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KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed 1o be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari Post, Coimbatore — 6:41 021,

(For the candidates admitted from 2017 onwards)

M.Sc., DEGREE EXAMINATION, APRIL 2018

Second Semester
MATHEMATICS
GRAPH THEORY AND ITS APPLICATIONS
Time: 3 hours Maximum : 60 marks

PART - A (20 x 1 =20 Marks) (30 Minutes)
uestion Nos. 1 to 20 Online Examinations

(Part-B & C 2% Hours)

PART B (5 x 6 =30 Marks)
Answer ALL the Questions

21.a. Define i. Bipartite Graph
ii. Regular Graph
iii .Complete Graph. Give an example for each.
Or
b. If G is a tree with n vertices then prove that G has n-1 edges.

22.a. Explain Kruskal algorithm and Prim’s algorithm for shortest spanning tree
with example.
Or
b. Prove that the maximum flow possible between two verticesaand bina
network is equal to the minimum of the capacities of all cut-sets with respect

toaand b.

23.a. Explain about incidence matrix in a graph.
Or
b. Prove that a graph of n vertices is a complete graph if and only ifits
chromatic polynomial P,(A)=A(A-1)(A-2)... (A-n+1)

24, a. Discuss about the digraph. "
T

b. Explain counting labeled tress.

25.a. Explain domination number of a m-»% with examples.
r

b. Explain briefly about applications of radio stations.

PART C (1 x 10 = 10 Marks)
(Compulsory)

26. Prove that every circuit has an even number of edges in common with any cut-
set.
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Karpagam Academy of Higher Education
(Established Under Section 3 of UGC Act 1956)
COIMBATORE - 641 021
(For the candidates admitted {rom 2014 onwards)

M.Se., DEGREE EXAMINATION, NOVEMBER 2015
Third Semester

MATHEMATICS

GRAPH THEORY

Time: 3 hours Maximum : 60 marks

PART - A (20 x 1 = 20 Marks) (30 Minutes)
uestion Nos. 1 to 20 Online Examinations

PART B (5 x 8 = 40 Marks) (2 % Hours)
Answer ALL the Questions

21. a) Show that a connected graph G is an Euler graph if and only il the degree of
cvery vertex in G is cven.
Or
b) Explain Travelling Salesman Problem with example.

22.a) i) Show that a graph G is a tree il and only if it is minimally connected.
ii) Show that every tree has one (or) two centres.
: Or
b) i) Explain with example : (1) Kruskal’s algorithm. (2) Prim’s algorithm.
ii) Show that the minimum hcight of a n-vertex binary tree is equal o
[log: (n+1)-1].

23. a) Prove that K, 5 is a non-planar graph,
Or
b) Prove that K; is a non-planar graph.

24. a) Show that every planar graph is 5-colourable,
Or

b) i) Show that & graph with at least one edge is 2-chromatic if and only if it has
no circuit. ) o
ii) Show that a graph of S-vertices is a complete graph if and only ifits
chromatic polynomial is Ps(k) = A(A-1)(M" -5A+7)

25. a) i) Show that every complete tounament has a directed Hamiltonian. .
ii) Prove that Q = A" where Q is the path matrix and A is a adjacency matrix

for the following diagraph.
]
-1~
% "
L] 4]
Or
b) Write the adjacency matrix, incident matrix and path matrix for the following
graphs.
n
"
" " . .
. -
noom
(a) (b)
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Graph Theory and its applications Syllabus | 2017-2019

KARPAGAM ACADEMY OF HIGHER EDUCATION
= .7~ (Deemed to be University Established Under Section 3 of UGC Act 1956)

KARPAGAM Coimbatore — 641 021.
T SYLLABUS
Semester - 11
LTPC
17MMP205A GRAPH THEORY AND ITS APPLICATIONS 4 00 4

Scope: On successful completion of this course the learner gains knowledge about the concept of
graphs, spanning trees, incidence matrix, graph colorings, domination in graphs which provides
the basis for networks.

Objectives: To be familiar with different types of Graphs and their incidence matrices ,spanning
trees and to be exposed with colourings & Domination in Graphs.

UNIT I

Graphs — Introduction — Isomorphism — Sub graphs — Walks, Paths, Circuits — Connectedness —
Components — Euler Graphs — Hamiltonian Paths and Circuits — Trees — Properties of trees —
Distance and Centers in Tree — Rooted and Binary Trees - Spanning trees — Fundamental
Circuits.

UNIT Il

Spanning Trees in a Weighted Graph — Cut Sets — Properties of Cut Set — All Cut Sets —
Fundamental Circuits and Cut Sets — Connectivity and separability — Network flows — 1-
Isomorphism — 2-1somorphism — Combinational versus Geometric Graphs — Planer Graphs —
Different Representation of a Planer Graph.

UNIT 111

Incidence matrix — Sub matrices — Circuit Matrix — Path Matrix — Adjacency Matrix — Chromatic
Number — Chromatic partitioning — Chromatic polynomial - Matching - Covering — Four Color
Problem.

UNIT IV
Directed Graphs — Types of Directed Graphs - Types of enumeration, counting labeled trees,
counting unlabelled trees, Polya’s counting theorem, graph enumeration with Polya’s theorem.

UNIT V

Domination in graphs: Introduction — Terminology and concepts — Applications — Dominating
set and domination number — Independent set and independence number — History of domination
in graphs.
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1. Deo N, (2004). Graph Theory with Applications to Engineering and Computer Science,
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Domination in Graphs, Marcel Dekker, New York (for Unit V)

REFERENCES

1. Jonathan L Gross, Jay Yellen, (2014). Handbook of Graph Theory, CRC Press LLC. Taylor
&Francis Group,Boca Rotan.

2. Diestel. R Springer-Verlag, (2012). Graph Theory. Springer-Verleg,New York.

3. Jensen.TR and Toft.B., (1995). Graph Coloring Problems. Wiley-Interscience , , New York.

4. Fred Buckley and Frank Harary, (1990). Distance in Graphs, Addison - Wesley Publications.
Redwood City, California.

5. C. R. Flouds, (2009). Graph Theory Applications, Narosa Publishing House. New
Delhi,India.

6. Arumugam. S, Ramachandran. S ,(2003). Invitation to graph theory, Scitech publications,
Chennai.

7. Harary F, (1972).Graph Theory, Addison- Wesley publications, Massachusetts Menlo Park,
California, London

Bachelor of Science, Mathematics, 2017, KAHE Page 2



Reg . No 5. A graph that has neither self loops nor parallel

[17MMP205A] edges
KARPAGAM ACADEMY OF HIGHER (@) null graph (b) simple graph
EDUCATION (c) regular graph (d) complete graph
COIMBATORE- 641 021 6. A connected graph is said to be __if its vertex
DEPARTMENT OF MATHEMATICS connectivity is one
SIXTH SEMESTER (a) separable (b) vertex connectvity
I - INTERNAL TEST JAN-2018 (c) edge connectivity (d) complete graph
GRAPH THEORY AND ITS APPLICATIONS 7. Everyedgeofatreeisa_
Class: I M.Sc Mathematics Max. Marks : 50 Marks (a) cut set (b) cut vertices
Date: 2.2.2018 (FN) Time : 2 Hours (c) euler graph (d) graph
8. ofaconnected graph can be defined as the
PART — A(20 x 1 =20 marks) minimum number of edges whose removal reduces

ANSWER ALL THE QUESTIONS
1. A vertex of degree one is
(a) Pendant vertex (b) isolated vertex

the rank of the graph by one.
(a) edge connectivity (b) euler graph
(c) vertex connectvity (d) simple graph

(c) simple graph () null graph 9. A spanning tree with the smallest weight in a
2. A graph in which all vertices are of equal degree weighted graph is called a
IS_ () shortest spanning tree (b) spanning tree
(@) regular graph (b)graph (c) tree (d) cut set
(c) isolated vertex (d) Pendant vertex 10.Every binary tree is a tree
3. A vertex with minimum eccentricity in graph G is (a) Rooted tree  (b) tree

— _ (c) spanning tree (d) shortest spanning tree
(a) center  (b) diameter 11. A collection of trees is
(C)radius  (d) bicenters (a) forest  (b) spanning tree

4. Atree with n vertices has___ edges (c) shortest spanning tree (d) Rooted tree
@n-1 (b)n+l(c)n(d)1



12. A graph containing only isolated vertex is

(@) null graph (b) simple graph
(c) complete graph (d) regular graph
13.A __ isaconnected graph without any circuit.
(@) tree (b) spanning tree
(c) shortest spanning tree (d) rooted tree
14. The eccentricity of a center of atreeis
(a) radius (b) diameter (c) length (d) distance
15. The reduced incidence matrix of a tree is

(a) singular (b) non singular
(c) submatrix (d) circuit matrix
16. A vertices which a walk begins and ends are

(a) terminal vertices (b) path
(c) tree (d) graph
17. A closed walk in which no vertices appears more
than onceis
(@) circuit (b) path
(c) cut set (d) length
18. Each connected subgraph is
(a) component (b) cycle (c) tree (d) path
19. A trail is trace every edge of G exactly once is
(a) euler trail ~ (b) eular graph
(c) graph (d) circuit

20. The degree of leaf is
@1 (b0 ()2 (d)3

PART-B (3x 2 = 6 marks)

Answer all the questions

21. Define incidence matrix with example
22. Definition of cut-set.
23. Define hamilitonian path

PART-C (3x 8 = 24 marks)
Answer all the questions

24. (a) A graph G is a tree iff it is minimally connected
(or)

(b) Prove that the number of vertices of odd degree
in a graph is always even.

25. (a) prove that every cut-set in a connected graph G
must contain atleast one branch of every spanning
tree of G. (or)

(b) Prove that every circuit has an even number of
edges in common with any cut-set.

26.(a) Prove that any connected graph with n vertices
and n-1 edges is a tree (or)

(b) Discuss brifly about the circuit matrix
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KARPAGAM ACADEMY OF HIGHER EDUCATION
Coimbatore-21
DEPARTMENT OF MATHEMATICS
Second Semester
Il Internal Test - March'2018
Graph theory and its applications
Date:23 -03-2018(FN) Time: 2 Hours
Class: I- M.Sc Maths Maximum Marks:50

PART — A (20 X 1 = 20 MARKS)
ANSWER ALL THE QUESTIONS

1. The number of edges in a largest maximal matching is

a) matching b) matching number
¢) maximal matching d) minimal matching
2. Adigraphis graph
a) oriented b) simple
C) bipartite d) euler
3. The number of edges incident out of a vertexis
a) out-degree b) in-degree
c) link d) digraph
4. Every bipartite graph is --------- chromatic
a)2 b) 3 c)l d)4
5. A digraph that has no self loop or parallel edges is
a) simple b) symmetric
c) complete d) asymmetric
6. A balanced digraph is
a) isograph b) simple graph

c) complete digraph  d) anti symmetric

7. The number of vertices in the largest set of a graph
a) independent b) dominating set
c) number d) digraph
8. The minimum cardinality of a total dominating setis
a) domination number b) dominating set
c) independent set d) independent number
9. A set of vertices in a graph is independent set if no two
vertices inthesetare

a) adjacent b) independent
c) dominate d) tree
10. A digraph is graph
a) oriented b) simple
C) bipartite d) euler
11. The number of edges incident out of a vertexis
a) out-degree b) in-degree
c) link d) digraph

12. In any graph G, we have

a) a(G) = B(G) b) a(G) = B(G)
¢) «(G) < B(G) d) a(G) < B(G)

13. A vertex v is called pendant vertex if d*(v) + d*(v) =
a) 1 b) 2 c)3 d)4

14. The minimum cardinality of an independent dominating set
of Gis___
a) Independent domination number
b) domination number
c) independent number
d) independent set
15. A graph G is an Euler graph if d* (v) is odd then
d”(v) =

a) odd b) even c)3 d)5

16. The rank of an incidence matrix of a digraph with n vertices
is
a)n-1 b) n c) n+l d) n+2



17. A simple digraph in which there is exactly one edge directed
from every vertex to every other vertex is
a) complete symmetric digraph b) symmetric digraph

c) simple digraph d) balanced
18. Every dominating set contains atleast __ minimal
dominating set.
a)l b) 2 c)3 d) 4

19. A____ dominating set from which no vertex can be removed
without destroying its dominanace property.
a) minimal b) maximal
c) independent d) independent number
20. A minimal dominating set may or may not be ---------
a) dependent b) independent
) empty d) zero

PART-B (3X2=6 Marks)
ANSWER ALL THE QUESTIONS
21. Define digraph with an example
22. Define of matching
23. Define dominating set

PART-C (3X8=24 Marks)
ANSWER ALL THE QUESTIONS

24. a) Prove that the vertices of every planar graph can be

properly colored with five colors.

(OR)
b). Prove that a covering G of a graph is minimal if and

only G contains no paths of length three or more.
25. a) Prove that there are n"2 labeled trees with n vertices

(n>2).

(OR)

b) Discuss about some types of digraph with suitable
example
26. a) Discuss dominating set of a graph with examples.
(OR)

b) Prove that if a connected graph with n > 2 vertices
has adominating set S then the complement of S is
also a dominating set of G.



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.SC MATHEMATICS COURSE NAME: GRAPH THEORY AND ITS
APPLICATIONS
COURSE CODE: 177MMP205A UNIT: IIT BATCH: 2017-2019
UNIT Il
Syllabus

Incidence matrix — Sub matrices — Circuit Matrix — Path Matrix — Adjacency Matrix —
Chromatic Number — Chromatic partitioning — Chromatic polynomial - Matching -
Covering — Four Color Problem.

INCIDENCE MATRIX

Let G be a graph with n vertices, m edges and without self-loops. The incidence matrix A of G is an nxm
matrix A = [ai j] whose n rows correspond to the n vertices and the m columns correspond to m edges
such thataij= 1,ifjth edge mjisincident on the ith vertex O, otherwise. It is also called vertex-edge
incidence matrix and is denoted by A(G).

Example Consider the graphs given in Figure 10.1. The incidence matrix of G, is

£ €1 £y €4 €5 f5 €7 £y

v OO O 10100
wm 00001 1 1 1
vy |00 000 0D 1
.4[(:.3_1.4 1 1 1L 01000
vs OO0 1 1 OO 1 D
v |11 00 0O0O0O0

The incidence matrix of - is
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.SC MATHEMATICS COURSE NAME: GRAPH THEORY AND ITS
APPLICATIONS
COURSE CODE: 177MMP205A UNIT: I1I BATCH: 2017-2019

Theorem 10.1 Two graphs () and G, are isomorphic if and only if their incidence ma-
trices A((y) and A(G,) differ only by permutation of rows and columns.

Proof Let the graphs G, and G, be isomorphic. Then there is a one-one correspondence
between the vertices and edges in Gy and G such that the incidence relation is preserved.
Thus A(G,) and A(G2) are either same or differ only by permutation of rows and columns.

The converse follows, since permutation of any two rows or columns in an incidence
matrix simply corresponds to relabeling the vertices and edges of the same graph. a

SUB MATRICES

Let H be a subgraph of a graph G, and let A(H) and A(G) be the incidence matrices of H
and @ respectively. Clearly, A(H) is a submatrix of A{G), possibly with rows or columns
permuted. We observe that there is a one-one correspondence between each n x k submatrix
of A(G) and a subgraph of & with k edges, k being a positive integer, k < m and n being the
number of vertices in G.

The following is a property of the submatrices of A(G).

Theorem 104 Let A(G) be the incidence matrix of a connected graph G with n ver-
tices. An (n—1) % (n— 1) submatrix of A(G) s non-singular if and only if the n- | edges
corresponding to the n— 1 columns of this matrix constitutes a spanning tre in G.

Proof Let G be aconnected graph with a vertices and m edges. So, m > n— 1.
Let A(G) be the incidence matrix of G, so that A(GG) has n rows and m columns (m >n—1).
We know every square submatrix of order (n— 1) % (n— 1) in A(G) is the reduced inci-
dence matrix of some subgraph H in G with n— | edges, and vice versa. We also know that
a square submatrix of A(G) is non-singular if and only if the corresponding subgraph is a
tree.

Obviously, the tree is a spanning tree because it contains n— 1 edges of the n-vertex

araph,
Hence (n—1) % (n—1) submatrix of A(G) 1s non-singular if and only if n- 1 edges
corresponding to n— | columns of this matrix forms a spanning tree. d
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.SC MATHEMATICS COURSE NAME: GRAPH THEORY AND ITS
APPLICATIONS
COURSE CODE: 177MMP205A UNIT: I1I BATCH: 2017-2019

CIRCUIT MATRIX

We consider a loopless graph G = (V, E') which contains circuits. We enumerate the circuits of
G C,...,Cy. The circuit matrix of G is an £ x m matrix B = (b;;) where

1 if the arc e; 15 in the circuit C;
() otherwise

(asusual, E = {ey, ..., Em})-

The circuits in the digraph & are oriented, 1.e. every circuit 18 given an arbitrary direction
for the sake of defining the circuit matrix. After choosing the orientations, the ¢ircuit matrix of
G 1s B = (b;;) where

1 if the arc e; 1s in the circuit C; and they in the same direction
by; = { =1 if the arc e; is in the circuit C; and they are in the opposite direction
0 otherwise.

EXAMPLE

é'] E’l

» € e\ C
5"4 E.’s 6'4 E": 2 3 \;

vy V3 V3

‘he circuif matrix is

[S] [ 5] 3 £4
1 0 -1 1\ ¢
B = =1 1 0 =1 | s

0 =1 1 0/ Cq
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.SC MATHEMATICS COURSE NAME: GRAPH THEORY AND ITS
APPLICATIONS
COURSE CODE: 177MMP205A UNIT: I1I BATCH: 2017-2019

PATH MATRIX

Let G be a graph with m edges, and u and v be any two vertices in G. The path matrix
for vertices u and v denoted by P(u. v) = [py ] qxm. Where g is the number of different paths
between u and v, is defined as

l, if jth edge lies in the ith path,
Pij=
0, otherwise .

Clearly, a path matrix is defined for a particular pair of vertices, the rows in P(u. v)
correspond to different paths between u and v, and the columns correspond to different
edges in G. For example, consider the graph in Figure 10.10.

The different paths between the vertices vy and vy are
p1={es, es}, pr = {eg, €7, ea} and ps = {eg, €5, €4, €3}

The path matrix for vy, vy is given by
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CLASS: I M.SC MATHEMATICS COURSE NAME: GRAPH THEORY AND ITS
APPLICATIONS
COURSE CODE: 177MMP205A UNIT: I1I BATCH: 2017-2019

ADJACENCY MATRIX

LetV =(V, E) bea graph withV = {v;, va, .... w,}, E={ey, €2, .... &, } and without parallel
edges. The adjacency matrix of & is an n x n symmetric binary matrix X = [x;;] defined over
the ring of integers such that

l. ”r ViV £ E,
Xy =

0. atherwise .

Example Consider the graph G given in Figure 10.12.

[ =

Vi oVr V3 Vg Vs Vg
wv O 1 0 01 1
w |1 001 1 0
w0001 00
= wlot 1010
s |1 1 01 00
w |1 001 0 0
CHROMATIC NUMBER

Lemma 6.1.1 Let G be a connected graph that is not an odd cycle. Then

Figure 6.1

G has a 2-edge colouring in which both colours are represented at each
vertex of degree at least two. ' |
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CLASS: I M.SC MATHEMATICS COURSE NAME: GRAPH THEORY AND ITS
APPLICATIONS
COURSE CODE: 177MMP205A UNIT: I1I BATCH: 2017-2019

Proof We may clearly assume that G is nontrivial. Suppose, first, that G
is eulerian. If G is an even cycle, the proper 2-edge colouring of G has the
required property. Otherwise, G has a vertex v, of degree at least four. Let
Vo1V . . . .o be an Euler tour of G, and set

E.={e;|i odd} and E,={e|i even} (6.2)

Then the 2-edge colouring (E;, Ez) of G has the required property, since
each vertex of G is an internal vertex of vee;v; .. . €o.

If G is not eulerian, construct a new graph G* by adding a new vertex vo
and joining it to each vertex of odd degree in G. Clearly G* is eulerian. Let
Dol1Ds . . . € Vo be an Euler tour of G* and define E, and E; as in (6.2). It is
then easily verified that the 2-edge colouring (E:NE, E;NE) of G has the
required property 0

Lemma 6.1.2 Let € =(E;, E,,..., E) be an optimal k-edge colouring of
G. If there is a vertex u in G and colours i and j such that i is not
represented at u and j is represented at least twice at u, then the component
of G[E,U E;] that contains u is an odd cycle.

Proof Let u be a vertex that satisfies the hypothesis of the lemma, and
denote by H the component of G[E;U E;] containing u. Suppose that H is
not an odd cycle. Then, by lemma 6.1.1, H has a 2-edge colouring in which
both colours are represented at each vertex of degree at least two in H.
When we recolour the edges of H with colours i and j in this way, we obtain
a new k-edge colouring €'=(E1, E, ..., Ei) of G. Denoting by c'(v) the
number of distinct colours at v in the colouring €’, we have

c'(u)=c(u)+1

since, now, both i and j are represented at u, and also
c'(v)=c(v) for v#u

Thus ) ¢'(v)> ). c(v), contradicting the choice of €. It follows that H is

vEV vEV

indeed an odd cycle [
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.SC MATHEMATICS COURSE NAME: GRAPH THEORY AND ITS
APPLICATIONS
COURSE CODE: 177MMP205A UNIT: I1I BATCH: 2017-2019

CHROMATIC PARTITIONING

Theorem 6.3 If G is bipartite, and if p=A, then there exist p disjoint
matchings M, M,, ..., M, of G such that

E=M,UM,U...UM, (6.4)

and, for 1=i=p

[e/p]=|Mi|={e/p} (6.5)

Proof Let G bea bipartite graph. By theorem 6.1, the edges of G can be
partitioned into A matchings M;j, M3, ..., M. Therefore, for any p=A,

there exist p disjoint matchings Mi, M3, ..., M; (with Mi=@ for i >A) such
that :

E=M;iUM;;U...UM,
By repeatedly applying lemma 6.3 to pairs of these matchings that differ in
size by more than one, we eventually obtain p disjoint matchings
M, M., ..., M, of G satisfying (6.4) and (6.5), as required 0

Xy X2 X3 Xa

7" Yz Y3 Ya
(b)

Xi|Ya|Yi|Ys |

Xz |Ys|Ya|— |7

(b)
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.SC MATHEMATICS COURSE NAME: GRAPH THEORY AND ITS
APPLICATIONS
COURSE CODE: 177MMP205A UNIT: I1I BATCH: 2017-2019

As an example, suppose that there are four teachers and five classes, and
that the teaching requirement matrix P =[p,] is as given in figure 6.4a. One
possible 4-period timetable is shown in figure 6.4b.

CHROMATIC POLYNOMIAL

Theorem 1.1. chr(G. k) is a polynomial of k.

Proof. For any coloring of (G the nonempty color classes constitute a partition of V(G)
where each part is a stable vertex set. We may count those colorings that give a certain
partition and add them up for all such partitions to find the total number of colorings.
Since V(G) is a finite set, it has a finite number of partitions, so it is sufficient to show
that the number of colorings for a single partition is a polynomial of k.

Fix a partition with p parts, each of them being a stable set. By assigning a different color
to each part. we get all the colorings belonging to the partition. We may pick the first
color in k possible ways, the second in k—1 ways, etc. so there are k(k—=1)... (k—p+1)
colorings, which is obviously a polvnomial. Note that this also works when k < p. (|

MATCHING

Let M be a matching. The vertices that are incident to an edge of M are marched or covered
by M. If IV is a set of vertices covered by M, then we say that M sarurares U. The vertices
which are not covered are said to be exposed.

Let G = (V,E) be a graph and M a matching. An M-alternating path in G is a path whose
edges are alternatively in E\ M and in M. An M-alternating path whose two endvertices are
exposed is M-augmenting. We can use an M-augmenting path P to transform M into a greater
matching (see Figure 6.1). Indeed. if P is M-alternating, then the symmetric difference between
M and E(P)

M' = MAE(P)=(M\(E(P)NM)U(E(P)\ M)

M'| equals |M| — 1 +x where x is the number of exposed ends of P.
P
: L : .
] L
—y —b
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Theorem 6.1 (Berge 1957). Let M be a matching in a graph G. Then M is maximum if and
only if there are no M-augmenting paths.

Proof. MNecessity was shown above so we just need to prove sufficiency. Let us assume that M
is not maximum and let M’ be a maximum matching. The symmetric difference 0 = MAM' is
a subgraph with maximum degree 2. Its connected components are cycles and paths where the
edges of M and M’ alternate. Hence, the cycles have even length and contain as many edges
of M and of M'. Since M' is greater than M, () contains at least one path P that contains more
edges of M' than of M. Therefore, the first and the last edges of P belong to M’, and so P is
M-angmenting.

COVERING

Definition 2.1. Let X = (D.V;I,A) and X = (D, V.1, A) be graphs.
A graph epimorphism p : X — X is called a covering projection if, for
every vertex u € X, p maps the neighborhood Dj of it bijectively onto
the neighborhood Dyg of pii. The graph X is usually referred to as the
base graph or a quotient graph and X is called the covering graph. By
fib, = p~'u and fib, = p~'z we denote the fibre over u € V and x € D,
respectively.

FOUR COLOR PROBLEM

2. Background. To understand the principles of the Four Color Theorem, we must
know some basic graph theory.

A graph is a pair of sets, whose elements called wvertices and edges respectively.
Azsociated to each edge are two distingunished vertices called ends. The two ends are
allowed to coincide:; if they do, the edge is called a loop. Each vertex is represented by
a point in the plane. Each edge is represented by a continions curve between its two
ends. We say an edge connects its two ends. Figure 2-1 shows a graph with vertices

A

A B, C, D, Eand edges a. b, e, d. e, f. g, h. The edge h connects the vertex E to
itzelf: so0 h is a loop.
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CLASS: I M.SC MATHEMATICS COURSE NAME: GRAPH THEORY AND ITS
APPLICATIONS
COURSE CODE: 177MMP205A UNIT: I1I BATCH: 2017-2019

PART B (5x6=30)

1. If A(G) is an incidence matrix of a connected graph G with n vertices then prove that
the rank of A(G) is (n-1).
2.Show that every tree with two or more vertices is 2-chromatic.
3.Explain about incidence matrix in a graph.
4. Prove that a graph of n vertices is a complete graph if and only if its chromatic
polynomial Pn(A) = MA-1)(A-2) ... (A-n+1)
5.Explain about chromatic polynomial in a graph.
6. Prove that a covering G of a graph is minimal if and only G contains no paths of
length three or more.
7.Prove that a graph with atleast one edge is 2-chromatic if and only if it has no circuits
of odd length.
8. Explain about coverings

9.Discuss about the chromatic partition.
10. Show that any tree T on n-vertices has chromatic polynomial Pn(4) = 4{(4 —1)"*

PART - C (1x10=10)
1. Prove that the vertices of every planar graph can be properly colored with five colors.
2. Explain every tree with two or more vertices is 2-chromatic.

3. Discuss a graph with atleast one edge is 2-chromatic if and only if it has no circuits
of odd length

Prepared by: R.Gayathri, Assistant Professor, Department of Mathematics, KAHE Page 10/10
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Lesson Plan

2017 -2019
Batch

&
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KARPAGAM ACADEMY OF HIGHER EDUCATION

KA RPAGA M (Deemed to be University Established Under Section 3 of UGC Act 1956)

ACADEMY OF HIGHER EDUCATION

(Deemed to he University)
(Established Under Section 3 of UGC Act, 1956 |

DEPARTMENT OF MATHEMATICS

STAFF NAME: R.GAYATHRI
SUBJECT NAME: GRAPH THEORY AND ITS APPLICATIONS

SUB.CODE:17TMMUZ205A

Coimbatore — 641 021.

LECTURE PLAN

SEMESTER: Il CLASS: | M.SC MATHEMATICS
S.No Lecture Topics to be Covered Support Material/Page
Duration Nos
Period
UNIT-I
1. 1 Introduction and Definition ofa | T1:Chap:1.1:Pg.No:1-2
Graphs
2. 1 Isomorphism of graphs and sub T1:Chap:2.1:Pg.No:14-
graphs 16
3. 1 Walks, Paths, Circuits R2:Chap:1.3:Pg.No:6-9
4. 1 Connected , connectedness of T1:Chap:2.5:Pg.N0:19-
graphs and components of graphs | 21
5. 1 Euler graphs and Euler graphs T1:Chap:2.6:Pg.No:21-
based on theorems 23
6. 1 Hamiltonian paths and circuits R1:Chap:4.5:Pg.No:314-
316
7. 1 Introduction and definition of a R2:Chap:1.5:Pg.N0:9-12
trees
8. 1 Theorems on some properties of | R4:Chap:3:Pg.N0:39-41
trees
9. 1 Distance and centers in tree T1:Chap:3.4:Pg.N0:43-
45
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Lesson Plan

2017 -2019
Batch

10. Rooted and binary trees and T1:Chap:3.5:Pg.N0:45-
spanning trees 55
11. Fundamentals Circuits T1:Chap:3.8:Pg.N0:55-
57
12. Recapitulation & discussion of
possible questions
Total No of Hours Planned For Unit 1= 12
UNIT-I1I
1 Spanning trees in a Weights R6:Chap:3.10:Pg.No0:58-
Graph 61
2 Definition of a Cut Sets T1:Chap:4.1:Pg.N0:68-
69
3 Theorems on some properties of | T1:Chap:4.2:Pg.N0:69-
Cut Sets and all Cut Sets 71
4 Fundamental Circuits and Cut T1:Chap:4.5:Pg.N0:73-
Sets 75
5 Connectivity and separability T1:Chap:4.5:Pg.N0:73-
75
6 Network flows R1:Chap:11:Pg.N0:1377-
1380
7 Theorems on some 1- T1:Chap:4.7:Pg.N0:80-
Isomorphism 82
8 Theorems on some 2- T1:Chap:4.5:Pg.N0:73-
Isomorphism 75
9 Combinational versus Geometric | T1:Chap:5.1:Pg.N0:88-
Graphs 89
10 Planar Graphs T1:Chap:5.2:Pg.N0:90-
93
11 Different Representation of a T1:Chap:5.4:Pg.N0:93-
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Lesson Plan

2017 -2019
Batch

Planar Graph

99

12 Recapitulation & discussion of
possible questions
Total No of Hours Planned For Unit Il =12
UNIT-1
1 Introduction and definition ofa | T1:Chap:7.1:Pg.No:137-
incidence matrix 139
2 Sub matrices of incidence T1:Chap:7.2:Pg.No:140-
matrices 141
3 Circuits matrix based on T1:Chap:7.3:Pg.No:142-
problems 146
4 Path matrix and adjacency matrix | T1:Chap:7.8:Pg.N0:156-
based on problems 161
5. Chromatic Number theorems R3:Chap:1.12:Pg.No:257
-258
6. Chromatic partitioning R3:Chap:16.14:Pg.No:25
8-259
7 Chromatic polynomial T1:Chap:8.3:Pg.No:174-
177
8. Matching T1:Chap:8.4:Pg.No:177-
182
9. covering T1:Chap:8.5:Pg.N0:182-
190
10. Four color problem R3:Chap:2.1:Pg.No:31-
35
11. Recapitulation & discussion of

possible questions

Total No of Hours Planned For Unit 11l =11

UNIT-1V
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Lesson Plan

2017 -2019
Batch

1 1 Introduction and definition of R7:Chap:3.1:Pg.N0:163-
Directed Graphs 165
2 1 Some types of Directed Graphs T1:Chap:9.2:Pg.N0:197-
198
3 1 Conutination on Some types of T1:Chap:9.2:Pg.N0:197-
Directed Graphs 198
4 1 Types of enumeration T1:Chap:10.1:Pg.N0:238
-240
5. 1 Counting labeled trees T1:Chap:10.2:Pg.N0:240
-241
6. 1 Continuation on theorem on T1:Chap:10.2:Pg.N0:240
Counting labeled trees -241
7 1 Counting unlabeled trees T1:Chap:10.3:Pg.No:241
-250
8. 1 Continuation on theorem on T1:Chap:10.3:Pg.No:241
Counting unlabeled trees -250
9. 1 Polya’s counting theorem T1:Chap:10.4:Pg.N0:250
-260
10. 1 Graph enumeration with Polya’s | T1:Chap:10.5:Pg.N0:260
theorem -264
11. 1 Recapitulation & discussion of
possible questions
Total No of Hours Planned For Unit IV=24
UNIT-V
1 Introduction : Domination in T1:Chap:1.1:Pg.No:15-
Graphs 16
2 1 Terminology and concepts T1:Chap:1.1:Pg.No:15-
16
3 1 Applications of Domination in R5:Chap:5.1:Pg.No:71-
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Lesson Plan

2017 -2019
Batch

graphs 73
4 1 Dominating set T2:Chap:1.2:Pg.N0:16-
18
5 1 Continuation on Dominating set | T2:Chap:1.2:Pg.No0:16-
18
6 1 Domination number T2:Chap:1.2:Pg.No:17-
18
7 1 Continuation on Domination T2:Chap:1.2:Pg.No:17-
number 18
8 1 Independent set T2:Chap:1.3:Pg.No:19-
20
9 1 Independent number T2:Chap:1.3:Pg.No:19-
20
10 1 History of domination in graphs | T2:Chap:1.13:Pg.N0:36-
37
11 1 Recapitulation & discussion of
possible questions
12 1 Disscussion of previous ESE
question papers
13 1 Disscussion of previous ESE
question papers
14 1 Disscussion of previous ESE
question papers
Total No of Hours Planned for unitV =14
Total 60
Planned
Hours
TEXT BOOKS

Prepared by R.GAYATHRI ,Department of Mathematics , KAHE
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2017 -2019

Lesson Plan | 5. 0

1. Deo N, (2004). Graph Theory with Applications to Engineering and Computer
Science, Prentice
Hall Inc ,Upper Saddle River, NJ, USA. (for Unit | to I1V).

2. Teresa W. Haynes, Stephen T. Hedetniemi and Peter J.Slater, (1998), Fundamentals of
Domination in Graphs, Marcel Dekker, New York (for Unit V)

REFERENCES

1. Jonathan L Gross, Jay Yellen, (2014). Handbook of Graph Theory, CRC Press LLC.
Taylor
&Francis Group,Boca Rotan.

2. Diestel. R Springer-Verlag, (2012). Graph Theory. Springer-Verleg,New York.

3. Jensen.TR and Toft.B., (1995). Graph Coloring Problems. Wiley-Interscience , , New
York.

4. Fred Buckley and Frank Harary, (1990). Distance in Graphs, Addison - Wesley
Publications.

Redwood City, California.

5. Flouds C. R., (2009). Graph Theory Applications, Narosa Publishing House. New
Delhi,India.

6. Arumugam. S, Ramachandran. S ,(2003). Invitation to graph theory, Scitech
publications,
Chennai.

7. Harary F, (1972).Graph Theory, Addison- Wesley publications, Massachusetts Menlo
Park,
California, London.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),

Coimbatore —641 021

: Graph Theory and its Applications

Subject Code: 177MMP205A

Class : 1 M.Sc Mathematics

Semester  : 1l

UNIT -1

PART A (20x1=20 Marks)

(Question Nos. 1 to 20 Online Examinations)

Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
The degree of the leaf is 2/n n-1 1
A graph in which all vertices are of equal degree is complete graph regular graph null graph both complete and regular graph complete graph
A graph is a finite number of vertices and finite number of
edges are called finite graph star graph isolated graph infinite graph finite graph
A isolated vertex having no incident edges edges series adjancent edges incident edge
Every edge of a ___is cutset tree graph incident edges adjacent edge tree
The degree of every vertex n-1 is complete graph regular graph null graph subgraph complete graph
A pendent vertex of degree is 2 1
A regular graph with n vertices and their degree is n-1 n-2 nt+l n+2 n-1
Atleast one vertex is graph incident vertex degree pendent graph
Isolated vertex is null graph pendent graph complete graph regular graph null graph
A null graph containing only isolated vertex regular graph complete graph simple graph isolated vertex
All the edges of a graph is euler line euler edge euler graph euler trail euler line
G is a subgraph of G then G-g GNg Gtg Glg G-g
A connected graph G is Hamiltonian circuit hamiltonian graph hamiltonian path circuit hamiltonian circuit
The number of edges incident on a vertex with self-loop
counted twice is degree adjacent link block degree
In any tree there __ two pendent vertices atleast atmost some sum of atleast
The length of a hamiltonian path of a with n vertices n-1  |connected graph star graph simple graph complete graph connected graph
A valency is degree of vertex edges series link vertex
degree one two three zero two
A single vertex in a graph G is subgraph regular graph component series subgraph
Awalkis___alternating sequence of vertices and edges
beginning and ending vertices such that each edge is incident
with the vertices finite infinte atmost some of finite
Each connected subgraph is component star graph series link component
A complete graph G is an Euler graph only if the number of
vertices is even odd odd
Euler line contains all the of a graph vertices edges isolated vertices pendant vertices edges

Euler graphs do not have

even vertices

odd vertices

isolated vertices

pendant vertices

isolated vertices

n n—1
If G is a star with n vertices then A(G) = n n-1 2 2 n-1
n
If G is a star with n vertices then 8(G) = n n-1 2 1
If G is a star with n vertices then number of vertices with degree ?2—1
1= n n-1 n-1
‘A Hamiltonian circuit in a graph of n vertices consists of n-1 edges n-2 edges n-3 edges n edges

Prepared by: R. Gayathri, Department of Mathematics, KAHE
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If G is an Euler graph then G

is connected

is not connected

with 2 components

with pendeant vertices

is connected

If G has an Hamiltonian circuit then G

is connected

is not connected

with 2 components

with pendeant vertices

is cadieched

Length of a Hamiltonian path of a connected graph with n vertice

n-1

Gde
n-1

Agraph with n vertices is a tree if

n edges

G is connected

G has n-1 edges

G is not connected

G is connected and has n-1 edges

A graph is a infinte number of vertices and infinite number of edg

infinite graph

finite graph

link

regular graph

infinite graph

A graph with n vertices is a tree if

G is connected

G has n-1 edges

G is not connected

G is circuitless and has n-1 edges

G is circuitless and has n-1 edges

A graph with n vertices is a tree if

G is connected

G has n-1 edges

G is not connected

there is exactly one path between every pair of vertices in G

there is exactly one path between every pair of vertices in G

A graph with n vertices is a tree if

G is connected

G has n-1 edges

G is not connected

G is minimally connected graph

G is minimally connected graph

In any tree there are two pendant vertices atleast two atmost two exactly no atleast two

Distance between any two vertices is <0

Number of circuits in a tree is 0
Distance between any two vertices in a complete graph is 1
A vertex with minimum eccentricity is pendant vertex isolated vertex centre odd vertex centre

If G is a complete graph with n vertices then number of centre of n n-1 n-2 n-3 n
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KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),
o Coimb: 41 021
Subject: Graph Theory and its Applicati Subject Code: 17MMP205A
Class_: IM.Sc i Semester _: 11
UNIT-IT
PART A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examil
Possible Questions
Question [Choice 1 [Choice 2 Choice 3 [Choice 4 [Answer
A tree T is said to be a spanning tree of G if T contains all vertices of G all edges of G some vertices of G some edges of G all vertices of G
Spanning tree defined only fora complete graph connected graph disconnected graph star graph connected graph
A disconnected graph with k components has spanning tree K3 k1 k2 K K
A circuit free graph which contains al the vertices of Giis a tree spanning tree star graph complete graph spanning tree
A skeleton of a graph is tree spanning tree star graph complete graph spanning tree
Suppose G s a graph with n vertices and T is a spanning tree of G. Then number of
branches in T is n ol n2 03 il
Number of chords for a complete graph is 4851 4850 4852 4853 4851
Suppose k is denoted as the number of components of G. Then G is connected if k=0 k=1 k=2 k=3 Kl
Suppose G is a graph with n vertices and k is denoted as the number of components of G.
Then the rank of G nk nk wk n nk
Suppose G is a graph with n vertices, e edges and k is denoted as the components of G.
Then the nullity of G k etntk en ek etk
number of branches number of chords number of edges number of vertices number of branches
‘number of branches number of chords number of edges number of vertices number of chords
Rank of G+ nullity of G = number of branches number of chords number of edges number of vertices number of edges
A connected graph is atree if adding an edge between any two vertices in G creates
circuit exactly one atmost one atleast one no exactly one
Creatinga circuit by adding anyone chord to T is cycle fundamental circuit _ elementary circuit circuit fundamenta circuit
Distance between fwo spanning trees Tiand T is the number of edges present r T T, motin T, T, ana T, T, motin T,
1 1
Distance between two spanning trees T.and T, NTBT) FNauT) e iva-p SNmer)
£ 6(G) and A(G) are the minimum and maximum degree in a graph G then the edge
conn d () AG) 2 8(G)
The number of branches inany ___ of G is rank. spanning tree tree shortest spanning tree minimal spanning tree _ spanning tree
sum of weights of all sum of weights of all  sum of weights ofall edges of  sum of weights of all edges 'sum of weights of all branches
Weight of a spanning tree T is branches of G branches of T G of of
I 2 graph of n vertces in which every edge has unit weight, then spanning tree T has
weight n ol n2 03 il
I 2 graph of n vertces in which every edge has 3 unit weight, then spanning tree T has
| weight 3n 3(n-1) 302) 303) 3(01)
A graph in which all nodes are of equal degree is called complete graph regular graph null graph multi graph regular graph
an equal number of vertices
Tuo ismocphic graphs must have Equal number of vertices equal number of edges with a given degree all of the above all of the above
I 2 separable graph, a vertex whose removal disconnects the graph cut vertex cutedge odd vertex even vertex every edge
acut set every vertex every edge odd vertex even vertex cut- vertex
ey of Kz ts 1 2 3 4 1
[Each of the largest___ subgraph is block nonseparable1 separable tree cutset nonseparable
Edge connectivity of a tree i 1 2 3 4 1
[Edge connectivity of a star graph is 1 2 3 4 1
A separable graph consists of two or more non separable subgraph tree spanning tree complete graph subgraph
The ring sum of two cut set is cut set not cut set may cut set empty set cut set
The edge connecetivity of a connected graph is minimum number of edges removal
reduces the rank of by 4 3 2 1 1
The vertex connectivity of a tree s 4 3 2 1 1
A graph is planar if there exists some geometric representation of G which can be drawn
Jon a plane such that no two of its___ intersect edges vertices link block edges
The vertex connectivity of a st graph i 1 2 3 4 1
Every cut-set in a nonseparable graph with more than two vertices contains __two
edges. atleast atmost exactly graph atleast
Any edge which is not spanning tree is branch chord tree rank chord
I a tree, vis a cut vertex if deg(v) =1 <1 >1 >1
A tree in which _ vertexs distinguished from all others is called rooted tree 1 3 2 4 1
A connected __ graph with n vertices and e edges has e - n + 2 regions planar non planar complete graph cut-set planar
The distance between___ of a connected graph s eccentricity edges vertices selfloop loop vertices
ina _ graph, any minimal set of edges containing atleast one branch of every
spanning tree is cut-set connected graph disconnected graph  complete graph tree connected graph
K, i planar forn
4 5 6 7 4
diameter is length of the longest path in the tree spanning tree shortest spanning tree euler graph tree
n a degree constrained shortest spanning tree deg(G)< 3 4 s 2 3
Every circuit has an __ number of edges in common with any cut set even odd zero three even
A__is separable Ifits vertex connectivity is one. connected graph simple graph planar graph non planar graph connected graph
A___isa connected graph without any circuit. tree spanning tree weighted spanning tree hamiltonian circuit tree
Any h with n vertices and n-1 edges s tree spanning tree fundamental circuit fundamental circuit tree

Prepared by: R. Gayathri, Department of Mathematics, KAHE

Matrices Basic Mathematics of Finance /2017-2020 Batch



Prepared by: R. Praveen Kumar, Department of Mathematics, KAHE

Coimbatore —641 021

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),

Subject: Graph Theory and its A

Subject Code: 17MMP205A

Class _: 1 M.Sc Mathematics

Semester  : 1T

UNIT - 1T

PART A (20x1=20 Marks)

(Question Nos. 1 to 20 Online Examinations)

Possible Questions

Question [Choice 1 [Choice 2 [Choice 3 [Choice 4 [Answer
Every __edge in a graph G is included in every covering of G. pendant isolated link block pendant
The complete graph of 5 vertices is planar nonplanar embedding complete nonplanar
The number of in each row is the degreee of the corresponding vertex 1 0 2 3 1
A row 0's in the incidence matrix represents an isolated vertex pendeant vertex odd vetrex even vertex an isolated vertex
Every degree of a vertex v equals the number of ___ in the correspondingrow or column of x(G) circuit vertex edge singular circuit
If G is a graph with n vertices then A(G) = n n-l n-2 n-3 n-1

produce identical columns in the cut set matrix parallel edges parallel vertex vertex edge parallel edge
Cover of a graph is a of vertices subset set matrix singular subset
The incidence matrix of a graph G is square matrix rectangular matrix column matrix row matrix rectangular matrix
1f G is a tree then A(G) is square matrix rectangular matrix column matrix oW matrix square matrix
If G is a tree with n vertices then order of A(G) = n n-l n-2 n-3 n-1
The reduced incidence matrix of a tree is singular nonsingular cannot be determined of I determinant nonsingular
|A matching in a graph is a subset of edges in which no___ edges are adjacent 2 4 3 1 2
Every ___is 2 - chromatic bipartite graph null graph simple graph complete graphs bipartite graph
If A(G) is the adjacency matrix of a graph with 0's in ____ then G is complete diagonal non diagonal matrix tree diagonal
A column of all __ corresponds to a non circuit edge is circuit matrix 0's I's n n+l 0
Every degree of a vertex v equals the number of ___in the correspondingrow or column of x(G) I's 05 diagonal matrix I's
Suppose A(G) = I,,.the identitymatrixwithordern. Then G is
connected disconnected simple graph complete disconnected

X(G) = In, identity matrix if G has and disconnected with k = n self loop connected loop link self loop
Suppose G is complete graph with n vertices. Then number of rows in A(G) with exactly one 0 is n n-1 n
Suppose G is complete graph with n vertices. Then the main diagonal clement of A(G) is 1 0 Oor1 2 0
A column of B(G) of all zeros corresponds to a non circuit cdge vertex both vertex and edge neither edge nor vertex cdge
The incidence matrix A(G) every column has two I's atmost atleast exactly more than exactly

The number of 1's in a row of B(G) =
The matrix two clements 0 and 1 is binary matirx
I B(G) is a circuit matrix of a connected graph with n vertices and e edges then rank of B(G) is

If G is a tree with n vertices then rank of B(G) is

In A(G), the matrix, a row with all 0's represents isolated vertex
GBG =

A column of P(x,y) all 1's corresponds to an edge that lies in path between x and y

Number of rows in P(x,y) with all 0’ is

If the entries along the principal diagonal of an adjacancy matrix are all of 0's then G has

The degree of a vertex cquals the number of 1's in the corresponding of adjacency matrix
A graph consisting of only isolated vertices is
A graph with one edge is atleast
I£ G is an Buler graph then G
The number of edges in a largest maximal matching is
A graph that cannot be drawn on a plane without a cross over between its edges is called
Complete graph with more than one vertices s
The determinant of every square submatrix of an ___ matrix is 1,-1 or 0

discovered nonplanar graph unique property

The complete graph of vertices is nonplanar

A pentagon divide the planc of the paper into two regions is called

In adjacency matrix of graph all the entries along the leading diagonal are 0 if and only if the graph has no

The number of __in a minimal covering of the smallest size is covering number of the graph
In___ matrix, a colum with all 0's corresponds to an edge forming a self -loop

The rank of ___ matrix must be atleast n-1

A in which every vertex is of degree one is dimer covering

A hamiltonian ____in a graph is covering

A graph with ___or more edges is atleast 2 - chromatic

number of vertices in G
incidence
n

1
adjacent

any
any
0

self loop
row only
1-chromatic
I-chromatic
exactly one

maiching

planar
planar
incidence
Kasimir Kuratoaswski
four

Jordan curve
self loop
edges
cut-set
incident
covering

circuit
1

number of edges in G
adjacence
c

0
path

some
some

1

no self loop

column only
2-chromatic
2-chromatic
atmost

matching number

nonplanar
nonplanar
adjacence
Rowan Hamilton
six

Kuratowski

loop

vertices

circuit

path

minimal covering

path
2

number of odd vertices

cut set

parallel edges
both row and column
3 -chromatic

3 -chromatic

atleast

maximal matching

embedding

embedding

circuit
Euler

seven

Euler

block

loop

path

circuit

maximal covering

vertex
3

number of even vertices
circuit
entl

3
incident

exactly one,
exactly one
3

isolated vertex

cither row or column
4-chromatic
4-chromatic

not

minimal matching

graph

graph

cut set

Fermat

five

Konigsberg bridges
link

block

adjacency

cut-set
matching
edge

4

number of edges
incidence
e-ntl

0
incident

any
any
0

self loop
-1
1-chromatic
2-chromatic
atleast

matching number

planar
nonplanar

incidence
Kasimir Kuratoaswski
five

Jordan curve

self loop
edges
cut-set
incident
covering
circuit

1
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KARPAGAM

OF HIGHER EDUCATION(Deemed to be University E: Under Section 3 of UGC Act 1956)Pollachi Main Road, Each: i (Po),Coi e —641 021
ject: Graph Theory and its Appli Subject Code: 17MMP205A
Class : I M.Sc Mat i I
UNIT - IV
PART A (20x1=20 Marks)
(Question Nos. 1 to 20 Online E: i
Possible Questions
Question [Choice 1 [Choice 2 Choice 3 Choice 4 Answer
A that has no self loop or parallel edges is simple digraph graph tree spanning tree digraph
A balanced digraph is isograph simple graph complete digraph digraph isograph
A oriented graph. digraph complete graph simple graph Euler graph digraph
In any graph, we have «(G)=B(G) A(G)<B(G) «(G)<B(G) a(G)2B(G) A(G)<B(G)
A vertex v ia called pendant vertex if d-+(v)+d-(v)= 1 2 3 4 1
A graph G is an Euler graph if d-+(v) is odd then d-(v)= odd even 3 5 even
A graph with one or more edges is atleast 4-chromatic 3-ch 2-ct 1 2-chromatic
A complete graph with n vertices is- 4-chromatic 3 2 n-chromatic
Every graph having ----------- is atleast 3-chromatic triangle square odd vertices even vertices triangle
Every graph having triangle is atleast - 4-chromatic 3 2 3-chromatic
A complete graph with 5 vertices is--- 4-chromatic 3-ch 2-ct 5-chromatic
Every tree with two or more vertices is--- 4-chromatic 3-ct 2-ch 2-chromatic
Every --------with 2 or more vertics is 2-chromatic tree complete connected disconnected tree
A graph consisting of simply one circuit with greater than or equal to 3 vertices is ----- ifnis even 4-chromatic 3-ch 2-ct 2-chromatic
A graph consisting of simply one circuit with greater than or equal to 3 vertices is 2-chromatic ifn is even odd 0 even
A graph consisting of simply one circuit with greater than or equal to 3 vertices is ------------- if n is odd 4-chromatic 3 2 3-chromatic
A graph consisting of simply one circuit with greater than or equal to 3 vertices is 3-chromatic ifnis --- even odd 3 0 odd
A graph with ------- one edge is 2-chromatic if it has no circuits of odd length atleast atmost exactly 3 atleast
A graph with atleast --------- edge is 2-chromatic if it has no circuits of odd length 1 2 3 4 1
A graph with atleast one edge is 2-chromatic if it has no circuits of -------- length odd even 4 0dd
A graph with atleast one edge is 2-chromatic if it has ---------- circuits of odd length 0 1 2 3 0
A graph with atleast one edge is --- if it has no circuits of odd length 4-chromatic 3 2 2-chromatic
A star graph is ----- -- 4-chromatic 3 2 2-chromatic
Every tree  with - ----- vertics is 2-chromatic greater than 2 less than 2 equal to 2 greater than or equal to 2 greater than or equal to 2
Every ------------ graph is 2-chromatic bipartiate complete regular connected bipartiate
Every  biparitate graph is ----- - 4-chromatic 3 2 2-chromatic
'Two regions are said to be adjacent if they have a common -----------between them edge vertex edge and vertex neither edge nor vertex edge
TWO ----- ---- are said to be adjacent if they have a common egde between them faces regions egdes vertices regions
Proper coloring of —-- — is called map coloring faces regions egdes vertices & regions
A covering exists for a graph if the graph has no ---- g isolated vertex odd vertex even vertex pendant vertex isolated vertex
Every — - in a graph included in_every covering of the graph pendant edge odd vertex even vertex pendant vertex pendant edge
Every pendant edge in a graph included in ---------- covering of the graph no some all finite number of all
Cover of a graph is a sub set of ---- vertices edges both vertices and edges neither edge nor vertex vertices
A complete graph with vertices is one of the 2 graphs of Kuratowski. 2 3 5 1 5
The second graph of Kuratowski is a regular connected graph with vertices and edges six,seven six,nine sixfive five,six six,nine
The two common geometric representations in Kuratowski graph it is fairly easy to see that the graphs are homeomorphics planar representation infinite region isomorphic isomorphic
A graph in which all vertices are of equal degree is called a complete graph regular graph planar graph nonplanar graph regular graph
Removal of one edge or a vertex makes each a graph. complete planar nonplanar Euler planar
The complete graph of 5 vertices is planar nonplanar embedding complete nonplanar
The rank of an of a digraph with n vertices is n-1 incidence matrix cutset matrix path matrix circuit matrix incidence matrix
A in which there is exactly one edge directed from every vertex to every other vertex is complete symmetric digraph simple digraph complete digraph regular digraph symmetric digraph simple digraph
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KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),
batore 641 021

Subject Code: 1I7TMMP205A

Semester 11

UNIT - V.

PART A (20x1=20 Marks)

(Question Nos. 1 to 20 Online Examinati

Possible Questions

Question [Choice 1 Choice 2 [Choice 3 [Choice 4 [Answer
The isolated vertex n degree and out degree are equal to 0 1 2 3 0
[The minimum cardinality of a is equal to domination number set graph cutset vertex set
IThe dominating set N[S] is v 1 0 2 v
ISuppose G is a complete graph wiyh n vertices. Then number of independent set of vertices is n n1 nl 2 n
Every dominating set contain __ one minmal dominating set atleast atmost equal every atleast
The number of ___in the largest independent set of a graph vertices edges links blocks vertices
[The minimum cardinality of a total dominating set is dominating set is domination number independent set dominating set independent number domination number
1A set of vertices in a graph is if no two vertices in the set are adjacent independent set independent number  dominating set dominating number independent set
The number of __ incident out of a vertex is out degree edges vertices links blocks edges
[The minimum cardinality of an independent dominating set G is domination number independent set dominating set independent domination number independent domination number
|A___ dominating set from which no vertex can be removed without destroying its dominance prop minimal maximal independent independent number minimal
A dominating set may or may not be independent minimal maximal independent independent number minimal
A contains atleast one minimal dominating set. domination number independent set dominating set independent number dominating set
[The set of all is trivially a dominating set in graph vertices edges cutset blocks vertices
An has the dominance property only if it is a maximal independent set domination number independent set dominating set independent number independent set
/A graph may have many and of different sizes. minimal dominating set independent set dominating set independent number minimal dominating set
| The number of ___ in a minimal covering of the smallest size is covering number of the graph edges vertices loop block edges
In__ matrix, a colum with all 0's corresponds to an edge forming a self -loop cut-set circuit path adjacency cut-set
The rank of ___ matrix must be atleast n-1 incident path circuit cut-set incident
A in which every vertex is of degree on is dimer covering covering minimal covering maximal covering matching covering
A hamiltonian ___ in a graph is covering circuit path vertex edge circuit
|A graph with __ or more edges is atleast 2 - chromatic 1 2 3 4 1
|A pendent vertex of degree s 1 2 3 1
|A regular graph with n vertices and their degree is nl n2 n+l el nl
| Atleast one vertex is graph incident vertex degree pendent graph
Isolated vertex is null graph pendent graph complete graph regular graph null graph
|A graph is a infinte number of vertices and infinite number of edges is infinite graph finite graph link regular graph infinite graph
The number of edges in a largest maximal matching i niRaiagnnected matching number maximal matching minimal matching matching number
|A graph that cannot be drawn on a plane without a cross over between its edges planar nonplanar embedding graph planar
|Complete graph with more than one vertices is planar nonplanar embedding graph nonplanar
The determinant of every square submatrix of an ___ matrix is 1.-1 or 0 incidence adjacence circuit cut set incidence
discovered nonplanar graph unique property Kasimir Kuratoaswski Rowan Hamilton Euler Fermat Kasimir Kuratoaswski
The complete graph of vertices is nonplanar four six seven five five
A pentagon divide the planc of the paper into two regions is called Jordan curve Kuratowski Euler Konigsberg bridges Jordan curve
In adjacency matrix of graph all the entries along the leading diagonal are 0 if and only if the graph has no selfloop loop block link selfloop
A star graph is - 4-chromatic 3-chromatic 2-chromatic 5-chromatic 2-chromatic
Every tree  with - vertics is 2-chromatic greater than 2 less than 2 equal to 2 greater than or equal to 2 greater than or equal to 2
Every graph is 2-chromatic bipartiate complete regular connected bipartiate
Every  biparitate graph 4-chromatic 3-chromatic 2-chromatic 5-chromatic 2-chromatic
| Two regions are said to be adjacent if they have a common -between them edge vertex edge and vertex. neither edge nor vertex edge
Two — are said to be adjacent if they have a common cgde between them faces regions egdes vertices regions
Proper coloring of - is called map coloring faces regions egdes vertices regions
A covering exists for a graph if the graph has no isolated vertex odd vertex even vertex pendant vertex isolated vertex
Every ina graph included in every covering of the graph pendant edge odd vertex even vertex pendant vertex pendant edge
Every pendant edge  ina graph included in - covering of the graph no some all finite number of all
| Cover of a graph is a sub set of - vertices edges both vertices and edges neither edge nor vertex vertices
In a degree constrained shortest spanning tree deg(G)< 3 4 5 2 3
Every circuit has an ___ number of edges in common with any cut set even odd zero three even
|A__is separable ifits vertex connectivity is one. connected graph simple graph planar graph non planar graph connected graph
|A____is a connected graph without any circuit. tree spanning tree weighted spanning tree _ hamiltonian circuit tree
|Any connected graph with n vertices and n-1 edges is tree spanning tree fundamental circuit fundamental circuit tree
| The number of edges incident on a vertex with self-loop counted twice is degree adjacent link block degree
In any tree there _ two pendent vertices atleast atmost some sum of atleast
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[The length of a hamilionian path ofa___ with n vertices n-1 connected graph star graph simple graph complete graph connected graph
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: | M.SC MATHEMATICS COURSE NAME: GRAPH THEORY & ITS APPLICATIONS

COURSE CODE: 17MMP205A UNIT: | BATCH-2017-2019
UNIT — 1
SYLLABUS

Graphs — introduction — isomorphism — sub graphs — walks, paths, circuits —
connectedness — components — euler graphs — Hamiltonian path and circuits — trees —
properties of trees — distance and centres in tree — rooted and binary trees — spanning trees
— fundamental circuits

Graphs

Basic Concepts
Definition 8.1.1. [Pseudograph, Vertex set and Edge set] A pseudograph or a general

graph ' is a pair (V. E) where V is a nonempty set and E is a multiset of unordered pairs of

points of V. The set V' is called the vertex set and its elements are called vertices. The set

E is called the edge set and its elements are called edges.
Example 8.1.2. G = (l {{1,1},{1,2},{2,2}, {3,4},{3,4)} }) is a pseudograph.

Discussion 8.1.3. A pseudograph can be represented in picture in the following way.

1. Put different points on the paper for vertices and label them.

[}

. If {u,v} appears in F some k times, draw k distinct lines joining the points u and v.

3. Aloop at u is drawn if {u,u} € E.
Example 8.1.4. A picture for the pseudograph in Example 2.1.2 is given in Figure 8.1,
Definition 8.1.5. [Loop, End vertex and Incident vertex/edge]

1. An edge {u,v} is sometimes denoted uv. An edge uu is called a loop. The vertices u and

v are called the end vertices of the edge uv. Let € be an edge. We say ‘e is incident on

¢’ to mean that *u is an end vertex of €',

Figure 8.1: A pseudograph
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2. [Multigraph and simple graph] A multigraph is a psendograph without loops. A

multigraph is a simple graph if no edge appears twice.!

3. Henceforth, all graphs in this book are simple with a finite vertex set, unless stated oth-

erwise,

4. We use V(&) (or simply V') and E(G) (or simply E) to denote the vertex set and the
edge set of G, respectively. The number |V (&) is the order of the graph . Sometimes
it is denoted |G|. By ||G]| we denote the number of edges of G. A graph with n vertices

and m edges is called a (n,m) graph. The (1,0) graph is the trivial graph.

o

[Neighbor and independent set] If uv is an edge in &, then we say ‘v and v are adjacent
in &7 or *u is a neighbor of v'. We write 1 ~ v to denote that ‘u is adjacent to v’. Two
edges e and e are adjacent if they have a common end vertex. A set of vertices or edges
is independent if no two of them are adjacent.

6. [Isolated and pendant vertex] If v € V(G), by N(v) or Ng(v), we denote the set of
neighbors of v in G and |N (v)| is called the degree of v. It is usually denoted by dg (v) or
d(v). A vertex of degree 0 is called isolated. A vertex of degree one is called a pendant

Vertex.

Example 8.1.7. Consider the graph G in Figure 8.2. The vertex 12 is an isolated vertex. We
have N(1) = {2,4,7}, d(1) = 3. The set {9,10,11,2,4, 7} is an independent vertex set. The set
{{ 1,2}, {8, 10}, {4. 5}} is an independent edge set, The vertices 1 and 6 are not adjacent.

Definition 8.1.8. [Complete graph, path graph, cycle graph and bipartite graph] Let G =
(V. E) be a graph on n vertices, say V' = {vy,...,vy}. Then, G is said to be a
1. complete graph, denoted K, if each pair of vertices in G are adjacent.

2. path graph, denoted P,,, if E = {vjv;q |1 <i<n—1}.

Prepared by: R.Gayathri, Asst Prof, Department of Mathematics, KAHE Page 2/17




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: | M.SC MATHEMATICS COURSE NAME: GRAPH THEORY & ITS APPLICATIONS
COURSE CODE: 17MMP205A UNIT: | BATCH-2017-2019

3. cycle graph, denoted C,,, if E = {vv;1 |1 <i<n—1}U{wu ).

4. complete bipartite graph, denoted K, ; and E = {v;v; |1 < i <rr+1<j < n} with

r+—s8=1.

Lemma 8.1.10. [Hand shaking lemma] In any graph G, 3 d(v) = 2|E|. Thus, the number
veEV
of vertices of odd degree is even.

Proof. Each edge contributes 2 to the sum >  d(v). Hence, )  d(v) = 2|E|. Note that

vV velV
20E| =Y dw)= Y dv)+ Y d)
vey d(v) is odd d(v) 15 even
is ever. So, Y. d(v) is even. Hence, the number of vertices of odd degree is even. m

d(v) is odd

Prepared by: R.Gayathri, Asst Prof, Department of Mathematics, KAHE Page 3/17




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: | M.SC MATHEMATICS COURSE NAME: GRAPH THEORY & ITS APPLICATIONS
COURSE CODE: 17MMP205A UNIT: | BATCH-2017-2019

Proposition 8.1.12. In a graph G with n = |G| > 2, there are two vertices of equal degree.

Proof. If G has two or more isolated vertices, we are done. So, suppose &G has exactly one
isolated vertex. Then, the remaining n — 1 vertices have degree hetween 1 and n — 2 and hence
by PHP, the result follows. If G has no isolated vertex then G has n vertices whose degree lie

between 1 and n — 1. Now, again apply PHP to get the required result. [ |

Example 8.1.13. The graph in Figure 8.5 is called the Petersen graph. We shall use it as

an example in many places.

]

6

)
4 .q'.(

5
Figure 8.5: Petersen graphs

Definition 8.1.15. [Regular graph, cubic graph] The minimum degree of a vertex in G is
denoted 4(G') and the maximum degree of a vertex in & is denoted A(G). A graph G is called

k-regular if d(v) = k for all v € V(G). A 3-regular graph is called cubic.

Definition 8.1.18. [Subgraph, induced subgraph, spanning subgraph and k-factor] A graph
H is a subgraph of G if V(H) C V(G) and E(H) € E(G). If U C V(G), then the subgraph
induced by U is denoted by (U) = (U, E), where the edge set E = {uwv € E(G) |u,v € U}. A
subgraph H of (7 is a spanning subgraph if V() = V(H). A krepular spanning suberaph is

called a k-factor.
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Example 8.1.22. Consider the graph & in Figure 8.2. Let Hs be the graph with V(Ha) =
16,7.8,9,10,12} and E(Hs) = {{6.?}._ {8, l[}}}. Consider the edge e = {8,9}. Then, Hs 4 ¢ is
:he induced subgraph ({6,7,8,9,10,12}) and Hs — 8 = ({6,7.9,10,12}).

Definition 8.1.23. [Complement graph] The complement G of a graph G is defined as
VI(G),E), where E = {uv | u # v,uv ¢ E(G)}.

Example 8.1.24. 1. See the graphs in Figure &.6.

1 3 4 3 ] q
2 2
¥, :
1 2 1 2 1 ]
3 i 5 '3_
Cy 'y C Ce=0Ck

Figure 8.6: Complement graphs

2. The complement of Az contains 3 isolated points.
3. For any graph G, |G| + ||G|| = C(|G],2).
4. In any graph G of order n, dg(v) + d5(v) = n—=1. Thus, A(G) + AG)=n—1.

Definition 8.1.26. [Intersection, union and disjoint union] The intersection of two graphs
( and H, denoted G N H, is defined as (V(G)NV(H), E(G)NnE(H)). The union of two graphs
G and H, denoted GUH , is defined as (V(G)UV(H), E(G)UE(H)). A disjoint union of two

eraphs is the union while treating the vertex sets as disjoint sets.

Example 8.1.27. Two graphs ¢ and H are shown below. The graphs G U H and G H are

also shown below.

2 2 2 2
A 47 47I /
1 3 1 1 3 1
G H GUH GnH
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2 h i 2
2 2
_1.!'
A ; Ky C Ky
1 3 1’ 3
1 @ 1 b
G, Ka+ K3 G+

Figure 8.7: Disjoint union and join of graphs

Definition 8.1.28. [Join of two graphs] If V(&) NV (G") = 0, then the join G + G’ is defined
as GUG + [vv' 1 v e V, v € V'), The first ‘+’ means the join of two graphs and the second
‘+' means adding a set of edges to a given graph.

Connectedness

Definition 8.2.1. [Walk, trail, path, cycle, circuit, length and internal vertex] An u-v
walk in G is a finite sequence of vertices [u = vy, v9,--- , v = v] such that vv;; € E, for all
i=1,--- .k —1. The length of a walk is the number of edpes on it. A walk is called a trail if
edges on the walk are not repeated. A v-u walk is a called a path if the vertices involved are all

distinet, except that v and u may be the same. A path can have length 0. A walk (trail, path)
is called closed if u = v. A closed path is ealled a cycle/circuit. Thus, in a simple graph a

cycle has length at least 3. A cycle (walk, path) of length k is also written as a k-cyele (k-walk,
k-path). If P is an u-v path with u # v, then we sometimes call u and v as the end vertices

of P and the remaining vertices on P as the internal vertices.

Proposition 8.2.3 (Technique). Let G be a graph andw,v € V(G), u #v. Let W = [u =

- e
i, ... up =v| be a walk. Then, W contains an u-v-path.

Proof. If no vertex on W repeats, then W is itself a path. So, let w; = u; for some i < j. Now,
consider the walk Wy = [uy,..., %1, %, 841,...u). This is also an u-v walk but of shorter

length. Thus, using induction on the length of the walk, the desired result follows. =
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Proposition 8.2.10. Every graph G containing a cycle satisfies g(G) < 2diam(G) + 1.

Proof. Let C = [vq,va,...,v, 1] be the shortest eycle and diam(G) = r. If k = 2r + 2, then
consider the path P = [v1,ve,....vp40]. Since the length of P is r + 1 and diam(G) = r, there
is a vyyo9-17 path R of length at most r. Note that P and R are different vi-v,+0 paths. By
Proposition 8.2.9, the closed walk P U R of length at most 2r + 1 contains a cycle. Hence, the

length of this cyele is at most 2r+ 1, a contradiction to €' having the smallest length k = 2r+2m

Definition 8.2.11. [Chord, chordal and acyclic graphs] Let C' = [vy,... v, = v¢] be a cycle.
An edge v;v; is called a chord of C if it is not an edge of C. A graph is called chordal if each

cyele of length at least 4 has a chord. A graph is acyclic if it has no cycles.

Definition 8.2.14. 1. [Maximal and minimal graph] A graph & is said to be maximal
with respect to a property P if & has property P and no proper supergraph of G has the

property P. We similarly define the term minimal.

Proposition 8.2.17. If §(G) = 2, then G has a path of length 8(G) and a cyele of length at
least 8(G) + 1.

Proof. Let [vq,--- ,vg| be a longest path in G. As d(vx) > 2, v is adjacent to some vertex
v # vp_q. If v is not on the path, then we have a path that is longer than [vq,--- ,v;] path. A

contradiction. Let i be the smallest positive integer such that 1; is adjacent to v.. Thus,
6(G) < d(ve) < [{ve, visa, - k-1 }-

Hence, the cycle € = [v;, v41.--- , Uk, v;] has length at least §(G) +1 and the length of the path
P = [v;,v541,--+ ,v] is at least §(G). N

Definition 8.2.18. [Edge density] The edge density, denoted (&), is defined to be the

mumber JI%} Ohbserve that () is also a graph invariant.
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Isomorphism in Graphs

Definition 8.3.1. [Isomorphic graphs] Two graphs G = (V, E) and G’ = (V', E') are said to
be isomorphic if there is a bijection f : V' — V' such that u ~ v is G if and only if f(u) ~ f(v)
in G', for each w,v € V. In other words, an isomorphism is a bijection between the vertex sets

which preserves adjacency. We write G = &' to mean that G is isomorphic to G”.

Example 8.3.2. Consider the graphs in Figure 5.9. Then, note that

4
3 G 2 4
5 3 .
2 5
6 2
1 4 1 3
1
# « H

Figure 8.9: F is isomorphic to & but F is not isomorphic to H

1. the graph F is not isomorphic to H as the independence number, denoted o F), of F
(the maximum size of an independent vertex set) is 3 whereas r(H) = 2. Alternately, H
has a 3-cycle, whereas F does not.

2. the graph F is isomorphic to & as the map f : V(F) — V(&) defined by f(1) = 1,
f(2) =5, f(3) =23, f(4) =4, f(5) =2 and f(6) = 6 gives an isomorphism.

Definition 8.3.5. [Self-complementary] A graph & is called self-complementary if G = .
Example 8.3.6. 1. Note that the eyele Cs = [0,1,2,3.4,0] is self complimentary. An iso-
morphism from G to G is described by f(i) = 2 (mod 5).

2. If |G| =n and G =Z G then ||G|| = n(n — 1)/4. Thus, n = 4k or n = 4k + 1.

Definition 8.3.8. A graph invariant is a function which assigns the same valie (output) to

isomorphic graphs.

Example 8.3.9. Observe that some of the graph invariants are: |G|, |G|, A(G), §(G), the
multiset {d(v) : v € V(G)}, w(G) and oG).
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Definition 8.3.12. An isomorphism of &7 to &F is called an automorphism.
Example 8.3.13. 1. Identity map is alwawvs an auntomorphism on anyv graph.
2. Any permutation in S, is an automorphism of K.

3. There are only two antomorphisms of a path FPk.

Trees

Definition 8.4.1. [Tree and forest] A connected acyclic graph is called a tree. A forest is a
craph whose components are trees.

Proposition 8.4.2. Let T be a tree and u,v € V{T'). Then, there is a unique u-v-path in T

Proof. On the contrary, assume that there are two u-v-paths in T. Then, by Proposition 8.2.9,

T has a cycle, a contradiction. |

Proposition 8.4.3. Let G be a graph with the property that ‘between each pair of vertices there
is a unique path’. Then, G is a tree.

Proof. Clearly, G is connected. If G has a cyele [vy,va,--- v = vq], then Jui,ve,..., vp—1] and

[v1, vi—1] are two wi-vg—1 paths, A contradiction. -

Definition 8.4.4. [Cut vertex] Let & be a connected graph. A vertex v of G is called a cut
vertex if ¢ — v is disconnected. Thus, G — v is connected if and only if v is not a cut vertex.
Proposition 8.4.5. Let G be a connected graph with |G| = 2. If v € V(G) with d(v) = 1, then

G — v is connected. That is, a verter of degree 1 is never a cut vertez.

Proof. Let w,w € V(G —1v), u+# w. As (G is connected, there is an u-w path P in 7. The vertex
v cannot be an internal vertex of P, as each internal vertex has degree at least 2. Hence, the

path P is available in G —v. 50, (G — v is connected. =

Proposition 8.4.6 (Technique). Let G be a connected graph with |G| = 2 and let v € V(G). If

(7 — v is connected, then either d(v) =1 or v is on a cyele.

Proof. Assume that G — v is connected. If d;(v) = 1, then there is nothing to show. So, assume
that d(v) = 2. We need to show that v is on a cycle in G.
Let u and w be two distinct neighbors of v in &. As G — v is connected there is a path, say

[u=wui,....up = w], in G —v. Then, [u=wuy,...,u =w,v,u] is a cycle in G containing v. =
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Definition 8.4.8. [Cut edge] Let G be a graph. An edge € in G is called a cut edge or a

bridge if G — ¢ has more connected components than that of G.

Proposition 8.4.9 (Technique). Let G' be connected and e = [u,v] be a cut edge. Then, G — e
has two components, one containing u and the other containing v.

Proof. If ¢ — e is not disconnected, then by definition, ¢ cannot be a cut edge. So, G — e has
at least two components. Let Gy (respectively, ) be the component containing the vertex u
(respectively, ©). We claim that these are the only components.

Let w € V(&). Then, ¢ is a connected graph and hence there is a path, say P, from w to
t. Moreover, either P contains v as its internal vertex or P doesn't contain v. In the first case,
w € V(Gy) and in the latter case, w € V(G ). Thus, every vertex of G is either in V(G,) or in

V(G,) and hence the required result follows. =

Proposition 8.4.10 (Technique). Let G be a graph and e be an edge. Then, € is a cut edge if

and only if € is not on a cycle.

Proof. Suppose that ¢ = [u,v] is a cut edge of G. Let F be the component of GG that contains
£. Then, by Proposition 8.4.9, F — e has two components, namely, F, that contains u and F,
that contains v.

Let if possible, C = [u.v = vq,....1 = u| be a eycle containing ¢ = [u,v]. Then, [v =
U1,..., U = 1] i3 an u-v path in F — e, Hence, F — e is still connected. A contradiction. Hence,
£ cannot be on any cyele.

Conversely, let e = [u,v] be an edge which is not on any cycle. Now, suppose that F is the

component of ¢ that contains e. We need to show that F — e is disconnected.

Let if possible, there is an w-v-path, say [u = uq,...,uy = v, in F —e. Then, [v,u =
ty,...,u = v] is a cycle containing e. A contradiction to e not lying on any cyele.
Hence, € is a cut edge of F. Consequently, e is a cut edge of G. [ |
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Theorem 8.4.12. Let G be a graph with V(G) = [n]. Then, the following are equivalent.

1. G is a tree.
2. G is a minimal connected graph on n vertices.

3. G is a mazrimal acyclic graph on n vertices.

Proof. (a)=-(b). Suppose that & is a tree. If it is not a minimal connected graph on n vertices,
then there is an edge [u, v] such that G — [u, v] is connected. But then, by Theorem 8.4.10, [u, v]

is on a cycle in (. A contradiction.

(b)=-(e), Suppose  is a minimal connected graph on n vertices. If G has a cycle, say I, then
select an edge e € I'. Thus, by Theorem 8.4.10, G — e is still connected graph on n vertices, a
contradiction to the fact that &G is a minimal connected graph on n vertices. Hence, G is acyelic.
Since G is connected, for any new edge e, the graph & + e contains a cycle and hence, G is
maximal acyelic graph.

(c)=-(a). Suppose (¢ is maximal acyclic graph on n vertices. If (7 is not connected, let G and
(3 be two components of G. Select vy € Gy and vy € Gy and note that G + [vq, vs] is acyclic
oraph on n vertices. This contradicts that & is a maximal acyclic graph on n vertices. Thus, ¢

is connected and acyelic and hence is a tree. =
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Proposition 8.4.15. Lei T be a tree on n vertices. Then, T has n — 1 edges.

Proof. We proceed by induction. Take a tree on n > 2 vertices and delete an edge e. Then, we get
two subtrees T7, Ty of order ny, na, respectively, where n; +no = n. So, E(T) = E(T})UE(Ty)uU
{e}. By induction hypothesis |T|| = |[Ti]|+ |72+ 1=n1—1+ne—1+1=nj+ne—1=n—1m

Proposition 8.4.16. Let G be a connected graph with n vertices and n — 1 edges. Then, G is

acyclic.

Proof. On the contrary, assume that & has a cycle, say I'. Now, select an edge € € I and note
that ¢ — e is connected. We go on selecting edges from G that lie on cveles and keep removing
them, until we get an acvelic graph H. Since the edges that are being removed lie on some
cyele, the graph H is still connected. So, by definition, H is a tree on n vertices. Thus, by
Proposition 8.4.15, |E(H)| = n — 1. But, in the above argument, we have deleted at least one
edge and hence, |E(G)| > n. This gives a contradietion to |E(G)| =n — 1. =

Proposition 8.4.17. Let G be an acyclic graph with n vertices and n — 1 edges. Then, G is

conrnected,

Proof. Let if possible, G be disconnected with components Gy, ....Gp, &k = 2. As G is acyclic,

by definition, each G; is a tree on, say n; > 1 vertices, with ¥ i = 1¥n; = n. Thus, |G| =

A.
Ymi—1)=n—k<n—1=|G|, as k = 2. A contradiction. -
i—1

Eulerian Graphs

Definition 8.6.1. [Eulerian graph] An Eulerian tour ina graph G is a closed walk [vg, vy, ... vg. vg)
such that each edege of the praph appears exactly onee in the walk. The graph & is said to be
Eulerian if it has an Eulerian tour.
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Theorem 8.6.2. [Euler, 1736] A connected graph G is Eulerian if and only if d{v) is even, for
each v € V(G).

Proof. Let G have an Eulerian tour, say [vg,v1,...,U,tp]. Then, d(v) = 2r, if v # v and v
appears r times in the tour. Also, d{vg) = 2(r — 1), if vy appears r times in the tour. Hence,

d{v) is alwavs even.

Figure 8.12: Konigsherg bridge problem

Conversely, let ¢ be a connected praph with each wertex having even depree. Let W =

gty - - - v be a longest walk in & without repeating any edge in it. As vy has an even degree
it follows that v = vg, otherwise W can be extended. If W is not an Eulerian tour then there
exists an edge, say € = vyw, with w £ v;_q,1v541. In this ease, ww; - -- U= vglvy ---v;_11; is a

longer walk, a contradiction. Thus, there is no edge lying ontside W and hence W is an Eulerian

tonr. -

Proposition 8.6.3. Let ¢ be a connected graph with eractly two vertices of odd degree. Then,

there is an Eulerian walk starting at one of those vertices and ending at the other.

Proof. Let x and y be the two vertices of odd degree and let v be a symbol such that v € V (G).
Then, the graph H with V(H) = V(G) U {v} and E(H) = E(G) U {rv,yv} has each vertex of
even degree and hence by Theorem 8.6.2, H is Euléerian. Let I' = v, vy = x,...,vs = ¥, v] be an

Eulerian tour. Then, I' — v is an Eulerian walk with the required properties. -

Definition 8.6.8. [bipartite graph] A graph &G = (V. E) is said to be bipartite it V =V, UV,
such that |Vil,|Va| = 1, VinVa = B and ||[{Vi}|]| = 0 = ||{V2}||. The complete bipartite graph

K n is shown below. Notice that Kmmn = Km + K a.

nossible edpges
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Hamiltonian Graphs

Definition 8.7.1. [Hamiltonian] A cyele in & is said to be Hamiltonian if it contains all
vertices of . If ¢ has a Hamiltonian cyele, then 4 is called a Hamiltonian praph. Finding a
nice characterization of a Hamiltonian graph is an unsolved problem.

Example 8.7.2. 1. For each positive integer n = 3, the cycle (', is Hamiltonian.

The dodeecahedron graph The Petersen graph

Figure 8.13; A Hamiltonian and a non-Hamiltonian graph

2. The praphs corresponding to all platonic solids are Hamiltonian.
3. The Petersen graph is a non-Hamiltonian Graph (the proof appears below).
Proposition 8.7.3. The Petersen graph is not Hamiltonian.

FProof. Suppose that the Petersen graph, say ), is Hamiltonian. Also, each vertex of & has
degree 3 and hence, ¢ = Cig + M, where M is a set of 5 chords in which each vertex appears

as an endpoint. We assume that Chip = [1,2,...,10,1]. Now, consider the vertices 1, 2 and 3.

10
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Since, g((&) = 5, the vertex 1 can only be adjacent to one of the vertices 5.6 or 7. Hence,
if 1 is adjacent to 5, then the third vertex that is adjacent to 10 creates cycles of length 3
or 4. Similarly, if 1 is adjacent to 7. then there is no choice for the third vertex that can be
adjacent to 2. So, let 1 be adjacent to 6. Then, 2 must he adjacent to 8, In this case, note that
there is no choice for the third vertex that can be adjacent to 3. Thus, the Petersen graph is

non-Hamiltonian. ™

Theorem 8.7.4. Let G be a Hamiltonian graph. Then, for § € V(G) with S #£ 0, the graph

G — S has at most |5 componenis.

Proaf. MNote that by removing & vertices from a cycle, one can create at most & connected

components. Hence, the required result follows. [ ]

Theorem 8.7.5. [Dirac, 1952] Let & be a graph with |G| = n = 3 and d(v) = n/2, for each
v e V(GE). Then, G is Hamiltonian.

Proof. Let is possible, G be disconnected. Then, & has a component, say H, with [V(H)| =k <
n/2. Hence, d(v) < k—1 < n/2, for each v € V(H). A contradiction to d{v) = n/2, for each
v € V(G). Now, let P = [vq,ve,--- ,vg] be a longest path in G. Sinece P is the longest path, all
neighbors of vy and v are in P,

We claim that there exists an i such that vy ~ w; and v ~ . Otherwise, for each v; ~ vy,
we must have v;_q »« vg. Then, |[N{vg)| < kb —1—=|N(v1)|. Hence, |[N(mn)|+ | Niw)| <k—1<mn,
a contradiction to d(v) > n/2, for each v € V(). So, the claim is valid and hence, we have a
evele P i= vy witisq -+ - Uetii_1 - - - 01 of length k.

We now prove that P gives a Hamiltonian eyele. Suppose not. Then, there exists v € V ((F)
such that v is outside P and v is adjacent to some v;. Note that in this case, P cannot be the

path of longest length, a contradiction. Thus, the required result follows. [

Definition 8.7.8. [closure of a graph] The closure of a graph &, denoted (), is obtained
by repeatedly choosing pairs of nonadjacent vertices wu, v such that diu) + d{v) = n and adding

edges between them.

Proposition 8.7.9. The closure of (G i unigue.

Proof. Let K be a closure obtained by adding edges e = uqvq, ..., ep = upvy sequentially and F
be a closure obtained by adding edges f1 = 21y, - - -, fr = T4y sequentially. Let e; be the Arst
edge in the e-sequence which does not appear in the f-sequence. Put H = G + ey +--- + ;1.

Then, e; = u;v; implies that e; ¢ E(H) and dg(u;:) +dyg{1s) = n. Also, H is a subgraph of F' and

Prepared by: R.Gayathri, Asst Prof, Department of Mathematics, KAHE Page 15/17




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: | M.SC MATHEMATICS COURSE NAME: GRAPH THEORY & ITS APPLICATIONS
COURSE CODE: 17MMP205A UNIT: | BATCH-2017-2019

hence, dp(u;) + dp(v) = n. Moreover, £; = wyw; & F as e; does not appear in the f-sequence.

Thus, F cannot be a closure and therefore the required result follows. =

EXERCISE B.7.10. Let G be a gmph on n = 3 vertices.
1. If G has a eut vertex, then prove that C(G) #£ K,,.

2. Then, prove n generalization of Dirac’s theorem: If the closure C(G) = K, then G is

Hamiltonian.

Theorem 8.7.11. Let dy < --- < d,, be the vertex degrees of (G. Suppose that, for each kb < n/2
with dp << k, the condition d,, ;. = n — k holds. Then, prove that G is Hamiltonian.

Proof. We show that under the above condition H = C(G) = K,,. On the contrary, assume
that there exist a pair of vertices u,v € V(&) such that uv & E(G) and dy(u) +dg({v) <n —1.
Among the above pairs, choose a pair u, v € V(&) such that uwv & E(H) and dg(u) + dg(v) is
maximum. Assume that dyg(v) = dy(u) = k (say). Clearly, & < n/2.

Now, let S, = {z e V(H) |zv ¢ E(H),z £ v} and 5§, = {we V(H) | wu ¢ E(H),w £ u}.
Therefore, the assumption that dy(u) + dg(v) is the maximum among each pair of vertices u, v
with wv ¢ E(H) and dg (1) + dyg(v) < n — 1 implies that |Sy| = n — 1 —dy(v) = dy(un) = &
and for each x € Sy, dy(x) < dg(u) = k. So, there are-at least k vertices in H (elements of 5,)
with degrees at most k.

Also, for any w £ 5. note that the choice of the pair w,v implies that dyg{w) < dg(v) =
n—1—dg(u) =n—1—k < n— k. Moreover, |5y = n — 1 — k. Further, the condition
da{u)+dg(v) =n—1,dy(v) = dg(i) = k and u ¢ S, implies that dg(u) =n—1—dg(v) <
n—1—%k<n—~k So,there are n — k vertices in H with degrees less than n — k.

Therefore, if df < --- < d), are the vertex degrees of H, then we observe that there exists a

k <n/2for whichd, < kandd], , <n—k. As k < n/2 and d; < d}, we get a contradiction. m
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Binary tree: A binary free is a tree where each node has at most two children. A
full binary tree is a tree where all nodes have exactly two children and all leaves are at

the same depth.

Figure 2: A binary tree on the left and a full hinary tree of height 3 on the right.

A tree with n vertices has n — 1 edges.

Algebraic expressions involving binary operations can be represented by labeled bi-
nary trees. The leaves are labeled as operands, and the internal nodes are labeled as
binary operations. For any internal node, the binary operation of its label is performed
on the expressions associated with its left and right subtrees. The binary tree below
represents the algebraic expression (2 + x) — (3 = y).

Fundamental circuits

It the branches of the spanning tree ' ol a connected graph (7 are by, .. ., b,y and the corre-
sponding links of the cospanning tree T™ are ¢, .. .. Cm—n+1, then there exists one and only one
circuit O in T + ¢; (which 1s the subgraph of & induced by the branches of T" and ¢;) (The-
orem 2.1). We call this circuit a fuindamental circuit. Every spanning tree defines m — n + 1
fundamental circuits (s, . .., Ch—nyy, which together form a fundamental set of circuits. Every
fundamental circuit has exactly one link which is not in any other fundamental circuit in the
fundamental set of circuits. Therefore, we can not write any fundamental circuit as a ring sum
of other fundamental circuits in the same set. In other words, the fundamental set of circuits 15
linearly independent under the ring sum operation.
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Example.

(s

PART —B (5x6=30)

1. Show that the sum of the degree of all vertices in a graph equal to twice in a number of
edges incidence in G.
2. 1) Show that if a graph G has exactly two vertices of odd degree there is a path joining
these two vertices.
if) Show that a simple graph with n vertices and k-components can have at most
n—-kn-k+ 1)

2
3. Define (i) Bipartite Graph
(i) Regular Graph
(iii) Complete Graph.
Give an example for each.
4. If G is a tree with n vertices then prove that G has n-1 edges.
5. Prove that a connected graph G is an Euler graph if and only if it can be decomposed
into circuits.
6. Explain Hamiltonian graph.
7. Define walks and paths and Give an example.
8. Prove that a graph G is a tree if and only if it is minimally connected

9. Prove that every tree has either one or two centers.

10. Define (i) weighted graph
(if)isomorphic
(iii) Euler trail. Give an example of each

PART - C (1 x10 =10 marks)
1. Prove that a graph G is a tree | and only if there is one and only one path between any
two vertices of G.
2. Explain walks and paths and Give an example.
3. Discuss Hamiltonian graph.

Prepared by: R.Gayathri, Asst Prof, Department of Mathematics, KAHE Page 18/17




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: | M.SC MATHEMATICS COURSE NAME: GRAPH THEORY & ITS APPLICATIONS

COURSE CODE: 17MMP205A UNIT: | BATCH-2017-2019

Prepared by: R.Gayathri, Asst Prof, Department of Mathematics, KAHE

Page 19/17




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: | M.SC MATHEMATICS COURSE NAME: GRAPH THEORY & ITS APPLICATIONS

COURSE CODE: 17MMP205A UNIT: 11 BATCH-2017-2019
UNIT — 11
SYLLABUS

Spanning tree in weighted graph — cut sets — properties of cut sets — all cuts sets —
fundamentals circuits and cut sets — connectivity and separability — network flows — |
isomorphism — Il isomorphism — combinational verus geometric graphs — planer graphs —
different representation of planar graphs

Cut Edge (Bridge) A bridge is a single edge whose removal disconnects a graph.
a C

O

b d

The above graph G1 can be split up into two components by removing one of the edges bc

or bd. Therefore, edge bc or bd is a bridge.

d e
C d
b f
The above graph G2 can be disconnected by removing a single edge, cd. Therefore, edge cdis a
bridge.
a d
C
b e

The above graph G3 cannot be disconnected by removing a single edge, but the removal of two

edges (such as ac and bc) disconnects it.
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b d
The above graph G4 can be disconnected by removing two edges such as ac and dc.
Cut Set
A cut set of a connected graph G is a set S of edges with the following properties
e The removal of all edges in S disconnects G.
e The removal of some (but not all) of edges in S does not disconnects G.
As an example consider the following graph

b

: d f

£y £y
: O
|

|

|

) Nl
C I e g

We can disconnect G by removing the three edges bd, bc, and ce, but we cannot disconnect it by
removing just two of these edges. Note that a cut set is a set of edges in which no edge is
redundant.

Cut-Vertex

A cut-vertex is a single vertex whose removal disconnects a graph.

It is important to note that the above definition breaks down if G is a complete graph, since we
cannot then disconnects G by removing vertices. Therefore, we make the following definition.
Connectivity of Complete Graph

The connectivity k(kn) of the complete graph kn is n-1. When n-1 >k, the graph ki is said to be k-
connected.

Vertex-Cut set

A vertex-cut set of a connected graph G is a set S of vertices with the following properties.
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a. the removal of all the vertices in S disconnects G.
b. the removal of some (but not all) of vertices in S does not disconnects G.
Consider the following graph

b h

d f
O e O

N
C e g
We can disconnects the graph by removing the two vertices b and e, but we cannot disconnect it
by removing just one of these vertices. the vertex-cutset of G is {b, e}.
Note that the connectivity k(G) does not exceed the edge-connectivity A(G). This inequality
holds for all connected graph.
Formally, for any connected graph G we have

K(G) < MG) <4(G)

where 6(G) is the smallest vertex-degree in G. But it is certainly possible for both inequality in
above theorem to be strict inequalities (that is, k(G) < A(G) < 6(G)) For example, in the following

graph,

K(G)=1, MG) =2, and 8(G) = 3.

Edge Connectivity

The edge-connectivity A(G) of a connected graph G is the smallest number of edges whose

removal disconnects G. When A(G) >k, the graph G is said to be k-edge-connected.

For example, the edge connectivity of the below four graphs G1, G2, G3, and G4 are as follows:
e G1 has edge-connectivity 1.

e (G2 has edge connectivity 1.
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e G3 has edge connectivity 2.

e G4 has edge connectivity 2.
a C

O

b d

The above graph G1 can be split up into two components by removing one of the edges bcor bd.
Therefore, edge bc or bd is a bridge.

= e

b f
The above graph G2 can be disconnected by removing a single edge, cd. Therefore, edge cdis a

bridge.

b e
The above graph G3 cannot be disconnected by removing a single edge, but the removal of two

edges (such as ac and bc) disconnects it.

i

b d

The above graph G4 can be disconnected by removing two edges such as ac and dc.

Vertex Connectivity
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The connectivity (or vertex connectivity) K(G) of a connected graph G (other than a complete
graph) is the minimum number of vertices whose removal disconnects G. WhenK(G) > k, the
graph is said to be k-connected (or k-vertex connected). When we remove a vertex, we must also

remove the edges incident to it. As an example consider following graphs.

b od

The above graph G can be disconnected by removal of single vertex (either b or ¢). The G has

a a
I; C d i
b f

The above graph G can be disconnected by removal of single vertex (either ¢ or d). The

connectivity 1.

vertex ¢ or d is a cut-vertex. The G has connectivity 1.

a
C
b d

The above G cannot be disconnected by removing a single vertex, but the removal of two non-

adjacent vertices (such as b and c¢) disconnects it. The G has connectivity 2.

Connectivity
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Proposition 8.5.1. Let G be a connected graph on vertex set [n]. Then, its vertices can be

labeled in such a way that the induced subgraph on the set [i] is connected for 1 <i < n.

Proof. If n = 1, there is nothing to prove. Assume that the statement is true if n < & and let &G
be a connected graph on the vertex set [k]. If G is a tree, pick any pendant vertex and label it
k. If G has a cycle, pick a vertex on a cycle and label it k. In both the case G — k is connected.

Now, use the induction hypothesis to get the required result. [ ]

Definition 8.5.2. [Separating set] Let G be a graph. Then, a set X C V(G) U E(G) is called

a separating set if G — X has more connected components than that of G.

Prepared by: R.Gayathri, Asst Prof, Department of Mathematics, KAHE Page 6/11




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: | M.SC MATHEMATICS COURSE NAME: GRAPH THEORY & ITS APPLICATIONS
COURSE CODE: 17MMP205A UNIT: 11 BATCH-2017-2019

Definition 8.5.4. [Vertex connectivity] A graph & is said to be k-connected if |G| = k and
(G is connected even after deletion of any k& — 1 vertices. The vertex connectivity k(G) of a

non trivial graph G is the largest k such that & is k-connected. Convention: k(Ki) = (0.
Example 8.5.5. 1. Each connected graph of order more than one is 1-connected.
2. A 2-connected graph is also a 1-connected graph.

3. For a disconnected graph, k(G) =0 and for n > 1, k(K,,) =n — L

19

. The graph G in Figure 8.11 is 2-connected but not 3-connected. Thus, k(G) = 2.

XX

Figure 8.11: graph with vertex connectivity 2

. The Petersen graph is 3-connected.

[y |

Definition 8.5.6. [Edge connectivity] A graph G is called [-edge connected if |G| > 1 and
G — F is connected for every I C E(G) with |F| < [. The greatest integer [ such that G is
l-edge connected is the edge connectivity of G, denoted A(G). Convention: A(K;) = 0.
Example 8.5.7. 1. Note that A(F,) = 1,A(C},) =2 and AMK,,) =n — 1, whenever n > 1.
2. Let T be a tree on n vertices. Then, A\(T) = 1.
3. For the graph & in Figure 8.11, A(G) = 3.
4. For the Petersen graph G, A(G) = 3.
Theorem 8.5.9. [H. Whitney, 1932] For any graph G, k(G) < AG) < §(G).

Proof. If G is disconnected or |G| = 1, then we have nothing to prove. So, let G be connected
graph and |G| = 2. Then, there is a vertex v with d(v) = 4(G). If we delete all edges incident
on v, then the graph is disconnected. Thus, 4(G) = A(G).

Suppose that A(G) = 1 and G — uv is disconnected with components ', and C,. If |Cy| =

|Cy| =1, then G = Ky and k(G) = 1. If |C},] = 1, then we delete u to see that £(G) = 1.
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If M(G) = k = 2, then there is a set of edges, say e;,..., e, whose removal disconnects G.
Notice that G — {e1,...,er_1} is a connected graph with a bridge, say e = uv. For each of
€1.....65_1 select an end vertex other than u or v. Deletion of these vertices from ' results
in a graph H with uv as a bridge of a connected component. Note that £(H) < 1. Hence,
k(G) < AG). m

Separability

Prorosimion 2.6,  For any positive integer p and any integer q such
that 0=g = p(p — 1)/2 there is a simple (p,q) graph.

Proof. The proof is by induction on p. Since the trivial graph is
simple, the result is true for p = 1.  Assume the proposition is true for
p =k, and let g be an integer such that

=g =(k+ 1)k/2.

If g = k(k —1)/2 then the result follows from the induction hypothesis
since there is a simple (k, g) graph from which a simple (k + 1. g ) graph
is obtained by adding a point of degree zero (Corollary 2.5).

On the other hand if g satisfies

kik—N1i2=q

then g =0+ k(k—1)/2 where 0=[=k To get the desired simple
graph we adjoin a new point to any [ points of K,. The graph so
obtained is simple because its complement is the union of K,, , and
trivial graphs.

The next result goes in the opposite direction.
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Network flow

Metworks can be used to represent the transportation of
some commodity through a system of delivery channels.
There are sources (x) and sinks (y).

The network is a directed graph, where each arc a is
associated with a capacity, c(a).

1

Isomorphism in Graphs

Definition 8.3.1. [Isomorphic graphs| Two graphs G = (V. E) and ' = (V', E') are said to
be isomorphic if there is a bijection f : V — V" such that u ~ v is G if and only if f(u) ~ f(v)
in ', for each u,v € V. In other words, an isomorphism is a bijection between the vertex sets

which preserves adjacency. We write G 2 G' to mean that G is isomorphic to G

Prepared by: R.Gayathri, Asst Prof, Department of Mathematics, KAHE Page 9/11




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: | M.SC MATHEMATICS COURSE NAME: GRAPH THEORY & ITS APPLICATIONS
COURSE CODE: 17MMP205A UNIT: 11 BATCH-2017-2019

Example 8.3.2. Consider the graphs in Figure 89. Then, note that

4
] 6 ) 4
i 3 .
) 5
( 2
1 4 1 3
1
F G H

Figure 8.9: F is isomorphic to G but F is not isomorphic to H

1. the graph F is not isomorphic to H as the independence number, denoted a(F), of F
(the maximum size of an independent vertex set) is 3 whereas a(H) = 2. Alternately, H

has a 3-cycle, whereas F does not.

2. the graph F is isomorphic to G as the map f : V(F) = V(G) defined by f(1) = 1,
f(2)=5, f(3)=3, f4) =4, f(5) =2 and f(6) =6 gives an isomorphism.
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Planar Graphs

Definition 8.12.1. [Embedding, Planar graph] A graph is said to be embedded on a surface
S when it is drawn on S so that no two edges intersect. A graph is said to be planar if it can

be embedded on the plane. A plane graph is a graph which is embedded on the plane.

K's-Non-planar K3 3-Non-planar Ky Ky - Planar embedding

Figure 8.15: Planar and non-planar graphs

Example 8.12.2. 1. A tree is embed-able on a plane and when it is embedded we have only

one face, the exterior face.
2. Any eyele Oy, n = 3 is planar and any plane representation of €', has two faces.
3. The planar embedding of K is given in Figure 8.15.
4. Draw a planar embedding of K5 5.

Draw a planar embedding of the three dimensional cube.

[y }

Definition 8.12.3. [Face of a planar embedding] Consider a planar embedding of a graph
G. The regions on the plane defined by this embedding are called faces/regions of G. The

unbounded face/region is called the exterior face (see Figure 8.16).
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14 13
fa
2 1 11 )
15 f-*l f’!
i 2 3 1 5
T .0
Planar Graph X, Planar Graph X,

Figure 8.16: Planar graphs with labeled faces to understand the Euler’s theorem

Theorem 8.12.4. [Euler formula] Let G be a connected plane graph with f as the number of
faces. Then,
Gl =G|+ f =2 (8.3)

Proof. We use induction on f. Let f = 1. Then, G cannot have a subgraph isomorphic to a
cycle. For if, G has a subgraph isomorphic to a cycle then in any planar embedding of &, f = 2.
Therefore, G is a tree and hence |G| - |G|+ f=n—-(n—-1)+1=2.

So, assume that Equation (8.3) is true for all plane connected graphs having 2 < f < n. Now,
let ¢ be a connected planar graph with f = n. Now, choose an edge that is not a cut-edge, say
£. Then, G — e is still a connected graph. Also, the edge e is incident with two separate faces

and hence it’s removal will combine the two faces and thus ¢ — e has only n — 1 faces. Thus,
Gl -G+ f=1G—¢€|—(|IG-€e|+1)+n=|C—¢e|-||G—¢]|+(n—-1)=2
using the induction hypothesis. Hence, the required result follows. =

Lemma 8.12.5. Let G be a plane bridgeless graph with |G|| = 2. Then, 2||G|| = 3f. Further,
if G has no cyele of length 3 then, 2||G|| = 4f.
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Proof. For each edge put two dots on either side of the edge. The total number of dots is 2||G||.
If ¢ has a cycle then each face has at least three edges. So, the total number of dots is at least
3f. Further, if G does not have a cycle of length 3, then 2||G|| = 4f. =

Theorem 8.12.6. The complete graph Ky and the complete bipartite graph K35 are not planar.

-

Proof. 1f Ky is planar, then consider a plane representation of it. By Equation (8.3), f = T.
But, by Lemma 8.12.5, one has 20 = 2||G|| = 3f = 21, a contradiction.

If K4 is planar, then consider a plane representation of it. Note that it does not have a Cy.
Also, by Euler’s formula, f = 5. Hence, by Lemma 8.12.5, one has 18 = 2||G|| = 4f = 20, a

contradiction. ™

Definition 8.12.7. [Subdivision, homeomorphic] Let &G be a graph. Then, a subdivision of
an edge uv in & is obtained by replacing the edge by two edges uw and wv, where w is a new
vertex. Two graphs are said to be homeomorphic if they can be obtained from the same graph

by a sequence of subdivisions.
Different representation of a planar graphs

Definition 8.12.12. [Maximal planar] A graph is called maximal planar if it is planar and
addition of any more edges results in a non-planar graph. A maximal plane graph is necessarily

connected.

Proposition 8.12.13. If G is a marimal planar graph with m edges and n = 3 vertices, then

every face is a triangle and m = 3n — 6.

Proof. Suppose there is a face, say f, described by the eyele [uq,... ug, uq], & = 4. Then, we
can take a curve joining the vertices uy and us lying totally inside the region f, so that G+ ujus
is planar. This contradicts the fact that & is maximal planar. Thus, each face is a triangle. It

follows that 2m =3f. Asn—m+ f=2 wehave2m=3f=3(2—n+m)orm=3n—6. m
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PART B (5X6=30 Marks)

1.Prove that every cut-set in a connected graph G must contain atleast one branch of
every spanning tree of G.

2. Explain about fundamental cut-sets and fundamental circuit in a graph

3. Explain Kruskal algorithm and Prim’s algorithm for shortest spanning tree with
example.

. Prove that the maximum flow possible between two vertices a and b in a network is
equal to the minimum of the capacities of all cut-sets with respect to a and b.

. Explain about Network flows in a graph.

N

o1

()]

. Prove that the complete graph of five vertices is nonplanar

\I

. Prove that the vertex connectivity of any graph G can never exceed the edge
connectivity of G.

8. Expalin about planar graphs

9. Prove that the minimum height of a n vertex binary tree is equal to [log(n+1)-1]

10. Define (i) edge connectivity

(ii) vertex connectivity

(iii) separable graph

PART C (1X10=10 Marks)

1.Prove that every circuit has an even number of edges in common with any cut-set
2. Explain the complete graph of five vertices is nonplanar

3. Discuss about fundamental cut-sets and fundamental circuit in a graph
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UNIT-IV

SYLLABUS

Directed Graphs- Types of Directed Graphs- Types of enumeration, counting labeled trees, counting
unlabelled trees, Polya’s counting theorem, graph enumeration with polya’s theorem.

DIRECTED GRAPH

Digraphs (Directed graphs): A digraph D is a pair (V. A), where V is a nonempty set
whose elements are called the vertices and A is the subset of the set of ordered pairs of
distinct elements of V. The elements of A are called the arcs of D (Fig. 11.1(a)).

TYPES OF DIRECTED GRAPHS

Multidigraphs: A multidigraph I is a pair (V. A). where V is a nonempty set of vertices
and A is a multiset of arcs, which is a multisubset of the set of ordered pairs of distinct
elements of V. The number of times an arc occurs in [ is called its mulriplicity and arcs
with multiplicity greater than one are called multiple arcs of D (Fig. 11.1(b)).

General digraphs: A general digraph D is a pair (V, 4), where V is a nonempty set
of vertices, and A is a multiset of arcs, which is a multisubset of the cartesian product of
V with itself. An arc of the form wu is called a loop of D and arcs which are not loops are
called proper arcs of D. The number of times an arc occurs is called its multiplicity. A
loop with multiplicity greater than one is called a multiple loop (Fig. 11.1(c)).

Oriented graph: A digraph containing no symmetric pair of arcs is called an oriented
graph (Fig. 11.1(d)).

A

L L.
- -

rl N
= -

(@) (b ) (d)

A vertex v for which a4+ (v) —d [1-} =015 called an isodate. A vertex v is called a frans-
mitter or a receiver according as d7(v) > 0, d"(vi =0ord*(v) =0, d" (v) = 0. A vertex v is
called a carrierif d¥ (v =d (v) = L.
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Underlying graph of a digraph: Let D= (V, A) be adigraph. The graph G = (V. E),
where wv = E if and only if uv or vu or both are in A, is called the underlyving graph of D.
This is also called the covering graph C(D) of D. Here we denote C(D) by G(D) or simply
by G.

In case G = (V. E) is a graph, the digraph with vertex set V and a symmetric uv whenever
wv £ E, is called the digraph corresponding to G, and is denoted by D(G), or D. Clearly,
D(G) is a symmetric digraph. An oriented graph obtained from the graph G = (V. E) by
replacing each edge wv € E by an arc wv or vu, but not both is called an orientation of G and
is denoted by O(&) or O,

Complete symmetric digraph: A digraph D = (V. A) is said to be complete if both
wv and vu = A, for all u, v £ V. Obviously this corresponds to K,, where |V| =n, and is
denoted by K. A complete antisymmetric digraph, or a complete oriented graph is called
a towrnament. Clearly, a tournament is an orientation of K, (Fig. 11.2).

v

%
o

Complete symmetric digraph Tournament

We note that the number of arcs in K isn (n— 1) and the number of arcs in a tournament

j."i rin—1}

TYPES OF ENUMERATION

A permutation of a set S is a one-to-one, onto
function from S to itself.

Cor 1.6.4. Every permutation of a finite set S can
be represented as the composition of disjoint cycles of
elements of S.
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DEF: A closed non-empty collection P of permutations on
a set Y of objects that forms a group under the opera-
tion of composition is called a permutation group. The
combined structure may be denoted P = [P : Y]. It is
often denoted P when the set Y of objects is understood
from context.

DEF: A permutation on a set Y whose representation in
disjoint cycle form has only one cycle containing more than
one element of Y is called a cyclic permutation.

The number of elements in that one cycle is called the
length of that cycle. Also, a cycle of length k is
called a k-cycle.
Proposition 9.1.1. Let n € Z*, and let

a=(1 2 --- n)

Thenforg =1,....,n—1 and forr =1,...,n, we have

o’ (r) = {-r + 7 mod n  otherwise
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Proof: This is provable by induction on the power 7. It
is clearly true for 7 = 1. The inductive hypothesis is that

aj_l(*r) _ {r—l—)—l fr+7—1<n

r+7—1modn otherwise

The inductive step is that

1 . : .
; 1 g _ Jat(r+-1) fr+73—-1<n
w(r) = alal™(r) = {a:l(*r +7—1mod n) otherwise
_r+4g ifr+7<mn o
| r+jmodn otherwise

Example 9.1.2: Let abethe5-cycle(1 2 3 4 5).

Then we have

o> =(1 4 2 5 3) and a* = (1 5 4 3 2)

DEF: The group of permutations in Table 9.1.2 is called a
cyclic permutation group on the set {1,2,...,n}. It

can be denoted [Z”, 1 -n.]] , but 1s more usually denoted,
simply, Zy,.
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Example 9.1.4: Leta=(1 2 --- 12)in the cyclic
permutation group Zis. Since

ged (8,12) =4 and 14—2 =3

Proposition 9.1.4 implies that the permutation o® has four
3=cycles. In fact,

o = (1 9 5)(2 10 6)(3 11 7)(4 12 8)

DEF: Let m be a permutation on a set of n objects. Then
the cycle structure of 7 is the n-variable monomial

T
((m) = [t = ety
,':j‘

where ¢ 1s a formal variable, and where r; 1s the number
of j-cycles in the disjoint cycle form of .

COUNTING LABELED TREES

Let G = {VV.X) be a graph whera |/ = 1 Uy by o rp} i the set of paints, and X' its set of lines; see |2]. A partial
labaling of G is an injection f of ¥ = {?, 2 nl into 1 forn = p. A graph G together with & partial labeling f
will be called partially fabeled. Two partially lsbeled graphs (G, £, ) and (G, £,  are identical if there is an automorph
jsm y of G such that £, i) = y/f (illfor 1<in,

A partially labeled tree (T f) will be called end-labeled if fIN) is the set of endpoints of 7, Let tfp) and T{p) denote
the number of end-labeled trees and end-labeled rooted trees, respectively, having p points,
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Theorem 1,
i1 tip) = Bip—2)
and
2] Tig) = Bfp - 1),
where

n
Bln) = 3 Sink)
k=1
is @ Bell number, i.e,, S0,&) is a Stirfling number of the second kind,
Both (1) and {2} follow from the same line of argument so that only (1) will be proved. We will present two deriva-
tions of this simple result; the second illustrates a general principle for enumerating partially labeled graphs.

First Proof.  Let (T.f) beap-paint enc-labeledtree with I — f{V) = -I Vatis = Vp I-, so that T may be regarded
a5 a labeled tree. Consider the Prufer sequence (7, 7,, -, i;-z) associated with T (sea for example Moon [6] or
Harary and Palmer [41). Each j; (T < [ < p — 2) satisfies n + 7 = ij = p, so that the sequenca (i,, /,, -, ip_2) may
be regarded as a distribution of p — 2 distinct objects into p—n l|:| entical cells with no cell empty. Thn number of
such distributions is of course $fp = 2, p — #J, and hence

o1
tip) = 3 Slp—-2.p—n),
n=2
as asserted.

The second method requires several lemmas, Lat f be the set of endpoints of a tree T, and let ['= ' {7/ denate
its automaorphism group, Furthermore, let us define I'* = I" *{T) to be the restriction of T to & Then T s well-
defined since {f is invariant under any automaorphism of T,

Lemmna 1. Forany tree 7, T'(T) is isomorphic to T %71

H‘aﬂf It is clear that the mapping & defined by v— Y|u forany y=T'(T) isa homomorphism of I' onto T'*,
Mow let -y be an arbitrary nontrivial automorphism of 7. It is easy to show (see for example Prins [5, p. 171 that
there exist endpoints o and v fur #v) such that viu) = v. Hence, fr has a trivial kernal,

Lemma 2, Let T bea tree with m endpoints. The number of distinct end-labeled copies of T is //|I"(T)|.

.H"ﬂﬂf Using Lemma 1, this follows from the argument which establishes the analogous result for labeled graphs
{s2e for example Chao [1] or Herary and Palmer [4, p. 4] ).

COUNTING UNLABELLED TREES

Lemma 5. Let n be a positive integer and let W, be the set of coding trees
with black verter set [n]. Let W, be the set of rooted coding trees obtained by
rooting a tree tn W, af a colo rrf:r'trf.r let W be the set of rooted coding
trees obtained by rooting a free m W, at a black vertex, and let W™ be the
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set of rooted coding trees obtained by rooting a tree in W, at an edge. Then
there is a bijection © from W, U WY to W,, UW_™ that commutes with the
actions of &, on vertex labels and of G, on colors.

Proof. Every coding tree has a unique center vertex, either black or colored.
which is the midpoint of every longest path in the tree, and the center is fixed
by both group actions. Let T be a rooted tree in W, UW?. If T is rooted
at its center then we define ©(T') to be the underlying unrooted tree of T
Otherwise, there is a unique path from the root r of T to the center, and we
take ©(T) to be the underlying tree of T rooted at the first edge on the path
from r to the center. It is easily seen that © is a bijection that commutes
with the actions of &,, and &;,. O

Theorem 7. The generating function U for unlabeled k-trees is given by

U=B+C-E,

where

B= ) By/a, (3a)

k41
C= Z ColZps (3b)
u=k
E=Y.850.)%, (3c)
u=k
B, =z ] Cx(a), (3d)
B, =z [] Cu(z?), (3e)
er=— :: - B;:"'('Tm) ar
e —0.\1)(”.2:] T) (3f)

In (3d), A is a partition of k + 1 and in (3e) and (3f). p s a partition of
k. In the products in (3d) and (3e). ¢ runs through the parts of A and p with
multiplicities; 1.e., if i occurs m times as a part then 1 is taken m times in
the product.
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Proof. Formula (3a) follows directly from Lemma 1 (Burnside's lemma).

The generating function ' for color-orbits under &g, of colored-rooted
trees is the same as the generating function for color-orbits under the action
of &,. permuting the colors 1 through k. of k + 1-rooted trees, since every
color-orbit of colored-rooted trees contains a k + 1-rooted tree. Then (3b)
follows from Lemma 1.

Similarly, the generating function E for color-orbits under &4, of coding
trees rooted at an edge is the same as the generating function for color-orbits
under the action of &g, permuting the colors 1 through &, of coding trees
rooted at an edge incident with a vertex of color k 4+ 1. Removing the root
edge from such a tree leaves a k + 1-rooted tree together with a k 4 1-reduced
black-rooted tree. Thus, if 7 € &, fixes k + 1, the generating function for
such pairs fixed by 7 is Cy By, so (3c) follows.

Next, for m € &4, we find an equation for B;. which counts black-rooted
trees fixed by m. The root of such a tree has k + 1 children, one of each
of the colors from 1 to & + 1. If we delete the root, we are left with trees
n,..., Tit1. where tree T is rooted at a vertex of color j. Now suppose

that j is in a cycle of m of length 1. Then the orbit of T; under 7 consists
of T;, Ty = w(T5), ..., Tpieagsy = @ 1(Ty), and we must have 7'(T;) = Tj.
Thus to determine a black-rooted tree fixed by 7., we choose from each cycle
of m an arbitrary element j. and take T} to be a j-rooted tree that is fixed by
', where i is the length of the cycle of 7 containing j. Then Ty e - Triovjy
are determined and all have the same weight as T;. The generating function
for j-rooted trees fixed by 7' is C',i(x) (independently of the choice of j), so
the contribution to B, from a cycle of 7 of length ¢ is CLi(z*). Thus

B. =z ][] Caia (=) (4)
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where ¢ runs over the cycles of m and |¢| is the size of the cycle ¢. Thus (3d)
follows, and a similar argument gives (Je).

Next we need to find a formula for ;. Since O, = ) if ¥ has no fixed
points, we may assume without loss of generality that k& + 1 is a fixed point
of m. Suppose that T is a k + 1-rooted tree that is fixed by the permutation «.
Removing the root from T leaves a multiset of & + 1-reduced black-rooted
trees that 1s fixed by w. Thus C; 1s the generating function for these multisets,
and applying Lemma 2 gives

, = Enl-'l{..r”t]l
Oy = {?:{p(z T)

m=1

and (3f) follows. O

POLYA’S COUNTING THEOREM

In this section, we shall prove Polya’s enumeration theorem and Burnside's lemma.

Suppose G is a group of permutations of a set X, and let G be the induced group of
permutations of the set ¥ of colorings of X. Now each permutation g in & induces a
permutation § of ¥ in the following way. Given a coloring @, we define (@) to be the
coloring in which the color assigned to x is the color @ assigns to g(x); that is,

(&(@))(x) = w(g(x)).

We require the generating function Kg(cy.ca2.....cx). where E is a set of colorings con-
taining one representative of each orbit of G on ¥. The coefficient of 1. in Kg will
be the number of distinguishable colorings in which color ¢y is used s times, color ¢ is
used ¢ times, and so on.
Polya’s theorem state that Ky is obtained from the cycle index Zg(ay, az,....a,) by sub-
stituting

A+ch+..+e

fora; (1 =i < n). Before going to the proof, let us see how this works in the simple case
of the red-and-white colorings of the corners of a square.
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PART — B (5X6=30 Marks)

1.Prove that the number of simple, labeled graphs of n vertices is 2 "("1/2,

2. Define (i) Directed Graph
(i) Euler Digraph

3.Discuss about the digraph.

4. Explain counting labeled tress.
5. Discuss about the binary relations in a digraph.

6. Explain about the counting unlabeled tress

7.Discuss about some types of digraph with suitable example.
8.Explain euler digraphs

9.Explain about adjacency matrix of a digraph.

10. Prove that the determinant of every square submatrix of A, the incidence matrix of a
digraph is 1,-1,0.

PART — C (1X10= 10 Marks)

1. Prove that there are n"? labeled trees with n vertices (n > 2).
2. Discuss euler digraphs

3. Explain (i) Directed Graph
(ii) Euler Digraph
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Domination in graphs: Introduction- Terminolgy and concepts- Applications —
Dominating set and domination number — Independent set and independentnumber —
History of domination in graphs.

Graph Theory: Terminology and Concepts

A graph G = (V, E) consists of a (finite) set denoted by V', or by V(G) if one
needs to make clear which graph is under consideration, and a collection E, or
E(G), of unordered pairs {u, v} of distinct elements from V. Each element of V
is called a verter (or a point, or a node), and each element of E is called an edge
(or a line, or a link). The number of vertices, the cardinality of V, is called the
order of G and is denoted by |V|, and |E| is called the size of G. We usually use
n to denote the order and m the size and typically have V(G) = {v),vq, ..., ua}.
We write vv; € E(G) to mean {v,v;} € E(G), and if e = vu; € E(G), we
say that v; and v; are adjacent and that e and v; are incident. For example,
V(Ry) = V(Ng) = {a,b,,c,...p}, fg € E(Ry), fg & E(Ny), and so f and g ate
adjacent in R4 but not in Nj.

Theorem 1 For a graph G of size |E| = m,

3" deg(v) = 2m.
vev

Proof. One can simply count the number of incidences in two ways. First,
each vertex v is in deg v incidences. Alternatively, each of the m edges has two
incidences. O

TWO APPLICATIONS

Centrality And Domination For Faculities Location

Suppose that each vertex in a graph represents a site where customers are lo-
cated, and we can choose one or more sites at which to locate facilities to serve
these customers optimally. Measures of optimality typically involve centrality
measures such as choosing centers, medians, or centroids. For example, suppose
we have a fixed number p of facilities to locate. If we want to minimize the
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maximum distance a customer has to travel in order to get to the facility vertex
closest to him/her, then we have the well-studied p-center problem. If, on the
other hand, we wish to minimize the average distance of a customer to his/her
nearest facility vertex, then we have the also well-studied p-median problem.
There is also a centroidal measure of centrality that is used in competitive facil-
ity location problems. (See P. J. Slater, Maximin facility location, J, Res. Nat.
Bur. Standards 798 (1975) 107-115.) For these three problems one does as well
as possible, given the constraint that only p facility vertices can be chosen. For
the tree T in Figure 5, a 2-center solution is {u,y}, and {u,w} is a 2-median
solution.

Independence and chromatic number for scheduling

For a graph G = (V, E), aset S C V is independent if no two vertices in §
are adjacent. The independence number §y(G) is the maximum cardinality of
an independent set in (G. A maximum independent set is called a fg-set. The
minimum k such that we can partition V = §, U S; U ... U S, where each S, is
independent, is the chromatic number ¥(G).

vertex v € V(G) — S that is not adjacent to any vertex in S, and replace S by
S U {v}. When no more vertices can be added to S, we have a maximal inde-
pendent set. For example, consider the cycle Cy in Figure 10, and assume we
examine the vertices in the order (5,8,1,6,4,3,7,2). Vertices 5 and 8 are added to
S, and the next possible vertex one can add to § is the vertex 3. Then {5,8,3} is
a mazrimal independent set, namely, an independent set 5 with the property that
any vertex set properly containing S is not independent. However, Gy(Cs) = 4
with maximum independent sets {1,3,5,7} and {2,4,6,8}. The lower indepen-
dence number i(G) is the minimum cardinality of a maximal independent set of
G. Clearly, i(Cy) = 3. Also, for the star, Go(Kyn-1) =n—1and i(K;n_1) = 1.
For paths, fy(P,) = [n/2] and i(FP,) = [n/3]. For grids, B(P; x F) = [1k/2]
and, for j and k large, i(P; x Py) is approximately jk/5.

Dominating Queens
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The following problem can be said to be the origin of the study of dominating
sets in graphs. Figure 1.1 illustrates a standard 8 x 8 chessboard on which
is placed a queen. According to the rules of chess a queen can, in one move,
advance any number of squares horizontally, vertically, or diagonally (assuming
that no other chess piece lies in its way). Thus, the queen in Figure 1.1 can
move to (or attack, or dominate) all of the squares marked with an 'x'. In
the 1850s, chess enthusiasts in Europe considered the problem of determining
the minimum number of queens that can be placed on a chessboard so that all
squares are either attacked by a queen or are occupied by a queen. Figure 1.1

X X B
X [x [x g
X (X Ix |x|x|x|Xx B
X |X|X Ra
X X B
X X
X X
X X =1

Figure: Queens
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The problem of dominating the squares of a chessboard can be stated more
generally as a problem of dominating the vertices of a graph.
Definition. A set S C V of vertices in a graph G = (V, E) is called a dominating

set if every vertex v € V is either an element of S or is adjacent to an element
of §.

Definitions, For S C V, a vertex v € S is called an enclave of S if Nfv] C S,
and v € S is an isolate of S if N(v) C V — 5. A set is said to be enclaveless if
it does not contain any enclaves.

There are several different ways to define a dominating set in a graph, each
of which illustrates a different aspect of the concept of domination. Consider the
following equivalent definitions. A set § C V of vertices in a graph G = (V, E)
is a domanating set if and only if:

(i) for every vertex v € V — S5, there exists a vertex u € S such that v is
adjacent to u;

(ii) for every vertex v € V = 8, d(v,5) < 1;

(iii) N[S]=V;

(iv) for every vertex v € V =S, |[N(v)N S| > 1, that is, every vertex v € V -5
is adjacent to at least one vertex in S

(v) for every vertex v € V, [N[p]N S| = 1;

(vi) V — § is enclaveless.
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Figure: Minimal dominating sets

The first three theorems about dominating sets in graphs were given by Ore
in his 1962 book, Theory of Graphs, as follows:

Theorem 1.1 [924] A dominating set S is a minimal dominating set if and
only if for each verter u € S, one of the following two conditions holds:

(a) u 15 an wsolate of 5,

(b) there exists a vertezv € V — 8§ for which N(v) NS = {u}.

Proof. Assume that S is a minimal dominating set of G. Then for every vertex
w € 5, § — {u} is not a dominating set. This means that some vertex v in
(V —5)U {u} is not dominated by any vertex in S — {u}. Now either v = u, in
which case u is an isolate of S, or v € V — 8. If v is not dominated by S — {u},

but is dominated by S, then vertex v is adjacent only to vertex u in S, that is,
N@v)n S = {u}.

Conversely, suppose that S is a dominating set and for each vertex u € S, one
of the two stated conditions holds. We show that S is a minimal dominating set.
Suppose that S is not a minimal dominating set, that is, there exists a vertex
u € S such that S - {u} is a dominating set. Hence, u is adjacent to at least
one vertex in S — {u}, that is, condition (a) does not hold. Also, if § — {u} is
a dominating set, then every vertex in V — S is adjacent to at least one vertex
in S — {u}, that is, condition (b) does not hold for u. Thus neither condition
(a) nor (b) holds, which contradicts our assumption that at least one of these
conditions holds. O
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Theorem 1.2 [924] Every connected graph G of order n 2 2 has a dominating
set S whose complement V' — § 1s also a dominating set.

Proof. Let T be any spanning tree of G, and let u be any vertex in V. Then
the vertices in T fall into two disjoint sets S and S’ consisting, respectively, of
the vertices with an even and odd distance from u in T. Clearly, both S and
§' =V — S are dominating sets for G. O

Theorem 1.3 [924] If G is a graph with no isolated vertices, then the comple-
ment V — S of every minimal dominating set S is a dominating set.

Proof. Let S be any minimal dominating set of G. Assume vertex u € S is not
dominated by any vertex in V' — S. Since G has no isolated vertices, u must be
dominated by at least one vertex in S — {u}, that is, § — {u} is a dominating
set, contradicting the minimality of S. Thus every vertex in S is dominated by
at least one vertex in V' — §, and V — § is a dominating set. O

Definitions. The domination number v(G) of a graph G equals the minimum
cardinality of a set in M DS(G), or equivalently, the minimum cardinality of a
dominating set in G. The upper domination number I'(G) equals the maximum
cardinality of & set in MDS(G), or equivalently, the maximum cardinality of a

minimal dominating set of G. It is easy to see that for the graph G in Figure
1.2, 7(G) = 3, while I'(G) = 5. Notice that the set § = {1,3,5} is a dominating
set of minimum cardinality; this is called a vy-set of G. Notice further that S is
an independent set. This is also called an independent dominating set of G. The
minimum cardinality of an independent dominating set of G is the independent
domination number i(G).

Theorem 1.4 [920] For any graph G, 4(G) + £¢(G) = n.
Now that we have defined and illustrated dominating sets, minimum domi-

nating sets, and the domination number of a graph, we describe, in Sections 1.3
through 1.10, a variety of situations in which dominating sets naturally occur.

School Bus Routing
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Figure:Distance 2-cycle domination

Consider the graph in Figure 1.5. Let us say that this represents a street
map of part of a city, where each edge represents one city block. The school is
located at the large vertex. Let us assume that the school district has decided
that no child shall have to walk more than two blocks in order to be picked up by
a school bus, Therefore, we must construct a route for a school bus that leaves
the school, gets within two blocks of every child and returns to the school. One
such simple route is indicated by the directed edges in Figure 1.5. Notice that
some of the children live close enough to walk to school.

Computer Communication Networks

Consider a computer network modeled by a graph G = (V, E), for which vertices
represent computers and edges represent direct communication links between
pairs of computers. Let the vertices in Figure 1.7 represent an array, or network,
of 16 computers, or processors. Each processor can pass information to the
processors to which it is directly connected. Assume that from time to time
we need to collect information from all processors. We do this by having each
processor route its information to one of a small set of collecting processors (a
dominating set). Since this must be done relatively often and relatively fast, we
cannot route this information over too long a path. Thus we need to identify a
small set of processors which are close to all other processors. Let us say that
we will tolerate at most a two-unit delay between the time a processor sends its

information and the time it arrives at a nearby collector. In this case we seek
a distance-2 dominating set among the set of all processors. The two shaded
vertices form a distance-2 dominating set in the hypercube network in Figure
1.7.
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Radio Stations

Let each village be represented by a vertex. An edge between two villages
is labelled with the distance, say in kilometers, between the two villages (see
Figure 1.9(a)). Let us assume that a radio station has a broadcast range of
fifty kilometers. What is the least number of stations in a set which dominates
(within distance 50) all other vertices in this graph? A set {B,F,H,J} of
cardinality four is indicated in Figure 1.9(b). Notice in this case that since we
have assumed that a radio station has a broadcast range of only fifty kilometers,
we can essentially remove all edges in the graph in Figure 1.9(a) which represent
a distance of more than fifty kilometers. This gives us the graph in Figure 1.9(b).

Theorem 1.5 [772] If a y-set S of a connected graph G of ordern > 2 is a
status of G, then S 1s an independent dominating set of cardinality two.

Proof. Let S be a +-set of G which is a status. Since G is connected and has
no isolated vertices, there must be at least one vertex ve V - S. Since Sisa
7-set, v must be adjacent to at least one vertex in S. But since S is a status,
every vertex of § must be adjacent to v. Furthermore, every vertex in S must
be adjacent to every vertex in V — S. Now since S is a status, |S]| > 2.

Assume that |S| > 3, and let u € S and v € V — S. Since S is a status,
u is adjacent to every vertex in V — 5, and v is adjacent to every vertex in 5.
Thus, { u,v} is a dominating set, contradicting the minimality of S. Therefore,
|S| = 2. If u is adjacent to v, then clearly {u} is a dominating set of G, again
contradicting the minimality of §. Therefore, |S| = 2 and S is an independent
set. O

Corollary 1.6 [772| If a y-set S of a connected graph G is also a structurally

equivalent set, then S consists of two independent vertices each of which has
degree n — 1.

Land Surveying
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In the field of surveying, a typical task is to compile a topographic map of a
tract of land by determining the positions and elevations of a carefully selected
set of control points. A grid method can be used in areas where the topography
is fairly regular. The area is divided uniformly into squares or rectangles, by two
sets of lines running in perpendicular directions and spaced uniformly apart, for
example, 100 feet (as in Figure 1.10).

One way the surveyor identifies the grid points to be mapped is to set stakes
at the intersections of these lines. It is then necessary to determine the elevations
of all grid points. This is done with the use of a total station instrument which
is an electronic theodolite (or transit) containing an integral EDM (electronic
distance measuring instrument) and angle measuring capability. An EDM sends
out light from one point on a line to another point. At the other point, a
retroprism (a reflector or a transmitter-receiver), reflects the light back to the

NP-Completeness of the Domination
Problem

Let us proceed to the basic question: how difficult is it to compute the domina-
tion number of an arbitrary graph? We will show that the domination problem
is NP-complete for arbitrary graphs.

Stated in the now accepted format, as established by Garey and Johnson
in their seminal book on NP-completeness [524], the basic complexity question
concerning the decision problem for the domination number takes the following
form:

DOMINATING SET
Theorem 1.7 [524] DOMINATING SET is NP-complete.

Proof. We must do two things. First, we must show that DOMINATING
SET € NP. This is easy to do since it is easy to verify a 'yes' instance of
DOMINATING SET in polynomial time, that is, for a graph G = (V| E), a
positive integer k and an arbitrary set § C V with |S| < k, it is easy to verify
in polynomial time whether 5 is a dominating set.
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Mathematical History of Domination in
Graphs

Although the mathematical study of dominating sets in graphs began around
1960, the subject has historical roots dating back to 1862 when de Jaenisch
[347] studied the problem of determining the minimum number of queens which
are necessary to cover (or dominate) an n x n chessboard. As reported by W.
W. Rouse Ball in 1892 [72], chess enthusiasts in the late 1800s studied, among
others, the following three basic types of problems:

1. Covering - what is the minimum number of chess pieces of a given type
which are necessary to cover/attack/dominate every square of an n x n
board? This is an example of the problem of finding a dominating set of
minimum cardinality.

2. Independent Covering - what is the minimum number of mutually nonat-
tacking chess pieces of a given type which are necessary to dominate every
square of an n x n board? This is an example of the problem of finding a
minimum cardinality independent dominating set.

3. Independence - what is the maximum number of chess pieces of a given
type which can be placed on an n x n chessboard in such a way that no two
of them attack/dominate each other? This is an example of the problem of
finding the maximum cardinality of an independent set. When the chess
piece is the queen, this problem is known as the N-queens Problem. It
is known that for every positive integer n > 4, it is possible to place n
nonattacking (independent) queens on an n x n board. For over a hundred
years people have studied different ways of doing this.

These three problem-types were studied in detail by Yaglom and Yaglom
around 1964 [1155]. These two brothers produced elegant solutions to some of
these problems for the rooks, knights, kings and bishops chess pieces.
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In 1958 Claude Berge [95] wrote a book on graph theory, in which he defined
for the first time the concept of the domination number of a graph (although
he called this number the ‘coefficient of external stability’). In 1962 Oystein
Ore [924] published his book on graph theory, in which he used, for the first
time, the names ‘dominating set’ and ‘domination number’ (although he used
the notation d(G) for the domination number of a graph). In 1977 Cockayne and
Hedetniemi [280] published a survey of the few results known at that time about
dominating sets in graphs. In this survey paper, Cockayne and Hedetniemi were
the first to use the notation 4(G) for the domination number of a graph, which
subsequently became the accepted notation.

This survey paper seems of have set in motion the modern study of domina-
tion in graphs. Some twenty years later more than 1,200 research papers have
been published on this topic, and the number of papers is steadily growing. This
book is inspired by the somewhat explosive growth of this field of study. It is
also motivated by a desire to put some order into this huge collection of research
papers, to organize the study of dominating sets in graphs into meaningful sub-
areas, and to attempt to place the study of dominating sets in even broader
mathematical and algorithmic contexts.

POSSIBLE QUESTIONS
PART B (5x6 = 30 Marks)

1. Explain about minimal dominating set.

2. Prove that if a connected graph with n > 2vertices has a dominating set S then the
complement of S is also a dominating set of G.

3. Explain domination number of a graph with examples

4. Explain briefly about applications of radio stations.

5. If G is a graph with no isolated vertices, then prove that the complement V-S of every

minimal dominating set S is a dominating set.
6. Explain independent set of a graph with examples.

7. Prove that every connected graph G of order n > 2 has a dominating set S whose
complement V-S is also a dominating set.
8. Explain independence number of a graph with examples.
9. Explain dominating set of a graph with examples.
10. Ifa y- set S of a connected graph G of order n > 2 is a status of G, then prove that S is an
independent dominating set of cardinality two.

PART C( 1x10 =10 Marks )

1. Prove that a dominating set S is a minimal dominating set if and only if for each vertex u €
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S, one of the following two conditions holds.
() uisanisolate of S.
(ii) there exists a vertex v & V-S for which N(v)NS = {u}.
2. Discuss dominating set of a graph with examples.
3. Explain if a connected graph with n > 2 vertices has a dominating set S then the
complement of S is also a dominating set of G.
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