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List of Practical:
1. Solution for a system of equations- Simplex method.

2. Decision Making with minimax criteria.

3. Decision Making under risk.
4. Travelling salesman problem to find the shortest path.

5. Write a C program to calculate the minimum cost using North West
Corner Rule.

6. To calculate the EOQ for purchasing model without shortage using C program.

7. To calculate the EOQ for manufacturing model without shortage using
C program.

8. To calculate the EOQ for manufacturing model with shortage using C
program.

9. To calculate the EOQ for purchasing model with shortage using C program.

10. Probabilistic Model-EOQ.
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EX.NO:1

FAMILY OF DIFFERENTIAL EQUATIONS

AlIM:

To write a ¢ program to find the solution for LPP using simplex method.
ALGORITHM:

STEP 1: Start the program.

STEP 2: Declare the variable required for the program.

STEP 3: Print the maximum and minimum choice.

STEP 4: Get the pivotal row and column and pivotal element to find the solution.
STEP 5: Find the new equation for s1 and s2.

STEP 6: The requesting is printout.

STEP 7: Display the result.

STEP 8: Stop the process.

PROGRAM:

#include<stdio.h>

#include<conio.h>

float a[10][10]={0},b[10],d[10],x[10][3]={3};
int m,n,s=1;

void main()

{
int i,j,m1,n1,c[10]={0};
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float m2,d[10],s=0;

void table();

clrscr();

printf(“\n \t \t ***SIMPLEX METHOD***\n ),
printf(“\n 1.maximum \n 2.minimum \n choice”);
scanf(“%d”,&ml);

printf(“enter the coefficient in the main equation:”);
scanf(“%d”,&n);

printf(“enter the coefficient:”);

for(i=1;i<=n;i++)

{

scanf(“%d”, &c[1]);

if(ml==2)

cli]=-1*cf[i];

}

printf(“\n enter the number of constraints:”);
scanf(“%d”,&m);

printf(“\n enter the coefficient one by one:”);
for(i=1;i<=m;i++)

{

printf(“enter the coeffient of the constraints %d:”,1);
for(j=1;j<=n;j++)

scanf(“%f”,&al[1][j]);

printf(“‘enter the contant:”);
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scanf(“%f”,&a[1][0]);
if((d[i]'=0)&&(d[j]>0))
if(d[jJ<m2)

{

m2=d[j];

nl=j;

¥

¥

m2=a[n1][i];

printf(“\n pivotal column:y %d”,i);
printf(“\n pivotal row: %d”,nl);
printf(“\n pivotal element: %3.2f°,m2);
getch();

for(j=0;j<=m+n;j++)
a[n1][j]=a[n1][j)/m2;

m2=i;

X[n1][0]=c[m2];

X[n1][1]=m2;

for(i=1;i<m;i++)

if(n11=i)
{
s=a[i][m2];

for(j=0;j<=m+n;j++)

alilij]=ali]nl-(s*ali[l);
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ky

goto line;

{

if(ml==m2)
b[0]=-1*b[0];
for(i=1;i<=m;i++)
x[i][2]=a[i][0];

printf(“\n when”);
for(i=1;i<=m;i++)

{

if(x[il0]<=n)

printf(“\n \t x%1.0f = 3.3 x[j][i],x[ 1][2]);
¥

printf(*\n \n \n z=\t %5.3£”,b[0]);
line;

getch();

¥

int s1,s2;

clrscr();

printf(“\n table %d \n ,s);
S++,

line();

printf(“\n <b \t \t x);

for(sl=1;sl<=m;sl++)

Prepared byS.KOHILA/ K.PAVITHRA , Asst Prof, Department of Mathematics, Page 5/22




KARPAGAM ACADEMY OF HIGHEREDUCATION

CLASS: I M.SC MATHEMATICS COURSE NAME:- PRACTICAL
COURSE CODE: 17MMP211 LAB MANUAL BATCH-2017-2019
{

printf(“\n \n %1.0f \t ”x[s1][0],x[s1][1]);
for(s2=0;s2<=m+n;s2++)
printf(“%2.1”,a[s1][s2]);

¥

printf(*\n”);

line();

printf(“\n \t z \t ”);
for(s1=0;s1<=m+n;sl++)
printf(“%2.1*,b[s1]);

¥

void line();

int s1;
for(s1=1;s1<=(m+n+3)*7;s1++)
printf(“*”);

¥

OUTPUT:
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EX NO:2 DECISION MAKING WITH MINIMAX CRITERIA
QUESTION:

Find decision making under risk
AIM:
To Write a program to find decision making under risk.
ALGORITHM:
STEP 1: Start the process.
STEP 2: Include the necessary header file.
STEP 3: Declare the variable in intdatatype.
STEP 4: Print the row,column and matrix.
STEPS5: Using the for loop statement,
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
STEP 6: Print the greatest value first and second rows.
STEP 7: Find the minimax value.

STEP 8: Stop the process.
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PROGRAM:

#include<stdio.h>

#include<conio.h>

#include<math.h>

void main()

{

int i,j,m,n,a[10][10],p,q;

clrscr();

printf(“\n enter the number of rows and columns:”);
scanf(“%d %d”,&m, &n);

printf(“\n enter the matrix:”);

{

for(i=1;i<=m;i++)

for(j=1;j<=n;j++)

scanf(“%d”, &al1][j]);

}

printf(“An enter the greatest value of 1% row p:”);
scanf(“%d”,"&p);

printf(“\n enter the greatest value of 2" row q:”);
scanf(“%d”,&q);

if(p<q)

{

printf(“\n the minimax value is:%d”,p);

¥
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else

{

printf(“the minimax value is:%d”,q);

k
geteh();

by

OUTPUT
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EX.NO:3 DECISION MAKING UNDER RISK

QUESTION:
Find decision making under risk

AIM:

Write a C program to find decision making under risk.

ALGORI

THM:

STEP 1: Start the process.

STEP 2:

STEP 3:

STEP 4:

STEP &:

STEP 6:

Declare the necessary header file.

Declare the variable.

Calculate the Ua,Pa,Pb,Ub,P1,P2 using this formula
P1=Ua*Pa;

P2=Ub*Pb;

Display the result.

Stop the process.

PROGRAM:

#include<stdio.h>

#include<conio.h>

#include<math.h>

void main()
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{

float d,ed,c1,c3,q;

clrscr();

printf(“\n ***INVENTORY CONTROL***\n");
printf(“\n enter the setup cost c3=");
scanf(“%f”,&c3);

printf(“\n enter the demand d=");
scanf(“%f’&d);

printf(“\n enter the carrying cost c1=");
scanf(“%f”,&cl);

printf(“\n purchasing problem without shortage”);
ed=(2*d*c3);

g=sqrt(ed/cl);

printf(“\n the economic quantity= %f”,q);

getch();
¥

Prepared byS.KOHILA/ K.PAVITHRA , Asst Prof, Department of Mathematics, Page 11/22




KARPAGAM ACADEMY OF HIGHEREDUCATION

CLASS: I M.SC MATHEMATICS COURSE NAME:- PRACTICAL
COURSE CODE: 17MMP211 LAB MANUAL BATCH-2017-2019
EX.NO:4 ASSIGNMENT PROBLEM
QUESTION:

Find maximum cost using assignment problem.

AlIM:
To write a C program to find maximum cost using assignment problem.
ALGORITHM:
STEP 1: Start the process.
STEP 2: Declare the variables required for the program.
STEP 3: Get the value of last matrix and assign the matrix do other temporary matrix to noted.
STEP 4: Find the minimum value each row and column find the row minimum matrix displays it
STEP 5: Do the allocation in the result and matrix corresponding allocation in the cost matrix is

added.

STEP 5: Stop the process.
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PROGRAM:

clear;

L=1.0;
W=4.0;
T=10.;
k=200;
dt=T/k;
n=10.;
dx=L/n;
m=20.;
dy=W/m,;
velx=.1;
vely=.4;
decay=.0;

for i=1:n+1
x()=(i-1)*dx;
for j=1:m+1
y()=(-1)*dy;
u(i,j,1)=0;
end

end

for k=1:k+1
time(k)=(k-1)*dt;

for j=1:m+1
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u(1,j,k)=.0;
end
fori=1l:n+1

u(i,1,k)=(i<=(n/2+1))*(k<26)*5.0*sin(pi*x(i)*2)+(i>(n/2+1))*.1;

end

end

for k=1:k

for i=2:n+1;

for j=2:m+1;

u(i,j,k+1)=(1-velx*dt/dx-vely*dt/dy-decay*dt)*u(i,j,k) +velx*dt/dx*u(i-1,j,k)+vely*dt/dy*u(i,j-1,k);
end

end

end

mesh(x,y,u(:,:,k)"
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EX.NO:5 NORTH WEST CORNER RULE
QUESTION:

Use ¢ program to find the solution of north west corner rule.

AIM:
To write a ¢ program using north west corner rule.
ALGORITHM:
STEP 1: Start the process.
STEP 2: Declare the variable. Get the number of rows and columns of the matrix .
STEP 3: Using loop increment | and j values oneby one and get the matrix a[i][]].
STEP 4: Using loop I values one by one and get the availability ofthe matrix avali].
STEP 5: Initialize n1,m1,m2 equal to zero.
STEP 6: Check whether req[j]>ava[i];
STEP 7: Initialize tp[m2][i]=ava[i];
Tp[m2][0]=a[i][il;
Calculate req[j]=req[i]-aval[i];
elseaval[i]=ava[j]-req[j];

STEP 8: Terminate the program.
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PROGRAM:

function V=elongation(t)

%Function elongation has input variable
t and output variable V

%It gives the bacterium volume after
time t: V=0.4+0.02*t

V=0.4+0.02*t;

elongation(4)
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PURCHASING PROBLEM WITHOUT SHORTAGE

EX.NO:6

QUESTION:
Compute the purchasing problem without shortage.

AIM:

To write a C program to find purchasing problem without shortage.

ALGORITHIM:

STEPL1: Start the process.

STEP2: Include necessary header file.

STEPS3: Declare a float value g,d,c1,ed,c3.

STEPA4: Find the value of ed,is calculate ed=(2*d*c3).

STEPS5: Find the sqrt(ed/cl).

STEPG: Print the result.

STEPT7: Stop the process.
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PROGRAM:

#include<stdio.h>
#include<conio.h>
#include<math.h>

void main()

{

float d,c1,eq,c2,,k,q1,c3,q;

clrscr();

printf(“\n ***INVENTORY CONTROL***\n");

printf(“\n enter the setup cost c3=");

scanf(“%f”,&c3);

printf(“\n enter the demand d=");

scanf(“%f’&d);

printf(“\n enter the carrying cost c1=");

scanf(“%f”,&cl);

printf(“\n enter the production rate k=");

scanf(“%f”,&k);

printf(“\n manufacturing problem without shortage”);

g=(2*d*c3)/c1;
q1=(k/(k-d));

eg=sqrt(q*ql);

printf(“\n the economic quantity= %f”,eq);

getch();
}
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MANUFACTURING PROBLEM WITH SHORTAGE

EX.NO:7

QUESTION:
Calculate EOQ manufacturing problem without shortage using C program

AlIM:
To calculate EOQ manufacturing problem without shortage using C program..
ALGORITHIM:
STEPL1: Start the process.
STEP2: Include necessary header file.
STEP3: Declare the variables.
STEP4:.Calculate gq1,q,eq using the formula

q =(2*d*c3)/c1;

q1 =(k-/(c-d));
eq=srqt(q*ql);
STEPG6: Print the eoq.
STEP7: Display the result.
STEPT7: Stop the process.
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PROGRAM:

#include<stdio.h>

#include<conio.h>

#include<math.h>

void main()

{

float d,c1,eq,c2,,k,q1,c3,9,92;

clrscr();

printf(*“\n ***INVENTORY CONTROL***\n");
printf(“\n enter the setup cost ¢3=");
scanf(“%f”,&c3);

printf(“\n enter the demand d=");
scanf(“%f’&d);

printf(“\n enter the carrying cost c1=");
scanf(“%f”,&cl);

printf(“\n enter the production rate k=");
scanf(“%f”,&k);

printf(“\n enter the shortage cost c2=");
scanf(“%f1”,&c2);

printf(“\n manufacturing problem with shortage”);
g=(2*d*c3)/c1;

ql=(cl+c2)/c2;
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q2=(k/(k-d));

eq=sqrt(q*ql*q2);
printf(“\n the economic quantity= %f”,eq);

geteh();
¥

OUTPUT:
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PURCHASING PROBLEM WITH SHORTAGE
EX.NO:8

QUESTION:
Calculate EOQ for purchasing model with shortage using C program
AlIM:

To calculate EOQ for purchasing model with shortage using C program.
ALGORITHIM:
STEPL1: Start the process.
STEP2: Include necessary header file.
STEPS3: Declare a float value g,d,c1,c2,q1,c3 in type of float.
STEPA4: Print one setup cost,demand,carryingcost,shortage cost.
STEPS5: Calculate g1,q and eoq using the formula
q =(2*d*c3)/cl.
gl =(c1*c2)/c2.
STEPG: Print the eoq and display the result.

STEPT7: Stop the process.
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PROGRAM:

#include<stdio.h>
#include<conio.h>
#include<math.h>

void main()

{

float d,c1,e0q,c2,q1,c3,q;

clrscr();

printf(“\n ***INVENTORY CONTROL***\n");

printf(“\n enter the setup cost ¢3=");

scanf(“%f”,&c3);

printf(“\n enter the demand d=");

scanf(“%f’&d);

printf(“\n enter the carrying cost c1=");

scanf(“%f”,&cl);

printf(“\n enter the shortage cost c2=");

scanf(“%f”,&c2);

printf(“\n purchasing problem with shortage”);

g=(2*d*c3)/c1;
gl=(cl+c2)/c2;

eoqg=sqrt(q*ql);

printf(“\n the economic quantity= %f”,e0q);

getch();
}
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PROBABILISTIC MODEL
EX.NO:9

QUESTION:
Find a probabilistic model using C program .

AlIM:
To write a C program to find a probabilistic model.

ALGORITHIM:

STEPL1: Start the process.

STEP2: Include necessary header file.

STEP3: Declare the variables.

STEP4:.Calculate c1,c2,c3,p using the formula

c2=c3-cl;

p=c2/(cl+c2);

STEPS5: Display the result.

STEPG6: Stop the process.
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#include<conio.h>

#include<math.h>

void main()

{

float c1,c2,c3,p;

clrscr();

printf(“\n enter the holding cost c1=");
scanf(“%f”,&cl);

printf(“\n enter the selling cost ¢3=");

scanf(“%f”,&c3);

c2=c3-cl;

printf(“\n enter the carrying cost:%f”,c2);
p=c2/(c1+c2);

printf(“\n enter the probabilistic eoq is %f”,p);

getch();
¥
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OUTPUT :
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DECISION MAKING UNDER RISK

EX.NO:9

#include<stdio.h>

#include<conio.h>

#include<math.h>

void main()

{

float ua,ub,pa,pb,pl,p2;

clrscr();

printf(“\n enter the utitlity value ua:”);
scanf(“%f”,&ua);

printf(“\n enter the probability value pa:”);
scanf(“%f”,&pa);

pl=ua*pa;

printf(“\n the expected utitlity is:%f”,p1);
printf(“\n enter the utitlity value is:%f:”,p1);
scanf(“%f”,&ub);

printf(“\n enter the probability value pb:”);
scanf(“%f”,&pb);

printf(“\n the expected utitlity is:%f”,p2);
if(p1>p2)

{
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printf(“\n p1 is the best choice invested:”);

}
Else

{

printf(“\n p2 is the best choice invested:”);

¥
getch();

by

OUTPUT :
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Reg. NO ----------------
(17MMP206)
KARPAGAM ACADEMY OF HIGHER EDUCATION
COIMBATORE-21
DEPARTMENT OF MATHEMATICS
Second Semester
Fluid Dynamics
I Internal Test - Jan'2018
Date : 03.02.2018 (FN)

Class : | M. Sc Mathematics

Time : 2 Hours
Maximum: 50 Marks

PART - A (20 x 1 = 20 Marks)

Answer all the questions:
1. The behaviour of fluid when it is in motion without considering the
pressure force is called .
a) fluid kinematics b) fluid mechanics
¢) fluid statics d) fluids
2. If any material deformation vanishes when a force applied withdrawn a
material is said to be

a) elastic b) plastic
¢) deformation d) fluid
3. The can be classified as liquids and gases.
a) solid b) pressure
c) fluid d) force
4. The density of fluids is defined as volume.

a) limit per unit
c) forces per unit

5. A force per unit area is known as
a) force b) pressure
c) fluid d) density

6. The pressure changes in the fluid beings changes in the density of fluid

is called .

a) compressible fluid
¢) body force

b) solid per unit
d) mass per unit

b) incompressible fluid
d) surface force

7. The are proportional to mass of the body.
a) pressure b) body force

c) surface force d) force
8. The tangential force per unit area is said to be
a) normal stress b) stress
¢) shearing stress d) strain
9. The differential equation of the path line is
a) .u=dy/s b) v=dx/w
C) g=s/r d) g=dr/dt

10. A flow in which each fluid particle posses different velocity at each
section of the pipe are called
a) non uniform flow b) uniform flow
c) barotropic flow d) rotational flow
11. A stream tube of an infinitesimal cross sectional area is
called

a) stream line b) stream filament

c) path line d) stream tube
12. When the flow is the stream line changes from instant to
instant.
a) non uniform b) steady
C) unsteady d) uniform

13. A force is said to be if the force can be derivable from the
potential.
a) conservative b) non conservative
c) acceleration d) surface
14. A flow is called a Beltrami’s flow when
a) g.E=0 b) g+E=0
) g\E=0 d) g*E=0
15. Bernoulli’s equation occurs when the motion is
a) rotational b) irrotational
c) steady d) unsteady
16. The flow can occurs when the vertex and stream lines
coincide.
a) viscous flow
¢) invisid flow

b) beltrami’s flow
d) normal flow



17. The product of the cross sectional area and magnitude of the vorticity b) Derive the Euler’s equation of motion.

is along a vortex filament 26. a) State and prove the Euler’s generalized momentum theorem.
a) constant b) zero (OR)
c) parallel d) normal b) Derive the Energy equation.

18. When the forces are conservative and the pressure is a function of the
density, then

a) V\a =0 b) v*a =0
c) V+a=0 d) V.a=0
19. When a force is conservative, there exist a potentialQ2 such that f=
a) f=-vQ b) f=V*Q
c) f=vQ d) f=V+Q
20. The pressure is function of density then the flow is said to be
a) non uniform flow b) uniform flow
c) barotropic flow d) rotational flow

PART -B (3 x 2 = 6 Marks)

Answer all the questions:

21. Define Laminar flow.

22. Write about streak lines.

23. Derive the equation to the vortex line.

PART - C (3 x 8 =24 Marks)

Answer all the questions:
24. a) Obtain the differential equation of a stream line.
(OR)
b) Show that in a 2D incompressible steady flow fluid the equation of
continuity is satisfied with the velocity components in a rectangular
k(x2—y? 2kxy
(—y% , V(X,y) = —
(x2+y?)
where K is an arbitrary constant.
25. a) Derive the equation of continuity.
(OR)

co-ordinates given by u(x,y) =
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S.No Lecture Topics to be Covered Support
Duration Material/Page Nos
Period
UNIT-I
1 1 Introduction to fluid dynamics | T1:1-3
2 1 Basic concepts of fluid T1:3-8

dynamics, viscosity,
compressible and non
compressible fluids

3 1 Stream surface, tube filament, | R2:1.5-1.7
streak lines, path lines

4 1 Problems on path lines R2:1.7-1.9

5 1 Geometrical significance of T1:65-68

velocity, problems on
rotational and irrotational flow

6 1 Theorem on equation of T1:68-73
continuity

7 1 Conservation of mass T1:74-75

8 1 Boundary conditions T1:75-76

9 1 Continuation of boundary T1:77
conditions

10 1 Theorems on rate of change of | T1:77-79
linear momentum

11 1 Equation of motion of an T1:79-80
inviscid fluid

12 1 Recapitulation and discussion
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Batch

on possible questions

Total No of Hou

rs Planned For Unit 1=12

UNIT-1I

1 1 Euler’s equation of motion T1:80-81
interms of vorticity

2 1 Euler’s momentum theorem T1:81-82

3 1 Equations of motion T1:106-108

4 1 Theorem on equations of T1:108-110
motion interms of vorticity

5 1 Problems on Barotropic flow | T1:110-112

6 1 Bernoulli’s theorem in steady | R1:181-182
motion

7 1 Continuation of Bernoulli’s R1:182-183
theorem

8 1 Theorem on energy equation R1:184-185
for inviscid fluid

9 1 Circulation R1:185-187

10 1 Kelvins theorem R1:187-189

11 1 Theorem on Helmholtz R1:190-192
equation of vorticity

12 1 Recapitulation and discussion
on possible questions

Total No of Hours Planned For Unit 11=12
UNIT-I11

1 1 Two dimensional motion T2:42-43

2 1 Functions- problems T2:43-44

3 1 Theorem on stream lines T2:44-45

4 1 Potential lines T2:45-46

5 1 Problems on the flow patterns | T2:46-47
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6 1 Basic singularities T2:47-50

7 1 Theorem on source and sink in | T2:50-55
2D flow

8 1 Theorem on complex potential | T2:56-60
for doublet and vortex

9 1 Milne Thomson’s circle T2:69-70
theorem

10 1 Blasius theorem and lift force | T2:70-71

11 1 Lift force T2:71-72

12 1 Recapitulation and discussion
on possible questions

Total No of Hours Planned For Unit I11=12
UNIT-1V

1 1 Dynamics of real fluid: T2:123-124
Definition of plane coquette
flow

2 1 Theorem on Reynolds’s T2:124-125
number

3 1 Theorem on Navier Stokes T2:140-144
equation

4 1 Theorem on energy equation T2:145-147

5 1 Diffusion of vorticity T2:147-150

6 1 Steady flow through an T2:150-151
arbitrary cylinder under
pressure

7 1 Problems on steady flow T2:151-152

8 1 Steady Couette flow between T2:153-155
cylinders in relative motion

9 1 Problems on steady couette T2:155-157
flow

10 1 Steady flow between parallel T2:157-158
planes — problems

11 1 Theorem on Poiseuille flow T2:159-160
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12 1 Recapitulation and discussion
on possible questions
Total No of Hours Planned For Unit IV=12
UNIT-V
1 1 Laminar boundary layer in T2:175-178
incompressible fluid:
Definition and problems on
equation of boundary layer
2 1 Theorems on displacement T2:184-185
3 1 Theorems on momentum T2:186-187
thickness
4 1 Boundary layer separation: T2:179-180
Theorem on integral equation
of boundary layer
5 1 Problems on momentum T2:187-190
integral equation
6 1 Theorems on boundary layer T2:192-192
along a semi infinite flat plate
7 1 Blasius equation and its T2:193-195
solution in series
8 1 Problems on flow near to the T2:197-198
stagnation point of a cylinder
9 1 Recapitulation and discussion
on possible questions
10 1 Discussion on previous ESE
question papers
11 1 Discussion on previous ESE
question papers
12 1 Discussion on previous ESE
question papers
Total No of Hours Planned for unit V=12
Total 120
Planned
Hours
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Introductory Notions
Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

The behavior of fluid at rest gives the study
of . fluid dynamics fluid statics elastic plastic fluid statics
The behavior of fluid when it is in motion
without considering the pressure force is
called . fluid kinematics fluid mechanics | fluid statics fluids fluid kinematics

is a branch of science which
deals with the behavior of fluid at rest as well
as motion. fluid mechanics fluid statics fluid kinematics fluids fluid mechanics

The behavior of fluid when it is in motion with
considering the pressure force is
called

fluid kinematics fluid dynamics

fluid statics

fluid mechanics

fluid dynamics

is the branch of science which

deals with the study of fluids. fluid kinematics fluid dynamics

fluid statics

fluid mechanics

fluid dynamics

If any material deformation vanishes when a
force applied withdrawn a material is said to

be . elastic plastic deformation fluid elastic
If deformation remains even after the force

applied withdrawn the material is said to

be elastic plastic fluid fluid statics plastic
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If the deformation remains even after the
force applied withdrawn this property of

material is . elastic plasticity fluid deformation plasticity
can be classified as liquids and
gases. solids pressure fluids forces fluids
The density of fluids is defined as
volume. limit per unit solid per time mass per unit forces per unit mass per unit
A force per unit area is known as
: force pressure fluid density. pressure
OF is the force due to fluid on
Os normal constant force pressure normal
The pressure changes in the fluid beings
changes in the dencity of fluid is incompressible
called compressible fluid |fluid body force surface force compressible fluid
The change in pressure of fluid do not alter the incompressible incompressible
density of the fluid is called : compressible fluid |fluid body force surface force fluid
are propotional to mass of the
body. pressure body force surface force force body force
are propotional to the surface
area. body force surface force force mass surface force
The normal force per unit area is said to be
: normal stress shearing stress stress strain normal stress
The tangential force per unit area is said to be
: normal stress shearing stress stress strain shearing stress
In a high viscosity fluid there exist normal as
well as shearing stress is called viscous fluid inviscid fluid frictionless ideal viscous fluid
Rate of change of linear momentum equation
is :
Which is the velocity of the equation. g=dr/dt g=s/r v=dx/w u=dy/s q=dr/dt
The differential equation of the path line
is u=dy/s v=dx/w g=dr/dt .g=s/r g=dr/dt
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A flow in which each fluid particle posses
different velocity at each section of the pipe
are called

uniform flow

rotational floe

barotropic flow

non-uniform flow

non-uniform flow

A flow in which each fluid particle go on
rotating about their own axis while flowing is

said to be . rotational floe uniform flow non-uniform flow  |barotropic flow uniform flow

The pressure is function of density then the

flow is said to be : rotational floe uniform flow barotropic flow non-uniform flow |barotropic flow

The direction of the fluid velocity at the point

is called stream line velocity fluid pressure stream line

is defined as the locus of different

fluid particles passing through a fixed point.  |stream filament stream line path line stream tube stream line

A stream tube of an infinitesimal cross

sectional area is called stream line stream filament  |path line stream tube stream filament
cross section speed/cross Cross section cross section

The equation of volume is area*speed section area area/speed speed area*speed

The equation of speed is : time/length length/speed length*time time*speed length/speed

When a fluid particle moves it changes in time and

both speed and time frequency speed and position |position and time |position and time

When the flow is the strem line

have same form at all times. steady unsteady stream surface stream tube steady

When the flow is the stream line

changes from instant to instant. stream tube steady unsteady steady unsteady

If A.f=0 then f is said to be a solenoid rotation irrotation constant solenoid
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Conservative Forces
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(Question Nos. 1 to 20 Online Examinations)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

A force is said to be -------- if the force can be
derivable from the potential. conservative non conservative |acceleration surface conservative
A flow is called a Beltrami’s flow when--- g.E=0 q*E=0 g/E=0 gq+E=0 g*E=0
Bernoulli’s equation occurs when the motion is-- unsteady rotational steady irrotational steady
The ---- ---—--- flow can occurs when the vertex
and stream lines coincide viscous flow beltrami’s flow  |invisid flow normal flow beltrami’s flow
When the motion is both steady and irrotational
then--- V E V*E V+E V-E V .E
The product of the cross sectional area and
magniyude of the vorticity is -------- along a
vortex filament parallel zero constant normal constant
When the forces are conservative and the
pressure is a function of the density,then-------- V.a=0 V*a=0 V+a =0 V-a=0 V.a=0
When a force is conservative,there exist a
potentialQ such that f= =VQ f=-V Q f=- V*Q f=V*Q f=-V Q
circulation around a closed circuit ‘c’ is defined
as [q.rdr Jq.dr [qx.rdr [qx+dr [q.dr
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Euler’s equation of motion is dg/dt=F-VP dg/dt=F dg/dt=F-Vp/P qd/dt=-VQ dg/dt=F-Vp/P
----------- from is called the acceleration

potential Q-[3P/p VIIoP/pl+dp |V[]8P/p] Q+ 8P /p Q+H o P/p
Beltram’s flow is --------- og/ ot=V dg/ ot=-V 0q/ 0t=-QV og/ ot=-V p /p og/ ot=-V
q*E=0 can become zero when E #0,but q*E can

be to each other parallel non parallel zero normal parallel
The motion is both steady and irrotational if V.y#£0 V+y =0 V.y =0 V*a=0 V.uy =0
Which is the constant of kelvin’s theorem a p B ] p
Circulation is always defined around a  ----------

ciruit open parallel closed normal closed
When a conservative force f a potentialQ such

that F=VQ F=-VQ F£V*Q F£V.Q F=-VQ
The euler’s equation of motion corresponding to

a beltrami’s flow is og/ot=-V vy ag/6t=-V vy 0g/ot=-V* y 0q/0t#V v 0g/ot=-V y
A force is said to be conservative if the force can

be derivable from the --------- potential density area viscosity potential
The euler’s theory is confined only for ideal or

inviscid fluid viscid stream inviscid fluid inviscid
The rate of change of linear momentum is equal

to the ------- of the forces acting on a body sum product proportional difference sum

the inward normal is -------- p q n? F n"

The rate of change of momentum of the fluid
body is given by---

d/dt(cir ¢)=/B.n ds

d/dt(cir c)=jn ds

d/dt(cir c)=/B.n
dc

d/dt(cir ¢)=/n dc

d/dt(cir ¢)=/B.n ds

The -------- is the motion the rate of change of
linear momentum =the sum of the forces acting
on the body

Kelvin’s theorem

Energy equation

Newton’s second
law

Euler’s theorem

Newton’s second
law

d/at(cir c)=
rate of change of circulation is 8/0t(cir ¢)=Jb.nds |8/t(cir ¢)=Jq.dr |Jdg/dt.dr 3/dt(cir ¢)= Ja.dr  |8/8t(cir ¢)= [b.nds
Accelaration is given by a=dm/dt a=dg/dt a=dr/dt a=dc/dt a=dg/dt
The ------ is the internal energy per unit mass E F r a E
Density of a fluid is denoted by F ) a E )
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Absolute value of

Part of the head
of fluid is utilized

Fluid discharges
through orifice

viscosity is inOvercoming with negligible Comparison of Comparison of
In Red wood viscometer detemiined friction velocity viscosity is done. |viscosity is done.

The point of

intersection of

buoyant force and Centric of Midpoint Centric of

centre line of the |Centre of gravity |displaced volume |between C.G. and |displaced volume
Centre of buoyancy is body of the body fluid metacentric. fluid

In isentropic flow; the temperature

Cannot exceed
the reservoir
temperature

Cannot drop and
again increase
downstream

Is independent of
Match number

Is a function of
Match number
only

Cannot exceed the
reservoir
temperature

The line of equal

The line along
which the rate of
pressure drop is

The line along
the geometrical

Fixed in space in

Fixed in space in

A stream line is velocity in a flow |uniform centre of the flow |steady flow. steady flow.
The flow of water in a pure of diameter 3000mm
can be measured by Venturimeter Rotameter Pilot tube Orifice plate Pilot tube

Apparent shear forces

Can never occur
in frictionless
fluid regardless of
its motion

Can never occur
when the fluid is
at rest

Depend upon
cohesive forces

All of the above

All of the above

Weber number is the ratio of

Inertial forces to
surface tension

Inertial forces to
viscous forces

Elastic forces to
pressure forces

Viscous forces to
gravity

Inertial forces to
surface tension

A small plastic boat loaded with pieces of steel
rods is floating in a bath tub. If the cargo is
dumped into the water allowing the both to float
empty, the water level in the tub will

water level in the tub will

Rise Fall Remains same Rise and then fall |Fall
A flow in which each liquid particle has a
definite path and their paths do not cross each
other, is called Steady flow Uniform flow Streamline flow |Turbulent flow  |Streamline flow
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Buoyant force is

Resultant of up
thrust and gravity
forces acting on
the body

Resultant force on
the body due to
the fluid
surrounding it

Resultant of static
weight of body
and dynamic
thrust of fluid

Equal to the
volume of liquid
displaced by the
body

Equal to the
volume of liquid
displaced by the
body
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Unit 111

Two Dimensional Motion

Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)

Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

The stream function is constant along a

Stream line Path line Vortex line Filament line Stream line
If the stream function is along a
stream line equal to zero zero constant not equal constant
If the motion is steady, the stream line pattern is

equal fixed not fixed constant fixed
When the motion is not steady the stream line
pattern is fixed not equal constant zero not
The velocity potential ¢ exits when the fluid is

Rotational Irrotational Stream line Path line Irrotational
If the velocity potential function are

Velocity Density Pressure Force Velocity
The necessary and sufficient condition for g = -
®= - grad @ is hold is V.q=0 Vxg=0 Vxg=0 V.q=0 Vxq=0
The complex potential functions are satisfying Differential Homogeneous

equation Laplace equation |equation C — R equation equation C — R equation

If the velocity potential function are velocity ®
is called g=V @ g=-V o g=Vx ® g=-Vx @ g=-V o
The irrotational flow of an incompressible in Multi —
viscid fluid is in 3-D 1-D 2-D Dimension 2-D

Prepared by: A.Henna Shenofer, Department of Mathematics, KAHE




Two Dimensional Motion/2017-2019 Batch

When the incompressible in viscid 2 — D fluid

flow ® and v satisfy the Differential
equation. C —Requation |Laplace equation | Linear equation equation Laplace equation
The stream function y exist whether the motes
is Stream line Path line Irrotational Rotational Irrotational
The potential can exist only when
the motion is irrotational Velocity Density Pressure Force Velocity
Part of the fluid may be moving irrotationally
and the other parts may be Irrotational constant Rotational Density Rotational
The points where the velocity is
are called stagnation points 1 0 Constant Variable 0
In a2 — D flow field where the fluid is assumed
to be created is called Doublet Vertex Sink Sources Sources
The flow is radically inverse is called

Vertex Sink Sources Doublet Sink
The amount of the fluid going in to the sink in a | Strength of the  |Strength of the |Strength of the Strength of the | Strength of the
unit time is called sink doublet source Vertex sink
The amount of the fluid going in to the sink in a

is called strength of the sink Certain Interval | Unit time Mean time average Unit time

If a source, the velocity of the fluid is

Finite Equal Infinite Zero Infinite
Complex potential of the flow due to sink of
strength m at the origin is given by w =m logz w = -m logz w=log z W=-log z w = -m logz
A combination of a source and a sink in a
particular way is known as a Doublet Source sink vortex Doublet
The line joining the source and sink is called as

of the doublet X — axis Access Y — axis Z-axis Access

If any point in the 2 — D field where the fluid is
assumed to be is called asink  |Created Constant Moving Annihilated Annihilated
In a 2 — D field where the fluid is assumed to
be annihilated is called a Sink Source Strength of source | Strength of sink | Sink
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When the motion of a fluid consists of
symmetrical radial flow in all directions
proceeding from a point, Then the point is

known a Source Simple source  |Sink vortex Simple source
When the fluid particles have circular motion
under steady condition such a circular motion is
called vortex Sink Doublet Source vortex
The Complex potential for a stream flow when
a is placed in that Surface uniform Circular Cylinder |continuous Circular Cylinder
The complex potential for the uniform flow is
w=vZ w=VZ w#uxZ w=u.Z w=VZ

The circular cylinder is an irrotational
incompressible 3-D 1-D Multi — Dimension |2 —D 2-D
The complex potential for the flow
isw=uZ Uniform Continuous Discontinuous Equal Uniform
The complex potential for a flow
when a circular cylinder is placed in that Straight Stream Rotational irrotational Stream
A steady two dimensional irrotational
incompressible in viscid fluid flow under no

Forces External Internal Heat mass External
When are remembered that as the fluid is
assumed to be in viscid, the drag force is 1 Equal Zero Not Equal Zero

Low barometric

Cavitations is caused by High velocity pressure High pressure Low pressure Low pressure
The general energy equation is applicable to Unsteady flow  |Steady flow Non-uniform flow |Turbulent flow |Steady flow

The friction resistance in Pipe is proportional
To Square of V , according to

Froudeaiumber

Reynolds-Weber

Darcy-Reynolds

Weber-Froude

Froudeaiumber

Pitot tube is used to measure the velocity head

of Still fluid Laminar flow | Turbulent flow Flowing fluid Flowing fluid
In equilibrium condition, fluids are not able to Resistance to Geometric
sustain Shear force viscosity Surface tension similitude Surface tension
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Unit IV
Viscous Flow

Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
In the case of a real fluid frictionless resistance
IS known as ---------------- shearing stress  |tangential stress |friction stress ideal fluid tangential stress
In the case of -------------- frictionless resistance
is known as tangential stress perfect fluid friction stress real fluid ideal fluid real fluid
On real fluid ,tangential stresses are --------------
- large small very small infinite small
The property which causes the tangential stress
is known as------- inviscosity real fluid velocity viscosity viscosity
On plane coutte flow if the fluid is perfect the
motion of the plates has-------- on the fluid no effect viscous effect speed no effect
Shearing stress will be proportional to the rate
of change of ------- speed pressure force velocity velocity
The force will be proportional to the area upon effect of
which it acts and it is known as ------- shearing stress  |tangential stress |viscosity viscosity shearing stress
In the effect of viscosity the shearing stress is
denoted by -------- 1 u T Q T
The coefficient of viscosity is denoted by-------- 1} u Q T u
A typical viscous stress is in the form t=--------
- ouloy i p(ou/oy) ou p(ou/oy)
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The viscous force are of order ---- per unit area |U/L u (U/L) u/L uu u (U/L)

The typical pressure force will be of order------

per unit area u? pU pU/L pU? pU?

In a Reynold’s numbers, the kinematic viscosity is -

v=u/p Y=u y=1/p =0 v=p/p

The non-dimensional parameter R=UL/y is called --- Reynold’s kinematic

viscous force pressure force number viscosity Reynold’s number
The equation of continuity in a real fluid on a oplot + olot + oplot + oplot + oplot +

viscous flow is ------

(0/0x;)(pv)=0

(01%3)(pvi)=0

(@16t (pv)=0

(0/x3)(p)=0

(01x3)(pvi)=0

In the Navier stokes equation,when the fluid is

incompressible,then p and p are----- equal zero not equal constant constant

The Navier stokes equation in vector form is --- da/dt=F- do/dt=F+Vp/p+y|dg/dt=F-
------------ do/dt=F-Vplp  |Vplp+yV°q do/dt=F+yV?q |V°q Vplp+yVq
The equation of an Helmholtz equation of the |de/dt=(e.V)q+ de/dt=(e.V)g-  |de/dt=(c.V)q+
viscous fluid is------- YV de/dt=(e.V)q |de/dt=yV’e VW VW

On the 2-D motion the equation of vorticity is --de/dt=(e.V)q+ de/dt=(e.V)Q-

---- YV de/dt=(£.V)q de/dt=yV°e VW de/dt=yV°e

In a circulation on a viscous fluid the space

derivative of the vorticity vector are-------------- small constant large infinite large

The steady flow through an arbitrary cylinder |Hagen Hagen —Poiseuille
under pressure is known as --------- —Poiseuille flow |viscous flow inviscous flow |vorticity flow |flow

is the principal

In the Reynolds number
parameter determining the

role of the flow

nature of the
flow

order of the flow

type of the flow

nature of the flow

The constant of proportionality, u depends

entirely upon the physical properties of the typical viscous  |effect of coefficient of  |viscosity of a  |coefficient of
fluid is called stress viscosity viscosity flow viscosity

An arbitrary volume of a fluid,the momentum

of the fluid contained within the volume is ----- [vidv [ pv, dv [ pdv [ o2 v, dv | pv; dv

The resultant value of an poiseuille’s law is ------

M=(np a°)/4p

M=(rpp a°)/6p

M=(mpp a*)/8p

M=(np a*)/6p1

M=(npp a")/8p
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If we consider two infinite parallel
planes.Aflow with pressure gradient when both

plane poiseuille

plane coutte

plane poiseuille

planes are at rest then they are called as -------- pressure flow flow coutte flow flow flow

If we consider two infinite parallel planes.A

flow without pressure gradient when one plane

moves relative to the other such a flow is called: plane poiseuille |infinite plane viscous plane

--------- plane coutte flow |flow flow flow plane coutte flow

A flow is said to be ---------- if all fluid

particles moving in one direction parallel perpendicular  |nonparallel zero parallel

A flow is said to be parallel if only one

velocity component is ---------- zero non zero constant variable non zero

A flow is said to be parallel if all fluid particles

moving in---------- direction two three one four one

A flow is said to be parallel if only----------

velocity component is non zero two four three one one

Skin friction 6= ---------- wh uu uU/h U/h uU/h

Skin friction is also known as --------- per unit

area circle sphere square drag drag

In plane couette flow the ------------------- is temperature pressure

zero gradient temperature gradient pressure pressure gradient
plane poiseuille | plane couette plane couette

IN--mmmmmmmmmmeeeeen the pressure gradient is zero |flow flow couette flow poiseuille flow |flow

IN --mmmmmm oo the plates are at rest

plane poiseuille
flow

plane couette
flow

couette flow

poiseuille flow

plane poiseuille
flow

In plane poiseuille flow the plates are at--------

motion

rest

stable

nonstable

rest

The -------mmmmmmmmmeen for the drag of a sphere is
given by D= 6 npal,

stokes formula

Greens formula

Gauss formula

Laplace formula

stokes formula

The stokes formula for the drag of a sphere is

given by D= ---------mmemoo- 6 U 6 mpaU, 6 mpa 6 aU, 6 mpal,
The stokes formula for the drag of a -------------
--is given by D= 6 muaU, circle flux sphere square sphere
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In steady flow the flow past a circular cylinder
then the stokes equation reduces to -------

parallel

perpendicular

nonzero

ZEero

ZEero
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Laminar Boundary Layer in incompressible flow

UnitVv

Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)

Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
In a boundary layer characteristics which
streamlines far from the wall are displaced then displacement momentum Kinetic energy displacement
8,(x) is referred to as-------------- thickness thickness thicknesss friction thifckness |thickness

The value of displacement thickness 6;(X)=------------

Ju(1-(u/uy)) dy

[1-(1/uy)) dy

[1-(u/uy) dy

J(wuy)(1-(uiuy))
dy

[1-(u/uy) dy

When separation ocurrs in which circumstances the
boundary layer approximation is suspect in such
case is

displacement
thickness

momentum
thickness

Kinetic energy
thicknesss

friction thifckness

momentum
thickness

A momentum thickness 3,(x) is defined for
incompressible flow as  ---------

Ju(1-(u/uy)) dy

[1-(1/uy)) dy

[1-(u/u,) dy

J(wuy)(1-(uluy))
dy

J(u/u;)(1-(uluy)) dy

A physically significant measure of boundary layer |displacement momentum kinetic energy kinetic energy
thickness is -------- thickness thickness thicknesss friction thifckness [thicknesss

A measuresthe flux of kinetic energy defect within incompressible incompressible
the boundary layer as compared with--------- viscous flow steady flow inviscid flow flow flow

The kinetic energy thickness is defined as §5(X)=-----

Ju(1-(u/uy)) dy

[1-(1/uy)) dy

[1-(u/uy) dy

J(wy)@-?uy?)
dy

() (L-(ufuy?)
dy

The wall shearing stress is defined as -------

u

o

Tw

Puw

Tw

The skin friction 1,=------

(OW/Gy)w

H(Ou/0y)w

(WG )w

(0°/0y")w

H(Ou/Oy)w,
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The onset of reversed flow near the wall takes place
at the position of zero skin frction.such a position is

boundary layer

boundary layer

boundary layer

boundary layer

boundary layer

called a position of ------ friction characteristics separation flow separation
Kinematic viscosity is denoted by ----- u=y/p y=wp p= py Y=p U Y=Wwp
Enthalpy is defined as ---- I=E+P I=E-(P/ p) I=E+(P/ p) I=E+(p/P) I=E+(P/ p)
Thermal conductivity is denoted by --------- p | p K K
Reynold’s number is defined as ------- R=U/y R=L/y R=UL/y R=Uy/L R=UL/y
Viscosity is a function of temperature and ----------- pressure mass density viscosity pressure
Kinematic viscosity is a function of ------- and

pressure pressure temperature density force temperature
The rate of increases of the boundary layer

thickness depends on ------ Op/ox 0q/0x op/dy 0q/0y op/ox

The rate of -------- of the boundary layer thickness

depends on boundary gradient change not change increase decrease increase
The layer in which ----- is called boundary layer ou/dy Ov/0y ou/dx ov/0x ou/dy

Kinetic energy thickness is also known as kinetic
energy ---------

linear equation

laplace equation

integral equation

definite equation

integral equation

——————— is called the pressure coefficient cy P, Ve Cp Cp

-------- have zero velocity at the walls real fluids ideal fluid viscous fluid inviscid fluid real fluids

Real fluids have-------- velocity at the walls negative positive zZero nonzero zZero

Real fluids have zero velocity -------- near to the wall opposite to the wall|at the walls befor the wall at the walls

If the pressure has ----then the boundary layer

thickness increases rapidly decreases change nochange increases increases

If the pressure increases then the---- increases boundary layer boundary layer

rapidly boundary thickness boundary layer boundary surface |thickness

If the -------mmmmmn increases then the boundary layer

thickness increases rapidly pressure density mass force pressure

If the pressure increases then the boundary layer gradually

thickness ------------- rapidly decreases gradually increases |increases decreases increases

fmmmmmmen has no slip conditions real fluids ideal fluid viscous fluid inviscid fluid real fluids
maximum slip minimum slip

Real fluids has -------- no slip conditions slip conditions conditions conditions no slip conditions
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The velocity component is normal to the wall is

small if ----- is small 8/2 8/3 o/4 8/5 8/2

The velocity component is normal to the wall is

small if 8/2 is ----- normal small parallel perpendicular small

In the equation of boundary layer--------------------

normal to the wall is small temperature gradient | temperature pressure pressure gradient |pressure gradient
In the equation of boundary layer pressure gradient -

------------------- to the wall is small parallel normal tangent perpendicular normal

The relationship between the pressure and main Bernoulli’s Bernoulli’s
stream velocity can be obtained by -------- beltramis equation linear equation indefinite equation |equation equation

------ is the flux of defect of momentum in the

boundary layer PH1d; Py PH1252 M1252 PM1252

p1,%8, is the flux of defect Of-------<-----ce--—- in the

boundary layer acceleration velocity mass momentum momentum

In the equation of boundary layer the velocity

component is-----to the wall parralel perpendicular normal tangent normal

In the equation of ----- the velocity component is boundary layer

normal to the wall boundary thickness boundary layer boundary surface |boundary layer
In the equation of boundary layer the velocity

component is normal to the wall is ----- normal parallel small perpendicular small
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Scope: This course has been intended to identify and use key concepts and fundamental
principles of fluid dynamics, together with the assumptions made in their development pertaining
to fluid behavior, both in static and flowing conditions.

Objectives: To understand the fluids, their characteristics, Bernoulli’s theorem in steady motion,
Complex Potential Navier-Stokes equations and to be exposed with Laminar Boundary Layer in
incompressible flow.

UNIT I

Introductory Notions — Velocity — Stream Lines and Path Lines — Stream Tubes and Filaments —
Fluid Body — Density — Pressure.Differentiation following the Fluid — Equation of continuity —
Boundary conditions — Kinematical and physical — Rate of change of linear momentum —
Equation of motion of an in viscid fluid.

UNIT II
Euler’s momentum Theorem — Conservative forces — Bernoulli’s theorem in steady motion —
energy equation for in viscid fluid — circulation — Kelvin’s theorem — vortex motion — Helmholtz
equation.

UNIT 111

Two Dimensional Motion — Two Dimensional Functions — Complex Potential — basic
singularities — source — sink — Vortex — doublet — Circle theorem. Flow past a circular cylinder
with circulation — Blasius Theorem — Lift force. (Magnus effect)

UNIT IV

Viscous flows — Navier-Stokes equations — Vorticity and circulation in a viscous fluid — Steady
flow through an arbitrary cylinder under pressure — StaedyCouettc flow between cylinders in
relative motion — Steady flow between parallel planes.

UNIT V

Laminar Boundary Layer in incompressible flow: Boundary Layer concept — Boundary Layer
equations — Displacement thickness, Momentum thickness — Kinetic energy thickness — integral
equation of boundary layer — flow parallel to semi infinite flat plate — Blasius equation and its
solution in series.
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UNIT-I

SYLLABUS

Introductory Notions — Velocity — Stream Lines and Path Lines — Stream Tubes and Filaments —
Fluid Body — Density — Pressure. Differentiation following the Fluid — Equation of continuity —

Boundary conditions — Kinematical and physical — Rate of change of linear momentum —
Equation of motion of an in viscid fluid.

Basic Concepts and Definitions

(i) Let = iu+ _]". + kw. then

= x/u" +V +WT =q

* - u
DC'saregivenbyl=cosoa=—. m=cos = I =Cosy =

q Q| o

2, 2
where L. m. n. are components of a unit vector1.e. 1" +m”™ +n" =1

v

E
-t

=3l
il

(i) ab=abcosh. axb=absinBn

» & O - .
(iii) Vé=i1—+j—+ L—. where ¢ 15 a scalar and
ox "oy 0z
¢ + 0
"?-_1—+ ] —L—Lsa‘,cum (operator)

&x &y &z
oV Cv
(iv) dwvg= ?q_ﬂ+ﬂ+—‘(_1 (u, v, w)
x C&y 0z

If V.q=0.then q 1s said to be solenoidal vector.

v)  dF =idx+ jdy+kdz do= q’du—"pdmﬂdz

oy ¢z
and
200 b -8
V= 1__Jq__kT‘
cx "oy 0z
Therefore.
dD = (Tlil). df
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1 ] <
_ _ | é c ¢
(vi) Cuwlq=Vxq=— — —
x &y &z
u v W
fow év) 4 ou ow) pfév Au
= 1| _ev |! b L S

oy o) \ar ) ek o)

-

(vii)  (a) Gradient of a scalar 1s a vector.
(b) Divergence of a scalar and curl of a scalar are meaningless.
(¢) Divergence of a vector 1s a scalar and curl of a vector 1s a vector.

ity vve=vig= 20, 200 2%
Cx~ Oy~ {',2‘

where V7 is Laplacian operator.

(ix) Curl grad $ =0, diveurl q=0

(x)  Curlcurl §=graddivg—Vv>g
i.e. V’q = graddivq — curlcurlq
(xi) Gauss’s divergence theorem
(a) [q-dS = [divgdv
5 v
(b) [nxqdS= [curl q dv
s v
(xii) Green’s theorem

(a) |?¢ Vydv —J¢Tw .dS - j OV wdV
1|'..."

= Jw"ﬂb-dS — |1p‘~?"¢-d‘-—'
(b) J.(o\? v —wViH)dv —Jl o——u— |d‘~3

(xiii) Stoke’s theorem [q-dT = [curl §-dS = j'curl q-nds
C 5 5

Fluid Dynamics

Fluid dynamics 1s the science treating the study of fluids in motion. By the
term fluid. we mean a substance that flows 1.e. which 1s not a solid. Fluids may
be divided into two categories
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(i) liquids which are incompressible 1.e. their volumes do not change when the
pressure changes

(ii) gases which are compressible 1.e. they undergo change in volume whenever
the pressure changes. The term hydrodynamics is often applied to the science
of moving incompressible fluids. However. there 15 no sharp distinctions
between the three states of matter 1.¢. solid. liquid and gases.

Fluids
(Liquids and Gases)

I

Ncwtbnian Non-Newtonian
[ 1
Ideal Ouwid Real fluid
(Perfect fluid) (Actual fluid) = . ! |
Elastic Bingham Pseudo Dilatant
bodies plastic - plastic  fluids
Fluid properties

Certain characteristics of a continuous fluid are independent of
the motion of the fluid. These characteristics are known as the basic
properties of the fluid. We shall discuss some of the properties of a
fluid.

(i) Density : The density p represents a quantitative expression
of the idea of mass. It is defined as the mass of the fluid contained
within a uprit volume. Consider dm is the mass of the fluid in a small

volume Jdv surrounding that point, then, mathematically the density at
a point is defined as

i) Pressure : The pressure p at a point in the fluid is the limit of

the ratio of normal force 8F over an area 84 by the surrounding fluid

particles as the area approaches zero. It is defined as
. OF
P dd
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Definitions

Steady and unsteady flows : Steady flow occurs when at

various points of the flow field the conditions and properties associated
with the fluid flow remain unaltered with time i.e., independent of time

at all points. Mathematically, it can be expressed as
aA

R

where A represents the characteristic of the fluid, e.7., velocity, density,
temperature and pressure etc. Thus in steady motion time drops out
of the independent variables and the various field quantities become
functions of the space coordinates. For example, Water being pumped

tlvoughaﬁxzdsystanatacomta;umtereprumueadyﬂow

The flow is said to be unsteady when conditions at* any point
change with regard to the time. For example, Water being pumped
through a fixed system at an increasing rate represents unsteady flow.
Uniform and Non-uniform flews : If at every point the
veloc:ty vector is identical in magnitude and direction at any given
instant, or, the conditions and properties are independent of the
coordinate of the direction in which the fluid is moving then the motion
is said to be uniform. If the flow characteristics, at any given time {,
change with distance, it is said to be non- uuiform flow.

Line of flow : A line of flow is a line whose direction coincides

with the direction of the resultant velocity of the fluid.
Stream line : A stream line is a

continuous line of flow drawn in the fluid so
that the tangent at every point of it at any
instant of time coincides with the direction of ,
the motion of the fluid at that point. The
component of velocity at right angles to the
streamline is always zero. It follows that there

is no flow across the streamline.

Q
Stream line

ds
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Consider ds be an element of the' streamline passing through any
point P (r) at an instant of time. Let q be the velocity at that point at
the same instant. The direction of the tangent and direction of velocity
are parallel.

ie., dsxq=0
> (idx + jdy + kdz) X (i + jv + kw) =0
= (wdy — vdz) i + (udz — wdx) j + (vdx — udy) k =0

The vector equation is equivalent to three scalar equations
wdy — vdz = 0,udz — wdx = 0, vdx — udy = 0
which can be represented as

dx _dy dz

’

u v w

_Pathline : The curve described in space by moving fluid

element is known its pathline or trajectory i.e., a pathline is a line traced
by a particle in the fluid. The pathline shows the direction of the
velocity of the fluid particle at any instant of time. Such a line is

obtained by giving the position of an Y4 ' Yt
element as a function of time. The /ﬁ\&/——‘
pathline are given by Path Line
dr 1 > X
= — O
dt
. dx dz
Le; p i (x5, 2,0), % =v(x,)21), > kel (x,y,2,0).
. ) . , R
(viii) Stream surface : A stream surface TS -

is a surface made by the streamlines passing |~
through an arbitrary line in the fluid region at £ R
any instant of time.

(ix) Stream tube : A stream tube

is obtained by drawing stream lines /%:; o
through every point of a closed curve in [~ ATt
the fluid. N o e s 8 e
Velocity of a fluid particie at a point
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Consider P and Q) be the positions of the fluid particle at an instant
of time ¢ and ¢ + J¢ from the fixed point O such that
OP=r and OQ=r+Jdr.
Let q be the velocity of the fluid particle at
P, then

(r+dr)—r
= lim
-0 ot
. Or dr
= 1 =Jlgl-?o ot dt
Thus q is, in general, dependent on both r and #i.e.,
q=q(r0).

Example
The velocity q in a three-dzmenslonal flow field for an

incompressible fluids is given by
q=2i-yj—-zk
Determine the equations of the streamlines passing through the point
(1, 1, 1).

Solution. The equations of stream lines are given by

Q_QX__ L X_& _ &
u w X -y =z

(i) (@) (i)

From (i) and (ii), we have

By integrating, we obtain
logx + 2logy = logA
or xy2 = A, where A is an integration constant.
From (i) and (iii), we have
de dz - dx | 2z _
X -z X z
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By integrating, we have

xz2 = B, where B is an integration constant.
At the point (1, 1, 1)A=1=B
Hence the required streamlines are

xy?=1 and xz2=1.

Equation of Continuity

Physical quantities are said to be conserved when they do not
change with regard to time during a process. The mathematical
expression of the law of conservation of mass is known as the equation
of continuity.

By continuity we mean physical continuity. The fluid always remain
a continuum Z.e., as a continuously distributed matter. When a region
of fluid contain neither sources nor sinks (i.e., there is no creation or
annihilation of the fluid) then the amount of fluid within the region is
conserved in accordance with the principle of conservation of matter.
The general conservation principle is defined as follows :

In — Out + Source — Sink = Accumulation,

where each term represents a rate for a differential element of volume.

Consider a fluid element of infinitesimal volume dv and density
p which is situated at a point r at any
instant 7. The mass of the element is
pdv. Throughout the motion the mass of
any element of fluid must be conserved,
hence the mass of any fluid element
remains unchanged as it moves about.
This shows that the material derivative of
pov vanishes, i.e.,

D
D P =0,

which is the equation of continuity in the simplest form.
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Consider a closed surface S in a fluid medium containing a volume
V fixed in space. Let r is the unit outward drawn normal at a surface
element 5. If q be the fluid velocity at the element S then the normal
component of q measured outward from V will be =n. q.

Rate of mass flow across 45 per unit mass = p(n.q) dS
Total rate of mass flow out of V across 3S = [ p (n. ) dS.

Total rate of mass flow into V

= - [, n.(pq)dS

=—f, V.(pq)dV (By Gauss theorem)
Also rate of increase of mass within V

=-(l[fvpdV] =J, 2av

ot
By the principle of continuity, we have

¥ ath=—fVV.(pq)dV
or E [%"ti+v.(pq)]dV=o.
ﬁ+v (pg) =0,

Equauon (5) may be written in a different form as

g d
—a£-+q(Vp)+pV.q=0 > (6 +q. )p+pV q=0

—£+pV q=0, since %:i-l-q \'
(Dp/Dt) is the substantial derivative of density i.e., the time derivative
for a path following the fluid motion.

For a steady flow of fluid, the pattern of flow does not vary with
regard to time then the relation (5) reduces to the form

V.(pq) =0.
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For a non-homogeneous incompressible fluid, the density of the
fluid particle is invariable with time fie,p remains constant
throughout the entire region

28: = 1 =
Dt 0=>V.q=0 = divg=0

The quantity V. q gives the rate of volume expansion of a fluid
element. It may be called dilatation or expansion. A vector q having
zero divergence is said to be solenoidal.

Boundary Surface

Physical ~ conditions  that (Yool (V°'°°'R’ui§;
should be satisfied on given
boundaries of the fluid are called
as boundary condition. At the
boundary of the fluid, the equation
of continuity is replaced by a
special surface condition. When
the fluid is in contact with an

impermeable (non-porous) bounding surface the velocity of a fluid
particle at any point of the boundary relative to the surface must be
tangential to the boundary. Thus at a fixed boundary, the velocity of
the fluid perpendicular to the surface must vanish and the normal
component of the velocity of the fluid must be equal to the normal
component of the velocity of the surface.

Let q be the velocity of the fluid and u be the velocity of the
surface at the point P. Let n be the unit normal vector drawn at the
point P on the boundary surface F (r,¢) = 0. Since there must be no
relative normal velocity at P between boundary and fluid so we must
have the two normal components equal i.e.,

gn=un = (q—u).n=0.

For two fluids, in contact, a dynamical boundary is required; viz,
the pressure must be continuous across the interface
(q—u).VF =0, n=VF

Moving boundary surface
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The position of the point P on the moving surface at any instant
of time ¢ + J¢ is given by
F(r+drt+d)=0
Expanding by Taylor’s theorem, we have
F(r,t) +or.VF + dt. (oF/9t) =0
oF  or

or E+E.VF=Q

The above relation reduces to

_aa%+n.VF=0;ar-00,at-bO;u=dl'/dt
oF oF . oF . _oF . OF
at-f-q_VF_O» at-i-u(,]b:-i-vav+|»v(_’z—O.

Thus the equation of every boundary surface must satisfy the
differential equation (4).

If the surface is at rest then dF/ot = 0, the relation (4) reduces to
u (dF/ax) + v (aF/ay) + w (0F/dz) = 0,
which represents the condition when the liquid is in contact with a rigid

surface. In order that contact is maintained, the fluid and the surface
-must have the same velocity normal to the surface.

Also, the normal velocity of the boundary is given by

wn = TorT=- ViE) '+ (&) + (&) |

The momentum of a body is defined as the product of the mass

of the body and its velocity ie., -'g-(-l-, and has the dimensions of
0

force-time. In the flow of fluids the momentum M per unit volume is

given by

M..—-.gg_—.
2 P9

Since velocity is a vector quantity so momentum is likewise, a
vector quantity, having magnitude and direction both.
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Equation of motion of an inviscid fluid

Consider any arbitrary closed surface S drawn in the region
occupied by the incompressible fluid at an instant t. We know by
Newton’s second law of motion that the total force acting on this mass
of fluid is equal to the rate of change of linecar momentum. The forces
are due to (i) the normal pressure thursts on the boundary, and (ii)
the external force (e.g., gravity) F per unit
mass.

Let p be the density of the fluid
particle P with in the closed surface and
dt be the volume enclosing P. The mass
of the element pdr will always remain
constunt. Consider g be the velocity of the

fluid particle P then the momentum of the volume is
M= [ qpadr. (1)
The time rate of change of momentum is given by differentiating
(1) with regard to ¢, thus we have

—-f —g(pdt)-i-f th(pdt) f Lpdr (2)
The second mtcgral vanishes as the mass (p dT) remains constant
for all time.

Let F be the external force per unit mass acting on fluid particle
P then the total force on the volume is

= [ Fpadr. -.(3)

Again, let p be the pressure at a point on the surface along the
outward drawn unit normal n then the force on the fluid particle due
to the actions of the surrounding fluid is

=—fpnds=-f Vpdr. .(4)
The equauon for the momentum balance is written as N

Rate of momentum accu_mulanon = Rate of momentum in
— Rate of momentum out + Sum of forces acting on system.
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f %tq.pdtzf det—f Vp dz,
or | f[p%—‘tl-pF+Vp]dt=O.

Since the volume of integration enclosed in the surface is arbitrary,
we can reduce this volume to a point. Therefore

99 _ F+Vp =0,

P ar
dq _p_1
or at F p?p, it}

known as Euler’s equation of motion at all points of the fluid which
applies only to ideal fluids, the dissipative effects have not been
considered.

The equation (5) may be expressed as

oq LR since & = 2 4 45)

% +(qV)q=F P Vp Since 2™ o +q.V

9q (l z)_ —F-1 \
or ot +V >4 qXcurlg=F pr, (6
or %?+V(-;-qz)+g_)><q=F—%Vp, (Sincew =V x q) ...(7)

known as Lamb’s Hydrodynamical equations which is a non-linear
equation due to the convective term (q.V) g on the L.H.S. in (6).

u  ou ou ou_., 13
PR r-Ri it dr-tat S it
w . . W, W 1dp
PruZpyZy Loy L2
at+"ax+vay waz P oy
ow aw ow ow . _19dp
at+“ax+"ay+ z-%"pu
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POSSIBLE QUESTIONS
PART - B (5 x 6 = 30 Marks)
Answer all the questions

1. Prove that the velocity field u=yzt,v=zxt,w=xyt is a possible case of irrotational flow.

N

Determine the stream lines and path lines of the particle u=x/(1+t) , v=y/(1+t) ,
w=z/(1+t).

3. Derive differential equation of a stream line.

4. Obtain the condition that the surface F(r ,t)=0.

5. Derive the differentiation following the motion of a fluid.

6. The velocity g in a three dimensional flow fluid for an incompressible fluid is given
by g=2xi-yj -zK. Determine the equation of the stream line passing through the
point(1,1,1).

PART - C (1 x 10 = 10 Marks)
Compulsory

1. The velocity components in a flow two dimensional flow fluid for an incompressible
fluid is given by u=e*coshy,v=-¢” sin hy.

2. Show that the product of the speed and cross sectional area is constant along the
stream filament of a liquid in steady motion.

3. Derive the equation of continuity.

4. The velocity field at a point in a fluid is given by q = (x/t,y,0).Obtain also a path line.

5. Determine the restriction on f;,f,,f5 if x2/a2.f;(t) + y?/b2.f,(t)+z3/c?.f5(t)=1 is a possible
boundary surface of a liquid.
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SYLLABUS

Euler’s momentum Theorem — Conservative forces — Bernoulli’s theorem in steady motion —
energy equation for in viscid fluid — circulation — Kelvin’s theorem — vortex motion — Helmholtz
equation.

Euler’s equation of motion along a streamline

Consider an elementary section
of a stream tube. Let ds be the length (p .0 53) A
of the stream tube element. Mass of ds
the fluid particle moving along a
streamline in the positive direction is & ai
p3Ads. The force acting on the psA k-
element are of two types : (i) Body «
forces and (ii) Surface forces exerted ) pgBsBA
due to hydrostatic pressure on the end
areas of the particle.

The body force is pFs 04 ds. On the upstream face the pressure
force is p 34 in the (+ s) direction and on the downstream face it is
ﬁp + —3% as) dA acting in the (- s) direction. The total force along the
path os with tangential unit vector is given by

_ _ 9P
—-pFS&sdA+[pdA (p+asés)dA]
= pF¢d5 84 —%dsdA.

The acceleration of the fiuid flowing along Js is % By using
Newton’s second law of motion the equation of momentum along the
path is given by

Dy - »
D'pt‘sdA—pF,dsd aséséA
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1
Dt P ds . '
d 10 '
or Myq¥_f -1 (1)
ot os P as

known as the Euler’s equation of motion for one-dimensional flow.
Consider the body force due to the pull of gravity. The gravity
force is pg ds 4, its component along the § direction are
pFd5s0A = —pdsdAgcos® = Fo= —gcosb.

Since oz is the increase in elevation of the particle for a
displacement Js then
Fg = — g (0z/9s), as cos 6 = (Bz/as) «(2)

From (1) and (2), we obtain
9q 99 _ _ 9% 13
ot TV = "8% "has | (9)
For steady ﬂow 0q/ot = 0, the equation (3) reduces to
99 _ _, 9z _19p
99 = 8% " pas’

where g, z and p are functions of s only. The partial derivatives may be
replaced by the total derivatives

-pB +gdz +qdq=0
1) -‘:ﬂ +qz + %qz = constant. ~(4)

which is an alternative form of Euler’s equation of motion along a
streamline for inviscid and steady flow. It may be integrated if p is known
as a function of p or is a constant. The pressure along « stream line
can be determined without assuming the existence of a velocity
potential,
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Conservative field of force

If the work done by the force F of the field
in taking a unit mass from one point 4 to another
point B independent of the path then it is termed
as conservative field of force

| F.dr=[ F.dr=-Q (say),
ACB ADB
where Q is a scalar point function whose value
depends on the initial and final position
A and B. Thus

F=-VQ,
where € is known as force potential which measures the potential energy
of the field.

Bernoulli’s Equation (Theorem)

For Steadv Flow. We shall obtain a special form of Euler’s dynamical

squation in terms of pressure. The Euler’s dynamical equation 1s

M_F v 1)

dt P

where @ is velocity. F is the body force, p and p are pressure and density
respectively.
F be conservative so that it can be expressed in terms of a body force potential

function O as

F=-VO (2)

1

When the flow 1s steady. then % =0 (3)

Therefore. in case of steady motion with a conservative body force equation
(1). on using (2) and (3). gives
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v[ig2 |-g«E-—va-1ivp
2" ) ) P
= viigi+o|+ivp=q-F (4)
\ 2 ) P

Further, if we suppose that the liquid 1s barotropic 1.e. density 1s a function of

pressure p only. then we can write

l?p=?.|1@
P P

Using this in (4), we get

(5)

Multiplying (5) scalarly by q and noting that

q.(ﬁ.g}:ﬁ-ﬁ)-g={}.weget
(6)

q- ?Fql —Q+fd—p} =0
- P

If s is a unit vector along the streamline through general point of the fluid and

s measures distance along this stream line. then since § is parallel to .

therefore equation (6) gives

91l 0% _o
cs| 2 p |

1_5 -
—q‘+ﬂ+f—p=c (7)
3
= P
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where C 1s constant which takes different values for different streamlines.
Equation (7) 1s known as Bernaull’s equation. This result applies to steady
flow of ideal. barotropic fluids 1n which the body forces are conservative.

Now. if § is a unit vector taken along a vortexline. then. similarly. we get
1_ ~dp : :

—q +Q+|—=C along any particular vortexline. (Here. we
= P

multiply scalarly by %)

Remark. (i) If =2 =0 ie if Q& & are parallel. then streamlines and

vortex lines coincide and q is said to be Beltrami vector.

If & =0. the flow is irrotational.
For both of these flow patterns,

lg+0+12.

where C 1s same at all points of the fluid.
(ii)  For homogeneous incompressible fluids, p 1s constant and

@zp

PP

The Bernoulli’s equation becomes

-

q +Q=C

™ |

ba | =

so that if q 1s known. the pressure can be calculated.

Vorticity and the equations of motion.

Vortex lines and tubes.
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We define a vortex line in analogy to a streamline as a line in the fluid that at each
point on the line the vorticity vector 1s tangent to the line. 1.e. the vortex line at each

point is parallel to the vorticity vector.

It 15 important to note that the strength of the vector vorticity 1s not constant along a
vortex line in the same way that the velocity 1s not (necessarily) constant along a

streamline.

T'he circulation

The circulation of any vector field J around a closed curve C in the flmd 1s

defined as:
I, =§J«dx=§Jdx
C [

#here the contour 1s taken in the counter-clockwise sense.

The circulation involves the component of J tangent to the curve . If J 1s the

velocity vector the resulting cireulation 1s simply ealled the circulation and is denoted by

I'and 18
I =diisdx
C
From Stokes theorem.
I' = diisdx = [[V X ii]*ndA = [ @-ridA
C A A
so that the circulation 1s just vortex tube strength for the tube enclosed by C.

Kelvin's Circulation Theorem

The circulation I' around a closed material contour C{t] iz defined by:
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P[t}=§cu-ds

where u is the velocity vector, and ds is an element along the closed contour.
The governing equation for an inviscid fluid with a conservative body force is

Du 1
- &
D; pr-IF\T

where D/Dt is the convective derivative, p is the fluid density, p is the pressure and @ is the potential
for the body force. These are the Euler equations with a body force.

The condition of barotropicity implies that the density is a function only of the pressure, ie. p = p(p).

Taking the convective derivative of circulation gives

DF_fﬁ Du ds+§ ,,. Dds
Dt  J o Dt c Dt

For the first term, we substitute from the goveming equation, and then apply Stokes' theorem, thus:

D 1 1
3§ —”-dszfvx (——‘F*p-l—?@)-ndS:/—q{?pxﬁp}ndS:{},
o Dt A 2 A P~

The final equality arises since Vp x ¥p = 0 owing to barotropicity. We have also made use

of the fact that the curl of any gradient is necessarily 0, or ¥V x V f = 0 for any

function f.
For the second term, we note that evolution of the material line element is given by

Dds

D = (ds - V) u.

Hence

Dds 1 2
§Cu-ﬁ—§cu-[ds-v}u—E§ﬂ?(|u| )-ds—ﬂ.

The last equality is obtained by applying Stokes theorem.
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Since both terms are zero, we obtain the result

DI
— =0.
Dt

The theorem also applies to a rotating frame, with a rotation vector £2, if the circulation is modified thus:

I'(t) = §C{u+ﬂ xr)-ds

Here 7 is the position of the area of fluid. From Stokes' theorem, this is:

F{t}:fv><{u+ﬂ><r}-ndS:f{‘?xu+EH]-ndS
A A

Helmholtz Equations

Euler’s equations of mction are given by
zl:-i-ugxu +vg;‘+w%=.¥—-’}-—a£,
%+u%+v%+w%=Y—%%,
%‘:+u:+vg+ws—a‘:=z-%%. (1,2, 3)

Let V be the potential function of the external forces and the
density p be the function of the pressure p. Equation (1) may be written
das

u [ u w ow u v u  ow
ax+( ax+”ax+war)+"(ay'ax) [az_&x)
__9% 1
T & Pax
i“'—+——{ql) we+mwg=-2_1%2
x Pax’

where Q (L-‘, 1, &) are the spin components and q? = u? + vZ + w2
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ou _ =_29 1 dp) _ _9Q
= o~ e+ 2w ax(V+2q2+f p)- o (lev),
where Q=V+lq2+fQ.
2 P
ou _ - 9%
Thus Py vl+2wy = a’
Slmﬂarlym-2w£+2uf,'——%’2’,
w _ =%
and U+ wE = (4, 5, 6)

Differentiating (5) and (6) partially with regard to z and y, we have

32—5;—2 "€ ¥+2u2§-+2§—
TSP P .
1t el *35)”"('{) w ()
+2§(%+%z‘1)-2q(%‘-)-2t%_0 (T
But % -%;]- %=0 +(8)
From (7) and (8), we have
65+2ua‘5+2 ‘;ﬁ+2w‘?£+z§(ax+3y-+%;’—)
- -y - %G =0
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DE {au v aw] u , ou ., du
=4+t —| =ty —+E— (9
= el y & - L S )
The equation of continuity is
%+p [ﬂ+ﬂ+ﬂ] =0. .(10)

ax 0z
From (9) and (10), we have |

Dt pDt S Ty Tty
1Df EDp _Eou nou Eou
= P Dt f’m'pax+pay+paz
D\ _§ou nou (o -
o mi)‘gax'*pay*%az’ (11)
e Doy _E g LoV
Similatly - (1) =50+ 05t b
D@\ _Eaw now (Cow
and Dr(p) cxtrytem | (12, 13)
nou Zou_m)(ou_ov), ovi & j(ou_ow) ow
Bt oy tra p{(ay dx)+&x}+P{(az ax]"'ax
M 7% ¢ g ow
L-2)+ 218+ 2@n+22
7 _ Sow,
=142 (1)
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Using the relation (14), the equations (11, 12, 13) reduce to
D@ & v Cow
= (P) + 1= 4

7§04 _ndv_ Eow
Dt(P) P6y+Pay+l£8y’
Dy _&u nav §ow
Dt (pJ_p az+p az+p z -..(15, 16, 17)

Equations (15), (16), (17) are known as Helmholiz’s equation.
leté=9np=C=0at an instant of time ¢ then

ale) o ) =3 () =

= ‘—D-E=Qy-=9£=[},p=const.

Dt Dt Dt
= £, n,¢ must be constant. Since they are all zero at ar instant of
time ¢ and have to remain constant.

In general, Iet u —%, ... are all finite and less than a quantity

axI
P then g- _. ,E:l , % can not increase faster than if they satisfy the equations.
D&\ _DLm_D@E\_P
Dt [p] = Dt (p) =Dt ] =p @+l
Jet & +n +C =PW, then
Dr(g+g %\}__(W) A
= = ke3P, W0
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When t =0, W =0 = k =0i.e., W be zero at time ¢ = 0, it may
be so for all time.

Since W is the sum of three quantities &, »,{ which cannot be
negative. Hence W= 0, it follows that each of these three quantities
must be zero £ =0 =n =,

Hence if the motion is irrotational at any instant, it must be so
for all time i.e., if once, the velocity potential exists it exists for all time.
This is known as the principle of Permanance of irrotational motion.
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POSSIBLE QUESTIONS
PART - B (5 x 6 = 30 Marks)
Answer all the questions

1. Prove that the rate of change of total energy,kinetic energy,potential energy,intrinsic
energy of any position of a compressible inviscid fluid as it moves about is equal to the
rate at which work is being done by the pressure on the boundary € is constant w.r.t
time.

2. State and prove Kelvin’s theorem.

3. Explain Bernoulli’s equation.

4. Obtain the Equation of motion interms of verticity vector when the force is

conservative.

5. Derive Euler’s generalised Momentum theorem.

6. Derive the Helmholtz equation of vorticity.

PART - C (1 x 10 = 10 Marks)
Compulsory
1. Explain Energy equation.
Explain Beltrami’s flow.
Derive Equation of motion when the force is conservative.
Explain Circulation and rate of change of circulation.
Derive Euler’s equation of motion.

ok~ own
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Two Dimensional Motion — Two Dimensional Functions — Complex Potential — basic
singularities — source — sink — Vortex — doublet — Circle theorem. Flow past a circular cylinder

with circulation — Blasius Theorem — Lift force. (Magnus effect)

Motion in two-dimensions.

Let a [uid move 1 such a way that al any given instant the [Tow patllemn in a cerlain plane

(say X0JY) 15 the same as that in all other parallel planes within the [lnd. Then the [Twnd 15 said to

have two-dimensional motion. If (x, v, z) are coordinates of any pomt in the fluid, then all physical

guantities (veloeily, density, pressure ete)) associated with the [lud are independent of z. Thus
are functions of x, v and ¢ and w = 0 for such a motion.

Stream function or current function.

Letwand  be the components of velocily m two-dimensional motion, Then the difTerential

equation ol lines ol Mow or streamline 13
dxlu=dv/ or dy —udy =0 A1)

and the equation of continuily 1s

ox  ay oy dx

(2) shows that L0058 of (1) must be an exact differential, 'y (sav). Thus, we have
de —udly = dvy = (dw ! 8x)dx + Oy / EV)dy A3

so that i=—cy oy and = oy dx CY

This function Y 15 known as the stream function. Then using (1) and (3). the streamlines are
given by ahy =0 fe, by the equation w=¢, where ¢ 1s an arbatrary constant. Thus the stream
function is constant along a streamline. Clearly the current funetion exists by virtue of the equalion
of continuity and incompressibility of the [uid. Henee the current lunclion exists in all types of

two-dimensional motion whether rolational or irrotational.

Ex. 1. To show that the curves of constani velocity potential and constant stream funciions

cui orthogonally at their poinis of infersection.

O
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1o shows that the family of curves ¢ (x, v) = ¢ and y(x, ¥) = ¢, ¢, ¢, being constants,
cui orthogonally at theiv poinis of infersection.

Proof. Let the curves of constant velocity polential and constant stream lunetion be given by
d (x. ) = ¢ (1)
and w(x, ¥) = ¢ (2

where ¢, and ¢, are arbitrary constants. Let s, and m, be gradients
of tangents PT, and PT, at pomnt of intersection P of (1) and (2).

Then, we have

o S o e f o
", = - — and M= - &

- = ]|
o/ dy :

cyr f Sy

We know that ¢ and w satisfy the Cavchy-Riemann

equations, namely,
&b o = oy fEy and Sty = —Owyfix. A4

(O cx) (dy S dx)  (owy Sv) Dy [ dx)

(o £ d) (o / f'.’_t,'] —(d Ex) (dy

MNow, from (30, My = b (4)

Hence mtym, = —1. showing that the curves (1) and (2) cut each other orthogonally.
Source and sinks in two-dimensions.

In two-dimensions a source of strength m 1s such that the flow across any small curve

surrounding 13 2mm. Sink is regarded as a source of strength — m.

Consider a circle of radius r with source at its centre. Then radial velocity g, 15 given by

1 Sy |
Y =777 1
’ oo '
¥ a1 oy
or q, = _h_¢‘ as === A2
or ar ol
Then the flow across the circle 15 2rrg.. llence we have
imrg, = 1mm or rg,. =m ]
i =
1 h
or rl _P]=m. by (1}
b .
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[ntegrating and omitling constant of integration, we get

W= —mi ()

[Using (2) and (3), we obtain as before

i =—nilogr A3

Equation (4) shows thal the streamlines are 0 = constand, i.e.. straight lines radiating [rom the

source. Again (3) shows that the curves ol equi-veloeity potential are » = conslant, {.e.. concentric
circles with centre al the source.

Complex potential due to a source.

Let there be a source of strength s al origin. Then

: . i
w=h+iy=—mlogr—im0=—mlogr+iloge" }=—mlog(re")=—-mlog z.

I, however, the source 13 al 2", then the complex potential 15 given by w =—m log (z - z7)
The relation between w and = for sources of strengths m,, m,, m, . situated at the pomts
z =1z, 2y, Z3,... 18 given by
w=—m log{z—-z) m,log(z—z)-m,log(z-z,)
leading to d=—m logr —m,logr,—mylogr,— .
and Wy==ny U =m0y =y Oy
where r=lz-2z, and 8, =arg (z -z}, n=1 273, ..

Doublet (or dipole) in two dimensions

A combination of a source of strength # and a simk of strength — m at a small distance s
apari, where in the limit m 1s taken infinitely great and g infinitely small but so that the product
mbs remains finite and equal to p, 15 called a doublet of strength 1, and the line 4s taken in the
sense from — m to + 15 taken as the axis of the doubler

Complex potential due to a doublet in two-dimensions

Let A, B denote the positions of the sink and source and P be anv point. Let AF = r,

BP =vr+ g and £ PABR =0 . Let ¢ be the velooiy potential due 1o this doublet,

. , r+or
Then h=mlogr —mlog(r+dr) =-mlog
¥
{a;'”.
or -:h——m]ny.[l+—1
h, rJ
ar - . o
b==m-— . o st order of approximation. (1 \
" A is B

Prepared by A. Henna Shenofer, Asst Prof, Department of Mathematics, KAHE Page 3/15




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSE NAME: FLUID DYNAMICS
COURSE CODE: 17MMP206 __ UNIT: III(Two Dimensional Motion) BATCH-2017-2019

Let BA be perpendicular drawn [rom B on AF. Then,

AM = AP = MP = r—{r+d&r)=-6r

cosl = AN T AR =—-dr /85 s0 that dr = — ax cosl
. . cost pcosd
& From (1), g = s - ol . L2
r r
where n = mibs = strength of the doublet.
) i peosh
From (2). — = -
ar -
1 chy Leosfl o 1 &
or ——.l = ] 5 . as ‘—¢' = —”
r ot - dr ol
oy cos
or H_| _ _ pcost
5} r
[ntegrating it with respect to 0, we pet
L B . -
W= Hi F ) .A3)
r
1 d &
Mo, —_‘—[b= :Lu A4
ool cr
Usmg (2) and (3). {4) reduces to
1 psin07 _- psin

s+
LAY ¥ 4 L |
or Jry=0 sothat J(r) = constant Hence omitting the additive constant, (3) reduces to
pesim £
W= - A5
-
.

Using (2} and (5], the complex potential due to a doublet 1s given by

. . L " L 1
~1'=r.'l—.r'lp=E|_d.;-:=.~iﬂ—i5:m[|} - t"“_-l -k

¥ r re' z
Vortex Flow

Three types of elementary flows (uniform flow, source/sink flow and doublet flow) have been
discussed earlier. Mow, the last elementary flow will be introduced called as vortex fow . Consider a
flow field in which the streamlines are concentric circles about a given point which is exactly
opposite case when the velocity potential and stream function for the source is interchanged. Here,
the wvelocity along any given circular streamline is constant, while it can vary inversely with distance
from one streamline to another from a common center. Referring to the Fig. 3.5.4, if v, and v, are

the components of velocities along radial and tangential direction respectively, then the flow field
can be described as given below,
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v, =0; v, =<
-
Vo

Schematic representation of a vortex flow.

It may be easily shown that streamlines satisfy the continuity equation i.e. &, 7 = 0 and the vartex
flow is irrotational i.e. w77 =( at every point except origin [r:D] . In order to evaluate the

constant appearing in Eq. (3.5.8), let us take the circulation around a given streamline of radius »:

T =[f, 7ds =, (2m7)

T
2o

[t may be seen by comparing Egs. (3.5.8) and (3.5.9) that

T
c=——=1 =-1rc¢
T

Thus, the circulation taken about all the streamlines is the same value. So, it is called as the
strength of the vortex flow while the velocity field is given by Eq. (3.5.9). It may be noted that v, is

negative when T is positive i.e. vortex of positive strength rotates in clockwise direction. Now, let
us obtain the velocify potential and stream function for the vortex flow from the velocity field. By
definition,

Z 12 r
G—(;}:V__zlj; —G—¢=1|,:'&=——
cdr ol 2ar
1y o r
—_ =V =|:|; ——=1|,.-‘E=——
»of oy 2mar
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Integrating the above equations, the velocity potential and stream function are obtained as,

r r
f=——=8>, Ww=—-Invr
2T 2
Once again it is clear from this equation that streamlines [w: cmatant] for a vortex flow is given

by concentric circles with fixed radius while equipotential lines [¢> = canstant] are the straight radial

lines from the origin with constant 4. Both streamlines and equipotential lines are mutually
perpendicular as shown in Fig. 3.5.5.

08

[

y-axis
o

Flow nets drawn for of a free vortex flow.

MILNE-THOMSON CIRCLE THEOREM

Let f(z) be the complex potential for a flow having no rigid boundaries and such that

there are no singularities within the circle

:|:a. Then on mtroducing the solid
L::-,-'lindcr| | = a , with impermeable boundary. into the flow, the new complex potential

for the fluid outside the cylinder 1s given by W = f(2)+ _;{EI “/z) for H >da.
Proof

All singularities of f(z) occur in the region || =a. Hence the singularities of
fla”/z) occur in the region E'{|:| =d. Le., |:i{£'{. Thus the singularities of

fla”/z) also lie in the region H <.

It follows that in the region

:| =>a, the functions f(z) and f(z)+ f(a” /z) both
have the same analytical singularities. Thus both functions considered as complex
potentials represent the same hydrodynamical distributions in the region H >da.
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The proot of the theorem 1s now completed by considering what happens on the
circular boundary H =a. To this end, we write z = ae” on the boundary where 0 is

real. Then ¢~ /7 = ae ™ =7 on the circular boundary. Thus. on the boundary H =da.

W=fl)+fla/2)=fl2)+f(3),

which 1s entirely real. Hence on the boundary,

w=ImW=10.

This shows that the circular boundary 1s a streamline across which no flmd flows.
Hence H =ga 1s a possible boundary for the new flow specified by the complex
potential W = f(2)+ fla*/z).

Flow Around a Circular Cylinder

Flow around a circular cylinder can be approached from the previous example
by bringing the source and the sink closer. Then we are considering a uniform
flow in combination with a doublet. The stream function and the

velocity pdtenti-al for this flow are given by,

K =sn@

¥ = Ugrsin — — 27
T

K a

¢ = Ugrcosf + = o7
T

The velocity components are given by,

. 1o K
Uy = ~38 = ccns-ﬁ'(Um — 'rz)

. K
vg = _a-‘r = —SJIIB(Um—l—Tz)
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It is seen that the radial velocity is zero when

If we recognise this particular streamline as the surface of the circular

cylinder then the radius of the cylinder a is given by,

The equations for the streamlineg, velocity potential and the velocity components are replaced by,

2
W = Umr(l _ ‘l)sma

r

a2
¢ = Umr(l 4+ —E)ms{?
T

2
v, = Um(l — i)msﬁ'
r2

a2
vg = —Um(l + E)siuﬂ

The velocity components on the surface of the cylinder are obtained by putting

r = a in the above expressions. Accordingly,
Uy = 0 and vy, = — 2U,=nfd

sin# has a zero at 0 and 180% and a maximum of 1 at & = 90 and 270%. The former set denotes

the stagnation points of the flow and the later one
denotes the points of maximum surface velocity (of magnitude 20 ).
Thus the velocity decreases from a value of 20, at & equals 900 to U, as one

mowves away in a normal direction
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The surface pressure distribution is calculated from Bernoulli equation.

If we denote the free stream speed and pressure as Uy, and Pea We have

1 1
Po + 5PU0 = Ps + 5PV,

Substituting for vg, = — 20U siné#, we have

1
P: = Poo + 5pUL(L — 4sin® 6)

We can also express pressure in terms of pressure coefficient, Cp,

leading to

C, = 1 — 4sin’8
A symmetry about y -axis is apparent. When compared to the experimentally observed C

distribution we see that there is some agreement in the region between &= 0% and £ = 900 .

But any agreement is lost in the other regions. The reasons for

——— i — B - et _————— i ——

nate the fli.:;';fnr”i-n_f.l{e. r_ggmn to the ri_ght 1;f t_h;é_

this are obvious. Viscous forces domi

centreline giving rise to separation. The pressure tends to plateau out in a
separated region, the level depending on whether it is a laminai

separation or a turbulent one.
Symmetry in the theoretical C, distribution about both y-axis and x-axis shows that

drag and lift forces about the cylinder are each zero. This

may also be proved by integrating pressure around the cylinder, thus,

I
Drag, D = —/ ps, cosf a df
0

-

Lift, L = —f ps sinf a df
0
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By substituting for the surface pressure, pe

2w 1 . 2w .
D=— / Peot cos Bdf — EPE'TSG’J/ (cc-s 8 — 4sin” fcos 5’) de
0 2 0

1 1 4 2
=  — Poo[sinfZ — §pU§oa [sin 82" + EpUiﬁ [E sin® 3]

0

=-0-0+0

2w 1 2w
L= _/ Peott it 80 — EFU;Q/ (sin @ — 4 sin° 9) d6
0 0
e 1 e 1 4 2’”
= — Peott[cosf];" — §PU:o“ [cos )" + §PU§o“ [§ cos” § — 40053]
0
=-0-0+0

What we have just calculated is in contrast to the experimental results which do

predict a significant drag for the flow about a circular cylinder.

Blasius Theorem

In a steady two dimensional uirrotational flow given by the complex potential W
= {(z). if the pressure forces on the fixed cylindrical surface C are represented
by a force (X. Y) and a couple of moment M about the origin of co-ordinates,
then neglecting the external forces.,

 _ ip, (AW "F
X—-1¥=— —  dz
2 IC . dz
(aw
M = Real part of —E[CZ: 2z
3* '-,_ dz .'|

where p 1s the density of the fluid

Proof. Let ds be an element of arc at a point P(X. y) and the tangent at p makes

an angle 6 with the x-axis. The pressure at P(x. y) 1s pds. p 1s the pressure per

unit length. pds acts along the inward normal to the eylindrical surface and 1ts
components along the co-ordinate axes are

pds cos (90 +8). pds cosH
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1.e. —pdssmB. pds cosB

The pressure at the element ds 1s

M
v
pds cost
O >
X

dF =dX +1dY

= —p sinf ds + 1p cosO ds

= 1p (cosB + 1 s1n8) ds

pds sinB alongnegative X — axis
— —pds sin B along positive X —axis

%

=1p dx + idy ads cosO = ax . sinB= dy
L ds  ds ds ds
=1p (dx +1dy)=1p dz (1)

The pressure equation, in the absence of external forces, 1s

1 5
P +—Q~ =constant
P =
I .,
or P=—7Pq +k (2)
dW : L.
Further 4z =—u+1v = —q cosb T+ 1q s1nB
az
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= —q(cosB —isinf) =—q e (3)

and dz =dx +1dy = | $+i% lds=(cos 6 +isinB) ds=¢&%ds (4)
as 5 )

The pressure on the cylinder 1s obtained by integrating (1). Therefore,

F=X+1Y= [, ipdz= [, i(k-1/2 oq’) dz

From here :

'r_ip" 2 -5 -
X-iY=—|. q e ds

ip . [(dW "|2
Sl |G ®

%,

using (3) & (4)

The moment M is given by
M= |[ | T dF | — .lx{:‘ [(Pd":u i.ille} v +[;pd-:_, CG\}B) X]
dy |

| (dy” (dx )
= | | rds+p| — xds
.c{pl__ 3/ p|k as %

= [ p(x dx + ydy]

i 1 A Y
= [o|k=5pq” | (xdx + ydy)

1 2 N 3
k[ d G +y7) | =2 o o (adx+ydy)
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=—P 1 (xdx+yd 2+ 1% integral
=—>lc a (x ydy) . mntegra
vanishes.
_—py dx = cosBds

~ e q* (x cosd + v sind) ds

dy = sin Bds
=R.P. of [_—f .[c q? (x +1y)(cos B —isin 6)ds |

_ - —P 2. -8 g, |
—R.Poi[—jjcq ze dsl

_ S B 2_-2if 6 4 |
_R'Pﬂi|T.Cz{q e e dsl
(AW )’
=RP.of|-Zf. 72| dz
2°% | dz |

Hence the theorem.

The Magnus Effect

Spinning objects traveling through a viscus fluid act much like an airfoil (airplane wing)

hetp: ‘zchema-root o1z science physics 'effects magnosmaswus_effect pag
First described in 1852 by Heinrich Magnus, the Magnus effect is a force generated by a
spinning object traveling through a viscus fluid. The force is perpindicular to the velocity vector of the
object. The direction of spin dictates the orientation of the Magnus force on the objecc. The
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prientation of the force can change but it is important to remmeber that it is always perpindicualr to
the direction of fluid.

Like an areofoil the rotation of the object forces some air to take a longer path around the
spinning object. This air moves faster to cover the greater distance around the object in the same

amount of time. The image above shows a ball rotating clockwise, we can see that the
airstreams are pulled under the ball by its rotation. The resulting Magnus force is in the downward direction

perpindicular to the direction of the air.

The force of the Magnus effect can be calculated with the following equation:

Fm=28(wxvy)
Where:

Fm =the Magnus force vector

w= angular velocity vector of the ohject

1=Velocity of the fluid (or velocity of object, depends on perspective)
8= air resistance coefficient across the surface of the object

Once Fm is found we can use the basic kinematic equations to predict the

characteristics of spinning objects in flight.
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POSSIBLE QUESTIONS

PART - B (5 x 6 = 30 Marks)

Answer all the questions

1. Discuss the flow for the complex potential w=z2.
2. Explain Milne Thomson’s circle theorem.
3. Show that in an irrotational incompressible inviscid 2-D fluid flow both ¢ &  satisfy

the Laplace equation.
4. Explain Sink and its complex potential strength of the sink.
5. Discuss source in two dimensions.
6. Discuss the motion for the complex potential w=iAz.

PART - C (1 x 10 = 10 Marks)
Compulsory

1. Inirrotational motions of 2-D, prove that (0q/0x)*+( (0q/0y)*=q.A%q.

2. Obtain the complex potential for the vortex.

3. Discuss on source and its complex potential.

4. A velocity field is given by q = -xi +(y+t)j find the stream function and the stream line
for the field at t=2.

5. Show that x%a2f(t) + y*/b%.e(t)=1 where f(t)@(t)=constant is a possible form of the
boundary surface.
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UNIT-1V
SYLLABUS

Viscous flows — Navier-Stokes equations — Vorticity and circulation in a viscous fluid — Steady
flow through an arbitrary cylinder under pressure — Staedy Couettc flow between cylinders in

relative motion — Steady flow between parallel planes.

Viscous Flow

Viscous fluids are important in so many faceis of everyday life that everyone has some intuition about the
diverse flow phenomena that oceur in practice. This course is distinetive in that it shows how quite advanced
mathematical ideas such as asymptotics and partial differential equation theory can be used to analyse the
underlying differential equations and hence give scientific understanding about flows of practical importance,
such as air flow round wings, oil flow in a journal bearing and the flow of a large raindrop on a windscreen.

Naiver-Stokes equations.
For incompressible, viscous and Newtonian fluid, we then

obtain the Naiver-Stokes equation (plus suitable boundary and initial conditions).

—pAu+ plu; + (u-Viu)+Vp = f,
g+ e ?p = 0,
divae = 0O

In this note, we consider the constant mass density. Then the Navier-Stokes equations is

simplified to

(11) —pAu+u+u-Vut+Vp = F,
(12) divae = 0.

Note that in the momentum equation (11) the viscosity constant g, the pressure, and the

force is normalized by dividing the constant density p. The mass equation is equivalent to
the incompressible equation.

Now let us consider the non-dimensionalization by the transformation
a=u/Up=p/U% z=x/L, andt =t/T.

Then the momentum equation (11) becomes
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u¢+u-‘?u—mi‘tu+?p—f._

where
Re = LU /.

Flow with the same Reynolds number {(in domains with the same shape) will be similar.
Therefore one can construct an experiment using practical size in lab to model flow in large
scales. As He increases, the equation becomes inviscid. From the definition of Re, for

large scale problem ( L or L7 big), the viscosity is tiny. In the limiting case, Re = oo, =0,
Navier-Stokes equation becomes the so-called Euler equation. The fluid is called ideal
fluid. Note that N-S equation is second order while Euler is first order. The boundary

conditions w = () should be changed accordingly to w-n = (. If there is a mismatch in the
boundary condition, it cause problems near the boundary, known as boundary laver effect;

There are mainly three difficulties associated to the Navier-Stokes equations:

(1) First it is time dependent. Stability in time could be an issue for both PDE and
numerical methods. For example, we still do not know wether solutions to N-S
equation will below up in finite time or not (for a reasonable large class of initial
conditions).

(2) Second, it is nonlinear. Efficient numerical methods can be developed for this
special quadratic nonlinearity. But the convection w-V derivative, especially when
it 1s dominate (2 <= 1), will cause a serious trouble 1n the numerical computation.

(3) Third it is a cbupled system of (w,p). The pressure p can be eliminate if we
consider u in the exactly divergence free space. But the divergence free condition

is hardly to impose in numerical methods.

We shall solve this tangle by focusing on one difficulty at a time. We first skip the time
dervative and nonlinearity to get the steady-state Stokes equations

(13) —phu+Vp = f,
(14) divae = 0.

Vorticity: The vorticity of a low is defined as the curl of the velocity field:

vorticity : w=Vxiu
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It is a microscopic measure of rotation (vector) at a given point in the fluid,
which can be envisioned by placing a paddle wheel into the How. If it spins
about its axis at a rate 2, then w = || = 2€0.

Circulation: The circulation around a closed contour ' is defined as the
line integral of the velocity along that contour:

circulation : ' = # i-dl = /EF- ds
Jo g

where 5 is an arbitrary surface bounded by C'. The circulation is a macroscopic
measure of rotation (scalar) for a finite area of the flud.

Steady flow through an arbitrary cylinder under pressure
Now, we consider a steady-state, Navier with no external forces and take axes
Oxq, Oxs, Oxg, where Oxq is parallel to the generators of the cylinder and

Ox4, Oz are perpendicular thereto. We look for a solution in which the flow
is entirely parallel to the generators of the cylinder; thus

Uy = Uy (T, x2,23), U2 =uz =0, (3.25)

and so the Navier equations become (with dimensions)

f}l'l] . ﬂp . ﬁp N .

9 0, FeZ = 0, Bes 0, (3.26a)
Ay _ Qp 2

pﬁulﬁl:ﬂ] = "o + g V=ug . (3.26b)

Equations (3.26a) show that:
uy = u(z2,23), p=pz1),

and in place of (3.26b), we obtain:

dp _ (u
d&‘-]_ = Ho 5?‘% aﬁ‘g ’
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where the left-hand side is a function only of x, and the right-hand side is
a function only of x4 and 3. Consequently, we deduce that both are constants
(denoted by [}, and write

2 o2
LE:'&_T:‘ ité: FE_ (3.27)
po dzy  Oz5  Oxg o

Equation (3.27) must be solved subject to the boundary conditions that u =0
on the surface of the cylinder. The computation of full pipe flow for arbitrary
cross-sectional shapes is based on solving the Poisson differential equation

(3.27). Solutions for different cross-sections can be found in Shah and London
(1978). We note also that an exact solution of the Navier equations can be
given for a pipe of concentric circular cross-section (a so-called annulus); see
Miiller (1936).

The Case of a Circular Cylinder

For a circular cylinder of radius a, we transform into polar coordinates
(r,f, ), and note that the velocity u{xs, z3) along the tube will be a function
of » alone. Thus,

Ou  Pu_10 (o) _ I
Axs Bz vor\ )
which integrates to give
1
u(r) = Alnr 4+ B - —yr* (3.28)
dpig

where A and B are arbitrary constants of integration. The constant A must
be zero if the solution is to be physically acceptable along the axis r = 0, and
B is then determined by the no-slip condition,

1
w=0onr=a = B= ——I[Ma*.
4pup
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Thus, the solution is (with dimensions)
a’ T2 .

From this velocity profile, we may deduce the mass flur per unit time passing
any cross-section of the tube:

4

M= f poudnrdr = por ( i) 1, . (3.30)
B

This result is known as Poiseuille’s law - the basis of a method of measuring
the viscosity of a fluid. Obviously, solution (3.29) is only valid “far” from the
“entry flow” near the entrance to the tube, where the fully developed region
with a velocity profile given by (3.29) has not been attained.

The Case of an Annular Region
Between Concentric Cylinders

If we consider an annular region between concentric cylinders of radii a and
b (b < a), then the velocity profile for the flow through this annular region is

u(r) = (5;) Hu{{l—f (5)2] - EEZEH [1 - (2)2“ . (331)

From (3.31), when b tends to zero, we derive (3.29) again. The resulting
(3.31) is obtained from the solution (3.28), if we consider no-slip boundary
conditions on the cylinders v = a and r = b (in this case the constant A4 is

not zero because the singular axis r = () is outside the annular region).

Couette’s Flow

It 1s the flow between two parallel planes (flat plates)
one of which 1s at rest and other moving with velocity U parallel to the fixed
plate. Here. the constants A and B in (7) are determined from the conditions

u=0y= }
h

and u=U.yv= (8)

Using these conditions, we get
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1{dph
B=0. U=—|—" | = +Ah

widx ) 2

U h(dp)

= A=———| 2| B=0 9)
h 2pldx)

Therefore. the solution (7) becomes

lfdpy" U _ hidp} (10)

u=—| —

pnldx ) 2 "_I 21 E'_‘

_ }__2 _h}"-{@n‘_'_LT}F (*}
2n ldx) h
_U ;_5@1{1_31 (11)

H} 2udxhl h)
We note that equation (10) represents a parabolic curve.

This equation i1s known as the equation of Couette’s flow. Thus the velocity
profile tor Couetle’s tlow 1s parabolic. The tlow Q per unit breadth 1s given by

‘h{i@ y’ N ,‘E_l_lﬂ _d :

h
Q= [judy=];

mdx 2 L h 2pdx )]
_wu_vdp -
2 12ndx
3
.
= h_L_ll_P‘ P :_@ {1:)
2 12n dx

In non-dimensional form (11) can be written as

iy

u_y oy ¥
— =2 4a=|1-2 13
U h hi h) (13)
where o= h- : % \: (14)
2uU dx )
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o 1s the non-dimensional pressure gradient. If o > 0. the pressure is decreasing

in the direction of flow and the veloeity 1s positive between the plates. If o <

0. the equation (13) can be put as

1 W Ct}f'j
—=2(l4+0)—— 15
U 11{ ) h? (13)

The pressure 1s increasing in the direction of flow and the reverse flow begins

when o < -1
“ v 1s small. 1.e.

2.
v 1s neglected

Fa=0|iell_
L dx

flow and the velocity 1s given by

0 |, then the particular case 1s known as simple Couette’s

u_y
U h

which gives u =0 where v = 0 1.e. on the stationary plane.

(i) Average and Extreme Values of Velocity : The average velocity of a
Couette’s flow between two parallel straight plates 1s given by

uy = lllél ud, (16) su=uly)
L ;
Using the value of u from (13). we get
h 'L]:}r }r i }r \II_.
ug = —| +Uag—|1—-=|d
’ 11‘{ h 11|~ h/] 4
_ Un? [ hT h’ I
2h? 2h?  3n°
T j
=£_E=‘l+E:LT (17)
2 6 2 6
7 ] R’
_U wWwdp U I, dp (18)
2 12n dx
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In the case of a simple Couette’s flow, the velocity increases from zero on the
. . .. U
stationary plate to U on the moving plate such that the average velocity 1s -

When the non-dimensional pressure gradient 15 oo = —3, then from (17). we get
up = 0. This means that there i1s no flow because the pressure gradient is
balanced by the viscous force.

For maximum & minimum values of u. we have

d J ( 2y )
11=G:>E+L'a!i— :: =0
dy h \h h-)
A
Ly = 1+C{1Ih (19)
2a )
From here. % =1. wheno =1
1
and I 0. when o« =-1
h
So. from (13). we get
u=_1+c1 u! n1_1+u':—|U
| 20 | AN 2a /]
2
_ (1+a) U
4o

and thus u 1s maximum for o = 1 and mmnmmum for o = —1.

(ii) Shearing Stress : The shearing stress (drag per unit area) in a Couette’s

flow i1s given by
dllleE_lLL(ﬂ_:{ 2y

dy "h h | h)

Oy = U

20)

_pu
= +—, for a simple Couette’s flow (o = 0).

h
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h : . :
When y = —. then the second term in (20) vanishes. Thus the shearing stress

15 independent of o on the line midway between the flow. The shearing stress
at the stationary plane 1s positive for a = —1 and negative for o < -1.
v =0 at stationary plate

The velocity gradient at the stationary plate 1s zero for o = —1 and the shearing
stress 1s Zero for a=-1.
Thus oy 20 when o Z-1.

Further. drag per unit areca on the lower and the upper plates are obtained from
(20) by putting y =0 and v =h. as

. -
&4_ Lot and&— Loy
h h h h

combining the two results. drag per unit area on the two plates 1s

w0 upuelU . pwU_hdp
+ 1e. F——
h h h 2dx

WU P, dp
h 2 dx

. Plane Poiseuille Flow : A flow between two parallel stationary plates is
said to be a plane Poiseuille Flow.

The origin is taken on the line midway between the plates which are placed at a
distance h and x-axis 1s along this line.

The conditions to be used in this problem are

u=0, wheny=+

(21)

(=

Using these conditions in (7), we get

A=o0.B=L1(_% |
m., dx/ 8

and thus the solution (7) 1s
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h2 -\|
u=—|—,‘———| (22)
nmidx A 2 8 )

This represents a parabola and thus the laminar flow in a Plane Poiseuille Flow
15 parabolic.

(i) Average and Maximum Velocity : For extreme values of u. we have

du
—=0 and thus from (22). we get

dy

1dplo_g —y=0

nl dx )
h*( d

Therefore . Upmax = i dp | (23)
8L

The average velocity in the plane Poiseuille flow 1s defined by
1 hi',? d
ug= — u
0 h_i Yy

Using the value of u from (22). we get

h/2 2 \
up = 1 J - {l_p: — 4‘,, Id}?
h_,, 8u dxl| h~ )
(2 Vo2
== 1 d_p I=:Um31 (24)
3L 8n d, ) 3

From (23) & (24). decrease in the pressure 1s given by

dp _ 8p _ —8u3 —12n

—u, = u 25)
7 0 7 0
dx h< 2 h-

gl mAx.
h-

- dp . :
This turther shows that d—pn a negative constant,
X

(ii) Shearing Stress : The shearing stress at a plate (lower plate) for a plane
Poiseuille Flow 1s

- [ du |
(o ) n=|n
B s\ dy ) b

1 dp h

‘ud‘cl

I‘-J
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h dp
2 dx
4
- l—uum (26)
. .

The local frictional (skin) co-efficient Cris defined by

Co (Oyx) 2 _ A um/pug

£ =
pu%},z h 2
(3w | 1v 1
phi2u?/2| huy R,
ugh |
Where Re = —— is the Reynolds number of the flow based on the average
v

velocity and the channel height.
Steady Flow Through Tube of Uniform Circular Cross-section
(Poisenille’s Flow or Hagen-Poisenill’s Flow)

We consider a laminar flow. in the absence of body forces. through a long tube
of uniform circular cross-section with axial symmetry.

Let z-axis be taken along the axis of the tube and the flow be in the direction of
z-axis. Since the flow 1s along z-axis. the radial and transverse components of
velocity are absent.

!
e >z
/

N
Thus g, =qs =10 q=1(9,.95-9z)

The continuity equation for a viscous mncompressible fluid gives.

%, . . .
% =0 =q;=qr) (1) |- axial symmetry i.e. independent of 8
B
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The equations of motion in cylindrical co-ords are

P

P‘%_£|=P'Xr—$+ll‘l?2qr q _ 2 &g,
\ r , %,

(dgs 9,9 |
Pl s )T

d{]_ [?]J 2
—2Z =X —— 4+ V2
P at Pz P HV 7,

d ¢ 7 0 i
where =—+(,—+qs——
CcT r

| =
[}
[

dt ot
and X=(X,.X;.X,)

& J—
In the present case 2 =0 and g =qs=0. X=0
C

Thus from the first two equations. we get

-

cp

=0 =p=p@
co

=y | T
-e’|

(2)
The third equation gives.

0= —q_cp 4 u\_-"ng | ", =qz(1')311d1‘i5 constant w.r.t. t.
oz

2 [d? dq, |
or dp _ uV-q, =j.l: (!f 219, (3)
dz | dr~ r dr |
oy . ,_ 8 18 18 &
(In cylindrical co-ordinates V' =—S+-——+—5—5+—)
ér- rér r- 80 fz”

since ¢, 15 a function of r only (from (1)) and p i1s a function of z only
(from (2)).

Equation (3) can be put as

1 1"{l k' +% :—1‘@

dr? dr ) T dz
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Le. i lﬂlzl@

drl dr | pdz

Integrating, w.r.t. r, we get.

dr  pldz)2
, d 1(dp). A
e i=_‘_P b2
dr 2uldz,) r
Integrating again. we get
i A
Q= 1(dp r? + Alogr+B (4)
uul dz ;

where A and B are constants to be determined from the boundary conditions.

The first boundary condition is obtained from the symmetry of the flow
such that

dq

=0 =0 5
3 on 1 (5)

and the second boundary condition 1s

qz=0.whenr=a (6)

where a 1s the radius of the tube. Using these conditions. we get

A=0. B:_i"@@.?: 1 i_d_P',iz

4ul dz ) E dz )
Thus. the solution (4) becomes
1 (—=dp) .1 >
;= —| —— | (a™—1" 7
1 4u' dz _;( ) @

This represents a paraboloid of revolution and thus the veloeity profile is
parabolic.
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(i) The Max x Average Velocity :
dq, _0o

dr "' qz1s a function of r only

For extreme wvalues of g, we have

From (7). 1t implies that r = 0 and thus

a: £ dp '||
OQmax. = - (8}
4ul dz)
dp . !
‘v.‘l.'hﬁ‘l'f.' ) 15 a neganve constant.
dz

From (7) and (8). the veloeity distribution. in non dimensional from. 1s given
by

9z
Drmx

—1-

L a)

The average velocity 1s defined by

1

0= [Ty aerarad

Using the value of qz. we get

al( dp) 1
| __p :=_q|mx
u\ dz,) 2

qo =

The average velocity 1s therefore half of the maximum velocity
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The volume of flwud discharged over any section per unit time (1.e. volumetric
flow) 1s defined as

a
= 2;
Q »[U (z. 2mrdr
Using (7). 1t 1s obtained to be

1
| =—1 || =—ma 9)
sul dz) 2 |4ul dz )| 2 o (

-

(ii) Shearing Stress : The shearing stress in Poiseuille’s flow 1s given by

d‘qz li‘

dp r{dp)
= =— — (2r)=—| —
° : dr 4u (21) 2 | dz |

L dz /
On the boundary of the tube. we have

a(dp) a[—-dp| 2n
rz)ea T T == = —(Qumx. 10
(©r) 2|.\ dz | 20 dz /] a 1 (10)

The local frictional (skin) co-efficient C¢ for laminar flow through a circular
pipe 1s

Coz Om)rma _ 21 Qo
£ 3 2 /.
Pq3/2 2 paqp/2

_4n2qp_8ul 16
Pa qy pPaqe R,

Where R, = 2aqg/v 1s the Reynolds number. When R, 1s less than the critical
Reynolds number, which 1s 2300 1n this flow problem. the flow 1s laminar but
if R, = 2300. the flow ceases to be laminar and becomes turbulent. Thus, in
this problem, R, < 2300.
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POSSIBLE QUESTIONS
PART - B (5 x 6 = 30 Marks)

Answer all the questions

1. Explain Steady flow-through an arbitrary cylinder under pressure.

2. Obtain the Helmholtz equations for vorticity of viscous fluid.

3. Explain Vorticity of viscous fluid.

4. Explain Navier Strokes equation.

5. Discuss about Plane coutte flow.

6. Explain about Steady flow between parallel plane.

PART - C (1 x 10 = 10 Marks)

Compulsory

1. Discuss about Circulation in a viscous fluid.

Discuss about Energy equation.

Explain Reynold’s numbers.

Explain about Steady coutte flow between cylinder in Relative motion.
Explain the Lift force.

ok~ wn
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UNIT-V

SYLLABUS

Laminar Boundary Layer in incompressible flow: Boundary Layer concept — Boundary Layer
equations — Displacement thickness, Momentum thickness — Kinetic energy thickness — integral
equation of boundary layer — flow parallel to semi infinite flat plate — Blasius equation and its

solution in series.

Revnolds Number.

v P X 6
UL~ pu? U’ :

L_
The first non-dimensional number in (6) ensures

dynamical similarity at corresponding points near the boundaries where
viscous effects supervene. Its reciprocal is called the Reynolds number and 1s

denoted by R, so that

_

Buckingham mn-theorem.

The m-theorem makes use of the following

assumptions

(1) It 15 possible to select always m independent fundamental units in a physical
phenomenon (1 mechanies, m = 3 1.e. length. time. mass or force)

(11) There exist quantities. say Qi. Qa..... Qn mmvolved in a physical
phenomenon whose dimensional formulae may be expressed in terms of m

tundamental units
(111) There exists a functional relationship between the n dimensional quantities

Ql‘ QE----- Qn. say
¢’(Q1 Qa..... Qu) =0 (1}
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(iv) Equation (1) 1s independent of the type of units chosen and 1s

dimensionally homogeneous 1.e. the quantities occurring on both sides of the
equation must have the same dimensions.

Statement :- If Q. Qs..... Q, be n physical quantities involved in a physical

phenomenon and if there are m(< n) independent fundamental units n this
system, then a relation

Q1. Q2..... Qp) =0

1s equivalent to the relation
f(my. m2...., Mpg) =0,

f(m1., ma...., Tox) =0,

where m1. m)..... Tp are the dimensionless power products of Q. Qr..... Qn

taken r + 1 at a time. r being the rank of the dimensional matrix of the given
physical quantities.

Proof. Let Q1. Qa..... Qn be n given physical quantities and let their dimensions
be expressed in terms of m fundamental units vy, vy...., uy n the following
manner

[Qi] = 111‘1’“1133'-..1121”1]

[Q:] = 111‘1’1311?3 ) b I

[Qu] = lu‘i’l1 1133D..11LMJ

so that a; 1s the exponent of u; i the dimension of Q; . The matrix of

dimensions 1.e. the dimensional matrix of the given physical quantities 1s
written as
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Qi Qi Qu
4 A
ug: an a12......._@ln
117 dan dr12......80
Ao Uyt ﬂrm [ T HMJ

This mxn matrix 1s usually denoted by A.

Now, let us form a product m of powers of Qy. Qa........ Q. say

— X b ] X
m=Qt QY Q"

then [n]=
ay._a, a.; (.. a2, a1, A, P2 | 8y, 4, 2 Fa |
[(}11”113-1... e }x (}111-112--....11;— )x .......... [__11111113-” e T |
In order that the product m 1s dimensionless. the powers of uy. u,..... uy should
. 0 +0 0
be zero re. M.L". T ete. Thus. we must have
anxi tapx -+ tagpx=0
anxXytanx .o T apx,=0
a tTxita L+t taypx,=0

This 15 a set of m homogeneous equations in n unknowns and in matrix form
can be written as
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X
AX=0.X=| " |

Now. from matrix algebra. we know the result that if there are m homogeneous
equations in n unknowns. then the number of independent solutions will be
n—r, where r 1s the rank of the matrix of co-etficients. and any other solution

can be expressed as a linear combination of these linearly independent
solutions. Further there will be only r independent equations in the set of
equations.

Thus if r is the rank of the dimensional matrix A. then the number of linearly
independent solutions of the matrix equation AX = 0 are n-r. So.
corresponding to each mdependent solution of X, we will have a dimensionless
product 7 and therefore the number of dimensionless products 1n a complete
set will be n—r

Therefore. H(Q1. Qreeeeee. Q) =10
= (g, T My ) =0
Hence the theorem.

Pranditl’s Boundary Layver (case of small viscosity)

The sumple problems of fluid motion which can be considered are divided into
two classes according as the corresponding Reynolds number 1s small or large.
In the case of small Reynolds number, viscosity 1s predominant and the mertia
terms in the equations may be regarded as negligible. The case of large
Reynolds number in which the frictional terms are small and nertia forces are
predominant, was mvestigated by the German Scientist Ludwig Prandtl mn
1904. He made an hypothesis that for fluids with very small viscosity 1.e. large
Reynolds number. the flow about a solid boundary can be divided into the
following two regions.
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(1) A thin layer in the neighbourhood of the body, known as the boundary
layer. in which the viscous effect may be considered to be confined. The
smaller the viscosity 1.e. the larger the Reynolds number. the thinner is this

layer. Its thickness 1s denoted by 3. In such layer. the velocity gradient normal
to the wall of the body 1s very large.

(1) The region outside this layer where the viscous effect may be considered as

negligible and the fluid is regarded as non-viscous.

On the basis of this hypothesis. Prandtl simplified the Navier-Stokes equations
to a mathematical tractable form which are termed as Prandt]l boundary layer
equatiﬂns and thus he succeeded 1n giving a physically penetrating explanation
of the 11111:-01T311ce of viscosity in the assessment of frictional drag. The theory

was first dev elcrped for laminar flow of viscous 111c01111:nte~,51ble fluids but was.
later on, extended to include compressible fluids and turbulent flow. Howewer,
we shall consider only the case of incompressible fluids.

In the discussion of unsteady flow over a tlat plate. we had obtained that

5= 4vt
1.¢. the boundary layer thickness 1s proportional to the square root of kinematic
viscosity. The thickness 1s very small compared with a linear dimension L of
the body 1.e. § << L.
Boundary Laver equation in Two-dimensions. The viscosity of water,
air ete 1s very small. The Reynolds number for such fluids 1s large. This led
Prandtl to introduce the concept of the boundary layer. We now discuss the
mathematical procedure for reducing Navier-Stokes equations to boundary
layer equations. The procedure 1s known as order of magnitude approach.
Let us consider a flow around a wedge submerged in a fluid of very small
viscosity
At the stagnation point O, the thickness of the boundary layer is zero and it
inereases slowly towards the rear of the wedge. The velocity distribution and
the pattern of streamlines deviate only slightly from those in the potential tlow.

We take the x-axis along the wall of the wedge and y-axis perpendicular to it,
so that the flow 1s two-dimensional m the xy-plane. Within a very thin

boundary layer of thickness 5. a very large uelcrcﬂ} gradient exists 1.e. the
1elcrc1t} u panllel to the wall in the boundar} la}"&l imereases led].}’ from a
value zero at the wall to a value U of the main stream at the edge of the
boundary layer.
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The Navier—Stokes equations. in the absence of body forces. for two
dimensional flow, are

fu éu Au -1ép (&*u &t
— 4+ Ul— 4+ V—=——+V —+ ‘ (1)
ct ox oy pox |\ dxT Oy
- -2 -2 \
3 ev 1ép v &v| )

—+Ul—+V—=———+ V| —+— | 2)
ot &x Oy pdy |\éxt &y )

The equation of continuity 1s

cu  ¢év

i o0 (3)
&x oy

In studying the unsteady flow over a flat plate, we found that the thickness of
the boundary layer & 1s proportional to the square root of the kinematic
viscosity v which 1s indeed very small. For this reason & < < x except near the
stagnation point 0 where the boundary layer begins. In order to compare the
order of magnitude of the individual terms in the above equations, we put them
in non-dimensional form by introducing the non-dimensional notations
._ X ' uo, v t
X"'=—_1,=‘4‘=%_u*—_r"-i=__ 1;’*‘:—_4:1*:L (4)
I~ 3 U W /g P
where [. 8. U. V and p,. are certain reference values of the corresponding

quantities x, v. u . v and p respectively. The non-dimensional quantities are all
of order unity. The continuity equation in non-dimensional form is

Ucu* Weov*
LA foae 5)

— + ——
I cx* o cy*
Integrating, we get

_J' .:x* dy *+ _0 _d},alc:g

1%

or

—| 0
e
._.‘.-'

dy*, where (v¥) =y =1 (6)

cl<
|

* “"‘{
0

Since the mntegral in (6) 15 of the order of unity. the ratio - 1s of order —

Therefore WV =< 1.
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We now obtain the non-dimensional form of (1) using (4) such that

- ¥ - i ¥ ¥ -7 %
= g W < - T A _ e = ] = r- % |
|8} ::_ut_U u*cﬁu‘—U:ﬁ"v*Eu _ px:ip +vT}.I!cuﬂ+F_qc uq:
I ct* [ cx* O oy * pl cx* 17 |ex* &% oy* )
or
fu du* V I _éu* o, ép* 1 [ étu* 1? glu*)
g Tut ot — v —=— lxa P"‘ s+—=——= | (7
ct* cx* U & oy* pU- cx* Rl cox* & gy* )
1 22 1
1 1 o — 1 o 1 —
O o°

The order of the terms involved are indicated.

Reynolds number, R. = —
v R, U

g 1 v N B : 112
= = 0(53)" as & 1s proportional to v

Similarly. the non-dimensional form of (2) 1s

- - 3 -
UVev* UV _cov# V‘Y*w*

u 4
I ot I cx* 0O cy*

=N ' 22y
:_P_ICP _V:ic ! i I
|

p@ E.}F:E:
VévE V. _dvk VI v
or -+t —-uv— ‘rti"r*_h
Uct* u C * ua C}’*
= ~ a1
O O a° —
0
_ =p. I ép* W [&vE [PetvH |
pu? doy* PPullex*  sley*? )
_—P=ldp*, 1 V[&ivE PP vk
pUE 5éy* R, Uléax* &7 f}’$3 |
=2 = 1
SN ; )
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We neglect the terms of the order of & and higher as § 1s small. We then revert
back to the dimensional variables to obtain

2

$+uﬂ+v€—u=—i$—vg (9)
it éx  dy péx gyl
—=0 =p=p@ (10)
ey
ﬁ‘r
and $+ Yoo (11)
ox &y

Equations (9—11) are known as Prandil’s boundary layer equations with
boundary conditions

u=v=0. y=0 |
(12)

u="U(x.1).y —=|

Since p 1s independent of y. for given x. p has the same value through the

boundary layer from v =0 to v = §. Thus, in boundary layer theory. there are

only two variable terms v and v instead of three u. v and p n the Navier-Stokes

equations. This 1s a great simplification in the solution of the differential
equations.

Now. U 1s the velocity outside the boundary layer. The Euler’s equation in the

main stream (potential flow of non-viscous fluid) is obtained from (9) by
taking v=0 and

v=0. ﬂ={} fory=d
{:?})-

Thus, we get

—tU—=-———x (13)

u  du  fu AU __dUu @2
e kR e Cﬁ —UL: vE 1:,1 (14)
ct ox &yt ox Ay

Prepared by A. Henna Shenofer, Asst Prof, Department of Mathematics, KAHE Page 8/18




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: 1 M.Sc MATHEMATICS COURSE NAME: FLUID DYNAMICS
COURSE CODE: 177MMP206 UNIT: V(Laminar Boundary Layer in incompressible flow)

BATCH-2017-2019

u ov
and $ S (15)
éx &y

Although these equations are obtamned for a rectilinear flow but they hold for
curved flow 1if the curvature of the boundary is small in comparison to the
boundary layer thickness.

The integration of (14) and (15) can be simplified if we can reduce the number
of variables by introducing the stream function w.

i .
w=Y v

e V= ™ (16)

where
The continuity equation is automatically satisfied. The boundary layer
equation (14) i terms of v 1s

oMy L oy oy e oy B
&tdy Oy éxby &x &y”

U U
U€L+€L

17
=~ (17)

~3

&
V—+

oy

The boundary conditions (12) reduce to

E—wzi—wzﬂ‘ }i":{}
cx Oy

18
~ (19)

—=TNX.1),. V—=0
o (x.1). ¥

The exact solution of (17) was given by H. Blasius in 1908, for the case of
steady flow &/t = 0) past a flat plate (U = constant),

The Boundary Layer Along a Flat Plate (Blasius Solution or Blasius —

Topfer for Sﬂluﬁou)-

Let us consider the steady flow of an incompressible viscous fluid past a thin
semi-infinite flat plate which is placed in the direction of a uniform velocity
Ux. The motion is two-dimensional and can be analysed by using the Prandtl

boundary layer equations. We choose the origin of the co-ordinates at the
leading edge of the plate. x-axis along the direction of the uniformal stream

and y-axis normal to the plate. The Prandtl boundary layer equations, for this
case, are
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- -7
du  cu - u
um —+\ =

. 1)
ox Oy oy (
XL N0 @)
ox 0Oy

where u, v are the velocity components and v 1s the kinematic viscosity.
v ’
AN

éU;\c I&J

The boundary conditions are
u=v=>0

wheny=0 |
u="uU

: 3
- wheny — o] (3)

In this problem, the parameters in which the results are to be obtained. are U.,.
V. X, y. So, we may take

%=F(x. v, v, Uy) =F(n) 4)

Further. according to the exact solution of the unsteady motion of a flat plate.

we have
— | VX
5 ~A/Vt ~ |— (5)
VU

where x is the distance travelled in time t with velocity U,. Hence the non-
dimensional distance parameter may be expressed as

T r LTx
-i-—— -y (6)
0 v/ U, VX

Thus. it can be seen that n in (4) 1s a function of x, v, v. U as in (6)

The stream function v 1s given by
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un=

=lud : r=—
v =ludy =

- 1i" =
C_.}F

. dy
- [U. F(n}d—?]dn

=U. 1/? [E(m) dn=\xU, f(n) (7)

The velocity components in terms of 1 are (dash denotes denvative w.r.t. i)

_ %y _dyon Wf =fM=UE'() (8)

Oy &ndy
_ Oy _1 jvU, 1
V= f(n}+‘\|| f(n]}’ 3/2 |
ox 2 2x7° )
1 [vU, . 1 U,
= vE——y f)+-y—1'(n)
21|U i X
1 o | \
== == y £~ £ |
2V x| )
1 1L
=Sy (fm-f) ©)
Also.
X_9W _y, D
X CEOY CX
1 U, 1
=——U, (). v, —= —
2 = (rl'j }I W XE."E
10U,
== ) (10)
X _u, —(f"m:r:r U, JL—" £ (11)
oy X
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o’n U2
) 12
oot (12)
Using these values of u. v and their derivatives in (1), we obtain
U £(n)
(1 LTx v 1 1"]-[-]-:: = Ux cyy
———=nf'@) |+, —== (' () -fM)U, £ (n)
L2 X )2V x VX
.[_]-i TR E
v == £
®
Us .., U ..
or _ s T,l tq fll__-C(T.l:tr_f}fuz_JCtrrl
2x 2x 3
or ittt =28
or 2£"+1t"=0
3 2
e R S (13)
dn® dn”
The boundary conditions (3) in terms of f and n are obtained as follows
u=0when y=0 mplies £'(n)=0whenn=0
and
v=0 =ni'(n)-fn)=0 =1n)=0

Therefore.
fin)=1'(n)=0whenn=20

(14)
u = U, when y—=c implies that U f'(n) = Ux when n—<c
(15)

Therefore.
f'(n)=1when n —==
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Thus we have reduced the partial differential equation (1) to ordinary
differential equation (13). known as Blasius equation. where ) 1s the similarity
parameter.

The third order non-linear differential equation (13) has no closed form
solution. however, Blasius obtained the solution in the form of power series

expansion about n = 0.

Let us consider

f(n) =co+ e + En2+c—;n3+ ....... (16)
f'(q}=c1+czn+CE;1]I+CI;113+....... (17)
£7() =+ exm + “L—;n3+cén3+------- (18)
f”’(n}=r~:3+cm+C§n1+c§ﬂi+------- (19)

The constants ¢;’s are determined from the boundary conditions (14). (15) and
the differential equation (13). From (14). we get

cp=c; =0

From (13). we have

0=(2e3+ 2eym + sz +.....)F(eo+cm +CE2 T]2 +....) (e2 +c3 1']-|-'C—4T'|1 +..)
2 2

1e. (2e3 +egea) +(2eg T cpe3 oo
cqe 2
+ |5+ T;' +cyC3 +C?2;:r]1+.... =0
. ( C;} | 2
1.€. 2est2eqm+ ;(_‘5+T':T'|_—._._=ﬂ'

I
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Equating the co-efficients to zero, we get

c3=cy=cg=cr=cg=¢10=0
¥

3 11 375
Cj=—c—l. C8=—C§3. 'c‘C'11=—-'f C’a4
2 4 - )
The solution (16) 1s
2.5 8 - 11
Cz 2 €M 11 31 373 41
fm =220 Han 3Ben L (g
W=t 5 4218 8 1 (20)

The constant ¢; 1s determined by the condition (15) 1.e.

df
— =1 as n—=
dn
We write (20) as
f(n) =
JRTETICE T VD W VA e A TX G i
N N A L &
= c}PFel 21)
Therefore.

£(n)= e3* Fetn)

Thus, lim r:%";?’F‘(clz"'En] = lm f'(n) =1
r—o n—+x

Therefore.
~3/2
. .
G=|—| 22
lim £'(c3°n) | 2
M |

where ¢2 15 determined numerically by Howarth (1938) as 0.33206. Thus f(n)
mn (20) 1s completely obtained which helps in finding v and v from (8) and (9).
Hence the Blasius solution.
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The shearing stress 1p on the surface of the plate can be calculated from the
results of the Blasius solution. Thus. we have

[ &u ) uu,. £(0)
0=H| — =
\ 0¥ )y /U,

U..C, 0.332 _,

N (23)

where R, =xU_ /v is the Reynolds number.

The frictional drag coefficients or local skin friction coefficients Cris

Cg=—0 24
T, R @4
—pULZ v
2

The total frictional force F per unit width for one side of the plate of length [ 1s
given by

I
F= [ tody =0664 pUZ I; (25)
ﬂ X

Equation (25) shows that frictional force is proportional to the 3/2th power of
the free stream velocity U,

The average skin-friction co-efficient of the drag co-efficient i1s obtained as

F D 664PU

~ STU, 1328 )
s 1_ > TR (26)
EPUx!? ;PULE YVOOE
T
Where R, = U
! v

Characteristic Boundary Layer Parameters : (i) Boundary Layer

Thickness. The bmmdm}f ]."i}’el is the region adjacent to a solid surface in
which viscous forces are important. According to the boundary conditions (3).
the velocity u in the boundary layer does not reach the value U, of the free
stream until y—<c. because the influence of viscosity in the boundary layer
decreases asymptotically outwards. Hence 1t 1s difficult to define an exact
thickness of the boundary layer. However. at certain finite value of n. the
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velocity in the boundary layer asymptotically blends mto the free stream
veloeity of the potential tlow. If an arbitrary limit of the boundary layer at

u=0.9975 U.. 1s considered, the thickness of the boundary layer is found to be

e
5=5.64 | X - 204% Q7
1|L|Ux "|,|IR‘E}-_

(ii) Displacement Thickness : The boundary layer thickness being somewhat
arbitrary so more physically meaningful thickness is introduced. This
thickness 1s known as displacement thickness. which 1s defined as

Uxdi= [ (Us—uydy (28)
y=0

where the right-hand size signifies the decrease mn total flow caused by the
mfluence of the friction and the left-hand side represents the potential flow that
has been displaced from the wall. Hence the displacement thickness &; 1s that

distance by which the external potential field of flow is displaced outwards due
to the decrease mn velocity in the boundary layer.

S1= [ 1-— |dy 29
1.€ 1= || - JC} )

. . u . -
Using the expressions for — and v from (8) and (6) respectively. we find 5;

=

tor the flow on a flat plate, as

VX =
) — | (1—-1")dh
1 "'IUxE:n{ )dn

Ux . .
= |— lm —1
Jo dm - )
v 1.7208x
=1.7208 | = (30)

| [ —
-llll UI "UIRE'H

(iii) Momentum Thickness : Analogous to the displacement thickness.
another thickness. known as momentum thickness (82). may be defined in
accordance with the momentum law. This is obtained by equating the loss of
momentum flow as a consequence of the wall friction in the boundary layer to
the momentum flow in the absence of the boundary layer. Thus
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pdy U =p [u(U, —u)dy
y=0
= qu u |
or Sy= [— 1————‘d' 31
: ':l]-[-’_:c ‘ LTx }I ( )

Again, using (8) and (6). we obtain 3, for the case of the flow on a flat plate. as

fvx ¢
&= |—| f'(1-f")dn
VU
v 0.664x
=0.664 | — = (32)
Vu. R,

Comparison among various thicknesses of the boundary layer 1s shown 1n the
figure. We note that

YA U.
<01 <0. *

L

0.9975 U,

L —* Uw—-1u
(Velocity deficit)

L
]
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POSSIBLE QUESTIONS
PART - B (5 x 6 = 30 Marks)
Answer all the questions

Explain the boundary layer characteristics.
Explain the momentum integral equation.
Explain the equation of boundary layer.
Derive the kinetic energy integral equation.
Explain the equation of boundary layer.

vk ownhe

PART - C (1 x 10 = 10 Marks)
Compulsory
1. Explain the displacement and momentum thickness.
Explain the boundary layer separation.
Derive the kinetic energy thickness.
Explain the integral equations at boundary layer.
Explain the Steady Poisuille flow.

ok wnN
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