Date:30.01.2018(FN)
Class: I M.Sc Mathematics

17MMP202

Karpagam Academy of Higher Education
Coimbatore-21
Department of Mathematics
Second Semester- I Internal test
Topology

Time: 2 hours
Max Marks: 50

Answer ALL questions
PART - A (20 X 1 = 20 marks)

. Which of the following isatopology onX = {a,b,c}
A {X, (a}0) B. {X, {a, b}, {b, c}, 0}
C.{X, {a}, {b}, 0} D. (X, {al, (b}, c}, 0}

. The maximum number of topology exists on X =
{a, b} is
B

A.2 1
C.16 D. 13
. Total number of topology exists on X = {a, b, c} is
A.20 B. 30
C.39 D. 29
. If X =1{a,b,c} and B = {{a, b}, {b.c}, X} then B satis-

fies basis condition
A. (i) B. (ii)
C. neither (i) nor (ii) D. both (i) and (ii)

. If Xis any set, the collection of all one point subsets
of X is a basis for the —— topology

A. cofinite
C. indiscrete

B. discrete
D. cocountable

10.

11.

12.

13.

Which of the following is true?

AT C8B B.BCT
CB8=T D.BLT
Let X be a set; let 8 be a basis for a topology 7~
on X. Then 7 equals the collection of all — of
elements of 8

A. union B. intersection

C.both A and B D. neither A nor B

If T and 7¢ are two topologies on non-empty set

X, then — is topology

A TeuNTe B. T UTe

CTw—Tc D. 7o XTe

If 7~ is topology on non-empty set X, then arbitrary
of member of 7 belong to 7.

A. union B. intersection

C.both A and B D. neither A nor B

If 7 is topology on non-empty set X, then finite .
of member of 7 belong to 7.
A. union B. intersection

C.both A and B D. neither A nor B

Let 7 be a topology on non-empty set X. Which
of the following is true?

ADgT B.XeT
C.X¢T D.PX)eT
If X = {a,b,c} and 7 be the discrete topology. Then

number of elements in basis for 7 is

Al B.2
C.3 D.4
If X = {a,b,c} and 7 be the indiscrete topology.

Then number of open sets related to 7™ is
Al
C.3

B.2
D.4



14.

15.

16.

17.

18.

19.

20.

Let X be a set, and let 8 is a basis for a topology

on X. For each x € X, there is atleast Be B
such that x € B

Al B.2
C.3 D. 4

Let X be a set, and let 8 is a basis for a topology on
X. If x € B{ N B, for By, By € B, then there is atlaest
—— B3 € B such that x € B; € B; N B,.
Al
C.3

B.2
D. 4

If B is the collection of all open intervals in the real
line, then B satisfies basis condition

A. (i)

C. neither (i) nor (ii)

B. (i)
D. both (i) and (ii)
If Bis the collection of all half open intervals in the
real line, then 8 satisfies basis condition
A. (i) B. (ii)
C. neither (i) nor (ii) D. both (i) and (ii)

Let X be a set. 7 be the collection of all subsets U
of X such that X — U is either or X. Then 7 is
a topology.

A. finite
C.both A and B

B. countable
D. neither A nor B

Arbitrary union of open sets is set
A. open

C.both A and B

B. closed
D. neither A nor B

Suppsoe 7 and 7¢ are discrete and indiscrete
topologies on non-empty set X. Which of the fol-
lowing is true?
ATwCTe
CTw=7c¢

B.Tw27<
DT 27ec

Part B-(3 X 2 = 6 marks)

21
22

23

24,

25.

26.

. Define K topology

. Find three noncomparable topologies for X =
{a, b, c}

. Define subbasis
Part C-(3 x 8 = 24 marks)

a) Let X be a set; let 7 be the collection of all
subsets U f X such that X — U is either count-
able or all of X. Show that 7 is a topology
on X.

OR
b) Let X be a set; let
T = {U]|X — U is infinite or ¢ or X}.
Is this a topology on X?

a) Find the all the topologies for X = {a, b, c}
OR

b) Let 7 be the collection of subsets U of X if
for each x € U there is a basis element B € 8
such that x € B c U. Then prove that 7" is the

topology

a) Show that the set X = {a,b,c,d} with the
topology © = {0,{a},{a, b}, {a,c}, {a,b,c}, X} is
not a Hausdorff space

OR

b) Let X be a topological space. Prove that

i X and 0 are closed
ii closed under arbitrary intersection of
closed sets
iii closed under finite union of closed sets
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1 1 Introduction to topological spaces T:Ch2,75
2 1 Definitions and Examples on topology T: Ch 2, 76-77
3 1 Basis for a topologies T:Ch2,78
4 1 Theorems on basis for a topologies T: Ch 2, 79-80
5 1 Theorems on the order topology T:Ch2,84
6 1 Theorems on the order topology T:Ch 2,85
7 1 Theorems on the order topology T:Ch2, 86
8 1 The product topology X X Y T: Ch 2,86
9 1 Theorems on product topology X X Y T:Ch2,87-88
10 1 Theorems on the subspace topology T:Ch2,89
11 1 Theorems on the subspace topology R1: Ch 3,101
12 1 Recapitulation and Discussion of possible questions
Total number of hours planned for unit 112
UNIT-1I
1 1 Introduction to closed set T:Ch2,92
2 1 Theorems on closed set T:Ch2,93
3 1 Continuation of theorems on closed set T:Ch2,94
4 1 Continuation of theorems on closed set T: Ch 2,94-95
5 1 Limit points T:Ch 2,96
6 1 Theorems on limit points R2: Ch 3,110
7 1 Theorems on continuous functions T:Ch2,101-102
8 1 Continuation of thms on continuous functions T:Ch2,103-104
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UNIT-II
1 1 Introduction to connected spaces T: Ch 3,147
2 1 Theorems on connected spaces R3: Ch 5,107
3 1 Theorems on connected spaces T: Ch 3,150-151
4 1 Theorems on connected subspaces of R T: Ch 3,152-155
5 1 Theorems on connected subspaces of R T: Ch 3,155-158
6 1 Theorems on components T: Ch 3, 160
7 1 Theorems on components T:Ch3, 161
8 1 Theorems on components. T:Ch 3,162
9 1 Theorems on local connectedness T:Ch 3, 163
10 1 Theorems on local connectedness T: Ch 3, 163-164
11 1 Theorems on local connectedness T: Ch 3, 164-165
12 1 Recapitulation and Discussion of possible questions
Total number of hours planned for unit 111 12
UNIT-1V
1 1 Introduction to Compact spaces T: Ch 3,164-166
2 1 Theorems on compact spaces T: Ch 3,166-167
3 1 Theorems on compact spaces T:Ch 3,168
4 1 Theorems on compact subspaces of R T:Ch 3,169-170
5 1 Theorems on compact subspaces of R T: Ch 3,170-172
6 1 Theorems on limit point compactness T: Ch 3,173-174
7 1 Theorems on limit point compactness T: Ch 3,175-178
8 1 Theorems on limit point compactness T: Ch 3,179-181
9 1 Theorems on local compactness R4: Ch
10 1 Theorems on local compactness T: Ch 3,183-184
11 1 Theorems on local compactness T:Ch 3,185
12 1 Recapitulation and discussion of possible questions
Total number of hours planned for unit 1V 12
UNIT-V
1 1 The countability axioms T: Ch 4, 190-191
2 1 Some examples of the separation axioms T:Ch4,192-194
3 1 Normal spaces T: Ch 4, 195-197
4 1 Theorems on normal spaces T: Ch 4, 198-200
5 1 Problems on normal spaces T: Ch 4, 201-202
6 1 The Urysohn lemma T:Ch 4,203
7 1 Continuation of the Urysohn lemma T: Ch 4, 204-206
8 1 The Urysohn metrization theorem T: Ch 4, 208-210
9 1 The Tietze Extension theorem T: Ch 4, 210-212
10 1 Recapitulation and discussion of possible questions
11 1 Discussion on Previous ESE Question Papers
12 1 Discussion on Previous ESE Question Papers
Total number of hours planned for UnitV 12
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Topological spaces, Basis for a topologies, the order topology, the product topology X x Y, the
subspace topology.

UNIT I

Closed set and limit points, continuous functions, the product topologies, the metric topologies.
UNIT I

Connected spaces, connected subspaces of the real line, components and local connectedness.
UNIT IV

Compact spaces, compact subspaces of the Real line, limit point compactness, local
compactness.

UNIT V

The countability axioms, the separation axioms, normal spaces, The Urysohn lemma, The
Urysohn metrization theorem, the Tietze Extension theorem.

SUGGESTED READINGS

TEXT BOOK

T. James R.Munkres., (2008). Topology, Second edition, Pearson Prentice Hall, New Delhi.

REFERENCES

R1. Simmons, G. F., (2004). Introduction to Topology and Modern Analysis, Tata Mc Graw Hill,
New Delhi.

Master of Science, Mathematics, 2017, KAHE Page 1



Topology Syllabus | 2017-2019

R2. Deshpande, J. V., (1990). Introduction to topology, Tata Mc Graw Hill, New Delhi.

R3. James Dugundiji., (2002). Topology, Universal Book Stall, New Delhi.

R4 Joshi, K. D.(2004). Introduction to General Topology, New Age International Pvt Ltd, New
Delhi.

Master of Science, Mathematics, 2017, KAHE Page 2



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: 1 M.Sc MATHEMATICS COURSE NAME: Topology
COURSE CODE: 17MMU202 UNIT: I(Closed sets)  BATCH-2017-2019
UNIT-11
SYLLABUS

Closed set and limit points, continuous functions, the product topologies, the metric topologies.

Prepared by Dr. K. Kalidass, Assistant Professor, Department of Mathematics, KAHE Page 1/8




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: 1 M.Sc MATHEMATICS COURSE NAME: Topology
COURSE CODE: 17MMU202 UNIT: I(Closed sets)  BATCH-2017-2019

(1.1) Definition: Let (X, %) be a topological space. Then a subset 4 of X
is said to be closed in X if its complement X — A is open in X.

The definition is fairly straightforward and one can cite as many examples
of closed sets as of open sets. It is fortunate that all closed intervals (bound-
ed or not) of real numbers are indeed closed in the usual topology on the
real line. If (X, d) is a metric space, x € X and r > 0, then the closed ball
with centre x and radius r is defined as the set {y € X : d(x, y) < r}. We
leave it to the reader to verify that each such closed ball is a ciosed subset
in the topology induced by the metric.

A word of warning is perhaps in order. In analogy with everyday usage, a
biginner is likely to think that ‘closed’ is the negation of ‘open’, that is to say,
a set is closed if and only if it is not open. But this is not so. The reason for
the misleading terminology is probably that complements of sets are defined
in terms of negation. The fact is that the possibilities of a set being open and
its being closed are neither mutually exclusive nor exhaustive. Note for
example that the empty set and the whole set are always open as well as
closed in every space. On the other hand, the set of rationals is neithcr open
nor closed in the usual topology on the real line. A set which is both open
and closed is sometimes called a clopen set.

[t is immediate that a set is open iff its complement is closed. As a result,
any statement about open sets can be immediately translated into a corres-
ponding statement about closed sets and vice-versa, as we do in the following
theorem.

(1.2) Theorem: Let ( be the family of all closed sets in a topological
space (X, *J). Then C has the following properties:
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el xel.
(i) C is closed under arbitrary intersections.

(iii) C is closed under finite unions.

Conversely, given any set X and a family C of its subsets which satisfies these
three properties, there exists a unique topology % on X such that  coincides
with the family of closed subsets of (X, ).

Proof: The first part follows trivially from the definition of a tepology
and De Morgan’s laws. The converse part is equally trivial once it is clearly
understood what it says. Here we are given a set X (just a bare set with no
topology on it) and some collection C of its subsets. We are given that pro-
perties (i) to (iii) hold for C. We do not know how ( originated, nor do we
know whether its members are closed subsets of X. Actually it is meaning-
less to talk about closed subsets of X unless a topology on X is specified.
The theorem says that given such a family C C P(X) we can define a suit-
able topology % on X such that members of C are precisely- the closed sub-
sets of X (w.r.t. the topology %), and that such a topology is unique.

Having understood what the theorem says, the proof itself is trivial as
we have no choice but to let ¢J consist of complements (in X) of members of
C,ie. Y ={BC X:X—Be(} That J is a topology on X follows by
applying De Morgan’s laws. The open subsets of X are precisely the comple-
ments of members of (, and hence the closed subsets of X are precisely the
members of C as asserted. Also this condition determines ¢ uniquely. §§

Trivial as the theorem is, its significance is noteworthy. In the definition
of a topological space we took ‘open set’ as a primitive term, that is to say,
open sets are not defined (except as members of the topology on the set in
question) and nothing is known about their nature save what is implied by
the definition of a topology. Everything we do with topological spaces is in
terms of open sets. For example, we defined convergence of sequences in a
topological space in terms of open sets, and we defined closed sets as comple-
ments of open sets. The preceding theorem asserts that this procedure could
be reversed. That is, we could as well take ‘closed sets’ as a primitive con-
cept and then define open sets as complements of closed sets. With this
approach our definition of a topological space would be that it is a pair
(X, C) where X is a set, C C P(X) and conditions (i), (ii), (iii) above are
satisfied. Although nothing is to be gained and nothing is to be lost by
adopting this new approach over the usual one, in particular examples of
topological spaces it may be more natural to specify the closed sets rather
than the open sets. For instance, in the cofinite topology on a set X, it is so
easy to tell what the closed subsets are, they are precisely all finite subsets

+ of X and the set X itself.

Any subset of a topological space generates a closed subset called its

closure, The definition is as follows:

1 1Z Nafinitinn:s The olacnras Af a2 ciilieat AF a tannlanical crmara 10 dafnad
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N {C c X: Cclosed in X, C D A). It is denoted by A. Obviously it depends
on the topology ¢ and when it is important to stress this, it is customary to
write A7 or (d)g instead of mere A. Note further that if Y C X and AC Y
then the closure of 4 in the space (X, %) is in general different from its
closure in the subspace (Y, %/Y). We leave it to the reader to verify that the
latter is the intersection of the former with Y. When confusion is likely to
arise otherwise, it is usual to write AY or (d), to indicate the subspace w.r.t.
which the closure is intended. The notations C/(A4) or C(4) or ¢(A4) are also
used sometimes to denote the closure. In the next proposition we list down
a few properties of closures.

(1.4) Proposition: Let 4, B be subsets of a topological space (X, ).
(i) 4 is a closed subset of X. Moreover it is the smallest closed subset
of X containing 4 i.e. if C is closed in X'and 4 — C then 4 C C,
(i) g =¢
(ifi) A is closed in X iff 4 = 4
(iv) 4= A or in other words, c(c(4)) = c(4)
vV AUB=4U B
Proof. (i) and (ii) are immediate consequences of the definition and
properties of closed sets. For (iii) we note that if A4 is closed then it is clearly
the smallest closed set containing A4 and consequently 4 = A. Conversely if
A = A then A is closed since 4 is always a closed set, being the intersection
of closed sets. Property (iv) follows by applying (iii) to A which is known to
be closed. Finally, for (v), note that 4 B is first of all a closed set cont=in-
ing AU B;as A Aand B C B, and hence A U B C A |J B. For the other
way inclusion, we first observe that whenever 4y C 4,, A; C A, (prove ).
Now A U B contains 4 as well as B and so A, B are both subsets of 4 1J B.
Hence A 1) B € AU B. This completes the proof. |
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(1.5) Theorem: Let X be a set, § : P(X)— P(X) a function such that

(1) for every A € P(X), A C 6(A4) (this condition is sometimes expressed

by saying that 6 is an expansive operator),

(2) ¢ is a fixed point of 8,

(3) 8 is idempotent, and

(4) 6 commutes with finite unions.

Then there exists a unique topology ¢ on X such that 8 coincides with the
closure operator associated with . Conversely, any closure operator satis-
fies these properties.

Proof: The converse part is already established. For the direct implica-
tion, suppose 8 : P(X)— P(X) satisfies (1) to (4). We want to find a topo-
logy < on X such that for every 4 C X, 6(4) = AZ. If at all such a topology
exists then its closed subsets must be precisely the fixed points of 6 as we
saw above. This gives us a clue to the construction of . We let =
{AC X:6(4) = A} and contend that (C has properties (i) to (iii) of
Theorem (1.2). Condition (2) shows that ¢ & C while condition (4) implies
that C is closed under finite unions. To prove that X € C, we merely note
that by (1), X C 8(X) and hence X = 8(X) since 8(X) C X anyway. It only
remains to verify that C is closed under arbitrary intersections. For this we
first note that § is monotonic, i.e., whenever 4 C B, 8(4) C 6(B), which
- follows by writing B as 4 U (B — 4) and applying (4). Now let 4 = N 4;

iel
where [ is an index set and 4; € (C for each i & 1. We want to show that
A e, ie. 6(4) = A. By (1) we already know 4 C 6(4). Also 6(4) C 6(4,)
for each i & I since @ is monotonic, and so 8(4) C N 6(4;). But 8(4;)) = 4;
iel

since 4; € ( for all i € I. Consequently, 8(4) C 4 and hence 8(A4) = A as
desired. So by theorem (1.2), the family ¢ of complements of members of
C is a topology on X.

It remains to be verified that the closure operator associated with % coin-
cides with 8. Let A — X. Then A9 (i.e. 4 w.r.t. ) is the intersection of all
closed subsets of X containing A. But by very construction, closed subsets
of X are precisely the fixed points of §. Hence 4 = N {BC X : 4 C B;
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8(B) = B}. Now, whenever B D A, 8(B) D 6(A4) by monotonicity of 8. So if
B D A and 6(B) = B then B D 6(A4). But A is the intersection of such B’s

and so A O #(A). For the other way inclusion we note that by condition (3),
8(A) € C while by (1) A c 8(4) whence 4 C 6(4), A being the smallest

member of C containing 4. Hence for all 4 C X, 8(4) = A completing the
proof. §

(3.1) Definition: Let f: X — Y be a function; x; € X and ¢, U be topo-
logies on X, Y respectively. Then f is said to be continmous (or more
precisely - continuous) at x;, if for every V' & qJ such that f(xo) eV,
there exists U € ¢ such that xo, € U and f(U) C V.

i * hm e nmd b b e cmen e mdlhan Pocmasrslndl ate wl o a?cnliee ma o L%
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(3.2) Proposition: With the notation above, the following statements are
equivalent.
f is continuous at x,.
2. The inverse image (under f) of every neighbourhood of f(xg) in Y is
a neighbourhood of xy in X.

3. For every subset A C X, x, € A implies f(x,) € f(A).

4. For every subset 4 C X, x4 8 4 implies f(xo) 8 f(A).

Proof (1) = (2). Let N be a neighbourhood of f(xg) in Y. Then there is
an open set ¥ in Y such that f(x,) € ¥ and ¥V C N. Since fis continuous at
x,, there is an open set U in X such that x € U and f(U) C V. This means
xo € U f~Y(V) cf~Y(N) thus showing that f~!(N) is a neighbourhood
of xg. )

(2) = (3). Suppose xp € A where A C X. If f(x0) ¢ f(A) then by Theorem
(2.10) in the last section, there is a neighbourhood N of f(xo) such that
f(4) N N = @. This means f~( f(A)NSfY(N)= @ and hence that 4 N
f~Y(N) = @ since 4 C f~!(f(A4)). But by (2), f~!(N) is a neighbourhood of x,
and so 4 N S-UN) # @, since xy € A. This is a contradiction.

(3) <> (4). This is immediate since the nearness relation corresponding
to a topology is defined by saying that a point is near a set iff it is in the
closure of that set.

(3) = (1). Let ¥V be an open set containing f(xo). Let 4 = X — f~I(V)

'=f-YY— V). Thenf(4) C Y — Vandsof(d) C Y — Vas ¥ — ¥ is closed.
So f{xo) ¢ f(4) whence x, ¢ A by (3). Hence there is a neighbourhood N of
xp such that N N 4 = @. Clearly then f(N) C V¥ and the proof is completed
if we let U = int (N). |}
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Connected spaces, connected subspaces of the real line, components and local connectedness.

(2.1) Definition: A space X is said to be connected if it is impossible to
find non-empty subsets 4 and B of itsuchthat X =4 U Band 4 N B= Q.
A space which is not connected is called disconnected.

(2.2) Proposition: Let X be a space and 4, B subsets of X. Then the
following statements are equivalent:

. AUB=Xand4 N B= 0.

2. AlUB=X,AN B= @ and A4, B are both closed in X.

3. B= X — A and A4 isclopen (i.e. closed as well as open) in X.

4, B = X — A and d4 (that is, the boundary of A) is empty.

5. AUB=X,AN B= @ and 4, B are both open in X,

Proof: (1) = (2). Clearly AN B= @ implies that A N B= @ since
AcAand BC B.Also ACX— BC X— B=Aandso 4 = A showing
that A is closed. Similarly B is closed.

(2) = (3) is immediate since the coinplement of a closed set is open.

(3) = (4). This follows from the fact that the boundary of a clopen set is
empty (see Exercise (5.2.7).)

(4) = (5). This requires the converse, viz., that a set with empty bound-
ary is clopen. Also if 4 is closed, then its complement B is open.

(5) = (1). Assume X = A U B where AN B= @ and 4, B are open.
Then A= X — B and B =X — 4 whence A, B are closed as well and so
A=A, B= B, showing AN B= Q. ¥
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(2.3) Proposition: Let X be a space. Then the following are equivalent:

1. X is connected.

2. X cannot be written as the disjoint union of two nonempty closed
subsets.

3. The only clopen subsets of X are ( and X.

4. Every nonempty proper subset of X has a nonempty boundary.

5. X cannot be written as the disjoint union of two nonempty open sub-
sets.

Proof: The result is immediate from the definition and the last pro-
position. |}

From the definitions we see immediately that every indiscrete space is
connected and that the only connected discrete spaces are those which
consist of at most one point. The space of rational numbers is disconnected;
given any irrational number « thesets {x € Q:x < «}and{x € Q: x > «}
are both open in the relative topology on Q and Q is clearly their disjoint
union. Similarly the set of irrational numbers is disconnected. The Sierpinsky
space defined in Chapter 4, Section 2 is connected, although it is not in-
discrete. It is clear that if a set is connected w.r.t. a topology < on it, then
it is connected w.r.t. every topology weaker than . The following proposi-
tion shows that connectedness is preserved under continuous functions.
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(2.5) Theorem: A subset of R is connected iff it is an interval.

Proof. First note that a subset X C R is an interval iff it has the property
that for any a, b € X, (a, b) C X. (Prove.) Now if X is not an interval then
there exist real numbers a, b, ¢ such that a < ¢ < b;a, b & X and c ¢ X.
et A={x&€X:x<c} and B={x& X: x > c}. Clearly 4, B are dis-
joint, open subsets of X (in the relative topology) since 4 =X N (—o0, ¢}
and B=(c, <) M X and 4 U B = X. Furthera € 4, » & B and hence 4,
B are nonempty. This shows that X is not connected.

Conversely suppose X is an interval and that X = 4 U B where 4 N B
=@, A # @, B+ @ where the closure is relative to X. Letay € A4, by € B.
Without loss of generality we may suppose that a; < by, Now let x be the
a°_2|- % Then x € X and
so x is exactly 1n one of the sets 4 and B. If x € 4 we rename it as g
and rename by as b,. If x € B, we rename a, as a; and x as b;. In any case
[a1, £1] is an interval with its Ieft end-point in 4 and the right end-point in
B. We can now take the mid-point of [ay, b;] and get an interval [a,, b,] of
half the length with a; € A4, b, & B. Repeating this process ad infinitum, we
get a nested sequence of intervals {{a,, b,] : n =0,1,2,3,...} such that
a, € A and b, € B for all n. Note that {a,} is a bounded monotonically
increasing sequence while {4,} is a bounded monotonically decreasing
sequence and that (b, — a,) = 0 as n — . By the order completeness of R,
both sequences converge to a common limit, say c. Note that ¢ € X since
ay < ¢ < bo. Also every neighbourhood of ¢ intersects 4 as well as B, So
ce 4 N B, acontradiction. Hence X is connected. ]

-y L 1 .

mid-point of ‘the interval from a, to by, i.e. x =
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(2.7) Definition: Two subsets 4 and B of a space X are said to be
(mutually) separated if AN B=@and 4 N B= 0.

(2.8) Proposition: Let X be a space and C be a connected subset of X
(that is, C with the relative topology is a connected space). Suppose C C 4
U B where 4, B are mutually separated subsets of X, Then either C C 4
orCCB.
Proof: LetG=C ) Aand H=C N B. Then G, H are closed subsets of
C since, 4, B are closed in 4 U B. Also G N H = @. But Cis connected. So
either G=@ or H = Q. In the first case C < B while in the second, C C 4.
|

(2.9) Theorem: Let (C be a collection of connected subsets of a space X

such that no two members of C are mutually separated. Then |y Cis also
cecl

connected,

Proof: Let M = Uc C. If M is not connected then we could write M as
ce

a AU B where A, B are nonempty and mutually separated subsets of X. By
the proposition above, for each C & C either C C 4 or C C B. We contend
that the same possibility holds for all C € C, i.e. either CC A forall Cel
or C < Bfor all C & C. If this is not the case, then there exist C, De
such that C C 4 and D C B. But, 4, B are mutually separated and hence
their subsets C, D are also mutually separated contradicting the hypothesis.
Thus all members of C are contained in 4 or all are contained in B. Accor-
dingly M = A4 or.M = B, contradicting that 4, B are both non-empty. [
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(2.10) Corollary: Let C be a collection of connected subsets of a space X
and suppose K is a connected subset of X (not necessarily a member of ()
such that C N K # @ for all C € C. Then ( Uc C) U K is connected.
ce
Proof: Let M = ( UcC} UK Let 9={KUC:Ce&(}. Clearly
ce
M= UQ D. By the theorem above, each member of g) is connected since
DE '

it is a union of two connected sets which intersect (and which are therefore
not separated). Now any two members of 4) have at least points of K in

common and so are not mutually separated. So again by the theorem above,
M is connected. [}

Corollary: The topological product of any finite number of connec-

ted spaces is connected.
Proof: If X\, X2, ..., Xa—y, X, are spaces (with n = 2) then X; X X
X ... X X, is homeomorphic to (X} X ... X X,_;) X X, (see Exercise (5.3.6)).

The res

(2.13)

ult follows by induction on n and the last proposition. [

Proposition: The closure of a connected subset is connected. More

generally if C is a connected subset of a space X then any set D such that

ccbhD

c C is connected.

Proof: Suppose C is connected and C = D < C. If D is not connected

then we can write D = 4 U B where 4, B are nonempty, disjoint and closed
relative to D. Then C N 4, C N B are disjoint closed subsets of C whose
union is C. But C is connected. So one of them, say, C | B is empty, This
means C C 4, and hence C? C A4 where the closure is w.r.t. D. But CP
= CX | D = D since D c CX. Hence A = D contradicting that B is non-
empty. So D is connected. [}

F S EN L] -“Le 1 ar ~
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UNIT-1V
SYLLABUS

Compact spaces, compact subspaces of the Real line, limit point compactness, local compactness.

Definition. A collection A of subsets of a space X is said to cover X, or to be a
covering of X, if the union of the elements of A is equal to X. It is called an open
covering of X if its elements are open subsets of X.

Definition. A space X is said to be compact if every open covering 4 of X contains
a finite subcollection that also covers X.

EXAMPLE 1. The real line R is not compact, for the covering of R by open intervals
A=n,n+2)|neZ)
contains no finite subcollection that covers R.

Lemma 26.1. LetY be a subspace of X. Then Y is compact if and only if every
covering of Y by sets open in X contains a finite subcollection covering Y .

Proof. Suppose that Y is compact and A = {Ay}aes is a covering of Y by sets open
in X. Then the collection

{Ag NY |x € J)
is a covering of Y by sets open in Y; hence a finite subcollection
{Ag, NY,..., Ag, NY}

covers Y. Then {Aq,, ..., Aq,} is a subcollection of A that covers Y.

Conversely, suppose the given condition holds; we wish to prove Y compact. Let
A" = {A]} be a covering of Y by sets open in Y. For each a, choose a set A, open
in X such that

A, = A NY.
The collection A = {A,} is a covering of Y by sets open in X. By hypothesis, some
finite subcollection {Aq,, ..., Aq,} covers Y. Then { A:r: — A’aﬂ] is a subcollection
of A’ that covers Y. [
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Theorem 26.2. Every closed subspace of a compact space is compact.

Proof. LetY be a closed subspace of the compact space X. Given a covering #4 of Y
by sets open in X, let us form an open covering 8 of X by adjoining to »4 the single
open set X — Y, that is,

B=AU[X—Y).

Some finite subcollection of B covers X. If this subcollection contains the set X — Y,
discard X — Y; otherwise, leave the subcollection alone. The resulting collection is a
finite subcollection of A that covers Y. [ ]

Theorem 26.3. Every compact subspace of a Hausdorff space is closed.

Proof. LetY be a compact subspace of the Hausdorff space X. We shall prove that
X — Y is open, so that Y is closed.

Let xo be a point of X — Y. We show there is a neighborhood of xq that is disjoint
from Y. For each point y of Y, let us choose disjoint neighborhoods Uy and V), of the
points xg and y, respectively (using the Hausdorff condition). The collection {V), | y €
Y} is a covering of Y by sets open in X; therefore, finitely many of them V), ..., V),
cover Y. The open set

V= Vyl U"'U Vyﬂ
contains Y, and it is disjoint from the open set
U =Uyl m“-mU)'n

formed by taking the intersection of the corresponding neighborhoods of xg. For if z
is a point of V, then z € V), for some i, hence z ¢ Uy, and so z ¢ U. See Figure 26.1.
Then U is a neighborhood of xg disjoint from Y, as desired. [ |

Lemma 26.4. IfY isacompact subspace of the Hausdorff space X and xg isnotinY,
then there exist disjoint open sets U and V of X containing xo and Y, respectively.
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Theorem 26.5. The image of a compact space under a continuous map is compact.

Proof. Let f : X — Y be continuous; let X be compact. Let A be a covering of the
set f(X) by sets open in Y. The collection

(f71(A) | A € A)

is a collection of sets covering X these sets are open in X because f is continuous.
Hence finitely many of them, say

YA, ..., YA,

cover X. Then the sets Ay, ..., A, cover f(X). [ |

Theorem 26.6. Let f : X — Y be a bijective continuous function. If X is compact
and Y is Hausdorff, then f is a homeomorphism.

Proof. We shall prove that images of closed sets of X under f are closed in Y; this
will prove continuity of the map f~!. If A is closed in X, then A is compact, by
Theorem 26.2. Therefore, by the theorem just proved, f(A) is compact. Since Y is
Hausdorff, f(A) is closed in Y, by Theorem 26.3. [

Lemma 26.8 (The tube lemma). Consider the product space X x Y, where Y is
compact. If N is an open set of X x Y containing the slice xo x Y of X x Y, then N
contains some tube W x Y about xq x Y, where W is a neighborhood of x¢ in X.

Definition. A collection € of subsets of X is said to have the finite intersection
property if for every finite subcollection

lcls-"wcﬂ}

of C, the intersection Cy N - -- N C, is nonempty.

Theorem 26.9. Let X be a topological space. Then X is compact if and only if
for every collection C of closed sets in X having the finite intersection property, the
intersection { ). C of all the elements of C is nonempty.
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Proof. Given a collection A of subsets of X, let
C={X-A ’ A€ zAu}

be the collection of their complements. Then the following statements hold:
(1) A is a collection of open sets if and only if C is a collection of closed sets.

(2) The collection A covers X if and only if the intersection [ .. C of all the
elements of C is empty.

(3) The finite subcollection {Ay, ..., A,} of A covers X if and only if the intersec-
tion of the corresponding elements C; = X — A; of C is empty.
The first statement is trivial, while the second and third follow from DeMorgan’s law:

X~ (| A = (X - Aw).

et act

The proof of the theorem now proceeds in two easy steps: taking the contrapositive
(of the theorem), and then the complement (of the sets)!

The statement that X is compact is equivalent to saying: “Given any collection 4
of open subsets of X, if A covers X, then some finite subcollection of A covers X.”
This statement is equivalent to its contrapositive, which is the following: “Given any
collection A of open sets, if no finite subcollection of A covers X, then A does not
cover X.” Letting C be, as earlier, the collection {X — A | A € A} and applying
(1)-(3), we see that this statement is in turn equivalent to the following: “Given any
collection C of closed sets, if every finite intersection of elements of C is nonempty,
then the intersection of all the elements of C is nonempty.” This is just the condition
of our theorem. a
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Theorem 27.1. Let X be a simply ordered set having the least upper bound property.
In the order topology, each closed interval in X is compact.

Proof. Step 1. Givena < b, let A be a covering of [a, b] by sets open in [a, b] in the
subspace topology (which is the same as the order topology). We wish to prove the
existence of a finite subcollection of A covering [a, b]. First we prove the following:
If x is a point of [a, b] different from b, then there is a point y > x of [a, b] such that
the interval [x, y| can be covered by at most two elements of A.

If x has an immediate successor in X, let y be this immediate successor. Then
[x, y] consists of the two points x and y, so that it can be covered by at most two
elements of A. If x has no immediate successor in X, choose an element A of A
containing x. Because x # b and A is open, A contains an interval of the form [x, ¢),
for some ¢ in [a, b]. Choose a point y in (x. ¢); then the interval [x, y] is covered by
the single element A of A.

Step 2. Let C be the set of all points y > a of [a, b] such that the interval [a, y]
can be covered by finitely many elements of A. Applying Step 1 to the case x = aq,
we see that there exists at least one such y, so C is not empty. Let ¢ be the least upper
bound of the set C;thena < ¢ < b.

Step 3. We show that ¢ belongs to C; that is, we show that the interval [a, c] can
be covered by finitely many elements of A. Choose an element A of A containing c;
since A is open, it contains an interval of the form (d, ¢] for some d in [a, b]. If ¢ is
not in C, there must be a point z of C lying in the interval (d, c), because otherwise d
would be a smaller upper bound on C than c. See Figure 27.1. Since z is in C, the
interval [a, z] can be covered by finitely many, say n, elements of A. Now [z, c] lies
in the single element A of A, hence [a, c] = [a, z] U [z, c] can be covered by n + 1
elements of A. Thus c is in C, contrary to assumption.
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Step 4. Finally, we show that c- = b, and our theorem is proved. Suppose that
c < b. Applying Step 1 to the case x = ¢, we conclude that there exists a point y > ¢
of [a, b] such that the interval [c, y] can be covered by finitely many elements of .A.
See Figure 27.2. We proved in Step 3 that c is in C, so [a, c] can be covered by finitely
many elements of 4. Therefore, the interval

la,y] =la,c]Ulc, y]

can also be covered by finitely many elements of A. This means that y is in C, con-
tradicting the fact that c is an upper bound on C. |

Corollary 27.2. Every closed interval in R is compact.

Now we characterize the compact subspaces of R":
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The countability axioms, the separation axioms, normal spaces, The Urysohn lemma, The
Urysohn metrization theorem, the Tietze Extension theorem

Definition. A space X is said to have a countable basis at x if there is a countable
collection B of neighborhoods of x such that each neighborhood of x contains at least
one of the elements of B. A space that has a countable basis at each of its points is
said to satisfy the first countability axiom, or to be first-countable.

Definition. If a space X has a countable basis for its topology, then X is said to
satisfy the second countability axiom, or to be second-countable.

Theorem 30.2. A subspace of a first-countable space is first-countable, and a count-
able product of first-countable spaces is first-countable. A subspace of a second-
countable space is second-countable, and a countable product of second-countable
spaces is second-countable.

Proof. Consider the second countability axiom. If 8B is a countable basis for X, then
{BN A | B € B} is a countable basis for the subspace A of X. If B; is a countable
basis for the space X;, then the collection of all products [| U;, where U; € B; for
finitely many values of i and U; = X; for all other values of i, is a countable basis for
[1X:.

The proof for the first countability axiom is similar. [
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Definition. A subset A of a space X is said to be dense in X if A = X.

Theorem 30.3. Suppose that X has a countable basis. Then:
(a) Every open covering of X contains a countable subcollection covering X .
(b) There exists a countable subset of X that is dense in X.

Proof. Let { B,} be a countable basis for X.

(a) Let A be an open covering of X. For each positive integer n for which it is pos-
sible, choose an element A, of A containing the basis element B,,. The collection A’
of the sets A, is countable, since it is indexed with a subset J of the positive integers.
Furthermore, it covers X: Given a point x € X, we can choose an element A of A
containing x. Since A is open, there is a basis element B, such that x € B, C A.
Because B, lies in an element of A, the index n belongs to the set J, so A, is defined;
since A, contains B, it contains x. Thus .4’ is a countable subcollection of .4 that
covers X.

(b) From each nonempty basis element B,, choose a point x,. Let D be the set
consisting of the points x,,. Then D is dense in X: Given any point x of X, every basis
element containing x intersects D, so x belongs to D. |

Definition. Suppose that one-point sets are closed in X. Then X is said to be reg-
ular if for each pair consisting of a point x and a closed set B disjoint from x, there
exist disjoint open sets containing x and B, respectively. The space X is said to be
normal if for each pair A, B of disjoint closed sets of X, there exist disjoint open sets
containing A and B, respectively.
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Lemma 31.1. Let X be a topological space. Let one-point sets in X be closed.

(a) X is regular if and only if given a point x of X and a neighborhood U of x,
there is a neighborhood V of x such that V C U.

(b) X is normal if and only if given a closed set A and an open set U containing A,
there is an open set V containing A suchthat V C U.

Proof. (a) Suppose that X is regular, and suppose that the point x and the neighbor-
hood U of x are given. Let B = X — U; then B is a closed set. By hypothesis, there
exist disjoint open sets V and W containing x and B, respectively. The set V is disjoint
from B, since if y € B, the set W is a neighborhood of y disjoint from V. Therefore,
V C U, as desired.

To prove the converse, suppose the point x and the closed set B not containing x
are given. Let U = X — B. By hypothesis, there is a neighborhood V of x such
that V C U. The open sets V and X — V are disjoint open sets containing x and B,
respectively. Thus X is regular.

(b) This proof uses exactly the same argument; one just replaces the point x by the
set A throughout. |

Theorem 32.1. Every regular space with a countable basis is normal.

Proof. Let X be a regular space with a countable basis 8. Let A and B be disjoint
closed subsets of X. Each point x of A has a neighborhood U not intersecting B. Using
regularity, choose a neighborhood V of x whose closure lies in U; finally, choose an
element of B containing x and contained in V. By choosing such a basis element for
each x in A, we construct a countable covering of A by open sets whose closures do
not intersect B. Since this covering of A is countable, we can index it with the positive
integers; let us denote it by {U,}.

Similarly, choose a countable collection {V,} of open sets covering B, such that
each set V,, is disjoint from A. The sets U = | JU, and V = | V,, are open sets con-
taining A and B, respectively, but they need not be disjoint. We perform the following
simple trick to construct two open sets that are disjoint. Given n, define

n n
U;:UH—U‘Z and v,::v,,—UU,-.
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Theorem 32.2. Every metrizable space is normal.

Proof. Let X be a metrizable space with metric d. Let A and B be disjoint closed
subsets of X. For each a € A, choose ¢, so that the ball B(a, ¢;) does not intersect B,
Similarly, for each b in B, choose ¢, so that the ball B(b, €;) does not intersect A.
Define

U=|JB@e€/2) and V=|]B® e/

acA beB

Then U and V are open sets containing A and B, respectively; we assert they are
disjoint. Forif z € U NV, then

z € B(a, €2/2) N B(b, €5/2)

for some a € A and some b € B. The triangle inequality applies to show that
d(a,b) < (€5 + €p)/2. If €, < €p, then d(a, b) < €p, so that the ball B(b, €p)

contains the point a. If €, < ¢4, then d(a, b) < ¢,, so that the ball B(a, €;) contains
the point b. Neither situation is possible. n

Theorem 32.3. Every compact Hausdorff space is normal.

Proof. Let X be a compact Hausdorff space. We have already essentially proved
that X is regular. For if x is a point of X and B is a closed set in X not containing x,
then B is compact, so that Lemma 26.4 applies to show there exist disjoint open sets
about x and B, respectively.

Essentially the same argument as given in that lemma can be used to show that X
is normal: Given disjoint closed sets A and B in X, choose, for each point a of A,
disjoint open sets U, and V, containing a and B, respectively. (Here we use regularity
of X.) The collection {U,} covers A; because A is compact, A may be covered by
finitely many sets Uy, ..., Uy, . Then

U=Ua1U"‘UUam and V=Valn“‘nvdm

are disjoint open sets containing A and B, respectively. [ |
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UNIT-I

SYLLABUS

Topological spaces, Basis for a topologies, the order topology, the product topology X x Y, the
subspace topology.
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§1 Definition and Examples:

Definition 1.1: Let X be any non-empty set. A family 5 of subsets of X is called a topology on
X if it satisfies the following conditions:

(i) peEJandX e

(i) ABEJ3 = ANBESJ

(iit) A; €3, VA € A (where / is any indexing set) = U A ES
AEA

If5 is a topology on X, then the ordered pair (X, ) is called a topological space (or T-

space)

Examples 1.2: Throughout X denotes a non-empty set.

1) 5 ={0,X} is a topology on X. This topology is called indiscrete topology on X and the T-

space (X, ) is called indiscrete topological space.

2) 3 = (X), ((X) = power set of X is a topology on X and is called discrete topology on X
and the T-space (X, ) is called discrete topological space.
Remark: If |X| = 1, then discrete and indiscrete topologies on X coincide, otherwise they are

different.

3) LetX = {a,b,c} then; = {0, {a},{b,c}, X} and 3, = {0, {a},{b},{a, b}, X} are topologies
on X whereas 55 = {0, {a}, {b}, X} is a not a topology on X.

4) Let X be an infinite set. Define § = {0} U {4 € X | X — A is finite} then § is topology on X.
moesy ... (by definition of )
AsX-X=0, afiniteset, X € J
(i) Let A,B € § . Ifeither A=0 orB = @, then AN B € . Assume that A = D and B = 0 .
Then X — A is finite and X — B is finite. Hence X — (AN B) = (X —A)U (X —B) is
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finite set. Therefore ANB € 5. Thus 4, B e = AnB €.
(iii) Let A; € §, for each 4 € A (where A is any indexing set). Ifeach 4; = @, then

UAlzges.

AEA

If 34, € Asuchthat Ay + @.then 4; < UA)‘ =X -4 2K - UAJI.
AEA AEA

As X — A 1s a finite set and subset of finite set being finite we get X — U Aj; 1s finite
AEA

and hence U A; € 5. Thus in either case.
AEA

A ES, VIEA — UA,IES.
AEA

From (1), (11) and (iii) 1s a topology on X. This topology is called co-finite topology on X and t/

topological space is called co-finite topological space.

Remark: If X is finite set, then co-finite topology on X coincides with the discrete topology «

X.

5) Let X be any uncountable set. Define § = {@#} U {4 € X | X — A is countable} Then T is
topology on X.
L @€ (bydefinition).
As X — X =@ and @ is countable (Since @ is finite) we get X € .
i. letA, B € J. IfeitherA=0QorB=0wegetANB €.
letA # 0 and B = 0.
Then by definition of §, X — A and X — B both are countable sets and hence
X—(AnB)=(X—A)U (X — B) is countable. This shows that An B € . Thus
A,B € FimpliesdnB € 5.

. Let A3 €3 v A €A, where A is any indexing set. [f foreachA €A, A =0
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then U A; = 0 will imply U Ay eJ. Letd; + Oforsomed, €.
AEA AEA

Then 4;, < UAl =X -4, 2X - UA;
AEA AEA

= X — U Ay is a subset of a countable set X — A, (Since 4; € Jand 4; = 0)
AEA

—= X — U Aj is a countable set. (since subset of countable set is countable )

AEA
— UAth 3
AEA

Thus in either case, 43 EJ,VAEA = U AE S
AEA

From (i), (ii) and (iii) we get 3 is a topology on X. This topology on X is called co-countable

topology on X and the T-space (X, ) is called co-countable topological space.

Remark: If X is a countable set, the co-countable topology on X coincides with the discrete

topology on X.

6) Let A S X. Define 5 = {0} U{B = X | A € B}. Then 5 is a topology on X.

(1) @ € 5 by definition. As A€ X, X€EZ.

(i) Let B,CEJ. IfB=0orC =0, thenBNC =0 willgive BNC € J.LetB =0 or
C+0.ThenA S BnCwillimply BNnC €.

(iii) Let B € 5 ¥ A € A. where A is any indexing set. If for each 4 € A, B; = ¢ then

U B; = @ and in this case U B,eS.

AEA AEA

Assume that By, # 0 for some Ay € A. Then A € B; and By, & U Byimply A < U B;.
AEA AEA

Therefore U B, €.
AEA
From (i), (ii) and (iii) J is a topology on X.
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Remarks: (1) If 4 = @ then 3 is discrete topology on X.
(2) If A = X then 3 is indiscrete topology on X.
(3)IfA = {p).then 5= {0} u{B < X | p € B} is called p-inclusive topology on X.

7) Letp € X. Define § = {X}U{4A S X |p & A}. Then 5 is topology on X.

(i) p € @ implies @ € 5. By definition X € 5.

(i)letA,BEF. IfA=XorB=X,then AnB = X. Inthiscase A N B € 5. Assume that
either A =X orB = X. Thenp € Aorp € B and hence p € A N B which proves
ANBES.

Thus A,B € 3 impliess AnB € .
(iii) Let A; € 5 v A €A, where i\ is any indexing set. If for some A € A, A; = X then

UAA =X will give UAA €73.

AEA AEA
Assume that 4; = X foreach € A. Thenp & 4, foreach 4 € A will imply,

péE UAR and hence UAA €F.

AEA AEA

Thus in eithercase. A; EJ VieEA = U A ET.
AEA

From (i), (i1) and (iii) % is a topology on X.

This topology on X is called p-exclusive topology on X.

8) Let (X, ) be topological space and A € X. Define 3* ={GU (ANH) |G H € F}. Then F*
is a topology on X.
(i) Take G =0 and H=0.ThenGU(ANH)=0U(AN@) =0 = @ € §*. Take G = X.
Then for any H € § we get X U (AN H) = X. Hence X € §".
(i) Let G,U(ANH;)) €F and G, U(ANH,) € 5" for G, Hy,G5,H, €.
Then [Gy U (AN H)]N[G,U (AN H,)]
=(G,NGHU(GLNANH,)U(ANH, NGy)U(ANH, NH,)
=(6,NnG,)U[ANn[(G,nH,)U(H, NnG,) U (H, NnH,)I]
As (Gy N Gy) € Fand [(G; N Hy) U (Hy N Gy) U (H, N Hy)] €5 we get,
[GiU(ANH)]N[G,U(ANH,)]ES.
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(iii) Let G U (AN Hy) € 3" for A € A, where & is any indexing set. Then G; € 5§ and
H,eJF.VAEA.

U[GAU(AHHR)]—[UGA]UlAﬁ UHA

AEA AEA AEA
As UGA €5 and UHA E 5. we get U[GAU (AnH)] e .
AEA AEA AEA

From (i), (ii) and (iii) we get J* is a topology on X.

Remark: This example shows that every topology on X induces another topology on X.

9) Let X and Y be any two non-empty sets and let f : X — Y be any function. Let J be
topology on Y. Define §* = {f 1(G) | G € T} ,where f 2(G) ={x € X | f(x) € G}. Then F* is
topology on X.

MHfo)=0 = 0eJFand f YY) =X = XeF*

(i Let fFfYG)ES and fH(H) € for, HES . Then fX(GNnH)=fG)n f1(H)
and G,H € Swillimply f~*(G) n f~*(H) € .

(iii) Let f71(G3) € 3"V A € A, where A any indexing set is. Then

f_l(U G,q) = Uf_l(:(}l) . As UGA € 5, we get Uf‘l{:(},{) R

AEA AeA AEA AEA

[a$ 3

Thus from (i), (i) and (iii) we get J* is a topology on X.

10) Let X be any uncountable set and let co be a fixed point of X . Let

F={GSX|og&G} U{GESX| o €GandX — G is finite} . Then F is a topology on X.
Define 5, ={G S X | € G} andJ, = {G S X | o € G and X — G is finite} then

J=31U 32

(i) o€0=>P€eF . o€Xand X—X=0isafiniteset =X€EFT, >X €.

(ii) Let A,B €.

Casel: A,B€S, . Thenoo € Aand o € B. Hence o € AN B.

Therefore ANBEJ, = ANBES.
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Case2: A, BEF,. Thende ([, = owecdandX —Aisfinite. BETF, = wweBand X — B
is finite. Thenmw € AnBand X — (AnNB) = (X —A)U (X — B) is finite. Thus ANB € 3,
which gives ANB € 3.

Case3: A€ J,and B€ 3, . Then oo € A will imply o« € An B.

Hence ANBET, 2AnBEST.

Cased: A€ J,and B€F,.Thenoo € B willimply e € AN B.

Hence ANBET, >ANBEST.

Thus in all the cases 4, BEJF = ANBET.

(iii) Ay €5 v A € A, where Ais any indexing set . If 4; €3, VA €A then

o & Ay VA€ Awill imply UAA € 5§, . Hence Uf—l& €7.
AEA AEA

If 3 A € A such that A3 & J; then A; € 3, . In this case o € A3 and X — A, is a finite
set

Az, QUAA implies oo EUAA and X_UAA CX—A4,,.

AEA AEA AEA

As X — A, 1s finite we get X — U A; ais finite set. Thus in this case U A €T,
AEA AEA

and hence U A;E .
AEA

Thus in either case, 4; EJF,VAEA = U A; €.
€A

From (i), (ii) and (iii) § is a topology on X .
This topology 5 is called Fort’s topology on X and the T-space (X, ) is called Fort’s space.

Some Special Topologies on Special sets .

Apart from the topologies given in the above examples there exist some special
topologies on R or Z or N . (R = the set of all real numbers . Z = the set of all integers and

N = the set of all natural numbers ). We list some of them in the following examples.
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(1) Let 5, ={P}U{ASR |VYa€eAd 3 r>0suchthat(a—r,a+r) S A}.Then T, isa
topology on K.
(i) © €3, (bydefinition)and R€J, asforanya € R,(a—1,a+ 1) S R.
(i) letA,BET, f A=0orB=0.then ANBES, .letd= @ and B = 0.
Thenx € ANB = x€Aandx€B = 3 r;, >0suchthat(x —r,, x+1r,)E 4
and 3 r, > 0suchthat(x —r,, x +1,) EB.
Define r = min(ry,13). Thenr = 0 and (x — 7 ,x +7) & AN B . But this shows that
ANnB eSS, . Thusineithercase A, BET, = ANBET,.
(iii) Ay €5, VA E A, where Aisany indexing set .

If U Ay = 0 . then obviously, U A ET,.
AEA AEA

Hence. assume that U Ay 0. Letx € U Ay . Then x € A, for some Ag € 4.
AEA AEA

As 4;,€5, 3 r>0suchthat(x—7r, x+71) S 4, .

Butthen (x —7r,x+71) S U A; . But this shows that U A, €T, .
AEA AEA

Thus in eithercase 4, €3, , VAEA = U A; €T,
AEA

From (1), (ii) and (iii) 5, is a topologyon R.

This topology is called usual topology on K.

Remarks: (1) The usual topology on E is also called standard topology or Euclidean topology .
(2) Any open interval in B is a member of J,,. Consider the open interval (a,b) and x €
(a,b). Take r = min(x —a,b —x). Then (x —r,x4+71) S (a,b). This shows that (a,b) €

~

Su -

(12) Let3, ={0}U{ACSR |[vp€EAJab€R suchthatp €[a, b) E A} . Then J, isa
topology on K .
(i) @ € 5, (by definition). R € 5, as foranyp € R 3 a,b € R such that
PE[, P+ ER.
(i) Let ABEeS,. f AnB=0.,thenANnB €T, . If AnB = @ then for

x € AN B there exist half open intervals H; and H, in K such that x € H; € A and
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Subject: Topology Subject Code: 17MMP202
Class : I M.Sc Mathematics Semester : 11
UNIT -1
PART A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
Each space containing a special element denoted by ----------- 1x (x,d) o 0
Extended real number sustem lies between . 4~ to,e0 0to_oo -=to0 o~ toe0
If Ais empty subset of R then supremum of Sup A = ------- Lo° L% 1o == 0to_== _-==to0 oo
In a closed interval [3,5] find LU.b--—--—--- 3 4 1 5 5
A bounded set is one whose diameter is --------- infinite un countable countable finite finite
If its range is bounded set is called mapping bounded set bounded mappir unbounded set |bounded mapping
An open sphere is always empty countable elemen finite elements non-empty non -empty
Total length of the open sphere is r r/2 2r r/4 2r
. - . i Triangle i 1i Symm Cauchy ‘s i lity |Triangle i li
In a Definition of a Metric Space the Condition (4 ) is also know "¢ Metric nﬁg LGy Ly Ay Sty | Tepngte In equatity
Ifd(xy)=0iff -----—- Cx>y x>y X=y X£Yy X=y
The Closed interval [ a, b ] = ------- {x:a<x <b} {x:a<x=b} {x:a<x<b} {x:a<x<b} {x:a<x<b}
In the bounded interval (x —r,x + r) the midpoint is-------------- r -r X X +r X
0 0 0 0 0
In a open subset A then Int A = --- open subset of A smallest open subs subset of A Largest o] Largest open subset of A
In a Complete Metric Space Every Cauchy Sequence --------- limit no limit point Convergent (a) Divergent Convergent
The Closure if A is denoted by -------- A j A* A- ?E
Any intersection of closed sets in X is -------------- open open interval closed (a) Needrclosed
In a Metric Space M is said to be Complete if ------------- Every point of metric { Every Cauchy sequen Every sequence of p Need not be converge Every Cauchy sequence of point of converge to x
In a Metric Space ( x ,d ) the diameter of A is defined by D (A)=Sup{d(xy)D(A)=Inf{d(xy)D(A)=max{d(x,yD(A)=min{d(x,yD(A)=Sup{d(xy):x,y€A}
the greatest lower bound of the distances from x to the points of A distance radius diameter length diameter
t
In any metric space X ,each ---------- is an open set closed sphere open sphere subset Super se open sphere
t
Every non empty --------- on the real line is the union of a countabl closed sphere open sphere open set superse open set
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Let A be a open set iff ~------m-mmmemm A=Int(A) Az Int(A) A c Int(A) A c Int(A) A=Int(A)
ith losed
In any metric space X ,the empty set , and the full space X are----- open set closed set both open and cl¢ CTICT OPER OT C10SEC b ot open and closed
ith losed
.Let X be a metric space. A subset F of X is---------- iff its compler open set closed set both open and cl¢ CIHICT OPEN OTEI0SET 1osed set
.Let A be a closed set iff ----------n---- Accl(A) A=cl(A) Ao cl(A) A=Int(A) A=cl(A)
1
cl(A) equals the ---------- of all closed supersets of A union difference ntersection complement ntersection
A complete metric space is a metric space in which every Cauchy divergent convergent monotone decresing convergent
.A subset A of a metric space is said to be -------------- if its closure nowhere dense | dense everywhere dens open nowhere dense
The Cantor set is -------------------- nowhere dense |dense everywhere dens open everywhere dense
A closed set is nowhere dense iff its complement is ----------- nowhere dense |dense everywhere dens open everywhere dense

A e is nowhere dense iff its complement is every where de open set open subset closed set subset open subset
Lo equals the intersection of all closed supersets of A Int(A) cl(A) A cl(A)
1
The----—-----memm - Sr[x0] is thesubset of X defined by Sr[x0]={x:d(;open sphere closed sphere open set closed set closed sphere
Let X and Y be metric spaces and f :X->Y Then f is --------------—--
at x0 iff xn—>x ef(xn)->f(x)
. . . . closed set .
open mapping continuous discontinuous continuous
A sequenceis called ............. if it satisfies cauchy condition limit cauchy sequence divergent convergent convergent
If a sequence converges then it subsequence also................ converges diverges bounded limit exist converges
t t
Every.........o.oo. sequence is bounded divergent cauchy sequence divergent convergen convergen
If f is continuous on the .......... [a,b] then f is of bounded on[a,b]. \compact interval | partial total variation bounded compact interval
Let X be a metric space, A is a subset of X then the ---------- of A'itboundary open subset closed set subset boundary
C(X,R)is @ -------------- of the metric space B. closed intervals | closed subset closed set open closed subset
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UNIT -11

PART A (20x1=20 Marks)

(Question Nos. 1 to 20 Online Examinations)

Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
A Banach space is a----------- metric space dense closed complete everywhere dense complete
The --------- is a 1-1 continuous mapping of one topological space lhomeomorphism |homomorphism automorphism |isomorphism homeomorphism
A in a topological space is a set whose complement is of open set closed set bounded set unbounded set  closed set
Let A be subset of X ,the -------------- is the set of all limit points of | derived set dense nowhere dense |everywhere dense derived set
Every ------------- metric space is second countable separable connected compact non seperable separable
The open rectangles in the ----------- form an open base Euclidean space Euclidean Norm  Euclidean plane unitary plane Euclidean plane
Let X be a topological space, any ----------- subset of X is dense countable infinite denumerable finite infinite

A natural isometry of any -----------==-emmeu-- which contains X as a d

complete metric sf

metric space

Normed linear sp

vector space

complete metric space

R is called infinite dimensional Euclidean space Euclidean plane Euclidean Norm Euclidean plane |Euclidean space
Aset Ais --------m-m--- iff every non empty open set has a non emp!nowhere dense  dense - everywhere dens dense subset nowhere dense
A subset A of a topological space is said to be-------------- if cl(A) h nowhere dense  dense everywhere dens dense subset nowhere dense
A subset A of a topological space is said to be a----------- if A=D(A) perfect set dense set derived set closed set perfect set

A subset A of a topological space is --------- iff it intersects every ncno where dense  dense derived set everywhere dense dense

Let A be a non empty subset of a topological space,A is --------- asno where dense  dense derived set everywhere dense dense

An open subbase is a class of open subsets of X whose ----------—- finite intersections 4htersections union infinite Anite intersections
The real line and complex plane are----------- separable connected no where dense |dense separable

A subclass of an ----------—---- which is itself an open cover is called open cover open subcover sub cover open set open subcover
A - is a topological space in which every open cover has connected space compact space T, space T, space connected space
ANy ----memeeeeeee of a compact space is compact. closed subspace |subset sub cover open cover closed subspace
Any continuous image of a --------------- is compact T, space topological space compact space |Normed linear spe T4 space

A - of a non-empty set is said to have the finite intersection pro|class of subsets  subsets class of sets sets subsets

A ---- is compact iff every class of closed sets with the finite inters¢ Normed linear sp: topological space T, space metric space topological space
A e of an open cover which is itself an open cover is callec subclass class subset set subset

A topological space is compact if every has a finite sul

basic opencover

opencover

basic open subc

subcover

basic opencover

subspace of the real line is compact

bounded

closed and boundt

closed

open

closed and bounded

A is a topological space in which every countable open cover has

countable compaci

compact space

T, space

metric space

countable compact space

Every closed and bounded subspace of the real line is compact is

weierstrass Theore

Urysohn's Lemma

Heine Boral Thec

Tychonoff's Theor:

Heine Boral Theorem
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A is a topological space in which every countable open cover has metric space T, space compact space countable compac countable compact space
A continuous real function defined on a compact space is ----------- closed closed and boundbounded unbounded set  closed
. A continuous mapping of a compact space into any metric spac¢closed closed and boundbounded unbounded set  |bounded

The product of any non empty class of compact space is compact

Tychonoff's Theore

Heine Boral Theor

Urysohn's Lemm:.

weierstrass Theort

Tychonoff's Theorem

The open rectangles in form a open base

Rn

R

R”

RZ

Rn

Every ------------—- of the n- dimensional unitary space ¢" is compa closed and bounde closed and boundt closed and bouncopen sets closed and bounded subspa
Every ----—--—e-mmeemee- has the Bolzano Weierstrass property compact metric sp: topological space |compact space Normed linear sps compact metric space
L1 R — space,every open cover has a Lebesgue numl sequentially compe topological space |compact space |compact metric  sequentially compact metric

In a sequentially compact metric space,every open cover has a Le

Tychonoff's Theore

Heine Boral Theor

Urysohn's Lemm.

Lebesgue covering

Lebesgue covering lemma
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UNIT -11I

PART A (20x1=20 Marks)

(Question Nos. 1 to 20 Online Examinations)

Possible Questions

A set Fis closed if

it contains all of its

Which of the following is not true

Every sequentially

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
In Cauchy-Schwarz inequality, the equality holds iff ---------- akx=0 akx + bkx =0 akx+bk=0 bk =0 akx+bk=0
Union of countable sets is ----------------- uncountable infinite countable disjoint countable
The sequence { 1/n } is convergent & bour divergent &unbou divergent & bour convergent & Unb convergent & bounded

uncountable colle

countable collect

uncountable colleiit contains all of its limit points

Every sequentially

Every sequential

Every sequentially

Every sequentially compact metric space not seperable

Two sets A and B are not seperated sets if

A={2,3}and B ={:

The Product of finitely many compact space is

compact space

A topological space X is compact if every open covering of X con

a finite subcollectit

A= {23} and B ={

A= {34} and B =,

A={2,3} and B ={ A= {3,4} and B ={ 4,5}

open set

null set

closed set compact space

a infinite subcolle(

a finite subcollec

a finite ollection th a finite subcollection thet covers X

Every metric space is not a

T2 space

T;  space

T 4 space

T 5 space T 5 space

A subspace of a first countable space

=

1 st countable

2 nd countable

3 rd countable

4 th countable 4 th countable

A countable product of first countable spaces is

1 st countable

The union of a collection of connected sets that have a point in cc

connected

2 nd countable

3 rd countable

4 th countable |1 st countable

seperable

disconnected

non seperable connected

A compactification of a space X is compact hausdcis hausdorff spac is compact haus(is compact hausdiis compact hausdorff space Y containing X s .t Xis dense in Y
Let X be a set for which a topology T is defined only XisinT only Xis notin T 'empty and X are X alone on T empty and Xarein T

A subspace of a completely regular space is normal ﬁagular comlpletely regul complete A_om[pletely regular

The Cartesian Product of connected topological space is connected disconnected seperable non seperable connected

Neighbourhood of X is

an open set U con|

a null set

an closed set U ¢

an open interval |an open set U containing X

X is locally compact

if topological spac

if topological spac

if topological spa

if topological spac

if topological space X is locally compact at each x €

Every simple ordered set is a hausdorff space in the

order topology

discrete topology

non-discrete topc

indiscrete topolog|order topology

A subspace of normal space is need not normal |hausdorff normal need not hausdorineed not normal

Let X be metrizable space then X has a basis Countable locally funcountable locall Countable locally uncountable locall Countable locally finite

Every metrizable space is Hausdorff disjoint normal metric space normal

A subset of a topological space is closed if it contains all of its it contains none o' it contains some |it contains some ¢ it contains all of its limit points
A subspace of regular space is Hausdorff disjoint normal regular regular

Every compact Hausdorff space is Hausdorff disjoint normal regular normal

If the space X is connected

if there does not e;

if there exist a se|

if there exist sol

if there exist few|if there does not exist a seperation X

A topological space X is limit point compact

if every disjoint sut

if every infinitet su

if every finite sub

if some disjoint su if every disjoint subset of X has a limit point

Product of normal space is

need not normal

hausdorff

normal

need not hausdorineed not normal

Let X be a topological space is Hausdorff space if for each pair x’

there exist nbhd U

there exist no nbt

there exist nbhd

there exist no nbtthere exist nbhd U1 and U2 of x1 and x2 s.t U1 and

U2 are disjoint

In a topological space ( X, T)is

arbitrary intersectic

arbitrary intersecti

arbitrary intersec

arbitrary intersecti arbitrary intersection of closed sets are closed

In a topological space ( X, T)is

finite union of closi

finite union of clos

finite union of op|

finite union of ope finite union of closed sets are closed

A topological satisfies------- if X has a countable basis for its topol

second countablity

first countability a;

third countability

fourth countability| second countablity axiom
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If the space X ={ X, T}

discrete topology

indiscrete topolog

trivial topology

non trivial topolog

indiscrete topology

A subset Y of a topological space is dense in X if

Y=X

¥ =x

Y NOT =X

¥ subse x

¥ =x

Every closed interval in real line R is

compact space

Hausdorff space

a null set

disjoint

compact space

The lower limit topology T on real line R

is strictly finer than

is inferior than sta

is finer than star

standard topology

is strictly finer than standard topology T

Let Y be a subspace of X if U is open in Y and Y is open in X the

Uis openin X

Uis null setin X

Uis closed in X

U is either open o

Uis open in X

If Ais closed in Y and Y is closed in X then

a finite subcollectic

A is semi closed il

Ais closed in X

Ais openin X

A is semi closed in X

Non seperation theorem states

LetAbeareInSzZ

LetAbeareInS:

LetAbearelnS

LetAbeareInS:

LetAbeareInS2 thenS2 - Ais connected

Which of the following is true ?

{0, 1} is seperablt

(0, 1) is compact

[0, 1]is compac

(0,1)is closed

[0, 1]is compact

Let X be locally compact Hausdorff space & Y be a subsoace of )

If Y is open in X

If Y is closed in X

either Y is open ¢

neither Y is open |

either Y is open or Y is closed

Every sequentially compact metric space is ------------- closed and boundg totally bounded bounded closed totally bounded

. Any continuous mapping of a compact metric space into a metrijuniformly continuo bounded continuous discontinuous uniformly continuous
A subspace of R" ig ---------- iff it is totally bounded closed closed and bound bounded open sets bounded

X is compact metric space then a closed subspace of C(X,R)or Clequicontinuous |uniformly continuc continuous discontinuous equicontinuous

A compact metric spaceis -------------- closed separable closed and bounibounded separable

A - is a topological space in which given any pair of dintinct

T1 space

compact space

Normed linear sg

compact metric sf

T1 space
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KARPAGAM

ACADEMY OF HIGHE
{Deemed to be U

Coimbatore —641 021

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),

Subject: Topology

Subject Code: 17MMP202

Class : I M.Sc Mathematics Semester : 11
UNIT -1V
PART A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
The product of any non-empty class of ------------ is Hausdorff ~ |Hausdorff T1 space compact space |compact metric sg Hausdorff
If Xis @ --=----m----- , every convergent sequence in X has a unique compact metric spjcompact space |T1 space Hausdorff compact metric space
Every ----------- space is normal compact metric sp compact Hausdor T1 space Hausdorff space compact Hausdorff
A e of a normal space is normal closed closed subspace closed subset |closed intervals | closed subspace
.let X be a T1 space ,X is ----- iff each nbd of a closed set F continormal completely regula regular Hausdorff space normal
............ is a tool to prove Tietze's Theorem. Urysohn's Lemma Lebesgue coverin Heine Boral The(weierstrass Theor Urysohn's Lemma
If Xis @ = normal space , then there exists a homeomorpl countable second countable seperable compact metric sf second countable
Every ------ is normal and also that a normal space is second cou|completely regular regular metric space topological metric space
A compact Hausdorff space is-------------- iff it is second countable metrizable completely regula regular ~_ seperable metrizable
. Evefy S of a product of closed intervals is a compactlt closed intervals  closed set closed subset  closed subspace |closed subspace
A one-one continuous mapping of a compact space onto a Haus homeomorphism homomorphism |automorphism |isomorphism homeomorphism
Every closed subspace of a product of ---------- is a compact Hau¢closed subspace closed set closed subset |closed intervals |closed intervals
. Every closed subspace of a product of closed intervals is a ------ T1 space completely regula compact Hausdo Hausdorff space compact Hausdorff
Lo are dense subspaces of compact Hausdorff spaces T1 space completely regula compact Hausdo Hausdorff space |completely regular space

If X is a second countable there exists a homeomorphism f of X

Urysohn's Lemmaﬁebesgue coverin

Heine Boral The(

Urysohn's imbedd4rysohn's imbedding Theore

. Each f has uncountably many points of continuity in each ....... ¢closed discontinuous open Bounded open
Each f has points of continuity in each ....... subinterval of [a,b] |closed discontinuous open Bounded open
.Asetsiscalled....... if it is either finite or countably infinite countable uncountable countably finite |nondenumerable {uncountable
Every subset of a countable setis......... uncountable countably infinite nondenumerable countable countable
. Two sets A and B are similar then it is called equivalent equinumerous  |equal null set equinumerous
ffis . on[a,b],then the set of discontinuities of f is countal/increasing decreasing monotonic void monotonic
Bounded variation is always a .......... Function discontinuous closed set continuous unclosed continuous
A sequence is called............. If it is not convergent divergent convergent limit bounded divergent
If lima,= P then we call P as the . of the sequence.  |divergent convergent limit bounded limit
Absolute convergence implies................. converges diverges bounded limit exist converges
A --- is a topological space X it cannot be as the union of two disjiconnected space |T1 space com[pletely regul Hausdorff space |connected space
The space X is said to be ----------- if it is not connected connected disconnected seperable non seperable |disconnected
A e of the real line R is connected iff it is an interval In partidenseset derived set subspace closed set subspace
image of a connected space is connected continuous equicontinuous  completely reguli discontinuous continuous
--------------- function defined on a connected spac|equicontinuous | continuous real | completely reguli continuous continuous real
A ---X is disconnected iff there exists a continuous mapping of X (topological space | T1 space completely reguli Hausdorff space topological space
The ---—----—- of any non-empty class of connected space is conniintersection sum product union intersection
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The space Rn and Cn are -------------------- disconnected connected seperable non seperable connected
A is connected iff every non-empty proper subset has topological space |T1i{3pace metric space Haisdorff space |tofidlogical space
If Xis @ =-=-=-------- Xis connected iff B(X) is connected metric space T1 space completely reguli Hausdorff space |completely regular
A --- is a topological space it cannot be represented as the unior|/disconnected connected seperable Hausdorff space | connected

The space X is said to be disconnected if it is not --------------. connected separable disconnected disjoint connected

A subspace of the---------- R is connected iff it is an interval In par real line complex plane rational field irrational field real line

Any continuous image of a -------------- is connected disconnected spac connected seperable Hausdorff space connected
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Coimbatore —641 021

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),

Subject: Topology

Subject Code: 17MMP202

Class : 1 M.Sc Mathematics

Semester

H |

UNIT -V

PART A (20x1=20 Marks)

(Question Nos. 1 to 20 Online Examinations)

Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
The range of a continuous real function defined on a -------------- ijconnected disconnected spaiseperable Hausdorff space connected
A topological space X is ----- iff there exists a continuous mappin¢T1 space connected disconnected |seperable disconnected
The product of any non-empty class of connected space is -------- connected disconnected spai seperable disjoint conhected
. A topological space is -------- iff every non-empty proper subset | Hausdorff space disconnected separable connected conhected
If X is a completely regular space X is----------- iff B(X) is connecte )Hausdorff space connected separable disconnected connected
A connected space cannot be represented as the ---- of disjoint n/union sum intersection product union
A subspace of the real line R is connected iff it is an interval In pe disconnected separable connected disjoint conhected
The range of a continuous real function defined on a connected s/ closed interval interval open interval open set interval
A space X is disconnected iff there exists a continuous mapping ({ 0,1} [0,1) [0,1] (0,1) {0,1}
A topélogical space is connected iff every non-empty proper subsdenseset subspaéé ) boundary closed subset boundary
The components of a totally------------- space are its points disconnected separable connected disjoint disconnected
. Let X be a -——- If X has an open base whose sets are also close connected space Hausdorff space T1 space separable space Hausdorff space
A totally-------- space is homeomorphic to a closed subspace of a |disconnected com Hausdorff space T1 space seperable disconnected compactHausdorff
Let X be a H.space. If X has an ------whose sets are closed,then open set open base open subbase  sub base open base
Two closed subsets of a topological space are --------- iff they are separated Mausdorff space T1 space disconnected A_sparated
A subspace of a real line is ---------- iff it is an interval connected Hausdorff space T1 space separable space connected
Two subsets of a topological space areconnecte iff they are ------- disconnected separable connected disjoint disjoint
Two open subsets of a topological space are --------- iff they are (separated Hausdorff space T1 space disconnected separated
A subspace of a real line is connected iff it is an ------------ open set open base open subbase interval interval
The closure of connected set is ------ disconnected spac connected seperable Hausdorff space connected
The set of real numbers with the usual topology is--------- disconnected spac connected seperable Hausdorff space conhected
The set of real numbers with metric--------- disconnected spac connected seperable Hausdorff space connected
The components of a totally------------- set X are singleton sets in ; disconnected spac connected seperable Hausdorff space connected
Ais -—--mmmm it is a union of two seperated sets disconnected spac connected seperable Hausdorff space disconnected space
The range of a --------------- function defined on a connected spac|equicontinuous  continuous real completely reguk continuous continuous
A subset Y of a topological space is dense in X if Y=X Y =x Y NOT=X Y subsex ¥ =x
Every closed interval in real line R is compact space |Hausdorff space |a null set disjoint compact space
A compact metric space is --------- separable disconnected non separable | connected separable
A metric space is lindel of space iff it is----------- first countable second countable third countability fourth countability second countable
A metric space is compact iffitis --- totally bounded & (completely regula complete regular totally bounded & complete
Every compact metric space is disconnected spac connected complete regular complete
Every sequentially compact metric space is ------------- totally bounded & (totally bounded |complete connected totally bounded
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Every compact metric space has

Urysohn's Lemma

Lebesgue coverin

Heine Boral The(weierstrass prope

weierstrass property

Every totally bounded metric space is

separable

dig€onnected

non separable

cofnected

sefarable

Every open cover of sequentially compact metric space has

lebesgue covering

lebesgue number

Urysohn's Lemm weierstrass prope

lebesgue number

A countably compact topological space has

Urysohn's Lemma

Lebesgue coverin

Heine Boral The(weierstrass prope

weierstrass property
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