

 
asc() 

 

 
desc() 

 

 
descending() 

 

 
subset 

 

 
desc() 

 

 

 

 

 

 

 

 

 

 
Point out the wrong statement : 

 

 

 

 

 

Renaming a 

variable in a data 

frame in R is 

surprisingly hard 

to do 

 

 

 

 
The mutate() 

function exists to 

compute 

transformations 

of variables in a 

data frame 

 
mute() 

function, which 

does the same 

thing as 

mutate() but 

then drops all 

non- 

transformed 

variables 

 

 

 

 

 

 
 

The rename() 

function is designed 

to make this process 

easier. 

 

 

 

 

 

mute() function, which 

does the same thing as 

mutate() but then drops 

all non-transformed 

variables 

The  function is used to generate 

summary statistics from the data frame within 

strata defined by a variable. 

 

 
groupby() 

 

 
group() 

 

 
group_by() 

 

 
arrange 

 

 
group_by() 

The  operator allows you to string 

operations in a left-to-right fashion. 
 
%>%> 

 
%>% 

 
>%>% 

 
>%>%> 

 
%>% 

There is an SQL interface for relational databases 

via the  package. 
 
DIB 

 
DB2 

 
DBI 

 
DB 

 
DBI 

dplyr can be integrated with the    

package for large fast tables. 
 
data.table 

 
read.table 

 
data.data 

 
read.data 

 
data.table 



Which of the following function is similar to 

summarize ? 
 
arrange_by() 

 
group() 

 
group_by() 

 
arrange 

 
group_by() 

 

 

 
Which of the following is valid syntax for if else 

statement in R ? 

 

if(<condition>) 
{ ## do 

something } else 

{ ## do 

something else } 

if(<condition>) 
{ ## do 

something } 

elseif { ## do 

something else 

} 

if(<condition>) 
{ ## do 

something } 

else if { ## 

do something 

else } 

 

 

if(<condition>) { 
## do something } 
elsif{ ## do 

something else } 

 

 

if(<condition>) { ## do 
something } else { ## 

do something else } 

 

 

 

 

 

 

 

 

 
Point out the correct statement : 

 

 

 

 
Blocks are 

evaluated until a 

new line is 

entered after the 

closing brace 

Single 

statements are 

evaluated when 

a new line is 

typed at the start 

of the 

syntactically 

complete 

statement 

 

 

 

 
The if/else 

statement 

conditionally 

evaluates two 

statements 

 

 

 

 

 

The jump statement 

conditionally 

evaluates two 

statements 

 

 

 

 

 

 
 

The if/else statement 

conditionally evaluates 

two statements 

 

 
Which of the following syntax is correct for while 

loop ? 

 

while ( 

statement1 ) 

statement2 

 

while ( 

statement1 ) else 

statement2 

 

while ( 

statement1 ) do 

statement2 

 

 
while ( statement1 ) 

else if statement2 

 

 
while ( statement1 ) 

statement2 

 
  is used to break the execution of a loop. 

 
next 

 
skip 

 
break 

 
if 

 
break 

Which of the following statement can be used to 

explicitly control looping ? 
 
if 

 
while 

 
break 

 
next 

 
break 

Which of the following should be preferred for 

evaluation from list of alternatives ? 
 
subsett 

 
eval 

 
switch 

 
if 

 
eval 

  initiates an infinite loop right from the 

start. 
 
never 

 
repeat 

 
break 

 
set 

 
repeat 

 

 
Which of the following code snippet stops loop 

after 20 iterations ? 

 

for(i in 1:100) 
{ print(i) 

if(i>20){ break 

}} 

 

for(i in 1:100) 
{ print(i) 

if(i>19){ break 

}} 

 

for(i in 1:100) 
{ print(i) 

if(i<19){ 

break }} 

 

for(i in 1:100) { 
print(i) if(i<20){ 

break }} 

 

for(i in 1:100) { 
print(i) if(i>20){ 

break }} 



 

 

 

 

 

Point out the wrong statement : 

 

Statements 

cannot be 

grouped together 

using braces ‘{’ 

and ‘}’ 

 

Computation in R 

consists of 

sequentially 

evaluating 

statements 

 

Computation in 

R consists of 

sequentially 

evaluating 

statements 

 

Control structures in 

R allow you to 

control the flow of 

execution of a series 

of R expressions. 

 

 

 
Statements cannot be 

grouped together using 

braces ‘{’ and ‘}’ 

 
  is used to skip an iteration of a loop. 

 
group by 

 
group 

 
skip 

 
next 

 
next 

R has  statements that provide explicit 

looping. 
 
two 

 
three 

 
four 

 
five 

 
three 

 
The syntax of the repeat loop is : 

 
rep statement 

 
repeat statement 

 
repeat else 

 
else statement 

 
repeat statement 

 

What will be the output of the following code ? > 

x <- 3 > switch(2, 2+2, mean(1:10), rnorm(5)) 

 

 
5 

 

 
5.5 

 

 
0 

 

 
5.3 

 

 
5.5 

 

 

 

 

 

 

 

 

Point out the correct statement : 

 

 
The next 

statement causes 

an exit from the 

innermost loop 

that is currently 

being executed 

 

 

 
There are two 

statements that 

can be used to 

explicitly control 

looping 

 

 
The break 

statement 

immediately 

causes control 

to return to the 

start of the loop 

 

 

 

 
There are two 

statements that can 

be used to implicitly 

control looping 

 

 

 

 
There are two 

statements that can be 

used to explicitly control 

looping 

 
What will be the output of the following code ? > 

y <- "fruit" > switch(y, fruit = "banana", vegetable 

= "broccoli", "Neither") 

 

 

 
“banana” 

 

 

 
“Neither” 

 

 

 
“broccoli” 

 

 

 
"fruit" 

 

 

 
“banana” 

R has  basic indexing operators. two three four five three 

 

 
The syntax of the for loop is : 

for ( $name in 

vector ) 

statement1 

for loop( name in 

vector ) 

statement1 

for ( name in 
vector ) 

statement1 

 

for loop ( $name in 
vector ) statement1 

 

for ( name in vector ) 
statement1 



What would be the output of the following code ? 

> x <- matrix(1:4, 2, 2) 

> y <- matrix(rep(10, 4), 2, 2) 

> x * y 

 
[,1] [,2] 

[1,] 10 30 

[2,] 20 40 

 
[,1] [,2] 

[1,] 10 30 

[2,] 30 40 

 
[,1] [,2] 

[1,] 20 30 

[2,] 20 40 

 
[,1] [,2] 

[1,] 10 30 

[2,] 30 40 

 
[,1] [,2] 

[1,] 10 30 

[2,] 20 40 

 

 
What would be the output of the following code ? 

> x <- 1:4 > y <- 6:9 > x/y 

 
0.1666667 

0.2857143 

0.4444444 

0.1666667 

0.2857143 

0.3750000 

0.4444444 

 
0.2857143 

0.3750000 

0.4444444 

 
0.2857143 

0.3750000 

0.1666667 

 

 
0.1666667 0.2857143 

0.3750000 0.4444444 

What would be the output of the following code ? 

> x <- as.Date("1970-01-01") 

> x 

 

 
“1970-01-01” 

 

 
“1970-01-02” 

 

 
“1970-02-01” 

 

 
“1970-02-02” 

 

 
“1970-01-01” 

What would be the output of the following code ? 

> x <- as.Date("2012-01-01") 

> y <- strptime("9 Jan 2011 11:34:21", "%d %b %Y 

%H:%M:%S") 

> x-y 

 

 

 
Time difference 

of 356.3095 days 

 

 

 

 

Warning 

 

 

 

 

NULL 

 

 

 

 

Error 

 

 

 

 

Warning 

 
What would be the output of the following code ? 

> x <- as.POSIXct("2012-10-25 01:00:00") 

> y <- as.POSIXct("2012-10-25 06:00:00", tz = 

"GMT") 

> y-x 

 

 

 

 
Time difference 

of 10 sec 

 

 

 

 
Time difference 

of 1 sec 

 

 

 

 
Time difference 

of 1 min 

 

 

 

 
Time difference of 1 

hour 

 

 

 

 
Time difference of 1 

hour 

 

 

 
Which of the following code generate a uniform 

random number ? 

 

 
x <- runif(1, 0, 

10) if(x > 3) { y <- 

10 } else { y <- 0 } 

 

 
x <- run(1, 0, 10) 

if(x > 3) { y <- 10 } 

else { y <- 0 } 

 
x <- random(1, 

0, 10) if(x > 3) { 

y <- 10 } else { y 

<- 0 } 

 

 
x <-runn(1, 0, 10) if(x 

> 3) { y <- 10 } else { 

y <- 0 } 

 

 
x <- runif(1, 0, 10) if(x > 

3) { y <- 10 } else { y <- 0 

} 

 

 

 

 

Point out the wrong stateme 

 

 
for will execute a 

loop a fixed 

number of times 

 

break will 

execute a loop 

while a condition 

is true 

 

 
if and else tests 

a condition and 

acting on it 

 

 
break will execute a 

loop while a 

condition is false 

 

 
break will execute a 

loop while a condition is 

true 

  initiates an infinite loop right from the 

start. 
 
next 

 
for 

 
repeat 

 
while 

 
repeat 



 

  is used to exit a loop immediately, 

regardless of what iteration the loop may be on. 

 

 
next 

 

 
break 

 

 
repeat 

 

 
while 

 

 
break 

  loops begin by testing a condition. next break repeat while while 

 

The  function is commonly used in 

conjunction with for loops in order to generate an 

integer sequence based on the length of an object 

 

 

 
seq() 

 

 

 
seq_long() 

 

 

 
seq_along() 

 

 

 
seq_alo() 

 

 

 
seq_along() 

The  function is used to extract subsets of 

rows from a data frame. 
 
arrange() 

 
filter() 

 
select() 

 
mutate() 

 
filter() 

The  function is used to reorder 

rows of a data frame according to one of the 

variables/- columns 

 

 
arrange() 

 

 
filter() 

 

 
select() 

 

 
mutate() 

 

 
arrange() 

The  function is designed to make this 

process easier. 
 
arrange() 

 
rename() 

 
select() 

 
mutate() 

 
rename() 

The  function is used to generate 

summary statistics from the data frame within 

strata defined by a variable. 

 

 
subset() 

 

 
summarize() 

 

 
group_by() 

 

 
group() 

 

 
group_by() 

The  package provides a concise set of 

operations for managing data frames. 
 
summarize 

 
dlyr 

 
dpl 

 
dplyr 

 
dplyr 
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UNIT-V 

SYLLABUS 

 

 

 

 

 

  

DEBUGGING 
 

SOMETHING’S WRONG! 
 

 R has a number of ways to indicate to you that something’s not right. There are different 

levels of indication that can be used, ranging from mere notification to fatal error. 

 Executing any function in R may result in the following conditions. 

• message: A generic notification/diagnostic message produced by the message() 

function; 

execution of the function continues 

• warning: An indication that something is wrong but not necessarily fatal; execution of 

the function continues. Warnings are generated by the warning() function 

• error: An indication that a fatal problem has occurred and execution of the function 

stops.Errors are produced by the stop() function. 

• condition: A generic concept for indicating that something unexpected has occurred; 

programmers can create their own custom conditions if they want. 

 Here is an example of a warning that you might receive in the course of using R. 

> log(-1) 

Warning in log(-1): NaNs produced 

[1] NaN 

 This warning lets you know that taking the log of a negative number results in a NaN 

value because you can’t take the log of negative numbers. Nevertheless, R doesn’t give 

an error, because it has a useful value that it can return, the NaN value. The warning is 

just there to let you know that something unexpected happens. Depending on what you 

are programming, you may have intentionally taken the log of a negative number in order 

to move on to another section of code. 

 Here is another function that is designed to print a message to the console depending on 

the nature of its input. 

> printmessage <- function(x) { 

+ if(x > 0) 

+ print("x is greater than zero") 

+ else 

+ print("x is less than or equal to zero") 

Debugging: Something’s Wrong! - Figuring Out What’s Wrong - Debugging Tools in R. Using 

traceback() - Using debug() - Using recover(). Profiling R Code: Using system.time() . Timing 

Longer Expressions - The R Profiler – Using summaryRprof().Simulation: Generating Random 

Numbers - Setting the random number seed -Simulating a Linear Model - Random Sampling . 
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+ invisible(x) 

+ } 

 This function is simple—it prints a message telling you whether x is greater than zero or 

less than or equal to zero. It also returns its input invisibly, which is a common practice 

with ―print‖ functions. 

 Returning an object invisibly means that the return value does not get auto-printed when 

the function is called. 

 Take a hard look at the function above and see if you can identify any bugs or problems. 

 We can execute the function as follows. 

> printmessage(1) 

[1] "x is greater than zero" 

 The function seems to work fine at this point. No errors, warnings, or messages. 

> printmessage(NA) 

Error in if (x > 0) print("x is greater than zero") else print("x is less than o\ 

r equal to zero"): missing value where TRUE/FALSE needed 

 

 What happened? 

 
o Well, the first thing the function does is test if x > 0. But you can’t do that test if x 

is a NA or NaN value. 

o R doesn’t know what to do in this case so it stops with a fatal error. 

o We can fix this problem by anticipating the possibility of NA values and checking 

to see if the input is NA with the is.na() function. 

> printmessage2 <- function(x) { 

+ if(is.na(x)) 

+ print("x is a missing value!") 

+ else if(x > 0) 

+ print("x is greater than zero") 

+ else 

+ print("x is less than or equal to zero") 

+ invisible(x) 

+ } 

 Now we can run the following. 

> printmessage2(NA) 

[1] "x is a missing value!" 

And all is fine. 

 Now what about the following situation. 

> x <- log(c(-1, 2)) 

Warning in log(c(-1, 2)): NaNs produced 

> printmessage2(x) 

Warning in if (is.na(x)) print("x is a missing value!") else if (x > 0) 
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print("x is greater than zero") else print("x is less than or equal to 

zero"): the condition has length > 1 and only the first element will be 

used 

[1] "x is a missing value!" 

 Now what?? Why are we getting this warning? The warning says ―the condition has 

length > 1 and only the first element will be used‖. 

 The problem here is that I passed printmessage2() a vector x that was of length 2 rather 

than length 

1. Inside the body of printmessage2() the expression is.na(x) returns a vector that is 

tested in the if statement. However, if cannot take vector arguments so you get a 

warning. The fundamental problem here is that printmessage2() is not vectorized. 

2. We can solve this problem two ways. One is by simply not allowing vector 

arguments. The other way is to vectorize the printmessage2() function to allow it 

to take vector arguments. 

 For the first way, we simply need to check the length of the input. 

> printmessage3 <- function(x) { 

+ if(length(x) > 1L) 

+ stop("'x' has length > 1") 

+ if(is.na(x)) 

+ print("x is a missing value!") 

+ else if(x > 0) 

+ print("x is greater than zero") 

+ else 

+ print("x is less than or equal to zero") 

+ invisible(x) 

+ } 

 Now when we pass printmessage3() a vector we should get an error. 

> printmessage3(1:2) 

Error in printmessage3(1:2): 'x' has length > 1 

Vectorizing the function can be accomplished easily with the Vectorize() function. 

> printmessage4 <- Vectorize(printmessage2) 

> out <- printmessage4(c(-1, 2)) 

[1] "x is less than or equal to zero" 

[1] "x is greater than zero" 

 You can see now that the correct messages are printed without any warning or error. Note 

that I stored the return value of printmessage3() in a separate R object called out. This is 

because when I use the Vectorize() function it no longer preserves the invisibility of the 

return value 
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FIGURING OUT WHAT’S WRONG 

 The primary task of debugging any R code is correctly diagnosing what the problem is. 

When diagnosing a problem with your code (or somebody else’s), it’s important first 

understand what you were expecting to occur. Then you need to identify what did occur 

and how did it deviate from your expectations. Some basic questions you need to ask are 

• What was your input? How did you call the function? 
• What were you expecting? Output, messages, other results? 

• What did you get? 

• How does what you get differ from what you were expecting? 

• Were your expectations correct in the first place? 

• Can you reproduce the problem (exactly)? 

 Being able to answer these questions is important not just for your own sake, but in 

situations where you may need to ask someone else for help with debugging the problem. 

Seasoned programmers will be asking you these exact questions. 

 
DEBUGGING TOOLS IN R 

 

 R provides a number of tools to help you with debugging your code. The primary tools 

for debugging functions in R are 

 traceback(): prints out the function call stack after an error occurs; does nothing if there’s 

no error 

 debug(): flags a function for ―debug‖ mode which allows you to step through execution 

of a function one line at a time 

 browser(): suspends the execution of a function wherever it is called and puts the function 

in debug mode 

 trace(): allows you to insert debugging code into a function a specific places 

 recover(): allows you to modify the error behavior so that you can browse the function 

call stack 

 These functions are interactive tools specifically designed to allow you to pick through a 

function. 

 There’s also the more blunt technique of inserting print() or cat() statements in the 

function. 

Using traceback() 
 

The traceback() function prints out the function call stack after an error has occurred. The 

function 

call stack is the sequence of functions that was called before the error occurred. 

For example, you may have a function a() which subsequently calls function b() which calls c() 

and 

then d(). If an error occurs, it may not be immediately clear in which function the error occurred. 
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The tracback() function shows you how many levels deep you were when the error occurred. 

> mean(x) 

Error in mean(x) : object 'x' not found 

> traceback() 

1: mean(x) 

Here, it’s clear that the error occurred inside the mean() function because the object x does not 

exist. 

The traceback() function must be called immediately after an error occurs. Once another function 

is called, you lose the traceback. 

Here is a slightly more complicated example using the lm() function for linear modeling. 

> lm(y ~ x) 

Error in eval(expr, envir, enclos) : object ’y’ not found 

> traceback() 

7: eval(expr, envir, enclos) 

6: eval(predvars, data, env) 

5: model.frame.default(formula = y ~ x, drop.unused.levels = TRUE) 

4: model.frame(formula = y ~ x, drop.unused.levels = TRUE) 

3: eval(expr, envir, enclos) 

2: eval(mf, parent.frame()) 

1: lm(y ~ x) 

You can see now that the error did not get thrown until the 7th level of the function call stack, in 

which case the eval() function tried to evaluate the formula y ∼ x and realized the object y did 

not exist. 

Looking at the traceback is useful for figuring out roughly where an error occurred but it’s not 

useful 

for more detailed debugging. For that you might turn to the debug() function. 

 

Using debug() 
 

The debug() function initiates an interactive debugger (also known as the ―browser‖ in R) for a 

function. With the debugger, you can step through an R function one expression at a time to 

pinpoint 

exactly where an error occurs. 

The debug() function takes a function as its first argument. Here is an example of debugging the 

lm() function. 

> debug(lm) ## Flag the 'lm()' function for interactive debugging 

> lm(y ~ x) 

debugging in: lm(y ~ x) 

debug: { 

ret.x <- x 

ret.y <- y 

cl <- match.call() 

... 

if (!qr) 
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z$qr <- NULL 

z 

} 

Browse[2]> 

Now, every time you call the lm() function it will launch the interactive debugger. To turn this 

behavior off you need to call the undebug() function. 

The debugger calls the browser at the very top level of the function body. From there you can 

step 

through each expression in the body. There are a few special commands you can call in the 

browser: 

• n executes the current expression and moves to the next expression 

• c continues execution of the function and does not stop until either an error or the function 

exits 

• Q quits the browser 

Here’s an example of a browser session with the lm() function. 

Browse[2]> n ## Evalute this expression and move to the next one 

debug: ret.x <- x 

Browse[2]> n 

debug: ret.y <- y 

Browse[2]> n 

debug: cl <- match.call() 

Browse[2]> n 

debug: mf <- match.call(expand.dots = FALSE) 

Browse[2]> n 

debug: m <- match(c("formula", "data", "subset", "weights", "na.action", 

"offset"), names(mf), 0L) 

 

While you are in the browser you can execute any other R function that might be available to you 

in a regular session. In particular, you can use ls() to see what is in your current environment (the 

function environment) and print() to print out the values of R objects in the function 

environment. 

You can turn off interactive debugging with the undebug() function. 

undebug(lm) ## Unflag the 'lm()' function for debugging 

 

Using recover() 
 

The recover() function can be used to modify the error behavior of R when an error occurs. 

Normally, when an error occurs in a function, R will print out an error message, exit out of the 

function, and return you to your workspace to await further commands. 

With recover() you can tell R that when an error occurs, it should halt execution at the exact 

point 

at which the error occurred. That can give you the opportunity to poke around in the environment 

in which the error occurred. This can be useful to see if there are any R objects or data that have 

been corrupted or mistakenly modified. 
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> options(error = recover) ## Change default R error behavior 

> read.csv("nosuchfile") ## This code doesn't work 

Error in file(file, "rt") : cannot open the connection 

In addition: Warning message: 

In file(file, "rt") : 

cannot open file ’nosuchfile’: No such file or directory 

Enter a frame number, or 0 to exit 

1: read.csv("nosuchfile") 

2: read.table(file = file, header = header, sep = sep, quote = quote, dec = 

3: file(file, "rt") 

Selection: 
The recover() function will first print out the function call stack when an error occurrs. Then, you 

can choose to jump around the call stack and investigate the problem. When you choose a frame 

number, you will be put in the browser (just like the interactive debugger triggered with debug()) 

and will have the ability to poke around. 

 

PROFILING R CODE 
 

 R comes with a profiler to help you optimize your code and improve its performance. In 

generally, it’s usually a bad idea to focus on optimizing your code at the very beginning 

of development. Rather, in the beginning it’s better to focus on translating your ideas into 

code and writing code that’s coherent and readable. The problem is that heavily 

optimized code tends to be obscure and difficult to read, making it harder to debug and 

revise. Better to get all the bugs out first, and then focus on optimizing. 

 Of course, when it comes to optimizing code, the question is what should you optimize? 

Well, clearly should optimize the parts of your code that are running slowly, but how do 

we know what parts those are? This is what the profiler is for. Profiling is a systematic 

way to examine how much time is spent in different parts of a program. 

 Sometimes profiling becomes necessary as a project grows and layers of code are placed 

on top of each other. Often you might write some code that runs fine once. But then later, 

you might put that same code in a big loop that runs 1,000 times. Now the original code 

that took 1 second to run is taking 1,000 seconds to run! Getting that little piece of 

original code to run faster will help the entire loop. 

 It’s tempting to think you just know where the bottlenecks in your code are. I mean, after 

all, you write it! But trust me, I can’t tell you how many times I’ve been surprised at 

where exactly my code is spending all its time. The reality is that profiling is better than 

guessing. Better to collect some data than to go on hunches alone. Ultimately, getting the 

biggest impact on speeding up code depends on knowing where the code spends most of 

its time. This cannot be done without some sort of rigorous performance analysis or 

profiling. 
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 We should forget about small efficiencies, say about 97% of the time: premature 

optimization is the root of all evil —Donald Knuth 

 The basic principles of optimizing your code are: 

• Design first, then optimize 

• Remember: Premature optimization is the root of all evil 

• Measure (collect data), don’t guess. 

• If you’re going to be scientist, you need to apply the same principles here! 

 

Using system.time() 
 

 They system.time() function takes an arbitrary R expression as input (can be wrapped in 

curly braces) and returns the amount of time taken to evaluate the expression. The 

system.time() function computes the time (in seconds) needed to execute an expression 

and if there’s an error, gives the time until the error occurred. The function returns an 

object of class proc_time which contains two useful bits of information: 

• user time: time charged to the CPU(s) for this expression 
• elapsed time: ―wall clock‖ time, the amount of time that passes for you as you’re 

sitting there Usually, the user time and elapsed time are relatively close, for 

straight computing tasks. But there are a few situations where the two can 

diverge, sometimes dramatically. 

The elapsed time may be greater than the user time if the CPU spends a lot of 

time waiting around. 

This commonly happens if your R expression involes some input or output, which 

depends on the activity of the file system and the disk (or the Internet, if using a 

network connection). 

The elapsed time may be smaller than the user time if your machine has multiple 

cores/processors (and is capable of using them). 

 For example, multi-threaded BLAS libraries (vecLib/Accelerate, ATLAS, ACML, MKL) 

can greatly speed up linear algebra calculations and are commonly installed on even 

desktop systems these days. Also, parallel processing done via something like the parallel 

package can make the elapsed time smaller than the user time. 

 When you have multiple processors/- cores/machines working in parallel, the amount of 

time that the collection of CPUs spends working on a problem is the same as with a 

single CPU, but because they are operating in parallel, there is a savings in elapsed time. 

 Here’s an example of where the elapsed time is greater than the user time. 

## Elapsed time > user time 

system.time(readLines("http://www.jhsph.edu")) 

user system elapsed 

0.004 0.002 0.431 

http://www.jhsph.edu/
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 Most of the time in this expression is spent waiting for the connection to the web server 

and waiting for the data to travel back to my computer. This doesn’t involve the CPU and 

so the CPU simply waits around for things to get done. Hence, the user time is small. 

 In this example, the elapsed time is smaller than the user time. 

## Elapsed time < user time 

> hilbert <- function(n) { 

+ i <- 1:n 

+ 1 / outer(i - 1, i, "+") 

+ } 

> x <- hilbert(1000) 

> system.time(svd(x)) 

user system elapsed 

1.035 0.255 0.462 

 In this case I ran singular value decomposition on the matrix in x, which is a common 

linear algebra procedure. Because my computer is able to split the work across multiple 

processors, the elapsed time is about half the user time. 

 
TIMING LONGER EXPRESSIONS 

 

 You can time longer expressions by wrapping them in curly braces within the call to 

system.time(). 

> system.time({ 

+ n <- 1000 

+ r <- numeric(n) 

+ for(i in 1:n) { 

+ x <- rnorm(n) 

+ r[i] <- mean(x) 

+ } 

+ }) 

user system elapsed 

0.086 0.001 0.088 

 If your expression is getting pretty long (more than 2 or 3 lines), it might be better to 

either break it into smaller pieces or to use the profiler. The problem is that if the 

expression is too long, you won’t be able to identify which part of the code is causing the 

bottleneck. 

 

THE R PROFILER 
 

 Using system.time() allows you to test certain functions or code blocks to see if they are 

taking excessive amounts of time. However, this approach assumes that you already 
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know where the problem is and can call system.time() on it that piece of code. What if 

you don’t know where to start? 

 This is where the profiler comes in handy. The Rprof() function starts the profiler in R. 

Note that R must be compiled with profiler support (but this is usually the case). In 

conjunction with Rprof(), we will use the summaryRprof() function which summarizes 

the output from Rprof() (otherwise it’s not really readable). Note that you should NOT 

use system.time() and Rprof() together, or you will be sad. 

 Rprof() keeps track of the function call stack at regularly sampled intervals and tabulates 

how much time is spent inside each function. By default, the profiler samples the function 

call stack every 0.02 seconds. This means that if your code runs very quickly (say, under 

0.02 seconds), the profiler is not useful. But of your code runs that fast, you probably 

don’t need the profiler. 

 The profiler is started by calling the Rprof() function. 

> Rprof() ## Turn on the profiler 

 You don’t need any other arguments. By default it will write its output to a file called 

Rprof.out. You can specify the name of the output file if you don’t want to use this 

default. 

 Once you call the Rprof() function, everything that you do from then on will be measured 

by the profiler. Therefore, you usually only want to run a single R function or expression 

once you turn on the profiler and then immediately turn it off. The reason is that if you 

mix too many function calls together when running the profiler, all of the results will be 

mixed together and you won’t be able to sort out where the bottlenecks are. In reality, I 

usually only run a single function with the profiler on. 

 The profiler can be turned off by passing NULL to Rprof(). 

> Rprof(NULL) ## Turn off the profiler 

 The raw output from the profiler looks something like this. Here I’m calling the lm() 

function on some data with the profiler running. 

## lm(y ~ x) 

sample.interval=10000 

"list" "eval" "eval" "model.frame.default" "model.frame" "eval" "eval" "lm" 

"list" "eval" "eval" "model.frame.default" "model.frame" "eval" "eval" "lm" 

"list" "eval" "eval" "model.frame.default" "model.frame" "eval" "eval" "lm" 

"list" "eval" "eval" "model.frame.default" "model.frame" "eval" "eval" "lm" 

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm" 

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm" 

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm" 

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm" 

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm" 

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm" 

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm" 
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"lm.fit" "lm" 

"lm.fit" "lm" 

"lm.fit" "lm" 

 At each line of the output, the profiler writes out the function call stack. For example, on 

the very first line of the output you can see that the code is 8 levels deep in the call stack. 

This is where you need the summaryRprof() function to help you interpret this data. 

 

Using summaryRprof() 

 

 The summaryRprof() function tabulates the R profiler output and calculates how much 

time is spendin which function. There are two methods for normalizing the data. 

• ―by.total‖ divides the time spend in each function by the total run time 
• ―by.self‖  does  the  same  as  ―by.total‖  but  first  subtracts  out  time  spent  in 

functions above the current function in the call stack. I personally find this output 

to be much more useful. 

 Here is what summaryRprof() reports in the ―by.total‖ output. 

$by.total 

total.time total.pct self.time self.pct 

"lm" 7.41 100.00 0.30 4.05 

"lm.fit" 3.50 47.23 2.99 40.35 

"model.frame.default" 2.24 30.23 0.12 1.62 

"eval" 2.24 30.23 0.00 0.00 

"model.frame" 2.24 30.23 0.00 0.00 

"na.omit" 1.54 20.78 0.24 3.24 

"na.omit.data.frame" 1.30 17.54 0.49 6.61 

"lapply" 1.04 14.04 0.00 0.00 

"[.data.frame" 1.03 13.90 0.79 10.66 

"[" 1.03 13.90 0.00 0.00 

"as.list.data.frame" 0.82 11.07 0.82 11.07 

"as.list" 0.82 11.07 0.00 0.00 

 Because lm() is the function that I called from the command line, of course 100% of the 

time is spent somewhere in that function. However, what this doesn’t show is that if lm() 

immediately calls another function (like lm.fit(), which does most of the heavy lifting), 

then in reality, most of the time is spent in that function, rather than in the top-level lm() 

function. 

 The ―by.self‖ output corrects for this discrepancy. 

$by.self 

self.time self.pct total.time total.pct 

"lm.fit" 2.99 40.35 3.50 47.23 

"as.list.data.frame" 0.82 11.07 0.82 11.07 

"[.data.frame" 0.79 10.66 1.03 13.90 

"structure" 0.73 9.85 0.73 9.85 
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"na.omit.data.frame" 0.49 6.61 1.30 17.54 

"list" 0.46 6.21 0.46 6.21 

"lm" 0.30 4.05 7.41 100.00 

"model.matrix.default" 0.27 3.64 0.79 10.66 

"na.omit" 0.24 3.24 1.54 20.78 

"as.character" 0.18 2.43 0.18 2.43 

"model.frame.default" 0.12 1.62 2.24 30.23 

"anyDuplicated.default" 0.02 0.27 0.02 0.27 

 

 Now you can see that only about 4% of the runtime is spent in the actual lm() function, 

whereas over 40% of the time is spent in lm.fit(). In this case, this is no surprise since the 

lm.fit() function is the function that actually fits the linear model. 

 You can see that a reasonable amount of time is spent in functions not necessarily 

associated with linear modeling (i.e. as.list.data.frame, [.data.frame). This is because the 

lm() function does a bit of pre-processing and checking before it actually fits the model. 

This is common with modeling functions—the preprocessing and checking is useful to 

see if there are any errors. But those two functions take up over 1.5 seconds of runtime. 

What if you want to fit this model 10,000 times? 

 You’re going to be spending a lot of time in preprocessing and checking. 

 The final bit of output that summaryRprof() provides is the sampling interval and the 

total runtime. 

$sample.interval 

[1] 0.02 

$sampling.time 

[1] 7.41 

SIMULATION 
 

GENERATING RANDOM NUMBERS 
 

 Simulation is an important (and big) topic for both statistics and for a variety of other 

areas where there is a need to introduce randomness. Sometimes you want to implement a 

statistical procedure that requires random number generation or samplie (i.e. Markov 

chain Monte Carlo, the bootstrap, random forests, bagging) and sometimes you want to 

simulate a system and random number generators can be used to model random inputs. 

 R comes with a set of pseudo-random number generators that allow you to simulate from 

well known probability distributions like the Normal, Poisson, and binomial. Some 

example functions for probability distributions in R 

• rnorm: generate random Normal variates with a given mean and standard 

deviation 

• dnorm: evaluate the Normal probability density (with a given mean/SD) at a 

point (or vector of points) 
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• pnorm: evaluate the cumulative distribution function for a Normal distribution 

• rpois: generate random Poisson variates with a given rate 

 For each probability distribution there are typically four functions available that start with 

a  ―r‖,  ―d‖,  ―p‖,  and  ―q‖.  The  ―r‖  function  is  the  one  that  actually  simulates  random 

numbers from that distribution. The other functions are prefixed with a 

• d for density 
• r for random number generation 

• p for cumulative distribution 

• q for quantile function (inverse cumulative distribution) 

 If you’re only interested in simulating random numbers, then you will likely only need 

the ―r‖ functions and not the others. However, if  you intend to simulate from arbitrary 

probability distributions using something like rejection sampling, then you will need the 

other functions too. 

 Probably the most common probability distribution to work with the Normal distribution 

(also known as the Gaussian). Working with the Normal distributions requires using  

these four functions 

dnorm(x, mean = 0, sd = 1, log = FALSE) 

pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) 

qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) 

rnorm(n, mean = 0, sd = 1) 

 Here we simulate standard Normal random numbers with mean 0 and standard deviation 

1. 

> ## Simulate standard Normal random numbers 

> x <- rnorm(10) 

> x 

[1] 0.01874617 -0.18425254 -1.37133055 -0.59916772 0.29454513 

[6] 0.38979430 -1.20807618 -0.36367602 -1.62667268 -0.25647839 

 We can modify the default parameters to simulate numbers with mean 20 and standard 

deviation 2. 

> x <- rnorm(10, 20, 2) 

> x 

[1] 22.20356 21.51156 19.52353 21.97489 21.48278 20.17869 18.09011 

[8] 19.60970 21.85104 20.96596 

> summary(x) 

Min. 1st Qu. Median Mean 3rd Qu. Max. 

18.09 19.75 21.22 20.74 21.77 22.20 

 If you wanted to know what was the probability of a random Normal variable of being 

less than, say, 2, you could use the pnorm() function to do that calculation. 

> pnorm(2) 

[1] 0.9772499 

 You never know when that calculation will come in handy 
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SETTING THE RANDOM NUMBER SEED 
 

 When simulating any random numbers it is essential to set the random number seed. 

Setting the random number seed with set.seed() ensures reproducibility of the sequence 

of random numbers. 

 For example, I can generate 5 Normal random numbers with rnorm() 

> set.seed(1) 

> rnorm(5) 

[1] -0.6264538 0.1836433 -0.8356286 1.5952808 0.3295078 

Note that if I call rnorm() again I will of course get a different set of 5 

random numbers. 

> rnorm(5) 

[1] -0.8204684 0.4874291 0.7383247 0.5757814 -0.3053884 

If I want to reproduce the original set of random numbers, I can just reset 

the seed with set.seed(). 

> set.seed(1) 

> rnorm(5) ## Same as before 

[1] -0.6264538 0.1836433 -0.8356286 1.5952808 0.3295078 

 In general, you should always set the random number seed when conducting a 

simulation! 

 Otherwise, you will not be able to reconstruct the exact numbers that you produced in an 

analysis. It is possible to generate random numbers from other probability distributions 

like the Poisson. The Poisson distribution is commonly used to model data that come in 

the form of counts. 

> rpois(10, 1) ## Counts with a mean of 1 

[1] 0 0 1 1 2 1 1 4 1 2 

> rpois(10, 2) ## Counts with a mean of 2 

[1] 4 1 2 0 1 1 0 1 4 1 

> rpois(10, 20) ## Counts with a mean of 20 

[1] 19 19 24 23 22 24 23 20 11 22 
 
 

plot of chunk Linear Model 
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SIMULATING A LINEAR MODEL 
 

 Simulating random numbers is useful but sometimes we want to simulate values that 

come from a specific model. For that we need to specify the model and then simulate 

from it using the functions described above. 

 Suppose we want to simulate from the following linear model 

y = β0 + β1x + ε 

where ε ∼ N (0, 2 

2 

). Assume x ∼ N (0, 1 

2 

), β0 = 0.5 and β1 = 2. The variable x might represent 

an important predictor of the outcome y. Here’s how we could do that in R. 

> ## Always set your seed! 

> set.seed(20) 

> 

> ## Simulate predictor variable 

> x <- rnorm(100) 

> 

> ## Simulate the error term 

> e <- rnorm(100, 0, 2) 

> 

> ## Compute the outcome via the model 

> y <- 0.5 + 2 * x + e 

> summary(y) 

Min. 1st Qu. Median Mean 3rd Qu. Max. 

-6.4080 -1.5400 0.6789 0.6893 2.9300 6.5050 

We can plot the results of the model simulation. 

> plot(x, y) 

 

 What if we wanted to simulate a predictor variable x that is binary instead of having a 

Normal distribution. We can use the rbinom() function to simulate binary random 

variables. 

> set.seed(10) 

> x <- rbinom(100, 1, 0.5) 

> str(x) ## 'x' is now 0s and 1s 

int [1:100] 1 0 0 1 0 0 0 0 1 0 ... 

Then we can procede with the rest of the model as before. 

> e <- rnorm(100, 0, 2) 

> y <- 0.5 + 2 * x + e 

> plot(x, y) 
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plot of chunk Linear Model Binary 

 

 We can also simulate from generalized linear model where the errors are no longer from 

a Normal distribution but come from some other distribution. For examples, suppose we 

want to simulate from a Poisson log-linear model where 

Y ∼ P oisson(µ) 

log µ = β0 + β1x 

and β0 = 0.5 and β1 = 0.3. We need to use the rpois() function for this 

> set.seed(1) 

> 

> ## Simulate the predictor variable as before 

> x <- rnorm(100) 

Now we need to compute the log mean of the model and then exponentiate it 

to get the mean to 

pass to rpois(). 

> log.mu <- 0.5 + 0.3 * x 

> y <- rpois(100, exp(log.mu)) 

> summary(y) 

Min. 1st Qu. Median Mean 3rd Qu. Max. 

0.00 1.00 1.00 1.55 2.00 6.00 

> plot(x, y) 
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plot of chunk Poisson Log-Linear Model 

 You can build arbitrarily complex models like this by simulating more predictors or 

making transformations of those predictors (e.g. squaring, log transformations, etc.). 

 

RANDOM SAMPLING 
 

 The sample() function draws randomly from a specified set of (scalar) objects allowing 

you to sample from arbitrary distributions of numbers. 

> set.seed(1) 

> sample(1:10, 4) 

[1] 3 4 5 7 

> sample(1:10, 4) 

[1] 3 9 8 5 

> 

> ## Doesn't have to be numbers 

> sample(letters, 5) 

[1] "q" "b" "e" "x" "p" 

> 

> ## Do a random permutation 

> sample(1:10) 

[1] 4 7 10 6 9 2 8 3 1 5 

> sample(1:10) 

[1] 2 3 4 1 9 5 10 8 6 7 

> 

> ## Sample w/replacement 

> sample(1:10, replace = TRUE) 

[1] 2 9 7 8 2 8 5 9 7 8 

 To sample more complicated things, such as rows from a data frame or a list, you can 

sample the indices into an object rather than the elements of the object itself. 

 Here’s how you can sample rows from a data frame. 

> library(datasets) 

> data(airquality) 

> head(airquality) 
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Ozone Solar.R Wind Temp Month Day 

1 41 190 7.4 67 5 1 

2 36 118 8.0 72 5 2 

3 12 149 12.6 74 5 3 

4 18 313 11.5 62 5 4 

5 NA NA 14.3 56 5 5 

6 28 NA 14.9 66 5 6 

 Now we just need to create the index vector indexing the rows of the data frame and 

sample directly from that index vector. 

> set.seed(20) 

> 

> ## Create index vector 

> idx <- seq_len(nrow(airquality)) 

> 

> ## Sample from the index vector 

> samp <- sample(idx, 6) 

> airquality[samp, ] 

Ozone Solar.R Wind Temp Month Day 

135 21 259 15.5 76 9 12 

117 168 238 3.4 81 8 25 

43 NA 250 9.2 92 6 12 

80 79 187 5.1 87 7 19 

144 13 238 12.6 64 9 21 

146 36 139 10.3 81 9 23 

Other more complex objects can be sampled in this way, as long as there’s a way to index the 

sub elements of the object. 
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1. What is Debugging? 

POSSIBLE QUESTIONS 

UNIT – V 

PART – A (20 MARKS) 

(Q.NO 1 TO 20 Online Examinations) 

PART – B (2 MARKS) 

 

2. Define Random Samplings 

3. What is the use of sample ()? 

4. When the random number seed set? 

5. Give some examples for probability distributions in R. 

6. What are the Debugging tools in R programming 

7. Define recover() 

8. What is the process of debug ()? 

9. What is meant by Simulation? 

10. What is the use of traceback()? 
 

PART – C (6 MARKS) 

1. Explain the process of Debugging 
 

2. Discuss the Debugging tools in R 
 

3. Explain the process of traceback () 
 

4. Discuss in detail (i) recover () (ii) debug () 
 

5. Explain about system.time() with suitable examples 
 

6. Explain about the R profiler 
 

7. Explain how to simulate a linear model 
 

8. Explain about Random Samplings 
 

9. Explain about Simulation and its process 

 

10. Explain the process of Using summaryRprof() 
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DEPARTMENT OF COMPUTER SCIENCE, CA & IT 

UNIT - IV : (Objective Type Multiple choice Questions each Question carries one Mark) 

R PROGRAMMING [ 18CAU404A] 

PART - A (Online Examination) 

 
Questions Opt1 Opt2 Opt3 Opt4 Key 

Which of the following is apply function in R ? apply() tapply() fapply() sapply() tapply() 

 
Functions are defined using the  directive 

and are stored as R objects 

 

 

function() 

 

 

funct() 

 

 

functions() 

 

 

func() 

 

 

function() 

 

 

 

 

 

 

 

 

 

 

 
Point out the wrong statement : 

 

 

 

 

 

 

 

 

 
Functions in R 

are “second class 

objects” 

 
The writing of a 

function allows a 

developer to 

create an 

interface to the 

code, that is 

explicitly 

specified with a 

set of 

parameters 

 

 

 

 

 

 
 

Functions 

provides an 

abstraction of 

the code to 

potential users 

 

 

 

 

 

 

 

 

 

 
Functions in R are 

“first class objects” 

 

 

 

 

 

 

 

 

 
Functions in R 

are “second 

class objects” 

What will be the output of the following code ? > f <- 

function() { + ## This is an empty function 

+ } 

> class(f) 

 

 

 
“data" 

 

 

 
“procedure” 

 

 

 
“function” 

 

 

 
“class” 

 

 

 
“function” 

The  function returns a list of all the formals() funct() formal() function() formals() 



 

 

 

 

 

 

 

 

 

 
Point out the wrong statement : 

 

 

 

 

 

Functions can be 

nested, so that 

you can define a 

function inside of 

another function 

 

 

 

 

 

 
 

The value 

returned by the 

call to function is 

not a function 

A formal 

argument can 

be a symbol, a 

statement of 

the form 

‘symbol = 

expression’, or 

the special 

formal 

argument 

 

 

 

 

 

 
 

The first component 

of the function 

declaration is the 

keyword function 

 

 
A formal 

argument can be 

a symbol, a 

statement of the 

form ‘symbol = 

expression’, or 

the special 

formal argument 

You can check to see whether an R object is NULL is.null() is.nullobj() null() is.obj() is.null() 

 

 
Which of the following code will print NULL ? 

 

 
> args(pastebin) 

 

 
> args(paste) 

 

 
> args(pastebin) 

 

 
> argc(pastebin) 

 

 
> args(paste) 

What will be the output of following code snippet ? “a+b” “a=b” “a:b” “a-b” “a:b” 

What will be the output of following code ? > f <- 

function(a, b) { 

+ print(a) 

+ print(b) 

+ } 

 

 

 

 

32 

 

 

 

 

42 

 

 

 

 

52 

 

 

 

 

45 

 

 

 

 

45 

  is an indication that a fatal problem has 

occurred and execution of the function stops 
 
message 

 
error 

 
warning 

 
stop 

 
error 

 

What would be the value of following expression ? 

log(-1) 

 

 
0 

 

 
Null 

Warning in log(- 

1): NaNs 

produced 

 

 
1 

Warning in log(- 

1): NaNs 

produced 

Warnings are generated by the  function warning() error() run() runif() warning() 



 

 

 

 

 

 

 

 

 

 

 
Point out the correct statement : 

 

 

 

 

 

POSIX represents 

a portable 

operating system 

interface, 

primarily for 

UNIX systems 

 

 

 

 

There are 

different levels 

of indication that 

can be used, 

ranging from 

mere notification 

to fatal error 

 
The default 

input format for 

POSIX dates 

consists of the 

month, 

followed by the 

year and day, 

separated by 

slashes or 

dashes 

 

 

 

 

 

 

 

 

 
Dates are not stored 

in the POSIX format 

are date/time values 

 

 

 
POSIX 

represents a 

portable 

operating 

system 

interface, 

primarily for 

UNIX systems 

To get the current date, the  function will 

return a Date object which can be converted to a 
 
Sys.Time 

 
Sys.Date 

 
Sys.DateTime 

 
Sys.TimeDate 

 
Sys.Date 

 

Which of the followin code represents internal 

representation of a Date object ? 

 

class(as.Date(“19 

70-01-02”)) 

 

classint(as.Date(“ 

1970-01-02”)) 

 

unclass(as.Date 

(“1970-01-02”)) 

 

unclassint(as.Date(“ 

1970-01-02”)) 

 

unclass(as.Date( 

“1970-01-02”)) 

What will be the output of following code snippet ? 

> lm <- function(x) { x * x } 

function(x) { x * x 

} 
 
func(x) { x * x } 

function(x) { x / 

x } 
 
funct(x) { x / x } 

function(x) { x * 

x } 

 

 

 

 

 

 

 

 

Point out the correct statement : 

 

 

 
The search list 

can be found by 

using the 

searchlist() 

function 

 

 

 

 
The search list 

can be found by 

using the 

search() function 

The global 

environment or 

the user’s 

workspace is 

always the 

second element 

of the search 

list 

 

 

 

 

 

The search can be 

found by using the 

searchlt() function 

 

 

 

 
The search list 

can be found by 

using the 

search() function 

A function, together with an environment, makes 

up what is called a  closure. 
 
formal 

 
function 

 
reflective 

 
unformal 

 
function 

R uses  scoping or static scoping. reflective transitive lexical formal lexical 

The only environment without a parent is the full half null empty empty 

The  for R are the main feature that make 

it different from the original S language 
 
scoping rules 

 
closure rules 

environment 

rules 
 
lexical rules 

 
scoping rules 

The  function is a kind of “constructor 

function” that can be used to construct other 
 
make.pow() 

 
make.power() 

 
keep.power() 

 
keep.pow() 

 
make.power() 



What will be the output of following code ? > g <- 

function(x) { 

+ a <- 3 

+ x+a+y 

+ ## 'y' is a free variable 

+ } 

 

 

 

 

 

9 

 

 

 

 

 

42 

 

 

 

 

 

8 

 

 

 

 

 

Error 

 

 

 

 

 

Error 

  functions can be “built which contain all of 

the necessary data for evaluating the function 
 
Objective 

 
reflective 

 
Nested 

 
lexical 

 
Objective 

  require you to pass a function whose 

argument is a vector of parameters ( 
 
optimize() 

 
optimise() 

 
opt() 

 
oplt() 

 
opt() 

The  function is used to plot negative plot() graph() graph.plot() plot.graph() plot() 

  loop over a list and evaluate a function on apply() lapply() sapply() mapply() apply() 

 

 

 

 

 

 

 

 

 
Point out the wrong statement : 

 
Multi-line 

expressions with 

curly braces are 

just not that easy 

to sort through 

when working on 

the command 

line 

 

 

 

 

lappy() loops 

over a list, 

iterating over 

each element in 

that list 

 

 

 

 

 

 
 

lapply() does 

not always 

returns a list 

 

 

 

 

 

lapply() always 

returns a list, 

regardless of the 

class of the input. 

 

 

 

 

 

 
 

lapply() does 

not always 

returns a list 

  function is same as lapply in R apply() lapply() sapply() mapply() sapply() 

Which of the following is multivariate version of apply() lapply() sapply() mapply() mapply() 

 

 

 

 

 

 

 

 

 
Point out the correct statement : 

 

 
lapply() takes 

elements of the 

list and passes 

them as the first 

argument of the 

function you are 

applying 

 

 
You can use 

lapply() to 

evaluate a 

function multiple 

times each with 

a different 

argument 

 

 

 

 
Functions that 

you pass to 

lapply() may 

have other 

arguments 

 

 

 

 
The lapply() function 

and its friends make 

heavy use of 

anonymous 

functions. 

 

 

 
The lapply() 

function and its 

friends make 

heavy use of 

anonymous 

functions. 

  applies a function over the margins of an apply() lapply() sapply() mapply() apply() 

  is used to apply a function over subsets of apply() lapply() tapply() mapply() tapply() 



lappy functions takes  arguments in R two three four five four 

 

 

 

 

 

 

 

 

Point out the wrong statement : 

 

 

 

 
The sapply() 

function behaves 

similarly to 

lapply() 

 

With multiple 

factors and many 

levels, creating 

an interaction 

can result in 

many levels that 

are empty 

 

 
apply() can be 

thought of as a 

combination of 

split() and 

sapply() for 

vectors only 

 

 

 
tapply() can be 

thought of as a 

combination of 

split() and sapply() 

for vectors only. 

 

 
apply() can be 

thought of as a 

combination of 

split() and 

sapply() for 

vectors only 

The  function takes a vector or other objects 

and splits it into groups determined by a factor or 
 
apply() 

 
lsplit() 

 
split() 

 
mapply() 

 
split() 

What will be the output of the following code ? > 

nLL <- make.NegLogLik(normals, c(1, FALSE)) 

> optimize(nLL, c(1e-6, 10))$minimum 

 

 
1.217775 

 

 
1.800596 

 

 
3.73424 

 

 
empty 

 

 
1.800596 

 

 

 

 

 

 

 

 

 

 

 
Point out the correct statement : 

 

 

 

 
An environment 

is a collection of 

(symbol, value) 

pairs, i.e. x is a 

symbol and 3.14 

might be its 

value 

 
If the value of a 

symbol is not 

found in the 

environment in 

which a function 

was defined, 

then the search 

is continued in 

the child 

environment 

 

 
After the top- 

level 

environment, 

the search 

continues down 

the search list 

until we hit the 

parent 

environment 

 

 

 

 

Every environment 

has a parent 

environment and it 

is not possible for an 

environment to 

have multiple 

“children”. 

 

 

 

 
An environment 

is a collection of 

(symbol, value) 

pairs, i.e. x is a 

symbol and 3.14 

might be its 

value 

 

 

 

 

 

 

 

 

Point out the wrong statement : 

 
Dynamic scoping 

turns out to be 

particularly 

useful for 

simplifying 

statistical 

computations 

 
Lexical scoping 

turns out to be 

particularly 

useful for 

simplifying 

statistical 

computations 

 
The scoping 

rules of a 

language 

determine how 

values are 

assigned to free 

variables 

 

 

 

 
Free variables are 

not formal 

arguments and are 

not local variables 

 
Dynamic scoping 

turns out to be 

particularly 

useful for 

simplifying 

statistical 

computations 



What would be the output of the following code ? > 

printmessage <- function(x) { 

+ if(x > 0) 

+ print("x is greater than zero") 

+ else 

+ print("x is less than or equal to zero") 

+ invisible(x) 

+ } 

> printmessage(NA) 

 

 

 

 

 

 

 

 

 
Error 

 

 

 

 

 

 

 

 

 
Warning 

 

 

 

 

 

 

 

 

 
Messages 

 

 

 

 

 

 

 

 

 
Data 

 

 

 

 

 

 

 

 

 
Error 

Arguments to functions are evaluated  , 

so they are evaluated only as needed in the body of 
 
completely 

 
lazily 

 
directly 

 
inversely 

 
lazily 

In R the calling environment is known as the data frame child fram parent frame called frame parent frame 

  turns out to be particularly useful for 

simplifying statistical computations 
 
scoping rules 

 
Lexical scoping 

dynamic 

scoping 
 
scoping 

 
Lexical scoping 

Optimization routines in R like  ,  and 

   require you to pass a function whose 

argument is a vector of parameters 

 

opti(), lm(), and 

optimize() 

 

opt(), nm(), and 

optimi() 

 

optim(), nlm(), 

and optimize() 

 

optim(), lmn(), and 

optimize() 

 

optim(), nlm(), 

and optimize() 

Optimization functions in R  functions, so 

you need to use the negative loglikelihood. 
 
minimize 

 
maximize 

 
calling 

 
return 

 
minimize 

The mapply() function can be use to automatically minimize maximize vectorize calling vectorize 

The  function can be used to divide an R 

object in to subsets determined by another variable 

which can subsequently be looped over using loop 

 

 
apply() 

 

 
lsplit() 

 

 
split() 

 

 
mapply() 

 

 
split() 

  expressions with curly braces are just 

not that easy to sort through when working on the 
 
looping 

 
Multi-line 

 
lexical 

 
Single-line 

 
Multi-line 

we are passing the  function as an mode() median() mean() split() mean() 

The lapply() function and its friends make heavy use calling unanonymous anonymous member anonymous 

What will be the output of the following code ? > f <- 

function() { 

+ ## This is an empty function 

+ } 

 

 

 
0 

 

 

 
No result 

 

 

 
NULL 

 

 

 
Error 

 

 

 
NULL 



 

 

 
Which of the following code will print “Hello, 

world!” ? 

 

 
> f <- function() { 

cat("Hello, 

world!\n") } > f() 

 

 
> f <- function() { 

cat("Hello, 

World!\n") } > f() 

 
> f <- function() 

{ cat("Hello 

world!\n") } > 

f() 

 

 
> f <- function() { 

cat("hello 

World!\n") } > f() 

 

 
> f <- function() { 

cat("Hello, 

world!\n") } > f() 

What will be the output of following code ? > f <- 

function(num) { 

+ for(i in seq_len(num)) { 

+ cat("Hello, world!\n") 

+ } 

+ } 

 

 

 

 
Hello, world! 

Hello, world! 

 

 

 
Hello, world! 

Hello, world! 

Hello, world! 

 

 
Hello, world! 

Hello, world! 

Hello, world! 

Hello, world! 

 

 

 

 

 

Hello, world! 

 

 

 
Hello, world! 

Hello, world! 

Hello, world! 

What will be the output of the following code ? > f <- 

function(num = 1) { 

+ hello <- "Hello, world!\n" 

+ for(i in seq_len(num)) { 

+ cat(hello) 

+ } 

+ chars <- nchar(hello) * num 

+ chars 

+ } 

 

 

 

 

 

 

 

 
Hello, world! [1] 
14 

 

 

 

 

 

 

 

 

 
 

Hello, world! 
[1] 15 

 

 

 

 

 

 

 

 

 
 

Hello, world! 
[1] 16 

 

 

 

 

 

 

 

 

 
Hello, world! [1] 17 

 

 

 

 

 

 

 

 

 
 

Hello, world! 
[1] 14 

What will be the output of following code ? > f <- 

function(a, b) { 

+ a^2 

+ } 

 

 

 
4 

 

 

 
3 

 

 

 
2 

 

 

 
1 

 

 

 
4 

What will be the output of following code ? > f <- 

function(a, b) { 

+ print(a) 

+ print(b) 

+ } 

 

 

 

 

32 

 

 

 

 

42 

 

 

 

 

52 

 

 

 

 

45 

 

 

 

 

45 

What would be the output of the following code ? > 

p <- as.POSIXlt(x) 

> names(unclass(p)) 

 

 
1 

 

 
2 

 

 
3 

 

 
4 

 

 
1 

  will not simplify the result and will apply() lapply() tapply() mapply() tapply() 



  keeps track of the function call stack at 

regularly sampled intervals and tabulates how much 
 
summaryRprof() 

 
Rprof() 

 
system.time() 

 
prof() 

 
Rprof() 

 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
CLASS: II BCA 

COURSE CODE: 18CAU404A 
COURSE NAME: R PROGRAMMING 

UNIT - V BATCH: 2018 – 2021 

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 1/19 

 

 

 

UNIT-V 

SYLLABUS 

 

 

 

 

 

  

DEBUGGING 
 

SOMETHING’S WRONG! 
 

 R has a number of ways to indicate to you that something’s not right. There are different 

levels of indication that can be used, ranging from mere notification to fatal error. 

 Executing any function in R may result in the following conditions. 

• message: A generic notification/diagnostic message produced by the message() 

function; 

execution of the function continues 

• warning: An indication that something is wrong but not necessarily fatal; execution of 

the function continues. Warnings are generated by the warning() function 

• error: An indication that a fatal problem has occurred and execution of the function 

stops.Errors are produced by the stop() function. 

• condition: A generic concept for indicating that something unexpected has occurred; 

programmers can create their own custom conditions if they want. 

 Here is an example of a warning that you might receive in the course of using R. 

> log(-1) 

Warning in log(-1): NaNs produced 

[1] NaN 

 This warning lets you know that taking the log of a negative number results in a NaN 

value because you can’t take the log of negative numbers. Nevertheless, R doesn’t give 

an error, because it has a useful value that it can return, the NaN value. The warning is 

just there to let you know that something unexpected happens. Depending on what you 

are programming, you may have intentionally taken the log of a negative number in order 

to move on to another section of code. 

 Here is another function that is designed to print a message to the console depending on 

the nature of its input. 

> printmessage <- function(x) { 

+ if(x > 0) 

+ print("x is greater than zero") 

+ else 

+ print("x is less than or equal to zero") 

Debugging: Something’s Wrong! - Figuring Out What’s Wrong - Debugging Tools in R. Using 

traceback() - Using debug() - Using recover(). Profiling R Code: Using system.time() . Timing 

Longer Expressions - The R Profiler – Using summaryRprof().Simulation: Generating Random 

Numbers - Setting the random number seed -Simulating a Linear Model - Random Sampling . 
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+ invisible(x) 

+ } 

 This function is simple—it prints a message telling you whether x is greater than zero or 

less than or equal to zero. It also returns its input invisibly, which is a common practice 

with ―print‖ functions. 

 Returning an object invisibly means that the return value does not get auto-printed when 

the function is called. 

 Take a hard look at the function above and see if you can identify any bugs or problems. 

 We can execute the function as follows. 

> printmessage(1) 

[1] "x is greater than zero" 

 The function seems to work fine at this point. No errors, warnings, or messages. 

> printmessage(NA) 

Error in if (x > 0) print("x is greater than zero") else print("x is less than o\ 

r equal to zero"): missing value where TRUE/FALSE needed 

 

 What happened? 

 
o Well, the first thing the function does is test if x > 0. But you can’t do that test if x 

is a NA or NaN value. 

o R doesn’t know what to do in this case so it stops with a fatal error. 

o We can fix this problem by anticipating the possibility of NA values and checking 

to see if the input is NA with the is.na() function. 

> printmessage2 <- function(x) { 

+ if(is.na(x)) 

+ print("x is a missing value!") 

+ else if(x > 0) 

+ print("x is greater than zero") 

+ else 

+ print("x is less than or equal to zero") 

+ invisible(x) 

+ } 

 Now we can run the following. 

> printmessage2(NA) 

[1] "x is a missing value!" 

And all is fine. 

 Now what about the following situation. 

> x <- log(c(-1, 2)) 

Warning in log(c(-1, 2)): NaNs produced 

> printmessage2(x) 

Warning in if (is.na(x)) print("x is a missing value!") else if (x > 0) 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
CLASS: II BCA 

COURSE CODE: 18CAU404A 
COURSE NAME: R PROGRAMMING 

UNIT - V BATCH: 2018 – 2021 

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 3/19 

 

 

 

print("x is greater than zero") else print("x is less than or equal to 

zero"): the condition has length > 1 and only the first element will be 

used 

[1] "x is a missing value!" 

 Now what?? Why are we getting this warning? The warning says ―the condition has 

length > 1 and only the first element will be used‖. 

 The problem here is that I passed printmessage2() a vector x that was of length 2 rather 

than length 

1. Inside the body of printmessage2() the expression is.na(x) returns a vector that is 

tested in the if statement. However, if cannot take vector arguments so you get a 

warning. The fundamental problem here is that printmessage2() is not vectorized. 

2. We can solve this problem two ways. One is by simply not allowing vector 

arguments. The other way is to vectorize the printmessage2() function to allow it 

to take vector arguments. 

 For the first way, we simply need to check the length of the input. 

> printmessage3 <- function(x) { 

+ if(length(x) > 1L) 

+ stop("'x' has length > 1") 

+ if(is.na(x)) 

+ print("x is a missing value!") 

+ else if(x > 0) 

+ print("x is greater than zero") 

+ else 

+ print("x is less than or equal to zero") 

+ invisible(x) 

+ } 

 Now when we pass printmessage3() a vector we should get an error. 

> printmessage3(1:2) 

Error in printmessage3(1:2): 'x' has length > 1 

Vectorizing the function can be accomplished easily with the Vectorize() function. 

> printmessage4 <- Vectorize(printmessage2) 

> out <- printmessage4(c(-1, 2)) 

[1] "x is less than or equal to zero" 

[1] "x is greater than zero" 

 You can see now that the correct messages are printed without any warning or error. Note 

that I stored the return value of printmessage3() in a separate R object called out. This is 

because when I use the Vectorize() function it no longer preserves the invisibility of the 

return value 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
CLASS: II BCA 

COURSE CODE: 18CAU404A 
COURSE NAME: R PROGRAMMING 

UNIT - V BATCH: 2018 – 2021 

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 4/19 

 

 

 

FIGURING OUT WHAT’S WRONG 

 The primary task of debugging any R code is correctly diagnosing what the problem is. 

When diagnosing a problem with your code (or somebody else’s), it’s important first 

understand what you were expecting to occur. Then you need to identify what did occur 

and how did it deviate from your expectations. Some basic questions you need to ask are 

• What was your input? How did you call the function? 
• What were you expecting? Output, messages, other results? 

• What did you get? 

• How does what you get differ from what you were expecting? 

• Were your expectations correct in the first place? 

• Can you reproduce the problem (exactly)? 

 Being able to answer these questions is important not just for your own sake, but in 

situations where you may need to ask someone else for help with debugging the problem. 

Seasoned programmers will be asking you these exact questions. 

 
DEBUGGING TOOLS IN R 

 

 R provides a number of tools to help you with debugging your code. The primary tools 

for debugging functions in R are 

 traceback(): prints out the function call stack after an error occurs; does nothing if there’s 

no error 

 debug(): flags a function for ―debug‖ mode which allows you to step through execution 

of a function one line at a time 

 browser(): suspends the execution of a function wherever it is called and puts the function 

in debug mode 

 trace(): allows you to insert debugging code into a function a specific places 

 recover(): allows you to modify the error behavior so that you can browse the function 

call stack 

 These functions are interactive tools specifically designed to allow you to pick through a 

function. 

 There’s also the more blunt technique of inserting print() or cat() statements in the 

function. 

Using traceback() 
 

The traceback() function prints out the function call stack after an error has occurred. The 

function 

call stack is the sequence of functions that was called before the error occurred. 

For example, you may have a function a() which subsequently calls function b() which calls c() 

and 

then d(). If an error occurs, it may not be immediately clear in which function the error occurred. 
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The tracback() function shows you how many levels deep you were when the error occurred. 

> mean(x) 

Error in mean(x) : object 'x' not found 

> traceback() 

1: mean(x) 

Here, it’s clear that the error occurred inside the mean() function because the object x does not 

exist. 

The traceback() function must be called immediately after an error occurs. Once another function 

is called, you lose the traceback. 

Here is a slightly more complicated example using the lm() function for linear modeling. 

> lm(y ~ x) 

Error in eval(expr, envir, enclos) : object ’y’ not found 

> traceback() 

7: eval(expr, envir, enclos) 

6: eval(predvars, data, env) 

5: model.frame.default(formula = y ~ x, drop.unused.levels = TRUE) 

4: model.frame(formula = y ~ x, drop.unused.levels = TRUE) 

3: eval(expr, envir, enclos) 

2: eval(mf, parent.frame()) 

1: lm(y ~ x) 

You can see now that the error did not get thrown until the 7th level of the function call stack, in 

which case the eval() function tried to evaluate the formula y ∼ x and realized the object y did 

not exist. 

Looking at the traceback is useful for figuring out roughly where an error occurred but it’s not 

useful 

for more detailed debugging. For that you might turn to the debug() function. 

 

Using debug() 
 

The debug() function initiates an interactive debugger (also known as the ―browser‖ in R) for a 

function. With the debugger, you can step through an R function one expression at a time to 

pinpoint 

exactly where an error occurs. 

The debug() function takes a function as its first argument. Here is an example of debugging the 

lm() function. 

> debug(lm) ## Flag the 'lm()' function for interactive debugging 

> lm(y ~ x) 

debugging in: lm(y ~ x) 

debug: { 

ret.x <- x 

ret.y <- y 

cl <- match.call() 

... 

if (!qr) 
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z$qr <- NULL 

z 

} 

Browse[2]> 

Now, every time you call the lm() function it will launch the interactive debugger. To turn this 

behavior off you need to call the undebug() function. 

The debugger calls the browser at the very top level of the function body. From there you can 

step 

through each expression in the body. There are a few special commands you can call in the 

browser: 

• n executes the current expression and moves to the next expression 

• c continues execution of the function and does not stop until either an error or the function 

exits 

• Q quits the browser 

Here’s an example of a browser session with the lm() function. 

Browse[2]> n ## Evalute this expression and move to the next one 

debug: ret.x <- x 

Browse[2]> n 

debug: ret.y <- y 

Browse[2]> n 

debug: cl <- match.call() 

Browse[2]> n 

debug: mf <- match.call(expand.dots = FALSE) 

Browse[2]> n 

debug: m <- match(c("formula", "data", "subset", "weights", "na.action", 

"offset"), names(mf), 0L) 

 

While you are in the browser you can execute any other R function that might be available to you 

in a regular session. In particular, you can use ls() to see what is in your current environment (the 

function environment) and print() to print out the values of R objects in the function 

environment. 

You can turn off interactive debugging with the undebug() function. 

undebug(lm) ## Unflag the 'lm()' function for debugging 

 

Using recover() 
 

The recover() function can be used to modify the error behavior of R when an error occurs. 

Normally, when an error occurs in a function, R will print out an error message, exit out of the 

function, and return you to your workspace to await further commands. 

With recover() you can tell R that when an error occurs, it should halt execution at the exact 

point 

at which the error occurred. That can give you the opportunity to poke around in the environment 

in which the error occurred. This can be useful to see if there are any R objects or data that have 

been corrupted or mistakenly modified. 
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> options(error = recover) ## Change default R error behavior 

> read.csv("nosuchfile") ## This code doesn't work 

Error in file(file, "rt") : cannot open the connection 

In addition: Warning message: 

In file(file, "rt") : 

cannot open file ’nosuchfile’: No such file or directory 

Enter a frame number, or 0 to exit 

1: read.csv("nosuchfile") 

2: read.table(file = file, header = header, sep = sep, quote = quote, dec = 

3: file(file, "rt") 

Selection: 
The recover() function will first print out the function call stack when an error occurrs. Then, you 

can choose to jump around the call stack and investigate the problem. When you choose a frame 

number, you will be put in the browser (just like the interactive debugger triggered with debug()) 

and will have the ability to poke around. 

 

PROFILING R CODE 
 

 R comes with a profiler to help you optimize your code and improve its performance. In 

generally, it’s usually a bad idea to focus on optimizing your code at the very beginning 

of development. Rather, in the beginning it’s better to focus on translating your ideas into 

code and writing code that’s coherent and readable. The problem is that heavily 

optimized code tends to be obscure and difficult to read, making it harder to debug and 

revise. Better to get all the bugs out first, and then focus on optimizing. 

 Of course, when it comes to optimizing code, the question is what should you optimize? 

Well, clearly should optimize the parts of your code that are running slowly, but how do 

we know what parts those are? This is what the profiler is for. Profiling is a systematic 

way to examine how much time is spent in different parts of a program. 

 Sometimes profiling becomes necessary as a project grows and layers of code are placed 

on top of each other. Often you might write some code that runs fine once. But then later, 

you might put that same code in a big loop that runs 1,000 times. Now the original code 

that took 1 second to run is taking 1,000 seconds to run! Getting that little piece of 

original code to run faster will help the entire loop. 

 It’s tempting to think you just know where the bottlenecks in your code are. I mean, after 

all, you write it! But trust me, I can’t tell you how many times I’ve been surprised at 

where exactly my code is spending all its time. The reality is that profiling is better than 

guessing. Better to collect some data than to go on hunches alone. Ultimately, getting the 

biggest impact on speeding up code depends on knowing where the code spends most of 

its time. This cannot be done without some sort of rigorous performance analysis or 

profiling. 
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 We should forget about small efficiencies, say about 97% of the time: premature 

optimization is the root of all evil —Donald Knuth 

 The basic principles of optimizing your code are: 

• Design first, then optimize 

• Remember: Premature optimization is the root of all evil 

• Measure (collect data), don’t guess. 

• If you’re going to be scientist, you need to apply the same principles here! 

 

Using system.time() 
 

 They system.time() function takes an arbitrary R expression as input (can be wrapped in 

curly braces) and returns the amount of time taken to evaluate the expression. The 

system.time() function computes the time (in seconds) needed to execute an expression 

and if there’s an error, gives the time until the error occurred. The function returns an 

object of class proc_time which contains two useful bits of information: 

• user time: time charged to the CPU(s) for this expression 
• elapsed time: ―wall clock‖ time, the amount of time that passes for you as you’re 

sitting there Usually, the user time and elapsed time are relatively close, for 

straight computing tasks. But there are a few situations where the two can 

diverge, sometimes dramatically. 

The elapsed time may be greater than the user time if the CPU spends a lot of 

time waiting around. 

This commonly happens if your R expression involes some input or output, which 

depends on the activity of the file system and the disk (or the Internet, if using a 

network connection). 

The elapsed time may be smaller than the user time if your machine has multiple 

cores/processors (and is capable of using them). 

 For example, multi-threaded BLAS libraries (vecLib/Accelerate, ATLAS, ACML, MKL) 

can greatly speed up linear algebra calculations and are commonly installed on even 

desktop systems these days. Also, parallel processing done via something like the parallel 

package can make the elapsed time smaller than the user time. 

 When you have multiple processors/- cores/machines working in parallel, the amount of 

time that the collection of CPUs spends working on a problem is the same as with a 

single CPU, but because they are operating in parallel, there is a savings in elapsed time. 

 Here’s an example of where the elapsed time is greater than the user time. 

## Elapsed time > user time 

system.time(readLines("http://www.jhsph.edu")) 

user system elapsed 

0.004 0.002 0.431 

http://www.jhsph.edu/


KARPAGAM ACADEMY OF HIGHER EDUCATION 
CLASS: II BCA 

COURSE CODE: 18CAU404A 
COURSE NAME: R PROGRAMMING 

UNIT - V BATCH: 2018 – 2021 

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 9/19 

 

 

 

 Most of the time in this expression is spent waiting for the connection to the web server 

and waiting for the data to travel back to my computer. This doesn’t involve the CPU and 

so the CPU simply waits around for things to get done. Hence, the user time is small. 

 In this example, the elapsed time is smaller than the user time. 

## Elapsed time < user time 

> hilbert <- function(n) { 

+ i <- 1:n 

+ 1 / outer(i - 1, i, "+") 

+ } 

> x <- hilbert(1000) 

> system.time(svd(x)) 

user system elapsed 

1.035 0.255 0.462 

 In this case I ran singular value decomposition on the matrix in x, which is a common 

linear algebra procedure. Because my computer is able to split the work across multiple 

processors, the elapsed time is about half the user time. 

 
TIMING LONGER EXPRESSIONS 

 

 You can time longer expressions by wrapping them in curly braces within the call to 

system.time(). 

> system.time({ 

+ n <- 1000 

+ r <- numeric(n) 

+ for(i in 1:n) { 

+ x <- rnorm(n) 

+ r[i] <- mean(x) 

+ } 

+ }) 

user system elapsed 

0.086 0.001 0.088 

 If your expression is getting pretty long (more than 2 or 3 lines), it might be better to 

either break it into smaller pieces or to use the profiler. The problem is that if the 

expression is too long, you won’t be able to identify which part of the code is causing the 

bottleneck. 

 

THE R PROFILER 
 

 Using system.time() allows you to test certain functions or code blocks to see if they are 

taking excessive amounts of time. However, this approach assumes that you already 
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know where the problem is and can call system.time() on it that piece of code. What if 

you don’t know where to start? 

 This is where the profiler comes in handy. The Rprof() function starts the profiler in R. 

Note that R must be compiled with profiler support (but this is usually the case). In 

conjunction with Rprof(), we will use the summaryRprof() function which summarizes 

the output from Rprof() (otherwise it’s not really readable). Note that you should NOT 

use system.time() and Rprof() together, or you will be sad. 

 Rprof() keeps track of the function call stack at regularly sampled intervals and tabulates 

how much time is spent inside each function. By default, the profiler samples the function 

call stack every 0.02 seconds. This means that if your code runs very quickly (say, under 

0.02 seconds), the profiler is not useful. But of your code runs that fast, you probably 

don’t need the profiler. 

 The profiler is started by calling the Rprof() function. 

> Rprof() ## Turn on the profiler 

 You don’t need any other arguments. By default it will write its output to a file called 

Rprof.out. You can specify the name of the output file if you don’t want to use this 

default. 

 Once you call the Rprof() function, everything that you do from then on will be measured 

by the profiler. Therefore, you usually only want to run a single R function or expression 

once you turn on the profiler and then immediately turn it off. The reason is that if you 

mix too many function calls together when running the profiler, all of the results will be 

mixed together and you won’t be able to sort out where the bottlenecks are. In reality, I 

usually only run a single function with the profiler on. 

 The profiler can be turned off by passing NULL to Rprof(). 

> Rprof(NULL) ## Turn off the profiler 

 The raw output from the profiler looks something like this. Here I’m calling the lm() 

function on some data with the profiler running. 

## lm(y ~ x) 

sample.interval=10000 

"list" "eval" "eval" "model.frame.default" "model.frame" "eval" "eval" "lm" 

"list" "eval" "eval" "model.frame.default" "model.frame" "eval" "eval" "lm" 

"list" "eval" "eval" "model.frame.default" "model.frame" "eval" "eval" "lm" 

"list" "eval" "eval" "model.frame.default" "model.frame" "eval" "eval" "lm" 

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm" 

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm" 

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm" 

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm" 

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm" 

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm" 

"na.omit" "model.frame.default" "model.frame" "eval" "eval" "lm" 



KARPAGAM ACADEMY OF HIGHER EDUCATION 
CLASS: II BCA 

COURSE CODE: 18CAU404A 
COURSE NAME: R PROGRAMMING 

UNIT - V BATCH: 2018 – 2021 

Prepared by Mr.S.KARTHIK , Asst Prof, Dept of CS, CA & IT, KAHE Page 11/19 

 

 

 

"lm.fit" "lm" 

"lm.fit" "lm" 

"lm.fit" "lm" 

 At each line of the output, the profiler writes out the function call stack. For example, on 

the very first line of the output you can see that the code is 8 levels deep in the call stack. 

This is where you need the summaryRprof() function to help you interpret this data. 

 

Using summaryRprof() 

 

 The summaryRprof() function tabulates the R profiler output and calculates how much 

time is spendin which function. There are two methods for normalizing the data. 

• ―by.total‖ divides the time spend in each function by the total run time 
• ―by.self‖  does  the  same  as  ―by.total‖  but  first  subtracts  out  time  spent  in 

functions above the current function in the call stack. I personally find this output 

to be much more useful. 

 Here is what summaryRprof() reports in the ―by.total‖ output. 

$by.total 

total.time total.pct self.time self.pct 

"lm" 7.41 100.00 0.30 4.05 

"lm.fit" 3.50 47.23 2.99 40.35 

"model.frame.default" 2.24 30.23 0.12 1.62 

"eval" 2.24 30.23 0.00 0.00 

"model.frame" 2.24 30.23 0.00 0.00 

"na.omit" 1.54 20.78 0.24 3.24 

"na.omit.data.frame" 1.30 17.54 0.49 6.61 

"lapply" 1.04 14.04 0.00 0.00 

"[.data.frame" 1.03 13.90 0.79 10.66 

"[" 1.03 13.90 0.00 0.00 

"as.list.data.frame" 0.82 11.07 0.82 11.07 

"as.list" 0.82 11.07 0.00 0.00 

 Because lm() is the function that I called from the command line, of course 100% of the 

time is spent somewhere in that function. However, what this doesn’t show is that if lm() 

immediately calls another function (like lm.fit(), which does most of the heavy lifting), 

then in reality, most of the time is spent in that function, rather than in the top-level lm() 

function. 

 The ―by.self‖ output corrects for this discrepancy. 

$by.self 

self.time self.pct total.time total.pct 

"lm.fit" 2.99 40.35 3.50 47.23 

"as.list.data.frame" 0.82 11.07 0.82 11.07 

"[.data.frame" 0.79 10.66 1.03 13.90 

"structure" 0.73 9.85 0.73 9.85 
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"na.omit.data.frame" 0.49 6.61 1.30 17.54 

"list" 0.46 6.21 0.46 6.21 

"lm" 0.30 4.05 7.41 100.00 

"model.matrix.default" 0.27 3.64 0.79 10.66 

"na.omit" 0.24 3.24 1.54 20.78 

"as.character" 0.18 2.43 0.18 2.43 

"model.frame.default" 0.12 1.62 2.24 30.23 

"anyDuplicated.default" 0.02 0.27 0.02 0.27 

 

 Now you can see that only about 4% of the runtime is spent in the actual lm() function, 

whereas over 40% of the time is spent in lm.fit(). In this case, this is no surprise since the 

lm.fit() function is the function that actually fits the linear model. 

 You can see that a reasonable amount of time is spent in functions not necessarily 

associated with linear modeling (i.e. as.list.data.frame, [.data.frame). This is because the 

lm() function does a bit of pre-processing and checking before it actually fits the model. 

This is common with modeling functions—the preprocessing and checking is useful to 

see if there are any errors. But those two functions take up over 1.5 seconds of runtime. 

What if you want to fit this model 10,000 times? 

 You’re going to be spending a lot of time in preprocessing and checking. 

 The final bit of output that summaryRprof() provides is the sampling interval and the 

total runtime. 

$sample.interval 

[1] 0.02 

$sampling.time 

[1] 7.41 

SIMULATION 
 

GENERATING RANDOM NUMBERS 
 

 Simulation is an important (and big) topic for both statistics and for a variety of other 

areas where there is a need to introduce randomness. Sometimes you want to implement a 

statistical procedure that requires random number generation or samplie (i.e. Markov 

chain Monte Carlo, the bootstrap, random forests, bagging) and sometimes you want to 

simulate a system and random number generators can be used to model random inputs. 

 R comes with a set of pseudo-random number generators that allow you to simulate from 

well known probability distributions like the Normal, Poisson, and binomial. Some 

example functions for probability distributions in R 

• rnorm: generate random Normal variates with a given mean and standard 

deviation 

• dnorm: evaluate the Normal probability density (with a given mean/SD) at a 

point (or vector of points) 
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• pnorm: evaluate the cumulative distribution function for a Normal distribution 

• rpois: generate random Poisson variates with a given rate 

 For each probability distribution there are typically four functions available that start with 

a  ―r‖,  ―d‖,  ―p‖,  and  ―q‖.  The  ―r‖  function  is  the  one  that  actually  simulates  random 

numbers from that distribution. The other functions are prefixed with a 

• d for density 
• r for random number generation 

• p for cumulative distribution 

• q for quantile function (inverse cumulative distribution) 

 If you’re only interested in simulating random numbers, then you will likely only need 

the ―r‖ functions and not the others. However, if  you intend to simulate from arbitrary 

probability distributions using something like rejection sampling, then you will need the 

other functions too. 

 Probably the most common probability distribution to work with the Normal distribution 

(also known as the Gaussian). Working with the Normal distributions requires using  

these four functions 

dnorm(x, mean = 0, sd = 1, log = FALSE) 

pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) 

qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) 

rnorm(n, mean = 0, sd = 1) 

 Here we simulate standard Normal random numbers with mean 0 and standard deviation 

1. 

> ## Simulate standard Normal random numbers 

> x <- rnorm(10) 

> x 

[1] 0.01874617 -0.18425254 -1.37133055 -0.59916772 0.29454513 

[6] 0.38979430 -1.20807618 -0.36367602 -1.62667268 -0.25647839 

 We can modify the default parameters to simulate numbers with mean 20 and standard 

deviation 2. 

> x <- rnorm(10, 20, 2) 

> x 

[1] 22.20356 21.51156 19.52353 21.97489 21.48278 20.17869 18.09011 

[8] 19.60970 21.85104 20.96596 

> summary(x) 

Min. 1st Qu. Median Mean 3rd Qu. Max. 

18.09 19.75 21.22 20.74 21.77 22.20 

 If you wanted to know what was the probability of a random Normal variable of being 

less than, say, 2, you could use the pnorm() function to do that calculation. 

> pnorm(2) 

[1] 0.9772499 

 You never know when that calculation will come in handy 
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SETTING THE RANDOM NUMBER SEED 
 

 When simulating any random numbers it is essential to set the random number seed. 

Setting the random number seed with set.seed() ensures reproducibility of the sequence 

of random numbers. 

 For example, I can generate 5 Normal random numbers with rnorm() 

> set.seed(1) 

> rnorm(5) 

[1] -0.6264538 0.1836433 -0.8356286 1.5952808 0.3295078 

Note that if I call rnorm() again I will of course get a different set of 5 

random numbers. 

> rnorm(5) 

[1] -0.8204684 0.4874291 0.7383247 0.5757814 -0.3053884 

If I want to reproduce the original set of random numbers, I can just reset 

the seed with set.seed(). 

> set.seed(1) 

> rnorm(5) ## Same as before 

[1] -0.6264538 0.1836433 -0.8356286 1.5952808 0.3295078 

 In general, you should always set the random number seed when conducting a 

simulation! 

 Otherwise, you will not be able to reconstruct the exact numbers that you produced in an 

analysis. It is possible to generate random numbers from other probability distributions 

like the Poisson. The Poisson distribution is commonly used to model data that come in 

the form of counts. 

> rpois(10, 1) ## Counts with a mean of 1 

[1] 0 0 1 1 2 1 1 4 1 2 

> rpois(10, 2) ## Counts with a mean of 2 

[1] 4 1 2 0 1 1 0 1 4 1 

> rpois(10, 20) ## Counts with a mean of 20 

[1] 19 19 24 23 22 24 23 20 11 22 
 
 

plot of chunk Linear Model 
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SIMULATING A LINEAR MODEL 
 

 Simulating random numbers is useful but sometimes we want to simulate values that 

come from a specific model. For that we need to specify the model and then simulate 

from it using the functions described above. 

 Suppose we want to simulate from the following linear model 

y = β0 + β1x + ε 

where ε ∼ N (0, 2 

2 

). Assume x ∼ N (0, 1 

2 

), β0 = 0.5 and β1 = 2. The variable x might represent 

an important predictor of the outcome y. Here’s how we could do that in R. 

> ## Always set your seed! 

> set.seed(20) 

> 

> ## Simulate predictor variable 

> x <- rnorm(100) 

> 

> ## Simulate the error term 

> e <- rnorm(100, 0, 2) 

> 

> ## Compute the outcome via the model 

> y <- 0.5 + 2 * x + e 

> summary(y) 

Min. 1st Qu. Median Mean 3rd Qu. Max. 

-6.4080 -1.5400 0.6789 0.6893 2.9300 6.5050 

We can plot the results of the model simulation. 

> plot(x, y) 

 

 What if we wanted to simulate a predictor variable x that is binary instead of having a 

Normal distribution. We can use the rbinom() function to simulate binary random 

variables. 

> set.seed(10) 

> x <- rbinom(100, 1, 0.5) 

> str(x) ## 'x' is now 0s and 1s 

int [1:100] 1 0 0 1 0 0 0 0 1 0 ... 

Then we can procede with the rest of the model as before. 

> e <- rnorm(100, 0, 2) 

> y <- 0.5 + 2 * x + e 

> plot(x, y) 
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plot of chunk Linear Model Binary 

 

 We can also simulate from generalized linear model where the errors are no longer from 

a Normal distribution but come from some other distribution. For examples, suppose we 

want to simulate from a Poisson log-linear model where 

Y ∼ P oisson(µ) 

log µ = β0 + β1x 

and β0 = 0.5 and β1 = 0.3. We need to use the rpois() function for this 

> set.seed(1) 

> 

> ## Simulate the predictor variable as before 

> x <- rnorm(100) 

Now we need to compute the log mean of the model and then exponentiate it 

to get the mean to 

pass to rpois(). 

> log.mu <- 0.5 + 0.3 * x 

> y <- rpois(100, exp(log.mu)) 

> summary(y) 

Min. 1st Qu. Median Mean 3rd Qu. Max. 

0.00 1.00 1.00 1.55 2.00 6.00 

> plot(x, y) 
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plot of chunk Poisson Log-Linear Model 

 You can build arbitrarily complex models like this by simulating more predictors or 

making transformations of those predictors (e.g. squaring, log transformations, etc.). 

 

RANDOM SAMPLING 
 

 The sample() function draws randomly from a specified set of (scalar) objects allowing 

you to sample from arbitrary distributions of numbers. 

> set.seed(1) 

> sample(1:10, 4) 

[1] 3 4 5 7 

> sample(1:10, 4) 

[1] 3 9 8 5 

> 

> ## Doesn't have to be numbers 

> sample(letters, 5) 

[1] "q" "b" "e" "x" "p" 

> 

> ## Do a random permutation 

> sample(1:10) 

[1] 4 7 10 6 9 2 8 3 1 5 

> sample(1:10) 

[1] 2 3 4 1 9 5 10 8 6 7 

> 

> ## Sample w/replacement 

> sample(1:10, replace = TRUE) 

[1] 2 9 7 8 2 8 5 9 7 8 

 To sample more complicated things, such as rows from a data frame or a list, you can 

sample the indices into an object rather than the elements of the object itself. 

 Here’s how you can sample rows from a data frame. 

> library(datasets) 

> data(airquality) 

> head(airquality) 
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Ozone Solar.R Wind Temp Month Day 

1 41 190 7.4 67 5 1 

2 36 118 8.0 72 5 2 

3 12 149 12.6 74 5 3 

4 18 313 11.5 62 5 4 

5 NA NA 14.3 56 5 5 

6 28 NA 14.9 66 5 6 

 Now we just need to create the index vector indexing the rows of the data frame and 

sample directly from that index vector. 

> set.seed(20) 

> 

> ## Create index vector 

> idx <- seq_len(nrow(airquality)) 

> 

> ## Sample from the index vector 

> samp <- sample(idx, 6) 

> airquality[samp, ] 

Ozone Solar.R Wind Temp Month Day 

135 21 259 15.5 76 9 12 

117 168 238 3.4 81 8 25 

43 NA 250 9.2 92 6 12 

80 79 187 5.1 87 7 19 

144 13 238 12.6 64 9 21 

146 36 139 10.3 81 9 23 

Other more complex objects can be sampled in this way, as long as there’s a way to index the 

sub elements of the object. 
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1. What is Debugging? 

POSSIBLE QUESTIONS 

UNIT – V 

PART – A (20 MARKS) 

(Q.NO 1 TO 20 Online Examinations) 

PART – B (2 MARKS) 

 

2. Define Random Samplings 

3. What is the use of sample ()? 

4. When the random number seed set? 

5. Give some examples for probability distributions in R. 

6. What are the Debugging tools in R programming 

7. Define recover() 

8. What is the process of debug ()? 

9. What is meant by Simulation? 

10. What is the use of traceback()? 
 

PART – C (6 MARKS) 

1. Explain the process of Debugging 
 

2. Discuss the Debugging tools in R 
 

3. Explain the process of traceback () 
 

4. Discuss in detail (i) recover () (ii) debug () 
 

5. Explain about system.time() with suitable examples 
 

6. Explain about the R profiler 
 

7. Explain how to simulate a linear model 
 

8. Explain about Random Samplings 
 

9. Explain about Simulation and its process 

 

10. Explain the process of Using summaryRprof() 
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Questions Opt1 Opt2 Opt3 Opt4 Key 

 

 
  is an indication that a fatal problem has 

occurred and execution of the function stops 

 

 

 
message 

 

 

 
error 

 

 

 
warning 

 

 

 
stop 

 

 

 
error 

 

 

What will be the value of following expression ? 

Warning in log(c(- 

1, 2)): NaNs 

produced 

Error in log(c(-1, 

2)): NaNs 

produced 

 

 

Message 

 

 

error 

 
Error in log(c(-1, 2)): 

NaNs produced 

  prints out the function call stack after trace() traceback() back() backerror() traceback() 

 

 

 

 

 

 

 

 

Point out the wrong statement : 

 

 
The primary task 

of debugging any 

R code is 

correctly 

diagnosing what 

the problem is 

 

 

 
R provides only 

two tools to help 

you with 

debugging your 

code 

 

 

 

 

print statement 

can be used for 

debugging 

purpose 

 

 

 

 

The traceback() 

function must be 

called immediately 

after an error occurs 

 

 

 

 

R provides only two 

tools to help you 

with debugging your 

code 

Which of the following is primary tool for debug() trace() browser() traceback() debug() 

  allows you to insert debugging code into debug() trace() browser() traceback() trace() 



 

 

 

 

 

 

 

 

Point out the correct statement : 

 

 
The traceback() 

function must be 

called 

immediately 

after an error 

occurs 

 

 

 
The debugger 

calls the browser 

at the very low 

level of the 

function body 

 

 
Every time you 

call the mod() 

function it will 

launch the 

interactive 

debugger 

 

 

 

 
R provides only two 

tools to help you 

with debugging your 

code 

 

 

 

 
The traceback() 

function must be 

called immediately 

after an error occurs 

  allows you to modify the error behavior so 

that you can browse the function call stack 
 
debug() 

 
trace() 

 
recover() 

 
traceback() 

 
recover() 

  suspends the execution of a function 

wherever it is called and puts the function in debug 
 
debug() 

 
trace() 

 
recover() 

 
browser() 

 
browser() 

debug() flags a function for  mode in R debug run compile recover run 

What would be the output of the following code ? > 

mean(x) 

Error in mean(x) : object 'x' not found 

 

 
1: mean(x) 

 

 
Null 

 

 
0 

 

 
1 

 

 
1: mean(x) 

The recover() function will first print out the 

function call stack when an  occurs. 
 
Error 

 
Warning 

 
Messages 

 
stop 

 
Error 

  is a systematic way to examine how 

much time is spent in different parts of a program. 
 
Profiling 

 
Monitoring 

 
Logging 

 
Scheduling 

 
Profiling 

 

 

 

 

 

 

 

 

 

 

 
Point out the correct statement : 

 

 

 

 

 

 

 

 

 

The Rprofiler() 

function starts 

the profiler in R 

 

 
Using 

system.time() 

allows you to 

test certain 

functions or code 

blocks to see if 

they are taking 

excessive 

amounts of time 

 

 

 

 

 

 

 

 

 

R must not be 

compiled with 

profiler support 

 

 

 

 

 

 

 
 

Rprofiler() tabulates 

how much time is 

spent inside each 

function 

 

 

 

 

Using system.time() 

allows you to test 

certain functions or 

code blocks to see if 

they are taking 

excessive amounts of 

time 

R comes with a  to help you optimize your 

code and improve its performance. 
 
debugger 

 
monitor 

 
browser 

 
profiler 

 
debugger 

http://s.igmhb.com/click?v=SU46MTE1MjE0OjI0NTU6Y2FsbCBhbmQgcHV0OjM4NWVhMGYzMDU1NDVkZWM1NzhmZTg1Y2I4NDI0NGQ2OnotMjQ0OS04ODI3OTE0MTp3d3cuc2FuZm91bmRyeS5jb206NDAyNDg4OmJlMGJlMTIwMWUyZWY2Yjk4MzMzMjBlMTgwZDk1YmQzOjYyNThhZTk0ZTlkYjQ0MWM4ZWZjZTk1YzAwNzNjNTdlOjE6ZGF0YV9zcyw3Mjh4MTM2NjtkYXRhX3JjLDI7ZGF0YV9mYixubzs6OTU1ODE4MjpvcHQzLDE6OjAuMjk&amp;subid=g-88279141-ef2131d0d98f43c4b2f30a905c4dbf12-&amp;data_ss=728x1366&amp;data_rc=2&amp;data_fb=no&amp;data_tagname=A&amp;data_ct=image_only&amp;data_clickel=link
http://s.igmhb.com/click?v=SU46MTE1MjE0OjI0NTU6Y2FsbCBhbmQgcHV0OjM4NWVhMGYzMDU1NDVkZWM1NzhmZTg1Y2I4NDI0NGQ2OnotMjQ0OS04ODI3OTE0MTp3d3cuc2FuZm91bmRyeS5jb206NDAyNDg4OmJlMGJlMTIwMWUyZWY2Yjk4MzMzMjBlMTgwZDk1YmQzOjYyNThhZTk0ZTlkYjQ0MWM4ZWZjZTk1YzAwNzNjNTdlOjE6ZGF0YV9zcyw3Mjh4MTM2NjtkYXRhX3JjLDI7ZGF0YV9mYixubzs6OTU1ODE4MjpvcHQzLDE6OjAuMjk&amp;subid=g-88279141-ef2131d0d98f43c4b2f30a905c4dbf12-&amp;data_ss=728x1366&amp;data_rc=2&amp;data_fb=no&amp;data_tagname=A&amp;data_ct=image_only&amp;data_clickel=link


The  function computes the time (in 

seconds) needed to execute an expression. 

system.timedeb( 

) 
 
system.time() 

system.datetim 

e() 
 
system.timedate() 

 
system.time() 

 

 

 

 

 

 
 

Point out the correct statement : 

 

 
Rprofiler() 

tabulates how 

much time is 

spent inside each 

function 

 

Rprof() keeps 

track of the 

function call 

stack at regularly 

sampled 

intervals 

 

 
By default, the 

profiler samples 

the function call 

stack every 2 

seconds 

 

 

 

 
R must not be 

compiled with 

profiler support 

 

 

 
Rprof() keeps track 

of the function call 

stack at regularly 

sampled intervals 

system.time function returns an object of class 

  which contains two useful bits of 
 
debug_time 

 
proc_time 

 
procedure_time 

 
proced_time 

 
proc_time 

  time is time charged to the CPU(s) for elapsed user response request elapsed 

The elapsed time may be  than the user 

time if your machine has multiple cores/processors 
 
smaller 

 
greater 

 
equal to 

 
not equal to 

 
smaller 

Parallel processing is done via  package 

can make the elapsed time smaller than the user 
 
parallel 

 
statistics 

 
distributed 

 
equal 

 
parallel 

You can time  expressions by wrapping 

them in curly braces within the call to 
 
smaller 

 
longer 

 
error 

 
warning 

 
longer 

The profiler can be turned off by passing 0 1 2 NULL NULL 

 

 

 

 

 

Point out the correct statement : 

 

 

 
Rprof() is used to 

turn off the 

profiler 

 

At each line of 

the output, the 

profiler writes 

out the function 

call stack 

 

The 

summaryprof() 

function 

tabulates the R 

profiler output 

 

 

 
R must not be 

compiled with 

profiler support 

 

 
At each line of the 

output, the profiler 

writes out the 

function call stack 

How many methods exist for normalizing the data ? one two three profiler two 

  divides the time spend in each function by “by.sum” “by.total” “by.self” “by.mull” “by.total” 



 

 

 

 

 

 

 

 

Point out the correct statement : 

 

“by.total” first 

subtracts out 

time spent in 

functions above 

the current 

function in the 

call stack 

 

The 

summaryRprof() 

function 

calculates how 

much time is 

spend in which 

function 

 

 

 
By default, the 

profiler samples 

the function call 

stack every 0.02 

seconds 

 

 

 

 

 

R must not be 

compiled with 

profiler support 

 

 

 

 
By default, the 

profiler samples the 

function call stack 

every 0.02 seconds 

Which of the following function actually fits the lm.time() lm.date() lm.fit() lm.day() lm.fit() 

  time is time charged to the CPU(s) for elapsed user response request elapsed 

The final bit of output that summaryRprof() 

provides is the  interval and the total 
 
response 

 
sampling 

 
processing 

 
request 

 
sampling 

Which of the following statement gives sampling 

interval ? 

$sampling.interv 

al 
 
$sampling.time 

 
$sampling.date 

 
$sampling.day 

 
$sampling.time 

Which of the following code is not profiled ? C C++ Java .Net C 

  generate random Normal variates with a 

given mean and standard deviation 
 
dnorm 

 
rnorm 

 
pnorm 

 
rpois 

 
rnorm 

 

 

 

 

 

 
 

Point out the correct statement : 

 

 

 
R comes with a 

set of pseudo- 

random number 

generators 

 

 
Random number 

generators 

cannot be used 

to model random 

inputs 

 

Statistical 

procedure does 

not require 

random 

number 

generation 

 

 

 
For each probability 

distribution there 

are typically three 

functions 

 

 

 

 
R comes with a set of 

pseudo-random 

number generators 

  evaluate the cumulative distribution function dnorm rnorm pnorm rpois pnorm 

  generate random Poisson variates with a dnorm rnorm pnorm rpois rpois 

 

 

 

 

 

Point out the wrong statement : 

 

For each 

probability 

distribution there 

are typically 

three functions 

For each 

probability 

distribution 

there are 

typically four 

functions 

 

r function is 

sufficient for 

simulating 

random 

numbers 

 

 

 
R comes with a set 

of pseudo-random 

number generators 

 

 
For each probability 

distribution there are 

typically three 

functions 

Which of the following evaluate the Normal 

probability density (with a given mean/SD) at a 
 
dnorm 

 
rnorm 

 
pnorm 

 
rpois 

 
dnorm 



  is the most common probability Gaussian Parametric Paradox paradix Gaussian 

What will be the output of the following code ? > 0.9772499 1.9772499 0.6772499 0.8772499 0.9772499 

  ensures reproducibility of the sequence 

of random numbers. 
 
sets.seed() 

 
set.seed() 

 
set.seedvalue() 

 
seedvalue() 

 
set.seed() 

 

 

 

 

 

 

 

 

 

 
Point out the correct statement : 

 

 

 
It is not possible 

to generate 

random numbers 

from other 

probability 

distributions like 

the Poisson 

 

 

 

 

When simulating 

any random 

numbers it is not 

essential to set 

the random 

number seed 

 

 

 
You should 

always set the 

random 

number seed 

when 

conducting a 

simulation 

The sample() 

function draws 

randomly from a 

specified set of 

(scalar) objects 

allowing you to 

sample from 

arbitrary 

distributions of 

numbers 

 

 

 

 

 

You should always 

set the random 

number seed when 

conducting a 

simulation 

5 Normal random numbers can be generated with 

rnorm() by setting seed value to : 
 
1 

 
2 

 
3 

 
4 

 
1 

  function is used to simulate binary dnorm rbinom binom rpois rbinom 

 

 

 

 

 

 

 

 

 

 

 
Point out the wrong statement : 

 

 

 

 

 

Drawing samples 

from specific 

probability 

distributions can 

be done with “s” 

functions 

 
The sample() 

function draws 

randomly from a 

specified set of 

(scalar) objects 

allowing you to 

sample from 

arbitrary 

distributions of 

numbers 

 

 

 

 

 

 
 

The sampling() 

function draws 

randomly from 

a specified set 

of objects 

 

 

 

 

 

 
 

You should always 

set the random 

number seed when 

conducting a 

simulation 

 
The sample() 

function draws 

randomly from a 

specified set of 

(scalar) objects 

allowing you to 

sample from 

arbitrary 

distributions of 

numbers 

What will be the output of the following code ? > 

set.seed(10) 

> x <- rbinom(100, 1, 0.5) 

int [1:100] 1 0 0 
1 0 0 0 0 1 0 

... 

int [1:100] 10 0 
01 1 0 0 01 0 1 

0 ... 

int [1:100] 1 
03 0 1 0 0 0 

02 1 0 ... 

 
int [1:100] 1 2 3 1 
1 0 0 0 1 0 ... 

 
int [1:100] 1 0 0 1 
0 0 0 0 1 0 ... 

  distribution is commonly used to model 

data that come in the form of counts. 
 
Gaussian 

 
Parametric 

 
Poisson 

 
Paradox 

 
Poisson 



What will be the output of the following code ? > 
rpois(10, 1) 

[1] 7 0 1 1 2 1 
1 4 1 2 

[1] 0 8 1 1 2 1 
1 4 1 2 

[1] 0 0 1 1 2 1 
1 4 1 2 

[1] 0 9 1 1 2 1 1 5 
1 2 

[1] 0 0 1 1 2 1 1 4 
1 2 

Which of the following code represents count with rpois(10, 2) rpois(10, 20) rpois(20, 2) rpois(2, 20) rpois(10, 2) 

The  function draws randomly from a 

specified set of (scalar) objects allowing you to 
 
sam() 

 
seed() 

 
sample() 

 
samp() 

 
sample() 

  is an important (and big) topic for both 

statistics and for a variety of other areas where 
 
Simulation 

 
samplie 

 
distribution 

 
normal 

 
Simulation 

Setting the  number generator seed via 

set.seed() is critical for reproducibility 
 
arbitrary 

 
sample 

 
random 

 
sequence 

 
random 

The  function tabulates the R profiler 

output and calculates how much time is spend in 
 
prof() 

 
summaryRprof() 

 
Rprof() 

 
Rpro() 

 
summaryRprof() 

 
Interactive debugging tools 

  , , , and 

  can be used to find problematic code in 

functions 

 

trace, debug, 

browser, 

backtrace, and 

recover 

 

traceback, 

debug, browser, 

trace, and 

recover 

 

traceback, 

debug, 

browser, trace, 

and request 

 

 
traceback, debug, 

browser, request, 

and recover 

 

 
traceback, debug, 

browser, trace, and 

recover 

The  function will first print out the 

function call stack when an error occurrs. 
 
debug() 

 
trace() 

 
recover() 

 
traceback() 

 
recover() 

In simulating linear model can also simulate 

from  where the errors are no 

longer from a Normal distribution but come from 

 

generalized 

model 

 

generalized 

linear model 

 

 
linear model 

 

ungeneralized linear 

model 

 

generalized linear 

model 

Simulating  numbers is useful but 

sometimes we want to simulate values that come 
 
arbitrary 

 
sample 

 
random 

 
sequence 

 
random 

The function call stack is the  of 

functions that was called before the error occurred. 
 
arbitrary 

 
sample 

 
random 

 
sequence 

 
sequence 

In which case the  function tried to 

evaluate the formula y x and realized the object y 
 
debug() 

 
trace() 

 
eval() 

 
traceback() 

 
eval() 

  time charged to the CPU(s) for this sample.time user time elapsed time system.time user time 
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