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Hrs/

Marks Exam :
Code Course(s Credit
©) Week CIA| ESE [ Total| Hrs
SEMESTER - 1|
17MMP101 | Algebra 4 40 60 100 3 4
17MMP102 | Real Analysis 4 40 60 100 3 4
17MMP103 | Numerical Analysis 4 40 60 100 3 4
17MMP104 | Ordinary Differential Equations 4 40 60 100 3 4
17MMP105A| Advanced Discrete Mathematics
17MMP105B | Neural networks and fuzzy logic 4 40 60 100 3 4
17MMP105C| Combinatorics
17MMP106 Mecharucs _ _ 4 40 50 100 3 4
17MMP111 | Numerical Analysis (Practical ) 4 40 60 100 3 2
Journal Paper analysis & Presentation 2 - - - - -
Semester total 30 280 420 700 26
SEMESTER - 11

17MMP201 | Complex Analysis 4 40 60 100 3 4
17MMP202 | Topology 4 40 60 100 3 4
17MMP203 Optimization Techniques 4 40 60 100 3 4
17MMP204 | Partial Differential Equations 4 40 60 100 3 4
17MMP205A | Graph theory and its applications
17MMP205B | Theory of Elasticity 4
17MMP205C | Fundamentals of Actuarial 4 40 60 1003

Mathematics
17MMP206 | Fluid dynamics 4 40 60 100 3 4
1’TMMP211 | Optimization Techniques (Practical) 4 40 60 100 3 2
Journal Paper analysis & Presentation 2 - - - - -

Semester total 30 280 420 700 26
SEMESTER - 111

17MMP301 | Functional Analysis 4 40 60 100 3 4
17MMP302 Fuzzy logic 4 40 60 100 3 4
17/MMP303 | Mathematical 4 40 60 100 3 4

Modeling
17MMP304 Mathematical Statistics 4 40 60 100 3 4
17MMP305A | Formal Languages & Automata

Theory 4 40 60 100 3 4

Department of Mathematics, KAHE.
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17MMP305B | Magnetohydrodynamics
17MMP305C | Fuzzy Topology
17/MMP306 | |ntegral equations and transforms 4 40 60 100 3 4
17MMP311 Mathematical Statistics(Practical) 4 40 60 100 3 2
Journal Paper analysis & Presentation 2 - - - - \ -
Semester total 30 280 | 420 700 | 26
SEMESTER -1V
17MMP401 | Measure theory 4 40 60 100 3 4
17MMP402 | Stochastic Process 3 40 60 100 3 3
17MMP491 | Project - 80 120 200 - 8
Semester total 7 160 240 400 - 15
97 1000 1500 2500 93
Program: M.Sc.,Mathematics
Electives Courses*
Elective | Elective Il Elective Il
Course code Name of the course Course code Name of the Course code Name of the
course course
17MMP105A | Advanced Discrete 17MMP205A | Graph theory 17MMP305A | Formal
Mathematics and its Languages &
applications Automata
Theory
17MMP105B | Neural networks and 17MMP205B | Theory of 17MMP305B |Magnetohydro
fuzzy logic Elasticity dynamics
] ] Fundamentals
17MMP105C | Combinatorics 17MMP205C | of Actuarial 17MMP305C | Fuzzy
Mathematics Topology

Department of Mathematics, KAHE.
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Continuous Internal Assessment Marks End Semester Examination —MarksAllocation

S.No Category Marks

1 Attendance 5 Part A

2 Seminar 15 1 20X1=20 20
3 CIA | 10 Online Examination

4 CIA I 10 Part B
Total Marks 40 2 5X6=30 30

Part C
3 1 X10=10 10

Either ‘A’ OR ‘B’ Choice

Total Marks 60

Department of Mathematics, KAHE.
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LECTURE PLAN

SUB.CODE:17MMP204

SUBJECT NAME: PARTIAL DIFFERENTIAL EQUATIONS SEMESTER: Il
CLASS: | M.SC MATHEMATICS

S.No Lecture Topics to be Covered Support
Duration Material/Page Nos
Period
UNIT-I

1 1 Non linear partial differential T1:ch3:pg 139-141
equation of first order

2 1 Problems on Non linear partial R2:ch2:pg 56-58
differential equation of first order

3 1 Compatible systems of first order | R2:ch2:pg 58-60

4 1 Problems on Compatible systems
of first order

5 1 Partial differential equations of R4:ch2:pg 53-55
second order

6 1 Problems on Partial differential R4:ch2:pg 57-59
equations of second order

7 1 The origin of second order R4:ch2:pg 59-61
equations

8 1 Properties of homomorphism

9 1 Continuation of properties of | T1:ch3:pg 142-144
homomorphism

10 1 Properties of elements under T1:ch3:pg 144-146
homomorphism

11 1 Linear partial differential R3:ch10:pg 194
equations with constant
coefficient equations with
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12 1 Linear partial differential R3:ch10:pg 195-196
equations with constant
coefficient equations with
variable coefficients.

13 1 Recapitulation and discussion
of possible questions

Total No of Hours Planned For Unit 1=13
UNIT-I1I

1 1 Introduction to Method of T1:chl4:pg 154-155
separation of variables

2 1 Method of separation of variables | R1:ch4:pg 135-137

3 1 Continuation of Method of R1:ch4:pg 137-139
separation of variables

4 1 The method of integral R2:ch2:pg 68-69
transforms.

S 1 Continuation of the method of | R3:ch6:pg 124-125
integral transforms.

6 1 Continuation of the method of | R3:ch6:pg 125-126
integral transforms.

7 1 The method of integral R2:ch2:pg 68-69
transforms.

8 1 Recapitulation and discussion
of possible questions

Total No of Hours Planned For Unit 11=8 hrs
UNIT-111

1 1 Introduction to Laplace R1:ch5:pg 154
Equation:

2 1 Elementary solutions of Laplace | R2:ch2:pg 104-106
equations-

3 1 Continuation of Elementary R2:ch2:pg 149-151

solutions of Laplace equations-
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4 1 Continuation of Elementary
solutions of Laplace equations

S 1 Continuation of Elementary R3:ch8:pg 149-151
solutions of Laplace equations

6 1 Families of Equi potential R3:ch8:pg 151-152
surfaces

7 1 Problems on Families of Equi R3:ch8:pg 152-154
potential surfaces

8 1 Problems on Families of Equi
potential surfaces

9 1 Boundary Value problems R3:ch8:pg 154-155

10 1 Continuation of the group of R3:ch8:pg 155-156
units modulo n as an external
direct product

11 1 separation of variables R2:ch2:pg 109

12 1 Continuation of separation of ~ |R2:ch2:pg 110-111
variables

13 1
Recapitulation and discussion
of possible questions

Total No of Hours Planned For Unit 111=13 hrs
UNIT-IV

1 1 Wave Equation: T1:ch3:pg 168-170

2 1 Derivative on Elementary T1:ch3:pg 170-171
solutions of one dimensional
wave equation

3 1 Problems on Elementary T1:ch3:pg 172-173
solutions of one dimensional
wave equation

4 1 Problems on elementary solutions
of one dimensional wave
equation

5 1 Vibrating membranes R1:ch2:pg 52-53
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Problems on Vibrating
membranes

R1:ch2:pg 53-54

Problems on Vibrating
membranes

R3:ch5:pg 90-91

Applications of calculus of
variations

R3:ch5:pg 95-96

Green’s functions for the wave
equation

R3:ch5:pg 96-97

10

Applications of Green’s functions
for the wave equation

R3:ch5:pg 98-99

11

Recapitulation and discussion
of possible questions

Total No of Hours Planned For Unit IVV=11hrs

UNIT-V

Diffusion Equation

R1:ch4:pg 124-126

The resolution of Boundary value
problems for the Diffusion
equation

R1:ch4:pg 126-127

Problems on the resolution of
Boundary value problems for the
Diffusion equation

R1:ch4:pg 127-129

Problems on the resolution of
Boundary value problems for the
Diffusion equation

R1:ch4:pg 127-129

Problems on the resolution of
Boundary value problems for the
Diffusion equation

R1:ch6:pg 190-192

Problems on the resolution of
Boundary value problems for the
Diffusion equation

R3:ch24:pg 397-398

Elementary solutions of diffusion
equation
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8 1 Elementary solutions of R3:ch24:pg 399
diffusion equation

9 1 Elementary solutions of R3:ch24:pg 400
diffusion equation

10 1 Elementary solutions of R3:ch24:pg 400-401
diffusion equation

11 1 Separation of variables R3:ch24:pg 403-405

12 1 Use of Green’s functions R3:ch24:pg 406

13 1 Recapitulation and discussion
of possible questions

14 1 Discussion of previous ESE
question papers.

15 1 Discussion of previous ESE

question papers.

Total No of Hours Planned for unit V=15 hrs

Total
Planned 60 hrs
Hours

TEXT BOOK

1. lan. N. Sneedon, (2006). Elementary Partial differential equations, Tata Mcgraw Hill
Ltd.

REFERENCES

1.Sharma, J. N, Kehar singh, (2001), Partial Differential Equations for Engineering and

Scientists, Narosa Publishing House, New Delhi.

2.Geraold. B. Folland, (2001), Introduction to Partial Differential Equations, Prentice

Hall of India Private limited, New Delhi.

3.Sankara Rao. K, (2005), Introduction to Partial Differential Equations, Prentice Hall of

India Private limited, New Delhi.
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4.Veerarajan, T, (2004), Partial Differential Equations and Integral Transforms, Tata
McGraw- Hill Publishing Company limited, New Delhi.

5.John, F, (1991). Partial Differential equations, Third edition, Narosa publication co,
New Delhi.
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Sa KARPAGAM ACADEMY OF HIGHER EDUCATION
=Y (Deemed to be University Established Under Section 3 of UGC Act 1956)

KARPAGAM Coimbatore — 641 021.
I SYLLABUS
Semester - 11
17MMP204 PARTIAL DIFFERENTIAL EQUATIONS L TP C

4 0 0 4

Scope: On successful completion of this course the learner gains knowledge about the solution
of non linear partial differential equations , solution of linear hyperbolic equations , method of
integral transforms, wave equations and diffusion equations which plays an essential role in the
applications of Mathematics.

Objectives: To be familiar with formulation and solutions of partial differential equations and
get exposed with physical problems.

UNIT I

First Order Partial Differential Equations:

Non linear partial differential equation of first order —Compatible systems of first order
equations — Special type of first order equations- Partial differential equations of second order —

The origin of second order equations — Linear partial differential equations with constant
coefficient equations with variable coefficients.

UNIT 1

Method of separation of variables —The method of integral transforms.

UNIT 111

Laplace Equation:

Elementary solutions of Laplace equations- Families of Equi-potential surfaces - Boundary
Value problems-separation of variables-problems with axial symmetry.

UNIT IV

Wave Equation:

Elementary solutions of one dimensional wave equation-Vibrating membranes - Applications of
calculus of variations- Green’s functions for the wave equation.

UNIT V

Master of Science, Mathematics, 2017, KAHE Page 1
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Diffusion Equation:

The resolution of Boundary value problems for the Diffusion equation- Elementary solutions of
diffusion equation - Separation of variables- use of Green’s functions- Diffusion with Sources.

SUGGESTED READINGS

TEXT BOOK
1. lan. N. Sneedon, (2006). Elementary Partial differential equations, Tata Mcgraw Hill Ltd.

REFERENCES

1.Sharma, J. N, Kehar singh, (2001), Partial Differential Equations for Engineering and
Scientists, Narosa Publishing House, New Delhi.

2.Geraold. B. Folland, (2001), Introduction to Partial Differential Equations, Prentice Hall of
India Private limited, New Delhi.

3.Sankara Rao. K, (2005), Introduction to Partial Differential Equations, Prentice Hall of India
Private limited, New Delhi.

4.Veerarajan, T, (2004), Partial Differential Equations and Integral Transforms, Tata McGraw-
Hill Publishing Company limited, New Delhi.

5.John, F, (1991). Partial Differential equations, Third edition, Narosa publication co, New
Delhi.

Master of Science, Mathematics, 2017, KAHE Page 2



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSE NAME: Partial Differential Equations

COURSE CODE: 17MMP204  UNIT: I(I ORDE PDE) BATCH-2017-2019

UNIT-I
SYLLABUS

First Order Partial Differential Equations:

Non linear partial differential equation of first order —Compatible systems of first order equations — Special type
of first order equations- Partial differential equations of second order — The origin of second order equations —
Linear partial differential equations with constant coefficient equations with variable coefficients.

UNIT I

FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS:
METHODS TO SOLVE THE FIRST ORDER PDE:
TYPE I:

Given f(p,q)=0.
Let z = ax+by+c which is the solution of the given equation f(p,q)=0.
Thenp = Z—z =a,
and q= g—; =bh.
This impliesp=a, q=h.

Hence the complete solution is z = ax+by+c, where f(a,b)=0.

EXAMPLE 1:

Solve \/p +/q =1.

Solution:

Prepared By S.kOHILA, Asst Prof, Department of Mathematics, KAHE Page 1




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSE NAME: Partial Differential Equations

COURSE CODE: 17MMP204  UNIT: I(I ORDE PDE) BATCH-2017-2019

Given:

F(p,0)=0.

Therefore the complete integral is,

Z = ax+by+c.

Therefore the given equation becomes

Va++b =1

Therefore Vb = 1-va

Taking square on both sides we get,

b=(1-+a)?

Substitute b = + (1 — va)? in z = ax+by-+c.
z = ax+(1 — va)?y+c.

Differentiating partially with respect to a we get,

1-Va
0= x+%y.

Therefore there is no singular integral.

To find the general integral:

Let c = f(a) in z = ax+ (* (1 —Va)?) y+c.

z = ax+ ( (1 = Va)?) y+f(a).

Differentiating partially with respect to a we get,

0= 320y + £'(a).

By eliminating a in between above two equation we get the general solution.

EXAMPLE 2:

Prepared By S.kOHILA, Asst Prof, Department of Mathematics, KAHE Page 2



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSE NAME: Partial Differential Equations

COURSE CODE: 17MMP204  UNIT: I(I ORDE PDE) BATCH-2017-2019

Solve: p? + g% = n?
Solution:
Given: p? + q% = n?
It is of the form F(p,q) =0
Therefore the complete integral is,
a’ + b%? = n?

The value of b is given by,

b=vnZ-a?
Substituting the value of b in the equation z = ax + by + ¢ we get,

z=ax++n?—a’y+c

Differentiating partially with respect to a we get,
- 1 _ ,
O=x+ 2\/m( 2ay) + ¢'(a)

0=x- ==+ ¢'(@

Eliminating a in between above two equation we get the general integral.
TYPE II:
It is of the form,
z = px+qy+f(p,q).
Now z = ax+by+f(a,b) .....(1)
Which is the complete integral.

Differentiate (1) partially with respect to a and b, we get

0=x+ j—cfl L 2)

Prepared By S.kOHILA, Asst Prof, Department of Mathematics, KAHE Page 3



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSE NAME: Partial Differential Equations

COURSE CODE: 17MMP204  UNIT: I(I ORDE PDE) BATCH-2017-2019

o=y+< .3
Eliminating a and b from equations (1),(2) and (3) we get the singular integral,
Let b =¢p(a).

Therefore equation (1) becomes,

z = ax+ @(a) y+f(a, (@) ....(4)

Differentiate partially with respect to a,

0=x+¢" (a)y+ f'(a,¢@)) ....05)

Eliminating a between (4) and (5) we will get the general integral.

EXAMPLE 1:

Solve px +qy+ \/m
Solution:

Given:

z=px+ay+ 1+ p* + q*

Therefore the complete integral,
z = ax +by+ V1 + a2 + b2,

Differentiate partially with respect to a and b we get,

= —*
0=X+ Fepe
This implies,

a

Vi+a?+b?

b
Vi+a?+b?

O=y+

This implies,

Prepared By S.kOHILA, Asst Prof, Department of Mathematics, KAHE Page 4
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CLASS: I M.Sc MATHEMATICS COURSE NAME: Partial Differential Equations

COURSE CODE: 17MMP204  UNIT: I(I ORDE PDE) BATCH-2017-2019

_ b
Y= Tirateoe

Eliminating a and b from the above equation we get the singular integral,

2 — a?

" 1+a2+p?’
2 —_ b?
y 1+a%+b?’
Therefore,

2 _ a? + b?
1+a?+b?’

x%+y

a? + b2
1+a?+b?

1-(x?+y?) =1-

This implies,

1
L0y = o
1

1—x2-y?2

VItart b=

1—x2-y?2

1+a®+b*=

Substituting we get,

—-X

Jixr—y?

b:_—y
1-x2-y2

By substituting we get,
=JT—xZ—y?

taking square on both sides, we get
z%2=1 — x? — y?

x?+y?+2z2=1

Prepared By S.kOHILA, Asst Prof, Department of Mathematics, KAHE Page 5
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CLASS: I M.Sc MATHEMATICS COURSE NAME: Partial Differential Equations

COURSE CODE: 17MMP204  UNIT: I(I ORDE PDE) BATCH-2017-2019

Which is a required solution.
EXAMPLE 2:
Solve: z = px + qy + pq
Solution:
Given: z=px + qy + pq

Now z = ax + by + ab
Which is the complete integral.
Differentiate partially with respect to a and b we get,

O0=x+b...(1)
O=y+a...(2)
Therefore the values of a and b are as follows,
a= —xandb = —y
Substituting the values of a and b in the given equation we get,
Z= —Xy—Xxy+xy
Z= —Xxy
Eliminating a and b from the equation (1) & (2) we get the singular integral,
Letb = ¢(a)
Therefore the equation becomes,
z=ax+ p(a)y+ a¢p(a)
Differentiating partially with respect to a we get,
z=ax+¢(@y+ ¢'(@a+ ¢(a)

Eliminating a and b we get the general integral.

Prepared By S.kOHILA, Asst Prof, Department of Mathematics, KAHE Page 6
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CLASS: I M.Sc MATHEMATICS COURSE NAME: Partial Differential Equations

COURSE CODE: 17MMP204  UNIT: I(I ORDE PDE) BATCH-2017-2019

TYPE |11
This is of the form F(z,p,q)=0 does not contain x and y explicitly.
Let us take z=f(U)

Where U=x+ay

_oz
P dx

_oz
4=~

therefore, p and q becomes,

Therefore, p:;i—z and

dz
g= a.ﬁ
Therefore,

dz

F(Z’du’

dz _
a E) =0,
Which is of the form ordinary differential equations,

dz _
E - (p (Z,a)

This implies,

dz _
¢ (za)

Integrating on both sides we get,

Prepared By S.kOHILA, Asst Prof, Department of Mathematics, KAHE Page 7
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CLASS: I M.Sc MATHEMATICS COURSE NAME: Partial Differential Equations

COURSE CODE: 17MMP204  UNIT: I(I ORDE PDE) BATCH-2017-2019

This implies,
f(z,a) =U+c
Case 1:
If the equation is of the type,
F(x,p.0) =0
Letg=aand
p = f(x,a)
By applying total derivative we get,
dz = g—i dx + 2—; dy
Therefore, z = pdx+qdy
Integrating we get,
z=[pdx + [ pdy
= [ f(x,a)dx + [ ady
z =F(x,a) +ay+c
Case 2:
If the equation is of the type,
F(y,p,0) =0
Letp=aand
q="f(y.a)

By applying total derivative we get,

_ 0z 0z
dz—a dx+5 dy

Prepared By S.kOHILA, Asst Prof, Department of Mathematics, KAHE Page 8
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CLASS: I M.Sc MATHEMATICS

COURSE CODE: 177MMP204

COURSE NAME: Partial Differential Equations

UNIT: (I ORDE PDE)  BATCH-2017-2019

Therefore, z = pdx+qdy

Integrating we get,

z=[pdx + [ pdy

= [ adx + [ f (y,a)dy

z =ax+F(ya)+c
EXAMPLE 1:
Find the complete integral of z = pq
Solution:
This is of the form f(z,p,q) = 0.
Let z = f(X) = f(x+ay)
where X = (x+ay)

put p :Z—; and

i
4=ax

By substituting the values of p and g we get the given equation as,
_ (adz dz

2= ()2 (&)
_ dz\?

z=a(5)

Taking square roots on both sides we get,

dz

Vi = £9a (gz)

dX:i\/Edz
Z

Prepared By S.kOHILA, Asst Prof, Department of Mathematics, KAHE
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COURSE CODE: 177MMP204  UNIT: I(I ORDE PDE )

BATCH-2017-2019

Integrating we get,

X+c=+2+VaVz

X+c=+2+az

Substituting the value of X in the above equation we get,

(x+ay) +c =+ 2+az

Taking square on both sides we get,
(x+ay+c)>=4az

EXAMPLE 2:

Find the complete integral of p3+ q3 = 3pqz
Solution:

This is of the form f(z,p,q) = 0.

Let z = f(X) = f(x+ay)

where X = (x+ay)

putp = 2—; and

g=as

Substituting the values of p and g we get,

dz3+ dz3_3 dz dz
ax "¢ ax T % axax

dz3 3\ — dz?
= (1+4+a3)= SZadX

dz
— 3 =
dX(1+a ) =3za

Therefore the equations becomes,

Prepared By S.kOHILA, Asst Prof, Department of Mathematics, KAHE
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COURSE CODE: 17MMP204  UNIT: I(I ORDE PDE) BATCH-2017-2019

1
1y =3 g

1
(1 +a3)E dz = 3adz

Then by integrating on both sides we get,

fld —3__"2 jdx
YT U+ ad)

a
1 =3 —7 X
0gz =3 1+ +c
Substituting the value of X we get,
a
lOgZ =3 m(x+ay) +c

Therefore we get,
(1+a3®)logz=3a(x+ay)+c.

NON LINEAR PARTIAL DIFFERENTIAL EQUATION OF FIRST ORDER:
CASE 1:

Equations of the form F (x™p, y™ q) = 0.
Letus X =x*"™and Y = y!=" where m,n= 1.
Therefore,

p=P{1—m)xt-m1

p=P(1-m)x™

q=Q1—-n)y'™1!

q=0(1—-n)y™

Therefore,

Prepared By S.kOHILA, Asst Prof, Department of Mathematics, KAHE Page 11
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COURSE CODE: 17MMP204  UNIT: I(I ORDE PDE) BATCH-2017-2019

FIP(1-m)]Q[(1-n)] =0

This is of the form F[P, Q] = 0.

CASE 2:

Equations of the form F (x™p, y™ q) = 0.
Where, m=n=1

Therefore px = P;qy = Q

Therefore F (x™~1P, y*~1 Q) = 0.
Therefore F[px,qy] = 0.

CASE 3:

Equations of the form F (z¥p, z* q) = 0.
Where k= constant

CASE 3.1:

Ifk#= —1put Z = z*k*1, differentiate partially with respect to x and y we get,

Hence the equation reduces to the form,

F[P,Q] = 0.
Hence the equation reduces to the form,
F[P,0Q] = O.
0z 0z
Where—a, Q = P

CASE 3.2:

If k=1 put z = log z, differentiate partially with respect to x and v,

Therefore P = S and Q = %,

z

Prepared By S.kOHILA, Asst Prof, Department of Mathematics, KAHE Page 12
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COURSE CODE: 177MMP204  UNIT: I(I ORDE PDE )

BATCH-2017-2019

This also reduces to the form of F[P,Q] = 0.
CASE 4:
Equations of the form F (x™zkp , y"z*q) =0.
Ifm#landk # —1,n # 1.
We cantake itas X = x1™™ ;Y =y1 1,
7= Zk+1.
Then the equation reduces to F[P, Q] = 0.
EXAMPLE 1:
Solve x?p? + y?p? = z2,
Solution:
The given equation,
x2p? + yp? = 72
By dividing z2 on both sides of given equation we get,
XDA 2 2
() &) -1
Herem=n=1.

Let X =logx ,Y =logy.

_62_6de_P
p_ax_axdx_x'
0z 0zdY Q
Ty Ty

_P. . _0Q
Thereforep—x,q—y

This implies, px = P ; qy = Q.

Prepared By S.kOHILA, Asst Prof, Department of Mathematics, KAHE
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COURSE CODE: 17MMP204  UNIT: I(I ORDE PDE) BATCH-2017-2019

Substituting in given equation,

()G ==
x y
Therefore ,
P? + Q?=277

P24 Q%2— 272 =0.
COMPATIBLE SYSTEM:
Definition:

If every solution of the 1% order partial differential equation is of the form f(x,y,z,p, q) =
0, is a solution of the partial differential equation g(x, v, z, p, q) = 0.

Then the equation is said to be compatible.
Statement:

The necessary condition that the two equations are compatible is

_ 0(f.9) a(f.g) a(f.g) a2(f.9) _
9] = 56 2z T o T 9oGq

EXAMPLE 1:
Show that the system of equationsxp = yq, z(xp + yq) = 2xy are compatible and solve them.
Solution:

Given:

f=xp—yqand g = z(xp +yq) — 2xy.

_ 9(f.9) a(f.g) a(f.g) o(f.9) _
9] = 56 2en T awa T 9w =0
or or
afg) _|ox ap|_| P _
axp) |99 9g| T lzp—2y 2x = 2xy.
dx Jdp
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of of
ozp) |29 29 _‘px+qy zx| T TPX T AXY-
dz Odp
or of
o) _|oy aal | —a -y __
ava) |99 99 _|Zq—2x zy |~ 2xy.
dy 0q
or of
azq) |99 9g _|px+qy zy = (pxy + qy?).
dz 0q

[f, 9] = 2xy + p(—=px?* — qxy) — 2xy + q (pxy + qy?).
[f,g]=0.

Therefore the given equations are compatible.
Now,xp = ygq,

z(xp + xp) = 2xy

2xpz = 2xy

pz =

NI o

p =
Then, z(yq + yq) = 2xy
2zyq = 2xy

zq =x

_ X
1= Z
Therefore, p = f and q = f

We know that,
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edx+W¥Ydy—dz=0

dz = pdx + qdy

dz=2de+ = dy
Z Z

By integrating,

y X
]dz=j—dx+j—dy

z z
jzdzzfydx+fxdy

Therefore,

Zz—zzxy + xy

z?2 =2 (2xy)

Therefore, z2 = 4 xy + c.

EXAMPLE 2:

Solve the system of equations g—i = 6x + 3y,g—; = 3x — 4y are compatible and solve them.
Solution:

Given:p =6x+3y,q =3x — 4y

Therefore, f =p—6x —3y and f = q —3x + 4y

Since,

_ 9(f.9) a(f.g) a(f.g) o(f.9) _
9] = 56 2en T awa T 9w =0

of of
a(f,.g) _lox oap _|—6 1 -3
a(xp) |99 949 -3 0 '
dox Op
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9f of
a(f.9) az ap| _ 10 1] _
azp) |29 99| " lo ol
dz O0p

0.

of of
(f.9) _ |9y aq :|—3 0= _3
ova) (99 29| 14 1 '
dy 0q

of 9f
af.g) _|oz aq _|0 0 -0
azq) (29 99 10 1 '
dz dq

[f,gl=3+0-3+0=0.
[f,91=0

Since,
p=06x+3y,q=3x—4y.

By integrating,

fdz =f(6x + 3y)dxf(3x — 4y)dy

Therefore,

z = 3x% = 2y? + 6xy.

SPECIAL TYPES OF FIRST ORDER EQUATIONS:

Equations involving ‘p’ and ‘q’ only:

Let (f,p) = 0 be the partial differential equation, then the charpit’s equations are,

dx dy dz dp dq _dg

i fo phtafy ~(utpf) —(h+af) O

Since, f, = f, = f; = 0,we have
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This implies,p =0and g =0

Therefore, f(p,q) =0

= f(a,b)=0

=b = ¢(a)

Therefore,p = a and q = ¢(a)

Thus dz = pdx + qdy

=dz = adx + bdy

>z=ax+ e(a)y+b

EXAMPLE 1:

Consider the equation, p+q = pg.

Solution:

The given equation can be writtenas f =p+q—pqg =10
This equation contains p and g only,

From the charpit’sequationwe get,

p=aandq = b.

Substitute these values in above equation we get,
a+b—ab=0

a+b(l—a)=0

b(1—a) = —a

—a

b=
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therefore,

_ a
T (a-1)

From the charpit’s method we have,
dz = pdx + qdy

Therefore, z = ax + p(a)y + b

= ax + y+b

a
(a—1)

>z =(ala—Dx+ay+ b)((a—l)

)

Therefore,
(ax — z)(a — ¢) + ay = b, which is the required solution.
Equations not involving independent variable:

Let (z, f,p) = 0....(1), be the partial differential equation, then the charpit’s equations are,

dx dy dz 4 dp R dq _dg
o fo pPhtafy —-(htpf) —-(htaf,) O
This implies,
dp dq
p q

Where, f, = f, = 0.

That is,
d d
av _da _
14 q

=>p = aq .... (2)where'a’is constant.

Solving equations (1) and (2) for substituting the values of p and q in the charpit’s equation,
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dz = pdx + qdy

We get the solution of the equation (1).

EXAMPLE 1:

Consider the partial differential equation z = p? — g?(not involving independent variable x and

y).

Solution:

Given equations (z,p,q) = p*—q¢* —z....(1)

From the charpit’s equation we get,

=p =aq....(2)

Where ‘a’ is constant.

Substitute p = aq in (1) we get,

p?—q*—z=0
a?q?—q?—z=0
q*(a*=1) =z

z
a?—1

q° =

Taking square roots we get,

Wz
1= a?—-1
=p =aq

vz
=P = a?-1
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Therefore from the charpit’s equation,

dz = pdx + qdy
_ vz ,Vz
dz = Vaz-1 dx TVa?-1 dy
Jaz—1dz =avzdx ++zdy
o —adr+d
z=adx
NG y

Integrating we get,

2Va? —1Wz=ax+y+c

Which is the required solution.

EXAMPLE 2:

Solve the following partial differential equation (p + q)(px + qy) = 1.
Solution:

Let the equation is of the formf (x,y,z,p,q) =0

Therefore f = (p + @) (px +qy) —1...(1)

The charpit’s equation,

dp dq

—_—=—=a

p q

dx dy dz _ dp _ dq _dg
h  fo vhtay -U+prf) —-(h+af,) O
That is,

dp dq

_:_:CI

p q

>p =04
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Substituting in given equation,

(19 + Q) (crgx + qy) = 0.

q%(c; + D(cix+y) =0

Taking square roots on both sides we get,

1
\/(51 + D (c1x +y)

Therefore the charpit’s equation,
dz = pdx + qdy
dz = q(c,dx + dy)

1

PTG Dea iy Y

Integrating we get,

_ (c1x +y)
\/(C1 +D(ex +y)

Zz+b = V(c1x+y)
Jie+1D)

ORIGIN OF SECOND ORDER EQUATION:

z+b

Equations that can be integrated by inspection.

0z 0%z _ 0%z _ 0%z

Since, p =Z—i;q = 35S Ty t =0T T o
EXAMPLE 1:

Solve: s = 2x + 2y.

Solution:

Given: s = 2x + 2y.
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Substituting the values of ‘s’ we get,

9%z _
373y =2x + 2y

Integrating with respect to ‘x” and keeping ‘y’ as constant we get,

LA
ay—x xy + o)

Integrating with respect ‘y’ and keeping ‘x’ as constant we get,

2

z= x%y+2x y?+fgo(y)dy+f(x)

z= x’y+xy®+ f p)dy + f(x)

z= x2y+xy?+F(x) + f(x).
EXAMPLE 2:

Solve: r = 6x.

Solution:

Given: r = 6x

Substituting the values of ‘r’ we get,

@:6)6

Integrating with respect to ‘x” and keeping ‘y’ as constant,

62_

2
i 3x + @(y)

Integrating with respect to ‘x” and keeping ‘y’ as constant,

3
zZ = 3% +xo(y)+ ¥(y).
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UNIT I option 1 |option 2 option 3 option 4 Answers

A partial differential equation is one which involves derivatives single ordinary |partial linear partial
The three variables involves in Pdx+Qdy+Rdz=0 is called pfaffian  |lagrange recursive quadratic pfaffian
The general solution of PDE is of the form C.F+P.I |CF-PI C.F*P.I C.F/P.1 C.F+P.I
The Equation is of the form Z=px-+qy+f(p,q) is called. clairaut  [charpit crout separable clairaut
f(x,p)=g(y.q) is called equation clairaut  [charpit crout separable separable
Reducible equation is defined as te product of factors. linear nonlinear polynomial  [recursive linear

If the operator F(D,D") is reducible te order in which the linear factors occuris ___ important [unimportant considerable |reluctable unimportant

If u is the C.F and z, is particular P.I then the general solution is utzl u-z1 u*zl u/zl utzl
L(z)H(x.y,z,p,q)=0 where L is the operator laplace  |differential lagrange longdivision |differential

If S>-4RT>0 then it is elliptic  |parabolic hyperbolic  |diffusion hyperbolic

If S-4RT<0 then it is elliptic  |parabolic hyperbolic  |diffusion elliptic
If S-4RT=0 then it is elliptic  |parabolic hyperbolic  |diffusion parabolic
The order of PDE to be the order of the derivative of order occurring in it. lowest highest first second highest
In Rr+Ss+Tt+Pp+Qq=W, W is the function of X y xand y z xand y
In F(D,D'):Othe term D’ denotes about the variable X Yy z P Y

The solution of the PDE consists main parts 2 4 5

The Fourier transform is defined in the interval (-0,)  [(0, ) (0,0) (0,pi) (-o0,00)
The Integral transform reduce the PDE to ODE DE Integral homogeneous [DE
TheLaplace transform is defined in the interval (-0,0)  [(0, ) (0,0) (0,pi) (0, =)

If f and g are said to be compatible then it have solution unique  |different linear non linear unique
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Method of separation of variables —The method of integral transforms.

Second Order Linear Partial Differential Equations

One-dimensional undamped wave equation, D ’Alembert solution of the
wave equation; damped wave equation and the general wave equation; two-
dimensional Laplace equation

The second type of second order linear partial differential equations in 2
independent variables is the one-dimensional wave equation. Together with
the heat conduction equation, they are sometimes referred to as the
“evolution equations” because their solutions “evolve”, or change, with
passing time. The simplest instance of the one-dimensional wave equation
problem can be illustrated by the equation that describes the standing wave
exhibited by the motion of a piece of undamped vibrating elastic string.
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Undamped One-Dimensional Wave Equation:
Vibrations of an Elastic String

Consider a piece of thin flexible string of length L, of negligible weight.
Suppose the two ends of the string are firmly secured (“clamped”) at some
supports so they will not move. Assume the set-up has no damping. Then,
the vertical displacement of the string, 0 < x <L, and at any time t > 0, is
given by the displacement function u(x, t). It satisfies the homogeneous one-
dimensional undamped wave equation:

a’ Uxx = Utt

Where the constant coefficient a2 is given by the formula a? = T/p, such that
a = horizontal propagation speed (also known as phase velocity) of the wave
motion, T = force of tension exerted on the string, p = mass density (mass
per unit length). It is subjected to the homogeneous boundary conditions

u(o, t) =0, and ulL,t)=0, t>0.

The two boundary conditions reflect that the two ends of the string are
clamped in fixed positions. Therefore, they are held motionless at alltime.

The equation comes with 2 initial conditions, due to the fact that it contains
the second partial derivative of time, Uw. The two initial conditions are the
initial (vertical) displacement u(x, 0), and the initial (vertical) velocity

ut(x, 0)", both are arbitrary functions of x alone. (Note that the string is
merely the medium for the wave, it does not itself move horizontally, it only
vibrates, vertically, in place. The resulting undulation, or the wave-like
“shape” of the string, is what moves horizontally.)

“Velocity = rate of change of displacement with respect to time. The other first partial derivative ux
represents the slope of the string at a point x and time t.
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One - dimensional
Homogeneous undamped wave equation

42“zx= it

ATARNEASAL] SURRRARANANANAN

Displacement
a(x. z!)

+
<€
L

Hence, what we have is the following initial-boundary value problem:

(Wave equation) a° Uxx = Utt, O<x<L,t>0,
(Boundary conditions) u(,t)=0,and u(L,t)=0,
(Initial conditions) u(x, 0) = f (x),and ut(x, 0) =g(x).

We first let u(x, t) = X(x)T(t) and separate the wave equation into two
ordinary differential equations. Substituting uxx =X " T and ux = X T ” into
the wave equation, it becomes

a2 X" T=XT".
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Dividing both sides by a2 X T:

X' 1’
X 2

T

As for the heat conduction equation, it is customary to consider the constant
a? as a function of t and group it with the rest of t-terms. Insert the constant
of separation and break apart the equation:

X! T -2
X X aT
_:_/1
X — X"==X - X"+1X=0,
TI

asz_/1 —  T"=—a%iT — T"+a2AT=0.

The boundary conditions also separate:

u(0, ty =0 — X(0)T(t) =0 — X(0) = 0 or  T()=0
ulL, t)=0 — X(L)T(t)=0 — X(L) =0 or  T()=0

As usual, in order to obtain nontrivial solutions, we need to choose
X(0) = 0 and X(L) = 0 as the new boundary conditions. The result,

after separation of variables, is the following simultaneous system of
ordinary differential equations, with a set of boundary conditions:

X"+)X=0, X(0)=0 and X(L)=0,

T"+a2,T=0.
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The next step is to solve the eigenvalue problem
X"+ 1X=0, X(@0)=0, X(L)=0.

We have already solved this eigenvalue problem, recall. The solutions are

Eigenvalues: A=

23
=
3

o s |

e
N N
w w

Eigenfunctions: n

Next, substitute the eigenvalues found above into the second equation to find
T(t). After putting eigenvalues 4 into it, the equation of T becomes
2 -2
N7z
g T=0

L2

T'+a

It is a second order homogeneous linear equation with constant coefficients.
It’s characteristic have a pair of purely imaginary complex conjugate roots:

anr .
r=+=— 1,
L
Thus, the solutions are simple harmonic:
T,(t)=Acosanzt - QHM, n=123, ...
n L n L

Multiplying each pair of X, and T, together and sum them up, we find the
general solution of the one-dimensional wave equation, with both ends fixed,
to be
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nzXx

anszt anrt
u(x, t) = nZ;\Acos . + B, sin . js .

There are two sets of (infinitely many) arbitrary coefficients. We can solve
for them using the two initial conditions.

Set t = 0 and apply the first initial condition, the initial (vertical)
displacement of the string u(x, 0) = f (x), we have

o0

. .
UX0) = Z A cos(0) +B, sin(0)) sin Tﬂx

o0

Z | = f(x)

n=1 N L

Therefore, we see that the initial displacement f(x) needs to be a Fourier sine
series. Since f (x) can be an arbitrary function, this usually means that we
need to expand it into its odd periodic extension (of period 2L). The
coefficients A, are then found by the relation A, = by, where b, are the
corresponding Fourier sine coefficients of f (x). That is

nzX

A=b="]f0osin L 9,

Notice that the entire sequence of the coefficients A, are determined exactly
by the initial displacement. They are completely independent of the other
sequence of coefficients By, which are determined solely by the second
initial condition, the initial (vertical) velocity of the string. To find By, we
differentiate u(x, t) with respect to t and apply the initial velocity,

ui(x, 0) = g(x).
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. anzt
uxt)=" (—Aan_ﬂsm—‘+B anz cosanzt ) sin NZX

t Z|HL L "L L) L

Set t = 0 and equate it with g(x):

ut(x,O)znZ; g anz sinn—fx=9(x).
"L

We see that g(x) needs also be a Fourier sine series. Expand it into its odd
periodic extension (period 2L), if necessary. Once g(x) is written into a sine
series, the previous equation becomes

. NZX
Ut(X,O)Zi: g anz sinm=g(x):i b sin -

=L L n=1 N L

Compare the coefficients of the like sine terms, we see
anrz 2t nTx

Therefore,

L L N X
B = b = X) sin dx
"= ang amiog() L dx.

As we have seen, half of the particular solution is determined by the initial
displacement, the other half by the initial velocity. The two halves are
determined independent of each other. Hence, if the initial displacement

f (x) =0, then all A, =0 and u(x, t) contains no sine-terms of t. If the initial
velocity g(x) = 0, then all B, = 0 and u(x, t) contains no cosine-terms of t.
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Let us take a closer look and summarize the result for these 2 easy special
cases, when either f (x) or g(x) is zero.

Special case I: Nonzero initial displacement, zero initial velocity: f (x) # 0,
g(x) =0.

Since g(x) = 0, then B, = 0 for all n.

2t N X
A”:It[f (X)SianX, n=1,23, ...
Therefore,
= i an_jz—I H _n7Z-X
U(X, t) - Anrnc L in L
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The D’Alembert Solution

In 1746, Jean D’ Alembert™ produced an alternate form of solution to the
wave equation. His solution takes on an especially simple form in the above
case of zero initial velocity.

Use the product formula sin(A) cos(B) = [sin(A — B) + sin(A + B)]/ 2, the
solution above can be rewritten as

(

u(x =7 ] Alsin "

r(x-at) o nz (X +at)
C )

Therefore, the solution of the undamped one-dimensional wave equation
with zero initial velocity can be alternatively expressed as

u(x, t) = [F(x —at) + F(x + at)] / 2.

In which F(x) is the odd periodic extension (period 2L) of the initial
displacement f (x).

An interesting aspect of the D’ Alembert solution is that it readily shows that
the starting waveform given by the initial displacement would keep its
general shape, but it would also split exactly into two halves. The two
halves of the wave form travel in the opposite directions at the same finite
speed of propagation a. This can be seen by the fact that the two halves of
the wave form, in terms of x, are being translated/moved in the opposite
direction, to the right and left, in the form of phase shifts, at the rate of
distance a units per unit time. Hence the value a is also known as the
wave’s phase velocity.

" Jean le Rond d”Alembert (1717 — 1783) was a French mathematician and physicist. He is perhaps best

known to calculus students as the inventor of the Ratio Test for convergence.
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Furthermore, once the “wave front” has passed over a point on the string, the
displacement at that point will be restored to its previous state before the
arrival of the wave. In physics, this aspect of a clearly-defined, echo-less,
wave motion of a one-dimensional wave is called the Huygens’ Principle.
(The principle also holds for solutions of a three-dimensional wave equation.
But it is not true for two-dimensional waves.)

Special case 1I: Zero initial displacement, nonzero initial velocity: f (x) =0,
g(x) # 0.

Since f (x) = 0, then A, = 0 for all n.

2 L
B = . NX
S X) sin —— dx _
. ann!g() 9 n=123 ..
Therefore,
_ ) . anzt . nzX
U(X, t) = - Rnein L cin L
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Example: Solve the one-dimensional wave problem

9 Uxx = Uyt O0<x<b5 t>0,
u(0, t) =0, and u(s, t) =0,

u(x, 0) = 4sin(zx) — sin(2zx) — 3sin(57zx),
ui(x, 0) = 0.

First note that a>=9 (so a = 3), and L = 5.

The general sotution is fore,
u(x, t)= w?IAcos?m—%i+B M'Ll\

Z| ) 5 n SIN 5 sin 5
n:l\ }

Since g(x) = 0, it must be that all B, = 0. We just need to find A,. We
also see that u(x, 0) = f (x) is already in the form of a Fourier sine
series. Therefore, we just need to extract the corresponding Fourier
sine coefficients:

A5 = b5 = 4,
Ao =bo=-1,
Ags =bps =3,

A, = b, =0, for all other n, n £ 5, 10, or 25.
Hence, the particular solution is

u(x, t) = 4cos(3x ¢) sin(z x) — cos(6x 1) Sin(2x x)
— 3cos(15x ¢) sin(5x x).
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We can also solve the previous example using D’ Alembert’s solution. The
problem has zero initial velocity and its initial displacement has already been
expanded into the required Fourier sine series, u(x,0) = 4sin(zx) — sin(27x) —
3sin(5zx) = F(x). Therefore, the solution can also be found by using the
formula u(x, t) = [F(x — at) + F(x + at)] / 2, where a = 3. Thus

u(x, t) = [ [ 4sin(z(x + 3t)) + 4sin(z(x — 3t)) ] — [sin(2z(x+
3t)) + sin(2z(x + 3t)) | — [3sin(5z(x + 3t)) + 3sin(5z(x +
31)11/2

Indeed, you could easily verify (do this as an exercise) that the solution
obtained this way is identical to our previous answer. Just apply the addition

formula of sine function ( sin(a £ f) = sin(a)cos(f) + cos(a)sin(f) ) to each
term in the above solution and simplify.
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Example: Solve the one-dimensional wave problem

9 Uxx = Uyt O0<x<b5 t>0,
u(0, t) =0, and u(s, t) =0,

u(x, 0) =0,

ui(x, 0) = 4.

As in the previous example, a2=9 (soa =3), and L = 5.
Therefore, the general %uti?n remains

/4
u(x, t)= . (gAcos——+B 3n7z1|\ Nz X

n SIN sSin
Z n 5 5 5
n=1 L }

Now, f (x) = 0, consequently all A, = 0. We just need to find B,. The
initial velocity g(x) = 4 is a constant function. It is not an odd periodic
function. Therefore, we need to expand it into its odd periodic
extension (period T = 10), then equate it with ui(x, 0). In short:

2 L 5
B = in N2 X 2 nzx
— | g(x) sin —— — % [ pein DZTX
n anﬂ;[ 9(x) dx=3ng ![4S|n o O
[ 80
n = odd
=1{ 3n’7
r 0. n = even
Therefore,
u(x,t) =¥ 80 sin 3(2n -1) 't sin (20 =1)7X
.3(2n —1)? 7? 5 5 -
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The Structure of the Solutions of the Wave Equation

In addition to the fact that the constant a is the standing wave’s propagation
speed, several other observations can be readily made from the solution of
the wave equation that give insights to the nature of the solution.

To reduce the clutter, let us look at the form of the solution when there is no
initial velocity (when g(x) = 0). The solution is

u(x, t) = Z A cos anzt sin NzX

n=1 N L L

The sine terms are functions of x. They described the spatial wave patterns
(the wavy “shape” of the string that we could visually observe), called the
normal modes, or natural modes. The frequencies of those sine waves that
we could see, nz / L, are called the spatial frequencies of the wave. They are
also known as the wave numbers. It measures the angular motion, inradians,
per unit distance that the wave travels. The “period” of each spatial (sine)
function, 2/( nz/L) = 2L /n, is the wave length of each term. Meanwhile, the
cosine terms are functions of t, they give the vertical displacement of the
string relative to its equilibrium position (which is just the horizontal, or the
x-axis). They describe the up-and-down vibrating motion of the string at
each point of the string. These temporal frequencies (the frequencies of
functions of t; in this case, the cosines’) are the actual frequencies of
oscillating motion of vertical displacement. Since this is the undamped
wave equation, the motion of the string is simple harmonic. The frequencies
of the cosine terms, anz / L (measured in radians per second), are called the
natural frequencies of the string. In a string instrument, they are the
frequencies of the sound that we could hear. The corresponding natural
periods (= 2z /natural frequency) are, therefore, T = 2L /an.

For n = 1, the observable spatial wave pattern is that of sin(zx / L). The wave

length is 2L, meaning the length L string carries only a half period of the
sinusoidal motion. It is the string’s first natural mode. The first natural
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frequency of oscillation, ax / L, is called the fundamental frequency of the
string. It is, given the set-up, the lowest frequency note the vibrating string
can produce. It is also called, in acoustics, as the first harmonic of the string.

For n = 2, the spatial wave pattern is sin(2zx / L) is the second natural mode.
Its wavelength is L, which is the length of the string itself. The second
natural frequency of oscillation, 2az / L, is also called the second harmonic,
or the first overtone, of the string. It is exactly twice of the string’s
fundamental frequency; hence its wavelength (= L) is only half as long.
Acoustically, it produces a tone that is exactly one octave higher than the
first harmonic. For n = 3, the third natural frequency, 3az / L, is also called
the third harmonic, or the second overtone. It is 3 times larger than the
fundamental frequency and, at a 3:2 ratio over the second harmonic, is
situated exactly halfway between the adjacent octaves (at the second and the
fourth harmonics). The fourth natural frequency (fourth harmonic/ third
overtone), 4ax / L, is four times larger than the fundamental frequency and
twice of that the second natural frequency. The tone it produces is, therefore,
exactly 2 octaves and 1 octave higher than those generated by the first and
second harmonics, respectively. Together, the sequence of all positive
integer multiples of the fundamental frequency is called a harmonic series
(not to be confused with that other harmonic series that you have studied in
calculus).

The motion of the string is the combination of all its natural modes, as
indicated by the terms of the infinite series of the general solution. The
presence, and magnitude, of the nature modes are solely determined by the
(Fourier sine series expansion of) initial conditions.

Lastly, notice that the “wavelike” behavior of the solution of the undamped
wave equation, quite unlike the solution of the heat conduction equation
discussed earlier, does not decrease in amplitude/intensity with time. It
never reaches a steady state (unless the solution is trivial, u(x, t) = 0, which
occurs when f (x) = g(x) = 0). This is a consequence of the fact that the
undamped wave motion is a thermodynamically reversible process that
needs not obey the second law of Thermodynamics.
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First natural mode (oscillates at the fundamental frequency / 1st harmonic):
it

Second natural mode (oscillates at the 2nd natural frequency / 2nd harmonic):
it

Third natural mode (oscillates at the 3rd natural frequency / 3rd harmonic):
i}
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Summary of Wave Equation: Vibrating String Problems

The vertical displacement of a vibrating string of length L, securely clamped
at both ends, of negligible weight and without damping, is described by the
homogeneous undamped wave equation initial-boundary value problem:

a2 Ux =Ugt 0<x<L, t>0
u(0, t) =0, and u(L, t) =0,
u(x, 0) = f (x), and uy(x,0) = g(x).

The general solution is

anzt) . nxx
sin

u(x, t):i [ A cos @7t gsin

|
nzlk L " L J L

The particular solution can be found by the formulas:

2t Nz X
AFI{[ f(x)sianx, and
2 L

B = . NxTX
S X) sin —— dx
" an I 9(x) L '

The solution waveform has a constant (horizontal) propagation speed,
in both directions of the x-axis, of a. The vibrating motion has a
(vertical) velocity given by ui(x, t) at any location 0 < x < L along the
string.
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Exercises E-4.1:
1. Solve the vibrating string problem of the given initial conditions.

4 Uy =Ugx O<x<m t>0,
u(0, t) =0, u(z, t) =0,

(@ u(x, 0) =12sin(2x) — 16sin(5x) + 24sin(6x),

ui(x, 0) = 0.
(b) u(x,0)=0,
ui(x, 0) = 6.
(c) u(x,0)=0,

ui(X, 0) = 12sin(2x) — 16sin(5x) + 24sin(6x).
2. Solve the vibrating string problem.

100 Uxx = Uyt , O<x<2, t>0,
u@0,t)=0, and u(2,t)=0,

u(x, 0) = 32sin(zx) + e?sin(3zx) + 25sin(6xx),
uy(x, 0) = Bsin(27x) — 16sin(5mx / 2).

3. Solve the vibrating string problem.

25 Uy = Uy O<x<1l, t>0,
u0,t)=0, and u(2,t)=0,

u(x, 0) = x — x?,

ui(X, 0) = .

4. Verify that the D’ Alembert solution, u(x, t) = [F(x — at) + F(x + at)] / 2,
where F(x) is an odd periodic function of period 2L such that F(x) = f (x) on
the interval 0 < x < L, indeed satisfies the given initial-boundary value
problem by checking that it satisfies the wave equation, boundary conditions,
and initial conditions.
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a2 Uyx =Ug , 0<x<L, t>0
u(0, t)=0, u(L, t) =0,
u(x, 0) =f(x), ui(X, 0) =0.

5. Use the method of separation of variables to solve the following wave
equation problem where the string is rigid, but not fixed in place, at both
ends (i.e., it is inflexible at the endpoints such that the slope of displacement
curve is always zero at both ends, but the two ends of the string are allowed
to freely slide in the vertical direction).

a2 U =Ut , 0<x<L, t>0
ux(0, t)=0, ux(L, t) =0,
u(x, 0) =f(x), ui(X, 0) =g(x).

6. What is the steady-state displacement of the string in #5? What is
lim u(x, t) 2 Are they the same?

t >
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Answers E-4.1:

1. (a) u(x, t) = 12cos(4t) sin(2x) — 16cos(10t) sin(5x) + 24cos(12t) sin(6x).
(c) u(x, t) = 3sin(4t) sin(2x) — 1.6sin(10t) sin(5x) + 2sin(12t) sin(6x).

5. The general solution is

ux, ) =A+Bt+ (AcosanﬂtJrBsmanﬁt\ s NZX
0 0 Z:lk n L n L |) L
The partlcular solution can be foupd by the formuI@s
f (x) dx , 27 f(x)cos 2 dx, , and
A= J. ) An:LJ; L BO:LJ; g(x) dx
L2 Nt X

B, =an7[ﬂlg(x) cos dx

6. The steady-state displacement is the constant term of the solution, Ao.
The limit does not exist unless u(x, t) = C is a constant function, which
happens when f (x) = C and g(x) = 0, in which case the limit is C. They are
not the same otherwise.
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The General Wave Equation

The most general form of the one-dimensional wave equation is:

aZUXX+ F(X, t):un+yut+ku.

Where a = the propagation speed of the wave,
y = the damping constant
k = (external) restoration factor, such as when vibrations occur
in an elastic medium.
F(x, t) = arbitrary external forcing function (If F = 0 then the
equation is homogeneous, else it is nonhomogeneous.)
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The Telegraph Equation

The most well-known example of (a homogeneous version of) the general
wave equation is the telegraph equation. It describes the voltage u(x, t)
inside a piece of telegraph / transmission wire, whose electrical properties
per unit length are: resistance R, inductance L, capacitance C, and
conductance of leakage current G:

a2 Uxx:Utt+Vut+kU.

Where a?=1/LC,y=G/C+R/L,andk=GR/CL.
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Example: The One-Dimensional Damped Wave Equation
aZ Uxx = Ut + pUt, y #0.
Suppose boundary conditions remain as the same (both ends fixed): (0, t) =0,
and u(L, t) = 0.
The equation can be separated as follow. First rewrite it as:
a?X"T=XT"+yXT',
Divide both sides by a?X T, and insert a constant of separation:

r T+ 9T’
- 2 _ﬂ“.

X
X - aT

Rewrite it into 2 equations:
X"=-1X — X"+1X=0,

T"+yT'=—a?AT — T"+yT'+a2AT=0.

The boundary conditions also are separated, as usual:

u@0,=0 —XO)T)=0 —  XO0)=0 or T{H=0
ull, =0 —» X (LTH=0 —  X(UL)=0 or T@E=0

As before, setting T(t) = 0 would result in the constant zero solution
only. Therefore, we must choose the two (nontrivial) conditions in
terms of x: X(0) =0, and X(L) =0.
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After separation of variables, we have the system
X"+1X=0, X(0)=0 and X(L)=0,
T"+yT'+a?AT=0.

The next step is to find the eigenvalues and their corresponding

eigenfunctions of the boundary value problem
X" +1X=0, X@0)=0 and X(L)=0.

This is a familiar problem that we have encountered more than once
previously. The eigenvalues and eigenfunctions are, recall,

Eigenvalues: nr?
'genvald i="%, nN=123, ...
. NxZX
. . X =sin—
Eigenfunctions: : n=123, ...
n
L

The equation of t, however, has different kind of solutions depending on the
roots of its characteristic equation.
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(Optional topic) Nonhomogeneous Undamped Wave Equation

Problems of partial differential equation that contains a nonzero forcing
function (which would make the equation itself a nonhomogeneous partial
differential equation) can sometimes be solved using the same idea that we
have used to handle nonhomogeneous boundary conditions — by considering
the solution in 2 parts, a steady-state part and a transient part. This is
possible when the forcing function is independent of time t, which then
could be used to determine the steady-state solution. The transient solution
would then satisfy a certain homogeneous equation. The 2 parts are thus
solved separately and their solutions are added together to give the final
result. Let us illustrate this idea with a simple example: when the string’s
weight is no longer “negligible”.

Example: A flexible string of length L has its two ends firmly secured.
Assume there is no damping. Suppose the string has a weight density of 1
Newton per meter. That is, it is subject to, uniformly across its length, a
constant force of F(x, t) = 1 unit per unit length due to its own weight.
Let u(x,t) be the vertical displacement of the string, 0 < x <L, and at any
time t > 0. It satisfies the nonhomogeneous one-dimensional undamped
wave equation:

a2 uXx + 1 :Uu.

The usual boundary conditions u(0, t) = 0, and u(L, t) = 0, apply. Plus the
initial conditions u(x, 0) = f (x) and u:(x, 0) = g(x).

Since the forcing function is independent of time t, its effect is to
impart, permanently, a displacement on the string that depends only
on the location (the effect is subject to the boundary conditions, thus
might change with x). That is, the effect is to introduce a nonzero
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steady-state displacement, v(x). Hence, we can rewrite the solution
u(x, t) as:
u(x, t) = v(x) + w(x, t).

By setting t to be a constant and rewrite the equation and the boundary
conditions to be dependent of x only, the steady-state solution v(x)

must satisfy:
a?v"+1=0,
v(0)=0, v(L)=0.
Rewrite the equation as v =— 1/ a?, and integrate twice, we get
-1
v(x) = X? +Cy X+ C,.
2a?

Apply the boundary conditions to find C; =L/ 2a?and C; = 0:

vix)= =1 X2+_L X
2a’? 2a2 -

Comment: Thus, the sag of a wire or cable due to its own weight can be
seen as a manifestation of the steady-solution of the wave equation. The sag
is also parabolic, rather than sinusoidal, as one might have reasonably
assumed, in nature.

We can then subtract out v(x) from the equation, boundary conditions,
and the initial conditions (try this as an exercise), the transient
solution w(x, t) must satisfy:

a2 W= Wit , 0<x<lL, t>0,

w(0, t)=0, w(L, t) =0,
w(x, 0) = f (x)— v(x), wi(x, 0) =g(x).
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The problem is now transformed to the homogeneous problem we

have already solved. The on is just
w(x, t)= I((/A CoS ﬂtﬂ+8 an7z1|\ N X

Z| ) L n Sin L sin L
n:l\ )

Combining the steady-state and transient solutions, the general
solution is found to be

u(x, t) = v(x)+w(x too)( cos 2L g ) T
-1 X + Lcant| .on X
=% X+ 2a2 Z| i L nSIN = | sin L

n=1 \ )

The coefficients can be calculated and the particular solution
determined by using the formulas:

2
N (£ () —v(x) Xin DZX dx and
n L L
B 2 N7 X
_[g(x)sm—dx

Note: Since the velocity ui(X, t) = vi(x) + wi(x, t) = 0 + wi(X, t) = wi(X, t). The
initial velocity does not need any adjustment, as u:(x, 0) = wi(x, 0) = g(x).

Comment: We can clearly see that, even though a nonzero steady-state
solution exists, the displacement of the string still will not converge to it as

{ — .
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The Laplace Equation / Potential Equation

The last type of the second order linear partial differential equation in 2
independent variables is the two-dimensional Laplace equation, also called
the potential equation. Unlike the other equations we have seen, a solution
of the Laplace equation is always a steady-state (i.e. time-independent)
solution. Indeed, the variable t is not even present in the Laplace equation.
The Laplace equation describes systems that are in a state of equilibrium
whose behavior does not change with time. Some applications of the
Laplace equation are finding the potential function of an object acted upon
by a gravitational / electric / magnetic field, finding the steady-state
temperature distribution of the (2- or 3-dimensional) heat conduction
equation, and the steady-state flow of an ideal fluid (where the flow velocity
forms a vector field that has zero curl and zero divergence).

Since the time variable is not present in the Laplace equation, any problem
of the Laplace equation will not, therefore, have any initial condition. A
Laplace equation problem has only boundary conditions.

Let u(x,y) be the potential function at a point (X, y), then it is governed by
the two-dimensional Laplace equation

Uxx + Uyy = 0.

Any real-valued function having continuous first and second partial
derivatives that satisfies the two-dimensional Laplace equation is called a
harmonic function.

Similarly, suppose u(x, y, z) is the potential function at a point (x, y, z), then it
Is governed by the three-dimensional Laplace equation

Uxx + Uyy + Uz = 0.

© 2008, 2012 Zachary S Tseng E-4 - 28



PDE Method of separation of variables 2017 | BATCH

Comment: The one-dimensional Laplace equation is rather dull. It is merely
Ux = 0, where u is a function of x alone. It is not a partial differential
equation, but rather a simple integration problem of u” = 0. (What is its
solution? Where have we seen it just very recently?)

The boundary conditions that accompany a 2-dimensional Laplace equation
describe the conditions on the boundary curve that encloses the 2-
dimensional region in question. While those accompany a 3-dimensional
Laplace equation describe the conditions on the boundary surface that
encloses the 3-dimensional spatial region in question.
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The Relationships among Laplace, Heat, and Wave Equations
(Optional topic)

Now let us take a step back and see the bigger picture: how the
homogeneous heat conduction and wave equations are structured, and how
they are related to the Laplace equation of the same spatial dimension.

Suppose u(x, y) is a function of two variables, the expression ux + Uyy IS
called the Laplacian of u. It is often denoted by

V2U = Uxx + Uyy.

Similarly, for a three-variable function u(x, y, z), the 3-dimensional Laplacian
is then
V2U = U + Uy + Uz

(As we have just noted, in the one-variable case, the Laplaian of u(x),
degenerates into V2u =u".)

The homogeneous heat conduction equations of 1-, 2-, and 3- spatial
dimension can then be expressed in terms of the Laplacians as:

a2 VZ2u =y,

where «? is the thermo diffusivity constant of the conducting material.
Thus, the homogeneous heat conduction equations of 1-, 2-, and 3-
dimension are, respectively,

062 Uxx = Ut

o’ (Uxx + Uyy) = Ut

a? (Uxx + Uyy + Uzz) = Ut
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As well, the homogeneous wave equations of 1-, 2-, and 3- spatial dimension
can then be similarly expressed in terms of the Laplacians as:

3.2 VZ U =Uit,

where the constant a is the propagation velocity of the wave motion. Thus,
the homogeneous wave equations of 1-, 2-, and 3-dimension are,
respectively,

a% Uy = Utt
a? (Uxx + Uyy) = U

a’ (Uxx + Uyy + Uzz) = Uttj

Now let us consider the steady-state solutions of these heat conduction and
wave equations. In each case, the steady-state solution, being independent
of time, must have all zero as its partial derivatives with respect to t.
Therefore, in every instance, the steady-state solution can be found by
setting, respectively, Ut or U to zero in the heat conduction or the wave
equations and solve the resulting equation. That is, the steady-state solution
of a heat conduction equation satisfies

a? V2 u =0,

and the steady-state solution of a wave equation satisfies
a?vZu=0.

* Even the electromagnetic waves are described by this equation. It can be easily shown by vector calculus
that any electric field E and magnetic field B satisfying the Maxwell’s Equations will also satisfy the 3-

dimensional wave equation, with propagation speed a = ¢ = 299792 km/s, the speed of light in vacuum.
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In all cases, we can divide out the (always positive) coefficient o or @2 from
the equations, and obtain a “universal” equation:

VZ2u=0.

This universal equation that all the steady-state solutions of heat conduction
and wave equations have to satisfy is the Laplace / potential equation!

Consequently, the 1-, 2-, and 3-dimensional Laplace equations are,
respectively,

Uxx = 0,
Uxx + Uyy = 0,

Uxx + Uyy + Uz = 0.

Therefore, the Laplace equation, among other applications, is used to solve
the steady-state solution of the other two types of equations. And all
solutions of a Laplace equation are steady-state solutions. To answer the
earlier question, we have had seen and used the one-dimensional Laplace
equation (which, with only one independent variable, X, is a very simple
ordinary differential equation, u” = 0, and is not a PDE) when we were
trying to find the steady-state solution of the one-dimensional homogeneous
heat conduction equation earlier.
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Laplace Equation for a rectangular region

Consider a rectangular region of length a and width b. Suppose the top,
bottom, and left sides border free-space; while beyond the right side there
lies a source of heat/gravity/magnetic flux, whose strength is given by f(y).
The potential function at any point (x, y) within this rectangular region,
u(x, y), is then described by the boundary value problem:

(2-dim. Laplace eq.) Uxx + Uyy = 0, 0<x<a, 0<y<hbh,

(Boundary conditions) u(x,0)=0,and  u(x, b) =0,
u(O,y)=0,and u(a,y)="f(y).

The separation of variables proceeds similarly. A slight difference here is
that Y(y) is used in the place of T(t). Let u(x,y) = X(x)Y(y) and substituting
Ux = X " Y and uyy = X Y " into the wave equation, it becomes

X"Y+XY"=0,
X"Y=-XY",
Dividing both sides by X Y:

xr_ Y
X Y
Now that the independent variables are separated to the two sides, we can
insert the constant of separation. Unlike the previous instances, it is more
convenient to denote the constant as positive A instead.
X' Y’
T T =T = l
X Y
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XI
__:i
X - X"=AX - X"=1X=0,
YI
_—=
y - Y"==1Y — Y"+1Y=0.

The boundary conditions also separate:

ux,00=0 — XxX)Y(0)=0 — X(x)=0 or Y0)=0
ux,b)=0 — XX)Y(b)=0 — X(x)=0 or Y((b)=0
u@,y)=0 — X0)Y(y)=0 — X(0)=0 or Y(y)=0
u(a, y) =f(y) — X@Y(y) =f(y) [cannot be simplified further]

As usual, in order to obtain nontrivial solutions, we need to ignore the
constant zero function in the solution sets above, and instead choose
Y(0) =0, Y(b) =0, and X(0) = 0 as the new boundary conditions. The
fourth boundary condition, however, cannot be simplified this way.
So we shall leave it as-is. (Don’t worry. It will play a useful role
later.) The result, after separation of variables, is the following
simultaneous system of ordinary differential equations, with a set of
boundary conditions:

X"—)X=0, X(0)=0,
Y"+)Y=0, Y0)=0 and Y(b)=0.

Plus the fourth boundary condition, u(a, y) = f(y).

The next step is to solve the eigenvalue problem. Notice that there is
another slight difference. Namely that this time it is the equation of Y that
gives rise to the two-point boundary value problem which we need to solve.
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Y "+ 2Y=0, Y0)=0, Y(b)=0.

However, except for the fact that the variable is y and the functionis Y,
rather than x and X, respectively, we have already seen this problem before
(more than once, as a matter of fact; here the constant L = b). The
eigenvalues of this problem are

A=0c’= nzt
b2 1 n=1, 2,3,...
Their corresponding eigenfunctions are
. N
Y=sIn"— Y
, n=123, ...
) b

Once we have found the eigenvalues, substitute A into the equation of x. We
have the equation, together with one boundary condition:

n27z.2
' —_—
X'=—p X=0, X(0) = 0.
, n°rt nz
Its characteristic equation, I =0 , has real roots r=x=

b? b

Hence, the general solution for the equation of x is

The single boundary condition gives

X0)=0=C1+C, — Co=—Cy.
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Therefore, forn=1, 2, 3, ...,

X =Cle¥x_ )

n nk| } |
Because of the identity for the hyperbolic sine function
el g0
sinh @
2 )

the previous expression is often rewritten in terms of hyperbolic sine:

smhnﬂ—x
X =K, . , n=1,23, ...

The coefficients satisfy the relation: K, = 2C,.

Combining the solutions of the two equations, we get the set of solutions
that satisfies the two-dimensional Laplace equation, given the specified
boundary conditions:

NzX . N
U y)=X ()Y (y)=K sinh " sin =
n n n n b b ,

n=1,2,3,...

The general solution, as usual, is just the linear combination of all the above,
linearly independent, functions un(X, y). That is,

u(x, y) = K, sinh % sin 12

n=1
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This solution, of course, is specific to the set of boundary conditions
u(x,0)=0,and  u(x, b) =0,
u@,y)=0,and  u(ay)="f(y).

To find the particular solution, we will use the fourth boundary condition,
namely, u(a, y) = f (y).

o .anx . N7y
Z K sinh Sin = £(y)

u(a, =
(@ y) 2., i b

We have seen this story before. There is nothing really new here. The
summation above is a sine series whose Fourier sine coefficients are

bn = K, sinh(anz / b). Therefore, the above relation says that the last
boundary condition, f (y), must either be an odd periodic function (period =
2b), or it needs to be expanded into one. Once we have f(y) as a Fourier sine
series, the coefficients K, of the particular solution can then be computed:

b
anrz 2 nzy

K,sinh — _, _— in——
. —bn—b!f(Y)S'” )

Therefore,

. b B 5 b nzy
=sinh @7 7 pgipnanz [f(y)sin b dy

b b
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(Optional topic) Laplace Equation in Polar Coordinates

The steady-state solution of the two-dimensional heat conduction or wave
equation within a circular region (the interior of a circular disc of radius k,
that is, on the region r < k) in polar coordinates, u(r, ), is described by the
polar version of the two-dimensional Laplace equation

1 1
u

2 00

The boundary condition, in this set-up, specifying the condition on the
circular boundary of the disc, i.e., on the curve r =k, is given in the form
u(k, 9) =1 (0), where f is a function defined on the interval [0, 2x). Note that
there is only one set of boundary condition, prescribed on a circle. This will
cause a slight complication. Furthermore, the nature of the coordinate
system implies that u and f must be periodic functions of 9, of period 2.
Namely, u(r, 6) = u(r,  + 2x), and f (0) = f (6 + 2x).

By letting u(r, 8) = R(r)®(0), the equation becomes

R'O® + 1 R'® +—1 R®' =0
r r?

Which can then be separated to obtain

2 D! ’ '
PR+ 9,
R Q) '

This equation above can be rewritten into two ordinary differential equations:
r’R”+rR' =R =0,

O"+10=0.
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The eigenvalues are not found by straight forward computation. Rather,
they are found by a little deductive reasoning. Based solely on the fact that
® must be a periodic function of period 2z, we can conclude that 2 = 0 and A
=n% n=1,2,3..., are the eigenvalues. The corresponding eigenfunctions
are @9 = 1 and O, = A, cos nf + B, sin n6. The equation of r is an Euler
equation (the solution of which is outside of the scope of this course).

The general solution of the Laplace equation in polar coordinates is

u(r,0) = '52% Zl(Apos n @+BsinnO)r"

Applying the boundary condition u(k, 8) = f (6), we see that
uk )= 0+, (A 0+ 0)=f(0
6) A k"cosn B k"sinn ) (©)

n n
2 n=1

Since f(6) is a periodic function of period 2z, it would already have a
suitable Fourier series representation. Namely,

(O)=" -( o0+ 0)

2 +Z a,Ccosn b sinn
n=1

Hence, Ag = ay, Arn=an/k" and B,=b,/k" n=123...

For a problem on the unit circle, whose radius k = 1, the coefficients A, and
B, are exactly identical to, respectively, the Fourier coefficients a, and b, of
the boundary condition f (6).
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(Optional topic) Undamped Wave Equation in Polar Coordinates

The vibrating motion of an elastic membrane that is circular in shape can be
described by the two-dimensional wave equation in polar coordinates:

Ur+ (1/1)ur+ (1/1%) ug=a 2 u.

The solution is u(r, 9, t), a function of 3 independent variables that describes
the vertical displacement of each point (r, ) of the membrane at any time t.
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POSSIBLE QUESTIONS
UNIT Il
PART-B(5X6=30)
1. Find the solution of equation Rr + Ss + Tt + Pp + Qq + Zz = F using separation

variahles. -

2. Solve? " ="."

ax? k ot
3. Solve”” 477 =1%

dx? ay? k ot 4 )
4. Determine the solution of the equation a_Z+ 6L= 0(—o<x<o0,y>0)

ax* ay2
satisfying the condition.

() z and its partial derivatives tend to zero as x - oo
(i) z=f(x), “=00ony =0
dy
PART-C (1X10=10)
1.. Discuss about the equation with variable coefficients.
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Boundary Value problems-separation of variables-problems with axial symmetry.

Definition :
Laplace’s Equation

Laplace’s equation

Au= 0
and itsinhomogeneous version, Poisson’s equation,
—Au = f.

We say a function u satisfying Laplace’s equation is a harmonic function.

3.1 The Fundamental Solution

Consider Laplace’s equation in R™,

Au=0 x € R™

Clearly, there are a lot of functions w which satisfy this equation. In particular, any
constant function is harmonic. In addition, any function of the form wu(x) = aixi+. ..+ QnXn
for constants @; is also a solution. Of course, we can list 2 number of others. Here, however, we
are interested in finding a particular solution of Laplace’s equation which will allow us to
solve Poisson’s equation.

Given the symmetric nature of Laplace’s equation, we look for a radial solution. That
is, we look for a harmonic function u on R™ such that u(x) = v( X|). In addition, to being
a natural choice due to the symmetry of Laplace’s equation, radial solutions are natural to
look for because they reduce a PDE to an ODE, which is generally easier to solve. Therefore,
we look for a radial solution.

If u(x) = v(| x|), then

Ux; :7x‘i
| x]

V(lx|) |x| f=0,

which implies

1 2, 2
Up e = U(Ix]) — U(lxl) +_E (| xl) | x| f=0.
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| x| |x[? | x|2
Therefore,
n—1

Au = ||zﬂhb+dﬂﬂy
X
Letting ¥ =| X, we see that U(x) = v( [x|) is a radial solution of Laplace’s equation implies

U satisfies

ﬂfiW@+WW:Q

Therefore,
j - — 1%
#-L50
Y 1-n
g u - r

::>1nvl:(1—n)lnr+c

== U=,
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which implies
Tclnr+o n=2
u(rn =
2-n)rm 2
C1
-nrm-2 + Q& n=3.

From these calculations, we see that for any constants €1, €2, the function

T calnlxl+ o n
n

2 3.1)
(2-n)|xjn —2 + 3.

ux) =

for x € R™ |x| f=0is a solution of Laplace’s equation in R™ — {0}. We notice that hfunction

u defined in (3.1) satisfies Au(x) = 0 for x f= 0, but at x =0, Au(0) is wedWe claim that we
can choose constants €1 and €2 appropriately so that

in the sense of distributions. Recall that &p is the distribution which is defined as follows.
For all @ € D,

(60, @) = @(0).
Below, we will prove this claim. For now, though, assume we can prove this. That is, assume
we can find constants €1, €2 such that u defined in (3.1) satisfies

—Axu = 6o. (3.2)
Let @ denote the solution of (3.2). Then, define

v = J o yfly dy.

RN _

Formally, we compute the Laplacian of v as follows,

TAUE T A - Yf ) dy

={C A - yf () dy
= &Y dy = f9.

That is, vis a solution of Poisson’s equation! Of course, this set of equalities above is entirely
formal. We have not proven anything yet. However, we have motivated a solution formula
for Poisson’s equation from a solution to (3.2). We now return to using the radial solution
(3.1) to find a solution of (3.2).

Define the function @ as follows. For | x| f= 0, let

- 1 _
D(x) = zn:lln | x| . n=2
n(n-2)a(n) |xn—2 n=>3 (33)

2

where a(n) is the volume of the unit ball in R™ We see that ® satisfies Laplace’s equation
on R"_(f } As we will show in the following claim, ® satisfies —Ax® = 8o. For this reason,
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we call @ the fundamental solution of Laplace’s equation.
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Claim 1. For @ defined in (3.3), @ satisfies

in the sense of distributions. That is, for all g € D,

 PEIAgG() dx = g(0).

Proof. Let Fo be the distribution asgociated with the fundamental solution ®@. That is, let
Fo : D — R be defined such that

il
(Fo,g) =  P(gx) dx
Rn
for all g € D. Recall that the derivative of a distribution F' is defined as the distribution G
such that

(G: 9 = _(F: g])
for all g D . Therefore, the distributional Laplacian of @ is defined as the distribution Fao
such that
(Fao, g) = (Fo, Ag)

for all g € D. We will show that

(F(D) Ag) = _(60:g) = —g(O),
and, therefore,

(FA(D) g) = —g(O),

which means —Ax® = o in the sense of distributions.
By definition, I
(Fo, Ag) = ®P(0Ag(x) dx.
RrN

Now, we would like to apply the divergence theorem, but @ has a singularity at x = 0. We
get around this, by breaking up the integral into two pieces: one piece consisting of the ball
of radius O about the origin, B(0, 0) and the other piece consisting of the complement of this
ball in R™ Therefore, we have

il
(Fo, Ag) = D ()Ag(x) dx
e 1)
= D(x)Ag(x) dx+ D(x)Ag(x) dx
B(0,5) rRN-B(0,6)
=I+d.
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We look first at term I For n = 2, term I is bounded as follows,

1 . "
I “In |x|Ag(x) dc-< ClAgl | -.f In | x| dx
_B(0,6) 2T ' " B(0,6) :

'.J.Zn 5 .
In |rlrdrdb -

IA
Q

A
.O.

<Chhl6]6.
For n > 3, term I is bounded as follows,

- J : Lrgwo ac-<clagl §  —ax

B(0,6) i Lo B(0,6)
n(n—2a(n) |x|" B(0,6) | x|n-2

Js-J 1 )2
dS(y) dr
2

<C
0 0B(0,7) 1Yl"2
f 5_1 'f
= D dS(y) dr
fo r oB(0,7)
= 1 na(mrv! dr
0 rn—2
6 na(n 5
=na(n) rdr= o
0 2

Therefore, as & — 0%, [I] = 0.
Fext, we look at term J . A}jplying the divergence theorem, we have

oD
D) AgX) dx = AxD (%) g(x) dx [ _9(0 dS(x%
“-50.0) _ orn-B(0,6)) OV
ag
D(x) o dS(x)

rRN—B(0,6)

+
] ar-B0,0) J
== 909 dSEo + o029 as
a(r"-1(0,6)) OV o(r"-B(0, 5)) v
J1+J2.

using the fact that Ax®(x) = 0 for x € R" — B(0, ).
We firstlook at term J 1. Now, by assumption, g € D, and, therefore, g vanishes at
0. Consequently, we only need to calculate the integral over 0B(0, S) where the normal

derivative v is the outer normal to R™ — B(0, ). By a straightforward calculation, we see
that X

VX(D(X) = — na(n) |X| ne
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Therefore, the normal derivative of ® on B(0, ) is given by

- 2 . 2
o x ox 1
v namldn x| namlx|~t
Thirefore, J1 ca;n be written as 1 [ [
— g(x) dS(x) = — 9(x) dS(x) = — = g(x) dS(x).
oB(0,5) na(n) | x| na(m& ! 0,6 0B(0,5)

Now if g is a continuous function, then

1)
— = g(x) dS(x) — —g(0) as 6 — 0.

Lastly, we look at term J 2. Now using the fact that g vanishes ps|X. 4o we only need
to integrate over 0B(0, 6). Using the fact that g D and, therefore, infinitely differentiable,

we have . o I
0 . .og-
L e asy < D] dS)
' 0B(0,6) ov © OV ea0,8)  0B(0,0)
Ic D) dS(x).
< 2B(0,6) P9l dS9
Now first, for n = 2,
il I
[0 dS(x) = C | In [x]] dS)
2B(0,6) I 2B(0,6)
< Cllé dS(x)
2B(0,6)
= C| In |6||2n8) < C8| In |6]].
Next, for n = 3, I h 1
|®(x)| dS(x) = C S dS(x
2B(0,6) oB(0,6) 1 X|™
C I dS(x)
52 oB(0,5)
= 67(32 na(n)67! < C6.

Therefore, we conclude that term J 2 is bounded in absolute value by

C6|1n 6| n=>2
(00) n = 3.

Therefore, |J2| — 0as § — 07.
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Combining these estimates, we see that

S
D(9Axg(x) dx = Jim 1+ J1+ J2 = —g(0).

RN

Therefore, our claim is proved.

Solving Poisson’s Equation. We now return to solving Poisson’s equation

-Au=f x€R".

From our discussion before the above claim, we expect the function

J
vg = - yfydy

to give us a solution of Poisson’s equation. We now prove that this is in fact true. First, we
make a remark.

Remark. 1f we hope that the function v defined above solves Poisson’s equation, we must
first verify that this integral actually converges. If we assume f has compact support on
some bounded set K in R", then we see that

J J
L O ufydy < |fle |0 —y)ldy.

If we additionally assume that f is bounded, theh |f ro<C. It is left as an exercise to
verify that I
D —y)l dy < +oo
K

on any compact set K.

Theorem 2. Assume f € C*(R™ and has compact support. Let

ux o - yfly dy

R

where @ is the fundamental solution of Laplace’s equation (3.3). Then
1. ue C}R"
2. —Au = fin R™
Ref: Evans, p. 23.

Proof. 1. By a change of variables, we write

J J
ug = O(x- WSy dy =

R

) O(y)f(x — y) dy.

R
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Let
e=(..,0,1,0,...

be the unit vector in R™® with a 1 in the i** slot. Then

2 2
u(x+ he) — u(x _f f(x+ hei—y — flx—y)
Now f € C? implies
fxthei—y — fix—y O
n 5)g(x—y)ash—>0
uniformly on R™ Therefore,
w4 or
éxi(x) - PY) gy, X~ Y) dy.
Similarl
imilarly, 2, I 2

= PU——x-
aXi)Cj( ) RN OXiX;j (X~ y ay.
This function is continuous because the right-hand side is continuous.

2. By the above calculations and Claim 1, we see that

J
Asxu(x) = ; D (Y)Af(x— y)dy
= O(Y)Ayf(x—y)dy
= —f()C).

Properties of Harmonic Functions
Mean Value Property

In this section, we prove a mean value property which all harmonic functions satisfy. First,
we give some definitions. Let

B(x, 1) = ball of radius r about x in R"
O0B(x, 1) = boundary of ball of radius r about x in R"
a(n) = volume of unit ball in R™

na(n) = surface area of unit ball in R™

For a function u defined on B(x, 7), the average of u on B(x, r) is given by

1
— d T —
B(x,1) u<y) ! a(mrt u(y) dy.
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For a function u defined on 0B(x, 1), the average of u on 0B(x, 1) is given by

J ]
Tpen MO AW = et wuy) dSy).

0B(x,1)
0B(x,7) 0B(x,1)

Theorem 3. (Mean-Value Formulas) Let Q C R™ If u € C*(Q) is harmonic, then

u(x) =J u(y) dS(y) =J uy) dy

_0B(x,7) B(x,71)

for every ball B(x, r) C Q.

Proof. Assume u € C?(Q) is harmonic. For r > 0, define

on =1 wy) dS(y).

_0B(x,1)

For r = 0, define @(r) = u(x). Notice that if u is a smooth function, then lim;—o+ @(r) =
u(x), and, therefore, @ is a continuous function. Therefore, if we can show that @!/(r) = 0, then
we can conclude that @ is a constant function, and, therefore,

u =J uwy) dS(y).

_0B(x,7)

We prove @ (r) = 0 as follows. First, making a change of variables, we have

on=J wy) dS(y)

_0B(x,1)

=J u(x + rz) dS(z).
_0B(0,1)

Therefore,

P =J Vux + rz) - z dS(z)

_0B(0,1)
=J  Vuy T dsy)
_0B(x,71) 4
: ou
== 2y ds
- (y) dS(y)
ou

~ na(mr! opn OV

I |
na(n) rn_lf B V- (Vudy (bythe Divergence Theorem)
1
= Au(y) dy =0,
namr ! puwn Y dy

(y) dSy)
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using the fact that u is harmonic. Therefore, we have proven the first part of the theorem.
It remains to prove that

uq) =J uy) dy.

We do so as follows, using the first result,

I [0 )3
wy) dy= . wy) dS(y) ds

B(x,7) J- . 0B(x,s) f 2

- wy) dSy) ds

= na(n)sn
0 0B(x,s)
I

=  na(ms*lux)ds
0 I,

=na(nu(x) 1 e
0

=na(nu(x) 1 e
0

= a(nu(x) s"eo

= a(nuxre.
Therefore, I

oy 1Y) 9y = AU,
which implies J I I

1
u(x) = updy = -  wy) dy,
a(mr* B B(x7)

as claimed.

Converse to Mean Value Property

In this section, we prove that if a smooth function u satisfies the mean value property
described above, then 1 must be harmonic.

Theorem 4. If u € C*(Q) satisfies

ux) =J u(y) dS(y)

_0B(x,1)

for all B(x, ) C Q, then u is harmonic.

Proof. Let
(N = J 0B(x,7)
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If. . . .
using the fact that u is harmonic. Therefore, we hgf@ixd{g@ the first part of the theorem.

wx =g

0B(x,1)

wy) dSy)
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for all B(x, 1) C Q, then ¢@(r) = 0. As described in the previous theorem,

dn="-  Auy dy.
N Bxr)

Suppose u is not harmonic. Then there exists some ball B(x, 1) C € such that Au >0 or
Au <0. Without loss of generality, we assume there is some ball B(x, 1) such that Au > 0.
Therefore, I

r
P ="~ Au@)dy >0,
B(x,7)

B(x,7)
which contradicts the fact that () = 0. Therefore, U must be harmonic.

Maximum Principle

In this section, we prove that if © is a harmonic function on a bounded domain Q in R"™,
then u attains its maximum value on the boundary of Q.

Theorem 5. Suppose Q c R™ is open and bounded. Suppose u e C*(Q) n C(Q) is harmonic.
Then

1. (Maximum principle)
max U(X) = max u(x).
Q oQ

2. (Strong maximum principle) If Q is connected and there exists apoint xo ¢ Q such
that
U(xp) = max u(x,
Q

then u is constant within Q.

Proof. We prove the second assertion. The first follows from the second. Suppose there
exists a point xp in € such that

u(xo) = M = max u(x).
Q
Then for 0 < r < dist(xo, 0€2), the mean value property says

M= u(xo) = J u(y) dy < M.

__B(xo,1)

But, therefore, I
B()Co,r) u(y) dy = MJ

and M = maxgu(x). Therefore, w(y) = M for y € B(xo, 7). To prove u = M throughout
Q), you continue with this argument, filling € with balls.
O
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Remark. By replacing u by —u above, we can prove the Minimum Principle.
Next, we use the maximum principle to prove uniqueness of solutions to Poisson’s equa-

tion on bounded domains Q in R™

Theorem 6. (Uniqueness) There exists at most one solution u e C*Q) n C(Q) of the

boundary-value problem, )
—-Au=f x€Q
u=g x € 0Q.

Proof. Suppose there are two solutions w and v. Let w = u — vand let w = v — w. Then w

and W satisfy - A 0 o
w = X €

w=0 X € 0Q.

Therefore, using the maximum principle, we conclude

m%(lu—vl :r%xlu—vl =0.

Smoothness of Harmonic Functions

In this section, we prove that harmonic functions are C”.

Theorem 7. Let Q be an open, bounded subset of R™. If u ¢ C(Q) and u satisfies the mean
value property,

u( =J uwy) dS(y)

_0B(x,7)
for every ball B(x, r) C Q, then u € C"(Q).

Remarks.

1. As proven eatlier, if u € C*(Q) N C(Q_) and w is harmonic, then u satisfies the mean
value property, and, therefore, u € C”(Q).

2. In fact, if u satisfies the hypothesis of the above theorem, then u is analytic, but we
will not prove that here. (See Evans.)

Proof. First, we introduce the function 77 such that

i L % <1

Ge-1
0 |x| =1
where the constant C is chosen such that ~ _, 1(x) dx = 1. Notice that n € C™(R ) and 1

nx =

has compact support. Now define the function 7s(x) such that

)3

S

_1
ns() =" 1

S
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Therefore, s € C~(R™ and supp(ns) C {x: x| < s}. Further,

[ M dx=1.
Now choose s such that s < dist(x, 0Q)rDefine
S
Us® = ns(x — Yuy) dy.
Q

Now we claim
1. us €C”
2. us(x) = u(x).

First, for (1), us € C” because s € C”. We prove (2) as follows. Using the fact that supps(x
— 1Y) C{y:lx— yl <s} Therefore,

i)
U = gy 15X~ Y) u<y>zdy
1 X—y
— o B(x,s) n u<y) dy
1 f S J- - >
T lx=yl wy) dSy) dr
sn 0 0B(x,1) n S >3
1 f S J- . Z

- n —: uly) dS(y) dr
PR+
:j”J"sn. oo u(y} dsS(y)dr

nis

= n na(nr! u(y) dS(y)dr
S 0B(x,71)

na(mrlu(x) dr

o I dS(y) dr

I
B
Rs3

I
£
&

]
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Liouville’s Theorem

In this section, we show that the only functions which are bounded and harmonic on R™are
constant functions.

Theorem 8. Suppose u: R" — R is harmonic and bounded. Then u is constant.

Proof. Let xo € R™ By the mean value propetty,

u(xo) = J wy) dy

_B(xo,7)

for all B(xo, 7). Now by the previous theorem, we know thatif u € C?>(Q) n C(ﬁ) and W is
harmonic, then u is C”. Therefore,

Au=0 == Auy =0

for t=1,..., n. Therefore, Uy is harmonic and satisfies the mean value property. Therefore,

Uy, (o) = Ux; (4) dy

_B(lxmr) J'
— Ua (Y) dy
A o ¥
1 uv; dS(y),
T aMmrt spix,n 1alY)
by the Divergence theorem, where U = (U1, . . ., Un) is the outward unit normal to B(xo, 7).
Therefore,
.1 I .
lu, (x| < uy, dSy) -

" a(Mmr' e

0B(xo,7) —J_
.1 .
< |ul «(6B(x0,n) |Vi|Lew K- dS(y) -
o . i 0B(xo,7)
-namr! .
< |ulrerny | amm
n a(nrt
< rIuILoo(Rn).
Therefore,
n
[ () = |y oy
n
<C ,
r

by the assumEtion that wis bounded. Now this is true for all 7. Taking the limit as ¥ — +00,
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we see that |ug (x0)| = 0. Therefore, Uy (x0) = 0. This is true for i = 1,...,n and for all
x0 € R™ Therefore, we conclude that 4 = constant.

]
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As a corollary of Liouville’s Theorem, we have the following representation formula for
all bounded solutions of Poisson’s equation on R™, n > 3.

Theorem 9. (Representation Formula) Let f € C*(R™) with compact support. Let n > 3.
Then every bounded solution of

—-Au=f xe€eR" (3.4)

has the form I
U = ox—-yflydy+C

R

for some constant C, where ®(x) is the fundamental solution of Laplace’s equation in R™

Proof. Recall that the fundamental solution of Laplace’s equation in R™, n = 3 is given by
K

D) = | xc| -2

where K = 1/n(n — 2)a(n). As shown eatlier,

S
ux) = S Yy dy

R

is a solution of (3.4). Here we show this is a bounded solution for n > 3. Fix s > 0. Then,
we have

J
ul = (Px-yfwdy
. P 1 Co.
= K T fydy:
| Jelx—ylt - : '
= 'K — fyay-+ K —  _fyay-
B(x,s) |x_ y|n 2 ) ) RN-B(x,s) |x - y|n 2 )
L J 1)
<|fle- . dy +C fyl dy.
- B(x,s) |x_ y|”'2 RN=B(x,s)

It is easy to see that the first term on the right-hand side is bounded. The second term
on the right-hand side is bounded, using the assumption that £ C?>(R™) with compact
support. Therefore, we conclude that

ux =J ox yflydy
is a bounded solution of (3.4). Now suppose there is another bounded solution of (3.4). Let
U be such a solution. Let
w(x) = u(x) — u(x).
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Then w is a bounded, harmonic function on R™ Then, by Liouville’s Theorem, w must be
constant. Therefore, we conclude that

u(x) = TQC) + C
Ox-yflydy + C,

RN

as claimed.

Solving Laplace’s Equation on Bounded Domains
Laplace’s Equation on a Rectangle

In this section, we will solve Laplace’s equation on a rectangle in R2. First, we consider the
case of Dirichlet boundary conditions. That is, we consider the following boundary value
problem. Let Q = {x, y) R>:0<x<a 0<yc< b} We want to look for a solution of
the following,

W T Uyy = 0 (xy €Q

u©0,y) = g1y), wWa,y)=g2(yy 0<y<b (3.5)

u(x, 0) = g3(x), ulx, b) = ga(y) 0<x<a.

In order to do so, we consider the following simpler example. From this, we will show how
to solve the more general problem above.

Example 10. Let Q = {(x,y) € R?: 0 <x <a,0 <y < b}. Consider

O Uxx+ Uy =0 6y €Q
, w0y =gy, uay =0 0<y<b (3.6)
u(x, 0) =0, u(x,b)=0 0<x<a.

We use separation of variables. We look for a solution of the form
U, y) = XY ).
Plugging this into our equation, we get
Xy + XYl = 0.

Now dividing by XY , we arrive at

'j ..
Xy
X Y ’
which implies
Y X
y ~ x4
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for some constant A. By our boundary conditions, we want Y (0) = 0 = Y (b). Therefore, we
begin by solving the eigenvalue problem,

Tyli= Ay  0<y<b
Y0 =0= Y.

As we know, the solutions of this eigenvalue problem are given by

)2 22

. ‘nm nr
YViy)=sin =y , 4, =
b b
We now turn to solving ) 2
X = —
b
with the boundary condition X(a) = 0. The solutions of this ODE are given by
)2 . 2

X (x) = A gosh ﬂ; x +B,sinh n_;tx

Now the boundary condition X(a) = 0 im%lies

A cosh Ma + B sinh n_na =0.
n b n b
Therefore,
2 2 22 . )2
(% Y) = X0V ,(Y) = Ancosh bx + B, sinh ”—:x sin ”T”y

where An, B satisfy the condition
. 2 . 2
nr nr
A,cosh _ba + B,sinh —ba =0.

is a solution of Laplace’s equation on €2 which satisfies the boundary conditions u(x, 0) = 0,
u(x, b) = 0, and u(a, y) = 0. As we know, Laplace’s equation is linear. Therefore, we
can take any combination of solutions {in }and get a solution of Laplace’s equation which
satisfies these three boundary conditions. Therefore, we look for a solution of the form

> > 2 . 2 . 22 . 2
ulxy) = Tu Y = ~ A cosh Mx + B sinh Mx sin My
n=1 n=1
where An, Bn satisfy 5 - 5
A cosh b g + B sinh b a =0. (3.7)

To solve our boundary-value problem (3.6), it remains to find coefficients An, Bn which not
only satisfy (3.7), but also satisfy the condition w(0, y) = gi1(y). That is, we need

= an?
u@©, y) = &W1by=g@-

n=1
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That is, we want to be able to express g1 in terms of its Fourier sine series on the interval
[0, b]. Assuming g1 is a “nice” function, we can do this. From our eatlier discussion of Fourier
series, we know that the Fourier sine series of a function g1 is given by

2

-

gy ~  Asin 7Y

n=1
where the coefficients An are given by

. )2
(g1, sin 2y )
b

b b

A,= b3

(sin 2y ,sin My

where the L?-inner product is taken over the interval [0, b].
Therefore, to summarize, we have found a solution of (3.6) given by

wrp= wew= g, T nn %2 ®
’ - ’ - Anpcosh X + Bpsinh | x sin |y
where L
. nm
A - (ghsig Hy) 5
N
(sin by ,sin ,y
and 3
-nn: L

Br= — coth TaA n

of

Now we return to considering (3.5). For the general boundary value problem on a rect-
angle with Dirichlet boundary conditions, we can find a solution by finding four separate
solutions w; for it = 1, . . ., 4 such that each w; is identically zero on three of the sides and
satisfies the boundary condition on the fourth side. For example, for the boundary value

problem (3.5), we use the procedure in the above example to find a function ui(x, y) which
is harmonic on Q and such that u1(0, y) = gi1(y) and wi(a, y) = 0for 0 <y < b, and

ui(x, 0) = 0 = ui(x, b) for 0 < x < a. Similar we find functions w2, u3 and w4 which vanish
on three of the sides but satisfy the fourth boundary condition.
We now consider an example where we have a mixed boundary condition on one side.

Example 11. Let Q = {(X, Yy) R,0<x<L 0<y<H. Cynsider the following
boundary value problem,
0 U+ Uy =0 (Y €Q
u,y) =0, u(lL,y) =0 0<y<H (3.8)
u(x, 0) — uy(x,0) =0, u(x, H = f(x) 0<x<L.

Using separation of variables, we have
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That is, we want to be able to expressgiji in teyns of its Fourier sine series on the interval

x~ "y A
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We first look to solve ,
X = AX 0<x<L

X(0) =0=X(L).
As we know, the solutions of this eigenvalue problem are given by

. 2 c 22
X0 =sin Hx ,A,= 0
L L

Now we need to solve

_yii= _ ‘2
L

with the boundary condition Y (0) — Y(0) = 0. The solutions of this ODE are given by
2

Y (y) = A cosh n_ny + B sinh n_ny
L L

The boundary condition Y (0) — YJ(0) = 0 implies

nr
An—= Bn, =0
Therefore, . ¥ . Y
Y.(y =B Mcosh n_ny + B, sinh n_ny
nr L L
Therefore, we look for a solution of (3.8) of the form
e u) 231. ‘n_nxzzmt h'n_nz+.h'n_7t 22
, Y) = sin cos sin
v- LY L LY LY

Substituting in the condition u(x, H) = f(x), we have

> .33 L3 N >
u(x, H = Bgin n_;x ’z_ncosh ?H + sinh ZﬂH = f(0.

n=1

Recall the Fourier sine series of fon [0, L] is given by

b nm 2
f~ A,sin X
_ L
n=1
where
SIfp X
AL Dpa

(sin —x ,sin Tx)

where the L?-inner product is taken over (0, L). Therefore, in order for our boundary con-
dition u(x, H) = f (x) to be satisfied, we need Bh to satisfy

Znn 2 - 22 f sih BT x
B " eosh MRy Gon TRH = AVl
nor L L (sin —Lx , sin —Lx )
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Using the fact that

.nnZ - Z .rL z L’
(sin —, X ,sin %Tx): sin2 —x dx=",

the solution of (3.8) is given by

u(x —:GOB i ’szzn_n h‘n_nz+ 'h.n_nzz
(,y)—n=1 nsin 7 cos LY sin T Y
where |
2Zn_n .n_nz - n 22,0 L _.n_nz
_ J(9 sin X dx.
Bn=, , cosh  H +sinh [ H 0 L
Jof
Laplace’s Equation on a Disk
In this section, we consider Laplace’s Equation on a disk in R2. That is, let Q = {(x, y) €
R?: x? + y? < a?}. Consider
T U + Uyy =0 (x, Yy €Q (3.9)

u = h(6 (x, y) € 0Q.

To solve, we write this equation in polar coordinates as follows. To transform our equation
in to polar coordinates, we will write the operators Ox and Oy in polar coordinates. We will
use the fact that

C+yr=r
Y=o
X

Consider a function u such that u = wu(r, 6), where r = r(x, y) and 0 = 6(x, y). That is,

u-= u(r(x, y)) e(x) y))

Then
0
2 X6 ), 0%, Y)) = it + e
X X y
a ur(xz + y?)1/2 B u9x2 sec2 O
sin 6
= Urcos O — uo.
r
Therefore, the operator _%x can be written in polar coordinates as
0 0 sinB0
ox 08 987‘_ r 06
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Similarly, the operator? can be written in polar coordinates as

-2y
0 _ 0 cosB0
— =sin 06— + .
oy or r 00
Now squaring these operators we have
2 2
* 0 sinBa’
ox? cos@., — r 00
r 00
_ 0? sin Ocos 6 0 sinB@cos B 2 N sin? B0 N sin @ 2
o et R -2 R 06
cos2 or? r 00 r  0ro6 r or
Similarly,
2 2
o> T . .0 , cosB0 2
== sin@_ +
0y or r 06
r 00
2 o2 _Zsjn OcosH O N 2sin OcosO 52 N cos?2 00 N cos20 32 '
or? r” 06 r  0roo r or P 06°
Combining the above terms, we can write the operator 62 + 02 in polar coordinates as
x oy
follows,

02 02 0? 10 102
C o+ L=+ + )
oxt oy* ort ror ro?
Therefore, in polar coordinates, Laplace’s equation is written as
1 1

Urr + ;ur+ ;uee = 0. (3.10)

Now we will solve it using separation of variables. In particular, we look for a solution of
the form u(r, 6) = R(n)®(0). Then letting u(x, y) = wr(x, y), 6(x, y)), we will arrive at a
solution of Laplace’s equation on the disk.

Substitutinga function of the form u(r, 6) = R(r)®(0),into (3.10), our equation is written

as , 1 . 1 ,
R'e + _Re +_Re! =0.
r r

Dividing by RO,

R R ol

o+ 4+ =0.

R rR re 0
Multiplying by 2, we are led to the equations

oi PRI TR
—__ _——_3

® R R
for some scalar A. The boundary condition for this problem is u = h(6) for (x,y) ¢ 0.
Therefore, we are led to the following eigenvalue problem with periodic boundary conditions,
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Al = A® _ _ 0<60<21
O0) = ®2m), O(0) = B2m).
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Recall from our earlier work that periodic boundary conditions imply our eigenfunctions and
eigenvalues are

On(6) = Ancos(nb) + Bpsin(nb), An =1 n=0,1,2,...

For each An, we need to solve
I’ZR,JL + T}_\)jn = AnRn.
That is, we need to solve the second-order ODE,
PRI+ R, — 4R, =0

for n =0, 1, 2, . . .. Recall that a second-order ODE will have two linearly independent
solutions. We look for a solution of the form R(r) = r® for some a. Doing so, our ODE
becomes

(@ —n®re =0.
Therefore, for nx>1, we have found two linearly independent solutions, Rn(r) = r* and
Rn(r) = r™. Now for n = 0, we have only found one linearly independent solution so far,
Ro(r) = 1. We look for another linearly independent solution. If n = 0, our equation can be

written as
PR+ rR = 0.
Dividing by r, our equation becomes

rRi+ B =0.

A linearly independent solution of this equation is Ro(r) = In 7. Therefore, for each n > 0,
we have found a solution of (3.10) of the form

D,
)2 T [A cos(nB) + B, sin(nO)]
un(r, 0) = Ra(NOn(0)= 8 ¢ n

m

Ao [Co+Dolnr].

But, we don’t want a solution which blows up as r — 0*. Therefore, we reject the solutions
ﬁ and In 7. Therefore, we consider a solution of (3.10) of the form

=
u(r, 6) = " [Ancos(nb) + Bpsin(nb)].
n=0
Now in order to solve (3.9), we need u(a, 6) = h(6). That is, we need
=
a™ [An cos(nB) + By sin(nB)] = h(0).
n=0
Using the fact that our eigenfunctions are orthogonal on [0, 2], we can solve for our coef-

ficients An and Bn as follows. Multiplying the above equation by cos(nf) and integrating
over [0, 27|, we have

A = 1 (h(B),cos(nb) _1.[271
" an(cos(nh), cos(nB) mar

h(6) cos(nB) dO forn=1,2,...
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.r 2n
A= (WO.1) _ 177 e de.
(1,1) 2 ¢
Similarly, multiplying by sin(n6) and integrating over [0, 27, we have

1 (h(O),sin(nd) o

n=— an (sin(n@), sm(n@)) = war h(e) Sil’l(ne) do.

To summarize, we have found a solution of Laplace’s equation on the disk in polar

coordinates, given by

=
w(r, 6) = " [An cos(nB) + Bpsin(nb)]

n=0

where

on

h(6) do

‘?.211
An=

1
T[an J'O
1

Ao =

D rr

h(6) cos(nB) dO

2n
_ h(6) sin(n6) d6.
Now we will rewrite this solution in terms of a single integral by substituting An and Bn

into the series solution above. Doing so, we have

I on
u(r, 9):2—1 2 h(p) do

T o 2 2 2
> )2 1 J- 2 )2 1 J. 2n . .
>. 1 h@)cos(n@)dp cos(ng) + — h(@)sin(ng)de) sin(nb)
e 7T o mar o
21 o M) 1+2 = plcos(ng)cos(nd) +sin(ng)sin(né)] do
0 n=1 zz
] - > 2
1 21 rn
== hipg 1+2 — _ de.
0 1 cos(n(® — @)
Now
> > . - 2 . . )2
- > _ > ﬁ em(@—go) + e—m(@—go)
I+2 - icos(n(e— Q) t+2 an 2
n=1 . . ) . 5
rel(e_ﬁo) n e re_l(e_ﬁu) n
=1+
n=1 a n=1 a



rei(e_(P) re” i(0-p)

=1 a — rel6-9) " a — re-i6-¢)

at—r?
a? — 2ar cos(0 — @) + 1?
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Therefore, I ,

_ 1 T at— r
wr, ) =—
9 21 g h®) a? — 2arcos(0— @)+ 1? de.

We can write this in rectangular coordinates as follows. Let X be a point in the disk Q with

polar coordinates (r, 6). Let X be a point on the boundary of the disk Q with polar coordinates
(a, @). Therefore, x ¥ 2 = a® + |r2 2af|cos(9 @) by the law of cosines. Therefore,

u@x) = 1 ud)(@ — |%]% ds

2N h=a  |x-A2 @

using the fact that ds = a d@ is the arc length of the curve. Rewriting this, we have

)

2 iz s '
a— |x| 2169) ds

2Ma pgjeq X — M2

u(x) =

This is known as Poisson’s formula for the solution of Laplace’s equation on the disk.
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POSSIBLE QUESTIONS
UNIT 111
PART B
(5X6=30 Marks)
1. Find the elementary solutions of the Laplace’s equation.

2 Prove that lim ry(r) = M where M= p(r")dr’,p > 0 and Y(r) = |

3. Find the elementary solutions of the Laplace’s equation.
4. Describe about the families of equipotential surfaces.

p(r")dt’
lr=r']

5. Prove the uniqueness of interior Dirichlet problem.
PART-C (1X10=10)
1. Write down the form of ¥ for points on the axial symmetry.

2
2. Show that the surfaces x? + y2 + z2 = cx3 can form a family of equipotential
surfaces and find the general form of the corresponding potential function.
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Subject :PARTIAL DIFFERENTIAL EQUATIONS SEMESTER: Il LTPC
SUBJECT CODE: 17MMP204  CLASS : 1 M.Sc MATHEMATICS 40014
UNIT IV
SYLLABUS

Wave Equation:
Elementary solutions of one dimensional wave equation-Vibrating membranes -
Applications of calculus of variations- Green’s functions for the wave equation.

The Wave Equation

Another classical example of a hyperbolic PDE is a wave
equation. The wave equa- tion is a second-order linear hyperbolic
PDE that describes the propagation of a variety of waves, such as
sound or water waves. It arises in different fields such as acoustics,
electromagnetics, or fluid dynamics. In its simplest form, the wave

equa-
tion refers to a scalar function u = u(r,t), r € R" that satisfies:

02u ’s

;tz —¢cv U- 4.1)

Here V2denotes the Laplacian in R" and c is a constant speed of the
wave propaga- tion. An even more compact form of Eq. (4.1) is given

by
Q*u=0,
yhere Q° = V2— s the d’ Alembertian.

c2ot?

The Wave Equation in 1D

The wave equation for the scalar u in the one dimensional case reads

o L0
oe=¢ oy (4.2)
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The one-dimensional wave equation (4.2) can be solved exactly by
d’Alembert’s method, using a Fourier transform method, or via
separation of variables. To illus- trate the idea of the d’Alembert

method, let us introduce new coordinates (£ , n) by use of the
transformation

& =x—ct, mn = X+ct. (4.3)

In the new coordinate system one can write

1
U = Ugg +2Ugy + Umn ;un=u§§—2u§n+unn,

and Eq. (4.2) )
becomes ou

0Eom = 0. (4.4)
That is, the function u remains constant along the curves (4.3), i.e.,
EQ. (4.3) de- scribes characteristic curves of the wave equation (4.2)

(see App. B). Moreover, one can see that the derivative o u/0 & does
not depends on n, i.e.,

)2
ou ou

2 ou _ Qou _
T =0e =1@).

After integration with respect to & one obtains

u, n) = FE) + G,

where F is the primitive function of f and G is the “constant™ of
integration, in general the function of m. Turning back to the

coordinates (x, t) one obtains the general solution of Eq. (4.2)

‘u(x,t): F(x —ct) + G(x + ct). ‘ (4.5)

Solution of the IVP

Now let us consider an initial value problem for Eq. (4.2):

Ui = CZU)()(, t > 0,
u(x, 0) = f(x), (4.6)
us (x, 0) = g(x).
To write down the general solution of the I\VVP for Eq. (4.2), one needs

to exspress the arbitrary function F and G in terms of initial data f and
g. Using the relation

iF_(x —ct)= —cF'(x—ct), where F(x —ct) := 0 F (&)
ot
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one 0
becomes:

ulx, 0) = F(x) + G(x) = f (x);
ue (x, 0) = c(—=F'(x) + G'(x)) = g(x).
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After differentiation of the first equation with respect to x one can
solve the system in terms of F’}gx) and G'(x), i.e.,

. )2
FOO=" F00-1g00 , GM=" 100+ g0 .
2 c 2 c
Hence
1 lf 1 lf
FO)="f(x) -~ "gydy+C, G ="f(x)+" ~
2 2C o 2 2C o

where the integration constant C is chosen in such a way that the initial condition
F (x) + G(x) = f (x) is fullfield. Alltogether one obtains:

- - J X+ct

1 1
ux,t) = 5 f(x—ct)+ f(x + ct) + 2 g(y)dy | (4.7

Numerical Treatment

A Simple Explicit Method

The first idea is just to use central differences for both time and space
derivatives, i.e.,

[T B ul —2ui+ul
ui 2ui + ui — Cz i+1 i i—1 (4 8)
At2 AX2 ’ '
or, with o = cAt/ AX
ultt = —ult+ 21— aAul el +yl) | (4.9)

Schematical representation of the scheme (4.9) is shown on Fig. 4.1.

Note that one should also implement initial conditions (4.6). In
order to imple- ment the second initial condition one needs the virtual

point u-1,
ul — y-t
(%, 0) = g(x) = ——— + O(At?).
t( Iy ) g( I) ZAt O( )
/ e t]+1
7/ N\
L | ) N
Fig. 4.1 Schematical visu- !
alization of the numerical
scheme (4.9) for (4.2). tj1
Xi—1 Xi Xj+1
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With gi := g(xi) one can rewrite the last expression as
u-t = u! — 2Atgi + O(at),

and the second time row can be calculated as

= gt (- d)F gl T, (4.10)

where u(xi, 0) = W= f (x) = f.

von Neumann Stability Analysis

In order to investigate the stability of the explicit scheme (4.9) we

start with the usual ansatz (1.21)

8ij+l =g jeikxi’

which leads to the following expression for the amplification factor g(k)
02 =2(1 — 0)g — 1 + 20%g cos(kAX).

After several transformations the last expression becomes just a
quadratic equation for g, namely
g°-2pg+1=0, (4.11)
_ kax
Bp=1- 2a2§'“ .2

where

Solutions of the equation for g(k)
read

I
gi=Bx P2—-1.

Notice that if B > 1 then at least one of absolute value of g1 2 is bigger
that one. Therefor one should desire for B < 1, i.e.,

s
grz=PB+1 p2-1
and
lgl?=pB2+1-p2?=1.
That is, the scheme (4.9) is conditional stable. The stability condition reads

.3
R T

1, what is equivalent to the standart CFL

condition (2.7)

Prepared by : Kohila. S ,Mathematics , KAHE Page 5|21
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=
= ~ tj+1
. . L = e e = = e = = tj
Fig. 4.2 Schematical visual-
ization of the implicitnumeri-
cal scheme (4.12) for (4.2). tig
Xi-1 Xi Xi+1 !
CAt
o= <1
AX

An Implicit Method

One can try to overcome the problems with conditional stability by
introducing an implicit scheme. The simplest way to do it is just to
replace all terms on the right hand side of (4.8) by an average from

the values to the time stepsj + 1and j — 1, i.e,
TS T S 1 2 5

. — 2U. + U: c N ] ] ) ) .
Ui Ul _ —2ulPtulst ol 2ui Uit (4.12)

j—1
At2 VING Ui

Schematical diagramm of the numerical scheme (4.12) is shown on Fig. (4.2).
Let us check the stability of the implicit scheme (4.12). To this aim
we use the standart ansatz
giltl— g jgikxi

leading to the equation for g(k)

B’ -29+p=0

with i
B =1+a?sin? kATX

One can see that $ > 1 for all k. Hence the solutions gs,» take the form

1+i1-p2
O1,2= B
and
1-(1-B?
lgl? = ,  =1.

That is, the implicit scheme (4.12) is absolute stable.

Now, the question is, whether the implicit scheme (4.12) is better
than the explicit scheme (4.9) form numerical point of view. To
answer this question, let us analyse dispersion relation for the wave
equation (4.2) as well as for both schemes (4.9) and

Prepared by : Kohila. S ,Mathematics , KAHE Page 6| 21
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35
—o=1
3 0=0.8
25|~ #02
—o0=1
s 2 a=0.8 U ettt
2 . 0=0.2) et
¢ 15
Fig. 4.3 Dispersion relation
for the one-dimensional wave 1
equation (4.2), calculated us- 05
ing the explicit (blue curves)
and implicit (red curves) % o3 07 0% 08 1
methods (4.9) and (4.12). kaxin

(4.12). The exact dispersion relation is

o= *ck,

i.e, all Fourier modes propagate without dispersion with the same phase velocity
o/k = *c. Using the ansatz uj ~ e ~iotj for the explicit method (4.9) one obtains:

cos(mat) = 1 — a?(1 — cos(kax)),

(4.1
3) while for the implicit method (4.12)
1
cos(mAt) =
1+ a1 — cos(kax)) - (4.14)

One can see that for a. — 0 both methods provide the same result,
otherwise the explicit scheme (4.9) always exceeds the implicit one

see Fig. (4.3)). For o = 1 the scheme (4.9) becomes exact, while
4.12) deviates more and more from the exact

value of o for increasing a.. Hence, for Eq. (4.2) there are no
motivation to use implicit scheme instead of the explicit one.

Examples
Example 1.
Use the explicit method (4.9) to solve the one-dimansional wave equation (4.2):
Ut = 4ux for xe [0, L] and te [0, T]

(4.15) with boundary conditions

u@,t)=0 u(L,t)=0.

Prepared by : Kohila. S ,Mathematics , KAHE Page 7|21
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W R
\\\ “ 'y

X\ .::\(\“"0‘;'
L)

Fig. 4.4 Space-time evolution
of Eqg. (4.15) with the initial
distribution u(x, 0) = sin(n x), 0 2 M
Ut (x, 0) = 0.

10

Assume that the initial position and velocity are

u(x,0) = f(x) =sin(rxx), and u(x,0) =g(x) =0.
Other parameters are:

Space interval L=10
Space discretization [ptep

AX =0.1Time discretizjation

step Al =
0.05 Amount of time stepsT =
20

First one can find the d’ Alambert solution. In the case of zero
initial velocity Eq. (4.7) becomes
_fx—2t) + f(x+2t) _ sinm(x — 2t) + sinm(x + 2t)

ulx,t) = 5 5 = sin(n X) cos(2nt),

i.e., the solution is just a sum of a travelling waves with initial forrg; given by ' ®.
Numerical solution of (4.15) is shown on Fig. (4.4).

Example 2.

Solve Eq. (4.15) with the same boundary conditions. Assume now,
that initial dis- tributions of position and velocity are

0, x € [0,xi];
ux,0)0=f(x) =0 and u(x,0)=9g(x) = “go, XEI[xa,xal;
B 0, XE€|[xg,L].

Other parameters are:

Prepared by : Kohila. S ,Mathematics , KAHE Page 8|21
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Fig. 4.5 Space-time evolu- £ it )
tion of Eg. (4.15) with the Y = 5

initial distribution u(x,0) = 0, . 0,
ut (x, 0) = g(x).

Initial nonzero veloclity  go=0.5

Initial space intervalls X1 =L/4,x2=3L/4
Space interval L=10

Space discretization [ptep

AX = 0.1 Time discretiziption

step At =
0.05 Amount of time steps
T = 400

Numerical solution of the problem is shown on Fig. (4.5).

Example 3. Vibrating String

Use the explicit method (4.9) to solve the wave equation for a vibrating string:
Ug = Cux for x € [0, L] andt€ [0, T1,

(4.16) where ¢ =1 with the boundary
conditions
u,t) =0 u(L,t) =0.
Assume that the initial position and velocity are
u(x,0) = f(x) = sin(ntx/L), and ui(x,0) =g(x) =0, n=1,
2,3,....

Other parameters are:
Space interval L=1

Space discretization |step AX
= 0.01 Time discretizatjion

step At =
0.0025 Amount of time steps
T = 2000

Prepared by : Kohila. S ,Mathematics , KAHE Page 9|21
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Usually a vibrating string produces a sound whose frequency is
constant. There- fore, since frequency characterizes the pitch, the
sound produced is a constant note. Vibrating strings are the basis of
any string instrument like guitar or cello. If the speed of propagation
c is known, one can calculate the frequency of the sound pro-

Prepared by : Kohila. S ,Mathematics , KAHE Page 10| 21



Wave equation | 2017-
2019
BATCH

duced by the string. The speed of propagation of a wave c is equal to
the wavelength multiplied by the frequency f:
c=Af
If the length of the string is L, the fundamental harmonic is the one
produced by the vibration whose nodes are the two ends of the

string, so L is half of the wavelength

of the fundamental c
harmonic, so f=

2L

Solutions of the equation in question are given in form of standing
waves. The stand- ing wave is a wave that remains in a constant
position. This phenomenon can occur because the medium is moving
in the opposite direction to the wave, or it can arise in a stationary
medium as a result of interference between two waves traveling in
opposite directions (see Fig. (4.6))

N AT 2ANAY:TA

Fig. 4.6 Standing waves in a string. The fundamental mode and the first five overtones are shown.
The red dots represent the wave nodes.

Prepared by : Kohila. S ,Mathematics , KAHE Page 11|21



Wave equation | 2017-
2019
BATCH

4.2 The Wave Equation in 2D

4.2.1 Examples

4.2.1.1 Example 1.

Use the standart five-point explicit method (4.9) to solve a two-
dimansional wave equation
Ut = Co(U +Uy), U= U(X,y,t)

on the rectangular domain [0, L] x [0, L] with Dirichlet
boundary conditions. Other parameters are:

Space interval L=
Space discretization ste
AX= Ay = 0.01Time

discretization step At
0.0025 Amount of time step

T =
2000
Initial condition u(x,y,0) =4x2y(1 —x)(1—vy)

Numerical solution of the problem for two different time
momentst = 0 and t = 500 can be seen on Fig. (4.7)

t=0 t =500

0.1 4"..5 0.1

0.05 -

u(x.y,t)
o o
8 o B
u(x.y.t)
<

-0.05
-0.1 -0.1

Fig. 4.7 Numerical solution of the two-dimensional wave equation, shown fo

Wave equation examples
The wave equation is discussed in detail in the Dawkins online text,.

The function u(x, t) is a solution to the classical one-
dimensional wave equation if it satisfies the PDE

o V*
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2
82u at

The wave function u is the amplitude of the wave as a
function of time and position. The constant v is the
wave’s velocity in the x direction.

For a derivation of the wave equation, see

Since the wave equation is a linear second order PDE, given any two twice-differentiable
functions of a single variable (call them f; and f,), the most general solution is

u(x, t) = fo(x + vt) + fo(x — vt). That’s almost all there is to it! (except for the
details — ah, the details).

This was first noted by Jean D'Alembert, 18" century French
mathematician and bon vivant. The plus/minus signs in

X + vt and x — vt indicate the direction of wave travel:

f2(x — vt) is traveling to the right and fi(x+ vt) is traveling to the
left. How can you remember that? Think of surfing a wave:

| you want to stay in the same relative position, riding the wave
crest. As time goes on (t increases, you and the wave both
move to the right (your x position increases). In order to keep
the same relative point on the wave function, you’d better be
surfing f(x — vt). Was D’ Alembert a surfer? With that hair?
Not likely.

) A (X i+ ¥
A leprechaun caught surfin e

the cosine wave off Malibu. As t and x
increase, he rides x — vt, staying at the same
wave height.

~—
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Example  Let fi(x + vt) = cos(x + vt) and fo(x - vt) =1 - (x - vt)2.
Then u(x, t) = 1 - (x - vt)? + cos(x + vt) is shown to be a wave function if it
satisfies the wave equation. Show that it fits the PDE. Graph the function in x
and t (especially using Animate to plot the function of x and animate it in time).
The form of the solution to the wave equation is determined by both the initial
conditions (what is the value of u when t = 0?) and the boundary conditions (what
must the wave function do at end points of the domain?).
No boundaries: traveling waves on a very long string

D’Alembert’s analysis of wave functions leads to several important results.

First, we analyze the wave equation with ICs only. Let’s write the wave equation as

2
2y 0v u=vd  and the wave function u(x, t) = fi(x + vt) + fo(x — vt).

ot:~ v _.or

a. We are given an initial displacement u(x,0) = f(x) and
initial velocity u¢(x,0) = 0. This is a guitar string plucked
with finger or pick (although D’ Alembert would have
studied the harpsichord).

Applying the second (velocity) IC first, take the required
derivatives of u:

Ui(x,0) =0=vf,'(x) —vf,'(x) or f,'=f,’
We integrate this directly to obtain f,= f,+ C and therefore
u(x, t) = fi(x + vt) + fi(x —vt) - C

Applying the first IC u(x,0) = f(x),
f)=fx)+f x)=2f -Corf _f(x)+C
1 2 1 1 2
Combine:

u(x, t)=£f(x+vt)+g+l_f(x—vt)+(i—c
2 2 2 2

1 1
==—f(X+vt)+=F(x—vt
2( ) 5 ( )

The solution function is therefore always a sum (superposition) of % of the
function that describes the shape of the string pluck; the constant cancels.
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b. An initial velocity u«(x,0) = g(x) is given and the initial displacement u(0,t) = 0. This
IS a piano string struck by pressing a key or the very cool instrument known as a
hammered dulcimer.

Use the method above to eliminate f2:

u(x, t) = f,(x — vt) + f,(x + vt x
agd tt%en sh(ow thglt flgx):—) ! g(s)ds , where s isa

1 2V J.O
dummy variable that disappears upon integration.

Combine to obtain u(x,t) = i'fwg(s)ds
2V x-vt

c. Combination of conditions: u(0,t) = f(x) and u(x,0) = g(x)

Combined ICs yield combined solutions known as D’Alembert’s Formula:

W0t = F (x=v)+ (vt + [ g (s)ds
2 2 2V o

Example: Apply D’ Alembert’s Formula to form the wave function given by the initial

condition (pluck) u(x,0) = 1_e‘xzwith v=4.
2
We see immediately that u(x, t) = E g (2 E e %7 asillustrated below. The initial
2 2
pulse starts at x = 0 and splits in two, one traveling left, the other traveling right. Since

there are no boundaries, the pulses continue moving away from each other ... forever.
{D} {042}

1‘2—[»[1 ozuﬁﬂrmxm}l)
2

104 |
/N [
/.8 F l"\l / osf \‘
/ 06 ll"\ / sl \
|,|"| 04| I".Il Jff‘ b \
< I,I’J '\ > . (122295; R :f >
/owaf ‘.,\ erbetammont, s / of \
/ \ A " / N
—— T [\
[\ /o
/ \\ /
\ [ \
[\ [
[ [
/ \ [ / \\
/
o . K _ \\ - 3
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Example

1 e 2
Suppose the ICs are u(x, 0) = Ee and u (x, 0) =—e ™% forv=4.
Use the D’ Alembert Formula to find the wave function u(x,t).

Once the functions f and g are defined, this statement will find values of u[x,t]
using the D’Alembert Formula:

ufc £ ,g9 & x ]:= .5(f[x + c t] + £[x - c t1)+ (1F(2 c)) Integrate[g[xl], {x1,x - c t, x + Cc t}]

Woddya know? A stamp!

http://jeff560.tripod.com/images/dalemb.jpg

g

10D AL mrr ooy

Now that we know the form of the solutions, we can look at some BVPs

We’ll start with a one-sided boundary: Suppose a horizontal string is tied at one end (say
x = 0), where it cannot move and thus u(0,t) = 0 and u:(0,t) =0

In order to prevent any displacement at the bound end, a “reflection” will be generated —
a wave of opposite polarity will originate at the boundary. When the incoming wave and
the reflected wave are superimposed, they cancel.

Example: The pulse begins at x = 3 so that u(x, 0) = Lgoor,

2
We must form a function that extends a negative of our wave function into x < 0 so that

the sum of the wave displacement is 0.
In general, this can be done by turning the wave function into an odd functions by an

‘odd flip:” y(x) is redefined as —y(-x) for x<0. The most compact way to do this (but
certainly not the only way) is as follows:

u(x, t) = 1 [Sign[x + vi] f (Abs[x + vt]) + Sign[x — vt] f (Abs[x — vi])]
2


http://jeff560.tripod.com/images/dalemb.jpg
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This really creates two wave functions — the one

E we see from the starting point of the pulse and a
f\ mirror image (in reversed polarity) starting from
r |
osl || x<0.
...... o\ e
15 10 '}“. / 5 10 el
|III III|'-0.5
\ / ok
0735
Each pulse splits, with one half moving left o
and the other right. i
i: III : III II : III
_!,l' '\u.l' "\
15 10 \‘-Is(\ / 3 TR T
¢ Illl\flll Ilio.;?
14
u[x]
10 1ol
ol N When the ‘real” wave and the mirror image pass
“— > through each other at the boundary, they cancel out.
_‘.r\\ ;"l \\
T o "-:Illslf”‘\\ = TR T
‘_\‘\ / _-_’
'\-’ 0.5+

But we are only interested in what happens with x > 0, so it looks like the original pulse
is reflected at x = 0; then both pulses

s 165 move to the right.
10 _—
o3 —_
PR L— PR T R | _.-/.ru 1 . |\|'1- PR SR TR T SN TR TR [ TR SR T N ST H
hoo 2 4 6 & 10 12 14
-
T Verify that the wave function u(x,t)
=0 at a reflecting boundary for all
ol values of t.

It is also possible to reflect at the right hand boundary.
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55
ufx
10
05
/ \~ Pulse moving right, striking boundary
e, gt x = 15,
2 4 i g 10 12 14
-05F
-lot
Reflected pulse (reverse polarity)
now moving to the left.
a4
uzx
1o
05F
1 1 1 1 1 1 L + F
2 4 g S 10 o
\ ."ll
05k .\\Jl
-lot

Reflections at both boundaries are also possible — but require additional trickery

wfzt]
10

05k ;.l’ \

Pulse beginsat x=5,t=0

0.5k

0sF

333
UIX_,t]
Pulse splits, parts
. B move left and right,
N TN .
N\ / \. about to strike
A s . boundaries at x = 0
: ’ ; * and x = 10.
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Reflected pulses now moving back towards 61
Xx=5 1‘.Ju[x—’t]
05
91/ = 4 5 _"““~\8I 1'0 *
AN V4 \\ 7
05+ \\_// AN

This required conditional function definition using /; Mathematica’s conditional
definition operator.

2
pulse?[z , z0 , left , right ] :=e "7 f: left 2z « right
2
pulse?[z , z0 , left , right ] := -7 f: 2. 1aft

: 2
pulse2[z , z0 , left , right ] 1= - ““F5 0 b 5y right

Plot[.5 pul=se?2[x+t, 5, left, right] + .5 pul=se?[x-t, 5, left, right], {x, left, right},
PlotRange — {-1, 1}, AxesLabel — {x, "u[x,t]" }, PlotLabhel — t]

Values for left and right (the x position of the boundaries) can be explicitly
assigned prior to the Plot[ ] or set with a list replacement within the Plot] ].

We have defined the velocity of the wave as the value v in the wave equation. What
is the derivative u¢(x,t) represent in physical terms?

What happens if we use a continuous cosine u(x, t) = % cos(x — vt) + %2 cos(x + vt)
instead of a discrete pulse? Try it!

A more general means of finding a wave function when there are boundary conditions
involves the technique of Separation of Variables. Work that lab before continuing
below.

See http://www.math.duke.edu/education/ccp/materials/engin/wave/index.html.

Work through all parts of this webpage and answer the questions in the summary. We
will get to Fourier Series solutions after a while; for the moment, just think of them as an
approximation to the given function formed by adding sines and cosines.

We will use Separation of Variables to consider each of the following cases, each
specified by a different set of boundary conditions.


http://www.math.duke.edu/education/ccp/materials/engin/wave/index.html
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See notes in wave equationBVP.pdf
1. String of length L tied at both ends (standing waves)

Boundary conditions u(0,t) = u(L,t) = 0. An initial amplitude u(x,0) or particle
velocity ut(x,0) or some combination of these ICs may be specified.

For an excellent animation of a standing wave on a string, see
http://galileo.phys.virginia.edu/classes/152.mfli.spring02/forces%200n%20wave.swf

2. Tube of length L open at one end (standing waves)

Boundary conditions u(0,t) = 0 u(L,t) = A, for an amplitude value A.

3. String of length L tied at one end and shaken with amplitude A from the other end
(traveling waves)

Boundary conditions u(0,t) =0 u(L,t) = A. An initial position or velocity
must be specified.

The vibrating drumhead (circular case)

The two-dimensional wave equation can be expressed in polar coordinates.
2 2

du_ 19U Fuybecomes U 1Y 14U 1 U Here, ux,y, t)isa

a? c2ox oy at?  ctor ror r?o6?

amplitude displacement function in rectangular coordinates and U(r, 6, t) is the

displacement function transposed into polar coordinates. Good news: It is still variables
separable!

Suitable boundary conditions might be fixed edges at r = 1 and
an initial displacement or velocity at the center.

00 S


http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/forces%20on%20wave.swf
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UNIT V
PART B
(5X6=30 Marks)
1. Describe a method of boundary value problems for the generalised diffusion
equation.
2. State and prove Duhamel’s Theorem.
3. Describe a method of boundary value problems for the generalised diffusion
equation.
4. State and prove Duhamel’s Theorem.
5. Use Green’s function to find the solution of the boundary value problem of diffusion
equation.
PART -C
(1X10=10)

1)Find the solution of the Helmholtz equation by using the method separation of
variables.
2. Discuss in detail about the diffusion equation with sources
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Subject: Partial Differential Equations SUB CODE (17MMP204)
Class I MSC i Semester  : 11
The generalisation of the typical parabolic equation is equation wave laplace fourier diffusion diffusion
The lisation of the typical equation is diffusion equation i bol boli elliptic cubic parabolic
The conduction of heat in solids the temperature is denoted as. alpha beta theta gamma theta
The flow of heat through a element of volume shows the variation of theta large small unique linear small
The conduction of heat in solids the thermal conductivity is denoted as k h a b h
The conduction of heat in solids the density is denoted as. row h a b row
The conduction of heat in solids the specific heat of the solid is denoted as_ k h c b c
The conduction of heat in solids the temperature of every point is denoted as. r h c b r
Diffusion in isotropic substances the current vector is denoted as. T h c J J
Solvation of Diffusion in isotropic substances concept is used grad addition subtraction grad
concept is used to solve the diffusion in isotropic substances. div addition subtraction div
law is used to solve the diffusion in isotropic substances. Finks Kirchoffs Ficks Newton Finks
equation is used in conducting media Finks Maxwell Ficks Newton Maxwell
___concept is used to solve in conducting media curl div grad addition curl
The method of separation of variablesapplied to diffusion equation is similar to theory potential grad calculus electrostatic potential
The method of separation of variablesapplied to diffusion equation is similar to motion wave laplace fourier kennel 'wave
___equation is used to solve in separation of variables Finks Kirchoffs Ficks helmhol helmhol
The first region bounded in the use of integral transform is S1 Al BI C1 S1
The second region bounded in the use of integral transform is S1 S2 BI1 C1 S2
In the use of Integral transforms ____number of regions are bounded one two three four two
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Reg. NO -----------mnmm-
(17MMP204)
KARPAGAM ACADEMY OF HIGHER EDUCATION
COIMBATORE-21
DEPARTMENT OF MATHEMATICS
Second Semester
I Internal Test —°18
PARTIAL DIFFERENTIAL EQUATIONS
Class : I M.Sc (MATHEMATICS) Time:2 hours
Date : (FN) Max Marks: 50 Marks

PART — A (20 x 1 = 20 Marks)
ANSWER ALL THE QUESTIONS:

1. A partial differential equation is one which involves
derivatives

a) Single b) ordinary  ¢) partial d) linear
2. The three variables involves in Pdx+Qdy+Rdz=0 is
called
(a) pfaffian  (b) lagrange
(c) recursive  (d) quadratic
3. The general solution of PDE is of the form-
(@) C.F+P.1 (b) r(a)<r(b) (c) r(a)>r(b) (d) r(a)=r(b)=0
4. f(x,p)=g(y,q) is called equation.
(@) clairaut’s  (b) charpit ‘s (c) crout  (d) separable
5. The solution of PDE satisfies for all values of
@n (b1 (c)2 (d) 3
6. If S2- 4RT>0 then it is called ----------
(a) Elliptic (b) Parabolic (c) Hyperbolic (d) Diffusion
7. Z=X(X)Y(y)T(2) is the extension of variables
(@) integration (b) separation
(c) differentiation  (d) induction
8.The order of PDE to be the order of the derivative of
order occurring in it.

(@) second (b) first (c) highest (d) lowest
9. In Rr+Ss+Tt+Pp+Qq=W, W is the function of
@x (b)y (c)xandy (d)z
10.In the method of integral transforms L denotes
___ operator
(@) non linear ~ (b) Constants  (c) operator
11. If S?-4RT<O0 then it is called as -----------

(@) elliptic  (b) Parabolic (c) Hyperbolic (d) Diffusion
12. The use of the theory of integral transforms is the solution
of
(a) Ode b) Pde  (c)C.I (d) P.1
13.The Equation is of the form Z=px+qy+f(p,q) is
called
(@) clairaut (b) charpit (c) crout  (d) separable
14. If fand g are said to be compatible then it have
Solution
(@) unique (b) different
(c) linear (d) non linear
15. F(D,D’*)=0the term D’ denotes about the variable
@x (b)y (z(d)p
16. Z=X(X)Y(y)T(2) is separable in the variables
@ x&y (b)) x&z (c)y&z (d)xy&z
17.The ----------- of PDE is of the form sum of C.F+P.I
(@) solution (b) P.I  (c) Complete solution (d) singular
18. The separation principle can readily be extended to--------
number of variables.
(a) smaller (b) unique (c) larger (d) contrary
19. L(2)+f(x,y,z,p,q)=0 where L is the
(a) Laplace (b) Differential
(c) Lagrange (d) Longdivision
20. The use of the theory of integral transforms isthe _ of
PDE
(@) unity (b) existence (c) solution  (d) formal

(d) linear

operator



PART - B (3 x2=6 Marks)
ANSWER ALL THE QUESTIONS
21.Distinguish between ODE & PDE with examples
22 Brief derivative about Charpit’s Method.
23. Brief derivative about Non linear PDE
PART — C (3x8 = 24 Marks)
ANSWER ALL THE QUESTIONS
24. a) Describe the non-linear partial differential equation of
the first order.
(OR)
b) a) Find the complete integral of the following.
(i) Equations involving only p and q
(i) Equations not involving the independent variables
25. a) Find the solution of equation Rr + Ss + Tt + Pp +
Qq + Zz = F using separation Variables.

(OR)
9%z _ 1 0z
b) SOlVGﬁ = %o

26.a) Reduce the equation

.\ 0%z _ 2&
() 322 = *" 552
9%z 9%z
3wy Ty = 0 absolutely f has sum S.
(OR)

b) Discuss about the equation with variable coefficients

..\ 0%z
(i) =t 2



Reg. NO -----------mnmm-
(17MMP204)
KARPAGAM ACADEMY OF HIGHER EDUCATION
COIMBATORE-21
DEPARTMENT OF MATHEMATICS
Second Semester
Il Internal Test — Mar’18
PARTIAL DIFFERENTIAL EQUATIONS
Class : I M.Sc (MATHEMATICS) Time:2 hours
Date : 22.3.18 (FN) Max Marks: 50 Marks

PART — A (20 x 1 = 20 Marks)
ANSWER ALL THE QUESTIONS:

1.The boundary S of a simply connected region satisfies
equation

a) Fourier b) Kennal c¢) Laplace d) Kernal

2. The determination of the potential due to uniform circular
wire
a) diameter  b) radius
c) node d) potential

3. The curve gamma is the projection of ¢
with equation

) u(x,y)=0 b)u(xy)=1 c) u(xy)=2 (d) u(x,y)=n

4. Steady currents are defined through current
a) induction b) conduction c) node d) potential

5. Vibrating membrane is the application of of
variation.
a) grad b) calculus c) electrostatic d) potential

6. The conduction of heat in solids the temperature is denoted
as
a)alpha  b) beta c)theta d) gamma

7 The method of separation of variables applied to diffusion
equation is similar to motion

a) wave b) laplace c) fourier d) kennel
8. In the use of Integral transforms number of regions

are bounded

a) two b) one c) three d) four
9. The variational approachto ___ value problem is useful in
the derivation of approximating solution
@x (b)y (c)xandy (d)z
10. In the field equations reduced to Fourier equation
a) Maths b)Commerce c)Chemistry  d)Biology
11. If S?>-4RT < O then it is called as -----------

(@) elliptic  (b) Parabolic (c) Hyperbolic (d) Diffusion
12. The use of the theory of integral transforms is the solution
of
a) D alemberts  b) Kennal
¢) Kernal d) Laplace
13. The one dimensional wave equation solution follows
a) Riemann b) conduction c)node d) potential
14 The generalisation of the typical parabolic equation is

equation
a) wave b) laplace
c) fourier d) diffusion
15. The flow of heat through a element of volume

shows the variation of theta
a) large b) small c) unique d) linear



16. Solvation of Diffusion in isotropic substances
concept is used

a) grad b) integration c¢) addition d) subtraction

17. law is used to solve the diffusion in isotropic

substances.
a) Finks b) Kirchoffs  c) Ficks d) Newton

18. The separation principle can readily be extended to
number of variables.

a) smaller b) unique c) larger d) contrary
19. The first region bounded in the use of integral transform is

a) S1 b) Al c) B1 d) C1
20. The method of separation of variables applied to diffusion
equation is similar to theory

a) potential  b) grad c) calculus  d) electrostatic

PART - B (3 x2 =6 Marks)
ANSWER ALL THE QUESTIONS

21.Write the definition for electrostatic
22.Brief derivative about Seperation of Variables.
23. Brief explain about boundary value problems

PART - C (3x8 = 24 Marks)
ANSWER ALL THE QUESTIONS

24. a. Determine the solution of the equation
0%z 0%z

6x4+0y2_0 (—0o < x <00,y >0)
satisfying the condition.
(i) z and its partial derivatives tend to zero as x —» +oo
(i) z = f(x),g—i =0ony=0

(OR)
b) Prove that rcos & and r 2 cos 8 in the spherical polar

co-ordinates the satisfies the Laplace equations
25. a) Find the elementary solutions of the Laplace’s equation
(OR)
b) Derive the solution of the boundary value problem of
the vibrating membrane.

26.a) Describe the motion of a string using elementary
solutions of the one dimensional wave equation.

(OR)

2
b) Show that the surfaces x? + y2 + z? = cx3 can forma

family of equipotential surfaces and find the general
form of the corresponding potential function.






VARPAGRIA ACADEMY 9F RIGHER EoucATION
COMBATORE - 2

DEPARTHMENT OF MATHEMATIC
e ond serpester
T Inteyred Tepe- TAN? 1D,

PARTIPL DIEFERENTIAL ERULATONS .

PART-A
:
A patial diffeTential Equadion & ane which \nyolve
. devtvaikives .
:’cg):'mqle (D) odinavy @ pavkial (&) Liveay . |

—ﬂz\e Thee vaurtables dnvolves (fn pdx & Qdy + Rdz rzﬂ fs
catled

|
@ prafsian ) lagy

The gereval solubon of ppE s &MMH-*
@ CFre-1 (B YCa)LYTB) (© *a)>vee) QJ sta)*'itb)&




1O .

W

2.

3.

5,

wx @y ©ftardy 2.
L gn dbe method of foteq val tverngfostng demote *”‘-‘F“’““"
(@ non\irneay (o) nstant (o Opevetkor @ Ltreny. |

T4 $7-ART ¢ O dhen Wiy catled as — - |
@ clipuc &) pavadolic @ hypevholee @ bigusion,

The wae af the aheawy 63 Antergval Mnonesesog L
| derotes Whe coluxion of ———
® roe (© ¢-T 4 *1T,

(@ OobE
The eauation .« Of abe form 2= px+@,.g+§cp‘q,)~u
caled — -

FELLD @) epavable.

@ clelvouk (p chawpit (O ¢

) 4 and @ ave 2 eid Lo be compaltiblo aben At have

<0 Lurion.
@ uriaue 0 Aigevent  (© Jpeay @) non Ubeay ,

4
D’ demdes Aalboudt khe vayviable —

£CD/0') 20, kbe kewm

wx Py ©Wx @F
2 - xtx) Yog Tex) 48 gepavobe An Abe NI
i iz . et IS EE GGG

@ x4 Y




I 2. The Use af the theovy of -intagral Hrunatorms U Abe

oF PoE,

(@) ity (b)) ecvtence @ eoluttion @) fewral |

PART- B

21, piskhinguish berween ©oE 4 PDE L4tED ex cLroples
QDE"

AN €quation dnvolving erdinry Aevtvativae & callegd
cing\e Andependent

@ ODE or an equatian tovo\ving

vartable & cauled ODE -

aQgr d ,9.dY y gy=v
doe ? d
PDE !
An equation Epvotd ng Ao o ore
k called Parrial Dis¢evential enuatkion,

Andependent”

varxtables
€g>- 44 Al 2 .
50 db 5
2] grie devivakive olsouk havpit's Method’
considey the PDE Pz Pe)z0 — O
ron Lineay dn P and 4.
The chavplls Method condy ,

st ordeYy PDE,
QLA YL, Piaa) s 0 8.

wini ch Nay

94 P 2 (Y.P) DCz/P) 2 LA
| PR = npa
| & ' |
BN mesas i
Thevefore Ane ¢ 1,
l=axrby+c.

given eouation becorme |



% The Ase of 0o theony of intaga) Meanstomns
oF e,

‘aj ]J_fL'UJJ (e) St rerve @» 2ol b on @A) W 3
raRt- %

20, AMNGUlth betuseen ODE 4 PDE Litkh @2AMNDYS |
QDE"

An eauabion dnyvghdng 4o o rrore dndependent
Vortables K called pPortial Disfenential enuakion,

eq:’ d’g 2
R

|

b

i |

corsidey the PDE PGz, 08)20 — 02 Which M A
on lineay dn P and 4,

TN!“WmKJNMMBumm
Wt order PDE, e #indng m

!' g(i-ﬂolc Pid,a) « C IR SRTCIAn 4o ':""-‘._ |

' 249 , B0
KETe) 2007




P - ’
=t + i%—a"tmnm]w«

-

O =2X +Voln F'l,q d)+c.

Theye is rmo Singulal J‘.n‘-'&yrul. )
To &nd ¢ AP

X=Xtk CHE e )Y+ H Q) /
Parr ¢

4 : - :
4] aj. Cole: XP-Yq. = x and X7Prq = X aTe ‘omy
Solution:
£ -

¥R AP - x 3 @ s pa e

elsq) _ ~X T~ 2 pX T prc2pzX.

09

,aCf'Q) 2 Xl

%CZ:ZP)

o(Hag -~ 38(9‘0) i
D(Ya) L

C£9]- 2x-x%-9-X9q
s RORY Q- Ee NN
CHgl=0
S 9r A (ompakible 4



CHel=0

Ay (‘<>n\\u\ti\'>\f’ 0

Bl Find &he (OMplete L(nrpq,(d of Ahe -po\\cwmg :
fj {‘m,tatl\’ﬁn Lol ng oy ¥ and Qq
Lot £(Rg) = 0 be the Ik PDE
hen  cnapat ' cquati on L ane
Ay ” daL 2

C\ i 1 . (\ U X Q\ K . 3 Jolugic: S Bty s
-($4 Fpdz) ~(&y rafz)

Ir  da  piriefa
fop 2FY = T3 =8
df_ - dq = p-a and 92 b
O O
& 9 Y B b= dta)
O S | anNd 4= ¢(ﬂ)

Thagy 2 axs ¢ dytb



) ) bf’cth(- P.p-&
,_d)hk = d(._{ d(
£ 7 et Kl
X v PlorgR, = 20 . 4 CE
~(Htpfz) ~(fytq€,) ©
te) dp A
T‘ ~L:Q

A2 constant — @)

0

Pd (1) for gubckiuang ane
V, : : ;
Aues Chaorvpit s o uation .

Pax+qdy.
e ek e Lodulion ©of equatian (1)

dZ:

28}, al. Fing £he <olution Of equettion Ry +S< + Te4 Pp + Qg+

X Z=F i ng Arpoyobion \cavt ables |
Salution:

A Second arder partial dif evential Couation e LT N
ds Lneay oot Yespeck ko oM ofder PavHal derivatiye
F© Mid b @and &8s 2old ko be AUAg)- linear P-DE of
oNMorder and i3 the equodion of Abe fovm,

¥ $Ss +Te & FlUY,2,P3)= 0.
W)
P = §gZg +0Qx?n

4. = g(glzf-"rlldzq

V< Yy Tyt 28 Yyt Ty T Y RRLF A B 2 T

g = Zgg Sx Sy Zhp V))(Q@ﬂ J»Zg,? £ x Qg *2237949'21 +
D Px0g + by by .

k

S ey Gyt 269090 + Zyg Pyt 2 bty - Y Ty
Case W 21 £C.dprve.

sji :ledg ’ Q,(Z' >\2Q‘d.

ow , le..?\\‘-fg = O






!
|
|

!
|

—— =

2]

|
!
:
!

cane (W

bl sotwe
J. 2y = tray .
galuckton:
L. iSO
I regrating o7 to X' and keeping S IRVE . |
® o Xt xar Py . .

Gntag@iting as\th veipeet #o'\! @nd keept@ TR LSS
X = Lx? logad +axy + A ER o SO

‘o
Pera. ‘Flf

3

z"" - -

- = - X i + )
1), degs =Xy . ke n
’ . :...}: _l;-' ‘t:‘.‘ "o"u 3 "tﬁ'

€olution® | R
- AR ORLE * |

L3



Aty 2 (\" e 2
4 "')\‘rfﬂfli', Oy
Oy \\\(3 W %L ‘(’ ) 4 .
% R - ~EEP V0 o comatane
My 272+ Lty =0 )

“\('.(‘S‘
- m 3 : .
€ the coluy o & oo on () aa
Te 1Y, jr xYh Do) e XY dy + i)
& 'X'J‘ tg LJ P \)(.LJA(J '.J ¢'Axid] ‘_éfx)

X

- el
FS € Ay x'

by
= XY - X - ¢)_(_)9_ o eXY fix) .
X

z
Z ==Y pfoxr+ P lx)eXy

2. b]. (] & ¢ psoxdrEwy,

| The gven equaton canbe,

!
.

} | OP  LpSex) = FLy

i,

ey 4

> - - -
- I \_.g-‘,lr $ex) € powen)
X x



Diffusion Equation: | 2017 -

2019|BATCH
KARPAGAM ACADEMY OF HIGHER EDUCATION
SUB :PARTIAL DIFFERENTIAL EQUATIONS SEMESTER: I LTPC
SUBJECT CODE: 17MMP204  Class : I M.Sc MATHEMATICS 400 4
UNIT V
SYLLABUS

Diffusion Equation:
The resolution of Boundary value problems for the Diffusion equation- Elementary solutions of diffusion equation -
Separation of variables- use of Green’s functions- Diffusion with Sources.

1. Concepts, Definitions, and the Diffusion
Equation

Environmental fluid mechanics is the study of fluid mechanical processes that affect the
fate and transport of substances through thehydrosphere and atmosphere at thelocal or
regionalscale' (up to100km).In general, thesubstances ofinterestare mass, momentum
andheat.Morespecifically,masscan represent anyofawidevarietyofpassiveandreactive
tracers, such as dissolvedoxygen,salinity,heavy metals,nutrients,andmany others.PartI
of this textbook, “Mass Transfer and Diffusion,” discusses the passive process affecting the
fate and transport of species in ahomogeneous natural environment. Part II, “Stratified
Flow and BuoyantMixing,” incorporates the effects of buoyancy and stratification to deal
with active mixing problems.

This chapter introduces the concept of mass transfer (transport) and focuses on the
physics of diffusion. Because the concept of diffusion is fundamental to this part of the
course, wesingle it outhere and derive its mathematical representation from first princi-
ples tothe solution of the governing partial differential equation. The mathematical rigor
of this section is deemed appropriate so that the student gains a fundamental and com-
plete understanding of diffusion and the diffusion equation. This foundation will make the
complicated processes discussed in the remaining chapters tractable and will start to build
theengineeringintuition needed to solve problems in environmental fluid mechanics.

Concepts and definitions

Stated simply, Environmental Fluid Mechanics is the study of natural processes that
change concentrations.

These processes can be categorized into two broad groups: transport and transforma-
tion. Transport refers to those processes which move substances through the hydrosphere
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. 1.1 Concepts and definitions . 3
and atmosphere by physical means. As an analogy to the postal service, transport is the

process by which a letter goes from one location to another. The postal truck is the anal-
ogy for our fluid, and the letter itself is the analogy for our chemical species. The two
primary modes of transport in environmental fluid mechanics are advection (transport
associated with the flow of a fluid) and diffusion (transport associated with random mo-
tions within a fluid). Transformation refers to those processes that change asubstance

of interest into another substance. Keeping with our analogy, transformation is the pa-
per recycling factory that turns our letter into a shoe box. The two primary modes of
transformation are physical (transformations caused by physical laws, such as radioactive
decay) and chemical (transformations caused bychemical orbiological reactions, such as
dissolution).

The glossary at the end of this text provides a list of important terms and their
definitions in environmental fluid mechanics (with the associated German term).

Expressing Concentration

The fundamental quantity of interest in environmental fluid mechanics is concentration. In
common usage, the term concentration expresses ameasure of the amountofasubstance
within a mixture.
Mathematically, the concentration C is the ratio of the mass of a substance M;to the
total volume of a mixture V expressed
M;
C=—.
v
The units of concentration are [M/L’], commonly reported in mg/1, kg/m’, 1b/gal, etc.
Forone-and two-dimensional problems, concentration can also be expressed as themass
per unit segment length [M/L] or per unit area, [M/L’].
A related quantity, the mass fraction x is the ratio of the mass of a substance M;to
the total mass of a mixture M , written
M;
x="". (1.2)
M
Mass fraction is unitless, but is often expressed using mixed units, such as mg/kg, parts

per million (ppm), or parts per billion (ppb).

A popular concentration measure used by chemists is the molar concentration 6. Molar
concentration is defined as the ratio of the number of moles of a substance IV; to the total
volume of the mixture

0= M. (1.3)

|
The units of molar concentration are [number of molecules/L’]; typical examples are mol/1
and umol/l. Towork with molar concentration, recall that the atomic weightof an atom

(1.1)

is reported in the Periodic Table in units of g/mol and that a mole is 6.022:10" molecules.

The measure chosen to express concentration is essentially a matter of taste. Always
use caution and confirm that the units chosen for concentration are consistent with the
equations used to predict fate and transport. A common source of confusion arises from
the fact that mass fraction and concentration are often used interchangeably in dilute
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aqueous systems. This comes about because the density of pure water at 4°C is 1 g/cm’,
making values for concentration in mg/l and mass fraction in ppm identical. Extreme
caution should be used in other solutions, as in seawater or the atmosphere, where ppm
and mg/1 are not identical. The conclusion to be drawn is: always check yourunits!
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1.1 Concepts and definitions 5

Dimensional analysis

Avery powerful analytical technique that we will use throughout this course is dimensional
analysis. The concept behind dimensional analysis is that if we can define the parameters
that a process depends on, then weshould be able to use these parameters, usually in the
form of dimensionless variables, to describe that process at all scales (not just the scales
we measure in the laboratory or the field).

Dimensional analysis as a method is based on the Buckingham n-theorem (see e.g.
Fischeretal. 1979). Consider a process that can be described by mdimensional variables.
This full set of variables contains ndifferent physical dimensions (length, time, mass, tem-

perature,etc.). TheBuckingham r-theoremstates thatthere are, then, m—nindependent
non-dimensional groups that can be formed from these governingvariables (Fischeretal.
1979). When formingthedimensionless groups,wetrytokeep thedependentvariable(the

one wewant to predict) in only one of the dimensionless groups (i.e. try not to repeat the
use of the dependent variable).

Once we have the m — n dimensionless variables, the Buckingham n-theorem further
tells us that the variables can be related according to

m= fm, T,..., Tm-n) (1.4)

where ; is the ith dimensionless variable. As we will see, this method is a powerful way
to find engineering solutions to very complex physical problems.

As an example, consider how we might predict when a fluid flow becomes turbulent.
Here, our dependent variable is a quality (turbulent or laminar) and does not have a
dimension. The variables it depends on are the velocity u, the flow disturbances, charac-
terized by a typical length scale L, and the fluid properties, as described by its density p,
temperature T, and viscosity u. First, we must recognize that p and u are functions of T';
thus, all three of these variables cannot be treated asindependent. The most compactand
traditional approach is to retain p and ¢ in the form of the kinematic viscosity v = u/p.
Thus, we have m = 3 dimensional variables (u, L, and v) in n = 2 physical dimensions
(Iength and time).

The next step is to form the dimensionless group m = flu, L, v). This can be done by
assuming each variable has adifferent exponent and writing separate equations foreach
dimension. Thatis

= uelbrr, (1.5)
and wewanteach dimension to cancel out, giving us two equations

Tgives:0=—-a— ¢
Lgives:0=a+ b + 2c.

From the T-equation, we have a = — ¢, and from the L-equation we get b = —c, Since the
system is under-defined, we are free to choose the value of c. To get the most simplified

form, choose c¢ = 1, leaving us with a = b = —1. Thus, we have
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v

m = . 1.6
This non-difnensional combination is just the inverse of the well-known Reynolds(nuznber
Re; thus, we have shown through dimensional analysis, that the turbulent state of the
fluid should depend on the Reynolds number
Re = UL, (1.7)
v
which is a classical result in fluid mechanics.

Diffusion

A fundamental transport process in environmental fluid mechanics is diffusion. Diffusion
differs from advection in that it is random in nature (does not necessarily follow a fluid
particle). A well-known example is the diffusion of perfume in an empty room. If a bottle
of perfume is opened and allowed to evaporate into the air, soon the whole room will be
scented. We know also from experience that the scent will be stronger near the source
and weaker as we move away,but fragrance molecules will havewondered throughout the
room due to random molecular and turbulent motions. Thus, diffusion has two primary
properties: itis random in nature, and transport is from regions of high concentration to
low concentration, with an equilibrium state of uniform concentration.

Fickian diffusion

We just observed in our perfume example that regions of high concentration tend to spread
into regions of low concentration under the action of diffusion. Here, we wantto derive a
mathematical expression that predicts this spreading-out process, and we will follow an
argument presented in Fischer et al. (1979).

To derive a diffusive flux equation, consider two rows of molecules side-by-side and
centered at x = 0, as shown in Figure 1.1(a.). Each of these molecules moves about
randomly in response to the temperature (in arandom process called Brownian motion).
Here, for didactic purposes, we will consider only one component of their three-dimensional
motion: motion right or left along the x-axis. We further define the mass of particles on

the left as M, the mass of particles on the right as M;, and the probability (transfer rate
per time) that a particles moves across x = 0 as k, with units [T™].

After some time 6t an average of half of the particles have taken steps to the right and
half have taken steps to the left, as depicted through Figure 1.1(b.) and (c.). Looking at
the particle histograms also in Figure 1.1, we see that in this random process, maximum
concentrations decrease, while the total region containing particles increases (the cloud
spreads out).

Mathematically, the average flux of particles from the left-hand column to the right is

kM, and the average flux of particles from the right-hand column to the left is — kM.,
where the minus sign isused to distinguish direction. Thus, the net flux of particles gx is
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Fig. 1.1. Schematic of the one-dimensional molecular (Brownian) motion of a group of molecules illustrating the
Fickian diffusion model. The upper part of the figure shows the particles themselves; the lower part of the figure
gives the corresponding histogram of particle location, which is analogous to concentration.

qx = k(M — M,). (1.8)
For the one-dimensional case, concentration is mass per unit line segment, and we can
write (1.8) in terms of concentrationsusing

Ci= M/ (6x6yb62z) (1.9)
Cr= M,/ (6x6ybz) (1.10)

where 6xis the width, 6y is the breadth, and 6zis the height of each column. Physically,
6x is the average step along the x-axis taken by a molecule in the time 6t. For the one-
dimensional case, we want g. to represent the flux in the x-direction per unit area
perpendicular to x; hence, we will take 6y6z = 1. Next, we note that a finite difference
approximation for dC/dx is

dc_G-g
dx XXy,
= , (1.11)
6x(26 — xq)
which gives us a second expression for (M; — M;), namely,
dcC
(M — M) = —6x(xr — x1) . (1.12)
Substituting (1.12) jjpto (1.8) yiefl§
q = k6x) . (1.13)

. -
dx

(1.13) contains two unknowns, k and 6x. Fischer et al. (1979) argue that since g cannot

depend on an arbitrary 6x, we must assume that k(5x)’is a constant, which we will
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Example Box 1.1:
Diffusive flux at the air-water interface.

The time-average oxygen profile C(2) in the lam-
inar sub-layer at the surface of a lake is
>

z
C(2) = Csat — (Csat — Cperf \Z
<9

where Csatis the saturation oxygen concentration
in the water, C; is the oxygen concentration in the
body of the lake, 6 is the concentration boundary
layer thickness, and z is defined positive downward.
Turbulence in the body of the lake is responsible for
keeping 6 constant. Find an expression for the total
rate of mass flux of oxygen into the lake.

Fick’ s law tells us that the concentration gradient
in the oxygen profile will result in a diffusive flux
of oxygen into the lake. Since the concentration is
uniform in x and y, we have from (1.14) the diffusive
flux

> . X

dc d z
dz = —(Csat — C/) do er‘f 67%22
2@ S.at\/—g)e—a\/zz—

At the surface of the lake, z is zero and the diffusive
flux is
J

DY
gz=(Csat — C) 5\/71 .
The units of ¢ are in [M/(LZ-T)]. To get the total

mass flux rate, we_ must mumEly by a surface area,
in this case the surface of the lake A/ Thus, the total

rate of mass flux of oxygen into the lake is

DY

m= AI(Csat - C/)

dc For C; < Csar the mass flux 1s positive, indicating
D - flux down, into the lake. More sophisticated models
9= - dz ° for gas transfer that develop predictive expressions

The derivative of the concentration gradient is

for &6 are discussed later in Chapter 5.

callthediffusion coefficient, D.Substituting, weobtainthe one-dimensional diffusive flux
equation

dC

gc=—D , . (1.14)
Itis important% note that diffusive flux is a vector quantity and, since concentration is
expressed in units of [M/L"], it has units of [M/(L’T)]. To compute the total mass flux

rate m in units [M/T], the diffusive flux must be integrated over a surface area. For the one-
dimensional case we would have m= Agx.

Generalizing to three dimensions, we can write the diffusive flux vector at a point by
adding the other two dimensiorés, yielding (in various types of notation)

g=-p 8CaC aC

ox 0y Oz
= _1% C
oC
=—-D._; (1.15)

Diffusion progécsses that obey this relationship are called Fickian diffusion, and (1.15)
is called Fick’s law. To obtain the total mass flux rate we must integrate the normal

component of g over a surface area, as in

1)
m= . a ndA (1.16)
where n is the unit vector normal to the surface A.
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1.2 Diffusion 7

Table 1.1. Molecular diffusion coefficients for typical solutes in water at standard pressure and at two tempera -
tures (20°C and 10°C)."

Solute name Chemical symbol Diffusion coefficient’ Diffusion coefficient’
(10~ em’/s) (10~ em’/s)
hydrogen ion H 0.85 0.70
hydroxide ion OH~™ 0.48 0.37
oxygen O 0.20 0.15
carbon dioxide CO 0.17 0.12
bicarbonate HCO? 0.11 0.08
carbonate COp- 0.08 0.06
methane CH. 0.16 0.12
ammonium NH, 0.18 0.14
ammonia NH: 0.20 0.15
nitrate NO; 0.17 0.13
phosphoric acid Hs:PO« 0.08 0.06
dihydrogen phosphate H-PO . 0.08 0.06
hydrogen phosphate HPO 4_ 0.07 0.05
phosphate 0.05 0.04
PO2-
hydrogen sulfide H:S 0.17 0.13
hydrogen sulfide ion HS™ 0.16 0.13
sulfate 0.10 0.07
SO#2-
silica H.SiOs 0.10 0.07
calcium ion Ca™ 0.07 0.05
magnesium ion Mg™ 0.06 0.05
iron ion Fe” 0.06 0.05
manganese ion Mn™ 0.06 0.05

#Taken from http://www.talknet.de/ ~alke.spreckelsen/roger/thermo/difcoef.html
b for water at 20°C with salinity of 0.5 ppt.
¢ for water at 10°C with salinity of 0.5 ppt.

Diffusion coefficients

From the definition D = k(6x)°, we see that D has units L’/ T . Since we derived Fick’s
law for molecules moving in Brownian motion, Dis a molecular diffusion coefficient, which
we will sometimes call Dy, to be specific. The intensity (energy and freedom of motion)
of these Brownian motions controls the value of D. Thus, D depends on the phase (solid,
liquid or gas), temperature, and molecule size. Fordilute solutes in water, Dis generally
of order 2110~ m'/s; whereas, for dispersed gases in air, Dis of order 2 10~ m'/s, a
difference of 10".
Table 1.1 gives a detailed accounting of D for a range of solutes in water with low

salinity (0.5 ppt). We see from the table that for a given temperature, D can range over

about +10' in response to molecular size (large molecules havesmaller D). The table also
shows the sensitivity of D to temperature; for a 10°C change in water temperature, D
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Fig. 1.2. Differential control volume for derivation of the diffusion equation.

can change by a factor of 2. These observations can be summarized by the insight that
faster and less confined motions result in higher diffusion coefficients.

Diffusion equation

Although Fick’s law gives us an expression for the flux of mass due to the process of
diffusion, we still require an equation that predicts the change in concentration of the
diffusing mass over time at a point. In this section we will see that such an equation can
be derived using the law of conservation of mass.

To derive the diffusion equation, consider the control volume (CV) depicted in Fig-
ure 1.2. The change in mass M of dissolved tracer in this CV over time is given by the
mass conservation law

oM _=. = . (1.17)
= Tout
To confffute the diffusive mass fluxes in and out of the CV, we use Fick’s law, which for
the x-direction gives

aC-

4x,in= —D A (1.18)
’ gé"l

g =-D = (1.19)
x,out ax ®)

where thelocations 1and 2 are the inflow and outflow faces in the figure. Toobtain total

mass flux 7rwe multiply g by the CV surface area A = §y6z. Thus, we can write the net
fluxin the x-directionas s
oc oc (1.20)
., =_Dbyéb = : .
5nﬂx - Yoz o o0X -
X 2

which is the x-direction contribution to the right-hand-side of (1.17).
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1.2 Diffusion 9

To continue we must find a method to evaluate 0C/0x at point 2. For this, we use
linear Taylor series expansion, an important tool for linearly approximating functions.
The general form of T&Zrl_or series expansion is

f)=fx)+ - 6x+HOTs, (1.21)
0 ox

Xo

where HOTs stands for “higher order terms.” Substituting 0C/dx for f{x) in the Taylor

series expanswn_yleléds e
o€ oC-+ - 6x+HOTs. (1.22)
ox- O0x-; O0x O0x-

ForlinearTaylorseries expansion, weignore the HOTs. Substituting this expression into
the net flux equation (1.20) and dropping the subscript 1, gives

o'C
6mx = D6ybz ?ﬁx. (1.23)
Similarly, in the y- atid z-directions, the net fluxes through the control volume are
o'C
6mly = D6x6z -, , by (1.24)
8¢
6m, = D6xby . 6z, (1.25)

Before substituting ’élese results into (1.17), we also convert M to concentration by rec-
ognizing M = Céx6ydz. After substitution of the concentration C and net fluxes éminto (1.17),
we obtain the three-dimensional diffusion equation (in various types of notation)

ocC o°C oC ©oC

ot =D dx¢+ 8y2+ 02
=D °C
ile

=D, ,, (1.26)
which is a funﬁﬁzmental equation in environmental fluid mechanics. For the last line in

(1.26), we have used the Einsteinian notation of repeated indices as a short-hand for the

V? operator.
One-dimensional diffusion equation

In the one-dimensional case, concentration gradients in the y- and z-direction are zero,
and we have the one-dimensional diffusionequation
oC o'C

o - (1.27)
We pause here to consider (1.27) and to point out a few key observations. First, (1.27) is

first-orderin time. Thus, wemust supply and impose oneinitial condition forits solution,
and its solutions will be unsteady, or transient, meaning they will vary with time. To
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L, =
N

Fig. 1.3. Definitions sketch for one-dimensional pure diffusion in an infinite pipe.

solve for the steady, invariant solution of (1.27), we must set 9C/0t = 0 and we no longer
require aninitial condition; the steady form of (1.27) is the well-known Laplace equation.
Second, (1.27) is second-order in space. Thus, we can impose two boundary conditions,
and its solution will vary in space. Third, the form of (1.27) is exactly the same as the heat
equation, where Dis replaced by the heat transfer coefficient «. This observation agrees
well with ourintuition since weknow that heat conducts (diffuses) away from hot sources
toward cold regions (just as concentration diffuses from high concentration toward low
concentration). This observation is also useful since many solutions to the heat equation
are already known.

Similarity solution to the one-dimensional diffusion equation

Because (1.26) is of such fundamental importance in environmental fluid mechanics, we
demonstrate here one of its solutions for the one-dimensional case in detail. There are
multiple methods that can be used to solve (1.26), but we will follow the methodology of
Fischer et al. (1979) and choose the so-called similarity method in order to demonstrate
the usefulness of dimensional analysis as presented in Section 1.1.2.

Consider theone-dimensional problem of anarrow, infinite pipe (radius a) asdepicted
in Figure 1.3. A mass of tracer M is injected uniformly across the cross-section of area
A = nid’ at the point x = 0 at time t = 0. The initial width of the tracer is infinitesimally
small. Weseek asolution forthe spread oftracerin time dueto moleculardiffusion alone.

Asthisis aone-dimensional (0C/0dy = 0 and 6C/ 0z = 0) unsteady diffusion problem,
(1.27) is the governing equation, and werequire two boundary conditions and an initial

condition. As boundary conditions, we impose that the concentration at +oco remain zero

(00, )= 0. (1.28)
The initial condition is that the dye tracer is injected uniformly across the cross-section
overan infinitesimally small width in the x-direction. Tospecify such an initial condition,
we use the Dirac delta function

Clx, 0)= (M/A)6(x) (1.29)
where 6(x) is zero everywhere accept at x = 0, where it is infinite, but the integral of the

delta function from —oo to o is 1. Thus, the total injected mass is given by
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Table 1.2. Dimensional variables for one-dimensional pipe diffusion.

Variable Dimensions
dependent variable c M/
independent variables M/A M/L?
b LT
x L
t T
)
M= Clx,0HdV (1.30)
T[4
= (M/A)S6(x)2mrrdrdx. (1.31)
)

To use dimensional analysis, we must consider all the parameters that control the
solution. Table 1.2 summarizes the dependent and independent variables for our problem.
There are m= 5 parameters and n = 3 dimensions; thus, we can form two dimensionless

groups
C
_ - (1.32)
h =
- Mg py)
m=~— 1.
=V (1.33)
From dimensional analysis we have that m = f (m), which implies for the solution of C
M =~ x >
— (1.34)
C= th br

where fiS ayet-unknown function with argument m. (1.34) is called asimilarity solution
because C has the same shape in x at all times t (see also Example Box 1.3). Now we
need to find fin order to know what that shape is. Before we find the solution formally,
compare (1.34) with theactual solution given by(1.53). Through this comparison, wesee
thatdimensional analysis can go along waytoward finding solutions tophysical problems.
Thefunction fcan befound in twoprimary ways.First, experiments can be conducted
and then a smooth curve can be fit to the data using the coordinates m and m. Second,
(1.34) can be used as the solution to a differential equation and f solved for analytically.
This is what we will do here. The power of a similarity solution is that it turnsa partial
differential equation (PDE) into an ordinary differential equation (ODE), which is the
goal of any solution method for PDEs.
The similarity solution (1.34) is really just a coordinate transformation. We will call
our new similarity variable n = x/V Dt To substitute (1.34) into the diffusion equation,
we will need the two derivatives
on U

0t= T ot (1.35)
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12 1. Concepts, Definitions, and the Diffusion Equation

on 1
ox Ve , (1.36)
We first use the chain rule to compute 0C/dt as follows
oC 0z z
ot ot WM £
o34 MDt M ofé

_ v
= o+ A Dronot
1

A_Dt g s
L 1 M_at n

_ ot
A Dt =2 fim+s  on
_M of
=— — f+tn (1.37)
2At Dt on

Similarly, we uS(ze the chain rule toz czompute 0°'C/0x as follows
5C & o0 M
8 ox ox V )
3 A th;rl
o M___onof

= V
0X A Dtoxon
M, &f
= v . (1.38)
ADt  pton?
Upon substituting these two results into the diffusion equation, we obtain the ordinary
differential equation in ’%

Z#ﬂj-"‘ n = =0. (1.39)

dn
Tosolve (1.39), weshould also convert the boundary and initial conditions to two new
constraints on f. As wewill see shortly,both boundary conditions and theinitial condition
can be satisfied through a single condition on f. The other constraint (remember that

second order equations require two constrains) is taken from the conservation of mass,
givenjby (1.30). Substituting dx = dn Dtinto (1.30) and simplifying, we obtain

) f(n)dn=1. (1.40)

Solving(1.39) requires acoupleofintegrations. First,werearrange theequationusing
=f+n__, (1.41)
dn dn

which gives us
>

1
da df, fn =o. (1.42)
dndn 2
Integrating once leaves us with

df 1
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13 1. Concepts, Definitions, and the Diffusion Equation

It can be shown that choosing C)= 0 satisfies both boundary conditions and the initial
condition (see Appendix A for more details).

With C = 0 we have a homogeneous ordinary differential equation whose solution can
readily be found. Moving the second term to the right hand side we have

df 1
=~ .fn | | (14
The S()Ciiitlon is found by collecting the f - and n-terms on separate sides of the equation
df 1
=—__ndn. (1.45)
Integrgting oth sides gives
1 rf
lng{ )= + G (1.46)
which after taklﬁthhe exponential of both sides gives
- Df b
f=Cexp— (1.47)
To find C we milst lge the remaining constraint given in (1.40)
§ Cexp n’ 0 dn=1. (1.48)
1 —
- 4

To solve this integral, we should use integral tables; therefore, we have to make one more
change of variables to remove the 1/4 from the exponential. Thus, we introduce {such

that )
{="n (1.49)
4
2d{=dn. (1.50)
Substituting this coordinate transformation and solving for Cileaves
C - 1 . (1.51)
1= j_expLQdé—
2 = V_
After looking up the integral in a table, we obtain Ci = 1/(2 m). Thus,
Z
fim= " exp 7" (152)

Replacing f i ofir similarity solutio% (1.34) gives

7— X2 (1.53)
C(x,t)—A 4nDt®XP ~4Dt 53

which is a classic result in environmental fluid mechanics, and an equation that will be
used thoroughly throughout this text. Generalizing to three dimensions, Fischer et al.

(1979) give the the solution ) 3
M x2 yZ zz
Ax, y, z 1) = XD —apt 4Pt 4DF (1.54)
qnt4nDeDy D, t (1.54)
x y z

which they derive using the separation of variables method.
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1.3 Similarity solution to the one-dimensional diffusion equation 15

Example Box 1.2:

Maximum concentrations. Crmax(t=_ M
it TOD, DT

For the three-dimensional instantaneous point- . . )
source solution given in (1.54), find an expression The maximum concentration occurs at the point
for the maximum concentration. Where is the max- whgre the_ex(p))oge%Ual is zero. In this case
imum concentration located? X(WmaX) = ( ol ,h') e lysi her

The classical approach for finding maximaof func- Ve can apply this same analysis to other concen-
tions is to look for zero-points in the derivative of tration d1str1bqt10ns as well. Eor e_xar_nplg, consider
the function. For many concentration distributions, ~the error function concentration distribution
it is easier to take a qualitative look at the functional - R
form of the equation. The instantaneous point-source Clx, ) = L R N2
solution has the form 2 4Dt

ax, t) = Ci(D) exp(— | f(x, D). The error function ranges over [—1, 1] as its argu-
ment ranges from [— oo, o0]. The maximum concen-

Ci() is an amplification factor independent of space. tration occurs when erf(") = -1, and gives,

The exponential function has a negative argument,

which means it is maximum when the argument is Cmax(t) = Go.
zero. Hence, the maximum concentration is Cmax occurs when the argument of the error function
Cmax(t) = Ci(D). 1s —oo, At t =0, the maximum concentration occurs
Applying this result to (1.54) gives for all points x < 0, and for ¢ > 0, the maximum
concentration occurs only at x = —oo,

Point source solution

o o o
IS o ©

CA (4D Y2 Im

o
N

-4 -2 0 2 4
n=x/ (4Dt

Fig. 1.4. Self-similarity solution for one-dimensional diffusion of an instantaneous point source 1n an infinite
domain.

1.3.1 Interpretation of the similarity solution

Figure 1.4 shows the one-dimensional solution (1.53) in non-dimensional space. Comparing
(1.53) with the Gaussian probability distribution reveals that (1.53) is the normal bell-
shaped curve with a standard deviation o, of width

o =2Dt. (1.55)
The conceptofselfsimilarity is nowalso evident: the concentration profile shapeis always

Gaussian. By plotting in non-dimensional space, the profiles also collapse into a single
profile; thus, profiles for all times ¢ > 0 are given by the result in the figure.



16 1. Concepts, Definitions, and the Diffusion Equation Application: Diffusion in a lake 15

The Gaussian distribution can also be used to predict how much tracer is within a
certain region. Looking at Figure 1.4 it appears that most of the tracer is between -2
and 2. Gaussian probability tables, available in any statistics book, can help make this

observation more quantitative. Within + 0,64.2% of the tracerisfound and between + 20,
95.4% of the traceris found. As an engineering rule-of-thumb, we will say that a diffusing

tracer is distributed over a region of width 40, that is, +20.

Example Box 1.3:
Profile shape and self SImllarlty' Here, a is a parameter that specifies the point to
calculate C based on the number of standard devia-

For the one-dimensional, instantancous point-  tions the point is away from the center of mass. This

source solution, show that the ratio C/ Cmax can be
written as a function of the single parameter a de-
fined such that x = ao. How might this be used to
estimate the diffusion coefficient from concentration
profile data?

From the previous example, we know that Cmax =

illustrates very clearly the notion of self similarity:
regardless of the time ¢, the amount of mass M, or
the value of D, the ratio C/ Cmax is always the same
value at the same position ax.

This relationship is very helpful for calculating
diffusion coefficients. Often, we do not know the
value of M . We can, however, always normalize a

M/ 4Dt and we can re-write (1.53) as concentration profile measured at a given time t by
x - b Cmax(?). Then we pick a valueof a, say 1.0. Weknow
Qx, 9 —exp — from the relationship above that C/ Cmax = 0.61 at
Cmax(t) \/43615L

x = o. Next, find the locations where C/ Cmax =
2Dt and x = ao to obtain 0.61 in the experimental profile and use them to mea-

5 sure 0. We then use the relationship o = 2D¢ and
the value of t to estimate D.

We now substitute o =

—C =exp—a/.

Cmax

Application: Diffusion in a lake

With asolid background nowin diffusion, consider the following example adapted from
Nepf (1995).

As shown in Figures 1.5 and 1.6, a small alpine lake is mildly stratified, with a thermo-
cline (region of steepest density gradient) at 3 m depth, and is contaminated by arsenic.
Determine the magnitude and direction of the diffusive flux of arsenic through the ther-

mocline (cross-sectional area at the thermocline is A= 2 - 10' m’) and discuss the nature

of the arsenic source. The molecular diffusion coefficient is D=1 - 107'm’/s.
Molecular diffusion. Tocompute the molecular diffusive fluxthrough thethermocline, we

use the one-dimensional version of Fick’s law, given above in (1.14)
oC
qZ = _Dm az . (1.56)
We calculate the Concentration gradient at z = 3 from the concentration profile using a
finite difference approximation. Substituting the appropriate values, we have

oC
%= ~Dng,
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16 1. Concepts, Definitions, and the Diffusion Equation

\

TR
’l’h Thermocline / gﬁp

Fig. 1.5. Schematic of a stratified alpine lake.
(a.) Temperature profile (b.) Arsenic profile
0 o 0 . . . T
2 2
E 4 E
ES =
g o g
8l
10 7 - . n -y - > . - »
14 145 15 15.5 16 0 2 4 6 8 10
Temperature [deg C] Arsenic concentration [ug/l]

Fig. 1.6. Profiles of temperature and arsenic concentration in an alpine lake. The dotted line at 3 m indicates
the location of the thermocline (region of highest density gradient).

e -y (10 = 6.1) 10001

(1-10 )(2_4) =
+1.95 10~ ug/(m"s) (157)
where the plus sign indicates that the flux is downward. The total mass flux is obtained
by multiplying over the area: m= Ag, = 0.0039 ug/s.

Turbulent diffusion. As we pointed out in the discussion on diffusion coefficients, faster
random motions lead to larger diffusion coefficients. As we will see in Chapter 3, tur-
bulence also causes a kind of random motion that behaves asymptotically like Fickian
diffusion. Because theturbulent motions are much largerthan molecular motions, turbu-
lent diffusion coefficients are much larger than molecular diffusion coefficients.
Sources of turbulence at the thermocline of a small lake can include surface inflows,
wind stirring, boundary mixing, convection currents, and others. Based on studies in

this lake, a turbulent diffusion coefficient can be taken as D;= 1.5 - 10™°m’/s. Since
turbulent diffusion obeys the same Fickian flux law, then the turbulent diffusive flux g,
can be related to the molecular diffusive flux g,:= g, by the equation

D

D

m

qzt= (zm (158)
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= +2.93 10~ ug/(m"s). (1.59)
Hence, weseethatturbulentdiffusive transportis much greater than molecular diffusion.
As awarning, however, if the concentration gradients are very high and the turbulence is
low, molecular diffusion can become surprisingly significant!

Implications. Here,wehaveshown thattheconcentration gradientresults in anetdiffusive
flux of arsenic into the hypolimnion (region below the thermocline). Assuming no other
transport processes are at work, we can conclude that the arsenic source is at the surface.
Ifthe diffusive transport continues, the hypolimnion concentrations will increase. The next
chapter considers howthesituation might change if weinclude anothertype of transport:
advection.

Summary

This chapterintroduced the subject of environmental fluid mechanics and focused on the
important transport process of diffusion. Fick’s law was derived to represent the mass
flux (transport) due to diffusion, and Fick’s lawwas used to derive the diffusion equation,
which isusedtopredictthetime-evolution ofaconcentration field in spaceduetodiffusive
transport. A similarity method wasused through the aid of dimensional analysis to find a
one-dimensional solution to the diffusion equation for an instantaneous point source. As
illustrated through an example, diffusive transport results when concentration gradients
existand plays an importantrole in predictingthe concentrations ofcontaminants as they
move through the environment.

Exercises

Definitions. Write a short, qualitative definition of the followingterms:

Concentration. Partial differential equation.
Mass fraction. Standard deviation.
Density. Chemical fate.

Diffusion. Chemical transport.
Brownian motion. Transport equation.
Instantaneous pointsource. Fick’s law.
Similarity method.

Concentrations in water. A student adds 1.00 mg of pure Rhodamine WT (a common
fluorescent tracer used in field experiments) to 1.000 1 of water at 20°C. Assuming the
solution is dilute so that we can neglect the equation of state of the solution, compute
the concentration of the Rhodamine WT mixture in the units of mg/l, mg/kg, ppm, and

ppb.
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Concentration in air. Air consists of 21% oxygen. For air with a density of 1.4 kg/m’,
compute the concentration of oxygen in the units of mg/l, mg/kg, mol/l, and ppm.

Instantaneous point source. Consider the pipe section depicted in Figure 1.3. A stu-
dent injects 5 ml of 20% Rhodamine-WT solution (specific gravity 1.15) instantaneously
and uniformly overthe pipe cross-section (A =0.8 cm’) at the point x = 0 and the time

t = 0. The pipe is filled with stagnant water. Assume the molecular diffusion coefficient

is Dn=0.13 - 10”'cm’/s.
+ What is the concentration at x = 0 at the time ¢ = 0?
+ What is the standard deviation of the concentration distribution 1 s after injection?

. Plot the maximum concentration in the pipe, Cnax(?), as a function of time over the
1ntervaf t=1o, 24&1? PIPE, fmax

+ How long does it take until the concentration overthe region x = +1 m can be treated
as uniform? Define a uniform concentration distribution as one where the minimum
concentration within aregion isnoless than 95% ofthe maximum concentration within
that sameregion.

Advection versus diffusion. Rivers can often be approximated as advection dominated
(downstream transport due to currents is much faster than diffusive transport) or diffusion
dominated (diffusive transportis much fasterthan downstream transport dueto currents).
This property is described by a non-dimensional parameter (called the Peclet number)
Pe=f(u, D, x), where uis the stream velocity, D is the diffusion coefficient, and xis the
distance downstream to the point of interest. Using dimensional analysis, find the form
of P e such that P e 1is advection dominated and P e 1 is diffusion dominated. For
a stream with u = 0.3 m/s and D = 0.05 m’/s, where are diffusion and advection equally
important?

Maximum concentrations. Referring to Figure 1.4, we note that the maximum con-
centration in space is always found at the center of the distribution (x = 0). For a point
at x = r, however, the maximum concentration over time occurs at one specific time tnax.
Using (1.53) find an equation for the time t,q4x at which the maximum concentration
occurs at the point x = .

Diffusion in a river. The Rhein river can be approximated as having a uniform depth (h
= 5 m), width (B = 300 m) and mean flow velocity (u = 0.7 m/s). Under these
conditions, 100 kgoftracerisinjected as apoint source (theinjection is evenly distributed
transversely over the cross-section). The cloud is expected to diffuse laterally as a one-
dimensional point source in a moving coordinate system, moving at the mean stream
velocity. The river has an enhanced mixing coefficient of D = 10 m’/s. How long does
it take the cloud to reach a point x = 15000 m downstream? What is the maximum
concentration that passes the point x? How wide is the cloud (take the cloud width as
40) when it passes this point?
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Table 1.3. Measured concentration and time for a point source diffusing in three-dimensions for problem num- ber
18.

Time Concentration
(days) (ugfem’ £0.03)
0.5 0.02
1.0 0.50
1.5 2.08
2.0 3.66
2.5 4.81
3.0 5.50
3.5 5.80
4.0 5.91
4.5 5.81
5.0 5.70
5.5 5.54
6.0 5.28
6.5 5.05
7.0 487
7.5 4,65
8.0 4.40
8.5 4.24
9.0 4,00
9.5 3.84
10.0 3.66

Measuring diffusion coefficients 1. A chemist is trying to calculate the diffusion coeffi-
cientforanew chemical.In his experiments,hemeasured the concentration as afunction
of time at a point 5 cm away from a virtual point source diffusing in three dimensions.
Select a set of coordinates such that, when plotting the data in Table 1.3, D is the slope
of abest-fitline through the data. Based on this coordinate transformation, whatis more
important to measure precisely, concentration ortime? What recommendation would you
giveto this scientist to improve the accuracy ofhis estimate for the diffusion coefficient?
Measuring diffusion coefficients 2.' As part of a water quality study, you have been
asked to assess the diffusion of a new fluorescent dye. To accomplish this, you do a dye
study in a laboratory tank (depth h = 40 cm). You release the dye at a depth of 20 cm
(spread evenly overthe area of the tank) and monitorits development overtime. Vertical
profiles of dye concentration in the tank are shown in Figure 1.7; the x-axis represents
the reading on your fluorometer and the y-axis represents the depth.

. %sti(rinat th%molecular diffusion coefficient of the dye, Dy, based on the evolution of
the ayecloua.

' This problem is adapted from Nepf (1995).
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Profile after 14 days Profile after 35 days
0 T T T 0 T T T T
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151 . 15
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30| 1 30
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40 1 1 1 40 1 1 1 |
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Concentration [g/cm3] Concentration [g/cm3]

Fig. 1.7. Concentration profiles of fluorescent dye for two different measurement times. Refer to problem num-
ber 1.9.

+ Predict what Eme the vertical distribution of the dye will be affected by the bound-
aries of e tan

Radiative heaters. A student heats his apartment (surface area A, = 32 m’and ceiling
height h = 3 m) with a radiative heater. The heater has a total surface area of A= 0.8
m’; the thickness of the heater wall separating the heater fluid from the outside air is &x
= 3 mm (refer to Figure 1.8). The conduction of heat through the heater wall is given
by theac’}jffusion equation

— KVQT (1.60)
ot

where T is the temperature in °C and x = 1.1 - 10" kecal/(s°"Cm) is the thermal conduc-
tivity of the metal for the heater wall. The heat flux g through the heater wall is given

by

qg=-xVT. (1.61)
Recall that 1 kcal = 4184 J and 1 Watt =1 J/s.

+ The conduction of heat normal to the heater wall gan be treated as one-dimensional.
Write (1.60) and (1.61) for the steady-state, one-dimensional case.
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Steel heater wall_\

Heater Room
fluid air

Th Ta

NANANAN

— | OX |e—m
Fig. 1.8. Definitions sketch for one-dimensional thermal conduction for the heater wall in problem number 1.10.

+ Solve(1.6Q)forthesteady-state,one-dimensionaltemperature profilethroughtheheater
wall with boundary conditions T (0) = Trand T (6x) = T, (refer to Figure 1.8).

+ The water in the heater and the air in the room move past the heater wall such that
Th = 85°C and T, = 35°C. Compute the heat flux from (1.61) using the steady-state,
one-dimensional solution just obtained.

+ Howmany 300 Wattlamps are required to equal the heat output of the heater assuming
100% efficiency?

. Assume the specific heat capacity of the air is ¢, = 0.172 kcal/(kg' K) and the density is
oa= 1.4 kg/m’. How much heat is required to raise the temperature of the apartment
by 5°C?

+ Given the heat output of the heater and the heat needed to heat the room, how might
you explain that the student is able to keep the heater turned on all the time?

Prepared by :Kohila.S.Mathematics ,KAHE PAGE 1|25



Exercises 19

POSSIBLE QUESTIONS

UNIT V
PART B
(5X6=30 Marks)
1. Describe a method of boundary value problems for the generalised diffusion
equation.
2. State and prove Duhamel’s Theorem.
3. Describe a method of boundary value problems for the generalised diffusion
equation.
4. State and prove Duhamel’s Theorem.
5. Use Green’s function to find the solution of the boundary value problem ofdiffusion
equation.
PART -C
(1X10=10)

1)Find the solution of the Helmholtz equation by using the method separation of

variables.
2. Discuss in detail about the diffusion equation with sources
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