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(a) singular

PART - A (20X1 = 20 Marks)

ANSWER ALL THE QUESTIONS

1.

The simple closed rectifiable curve is abbreviated as

(a) curve (b) scr curve

(b) (c) scro curve (d) none.

If C is a positively oriented circle then fc 1/(z-(a) dz=__

(a) 211 (b) 21T | (©o0 (d) 11

If C is the unit circle | Z |=1,then fc z efdz=

(a)1 (b) 2 ()0 (d)-1

When the order of the pole is 2,the pole is said to be
pole

(@) simple (b) double  (c) multiple  (d) zero

The Taylor’s series is a series of powers.

(a) positive (b) negative

(b) (c) exponential  (d)logarithmic.
The residue of z%/z%+a? at z=-ai is

@1li (b)2ali (©) 0 (d) -a/2i
The poles of 2z+1/(z%-z-2) are
@21 (b)2 (€)1 (d) 2-1

8.The limit point of zero’s of an analytic function is a
point of the function
(b) non- singular (c) zero (d) poles.
9.A region which has only one hole is an region
(@) origin (b) set (c) annular  (d) moment
10.A region which is not simply connected is called

(a) connected (b) compact
(c) multiply- connected (d) region.
11.The simple arc is also known as

(@) multiple (b) Jordan  (c) double (d) none.

12.When the order of the pole is 1,the pole is said to be
pole
(@) simple  (b) double (c) multiple  (d) triple
13.The residue of z+1/(z2-2z+3) are
(@21 (b)-1/2 (c)1 (d) 2,-1
14.The poles of an analytic functions are
(a) Essential (b) removable (c) pole  (d) isolated
15.The Laurent’s series is a series of powers.
(@) positive (b) negative
(c) exponential (d) both positive and negative
16.In cauchy’s fundamental theorem, [ f(z) dz=...

()1 (b) 2 ()0 (d) 4
17.1f C is the unit circle | Z|=1, then, [, z*dzis
@1 (b) 2 (©) 0 (d) -1

18.The residue of z%/z°+a? at z=ai is

(@) 1/2 (b) a/2 (c) -a/2i (d) /2i

19.When the order of the pole is 1, the pole is said to be
pole

(@) simple  (b) double

20.The poles of 1/(z%?) are

(@) 2,1 02 ()1 (d)2-1

(c) multiple (d) triple



PART-B( 3 X10=30 Marks)
ANSWER ALL THE QUESTIONS
21. (a) If u1and u are harmonic I a region Q then [, us"duz —

uz"dus = 0, for every cycle 9 which homologous to zero in Q.

(OR)
(b) State and prove Laurent’s theorem.

22.(a) Show that {by} be a sequence of complex numbers with
lim by=o0c and let py(J) be polynomials without constant

9—>o00

term then there are functions which are meromorphic in the whole
plane with poles at the points by, and the corresponding singular

parts pg (ﬁ) . Moreover, the most general meromorphic

function of this kind can be written in the form,

f(z) = [219 Do (i) + py (2) ]+g(z) where py (z) are suitably
chosen polynomials and g(z) is analytic in the whole plane.
(OR)

(b) Find the power series for the function

2

sin?mz

23.(a) (b) Suppose that the boundary of a simply connected region
Q contains a line segment vy as a one sided free boundary arc. Then
the function f(z) which maps Q onto the unit disk can be extended to
a function which is analytic and one to one on Q U y. The image of
yisanarcy’ on the unit circle.

(OR)

(b) Show that f be a topological mapping of a region Q onto a
region Q’. If {zn} or z(t) tends to the boundary of Q then
the sequence of {f(Zn)} or f(Z(t)) tends to the boundary of
Q.
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Date : 29.01.18(FN)
Class: 1 M.Sc Mathematics

(17MMP201)
KARPAGAM ACADEMY OF HIGHER EDUCATION
Coimbatore - 21
DEPARTMENT OF MATHEMATICS
Second Semester
| Internal Test
COMPLEX ANALYSIS

Time: 2 Hours
Maximum: 50 Marks

PART — A (20 x 1 = 20 Marks)
Answer all the questions

. The conjugation of 5+i3 is

@ 5 (b3 (c)5+i3 (d)5-i3

If Z1 and Z, are any two complex numbers then

(a) arg(Z1/Z2) = arg(Z1)+arg(Z2)

(b) arg(Z1/2>) = arg(Z1)-arg(Z2)

(c) arg(Z1/Z,) = arg(Z1)/arg(Z2)

(d) arg(Z1/2>) = arg(Z1)*arg(Z2)

. The mapping W =Z + b ,b is a complex number, is called
the

(a) Linear transformation  (b) Translation

(c) Inversion (d) Rotation

. All the complex numbers except infinity are called

(a) complex numbers (b) complex plane
(c) finite complex no’s (d) Infinite complex no’s
. The equations ux=vy and uy= -vxare

(a) polar equation (b) C-R equation
(c) Euler equation (d) co ordinates.

If f(z) and g(z) are continuous at zothen f(z)-g(z)
IS

(a) Continuous at zo
(c) Continuous at z

(b) differentiable at zo
(d) differentiable at z

7. If a function is differentiable at all points in that region

then the Function is said to be __at that region.
(a) Analytic (b) Continuous
(c) differentiable (d) discontinuous

8. The polar coordinates of C-R equations

are
(@) ur=1/r vo and Ue= -r V¢ (b) ur= v, and ue= vy
(c) ur=1/r v and Us=r vy (d) ue= -r v¢

9. The cross ratio of the form

(8) (21-22)( 22-24)/( 21-24)( 22-Z3)
(b) (21-23)( Z2-24)/( 21-24)( 22-23)
(€) (22-22)( 22-24)/( 21-24)
(d) (21-22)/( 21-24)( Z2-23)

10. The mapping w=f(z) is said to be if it
preserves the magnitude of the angle between every two
curves.

(a) conformal (b) isogonal

(c) translation (d) not a conformal
11.The square of real number is

(a) Negative (b) Non —Negative

(c) Non-positive (d) Absolute value
12.The absolute value of z = x+iy is

(@) Vx (b)Vy (c) Vx*y?  (d) Vx>+y?

13.If Z; and Z, are any two complex numbers ,then

(8) | Z1+Z2|<| Z1 |+|Z| (b) | Zo+2Z5|=| Z1 |+]Z2|
(C) | Z1+Z2|2 | Z1|+|Zy| (d) | Zy+Z2# Za[+]Z2]
14.The mapping W=1/Z is called an
(@) Linear transformation (b) Translation
(c) Inversion (d) Rotation




15.The functions of the form, Pn(Z)= aotaiz+az’+...... +anz",
an#0 is called a
(a) polynomial of degree n  (b) polynomial of degree 5
(c) polynomial of degree 2n  (d) polynomial of degree n-1
16.1f f (z) and g(z) are continuous at zothen f(z).g(z)

IS
(a) Continuous at zo (b) differentiable at zo
(c) Continuous at z (d) differentiable at z

17.1f a function is differentiable at all points in some
neighborhood of a point then the function is said to be ....
(a) Analytic (b) Continuous
(c) differentiable (d) Translation

18.1f u(x,y)=e*cosy then find ux=
(a) e*cosx (b) e*cosy (c) cosy (d)e*

19.The second order partial derivatives exist, continuous and
satisfies the laplace equation is called......... functions
(a) Analytic (b) Continuous
(c) differentiable (d) harmonic

20.The set of complex points is called
(@) arc  (b) simple arc (c) closed arc (d) none

PART -B (3x 2=6 Marks)
Answer all the questions
21. Define length of arc.
22. Define complex line integral.
23. Define Harmonic function.

PART-C (3x 8=24 Marks)
Answer all the questions
24.(a) Show that an analytic function in a region Q whose
derivative vanishes identically must reduce to a constant .
The same is true if either the part, the imaginary part , the
modulus the argument is constant.

(OR)
(b) Show that the set of all linear transformation forms a group
under the product of transformation.

25.(a) State and prove Cauchy’s theorem for rectangle.
(OR)
(b) i)State and prove Morera’s theorem.
ii)State and prove fundamental theorem of algebra.

26.(a) Show that the real part and imaginary part of an analytic
function are harmonic.
(OR)
(b) State and prove Schwartz’ theorem.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)
Coimbatore — 641 021.

DEPARTMENT OF MATHEMATICS

LECTURE PLAN

I-M.Sc MATHEMATICS
: 17MMP201

Subject Name  : COMPLEX ANALYSIS
Name of the Faculty : M.SANGEETHA

Lecture
S.No. Duration Topics to be covered Support Materials
(Hr)
UNIT -1
1 1 Conformal Mapping- Definition and theorems T1:Chapter-3 Pg.No:-73-76
2 1 Linear Transformation - Definition and theorems T1:Chapter-3 Pg.No:-76-78
3 1 Cross ratio- theorems T1:Chapter-3 Pg.No:-78-80
4 1 Symmetry T1:Chapter-3 Pg.No:-80-83
5 1 Oriented Circles- theorems T1:Chapter-3 Pg.No:-83-84
6 1 Families of Circles- theorems T1:Chapter-2 Pg.No0:84-85
7 1 Continuation on Families of circles- theorems T1:Chapter-3 Pg.No:-86-87
8 1 Level Curves T1:Chapter-3 Pg.No:-89-91
9 1 Use of Level Curves T1:Chapter-3 Pg.No:-91 -93
10 1 Recapitulation and Discussion of possible
questions
Total 10 Hours
UNIT-II
1 1 Introduction to Complex Integration and Definite | T1:Chapter-4 Pg.No:-101-103
integrals
2 1 Rectifiable Arcs-Problems T1:Chapter-4 Pg.No:-104-109
3 1 Cauchy theorem for Rectangle and Disc T1:Chapter-4 Pg.No:-109-110
4 1 Cauchy theorem for Disc T1:Chapter-4 Pg.No:-112-114
5 1 Cauchy’s integral formula T1:Chapter-4 Pg.No:-114-115
6 1 Continuation of Cauchy integral formula T1:Chapter-4 Pg.No:-116-117
7 1 Theorems for higher Derivatives T1:Chapter-4 Pg.No:-120-122
8 1 Continuation of theorems on higher Derivatives T1:Chapter-4 Pg.No:-122-125
9 1 Recapitulation and Discussion of possible
questions
Total 9 Hours
UNIT-I11
1 1 Introduction to Harmonic function T1:Chapter-4 Pg.No:-162-163
2 1 Continuation of Harmonic function T1:Chapter-4 Pg.No:-164-165

Prepared by :M.Sangeetha, Assistant professor,Department of mathematics ,KAHE
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3 1 Geometric Interpretation and and Mean value T1:Chapter-4 Pg.No:-165-166
property
4 1 Poisson Formula T1:Chapter-4 Pg.No:-166-168
5 1 Schwarz theorem and Problems T1:Chapter-4 Pg.No:-168-170
6 1 Continuation of Problems on Schwarz T1:Chapter-4 Pg.No:-170-171
7 1 Geometric Interpretation of Poisson Formula and | T1:Chapter-4 Pg.No:-172-174
Reflection Principle
8 1 Weierstrass theorem T1:Chapter-4 Pg.No:-174-178
9 1 Problems based on Weierstrass theorem T1:Chapter-4 Pg.No:-178-179
10 1 Tayler Series and Laurent’s Series- introduction T1:Chapter-4 Pg.No:-179-182
11 1 Continuation of Tayler series and Laurent’s ppbms | T1:Chapter-4 Pg.No:-182-184
12 1 Continuation of Tayler series and Laurent’s pbms | T1:Chapter-4 Pg.No:-184-186
13 1 Recapitulation and Discussion of possible
questions
Total 13Hours
UNIT-IV
1 1 Theorems on Partial Fraction T1:Chapter-5 Pg.No:-187-190
2 1 Infinite Product T1:Chapter-5 Pg.N0:-191-193
3 1 Problems of Canonical Product T1:Chapter-5 Pg.N0:-193-195
4 1 Continuation of Problems of Canonical T1:Chapter-5 Pg.N0:-196-197
Product
5 1 Gamma Functions and their products R3: chapter -9 Pg.No:603-
604
6 1 Continuation of Gamma Functions and their | R3: chapter -9 Pg.No:604-
products 605
7 1 Continuation of Gamma Functions and their | R3: chapter -9 Pg.No:605-
products 606
8 1 Properties of Gamma Functions R3: chapter -9 Pg.No:606-
607
9 1 Continuation of Properties of Gamma R3: chapter -9 Pg.No:607-
Functions 608
10 1 Continuation of Properties of Gamma R3: chapter -9 Pg.No:609-
Functions 610
11 1 Stirling’s Formula T1:Chapter-5 Pg.No:-201-202
12 1 Continuation of problems on Stirling’s T1:Chapter-5 Pg.No:-203-204
13 1 Continuation of problems on_Stirling’s T1:Chapter-5 Pg.No:-205-206
14 1 Entire Function and Jensen’s Formula R3: chapter -9 Pg.No:582-
589
15 1 Recapitulation and Discussion of possible
questions
Total 15 Hours
UNIT-V
1 1 Riemann Mapping theorem R4: chapter -14 Pg.No:282-
288
2 1 Boundary behavior T1:Chapter-6 Pg.N0:232-233
3 1 Use of Reflection Principle T1:Chapter-6 Pg.N0:233-234
4 1 Analytical Arcs and Conformal Mapping of T1:Chapter-6 Pg.No:234-235

Prepared by :M.Sangeetha, Assistant professor,Department of mathematics ,KAHE
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Polygon
5 1 The Schwarz-Christoffel Formula R2: chapter -9 Pg.No0:143-
144
6 1 Continuation of Christoffel Formula R2: chapter -9 Pg.No:145-
146
7 1 Mapping on rectangle R1: chapter -12 Pg.No0:429-
430
8 1 Continuation of Mapping on Rectangle R1: chapter -12 Pg.No:431-
432
9 1 The triangle function of Schwarz T1:Chapter-6 Pg.N0:240-241
10 1 Recapitulation and Discussion of possible
questions
11 1 Discuss on Previous ESE Question Papers
12 1 Discuss on Previous ESE Question Papers
13 1 Discuss on Previous ESE Question Papers
Total 13Hours

TOTAL HOURS:40

TEXT BOOK
1. Lars V .Ahlfors., (1979). Complex Analysis, Third edition, Mc-Graw Hill Book

Company,New Delhi.

REFERENCES
1. Ponnusamy, S., (2005). Foundation of Complex Analysis, second edition, Narosa

publishing House, New Delhi

2. Choudhary, B., (2003). The Elements of Complex Analysis, New age International Pvt.

Ltd, New Delhi.

3. Vasistha, A.R., (2005). Complex Analysis, Krishna Prakashan media, Pvt, Ltd., Meerut.
4. Walter Rudin., (2012). Ral and Complex Analysis, 3™ edition, Mc-Graw Hill Book
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(For the candidates admitted from 2017 onwards)

M.Sc., DEGREE EXAMINATION, APRIL 2018
Second Semester

MATHEMATICS

COMPLEX ANALYSIS
Maximum : 60 marks

Time: 3 hours
PART - A (20 x 1 = 20 Marks) (30 Minutes)

(Question Nos. 1 to 20 Online Examinations)
(Part-B & C 2 Y; Hours)

PART B (5 x 6 = 30 Marks)
Answer ALL the Questions
21. a. The cross ratio (z,, Z,, 23, Z4) is real if and only if the four points lie on the
circle or on a straight line.

Or
b. Determine the angle of rotation and scale factor at the point z=1+I under the

mapping w=z".

22. a. State and prove Cauchy’s theorem.
b. State and prove Morera’s t(l)ll;orem.

23. a. State and prove Taylor’s theorem.
b. State and prove Schwarz t(;;orem.

24. a. The infinite product ﬁ(l +a,) with 1+a,#0 converges simultaneously with the
series ) log(l +a,) whose terms represent the values of the principal branch of
1

the logarithm,

Or
b. State and prove Jenser s formula
25. a letfbe a topological mapping of a regon Clomew s regionts 1f (2.} or 21 tend
to a boundary of (ithen {f(7,)} tends 10 a boundary 1!’ o .
Or
b. i. Define analytic arcs, regular and simple
ii. Define angle, outer angles and convex

PART C (1 x 10 ~ 10 Marks)
{Compulsory)

26. State and prove Cauchy integral theorem.

(S
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KARPAGAM UNIVERSITY i
(Under Scction 3 of UGC Act 1956)
COIMBATORE - 641 021
(For the candidates admitted from 2014 onwards)

M.Sc. DEGREE HN>Z~Z>.:OZ. APRIL 2015
Second Semester

MATHEMATICS
COMPLEX ANALYSIS

Time: 3 hours Maximum : 60 marks

PART-A (10x2=20 Marks)
Answer any TEN Questions

1. Define linear fractional transformation.

2. State the symmetry principle.

3. Define an elliptic.

4. Define rectifiable arcs.

5. Define index of the point ‘a’ with respect to the curve y
6. State Liouville’s theorem.

7. Define harmonic function.

8. Write the poisson formula in polar co-ordinates.

Nu

9. Prove that ¢” =1 +W+M+..._....s.

10. State Mittag — Leffler theorem.

11. Define Partial fractions. . .
12. What is the relation between the genus and the order of an entire function?
13. Statc Riemann-mapping theorem.

14. Explain conformal mapping of polygons.

15. Define an elliptic integral.

PART B (5 X 8= 40 Marks)
Answer ALL the Questions

16. a. Let f be analytic function defined in a region D. Let Zo € D. If f'(Zo)#0 then {

is conformal at Z,.
Or

b. The cross ratio (Z1, Za, Z3, Zs) is real if and only if the four points lieona

circle or on a straight line.

AR

17. a. If the function f(2) 1s analytic on R, then [fisdz - 0, where JR is the boundary

of R,
o A i

b. Suppose that o )is continuous on the arc v, then the funcuon ¥ (1= m_\,..n -2y

Vet
. 4 coative 8 B ()70
analytic in each of the regions determined by ¥, and S derivative 18 F
_“,:.,_ANV

18. a. State and prove mean value property of Harmonic function.
Or

b. State and prove Schwarz reflection principle.

1
(Z-ny
Or

b. State and prove Jensen’s formula.

19. a. Prove that =* cosec’nz = MJ.

ne-=

20. Compulsory : -
State and prove Schwartz-Christoffel formula.
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east i Y its diameter is entire]
Side ‘;‘;ﬁ;g:rst bt; fmsnde. If on-ly one is inside tle:
boundary, Y- 1T both are inside then the poi

Y outside of Q and at
the points is called one
nt- is called two sided

(ﬁit;ppose that the boundary
S€gment y as a one sided

) Then the function f(z) whi
to a function which 1S anal

an arc y’ on the unit circle,
Proof:

We consider the disk X, in © which is so small that the half disk inside
2 does not contain any zero of f(z). i.e) it does not contain Z, such that
f(Zo) = 0. Therefore log f(2) has a single value branch in this disk. Its real
part of boundary of log | f(z)| approaches the diameter which is the part of
boundary of Q. |

1.e). when z approaches y | f(z)| tends to 1. Therefore log | f(z)] — 0as
z approaches the diameter. By reflection principle, log f(2) has an analytic
extension to the whole disk. Hence , f(z) is analytic at x,. The existence to
overlapping disk must coincide and define the function which is analytic
in Quy.

We note further that £(z) # 0 on Suppose (xo) = 0 would imply that
there exist Xo have a multiple value in which case the two sub arcs of y that
meet at Xo would be mapped an arcs that form an angle 1/n,n 22,

This clearly impossible for if the upper half disks are in Q then

of a simply connected: region QQ contains a
free boundary arc.
ch maps Q onto the unit disk can be extended
ytic and one to one on Q U Y. The image of y is

| 6log.| flz)) = -0(arg ﬂ<0 on y. And argument f moves constanﬂy
Oy 2 |

In the same direction. This proves that the mapping is one-one on fy.under

this mapping y is mapped on to the arc y’ on the unit circle. The theorem
can be generalized to regions with free boundary arcs on a circle.

A o _W__a0_
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/ T]{eorem ® | |
Let f be a topological mapping of a region O onto a region Q. If {z}
or Z \(r}tends to the boundary of Q then the sequence of {za} or z(t) tends to
the boundary of Q’. '
Proof: -
Let k be a compact set in QY then f ) i isa compact set in 2. |
Since {z,} or z(t) tends to the boundary of ©. We have there exist an ng or

to such that z, does not belongs to f(k), for every n> . i. e) za& T'(k), for
f) every n > no,
 The tail end of the {f(za)}(or) thc tail end of the arc f(z(t)) does not
the compact set k. which is contained in €’. 3

Therefore {f(z,)} (or) f(z.(t)) tends to the boundary of 2’.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE:17MMP201 UNIT - | BATCH:2017-2019

UNIT I
SYLLABUS

Conformal mapping-Linear transformations- cross ratio- symmetry- Oriented circles-
families of circles-level curves.

Introduction:

A complex number is a number that can be expressed in the form a + bi, where gand b are real
numbers, and i is a solution of the equation x2 = =1, which is called an imaginary number because
there is no real number that satisfies this equation. For the complex number a + bi, a is called

the real part, and b is called the imaginary part. Despite the historical nomenclature "imaginary",
complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers,
and are fundamental in many aspects of the scientific description of the natural world

PROPERTIES:

1. Commutative law for addition : -, + 7, =2, + Z,.

[ o]

Associative law for addition : =, +(z, + 2, )=(2, + 2, )+ Z,.

3. Additive identity : There is a complex number z' such that z+:z, =z for all
complex number = . The number Z, is an ordered pair (0.0).

4. Additive inverse : For any complex number = there is a complex number —z such

that z+(-z)=(0.0). The number -z is (—x.—v).

5. Commutative law for multiplication : 7z, = 2,2, .

6. Associative law for multiplication : =, (=7, ) =(52,) 2.

7. Multiplicative idenfity : There is a complex number ' such that zz'=z for all

complex number = . The number =' is an ordered pair (1.0).

8. Multiplicative inverse : For any non-zero complex number - there is a complex

- , B
-1 X =1 ]

number =7 such that == 1={ 1.0). The number z7lis | E

R e
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9. The distributive law : 7, (z, + ;) =22, + 3,7,
If we write xfor the complex number (x.0). This mapping x —(x,0) defines a field
isomorphism of [ into || so we may consider || as a subset of
Ifweput i=(0.1).then z=(xv)=(x.0)+(0.v)=(x.0)+(0.1)(y.0)=x+iv.
Let z=x+1iv. x,yell ,then x and y are called the real and imaginary parts of = and denote
thisby x=Rez, y=Imz.If x=0, the complex number = is called purely imaginary and if
v=0, then z is real. Note that zero is the only number which is at once real and purely

imaginary. Two complex numbers are equal iff they have the same real part and the same

imaginary part.

Timaginam aixis
(0y) ¢ —————- * 7=(xy)=xtiy

|
I
1
|
s s

—_—

0 (x.0) real axis

Definition 2 TLet z=x+iv, 1,y =l then the complex number x—iv is called the conjugate

of - and is denoted by z.
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Following are the basic properties of conjugates.

and Im-z=-—

. =1

1. Rez=

Zisrealiff -==.

k-2

L]
L
+
-1
i)
1]
-
[
4

Definition 3 Let -=x+iv. x.v<l then modulus or absolute value of - is a non-negative

1
z|=(x*+»7)> . The number || is the distance

and is given by

real number denoted by ‘:

between the origin and the point (x. v).

Following are the basic properties of Modulus.

1. |:|:=:?

2. |75 =|7=]

3. 2 =Hif_-::;a
o |z

4. 5z,=22,

6. |1'|=|RE{:]|£|:| and |j.'|=|h11l::_‘:]|£|_'|.
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(A A EA A A A
8. |:1—:3|11:|:1|—|:3‘.
9. Let z; = x, +i1}. Z, = Xy + iV, then

1

={(x,—x, ) +(3,—¥,) " which is the distance between the

|:1 _—_:| :|["‘_1 =Xy )+i( 1= 1,)

points (x,.1,).(x,.v, ). Hence distance between the points z; and z, is given by

Z -1, -

Polar representation of complex numbers
Consider the point z=x+iy in the complex plane [ . This point has polar co-
ordinates (r.8) where x=rcosf and v=rsing. Thus z=x+iv=r(cos@+ising).
. -
Clearly r= ‘:| =2+~ )* which is magnitude of the complex number and &( undefined if

2 =0 ) is the angle between the positive real axis and the line segment from 0 to - and is

called the argument of -, denoted by d=arg:-.

We note that the value of argument of = is not unique. If #=argz. then 8+ 27n.
where n is an integer is also arg z. The value of arg - that lies inthe range —7 < & = 7 is

called the principal value of arg-.

If z;.z, are any two non-zero complex numbers then

1. argz, =—argz

| B

argz, Z, =arg I, +argz,.

3. arg, —* |=argn —argz,.
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Timaginaqr aixis

2=(xy)=xtiy
=rcosO+irsin®

real axis

Conformal mapping

Let S be a domain in a plane in which x and v are faken as rectangular Cartesian co-ordinates.
Let us suppose that the functions w(x, ¥) and v(x, ¥) are confinuous and possess confinuous
partial derivatives of the first order at each point of the domain 5. The equations

u=ux.y). v=v(x.y)
set up a correspondence between the points of S and the points of a set T in the (v, v) plane. The
set T is evidently a domain and 15 called a map of 5. Moreover, since the first order partial
derivatives of u and v are continvous, a curve in S which has a continnously turning tangent is
mapped on a curve with the same property in T. The correspondence between the two domains
15 not, however, necessarily a one-one correspondence.
For example. if we take u =", v =y then the domain x> + v < 1 is mapped on the triangle
bounded byu =0, v=0,u+ v=1, but there are four points of the circle corresponding to each
point of the triangle.

2.1 Definition : A mapping from 5 to T is said fo be isogonal if it has a one-one fransformation
which maps any two infersecting curves of 5 info two curves of T which cut at the same angle.
Thus in an isogonal mapping, only the magnitude of angle is preserved.

An isogonal transformation which also conserves the sense of rotation is called conformal
mapping. Thus in a conformal transformation, the sense of rotation as well as the
magnitude of the angle is preserved.

The following theorem provides the necessary condition of conformality which briefly
states that if £(z) is analvtic, mapping is conformal.
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2.2, Theorem : Prove that at each point z of a domain D where f{z) is analvtic and f '(z) =0, the
mapping w = f{z) is conformal.

Proof. Let w = f{z) be an analytic function of z. regular and one valued in a region D of the
z-plane. Let z; be an interior point of D and let C; and C; be two continuous curves passing
through z; and having definite tangents at this point, making angles ), oy, say, with the real
axis.

We have to discover what is the representation of this figure in the w-plane. Let z; and z; be
points on the curves C; and C; near to zp. We shall suppose that they are at the same distance 1
from z,. so we can write

z—zg=1e", 7, — 7y = 1e®.
Then asr — 0, #; — oy, 9y — oy The pomt z; corresponds to a point wy in the w-plane and z;
and z; correspond fo point w; and w, which describe curves C'y and C;', making angles §; and [,
with the real axis.

\©
¥ \
C |/ Va
! ™y |
zn
Z
- tangent
(] \'l'[l\—!'l

> X

Letw; —wy=p; e wy—wp=p; '
where pr.p2 =0 = 1. §1 =B B2
respectively.

MNow, by the definition of an analytic function,

im—L—% = £ '(z)

= I -
Since f '(zp) = 0. we may write it in the form Re™ and thus
. p]fh*' i - P1 _; B iz
lim ~—— =Re" ie lm-Le' ™" =Re

IE]E‘: T

= hm*‘"’T —R=[f"(z0)

and ]im{'fll - E‘]) =1L
ie. bm §1 — lim &= A
ie. Bl — o= = ﬁ] =)+ x

Similarly, Ba=an+ & .
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Hence the curves C'y and C'y have defimite tangents at wy making angles o + 7 and oy + &
respectively with the real axis. The angle between C'1 and C'1 15

P1—Pa=(u+21)— (o2 —-A)=o1 -2
which is the same as the angle between C; and C;. Hence the curve C;" and C;" intersect at the
same angle as the curves Cy and Cz. Also the angle between the curves has the same sense in the
two figures. So the mapping 15 conformal.

Special Case : When f "(zy) = 0. we suppose that £ '(z) has a zero of order n at the point z;.
Then in the neighbourhood of this point (by Taylor’'s theorem)

fiz) = fizg) +a(z—z)" ' + ... where a =0

Hence wi—wy=alz—z)+ .

18 M E'*':lalrn_l ei[ﬁ—lhl—llﬁ'.]_l____

where S=arga

Hence limf; =lim [+ (n+1)&]=5+(n+1) o & is constant
Siﬂulai].'_'f lim = 5+ {ﬂ + 1) o

Thus the curves C'; and C'; still have definite tangent at wy, but the angel between the tangents is

lim(¢r — gn) =(@+ 1) (o2 — )
Thus, the angle is magnified by (n+ 1).

Also the linear magnification, R = lim "’T 0 | lim "’T —R=[f'(z)| =0

Therefore, the conformal property does not hold at such points where £ '(z) =0

A point zp at which £ '(zg) =0 is called a critical point of the mapping. The following theorem is
the converse of the above theorem and 1s sufficient condition for the mapping to be conformal.

2.3, Theorem : If the mapping w = f{z) is conformal then show that fiz) is an analvtic function

of z.
Proof. Let w=1f{z) =ux v)+1v(x ¥)

Here. uw=ulx v) and v = v(x v) are continuously differentiable equations defining conformal
transformation from z-plane to w-plane. Let ds and do be the length elements in z-plane and

w-plane respectively so that
ds’ =dx’ +dy’. do’ =du’+ dv?

Since u, v are functions of x and j, thfrg:fbre

d11——dx+—_}d§, dv .Exdx E}-‘d}

'd d"n"_ = | C“- ‘:h Cu i C‘r +|'.-:_"iid}r I|:

-2 |—|ﬂ| o [|C“|—|f‘-'}aw
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£ BN VY gy @)
L% &y Sx ey )

Since the mapping is given to be conformal. therefore the ratio do” : ds° is independent of

direction, so that from (1) and (2), comparing the coefficients, we get

a) (&) (W), (&) am
L cx L cx J _-r}'- =3 _CEcy cXcy
1 - 1 N 0
cu | £V | cu £V |
o E: +|f}§: =|E| _IE_}’I ':3}
and W VIV )
o ey S ey |
Equations (3) and (4) are satisfied if
L A A -6
cX ¥ cX cy
or w__ v (6
cX ey £X oy

Equation (6) reduces to (3) if we replace v by —v i.e. by taking as image figure obfained by the
reflection in the real axis of the w-plane.

Thus the four partial derivatives 1, Uy, V. Vy eXist. are continuous and they satisfy C-R equations
(3). Hence f{z) iz analytic.

2.4. Remarks
(1) The mapping w = f{z) is conformal in a domain D if it is conformal at each point of the
domain.

(i)  The conformal mappings play an important role in the study of wvarious physical
phenomena defined on domains and curves of arbitrary shapes. Smaller portions of these
domains and curves are conformally mapped by analvytic function to well-known domains
and curves.

2.5. Example : Discuss the mapping w=Z .

Solution. We observe that the given mapping replaces every point by its reflection in the real
axis. Hence angles are conserved but their signs are changed and thus the mapping is 1sogonal
but not conformal If the mapping w = Z 15 followed by a conformal transformation, then
resulting transformation of the form w = f{7 ) is also isogonal but not conformal. where fiz) is
analytic function of z.
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2.6. Example : Discuss the nature of the mapping w = z- at the point z = 1 + i and examine its
effect on the lines Im z = Re z and Re z = 1 passing through that point.

Solution. We note that the aroument of the derivative of f{z) = Zatz=1+iis
[arg 22]z=1+i=arg(2 + 21) = n/4

Hence the tangent to each curve through z = 1 + 1 will be turned by the angle 7/4. The

co-efficient of linear magnification is |f '(z)| atz=1+11.e2+2i|= 242 The mapping is
W=z =X -y +2ixy=u(x, v)+iv(x. )

We observe that mapping i1s conformal at the pui:m z =1+ i. where the half lines v=x(vz=0)
and x = 1{v = 0) mtersect. We denote these half lines by C) and C,, with posifive sense upwards
and observe that the angle from C; to C; is n/4 at their point of intersection. We have

u=xl—1.-‘2__ v=2xy

The half line C; is transformed into the curve C'; given by
u=0, v=2y(yz0)

Thus C'y 15 the upper half v = ( of the v-axis.

The half line C; 15 transformed into the curve C'; represented by

u=1-y, v=2y (y20)
Hence C'; 1s the upper half of the parabola v = —4{u — 1). We note that, in each case. the
positive sense of the image curve is upward.

For the image curve C';
dv dvi/dy 2 2

dn du/dy -2y v

In particular % = -1 when v = 2. Consequently, the angle from the image curve C'; to the
1

image curve C'y at the point w = f{l = 1) = 21 is 1_. as required by the conformality of the

4
mapping there.
}r . '1._.' \:1
M #-E:'_ q 3 A
5/ RES
1+
_\_::.-l 2 e C3 .T 2 ‘_;_C_‘
0 1 “x o 1 u

Note. The angle of rotation and the scalar factor (linear magnification) can change from point to
point. We note that they are 00 and 2 respectively, at the point z = 1, since £ (1) = 2, where the
curves Cz and C'; are the same as above and the non-negative x-axis (Cz) is transformed into the
non-negative u-axis (C'1).
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2.7. Example. Discuss the mapping w=2z", where a is a positive real number.

Solution. Denoting z and w in polar as

z=1e”., w=pe”, the mapping gives p=r", ¢ =afb.
Thus the radii vectors age raised fo the power a and the angles with vertices at the origin are
mmultiplied by the factor a. If a = 1, distinct lines through the origin in the z-plane are not mapped
onto distinct lines through the origin in the w-plane, since, e.g. the straight line through the origin

at an angle % to the real axis of the z-plane is mapped onto a line through the origin in the

w-plane at an angle 27 to the real axis ie. the positive real axis itself Further % = a7,
which vamshes at the origin if a = 1 and has a singularity at the origin if a = 1. Hence the
mapping is conformal and the angles are therefore preserved, excepting af the origin Similarly
the mapping w = e is conformal.

2.8. Example. Prove that the quadrant |z |< 1, 0 < arg z < = is mapped conformally onto a

2| =1

domain in the w-plane by the transformation w = C 1)2 .
z+

Solution. If w=fiz) = - then £ (2) 1s finite and does not vanish in the given quadrant.
Hence the mapping w = f{z) is conformal and the quadrant 15 mapped onto a domamn in the w-
plane provided w does not assume any value twice 1.e. distinct points of the quadrant are mapped
to distinct points of the w-plane. We show that this indeed is tmue. If possible, let

4 _ 4
Z+)7  (z+D)’
Then, since z) = z;, we have (z; - ) (Z;+ 22+ 2) =0
=n+5+2=0ie z;=-z;-2 Butsince 7; belongs to the quadrant, —z; — 2 does not, which

contradicts the assumption that z; belongs fo the quadrant. Hence w does nof assume any value
twice.

. where z; = z; and both z; and z; belong to the quadrant in the z-plane.

LINEAR TRANSFORMATION:

Bilinear Transformation. The transformation

cad-be=0
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where a, b, ¢, d are complex constants. is called bilinear transformation or a linear fractional
transformation or Mdbius transformation. We observe that the condition ad — be = 0 is necessary
for (1) to be a bilinear transformation, since if

ad —bc =0, then E =% and we get

al(z+bl/a) a . . L
_ 3z+b/a)_a ie. we get a constant function which is not

clz+d/c) ¢

linear.
Equation (1) can be written in the form
cwz+dw—az—b=0 ()

Since (2) is linear in z and linear in w or bilinear in z and w, therefore (1) is termed as
bilinear transformation.

When ¢ = 0, the condition ad — bc # 0 becomes ad # 0 and we see that the transformation
reduces to general linear transformation. YWhen c = 0, equation (1) can be written as
_a(z+b/a) =E[l+ bla— d.-"u:}

c{z+d/c) ¢ z+d/c
a be- 1
= —+ — = - _Jl'
c c” z+d/c @)
We note that (3) is a composition of the mappings
Z]=Z+E__ Z]=l_ 23=bc_,_ad23
C z c’
and thus we get W= % +Z3.
The above three auxiliary transformations are of the form
W=Z+d, w=l_. w=[z 4

z
Hence every bilinear transformartion is the resultant of the transformarions in (4).

But we have already discussed these transformations and thus we conclude that a bilinear
transformation always transforms circles and lines into circles and lines because the
transformations in (4) do so.
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From (1), we observe that if c =0, a, d = 0, each point in the w plane is the image of one and

only one point in the z-plane. The same is true if ¢ = 0, except when z = —% which makes the
denominator zero. Since we work in extended complex plane, so in case z = —%__ w = o and

thus we may regard the point at infinity in the w-plane as corresponding to the point z = —% in

the z-plane.
Thus if we write
B _
T(z)=w=2Z=2 d—bc=0 5
@ =w= 23 ad—be = ©)
Then T(x)=m=. ifc=0
and T(:a:]=%__ T|—%:=x__ ife=0

Thus T is continuos on the extended z-plane. When the domain of definition 15 enlarged in this
way, the bilinear transformation (3) is one-one mapping of the extended z-plane onto the
extended w-plane.

Hence, associated with the transformation T, there is an inverse transformation T~ which is
defined on the extended w-plane as

T-!(w) =z if and only if T(z) = w.
Thus, when we solve equation (1) for z, then

z2="9%*D 4 =0 .(6)
cw—a
and thus
T w)=z= M_. ad—be=0
cw-—a

Evidently T is itself a bilinear transformation, where
Tlx)=x ifc=0

and T2} T {x}=—%._ifc=eﬂ

From the above discussion. we conclude that inverse of a bilinear transformation is bilinear. The

points z = —%{w =x)and z=w{w= %) are called critical points.
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az+b
4 g )70 _(aa+bo)z+(bd+ah)

WS I, . (ca-doz-(dd-c,b)
=1 |_d:
Lez+d
Taking A=aa+bic. B=bhd+ab.
C =cia+dic. D=did+cib, we get
Wy = Az + B
Cz+D
Also AD - BC ={aja+byc) (did + b)) — (byd + ayb) {c1a + dye)
= (ajadyd + ajac;b + byedyd + bieeyb)
— (dcia + ud dic + arbeia + arbdic)
= ajadyid + mbeic — bydeja — arhdic
=ad(ayd; — bycy) — be(agd; — byeg)
= {ad —bc) (aydy —icy) =0
Thus w=22+B  Ap_Bc=0

Cz+D~
Is a bilinear transformation.

This bilinear transformation is called the resultant (or product or composition) of the
bilinear transformations (1) and (2).

The above property is also expressed by saving that bilinear transformations form a
group.

1.2. Theorem. Composition (or resultant or product) of fwo bilinear transformafions is a
bilinear transformation.

Proof. We consider the bilinear transformations
az+b

W= oa- ad—bc=0 1)
a,w+b,
and W1 = m Elld] —bll.'.‘] =0 {2::!

Putting the value of w from (1) in (2), we get

1.3. Definitions. (i) The points which coincide with their fransforms under bilinear

transformation are called its fixed points. For the bilinear transformation w = :Iz . fixed

az+hb
cz+d ()

points are given by w=z1e z=
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= (1-K)zz—(p-gK)Z-@-7K)z=Kqq-pp
i 2% — 1 ¥ 2 2

= zz-|P=K zZ- p-gk” |, Ip[ K la] _, (2)
| 1-K- |

— Z+ =
L 1-K- | 1-E

(=]

Equation (2) is of the form
Z+bz+bz+e=0 (c is being a real constant)
which always represents a circle.
Thus equation (2) represents a circle if K= 1.
If K =1, then if represents a straight line

z-pl=lz-q
Further, we observe that in the form (1), p and q are inverse points w.r.t. the circle. For this, if
the circle is [z — 2y| = p and p and q are inverse points w.rt it then

-7 = pE_-.E-r p-zp= qf_‘ﬁ':

q-z ="

Therefore,
| _p|_‘ pE‘jB—aED' =i|pelﬁ—afj'—‘|
2=l | e 97 a| Pl -pe”]

Since (1) is a quadratic in z and has in general two different roots, therefore there are
cenerally two invariant points for a bilinear transformartion.
(it) If z;, 7. 73. 24 are any distinct points in the z-plane, then the ratio
(z, -2, )(z5 —24)
(z, -2;)(z,—2))
15 called cross ratio of the four points z), Z;, z;. 4. This ratio is invanant under a bilinear
transformation i.e.
(W1, W2, W3, Wa) = (21. Z1. Z3. Z4)

(Z1. Z3. 23, Z4) =

1.4. Transformation of a Circle. First we show that if p and q are two given points and K is a
constant. then the equation

L
S M
represents a circle. For this, we have
z—pf =Kz —qf
z-p) -p)=K'z-9 (z-9)
= z-p) (Z-7)=K'(z-9 E-O
= 7Z-Pz —pZ+pp=K'(zZ-Tz-qZ+qq)
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_ |p[msﬁ—isinﬁ)—a(cos.’n +isin.'-'_)| _a
|a(cosB +isin8) — p(cosk +isinh)| —  p

_ K| (poosf—acos))+i(psinf—asini)
|[a+:osEa— poost)+ifasinf —psini)

_K (pcos8—acosh)’ +(psinf-asinl)’ e
(acosf—pcosh)® +(asinf—psini)’
=K where K =1, sincea=p

Thus, if p and g are inverse points w.r.t. a circle, then its equation can be written as

%{ =K Ks=1, Kbeing a real constant.

1.5 Theorem. In a bilinear transformation, a circle transforms into a circle and inverse points
transform into inverse points. In the particular case in which the circle becomes a straight line,
inverse points become points svmmefric about the line.

Proof : We know that E%‘ipl‘ = K represents a circle in the z-plane with p and q as inverse

points, where K= 1. Let the bilinear transformation be

az+b -
W= — so that = dw —b
cz+d —CW+3a

Then under this bilinear transformation, the circle transforms into

dw-b _
mp——— _K — dw—b—p(q—-::w}|=K
dw —b _q dw—b—q(a—cwﬂ
—CW+a
W tD
|w(d +cp)—(ap + b) K - cp+d =K|cq—d| M
|w(d+cq)—(ag+D) T [y_2a+b| Tlep+d|
cq+d

The form of equation (1) shows that it represents a circle in the w-plane whose inverse points are
ap+b ag+Db

cp+d and cg+d’
inverse points transform into the inverse points.

Thus. a circle in the z-plane transforms into a circle in the w-plane and the

Alsoif K Eg :j = 1, then equation (1) represents a straight line bisecting af right angle the join
of the points p+0 and -0 s0 that these points are symmetric about this line. Thus in a

cp+d cq+d
particular case, a circle in the z-plane transforms into a straight line in the w-plane and the
inverse points transform info points symmetrical about the line.
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1.6. Example. Find all bilinear transformations of the half plane Im z = 0 into the umt circle

w|=1
Solution. We know that two points z. 7, symmetrical about the real z-axis(Im z = 0) correspond
to points w, % inverse wr.t the unit w-circle. (wl % =1). In particular. the origin and the /t':“'—"""’“t a1k )

point at infinity in the w-plane correspond fo conjugate values of z.
Let

az+b _a(z+b/a) M
cz+d ¢ (z+d/c)
be the required transformation.

Clearly ¢ = 0, otherwise points at oo in the two planes would correspond.

Also, w =0 and w = = are the inverse points wrt | w|=1 Simmcem (1), w=0 w=x

: b d
correspond respectively fo z = -5 IT ¢ therefore these two values of z-plane must be
conjugate to each other. Hence we may write
—E=01 —E=E so that
a C
az-u
W= —— (2)
cZ-T

The point z = 0 on the boundary of the half plane Im z = 0 must correspond to a point on
the boundary of the circle | w | =1, so that

1= | w = E D_E = d
cll0-| |e
- % =e* =  a=ce" where isreal
Thus, we get
nfz—a )
w=e" — | )

Since z = o gives w = (J, o must be a point of the upper half plane ie Im o« = 0. With this
condition, (3) gives the required transformation. In (3), if z is real, obviously | w|=1 and if
Im z = 0. then z is nearer fo o than to @ and so | w | = 1. Hence the general linear
transformation of the half plane Im z = 0 on the circle | w | = 1 s

b Z—a| .
w=e“‘|—_|: Im o = 0.
 z—T@

1.7. Example. Find all bilinear transformations of the unit | z | = 1 info the unit circle | w| = 1.
OR
Find the general homographic transformations which leaves the unit circle invariant.

Solution. Let the required transformation be

= z+b a(z+b/a) (D)

cz+d ¢ (z+d/c)
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Here, w=0 and w = «. correspond to inverse points
b d

I=——_ Z=——, 50 We may write
a C
—E=+1_. —E=é such that | oo | = 1.
a C o
So, w=3f 270 | 30270 (2
choz-1/a ! cl@wz-1

The point z=1 on the boundary of the umit circle in z-plane must correspond to a point on the
boundary of the unit circle in w-plane so that

1=|w =£l—a _ 2=
c -1 c
or at =c er"__ where & is real.
Hence (2) becomes,
i | E—
w=e"| Ez—1|= o =1 )]
This is the required transformation. for if z = ¢®, o = be. then
e —be®
W=l = 1

Ifz =re” wherer< 1. then
Z—af - |Tz- 1P
=r —2rb cos(8 — B) + b* - {b’r — 2br cos(8 — B) + 1}
=@ -1)(1-b)<0

and so
.

\ z—a
z—af<|@z-1f = |—, =1
wz-1|°
Le. w1
Hence the result.

1.8. Example. Show that the general transformation of the circle | z | £ p into the circle
w|Zp'is

“r=pprei:'-|_z;{ii|: o ='.:p_
mZ—p
Solution. Let the transformation be
_ az+b a Z+b/a | 1)

cz+d clz+d/c
The points w = 0 and w = o, inverse points of | w | = p’ correspond fo inverse point z = -b/a,
z =—d/c respectively of | z | = p, so we may write
b d_p

. —,

o<
—— | P

=i,

Thus, from (1), we get
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al| z—a ad| Z—ol |
W=— =—| — j|
C C L OZ—p ]

@

Equation (2) satisfied the condition |z | £ pand | w | £ p'. Hence for | z | = p, we must have
w | = p’ so that (2) becomes

\ anf| z—uo = 3
=|w|= — ZZ =p°
P =l c|Tz-ZZ P
_ @@ )|lz—o| _|aT||l||lz—x
c|Z|[Z-T cC||Z||z -
acr| 1 —
= [——. z—al=|z-u|
clp
. ao at . B - i
= pp' = — =N = =pp' e, 1 being real
c c
Thus, the required transformation becomes
e in| Z—a | .
wW=pp e | = — I, |a|=p.
wz—p- |

1.9, Example. Find the bilinear transformation which maps the pomnt 2, 1, -2 onto the points 1,
1. -1.
Solution. Under the concept of cross-ratio, the required transformation is given by

(w-w, ) w,-w;) (z-2)z,-2,)

(W, —w,)(w; —w) (z,-2,)(z; -2)
Using the values of z; and w; . we get

(w-1(i+1) (z-2)1+2)

I-H-1-w) (2-D(2-2)

or “’—1=|Z—2'|2+]:.'||1—i'|
w+1 z+2 0 2-101+1
or w-1_4-3iz-2
w+1 5 z+2
or w-l+w+1 _ f4—3?)[2—3]+3§{2+3]
w-l-(w+1) (@-3D@Ez-2)-3z+2)
. o 32B-D+2CG-D) _ 3z
—iz(z—1)-6(3-1) —(1z+6)
or w=3Zrd
iz+6

which is the required transformation.
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Cross-ratio

In geometry, the cross-ratio, also called double ratio and anharmonic ratio, is a number
associated with a list of four collinear points, particularly points on a projective line. Given four
points A, B, C and D on a line, their cross ratio is defined as.

AC.BD
BC.AD

(A,B;C,D)=

where an orientation of the line determines the sign of each distance and the distance is measured
as projected into Euclidean space. (If one of the four points is the line's point at infinity, then the two
distances involving that point are dropped from the formula.)

DEFINITION:

The cross-ratio of a 4-tuple of distinct points on the real line with coordinates z,, z,, z;, z, is given by

(Z3—=21)(Z4—23)
Z21,22,23,24)=
( 1,£2,43, 4) (Z3-2,)(Z4—2Z7)

: az+b . .. . L.
A mapping of the form 5(z)= r is called bilinear or linear fractional
cI+
Transformation a,b,c,de z
A bilinear transformation S(z)=— ; with ad —bc =0 1s called Md&bius
cI+

map or Mdbius transformation.

1) Mdbius transformation is one-one and onto.
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H:__b .then S (w) = —w+b

DI S5(2)= .
) (2) cz+d cw—ol

3)If Sand T are Mdbius transformations then ST is also Mdbius

transformation.

4) §(z)=z+a ( Translation )
S(z)=az ( Dilation/Magnification )

S(z)=€"z (Rotation)

S(z)= ( Inversion ).

g |

Theorem 22 If § is a Mobius transformation then S is composifion of translation . dilation

and inversion.

b . . .
with ad —be =0 be Mobius transformation.

Proof. Let S5(z)=

CI+
Case 1. When ¢=0 then S(zZ)= ‘ %H;:—‘r%.\;
Let Sﬁ:}:‘ji.}:. 5,z =:—I%:I
Then S,¢5,(2)=35,(5,(2)) =S5, ‘ ‘% z \; = | % ‘: +| % ‘ =5(2)

Thus §=S5,¢25,.
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Case 2. When c=0

Let.ﬁ()_-+i 5,()=2. s be—ad
C al

5,(2)= 5 :.5'4(:)=:+E.
C c

Then S,085,¢5,28/(2)=S,08,95,(5,(2))

f ﬂT b
=g:%og‘+—l
\ c )
d))
= 5,08, 5‘

C -'.II

b

1|

=5, 08;| —— |

iy
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Thus §=58,05,05,¢85,.

Theorem 23 Every Md&bius transformation can have at most two fixed points.

az +

Proof. Let S{(z)= with ad —bc #= 0 be Mdbius transformation.

CZ+
Let - be fixed point of S(z) then S(z)=:

az+b

cz+d

' +(d-a)z-b=0
which is quadratic in z. Hence it can have at most two roots. Therefore every Mibius
transformation can have at most two fixed points otherwise §(z)=z for all z (Identity map ).
THEOREM:

The cross ratio (Z1,Z22,Z3,Z4) is real ,iff four points lies ona circle or a straight line.

Suppose S(w)=real. then S(w)=5(w).

Let S(w)= aw+b with ad —bc#0.
cw+d
Thus, 25 b_aw+bh
cw+d  cw+d
Therefore. (aE—EC)|111: —(aE —.E_x‘)n'—{bg—gd)rr—{bg—.i_)d) =0 (1)

Case 1. When ac is real.
Therefore. ac = ac . then from (1) we have,
(ad —bc)w+ (be —ad)w+ (bd —bd) =0 ..(2)

Let o = 2{{15—{_}0]. b= r’(ba—f_m’) then (2) becomes.
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2 2 I

:'I::a‘u'+at]+3ﬁ =0
i2i.lm(eaw)+28=0

Im(aw)-£=0 .(3)

Let a=p+ig. w=x+Iyv then aw= px—qv+i(gx+ pv).
Therefore. Im(aw)— £ =(gx+ pv)— £ =0. Thus (3) represents a line y = | = |.1' +5.
. p

That is, w lies on the line determined by (3) for fixed ¢ and £. We know that straight line

may be regarded as circle with infinite radius. Therefore, w lies on the circle.

Case 2. When ac is not real.
Therefore. ac = ac . then from (1) we have,

(af—{x‘) W+ (b(:_fiﬁr);+ (b{i_l_}d) =

|+
(ac—ac) (ac—ac) (ac—ac)
— (ad-be ) [ bd —bd |
Let;.fz‘ — .éz—‘T :
. ac—ac | \ ac—ac |

-

Therefore. M + W+ yw—0=0
WW+ W+ W+ yy=0+yy

(vt 7)(#+7)=6+77

.
~5+77

|w+ 7

-

=577

|w+

. (4)

"y,

Therefore, |w+
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ad —be

ac—ac

where 1=(5+yy ]% = >0

Since y and A are independent of w, (4) represents a circle on which w lies.
Symmetry:

If alinear transformation T carries a real axis into a circle ¢ we shall say that the points
w=Tz ,w'=TZ are symmetric between w and w" and ¢ which does not depends for if s is
another transformation which carries the real axis in c then s(T) is a linear
transformation and hence s*(w) = s1(Tz) and s} (w")= s1(Tz) are also
conjugate,symmetric with respect with respect to circle centre o(z,z") lie on same line
and multiple of 0z—o0z" in R.(where R is radius).

Theorem: Symmetric principle

If a liner transformation carries a circle ¢ into a circle ¢’ then it transforms any pair of
symmetric points with respect to ¢ in to a pair of symmetric points with respect to ¢

Proof:

We can determine the transformation by requiring that 3 points Z,,Z,,Z; and c¢,go over
into 3 points wi,w2,ws on ¢.The transformation is (w,w1,W2,W3 ) = (Z,Z1,Z2,Z5).

But the transformation is also determined that a point z on C shall correspond to a point w on ¢’
and that a point Z, not ¢ shall be carried into a point w, not on ¢ we know that Z," the symmetric
point of z with respect to ¢ must correspond to w»* the symmetric of w. with respect to ¢.Hence
the transformation will be obtained from the relation (w,w1,w2,W>" )= (Z,Z1,Z2,Z2).

Oriented circle :

An orientation of circle c¢ is determined by an ordered tripule of points (Z1,Z2,Z3) on ¢ with
respect to this orientation a point z not on c is said to be lie to the right side of c.If
Im(Z,21,Z,,Z3)=0 and to the left of ¢ if Im(Z,Z1,Z2,Z35)<0

Note:
It is essential to show that there are only two different orientation.

Level curves:
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when a conformal mapping is defined by an analytic w=f(z).In more general cases the image of
curves in the line x=x0 and y=y0 .we write the transformation f(z)=u(x,y)+iV(x,y) , the image of
x=x0 is given the parametric equation u=u(x0,y) and v=v(x0,y).Also the image of y=y0 is
determined in the image of y=y0 is determinant in the same way the above curves form a
orthogonal net in w plane.similarly we may consider the curves u(x,y) =u0 and v(x,y)=vO0 is the z
plane,They are also orthogonal and are called the level curves of u and v.

FAMILY OF CIRCLE:

Consider the linear transformation of the form w =k§ . Here z=a corresponds to w=0 and z=b
to w=co the straight line through the origin of w plane are image of circles through a and b.

The concentric circles when arg(k) varies the point to move along the circle c.The corresponding
flow circle depends a and b in different direction.

On the otherhand the concentric circles about the origin |w|=p corresponding to the circles with
equation |g | =-p |K| these all the circles with anypoint A and B by there equation loci of points
whose distances from A and B have a constant ratio.

Denote by c1 the circles through A ,B and by c2 the circles in these the limit points A,B.These
circles c1 & c2 wii be refer to as the circles net the steiner circles alternate by A and B.There are
many interesting properties given below.

e There is exactly one cl and c2 through each points in the plane with the exception of on
limit point.

e Every cl meets every c2 under right angles.

e Reflection in cl transforms every c2 into itself and every c1 into another c1.Reflextion in
a c2 transforms every cl into itself and every c2 into another c2.

e The limit points of symmetric with respect to each c2 but not with respect to any other
circles.

e These properties are all trivial with limit points are 0 and o .That is when the c1 are lines
through the origin and the ¢2 concentric circles. since with properties are invariant under

linear transformation in given general case. It can be written in the form =— =k§ Itis

w-b
clear that T transformation the circles c¢1 and c2 into circles c1! and c2with limit points A
B
Case (i):

We have c1!=c1 for all c,if k>0(if k<O these circles are orientation in this transforms is
said to be hyperbolic).
Case (ii):
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In this case c2=c2 when |k|=1.This transformation with property are called elliptic.
SIX MARKS QUESTIONS:

1.Show that any linear transformation which transforms a real axis into itself can be written with
real coefficient.

2.Show that the cross ratio (z1, z2, z3,z4) is real if and only if the four points lie on a circle or on
a straight line.

3. Show that a function f(z) be an analytic in the region Q of the z-plane. If f’(z) # 0 in Q then
the mapping w = f(z) conformal at all points of Q.
4. Show that the set of all linear transformation forms a group under the product of
transformation

5. Show that an analytic function in a region € whose derivative vanishes identically must
reduce to a constant . The same is true if either the part, the imaginary part , the modulus the
argument is constant.

6.Find the linear transformation which carries O, i, -i into1, -1, 0.

7.Show that If ¢c=0 then inverse doesn’t exist the reflextion Z— Z is not a linear transformation.
8.Show that the set of all linear transformation forms a group under the product of transformation
9. State and prove the symmetry principle

TEN MARKS:

1. Discuss about the Family of circles.
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UNIT I

Complex integration-rectifiable Arcs- Cauchy’s theorem for Rectangle and
disc-Cauchy’s integral formula-higher derivatives.

INTRODUCTION:

In this section we shall study complex integration of complex functions and established
fundamental theorem of calculus for line integral.we show that an analytic function has a
power series expansion as a Taylor theorem .Form then we established cauchy’s estimate to
prove Cauchy theorem.

2. Complex Integration

Let [a, b] be a closed interval, where a, b are real numbers. Divide [a, b] into subintervals

[a=1tp. ] [t o). [, ta=1D] (1)
by mserting n—1 points ;. fa...., t-) satisfying the inequalities
a=f<t<h<. <t ;<=0

Then the set P = {ig, f},.... 1y} 15 called the partition of the interval [a, b] and the greatest of the
numbers t; tg, t3 — t..... fp — tz1 s called the norm of the partition P. Thus the norm of the
partition P 15 the maximmm length of the subintervals in (1).

We say that an arc 13 simple or Jordan arc if z(t1) = z(t2) only when f; = t2 1.e. the arc does not
intersect itself. If the points corresponding to the values a and b coincide, the arc 15 said to be a
closed arc (closed curve). An arc is said fo be piecewise contmuous mn [a,b] if if 15 confinuous in
every subinterval of [a, b].
2.1. Arcs and Curves in the Complex Plane. An arc (path) L in a region G = 7 i3 a
continuous function z(t) : [a, b]—=G for t = [a. b] in B, The arc L. given by z(t) = x(t) + iv(t),
t £ [a, b]. where x(f) and v(t) are continuous functions of t. is therefore a set of all image points of
a closed interval vnder a continuous mapping. The arc L is said to be differentiable if z'(t) exists
for all tin [a, ©]. In addition fo the existence of z'(t), if z'(t) : [a. b]— 7 15 confinuous, then z(t)
is a smooth arc. In such case, we may say that L is regular and smooth. Thus a regular arc is
characterized by the property that %{t) and {t)exist and are continuous over the whole range of

values of t.

RECTIFIABLE ARCS

1.2, Rectifiable Ares. Let z = x(t) + iv(t) be the equation of the Jordan arc L, the range for the
parameter tbeing ty =t =T,

Let zg, 2)...., Zn be the points of this arc comresponding to the values fy, ..., tp of t, where t; < t;
=13 <...< fp = T. Ewidenily, the length of the polygonal arc obtained by joining successively zg
and z1. z1 and 7> efc by st. line segments is given by
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n
=X |ZI - ZI—1|
T=l

o
= E |{xr _i}rr) - [Xr—l + iyr—l}l
T=l

=% |(Fr—%=1)+1(vc—¥e-1)
Tml

= 3 [0 - %) 03T

VN,

If this sum I, tends to a unigue limit /<o, as n—o and the maximum of the differences -t
tends to zero. we say that the arc L defined by z = x(t) + 1y(t) is rectifiable and that its length is [
In this connection, we have the following result.

“A regular arc z =x(t) +iy(t), fp =t = T is rectifiable and its length is
‘T e IPUP, I 1 R
lg [(R@) +(FM)T " dt™.

2.3. Contours. Let PQ) and QF. fo be two rectifiable arcs with only Q) as common point, then the
arc PR is evidently rectifiable and its length is the sum of lengths of PQ and QF. Thus it follows
that Jordan arc which consists of a finite number of regular arcs is rectifiable, its length being the
sum of lengths of regular arcs of which it is composed. Such an arc is called contour. Thus a
contour C is confinuous chain of finite number of regular arcs. ie a confour is a piecewise
smooth arc.

Bv a closed contour we shall mean a simple closed Jordan arc consisting of a finite number of
regular arcs. Clearly, every closed contour is rectifiable. Circle rectangle, ellipse etc. are
examples of closed contour.

2.4, Simply Connected Eegion A region D is said to be simply connected if every simple closed
contour within it encloses only points of D. In such a region every closed curve can be shrunk
{contracted) fo a point without passing out of the region(Fig.1). If the region is not simply
connected, then it is called multiply connected(Fig. 2).

® % gp

Simply commected region Multiply connected regions
Fig. 1 Fig. 2
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2.5, Riemann's Definition of Complex Integration

First, we define the integral as the linit of a sum and later on, deduce if as the operation inverse
to that of differentiation.

Let us consider a function flz) of the complex variable z. We assume that f{z) has a definite
value at each point of a rectifiable arc L having equation

Zt)=x(t)+iv(t), tp 2t = T.
We divide this arc into n smaller arcs by points zg, 2, Z1.-... Zz-1. Zn [ = Z, say) which correspond
to the values

tg =t < ta,.... <tp <= 1z (= T) of the parameter t and then form the sum

I=3 A%)@-2)
Tml]

where % is a point of L between z.; and z, If this sum I fends to a vnique limit T as n—oc and
the maximum of the differences f; — f; tends to zero, we sav that fz) is infegrable from z; to £
along the arc L, and we write

I=] flz)dz
L

The direction of integration is from z; to Z, since the points on x(t) + iv(t) describe the arc L in
this sense when t increases.

2.6. Remarks.(1) Some of the most obvious properties of real integrals extend at once to
complex integrals. for example,

| M2)+g@)]dz=| flz)dz+ | g(z)dz.
L L L

| Kfiz)dz=K]| fiz) dz. K being constant
L L
and | Aizydz=-] flz)dz.

r L

where L' denotes the arc L described in opposite direction.

(11) In the above definition of the complex integral, although zy, £ play much the same
parts as the lower and upper limits in the definite integral of a function of a real variable, we do
not write

I= [ flz)dz
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This is dictated essenfially by the fact that the value of I depends, in general, not only on the
initial and final points of the arc L but also on its actual form.

In special circumstances, the integral may be independent of path from z; to Z as shown in the
following example.

2.7. Example. Using the definition of an integral as the limit of a sum, evaluate the integrals
(i) | dz (i) | |dz| (iii) | zdz
L L L
where L is a rectifiable arc joining the points z=o and z= [

Solution. We first observe that the integrals exist since the infegrand is continuous on L in each
case.

(1) By definition we have.

[ dz=lim ¥ (z-2) 1

]-'_ n—® ]

=lim [ —Zp+2—Z +...+F Ty — Zp ]
n—+x

lim (z, —Z) = f—x

- . L
(i) | |dz/=lm ¥ |z;—z]
L D—+m o |

= lim [|Z|_ —Zp| + |23 —Z]l—...+ Zn — zn—l]
O—+x
= Arc length of L
= [ (say)
(i) LetI=] zdz=lim T (z-2z1)& (1
L L—m ]

where % is any point on the sub arc joining 7z and zr.
Since Z;is arbitrary, we set 2, =z; and % ; = 7 successively in (1) to find
. n
I=1lm ¥ z(z—-2z1)

L—*m p]

i n
[=lm ¥ 2z(z—21)

L—m ]

Adding these two results, we get

. n
A=1lim ¥ (Z+2Ze1) (Zr—Z1)

O—+x I—I.

o - . -
=lim ¥ {zf—z;_1]=11m {zi—zaj=B]—u]
O—sm I—\]. L—sm

1= 2@ -

In particular, if L is closed, then [ = o and thus
[ dz=0 [ zdz=0.
L L
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2.8, Theorem (Integration along a regular arc). Let fiz) be continuous on the regular arc L
whose equation is z(t) = x(t) + iy(t). tp =2t = T. Prove that /Tz) is integrable along L and that

| flz)dz= [y F(O) [5(0)+i yOck.
where F(f) denotes the I;,m.'lue of flz) at the point of L corresponding to the parametric value t.
Proof. Let us consider the sum

I3 %) -z
where Z; is a point of L between z,; and z,. If 1, is the value of the parameter t corresponding to
;. then 1, lies between f) and . Writing F(t) = () + tw(t), where ¢ and w are real, we find that

1= :% [ (z) + w(m)] [3 — Xe1) + (¥ — Fe1)]

= T () (=) +13 O(Ts) (% — Vi)

[l

+i% v (1) {xc—x;-;l—% w(te) (¥ — ¥e-1)

1=l

1+1E3+1%3— E4(5ay)
1

-
F
z —E4+iI:Eg +E3}

We consider these four sums separately.

By the mean value theorem of differential calculus, the first sum is

L= f (o) (% — %)
=% () £(%) (e~ ter)
' (fla+h) —fla) =hf'(a+8h).0<6 =1
X1 = X(t) —x(t1)
= {tI_Tr—]} b4 ':Trr}:l
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where 7;" his between t,_; and t;.

We first show that I can be made to differ by less than an arbitrary positive number, however
small, from the sum

n
=% )Xt (k- 1)
Im]
by making the maximum of the differences t; — t_jsufficiently small

Now, by hypothesis, the functions §(t) and #(f) are continuous. As continuous functions are
necessarily bounded, there exist a positive number K such that the inequalities
MO =K s =K
holdforty =t = T.
Moreover, the funcfions are also nniformly continuous, we can, therefore, preassign an arbitrary

positive number =, as small as we please, and then choose a positive number &, depending on =,
such that

WD) - )| < £, [R (O -2 (1) < <.
whenever [t —t'| <
Hence if the maxinmm of the differences t, — t,_; 15 less than & we have
(o) % () — d(t) 2 ()]
= ¢(r) {2 () —x ()} (k) {§(r) — (L)}
Z ()] X (w) =R () X ()] b () — (k)
=< 2K=
and therefore
- = 2K (T —1g)

By the definition of the integral of a continuous function of a real variable, I;" tends to the limit
fiy o0 %0t = timE ) o

D—+m0 ju]

as n—oc and the maxinmm of the differences f; — - tends to zero. Since [£) — ;| can be made
as small as we please by taking 5 small enough, T; must also tend to the same limit.

Similarly the other terms of T tend to limits. Combining these results we find that ¥ tends to the
limit

IT [ 20 - w) 3] d

+ifo W X0+ ¥O] dt

= [, FO[E®+1ym]at
and so fTz) is infegrable along the regular arc L.
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2.12. Cauchy Theorem (Elementary Form). First we consider the elementary form of Cauchy
theorem which requires the additional assumption that the derivative of f{z) is continuouns. This
form of Cauchy theorem is also known as Cauchy fundamental theorem, which has the following
statement.

If fiz) is analytic function whose derivative f'(z) exists and is continuous at each point within
and on a closed contour C. then

I fiz)ydz=0

c

Proof. Let D denotes the closed region which consists of all points within and on C. If we write
z=x+1iy. flz) =u +iv, then we have

[ flz)dz= | (v+1v) (dx~+1dy)

c C

= [ (wdx—vdy)+i [ (vdx+udy) (1)
c C

Now, we use the Green’s theorem for a plane which states that if P(x, v), Q(x, v). %ﬂm
cy¥ cX

continuous functions within a domain D and if C is any closed contour in D, then

. cP

| ®ax-Qay= [[| - acay ®

D %

By hypothesis '(z) exists and is continuous in D, so v and v and their partial derivatives u,, vy,
Wy, Wy are confinuous functions of X and v in D. Thus the conditions of Green’s theorem are
safisfied. Hence applying this theorem in (1), we obtain

I fleyz= |——X—C—uidxd§, +if

gz |dxd

| éx &y )
.o cu
—||———|d:«d}+1| ':——}d.dv

(using C—F equations)
=0+10=0
Hence the result.

Extension of Cauchy’s Theorem to Contours Defining Multiply Connected Regions.

By adopting a suitable convention as to the sense of integration, Cauchy's theorem can be
extended to the case of contours which are made up of several distinct closed contours.
Consider, for example, a function f{z) which is analvtic in the mwmltiply connected region R
bounded by the closed contour C and the two interior contours C;, C; as well as on these
contours themselves. The complete contour C* which is the boundary of the region R is made
up of the three contours C, C; and C; and we adopt the convention that C* is described in the
positive sense if the region R 1s on the LH.S. wrt. this sense of describing it. Then by Cauchy’s

theorem
e flZ)ydz=0
where the integral 15 taken round the complete confour C* in the positive sense.
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Practically, we deal with this case by drawing transversals like ab, cd and by applying Cauchy’s
theorem for a simple closed contour abobaPdeyedda. It is found convenient in applications to
express the same result in the form

. f@E=[, f@&+], [

where all the three integrals are now taken in the same (positive) sense.

An exactly similar result holds in case there are any finite number of closed contours Cy, Ca,. ..
Cy, inside a closed contour C and f{z) is analytic in the nmltiply connected region bounded by
them as well as on them. We then have

le fl2)dz= .|.|:-_ Jz)dz —.|.:; flz)dz~+... +.'-cm flz)dz.

where all the contours are described in positive sense.

Theorem. (Cauchy’s Integral Formula). Let f{z) be analvtic inside and on a closed
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contour C and let zo be an:y point inside C. Then

Az - 1. L9 g

2 -
m - z-Z

Proof. We consider the function %This function is analytic throughout the region bounded
2y

by Cexcept atz=2zp.
Then, by 2.15, we have
- £z - f(=z
J. @ 4 [ 1@ 4
where 7 15 anv closed contour inside C including the point z; as an inferior point.

/o)
(=), |
N

Let us choose v to be the circle with centre z; and radius p. Since fz) is continuous, we can take
@ 50 small that on 7.

flo) - fizo) | < &
where = 15 any preassigned posifive number.
Now,
| 1@ g V@1l @),
I— Zg ' Z— Z.:]

—fiz) | dz dz + f[z]l—f{z.;.]d_Z
T Z—Z o1 -1

(1)

For any pomt z on v, _ _
z-p=pe”® = dz=pie“ds

ﬁ 11 ]s "-Iu'l - -
[ =~ pe7ds _ 2 id6 = 2mi
v z—z, 70 pe

= o
and

I
) Z—Zy

- J@-f(z) dz‘ _

|l£ll'l: [fI:Z} - ..::{Z".'I :I] pelﬂide ‘
pe
= 13" L/ @)~ £ (zo)0id8 |
< £ _|'é‘ df =2ne
Hence from (1), we get

<2Mme

@ 27 7(z,)

I'
C z-z,4
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Since = is arbitrarily small and LH 5. is independent of =, it follows that
&dz —2mif (zy) =0

Z—Zp
1 . fiz) iz

HE ) = EJC z—-z,

t

which proves the result.

Cor. (Extension of Cauchy’s Integral Formula to Multiply Connected Regions): Iff{z)

1s analytic in a ring shaped region bounded by two closed contours C; and C; and z; is a point in
the region between C; and C,, then
flzg) = %J-c J@ g 1, J@ 4
2mi vl z-z, mi™"l z-z2,
where C, is the outer contour.

Proof. Describe a circle v of radius p about the point z; such that the circle lies in the ring shaped
f(@

region. The function ———is analytic in the region bounded by three close contours Cp, C;

-3 . _\
and . a8
/ Y
\ 1
= ]
Thus by 2.15, we have.

f(z) f(z) - f(z)
e, — dz=|. ——dz+| —de

where the integral along each contour is taken in positive sense. Now, using Cauchy’s integral
fornmla, we find.

(1D g 1@ 4oty
Coz-zy Coz-zg
or
1 . J@ 1. f@
. B g JE g
Fe)=ggle, 22, % s 2=z,

Theorem (The derivative of an analvtic function). Let lz) be analvtic within and on a

closed contour C and let z; be any point inside C, then
. 1 . fiz
f (Zu)=?‘|n [—}]dz
Im~ (z—zg)

Proof. Let z; + h be a point in the nighbourhood of zg and inside C, (Az = h). Then Cauchy’s
Integral formmula at these two points, gives
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1. f@
=—|. ——dz.
() i © I—-I;
1. _f@
d = . L

. (2o +h) 2mi-© z—z,:,—lll'iE
Subtracting the first result from second, we get

f[:z{l _h)_f[zﬂl} =i._|.c f{z:] dz (1)

h 2m (z—-zglz—z4-h)

We observe in (1) that as h—0. the required result follows. We have thus only to show that we
can proceed to the limit under the integral sign. We consider the difference

JEo+)-f(zo) _ 1, f(2)1dz

h 2 (z-z)°
_ 1 f(@) 1 _f@
- IC - g
2m " (z-zg)z-zy-h) 2mi (z-z,)°
il f(z)dz (2)
2mi © (z-z)*(z—2zy—h) )

Since f{z) 1s analytic on C so flz) is bounded on C. Thus [f{z)| £ M on C. M being an absolute
positive constant. Let us denote the distance of zq from the points nearest fo it on C by & and the
length of C by [ Then if [h|<5,

b fiz)dz - Milh
" (z-zp) (-2, -)|” (5~ |n)
which is bounded and tends to zero as [h|—0. Thus, taking limit as |h|—0. it follows from (2)
that

(3)

iG-S _ 1 f@

b0 h i (z-zp)°
Hence f{z) is differentiable at z; and
, 1. (z
f {ZI:I:I =—|; Ldz

it (z-z,)°
which is Cauchy’s integral formula for /'(2) at points within C.

Cauchy’s Imequality (Cauchy’s Estimate). If f{z) is analytic within and on a circle C
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given by |z — zg| = R and if |fTz)| = M for every z on C, then
o _Mn
Iz = R”_

Proof. Since fz) 15 analytic inside C, we have by Cauchv's integral formmila for nth derivative of
an analytic function

n n. j@
= =] ———~ _dz
I mic (z-zg)™
Since on the circle z —zo| =K.
z—zy=Re", dz=Re" id5
and the length of the circle is 2nR. therefore

. 2| _flz)dz
o) |= =
7@ = 5[
) @i
e |zzp [
_ [0 2 MIRe®idd| |n 5. M 48
Son0 TREET Top0 RE
n M Min
= = M=
2‘_{ Rl:l Rl:l
. M|n
Hence If%zg)| = =

Liouville’s Theorem. A function which is analytic in all finite regions of the complex

plane. and 15 bounded. is identically equal to a constant.
or

If an integral function f1z) is bounded for all values of z, then it is constant
or

The onlvy bounded entire functions are the constant functions.

Proof. Let z;. z; be arbifrary distinct points in z-plane and let C be a large circle with centre at
origin and radms B such that C encloses zy and z; 1e. |7 < R, [z2| < R

Since f{z) 1s bounded, there exists a positive number M such that [fz)| =M 7 z.
By Cauchy’s integral formula,

fay= Ly L@
mic -

flag= L L@
2mic Z-2Z,

fz)-flz) = —— [ L@E@=7) 4,

mic (z-z3)z-7)
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Thus
N lT-nl. | f@|d
Rz2) = fz)] = 2n ¢ z-z||z-z,|
. M|z, -z I' |dz |

2 c lz—-z1l|z-24

< I'l'I 2]—2-_ . |dz|

= Zz—-7 |2z —-|Z
2 c(z|—z-_)[|z|—z:u| ' '

MNow, on the circle C, z = RejE': z|=R,

dz =Re" ids
Therefore,
Mz, -z -2 Re™ id
fa)-fa)l= = —h &z 0m=7)
M|z, -z, E "
= = = LI
In (R-|z;|(R-|za])
— M|z, -z | 1
3'1_@]{1_2_13'11
\ E A E |

which tends to zero as R—oo.

Hence flz,) — fiz))=01e flz))=fz1)

But z), z; are arbifrary, this holds for all couples of points z;, z; in the z-plane, therefore
JlZ) = constant.

The Fundamental Theorem of Algebra. Any polvnomial

Plz)=ap+ajz+...+2 2" a;= 0,02 1 has at least one point z = z; such
that P(zy) = 0 L.e. P(z) has at least one zero.

Proof. We establish the proof by contradiction.

If P(z) does not vanish. then the function flz) = % 15 analytic in the finite z-plane. Also when
z

z|l—x, P(z)—x and hence flz) is bounded in entire complex plane, including infinity.
Liouville’s theorem then implies that f{z) and hence P(z) 15 a constant which violates n = 1 and
thus contradicts the assumption that P(z) does not vanish. Hence it is concluded that P(z)
vanishes af some point z = z;

2.32. Remark. The above form of fundamental theorem of algebra does not tell about the
number of zeros of P(z). Another form which fells that P(z) has exactly n zeros, will be
discussed later on. Of course, here we can prove this result by using the process of algebra as
follows :
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By the fundamental theorem of algebra, proved above, P(z) has at least one zero say z = zp such
that P(zp) =0
Then,
P(z) -Plzs)=a+ iz + 17 +_ +3, 2"
~(@+uZF My . A
=a(Z-z)+:mE -z) +.+a (@ -
=(z-z) Q@)

where Qiz) is a polvnonual of dtgfee {n'—l)-.. .Appl}'iug the fundamental theorem of algebra
again, we note that Q(z) has at least one zero, say z; (which may be equal fo z;) and so

P(z) = (z—z;;) (z—z;) R(z). where E(z) is a polynemial of degree (n—2). Contimuing in this manner,
we see that P(z) has exactly n zeros.

2.1. Cauchy’s theorem for a rectangle. We now see the simplest version of Cauchy’s The-
orem, in the case of a rectangle R={z =z +iy: a<zr <bh e<y<d}. Wedenote by R
the boundary of R, oriented counter-clockwise.

Theorem 2.5. Let  be a domain containing R. For any [ holomorphic on £ we have

fd2=0.
i

Proof. For a rectangle R C §) we write

n(R') = fdz.

an’

We divide the rectangle I into 4 rectangles R

..., RW by bisecting each side into two equal
segrents.

Since the line integrals over the common sides cancel out, we obtain that

n(R) =n(RM) + ..+ y(RY).
At least one rectangle R® =1, 4 must satisfy

n(BR®)| = [§n(R)|.
We ecall this rectangle H;. By repeating this construction we obtain a sequence of rectangles
Ry. Ro. ... such that:
(i) ROR1 D R2D -
(i) [n(Ra)| = Ln(Ra-1)]. s0 that |n(Ra)| = 4~"|n(R)
(iii) if pp and d,, denote the perimeter and the diameter of R, respectively, and p, d the ones
of R, then p, =2 "p and d, = 27 "d.

Prepared by:M.Sangeetha,Assistant professor,Department of Mathematics,KAHE Page 14/20



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE:17MMP201 UNIT Il BATCH 2017-2019

By the Bolzano-Weierstrass theorem, N, R, is non-empty, and since d, — 0, Ny, cannot
contain two distinet points. Therefore, there exists { £ R such that Ny, Ry, = {(}.
Given ¢ > 0, there exists § > 0 such that D((,d) C 2 and, since the function f is holomorphic
in €2, such that
|f(z) = F(Q) — (2= QF (O] <elz— ¢
for z € D((, ).
Recall that, from Cor. 2.4 we know that

[ d:r:f (z—()dz=0.
AR, aR,

Now, there exists ng such that for n = ng R, is contained in D((,d), and then, if z € 9R,,
|z — | < dn. Therefore, by (ii) and (iii) above,

e = [ (1) - 10 - - Or'©)

<ef Ja-qlla
aR

™

< ednpp
< 47 "dp.

It then follows that
In(R)| < 4%|n(Rn)| < edp.

Since £ > () was arbritary, the theorem is proven.

Theorem 2.6. Let 2 and R be as in Thm. 2.5. Let f be holomorphic in the domain Y obiained
removing from £ a finite number of points (5, 5 = 1,...,n, lying in the interior of R, and assume
that

Tim (2 — ()f(2) = 0

fdz=0.
aR

Proof. We first argue that it suffices to consider the case of a single exceptional point (. In
fact, we can divide the rectangle R as finite union of rectangles R;, each containing a single

exceptional point (;, 7 = 1.....n, and observe again that
n
fdz=Y" fdz.
aR o1 Jen;
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So, let us assume that we have a single exceptional point ¢ inside R. We divide R as union
of nine rectangles, in such a way that the central one is a square Hp centered at ¢ and has side

lengths to be fixed. Then,
8
f fd:::/ fdz+Y_ | fdz
an ARy =1 oR;

N »fc'ﬁiu:] f o

by applying Thm. 2.5 to the integrals [, fdz, j=1,...,8.
JOIy
Given £ = 00 we fix the side lengths of Hy to be small enough so that

2 =(|[f(z)| ¢
for z € Ry. We then have

[ ral=1 [ rasl< [ inGllas
aR aHRp 8Rg

1
/ = |4l
amg 12 — ¢l

8z,

[
]

[

since Hp is a square, as an elementary argument shows. This proves the theorem.

2.2. Cauchy’s theorem in a disk. We denote by D = D(z;,r) the open disk having center
zp and radins r = 0; that is,

Dizo.r)={2€C: |z—z| <7}.
Theorem 2.7. Let f be holomorphic in an open disk ). Then

ﬂ f(z)dz=0

for all closed curves v contained in D,
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Proof. We are going to use Thm. 2.5. For any z = x +iy € D, let ¢ = 7, be the curve in
D consisting of the horizontal segment from (g, yp) to (z,yp) followed by the vertical segment
from (x,y0) to (z,y). Define

F(z)= fdz.

LEF

Then I is well defined and we can easily compute that
O, F(z)=1if(z).

By Thm. 2.5, since [ is holomorphic on [J, we have that
F(z)= fdz:/fd}:
Tz Tz

where 7, is the curve comsisting of the vertical segment from (g, 1) to (zq,y) followed by
the horizontal segment from (xg,y) to (z,y). Computing the partial derivatives in = of ' we
obtain that d.F(z) = f(z). Since the partial derivatives of F' are contimious and satisfy the
CR-equation, F' is holomorphic in [J, and its derivative is f.

Therefore, f(z)dz is an exact differential and

ﬂf(z)dz =0

Theorem 2.9. Let f be holomorphic in I)' obtained removing from an open disk D a finite

number of points (;. j =1,....n, and assume that
lim (2 — ;) f(2) =0
2

for j=1....,n. Then

ffd;::[]

Proof. This proof now follows from the previous arguments. First we can reduce to the case of
a single ecceptional point {. Then we only need to make sure that the curve v does not pass
through ¢. Having fixed zp € IV, given z € I, if the the rectangle with oppositive vertices in zy
and z passes through (., we can still easily define the indefinite integral F of f on D'. We leave

for every closed curve v contained in I,

the simple detail to the reader

Cauchy’s formula. We begin with the notion of indexr of a point with respect to a curve.

Let v be a closed curve and lef zp be a point not lying on v. Then the integral
f dz
v Z— 20
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is an integral multiple of 2mwi.

Proof. Let + : [a,b] — C and define
f ,,r_f
a YT)— 20
We wish to show that there exists an integer k£ such that

f ©_ _ h(p) = 2rik.

y 2 — 20

The function h is defined and continuous on [a, b, h(a) = 0 and

v(t)

H(t) = 7(t) — zo

on the interval [a,b] taken away a finite number of points where +(t) is not differentiable. It
follows that

d ., _ _ .
(7O ((t) = 20)) = MO (=K () (1(2) — 20) + /(1)
=10
except at those points #;,...,t, where 7(f) is not differentiable. Therefore, e #"(y(t) — zg)
is constant on each connected component of [a,b] \ {t;,....t,}. Since e #8(y(t) — zg) is also

continuous, it follows that it is constant on [a, b]; that is,
—h(t)y . .
e MO (y(t) — 29) = €.
Sinee i(a) =0, ¢ = vy(a) — =y, so that

ney _ Y1) — 2o

T e -

Now, using the fact that v(b) = vy(a) we have e™® = 1, so that

h(b) = 2mik
Theorem

(Morera) Let f be continuous on a domain £). Suppose that

j;f{éhdé —0

for all closed curves v in 2. Then, [ is holomorphic in (1.
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Recall that for a power series expansion f(2) = Z;:‘[‘} an(z—20)" we have that f (m) (z0) = nlan.

Then, we just have obtained the formula

(n)yay i‘ f{@jl
f l.,{]} - Q.TI'? . ILC _ 30).”_1

valid when v = 8D(zp,r) C ©2. More generally we have

dc

Definition :

If f =u+iv is a continuous complex-valued function defined on an interval [a, b] on the real

line, we set
b b b
ff{t}dt:f u.(_t}a'.t+if o(t) dt .
L1 (1} a

Then the mapping f — ff f(t)dt is complex linear.

Theorem:

Let f € C([a,b]). Then

b b
I/ f(t]rif-lif | F(t)|dt .

Proof. The proof is simple. If j; f(t)dt = 0 we have nothing to prove.
Otherwise, let « € C, |a| = 1. Then

b b b
Re (a/ f[t]rif-) =f Re (af(t)) fif-if Re (af(t))|dt

b b
< [ farwlar= ["ir@lar
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SIX MARKS

1. Prove that If f(z) is analytic in an open disk A, then fyf(z)dz = 0 for every closed curve y in
A.

2.State and prove fundamental theorem of algebra.

3.Prove that f(z) be analytic on the set R’ obtained from the rectangle R by omitting a finite
number of interior points {j. If it is true that lirrgl_ (z — ()f(z) = 0 forall j,
z—{j

then faRf(Z) dz = 0.

4. Show that an analytic function f(z) has derivative of all ordered which are analytic can be
noc o f©
represented by these formula —— Je s

belongs to an arbitrary region in Q.

dC{ where cis a circle about a point ‘z’ and z

5. State and Prove Cauchy’s theorem for rectangle.
6.State and prove Morera’s theorem.
7.State and prove Fundamental theorem of algebra.

8. Show that the line fyp dx + qdy, defined in Q depends only on the end points of v iff there

exist a function u(x, y) in Q with the partial derivative z—z =p, 2—5 =q.

9.State and prove Cauchy’s estimate theorem.
10.State and prove Liouville’s theorem.

11.State and Prove Cauchy’s theorem for disk.

TEN MARKS

1. State and Prove Cauchy theorem for Rectangle.

2.Write about Properties of complex integral.
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UNIT I
SYLLABUS

Harmonic functions-mean value property-Poisson’s formula-Schwarz
theorem, Reflection principle-Weierstrass theorem- Taylor series and
Laurent series.

HARMONIC FUNCTIONS

In this section we return to one aspect of the theory that concerns the analysis of harmonic
funections, subject often called potential theory.

Recall that a 2 _function 1 on an open set A C R? is said to be harmonic on A if Au = 0
on A, where A = dﬁ - E}J_‘T' is the Laplacian. The next lemma collects the first elementary but
fundamental facts about the relation between harmonic and holomorphic functions.

Theorem:

If f = u+iv is holomorphic on an open seft A C C then its real and imaginary

parts . and v are harmonic on A.
If u is a real harmonic function on a simply connected open set D, then there exists a real

harmeonic function v on D such that u + iv is holomorphic on D. In this case, we will say that
v is the harmonie conjugate of w on D.

Proaof. The first part follows from Subsection 1.2 .

Suppose now « is a real harmonic function on a simply connected open set D, We wish to
v € C%(D) satisfying the CR-equations on D, that is, such that

dv = (—dyu)dzr + (Oru)dy .

The one on the right hand side is a closed differential since u is harmonic, Since D is simply
connected, it is an exact differential, so such a v exists. It immediately follows that u + v is

holomorphic.

We remark that the hypothesis of D being simply connected cannot be relaxed. As an
example, consider A = C\ {0} and u(z,y) = %log[.r2 + ¥?). Then u is real and harmonic. On
An{z+iy:x > 0} is the real part of log z, that cannot be extended to all of A. Henee, there
exists no function holomorphic on A whose real part is u.

Maximum principle. We now prove the maximum prineiple for (real) harmonic funetions,

Theorem:

Let 2 € C = R? be a domain (connected open set), u: Q — R be harmonie. If
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there exists zp € Q and rg > 0 such that D(zg,rg) € Q and u(zg) = sup{u(z) : z € D(zp.710)},
then w is constant on 1.

Proof. Let
Q= {“ € Q2 : there exists r; > 0 such that for w € D(z,rz), u(w) = u{:u)} ;

We wish to show that €' is open. closed in € and non-empty. thus showing that €' = €.
On D(zp,ro) we can find h holomorphic such that Re i = w. Take f = e, Since |f| =€
e, |f| attains its maximum at z5. Hence f is constant on D(zg,rp), so is u. Thus, ' = .
Moreover, £ is open by construction.
Finally, let z € €. Let D(z,r.) C €. Since z e (¥, there exists some open disk on which u
is constant. Let h; be the holomorphic function on D(z,r.) whose real part is . Then, h; is
constant on an open disk, hence on all of D(z,r.), so is u. Thus, 2z € ', ' is closed, that is,

Reh _

o =Q.

Theorem:

(The Poisson formula for the disk) Let A € C be open, D(0.R) C A, u be
harmonic on A. Then for every z € D(0, R) we have

1 A - R‘E_ |_.:|'3
2)=— [ u(Re®).- =\ _dp.
u(z) er,/[} UHReT)  ge® P

(i) The function

[t

|12

; 1
PG = 2r  |¢— 2|

defined for » € D(0, R) and ¢ € 8D(0, R) is called the Poisson kernel for the disk D(0, R)
polar coordinates it has the expression

s 1 R—1?
. .IE.E A A e e ooy
P]"E:’?(R{' ]' = Qﬂ' iREf'ﬂ' = r(—‘jﬁl|2
1 B? — 2

" 2 RZ—2Rrcos(@—n) +12°
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(ii) The Poisson kernel Pm,,?[Ref”} is a positive kernel, that is,
P,.in(Re®) >0
forall0 <r< R, 1.0 € [0,2x].
(iii) If ¢ = Re and z = re', then

. 1 (+z 1 Re®® + ret
. iy S 1% Toggaete | TR
FoulBe)~ QWRE (—z 2r “Ret® —rein”

This follows at once from (7.1). since

)

(+z _(+z (-2 KP-|P+ (2 -¢2)
5 1 s ,

{—2 (—2 .08 ¢ — 2|

(iv) Finally, since the constant function #(z) = 1 is harmonic, from the reproducing property
in Thm. 7.6 we see that

1 2m : 1 2w ) - |~|"J
= P.(Re'’)do = ______m_l
2r [u =(#e") ETTA |Rei? — :

Proof of Thin. 7.6. Let 5 > R and h be the holomorphic F_:ilm:l;iun on (0, s) such that v = Re h.
For z € D(0, R), by Cauchy’s formula, letting v(#) = Re, with 0 € [0, 27], we have

T / Q) ac

i J, C—z

Fa

1 an ] REfH
2 g h{R(*’ }R T df .

: i 2 ; :
Moreover, if we set w = RZI:. we observe that w = %—:: where z = re'", and that the function

Q)
(—w

is holomorphic on D(0, R), since |U_| = == = R. Therefore,

[J= R((

- i Rei?
- e]Rw =

™

|._~ ~|
L\.-

dd

ko
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hiz) = — h(Re™ _ = _ | do
(2) I Ja { NRw—z _Re®
1 ey ; R2 . izlj
=) h(Re®)—————_dp.
27 Jo ( "|Ret? — z|2

By passing to real and imaginary parts we obtain

s 1P B

The Weierstrass factorization theorem.

Definition

We define the Weierstrass elementary factors as E(z,0) = 1 — z and for
n=12..., E(z,;n)=(1- ,,]1,34%_:——4 :

Theorem

Let {z;} € C, {p;} TN be chosen as above. Then the Weierstrass product

H E(z/z;,p;)
=1
converges uniformly on every set {|z| < r}, r = 0. to a holomorphic entire function F. The

zeros of F' are precisely the points {2;} counted with the corresponding mulfiplicity.

Proof. Let r > 0 be fixed. Let jp be such that |z;| > r for j = jy. Thus,

pi+1 < ( r )p_‘-ﬂ—]l
|23

=

|E(z/z.p;) — 1| <

s

By the hypothesis on the p;'s,

+a0 190 L pitl
Z |E(z/25.p;) — 1] < Z (|j—|) 7 < o0,
Ji=jo j=in '

Weierstrass's M-test implies that 3 °% |E(z/2;,p;) — 1| converges uniformly on {|2] < r}, for
any r > 0, Thm. 8.6 now implies that

foa Jo—1 +oo

H E(zfz;,p;) = H E(z/z,p;) H E(z/z;,p;)

i=1 i=1

J=ija
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converges uniformly on compact subsets of C to an entire function F' whose zeros are precisely

the zeros of the E(2/z.p;)’s. O

Corollary
— oo, Then there erists an entire

Let {z;} be a sequence such that |z;]

funetion F whose ::f.ms. a.J?':E pn%e-iselj;r the {z;}, cu-rmtis;l_g: I:rnfuﬂﬁ.pr’.v;c!'eir‘.y.
Proof. We may assume that zy =... =z, =0, and z; # 0 for j > k. Let p; =35 — 1.
Let r > 0 be fixed. Let N = N(r) be such that |z;] > 2r for j > N. Then

I e d  TEY
Z(m) Ezg—j{+fx.

=N =N

Thus, by Thm. 8.9, the function

00

F(z) =2* H E(z/zj,5—1)

j=k+1

Theorem
(Weierstrass® Factorization Theorem) Let f be an entire function. Sup-

pose that f vanishes of order k at the origin. Let {z;} be the other zeros of f. counting multi-

plicity. Then there erists an entire function g such that

+oc
f(2) =@ T B(z/2,5-1)
=1

Proof. By the Cor. 8.10, the function h(z) = 2* HJ__:‘{ E(z/2;,7— 1) is entire and has the same
zeros as f. Hence, the function f/h can be extended to an entire function, with no zero. Since
C is simply connected, log( f/h) = g is well defined and entire.

Hence, € = f/h, that is,

F(2) = h(2)ef®) = 2*eot2) H'E(.:,f:j.j =g}, §
=l

We now apply this result to describe an identity that deseribes the factorization of sin z

Page 5/16
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We have
Sinwz = mz H E(z/n,1)
n=0
o i 8
—r T — o<y fn — ar == ;
—m [[(1-=)e =m=T] (1 - =)
n=£0 n=1

In order to prove the above identity we need a preliminary result.
Lemma

- COS T2 1 1 1
(1) meotmz = T— == —|——):
) 7 i % Z T —n 1

(i1) : Z _n}_

neZ

Proof. (i) The function

fﬂ] T+Z(_-:i-n+%)

n#l
is meromorphic in C and having simple poles at the integers, with residues all equal to 1. The

function
coq Tz

fa

(2) 'sinmz

is also meromorphic in C and having simple poles at the integers, with residues all equal to 1.
Hence, h(z) = fi(z) — fa(z) is entire. It is immediate to check that

] = 4oy I Rz
h'(z) = Z (z—n)2 L1 sin” w2

ned
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is periodic of period 1 (and it would not be so obvious that h is periodic of period 1).

We wish to prove that h(z) = 0. We begin by showing that k' is constant, and equal to 0.
In order to show that A’ is constant, we show that A’ is bounded and then invoke Liouville's
theorem. Being periodic of period 1. &' is bounded if and only if it is bounded in the strip
{z=z+iy: 0<z <1}. But,onthecompact set {z=z+iy: 0 <z <Ly <1} H'is
certainly bounded. For |y| > 1 and 0 < » < 1, the sum

ned At
s B j A 1 1 . 1 1 .
is finite. Moreover, since FET— < . < 1+ﬂ~ for n < 0, while R < ey for
n = 2, we can apply Leberue’s dominated convergence theorem to obtain that
1
E —— =0 as |y| — +oo.
|,a +iy —nf?

& & , a2
The same is true for the function e Recall that

imz —imz eah]| —riy]
' - el — g
|sinmz| = | 7 | = 5 = sinh7ly| — 400

as |y| — +o0. Then, |?;;%| —0Das |y —» +ocintheset {z=z+iy: 0<x <1, |yl >1}

This proves that k' is bounded, hence constant. But, since A’ tends to 0 as |y| — +o¢, the
constant must be 0. This proves (ii).

Thus, & is constant, and it is 0, since i vanishes at the integers. This proves (i), and we are
done. O

Proof of Prop. 8.12. Notice that the last equality in (8.4) follows at once.
For n € Z, let z;, = n. By Thm. 8.9 the function

f(z) ==z H (1 <k, i)f:;’n

n#0

is entire, having simple zeros at the integers. Let 2 € C\ Z = (. Since f(2g) # 0, there exists
a disk D( p.7p) € € on which log f(z) is well defined and holomorphic. On such disk,

% d/. og f(2) [orr“r +Zﬂ(log —:«:fﬂ.}—i—%)]
P et
n=#0
= Teotmz,

by the previous lemma. On the same disk D(zg, ) logsinmz is well defined and its derivative
equals weotmz. Then, there exists a constant € such that log f(z) = logsinmz + ', that is,
flz) _ 1

sinmTs

f(z) = Cysinmz on Dz, rp): hence on © and therefore on all of C. Sinee lim, .

'y = 1 and we are done.
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3.2 Taylor Series

We begin with the Taylor’s theorem.

Theorem 3.2.1.
Suppose that a function f is analytic throughout a disk |z — zg| < Ry, centered

at zp and with radius Ro. Then f(z) has the power series representation

().
A z0)
Fiz) = Bl qanlz— z)" (lz — z0| < Ro), where a, = % (p=01.2_.)
T
_V
f”i' Hl\\
£ Fe A
! = 4
( % "
| = |
| ! !
N 7
A I
{’.J ‘\\ _’_/ X

i.e., L2 jan(z—z)" converges to f(z) when z lies in the open disk |z — z| < Ry.
(This expansion of f(z) is called the Taylor series of f(z) about the point z.)

Since f19(z5) = f(z9) and 0! = 1, the Taylor series of f(z) about the point zy can

. \ "(20) \ 2 i : :
be written as f(z) = flz)+ / jrﬂ (z—zp)+ f éIU}(: —z9)°+...., (lz—z5| < Ryp).
Remark.

— : o aad ()
A Taylor’s series about the point zp = 0, f(z) = 32, z"  (|z| < Ro)

7!

is called a Maeclaurin series.
Any function which is analytic at a point z; must have a Taylor series about
zp. For, if f is analytic at z, it is analytic throughout some neighborhood

|z— zp| < £ of zp. Therefore by Taylor’s theorem, f(z) have a Taylor series about

zp valid in |z — zp| < £. Also, if f is entire, Ry can be chosen arbitrarily large.

and the condition of validity becomes |z — 23| < oo and the Taylor series then
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converges to f{z) at each point z in the finite plane. If f is analytic everywhere
inside a circle centered at z;, then the Taylor series of f(z) about z; converges
to f(z) for each point z within that circle and in fact, according to Taylor’s

theorem, the series converges to f(z) within the circle about z, whose radius is
the distance from z; to the nearest point z; at which f fails to be analytic.
Example 7.

Consider the function f(z) = ¢°. Since f(z) = ¢ is an entire function, it
has a Maclaurin series representation which is valid for all z. Here, f"(z) = ¢
(=012, )0 =1, (E=012..

n
Therefore, e* = X 4—, (2| < o).
T,

Example 8.

Let f(z) = 1; Then, the derivatives of the function f(z) = %

2 ; =

which fails to be analytic at z = 1, are f\"(z) = “nﬁ (n=0,12..).
F

= f™(0) = n! (n =0,1,2,...).. Therefore, f(z) = = 1424224224

- (l2] <1).
3.3 Laurent Series

If a function f fails to be analytic at a point zy., but it is analytic throughout
an annular domain Ry, < |z — z9| < Ry , centered at zj, then the power series
representation for f(z) involves both positive and negative powers of z — z;. Such

a series representation for f(z) is called a Laurent’s series.
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THEOREM ON LAURENT SERIES

Suppose that a function [ is analytic throughout an annular domain Ry <
|z — zg| < Ry , centered at zp ., and let C denole any positively oriented simple
closed contour around zy and lying in that domain. Then, at each point in the

domain, f(z) has the series representation

lE”':'I
IF{ }_‘—‘Jr Llﬂ'ﬂ(z_ ) _'_'\_'3'-[ = {R1{|2_3{1|‘:R2}'-
(z — zg)
where
1 flz)d= ) ¥
iy = ET /.;W (n=10,1,2..)
and
1 i f{z}dz
Remark.

Replacing n by —n in the second series in the above Laurent’s series enables
us to write that series as
1 bn

“Tﬂ.:—x"{?- = zﬂJ—ﬂ 5

where

'Fr.!— :_.—l._....
h_ = /{ T (72 1,—2;...)

Thus. we have

fﬁ} = ! b—n( — *"*’C',]-'T\ + _JJ?_Eﬂ'n-rk/_ /{I (Ri < | - *Il|'| < RE

“n=—oo
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Or, we can write

where

en = l.[ fede o ba1 a8 3
{ €

A (Z _ Z{]}TH-]

When the annular domain is specified, it can be proved that a Laurent’s
series for a given function is unique. This fact helps us to found the coefficients
in a Laurent’s series by means other than appealing directly to their integral

representations. We illustrate this through the following examples.

Absolute and Uniform Convergence of Power

Series

We will now discuss basie properties of power series.

A natural question is to determine the set of complex numbers z for which a

given power series converges. We have the following theorem.
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THEOREM:
If a power series 7° qan(z — 2zp)" converges when z = 2 (z1 # =), then it

is absolutely convergent at each point z in the open disk |z — zg| < Ry where

Ry = |z — 2 T
/ r/\;l
! e f|
\\\H% -/{
ol - X

Analogous to the concept of an interval of convergence in real calculus, a
complex power series ¥7° nan(z — 2z0)" has a circle of convergence defined by
|z — zg| = R for some R = 0.
The above theorem implies that the set of all points inside some circle centered
at zp 1s a region of convergence for the above power series £2° qa,(z — zp)",

provided it econverges at some point other than zj.

The greatest circle centered at zg such that series X% jan(z — z0)™ converges
at each point inside is called the eirele of convergence of the series.

The series cannot converge at any point za outside that circle, according to
the theorem ; for if it did, it would converge everywhere inside the circle centered

at zp and passing through z;. The first circle could not, then, be the circle of

CONVergence.
The power series converges absolutely for all z satisfyving |z — zp| < R and
diverges for |z — zg| = R. Here R is called the radius of convergence of the power
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series. The radius R of convergence can be (a) zero (in which case X5° ja,(z—z)"
converges only at z = z), (b) a finite number (in which case the given power
series converges at all interior points of the circle |z — z»| = R), (¢) oo (in which
case the given power series converges for all z).

A power series may converge at some, all, or none of the points on the actual

circle of convergence.

Suppose that the power series X5° gan(z — z0)" has circle of convergence |z —

)

= R, and let 5(z) and Sy (z) represent the sum and partial sums, respectively,

of that series:

. 4 N—1
‘5(2] — Z?ﬁ:ﬂﬁn{z — Zﬁ}nr- bN(Z) — Z'.'1=1’_] ”ﬂ(: - z[})n {

z— zp|l < R).

Then, the remainder funeciion py(z) 1s given by py(z) = S(z) — Sy(2)
(|lz — zp| < R). Since the power series converges for any fixed value of z when
|z — zp| < R, we know that the remainder py(z) approaches zero for any such z

as N tends to infinity.

This means that corresponding to each positive number £, there is a positive

integer N, such that |py(z)

< £ whenever N > N..

When the choice of N. depends only on the value of £ and is independent
of the point z taken in a specified region within the circle of convergence, the

convergence is said to be uniform in that region.

It can be shown that if 21 is a point inside the circle of convergence |z—z| = R
of a power series X7° a,(z — zp)", then that series must be uniformly convergent

in the closed disk |z — zg| < Ry, where Ry = |z — zg).

Note that a power series X7° ja,(z — z3)" represents a continuous function
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S(z) at each point inside its circle of convergence |z — zp| = R. Furthermore,
the sum S(z) of the power series X2 ja,(z — zp)" is actually analytic within the

circle of convergence.
Theorem

Let C' denote any contour interior to the circle of convergence of the power
series B2 qan(z — z9)", and let g(z) be any function that is continuous on C.
The series formed by multiplying each term of the power series by g(z) can be

integrated term by term over C; i.e., J"C.g[.:}fn’(.:}d: =3 Yy fcg{:}(z —zp)"dz.

If a series X7° ja,(z — z)" converges to f(z) at all points interior to some

circle |z — zp| = R, then it is the Taylor series expansion for f in powers of z — zg.
If : W o i 4 ¥ oo o -\ o b’” FATTOS
a series 2 _ cp(z—20)" = X2 qan{z — )" + S p—— converges to

f(z) at all points in some annular domain about z, then it is the Laurent series
expansion for f in powers of z — zy for that domain.
An important result in real calculus states that, within a power series’s radius
of convergence, a power series is differentiable, and its derivative can be obtained
by differentiating the individual terms of the power series term-by term. The

same holds true for complex power series:

Schwarz’s Theorem:

Suppose [ is holomorphic in
the open unit dise D := {z € C: |z| < 1} such that
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fl0)=0 and f(z)eD VzelD.

Then |f(z)| < |z| for all z € D. Strict inequality follows unless f is
of the form f(z) = Az for some A € C.

Proof. By the assumptions on f, we have

where g is holomorphic on D and g(0) = f(0). Sinee f(z)| < 1, we

have
1

g(z)] <

—  whenever |z|=r<]1.
;

3

By maximum modulus principle,

; 1 )
lg(z)] < — whenever |z] <r <1
-
Now, let z € D, and 0 < r < 1 such that |z| < r. By the above
arguments,
§ g o3 1
.'PH:H = F

Letting » — 1, we obtain |g(z)|] < 1. Thus, |f(z)] < |z] for all

z e D,

SIX MARKS:

1.Show the function Py (z) = U(8,) provided that U is continuous at 6.

2. State and prove Weierstrass theorem.

3.Show that the real part and imaginary part of an analytic function are harmonic.
4.State and prove Schwartz’ theorem.

5. Show that u(z) is harmonic for |z| <R and continuous for |z| <R, then u(a)=—

1
; 5 2T
Jyer el u(z) o lal<R.

z|=1 |z—a?|

6. State and prove poisson’s formula.
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7.State and prove Harwitz’s theorem.

8.State and prove Laurent’s theorem.

9. If uy and uz are harmonic I a region Q then fﬁ u1'duz — U2"duy = 0, for every cycle ¥ which
homologous to zero in Q.

TEN MARKS:

1.State and prove Weierstrass theorem.
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UNIT-1V
SYLLABUS

Partial fraction- Infinite products — Canonical products--The gamma function — Stirling’s
Formula — Entire functions — Jensen’s formula.

PARTIAL FRACTION:

The method for computing partial fraction decompositions applies to all rational functions
with one qualification:

The degree of the numerator must be less than the degree of the denomi-
nator.

One can always arrange this by using polynomial long division. as we shall see in the
examples.

Looking at the example above (in Equation 1). the denominator of the nght side 1s
r*— 31 +r —3 = (x — 3)(x* + 1). Factoring the denominator of a rational function is
the first step in computing its partial fraction decomposition. Note, the factoring must be
complete (over the real numbers). In particular this means that each individual factor must
either be linear (of the form ax + b) or irreducible quadratic (of the form ax?® + b + ¢).

When is a quadratic polynomial irreducible? If a quadratic polynomial factors, such as
2 — 1 —6 = (2 —3)(x +2). then it has at least one root. Similarly. if 1t has a root v, then
it must have a factor of # — r. Thus, a quadratic polynomial is irreducible iff it has no real
roots. This is easy to determine using the quadratic formula: the roots of ax? + bx + ¢ are

o —b B — dae

2t

and these are real numbers iff i — 4qa¢ = 0. Thus. this quadratic polynomial is irreducible
iff its discriminant & — 4ac < 0.

Computing the coefficients

Once we have determined the right form for the partial fraction decomposition of a rational
function. we need to compute the unknown coefficients A. B. ', ... . There are basically
two methods to choose from for this purpose. We will now look at both methods for the
decomposition of
2r —1
(z+ 2%z —3)’

By the rules above, its partial fraction decomposition takes the form
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A N B N C
T+2  (r+2)% -3

Setting these equal and multiplying by the common denominator gives
2w —1=Alr +2)(x —3)+ Blx—3) +Clz + 2)% (2)

Our first method 1s to substitute different values for x into Equation 2 and deduce the
values of A, B. and (C'. It helps to start with values of x which are roots of the original
denominator since they will make some of the terms on the right side vanish.

& Usingr =3 gives2(3) —1 =0+ 0+« 5% Thus, ' = 1/5.
¢ From x = —2, we learn that =5 =0 + B(—5) + 0. andso B = 1.

e We have run out of roots of the denominator, and so we pick a simple value of 1 to
finish off. From x = 0 we find —] = —6A — 35 + 4. Using our values for [3 and
(', this becomes —1 = —6A4 —3(1) +4(1/5) and so A = —1/5.

Therefore.
2y — 1 . —1/5 4 1 4 1/5
(x+2)%xr—3) x+2 (z+2)72 -3

PROBLEMS: 1.Evaluate

[ r+3 dx
(22 = D)(x+5)

Solution: Factoring the denominator completely yields (x — 1)(z + 1)(x + 5). and so

T+3 _ T+ 3 A n B 4 C
(22 —D(x+5) (z—Dz+D(x+5) -1 z4+1 zx+5H

Clearing denominators gives the equation:

r4+3=Alz+Dr+5)+ Blr—1zx+5)+C(e—Dix+1)

Since the denominator has distinet roots, the quickest way to find A. B. and (" will be to
plug in the roots of the original denominator:

¢ r=1lgivesd =124 — A=1/3
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e r=—lgves2=—-88B — B=-1/4
¢ r=—Hgives2=-24C = C=1/12

Putting it all together. we find

r+3 o /3 —1/4 112
1[{;::2—1){;::+5)(M - [..r'—1+nr+1+r—|-'3(m

= 3/;-1 4[x+1 1z/f+

= —ln|nr—1|——1n|nr—|-1|+—1n|..r+ 5 +C

Note, we use (' here for the constant of integration even though (' has occured earlier in
the problem as a coefficient. However, it is unlikely that confusion will arise by re-using ('
in this way.

Problems:Evaluate

3t + 31 + 12202 + 2192 + 159
a4 0?2 + 2T 4+ 27

dr

Solution: The first thing we should notice 1s that the degree of the numerator 1s not less
than the degree of the denominator. Applying polynomial long division, we learn that the
quotient is 3z + 4 and that remainder is 52 + 30z + 51. Thus.

Jrt +312° + 12222 +219x + 159 e tda 5?4+ 302 + 5l
3 4+ 9x2 + 2Tx + 27 o 34+ 002 4 2Tx + 27

We now find the partial fraction decomposition of the last term. The denominator factors
as (x4 3)*. and so
5% + 30z + 51 A B ’
B102 1201 743 @i3F @ (e i3P
Clearing denominators leads to

S50 +30x +5l =A(x + 32 + Bz +3)+C (4)

We can quickly determine (' by evaluating at » = —3, which leads to 5(—3)* +30(—3) +
51 =, and so ' = 6. We now pick two simple values of x to obtain relations between A
and B. From r = —2, we find

N=AD? 1B1) 16 = 5=A|B
and from r = —4. we find
11=A(—-1)*+ B(—1) + = 5H=A-B
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Adding these equations together, we find that [0 = 24 and so A = 5. Substituting this
back into 11 = A+ B yields B =0. Thus

3rt + 31 + 12227 + 2192 + 159 dr
¥+ Ord + 270 + 27
5a* + 30z + 51
/}r—l— + ;::-“-I—ﬂ';r:*a—i—2T';r:-1-2'7''r"r
= | 3r+4dr+ 3 + 6 dr
I A N )
Enr ‘+ar+5mr+3|+— ¢ 1 +
2 —2(x+3)%
%J’ +4x 4+ 5ln v+ 3| — j3)2+(
Infinite products.
Let a; be complex numbers, 7 =1,2,.... We want to give a meaning

to the convergence of the infinite product H;:”T ;.
Definition
We say that the infinite procluct[_[;j a; converges if

(i) there exist at most finitely many a; = 0, say a; # 0 for j = jy:
(ii) for any Np = ju. the limit

hm I I o = B
N—+oo
i=Na

exists finite and # 0.

Notice that, if condition (ii) is verified, we may compute the logarithm of Gy,. Let 3 = Gy,.
ay = l_[j.'"r:‘,\,ﬂ oz, and let D(/3,2) not contain the origing and let N be such that ay € D(3,¢c)
for N = N..

We may assume that [ is not on the negative real axis and let log denote the principal branch
of the logarithm (otherwise, chose a different branch cut for the determination of the logarithm.)
Then, we have
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N

N
log Ay, = log (Nl_l’l-rkl_x H f_]:j) = Nl_1’11_1_x_ log H o

j=Nuo j=No

= llm E log, . o
N—+oc 'l'” o
J=No

where log;, denotes some branch of the logarithm. Since the limit on the right hand side exists
finite, log;y a; — 0 as j — +oo. Hence, in particular the branch of the logarithm must be

the principal one, and «; — 1. This is a necessary condition for the convergence of the infinite
product.

Although the next result is not strictly necessary for what that follows, we state it for the
sake of clarity.

Lemma

L L E Rt - _J‘:‘_’ ] T = 3 ' '
Let a; be non-zero compler numbers. Then nj=1 a; converges if and only if

;:‘1‘ log avy converges, where log denotes the principal branch.

Proof. The previous argument shows that if ]_j e e § CONVi erg.,eﬂ-, then also Z 1 * log Q; COnverges.
rerselv, . . . S logay; N
Conversely, if Zj:l log a; converges, then, since e o i= l_[J_] a; also ]_[J_l (¥j COT-
verges, [
For simplicity of notation. we are going to write a; = 1 + a;.
\ i j

Lemma

Let aj € C be such that |aj| < 1. Let Qn = HJ_ILI + |aj|). Then

1 -
= 4 s I -
g2 —i=l1 sl < Qn < e~i=l @l

Proof. Since 1+ |a;| < €%/,
(1+]a1)--- (1+ |a]) < >t 14l
On the other hand. since e* <1 4+ 2x for 0 < oz < 1.
X510l < (142(jag]/2)) - (1 + 2(lanl/2))

N
= H{] +lag)). O

i=1
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Proposition

If the infinite product [[;2{(1 + |aj|) converges, then also ]_[j:“]‘{l + a;j)
converges. Hence, if the series 37 |a;| converges, also []:2(1 + a;) converges.

Proof. Since the product [T:%/(1 + |a;|) converges, then |a;| — 0, so that 1 +a; # 0
We may assume jj = 1. Let
N N
Py = H{l +a;), and Qy = H{l + |a;|).

J=1 i=1

Notice that, for a suitable choice of indices j;.,

N =n
Py =1+ZH(L_;.-:__.

n=1 k=1
Then,
N n
|Pv—1| = ‘Z Ha;.-,\_i
n=1k=1
N n
= hhg'z{gN'_l
n=1 k=1
Then, for N M =1 N = M,
N M
Py — Pyl =| H{l +a;) — H[l + th::I‘
M N
= | H{l +a;)|-|1— H (14 ay)
j=1 j=M+1
N
<Qu( T (t+lash-1)
_;I':ﬂ.ir—l
=Qn —Qum .
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N
3
H(l—|t;rj|”:|<e DR “f|g—}
j=M =

for M = jo, and N > M. Then, arguing as in {8.1] we see that

1
|1— H(1+ujj‘ < H{l+ a) —1< 5.
i=M =M -
for M = jy, and N > M. Hence,
1
H (1+ tl_i.)‘ =5
j=M
s0 that
M N
im 1Pl = Jim [T+ [ T] (0 +e)

L
5‘ H 1—(11]‘

We apply these results to the infinite pmduct of functions.

7. Canonical Product

We recall the Weierstrass factorization theorem for entire functions. Let flz) be an entire
function with a zero of nmltiplictty m = 0 at z = 0. Let {z;} be the non-zero zeros of f{z),
arranged so that a zero of nmltiplicity K is repeated in this sequence K fimes. Also suppose that

Zi| £ lza| ... If {pn} is a sequence of integers such that
- Pp+l
¥ i < o, for every R = 0, then
o Zy | !
P(2)= 11 E, (2/z,) )
D=1
converges mniformly on compact subsets of the plane. where by definition of primary factors. we
have
E (z)=(1-z)exp | z+£+...—£. (2)
; 2 p !

forpzlandEyz)=1-z
Then the Weierstrass theofem saﬂ that

fz)=2" e P(z) 3)

where g(z) is an entire fonction.
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We are interested in the case m which g{z) and P(z) have certain characteristics which result in
properties of f1z) and conversely. A convenient assumption for P(z) is that all the infegers py are
equal. Then we see that this is to assume that there is an infeger p = 1 such that

:;:. z, [P (4)
=l
ie. it is an assumption on the growth rate of the zeros of flz). Further, if we assume that p is the
smallest integer for which the series (4) converges, then the product

P(z) =TI E,(z/z,) (5)
o=l

15 called the canonical product associated with the sequence {z.} of zeros of fz) and the integer
p is called the genus of the canonical product. The restriction on g(z). we impose, 15 that it 15 a
polynomial. Such an assumption must impose a growth condition on e® When g(z) is a
polynonual, then we sav that f{z) is of finite genus and we define the genus of f{z) to be the
degree of this polynomial or to be the genus of the canonical product whichever is greater.

MNow we drive Jensen’s fornmla which says that there is a relation between the growth

rate of the zeros of fz) and the growth of M(r) = sup {Mrejﬁ} 0 =86 £ 27} as r increases. For
this, we shall use Gauss-Mean Value Theorem which states that if f{z) is analytic in a domain D

which contains the disc [z — zo| £ p. then
1 .
Az)= =12 fza+pe®) dB
2n

If u 15 the real part of f{z), the above result gives Gauss-mean value theorem for harmonic
function, as
u(zg) = i_l'é: u(zp +pe”) df
2n

7.1. Jensen's Formula. Let f{z) be analytic m the closed disc |z| = R and let i0) =0, fiz) = 0 on
zZ =R If z1. 72...., 7 are zeros of flz) in the open disc |z| < R repeated according to their
mulfiplicity, then

log [0) =- T log R |+i_-',§“ log| TRe*)dd.
i1 | Z; 2n
Proof. Consider the function

F@) =) T ———22

a1 R{z-z;) 1

We observe that F(z) is analvtic in any domain in which fz) is analytic and further Fi{z) = 0 for
z| =B Hence Fiz) is analytic and never vanish on an open disc |z| < p for some p = R

Also F(2)| = flz) @
on |z =R, since

2 — X — i
P R -Fz| [~ |R‘—lef"’

= : | z=Rel*
E[R{E—Zl:l E|REEW—R21|
_= | RER-ze*)
i | Re*(R—ze™)
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i1 | R—ze™

=1

Since F(z) 1s analytic and non-zero in |z| < p, log F(z) is analytic in 7| < p and consequently its
real part log [F(z)| is harmonic there. Hence using Gauvss-Mean value theorem for log [F(z)|, we

get
tog [F(0)| = 513" log F(Re*)d 3)
T
Now, from (1),
L
FO)=A0) II | — |
b=l L&
n R
so that F(| =0y I |_
il | Z;
and thus

log [F(0)| = log [0)] ~ 3 log—
il z;

Also by (2). [F(Re*)| = [fiRe")| on [z] =K.

Therefore (3) becomes
L E 1 ;2= i
log [10)|+ . log——=—[" log |[{Re*)jd}
il z;| 2w’

or

log [10)| =5 logN—+L 2=
il z| 2m

1

log [f(Re")|dd

7.2. Poisson-Jensen Formula. Let f{z) be analytic in the closed disc |z| =R and let flz) =0 on |z
=R If z;. 2)..... 2y are the zeros of f{z) in the open disc |z| < R repeated according to their

multiplicity and z = re”. 0<r<R_ then

= R -Zz
log [fiz)l=-% log—————
efel=-2 ‘R{z—z,-}
1.3 i
+L,3; (B~ —1r")log|f(Re™) i

27'% R¥-2Rrcos(f—¢)+1°

Proof. Consider the function
1 R -7z
F@)=f2) I = —

R{z-z;) @

Clearly F(z) 15 analvtic in anv domain in which fz) 15 analytic and F(z) = 0 for |z £ K. Hence
F(z) 1s analytic and never vanish on an open disc |z| < p for some p = R. Also
F(z)|=fiz)on |z =R

Since F(z) is analyvtic and non-zero in |z| < p, log ¥(z) is analytic in |z| < p and consequently
its real part log [F(z)| is harmonic there. Hence using Poisson integral formula (unit-T) for
log |[Eiz)|. we get

BATCH-2017-2019
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I._w (R? —r*)log| F(Re*) | L g
20 R‘ —2Rrcos(B—d)+1°
Now. log [F(Re")| = log |fiRe™)| on |z| =

log [F(z)| =

(2)

Also log [F(z)| = log [17)| TI ‘Fli“{'z“z Z)
n R'-%Zz
=log fz)|+ % log | ————
2 [fz)| Zlog Rz-z)
Therefore (2) becomes
RJ—E-Z
log fiz) =- El og m
1 .= (R?-1)log f{Rf‘*)|

—|
2170 R*_2Rrcos(B—{)+1°

ENTIRE FUNCTIONS
To begin our study of holomorphic functions in the entire plane, we diskuss the notion of
convergence for infinite products.
The gamma function. The subject of this and of the next section is to introduce probahly

the two most famous and studied non-elementary functions: the Euler gamma function I'(z) and
the Riemann zeta function ((s).

DEFINITION:
For Re z = 0 we set

We first state a general result about the holomorphicity of functions defined by integrals. For
its proof we refer to [L].
THEOREM:

The function I'(z) is holomorphic for Rez = 0. Moreover, it can be analytically
continued in the domain @ = C\ {0,-1,-2,...}. Al the non-posilive integers z = —n, with
n=0,1,2 ..., the function I'(z) has simple poles with residues (—1)"/nl.

Proof. Tt follows from the previous proposition that I'(z) is holomorphie for Rez = 0, since for
t =0, |t*] = t* so that the integral defining ['(z) converges ahsolutely.
Next we notice that, integrating by parts we have
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+o b
f ol gr — lim f et dt
0 a—07 b—+too Jg

S Y L
+—f t7e b dt
a z a

) 1.
= lim —tFe !
a— 07, b—+oo 2

1 == .
— _ f t*e tdt .
0o

Notice that we have obtained the identity

20(z) =T(z+ 1),

valid when Rez > 0.
The expression %[(J_:L t*e~tdf on the right hand side above defines a function holomorphic
on {Rez = —1}\ {z = 0} that coincides with I'(z) on the set {Rez > 0}. Hence, the function
I’ can be analytically continued on the set {Rez = —1} % {z = 0}.
Assume by induction that, for n = 2,
1 +0o0

T2+ (z+n—1) Jy

for z € {Rez > —n}\ {0,-1,..., —n+ 1}
Arguing as before, integrating by parts again we obtain

INES! tnlet gy

1 e ;
I'(z)=— : et dt
(2) 3{s+1]---{75+ﬂ—1](_:-'+n_],£ © e
n 1
= (H ?+__)1"[f:+n—|—1).,
3=0 - J
for Rez > -—m—-1landz+£0-1,...,—n.
This shows that, I'(2) is holomorphie for = € C\{0, -1, —2,... }. Moreover, in the non-positive

integers [" has simple poles with residues given by

+o0
lim (z +n)0(z) = lim (2 +n) H j—j / it dt
Z——T T—+—T z 1 Jo

j=0,....n
+oo
= H 1 f (:_tdt
7=0,..., ?lj_n 0
_qyn
n!

In the next proposition we collect a few facts that emerged from the previous proof.

Prepared by:M.Sangeetha,Assistant professor ,Department of mathematics,KAKE Page 11/12




KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS

COURSE CODE: 17MMU201 UNIT: 1V BATCH-2017-2019
Proposition

Let 2 = C\{0.—1,-2,...}. The gamma funection I'(z) satisfies the following

pw;p;fr't-m.&.'
(i) z[(z) =T(z + 1) for all z € 02;
(ii) M(n+ 1) = n!;
(iii) I'(1/2) = /7.
Proof.

Sinee I'(1) = 1, (ii) follows from (i) inductively.
. 2 4s -
Condition (ii1) follows from the well-known identity ffj e ¥/2dt = /7 and the change of

. .n'_
variables # = t. O

Corollary

For all z € Q we have

P01 —2) = —
SIN Tz
Proof. Tt follows from the Thm. that
r T g 1® — zy 1 z/n er* = i 2y 1 —zin
{-é) |:'—‘:| = - ]E(].‘I‘;) e '——:'fnzl( —;) e

1 = w2y —1
== [1(1- )

n=1
m

zsinwz
SIX MARKS QUESTIONS:

1. A necessary and sufficient condition for the absolutely convergence of the product [[T(1 + a,,) is the
convergence of the series }.»_|a,| . Find the product representation for sin 7z

2. State and prove Legendre’s duplication formula

2
3.Find the power series for the function —
Sin“mnz
4.Prove th =iy 2
.Prove that mcotmz =7 +Zn=1m
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5. Show that {bs} be a sequence of complex numbers with 1%im by=co andlet py(J) be polynomials
without constant term then there are functions which are meromorphic in the whole plane with poles at

the points by, and the corresponding singular parts p, (ﬁ) . Moreover, the most general
)

meromorphic function of this kind can be written in the form,  f(z) = [Zﬁ Do (ﬁ) + po (2) ]+g(z)
—Py

where py (z) are suitably chosen polynomials and g(z) is analytic in the whole plane.

6.Provethat Tz=1/ze" [I (1 +z/n)* " using the relations T'(z) = 1/zH(z) and H(z) = ¢&'®
G(z).where G(2) is the simplest function with negative integers for zero is given by the (a) Find the
product representation for sinmz.

7. If f(z) is analytic in |z|] < p and has zeros at aj,az,........ an in |z| < p. Then prove that
pel®+z
(pele Z) log(pe'®)do + X7 log( ))correspondlng canonical product.

TEN MARKS QUESTIONS:

1.State and prove Poisson-jensen’s formula.

Prepared by:M.Sangeetha,Assistant professor ,Department of mathematics,KAKE Page 13/12




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:1 M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE :177MMP201 UNIT-V BATCH:2017 -2019

UNIT -V

SYLLABUS

Riemann Mapping Theorem — Boundary behaviour — Use of Reflection Principle —
Analytical arcs— Conformal mapping of polygons- The Schwartz - Christoffel formula.

Definition. A metric space is a pair (X, d) where X is a set and d is a function from X x

X into R, called the distance function or metric, which satisfy the following conditions for x,
¥, IeEX
(i) dix.v)=0
(ii) dix,v)=0ifx=v
(iii) d(x.y)=d(v.x)
(iv) dinz)=diz,y)+d(v.2)
Conditions (iii) and (iv) are called “symmetry’ and ‘triangle inequality” respectively. A
metric space (X, d) is said to be bounded if there exists a positive number K such that

diz. v) =K forallz,ve X.
The metric space (X, d), in short, is also denoted by X, the metric being understood. If x
and r = 0 are fized then let us define

B:r)={zeX: : dix,v)=r}

Bxn={reX:dn.v)<r
Bix: r) and B(x: r) are called open and closed balls (spheres) respectively, with centre x
and radius r. B(x; €) is also referred to as the e-neighbourhood of x.

Let X =R or ¥ and define d(z, w) = |z—w| . This makes both (R.d) and (¥, d) metric
spaces. (¥, d) is the case of principal interest for us. In (¥, d). open and closed balls are
termed as open and closed discs respectively.

A metric space (X, d) is said to be complete if every sequence in X converges to a point of X,
R and ¥ are examples of complete metric spaces.

If G is an open set in ¥ and (X, d) is complete metric space then the set of all continuous
functions from G to X is denoted by C(G, X).

The set C{(, X) is always non empty as it contains the constant functions. However it is
possible that C{G, X) contains only the constant functions. For example, suppose that G is
connected and X =N = {1, 2, 3, 4...}. If f € C(G, X) then f{G) must be connected in X and
hence, must be singleton as the only connected subsets of N are singleton sets.
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3.12. Riemann mapping theorem. Let G be a simply connected region which is not the whole
plane and let a = G. Then there is a unique analytic function £ : G — 7 having the properties :
(a) fla)=0andf'(a)=0

(b) fis one one

() fiG={z:|z|=1}

Proof : First we show f is unique.

Let g be another analytic function on 7 such that g(a) = 0, g'(a) = 0 g is one one and
g(G) = l{z:|z|-='.:l}=[?d.

Then fyg :D — D is analytic, one one and onto

Also  fpg'(0)=fla)=0. Sothere is a constant ¢ with ¢ |=1

and fr'(Z)=cz forallz. [Applving theorem (2) with a = (]

But then f(z) =c g(z) gives that 0 = f'(a) =cg'(a).

Since g'(a) =0, it follows that ¢ =1. Hence f=g and so { is unique.

Now let @ = {f e H(G) : fis one one, f{a) =10, f'(a) = 0, f{G) c D}
We first show $ = ¢,
Since G=7 sothereexists be v suchthatb e G

Also G is simply connected so there exists an analytic function g on G such that [g{z}]] =z-h
Then g is one-one
For this let z;. z; £ G such that g(z)) = g(z2)
[E(Zl)] = [e@)’
-b= 3 — b
L=

2

£ 15 One-one.
o by open mapping theorem there is a positive number 1 such that

B(g(a):1) cg(G) (1)

Let z be a point in G such that g(z) = B(—g(a) ; 1)

g(z) +g(@)|<r
—g(2) -g(@) |=r
-2(z) e B(g(a) : 1)
—2(z) = g(G) [using (1)]
50350111&1.1. £ G such that

—g(@)=g(w)

= [g@]"= [g(w)]
= Z-b=w-0b
= Z=W

BRI

N TRNTANT E}

-2(z) =g(2)
g(z)=0
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But then z-b=] g{z}]2 = implies b=z = G, a contradiction.

Hence g(G) nB(-g@):n=+¢

Let U =B(—g(a) ; ). There is a Mobius transformation T such that
T(C.-TU)=D

Let gy = Tyg then g; is analytic and g (G) — D.

] gi(z) -

Consider 1(z) = =L=—— where o= g(a).

g1(z) 1-02,@) gi(a)

Then g;isanalytic, g2(G) — D and g2(a)=10
Choose a complex number c, | ¢ |= 1, such that

g23(z) = c @(z) and  gi'(a)=0
Now g; = $henced =4

Next we assume that & =& u {0} a(2)
Since fiG)c D, sup {[f(z) : z € G} = 1 for f in . So by Montel’s theorem, & is normal.

This gives @ is compact.
Consider the function ¢ : H{(G) = C
as o(f)=1"(a)

Then ¢ is continuous function. Since & is compact. thereisanfin @ such that f'(a) = g '(a)
forallge .

As @ = ¢, (2) implies that f £ @ We show that f{iG) =D. Suppose w = D such that w & fiG).
Then the function

flz)-w

1-wi(z)
15 analytic in G and never vanishes. Since G is simply connected, there 15 an analytic funcfion
h: G — 7 such that

[h(z)]’ = Ez%—;;; )
Since the Mobius transformation T, = 1:__%:"; maps D onto D,
we have hiG) cD. -
Define g:G—7as
o(z)= h'(a)| h(z)-h(a)

@) "1-h(@)h(z)
Then g(G)=D, g{a)=0and g is one-one.
h'(a)| h'@)[-|h@)[*] _ |b'@)]

Ao EOT e p@iT h@P
But h(a) [ = ‘ﬂ—;& =|-w|=w [~ f(a)=0]

Differentiating (3), we get
2 h(a) b'(a) = £'(a) [1 - |w ]
f'@-|w[) _f'@d-|w[)

2h(a) 2w

= h'(a)=

Prepared by:M.Sangeetha, Assistant Professor,Department of Mathematics,KAHE Page 3/14



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:1 M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE :177MMP201 UNIT-V BATCH:2017 -2019

g@=T@OwE) 1 f@lsiw)
2w (1-|w|) 2w
Thus g £ . A contradiction to the choice of f.

(a)

Hence we must have f{G) =D.

Next we prove @ =% u {0}.

Suppose {fi} 15 a sequence in © and f;, — fin H(G).

Then fia) = :].:Il:l:.lm fifa)=10 Alof'(a)=f'(a)sof ' (a) =0

Let z) be an arbitrary element of G and let w=1fiz;). Letwy=1fz)). Letzz s G ;= z1and K
be a closed disk centred at z; such that z; = K.

Then £;(z) — wy never vanishes on K since fis one one But £(z) — w, converges umformly to f{z)
—won K as K is compact. So Hurwitz’s theorem gives that fiz) — w never vamshes on K or

fiz)=w.

If f{(z) = w on K then { is constant function throughout G and since fia) = 0, we have

f(z) =0. Otherwise we have fis one. So f' can never vanish. This gives

f'ia)=0 [~ £ a)z0]

and so fed.
3.6. Hurwitz's Theorem. Let G be a region and suppose the sequence {f} in H(G) converges
tof Iff=0 B (a:R) = Gandfiz) =0 for |z — a| = R then there is an infeger N such that
forn =N, fand f; have the same number of zeros in B{a ; R).

Proof : Let G=1inf {fiz)|: lz—a|=R)}
Since f(z) = 0 for |z — a| = R. we have & = 0.

Now f; — funiformly on {z : |z — a| = K} so there is an infeger N such that if n = N and
z —a=R then

)= 2@ < 2 <[
Hence by Rouche’s theorem, f_ami fr have the same number of zeros in B(a; R).
Cor : If {fi} — H(G) converges to f in H{G) and each fy never vanishes on G then either f=0 or
f never vanishes.
3.2. Theorem : If G is open in 7 then there is a sequence {K;} of compact subsets of G such
that G= [jKn . Moreover, the sets K; can be chosen to satisfy the following condifions :
n-l

(a) EpcmtKge:
(b) K —Gand K compact implied K — K, for some n.
Now we define a metric on C{G, X).

Since 51z open set in 7, we have G= UKn where each K, is compact and E; — int K- For
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1 £ N, we define

Po (£ ) =sup {d(f{z). 2(2)) : z = Ka}
for all functions f and g in C{, X).

Also if we define

_ (1] _pa(fg) _
MED=2\5) p g  CrillfesCGX

then (C(G, X), p) is a metric space. In fact (C(G, X), p) is a complete meiric space.

3.3, Definitions : A set @ — C(G, X) is normal if each sequence in € has a subsequence which
converges to a function f in C{G, X).

A set @ — C(G. X) 15 normal iff its closure is compact.

A set @ < C{G, X) is called equicontinuous at a point zp in G iff for every = =0 thereisa d=0
such that for [z — zg| < &,

d(f(z). flz)) = =

Schwarz's Reflection Principle

We observe that some elementary funcfions f{z) possess the property that f{Z)= f(z) for all
points z in some domain. In other words, if w = f{z). then it mav happen that W = f(Z)i.e. the

reflection of z in the real axis corresponds to one reflection of w mn the real axis. For example,
the functions

3 .
z.z-+ 1. e sinzeic

have the above said property, since, when z is replaced by its conjugate, the value of each
function changes to the cm}jugatf:_ of its original value. On the other hand. the functions

iz, z +1 €% (1 +1i)sin zetc
do not have the said property.

Theorem (Schwarz’'s Reflection Principle). Let G be a region such that G = G* if

f1 G+ Go— 7 is a continuous function which is analvtic on G- and f{x)'is real for x in Go then
there is an analytic function g - G— ¥ s.t. g(z) =/z) for all z 1n G- o Gy,

Proof. For z in G_, define g(z) = f(Z) and for z in G- ' Gy, define g(z) =fz).

Then g : G— 7 is contimions. We will show that g is analytic. Clearly g is analytic on G. o G_.

To show g is analytic on Gy, let x; be a fixed point in Gy and let B = 0 be such that
Blxn:RcG

It is sufficient to show that g is analytic on Bixy ; B) We shall apply Morera’s theorem.

Let T =[a. b. c. a] be a triangle in B{x, ; R). Assume that T — G. ' Gpand [a, b] = Gy Let A
represent T together with its inside. Then g(z) =flz) forall zin A [ T < Gs o &) By
hvpothesis f1s continuous on Ge o Gy, s0 fis nniformly continuous on A So given = = (), there
1sado=0st z,z' €A implies
iz} —fiz')| = = whenever z— z'| < &.
Choose o and [ on the line segments [c. a] and [b, c] respectively so that |0 — al = § and
P-b|<5 LetTy=[c. p.c.o]and Q=[a. b, f.o.a]. Then | f=] f+| f
T il Q
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o B
a b o

But T and its inside are confained in G- and fis analvtic there.

So

[ f=0
T

I r

=I5
TO @

Byif0<t< 1. then

so that

[tB+(1—t) o] - [tb+(1-t)a]|< &

FAB+(1-ta)-ftb+(l1-1)a)|<=.

Let M=max {1 fz)|:z = A} and [ be the perimeter of T then

Also

[ .I'b]f +[ﬁ_-' ]f |=|(b-a) [y Aitb+(1-ta)dt— (B-a) [y B +(1 —t)er) dt |
“<|b-a _I'g, [f{ﬂ] —{1—1‘)3} —ﬁ:tﬁ + [l—t)&':l] dt

+ b-a) — (B-a)| | [y STt B+ (1-t)ar) dt
Zsb-al+M|(b-)+ (o —a)
< =1+ IM5.
[ flEMa—a|<M3
[-1'..1]
[ f]=M3.
[b.5]
[ f1=l [ £+ [ £+ [ £+ [£1<] [ £+ [ £l+] [ £+ [ 1]
T [ab]  [Fa]l [aa]l [0] 2]  [Ra] [2.2] [b.8]
< el+4Ms

Choosing & =0s.t. 5= =. Then

|| f| = =(l+4M). Since = is arbitrary it follows that | F=0. Hencef
T T

must be analytic.
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= Schwarz-Christoffel Transformation

We've seen that the transformation w = f(z) with

df n—1 _ . nl

—=Al'[[z—x_,-] i with p,,zZ—ZpJ-, O<p;<l1

dz i=1 -

=1

maps the real axis onto a convex polygon of the positive sense.

df
Thus, — # 0 for fintte z.

dz
If all the branch cuts are oniented toward the lower plane, the mapping will be analytic & hence conformal in the finite upper
half plane y = 0 except for the branch points z = x;.

Letus denote the region of analyticityfor / by R .
d f(s)
ds

Wz, zpeR

— f(ZJ=f(ZuJ+fds
I

y n—1 _
= B+4 |dsII Es—xj-] B B = fl(zo)
il
I

w= f(z) 1s known as the Schwarz-Christoffel Transformation (SCT).

Some properties of the SCT will be studied in some detail in the following:
s Existence
An implicit assumption 15 that the integral 1n the SCT exist.

d f
ol S B

Since ‘—‘
dz o0

a necessary condition 1s therefore:

n—1
D, Pi=2-pp>1
i=1
which 1s antomatically satisfied since all p;. mcluding p,,. obeys criterion p; < 1.

= fis continuousatz= x;

Near each x; , we can write

df
— =z - )P diz)
e Yl
where @‘i{z]:Al | I[z—x_,-]_P"
J#k
1s analytic at x;.
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o ¢[M]{II'] .
— $2)=) (2~ xp)
R !
= Plxp)+ (z— xx) ¥(z)
@ ™ (xg)
where (z) = Z (z — )™
m  m !
1s analytic at x;.
df )
— = (z—x) P Plxp) + (z— xx) P P(2)
dz
f(z)= flzg) + f ds{ (s — x) ™ glxp) + (5 — xp) P yp(z) |
I

where for our purpose here_ z, zp= x;.

Now: |p| <1 — 1-p=0

f ds (s — x) P i (z2)
I

15 analytic & therefore continuous at x; as a functionof z.

y 1
Next fd's (s—xp)P=-—{ (z-xp)' ™ - (20— xp)" P}

Py
9

1s analytic & therefore continuous at x; as a function of z.
Thus, f(z) 1s the sum of 2 continuous functions so that 1t's continuous at x; too.
Polygons:

Suppose that the vertices of the polygon F are given by wq, ..., wy in the anticlockwise direction. Let
us follow the edges of the polygon P. At vertex w;, suppose that we make a right turn of angle #;m,
where —1 < #; < 1, with the convention that #; < 0 denotes a left turn.
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strong Markov property and reflection principle. These are

concepts that you can use to compute probabilities for Brownian mo-
tion.

Theorem:
Suppose that X, is Brownian motion. Ift =T, T a

reflection principle. Suppose X, is Brownian motion with zero
stopping time, then X; — Xv is independent of Fr.

An example of a stopping time is the first time that X, reaches 1.

drift (g = 0). Then we want to calculate the probability that, starting
at Xy =0, 1t will reach X, = 1 at some time 0 < 5 < {.

Xo=0)=?

P(X.=1forsome( < s <t

Let T' = first time that Xo = 1. Then X, reaches 1 for s < £ if T < 1.
So, this is the same as

P(T < t)

The strong Markov property implies that X, — X+ 1s independent of
Fr. We also know that X, — X4 is normal:

X, — Xg ~ N(0,6%(t — T))

(assuming that t > T'). Since the mean is zero, it is positive half the
time and negative half the time (and the probability of being exactly
zero is 0):
. 1
P(_ji{ — J‘{']r' e []')'l = 5

P(X, ~ Xr <0)= 3
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reflectior

1 4
v

| |
| | >

T i

Half the time X will reach 1 and go up. half the time it will reach 1
and go down. So,

P(T <t)=2P(T <tand X, > Xy =1)

But X; is continuous. So, the intermediate value theorem (IMT) tells
us that the second condition implies the first: If Xy > 1 and Xy = 0
then 0 < ds < 1 so that X, = 1. So.

PT<t|Xo=0)=2P(X; >1|Xp=0)
This is given by an integral

=‘2l/l.xft{;r}d1‘

where f; is the density function for X, — Xj,.

SCHWARZ-CHRISTOFFEL TRANSFORMATIONS

Given a polygonal curve I, its interior PP is a simply connected domain. Thus, by the Riemann
Mapping Theorem, there exists a function S that conformally maps the upper half plane onto
P. The Schwarz-Christoffel theorem provides a concrete description of such maps.

Here is a typical textbook statement of the theorem:
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Theorem: Let P be the interior of a polygon I' having vertices wy, ... w, and
interior angles oym ... o, in counterclockwise order. Let S be any conformal,

one-to-one map from the upper half plane H onto P satisfying S(oc) = wy,. Then

S can be written in the form:
zn—1

5@ = 4+C [ Iyt (1)

0 k=1

where A and C' are complex constants, and zy < 21 < +++ < 2,1 are real numbers

satisfying S(z.) = wy fork =1, ... n—1.

Functions of the form in Equation (1) are called Schwarz-Christoffel candidates'. Fur-
thermore, a Schwarz-Christoffel candidate is a Schwarz-Christoffel Transformation if it
does indeed conformally map the npper half plane H onto the interior of a polygon.

To make total sense of this theorem, several issues have to be addressed. First, and
most fundamentally, the map S from Equation (1) refers to values of § on the extended
real axis, but this set is not part of the upper half plane. Therefore, to be able to discuss

S(z1),....58(ac). it is important to extend the definition of 5 to the closure of H.

Secondly, notice that Equation (1) involves improper contour integrals. We need to specify
which contours joining zp to z, are admissible, show that the resulting integrals converge,
and are in fact independent of the particular contour is chosen.

Also, the theorem mandates that S(oc) = w,. We shall discuss the seriousness of this
stipulation, as well as how much freedom we are allowed with the parameters A, O, 2. ...

Zn_1 in the map 5.
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After these issues have been addressed, we can then formally prove the theorem.

We start the paper with a careful setup of notations and terms in chapter 2. We begin
chapter 3 by proving the theorem for prototvpical cases when P is a half or quarter plane.
This will then motivate us to construct a Schwarz-Christoffel candidate f for the general
case. In Chapter 4. we show that f is indeed a Schwarz-Christoffel Transformation if and

only if its image curve does not cross itself.

Schwarz’s Reflection Principle: Let € be a symmetric region, and set €7F :
QM H and o := Q N R. Suppose that v is continuous on Q% U ¢, harmonic in
(2t and zero on ¢. Then v has a harmonic extension to €2 which satisfies the

symmetry relation v(Z) = —uv(z). In the same situation, if v is the imaginary

part of an analytic function f in 7%, then f can be extended to an analytic

function on all of Q by the formula f(Z) = f(z).

BounDary PROPERTIES OoF POLYGONS

Notice that the interior of any polygon IP is an open set. Thus, we are guaranteed a conformal
S from the upper half plane H onto P.

Furthermore, as we will discuss later, this function S has a continuous extension that
maps the real axis to the boundary of the polygon. Thus, for each of the vertices wy, there

exists a unique prevertex 2, so that f(z.) = w,.
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SIX MARK QUESTIONS:

1. Show that Q be a bounded simply connected region whose boundary is a closed polygonal line with
self-intersection. Let the consecutive vertices be z1,25,zs,....... zn In the positive cyclic order. The angle zk
is given by o an.

2.If any simply connected region Q which is not the whole plane and the point Zge Q then there exist a

unique analytic function f(z) in Qnormalized by the conditions, f(Zg) = 0,f ‘(Z)=0, such that f(z)
defines a one-one mapping of Q, onto the disk | ® | <1.

3.Show that any simply connected region Q which is not the whole plane and the point Zge Q then there
exist a unique analytic function f(z) in Q normalized by the conditions, f(Zg) = 0,
f *(Z()=0, such that f(z) defines a one-one mapping of Q, onto the disk | w | <1.

4. Show that the boundary of a simply connected region € contains a line segment y as a one sided free
boundary arc. Then the function f(z) which maps Q onto the unit disk can be extended to a function
which is analytic and one to one on Q w y. The image of y is an arc y’ on the unit circleShow that the
function z = F(w) which map |w| <1 conformaily onto polygons with angles own (k= 1,2,3...... n) are of
the form F(w) = ¢ fOW n o (w-wi) P dw + ¢’ where Bk = 1- ai, the wi are points on the unit circle

and ¢ ,¢’ are complex constants.

5.Suppose that the boundary of a simply connected region Q contains a line segment y as a one sided free
boundary arc. Then the function f(z) which maps Q onto the unit disk can be extended to a function
which is analytic and one to one on Q U y. The image of y is an arc y’ on the unit circle.

6.Show that an analytic function in a region € whose derivative vanishes identically must
reduce to a constant . The same is true if either the part, the imaginary part , the modulus the
argument is constant.

7.Show that f be a topological mapping of a region Q onto a region Q’. If {z,} or z(t) tends to the
boundary of Q2 then the sequence of {f(Zn)} or f(Z(t)) tends to the boundary of Q’.

8. Show that f be a topological mapping of a region Q onto a region Q’. If {z,} or z(t) tends to the
boundary of Q then the sequence of {z,} or z(t) tends to the boundary of Q’.

Prepared by:M.Sangeetha, Assistant Professor,Department of Mathematics,KAHE Page 13/14



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS:1 M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE :177MMP201 UNIT-V BATCH:2017 -2019

TEN MARKS

1.State and prove Schwarz’s christoffel formula
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(Question Nos. 1 to 20 Online Examinations)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
The additive identity of complex number is......... (1,1) (1,0) (0,0) (0,1) (0,0)
The multiplicative identity of complex number is....... (0,1) (1,0) (0,0) (0,1) (1,0)
The inverse of (a,f) under addition is ...... (-a,B) (-a,-B) (a,B) (a,-B) (-o,-B)
|2y Zof=nns AN E lzi [zl lz]]z] |zt |z ]2]
The value of i’ is........... 1 -1 0 i -1
arg(Z,Z,) =
arg(Z,2,) = arg(Z,Z,) = arg(Z,2,) = arg(Z,2,) = arg(Z,)/arg(Z
If Z, and Z, are any two complex numbers ,then........... arg(Z))targ(Z,)  arg(Z,)-arg(Z,) arg(Z,)/arg(Z,) arg(Z))*arg(Zy) )
The Equation of the unit sphere is.............. x2+y2+22=1 x2+y2+z2=2 Xz-y2+22=1 x2—y2—z2=1 X2+y2+22=1
Multiplicative Multiplicative
The element (1,0) is the ------- Additive identity identity identity unique identity
Multiplicative Additive
The element (0,0) is the ---------- Additive identity identity identity unique identity
If |Zl| = |Zz| and arg(Zl)= arg(22) then ----- Zl;é Zz Zl< Zz Zl> Zz Zl: Zz Zl; ZZ
The Equation of the unit circle whose centre is the origin
1Seiiiiinnns 1Z| =1 |Z-a| =1 |Z| =0 |Z|#1 1Z| =1
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extended
The complex plane containing all the finite complex infinite complex  extended finite complex complex
numbers and infinity is called the plane complex plane complex plane plane plane
The inversion w = 1/z maps the region | z | <1 into the
region......... |w]<1 |w|>1 |w|=1 |w|=<t |W|>1
absolute
The square of real number is --------- Non negative Non positive ~ Negative absolute value  value
The absolute value of z = x+iy is........... Vx \/y \/Xz-y2 \/X2+y2 \/Xery2
ZZKZ0 |22 LA 2 |22z 2T 2S 2,
If Z, and Z, are any two complex numbers ,then........... +(Z,| H+Z,| [+Z,| [+Z,] |+ Zs|
Linear
The mapping W=1/Z is called an .......... transformation Translation Inversion Rotation Inversion
r(cos 0
The polar form of x+Hyis ............ r(cos 0 +isin0 ) | r(cos 0 -isin0 ) | cos O +isind r(cos 0 -sin@) +isin0 )
Zi-2HZ 1Z-ZRI 2 (22 122
If Z, and Z, are any two complex numbers ,then .......... | Z,-Z,<| Z, |+|Z,| |+|Z,] 1Z,| | [+Z,| 7, |-Z, |
finite
The complex plane containing all the finite complex infinite complex  extended finite complex complex
numbers is called the....... plane complex plane complex plane plane plane
The conjugation of 5+i3 is........ 5 3 5+i3 5-i3 5-13
arg(Z,/7Z,) =
ag(Z1/22)=  wgZ/Z)=  ag(Z, /)= arg(Z,/Z)=  ag(Zy)-
If Z, and Z, are any two complex numbers ,then ........ arg(Z,)targ(Z,)  arg(Z,)-arg(Z,) arg(Z,)/arg(Z,) arg(Z,)*arg(Z,) arg(Z,)
The mapping W=Z+b ,b is a complex number, is called Linear
the......... transformation ~ Translation Inversion Rotation Translation
finite

All the complex numbers except infinity are called......

Complex numbers

Complex plane

finite complex
numbers

infinite complex
numbers

complex
numbers
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z=r1sinf + 7=
If x= rcos0 , y = rsin@ then for z we get........ z=r1cos0+ rsind  ircosd 7= rcos0+irsind | z= rcos0-irsin®  rcosO-+irsind
The angle made by the vector (x,y)measured in the
anticlockwise direction is ....... mod of z norm of z argumentofz 0 argument of z
The argument 6 is ------------- as it can take infinite values  unique not unique finite infinite not unique
From x= rcosf and y = rsinf weget 0 = sin” y/x cos'ly/x tan'ly/x cot'ly/x tan'ly/ X
argz ......... arg z -argz arg(-z) arg 1/z -argz
The argument of the product of two complex numbers is---- The sum of the  the argument  the argument of the product of the argument

of the complex number

arguments

of the sum

the division

the arguments

of the sum

arg (z1 .z2)=......... arg z,+ arg z, arg z, argz, argz,/argz, arg(z, +z,) arg z, argz,
(z1-23)( z,- (21-23)( z,-

The cross ratio of the form 2,)/( Z1-24)( 25~ (rza)/ (2 24)/( 21-24)(

P (ZI_Z2)( Z2‘Z4)/( 4 1744 2 (ZI-ZZ)( Z2-Z4)/( 22-23) 4 174
z1-24)( 2y°23) z3) Z1-24) 2)-73)

Ifz=-1+i,then z-1=........ -1+ -1 D2 +il2  (1/2-i1/2  -141

The stereographic projection of the complex point z = (\2 0.0.1) (1/ N2, 1/2,

1) is (1N2, 1A2, 0) 0,2, 1) AN2,1/2,172) ~7 7 1/2)

The inversion w = 1/z maps the region | z | >1 into the

region |w]<1 |w>1 |w|=1 |w|=<t |W|<1

Under the transformation w = az there are ------ fixed points one tWo 7610 oo two

; vre’ isin 0)" = .. . cosn O+isinn
According to De Moivre’s theorem (cos 6 +isin 0) cos” 0 - isin™ 0 cosn O+isinn 6 ncos O+insin 0 1

0

The transformation w = az=b , where a, b are complex
constants ,is a composition of ...... tranformations

Rotation and
Homothetic

Translation and
Rotation

Rotation
Homothetic and
Translation

Homothetic and
Translation

Rotation ,
Homothetic
and

Translation
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The equation zZ + 3z + az + ¢ =0, where cis real and a is
complex, is a equation of a

Line

Ray

Ellipse

circle

circle
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(Question Nos. 1 to 20 Online Examinations)
Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
The functions of the form, P (Z)= aO+a1z+azz2+ ...... +a,z", polynomial of polynomial of polynomial of  polynomial of polynomial
a,#0 is called a.... degree n degree 5 degree 2n degree n-1 of degree n
. . differentiable at .
differentiable , Continuous
If f (z) and g(z) are continuous at z, then f(z).g(z) is......... Continuous at z, at z, Continuous at z at z,
fiz) =7’ isa valued function. single multi double many double
If f(z) of f has only one value it is called ----------- valued
function. single multi double many single
If [f(z) | <Mforallzins , then f(z) is said t0 ~------------
inS. multi valued continuous bounded analytic bounded
The limit of a function is ----------- unique does not exist  different multivalued unique
If |f(z) ~f(zo)| < e for all zin S with |2—2zo] <& then f(z) is
,,,,, bounded continuous unique does not exist  continuous
. . differentiable at .
If £ (z) and g(z) are continuous at z, then f(z) +g(z) is differentiable s Continuous
.......... Continuous at z, at z, Continuous at z at 7,
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. . differentiable at .
differentiable , Continuous
If f (z) and g(z) are continuous at z,then f(z ) /g(z) is ........ Continuous at z, at z, Continuous at z at z,
uniformly
In a compact set every continuous function is........... bounded in s continuous in s |unique does not exist  bounded in s
uniforml
If |f(z,) —f(z,)| < eforallz; z,S with |z, —z,| <6 then f(z) ) Y )
i ’ uniformly continuous 1n
"""" bounded in s continuous in s unique does not exist 'S
If a function is differentiable at all points in some
neighbourhood of a point, then the function is said to be -
--- at that point. bounded analytic differentiable =~ compact analytic
A function which is analytic everywhere in the finite plane
is called an -------------—---- function. single multi entire continuous entire
differentiable at .
; Continuous
f(z) is a function differentiable at z0, then f(z) is Continuous at z, compact at z Continuous at z at z,
A ---- point of a function is a point at which the function
ceases to be analytic non singular Singular entire continuous Singular
O IR P R e —— everywhere analytic not analytic continuous exist not analytic
1
d/dz{cf(2)}.mrennnn. cf'(z) (2) f'(z)+c '(2) /c cf (2)
. S Exponential logarithmic Continuous rational
The quotient of two polynomials is called a i ) . ) ) .
9 potyt function function function rational function function
: . differentiable differentiable at .
If f(z) and g(z) are continuous at z, then f(z)/g(z), g(z)#0 is at 7 tHerentiable a Continuous
0 . 4
Continuous at z, Continuous at z at z,
Continuous at  Differentiable  Differentiable at
If f(1/z) is analytic at O then f(z) is Analytic at oo oo at oo 0 Analytic at o
u=vy and 4= - y=v, and u,=- W=l andu=- U=Vy and
The cartesian coordinates of C-R equations are u,=v, and u=-v, Vx Vv, Vy U= -V,
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complex complex
A function of complex variable is sometimes called a complex variable | variable function constant function
If the product of the slopes is -1, then the curves cut each
other ------ diagonally orthogonally  at the origin atthe point 1 orthogonally
The function that is multiple valued is f(z) = 7* f(z) = ¢ f(z) = 1/2 f(z) =z"? fiz) =z
logz is @ ------------- valued function single multi double three multi
Iff(z)=1/z° then .......... 0 2 1 -1 0
If f(zo) = o0, the funcgion £ is at not
Zy) = 0, , AR T zZ=1z .
0 o et 0 continuous not continuous differentiable  bounded continuous
The function, f(z) = Re z/ | z | when z 20 ; f(z) = 0 not
when f(z) = & T . continuous not continuous differentiable  bounded continuous
The function | z | 23S e, at that point. continuous analytic not analytic bounded not analytic
If f(z) = u +iv is analytic , then u(x,y) and v(x,y) are
................. Functions harmonic analytic continuous bounded harmonic
The function f(z) = log z,then u(r,0) = ...... v(r,8) = e log 6, logr r, log 0 logr,0 1,0 logr,6
If f(z) = 1/z then oo -1 0 1 0
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Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
The power series with .......... Coefficients are
called geometric series. two unit Zero three unit
The power series of the form a0 + al(z —a) + a2(z
—a)2 +... converges absolutely in the open disc | z-a | =R | z-a | >R | z-a | <R | z-a | =0 | z-a | <R
The power series of the form ay+ a;(z —a) + a,(z
—a)2+....Issaidtobeaseriesabout z=0 z =-a z=a Z=o00 z=a
The power series ag+ a;z + a,z 2+ converges
absolutely in the open disc ........ |z|=R |z|>R |z|<R |Z|=O |z|<R
The circle of the convergence of the series a,+
aiz +az |z|>R |z|<R  ]z| =0  [z[=R  [z]|=R
The circle of the convergence of the series a,+
al(z-a)—f—az(z-a)z—i— ...... |z-a|>R |z-a|<R |z-a|=0 |Z-a|=R |Z-a|=R
A power series ... in the exterior of its circle of absolutely uniformly
convergence convergent converges diverges convergent  diverges
If R =0 the series is divergent in the extended
plane except at z=0 z=1 Z= o z =-1 z=0
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The sequence {z,} is bounded if there exists a
constant M such that ------ for all n. |zn|=M |Zn <M |Zn|2M |zn|>M |ZH|SM
For all finite z=h + ik, | "] =...... e bk e" e* e"

. e'(cosy +isin e'(siny+ e’ (cosx + e’ (sinx + e*(cosy +
Euler’s relation ¢* " V= y) icosy) isinx) icosx) isin y)
The polar form r (cos 0 + i sinf) of a complex

- - 0 i0 i0 i0 i0
numbers in exponential form as re re 1/re re
¢’ is not defined at Z=00 z =0 z=1 =-1 Z=00
The inverse function of the exponential function  Trignometric  hyberbolic  harmonic Logarithmic  Logarithmic
is the ...... functions functions functions functions functions
Logarithamic function log z = ----------=====-=----- logr+160 + log 1/r + ie" logr+ ie" + logr +10 + logr+i6 +
n=0, £l, 2 n(2mi) + n (2mi) n(2mi) n2n n(2m1)
siniz=...... sinz sinhz isinz isinhz isinhz
COSIZ=........ cosz icosz icoshz coshz coshz
tanz and secz are analytic in a bounded region in
which tanz#0 seczz0 sinz#0 cosz#0 sinz#0
cot z and cosecz are analytic in a bounded region
in which cotz#0 cosecz#0  sinzz0 cosz #0 cosz #0
cosh’z — sinh’z = 0 1 -1 oo 1
singular points of logz are z=landz z=0andz=-z=landz= z=0andz=
z=0andz=o0w =0 1 oo ©

Principle value of logz is obtained when n = 0 -1 1 2 0
The logarithmic function is a ------ valued function single multiple two zero multiple
In a complex fieldz=x+iythen0=.......... sin”! (y/x) cos'l(y/x) tan'l(y/x) cot'l(y/x) tan'l(y/x)

Prepared by: M.sangeetha, Department of Mathematics, KAHE




UNIT -111/2017-2019 Batch

The sum f(z) of a powerseries is analytic in

............ |z|>R |z|<R |z|$R |z|=R |z|<R
A power series ............... 1s the interior of the uniformly converges converges
circle of convergence REEmE. o aEgpecs converges diverges converges absolutely absolutely
The radius of convergence of the series )
@+in)2" 2. T 2 0 oo 1 2
If u+iv is analyticthen vtiu is............ analytic not analytic continuous conjugate not analytic
A 1Sa ..iniinnn.... valued function single double multiple triple multiple
The function az _ ezloga eloga ealogz e-zloga ezloga
The radius of convergence of the series ) n’ 2"
............ 1 0 2 n 1

C0SZ, COSZ, - COSZ; Sinz, - COSZ, COSZ, SINZ; COSZ, - COSZ; COSZ, -
Cos (z) + 75, = sinz;sinz, SINZ;COSZ, + sinz;sinz, €0SZz;SInz, sinz;sinz,
The radius of convergence of the series > n" .z"
............ 1 0 2 n 0
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PART A (20x1=20 Marks)
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Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

The polar coordinates of C-R equations are...... u=l/rv, and - u=ve and - u=lrv, and w=1/rv, and

U= TV, U=V, U, =TV, U,=-TV, U= TV,
Two harmonic functions are said to be ....... Conjugate
Functions if they satisfies the C-R equations. harmonic harmonic functions analytic analytic
The Laplace equation of the form Uy +U,,=0 Ux-Uyy=0 ViU =0 Vi tVx=0 Uy +U =0
If U=X2-y2 then Uyy =? 3 1 0 2 2
If u(x,y)=€"cosy then find u,="? e cosx e"cosy cosy e" e cosy
The second order partial derivatives exist,
continuous and satisfies the laplace equation is harmonic harmonic
called functions Analytic Continuous  differentiable
If U=x"-y’ then U, =? 3 2 0 1 2
The fixed point’s transformation is also known as
...... points transformation mobius invariant constant bilinear constant
The bilinear transformation of the form W= az+b/cz+d az+b/c+d az+b az+b/c az+b/cz+d
A function whichis .......... in region which is
not close may or may not be bounded in it. Analytic differentiable continuous  bounded Analytic
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The function 1/(1+z) is analytic at infinity continuous  differentiable
because the function 1/(1+1/z) is Analyticat) at0 at( analyticat 1  Analytic at 0
ST . . not

Ifa ﬁ.mCt.l On IS differentiable at a points then the analytic at that continuous  differentiabe differentiable differentiabe

function is said to be .... . . . . .
point at that point  at that point  at that point  at that point

The Laplace equation of the format Uy +Uy, =0 U-Up=0 Vi tU,=0  V,, +V, =0 Uy tU,=0

The bilinear transformation is also known as

......... transformation non mobius linear mobius non linear mobius

Euler C-R C-R
The equations u,=v, and u,= -v, are Polar equation equation equation coordinates  equation
conjugate

If u or vis not harmonic, then u+ivis ......... analytic not analytic harmonic diffrentiable not analytic

If f(z) =u(x,y) + iv(X,y) is analytic in domain d iff conjugate conjugate

u(x,y) and v(x,y) are harmonic harmonic differentiable continuous  harmonic

In a two dimensional flow the stream function is 1/2log(x> +

tan'ly/x then the velocity potential is 1/210g(x2 + yz) Sin™ y/x log(x2 + yz) cos” y/x y2)

By Milne — Thomson method if u (x,y) = - y2

then f(z) = z 2x+2y X+y z 7’

The function f(z) = 2708 oo Valued

function single multi double triple double

The transformation w = 7 maps the -------------- rectangular  rectangular

onto the straight lines parabola hyperbola ellipse hyperbola hyperbola

v : : YN

If f(z) = u+iv is an analytic function then -if(z) Ueiy iU Uy v+i(-u) vHi(-u)

The value of m such that 2x — x* + my2 may be

harmonic is ---- 1 2 0 3 1
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If f(z) = utiv is an analytic function then(1 -1)f(z)

= (u+v)+i(v-u) (u+v)-i(v-u)  (u-v)+i(v-u)  (u+v)+i(v+u)  (u+v)+i(v-u)
If f(z) = u+iv is an analytic function then(1+1)f(z)
= (u+v)+i(v-u) (U+v)-i(v-u)  (u-v)+i(u+v)  (u+v)+i(v+u)  (u-v)+i(u+v)
_ . _ _ U,+ 1/ru, U, tru, ) U,+ 1/ru, U,+ 1/ru,
Harmonic functions in polar cci?i(}irigiesf ge): Ry g Ry g U, +1/r" ugy Iy g Iy g
The function ----------- is called zhukosky's
function Weahidir 1/z 7+1/z z sinz 7+1/z
. u=(r+ u=(r- u=(r+ u=(r-+
If w=u+ivunder w=z+1/zthenu=.... l/r)((:0s6 1/r)(Eos9 l/r)sFinO u=rcosf l/r)((:0s6
. v=(r+t . V= (T - v=(r -
If w=u+ivunder w=z+1/zthenv=.... | /r)((:os 0 Vv =1s1in6 | /r)(sinO v = r cosf 1 /r)(sinG
A circle whose centre is origin goes onto an ......
whose centre is the origin under the zhukosky's rectangular
transformation. parabola hyperbola ellipse hyperbola ellipse
A ray emanating from the origin goes onto a .....
Whose centre is the origin under the zhukosky's rectangular
transformation parabola hyperbola ellipse hyperbola hyperbola
The principle value of log z are .... logr logr+i6 logl/r logr-10 logr+i@
does not
. The partial derivatives are all ----- in domain D analytic not analytic  exists continuous  analytic
W =Cos Z 1s a ------ function. analytic continuous  not analytic  limit analytic
analytic
A(z) =xy +1iyis -------- analytic continuous  anywhere limit continuous
on
imaginary
. The function f(z) = |z| is differentiable ----- on real part part at the origin  at the point 2  at the origin
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If f(z) has the derivative only at the origin, it is ---- analytic not analytic analytic continuous not analytic
-- everywhere nowhere nowhere nowhere nowhere
f(z)=1/z1s a ------ function. differentiable  continuous  analytic not analytic  analytic
An analytic function with constant real part is -----

- constant real imaginary not analytic  constant
An analytic function with constant imaginary part

1S ------ constant real imaginary not analytic  constant
An analytic function with constant modulus part

IS ------ constant real imaginary  not analytic  constant
Both real part and imaginary part of any analytic polynomial laplace's laplace's
function satisfies ------ wave equation equation del operator equation equation
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Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
The set of complex points is called .... arc simple arc  closed arc open arc simple arc
If a curve intersects itself at a point then the point multiple double trile multiple
is said to be a...... single points valued points
The equation z = cost+isint, 0<t<m represents a
............... arc simple arc  closed arc curve simple arc
negatively positively
positively oriented unit circle oriented
The unit circle z=cost+isint, 0<t<2I1 are ..... oriented circle circle circle circle
The unit circle z = cos(-t) +isin(-t), 0<t<2m are . neg atively . heg atively
positively oriented unit circle oriented
"""" oriented circle circle circle circle
postively negatively postively
oriented oriented ) oriented
It the region lies to the left of a person when he simple closed simple simple closed simple
travels along C, then the curve C is called a curve closed curve curve closed curve
........... open curve
The simple closed rectifible curve is abbreviated
as...... curve sCr curve SCro curve arc scr curve
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In cauchy’s fundamental theorem, | f(z) dz=...

1 2 0 4 0
The simple closed rectifiable positively oriented
curve is abbreviated as ..... curve SCr curve SCro curve arc SCro curve
The simple arc is also known as .... multiple Jordan double multiple Jordan
The derivative of an analytic function is also ... analytic continuous  derivative bounded continuous
The integral | f(z) dz=F(b)-F(a) is called a..... integral indefinite definite derivative derivative
The poles of an analytic function are ...... essential removable  pole isolated isolated
If C is a positively oriented circle then | 1/(z-a) e
dz= 211 21 0 21Ti
When the order of the pole is 2,the pole is said to :
be ...... pole. double simple multiple triple multiple
The limit point of zero’s of an analytic function is
a...... point of the function singular nonsingular poles Zeros singular
A region which has only one hole is an .....region -
origin set annular moment annular
A region which is not simply connected is called multiply-
connected compact connected region. compact
complex contour partial contour
The integrals along scr curves are called.... integrals integrals integrals integrals integrals
If f(z) is a continuous function defined on a [ (udx-vdy)+ [(udx-vdy) [(udx-vdy) [(udx+vdy) [(udx-vdy)
simple rectifiable curve then [f(z) dz=............ il(udy-vdx) - il(udy-vdx) +/(udy-vdx) + ij(udy+vdx) + iJ(udy-vdx)
| f,(z)dz + [f(z)dz - [f(2dz . [f(zdz/ [f(z)dz +
[ [fi(z) +fX(z)]dzon Cis........... [£,(z)dz [£,(z)dz [£,(z)dz [£,(z)dz [£,(z)dz
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If f(z) is analytic in a simply connected domain ,

then the values of the integrals of f(z) along all

paths in the region joining ------ fixed points are

the same. one two three multiple two
interior nor interior and

The bounded region of Cis called ............... interior exterior exterior exterior interior

A region D is said to be ............... for every closed simply - simply -

curve in D, Ciis contained in D connected connected disconnected disjoint connected

When A is fixed and B(z) moves in D, the integral double -

single - valued valued multi - valued zero single valued

cauchy's integral formula .................... 1/2mi 1/2i 1/2n 1/271 1/2m1

cauchysmtegrallLorr}w(zl)JI:a for first derivatives o e 1/21 % . ;. doz o - o e

The function (z-i)° have a zero i of order..... 2 .1 0 o3 .2

............ of an analytic function are isolated zeros poles residues points zeros

If f(z) = (z — a)"[ay+ a,(z-2)......... 1,3, #0 , then z

=a is a zero of order ..... m 1 2 0 m

If Cis an arc in D, joining a fixed point z, and

the arbitrary point z then d/dz......... 0 1 f(z) C f(z)

A function analyticin D has .............. of all

orders in D derivatives points curves zeros derivatives

A curve is said to be piece-wise smooth if Cis not

smoothata ........ number of points in it. finite infinite zero one finite
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