Reg. No------(17MMP203)

KARPAGAM ACADEMY OF HIGHER EDUCATION COIMBATORE – 641021 DEPARTMENT OF MATHEMATICS SECOND SEMESTER I INTERNAL TEST- JAN'18 OPTIMIZATION TECHNIQUES Time: 2 Hours Maximum: 50 Marks Date: .01.18() Class: I M.Sc Mathematics

PART – A(20X1=20 Marks)

- 1. A LPP in which all or some of the decision variables are constrained to assume non negative integer values is called an -----
 - a) Integer programming problem
 - b) b) Dynamic programming problem
 - c) Non linear programming problem
 - d) d) Decision analysis
- 2. In a LPP, if all the variables in the optimal solution are restricted to assume non negative integer values, then it is called the ----
 - a) Zero one IPP b) **Pure IPP**
 - b) c) Mixed IPP d) Non IPP
- 3. In cutting algorithm, each cut involves the introduction of
 - a) an equality constraint

- b) less than or equal to constraint
- c) greater than or equal to constraint d)an artificial variable.

4. In the context of Branch and bound method, which of the following is not correct?

- a) It can be used to solve any kind of programming problem
- b) It divides the feasible region into smaller parts by the process of branching
- c) It is very usefull employed in problems where there a finite number of solutions
- d) It is not a standardised method and is applied differently for different problems
- 5. A systematic procedure for solving pure I.P.P is -----
 - a) Hungarian method b) **Cutting method**
- c) Revised simplex method d)Modi method
- 6. The fractional part of the negative number -7 / 3 is _____
 - a) 7/3 b) 1/3 c) **2/3** d) 5/3
- 7. _____ can be solved using Branch and Bound method

a) A travelling salesman problem

- b) assignment problem
- c) geometric problem
- d) simulation problem
- 8. The part of the feasible solution space eliminated by plotting a cut constraints _____
 - a) Onlynon integer solutions
 - b) only integer solutions
 - c) both integer and non integer solutions only
 - d) rational solutions

- 9. Which of the following is correct?
 - a) A linear programming problem with only one decision variable restricted to integer value is not an integer programming problem
 - b) An integer programming problem is an LPP with decision variables restricted to integer values.
 - c) A mixed IPP is one where mixed constraints are involved.
 - d) A pure IPP is one where all the decision variables are either zero or unity
- 10. _____ can be considered as a zero one programming problem.
 - a) A travelling salesman problem
 - b) assignment problem
 - c) geometric problem
 - d) simulation problem
- 11. While solving IP problem any non integer variable in the solution is picked up to _____
 - a) obtain the cut constraint b) enter the solution
 - c) leave the solution d) no solution
- 12. Which of the following is not an integer linear programming problem?
 - a) Zero one IPP b) Pure IPP

- c) Mixed IPP d)continuous IPP
 13. The mathematical Techniques of optimizing such a sequence of interrelated decisions over a period of time is called------.
 a) Integer programming problem
 b) Dynamic programming problem
 c) Non linear programming problem
 d) Decision analysis
 14. A stage in a dynamic programming problem represents
 a) number of decision alternatives
 b) status of the system at a particular state
 c) same time periods in the planning period
 d) different time periods in the planning period
 15. The variables which specify the condition of the decision
 - process or describe the status of the system at a particular stage are called ------
 - a) **State variables** b) decision variables
 - c) dependent variables d) independent variables

16. A decision making rule that at any stage permits a feasible

sequence of decisions is called_____

- a) State b) Stage c)Policy d) Optimal policy
- 17. Dynamic Programming Problem deals with the _____
 - a) multi stage decision making problems
 - b) single stage decision making problems
 - c) time independent decision making problems

- d) problems which fix the levels of different decision variables so as to maximize profit or minimize cost
- 18. Which of the following is not correct?
 - a) DP approach helps in reducing the computational efforts in sequential decision making
 - b) DPP can be divided into a sequence of smaller sub problems called stages of the original problem.
 - c) DP cannot be dealt with non linear constraints
 - d) The concept of dynamic programming is based upon the principle of optimality due to Bellman.
- 19. DP divides the problem into a number of -----
 - a) conflicting objective function **b) decision stages**
 - c) unrelated constraints d) policies
- 20. Which of the following is not correct?
 - a) DPP is solved starting from the initial stage to the next till the final stage is reached
 - b) DPP can be solved by simplex method
 - c) Optimum solution is DPP depends on the initial solution.
 - d) Computation in DPP are done recursively, in the sense that the optimum solution of one sub problem is used as an input to the next sub problem.

PART -B(3X2=6 MARKS) ANSWER ALL THE QUESTIONS

- 21 . Define Pure Integer Programming Problem.
- 22. Define Zero one Programming Problem.
- 23. What is dynamic programming.

PART -B(3X8=24 MARKS) ANSWER ALL THE QUESTIONS

24. a) Find the optimum integer solution to the following LPP Maximize $Z = x_1 + 4 x_2$ Subject to the constraints $2x_1 + 4x_2 \le 7$ $5x_1 + 3x_2 \le 15$ and $x_1, x_2 \ge 0$ and are integers (OR) b) Solve the following ILPP using Branch and Bound method Maximize $Z = 7x_1 + 9x_2$ Subject to the constraints $-x_1 + 3x_2 \leq 6$ $7x_1 + x_2 \le 35$ $x_2 \leq 7$ and x_1 , $x_2 \ge 0$ and are integers 25. a) Solve the following mixed integer programming problem. Minimize $Z = x_1 - 3x_2$

Subject to $x_1 + x_2 < 5$

$$-2x_1 + 4x_2 \le 11$$

and x_1 , $x_2 \ge 0$ and x_2 be an integers.

(OR) b) Use dynamic programming to solve the following LPP Maximize $Z = 3x_1 + 5x_2$ Subject to the constraints $x_1 \leq 4$ $3x_1 + 2x_2 \leq 18$ and $x_1, x_2 \ge 0$ 26. a) Divide a positive quantity c into n-parts in such a way that their product is maximum. (OR) b) Solve the following mixed integer programming problem. Maximize $Z = x_1 + x_2$ Subject to the constraints $2x_1 + 5x_2 \leq 16$ $6x_1 + 5x_2 \le 30$ and $x_2 \ge 0$ and x_1 is non negative integers.

		- b) holding cost + shortag	ge cost
		c) set up cost + purchasin	ng $cost + holding cost +$
Reg. No		shortage cost	
(17MMP203)		d) setup $cost + shortage$	cost
		6. The several alternatives availa	able are called
KARPAGAM ACAD	EMY OF HIGHER EDUCATION		
COIM	IBATORE – 641021	a) acts	b) payoff
DEPARTME	ENT OF MATHEMATICS	c) state of nature	d) outcome
SEC	OND SEMESTER	7. A situation in which a decisi	on maker knows all of the possible
II INTER	RNAL TEST- MAR'18	outcomes of a	decision andalso knows the
OPTIMIZ	ATION TECHNIQUES	probability associated with	each outcome is referred to as
Time: 2 Hours	Maximum: 50 Marks	a) certainty	b) risk
Date: .03.18()	Class: I M.Sc Mathematics	c) uncertainty	d) strategy
		8. Which one of the following d	oes measure risk?
		a) Coefficient of variance	b) Standard deviation
1. In DPP, the number of s	tage variable is the number of	c) Expected value	d) Expected variance
state variable		9. States of nature	_
a) equal to	b) not equal to	a) can describe uncontrollab	ble natural events such as floods or
c) greater than	d) lesser than	freezing temperatures	
2 may be defined	as the stock of goods, commodities or	b) can be selected by the de	cision maker
other economic resource	ces that are stored or reserved for smooth	c) cannot be enumerated by	the decision maker
and efficient running of	f business affairs	d) can not describe uncontro	ollable natural events
a) Inventory	b) Transportation c)	10. A NLP problem with non lin	ear objective function and linear
Oueueing	d) Sequencing	constraints such as NLP	
3. Holding cost is denoted	by	is called	
a) C_1 b)	\tilde{C}_2 c) C_3 d) C_4	a) Dynamic Programming	b) Quadratic programming
4. Elapsed time between th	e placement of the order and its receipts	c) Geometric Programming	d) Separable programming
in inventory is	1 1	11. In case of maximization of N	NLPP all the constraints must be
known as		converted into type	
a) lead time	b) recorder level	a) strictly less than	b) less than or equal to
c) EOQ	d) variables	c) strictly greater	d) greater than or equal to
5. Total inventory cost =		12. If the principle minor of bor	dered is positive, the
a) set up $cost + pure$	chasing cost	objective function is convex	
/ 1 1	5	a) Hessian matrix	b) Hermitan matrix

c) diagonal matrix	d) identity matrix				
13. A NLPP is solved using					
a) Lagrange multipliers	b) Simplex method				
c) Dual simplex method	d) Degeneracy multipliers				
14. A matrix that, for each state of n	ature and strategy, shows the				
difference between a strategy's	payoff and the best strategy's				
payoff is called					
a) a maximin matrix b)	a minimax regret matrix				
c) a payoff matrix d)	an expected utility matrix				
15. A graphical method of represent	ing events and course of action				
may be referred to as					
a) decision tree	b) decision criterion				
c) payoff table	d) strategy				
16. In constructing a tree diagram, d	ecision point is denoted by				
a) Circle b) Square	c) Triangle d) Dot				
17. In case of minimization of NLPP all the constraints must be					
converted into type					
a) strictly less than	b) less than or equal to				
c) strictly greater than	d) greater than or equal to				
18. Aof a convex function	n on a convex set is a unique				
global minimum of that functio	n.				
a) Local minimum	b) Local maximum				
c) weak minimum	d) weak maximum				
19. The method ofmultiplier	is a systematic way of				
generating the necessary condition	on for a stationary point				
a)Lagrange b) Cauchy s $20 \text{ V}^{\text{T}}\text{OV}$ is said to be if V	C) Euler's (d) Fourier $TOX > 0$ for $y \neq 0$				
20. A QA IS said to be II A	$QA > 0$ 101 X $\neq 0$				
a) Positive confine	d) negative semi definite				
c) i usitive senn definite	u) negative senn dennite				

PART -B(3X2=6 MARKS) ANSWER ALL THE QUESTIONS

21 . Define EOQ.

22. Define payoff matrix.

23. Define NLPP.

PART -B(3X8=24 MARKS) ANSWER ALL THE QUESTIONS

24. a) The probability	ity dis	tributi	on of a	month	ly sale	of a cer	rtain item
is as follows:							
Monthly sales:	0	1	2	3	4	5	6
Probability :	0.01	0.06	0.25	0.35	0.20	0.03	0.10
The cost of carryin	g inve	entory	is Rs.	30 per	unit i	ber mor	th and the

The cost of carrying inventory is Rs.30 per unit per month and the cost of unit shortage is Rs.70 per month. Determine the optimum stock level that minimizes the total expected cost.

(**OR**)

- b) Electro uses resin in its manufacturing process at the rate of 1000 gallons per month. It cost electro 100 to place an order. The following cost per gallon per month is 2, and the shortage cost per gallon is 10 .historical data show that the demand during lead time is uniform over the range(0,50) gallons. Determine the optimal ordering policy for Electro.
- 25. a) Explain about decision making under uncertainty.

(**OR**)

- b) A businessman has two independent investment portfolios A and B, available to him, but he lacks the capital to undertake both of them simultaneously. He can either choose A first and then stop, or if A is not successful, then take, B or vice versa. The probability of success of A is 0.6, while for B it is 0.4. Both investment schemes require an initial capital outlay of Rs.10,000 and both return nothing if the venture proves to be unsuccessful. Successful completion of A will return Rs.20, 000 (over cost) and successful completion of B will return Rs.24,000(over cost). Draw a decision tree in order to determine the best strategy.
- 26. a) A manufacturing company produces two products: Radios and TV sets. Sales-price relationships for these two products are given below:

Product	Quantity Demanded	Unit Price
Radios	$1500 - 5p_1$	p 1
TV sets	$3800 - 10p_2$	P ₂

The total cost functions for these two products are given by $200x_1 + 0.1x_2^2$ and $300x_2 + 0.1x_2^2$ respectively. The production takes place on two assembly lines. Radio sets are assembled on assembly line I and TV sets are assembled on assembly line II. Because of the limitations of the assembly-line capacities, the daily production is limited to no more than 80 radio sets and 60 TV sets. The production of both types of products requires electronic components. The production of each of these sets requires five units and six units of electronic equipment components respectively. The

electronic components are supplied by another manufacturer, and the supply is limited to 600 units per day. The company has 160 employees, i.e., the labour supply amounts to 160 man-days. The production of one unit of radio set requires 1 man-day of labour, whereas 2 man-days of labour are required for a TV set. How many units of radio and TV sets should the company produce in order to maximize the total profit? Formulate the problem as a non-linear programming problem.

(OR)

b) Solve the following LPP by using dynamic programming approach

$$\begin{array}{l} Max \ Z = 3x_1 + 5x_2\\ Subject \ to\\ x_1 \ \leq \ 4\\ x_2 \ \leq \ 6\\ 3x_1 + 5x_2 \ \leq \ 18\\ and \quad x_1, \ x_2 \ge \ 0 \end{array}$$

(Deemed to be University Established Under Section 3 of UGC Act 1956) Coimbatore – 641 021.

LECTURE PLAN DEPARTMENT OF MATHEMATICS

STAFF NAME: A.NEERAJAH SUBJECT NAME: Optimization Techniques

SUB.CODE: 17MMP203

SEMESTER: II

CLASS: I M.SC MATHEMATICS

S.No	Lecture Hours (Hr)	Topics to be covered	Support Materials
		Unit-I	
1	1	Integer Linear Programming Problem: Introduction and Types of Integer Linear Programming	R3: Chapter 3 : Pg.no:281
2	1	Concept of Cutting Plane	R4: Chapter10:Pg.no: 670-671
3	1	Gomory's All Integer Cutting Plane Method-Problems	R1: Chapter 7:Pg.no:126-128
4	1	Continuation on problems on Gomory's All Integer Cutting Plane Method	R4: Chapter10:Pg.no: 672-676
5	1	Gomory's mixed Integer Cutting Plane method-Problems	R1:Chapter 7 : Pg.no:129-130
6	1	Continuation on problems on Gomory's mixed Integer Cutting Plane method	R1:Chapter 7 : Pg.no:130-131
7	1	Branch and Bound Method - problems	R2: Chapter 6:Pg.no: 209-212
8	1	Continuation on problems on Branch and Bound Method	R2: Chapter 6:Pg.no: 213-218
9	1	Zero-One Integer Programming-problems	R3: Chapter 3:Pg.no: 282-283

10	1	Real life application in Integer Linear Programming.	R1:Chapter7: Pg.no:134-136
11	1	Recapitulation and discussion of possible questions	
Total	11Hrs		
		Unit-II	
1	1	Dynamic Programming problem: Introduction and Definitions	R3: Chapter 20: Pg.no:893-894
2	1	Characteristics of Dynamic Programming	R1:Chapter 13: Pg.no :236
3	1	Developing Optimal Decision Policy- problems	R3: Chapter20: Pg.no : 895-896
4	1	Continuation on problems on Developing Optimal Decision Policy	R4: Chapter13: Pg.no : 249-252
5	1	Dynamic Programming under Certainty- Model I-Shortest Route Problem.	R3: Chapter20: Pg.no: 896-897
6	1	Continuation on problems on Dynamic Programming under Certainty- Model I- Shortest Route Problem.	R3: Chapter20: Pg.no: 898-899
7	1	Model II- Multiplicative Separable Return Function& single additive constraint	R3: Chapter20: Pg.no: 899-901
8	1	Continuation on problems on Model II- Multiplicative Separable Return Function& single additive constraint	R3: Chapter20: Pg.no: 902-904
9	1	Model III-Additive Separable Return Function& single additive constraint	R3: Chapter20: Pg.no: 909-911
10	1	Continuation on problems on Model III- Additive Separable Return Function& single additive constraint	R3: Chapter20: Pg.no: 911-914
11	1	Model IV-Additivity Separable Return	R3: Chapter20: Pg.no: 920-922

		Function& single multiplicative constraint	
12	1	Dynamic Programming approach to solve LPP	R3: Chapter20: Pg.no: 922-924
13	1	Recapitulation and discussion of possible questions	
Total	13Hrs		

		Unit-III	
1	1	Probabilistic Inventory Model: Introduction and Real life application	T1: Chapter 14: Pg.no:551
2	1	Continuous review models	T1: Chapter 14: Pg.no:551-554
3	1	Probabilistic Economic order quantity (EOQ) Model-problems	T1: Chapter 14: Pg.no:554-555
4	1	Continuation on problems on Probabilistic Economic order quantity (EOQ) Model	T1: Chapter 14: Pg.no:556-558
5	1	Single-period with no setup model- problems	T1: Chapter 14: Pg.no:559-560
6	1	Continuation on problems on Single-period with no setup model	T1: Chapter 14: Pg.no:560-561
7	1	Single-period with setup model-problems	T1: Chapter 14: Pg.no:563-564
8	1	Continuation on problems on Single-period with setup model-problems	T1: Chapter 14: Pg.no:564-565
9	1	Multi period model-problems	T1: Chapter 14: Pg.no:565-567
10	1	Recapitulation and discussion of possible questions	
Total	10Hrs		
		Unit-IV	

	Batch
Decision Analysis: Introduction and Real	T1: Chapter 13:Pg.no:509-510
life application	
Decision making under certainty –problems	R5: Chapter 13:Pg.no:492-493
	TT1 C1 + 12 D = 510 511
Analytic hierarchy process-problems	11: Chapter 13:Pg.no:510-511
Continuation on problems on Analytic	T1: Chapter 13:Pg no:511-513
hierarchy process	
incluterly process	
Decisions under Risk- problems	R1: Chapter 16:Pg.no:289-290
Decision Trees-based expected value	T1: Chapter 13:Pg.no:520-522
criterion	
variations of the expected value criterion-	T1: Chapter 13:Pg.no:526-527
problems	
I Continuation on voluctions of the averaged	1111 Chamton 1210a no.507 500

6	1	Decision Trees-based expected value criterion	T1: Chapter 13:Pg.no:520-522
7	1	variations of the expected value criterion- problems	T1: Chapter 13:Pg.no:526-527
8	1	Continuation on variations of the expected value criterion-problems	T1: Chapter 13:Pg.no:527-528
9	1	Decisions under Uncertainty- problems	T1: Chapter 13:Pg.no:535-538
10	1	Continuation on problems on Decisions under Uncertainty	R1: Chapter 16:Pg.no:296-297
11	1	Real life application in Decision Analysis	R1: Chapter 16:Pg.no:297-299
12	1	Recapitulation and discussion of possible questions	
Total	12Hrs		
	L	Unit-V	
1	1	Non-linear Programming Methods: Introduction and Examples of NLPP	R1: Chapter 24:Pg.no:522-525
2	1	General NLPP -problem	R1: Chapter 24:Pg.no:525-526
3	1	Constrained optimization with equality constraints	R1: Chapter 24:Pg.no:526-528
4	1	Continuation on Constrained optimization	R1: Chapter 24:Pg.no:529-531

		with equality constraints	
5	1	Constrained optimization with inequality constraints	R1: Chapter 24:Pg.no:532-533
6	1	Graphical solution and Quadratic Programming	R1: Chapter 25:Pg.no:541-543
7	1	Continuation on problems on Graphical solution and Quadratic Programming	R1: Chapter 25:Pg.no:543-546
8	1	Wolfe's modified Simplex Methods	R1: Chapter 25:Pg.no:547-548
9	1	Continuation on problems on Wolfe's modified Simplex Methods	R1: Chapter 25:Pg.no:548-550
10	1	Beale's Method	R1: Chapter 25:Pg.no:550-553
11	1	Recapitulation and discussion of possible questions	
12	1	Discussion of previous ESE question papers	
13	1	Discussion of previous ESE question papers	
14	1	Discussion of previous ESE question papers	
Total	14Hrs		

SUGGESTED READINGS

TEXT BOOK

T1: Handy, A. Taha.(2007). Operations Research, Seventh edition, Prentice Hall of India Pvt Ltd, New Delhi.

REFERENCES

R1:Kanti swarup., Gupta, P. K. and Manmohan., (2006). Operations Research, Twelfth edition, Sultan Chand & Sons Educational Publishers, New Delhi.

R2:Panneerselvam, R., (2007). Operations Research, Second edition, Prentice Hall of India Private Ltd, New Delhi.

R3:Sharma, J. K., (2008). Operations Research Theory and Practice, Third edition, Macmillan India Ltd.

R4:Singiresu, S. Rao., (2006). Engineering Optimization Theory and Practice, Third edition New Age International Pvt Ltd, New Delhi.

R5:Sivarethina Mohan. R., (2005). Operations Research, First edition, Tata Mc Graw Hill Publishing Company Ltd, New Delhi.

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.

SYLLABUS

		Semester – II
17MMP203	OPTIMIZATION TECHNIQUES	LTPC
		4 0 0 4

Scope : This course has been intended to provide the knowledge in understanding the need and origin of the optimization methods which plays an essential role in present , future in the applications of Mathematics.

Objectives: To apply Mathematical techniques to model and analyze decision problems which play an essential role in the solution real life problems.

UNIT I

Integer Linear Programming: Types of Integer Linear Programming Problems - Concept of Cutting Plane - Gomory's All Integer Cutting Plane Method - Gomory's mixed Integer Cutting Plane method.Branch and Bound Method. - Zero-One Integer Programming – Real life application in Integer Linear Programming.

UNIT II

Dynamic Programming: Characteristics of Dynamic Programming Problem - Developing Optimal Decision Policy - Dynamic Programming under Certainty - DP approach to solve LPP. **UNIT III**

Probabilistic Inventory Model: Real life application -Continuous review models- Probabilistic Economic order quantity (EOQ) Model. Single-period models – No setup model – setup model. Multi period model.

UNIT IV

Decision Analysis: Real life application - Decision making under certainty- Analytic hierarchy process. Decisions under Risk- Decision Trees-based expected value criterion, variations of the expected value criterion. Decisions under Uncertainty Real life application in Decision Analysis **UNIT V**

Non-linear Programming Methods: Examples of NLPP - General NLPP - Graphical solution - Quadratic Programming - Wolfe's modified Simplex Methods - Beale's Method.

SUGGESTED READINGS

TEXT BOOK

T1:Handy, A. Taha.(2007). Operations Research, Seventh edition, Prentice Hall of India Pvt Ltd,New Delhi.

REFERENCES

- R1. Kanti swarup., Gupta, P. K. and Manmohan., (2006). Operations Research, Twelfth edition, Sultan Chand & Sons Educational Publishers, New Delhi.
- R2. Panneerselvam, R., (2007). Operations Research, Second edition, Prentice Hall of India Private Ltd, New Delhi.
- R3. Sharma, J. K., (2008). Operations Research Theory and Practice, Third edition, Macmillan India Ltd.
- R4. Singiresu, S. Rao., (2006). Engineering Optimization Theory and Practice, Third edition New Age International Pvt Ltd, New Delhi.

R5. Sivarethina Mohan. R., (2005). Operations Research, First edition, Tata Mc Graw Hill Publishing Company Ltd, New Delhi.

CLASS: IM.Sc MATHEMATICS COURSE CODE: 17MMP203 UN

COURSE NAME: Optimization Techniques UNIT: I(Integer Linear Programming) BATCH-2017-2019

<u>UNIT-I</u>

SYLLABUS

Types of Integer Linear Programming Problems - Concept of Cutting Plane - Gomory's All Integer Cutting Plane Method - Gomory's mixed Integer Cutting Plane method Branch and Bound Method. -Zero-One Integer Programming – Real life application in Integer Linear Programming

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: I(Integer Linear Programming) BATCH-2017-2019

INTEGER PROGRAMMING

In this section, we focus on a class of problems that are modeled as linear programs with the additional requirement that some requirement that some or all of the decision variable must be integer. Such problems are called **Integer Linear Programming Problems.** The use of integer variables provides additional modeling flexibility. As a result, the number of practical applications that can be addressed with LP methodology is enlarged and includes capital budgeting, distribution system Design, Location problems etc.

Types of integer Linear Programming Models

Formally, the general integer programming problem is

Maximize $f(\mathbf{x})$ s.t $g_j(x) = 0, \quad j = 1, 2, ..., m$ $h_i(x) \le 0, \quad i = 1, 2, ..., k$ $X = (x_1, x_2, ..., x_q, x_{q+1}, ..., x_n)$

Where $x_1, x_2, ..., x_q$ are integers for a given q. As problem remains essentially unsolved in the general case we confine our attentive to a useful simplification. We assume f and the hi's are **linear**, these are no gj's and all the variables in X must be nonnegative. Then the formulation can be expressed in matrix notation as

Maximize CX	 (1)
s.t	
$AX \leq b$	 (2)
$X \ge 0$	 (3)
x_1, x_2, \ldots, x_q , integers	 (4)

Where $X = (x_1, x_2, ..., x_{q+1}, ..., x_n)^T$, C is a 1 x n real vector, b is an m x 1 real vector, A is an m x n real matrix.

If q = n, the problem is termed an **all- integer linear programming problem**

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: I(Integer Linear Programming) BATCH-2017-2019

If 1 < q < n, the problem is termed a **mixed- integer linear programming problem.** If $(x_1, x_2, ..., x_q)$ is replaced by xj = 0 or 1, i =1, 2....n problem is termed a **zero-one programmed problem.**

Rounding (Graphical Solution)

One obvious approach to (1) - (4) is to neglect (4) and solve the resulting problem graphically. If the solution produced satisfies (4) then it must be optimal. If it does not then there are a number of options available. One straight forward strategy is to round the values of non integer values either up or down to achieve n integer solution.

Let us explore this idea on the following integer - programming problem:

(1) Max
$$z = 2x_1 + 3x_2$$

s.t

 $195x_1 + 273x_2 \le 1365$ $4x_1 + 40x_2 \le 140$ $x_1 \le 4$ $x_1 x_2 \ge 0$ and integer

The Linear programming version of this problem has been solved graphically in (fig 1.0) it can be been that the optimal solution is

 $(x_1, x_2) = (2.44, 3.26)$ Z = 14.66

Rounding the decision variable to the nearest integer value yields a solution of $x_1 = 2$ and $x_2 = 3$ for an objective function value of 13 or #13,000 annual cash flow. In fig 1, we shows the feasible solution points that provide integer values for x_1 and x_2 . Is the rounded solution (x_1 , x_2) = (2, 3) the optimal solution? The answer is no! as can be seen that the optimal integer solution is $x_1 = 4$ and $x_2 = 2$, with object function value of 14.00 or #14,000 annual cash flow.

Methods of Integer Programming

The section unveils the methods that guarantees to find an optimal solution (if one exists) to any integer – programming problem. The two broad approaches **Branch and Bound Technique** and **Cutting plane method**. The earlier technique starts with the continuous optimum; but systematically "partitions" the solution space into sub problems by deleting parts that contain no feasible integer points. The cutting methods systematically adding special "secondary" constraints, which essentially represent necessary conditions for integrality, the continuous solution space is gradually modified until its continuous optimum extreme points satisfies the integer conditions.

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: I(Integer Linear Programming) BATCH-2017-2019

The branch and bound algorithm was originally developed by A.H. Larid and A. G. Doig. However, R.J. Dakin's modification offers greater computational advantage and his version will be presented here.

Branch and Bond Solution

Е

]

BB is currently the most efficient general-purpose solution procedure or integer linear programs. The BB procedure begins by solving the LP Relaxation of the integer linear program. The LP Relaxation of the above problem is stated below,

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: I(Integer Linear Programming) BATCH-2017-2019

The Branch and bound solution procedure could be summarized as follows

- Solve the LP Relaxation of the IP at node 1 set UB value equal to the value of the LP Solution
- Find n feasible integer solution. Set LB equal to the valueo f the feasible integer solution
- 3. Is UB = LB? If yes, the optimal solution is the feasible solution with value = LB
- 4. Otherwise branch from the node with the greatest LP value. Find the variable (call it x_j) that is furthest from being integral. Create two branches and two descendant nodes; one with $x_j \le (x_j)$ and one with $x_j \ge (k_j) + 1$.
- 5. Solve the LP Relaxation at each of the descendant nodes, and record its LP value
- Re compute the upper bound by finding the maximum over all nod from which there are no branches
- Re compute the lower bound as the max value of all feasible integer solution found to date. Test for 93) and treat the decision arrive at accordingly.

Extension to Mixed-Integer Integer Programs

One of the advantage of BB Solution procedure for integer programming is that it is applicable to both all-integer and mixed-integer linear programs. To see how the BB solution approach can be applied to a mixed-integer linear program, let us return to problem (1) and suppose that x_2 was not required to be integer i.e.

Max $2x_1 + 3x_2$ s.t $195x_1 + 273x_2 \le 1365$ $4x_1 + 40x_2 \le 140$ $x_1 \le 4$ $x_1, x_2, \ge 0$ and x_1 integer The BB solution procedure is illustrated using the decision tree below:

From the above, since the upper and lower bound are equal, the optimal solution to the problem (original) with only x_1 required to be integer has been found. It is given by $x_1 = 3$ and $x_2 = 2.86$, with an objective function value of 14.58

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: I(Integer Linear Programming)BATCH-2017-2019

Gomory Cuts: Solution

First of all, we reformulate the problem from canonical to standard form:

 $\begin{array}{rcl} \min & x_1 - 2x_2 \\ t.c. & -4x_1 + 6x_2 + x_3 & = & 9 \\ & x_1 + x_2 + x_4 & = & 4 \\ & x \ge 0 & , & x_1, x_2 \in \mathbb{Z} \end{array}$

where x_3, x_4 are slack variables.

Using the simplex method applied to the feasible basis $x_B = (x_3, x_4)$, we obtain the following tableaux sequence (the pivot element is emphasized as p):

	T ₁	To	T_{α}	<i>T</i> 4		x_1	x_2	x_3	x_4		T.	T.	T.	T.
	m 1	w2	*3			1	0	1	0		<i>u</i> 1	⁴ 2	-23	44
0	1	-2	0	0	3	- 3	0	3	0	$\frac{7}{2}$	0	0	$\frac{3}{10}$	1
9	-4	6	1	0	3	$-\frac{2}{3}$	1	1 6	0	5	0	1	1	2
~	-1		1		-	- T		×.		2	l .		10	- 5
4	1	1	0	1	2		0	- 16	1	2	1	0	$-\frac{1}{10}$	25

Therefore the optimal solution of the relaxation is $\bar{x} = (\frac{3}{2}, \frac{5}{2})$, with slack variables $x_3 = x_4 = 0$ (also see the figure below).

From the optimal tableau, we derive a Gomory cut from the first row $x_2 + \frac{1}{10}x_3 + \frac{2}{5}x_4 = \frac{5}{2}$. The Gomory cut is expressed as

$$x_i + \sum_{j \in N} \lfloor \bar{a}_{ij} \rfloor x_j \le \lfloor \bar{b}_i \rfloor,$$
 (10.1)

where N is the set of indices of the nonbasic variables and i is the index of the chosen row. In this case, we obtain $x_2 \leq 2$.

We now have to add the Gomory cut $x_2 \leq 2$ in the current (optimal) simplex tableau. By definition, a valid cut "cuts off" the current optimal relaxed solution from the feasible region, the currently optimal

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: I(Integer Linear Programming) BATCH-2017-2019

basis ceases to be feasible after the Gomory cut is inserted. The primal simplex algorithm relies on having a feasible basis at all times, so it cannot be used. The dual simplex algorithm, on the other hand, relies on having a basis which is always optimal (or super-optimal) and works towards reaching feasibility. The currently optimal basis becomes "super-optimal" after the insertion of the Gomory cut in the sense that the new optimal solution will surely have a higher objective function value (recall we are minimizing the objective) since it is constrained by one more inequality.

In order to insert the constraint $x_2 \leq 2$ in the tableau it is necessary to express it in function of the nonbasic variables x_3, x_4 . If from (10.1) we subtract the *i*-th row of the optimal tableau

$$x_i + \sum_{j \in N} \bar{a}_{ij} x_j \le \bar{b}_i$$

we obtain the Gomory cut in fractional form:

$$\sum_{j \in N} (\lfloor \bar{a}_{ij} \rfloor - \bar{a}_{ij}) x_j \le (\lfloor \bar{b}_i \rfloor - \bar{b}_i).$$

Applied to our instance this is:

$$-\frac{1}{10}x_3 - \frac{2}{5}x_4 \le -\frac{1}{2}.$$

Since the simplex algorithm in tableau form requires all inequalities to be in equation form, we need to add a slack variable $x_5 \ge 0$ to the problem:

$$-\frac{1}{10}x_3 - \frac{2}{5}x_4 + x_5 = -\frac{1}{2}.$$

In this form, the equation can be added to the currently optimal tableau, which gains a new row and column (corresponding respectively to the new cut and the new slack variable, which is inserted in the basis):

	x_1	x_2	x_3	x_4	x_5
$\frac{7}{2}$	0	0	$\frac{3}{10}$	1 5	0
5/2	0	1	T 10	25	0
$\frac{3}{2}$	1	0	$-\frac{1}{10}$	3	0
$-\frac{1}{2}$	0	0	$-\frac{1}{10}$	$-\frac{2}{5}$	1

The new row corresponds to the Gomory cut $x_2 \leq 2$, depicted in the figure below as constraint (3).

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: I(Integer Linear Programming) BATCH-2017-2019

We carry out an iteration of the dual simplex algorithm using the new tableau. The reduced costs are all non-negative, but $\bar{b}_3 = -\frac{1}{2} < 0$ implies that $x_5 = \bar{b}_3$ has nagative value and so is not primal feasible (recall $x_5 \ge 0$ is a constraint in the problem). We pick x_5 to exit the basis. The entering variable is given by the index j such that

$$j = \operatorname{argmin}\{\frac{\bar{c}_j}{|\bar{a}_{ij}|} \mid j \le n \land \bar{a}_{ij} < 0\},\$$

which in this case is the minimum index in $\{3, \frac{1}{2}\}$, i.e. j = 4. Therefore x_4 enters the basis instead of x_5 , and the pivot element is that indicated in the tableau above. We get the new tableau

	x_1	x_2	x_3	x_4	x_5
$\frac{13}{4}$	0	0	$\frac{1}{4}$	0	$\frac{1}{2}$
2	0	1	0	0	1
$\frac{3}{4}$	1	0	$-\frac{1}{4}$	0	32
<u>5</u> 4	0	0	$\frac{1}{4}$	1	$-\frac{5}{2}$

with optimal solution $\bar{x} = (\frac{3}{4}, 2)$. The solution is not yet integer, so we choose the second row:

x

$$x_1 - \frac{1}{4}x_3 + \frac{3}{2}x_5 = \frac{3}{4},$$

whence we obtain the Gomory cut

$$1 - x_3 + x_5 \le 0$$
,

which expressed in the original problem variable is

$$-3x_1 + 5x_2 \le 7.$$

The fractional form of this Gomory cut is

$$-\frac{3}{4}x_3 - \frac{1}{2}x_5 \le -\frac{3}{4}$$

We insert it in the tableau as before and we obtain:

Prepared by A. NEERAJAH, Asst Prof, Department of Mathematics, KAHE

Page 10/13

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: I(Integer Linear Programming)BATCH-2017-2019

	x_1	x_2	x_3	x_4	x_5	x_6
$\frac{13}{4}$	0	0	$\frac{1}{4}$	0	$\frac{1}{2}$	0
2	0	1	0	0	1	0
34	1	0	$-\frac{1}{4}$	0	$\frac{3}{2}$	0
<u>5</u> 4	0	0	$\frac{1}{4}$	1	$-\frac{5}{2}$	0
$-\frac{3}{4}$	0	0	$-\frac{3}{4}$	0	$-\frac{1}{2}$	1

where the pivot element is emphasized (row 4 was selected because $\bar{b}_4 < 0$, column 5 because $\frac{\bar{c}_3}{|\bar{a}_{43}|} = \frac{1}{3} < 1 = \frac{\bar{c}_5}{|\bar{a}_{45}|}$). Pivoting yields

	x_1	x_2	x_3	x_4	x_5	x_6
3	0	0	0	0	$\frac{1}{3}$	$\frac{1}{3}$
2	0	1	0	0	1	0
1	1	0	0	0	53	$-\frac{1}{3}$
1	0	0	0	1	$-\frac{8}{3}$	$\frac{1}{3}$
1	0	0	1	0	$\frac{2}{3}$	$-\frac{4}{3}$

which corresponds to the optimal integer solution $x^* = (1, 2)$ depicted below.

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: I(Integer Linear Programming) BATCH-2017-2019

POSSIBLE QUESTIONS

ANSWER ALL THE QUESTIONS (5X6=30)

```
1. Find the optimum integer solution to the following LPP
          Maximize Z = x_1 + 4 x_2
         Subject to the constraints
             2x_1 + 4x_2 \le 7, 5x_1 + 3x_2 \le 15 and x_1, x_2 \ge 0 and are integers
 2. Solve the following ILPP using Branch and Bound method
          Maximize Z = 7x_1 + 9x_2
         Subject to the constraints
            -x_1 + 3x_2 \le 6,7x_1 + x_2 \le 35, x_2 \le 7 and x_1, x_2 \ge 0 and are integers
3. Solve the following IPP.
            Minimize Z = -2x_1 - 3x_2
            Subject to
             2x_1 + 2x_2 \le 7, x_1 \le 2, x_2 \le 2 and x_1 \ge 0, x_2 \ge 0 and are integers.
4. Solve the following mixed integer programming problem.
             Minimize Z = x_1 - 3x_2
            Subject to
              x_1 + x_2 \le 5, -2x_1 + 4x_2 \le 11 and x_1, x_2 \ge 0 and x_2 be an integers.
5. Find the optimum integer solution to the following IPP.
     Maximize Z = x_1 + x_2
        Subject to
             2x_1 + 5x_2 \le 16, 6x_1 + 5x_2 \le 30 and x_1 \ge 0, x_2 \ge 0 and are all integers.
6. Use Branch and Bound method to solve the following:
             Maximize Z = 2x_1 + 2x_2
          Subject to
            5x_1 + 3x_2 \le 8, x_1 + 2x_2 \le 4 and x_1 \ge 0, x_2 \ge 0 and are all integers.
7. Find the optimum integer solution to the following LPP.
     Maximize Z = x_1 + 2x_2
                  Subject to the Constraints
                       2x_2 \le 7, x_1 + x_2 \le 7, 2x_1 \le 11 and x_1 \ge 0, x_2 \ge 0 and are all integers.
```

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: I(Integer Linear Programming)BATCH-2017-2019

COMPULSORY (1X10=10)

1. Solve the following mixed integer programming problem.

Minimize $Z = 10x_1 + 9x_2$ Subject to the Constraints

 $x_1 \le 8, x_2 \le 10, 5x_1 + 3x_2 \ge 45 \text{ and } x_1, x_2 \ge 0, x_1 \text{ be an integers.}$

2. Find the optimum integer solution to the following LPP.

Maximize $Z = 2x_1 + 2x_2$

Subject to the constraints

 $5x_1 + 3x_2 \le 8$, $2x_1 + 4x_2 \le 8$ and $x_1 \ge 0$, $x_2 \ge 0$ and are integers.

3. Solve the following mixed integer programming problem.

Maximize $Z = x_1 + x_2$ Subject to the constraints

 $2x_1 + 5x_2 \le 16$, $6x_1 + 5x_2 \le 30$ and $x_2 \ge 0$ and x_1 is non negative integers.

CLASS: IM.Sc MATHEMATICS COURSE CODE: 17MMP203

COURSE NAME: Optimization Techniques UNIT: II(Dynamic Programming) BATCH-2017-2019

UNIT-I

SYLLABUS

Characteristics of Dynamic Programming Problem - Developing Optimal Decision Policy - Dynamic Programming under Certainty - DP approach to solve LPP.

Dynamic Programming

Knapsack

 Subproblem I: $x_3 = 0$ Sum

 Max $8x_1 + 11x_2 + 4x_4$ 1

 $5x_1 + 7x_2 + 3x_4 \le 14$ 1

 $\begin{array}{l} \textbf{Subproblem 2: } x_3 = 1 \\ Max \ 6 \ + \ 8x_1 \ + \ 11x_2 \ + \ 4x_4 \\ 5x_1 \ + \ 7x_2 \ + \ 3x_4 \ \le \ 10 \end{array}$

Note that every subproblem is characterized by the set of remaining objects (variables) and the total **budget** (the righthand side). Observe that the above two subproblems only differ in the value of budget (as we can ignore the absolute constant in the objective function). We should exploit this symmetry.

Instead of solving just for 10 and 14, we solve the subproblem for **all** meaningful values of the right-hand side (here for values 1, 2, ..., 14). Having done that, we pick the best solution. This may seem wasteful but it can actually be faster. To make this work efficiently, we branch systematically on variables $x_1, x_2, ...$

Let us describe it first more generally. Consider the problem (all coefficients are integers)

 $\begin{array}{l} \max \ c_{1}x_{1} + c_{2}x_{2} + \ldots + c_{n}x_{n} \\ d_{1}x_{1} + d_{2}x_{2} + \ldots + d_{n}x_{n} \leq B \\ x_{1}, \ldots, x_{n} \in \{0, 1\} \end{array}$

For every $i \in \{1, ..., n\}$ and $j \in \{1, ..., B\}$, we solve a subproblem with variables $x_1, ..., x_i$ and budget j.

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: II(Dynamic Programming)BATCH-2017-2019

 $\max_{\substack{c_1x_1 + c_2x_2 + \dots + c_tx_t \\ d_1x_1 + d_2x_2 + \dots + d_tx_t \le j}} x_1, \dots, x_t \in \{0, 1\}$

Let $f_t(j)$ denote the value of this solution. We want the value of $f_n(B)$.

How can we calculate $f_i(j)$? We observe that the optimal solution consisting of first *i* items either contains the *i*-th item or it does not. If it does not contain the *i*-th item, then the value of $f_i(j)$ is the same as that of $f_{i-1}(j)$; the best solution using just the first i - 1 items. If, on the other hand, an optimal solution using the first *i* items contains the *i*-th item, then removing this item from the solution gives an **optimal solution** for first i - 1 items. If, on the other hand, an optimal solution for first i - 1 items (Convince yourself of this fact.) So the value of $f_i(j)$ is obtained by taking $f_{i-1}(j - d_i)$ and adding the value c_i of item *i*. We don't know which of the two situations happens, but by taking the better of the two, we always choose correctly.

What this shows is that from optimal solutions to smaller subproblems we can build an optimal solution to a larger subproblem. We say that the problem has **optimal substructure**.

As we just described, the function $f_t(j)$ satisfies the following recursion:

 $f_i(j) = \left\{ \begin{array}{ll} 0 & i = 0 \\ \max\left\{ f_{t-1}(j), c_t + f_{t-1}(j-d_t) \right\} & i \ge 1 \end{array} \right.$

We can calculate it by filling the table of all possible values.

$f_i(j)$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	8	8	8	8	8	8	8	8	8	8	
2	0	0	0	0	0	8	8.	_11	11	11	11	11	19	19	19	
3	0	Ø	0	0	6	8	8	11	11	14+	-14	17	19	19	19	
4	0	Ð	0	4	6	8	8	11	12	14	15	17	19	19	21	

CLASS: IM.Sc MATHEMATICS COURSE CODE: 17MMP203

COURSE NAME: Optimization Techniques UNIT: II(Dynamic Programming) BATCH-2017-2019

The longest path (in **bold**) from s to t = (4, 14) gives the optimal solution.

Dynamic programming characteristics

Problem can be divided into stages

- Each stage has a (finite) number of possible states, each associated a value.
- Next stage only depends on the values of states of the previous stage

Resource allocation

Knapsack with fixed costs.

Investment 1: investing $x_1 > 0$ dollars yields $c_1(x_1) = 7x_1 + 2$ dollars, where $c_1(0) = 0$ **Investment 2:** investing $x_2 > 0$ dollars yields $c_2(x_2) = 3x_2 + 7$ dollars, where $c_2(0) = 0$ **Investment 3:** investing $x_3 > 0$ dollars yields $c_3(x_3) = 4x_3 + 5$ dollars, where $c_3(0) = 0$

(Note that if no money is invested, then there is no yield; the yield is non-linear.)

Suppose that we can invest \$6,000 and each investment must be a multiple of \$1,000. We identify stages

stages: in stage i, we consider only investments 1, ..., i.

states: the available budget as a multiple of \$1,000, up to \$6,000.

values: $f_i(j) = \text{maximum yield we can get by investing } j \text{ thousands of $ into investments #1,...,#i.}$

total cost \$0,50

total cost \$5.00

total cost \$6.50

total cost \$8,00

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: II(Dynamic Programming)BATCH-2017-2019

Inventory problem

A company must meet demand in the next four months as follows: month 1: $d_1 = 1$ unit, month 2: $d_2 = 3$ units, month 3: $d_3 = 2$ units, month 4: $d_4 = 4$ units. At the beginning of each month it has to be determined how many units to produce. Production has a setup cost of \$3 and then \$1 for each unit. At the end of the month there is holding cost \$0.50 for each unit at hand. The company's warehouse can store up to 4 units from month to month. The capacity

of the production line allows at most 5 units to be produced each month. Initially no products at hand. Determine the minimum cost of production that meets the demand.

stages: production until (and including) month i

states: number of units at hand at the end of month i

values: $f_i(j)$ = the minimum cost of production that ends in month *i* with *j* units in the inventory

For example, if we have 4 units at the end of month 2, then we meet month 3 demand of 3 units if we either

- do not produce and are left with 1 unit, held for \$0.50
- pay setup cost \$3, produce 1 units for \$1, and are left with 2 units, held for \$1

• pay setup cost \$3, produce 2 units for \$2, and are left with 3 units, held for \$1.50

• pay setup cost \$3, produce 3 units for \$3, and are left with 4 units, held for \$2

Note that in our calculation with already include the holding cost.

Shortest paths

All-pairs Shortest Paths: (Floyd-Warshall) given a network G = (V, E) where each edge $(u, v) \in E$ has length/cost c_{uv} , determine the distance between every pair of nodes.

We can solve this problem using dynamic programming as follows. We label the vertices v1, v2,..., vn.

stages: in stage i consider only shortest paths going through intermediate nodes v1,...,vi

values: $f_i(u, v) = \text{minimum}$ length of path from u to v whose all intermediate nodes are among v_1, \ldots, v_n .

$$f_0(u,w) = \begin{cases} 0 & u = w\\ c_{uw} & uw \in E\\ \infty & uw \notin E \end{cases}$$

$$f_i(u,w) = \min\left\{f_{i-1}(u,w), f_{i-1}(u,v_i) + f_{i-1}(v_i,w)\right\} \quad \text{for } i \ge 1$$

Single-source Shortest Paths: (Bellman-Ford) find distances from a fixed source s to all other vertices

CLASS: IM.Sc MATHEMATICS COURSE CODE: 17MMP203 UNIT: II(Dv

COURSE NAME: Optimization Techniques

stages: in stage i consider only shortest paths using at most i edges values: $f_i(u) = minimum length of a path going from s to u and having at most i edges$

We have $f_0(s) = 0$ and $f_0(u) = \infty$ for all $u \neq s$, since we cannot use any edge at this stage. For later stages:

$$f_i(u) = \min \left\{ f_{i-1}(u), \min_{\substack{v \in V \\ v v \in E}} \left\{ f_{i-1}(v) + c_{vu} \right\} \right\}$$

Knapsack revisited

 $\begin{array}{l} \max \ c_{1}x_{1} \ + \ c_{2}x_{2} \ + \ \dots \ + \ c_{n}x_{n} \\ d_{1}x_{1} \ + \ d_{2}x_{2} \ + \ \dots \ + \ d_{n}x_{n} \ \leq \ B \\ x_{1}, \dots, x_{n} \ \in \ \{0, 1\} \\ f_{i}(j) = \text{optimal solution using first } i \text{ items and bag of size } j \\ f_{i}(j) = \begin{cases} -\infty \ j < 0 \\ 0 \ i = 0 \\ \max \left\{ f_{i-1}(j), \ c_{i} + f_{i-1}(j-d_{i}) \right\} \\ i \ge 1 \end{cases}$

CLASS: IM.Sc MATHEMATICS COURSE CODE: 17MMP203 UN

COURSE NAME: Optimization Techniques UNIT: II(Dynamic Programming) BATCH-2017-2019

Alternative recursion (only for unbounded Knapsack)

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: II(Dvnamic Programming) BATCH-2017-2019

Scheduling

We have 7 jobs j_1, j_2, \ldots, j_7 with processing times p_1, p_2, \ldots, p_7 given as follows: job j ji ja ja ja ja ja ja processing 10 8 6 5 4 4 3 time p₁ We wish to schedule all 7 jobs on 2 machines. The goal is to minimize the completion time of all jobs. n jobs j₁,..., j_n processing times p1,..., pn $x_{ij} = 1$ i = 1, ..., n Σ m machines $y_i x_{ij} \le z$ i = 1, ..., m $x_{ij} = \begin{cases} 1 & \text{if job } i \text{ scheduled on machine } j \\ 0 & \text{otherwise} \end{cases}$ $x_{ij} \in \{0, 1\}$ stages: at stage i we schedule first i jobs j1,..., ji state: pair (t_1, t_2) denoting used up time t_1 on machine #1 and time t_2 on machine #2 value: $f_i(t_1, t_2) = 1$ if it is possible to schedule first *i* jobs on the two machines using t_1 time on machine #1 and t2 time on machine #2; $f_i(t_1, t_2) = 0$ if otherwise (Note that the order of the jobs does not matter here; only on which machine each job is executed.) $t_1 < 0 \text{ or } t_2 < 0$ i = 0recursion: $f_t(t_1, t_2) =$ $\max \left\{ f_{i-1}(t_1 - p_i, t_2), f_{i-1}(t_1, t_2 - p_i) \right\} \quad i \ge 1$ We either execute job j, on machine #1 or on machine #2. We pick better of the two options. answer: is given by taking smallest t such that $f_7(t, t) = 1$ Machine#1 12 j4 Machine#2 Ĵ4 10 (How would you formulate the problem for 3 machines instead of 2?) Machine#1 Í4 Machine#2 Machine#3 Average Completion time: longest job last, assign to machines in a round robin fashion -> optima Machine#1 i. j, Machine#2 j2 j, Machine#3 Average completion time = $8\frac{3}{2} \sim 8.43$ (note that moving j_7 to any other machine does not change the average)

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: II(Dynamic Programming) BATCH-2017-2019

POSSIBLE QUESTIONS

ANSWER ALL THE QUESTIONS (5X6=30)

1. Solve the following LPP by using dynamic Programming approach Max $Z = 3x_1 + 5x_2$ Subject to $x_1 \le 4, x_2 \le 6, 3x_1 + 5x_2 \le 18 \text{ and } x_1, x_2 \ge 0$ 2. By dynamic programming technique, solve the problem. Min $Z = x_1^2 + x_2^2 + x_3^2$ Subject to $x_1+x_2+x_3 \ge 15$ and $x_1,x_2,x_3 \ge 0$. 3. Factorize a positive quantity b into n factors in such a way that the sum of their squares is a minimum. 4.Use dynamic programming to solve the following LPP Maximize $Z = 3x_1 + 5x_2$ Subject to the constraints $x_1 \le 4, \ 3x_1 + 2x_2 \le 18 \text{ and } x_1, \ x_2 \ge 0$ 5. Divide unity n parts so as to minimize the quantity $\sum p_i \log p_i$. 6.Solve the following LPP using dynamic programming principles: Maximize $Z = 2x_1 + 5x_2$ Subject to the constraints $2x_1 + x_2 \le 43, 2x_2 \le 46 \text{ and } x_1, x_2 \ge 0.$ 7. Solve the following by dynamic programming. Minimize $Z = y_1^2 + y_2^2 + \dots + y_n^2$ Subject to the Constraints $y_1 y_2....y_n = b \text{ and } y_1 , y_2 , y_n \ge 0$

COMPULSORY (1X10=10)

1. Use dynamic programming, Solve

Maximum $Z = y_1 \cdot y_2 \cdot y_3$ Subject to the Constraints

 $y_1 + y_2 + y_3 = 5$ and $y_1, y_2, y_3 \ge 0$

2. Divide a positive quantity c into n-parts in such a way that their product is maximum.3.Solve the following LPP using dynamic programming approach:

 $\begin{array}{l} Maximize \ Z=8x_1+7x_2\\ \mbox{Subject to the constraints}\\ 2x_1+x_2 \leq 8{,}5x_1+2x_2 \leq 15\mbox{and } x_1, x_2 \geq 0 \end{array}$
CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: III(Probabilistic Inventory Model)BATCH-2017-2019

UNIT-III

SYLLABUS

Real life application -Continuous review models- Probabilistic Economic order quantity (EOQ) Model. Single-period models – No setup model – setup model. Multi period model.

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: III(Probabilistic Inventory Model)BATCH-2017-2019

INTRODUCTION

An inventory can be defined as any idle resource of an enterprise. An inventory problem exists when it is necessary to stock physical goods or commodities for the purpose of satisfying demand over a specified time horizon (finite or infinite). Almost every business must stock goods to ensure smooth and efficient running of its operation. Decisions regarding how much and when to order are typical of every inventory problem. The required demand maybe satisfied by stocking once for the entire time horizon or by stocking separately for every time unit of the horizon. The two extreme situations (overstocking and under-stocking) are costly. Decisions may thus be based on the minimization of an appropriate cost function that balances the total costs resulting from over-stocking and under-stocking.

A GENERALIZED INVENTORY MODEL

The ultimate objective of an inventory model is to answer two questions.

- 1. How much to order?
- 2. When to order

The answer to the first question is expressed in terms of what we call the <u>order</u> <u>quantity</u> and the when-to-order decision is the inventory level at which a new order should be placed usually expressed in terms of <u>re-order point</u>.

The order quantity and re-order pint are normally determined by minimizing the total inventory cost that can be expressed as a function of these two variables. We can summarize the total cost of a general inventory model as a function of its principal components in the following manner:

(Total inventory cost) = (purchasing cost) + (setup cost) + (holding cost) + (shortage cost)

TYPES OF INVENTORY MODELS

In general, inventory models are classified into two categories:

- 1. Deterministic model and
- 2. Stochastic model

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: III(Probabilistic Inventory Model)BATCH-2017-2019

Definitions:

- Delivery lags or lead times is the time between the placement of an order and its receipt and may be deterministic or stochastic.
- Time Horizon defined the period over which the inventory level will be controlled. This horizon may be finite or infinite depending on the time period which demand can be forecast reliably.
- 3. Stock replacement: Although an inventory system may operate with delivery lags. The actual replenishment of stock may occur instantaneously or uniformly. Instantaneous replenishment can occur when the stock is purchased from outside sources. Uniform replenishment may occur when the product is manufactured locally within the organization.

DETERMINISTIC MODEL (Single item static model)

The simplest type of inventory model occurs when demand is constant over time with instantaneous replenishment and no shortages. Typical situations to which this model may apply are:

- 1. The use of light bulbs in a building
- 2. The use of clerical supplies, such as paper, pads and pencil in a large company
- 3. The consumption of staple food items, such as bread and milk

Fig (1) illustrates the variation of the inventory level. It is assumed that demand occurs at the rate β (per unit time). The highest level of inventory occurs when the inventory level reaches zero level y/ β time units after the order quantity y is received.

CARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: III(Probabilistic Inventory Model) BATCH-2017-2019

The smaller the order quantity y, the more frequent will be the placement of new orders. However, the average level of inventory hold in stock will be reduced. On the other hand, larger order quantities indicate larger inventory level but less frequent placement of order (see fig. 2).

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: III(Probabilistic Inventory Model) BATCH-2017-2019

Because there are costs associated with placing orders and holding inventory in stock, the quantity y is selected to allow a compromise between the two types of costs. This is the basis for <u>formulating the inventory model</u>.

Let K be the set up cost incurred every time an order is placed and assume that the holding cost per unit inventory per unit time is k. Hence, the total cost per unit time TCU as a function of y may be written as

TCU (y) = Setup cost/unit time + holding cost/unit time

TCU (y) =
$$\frac{\mathbf{k}}{\mathbf{y}/\beta} + \mathbf{h} (\mathbf{y}/2)$$

As seen from fig. (1), the length of each inventory cycle is to = y / β and the average inventory in stock is y/2

The optimum value of y is obtained by minimizing TCU (y) with respect to y. Thus, assuming that y is a continuous variable, we have

$$\frac{dTCU(y)}{dy} = k\beta/y + h/2 = 0$$

Which yields the optimum order quantity as

$$y = \sqrt{\frac{2k\beta}{h}}$$

(It can be proved that y minimizes TCU(y) by showing that the 2nd derivates at y is strictly positive). The order quantity above is usually referred to as <u>Wilson's economic lot</u> size.

The optimum policy of the model calls for ordering units every to time units. The optimum cost TCU (y) obtained by direct substitution is $\sqrt{2k/\beta}$.

EXAMPLE 1:

The daily demand for a commodity is approximately 100 units. Every time an order dared, fixed cost is N100 is incurred. The daily holding cost per unit inventory if N0.02. If the lead time is 12 days. Determine the economic lot size and the re-order point

SOLUTION:

From the earlier formula the economic lot size is

$$y = \sqrt{\frac{2k\beta}{\hbar}}$$

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: III(Probabilistic Inventory Model) BATCH-2017-2019

 $=\sqrt{2*100*/0.02} = 1000$ units

The associated optimum cycle length is this given as

$$b_0^* = \frac{y_8}{g} = 1000/100 = 10 \text{ days}$$

Since the lead time is 12 days add the cycle length is 10 days re-ordering occurs when the level of inventory is sufficient to satisfy the demand for two (- 12, 10) days. Thus the quantity $y^* = 1000$ is ordered when the level of inventory reaches 2 * 100 = 200 units.

Notice that the "effective" lead time is taken equal to 2 days rather than 12 days. This result occurs because the lead time is longer than t_0^* .

EXAMPLE 12:

A manufacturer has to supply his customer' with 600 units of his product per year. Shortages are not allowed and the shortage cost amounts to N0.60 per and per year. The setup cost per run is N80.00. Find the optimum run size and minimum average yearly cost.

Solution:

Since $\beta = 600$ units/year

K = N80.00h = N0.06

$$y = \sqrt{\frac{2k\beta}{h}}$$

 $\sqrt{2 * 80 * 600 / 0.06} = 400$ units opt. run time

And the minimum average yearly $\cot x = \sqrt{2k\beta h}$

 $=\sqrt{2 * 80 * 60 * 0.60}$

= N240.00

EXERCISES

 XYZ Company purchases a component used in the manufacturing automobile generators directly from the suppliers. XYZ's generator production which is operated at a constant rate will required 1000 components per month throughout the year (12,000 units annually). If ordering cost is N25 per order, unit cost is

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: III(Probabilistic Inventory Model)BATCH-2017-2019

N200 per component and annual inventory holding costs are charged at 20%.

Answer the following inventory policy question for XYZ

- a. What is the economic order quantity (EOQ) for this component?
- b. What is the length of cycle time in months?

c. What are the total annual inventory building and ordering cost associated with your recommended EOQ?

- The demand for a particular item is 18,000 units per year. The holding cost per unit is N1.20 per year, and the cost of the replenishment rate is instantaneous. Determine
 - a. Optimum order quantity
 - b. Number of orders per year
 - c. Time between orders and
 - d. Total cost per year when the cost of 1 unit is N1.00

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: III(Probabilistic Inventory Model)BATCH-2017-2019

- Economic Order Quantity (EOQ)
- Graphical Metod

Concept of Economic Ordering Quantity (EOQ)

The concept of *economic ordering quantity* was first developed by *F. Harris* in 1916. The concept is that management is confronted with a set of opposing costs-as the lot size (*q*) increases, the carrying charges (*C*) will increase while the ordering costs (*C3*) will decrease. On the other hand, as the lot size (*q*) decreases, the carrying cost (*C*) will decrease but the ordering costs will increase (assuming that only minor deviations from these trends may occur). Thus, *economic ordering quantity* (EOQ) is that size of order which minimizes total annual (or other time period as determined by individual firms) cost of carrying inventory and cost of ordering under the assumed conditions of certainty and that annual demands are known. The concept of EOQ applies to items, which are replenished periodically into inventory in lots covering several periods' need. The EOQ concept is applicable under the following conditions:

a. The item is replenished in lots or batches, either by purchasing or by manufacturing.

b. Consumption of items (or sales or usage rate) is uniform and continuous.

EOQ is that order quantity or optimal order size which minimises the total cost. The model is described under the following situations:

- i. Planning period is one year.
- ii. Demand is deterministic and indicated by parameter D units per year.
- iii. Cost of purchases, or of one unit is C.
- iv. Cost of ordering (or procurement cost of replenishment cost) is C3or Co For manufacturing goods, it is known as set-up cost.
- v. Cost of holding stock (also known as inventory carrying cost) is C1or Cb per unit per year expressed either in items of cost per unit per period or in terms of percentage charge of the purchase price.
- vi. Shortage cost (mostly it is back order cost) is C2or Cs per unit per year.
- vii. Lead time is L, expressed in unit of time.
- viii. Cycle period in replenishment is t.
- ix. Order size is Q.

Determination of EOQ by Trial and Error Method (or Tabular Method)

This method involves the following steps:

Step 1. Select a number of possible lot sizes to purchase.

Step 2. Determine total cost for each lot size chosen.

Step 3. Finally, select the ordering quantity, which minimizes total cost.

Following illustrative example will make the procedure clear.

For example, suppose annual demand (D) equals 8000 units, ordering cost (C3) per order is Rs. 12.50, the carrying cost of average inventory is 20% per year, and the cost per unit is Re. 1.00. The following table is computed.

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: III(Probabilistic Inventory Model)BATCH-2017-2019

No. of Orders per Year	Lot Size	Average Inventory	Carrying Charges 20% per Year	Ordering Costs Rs. 12.50 per Order	Total Cost per Year
(1)	(2)	(3)	(4)	(5)	(6) = (4) + (5)
			(Rs.)	(Rs.)	(Rs.)
	8,000	4.000	800-00	12-50	812-50
2	4,000	2,000	400-00	25-00	425-00
4	2,000	000,1	200.00	50.00	250-00
	1,000	500	100-00	100-00	200-00
12	667	333	66-00	150-00	216-00
16	500	250	50-00	200-00	250-00
32	50	125	25.00	400.00	425-00

This table indicates that an order size of 1000 units will give us the lowest total cost among all the seven alternatives calculated in the table. Also, it is important to note that this minimum total cost occurs when:

Carrying Costs =Ordering Costs.

Example 1. Novelty Ltd. carries a wide assortment of items for its customers. One item, Gay look, is very popular. Desirous of keeping its inventory under control, a decision is taken to order only the optimal economic quantity, for this item, each time. You have the following information. Make your recommendations: Annual Demand: 1,60,000 units; Price per unit: Rs. 20; Carrying Cost: Re. 1per unit or 5% per rupee of inventory value; Cost per order: Rs. 50. Determine the optimal economic quantity by developing the following table.

No. of Orders	Size of Orders	Average Inventory	Carrying Costs	Ordering Costs	Total Cost
1			-		
10					
20			-	-	
40		1.00		140	***
80			-		
100		- 10	14	100	1000

Solution:

Tabular Method to Find EOQ							
Orders per Year	Lot Size	Average Inventory	Carrying Cost (Re. 1) (Rs.)	Ordering Cost (Rs. 50 per order) (Rs.)	Total Cost per Year (Rs.)		
1	1.60,000	80,000	80,000	50	80,050		
10	16,000	8.000	8,000	500	8,500		
20	8,000	4.000	4,000	1,000	5,000		
40	4,000	2,000	2,000	2,000	4,000		
80	2,000	1,000	1,000	4,000	5,000		
100	1,600	800	800	5,000	5,800		

Disadvantage of trial & error (or tabular) method.

In above example, we were fortunate enough in finding the lowest possible cost. But, suppose the computation for 8 orders per year had not been made.

Then, we could choose only among the six remaining alternatives for the lowest cost solution. This imposes a serious limitation of this method. So, a relatively large number of alternatives must be computed before the best possible least cost solution is obtained. In this situation, the following *graphical method* may be advantageous.

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: III(Probabilistic Inventory Model) BATCH-2017-2019

Graphical Method

The data calculated in the above table can be graphed as below to demonstrate the nature of the opposing costs involved in an EOQ model. This graph shows that annual total costs of inventory, carrying costs and ordering costs first decrease, then hit a lowest point where *inventory carrying costs* equal *ordering costs*, and finally increases as the ordering quantity increases. Our main objective is to find a numerical value for EOQ that will minimize the total variable costs on the graph.

Fig. Economic ordering quantity graph

Disadvantage of graphical Method.

Without specific costs and values an accurate plotting of the carrying costs, ordering costs, and Iota I costs is not feasible, we can solve the EOQ models by the following two more accurate methods.

. Algebraic method. This method is based on the fact that the most economical point in terms of total Inventory cost is where the *inventory carrying cost* equals *ordering cost*.

Calculus method. This method is based on the technique of finding the minimum total cost by utilizing the differentiation. This is the best method since it does not suffer from the limitations like previous methods.

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: III(Probabilistic Inventory Model) BATCH-2017-2019

1. Stationary Economic Order Interval. Suppose that there is a constant demand rate r > 0 per unit time for a single product. There is a fixed setup cost K > 0 for placing an order, a holding cost h > 0 per unit stored per unit time and a penalty cost p > 0 per unit backordered demand per unit time. Each time the net inventory level (i.e., inventories less backorders) reaches s (< 0), an order for D (> -s) units is placed that brings the net inventory on hand immediately up to $S \equiv s + D$.

(a) Optimal Ordering Policy. Show that the values of s, S and D that minimize the long-run average cost per unit time are given by

$$D = \sqrt{\frac{2Kr}{h} \cdot \frac{h+p}{p}},$$

$$S = \frac{p}{h+p}D \text{ and}$$

$$s = -\frac{h}{h+p}D.$$

(b) Limiting Optimal Ordering Policy as Penalty Cost Increases to Infinity. Find the limiting values of s, S and D as $p \to \infty$. Show that the limiting value of D agrees with the Harris square-root formula given in §1.2 of Lectures on Supply-Chain Optimization.

(c) Independence of Optimal Fraction Backordered and the Demand Rate and Setup Cost. What fraction f of the time will there exist no backorders under the policy in part (a)? Show that f does not depend on the demand rate or setup cost. Explain this fact by showing that for any fixed order interval, the same fraction f is optimal.

2. Extreme Flows in Single-Source Networks. Consider the minimum-additive-concave-cost network-flow problem on the graph $(\mathcal{N}, \mathcal{A})$ with demand vector $r = (r_i)$ in which the flows are required to be nonnegative and there is a single source $\sigma \in \mathcal{N}$, i.e., $r_{\sigma} < 0$ and $r_i \geq 0$ for $i \in \mathcal{N} \setminus \{\sigma\}$. Use a graph-theoretic argument to establish the equivalence of 1°-3° below about a nonnegative flow $x = (x_{ij})$. Also show that 1° implies the second assertion of 3° using Leontief substitution theory from problem 1(a) of Homework 1.

 $1^{\circ} x$ is an extreme flow.

2° The subgraph induced by x is a tree with all arcs directed away from σ .

3° The subgraph induced by x is connected and contains no arc whose head is σ , and $x_{ij}x_{kj} = 0$ for all arcs $(i, j), (k, j) \in \mathcal{A}$ for which $i \neq k$.

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: III(Probabilistic Inventory Model) BATCH-2017-2019

3. Cyclic Economic Order Interval. Consider the problem of scheduling orders, inventories and backorders of a single product over periods 1, 2, ... so as to minimize the (long-run) average-cost per period of satisfying given demands $r_1, r_2, ...$ for the product in periods 1, 2, ... There is a real-valued concave cost $c_i(x_i)$ of ordering $x_i \ge 0$, $h_i(y_i)$ of storing $y_i \ge 0$ and $b_i(z_i)$ of backordering $z_i \ge 0$ in each period $i \ge 1$. Assume that $c_i(0) = h_i(0) = b_i(0) = 0$ for each $i \ge 1$ and that the data are *n*-periodic, i.e.,

 $(c_i, h_i, b_i, r_i) = (c_{i+n}, h_{i+n}, b_{i+n}, r_{i+n})$ for i = 1, 2, ...

Clearly, there is a feasible schedule if and only if $\sum_{i=1}^{n} r_i \ge 0$. Assume this is so in the sequel.

(a) Reduction to Network-Flow Problem on a Wheel. Show that the problem of finding an ordering, inventory and backorder schedule that minimizes the average-cost in the class of *n*-periodic schedules is a minimum-additive-concave-cost uncapacitated nearly-1-planar network-flow problem. Show also that apart from duplicate arcs between pairs of nodes, the graph is a wheel with the hub node labeled 0 and the nodes associated with demands in periods $1, \ldots, n$ labeled by those periods cyclically around the hub. Thus, the node that immediately follows *n* in the cyclic order is, of course, node 1. Denote by (i, k] the interval of periods in the cyclic order that begins with the node following *i* and ends with *k* for $1 \le i, k \le n$.

(b) Existence of Optimal Periodic Schedules. Give explicit necessary and sufficient conditions for the existence of a minimum-average-cost *n*-periodic schedule in terms of the derivatives at infinity of the cost functions (c_i, h_i, b_i) for $1 \le i \le n$.

(c) Extreme Periodic Schedules. Show that a feasible *n*-periodic schedule $(x_1, y_1, z_1, ..., x_n, y_n, z_n)$ is an extreme point of the set of such schedules if and only if

- inventories and backorders do not occur in the same period, i.e., y_iz_i = 0 for i = 1,...,n,
- there is a period $1 \le l \le n$ with no inventories or backorders, i.e., $y_l = z_l = 0$, and

• between any two distinct periods $1 \le i, k \le n$ of positive production, there is a period j in the interval [i, k) with no inventories or backorders, i.e., $y_j = z_j = 0$.

Show that if also the demands are all nonnegative, then $y_{i-1}x_i = z_ix_i = y_{i-1}z_i = 0$, for $1 \le i \le n$ where $y_0 \equiv y_n$.

(d) An $O(n^3)$ Running-Time Algorithm. Use the second condition of (c) to show that if there is a minimum-average-cost *n*-periodic schedule, then such a schedule can be found with at most $\frac{3}{2}n^3 + O(n^2)$ additions and $n^3 + O(n^2)$ comparisons by solving *n n*-period economic-orderinterval problems. This implementation improves upon the $O(n^4)$ running time of straightforward application of the send-and-split method. [*Hint:* First show how to compute the minimum costs c_{ik} incurred in the interval (i, k] with zero inventories and backorders in periods *i* and *k*, and with at most one order placed in the interval (i, k] for all $1 \le i, k \le n$ in $O(n^3)$ time.]

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: III(Probabilistic Inventory Model) BATCH-2017-2019

(e) Constant-Factor Reduction in Running Time with Nonnnegative Demands and No Backorders. Show that if also the demands are nonnegative and no backorders are allowed, then the running time in (d) can be reduced to $\frac{1}{2}n^3 + O(n^2)$ additions and a like number of comparisons.

(f) An O(n) Running-Time Algorithm with Nonnegative Demands and Linear Costs. Suppose that the demands are nonnegative and the cost functions are linear, i.e., there are constants c_i , h_i and b_i such that $c_i(z) = c_i z$, $h_i(z) = h_i z$ and $b_i(z) = b_i z$ for all $z \ge 0$ and $1 \le i \le n$. Show that a minimum-average-cost *n*-periodic schedule can be found with 4n additions and 4n comparisons. [*Hint*: Consider the following two-step algorithm. The first step is to determine an optimal period *i* in which to produce to satisfy the demand in any fixed period *j*. This can be done by choosing the cheapest of the solutions to two *n*-period problems. One finds an optimal period in which to order and store until period *j*, and the other finds an optimal period in which to order after backordering since period *j*. The second step is to solve the problem under the assumption that one orders in period *i*, in which case one can delete the inventory and backorder arcs whose head is node *i*.]

POSSIBLE QUESTIONS

ANSWER ALL THE QUESTIONS (5X6=30)

1	1. The probability distribution of monthly sale of a certain item is as follows:							
	Monthly sales: 0	1	2	3	4	5	6	
	Probability : 0.01	0.06	0.25	0.35	0.20	0.03	0.10	
	The cost of carrying inventory is Rs.30 per unit per month and the cost of unit							
	shortage is Rs.70 per month. Determine the optimum stock level that minimizes							
	the total expected cost.							
2	Electro uses resin in its mar	ufacturi	ng proces	s at the rat	te of 1000	gallons nei	r	

month. It cost electro 100 to place an order. The following cost per gallon per month is 2, and the shortage cost per gallon is 10 .historical data show that the demand during lead time is uniform over the range(0,50) gallons. Determine the

optimal ordering policy for Electro.

3.Determine optimal order level of Z.

4. The owner of a newsstand wants to determine the number of USA now newspapers that must be stocked at the start of each day. It costs 30 cents to buy a copy, and the owner sells it for 75 cents. The sale of the newspaper typically occurs between 7:00 and 8:00 am newspapers left at the end of the day are recycled for an in come of 5 cents a copy. How many copies should the owner stock every morning ,

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: III(Probabilistic Inventory Model) BATCH-2017-2019

assuming that the demand for the day can be described as

i) a normal distribution with mean 300 copies and standard deviation 20 copies

ii) A discrete probability distribution function f(D), defined as

D	200	220	300	320	340
f(D)	0.1	0.1	0.4	0.2	0.1

5. If the demand for a certain product has a rectangular distribution between 4000

and 5000, find the optimal order quantity if shortage cost is Rs. 1 per unit and

shortage cost is Rs.7 per unit.

6.Explain the optimum order level of single period problem without setup cost.

COMPULSORY (1X10=10)

1. The probability distribution of monthly sales of a certain item as follows:

Monthly Sales:	0	1	2	3	4	5	6	
Probability :	0.02	0.05	0.30	0.27	0.20	0.10	0.06	
The cost of carrying inventory is Rs.10 per unit per month. The current policy is to								
maintain a stock of four items at the beginning of each month. Assuming that the								
cost of shortage is proportional to both time and quantity short, obtain the imputed								
cost of a shortage of one time unit.								

- 2. The daily demand form an item during a single period occurs instantaneously at the start of the period. The p. d. f. of the demand is uniform between 0 and 10 units. The unit holding cost of the item during the period is 50 and the unit penalty cost for running out of stock is 4.50. The unit purchase cost is 50. A fixed cost of 25 is incurred each time an order is placed. Determine the optimal inventory policy for the item.
- 3. A shop is about to order some heaters for a forecast spell of cold weather. The shop pays Rs.1,000 for each heater, and during the cold spell they sell for Rs.2,000 each. The demand for the heater declines after the cold spell is over, and any unsold units are sold at Rs.500. Previous experience suggests the likely demand for heaters is as follows:

Demand :	10		20 30	40)	50
Probability:	0.20	0.30	0.30	0.10	0.10	
		1.1.41	- l			

How many heaters should the shop buy?

10. An ice cream company sells one of its types of ice creams by weights. If the products is not sold on the day it is prepared, it can be sold for a loss of 50 paisa per pound but there is an unlimited market for one day old ice – creams. On the other hand, the company makes a profit of Rs. 3.20 on every pound of ice – cream sold on the day it is prepares. If daily orders form a distribution with f(x) = 0.02- 0.0002x, $0 \le x \le 100$ how many pounds of ice – cream should the company prepare every day?.

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: IV(Decision Analysis)BATCH-2017-2019

<u>UNIT-IV</u>

SYLLABUS

Real life application - Decision making under certainty- Analytic hierarchy process. Decisions under Risk- Decision Trees-based expected value criterion, variations of the expected value criterion. Decisions under Uncertainty Real life application in Decision Analysis

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: IV(Decision Analysis)BATCH-2017-2019

DECISION THEORY

The ultimate purpose of any operations research analysis is to enable operations to be run efficiently and effectively, and this in turn involves selecting the best of the alternative ways and means of conducting operations. Fundamental, then, to any operations research exercise is the final step of making a decision between alternatives, and the principles underlying such decision making are referred to as **Decision Theory**

Structuring the Decision Problem

To illustrate the decision analysis approach, let us consider the case of Political Systems, Inc (PSI), a newly formed computer service from specializing in information services such as surveys and data analysis for individuals running for political office. The firm is in the final stages of selecting a computer system for its Midwest branch, located in Lagos. While PSI has decided on a computer manufacturer, it is currently attempting to determine the size of the computer system that would be most economical. We will use decision theory to help PSI make its computer decision.

The first step is to identify the alternatives considered by the decision maker. For PSI, the final decision will be to select one of the three computer systems, which differ in size and capacity. The three decision alternatives denoted by D_1 , D_2 , and D_3 are as follows:

 D_1 – large computer system

D₂ – Medium computer system

D₃ – Small computer system

The second step is to identify the future events that might occur. There events, which are not under the control of the decision maker, are referred to as the **States of nature**. Thus, the PSI states of nature denoted S_1 and S_2 are as follows:

 S_1 – high customer acceptance of PSI services

S₂ - low customer acceptance of PSI services

Given the three decision alternatives and the two states of nature, which computer system should PSI select? To answer this question, we will need information

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: IV(Decision Analysis) BATCH-2017-2019

on the profit associated with each combination of a decision alternative and a state of nature.

Payoff Tables

We denote the decision alternatives by D_1 , D_2 , ..., D_m , the states of nature by S_1 , S_2 , ..., S_n ; and the return associated with decision Di and state Sj by Vij (I = 1, 2, ..., m i j = 1, 2, ..., n). A process requiring the implementation of just one decision is defined completely by Table 1. A table of this form is referred as a payoff table. In general, entries in (a) can be stated in terms of profits, costs etc. Using the best information available, management has estimated the payoffs or profits for the PSI problem. There estimates are presented in Table 2

	S_1	S ₂		Sn
\mathbf{D}_1	V ₁₁	V ₁₂	(112)	V_{1n}
D ₂	V ₂₁	V ₂₂		V _{2n}
	****	***	18.885	
Dm	V _{m1}	V _{m2}		Vmn

Table 1: States of Nature

Table 2:

Decision alternatives		High Acceptance S ₁	Low Acceptance S ₂	
Large system	Di	200,000	20,000	
Medium system	D ₂	150,000	20,000	
Small system	D_3	100,000	60,000	

Decision Trees

A decision tree provides a graphical presentation of the decision-making process. Figure 1 shows a decision tree for the PSI problem. Note that the three shows the natural or logical progress that will occur overtime.

Figure 1

High (S_2)

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: IV(Decision Analysis) BATCH-2017-2019

Using the general terminology associated with decision trees, we will refer to the intersection or junction points of the tree as **nodes** and the arcs or connectors between the nodes as **branches**. Fig 1 shows the PSI decision tree with the nodes numbered 1 to 4. When the branches leaving a given node are decision branches, we refer to the nodes as decision node. Decision nodes are denoted by squares. Similarly, when the branches leaving a given node are state-of-nature branches, we refer to the node as a state-of-nature node. State-of-nature nodes are denoted by circles. Using the node-labelling procedure, node 1 is a decision node, where as nodes 2, 3 and 4 are states of nature nodes.

Decision Making without Probabilities

This section consider approaches to decision making that do not require knowledge of the probabilities of the states of nature

Optimistic Approach

The (~) evaluates each decision alternative in terms of the best payoff that can occur. The decision alternative that is recommended is the one that provides the best possible payoff. For a problem in which maximum profit is desired, as it is in the PSI problem, the optimistic approach would lead the decision maker to choose the alternative corresponding to the largest profit. For problems involving minimization, this approach

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: IV(Decision Analysis) BATCH-2017-2019

leads to choosing the alternative with the smallest payoff. To illustrate the use of the \sim , we will show how it can be used to develop a recommendation for the PSI problem.

Table 3

Decision alternatives		Maximur	n Payoff
Large system	\mathbf{D}_1	200,000	←Maximum of the maximum
Medium system	D_2	150,000	payoff values
Small system	D ₃	100,000	

Conservative Approach

The conservative approach evaluates each decision alternatives in terms of the most payoff that can occur. The decision alternative recommended is the one that provides the best of the worst possible payoffs. For a problem in which the output measure is profit, as it is in PSI problems. The (~) would lead the decision maker to chose the alternative that maximizes the minimum possible profit that could be obtained. For problems involving minimization, this approach identifies the alternative that will minimize the maximum payoff.

Table 4

Decision alternativ	ves	Maximum I	Payoff
Large system	D_1	-20,000	
Medium system	D_2	20,000	
Small system	D ₃	60,000 ←	Maximum of the maximum
			payoff values

Minimax Regret Approach

(~) is another approach to decision making with certainty. This approach is neither purely optimistic nor purely conservative. We illustrate the (~) for the PSI problem. In maximization problem, the general expression for opportunity loss or regret is given by the formula:

Opportunity loss or Regret

 $Rij = Vj - Vij \qquad \dots \qquad (*)$ Where

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: IV(Decision Analysis)BATCH-2017-2019

Rij = reject associated with decision alternative Di and state of nature Sj

Vj = best payoff value under state of nature Sj

Vij = payoff associated with decision alternative D1 and state of nature Sj

Using eq (*) and the payoff in Table 2, we can compute the regret associated with all combinations of decision alternatives Di and States of nature Sj

Table 5

Regret or opportunity loss for the PSI problem Decision Alternatives		States of Nature			
		High Acceptance S ₁	Low Acceptance S ₂		
Large System	D ₁	0	80,000		
Medium System	D ₂	50,000	40,000		
Small System	D ₃	100,000	0		

Table 6

Decision Alternatives		Maximum Regret or Opportunity Loss
Large system	D_1	80,000
Medium system	D ₂	50,000 ← Minimum of the maximum
Small system	D_3	100,000 regret

For the PSI problem, the decision to select a medium-computer system, with a corresponding regret of N50,000, is the recommended minimax regret decision.

Rank: In cost minimization problems, Vj will be the smallest entry in column j, and equation (*) must be changed to

Rij = Vij - Vj

Decision Making with Probabilities

In many decision-making situations, it is possible to obtain probability estimates for each of the states of nature. When such probabilities are available, the **expected value**

1

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: IV(Decision Analysis)BATCH-2017-2019

approach can be used to identify the best decision alternative. The expect value approach evaluates each decision alternative in terms of its expected value. The recommended decision alternative is the one that provides the best expected value.

Let

N = the number of states of nature

P(Sj) = the probability of state of nature Sj

 $P(Sj) \ge 0$ for all states of nature

 $P(S_j) = P(S_1) + P(S_2) + ... + P(S_N) = 1$

Expected Value of Decision Alternative Di

$$EV(Di) = \sum_{j=i}^{N} P(Sj) Vij \qquad **$$

Using the payoff values Vij shown in Tale 1 and supposes that PSI management believes that S_1 , the high acceptance state of nature, has a 0.3 probability of occurrence and that S2, the low-acceptance state of nature, has a 0.7 probability. Thus, $P(S_1) = 0.3$ and $P(S_2) = 0.7$ and equation (**), expected values for the three decision alternatives can be calculated:

 $EV (D_1) = 0.3 (200,000) + 0.7 (-20,000) = N46,000$ $EV (D_2) = 0.3 (150,000) + 0.7 (20,000) = N59,000$

 $EV(D_3) = 0.3(100,000) + 0.7(60,000) = N72,000$

Thus, according to the expected value approach, D3 is the recommended decision since D₃ has the highest expected value (N72,000)

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: IV(Decision Analysis)BATCH-2017-2019

Using Decision Tree

Figure 2

PSI Decision Tree with State-of-Nature Branch Probabilities

Prepared by A. NEERAJAH, Asst Prof, Department of Mathematics, KAHE

Page 8/15

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: IV(Decision Analysis) BATCH-2017-2019

Sensitivity Analysis

In this section, we consider how changes in the probability estimates for the states of nature affect or utter the recommended decision. The study of the effect of such changes is referred to as ~. One approach to ~ is to consider different probabilities for the states of nature and then recompute the expected value for each decision alternative. Repeating this several times, we can begin to learn how changes in the probabilities for the states of nature affect the recommended decision. For example, suppose that we consider a change in the probabilities for the states of nature such that P (S₁) = 0.6 and P (S₂) = 0.4. Using these probabilities and repeating the expected value computations, we find the following:

 $EV(D_1) = 0.6(200,000) + 0.4(-20,000) = N112,000$

 $EV (D_2) = 0.6 (150,000) + 0.4 (20,000) = N98,000$

 $EV(D_3) = 0.6(100,000) + 0.4(60,000) = N84,000$

Thus, with these probabilities, the recommended decision alternative is D_1 , with an expected value of N112,000.

The only drawback to this approach is the numerous calculations required to evaluate the effect of several possible changes in the state-of-nature probabilities.

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: IV(Decision Analysis)BATCH-2017-2019

POSSIBLE QUESTIONS

ANSWER ALL THE QUESTIONS (5X6=30)

1. Explain about decision making under uncertainty.

2.A businessman has two independent investment portfolios A and B, available to him, but he lacks the capital to undertake both of them simultaneously. He can either choose A first and then stop, or if A is not successful, then take, B or vice versa. The probability of success of A is 0.6, while for B it is 0.4. Both investment schemes require an initial capital outlay of Rs.10,000 and both return nothing if the venture proves to be unsuccessful. Successful completion of A will return Rs.20, 000 (over cost) and successful completion of B will return Rs.24,000(over cost). Draw a decision tree in order to determine the best strategy.

3. A businessman has three alternative open to him each of which can be followed by any of the four possible event. The conditional payoffs (in Rs) for each action event combination are given below.

	Payoffs conditional on event					
Alternative	А	В	C	D		
Х	8	0	-10	6		
Y	-4	12	18	-2		
Ζ	14	6	0	8		

Determine which alternative should the businessman choose, if he adopts the i) maximin criterion ii) maximax criterion iii) savage criterion 4. A glass factory that specializes in crystal is developing a substantial backlog and for this the firm's management is considering three courses of action: To arrange for subcontracting (S₁), to begin overtime production(S₂), and to construct new facilities(S₃). The correct choice depends largely upon the future demand , which may be low, medium, or high. By consensus, management ranks the respective probabilities as 0.10, 0.50 and 0.40. A cost analysis reveals the effect upon the profits. This is shown in the table below.

Demand	Probability	Course of Action			
		S ₁	S ₂	S ₃	
Low(L)	0.10	10	-20	-150	
Medium(M)	0.50	50	60	20	

Prepared by A. NEERAJAH, Asst Prof, Department of Mathematics, KAHE

Page 10/15

CLASS: IM.Sc MATHEMATICS COURSE CODE: 17MMP203 UNIT: IV(

S COURSE NAME: Optimization Techniques UNIT: IV(Decision Analysis) BATCH-2017-2019

High(H)	0.40	50	100	200

Show this decision situation in the form of a decision tree and indicate the most

preferred decision and its corresponding expected values.

5. A food products company is contemplating the introduction of a revolutionary new

product with new packaging or replacing the existing product at much higher $price(S_1)$. It may even make a moderate change in the composition of the existing product, with new packaging at a small increase in price (S_2) , or may mall a small change in the composition of the existing product, backing it with the word 'New' and a negligible increase in price (S_3) . The three possible states of nature or events are: (i) high increase in sales (N1), (ii) no change in sales(N₂) and (iii) decrease in sales(N₃). The marketing department of the company worked out the payoffs in terms of yearly net profits for each of the strategies of three events(expected sales).

This is represented in the following table:

Strategies	States of Nature					
	N1	N ₂	N ₃			
S ₁	7,00,000	3,00,000	1,50,000			
S ₂	5,00,000	4,50,000	0			
S ₃	3,00,000	3,00,000	3,00,000			

Which strategy should the concerned executive choose on the basis of

- i) Maximin criterion ii) Maximax criterion
- iii) Minimax regret criterion iv) Laplace criterion

6.A retailer purchases cherries every morning at Rs.50 a case and sells them for Rs.80 a case. Any case that remains unsold at the end of the day can be disposed of the next day at a salvage value of Rs.20 per case(thereafter they have no value). Past sales have ranged from 15 to 18 cases per day. The following is the record of sales for the past 120 days.

Cases sold : 15161718Number of days: 12244836

Find out how many cases should the retailer purchase per day in order to maximize his profit.

COMPLUSOURY (1X10=10)

7.Explain about decision making under risk.

8.A manager has a choice between (i) risky contract promising Rs. 7 lakhs with probability 0.6 and Rs. 4 lakhs with probability0.4, and (ii) a diversified portfolio consisting of two contracts with independent outcomes each promising Rs. 3.5 lakhs with probability 0.6 and Rs. 2 lakhs with probability 0.4. Construct a decision tree for using EMV criteria.

9. A firm manufactures three types of products. The fixed and variable costs are given below.

Fixed cost (Rs)	Variable Cost Per
	Unit(Rs)

CLASS: IM.Sc MATHEMATICS COURSE CODE: 17MMP203 UNIT: IV()

S COURSE NAME: Optimization Techniques UNIT: IV(Decision Analysis) BATCH-2017-2019

Product A	25000	12
Product B	35000	9
Product C	53000	7

The likely demand (units) of the products is given below:

Poor demand : 3000

Moderate demand: 7000

High demand : 11000

If the sale price of each type of product is Rs.25, then prepare the payoff matrix.

10.A super bazaar must decide on the level of supplies it must stock to meet the needs of its customers during Diwali days. The exact number of customers is not know, but it is expected to be in one of the 4 categories: 300, 350, 400 (or) 450 customers. Four levels of supplies are thus suggested with level j being ideal, if the number of customers falls in category j deviations from the ideal levels results in additional costs either because extra supplies are stocked needlessly or because demand cannot be satisfied. The table below provides these costs in thousands of rupees.

Customers	Supplies level			
category	A1	A2	A3	A4
E1	7	12	20	27
E2	10	9	10	25
E3	23	20	14	23
E4	32	24	21	17

Find i) maximin criterion ii) maximax criterion iii) savage criterion.

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: IV(Decision Analysis)BATCH-2017-2019

INTRODUCTION

An inventory can be defined as any idle resource of an enterprise. An inventory problem exists when it is necessary to stock physical goods or commodities for the purpose of satisfying demand over a specified time horizon (finite or infinite). Almost every business must stock goods to ensure smooth and efficient running of its operation. Decisions regarding how much and when to order are typical of every inventory problem. The required demand maybe satisfied by stocking once for the entire time horizon or by stocking separately for every time unit of the horizon. The two extreme situations (overstocking and under-stocking) are costly. Decisions may thus be based on the minimization of an appropriate cost function that balances the total costs resulting from over-stocking and under-stocking.

A GENERALIZED INVENTORY MODEL

The ultimate objective of an inventory model is to answer two questions.

- 1. How much to order?
- 2. When to order

The answer to the first question is expressed in terms of what we call the <u>order</u> <u>quantity</u> and the when-to-order decision is the inventory level at which a new order should be placed usually expressed in terms of <u>re-order point</u>.

The order quantity and re-order pint are normally determined by minimizing the total inventory cost that can be expressed as a function of these two variables. We can summarize the total cost of a general inventory model as a function of its principal components in the following manner:

(Total inventory cost) = (purchasing cost) + (setup cost) + (holding cost)

+ (shortage cost)

TYPES OF INVENTORY MODELS

In general, inventory models are classified into two categories:

- 1. Deterministic model and
- 2. Stochastic model

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: IV(Decision Analysis)BATCH-2017-2019

Definitions:

- Delivery lags or lead times is the time between the placement of an order and its receipt and may be deterministic or stochastic.
- Time Horizon defined the period over which the inventory level will be controlled. This horizon may be finite or infinite depending on the time period which demand can be forecast reliably.
- 3. Stock replacement: Although an inventory system may operate with delivery lags. The actual replenishment of stock may occur instantaneously or uniformly. Instantaneous replenishment can occur when the stock is purchased from outside sources. Uniform replenishment may occur when the product is manufactured locally within the organization.

DETERMINISTIC MODEL (Single item static model)

The simplest type of inventory model occurs when demand is constant over time with instantaneous replenishment and no shortages. Typical situations to which this model may apply are:

- 1. The use of light bulbs in a building
- 2. The use of clerical supplies, such as paper, pads and pencil in a large company
- 3. The consumption of staple food items, such as bread and milk

Fig (1) illustrates the variation of the inventory level. It is assumed that demand occurs at the rate β (per unit time). The highest level of inventory occurs when the inventory level reaches zero level y/ β time units after the order quantity y is received.

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: IV(Decision Analysis) BATCH-2017-2019 V Inventory Points in time at which orders are received

 t_0-y/β

The smaller the order quantity y, the more frequent will be the placement of new orders. However, the average level of inventory hold in stock will be reduced. On the other hand, larger order quantities indicate larger inventory level but less frequent placement of order (see fig. 2).

Prepared by A. NEERAJAH, Asst Prof, Department of Mathematics, KAHE

Average Inventory y/2

x time

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: IV(Decision Analysis) BATCH-2017-2019

Because there are costs associated with placing orders and holding inventory in stock, the quantity y is selected to allow a compromise between the two types of costs. This is the basis for <u>formulating the inventory model</u>.

Let K be the set up cost incurred every time an order is placed and assume that the holding cost per unit inventory per unit time is k. Hence, the total cost per unit time TCU as a function of y may be written as

TCU (y) = Setup cost/unit time + holding cost/unit time

TCU (y) =
$$\frac{\mathbf{k}}{\mathfrak{F}/\beta} + \mathbf{h} (y/2)$$

As seen from fig. (1), the length of each inventory cycle is to = y / β and the average inventory in stock is y/2

The optimum value of y is obtained by minimizing TCU (y) with respect to y. Thus, assuming that y is a continuous variable, we have

$$\frac{dTCU(y)}{dy} = k\beta/y + h/2 = 0$$

Which yields the optimum order quantity as

$$y = \sqrt{\frac{2k\beta}{\hbar}}$$

(It can be proved that y minimizes TCU(y) by showing that the 2nd derivates at y is strictly positive). The order quantity above is usually referred to as <u>Wilson's economic lot</u> size.

The optimum policy of the model calls for ordering units every to time units. The optimum cost TCU (y) obtained by direct substitution is $\sqrt{2k/\beta}$.

EXAMPLE 1:

The daily demand for a commodity is approximately 100 units. Every time an order dared, fixed cost is N100 is incurred. The daily holding cost per unit inventory if N0.02. If the lead time is 12 days. Determine the economic lot size and the re-order point

SOLUTION:

From the earlier formula the economic lot size is

$$y = \sqrt{\frac{2k\beta}{\hbar}}$$

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: IV(Decision Analysis)BATCH-2017-2019

 $=\sqrt{2*100*/0.02} = 1000$ units

The associated optimum cycle length is this given as

$$b_0^* = \frac{y_8}{g} = 1000/100 = 10 \text{ days}$$

Since the lead time is 12 days add the cycle length is 10 days re-ordering occurs when the level of inventory is sufficient to satisfy the demand for two (- 12, 10) days. Thus the quantity $y^* = 1000$ is ordered when the level of inventory reaches 2 * 100 = 200 units.

Notice that the "effective" lead time is taken equal to 2 days rather than 12 days. This result occurs because the lead time is longer than t_0^* .

EXAMPLE 12:

A manufacturer has to supply his customer' with 600 units of his product per year. Shortages are not allowed and the shortage cost amounts to N0.60 per and per year. The setup cost per run is N80.00. Find the optimum run size and minimum average yearly cost.

Solution:

Since $\beta = 600$ units/year

K = N80.00h = N0.06

/ = 2kβ

 $y = \sqrt{\frac{amp}{\hbar}}$

 $\sqrt{2} * 80 * 600 / 0.06 = 400$ units opt. run time

And the minimum average yearly $cost = \sqrt{2k\beta h}$

 $=\sqrt{2} * 80 * 60 * 0.60$

= N240.00

EXERCISES

 XYZ Company purchases a component used in the manufacturing automobile generators directly from the suppliers. XYZ's generator production which is operated at a constant rate will required 1000 components per month throughout the year (12,000 units annually). If ordering cost is N25 per order, unit cost is

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: IV(Decision Analysis)BATCH-2017-2019

N200 per component and annual inventory holding costs are charged at 20%.

Answer the following inventory policy question for XYZ

a. What is the economic order quantity (EOQ) for this component?

b. What is the length of cycle time in months?

c. What are the total annual inventory building and ordering cost associated with your recommended EOQ?

- The demand for a particular item is 18,000 units per year. The holding cost per unit is N1.20 per year, and the cost of the replenishment rate is instantaneous. Determine
 - a. Optimum order quantity
 - b. Number of orders per year
 - c. Time between orders and
 - d. Total cost per year when the cost of 1 unit is N1.00

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: IV(Decision Analysis)BATCH-2017-2019

- Economic Order Quantity (EOQ)
- Graphical Metod

Concept of Economic Ordering Quantity (EOQ)

The concept of *economic ordering quantity* was first developed by *F. Harris* in 1916. The concept is that management is confronted with a set of opposing costs-as the lot size (*q*) increases, the carrying charges (*C*) will increase while the ordering costs (*C3*) will decrease. On the other hand, as the lot size (*q*) decreases, the carrying cost (*C*) will decrease but the ordering costs will increase (assuming that only minor deviations from these trends may occur). Thus, *economic ordering quantity* (EOQ) is that size of order which minimizes total annual (or other time period as determined by individual firms) cost of carrying inventory and cost of ordering under the assumed conditions of certainty and that annual demands are known. The concept of EOQ applies to items, which are replenished periodically into inventory in lots covering several periods' need. The EOQ concept is applicable under the following conditions:

a. The item is replenished in lots or batches, either by purchasing or by manufacturing.

b. Consumption of items (or sales or usage rate) is uniform and continuous.

EOQ is that order quantity or optimal order size which minimises the total cost. The model is described under the following situations:

- i. Planning period is one year.
- ii. Demand is deterministic and indicated by parameter D units per year.
- iii. Cost of purchases, or of one unit is C.
- iv. Cost of ordering (or procurement cost of replenishment cost) is C3or Co For manufacturing goods, it is known as set-up cost.
- v. Cost of holding stock (also known as inventory carrying cost) is C1or Ch per unit per year expressed either in items of cost per unit per period or in terms of percentage charge of the purchase price.
- vi. Shortage cost (mostly it is back order cost) is C2or Cs per unit per year.
- vii. Lead time is L, expressed in unit of time.
- viii. Cycle period in replenishment is /.
- ix. Order size is Q.

Determination of EOQ by Trial and Error Method (or Tabular Method)

This method involves the following steps:

Step 1. Select a number of possible lot sizes to purchase.

Step 2. Determine total cost for each lot size chosen.

Step 3. Finally, select the ordering quantity, which minimizes total cost.

Following illustrative example will make the procedure clear.

For example, suppose annual demand (D) equals 8000 units, ordering cost (C3) per order is Rs. 12.50, the carrying cost of average inventory is 20% per year, and the cost per unit is Re. 1.00. The following table is computed.

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: IV(Decision Analysis)BATCH-2017-2019

No. of Orders per Year	Lot Size	Average Inventory	Carrying Charges 20% per Year	Ordering Costs Rs. 12 50 per Order	Total Cost per Year
(1)	(2)	(3)	(4)	(5)	(6) = (4) + (5)
	200200	1.000	(Rs.)	(Rs.)	(Rs.)
1	8,000	4.000	800-00	12 50	812-50
2	4,000	2,000	400-00	25-00	425-00
4	2,000	1,000	200-00	50.00	250-00
	1,000	500	100-00	100-00	200.00
12	667	333	66-00	150-00	216-00
16	500	250	50-00	200.00	250-00
32	50	125	25 00	400.00	425-00

This table indicates that an order size of 1000 units will give us the lowest total cost among all the seven alternatives calculated in the table. Also, it is important to note that this minimum total cost occurs when:

Carrying Costs =Ordering Costs.

Example 1. Novelty Ltd. carries a wide assortment of items for its customers. One item, Gay look, is very popular. Desirous of keeping its inventory under control, a decision is taken to order only the optimal economic quantity, for this item, each time. You have the following information. Make your recommendations: Annual Demand: 1,60,000 units; Price per unit: Rs. 20; Carrying Cost: Re. 1per unit or 5% per rupee of inventory value; Cost per order: Rs. 50. Determine the optimal economic quantity by developing the following table.

No. of Orders	Size of Orders	Average Inventory	Carrying Costs	Ordering Costs	Total Cost
1	6441	144		++	
10		1244.0		444 (*	
20			-	-	
40	0441	144	÷	1-1	
80			-	14	.++
100	441				

Solution:

Tabular Method to Find EOQ							
Orders per Year	Lot Size	Average Inventory	Carrying Cost (Re. 1) (Rs.)	Ordering Cost (Rs. 50 per order) (Rs.)	Total Cost per Year (Rs.)		
1	1,60,000	80,000	80,000	50	80,050		
10	16,000	8.000	8,000	500	8,500		
20	8,000	4.000	4,000	1,000	5,000		
40	4,000	2,000	2,000	2,000	4,000		
80	2,000	1,000	1,000	4,000	5,000		
100	1,600	800	800	5,000	5,800		

Disadvantage of trial & error (or tabular) method.

In above example, we were fortunate enough in finding the lowest possible cost, But, suppose the computation for 8 orders per year had not been made.

Then, we could choose only among the six remaining alternatives for the lowest cost solution. This imposes a serious limitation of this method. So, a relatively large number of alternatives must be computed before the best possible least cost solution is obtained. In this situation, the following *graphical method* may be advantageous.

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: IV(Decision Analysis)BATCH-2017-2019

Graphical Method

The data calculated in the above table can be graphed as below to demonstrate the nature of the opposing costs involved in an EOQ model. This graph shows that annual total costs of inventory, carrying costs and ordering costs first decrease; then hit a lowest point where *inventory carrying costs* equal *ordering costs*, and finally increases as the ordering quantity increases. Our main objective is to find a numerical value for EOQ that will minimize the total variable costs on the graph.

Fig. Economic ordering quantity graph

Disadvantage of graphical Method.

Without specific costs and values an accurate plotting of the carrying costs, ordering costs, and Iota I costs is not feasible, we can solve the EOQ models by the following two more accurate methods.

. Algebraic method. This method is based on the fact that the most economical point in terms of total Inventory cost is where the *inventory carrying cost* equals *ordering cost*.

Calculus method. This method is based on the technique of finding the minimum total cost by utilizing the differentiation. This is the best method since it does not suffer from the limitations like previous methods.

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: IV(Decision Analysis) BATCH-2017-2019

1. Stationary Economic Order Interval. Suppose that there is a constant demand rate r > 0 per unit time for a single product. There is a fixed setup cost K > 0 for placing an order, a holding cost h > 0 per unit stored per unit time and a penalty cost p > 0 per unit backordered demand per unit time. Each time the net inventory level (i.e., inventories less backorders) reaches s (< 0), an order for D (> -s) units is placed that brings the net inventory on hand immediately up to $S \equiv s + D$.

(a) Optimal Ordering Policy. Show that the values of s, S and D that minimize the long-run average cost per unit time are given by

$$D = \sqrt{\frac{2Kr}{h} \cdot \frac{h+p}{p}},$$

$$S = \frac{p}{h+p}D \text{ and}$$

$$s = -\frac{h}{h+p}D.$$

(b) Limiting Optimal Ordering Policy as Penalty Cost Increases to Infinity. Find the limiting values of s, S and D as $p \to \infty$. Show that the limiting value of D agrees with the Harris square-root formula given in §1.2 of Lectures on Supply-Chain Optimization.

(c) Independence of Optimal Fraction Backordered and the Demand Rate and Setup Cost. What fraction f of the time will there exist no backorders under the policy in part (a)? Show that f does not depend on the demand rate or setup cost. Explain this fact by showing that for any fixed order interval, the same fraction f is optimal.

2. Extreme Flows in Single-Source Networks. Consider the minimum-additive-concave-cost network-flow problem on the graph $(\mathcal{N}, \mathcal{A})$ with demand vector $r = (r_i)$ in which the flows are required to be nonnegative and there is a single source $\sigma \in \mathcal{N}$, i.e., $r_{\sigma} < 0$ and $r_i \ge 0$ for $i \in \mathcal{N} \setminus \{\sigma\}$. Use a graph-theoretic argument to establish the equivalence of 1°-3° below about a nonnegative flow $x = (x_{ij})$. Also show that 1° implies the second assertion of 3° using Leontlef substitution theory from problem 1(a) of Homework 1.

 $1^{\circ} x$ is an extreme flow.

2° The subgraph induced by x is a tree with all arcs directed away from σ .

 3° The subgraph induced by x is connected and contains no arc whose head is σ , and $x_{ij}x_{kj} = 0$ for all arcs (i, j), $(k, j) \in \mathcal{A}$ for which $i \neq k$.
CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: IV(Decision Analysis) BATCH-2017-2019

3. Cyclic Economic Order Interval. Consider the problem of scheduling orders, inventories and backorders of a single product over periods 1, 2, ... so as to minimize the (long-run) average-cost per period of satisfying given demands $r_1, r_2, ...$ for the product in periods 1, 2, There is a real-valued concave cost $c_i(x_i)$ of ordering $x_i \ge 0$, $h_i(y_i)$ of storing $y_i \ge 0$ and $b_i(z_i)$ of backordering $z_i \ge 0$ in each period $i \ge 1$. Assume that $c_i(0) = h_i(0) = b_i(0) = 0$ for each $i \ge 1$ and that the data are *n*-periodic, i.e.,

 $(c_i, h_i, b_i, r_i) = (c_{i+n}, h_{i+n}, b_{i+n}, r_{i+n})$ for i = 1, 2, ...

Clearly, there is a feasible schedule if and only if $\sum_{i=1}^{n} r_i \ge 0$. Assume this is so in the sequel.

(a) Reduction to Network-Flow Problem on a Wheel. Show that the problem of finding an ordering, inventory and backorder schedule that minimizes the average-cost in the class of *n*-periodic schedules is a minimum-additive-concave-cost uncapacitated nearly-1-planar network-flow problem. Show also that apart from duplicate arcs between pairs of nodes, the graph is a wheel with the hub node labeled 0 and the nodes associated with demands in periods $1, \ldots, n$ labeled by those periods cyclically around the hub. Thus, the node that immediately follows *n* in the cyclic order is, of course, node 1. Denote by (i, k] the interval of periods in the cyclic order that begins with the node following *i* and ends with *k* for $1 \le i, k \le n$.

(b) Existence of Optimal Periodic Schedules. Give explicit necessary and sufficient conditions for the existence of a minimum-average-cost *n*-periodic schedule in terms of the derivatives at infinity of the cost functions (c_i, h_i, b_i) for $1 \le i \le n$.

(c) Extreme Periodic Schedules. Show that a feasible *n*-periodic schedule $(x_1, y_1, z_1, ..., x_n, y_n, z_n)$ is an extreme point of the set of such schedules if and only if

- inventories and backorders do not occur in the same period, i.e., y_iz_i = 0 for i = 1,...,n,
- there is a period $1 \le l \le n$ with no inventories or backorders, i.e., $y_l = n = 0$, and

• between any two distinct periods $1 \le i, k \le n$ of positive production, there is a period j in the interval [i, k) with no inventories or backorders, i.e., $y_j = z_j = 0$.

Show that if also the demands are all nonnegative, then $y_{i-1}x_i = z_ix_i = y_{i-1}z_i = 0$, for $1 \le i \le n$ where $y_0 \equiv y_n$.

(d) An $O(n^3)$ Running-Time Algorithm. Use the second condition of (c) to show that if there is a minimum-average-cost *n*-periodic schedule, then such a schedule can be found with at most $\frac{3}{2}n^3 + O(n^2)$ additions and $n^3 + O(n^2)$ comparisons by solving *n n*-period economic-orderinterval problems. This implementation improves upon the $O(n^4)$ running time of straightforward application of the send-and-split method. [*Hint*: First show how to compute the minimum costs c_{ik} incurred in the interval (i, k] with zero inventories and backorders in periods *i* and *k*, and with at most one order placed in the interval (i, k] for all $1 \le i, k \le n$ in $O(n^3)$ time.]

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: IV(Decision Analysis)BATCH-2017-2019

(e) Constant-Factor Reduction in Running Time with Nonnnegative Demands and No Backorders. Show that if also the demands are nonnegative and no backorders are allowed, then the running time in (d) can be reduced to $\frac{1}{2}n^3 + O(n^2)$ additions and a like number of comparisons.

(f) An O(n) Running-Time Algorithm with Nonnegative Demands and Linear Costs. Suppose that the demands are nonnegative and the cost functions are linear, i.e., there are constants c_i , h_i and b_i such that $c_i(z) = c_i z$, $h_i(z) = h_i z$ and $b_i(z) = b_i z$ for all $z \ge 0$ and $1 \le i \le n$. Show that a minimum-average-cost *n*-periodic schedule can be found with 4n additions and 4n comparisons. [*Hint*: Consider the following two-step algorithm. The first step is to determine an optimal period *i* in which to produce to satisfy the demand in any fixed period *j*. This can be done by choosing the cheapest of the solutions to two *n*-period problems. One finds an optimal period in which to order and store until period *j*, and the other finds an optimal period in which to order after backordering since period *j*. The second step is to solve the problem under the assumption that one orders in period *i*, in which case one can delete the inventory and backorder arcs whose head is node *i*.]

POSSIBLE QUESTIONS

ANSWER ALL THE QUESTIONS (5X6=30)

1. The probability distribution	ion of mont	hly sale o	f a certain	item is as	follows:		
Monthly sales: 0	1	2	3	4	5	6	
Probability : 0.01	0.06	0.25	0.35	0.20	0.03	0.10	
The cost of carrying	inventory i	s Rs.30 p	er unit per	month and	l the cost o	f unit	
shortage is Rs.70 per month. Determine the optimum stock level that minimizes							
the total expected co	st.						
2. Electro uses resin in its m	anufacturir	ng proces	s at the rat	te of 1000	gallons pe	r	

month. It cost electro 100 to place an order. The following cost per gallon per month is 2, and the shortage cost per gallon is 10 .historical data show that the demand during lead time is uniform over the range(0,50) gallons. Determine the optimal ordering policy for Electro.

3.Determine optimal order level of Z.

4. The owner of a newsstand wants to determine the number of USA now newspapers that must be stocked at the start of each day. It costs 30 cents to buy a copy, and the owner sells it for 75 cents . The sale of the newspaper typically occurs between 7:00 and 8:00 am newspapers left at the end of the day are recycled for an in come of 5 cents a copy .How many copies should the owner stock every morning ,

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203

UNIT: IV(Decision Analysis) BATCH-2017-2019

assuming that the demand for the day can be described as

i) a normal distribution with mean 300 copies and standard deviation 20 copies

ii) A discrete probability distribution function f(D), defined as

D	200	220	300	320	340
f(D)	0.1	0.1	0.4	0.2	0.1

5. If the demand for a certain product has a rectangular distribution between 4000

and 5000, find the optimal order quantity if shortage cost is Rs. 1 per unit and

shortage cost is Rs.7 per unit.

6.Explain the optimum order level of single period problem without setup cost.

COMPULSORY (1X10=10)

1. The probability distribution of monthly sales of a certain item as follows: 4 Monthly Sales: 0 1 2 3 5 6 Probability : 0.02 0.05 0.30 0.27 0.20 0.10 0.06 The cost of carrying inventory is Rs.10 per unit per month. The current policy is to maintain a stock of four items at the beginning of each month. Assuming that the cost of shortage is proportional to both time and quantity short, obtain the imputed cost of a shortage of one time unit.

- 2. The daily demand form an item during a single period occurs instantaneously at the start of the period. The p. d. f. of the demand is uniform between 0 and 10 units. The unit holding cost of the item during the period is 50, and the unit penalty cost for running out of stock is 4.50. The unit purchase cost is 50. A fixed cost of 25 is incurred each time an order is placed. Determine the optimal inventory policy for the item.
- 3. A shop is about to order some heaters for a forecast spell of cold weather. The shop pays Rs.1,000 for each heater, and during the cold spell they sell for Rs.2,000 each. The demand for the heater declines after the cold spell is over, and any unsold units are sold at Rs.500. Previous experience suggests the likely demand for heaters is as follows:

Demand :	10		20 30	40		50
Probability:	0.20	0.30	0.30	0.10	0.10	
How many heate	rs shou	ld the shop	buy?			

4. An ice cream company sells one of its types of ice creams by weights. If the products is not sold on the day it is prepared, it can be sold for a loss of 50 paisa per pound but there is an unlimited market for one day old ice – creams. On the other hand, the company makes a profit of Rs. 3.20 on every pound of ice – cream sold on the day it is prepares. If

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: IV(Decision Analysis)BATCH-2017-2019

daily orders form a distribution with f(x) = 0.02- 0.0002x, $0 \le x \le 100$ how many pounds of ice – cream should the company prepare every day?.

Prepared by A. NEERAJAH, Asst Prof, Department of Mathematics, KAHE

Page 26/15

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: V(Non-linear Programming Methods) BATCH-2017-2019

UNIT-V

SYLLABUS

Examples of NLPP - General NLPP - Graphical solution - Quadratic Programming - Wolfe's modified Simplex Methods - Beale's Method.

Non-Linear Programming Problem

Introduction

The Linear Programming Problem which can be review as to

Maximize
$$Z = \sum_{j=1}^{n} c_j x_j$$

subject to $\sum_{j=1}^{n} a_{ij} x_j \le b_i$ for $i = 1, 2, ..., m$
and $x_j \ge 0$ for $j = 1, 2, ..., m$

The term 'non linear programming' usually refers to the problem in which the objective function (1) becomes non-linear, or one or more of the constraint inequalities (2) have non-linear or both.

Ex. Consider the following problem

Maximize (Minimize) $Z = x_1^2 + x_2^2 + x_3^3$

 $subject \ to \qquad \qquad x_1 + x_2 + x_3 \ = \ 4 \ \ and \ \ x_1 \ , x_2 \ , x_3 \geqslant 0$

Graphical Solution

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: V(Non-linear Programming Methods) BATCH-2017-2019

In a linear programming, the optimal solution was usually obtained at one of the extreme points of the convex region generated by the constraints and the objective function of the problem. But, it is not necessary to find the solution at extreme points of the feasible region of non-linear programming problem. Here, we take an example below :-

Example 1. Solve graphically the following problem:

$$Maximize \quad Z = 2x_1 + 3x_2 \tag{1}$$

subject to
$$x_1^2 + x_2^2 \leq 20$$
, (2)

 $x_1x_2 \leqslant 8$ and $x_1, x_2 \geqslant 0$

Prepared by A. NEERAJAH, Asst Prof, Department of Mathematics, KAHE

(3)

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: V(Non-linear Programming Methods) BATCH-2017-2019

Solution:

In this problem objective function is linear and the constraints are non-linear.

 $x_1^2 + x_2^2 = 20$ represents circle and $x_1x_2 = 0$ represents hyperbola. Asymptotes are represented by X - axis and Y - axis.

Solving eq^n (2) and (3), we get $x_1 = -2, -4, 2, 4$. But $x_1 = -2, -4$ are impossible $(x_1 \ge 0)$

Take $x_1 = 2$ and 4 in eq^n (2) and (3), then we get $x_2 = 4$ and 2 respectively. So, the points are (2, 4) or (4, 2). Shaded non-convex region of OABCD is called the feasible region. Now, we maximize the objective function *i.e* $2x_1 + 3x_2 = K$ lines for different constant values of K and stop the process when a line touches the extreme boundary point of the feasible region for some value of K.

At (2, 4), K = 16 which touches the extreme boundary point. We have boundary point of like (0, 0), (0, 4), (2, 4), (4, 2), (4, 0). Where the value of Z is maximum at point (2, 4).

 \therefore Max. Z = 16

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: V(Non-linear Programming Methods) BATCH-2017-2019

General Non-linear Programming Problem

Let Z be a real valued function of n variables defined by: (a) $Z = f(x_1, x_2, ..., x_n) \longrightarrow$ Objective function.

Let $(b_1, b_2, ..., b_m)$ be a set of constraints, such that:

(b) $g_1(x_1, x_2, ..., x_n) [\leqslant or \geqslant or =] b_1$ $g_2(x_1, x_2, ..., x_n) [\leqslant or \geqslant or =] b_2$ $g_3(x_1, x_2, ..., x_n) [\leqslant or \geqslant or =] b_3$ $g_m(x_1, x_2, ..., x_n) [\leqslant or \geqslant or =] b_m$

Where g_1 are real valued functions of n variables, $x_1, x_2, ..., x_n$.

Finally, let (c) $x_j \ge 0$ where j = 1, 2, ..., n. \longrightarrow Non-negativity constraint.

If either $f(x_1, x_2, ..., x_n)$ or some $g_1(x_1, x_2, ..., x_n)$ or both are non-linear, then the problem of determining the n-type $(x_1, x_2, ..., x_n)$ which makes z a minimum or maximum and satisfies both (b) and (c), above is called a general non-linear programming problem.

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: V(Non-linear Programming Methods) BATCH-2017-2019

Global Minima and Local Minima of a Function

It gives optimal solution for the objective function at the point but also optimize the function over the complete solution space.

Global Minimum: A function f(x) has a global minimum at a point x_0 of a set of points K if an only if $f(x_0) \leq f(x)$ for all x in K.

Local Minimum: A function f(x) has the local minimum point x_0 of a set of points K if and only if there exists a positive number such that $f(x_0) \leq f(x)$ for all x in K at which $||x_0 - x|| < \delta$

There is no general procedure to determine whether the local minimum is really a global minimum in a non-linear optimization problem.

The simplex procedure of an LPP gives a local minimum, which is also a global minimum. This is the reason why we have to develop some new mathematical concepts to deal with NLPP.

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: V(Non-linear Programming Methods)BATCH-2017-2019

Quadratic Programming Problem

Quadratic programming deals with the non-linear programming problem of maximizing(or minimizing) the quadratic objective function subject to a set of linear inequality constraints.

The general quadratic programming problem can be defined as follows:

$$Maximize \ Z = CX + \frac{1}{2}X^TQX$$

subject to

$$AX \leq B$$
 and $X \geq 0$

where

$$X = (x_1, x_2, ..., x_n)^T$$

$$C = (c_1, c_2, ..., c_n) , \quad B = (b_1, b_2, ..., b_m)^T$$
$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$
$$Q = \begin{pmatrix} q_{11} & \dots & q_{1n} \\ \vdots & \vdots & \vdots \\ q_{n1} & \dots & q_{nn} \end{pmatrix}$$

The function $X^T Q X$ is said to be negative-definite in the maximization case, and positive definite in the minimization case. The constraints are to be linear which ensures a convex solution space.

In this algorithm, the objective function is convex (minimization) or concave(maximization) and all the constraints are linear.

KARP	
CLASS: IM.Sc MATHEMAT	COURSE NAME: Optimization Techniques
COURSE CODE: 1/MMP203	UNIT: v (Non-linear Programming Methods) BATCH-2017-2019

	AGAM ACADEMY	OF HIGHER EDUCATION	
CLASS: IM.SC MATHEMAT	ICS	COURSE NAME: Optim	Ization Techniques
COURSE CODE: 17MMP203		ar Programming Wiethous)	DATCH-2017-2019
Wolfe's modified sim	plex method		

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: V(Non-linear Programming Methods) BATCH-2017-2019

Let the quadratic programming problem be :

Maximize
$$Z = f(X) = \sum_{j=1}^{n} c_j x_j + \frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{n} c_{jk} x_j x_k$$

subject to the constraints :

$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i, \ x_j \geq 0 (i = 1, ..., m, j = 1, ..., n)$$

Where $c_{jk} = c_{kj}$ for all j and k, $b_i \ge 0$ for all i = 1, 2, ..., m.

Also, assume that the quadratic form

$$\sum_{j=1}^{n} \sum_{k=1}^{n} c_{jk} x_j x_k$$

be negative semi-definite.

Then, the Wolfe's iterative procedure may be outlined in the following steps:

Step 1. First, convert the inequality constraints into equation by introducing slack-variable q_i^2 in the *i*th constraint (i = 1, ..., m) and the slack variable r_j^2 the *j*th non-negative constraint (j = 1, 2, ..., n).

Step 2. Then, construct the Lagrangian function

$$L(X, \mathbf{q}, \mathbf{r}, \lambda, \mu) = f(X) - \sum_{i=1}^{m} \lambda_i \left[\sum_{j=1}^{n} a_{ij} x_j - b_i + q_i^2\right] - \sum_{j=1}^{n} \mu_j \left[-x_j + r_j^2\right]$$

Where $X = (x_1, x_2, ..., x_n)$, $\mathbf{q} = (q_1^2, q_2^2, ..., q_m^2)$, $\mathbf{r} = (r_1^2, r_2^2, ..., r_n^2)$, and $\mu = (\mu_1, \mu_2, ..., \mu_n)$, $\lambda = (\lambda_1, \lambda_2, ..., \lambda_m)$,

Differentiating the above function 'L' partially with respect to the components of X, q, r, λ, μ and equating the first order partial derivatives to zero, we derive Kuhn-Tucker conditions from the resulting equations.

Step 3. Now introduce the non-negative artificial variable v_j , j = 1, 2, ..., n in the Kuhn-Tucker conditions

$$c_j + \sum_{k=1}^{n} c_{jk} x_k - \sum_{i=1}^{m} \lambda_i a_{ij} + \mu_j = 0$$

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: V(Non-linear Programming Methods)BATCH-2017-2019

for j = 1, 2, ..., n and to construct an objective function

$$Z_v = v_1 + v_2 + \dots + v_n$$

Step 4. In this step, obtain the initial basic feasible solution to the following linear programming problem :

$$Minimize \ Z_v = v_1 + v_2 + \ldots + v_n.$$

Subject to the constraints :

$$\sum_{k=1}^{n} c_{jk} x_k - \sum_{i=1}^{m} \lambda_i a_{ij} + \mu_j + v_j = -c_j \quad (j = 1, \dots n)$$

$$\sum_{j=1}^{n} a_{ij} x_j + q_i^2 = b_i \quad (i = 1, ..., m)$$

$$v_j, \lambda_j \mu_j, x_j \ge 0$$
 $(i = 1, ..., m; j = 1, ..., n)$

and satisfying the complementary slackness condition:

$$\sum_{j=1}^{n} \mu_{j} x_{j} + \sum_{i=1}^{m} \lambda_{i} s_{i} = 0, \quad (where \ s_{i} = q_{i}^{2})$$

or

]

$$\lambda_i s_i = 0$$
 and $\mu_j x_j = 0$ (for $i = 1, ..., m; j = 1, ..., n$).

Step 5. Now, apply two-phase simplex method in the usual manner to find an optimum solution to the LP problem constructed in Step 4. The solution must satisfy the above complementary slackness condition.

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: V(Non-linear Programming Methods) BATCH-2017-2019

Step 6. The optimum solution thus obtained in Step 5 gives the optimum solution of given QPP also.

Important Remarks:

1. If the QPP is given in the minimization form, then convert it into maximization one by suitable modifications in f(x) and the ' \geq ' constraints.

2. The solution of the above system is obtained by using *Phase I* of simplex method. The solution does not require the consideration of *Phase II*. Only maintain the condition $\lambda_i s_i = 0 = \mu_j x_j$ all the time.

3. It should be observed that *Phase I* will end in the usual manner with the sum of all artificial variables *equal to zero* only if the feasible solution to the problem exists.

problem.2

Maximize $2x_1 + x_2 - x_1^2$ subject to

$$2x_1 + 3x_2 \le 6$$

$$2x_1 + x_2 \le 4 \quad and \quad x_1, \ x_2 \ge 0$$

solution:

Since the given objective function is convex and each constraint is convex therefore the given NLPP is a CNLPP.

Now $L(X, \overline{\lambda}) = (-2x_1 - x_2 + x_1^2) + \lambda_1(2x_1 + 3x_2 - 6) + \lambda_2(2x_1 + x_2 - 4)$ Therefore the khun-tucker condition are

$$\therefore \quad \frac{\partial L}{\partial x_j} \ge 0 \Rightarrow -2 + 2x_1 + 2\lambda_1 + 2\lambda_2 \ge 0$$
$$\Rightarrow -2 + 2x_1 + 2\lambda_1 + 2\lambda_2 - \mu_1 = 0$$
$$-1 + 3\lambda_1 + \lambda_2 \ge 0$$
$$\Rightarrow -1 + 3\lambda_1 + \lambda_2 - \mu_2 = 0$$
$$\therefore \quad \frac{\partial L}{\partial \lambda_i} \le 0 \Rightarrow 2x_1 + 3x_2 - 6 \le 0$$
$$\Rightarrow 2x_1 + 3x_2 - 6 + S_1 = 0$$

Prepared by A. NEERAJAH, Asst Prof, Department of Mathematics, KAHE

Page 11/22

COURSE NAME: Optimization Techniques CLASS: IM.Sc MATHEMATICS COURSE CODE: 17MMP203 UNIT: V(Non-linear Programming Methods) BATCH-2017-2019

$$2x_1 + x_2 - 4 \le 0$$

$$\Rightarrow 2x_1 + x_2 - 4 + S_2 = 0$$
(1)

$$\therefore x_j \frac{\partial L}{\partial x_j} = 0 \Rightarrow x_1 \mu_1 = 0, x_2 \mu_2 = 0$$
(2)
The above system of equation can be written as

$$2x_1 + 2\lambda_1 + 2\lambda_2 - \mu_1 = 2$$

$$3\lambda_1 + \lambda_2 - \mu_2 = 1$$

$$2x_1 + 3x_2 + S_1 = 6$$

$$2x_1 + x_2 + S_2 = 4$$
(3)

$$x_1, x_2, \lambda_1, \lambda_2, S_1, S_2, \mu_1, \mu_2 \ge 0$$

$$x_1 \mu_1 = 0, x_2 \mu_2 = 0, \lambda_1 S_1 = 0, \lambda_2 S_2 = 0.$$
This equation (3) is a LPP with out an objective function. To find the solution we

canwrite (3) as the following LPP.

$$max.Z = -R_1 - R_2$$

subject to

$$2x_1 + 2\lambda_1 + 2\lambda_2 - \mu_1 = 2$$

$$3\lambda_1 + \lambda_2 - \mu_2 = 1$$

$$2x_1 + 3x_2 + S_1 = 6$$

$$2x_1 + x_2 + S_2 = 4$$

Now solve this by the two phase simplex method. The end of the phase (1) gives the feasible solution of the problem

The optimal solution of the QPP is

$$x_1 = \frac{2}{3}, x_2 = \frac{14}{9}, \lambda_1 = \frac{1}{3}, S_2 = \frac{10}{9}.$$

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: V(Non-linear Programming Methods)BATCH-2017-2019

Beale's Method

In Beale's method we solve Quadratic Programming problem and in this method we does not use the Kuhn-Tucker condition. At each iteration the objective function is expressed in terms of non basic variables only.

Let the QPP be given in the form

Maximize
$$f(X) = CX + \frac{1}{2}X^TQX$$

subject to $AX = b, X \ge 0$.

Where

 $X = (x_1, x_2, ..., x_{n+m})$ $c \quad is \quad 1 \times n$ $A \quad is \quad m \times (n+m)$

and Q is symmetric and every QPP with linear constraints.

Algorithm

Step 1

First express the given QPP with Linear constraints in the above form by introducing slack and surplus variable.

Step 2

Now select arbitrary m variables as basic and remaining as non-basic.

Now the constraints equation AX = b can be written as

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: V(Non-linear Programming Methods) BATCH-2017-2019

$$BX_B + RX_{NB} = b \Rightarrow X_B = B^{-1}b - B^{-1}RX_{NB}$$

where

 X_B -basic vector X_{NB} -non-basic vector

and the matrix A is partitioned to submatrices B and R corresponding to X_B and X_{NB} respectively.

Step 3

Express the basis X_B in terms of non-basic X_{NB} only, using the given additional constraint equations, if any.

Step 4

Express the objective function f(x) in terms of X_{NB} only using the given and additional constraint, if any. Thus we observe that by increasing the value of any of the non-basic variables, the value of the objective function can be improved. Now the constraints on

the new problem become

$$B^{-1}RX_NB \leqslant B^{-1}b \qquad (since \ X_B \geqslant 0)$$

Thus, any component of X_{NB} can increase only until $\frac{\partial f}{\partial x_{NB}}$ becomes zero or one or more components of X_B are reduced to zero.

Step 5

Now we have m + 1 non-zero variables and m + 1 constraints which is a basic solution to the extended set of constraints.

Step 6

We go on repeating the above procedure until no further improvement in the objective function may be obtain by increasing one of the non-basic variables.

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: V(Non-linear Programming Methods)BATCH-2017-2019

problem.1:

Use Beale's Method to solve following problem

$$Maximize \ Z = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$$

subject to $x_1 + 2x_2 \leq 2$ and $x_1, x_2 \geq 0$

Solution:

Step:1

$$Max. Z = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$$
(1)

subject to

$$x_1 + 2x_2 + x_3 = 2 \tag{2}$$

and $x_1, x_2, x_3 \ge 0$

taking $X_B = (x_1); X_{NB} = {x_2 \choose x_3}$ and $x_1 = 2 - 2x_2 - x_3$ (3)

Step:2

put (3) in (1), we get

$$\begin{aligned} Max. \ f(x_2, x_3) &= 4(2 - 2x_2 - x_3) + 6x_2 - 2(2 - 2x_2 - x_3)^2 - 2(2 - 2x_2 - x_3)x_2 - 2x_2^2 \\ \frac{\partial f}{\partial x_2} &= -2 + 8(2 - 2x_2 - x_3) + 8x_2 - 4x_2 - 2(2 - x_3) \\ \frac{\partial f}{\partial x_3} &= -4 + 4(2 - 2x_2 - x_3) + 2x_2 \end{aligned}$$

Now $\frac{\partial f}{\partial x_2}_{(0,0)} = 10$ $\frac{\partial f}{\partial x_3}_{(0,0)} = 4$ Here '+ve' value of $\frac{\partial f}{\partial x_i}$ indicates that the objective function will increase if x_i increased . Similarly '-ve' value of $\frac{\partial f}{\partial x_i}$ indicates that the objective function will decrease if x_i is decrease. Thus, increase in x_2 will give better improvement in the objective function.

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: V(Non-linear Programming Methods)BATCH-2017-2019

Step:3

f(x) will increase if x_2 increased.

If x_2 is increased to a value greater then 1, x_1 will be negative.

Since
$$x_1 = 2 - 2x_2 - x_3$$

 $x_3 = 0; \frac{\partial f}{\partial x_2} = 0$
 $\Rightarrow 10 - 12x_2 = 0$
 $\Rightarrow x_2 = \frac{5}{6}$
Min. $(1, \frac{5}{6}) = \frac{5}{6}$

The new basic variable is x_2 .

Second Iteration:

Step:1

let
$$X_B = (x_2),$$
 $X_{NB} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

$$x_2 = 1 - \frac{1}{2}(x_1 + x_3)$$

Step:2

Substitute (4) in (1)

$$Max. f(x_1, x_3) = 4x_1 + 6(1 - \frac{1}{2}(x_1 + x_3)) - 2x_1^2 - 2x_1(1 - \frac{1}{2}(x_1 + x_3)) - 2(1 - \frac{1}{2}(x_1 + x_3))^2$$

 $\frac{\partial f}{\partial x_1} = 1 - 3x_1, \qquad \frac{\partial f}{\partial x_2} = -1 - x_3$
 $\frac{\partial f}{\partial x_1}_{(0,0)} = 1$
 $\frac{\partial f}{\partial x_3}_{(0,0)} = -1$

This indicates that x_1 can be introduce to increased objective function.

Step:3

$$x_2 = 1 - \frac{1}{2}(x_1 + x_3)$$
 and $x_3 = 0$

If x_1 is increased to a value greater then 2, x_2 will become negative.

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: V(Non-linear Programming Methods)BATCH-2017-2019

$$\frac{\partial f}{\partial x_1} = 0$$

$$\Rightarrow 1 - 3x_1 = 0$$

$$\Rightarrow x_1 = \frac{1}{3}$$

Min. $(2, \frac{1}{3}) = \frac{1}{3}$
Therefore $x_1 = \frac{1}{3}$
Hence $x_1 = \frac{1}{3}$, $x_2 = \frac{5}{6}$, $x_3 = 0$
and Max. $f(x) = \frac{25}{6}$

Kuhn-Tucker Conditions

Here we developing the necessary and sufficient conditions for identifying the stationary points of the general inequality constrained optimization problems. These conditions are called the Kuhn-Tucker Conditions. The development is mainly based on Lagrangian method. These conditions are sufficient under certain limitations which will be stated in the following .

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: V(Non-linear Programming Methods)BATCH-2017-2019

Kuhn-Tucker Necessary Conditions

Maximize f(X), $X = (x_1, x_2, ..., x_n)$ subject to constraints

$$g_i(X) \leq b_i, \ i = 1, 2, ..., m,$$

including the non-negativity constraints $X \geqslant 0$, the necessary conditions for a local maxima at \bar{X} are

(i)
$$\frac{\partial L(X,\lambda,\bar{s})}{\partial x_j} = 0, \ j = 1,2,...,n,$$

 $(ii) \ \bar{\lambda}_i \left[g_i(\bar{X}) - b_i \right] = 0,$

(*iii*) $g_i(\bar{X}) \leq b_i$, (*iv*) $\bar{\lambda}_i \geq 0$, i = 1, 2, ..., m.

Kuhn-Tucker Sufficient Conditions

The Kuhn-Tucker conditions which are necessary conditions are also sufficient if f(x)is concave and the feasible space is convex, i.e. if f(x) is strictly concave and $g_i(x)$, i = 1, ..., m are convex.

Problem.1

 $Max.Z = 10x_1 + 4x_2 - 2x_1^2 - 3x_2^2,$

subject to

 $2x_1 + x_2 \le 5$ $x_1, x_2 \ge 0$

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: V(Non-linear Programming Methods)BATCH-2017-2019

Solution:

We have,

$$f(X) = 10x_1 + 4x_2 - 2x_1^2 - x_2^2$$

 $h(X) = 2x_1 + x_2 - 5$

The Kuhn-Tucker condition are

$$\begin{split} &\frac{\partial f}{\partial x_1} - \lambda \frac{\partial h}{\partial x_1} = 0 \\ &\frac{\partial f}{\partial x_2} - \lambda \frac{\partial h}{\partial x_2} = 0 \\ &\lambda h(X) = 0, \\ &h(X) \leq 0, \quad \lambda \geq 0. \end{split}$$

Applying these condition , we get

CLASS: IM.Sc MATHEMATICS COURSE NAME: Optimization Techniques COURSE CODE: 17MMP203 UNIT: V(Non-linear Programming Methods) BATCH-2017-2019

 $10 - 4x_1 - 2\lambda = 0 \tag{i}$

$$4 - 2x_2 - \lambda = 0 \tag{ii}$$

$$\lambda(2x_1 + x_2 - 5) = 0 \tag{iii}$$

$$2x_1 + x_2 - 5 \le 0$$
 (iv)

$$\geq 0$$

From (iii) either $\lambda = 0$ or $2x_1 + x_2 - 5 = 0$

λ

When $\lambda = 0$, the solution of (i) and (ii) gives $x_1 = 2.5$ and $x_2 = 2$ which does not satisfy the equation (iv). Hence $\lambda = 0$ does not yield a feasible solution.

When $2x_1 + x_2 - 5 = 0$ and $\lambda \neq 0$, the solution of (i),(ii) and (iii) yields, $x_1 = \frac{11}{6}$, $x_2 = \frac{4}{3}$, $\lambda = \frac{4}{3}$, which satisfy all the necessary conditions.

It can be verified that the objective function is concave in X, while the constraint is convex in X. Thus these necessary conditions are also the sufficient conditions of maximization of f(X).

Therefore the optimal solution is
$$x_1^* = \frac{11}{6}, x_2^* = \frac{4}{3}$$
, which gives $Z_{max} = \frac{91}{6}$ \Box .

Prepared by A. NEERAJAH, Asst Prof, Department of Mathematics, KAHE

(v)

CLASS: IM.Sc MATHEMATICSCOURSE NAME: Optimization TechniquesCOURSE CODE: 17MMP203UNIT: V(Non-linear Programming Methods)BATCH-2017-2019

POSSIBLE QUESTIONS

ANSWER ALL THE QUESTIONS (5X6=30)

1.A manufacturing company produces two products: Radios and TV sets. Sales-price relationships for these two products are given below:

Product	Quantity Demanded	Unit Price
Radios	$1500 - 5p_1$	p 1
TV sets	$3800 - 10p_2$	P ₂

The total cost functions for these two products are given by $200x_1 + 0.1x_i^2$ and

 $300x_2 + 0.1x_2^2$ respectively. The production takes place on two assembly lines. Radio sets are assembled on assembly line I and TV sets are assembled on assembly line II. Because of the limitations of the assembly-line capacities, the daily production is limited to no more than 80 radio sets and 60 TV sets. The production of both types of products requires electronic components. The production of each of these sets requires five units and six units of electronic equipment components respectively. The electronic components are supplied by another manufacturer, and the supply is limited to 600 units per day. The company has 160 employees, i.e., the labour supply amounts to 160 man-days. The production of one unit of radio set requires 1 man-day of labour, whereas 2 man-days of labour are required for a TV set. How many units of radio and TV sets should the company produce in order to maximize the total profit? Formulate the problem as a non-linear programming problem.

2. Solve graphically the following NLPP

Maximize
$$Z = 2x_1 + 3x_2$$

Subject to the constraints:
 $x_{1+}x_2 \le 8$
 $x_1^2 + x_2^2 \le 20$, and
 $x_1, x_2 \ge 0$

Verify that the Kuhn-Tucker conditions hold for the maxima you obtain.

3. Solve the non-linear programming problem:

Minimize $z = 2x_1^2 - 24x_1 + 2x_2^2 - 8x_2 + 2x_3^2 - 12x_3 + 200$

Subject to the constraints:

 $x_1 + x_2 + x_3 = 11$

and $x_1, x_2, x_3 \ge 0$

4. Use Beale's method to solve the following NLPP:

CLASS: IM.Sc MATHEMATICS COURSE CODE: 17MMP203 UNIT: V()

COURSE NAME: Optimization Techniques UNIT: V(Non-linear Programming Methods) BATCH-2017-2019

 $\begin{array}{l} \mbox{Minimize } z = 2x_1 + 3x_2 - {x_1}^2 \\ \mbox{Subject to the constraints:} \\ x_1 + 2x_2 \le 4, \ \mbox{ and } x_1, x_2 \ge 0 \\ \mbox{5. Solve the non-linear programming problem:} \\ \mbox{Optimize } z = 4x_1^2 + 2x_2^2 + x_3^2 - 4x_1x_2 \\ \mbox{Subject to the constraints:} \\ x_1 + x_2 + x_3 = 15 \\ 2x_1 - x_2 + 2x_3 = 20 \\ \mbox{ and } x_1, x_2, x_3 \ge 0 \\ \mbox{6.Solve graphically the following NLPP} \end{array}$

 $\begin{array}{l} \text{Minimize } Z = x_1{}^2 + x_2{}^2\\ \text{Subject to the constraints:}\\ x_1 + x_2 \ge 4\\ 2x_1 + x_2 \ge 5\\ \text{and } x_1 \,, \, x_2 \ge 0 \,.\\ \end{array}$ 7. Use Beale's method to solve the following NLPP: Minimize $z = 6 - 6x_1 + 2x_1{}^2 - 2 \, x_1 \, x_2 + 2x_2{}^2 \end{array}$

Subject to the constraints:

 $x_1 + x_2 \le 2$, and $x_1, x_2 \ge 0$.

COMPULSORY (1X10=10)

1. Solve the non-linear programming problem: Maximum $z = 8x_1 - x_1^2 + 8x_2 - x_2^2$ Subject to the constraints: $x_1 + x_2 \le 12$ $x_1 - x_2 \ge 4$

and $x_1, x_2 \ge 0$

2. Explain about Kuhn - Tucker condition with non negative constraints.

3. Solve the quadratic programming problem by using Beal's method

Maximize $z = 4x_1 + 6x_2 - x_1^2 - 3x_2^2$

Subject to the constraints:

 $x_1 + 2x_2 \le 4$ and $x_1, x_2 \ge 0$

I		
1		
KΔ	PPAGAM	
ACADEM	IV OF NIGHER EDUCATION	
ALADEN	Newed to be universited	

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021

Subject: OPTIMIZATION TECHINIQUES			Sor	Subject Code: 17MMP2)3
Class . 1 - PLOC. Plathematics	U	nit I u	nteger Linear Program	ming	
	Pa	rt A (20x1=20 Marks	(Question Nos. 1 to	20 Online Examinations	3)
	Р	ossible Questions			
Question	Choice 1	Choice 2	Choice 3	Choice 4	Answer
A LPP in which all or some of the decision variables are constrained to assume non negative integer values is	Integer	Dynamic programming	Non linear		Integer
called an	problem	problem	programming problem	Decision Analysis	problem
In a LPP, if all the variables in the optimal solution are					
is called the	Zero - one IPP	Pure IPP	Mixed IPP	Non IPP	Pure IPP
			Revised simplex		G
A systematic procedure for solving pure I.P.P is The fractional part of the negative number -7 / 3 is	Hungarian method	Cutting method	method	Modi method	Cutting method
	5/3 A linear programming problem with only one decision variable restricted to integer value is	1/3 An integer programming problem is an LPP	2/3 A mixed IPP is one	7/3	2/3 An integer programming problem is an LPP
	not an integer	with decision	where mixed	A pure IPP is one where	with decision
Which of the following is correct?	programming problem	variables restricted to integer values.	constraints are involved.	all the decision variables are either zero or unity	variables restricted to integer values.
Which of the following is not correct? In cutting algorithm, each cut involves the introduction	An IPP where all the variables must be equal to zero or one is called a 0-1 IPP. an equality	An LPP in which all the decision variables are non negative integers is called a pure IPP. less than or coual to	Variables in an IPP that are not integer constrainted are called discontinuous variables. greater than or coual to	Variables in an IPP that are not integer constrained are called continuous variables.	Variables in an IPP that are not integer constrainted are called discontinuous variables. less than or equal to
of	constraint	constraint	constraint	an artificial variable.	constraint
In the context of Branch and bound method, which of the following is not correct?	It can be used to solve any kind of programming problem	It divides the feasible region into smaller parts by the process of branching	It is very usefull employed in problems where ther a finite number of solutions	It is not a standardised method and is applied differently for different problems	It can be used to solve any kind of programming problem
Which of the following is correct?	If the optimum solution to an LPP has all integer values, it may or may not be an optimum integer solution	IPP can always be obtainted by rounding off the fractional values in the solution obtainted by simplex method	A cut may or may not eliminate any points that are feasible for the IPP	a cut does not eliminate any points which are feasible for the IPP.	a cut does not eliminate any points which are feasible for the IPP.
Maximize $z = 3x + 5y$, subject to : $x + 2y \le 4$, $2x + y \ge 6$					
and $x \ge 0$, $y \ge 0$. This problem represents a Which of the following is not correct? Which of the following is not an integer linear	Zero - one IPP The optimum solution to LPP satisfies the cut that is introduced on the basis of it.	Pure IPP A cut is formed be choosing a row in the optimum simples table that corresponds to a non integer variable.	Mixed IPP the cutting plane algorithm assures optimal integer solution in a finite number of iterations	Non IPP The cutting plane algorithm requires all RHS values as well as all the coefficients in the constraints to be integers.	Non IPP The optimum solution to LPP satisfies the cut that is introduced on the basis of it.
programming problem?	Zero - one IPP	Pure IPP	Mixed IPP	continuous IPP	continuous IPP
can be solved using Branch and Bound method can be considered as a zero - one programming	A travelling salesman problem A travelling	assignment problem	geometric problem	simulation problem	A travelling salesman problem
problem.	salesman problem	assignment problem	geometric problem	simulation problem	assignment problem
I ne part of the feasible solution space eliminated by plotting a cut constraints	only non integer solutions	only integer solutions	boin integer and non integer solutions	only rational solutions	only non integer solutions
While solving IP problem any non integer variable in	obtain the cut	and a set of	1		obtain the cut
In a Branch and Bound minimization tree, the lower	constraint do not decrease in	do not increase in	icave the solution	no solution	constraint
bounds on objective function value	value	value	remains constant	no constant	remains constant
A travelling salesman problem can be solved using	Cutting method	Branch and Bound method	Simplex method	Critical path method	Branch and Bound method
An assignment problem can be considered as a	g		0 - 1 programmign	linear programming	0 - 1 programmign
can be considered as a zero - one programming	Pure IPP Transportation	Mixed IPP	problem	problem	problem
problem.	problem	assignment problem	inventory problem	simulation problem mixed solution to the	assignment problem
In a mixed integer programming problem we have	all of the decision v	few of the decision va	different objective function	problem	few of the decision va
Branch and Bound method divides the feasible solution space into smaller parts by In a mixed-integer programming problem	branching all of the decision	bounding few of the decision	enumering different objective	parts	branching few of the decision
A non integer variable is chosen in the optimal simplex	variables	variables	to construct a gomory	Branch and Bound	to construct a
table of the integer LP problem to	leave the basis	enter the basis	cut	method	gomory cut
The corners of the reduced feasible region of an integer LP problem contains	only integer solution	optimal integer solution	only non-integer solution	not a solution	only integer solution
An programming was used for capital budgeting in hospital	integer	Hungerian method	Dynamic programming problem	Decision Analysis	integer
An integer programming was used for capital budgeting in	school	railway	transport	hospital	hospital
A travelling salesman problem can be solved using	Simplex method	Hungerian method	cutting method	Branch and Bound method	Branch and Bound method

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021

Subject: OPTIMIZATION TECHINIQUES				Subject Code: 17MMF	203
Class : I - M.Sc. Mathematics	Unit II		Se Dynamic Progra	mester : II mming	
Pa	rt A (20x1=20 Ma	rks) (Ouestion Nos	s. 1 to 20 Online Exami	inations)	
	P	ossible Questions			
Question	Choice 1	Choice 2	Choice 3	Choice 4	Answer
The mathematical Techniques of optimizing such a	Integer	Dynamic			Dynamic
sequence of interrelated decisions over a period of time	programming	programming	Non linear		programming
is called	problem	problem	programming problem	Decision Analysis	problem
The DP problem can be decomposed or divided into a sequence of smaller sub problems called	State	Stage	Policy	Optimal policy	Stage
The variables which specify the condition of the					
a particular stage are called	State variables	decision variables	independent variables	dependent variables	State variables
A decision making rule that at any stage permits a	Ch. L.				D. 1
A transition function is expressed as	$s_{n-1} = t_n (s_n, d_n)$	$s_n = t_n (s_{n-1}, d_{n-1})$	$s_{n+1} = t_n (s_{n+2}, d_{n+2})$	$s_{n-1} = t_n (s_{n-1}, d_{n-1})$	$s_{n-1} = t_n (s_n, d_n)$
	number of				
A stage in a dynamic programming problem represents	decision	status of the system at a particular state	same time periods in the planning period	status of the system at a same state	number of decision alternatives
r suge in a dynamic programming problem represents	unternutrites	ur u pur treutur stute	the planning period	Sume State	unternatives
The return function in a DP model depends on	State	Stage	Policy	Optimal policy problems which fix the	State
				levels of different	
	multi stage	cingle stage desision	time independent	decision variables so as	multi staga dagicio
Dynamic Programming Problem deals with the	problems	making problems	problems	minimize cost	making problems
	DP approach helps in reducing	DPP can be divided		The concent of dynamic	
	the computational	smaller sub		programming is based	
	efforts in	problems called	DP cannot be dealt	upon the principle of	DP cannot be deal
which of the following is not correct?	sequential decision making	stages of the original problem.	with non linear constraints	optimality due to Bellman.	with non linear constraints
When a positive quantity C is divided into five parts,	,	,			
the maximum value of their products is	(C/5) ³	(5C) ³	5x5C	5(C/5) Computation in DPP are	(C/5) ³
	DPP is solved starting from the		Ortinum solution is	done recursively, in the sense that the optimum solution of one sub	
	next till the final	DPP can be solved	DPP depends on the	input to the next sub	DPP can be solved
which of the following is not correct?	stage is reached	by simplex method	initial solution.	problem.	by simplex method In DP, when the
	DPP can be solved only by	Monte - Carlo	I PD cannot be calved	In DP, when the current state is known, an optimum policy for the remaining stage is independent of the policy of the aparitour	current state is known, an optimu policy for the remaining stage is independent of the policy of the
which of the following is correct?	approach	solving DPP	by using DP approach	ones.	previous ones.
The solution of recursive equation in DP does not involve the	backward computational procedure or forward computational procedure	two types of computations, according as the system is continuous or discrete	classical methods of optimization or tabular computational scheme to achieve the optimum solution	number os stages that provides an optimum solution or there is an indication of an unbounded solution.	number os stages that provides an optimum solution or there is an indication of an unbounded solution.
In DPP, the number of stage variable is the number of state variable	equal to	not equal to	greater than	lesser than	not equal to
The number of may change from the stage to	4	Annual and the	induced and the		
DP divides the problem into a number of	confilcting objective function	dependent variable	unrelated constraints	policies	decision stages
The additional is between a second party of the					
In P the output to stage n become the input to	state stage n-1	random variable stage n itself	stage n+1	stage n - 2	stage n-1
The decision criterion for the shortest route problem is	minimization of the total number	minimization of the	minimization of the	minimization of the	minimization of th
;	of effics visited	distance traveled	the alternatives that	Toute riser	the alternatives that
The decsion variables in a dynamic programming	the stages of the	the returns at the	exist at each stage of	the possible beginning	exist at each stage
In dynamic programming, the output from a stage is	DPP	stages of a DPP	the DPP	situations of a stage	of the DPP
called a	return	state variable	decision variable	transformation variable	state variable
problem that can be solved by dynamic					
programming The equation describing the relationship between the	network	Monte Carlo	Infeasible	Non network	Non network
is called a	function	relationship function	input - output function	inter stage function	transformation function
state variables, decision varibales, the dicision criterion and the optimal policy can be determined for of a dynamic programming problem	only stage 1	stages 1 and 2	stage n-1	any stage	any stage
regiunning proven		B		,	, <u>6</u> 2
is an example of a problem to which dynamic	Determining the best route to travel through a city	Routing of emergency services	finding the optimal product mix	Finding the optimal adverting mix	Routing of emergency service

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore –641 021

Class : I - M.Sc. Mathematics			Sen	subject Code: 17MMP2 nester : II	.03
	Unit III	Pi	robabilistic Inven	tory Model	
Pa	rt A (20x1=20 Ma	rks) (Question Nos	s. 1 to 20 Online Exami	inations)	
	Р	ossible Questions	1	1	
Question	Choice 1	Choice 2	Choice 3	Choice 4	Answer
may be defined as the stock of goods, commodities or other economic resources that are					
stored or reserved for smooth and efficient running of business affairs	Inventory	Transportation	Queueing	Sequencing	Inventory
Rate of consumption is different from	rate of change	rate of production	rate of purchasing	either b or c	either b or c
Cost associated with carrying or holding the goods in stock is known as	interested capital cost	handling cost	holding cost	production cost	holding cost
is the interest change over the capital invested.	cost	handling cost	holding cost	production cost	cost
include costs associated with movement of	interested capital	handling and	1-14		1
stock, such as cost of labour etc.	interested capital	nandling cost	holding cost	production cost	nandling cost
purchased deu to quantity discounts or price breaks. If P is the purchase price of an item and I is the stock	cost	handling cost	holding cost	purchase price	purchase price
holding cost per unit time expressed as a fraction of stock value then the holding cost is	I/P	I + P	I - P	IP	IP
The penalty costs that are incurred as a result of running out of stock are known as	shortage cost	set-up cost	holding cost	production cost	shortage cost
Holding cost is denoted by	C1	C ₂	C ₃	C ₄	C1
Shortage cost is denoted by	C ₁	C ₂	C ₃	C ₅	C ₂
Elapsed time between the placement of the order and		C ₂	C ₃	C ₄	C ₃
its receipts in inventory is known as	lead time	recorder level	EOQ	variables	lead time
is the time when we should place an order by taking into consideration the interval between placing the order and receiving the supply.	lead time	recorder level	EOQ	variables	recorder level
is that size of order which minimises total annual cost of carrying inventory and the cost of ordering under the assumed conditions of certainty and					
that annual demands are known.	lead time	recorder level	EOQ Economia Offer	variables Economia Offer	EOQ Economia Order
EOQ means	Quantity	Quality	Quality	Quantity	Quantity
FOO is also become as	economic lot size	economic short size	1-	· · · · · · · · · · · · · · · · · · ·	economic lot size
EOQ is also known as include holding cost, set up cost, shortage costs	formula	formula	economic formula	economic variables	formula uncontrolled
and demand. Reduction in procurement cost EOQ	EOQ increases	controlled variables decreases	uncontrolled variables reduces	basic variables neutral	variables reduces
Economic order quantity results in equilization of - cost and annual inventory cost.	annual procurement cost	procurement cost	inventory cost	shortage cost	annual procurement cost
Economic order quantity results in equilization of	annual inventory	F			annual inventory
annual procurement cost cost and cost.	cost	procurement cost	inventory cost	shortage cost	cost
Reorder level =	x monthly consumption	monthly consumption	normal lead time - monthly consumption	normal lead time / monthly consumption	monthly consumption
Economic order quantity results in	reduced stock –	increased stock –	equilisation of carrying cost and procurement costs	favourable procurement price	equilisation of carrying cost and procurement costs
Minimum inventory equals	EOQ	Reorder level	Safety stock	lead time	Safety stock
The set up cost in inventory situation is of size	1 1 /		1		
of inventory.	dependent	independent	set up cost +	small	set up cost +
Total inventory cost =	set up cost +	holding cost +	purchasing cost +	setup cost + shortage	purchasing cost +
	purchasing cost	shortage cost	holding cost + shortage cost	cost	holding cost + shortage cost
Storage cost is associated with	holding cost	shortage cost	carrying cost	set up cost	carrying cost
A vers as inventory -	(EOQ/2) + Safety	(EOQ/2) - Safety	(EQQ/2) / Safaty staals	(EQQ/2) * Safaty staals	(EOQ/2) + Safety
discounts reduce material cost and procurement	SIOCK	SIOCK	(EOQ/2)/ Salety slock	(EOQ/2) · Salety slock	SIOCK
costs The ordering cost is independent of	quantity ordering quantity	quality ordering quality make one part of a	carrying cost carrying cost	set up cost set up cost	quantity ordering quantity make one part of a
	Make businesses	businessless directly dependent on other parts of	Reduce overall		businessless directly dependent on other parts of
Inventory used for decoupling is used to	products	the businedd	inventory levels	Provide JIT deliveries	the businedd
An example of dependent demand inventory would be	Milk in a grocery	Finished products in a toy factory's	Silos full of gaint at a	Lubricants used to maintain a manufacturer's	Silos full of gaint a
	store	warehouse	brewery	machinery	a brewery
	Independent demand is probabilistic, while dependent demand can be	Dependent demand is probilistic, while independent	dependent demand is	Dependent demand is	Independent demand is probabilistic, while dependent demand
A key difference between independent and dependent demand inventory is	calculated precisely	demand can be calculated precisely	always lower than independent demand	more likely to result in forecast error	can be calculated precisely
	IL. comert	- inculated precisely.			receivery

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore-641 021

Subject: OPTIMIZATION TECHINIQUES Class : 1 - M.Sc. Mathematics			Seme	ubject Code: 17MMP20. ster : II	3
	Unit	IV	Decision An	alysis	
Pa	rt A (20x1=20 Mai P	rks) (Question Nos ossible Questions	. 1 to 20 Online Exami	nations)	
Question	Choice 1	Choice 2	Choice 3	Choice 4	Answer
Once a decision tree has been drawn it should be	Compared to a payoff table	Analyzed from right to left	Compared to sensitivity analysis	Analyzed from left to right	Analyzed from right to left
A decision tree is used when	Non-sequential dec	Only with monetary	The decision is a sensiti	Sequential decisions are involved	Sequential decision are involved
A graph is used to depict	Sensitivity analysis	Payoff tables	Decision trees	The expected monetary value	Sensitivity analysis
The several alternatives available are called Conditionsoutside the control of the decision maker which will	Acts	payoff	state of nature	outcome	Acts
determine the consequence of a particular act is The consequence of a decision taken against a state of nature is	h				state of nature
defined as an If the outcome is measured interms of money it is called a	Acts Acts	payoff	state of nature	outcome	payoff
provides a way of incorporating the decision makers attitude towards risk into the analysis A utility function is said to be, if there exist a measure of utility for all alternatives.	Utility theory Complete	Game theory	decision theory certinity	queuing theory uncertainty	Utility theory Complete
	certainty	uncertainty	risk	strategy	uncertainty
possible outcomes of a decision and also knows the probability associated with each outcome is referred to as	certainty	risk	uncertainty	strategy	risk
Which of the following methods of selecting a strategy is consistent with risk averting behavior?	If two strategies have the same expected profit, select the one with the smaller standard deviation.	If two strategies have the same standard deviation, select the one with the smaller expected profit	Select the strategy with the larger coefficient of variation	All of the above are correct	If two strategies have the same expected profit, select the one with the smaller standar deviation.
Which one of the following does measure risk? If a person's utility doubles when their income doubles, then that person is risk	Coefficient of varianc	Standard deviation	Expected value	Expected variance There is not enough information	Expected value
The coefficient of variation measures	the risk per unit of expected payoff	the risk-adjusted expected value	the payoff per unit of risk	a decision maker's risk- return tradeoff	the risk per unit of expected payoff
A situation in which a decision maker must choose between strategies that have more than one possible outcome when the probability of each outcome is	diama di Canadiana		-1-1-		
If a decision maker is risk averse, then the best strategy	highest expected	lowest coefficient of	lisk	lowest standard	highest expected
to select is the one that yields the Circumstances that influence the profitability of a	payoff	variation	highest expected utility	deviation the marginal utility of	utility
The marginal utility of money diminishes for a decision maker who is	strategies a risk seeker	a payoff matrix	a risk averter	ina situation of uncertainty.	a risk averter
A payoff matrix presents all the information required to determine the optimal strategy using the	expected value criterion	the maximin criterion	the utility maximization criterion	simulation criterion	the maximin criterion
A matrix that, for each state of nature and strategy, shows the difference between a strategy's payoff and the best strategy's payoff is called	a maximin matrix	a minimax regret matrix	a payoff matrix	an ecpected utility matrix	a minimax regret matrix
The sequence of possible managerial decisions and their expected outcome under each set of circumstances can be represented and analyzed by using Which one of these refers to decision making under rich.	the minimax regret criterion	a decision tree	a payoff matrix	simulation criterion	a decision tree
with additional information? The expected monetary value approach is most	EVPI	EMV	Maximax	Maximin	EVPI
appropriate when the decision maker is	risk averse	risk seeking	risk neutral	risk free	risk neutral
	uncontrollable				can describe
States of nature	natural events such as floods or freezing temperatures	can be selected by the decision maker	cannot be enumerated by the decision maker exists for each pair of	can not describe uncontrollable natural events	uncontrollable natural events such as floods or freezin temperatures exists for each pair of decision
States of nature	natural events such as floods or freezing temperatures is always measured in profit	can be selected by the decision maker is always measured in cost	cannot be enumerated by the decision maker exists for each pair of decision alternative and state of nature	can not describe uncontrollable natural events exists for each state of nature	uncontrollable natural events such as floods or freezin temperatures exists for each pair of decision alternative and stat of nature
States of nature	natural events such as floods or freezing temperatures is always measured in profit presents all decision alternatives first and follows them with all states of nature	can be selected by the decision maker is always measured in cost presents all states of nature first and follows them with all decision alternatives	cannot be enumerated by the decision maker exists for each pair of decision alternative and state of nature alternatives the decision alternatives and states of nature	can not describe uncontrollable natural events exists for each state of nature arranges decision alternatives and states of nature in their natural chronological order	uncontrollable natural events such as floods or freezin temperatures exists for each pair of decision alternative and stat of nature arranges decision alternatives and state of nature in their natural chronological orde
States of nature	natural events such as floods or freezing temperatures is always measured in profit presents all decision alternatives first and follows them with all states of nature the optimistic approach	can be selected by the decision maker is always measured in cost presents all states of nature first and follows them with all decision alternatives the conservative approach	cannot be enumerated by the decision maker exists for each pair of the decision alternative and state of nature alternates the decision alternatives and states of nature minimum reget	can not describe uncontrollable natural events exists for each state of nature arranges decision alternatives and states of nature in their natural chronological order minimax regret	uncontrollable natural events such as floods or freezin temperatures exists for each pair of decision alternative and stat of nature arranges decision alternatives and state of nature in their natural chronological orde the conservative approach
States of nuture	natural events such as floods or freezing temperatures is always measured in profit presents all decision alternatives first and follows them with all states of nature the optimistic approach Maxmin	can be selected by the decision maker is always measured in cost presents all states of nature first and follows them with all decision alternatives the conservative approach Maximax	cannot be enumerated by the decision maker exists for each pair of decision alternative and state of nature alternative sand states of nature minimum regret Minimax	can not describe uncontrollable natural events exists for each state of nature arranges decision altereatives and states of nature in their natural demonsional states of mature in their natural minimum expected loss	uncontrollable natural events such as floods or freezin temperatures exists for each pair of decision alternative and stat of nature arranges decision alternatives and state of nature in their natural chronological ordo the conservative approach Minimize expected loss
States of nuture	natural events such as floods or freezing temperatures is always measured in profit presents all decision alternatives first and follows them with all states of nature the optimistic approach Maxmin	can be selected by the decision maker is always measured in cost presents all states of matter flart and follows them with all decision alternative approach Maximax	cannot be enumerated by the decision maker exists for each pair of decision alternative and state of nature alternates the decision alternates and states of nature minimum regret Minimax	ean not describe uncontrollable natural events exists for each state of nature aranges decision alternatives and states of nature in decision alternatives and states of nature in decision alternatives and states of minimax regret Minimize expected loss knowledge of likelihood	uncontrollable natural events such as floods or freezin temperatures exists for each pair of decision alternative and stat of nature arranges decision alternatives and state of nature chronological orde the conservative approach Minimize expected loss knowledge of likelihood occurance
States of nuture	natural events such as floods or freezing temperatures is always measured in protein alemati ves first and alemati ves first and alemati ves first and the optimistic approach Maxmin Maximize expected r Maximize event	can be selected by the decision maker is always measured in cost protects and follows them with all decision alternative semative approach decision alternative maximax Maximax Maximize return Minimum resert	cannot be enumerated by the decision maker exists for each pair of decision alternative and state of nature alternates the decision alternates the decision alternatives and states of nature minimum regret Minimax Minimize expected regret canal to EMV	ean not describe uncontrollable natural events exists for each state of nature alumative alumatives and states of another and states of minimax regret Minimize expected loss harowledge of likelihood control of a likelihood martine and state of Minimize regreted loss	ancentrollable matural events and as floods or freeziz temperatures exists for each pair of decision alternative and stat of mature annugs decision alternative and stat annugs decision alternative and annugs decision alternative and annugs decision alternative and annugs decision alternative and alternative and a
States of nuture	natural events such iss floots or freezing temperatures is always measured in profits and follows them with all follows them with all follows them with all follows them with all the optimistic approach Maxmin Maxmin expected of Maxmin expected o	can be selected by the decision maker is always measured in cost presents all states of nuture first and follows them with all decision alernatives the conservative approach Maximax Maximar Maximize return Minimum regret	cannot be enumerated by the decision maker exists for each pair of decision alternative and state of nature alternates the decision alternatives and states of nature minimum tegret Minimax Minimize expected regret equal to EMV realism	ean not describe uncontrollable natural events exists for each state of alternetives and state of abunchives and states of abunchives and states of abunchives and states of minimax regret Minimize regreted loss howeverght of hielihood occurrace of cach state of nature.	uncontrollable natural events such temperatures exists for each pair of decision alternative and stat of decision alternative and stat manges decision alternative and stat of nature manges decision alternative and stat function of the stat manufacture of the herenedogical order herenedogical order handback of manu- handback of mature equal to EMV mailson
States of nuture	natural events such as floods or freezing temperatures is always measured in profit and presents all decision albumative first and defores then with albumative process of albumative process of albumative albumative process of albumative process of albumative process of albumative albuma	can be solected by the decision maker is always measured in cost presents all states of matter fast and follows alternatives the conservative approach Maximum regret Maximin regret Maximin Maximin	cannot be enumerated by the decision maker exists for each pair of decision alternative and state of nature alternative and states of nature minimum regot Minimax Minimize expected regnet copul to EMV realism Maximin	ean not describe uncoatrollable natural events exists for each state of nature alternatives and states of nature in the states of attentives and states of attentives and states of nature in bern attand domonlogical order minimax regret Minimize expected loss knowledge of likelihood Minimize and naximum regret minimax regret	uncontrollable natural events sort freezir temperatures exists for each pair of decision alternative and stat of decision alternative and stat denoted sort and the denoted sort and the maintee sort and the denoted sort and the sort and the sort and the denoted sort and sort and sort and sort and sort and sort and sort and sort and sort and sort and sort and sort and sort and sort and sort and sort and
States of nature	natural events sach, as floods or freezing is always measured in profit prosents all decision fadows them with all attee of nature the optimistic decision site of earlier he optimistic protects Maximize expected of Maximize expected of Maximize expected of Maximize expected of Maximum regret equally likely Maximum	can be selected by the decision maker is always measured in cost presents all states of nature first and follows them with all decision almenatives discussion of the second discussion of the secon	earnot be enumerated by the decision maker crists for each pair of decision alternative and date of nature alternates the decision alternates and states of nature minimum regret Minimax Minimize expected regret could to EMV realism Maximin nature paroff table	ean not describe uncontrollable natural events exists for each state of minute arranges decision alternatives and state of alternatives and state of minimax regret Minima regret Minima not regret Minima not results and regret minimax regret realism	uncontrollable natural events and or feozia exists for each pair of decision alternative and stat of decision alternative and stat of nature menges decision decision their natural ehenondogical orde factories expected local state of data realism endoses realism
States of nature	natural events such as floods or freezing is always measured in profit present sall decision always measured in profit present sall decision always measured the optimistic of nature the optimistic approach Maximize expected or Maximum ropert equally likely Maximas poporf Expected monetary	can be selected by the decision maker is always measured in cost presents all states of nature first and follows them with all decision aluenatives decision attribute Maximize return Maximize return Maximin Minimum regret Maximi Maximi Maximi Expected opportunity	earnot be enumerated by the decision maker exists for each pair of decision alternative and state of nature alternates the decision alternatives and states of nature minimum regret Minimase expected regret equal to EMV realism Maximin pature payoff table Espected value of perfect	can not describe uncontrollable natural events exists for each state of miture arranges decision alternatives and state of miture in their natural admonological order minimax segret Minimize expected loss knowledge of likelihood eccurance of each state of minimax minimax minimax realism decision eriteria strategy	uncontrollable natural events such exists for each pair of decision alternative and stat of decision alternative and stat of nature arranges decision alternatives and stat of nature arranges decision alternatives and stat decision their natural echemological ords the conservative generative mainteent and the decision of the realism near the states decision tree Expected monetury
States of nuture	natural events such as floods or freezing a temperatures is always measured in profit presents all decision alkanistics of stature the optimistic personsh decision the equality likely Maximum regret equally likely Maximum equally likely Maximum equally likely Maximum equal by likely Maximum equal by likely decision tree Expected monstary volue	can be selected by the decision maker is always measured in cost presents all states of nature first and follows them with all decision disensitive disensitive measurements disensitive d	eannot be enumerated by the decision maker exists for each pair of decision alternative and state of nature alternates the decision alternatives and states of nature minimum regret Minimize expected regret Minimize expected regret equal to EMV evalues Maximin nature payoff table Expected value of perfect information	ean not describe uncontrollable natural events exists for each state of miture arranges decision alternative and state of minimax erget Minimize egected loss havordogical order minimax erget Minimize and maximum regret nature of each state of Minimize and maximum regret eventson regret eventson erget minimax erget minimax erget Decision ordersita stategy Expected value strategy There is not enough	uncontrollable natural events and matural events and exists for each pair of decision alternative and stat of decision alternative and stat of nature arrange decision alternative and stat manual denomological ords manual denomological ords manual denomological ords manual denomological ords manual denomological ords manual denomological decision their realism endison endison decision their Expected monetary value
States of nuture	natural events such as floods or freezing a temperatures is always measured in profit and a presents all decision alacmitive first and alacmitive first and alacmitive states of nature the optimistic addition of the measurement of the	can be selected by the decision maker is always measured in cost presents all states of nature first and follows then with all decision alumatives dismatives the concervative approach Maximize return Minimon regret Maximi Maximi Minimax states decision criterion Expected opportunity loss	eannot be enumerated by the decision maker exists for each pair of diction alternative and state of nature alternates the decision alternatives and states of nature minimum regot Minimize expected regret Minimize expected regret regrat to ENV realism Maximin nature payoff table Expected value of perfect information risk seeker	ean not describe uncontrollable natural events exists for each state of nature arranges decision abrenatives and state of abrenatives and state of minimum regret Minimum and expected loss harowedge of likelihood manues minimax expected loss harowedge of likelihood manues minimax regret. minimax regret. minimax endiom decision enterin datagy Expected value strategy There is not enough	uncontrollable natural events and extension of feoziar exists for each pair of decision alternative and stat of decision alternative and stat decision alternative and stat decision alternative and stat decision and the hencological orde decision decision endiated decision manai decision decision endiate endiate decision tree insistences and a scalar of the states endiate decision tree insistences and a scalar of the scalar of the scalar of the scalar of the scalar of the scalar of the scalar of the scalar of the scalar of the scalar of the scalar of the scalar of the scalar of the scalar of the scalar of the sc
States of nuture	natural cevents such as floods or freezing a temperatures is always measured in profit present all decision alkace of nature floods when with all follows them with all follows the follows the follows the fo	can be selected by the decision maker is always measured in cost presents all states of nature first and follows them with all decision dimensive dimensive makers dimensive dim	eannot be enumerated by the decision maker exists for each pair of decision alternative and state of nature alternates the decision alternatives and states of nature minimum regret Minimize expected regret Minimize expected regret equal to ENV evaluen Maximin nature payoff table Expected value of perfect offermation risk seeker	ean not describe uncontrollable natural events exists for each state of miture arranges decision alternative and state of minimax regret Minimize expected loss havondogical order minimax regret Minimize and state of Minimize and maximum regret havondogical order state of Minimize and maximum regret existence of each state of Minimize and maximum regret minimax regret minimax regret the state of the state of Minimize and maximum regret the state of the state of Minimize and the state of Minimize and	uncontrollable natural events and ensurel events and exists for each pair of decision alternative and stat of decision alternative and stat of ensure and stat decision and stat decision alternative decision alternative and states and the second states and the second states decision tree Especiel monetary value and second states decision tree Especiel monetary value and second states and
States of nature	natural events such as floods or freezing a temperatures is always measured in profit prosents all decision always measured in profit decision always or decision fuerar decision fuerar decision fuerar decision fuerar decision fuerar decision fuerar decision fuerar equally likely decision fuera equally likely decision fuera equally likely decision fuera equally likely decision fuera equal to decision fuera field acoustion where a conditional prooff decision and events decision and events decision fuera fuera fuera decision fuera field acoustion terror decision fuera field acoustion decision fuera fuera decision fuera fue	can be selected by the decision maker is always measured in cost presents all states of nature first and follows them with all decision aluenatives decision allows and allows maximize return Maximize return Maximize return Maximize return Minimum regret Maximi Minimum regret Maximi Minimum regret Maximi Minimum regret Maximi function states decision criterion Espected opportunity loss crisk netural person proof allow criterion proof matrix is also called conditions for making decision for maked always technical for the same optimal	earnot be enumerated by the decision maker exists for each pair of decision alternative and state of nature alternates the decision alternatives and states of nature minimum regret Minimum regret Regret state and the state risk seeker Regret is the amount of money suffered for not adopting the optimes commis of equation of the seeker Regret is the amount of money suffered for not adopting the optimes commis of equation of the seeker Regret is the amount of money suffered for not adopting the optimes commis of equation of the seeker Regret is the amount of money suffered for not adopting the optimes of the seeker Regret is the amount of money suffered for not adopting the optimes of the seeker Regret is the amount of money suffered for not adopting the optimes of the seeker Regret is the amount of money suffered for not adopting the optimes of the optimes of the seeker Regret is the optimes of the seeker Regret is the amount of money suffered for not adopting the optimes of the seeker Regret is the amount of the seeker Regret is the amount of money suffered for not adopting the optimes of the seeker Regret is the amount of money suffered for not adopting the optimes of the seeker Regret is the amount of money suffered for not adopting the secker Regret is the amount of money suffered for not adopting the secker Regret is the amount of the secker Regret is the amount of the secker Regret is the amount of the secker Regret is the secker Regret is the amount of the secker Regret is the amount of the secker Regret is t	can not describe uncontrollable natural events events exists for each state of minute arranges decision alternatives and state of minimum regret minimum regret Minimize expected loss knowledge of likelihood occurrance of each state of minimum memory of likelihood occurrance of each state of minimum memory of likelihood occurrance of each state of minimum memory of likelihood occurrance of each state of minimum decision criteria strategy Expected value strategy There is not enough information Flores in so tenough information Events are also called states of nature Minimum is an optimist?	uncontrollable nutural events and exists for each pair of decision alternative and stat of decision alternative and stat of antieve annuges decision alternative and stat of nutural enternological orde for anter and enternological orde for anter and enternological orde for anter and enternological orde for anter and enternological orde facts and and and and and enternological orde facts and enternological orde facts and enternological orde facts and enternological orde enternol enternological orde enternological
States of nature	natural cevents such as floods or freezing a temperatures is always measured in profit present sall decision alkace of nature the optimistic and follows them with all alkace of nature the optimistic approach the optimistic approach Maximum regret optimistic approach Maximum regret equally likely Maximum regret equally likely Maximum regret equally likely decision three Expected monetary value risk averter Every decision marking situation movies an equal of actions and events A conditional prooff dated envoys involves or marking situation protects and events A conditional prooff dated envoys involves or table anvoys involves and actions and events and actions and events actions and events and actions and actions and actions actions and actions and actions actions and actions ac	can be selected by the decision maker is always measured in cost presents all states of nature first and follows them with all decision disensitive all decision disensitive maximize return Maximize return Maximize return Maximize return Minimum regret Maximi Minimum regret Minimum regret Minimum regret Minimum regret Minimum regret Minimum regret Minimum regret Minimum regret Minimum regret Mi	earnot be enumerated by the decision maker exists for each pair of decision alternative and state of nature alternates the decision alternatives and states of nature minimum regret Minimize expected regret Minimize expected regret equal to EMV easien Maximin mature equal to EMV easien mature payoff table Expected value of perfect minimum payoff table Expected value of perfect minimum mature payoff table Expected value of perfect minimum payoff table Expect	ean not describe uncontrollable natural events exists for each state of minure arranges decision alternatives and state of minimax sugget Minimize expected loss knowledge of likelihood occurance of each state of Minimize expected loss knowledge of likelihood occurance of each state of Minimize state of Minimize state of Theories and maximum register Expected value stategy There is not enough information Freetis are also called states of nature Freetis are also called states of nature	uncontrollable natural events and exists for each pair of decision alternative and stat of decision alternative and stat of decision alternative and stat decision their annual enternatives and stat decision their natural enternatives and stat decision their natural minute expected loses and the state states decision their endison en
States of nature	natural cevents such as hoods or freezing a temperatures is always measured in profit present all decision always measured in profit present all decision always measured in profit decision future decision future decision future decision future decision future decision future decision future decision future decision future equally likely Maximum regret equally likely decision future future decision future decision future future decision future decision future future decision future future decision future future decision modes as equal of actions on actions decision future decision modes as equal decision modes as equal decision dec	can be selected by the decision maker is always measured in cost presents all states of nature first and follows them with all decision dimensive dimensive makers dimensive dim	eannot be enumerated by the decision maker exists for each pair of decision alternative and state of nature minimum regort minimum regort Minimize expected regort Minimize expected regort equal to EMV evalues Maximin nature payoff table Expected value of perfect offerenation miss seeker risk seeker risk seeker Laphace principle is based on the permise dequally likely occurance of pommanic	ean not describe uncontrollable natural events exists for each state of miture arranges decision alternative and state of minimum regret minimum regret Minimum and maximum regret knowledge of lakelthood occurrance of each state of Minimum and maximum regret. Resolution of each state of Minimum and maximum regret. Resolution of each state of minimum formation formation There is not enough information There is not enough information Simplex Decision free	uncontrollable natural events and exists for each pair of decision alternative and stat of decision alternative and stat of decision alternative and stat of nature arranges decision alternative and stat decision their natural denomenative agained to EMV minute expected loss and the state and the
States of nature	natural cevents such as floods or freezing is always measured in profit - sis always measured in profit - prosents all decision alkenatives for and follows them with all alkenatives for and the optimistic entancies of antire decision that measure and measure and m	can be selected by the decision maker is always measured in cost presents all states of nature first and follows them with all decision allematives mature first and follows the concervative approach diatematives mature first and follows the concervative approach diatemative mature first and follows diatemative mature first mature diatemative distinguishing mature distinguishing mature distinguishing distingu	earnot be enumerated by the decision maker exists for each pair of decision alternative and state of nature minimum regret minimum regret Minimax Minimize expected regret equal to EMV ealism Maximin enture powfitable Expected value of perfect information risk seeker risk seeker risk seeker Regret is the amount of money will file of perfect information enture powfitable Expected value of perfect information to the permite of eaglet powified for not adopting the optimic of powible events Dymmaric Expected value of state information	ean not describe uncontrollable natural events anare a	uncontrollable natural events such extension of receir exists for each pair of decision alternative and stat of decision alternative and stat of antare manage decision alternative and stat of nature and the extension of the manage decision antare antarel
States of nature	natural cevents such as floods or freezing a temperatures is always measured in profit and the profit of the protects all decision alkace of attare the optimistic failer of attare and the answer the optimistic alkace of the measure of the the optimistic alkace of the measure of the measure of the measure of the measure of the measure of the temperature of the temperature of the measure of the temperature of the temperature of the measure of the temperature of the measure of the measure of the measure of the temperature of temperature of temperature o	can be selected by the decision maker is always measured in cost presents all states of nature first and follows them with all decision almenatives decision enternative maximize return Maximize return Maximize return Maximize return Maximize return Maximize return Maximise decision enterion Expected opportunity loss erisk netural person risk metural person risk metural person payoff making decision under payoff making decision under making decision under to the same optimal choice Expected value of static information Square	eannot be enumerated by the decision maker crists for each pair of decision alternative and date of nature minimum regret minimum regret Minimax could be the second minimum regret Minimax could be ENV ealism Maximin ealize payoff table Expected value of perfect information risk secker risk secker risk secker Regret is the amount of money sufficed for not adopting the optimize of base of possible events Dymamic Expected value of faste information possible events	ean not describe uncontrollable natural events crists for each state of minure anages decision alternatives and state of nature in their natured natures in their natured natures in their natured minimax regret Minimum regret Minimum and maximum regret minimax excurate o fack state of nature minimax knowledge of likelihood occurrate of each state of nature minimax mare minimax constraine regret minimax regret	uncontrollable natural events sur- temperatures exists for each pair of decision alternative and stat of decision alternative and stat of antare manage decision alternative and stat of nature and stat of nature and stat of nature and stat of nature and stat antare and state antare and state antare and state and the conservative approximation and state and state and the state and state and state and antare and state and antare and antare antare and antare antare and antare antare and antare and antare and antare and antare antare and antare an

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021

Subject: OPTIMIZATION TECHINIQUES Subject Code: 17MMP203 Class : I - M.Sc. Mathematics Semester : II Non-linear Programming Methods Unit V Part A (20x1=20 Marks) (Ouestion Nos. 1 to 20 Online Examinations Possible Questions Question hoice 1 hoice 2 Choice 3 hoice 4 A NLP problem with non linear objective function and linear vnamio Ouadratic uadrati NLP protein with their meal objective function and meal instraints such as NLP is called -------case of maximization of NLPP all the constraints must be proverted into ------ type case of minimization of NLPP all the constraints must be Separable programmi ogramm rogramm eometric Programming orogrammi or equal to less than or equal to greater than or equal ictly less th ss than o strictly gre reater than rictly less than ss than or equal to converted into ----- type If the principle minor of bordered strictly grea eater than or equal to - is positive, the objective function is convex essian matrix Hermitan matrix liagonal matrix dentity matrix Hessian matrix e objective function is ______, if the principle minors rded Hessian matrix alternate in sign, beginning with the either convex nor egative sign. oth convey agrange ultipliers A NLPP is solved using ______ A ______ of a cenvex function on a convex set is a unique simplex method Dual simplex method Degeneracy multipliers agrange multipliers global minimum of that function. ocal minimum Local maximum weak minimun weak maximum Local minimum A local minimum of a cenvex function on a convex set is a _____ of that function. cal minimun ocal maximum global minimun global maximum global minimum inique The method of _____ ____multipliers is a systematic way of generating the necessary condition for a stationary point The necessary conditions become sufficient condition for a agrange uchy's uler's ourier agrange neither convex nor maximum if the objective function is ooth convex and co concave The ne ary conditions become sufficient condition for a ther convex nor minimum if the objective function is The sign pattern being alternate the stationary point is a oth com ocal maximum lobal minimun bal maximum ocal maximum cal minimun The sign pattern being always negative, the stationary point ocal maximum global minimun ocal minimum cal minimun lobal maximum standard form canonical form X^TQX represents a uadratic form Normal form Quadratic form if X^TQX >0 for x≠0 X^TQX is said to be Positive definite negative definite Positive semi definite negative semi definite Positive definite X^TQX is said to be $if X^T Q X \leq 0 \text{ for } x \neq 0$ sitive defir egative definit ositive semi definite egative semi definit egative definite X^TQX is said to be _ $\text{if } X^T\!QX \ \geq 0 \ \text{for } x{\neq} 0$ ositive defini Positive semi definit egative defini sitive semi definite egative semi definit X^TQX is said to be if $X^TQX \le 0$ for $x\neq 0$ Positive defin egative definit Positive semi definite negative semi definite egative semi definit If X^TQX is positive semi definite then it is Strictly convex Convex oncave Strictly concave Convex If X^TQX is negative semi definite then it is Convex Concave Strictly convex Strictly concave Concave If X^TQX is positive definite then it is Strictly convex Convex Concave Strictly convex Strictly concave If X^TQX is negative definite then it is Convex Concave Strictly convex Strictly concave Strictly concave edure for the solution of a quadratic Volfe's modifie Wolfe's modified programming problem by eale's metho letcher's n implex method ank - wolfe's method implex method method, at each iteration the objective Wolfe's modified Beale's method rank - wolfe's method Beale's method function is expressed interms of only the non basic variabl Fletcher's method simplex method In Beale's method, at each iteration the objective function is In Beale's method, we introduce an additional non basic variables is called n ba sic variable tate variabl cision variables ee variable ree variables In an NLPP, if the objective function is Tucker conditions are sufficient condition , the Kuhr ons for a ab maximum Strictly convex Strictly concav Strictly concave In an NLPP, if the objective function is Strictly concave, the Kuhn - Tucker conditions are sufficient conditions for a ak maxim lobal r solute m Kuhn - Tucker condition Kuhn - Tucker condition The general NLPP with inequality constraints are usually agrange condition olved using ______ which of the following methods of solving a QPP is based eale's method Wolfe's method Frank - wolfe's method Wolfe's method Fletcher's method on modified simplex method? In method, the technique involves partitioning of the variables into basic and non basic pools and then us ults from calculus ale's method Fletcher's method Wolfe's method rank - wolfe's method Beale's method an optimum solution to an NLPP involving only two ecision variables can conveniently be determined by lual simplex method Big - M method graphical method graphical method implex method Non linear inequality Quadratic programming concerned with the NLPP of Non linear equality inear inequality inear inequality constraints optimizing the quadratic objective function subject to onstraints onstraints lo constrain onstraints Positive semi definite f X^TQX is Positive definite negative semi definite _ then it is conve negative definite Positive semi definite negative semi If X^TQX is Positive definite negative definite Positive semi definite negative semi definite then it is concave definite If X^TQX is Positive definite negative definite Positive semi definite negative semi definite Positive definite _____ then it is strictly convex If X^TQX is then it is strictly concave Positive definite negative definite Positive semi definite negative semi definite negative definite X^TQX is said to be positive definite if _ ^TQX > 0 ^TQX < 0 <[⊤]QX ≥ 0 (^TQX > 0 _for x≠0 $^{T}QX \leq 0$ X^TQX is said to be negative definite if __for x≠0 $X^TQX > 0$ $X^TQX < 0$ $X^TQX \ge 0$ $X^TQX \le 0$ $X^TQX < 0$ X^TQX is said to be positive semi definite, if _____ (^TQX < 0 ([⊤]QX ≥ 0 ^rQX > 0 $\sqrt{V}QX \ge 0$ $^{T}QX \leq 0$ X^TQX is said to be negative semi definite if for x≠0 The stationary point is a local maximum, the sign ^TQX > 0 x[⊤]QX < 0 $X^TQX \ge 0$ $X^TQX \le 0$ $X^TQX \le 0$ The stationary point is a local minimum, the sign negative Positive alternate zero alternate pattern being always ositive egative alternate zero negative is concerned with the NLPP of optimiing the objective function subject to linear inequality uadratic eparable Quadratic Dynamic constriants The necessary conditions become sufficient condition rogramming Programming programming eometric programming programming ooth maximum and neither maximum nor The necessary conditions become sufficient condition for a ______if the objective function is concave The necessary conditions become sufficient condition for a ______if the objective function is convex Maximur Minimu ninimum oth maximum and minimum neither maximum nor Maxim Maximum Minimum Minimum minimum minimum If the principle minors of borded Hessian matrix is ositive egative on zero Positive Strictly concave Strictly convex Convex onvey oncave is called free variables Fletcher's meth Wolfe's method Frank - wolfe's method Beale's method eale's metho
