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Course Objective

The objective of the course represents the understanding of essentials of concavity, inflection
points and its geometrical applications, the higher order derivatives and its applications in
business, economics and life sciences.

Course Outcomes
On successful completion of this course, the students will be able to
e Understand the concepts of Linear, quadratic, power, polynomial, algebraic, rational,
trigonometric, exponential, hyperbolic and logarithmic functions.
e Explore the concept of reduction formula and calculate limits in indeterminate forms by a
repeated use of L’Hospital rule.
e Use single and multiple integration to calculate the arc length, area and volume.
e Understand the techniques of sketching conics and properties of conics.
e Acquire the knowledge on application of vector functions.

UNIT I
Hyperbolic functions, higher order derivatives, Leibniz rule and its applications to problems of
type e®*Psinx, e®*Pcosx, (ax+b)"sinx, (ax+b)"cosx.

UNIT I

Reduction formulae, derivations and illustrations of reduction formulae of the type [ sin nx dx, )
cos nx dx, | tan nx dx,] sec nx dx, [ log x" dx, Jsin” x sin™x dx. Curve tracing in Cartesian
coordinates, tracing in polar coordinates of standard curves, L’Hospital’s rule, applications in
business, economics and life sciences.

UNIT 111

Volumes by slicing, disks and washers methods, volumes by cylindrical shells, parametric
equations, parameterizing a curve, arc length, arc length of parametric curves, area of surface of
revolution.

UNIT IV

Concavity and Inflection points, asymptotes. Techniques of sketching conics, reflection
properties of conics, rotation of axes and second degree equations, classification into conics
using the discriminant, polar equations of conics.
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UNIT V

Introduction to vector functions, operations with vector-valued functions, limits and continuity of
vector functions, differentiation and integration of vector functions, tangent and normal
components of acceleration, modeling ballistics and planetary motion, Kepler’s second law.
SUGGESTED READINGS

TEXT BOOKS

1. Thomas G.B., and Finney R.L., (2008). Calculus, Ninth Edition, Pearson Education,
Delhi. (Unit | & V)

2. Anton H., Bivens I., and Davis S.,(2017). Calculus, Tenth Edition, John Wiley and Sons
(Asia) P. Ltd., Singapore. (Unit II, 11l & V)

REFERENCES

1. Strauss M.J., Bradley G.L.,and Smith K. J., (2007). Calculus, Third Edition, Dorling
Kindersley (India) Pvt. Ltd. (Pearson Education), Delhi.

2. Courant R., and John F., (2000). Introduction to Calculus and Analysis (Volumes | & I1),
Springer- Verlag, New York.
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LECTURE PLAN
DEPARTMENT OF MATHEMATICS

STAFF NAME: A HENNA SHENOFER

SUBJECT NAME: CALCULUS SUB.CODE:18MMU101
SEMESTER: | CLASS: | B.SC MATHEMATICS
S.No | Lecture Topic to be covered Support Material
Duration
Unit -1
1. 1 Introduction to Hyperbolic function R1:Ch 7;Pg:350-353
2. 1 Inverse hyperbolic function R1:Ch 7;Pg:353-356
3. 1 Higher order derivatives R3:Ch 4;Pg:156-159
4. 1 Leibiniz rule and its applications R3:Ch 4;Pg:169-177
+b o + :
5. 1 Problerr]ns on type e® *Psinx, e *Pcos x,(ax+b)"sinx , R3:Ch 4:Pg:178-180
(ax+b)"cosx
6. 1 Finding concavity T1:Ch 3;Pg:228-230
7. 1 Finding Inflection point R1:Ch 4;Pg:124-129
8. 1 Curve Sketching with Asymptotes R3:Ch12;Pg:389-409
9. 1 Recapitulation and discussion of possible question
Total No. of Lecture hours planned — 9 hours
Unit 11
1. 1 Curve tracing in Cartesian Coordinates T2:Ch 11;Pg:767-770
2. 1 Tracing in polar coordinate for standard curves R2:Ch 1;Pg:101-103
3. 1 Theorm on L’Hospital’s Rule R1:Ch 4;Pg:148-150
4, 1 Problems based on L’Hospital’s Rule R1:Ch 4;Pg:151-155
5. 1 Application in business, economics and life R1:Ch 6:Pg:287-294
sciences.
6. 1 Reduction formula — derivation and illustration T2:Ch 7;Pg:497-498
7. 1 Problems based on reduction formula T2:Ch 7;Pg:500-503
8. 1 Continuation of problems on reduction formula T2:Ch 7;Pg:503-506
9. 1 Recapitulation and discussion of possible question
Total No. of Lecture hours planned — 9 hours
Unit — 111
1. 1 Volume by slicing T2:Ch 6;Pg:421-424
2. 1 Volume by Disks methods T1:Ch 5;Pg:397-399
3. 1 Volume by washers methods T1:Ch 5;Pg:400-403
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Volumes by cylindrical shells

T2:Ch 6;PQ:432-436

Area of a surface of revolution

T2:Ch 6;Pg:444-447

Parametric Equations

T2:Ch 10;Pg:692-695

Tangent Lines to Parametric Curves

T2:Ch 10;Pg:695-697

Arc Length of Parametric Curves

T2:Ch 10;Pg:697-700

X N0~

A L L

Recapitulation and discussion of possible question

Total No. of Lecture hours planned —9 hours

Unit — IV
1. 1 Introduction to conic section T2:Ch 10;Pg:730-732
2. 1 Techniques of sketching conics T1:Ch 9;Pq:727-730
3. 1 Equations of conics in standard position T2:Ch 10;Pg:732-740
4, 1 Translated conics T2:Ch 10;Pg:740-742
5. 1 Reflection properties of the conic sections T2:Ch 10;Pg:742-744
6. 1 Rotation of axes with examples T2:Ch 10;Pg:748-752
7. 1 Classification of conics using discriminant T1:Ch 9;Pq:748-750
8. 1 Polar equation in conics T2:Ch 10;Pg:755-759
9. 1 Recapitulation and discussion of possible question
Total No. of Lecture hours planned — 9 hours
Unit-V

1. 1 The Triple product T1:Ch 10;Pg:824-835
2. 1 Introduction to Vector functions R1:Ch 10;Pg:494-496
3. 1 Operation with Vector-valued functions R1:Ch 10;Pg:496-497
4. 1 Limits and continuity of vector functions R1:Ch 10;Pg:498-500
5. 1 Differentiation and integration of vector functions R1:Ch 10;Pg:502-511
6. 1 Tangent and normal components of acceleration R1:Ch 10;Pg:522-525
7. 1 Modeling ballistics and planetary motion R1:Ch 10;Pg:512-516
8. 1 Kepler’s second law R1:Ch 10;Pg:516-519
9. 1 Recapitulation and discussion of possible question

10. 1 Discussion of pervious ESE question papers

11. 1 Discussion of pervious ESE question papers

12. 1 Discussion of pervious ESE question papers

Total No. of Lecture hours planned -12 hours

Total No. of hours allotted — 48 hours

Text Books

T1: G.B.Thomas and R.L.Finney., (2005). Calculus , 9" edition, Pearson Edition , Delhi.

T2: H.Anton.,

I. Bivens .,

(Asia) Pvt Ltd, Singapore.

Reference Books

and S.Davis., (2002). Calculus , 7" edition , John Wiley and sons

R1: M.J.Strauss., G.L.Bradley and K.J.Smith.,(2007). Calculus, third edition , dorling
Kindersley(India) Pvt Ltd. (Pearson Edition ), Delhi.
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R2: R.Courant and F.John., (2000). Introduction to Calculus and Analysis (Volume | & I1),

Springer verlag, NewYork.

R3: S.Balachandra Rao and C.K.Shantha, (2001). Differential Calculus, NewAge
International (P) Ltd, India.
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UNIT V

Introduction to vector functions, operations with vector-valued functions, limits and continuity of
vector functions, differentiation and integration of vector functions, tangent and normal
components of acceleration, modeling ballistics and planetary motion, Kepler’s second law.
SUGGESTED READINGS

TEXT BOOKS

1. Thomas G.B., and Finney R.L., (2008). Calculus, Ninth Edition, Pearson Education,
Delhi. (Unit | & V)

2. Anton H., Bivens I., and Davis S.,(2017). Calculus, Tenth Edition, John Wiley and Sons
(Asia) P. Ltd., Singapore. (Unit II, 11l & V)

REFERENCES

1. Strauss M.J., Bradley G.L.,and Smith K. J., (2007). Calculus, Third Edition, Dorling
Kindersley (India) Pvt. Ltd. (Pearson Education), Delhi.

2. Courant R., and John F., (2000). Introduction to Calculus and Analysis (Volumes | & I1),
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IB.Sc MATHEMATICS COURSE NAME: Calculus
COURSE CODE: 18SMMU101 UNIT: I(Hyperbolic functions) BATCH-2018-2021

UNIT-I
SYLLABUS

The Hyperbolic functions, higher order derivatives, Leibniz rule and its applications to problems
of type e**P sinx, e¥*P cosx, (ax+hb)"sinx, (ax+b)"cosx.

Hyperbolic functions

1. Introduction

The three hyperolic functions f(x) = sinhx, f(x) = coshx and f(x) = tanhx. We shall look at
the graphs of these functions, investigate some of their properties.

2. Defining f(z) = coshx

The hyperbolic functions cosh r and sinhx are defined using the exponential function e*. We
shall start with coshz. This is defined by the formula

“f o2

( n.\ll T = e——

)

We can use our knowledge of the graphs of e® and e ™ to sketch the graph of coshz. First, let
us calculate the value of cosh0). Whenr =0, ¢* =l ande ™ = 1. So

.ll + e ) 1 4 l
('4),\'}[” — : 2 — 5 — 1 .

Xc-_\;[, let us see what h:ll)]n'n\ as r gets I:ngw. We shall rewrite coshr as

©
CoOShZ = = + =,
9

- -

1To see how this behaves as x gets large, recall the graphs of the two exponential functions.
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As z gets larger, e* increases quickly, but e * decreases quickly. So the second part of the sum
e* /2 4 e */2 gets very small as x gets large. Therefore, as x gets larger, cosh x gets closer and

closer to e* /2. We write this as
e’
cosh x ~ e for lm‘gv xT.

But the graph of cosh x will always stay above the graph of ¢* /2. This is because, even though
e " /2 (the second part of the sum) gets very small, it is always greater than zero. As z gets
larger and larger the difference between the two graphs gets smaller and smaller.

- - 4 -
3. Defining f(z) =sinhx

We shall now look at the hyperbolic function sinh z. In speech, this function is pronounced as
‘shine’, or sometimes as ‘sinch’. The function is defined by the formula

_ e
sinhx =

4. Defining f(z) = tanhx

We shall now look at the hyperbolic function tanhz. In speech, this function is pronounced as
‘tansh’, or sometimes as ‘than’. The function is defined by the formula

sinh z
tanhx =

coshz

We can work out tanh x out in terms of exponential functions. We know how sinh x and cosh =
are defined, so we can write tanhr as

T r xr r

(l —_ (I x

ef—e ef +e
tanhx = - + - = :
2 ) oFf 4o 7T

5. Identities for hyperbolic functions

Hyperbolic functions have identities which are similar to, but not the same as, the identities
for trigonometric functions. In this section we shall prove two of these identities, and list some
others.

The first identity is

a N ]
cosh "z —sinh"z=1.

To prove this, we start by substituting the definitions for sinh ¢ and cosh z:

P e ef+e *\" ef—e T\~
cosh™z —sinh”z = —] = ——]

If we expand the two squares in the numerators, we obtain

(e* + e :)'.’ — @a2F 4. 2e*)e *) +e 2r
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and
[ | I o= 2e* ) 1 p T
g _ 9 a
where in each case we use the fact that (e*)(e ) = ™77 = " = | Using these eXPansons in
our formula, we obtain
5 . o 4'1 + _] 0 B i j o =
|'u:~h'.1' -‘-IH]I_ r =
| 1
Now we can move the factor nt'll out to the front, so that
¥ * ¥ ey i |_| \ P ’ '_"I
cosh”™ r —sinh™ l! (e +24+e ) —(e™ =24+ 7)) .

If, finally, we remove the inner brackets and simplify, we obtain

2 - 19 Ir | =) Ir | ~9r
cosh®z —sinh“r = %(E‘ T+2+e T —eT+2—e )

TX—i

[y
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Here 1s another 1dentity involving hyperbolic functions:
sinh 2z = 2sinh z cosh x .

On the left-hand side we have sinh 2r so. from the defimition.
i 2z
2

sinh 2z =

We want to manipulate the right-hand side to achieve this. So we shall start by substituting
the definitions of sinh z and cosh = into the right-hand side:

. ef —e T el +e "
sinh = cosh ( 5 ) ( 5 )

We can cancel the 2 at the start with one of the 2’s in the denominator, and then we can take
the remaining factor of 1 out to the front. We get

2sinh x coshz = lg(er —e N)e"+e 7).
Now we can multiply the two brackets together. This gives us
2sinhxcoshz = %{_egr +1-1—e%),
Cancelling the ones finally gives us
2sinhr coshz = %(egr — e %) = sinh 2z,
which 1s what we wanted to achieve.
There are several more identities involving hyperbolic functions:
cosh2z = (coshz)? + (sinhz)?

sinh = cosh y 4+ sinh y cosh =

sinh(zx + y)

cosh(rz +y) = coshzrcoshy + sinhzsinhy
osh? . — 1 +coshz
cosh” 5 = ———
) r coshz — 1
sinh” 5 = ———
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Remark : The word ‘hyperbolic’ stems from the fact that x = a cosh t, y = b smh t are the

general co-ordinates of any point on the hyperbola x: - _}’: = 1, inasmuch as
L B
(a cosh 1)’ _ (b cosh S N ; ~ d—e’ |
a b’ 2 2

=1
Just as we have standard trigonometric identities cos® x + sin® x = 1 et | there are identities involving
hyperbolic functions smh x, cosh x etc. For mstance,

coshixy — sinh®x 1
sech’y = 1 — tanh’x

cosech’x = coth’x — 1

All the above identities can be verified easily by substituting the values of the functions in terms

of the exponential function. Smlarly, you may verify the followmg relations :
simh ¢ + ) = smh x cosh y + cosh x smh y
sinh ¢ — ¥) = smh x cosh y —cosh x smh y
cosh (& + ¥) = cosh x cosh y +sinh x sinh y
cosh & — ¥) = cosh x cosh y +sinh x sinh y

tanh x + tanh y
1+ tanh x + tanh y

tanh & + y) =

tanh x + tanh y

tanh & — y) =
€= 1— tanh x + tanh y

Graphs of these hyperbolic functions are given in next page (Figure 14) :
Since the six hyperbolic functions are defined i terms of &%, and di(e"'): ¢* therefore it is very
iy

easy to write down the derivatives of smh x, tanh x, coth x, sech x, cosech x ete.

We have,
d . d|l é—e”~
—(smhx) = — il
b dx 2
= £ *¢ = cosh x
2
» — sinh x ¥ = cosh x v =tanh x
/, \/ ——————————
-2 -1 1 2
N . T . = O e [ e
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y=cothx

¥ =secha

Similarly,

Also

v = ¢osech x

1 -2 -1 1 2
Figure 14
d d(e&+e*
E(coshx) = de 5
-2 ¢ =sinh x
{ _x
9 tanhy) = 9 €-¢
dx dxl ef+e”

f_:e“ +e ‘-’]{e x +e"'i]— {ex —e* i]{e-'—e“}

[e'( + e&""i]2

{ex +e?"‘)—[[sa'r —e” )2

[:ex +e.‘f]]
P

2]

1 — tanh® x = sech? x

e +e

The derivative of coth x, sech x, and cosech x can be similarly obtained.

The results are summarised in the following table.

S 0 )

Smh x cosh x

cosh x sinh x

tanh x sech? x

coth x —cosech’ x

sech x —sech x tanh x
cosech x —cosech x tanh x
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6. Inverse Hyperbolic Functiens and Their Derivatives

(i) The inverse hyperbolic sine
The inverse of simh x exists for all values of x.
An expression for sinh™ x in terms of logarithms can be obtamned as follows:
We have,

-¥ ¥ = sinh™' x

e —e

y=sinh! x & x=sinh y=

2
= 11:= E'T— e_}. /_

S ev- x d-1=0

[the value y_.f14+x® is discarded since this would give a

negative value for ']

& o= x+4l+ X

o y= 103[-x+~dl+x3 ) Figure 15
Thus, sirlt! x = log(.x+\.-'1+x] ] x e ]— oo, oof

Now, if we want to the derivative of sinh™ x, we must write the dervative of log[1'+*dl+x: ]

Let y = log(x +\il+x: )

Then, ﬂ = 1 —. 1+l. 2":"
dx x+4f1+ 7 N |

Hence, i{E.i.uh'1 :r] =
dx
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(ii) The Inverse Hyperbolic co.sine
The inverse of cosh x exists in [1, e[ To obtain an expression for coslr! x, we proceed as follows:

¥y -V

e +e-

vy =coslr! x & x=cosh y= i
2 y= cosh "X

e - Xer+1=0

= g¥ = J.'-‘r'\ﬂx:—l /

[Notice that the value x—+x" =1 would render & < 1 and
so ¥ < 0, which 15 not possible.]

Thus,
cosh! x = 1og[.r+ Vx© —1],3‘ >1.
Now to obtain the dervative of cosh™ x, we have to write Figure 16
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the derivative of log[x+ Nx© —li|._.r =1

We have,

d 1 d = )
?{cosh 1.1) = E[log(; +4/x —lﬂ,x >1.

X

[Notice that although cosh™ x is defined for x = 1, its derivative does not exist for x = 1]

Hence, %[Cosh'lx} = x> 1

(iii) The Inverse Hyperbolic Tangent

The inverse hyperbolic tangent tanh™ x exist for all x € [-1. 1]. To obtain an expression for tanh~
! x m terms of logarithms, we proceed as follows :

v = tanh™! x & x =tanh y

_ & 1
e —e? | p= tanh ' x
= v T I
e’ +e- |
| /1
1+x 2¢' I 1
= — = —
1-x 2e” i 1
| I
5 1+x S
= ey = —— T 1
1-x | |
| 1
= y = llogl iﬂ| |<1 | |
2 —X
| I
. 1 1+x | i
Thus, tanh™ x = —log <1
2 Tl-x Figure 17

To wrte down the dervative of tanh~ x, we must obtain the derivative of %log? x| <1.
2 -x
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1 1+x
Let tanh! x=—log —— || <1_
2 1-x
d d|1l 1
Then — = —|—=log(l+x)——log(1-x) |,|x|<1
B L L ogtte -t 0

1 3 -1
21+x  2(1-x)

= -

X

.1'|*:1
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d ) 1
Hence. a('fﬂﬂh 'x) = — x| <1

(iv) The inverse hyperbolic cotangent

The inverse hyperbolic cotangent coth™ x exist for all x such that |x|>1.

Now, y = coth™ x
e’ +e’
— x = coth y= ==
g —a
x+1 2¢ y=coh™ x + |
= - = = I i
x—1 e~ I I
I I
x+1 _ i i
= : = e i L
' i i
L jpgXt1 : :
— = S
Y 2 x—1 i ]
1 |
1 x+1
Thus, coth™ x=~log iy | =1 i
2 1r—1 Figure 18

1 x+1
Therefore, to write down the derivative of coth™ x, we must obtain the derivative of Elog_—l-. |’»| =1,

We have,
d . d 1[ x+1]
£ NI i I PO
dx(mth _x} dx[z 08—
d|l
= —|={l +1)-1 -1
ah_[ziog(x ) —log(x )}}
l[L_L}
~2[x41 x—1
_ 1
x -1
Hence,
i(-:*::ﬁth‘lx'} = —.>1
dx : X -
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{(v) The Inverse Hyperbolic secant
The inverse hyperbolic secant sech! x exists for all x in [0, 1].
We have,

v = sech™ x
y =sech! x & x = sech y
2
S x= 57
e +e-
N log[H_ Ji- }‘0 e
.
Figure 19
Thus,
[ado 2 |
Sechr! x = 1ggluj,0cxil
v
To write down the derivative seclr! x we must differentiate log[H— H} O0<x<1.
v
We have,
d [ |'/1+u'l—xﬂ'
i

- %(lﬂg (1+-.,,‘1—x3)) :{logx]

X

S 3.3.{—23'}(1—.1'3)}{—1
1+41-x" 2 X

-X 1

J1- 2 (1+41— x2) X

x +~J'1— X (1+-,|"1—_:.'3 )
-2 [.1+\l"1—x: ]
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Y Hl-x +1-x7
xfl— 2 [l+ NI ]

hedis)
- _xxfl— X’ {l+ J1-+2 ]_

Prepared by A. Henna Shenofer, Asst Prof, Department of Mathematics, KAHE Page 13/29




KARPAGAM ACADEMY OF HIGHER EDUCATION

COURSE NAME: Calculus

CLASS: IB.Sc MATHEMATICS
COURSE CODE: 18S8MMU101

UNIT: I(Hyperbolic functions)

BATCH-2018-2021

-1

- )

0= x <1

[Notice that although seclr! x is defined for x =1, its derivative does not exist for x = 1.]

Hence,
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{vi) The Inverse Hyperbolic Cosecant

The imverse hyperbolic cosecant cosech—1 x exusts for all x © x = 0.

We have, y = cosech™! x
¥ = coseclr! x & x = cosech y
h—
2
& x=——
7 e w
1 41+xf
= y=log| —+———
x |x| Figure 20

1 AJ1+x2

To write the derivative of cosech! x we have to differentiate 102 [: + ] } Tt 15 easily varified
that

1

i(cnsech‘d‘) = ——
& Vi

The expression for the inverse hyperbolic functions in terms of logarithms and their denivatives are
summarised m the following two tables :

xZ0

Smh™! x = 10g[x+ \u'i +x } vV x
cosh™ x = 10g[x+ \Fl—x:]ﬁ xz1
1+x
tanh™ x = log—, |x| <1
1-x
1 x+1
cothx = —log x> 1
2 x-1
sechlx = 10g1+ - ND<x<l
x
1 l+x?
cosech™ x =1 _+7| — . x#0
x x|
Jx) f @)
Sinh! x 1
r+1
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cosh! x +1 =1
v +1
1 i
tanh~'x = <1
1-x
-1
coth™!x —, [ >1
-1
Sechlx ——,0<x<l
xl1-x"
ht 1 x#0
cosechlx ———,
|x|~..|'1+ X

Higher-Order Derivatives
Let f be a function that is differentiable at some points belonging to dom (f). Then f* is a function.

e If, in addition, f* is differentiable at some points belonging to dom (f”), then the derivative of f exists

M and is called the second
1

and is denoted by f"; it is the function given by f”(x) = Jllin:El
T—
derivative of f.
« If, in addition, f is differentiable at some points belonging to dom ("), then the derivative of f* is

denoted by ", called the third derivative of f.

« In general, the n-th derivative of f (where n is a positive integer), denoted by f", is defined to be the
derivative of the (n—1)-th derivative of f (where the O-th derivative of f means f). Forn = 1, the first
derivative of f is simply the derivative f’ of f. Forn > 1, f'" is called a higher-order derivative of f.

Notation Similar to first order derivative, we have different notations for second order derivative of f.

. dz‘f P 2 . . dz .
f ", —, D°f, D, "(x) and —f(x)
.o f i 1 y. frx) an drif X

Readers may compare these with that on page 109. Similarly, we also have different notations for other higher-
order derivatives.

Example Let f(x) = 5x° — 2x” 4 6x + 1. Find the derivative and all the higher-order derivatives of f.

Explanation The question is to find for each positive integer n, the domain of the n-th derivative of f and a
formula for /"™ (x). To find f’(x). we can apply differentiation term by term. To find f”(x). by definition, we
have f"(x) = di /" (x) which can be simplified using the result for f"(x) and rules for differentiation.

X
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d 2
Solution  f'(x) = 51’ 5P -2 46+ 1)
= 152 —4x+6 Derivative of Polynomial
s d .., .
f'x) = —(15x-—4x+6)
dx
= 30x—-4 Derivative of Polynomial
fx) = d (30x — 4)
x) = 3 00
= 30 Derivative of Polynomial
P = 0 Derivative of Constant

From this we see that for n = 4, f""(x) = 0. Moreover, for every positive integer n, the domain of f™ is . ©
-1

X

Example Let f(x) = . Find f/(3) and f"(-4).

Explanation

« Tofind f(3), we find f'(x) first and then substitute x = 3. Although f(x) is written as a quotient of two
functions, it is better to find f"(x) by expanding (x* — 1)x~'.

o Tofind f7(—4), we find " (x) first and then substitute x = —4. To find /" (x), we differentiate the result
obtained for f*(x).

Solution fix)

I
—
=
-

= 2x—(-1)x? Term by Term Differentiation & Power Rule

ff3) = 2-3)+37°

55
)
fix) = % {_2_1' +x2 ] By result for f"(x)
= 24 (-2 Term by Term Differentiation & Power Rule
= 2-2x7

(-4 = 2-2.(-47

= Meaning of Second Derivative
|

e The graph of y = f(x) is a curve. Note that f'(x) = % is the slope function; it is the rate of change
dy .

of v with respect to x Since £(x) = —- is the derivative of the glnpp function 1tis the rate of r'hnngp

dx?
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of slope and is related to a concept called convexiry (bending) of a curve. More details can be found in
Chapter 3.

If x = ¢is time and if ¥y = s(#) is the displacement function of a moving object. then 5(z) = % is

. . r L. . d2;
the velocity function. The derivative of velocity is s”(¢) or Fg

(function), that 1s, the acceleration (function).

[ ]
: it is the rate of change of the velocity

- ) 1 ) GTR'L’
Example 1. Given y = ;;F dxl” .
1
Solution : Here y=7 =x 1
ay 2
— = (-1)x
. =D
d’y —1y
= = o=
d’y L (131
— = (1) (=2)B)x =—7F—
e (-1) 23) o
Hence by mduction,
d'y :
— = (=1(=2)0=3) —n)x—n =
= CDEDB) o

(—=1)" n!

_|.."i‘+ -

We shall now obtain expression for the n® derivative of some standard functions.
1.The n™ derivative f ¢ is a®¢**

If y = e
if"—‘ — ‘,l!
ax ¢
d:.‘ ax 2 3%
and — = g.ae™=a‘e
d.\‘.

n »

By induction F =a"e™, where n 15 a positive mteger.
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2. The n™ derivative of a™

Let y=a%a>0
i (g
B - ma log a [ E(G ,]— d loga}
d::l" = m* a™ (1 2
2 o ma (log a)
d’y
a‘xl = m* a™= (log af
d?l i
dl_jll = m*a™ (log a)’ where a > 0.

Cor.:Ify=e™thena=e=loga=loge=1

.

i ry .
e } = m'e™
&

3. The n™derivative of (ax + b)™
Let y = (ax +b)™
Then v, = ma(ax + by="!
¥y, = m(m—1) a*(ax + b)™*
¥, = mm—1)(m—2)a*(ax + by=>

vy o=mm—1)(m—2) ... (m - ﬁja"(m‘— by "
=mm-1)(m—2).___._ .. (m—n+ a(ax + by==

mim—1Dm—2)_______(m—n+1)(m—
(m—n)!

n)l ﬂ"(ﬂ'}' _,’_E]:]li‘l—.'i‘

Cor. L. In case /i 15 a postive mteger

|
y =—" o (ax + b)y™
T (m—n)

The m™ derivative of (ax + b)™ can be obtained by putting n = m. we get

= m

m!
m r + m—n
o a™ (ax + bY

= m! a™ (- or=1)

m® derivative of (ax + b)™ 1s constant viz.m! a™ and hence the (m + 1)™ derivative of (ax + b)™ is zero.
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Cor. 2. Form=-1, we get
1
J_.‘ =
ax +b
y =D E2)E3) (—)a(ax + by =
{—1}" nla"
- (ax+ E}]“"
Cor. 3. Lety =log (ax + b), then
. a
N = ax +b
v, = (n—1)" denvative of y, or

ac+b

. ()" (n-1)1a (<) (n=1)ta”

d” _
F[log(m +D)] (ax+b)" - (ax+b)

4.The n™ derivative of sin (ax + b) and cos (ax + b).

Let y =cos (ax + b)
dy ;
—_ = _ : _b
s a sin (ax )
n (T .
= aeos(ax+b+—] ['.'mat—+HJ:—smB}
_ 2 2
dy pa®
Felie —a” sin| ax+ +E
s [ T om
= g cos|ax+b +—+—
2 2
-
= azcns{ax+b+£]
2
dj:l"l 3 . { b ETE]
;T = —a sm| ax+b+—
a” 2

X 3n
a’ cos ax+b+? ete.
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3
7

dy
Ifi].- f

a"cos| ax+ b+

In general

Simularly we can show that:

Ejl."? ) nn
—]  +b N b+ —
dx_n[sm{m+ )J a ms[ax+ + ]

6. The #™ derivative of ** sin bx and #** cos bx.
Let v = e™sin bx

¥, = EZG e*sm bx + &= b cos bx

= e*{g sin bx + b cos bx)

Put a =rcosB b=rsmb
> 3 ] b 1 b
= a*+b =, tanb=— orO=tam'—
a a
¥, = e“[rsm bx.cos+rsm 0. cos bx]

= re™sm (bx + @)
Thus we notice that y, can be obtained from y by multiplying it by the constant r and increasing bx by
the constant angle 6

o

dy
Similarly v, = ah_'g =7? ¢ sin (bx + 20)
In general
d"y .
— = g b 4 e
i " e=sm (bx + nQ)
) SR Yl . . b
= (a‘ +b‘}7{ g™ 5m[bx+ntan'1—]
. a
2 2 2 b . 2 2 -1 b
cr=a +bhandtan® =—ie_r=+a +b andB=tan —
a a
Similarly if y = e* cos bx
d?l "
th — = p" g=cos(bx + nb
en B ™ e cos(bx + n@)
. b — 4 b
Where " =a” +b tanB= —je r=+a +b" and®=tan"'—
a a
d" s R . R g
1 = e“’(ar+b‘)""cos[bx+ntan'1£]
ax a
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7. The n® derivative of (x + a)™ where X # —a.
Let y=x+a)"x+-a

—m.(x+ay™!

& [
I

Prepared by A. Henna Shenofer, Asst Prof, Department of Mathematics, KAHE Page 23/29




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IB.Sc MATHEMATICS COURSE NAME: Calculus
COURSE CODE: 18SMMU101 UNIT: I(Hyperbolic functions) BATCH-2018-2021

:,'l-"
a2 = - +a)ym?

=,

d’y
a2 = EmEm-1D)Em-2) (6 + aym

By induction,
dl— = Cm 1Y) (cm-n+1) (x + ay ™=
= (-1)"m(m~+ D(n+2)._.._..(m+n-1)x+ta)y™™"
(-1p2 (m—1)m(m +l_]..___..___[:.'.ﬁ'+nr—1_](,‘c+r;]_"']_"r
B 12 (m-1)
_ (<) (m+n-1) I o VN S VI
(- (-1 (xta)™"
Where x # —a
n n P -n-1
Cor. : If m=1, we have d ,i,[ ! ] = ()i a)
di \x+a 0!
=)
- {l'-i-ﬂ}m-;
Similarly we can show that
FL ) (-1)" (m+n—1)! 1
- [{x—a} ) = ] T } MR
g m1)  (v-a)

8. Application of De Moivre’s Therorem and Partial fraction in finding the n™ derivative

In order to determune the nth derivatrve of rational functional, we resolve it into partial fractions and then
use the standard results. Sometimes we can use trigonometric transformations or methods like the application
of De Moivres theorem in finding the n®* denvatives. The following examples will illustrate the procedure.

. S 1
Example 4. Find the nth derivative of y = ——————
(- (+2)
1 : : :
Solution : We resolve y =——s——— mfo partial fractions
(x-1) (x-2)
1 A B c D

(x=1f(x=2)  x-1 (x=1 (x-1f x-2
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1=Ax -1 (x-2)+Bx-1Dx-2)+Cx-2)+D(x - 1)
Puttmg x=1,wegetl=—-C=C=-1

Putting x=2,wegetl=Die D=1

Equating the coefficients of x*, x? on both sides we have

0=A+D=A=-D=-1 (- D=1)
0=4A+B-3D=B=4A+3D
B=4A+3D=+4+3=-1 (A=-1,D=1)
Hence .1 = _1— 1 —— 1 —+ 1
(x=1)(x-2) =1 (x-1) (x-1) x-2
We have the standard resutls
d"[ 1] (-1)" nt
— = -1, Wwherex=a
&' x-a] (x-2)
d 1] -1) —1)1
- - — | = { ]_{m+n\m:}|v where x # a
d"| (x—a)" |  (m-1)(m-1)""
dr 1 | o aral | a | o] o1 ] a1 a
fte - Sl s
" | (x-1) (x=2) d"Lx—1] dx l_(x—l) " |(x-1) | @"lx-2

(-)"n! (=1)" (n+1)!
(x=1)""  1(x-1)""

(Y ()t ('m
2(x-1)""  (x=2)"

Hence we get

n e +2 ( +1
—d '11 = {_1} l?ﬂ ! n+vl ! +1 n+1+" +{n JL”H-S )
P (x-1) (x=2" (x-1J" 2(x-D
d’y
Example 5. If V== L — find :
X +a dx
. 1 -
Solution : We have y= P! = {x+ai}[:r—ai) where ;_ /1

_L( 11 ]
2ai\ x—ai x+ai

d"y L[ (=1)'mt  (=1)'n! }

dx" = 2ai [:J-—EJJ;\JN-": (I+ﬂf}”-1
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B (-1)"mt 11
C 2 | (x-a)™ (x+ai)™"

Nowputx=rcos8 a=rsm8 sothat
x—ai =r(cos® —ismB)
r+ai = ricos8+ism8)
Now by De Moivre's theorem we obtain.

1 B 1 _ 1
(x—ai)”" [r(cos® +r'*5-inﬂ‘.l]h1 " (cos +isinB)""
= r"*U{cosh — i smA)y "V
= ==*Ufecos (n + 1)8 + § sm (n + 1)0]
1
Simlarly (x+ai)" = <Y (cos (n + 1)i sm (n + 1)8)

Substituting the values we get :

dx 2ai

dy -1)"n! :
(=D "-,.-wh[cos(nﬂ)e +zsm(n+1)9]

pmD [cos(n+ 1)6 —isux[n+l)9]

1) n
= %—%{;(Zism(rwl)e)

-1)"n!
= (—)sm(nﬂ)e
a

[mel)

smo
Also a:rsm()::l —
r a
1 sin""'e
’ml S arul
d"y  (=D'n!sin(n+1)0sin""'0
dx &= an-f

afa
where 0 1s given by tan6 = 2 or6 =tan [ = }
x X

BATCH-2018-2021
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Leibnitz Theorem : If y =uv where v and v are finctions of x possessing derivatives of the n'® order,

then D"y=D"(uv)= ("D"u:]'|.=+ nC, D" 'uDv +"C,D" *uD’v+ .. +"C,D"'uD'v....__+uD"v.

We notice that the coefficients on the R H.S. are the same as in the expression of (a + b)" by Binomial
Theorem, where n 1s a positive integer.

Proof : We shall prove the theorem by mathematical induction.
Step L. By direct differentiation 1t 15 easy to see that the theorem 1s true forn =1, n =2

D(uwv) = (Du)v+u(Dv)

D’ (uv)

{-Dz u} v+ DuDv+ DuDv+ uD’v

{Dzu} v+ 2C—__D uDv+ :C‘Jw Dv
Step II. Let us assume that the Theorem is true for a particular value of n say n =m
ie D" (uv)= (D '"u)v+ " D™ 'uDv+ "C. D" u D' v
+"C_ D" "D v+ "C. D" u.Dv+ ... +uD"™.
Differentiating both sides wrt. x we have

4l FaL! me a1 i

D" uv) = [(D u]v +D"u Dv]+ Cl[D”‘u.Dv +D u.Dv]

+"C, [D”";s;_D31:+ D”"zu..ﬂf\«‘]_.___.___.
ot ”'C',__.[D”'"'I:JD"H.J +D""”"u_.D"v]
+"C, [D’""'IEJ.D*V+ D"’"r.'_D”'lu:l + o uD™ .

= {iD"”lu}v+ (1+ '"Cl)D”’u_D v +{ "C, +"C, ) D" uDv+ .

+f_ "Co+"C, )D’""‘lu_ﬁﬁ=+ 4 uD™ 'y

From the theory of permutations and combinations we know that "C, |+ ™C, = ""'C

Also™C, =1+ "C, ="+ "C,= """, and "C, = ™'C,,,

D" wv)= [D’“""H)v+ "o D' Dv+ "D u D v+

+™C D"y D v+ . +uD™ .
Thus if the theorem 1s true for any value m of n, then 1t 1s also true for the next higher value (m + 1) of
.

In step I we have seen that the theorem 1s true for n =1, » = 2, then 1t must be true forn =2 +1= 3 and
so i =3 +1=4 and so on. Thus by the principle of mathematical induction it follows that the Theorem is true
for all positive integral values of n.
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Example 8. Find the n™ derivative of x7¢®
Solution : We write y = x*¢™ where u = e™ v=1x3
We have Dy = D" {e‘“): a"e™
Dv = 3x’.Dv=6x,Dv=6Dv=0,Dv=0
Using Letbnitz Rule, we get

d"y
"

= (D""u]v +"C,D" 'uDv + "C,D" uD v+ ... +uD'v

— x3arleux T+ "Cldl_:é?m.?l.\']‘l' .'rc-]an-ﬂeux_ﬁx_’_ "Csﬂﬂ_jé?m.s

3 m_mx n-l_2 ax n-3 _ax

Ya'e™ +3na™'xe +3n{n—1]a""'zxem+n{n—1_][?'1—2](1 e
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POSSIBLE QUESTIONS
PART - A (20 x 1 =20 Marks)
(Question Nos. 1 to 20 Online Examinations)

PART-B (5 x 2 =10 Marks)
Answer all the questions
Find the derivative of f(x)=5x3-2x?+6x+1.
Find % when y=e*cosh4x
Find the third derivative of x3-3x?+4x-1.

Prove that sinh2x = 2sinhxcoshx.
Find the inflection point for the function f(x) = 3x° — 5x3 + 2.

PART-C (5 x 6 =30 Marks)

agkrw Dd -

Answer all the questions

1. Prove that i) sinh(x + y) = sinhxcoshy + coshxsinhy
ii) cosh(x + y) = coshxcoshy + sinhxsinhy

2. Find Z_z fOT l) y = COSh_l(secx) ll) y = tanh(x2 + 1)
3. Show that i) tanh(x + y) = ~anhxrtanhy

ii)cosh? x — sinh? x = 1.

1+tanhxtanhy’

. . daz d
4. If y = sin(sinx) prove that d—szl + tanx ﬁ + ycos?x = 0.
dx

Evaluate i) [ xsech?(x?)dx ii) folﬁ

6. If y = sin(msin~1x), prove that (1 — x?)y, — xy, + m?y = 0 and hence
show that (1 + x2)y,4» — Cn+ Dxy,.q + (M2 —n?)y, =0
7. Find the n'" derivative of cosx cos2x cos 3x.

Find the n derivative for ——
x“+a

If = easin™'* prove that (1 — x2)y, — xy; — ay = 0 and hence show that
(1- xZ)Yn+2 - (2n+ 1)xYn+1 —(n* + aZ)Yn = 0.
10. State and prove Leibniz Rule for n™ derivative.
11. Evaluate i) [ sec*x dx i) [ cosec”x dx
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UNIT-I1
SYLLABUS

The Reduction formulae, derivations and illustrations of reduction formulae of the type | sin nx
dx, | cos nx dx, [ tan nx dx,[ sec nx dx, | log x" dx, Jsin" x sin™x dx. Curve tracing in Cartesian
coordinates, tracing in polar coordinates of standard curves, L Hospital’s rule, applications in
business, economics and life sciences.

Reduction formula for [ sm"zdz

j sin"z dx f sinz sin™ 'z dr

. _ ; v i . 1
= —cosrsin™ 'z — f (—cosz).(n—1)sin" “r cosrdr

(integrating by parts)
= r n—2 :
= —cosrsin™ 'z4 (n—1) / sin"r cos r dr
. _ . T (T S .0
= —cosrsin" 'z4 (n—1) / sin" %z (1 — sin’z) dz
. 2 . 2
(since cos"r=1-—sin"r)

. — \ . I._‘—:I |. .| -|I :‘ ] - I. |
—coszsin" 'z 4+ (n—1) / sin"“rdr — (n—1) / sin"x dx. (1)

There 1s now a term in f sm"zrdr on the right-hand side as well as on the

left-hand side. Bringing these terms together on the left-hand side, (1) becomes

oy i ; § % r n—32
n / sin"rdr = —coszsin 'z 4+ (n—1) [ sin" “rdr
. 1 L (n—1) g _
/ sin"rdr = —— cosxsin™ 'z 4 - - | sin" “rdz. (2)
. n n

The use of the reduction formula (2) to integrate a power of sinx is demon-
strated in worked example no. 2.
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Reduction formula for [ cos"zdz

[ cos"rdr

Son | cos"zdr

/
g

cos"zdr

[ cosz cos” 'z dx

" . ' 1 | i . .

sinz cos" 'z — [ (sinz).(n —1)cos" "z (—sinr)dr
(integrating by parts)

. " y \ _a ;

sinz cos" 'z 4 (n-1) [ cos"2x (1 — cos’z) dr

: . 3 2
(since  sin“x =1—cos™x)

. " y \ _n y \ .
sinz cos" 'z 4 (n-1) [ cos" “rdr — (n—1) ] cos" T dx

¥

. _— f \ _a
sinz cos" '+ (n—1) f cos" “rdr

1. i (n—1) o .
— sing cos™ 'z + i 'f{‘(}ﬁ"_ll'fil'. (3)

n n
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M REDUCTION FORMULAS
Integration by parts can be used to derive reduction formulas for integrals. These are
formulas that express an integral involving a power of a function in terms of an integral that
involves a lower power of that function. For example, if n is a positive integer and n > 2,
then integration by parts can be used to obtain the reduction formulas

1 n—1
f sin" xdx = ——sin® ' x cosx + f sin® 2 x dx (o)
n n

1 . n —]. 9
fcos“xd.r = ;COSH_IISII'II—F - fcos"_"xd.x (10

To illustrate how such formulas can be obtained. let us derive (10). We begin by writing
cos" x as cos" ! x - cosx and letting

i =cos"!x dv =cosx dx
du = (n — I}cos”'gx{— sinx)dx v =sinx
= _—(n— 1)cos" ? xsinxdx
50 that
fcos;"xdx = fcos”_l xcosxdx = fufhl = v — f vdu
=cos" ' xsinx 4+ (n — I}j-sin2 xcos" Zxdx

_ . ¢ _7
= cos" ]Jrsm_r—l—{ri — I}ffl —cos x)cos" “xdx

=cos" ! xsinx 4 in— I}fcos”_zx dx —i{n — I}fcos”_rdx
Moving the last term on the right to the left side yields
n fcos" xdx =cos" ' xsinx 4+ (n — l}f cos" ?xdx

from which (10) follows. The dernvation of reduction formula (9) 1s similar (Exercise 63).

Reduction formulas (9) and (10) reduce the exponent of sine (or cosine) by 2. Thus,
if the formulas are applied repeatedly, the exponent can eventually be reduced to 0 if 1 1s
even or 1 if n 1s odd, at which point the integration can be completed. We will discuss this
method in more detail in the next section, but for now, here 1s an example that illustrates
how reduction formulas work.

» Example 8 Ewvaluate [cos4 xdx.

Solutionn. From (10) withn = 4

| i

1 . )
[ cost xdx = % COs” X sInx 4+ [ cos” xdx Mow apply (100 withm = 2.

= écos‘l xsinx + I?' ({;cos;x sinx 4 % [f!.r)

u!

= :E—rcos'l xsinx + %cosx sinx + %x 4+ C -
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Polar Coordinates

Up until now we have been dealing with the coordinates x and y, which are
known as Cartesian coordinates or rectangular coordinates. We can
equally describe a plane using any pair of coordinates so that each position
on the plane 1s umquely described by the pair. In particular a useful set of
coordinates are polar coordinates.

Defining Polar Coordinates

To define polar coordinates, we begin by fixing a point O, called the origin
or pole. We then define a half-line (or ray) which begins at () and continues
to infimty i a given direction, called the polar axis. This 1s shown in

Fir.8)

#

Origin(O) Polar axis

Figure 5: Polar coordinates

Figure 5. The distance from the origin to the pomnt P 1s called the radial

coordinate, r, and the angle that the line |OP| makes with the polar axis
1s called the angular coordinate, /. more commonly known as the polar

angle. It 1s important to notice that the polar angle returns to its original
position when the angle 1s 27, Therefore, any angle greater than or equal
to 27 is equivalent to an angle in the range (0 < # < 2x). In fact, more
generally, the angles f§ — 27 n, # and # 4 27 n are equivalent 1f n 1s an integer.

Relationship to Cartesian Coordinates

It 18 quite easy to make a link between polar coordinates and Cartesian
coordinates. The trick 1s to make the polar axis concide with the z-axs.
Then, we can see from Figure 6 that the following relationship holds
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!

P(r.a8)

@]

X=r cos & x
Figure 6: Polar coordinates in terms of Cartesian coordinates

xr = rcos, Yy = rsin (1o
which can also be written in the form

r? =2 4+ 32, tan® = < (11
x

Example: Change the Cartesian coordinates (4, 4+4/3) into polar coordi-

nates.
Solution:
2 =42 4+ (4v3)2 =64 = r =8,
and
13 T
tﬂnH:T:x/EiH:g.

S

The polar coordinates are therefore (r, ) = (8, 7/3

Example: Change the polar coordinates (3,37/4) into Cartesian coordi-

nates.
Solution:
9 3T 3
r=3c08— = ———,
I~
and

3 3
= 3;. _— = —
1 sin 1

75
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The Cartesian coordinates are therefore (z,v) = (—3/v/2,3/v2).

If you are asked to graph an equation in polar coordinates, the easiest thing

’P____-__;‘:____
/ a2 |
/ i \ r
0 o i i [
\ : 0 3
: / g 2
' L
S i 1 ]
3m/2 | e , , , |
T — =0 : ‘
1L
Figure 7: Unit circle and the half-line § = 7.

to do 1s to simply plot some points and see what happens. Later on, you may
begin to recogmse some of the graphs and be able to plot them from memory.
For now, let’s look at some simple examples. If we fix r, say to r = 1, we get
a circle, see Figure 7. Note also that once we hit # = 27, the graph repeats,
and so we do not need to continue. Also in the same figure we see the plot
of # = /4. We can either imagine that we can take negative values of r.

or as we would normally expect we could impose r = 0 and plot a half-line,
as 1s done here. Finally, let’s look at an example where both coordinates
vary, say r = sinfl. Then we get the plot in Figure 8, where we see that
the plot repeats values after # = m, because the Cartesian coordinates are
r =sint cosfl, y = sinfsinf = sin>§ > 0.

I )

BRI

N

3m/4 ¢ } nya
{ . .

AN

[ 6—0 or &—n

Figure 5: Plot of » = sin /.
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EXAMPLE: Express the equation 2> = 4y in polar coordinates.

Solution: We use the formulas r = rcosf and y = rsinf.
o
z” =4y
. .
(rcosfl)” = 4rsinf

9 g9 .
rcos 6 = 4rsinf

sin ¢ .
r=4——-— = 4secftant
cos- f
Polar to Cartesian Conversion Formulas
x=rcos@ y=rsind

Converting from Cartesian is almost as easy. Let’s first notice the following.
Tyt = (rcos 19}1 +( r'siuﬁ]:
=rcos’ @+r sin’ @
=r’ {».:{:vs1 & +sin” 19} =r

This is a very useful formula that we should remember, however we are after an equation for r so
let’s take the square root of both sides. This gives,

¥ 7
F=ax

Note that technically we should have a plus or minus in front of the root since we know that » can
be erther positive or negative. We will mun with the convention of positive r here.

Getting an equation for &1s almost as sumple. We’ll start with,
r o rsind
Y _rsme tan &
x rcosf

Taking the inverse tangent of both sides gives,

8= rau_l[l]
X

We will need to be careful with this because inverse tangents only return values in the range
—Z <8 < £ . Recall that there is a second possible angle and that the second angle is given by
G+
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Cartesian to Polar Conversion Formulas

2 2 2 2
Fr=x 4y F=ax" +y

g= ’ran_l(i}
x.

Example 1 Convert each of the following points into the given coordinate system.

2r Y . _ .
(a) (—4.?J mto Cartesian coordinates. [Seolution
(b) (-1,-1) mnto polar coordinates. [Solution
Solution

2
(a) Convert [—4 —J into Cartesian coordinates.

Thus conversion 1s easy enough. All we need to do 1s plug the pomts into the formulas.

o

y= —4sin(%¢.] = —4{£] =-2\3

So, in Cartesian coordinates this point 1s [?2. —lv'g )

(b) Convert (-1.-1) into polar coordinates.

Let’s first get 7.

r=y(-1) +(-1) =2

Now, let’s get &
1) T

6 =tan" (_—J =tan" (1) =—
4

Thus 15 not the correct angle however. This value of £1s in the first quadrant and the point we’ve

been given 1s in the third quadrant. As noted above we can get the correct angle by adding 7 onto
this. Therefore, the actual angle 1s,

So, in polar coordinates the pont 15 («JE STT) . Note as well that we could have used the first &

that we got by using a negative r. In this case the point could also be written in polar coordinates

as [—ﬁ‘—j)
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Example 2 Convert each of the following into an equation m the given coordmnate system.
(a) Convert 2x— Sx’ =1+ xy into polar coordmates. [Solution

(b) Convert r = —8c¢os @ into Cartesian coordinates. [Selution]
Solution

(a) Convert 2x —5x° =1+ xy into polar coordinates.

In this case there really 1sn’t much to do other than plugging in the formulas for x and y (i.e. the
Cartesian coordinates) in terms of r and & (i.e. the polar coordmates).

2(recos@)—5(rcos 8)3 =1+(rcosf)(rsiné)

= 3 3 2 -
2rcos@—=5rcos  @=1+r"cosfsmn
[Return to Problems]

(b) Convert ¥ = —8cos & into Cartesian coordinates.

Thas one 1s a little trickier, but not by much. First notice that we could substitute straight for the
r. However, there 1s no straight substitution for the cosine that will give us only Cartesian
coordinates. If we had an r on the nnght along with the cosine then we could do a direct
substitution. So, if an r on the right side would be convenient let’s put one there, just don’t forget
to put one on the left side as well.

2
o =—8rcosf

We can now make some substitutions that will convert this into Cartesian coordinates.

Lines
Some lines have fairly simple equations in polar coordmates.

1. 8=p0.
We can see that this 15 a line by converting to Cartesian coordinates as follows

g=p

Ay
tan 1[‘—]= Jij

x E

Y —tan Jéj
X

y=(tan B)x
Thus 1s a line that goes through the ongin and makes an angle of [ with the positive x-
axis. Or, in other words 1t 15 a line through the origin with slope of tan £ .

I

reosd=a
This 1s easy enough to convert to Cartesian coordinates to x = a . So, this is a vertical
line.

3. rsmmé=5~b
Likewise, this converts to ¥ = b and so is a horizontal line.
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3 : :
Example 3 Graph 6 = —F, rcos@ =4 and rsin @ =—3 on the same axis system.

Solution
There really 1sn’t too much to this one other than doing the graph so here it 1s.
3 ¥ rcos@=4
E = ? . bl
“ AL
N il
~ 1k
I 1 1 | L~ 1 | | Ly
-5 -4 -3 -2 -1 ~ 2 3 - 5
-1k -
raang=-3 B —
-4 N
-5k ~
Circles
Let’s take a look at the equations of circles i polar coordinates.
1. r=a.

This equation 1s saying that no matter what angle we’ve got the distance from the origin
must be a. If you think about 1t that 1s exactly the defimtion of a circle of radius a
centered at the origin.

So, this 1s a circle of radius @ centered at the origin. Thus 1s also one of the reasons why
we might want to work in polar coordinates. The equation of a circle centered at the
origin has a very mce equation, unlike the corresponding equation mn Cartesian
coordinates.

2. r=2lacosd.
We looked at a specific example of one of these when we were converting equations to
Cartesian coordinates.

Thus 1s a circle of radius |ﬂ| and center (a. 0). Note that a might be negative (as it was

in our example above) and so the absolute value bars are required on the radius. They
should not be used however on the center.

3. r=2bsind.
This is similar to the previous one Tt is a circle of radius |E:r| and center (0.b).

4. r=2acos8+2bsinb.
This 1s a combination of the previous two and by completing the square twice it can be

shown that this is a circle of radius \Ja® +b° and center (a. b). In other words, this 1s

the general equation of a circle that 1sn’t centered at the origin.
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Example 4 Graph r=7, r=4cosf,and r =-T7sin & on the same axis system.

Solution

The first one 15 a circle of radius 7 centered at the ongin. The second 15 a cirele of radius 2

three equations.

-

centered at (2,0). The third 15 a circle of radius 7 cenfered at (U. _T] . Here 15 the graph of the

E -
r="1 yd 6 h
it
/ r=4cosé
| AR
i R T N | I i
-§ |- - 2
q |'. 6 -4 | }i 6 | 8
: 5 | N f.-
\
.".\, _4 | .I
-6 ;\ /
q [ r=-Tané

Prepared by A. Henna Shenofer, Asst Prof, Department of Mathematics, KAHE

Page 11/23




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IB.Sc MATHEMATICS COURSE NAME: Calculus
COURSE CODE: 18MMU101 UNIT: II (Reduction formulae and curve tracing) BATCH-2018-2021

» Example 1 Find the rectangular coordinates of the point P whose polar coordinates
are (r, #) = (6, 2/3) (Figure 10.2.6).

Solution.  Substituting the polar coordinates r = 6 and 6 = 27/3 in (1) yields

2 1
x=6 =6|—=]=-3
X COS 3 ( )

)

Fe

2; 3
}'=65in;=6(%) =33

Thus, the rectangular coordinates of P are (x, v) = (=3, 3/3). «

> Example 2 Find polar coordinates of the point P whose rectangular coordinates are
(=2, —2+/3) (Figure 10.2.7).

Solution.  We will find the polar coordinates (r, #) of P that satisfy the conditions r = ()
and 0 < 6 < 2. From the first equation in (2),
Pty = (=) (23 =44 12=16
so r = 4. From the second equation in (2),
-2
-2

From this and the fact that (=2, —2+/3) lies in the third quadrant, it follows that the angle
satisfying the requirement 0 <0 < 2w is # =4x/3. Thus, (r,#) = (4, 47/3) are polar
coordinates of P. All other polar coordinates of P are expressible in the form

4 T
) AT
(ri, 3 -I—Lmr) or ( 4‘3 -I—Lmr)

where n 1s an integer. <

’\]

.3

v
tan# = — =
P
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» Example 3 Sketch the graphs of

r

(a) r=1 by 8 =—

in polar coordinates.

Solution (a).  For all values of 8, the point (1, #) is 1 unit away from the pole. Since 8
is arbitrary, the graph is the circle of radius 1 centered at the pole (Figure 10.2.8a).

Solution (b).  For all values of r, the point (r, 7/4) lies on a line that makes an angle of
m/4 with the polar axis (Figure 10.2.8b). Positive values of r correspond to points on the
line in the first quadrant and negative values of r to points on the line in the third quadrant.
Thus, in absence of any restriction on r, the graph is the entire line. Observe, however, that
had we imposed the restriction r > 0, the graph would have been just the ray in the first

quadrant. -«
;2 ;2
/\ 4
r=1 =4
» Figure 10.2.8 (a) (B)

Equations r = f(#) that express r as a function of & are especially important. One way
to graph such an equation is to choose some typical values of 8, calculate the corresponding
values of r, and then plot the resulting pairs (r, &) in a polar coordinate system. The next
two examples illustrate this process.

» Example 3 Sketch the graphs of

I

(a) r =1 by 8 =—

in polar coordinates.

Solution (a). For all values of 8, the point (1, 8) is 1 unit away from the pole. Since #
is arbitrary, the graph is the circle of radius 1 centered at the pole (Figure 10.2.8a).
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Seolution (b). For all values of r, the point (r, 7/4) lies on a line that makes an angle of
/4 with the polar axis (Figure 10.2.85). Positive values of r correspond to points on the
line in the first quadrant and negative values of » to points on the line in the third quadrant.
Thus, in absence of any restriction on r. the graph is the entire line. Observe, however, that
had we imposed the restriction r = 0, the graph would have been just the ray in the first

quadrant. -
w2 o2
/’\ -
\—/1 0 i}
r=1 f=m4
» Figure 10.2.8 (a) (&)

Equations r = f(#) that express r as a function of # are especially important. One way
to graph such an equation is to choose some typical values of 8, calculate the corresponding
values of r, and then plot the resulting pairs (r, &) in a polar coordinate system. The next
two examples illustrate this process.

» Example 4 Sketch the graph of r = # (# = 0) in polar coordinates by plotting points.

Solution.  Observe that as # increases, so does r; thus, the graph is a curve that spirals out
from the pole as # increases. A reasonably accurate sketch of the spiral can be obtained by
plotting the points that correspond to values of @ that are integer multiples of /2, keeping
in mind that the value of r is always equal to the value of & (Figure 10.2.9). «

r=8(0=0)

A Figure 10.2.9
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» Example 6 Sketch the graph of r = cos 28 in polar coordinates.

r=cos 2

LHOPITAL'S RULE

B INDETERMINATE FORMS OF TYPE 0/0

Recall that a limit of the form y f(x)
im

(1
r—a g(x) :

in which f(x)— 0 and g(x)— 0 as x — a is called an indeterminate form of type 0/0.
Some examples encountered earlier in the text are
-1 sin x l —cosx

=2, lim =1, lm—=10
=1 x —1 =0 X z—=0 x
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The first limit was obtained algebraically by factoring the numerator and canceling the
common factor of x — 1, and the second two limits were obtained using geometric methods.
However, there are many indeterminate forms for which neither algebraic nor geometric
methods will produce the limit, so we need to develop a more general method.

To motivate such a method, suppose that (1) is an indeterminate form of type 0/0 in
which f’ and g’ are continuous at x = a and g'(a) # 0. Since f and g can be closely
approximated by their local linear approximations near a. it is reasonable to expect that

i fix) . flay+ fla)(x —a)
1m = lim

- : (2)
=ag(x)  s—a gla)+ g'@)x —a)

Since we are assuming that f’ and g’ are continuous at x = a, we have
lim f'(x) = f'(a) and lim ¢'(x) = ¢'(a)
and since the differentiability of f and ¢ at x = a implies the continuity of f and g at
x = a, we have
fa)=lim f(x)=0 and g(a)= lim g(x) =0
Thus, we can rewrite (2) as

lim fx _ lim Sl —a) _ lim flay _ lim fix)

= (3)
A—d E[.r_] X —+dl gr[ﬂ_]f_l' —ﬂ} K=l R"{aJ T E'rf.l'_}

This result, called L'Hépital’s rule. converts the given indeterminate form into a limit
involving derivatives that is often easier to evaluate.

Although we motivated (3) by assuming that f and g have continuous derivatives at
x = a and that g'(a) # 0, the result is true under less stringent conditions and is also valid
for one-sided limits and limits at 420 and —se. The proof of the following precise statement
of L'Hépital's rule is omitted.

3.6.1 THEOREM (L'Hépital’s Rule for Form 0/0)  Suppose that f and g are differentiable
functions on an open interval containing x = a, except possibly at x = a, and that

lim f(x)=0 and lm g(x)=0

X—d

If lim [ f'(x)/g'(x)] exists, or if this limit is 4o or —ow, then
X—a

L B i)
im = lim
X—a E':-IJ X—d g’[_xj

Moreaver, this statement is also true in the case of a limitasx —a~ , x—a” ,x — —m,
or ds x — 4=,

Prepared by A. Henna Shenofer, Asst Prof, Department of Mathematics, KAHE Page 16/23




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IB.Sc MATHEMATICS COURSE NAME: Calculus
COURSE CODE: 18MMU101 UNIT: II (Reduction formulae and curve tracing) BATCH-2018-2021

In the examples that follow we will apply L'Hopital’s rule using the following three-step
process:

Applying L’Hapital's Rule
Step 1. Check that the limit of f(x)/g(x) 1s an indeterminate form of type 0/0.
Step 2. Differentiate f and g separately.

Step 3. Find the limit of f'(x)/g'(x). If this limit is finite, 420, or —oe, then it is equal
to the limit of fix)/g(x).

» Example 1 Find the limit 24
lim -

r—=21 x —

using L'Hépital's mle, and check the result by factoring.

Solurion. The numerator and denominator have a limit of 0, so the limit is an indetermi-
nate form of type 0/0. Applying L'Hopital's rule yields

d

.
xt — < d [+~ —4] 2x
lim =limZL = lim = =4
r—=2 x —2 r—2 x—2 1
—[x —2]
dx

This agrees with the computation
lim

xi—4 o x—=2Mx+2)
) = lim ———

=2 x — 2 x—12 x—2

=limx4+2)=4 =

B INDETERMINATE FORMS OF TYPE = /=
When we want to indicate that the limit (or a one-sided limit) of a function is 42 or —a
without being specific about the sign, we will say that the limit is «. For example,

_Iim_ f(x) == means Iim_ flx)=4= or limI flx) = —o
lim f(x)=w% means lim fix)=4= or lim f(x)=—w
X— 0 X — 00 X — 4K

lim f(x) =0 means lim f(x)=2x and lm fix)=Z%w

X—d X—dar X—a

The limit of a ratio, f(x)/g(x). in which the numerator has limit s and the denominator
has limit = is called an indeterminate form of type =/=. The following version of
L'Hopital's rule, which we state without proof, can often be used to evaluate limits of this

type.
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3.6.2 THEOREM (L'Hépital’s Rule for Form = /=) Supposethat f and g are differentiable
functions on an open interval containing x = a, except possibly at x = a, and that

lim f(x) == and lim g(x)=1u
X—+da X—+d

If im [ f'(x)/g'(x)] exists, or if this limit is 4o or —oo, then
X—a

S LC) N 51C)
1m = 11m
x—a E(_;[J x—a g’(_];}

Moreover, this statement is also true in the case of alimitas x —a~ , x—=a ", ¥ — —o,
ar a5 X — 40,

» Example 3 Ineach part confirm that the limit is an indeterminate form of type oo/
and apply L'Hopital's rule.

Inx

.x .
fa) lim — (b)  lim
x— 400 o r—{+ CRCX

Solution (@). The numerator and denominator both have a limit of +<o. so we have an
indeterminate form of type oo/ce. Applying L' Hépital's rule yields
x

im —= lim — =10
x—=4m gt x— 4o gt

Solution (b). The numerator has a limit of —= and the denominator has a limit of oo,
so we have an indeterminate form of type oo/c. Applying L'Hopital's rule yields
Inx 1/x

lim = lim —— (4)
a0+ gscx  x—0+ —cscxcotx

This last limit is again an indeterminate form of type oo/, Moreover, any additional
applications of L'Hépital's rule will yield powers of 1/x in the numerator and expressions
involving csc x and cot x in the denominator; thus, repeated application of L'Hépital's rule
simply produces new indeterminate forms. We must try something else. The last limit in
(4) can be rewritten as

lim (— b tanx) — — lim 2% fim tanx = —(H{0y =0
x—H x = x x—(H

Thus,
Inx

lim =0 «

x—=M CSC X
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Il ANALYZING THE GROWTH OF EXPONENTIAL FUNCTIONS USING L'HOPITAL'S RULE
If n 1s any positive integer, then x" — 40 as x — 420, Such integer powers of x are some-
times used as “measuring sticks” to describe how rapidly other functions grow. Forexample,
we know that e¥ — 4o as x — +o and that the growth of ¥ is very rapid (Table 0.5.5);
however, the growth of x" is also rapid when n is a high power, so it is reasonable to ask
whether high powers of x grow more or less rapidly than €. One way to investigate this is
to examine the behavior of the ratio x"/e* as x — 4. For example, Figure 3.6.1a shows
the graph of v = x°/¢*. This graph suggests that x*/e* — 0 as x — +o0, and this implies
that the growth of the function ¢* is sufficiently rapid that its values eventually overtake
those of x” and force the ratio toward zero. Stated informally, “e* eventually grows more
rapidly than x°.” The same conclusion could have been reached by putting e* on top and
examining the behavior of */x” as x — +ce (Figure 3.6.1b). In this case the values of &*
eventually overtake those of x* and force the ratio toward 4. More generally, we can use
L'Hopital’s rule to show that e* eventually grows more rapidly than any positive integer
power of x, that 1s,

]
im = =0 and lim & =4 (5-6)
x—+m gt X— 4o xN
Both limits are indeterminate forms of type oo/ that can be evaluated using L'Hépital's
rule. For example, to establish (5), we will need to apply L'Hépital's rule n times. For this
purpose, observe that successive differentiations of x" reduce the exponent by 1 each time,
thus producing a constant for the nth derivative. For example, the successive denivatives

10 R

."L-.l "i-e

A =41 =]
T

(B
.-"‘__I
Y=

(a) A Figure 3.6.1
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of x* are 3x2, 6x, and 6. In general, the nth derivative of x" is n(n — 1)(n —2)--- 1 = n!
{verif}'}.' Thus, applying L'Hépital’s rule n times to (3) yields

" n!

. X .
lim — = lim — =10
x—+m gk x— 4= g¥

Limit (6) can be established similarly.

M INDETERMINATE FORMS OF TYPE 0 - =
Thus far we have discussed indeterminate forms of type 0/0 and w=o/%. However, these are
not the only possibilities; in general, the limit of an expression that has one of the forms

Sflx)
g(x)’

is called an indeterminate form if the limits of f(x) and g(x) individually exert conflicting
influences on the limit of the entire expression. For example, the limit

flx)-g(x),  f)F, flx)—glx), flx)+gx)

lim xInx
x—

is an indeterminate form of type 0+ = because the limit of the first factor is 0, the limit of
the second factor is —co, and these two limits exert conflicting influences on the product.
On the other hand, the limit lim [/T(1 — x3)]
I— 400

is not an indeterminate form because the first factor has a limit of 40, the second factor has
a limit of —eo, and these influences work together to produce a limit of —w= for the product.

Indeterminate forms of type 0 - = can sometimes be evaluated by rewriting the product
as a ratio, and then applying L'Hépital's rule for indeterminate forms of type 0/0 or oo/ce.

» Example 4 Evaluate

{a) lim xIlnx (b)  lim (1 —tanx)sec2x
=k x—mid
Solution (@). The factor x has a limit of (0 and the factor In x has a limit of —o, so the
stated problem is an indeterminate form of type 0 - co. There are two possible approaches:
we can rewrite the limit as

i In x I ;
im —  or im ———
= 1/x = 1/Inx
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the first being an indeterminate form of type o/ and the second an indeterminate form of
type 0/0. However, the first form is the preferred initial choice because the derivative of
1/x is less complicated than the derivative of 1/ In x. That choice yields

In x ) 1/x

lim xInx = lim — = lim
= x—0+ If.l x—0+ —I,n"l.l.'3

= Illmnl{—x} =10

Solution (b).  The stated problem is an indeterminate form of type 0 - co. We will convert
it to an indeterminate form of type 0/0:

. .l —tanx . l—tanx
lim (1 —tanx)sec2x = Im — = lim
x4 r=u/4 1/sec2x  x—a4 coslx
i —sec” x -2 | <
= lm ———=—F=
r—x/4 —2sin2x -2

Il INDETERMINATE FORMS OF TYPE = — =

A limit problem that leads to one of the expressions

(+o0) — (+=), (—o) — (—=),
(+oo) + (—m),  (—m) 4 (4o0)

is called an indeterminate form of type = — =. Such limits are indeterminate because
the two terms exert conflicting influences on the expression: one pushes it in the positive
direction and the other pushes it in the negative direction. However, limit problems that
lead to one of the expressions

(+oo) 4+ ($w), (4m) — (—o),
(—oo) 4+ (—0), (—o0) — (+w=)

are not indeterminate, since the two terms work together (those on the top produce a limit
of 420 and those on the bottom produce a limit of —oe).

Indeterminate forms of type co — % can sometimes be evaluated by combining the terms
and manipulating the result to produce an indeterminate form of type 0/0 or oo/ o,

=0+ VX sinx

- 1 1
» Example 5 Evaluate lim (—— )

Solution. Both terms have a limit of 420, so the stated problem is an indeterminate form
of type o — . Combining the two terms yields

. 1 1 . sinx —x
lim | — — — = lim ——
=0+ \ X  sinx r—=0+ xsinx

which is an indeterminate form of type 0/0. Applying L'Ho6pital's rule twice yields

. slnx —x . cosxy — 1
im —— = lim —
=Mk xs5InXx x—0+ sINXx 4+ xXcosx
) —sinx 0
= lim _ =—=10 =
x—=0+ cosXx 4 COSX — X sInX 2
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l INDETERMINATE FORMS OF TYPE 0", =", 1~
Limits of the form lim f(x)*®

can give rise to indeterminate forms of the types 0%, =°, and 1*. (The interpretations of
these symbols should be clear.) For example. the limit

lim (1 +x)"*
r—H

whose value we know to be e [see Formula (1) of Section 3.2] is an indeterminate form of
type 1°. It is indeterminate because the expressions 1 + x and 1/x exert two conflicting
influences: the first approaches 1. which drives the expression toward 1, and the second
approaches 4o, which drives the expression toward oo

Indeterminate forms of types 0°, o, and 1* can sometimes be evaluated by first intro-
ducing a dependent variable y = Fx)s®

and then computing the limit of In v. Since
Iny = In[fijm'ﬂl = g(x) - In[ f(x)]

the limit of In ¥ will be an indeterminate form of type 0 - oo (verify), which can be evaluated
by methods we have already studied. Once the limit of In y is known, it is a straightforward
matter to determine the limit of v = £(x)*"", as we will illustrate in the next example.

» Example 6 Find Ii111D{1—|—sinx}""‘.

Solution.  As discussed above, we begin by introducing a dependent variable
y = (1 +sinx)'/*

and taking the natural logarithm of both sides:
In(1 + sin x)

Iny =In(l +sinx)"* = —In(1 +sinx) =
X X

Thus, ) . In{1 +sinx)
imhy=1lm ——

x—=0 x—0 X

which is an indeterminate form of type 0/0, so by L'Hépital's rule

i ~In(1 £+ sinx) . (cosx)/(l +sinx)
limlny = lim —— = lim =1

X — I— X x—0 I

Since we have shown that Iny— 1 as x — 0, the continuity of the exponential function
implies that e"¥ — ¢! as x — 0, and this implies that y — ¢ as x — 0. Thus,

lim (1 +sinx)!* =¢ «
x—0
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POSSIBLE QUESTIONS
PART - A (20 x 1 =20 Marks)
(Question Nos. 1 to 20 Online Examinations)

PART-B (5 x 2 =10 Marks)
Answer all the questions

1. Convert the polar equation to Cartesian equation for r = >

sin@—2cosH’
Find the Cartesian coordinate of the point P whose polar coordinates are (r,6) = (6 2?”)
State the L’Hospital’s Rule.

Evaluate [ tan® x dx
Find the polar coordinate of the point P whose Cartesian coordinate are (—2, —2v/3).

UoAwoN

PART-C (5 x 6 =30 Marks)
Answer all the questions

Show that lim (1 + i)x =e

X—>00

=

A
4

2. IfL, = fo tan™ x dx then prove that I, + I,,_, = n—il and hence evaluate Is

. 1
Find i) lim x5™* i) lim xx
x—-07t x—+00
Evaluate [ x*(logx)3dx.
Find a polar equation for the circle x2 + (y —3)? =9

Find the Cartesian equation for r?2 = 4r cosf and rcosd = —4

N oo gk~ w

s
Derive the reduction formula for foz sin™ x dx.

8. Derive the reduction formula for f2 x™ sinx dx

X—SiNX ..\ 1. 2x%2-3x+1
ii) lim

x3 X—+00 3x2+5x—2

9. Evaluate i) lim
x—0

10. Derive the reduction formula for [ sin™ x cos™ x dx.
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Reduction formulae and curve tracing

Part A (20x1=20 Marks)

(Question Nos. 1 to 20 Online Examinations)

Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
A polar coordinate system in a plane consists of a
fixed point O is called the polar pole initial ray parameter pole
In a polar cooridinates r denotes a distance area angle radius distance

cartesian cartesian
An Rectangular coordinates means pole coordinate polar plane polar coordinate|coordinate
In a polar cooridinates 6 denotes a distance area angle radius angle
The polar coordinates is denoted by S(r, 0) P(r,90) R(r,9) Q(r,0) P(r,90)
The polar angle is denoted by 0 O r P 0
If the polar equation is r cost = 2 then the cartesian
equation is x=-1 x=2 x=-2 x=0 x=2
The slope of the polar curve = f(0) is given by 2(dy"/dx") dy'/dx' dy/dx dx/dy dy/dx
A ray emanating from the pole is called the polar curve polar axis polar plane polar coordinate|polar axis
The radial coordinate is denoted by 0 O r P r
square rectangular rectangular

what is another name foe cartesian coordinate ? coordinate coordinate polar plane polar coordinate|coordinate
lim,_,,(sinx / x) = 0 (-1) 1 2 1
lim ,_,,((3x - sinx) / x) = 0 (-1) 1 2 2
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[secx tanx dx = tanx sinx secx coS X secx
lim o, (x cot x) = 2 1 0 (-1 1
lim . (1 + %)= e 2 1 0 e
In a competitive economy, the total amount that
consumers actually spend on a commodity is usually

the total amount they would have been more than or
willing to spend equal to less than greater than  |equal to less than
Jcos x dx sinx (-cos x) (-sinx) tanx (-sinx)
Jfudv=uv - [ du fvdu fudu [dv fvdu
d(uv) = uv - vu uv +vu udv - vdu udv + v du udv - vdu
A system in a plane consists of a fixed cartesian polar
point O is called the pole. polar curve coordinate polar plane polar coordinate|coordinate
A ray emanating from the is called the polar
axis polar pole initial ray parameter pole
[sec’x dx = tanx sinx (-cos x) (-sinx) tanx
J(1/x) dx = X log x 2x l-x log x
Jeotx dx = log cosx log tanx log secx logsinx logsinx

log [ secx + log [ secx +

Jsecx dx = secx + tanx log [ secx + tanx] [secx +cos X |cosec X] tanx |
Jlog x dx = x log x log x +x x logx - x x log x +x x logx - x
lim , o (tanx / x) = 0 -1 1 2 1
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UNIT-TH
SYLLABUS

Volumes by slicing, disks and washers methods, volumes by cylindrical shells, parametric
equations, parameterizing a curve, arc length, arc length of parametric curves, area of surface of
revolution.

VOLUMES BY SLICING; DISKS AND WASHERS

Il VOLUMES BY SLICING

Recall that the underlying principle for finding the area of a plane region is to divide the
region into thin strips, approximate the area of each strip by the area of a rectangle, add the
approximations to form a Riemann sum, and take the limit of the Riemann sums to produce
an integral for the area. Under appropriate conditions, the same strategy can be used to
find the volume of a solid. The idea is to divide the solid into thin slabs, approximate the
volume of each slab, add the approximations to form a Riemann sum, and take the limit of
the Riemann sums to produce an integral for the volume (Figure 6.2.1).

= A A

i 5 T F \ - k. .fl

— Ry A ; /
e T i YA s o — F |
— E’? : . — if

\;\______;/ - :.___ R -

Sphere cut into Right pyramid cut Right circular cone cut Right circular cone cut
horizontal slabs into horizontal slabs into horizontal slabs into vertical slabs

A Figure #.2.1

One of the simplest examples of a solid with congruent cross sections is a right circular
cylinder of radius r, since all cross sections taken perpendicular to the central axis are
circular regions of radius r. The volume V of a right circular cylinder of radius r and height
fi can be expressed in terms of the height and the area of a cross section as

V = mrlh = [area of a cross section] x [height] (1)

This is a special case of a more general volume formula that applies to solids called right
cylinders. A right cylinder is a solid that is generated when a plane region is translated
along a line or axis that is perpendicular to the region (Figure 6.2.3).
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Some Right Cylinders

.
- -

Translated square Translated disk Translated annulus Translated triangle
A Figure 6.2.3

If a right cylinder is generated by translating a region of area A through a distance #.
then h is called the height (or sometimes the width) of the cylinder, and the volume V of
the cylinder 1s defined to be

V = A - h = |area of a cross section] = [height] (2)
(Figure 6.2.4). Note that this s consistent with Formula (1) for the volume of aright circular

cylinder.
We now have all of the tools required to solve the following problem.

Volume = A- &

A Figure 6.2.4

Cross section

a x b
Cross section area = A(x)

A Figure 6.2.5
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If a right cylinder is generated by translating a region of area A through a distance h.

then £ is called the height (or sometimes the width) of the cylinder, and the volume V of
the cylinder is defined to be

V = A - h = |area of a cross section] x [height] (2)

{(Figure 6.2.4). Note that this is consistent with Formula (1) for the volume of a nght circular
cylinder.
We now have all of the tools required to solve the following problem.

f.2.1 proBLEM Let § be asolid that extends along the x-axis and is bounded on the
left and right, respectively, by the planes that are perpendicular to the x-axis atx = a and
x = b (Figure 6.2.3). Find the volume V of the solid, assuming that its cross-sectional
area A(x) is known at each x in the interval [a, b].

To solve this problem we begin by dividing the interval [a, b] into n subintervals, thereby
dividing the solid into n slabs as shown in the left part of Figure 6.2.6. If we assume that
the width of the kth subinterval is Axg, then the volume of the kth slab can be approximated
by the volume A(x)Ax; of aright cylinder of width (height) Ax; and cross-sectional area
A(x]), where x} is a point in the kth subinterval (see the right part of Figure 6.2.6).

Adding these approximations yields the following Riemann sum that approximates the
volume V:

f
= Z A(x])Ax,
k=1

Taking the limit as n increases and the widths of all the subintervals approach zero vields
the definite integral

max Ax; —

n b
V= lim Dgaukmxk=£ A(x) dx

In summary, we have the following result.
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6.2.2 voLUME FORMULA Let § be a solid bounded by two parallel planes perpen-
dicular to the x-axis at x = g and x = b. If, foreach x in [a, b], the cross-sectional area
of § perpendicular to the x-axis is A(x), then the volume of the solid is

b
V=f A(x)dx (3)

provided A(x) is integrable.

6.2.3 voLUuME FORMULA  Let § be a solid bounded by two parallel planes perpen-
dicular to the y-axis at y = c and y = 4. If, foreach v in |c, d], the cross-sectional area
of § perpendicular to the y-axis is A(y), then the volume of the solid is

d
v:f A(y)dy (4)

provided A(y) is integrable.

» Example 1 Derive the formula for the volume of a right pyramid whose altitude is h
and whose base is a square with sides of length a.

Solution.  As illustrated in Figure 6.2.7a, we introduce a rectangular coordinate system
in which the y-axis passes through the apex and is perpendicular to the base, and the x-axis
passes through the base and is parallel to a side of the base.

At any v in the interval [0, h] on the y-axis, the cross section perpendicular to the y-
axis is a square. If s denotes the length of a side of this square, then by similar triangles

(Figure 6.2.7b)

i =
2]

h—v i
= — or s=—(h—v)
W hf‘ A

(s

b =
]

Thus, the area A(v) of the cross section at y 1s

A

A =" =S (h—y)
'[_‘" =45 _hj{. _}]
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B‘—x _
h—y ‘
y-axis A
B(0. h)I 5\ f
ye 0 la ¢
X-axis (’b}
0 C(la 0) A Figure 6.2.7
(a)
and by (4) the volume is
h ke az , az ki ,
V= Aly)ydy = —ith—y)ydy=— | (h—vy)ydy
0 o h° h=Jo
2 h 2
a- 1 3 a- 1 3 | 7
= [—E“’—” Ln— ;Tz[“i*‘* ] =39t

That 1s, the volume is J; of the area of the base times the altitude. =

Il SOLIDS OF REVOLUTION
A solid of revelution is a solid that is generated by revolving a plane region about a line that
lies in the same plane as the region: the line is called the axis of revolution. Many familiar
solids are of this type (Figure 6.2.8).

Some Familiar Solids of Revolution

N .- \ — N\ N
Axis of revaolution 4 ¥ i \#

— (e A
— 4| - | : U e

Hollowed right
Right circular cylinder Solid sphere Solid cone circular cylinder

6.2.8 (a) (b) (0 (d)
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Il VOLUMES BY DISKS PERPENDICULAR TO THE x-AXIS

We will be interested in the following general problem.

6.2.4 pProBLEM Let f be continuous and nonnegative on [a, #], and let R be the
region that is bounded above by v = fi(x), below by the x-axis, and on the sides by the
lines x = g and x = b (Figure 6.2.9a). Find the volume of the solid of revolution that
is generated by revolving the region R about the x-axis.

v v

= flx)
\
h/‘ |
A x
= AN b
|
|
/
> Figure 6.2.9 (a) &y
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We can solve this problem by slicing. For this purpose, observe that the cross section
of the solid taken perpendicular to the x-axis at the point x is a circular disk of radius fi(x)
(Figure 6.2.95). The area of this region is

A(x) = | f(x)]

Thus, from (3) the volume of the solid is

]
v:f 7l f(x)) dx (5)

Because the cross sections are disk shaped. the application of this formula is called the
method of disks.

» Example 2 Find the volume of the solid that is obtained when the region under the
curve y = ,/x over the interval [1, 4] is revolved about the x-axis (Figure 6.2.10).

Solution. From (5). the volume is

b . 4 a1t x 15x
V= [ :r[j‘ij]‘dx:f mxdx = 3 =Br—=—=—
| |

=

» Example 3 Derive the formula for the volume of a sphere of radius r.

Solution. Asindicated in Figure 6.2.11, a sphere of radius r can be generated by revolving
the upper semicircular disk enclosed between the x-axis and

2yi=42
about the x-axis. Since the upper half of this circle is the graph of v = f{x) = +/r= — x-,
it follows from (3) that the volume of the sphere is

b 7 ’ 7 7 5 -r:li ’ "1' :
V = f | flx) ] dx = [ Tre—x)dx=m|rx — — = _mur’ -
o o —r 3 —r 3

VOLUMES BY WASHERS PERPENDICULAR TO THE x-AXIS

6.2.5 proBLEM Let f and g be continuous and nonnegative on [a, b], and suppose
that f(x) = g(x) for all x in the interval [a, b]. Let R be the region that is bounded
above by v = f(x), below by v = g(x), and on the sides by the linesx =aandx = b
(Figure 6.2.12a). Find the volume of the solid of revolution that is generated by revolving
the region R about the x-axis (Figure 6.2.125).
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We can solve this problem by slicing. For this purpose, observe that the cross section of
the solid taken perpendicular to the x-axis at the point x is the annular or “washer-shaped”
region with inner radius g(x) and outer radius fix) (Figure 6.2.125); its area is

A(x) = m[ f(x))F — mlg)]? = a([ f(x)]? — [g(x)]H)
Thus, from (3) the volume of the solid is

1]
v =f A(FEP — [2(0)P) dx 6)

Because the cross sections are washer shaped. the application of this formula is called the
method of washers.

» Example 4 Findthe volume of the solid generated when the region between the grap

of the equations f({x) = 1 4+ x2 and g(x) = x over the interval [0, 2] is revolved about t
A-AXIS.

Selurtion. First sketch the region (Figure 6.2.13a); then imagine revolving it about t
x-axis (Figure 6.2.135). From (6) the volume is

B 2
Vo= f ([ f(x)]? — [gx)]?) dx = f :r{[fl + x?] 2 _xMdx
Ja o

fz (I N _1) d x _'_.‘r.'s 2 60T
= Tl -4+ x x = | — — = ——
Jo 4 4 5 1o 10

= b e LA

Unregg wad scales on aves

Region defined The resulting
by fand g solid of revolution
» Figure 6.2.13 (a) =)
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I VOLUMES BY DISKS AND WASHERS PERPENDICULAR TO THE y-AXIS
The methods of disks and washers have analogs for regions that are revolved about the v-
axis (Figures 6.2.14 and 6.2.15). Using the method of slicing and Formula (4), you should
be able to deduce the following formulas for the volumes of the solids in the figures.

i d
v =f alu(y)] dy L4 =f (w1 = [v ) dy (7-8)

Disks Washers

» Example 5 Find the volume of the solid generated when the region enclosed by
vy =./x, vy =2, and x = 0 is revolved about the y-axis.

Solution.  First sketch the region and the solid (Figure 6.2.16). The cross sections taken
perpendicular to the y-axis are disks, so we will apply (7). But first we must rewrite v = /x
as x = y*. Thus, from (7) with u{v) = ¥2, the volume is

. 2 2y Ty’ 327w
V = H[u[},*}l& d'lr' — Ty ﬂf}, _ - 4
c 0 5 1 5

VOLUMES BY CYLINDRICAL SHELLS

B CYLINDRICAL SHELLS

In this section we will be interested in the following problem.

6n.3.1 rropLEM Let f be continuous and nonnegative on [a, b] (0 < a < b). and let
R be the region that is bounded above by y = f(x), below by the x-axis, and on the
sides by the lines x = a and x = b. Find the volume V of the solid of revolution § that
is generated by revolving the region R about the v-axis (Figure 6.3.1).
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LY ¥
Ll
¥=1x) 5

a b

L]

A cylindrical shell is a solid enclosed by two concentric right circular cylinders (Fig-
are 6.3.2). The volume V of a cylindrical shell with inner radius ry, outer radius r2, and

weight /i can be written as
V = |area of cross section] - [height]
= {.-'rr_g — m‘f}h
=mlr +rilr: —ri)h
=12r- HU‘J +r)]-h-(r2=r1)

But zl{n + r2) is the average radius of the shell and r; — r; is its thickness, so

V = 2m - [average radius] - [height] - [thickness] i1

6.3.2 VOLUME BY CYLINDRICAL SHELLS ABOUT THE y-AXIS Let f be continuous
and nonnegative on [a, b] (0 < a < b), and let R be the region that is bounded above by
y = f(x), below by the x-axis, and on the sides by the lines x = a and x = b. Then the

volume V of the solid of revolution that is generated by revolving the region R about
the y-axis is given by

b
V= f 2mx f(x)dx (2)

» Example 1 Use cylindrical shells to find the volume of the solid generated when
the region enclosed between v = /x, x = 1, x = 4, and the x-axis is revolved about the
y-axis.
Solution. First sketch the region (Figure 6.3.6a); then imagine revolving it about the
v-axis (Figure 6.3.6b). Since f(x) = /x,a =1, and b = 4, Formula (2) yields

2

: o .1F 4 124;
V= f 2ax/xdx = Errf MV edy = [ZJT : %.rs"'3:| = ?HIEE —1]= TT .
1 | 1
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» Example 2 Use cylindrical shells to find the volume of the solid generated when the
region R in the first quadrant enclosed between y = x and v = x? is revolved about the
y-axis (Figure 6.3.8a).

Solution.  As illustrated in part (b) of Figure 6.3.8, at each x in [0, 1] the cross section of
R parallel to the y-axis generates a cylindrical surface of height x — x? and radius x. Since

the area of this surface 1s )
2rx(x — x7)

the volume of the solid 1s

| 1
V= f 2rx(x — xN)dx = Eﬁf {.rj — x')dx
0 i

» Example 3 Use cylindrical shells to find the volume of the solid generated when the
region R under v = x? over the interval [0, 2] is revolved about the line v = —1.

Solution.  First draw the axis of revolution; then imagine revolving the region about the
axis (Figure 6.3.9a). As illustrated in Figure 6.3.9b, at each v in the interval 0 < vy < 4, the
cross section of R parallel to the x-axis generates a cylindrical surface of height 2 — /¥
and radius v + 1. Since the area of this surface is

2r(y + D2 — J/7)

it follows that the volume of the solid 1s

3 4
f 2n(y+ 102 — Jy)dy = 2:?[ 2y — v 42—y dy
0 0
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AREA OF A SURFACE OF REVOLUTION

Il SURFACE AREA
A surface of revolution is a surface that is generated by revolving a plane curve about an
axis that lies in the same plane as the curve. For example, the surface of a sphere can be
generated by revolving a semicircle about its diameter, and the lateral surface of a right
circular cylinder can be generated by revolving a line segment about an axis that is parallel
to it (Figure 6.5.1).

Some Surfaces of Revolution

|
A | A n
\ \# ¥ 4
Fa
|ﬁ' 'II I |I/*\II

A1

H.5.1 SURFACE AREA PROBLEM  Suppose that f is a smooth, nonnegative function
on [a, b] and that a surface of revolution is generated by revolving the portion of the
curve ¥y = f(x) between x = a and x = b about the x-axis (Figure 6.5.2). Define what
15 meant by the area § of the surface, and find a formula for computing it.

6.5.2 peErFiNiTIoN I f is a smooth, nonnegative function on [a, b], then the surface
area § of the surface of revolution that is generated by revolving the portion of the curve
v = f(x) between x = a and x = b about the x-axis is defined as

h
5= [ 2a f(x/ 1 + [ f(x)]dx

b b oy 2
s=f 21rf{.r}¢1+|j"l{x}|3dx=f 2wy, 1+ (j—}) dx
i o X

Moreover, if g 1s nonnegative and x = g(v) is a smooth curve on the interval [, d]. then the
area of the surface that is generated by revolving the portion of a curve x = g(v) between
y = ¢ and v = d about the y-axis can be expressed as

d _ i d- 2
52[ 2mg(y v1+[£'[}‘}|‘ff}‘=f an,lll—l-(d—i) dy (3)
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» Example 1 Find the area of the surface that is generated by revolving the portion of
the curve v = x” between x = 0 and x = 1 about the x-axis.

Solution.  First sketch the curve; then imagine revolving it about the x-axis (Figure 6.5.6).
Since v = x°, we have dv/dx = 3x2, and hence from (4) the surface area § is

l | dy\*
§= [ 2y, |1+ (—) dx
Ju ‘,l dx

l —
= [ 21+ (3x2)2dx
<10

1
= Errf (14 9xH 2 dx
0

Y 10
= H_H [ HJ.-"E du w=14+0z4
36 g1 du = 36xt dx
=10
20 2 4 T
= .22 = (1077 —1)=3.56 «
% 3 |,
¥ !
Lol e
B 2.4
y=2
(1,1
I 1 i ! .
A Figure 6.5.7

A Figure 6.5.6

» Example 2 Find the area of the surface that is generated by revolving the portion of
the curve ¥y = x” between x = 1 and x = 2 about the y-axis.

Solution.  First sketch the curve: then imagine revolving it about the y-axis (Figure 6.5.7).
Because the curve is revolved about the v-axis we will apply Formula (3). Toward this end.
we rewrite y = x° as x = /¥ and observe that the y-values corresponding to x = 1 and
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x=2arey=1and y =4. Since x = /¥, we have dx/dy = 1/(2 /¥ ). and hence from
(5) the surface area § is

- 7

4 | oy L
d
.S'=f 2mx |'|| + o dv
) 4

_ T 1/2 w=4v+1
=7 i w'edu e — 4 v
17
T 2 T . -
- E'?HJ 3} =E{|?3“3—5‘-J%3(}85 «
- =35

PARAMETRIC EQUATIONS; TANGENT LINES AND ARC LENGTH
FOR PARAMETRIC CURVES

PARAMETRIC EQUATIONS
Suppose that a particle moves along a curve C in the xy-plane in such a way that its x- and
y-coordinates, as functions of time, are

x= f(r), y=gl)

We call these the paramefric equations of motion for the particle and refer to C as the
trajectory of the particle or the graph of the equations (Figure 10.1.1). The variable t is
called the parameter for the equations.

» Example 1 Sketch the trajectory over the time interval 0 <t < 10 of the particle
whose parametric equations of motion are

x=t—3sint, y=4—3cost (1
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Selution. One way to sketch the trajectory is to choose a representative succession of
times, plot the (x, ¥) coordinates of points on the trajectory at those times, and connect the
points with a smooth curve. The trajectory in Figure 10.1.2 was obtained in this way from
the data in Table 10.1.1 in which the approximate coordinates of the particle are given at
time increments of 1 unit. Observe that there is no r-axis in the picture; the values of ¢
appear only as labels on the plotted points, and even these are usually omitted unless it is
important to emphasize the locations of the particle at specific times. «

» Example 2 Find the graph of the parametric equations

x =cost, y=sint (0<t <2m) (2)

Selution. One way to find the graph is to eliminate the parameter ¢ by noting that
x4y =sin’t +cost =1

Thus, the graph is contained in the unit circle x> + y* = 1. Geometrically, the parameter
t can be interpreted as the angle swept out by the radial line from the origin to the point
(x, v) = (cost, sint) on the unit circle (Figure 10.1.3). Asr increases from 0 to 2. the
point traces the circle counterclockwise, starting at (1,0) when r = 0 and completing one
full revolution when f = 2. One can obtain different portions of the circle by varying the
interval over which the parameter varies. For example,

x =cost, y=sint 0=t=m) (3

represents just the upper semicircle in Figure 10.1.3. =

» Example 3 Graph the parametric curve
x=2-3 v=6t-7

by eliminating the parameter, and indicate the orientation on the graph.
Solution.  To eliminate the parameter we will solve the first equation for ¢ as a function
of x, and then substitute this expression for t into the second equation:

t=(3)x+3)

y=6(3)(x+3) =7

v=3x+2

Thus, the graph is a line of slope 3 and y-intercept 2. To find the orientation we must look
to the original equations; the direction of increasing ¢ can be deduced by observing that
x increases as t increases or by observing that y increases as f increases. Either piece of
information tells us that the line is traced left to right as shown in Figure 10.1.5. =«
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Il TANGENT LINES TO PARAMETRIC CURVES
We will be concerned with curves that are given by parametric equations

x= f(t), y=glt)

in which f(t) and g(¢) have continuous first derivatives with respect to t. It can be proved

that if dx/dt # 0, then y is a differentiable function of x, in which case the chain rule
implies that
dy  dy/dt
= i4)
dx  dx/dt

This formula makes it possible to find dv/dx directly from the parametric equations without
eliminating the parameter.

» Example 4 Find the slope of the tangent line to the unit circle
x =cost, y=sint 0=t <=2m

at the point where t = /6 (Figure 10.1.9).

Solution. From (4), the slope at a general point on the circle is

dy  dy/dt cost
— = - = - = —colf
dx dx/dt — sin ¢

Thus, the slope at t = /6 is

ﬂ = —cot T —\-"q -
dx t=m/f 6

ARC LENGTH OF PARAMETRIC CURVES
10.1.1 ARC LENGTH FORMULA FOR PARAMETRIC CURVES If no segment of the
curve represented by the parametric equations

r=x(t), y=yvit) a=t=bh)

is traced more than once as f increases froma to b, and if dx /dt and dy /dt are continuous
functions fora = ¢ < b, then the arc length L of the curve 1s given by

b dx\ 2 dy 2
L= \/(E) (2) a ©
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» Example8 Use(9)to find the circumference of a circle of radius a from the parametric

equations x =acost, y=asinf 0=t <12m
Solution.
I = n’.t‘]: (d."):f " (—asint)? + ( ) d
— =] «| =) dr= v (—asint)* + (a cost)* dt
0 y dt ; dt 0
Yo e g

=f adr=m:| = 2ma -
0 [i]

Arc Length
Symbolically L = fﬂ ds

0..a..b..x-, 0..y-, curve C over |a, b], triangle dx, dy, ds)
— 2 2

L= [dx*+dy

Suppose ( is described by parametric equations

x=f(t), y=g)

_ dx -
dx = atdt‘ dy—dtdt

L =IfJ(% (L) a
wherea = f(a) and b = f(f).
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Example Find the length of the curve

t
x=e'—t, y=4ez, 0<t<1

dx _

d I
=et—1, Y — ez
dt

&
(% 2=.~a'2‘—2..fet+1. (i—t’ z=4et

& 2+(%)2=e“+2er+1=|{.a-*f+1}2
L= &) + (&) @

= [i (et + 1)de
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POSSIBLE QUESTIONS
PART - A (20 x 1 =20 Marks)
(Question Nos. 1 to 20 Online Examinations)

PART-B (5 x 2 =10 Marks)
Answer all the questions
1. Define a length of a parameterized curve .
2. Find arc length for the circumference of a circle of radius a form the parametric equations
x =acost ,y=asint (0<t <2m).

3. Write down the surface area formula for the Revolution about the X-axis.

4. Write down the surface area formula for the Revolution about the X-axis.

5. Find the Volume of the solid generated by revolving the region between the Y - axis and

the curve x = i ,1 <y < 4,aboutthe Y — axis.

PART-C (5 x 6 =30 Marks)
Answer all the questions
1. Find the Volume of the solid generated by revolving the region between the parabola
x = y? + 1 and the line x = 3 about the line x = 3.

Find the graph of the parametric equationsx = cost ,y =sint ,(0 <t < 2m).

The region bounded by the curve y = x? + 1 and the line y = —x + 3 is revolved

about the x — axis to generate a solid. Find the volume of the solid.

In a disastrous first flight, an experimental paper airplane follows the trajectory of the
particle inx =t — 3 sint,y = 4 — 3 cost, t = 0. but crashes into a wall at a time
t=10.

i) At what times was the airplane flying horizontally?

ii) At what time was it flying vertically?

5. Find the VVolume of the solid generated by revolving the region bounded by y = /x
and the linesy =1, x =4 about the liney = 1.

wn

&

N |-

6. Find the area of the surface generated by revolving the curve y = x3 ,0 < x <

about the x-axis.
7. Find the area of the surface generated by revolving the curve y = 2vx ,1 < x <2
about the x-axis.
Find the length of the asteroid x = cos3t ,y =sin®t,0 <t < 2m.
Use Cylindrical shells to find the volume of the solid generate when the region
enclosed between y = vx ,x = 1,x = 4, and the x — axis is revolved about the y —
axis.

© o

2
10. Find % for the parametric equation x =t — t? and y =t — t3.
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Volume by slicing and revolution of curves

Part A (20x1=20 Marks)

(Question Nos. 1 to 20 Online Examinations)

Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
2(base + (base x
The volume of the cylinder is base - height |base x height |height) height) / 2 base x height
A function with a continuous first derivative is said to be smooth
smooth and its graph is called smooth curve [length smooth plane |derivative smooth curve
If a right cylinder is generated by translating a region of
area A through a distance h, then h is called circumference [base height length height
smooth
A function with a continuous first derivative is said to be |length derivative smooth smooth curve |smooth
A piece of cone is called a frustum surface area radil frustum
volume of lateral surface |[volume of area of lateral surface
(base circumference x slant height ) / 2 = cone area solid revolution area
Volume of a right circular cylinder is e’ 2nr’h 2mnr nr’h nr’h
is a solid that generayte when a plane region is
translated along a line or axis that is perpendicular to the
region sphere right cylinder [cone pyramid right cylinder
A right cylinder is a solid that generayte when a plane
region is translated along a line or axis that is to
the region perpendicular |bounded parallel linear perpendicular
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The volume of a solid can be obtained by integrating the Cross cross sectional
from one end of the solid to the other . length height sectional area [surface area  |area
volume of a sphere is 43 e’ 1/2 r*h ne’h 2nr 4/3
is a solid enclosed by two concentric right cylindrical

circular cylinders right cylinder |surface area |shell cone cylindrical shell

volume of a cylindrical shell = 2n nw’ 2nr’h 2nr 2n

A is a surface that is generated by revolving a

plane curve about an axis thatb lies in the same plane as  [lateral surface [surface of area of cross sectional |surface of

the curve. area revolution revolution area revolution

The direction in which the graph of a pair of parametric ~ |parametric Cross surface of

equation is traced as the parameter increaseas is called the |curve sectional area |orientation revolution orientation

A curve with an orientation imposed on it by a set of surface of parametric area of parametric

parametric equation is called orientation  |revolution curve revolution curve

An tangent lines to the parametric curve is 2(dy"/dx") dy'/dx' dy/dx dx/dy dy/dx

The curve represented by the parametric equations x = t* semicubical semicubical

andy = £ is called ellipse parabola hyperbola parabola parabola

Ifx =a(0 - sinf) and y=a ( 1- cos) is called a equation

of hyperbola parabola cycloid solid cycloid

The parametric equation of isx =acostand y =

asint ellipse circle hyperbola parabola circle

The parametric equation of isx =acostandy =

bsint hyperbola parabola ellipse circle ellipse

If x = sect and y = tan t the find dy/dx 1/tan t sect / tant tant / sect 1/sect sect / tant

The parametric equation of isx =asectand y =

btant hyperbola parabola ellipse circle hyperbola

Iff(x)=x+sinx, then f'(x) = sin X — X cos x| 1+ cos x COS X 1—cos x I+ cos x

An horizontal tangent for parametric equations dy/dt =0 dy/dx =0 dx/dt =0 dx/dy=0 dy/dt =0

An vertical tangent for parametric equations dy/dt =0 dy/dx =0 dx/dt =0 dx/dy=0 dx/dt =0

A cylindrical shell is a solid enclosed by two concentric right circular [parametric right circular
right cylinder [cone cylinders curve cylinders
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The parametric equation of a circle is

X=acost,y
=a sint

X=atant,y
=asect

X=acost,y
=asect

X=acost,y
= b sint

X=acost,y=
a sint

The parametric equation of a ellipse is

Xx=atant,y
=asect

X=acost,y
=a sint

X=atant,y=
a sect

X=acost,y
= b sint

X=acost,y=
b sint

The parametric equation of a hyperbola is

X=acost,y
=a sint

X=acost,y
= b sint

X=asect,y
=b tant

X=atant,y=
a sect

X=asect,y=
b tant

A cylinderical shell is a solid enclosed by  concentric

right circular cylinders four two three one two

A solid of is a solid that is generated by revolving

a plane region about a line that lies in the same plane as

the region cone revolution perpendicular ([parallel revolution
The line of a solid of revolution is a of revolution [ray distance axis plane axis

A function f'is smooth on [a, b] if ' is on [a, b]. |discontinuous |parallel perpendicular |continuous continuous

Prepared by: A.Henna Shenofer, Assistant Professor, Department of Mathematics, KAHE




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IB.Sc MATHEMATICS COURSE NAME: Calculus
COURSE CODE: 18MMU101 UNIT: III (Concavity and conic sections)
BATCH-2018-2021
UNIT-IV
SYLLABUS

Concavity and Inflection points, asymptotes. Techniques of sketching conics, reflection
properties of conics, rotation of axes and second degree equations, classification into conics
using the discriminant, polar equations of conics.

B CONCAVITY

Although the sign of the denvative of f reveals where the graph of f is increasing or
decreasing, it does not reveal the direction of curvature. Forexample, the graph is increasing
on both sides of the point in Figure 4.1.7, but on the left side it has an upward curvature
(*holds water”) and on the night side it has a downward curvature (“spills water™). On
intervals where the graph of f has upward curvature we say that f is concave up, and on
intervals where the graph has downward curvature we say that f is concave down.

Figure 4.1.8 suggests two ways to characterize the concavity of a differentiable function
f on an open interval:

* fisconcave up on an open interval if its tangent lines have increasing slopes on that
interval and is concave down if they have decreasing slopes.

> Figere 4.1.7 ¢ [ is concave up on an open interval if its graph lies above its tangent lines on that
interval and is concave down if it lies below its tangent lines.
y
Concave Our formal definition for “concave up” and “concave down™ corresponds to the first of
o these charactenzations.
N
X
4.1.3 periNimion  If f is differentiable on an open interval, then f is said to be
Increasing slopes concave up on the open interval if f” is increasing on that interval, and f is said to be
concave down on the open interval if f” is decreasing on that interval.
¥
#7 Concave
‘ Since the slopes of the tangent lines to the graph of a differentiable function f are the
/ . values of its derivative [, it follows from Theorem 4.1.2 (applied to f” rather than f) that
> S’ will be increasing on intervals where f” is positive and that f* will be decreasing on

Decreasing slopes intervals where f” is negative. Thus, we have the following theorem.

4.1.4 tneorem  Let f be twice differentiable on an open interval.

(@) If f"(x) > O for every value of x inthe open interval, then [ is concave up on that
interval.

() If f"(x) < 0 for every value of x in the open interval, then f is concave down on
that interval.

» Example 4 Figure 4.1.4 suggests that the function f(x) = x2 —4x + 3 is concave
up on the interval (—oe, 420). This is consistent with Theorem 4.1.4, since f'(x) = 2x — 4

and ["(x) =2, so . ,
: f7(x) > 0 onthe interval (—, 4+)
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Also, Figure 4.1.5 suggests that f(x) = x* is concave down on the interval (—oc, 0) and
concave up on the interval (0, +2¢). This agrees with Theorem 4.1.4, since f’(x) = 3x*
and f"(x) = 6x, s0

ffix)y<0 ifx<0 and f"(x)=>0 ifx=0 =
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I INFLECTION POINTS
We see from Example 4 and Figure 4.1.5 that the graph of f(x) = x7 changes from concave
down to concave up at x = (. Points where a curve changes from concave up to concave
down or vice versa are of special interest. so there is some terminology associated with
them.

Inflection point

4.1.5 periNrrion  If f is continuous on an open interval containing a value xp, and
if f changes the direction of its concavity at the point (xg. f(xp)). then we say that f
has an inflection point at xy, and we call the point (xp, fixg)) on the graph of f an
inflection point of f (Figure 4.1.9).

Ay

» Example5 Figure 4.1.10 shows the graph of the function f(x) = a7 —3x? 4+ 1. Use
the first and second derivatives of f to determine the intervals on which f is increasing,
decreasing. concave up, and concave down. Locate all inflection points and confirm that
your conclusions are consistent with the graph.

Solution. Calculating the first two derivatives of f we obtain
fix)=3x2—6x=3x(x-2)
frx)=6x —6=6(x—1)

The sign analysis of these derivatives is shown in the following tables:
INTERVAL  (3x)(x—2) f(x) CONCLUSION
- x<0 (-)(=) +  fisincreasing on (—==, 0]
D<x<?2 (+)=) - { is decreasing on [0, 2]
x>2 (+)(+) + f1is increasing on [2, +e=)
INTERVAL  G{x—1) F"(x) CONCLUSION
x<1 =) —  fisconcave down on {—ee, 1)
i =w-32+1 x> 1 (+) +  fisconcave up on (1, +==)
» Figure 4.1.10
The second table shows that there i1s an inflection point at x = 1, since f changes from

concave down to concave up at that point. The inflection point 1s (1, f(1)) = (1, —1). All
of these conclusions are consistent with the graph of f. «

One can correctly guess from Figure 4.1.10 that the function f(x) = x* — 3x% + 1 has
an inflection point at x = | without actually computing derivatives. However, sometimes
changes in concavity are so subtle that calculus is essential to confirm their existence and
identify their location. Here is an example.
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T R M e S
-2 -1 1 2 3 4
3
A =mw"
» Figure 4.1.11

Ll SR TV, -

fiy=x+2siny

» Figure 4.1.12

» Example 6 Figure 4.1.11 suggests that the function fi{x) = xe~* has an inflection

point but its exact location is not evident from the graph in this figure. Use the first and
second derivatives of f to determine the intervals on which f is increasing, decreasing,
concave up, and concave down. Locate all inflection points.

Solution. Calculating the first two derivatives of f we obtain (verify)
fxy=1(1—x)e™
fr(x) = (x — 2)e*

Keeping in mind that e~ is positive for all x, the sign analysis of these derivatives is easily
determined:

INTERVAL (1 —x)(e™) F(x) CONCLUSION
x<1 (+)W+) + f1is increasing on (—eo, 1]
x>1 =W+ - f1s decreasing on [1, +=2)
INTERVAL (x=2)(e™*) F(x) CONCLUSION
x<2 =i+ —  fis concave down on (—e=. 2)
x=2 +i+) + {15 concave up on (2, +o)

The second table shows that there is an inflection point at x = 2, since f changes from
concave down to concave up at that point. All of these conclusions are consistent with the
graphof f. «

» Example 7 Figure 4.1.12 shows the graph of the function f{x) = x + 2sinx over
the interval [0, 2x]. Use the first and second derivatives of f to determine where f is
increasing, decreasing, concave up, and concave down. Locate all inflection points and
confirm that your conclusions are consistent with the graph.

Solution. Calculating the first two derivatives of f we obtain

Fx)=14+2cosx

f(x)=—2sinx

Since f' is a continuous function, it changes sign on the interval (0, 2mr) only at points
where f'(x) = 0 (why7). These values are solutions of the equation

1 4+2cosx =0 orequivalently cosx = —EL

There are two solutions of this equation in the interval (0, 27), namely, x = 2r/3 and
x = 4x/3 (verify). Similarly, " is a continuous function, so its sign changes in the interval
(0. 2m) will occur only at values of x for which f”(x) = (. These values are solutions of
the equation

—2sinx =0
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There is one solution of this equation in the interval (0, 2), namely, x = 7. With the help
of these “sign transition points™ we obtain the sign analysis shown in the following tables:

INTERVAL

fx)=1+2cosx

COMCLUSION

O0=<x<2n/3
i3 = x<4n/3
i3 =x=<2m

+

+

fis increasing on [0, 2m/3]
f1s decreasing on [2x/3, 4n/3]
{15 increasing on [4m/3, 2]

INTERVAL

£(x) = —2 sin x

CONCLUSION

Dox=m
m<x<2m

+

fis concave down on {0, )
f1s concave up on (w, 2m)

The second table shows that there is an inflection point at x = m, since f changes from
concave down to concave up at that point. All of these conclusions are consistent with the

graph of f. «

In the preceding examples the inflection points of f occurred wherever f"(x) = 0.
However, this is not always the case. Here is a specific example.
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» Example 8 Find the inflection points, if any, of f(x) = x*.

Solution.  Calculating the first two derivatives of f we obtain
fix)=4x°
fr(x) = 12x2

Since f"(x) is positive for x < 0and for x = 0, the function f is concave up on the interval
(—ce, 0) and on the interval (0, +2¢). Thus, there is no change in concavity and hence no
inflection point at x = 0, even though f”(0) = 0 (Figure 4.1.13). =

We will see later that if a function f has an inflection point at x = xy and " (xp) exists,
then f"(xp) = 0. Also, we will see in Section 4.3 that an inflection point may also occur
where f"(x) is not defined.

LAY

4—

(B
|-

i =x*

b Figure 4.1.13

Asymptotes

Before continuing with asymptotes, it is recommended that you review the vertical asymptote
and infinite limits section of the limits tutorial at the link below.

Vertical Asymptotes and Infinite Limits

In order to properly sketch a curve, we need to determine how the curve behaves

as x approaches positive and negative infinity. We must find the limit of the function as x
approaches infinity.

For a function f defined on (a, »),

lim f{x) = L

means that the values of f(x) approach the value L when x is taken to be sufficiently large.
For a function f defined on (-«, a),
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lim fix) =L
means that the values of f(x) approach the value L when x is taken to be sufficiently large,
negatively.

The liney = L is called a horizontal asymptote of y = f(x) if either,
lim f{x) =L or lim f{x) =1L

=00 X ——

In order to find the horizontal asymptotes of a function, we use the following theorem. If nis a
positive number, then

1
hm— =0

I i 20 1 °

If nis a positive, rational number such that xn is defined for all x, then

l'uuL” =1

- Y

Functions do not always approach a value as x approaches positive or negative infinity. Often
there is no horizontal asymptote and the functions have infinite limits at infinity. For example,
the function f(x) = x2 approaches infinity when x is taken to be sufficiently large, positively or

negatively.
| A
\
| b oy=fix) g
| -
Slant Asymptotes || I\ f
Some curves may have an asymptote that is neither vertical . —
nor horizontal. These curves approach a line as x approaches [ | —

positive or negative infinity. This line is called the slant |
asymptote of the function. The graph to the right illustrates
the concept of slant asymptotes. /
Piﬂlfh] = (mx+b)] =0 or Tli.mn[f{'l.} ~ (mx+b)] =0

then the function f(x) has a slant asymptote of y = mx + b.

Rational functions will have a slant asymptote when the degree of the numerator is one more
than the degree of the denominator. To find the equation of the slant asymptote, we divide the
numberator by the denominator using long division. The quotient will be the equation of the
slant asymptote. The remainder is the quantity f(x) - (mx + b). We must show that the
remainder approaches 0, as x approaches positive or negative infinity. The example below will
give you a better idea of how to find the slant asymptote of a function.
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2

2
x +3
Example 1: Sketch a curve for f(x) =
Step 1: Find the y-intercepts, when x =0

2

y:
2

Therefore (0O, ) is the y-intercept

: . . # 0
Step 2: We cannot find the x-intercepts, since Y

Step 3: Check if the curve is symmetric, i.e. is the function odd or even.

2
2
) = x + 3
2
2
f(-x) = X" +3
f(x) = f(-x)

So this is an even function, and is symmetric about y-axis.

Step 4: Check for any discontinuities, and find the asymptotes, if any, or the limits

lim —— X—-oco 1+
K—-co x + 3 ¥

= 0O-

Step 5: Find stationary points (put y’ = f'(x) = 0)

2 -4x
dY {2 i {2 b1
ax (x° + 3| (x° + 3|
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-4x
dy 2
T [x" + 3|
dx =0 So =0
:}x:O
2
0.3

is a stationary point.

Step 6: Find the point of inflection
. 2 S
[-4)(x® + 3] +ax[2)(x” +3]2x
dy - 3

2 X"+ 3

4(x®+ 3 -(x° + 3] + 16x°

||x2 + 3 ||
-’-1|':153t:2 -3

3

(x*+3)
d%y
2

For point of inflection, =0.
Therefore 15x* —3 =0

1 i1—_

When x =0, = = = <0
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2
0, —
3
Hence is a maximum point.
.1
I'5
Test for point of inflection at x = v =0.447
1
X 04 e 0.5
1
'S _oa47
f'(x) -0.07<0 0 0.087 >0
When x = 0.447, y = 0.625
So (0.447, 0.625) is a point of inflection.
1
I'5
Test for point of inflection at x = v =-0.447
1
X -0.5 - -04
I'5
'Y =.0.447
f'(x) 0.087>0 0 -0.07<0
When x =-0.447, y = 0.625
So (-0.447, 0.625) is a point of inflection.
y
/)
y Intercept
Point of Inflection (-0.447,0.625) Local Maximum

(0, 0.66666667 )

Point of Inflection (0.447,0.625)

X
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CONIC SECTIONS

B CONIC SECTIONS
Circles, ellipses, parabolas, and hyperbolas are called conic sections or conics because
they can be obtained as intersections of a plane with a double-napped circular cone (Fig-
ure 10.4.1). If the plane passes through the vertex of the double-napped cone, then the
intersection is a point, a pair of intersecting lines, or a single line. These are called degen-
erate conic sections.

e \
\ \\-
f
|
| | ' |
Circle Ellipse Parabola Hyperbola
: /
\
\
\
\I
» \>. |
A\ \
/ A
y \.
// \
/ \
A point A pair of A single line

intersecting lines

A Figure 10.4.1
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10.4.1 peErFNITION A parabolaisthe set of all points in the plane that are equidistant

from a fixed line and a fixed point not on the line.

10.4.2 permNiTioN  An ellipse 1s the set of all points in the plane, the sum of whose
distances from two fixed points is a given positive constant that is greater than the

distance between the fixed points.

10.4.3 permNiTioN A hyperbola is the set of all points in the plane, the difference
of whose distances from two fixed distinct points is a given positive constant that is less

than the distance between the fixed points.
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I EQUATIONS OF PARABOLAS IN STANDARD POSITION

PARABODLAS IN STANDARD POSITION

A¥

\ | _F=P f-
— d - ©.5) ©op
p.0) ) i .
x=-p \ / x=p ¥=—p .

_;’1 =4px _rj =—4px = 4py ¥ = —4py

B A TECHNIQUE FOR SKETCHING PARABOLAS

Parabolas can be sketched from their srandard equations using four basic steps:

Sketching a Parabola from Its Standard Equation

Step 1. Determine whether the axis of symmetry is along the x-axis or the y-axis. Re-
ferring to Figure 10.4.6, the axis of symmetry is along the x-axis if the equation
has a y*-term. and it is along the y-axis if it has an x?-term.

Step 2. Determine which way the parabola opens. If the axis of symmetry is along the
x-axis, then the parabola opens to the right if the coefficient of x is positive, and
it opens to the left if the coefficient is negative. If the axis of symmetry is along
the y-axis, then the parabola opens up if the coefficient of v is positive, and it
opens down 1if the coefficient is negative.

Step 3. Determine the value of p and draw a box extending p units from the origin along
the axis of symmetry in the direction in which the parabola opens and extending
2p units on each side of the axis of symmetry.

Step 4. Using the box as a guide, sketch the parabola so that its vertex is at the origin
and it passes through the comers of the box (Figure 10.4.8).

» Example 1 Sketch the graphs of the parabolas
(a) x2 =12y (b) ¥ +8x =0

and show the focus and directrix of each.
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¥

k

7
]

=12y P =8

A Figure 10.4.9 A Figure 10.4.10

Solution (a). This equation involves x?, so the axis of symmetry is along the y-axis, and
the coefficient of v is positive, so the parabola opens upward. From the coefficient of v,
we obtain 4p = 12 or p = 3. Drawing a box extending p = 3 units up from the origin and
2p = 6 units to the left and 2p = 6 units to the right of the y-axis, then using comers of
the box as a guide, yields the graph in Figure 10.4.9.

The focus is p = 3 units from the vertex along the axis of symmetry in the direction in
which the parabola opens, so its coordinates are (0, 3). The directrix is perpendicular to the

axis of symmetry at a distance of p = 3 units from the vertex on the opposite side from the
focus, so its equation is vy = —3.

Solution (b).  We first rewrite the equation in the standard form

}.3 — _8x
This equation involves y¥*, so the axis of symmetry is along the x-axis, and the coefficient
of x is negative, so the parabola opens to the left. From the coefficient of x we obtain
dp =8, so p = 2. Drawing a box extending p = 2 units left from the origin and 2p = 4
units above and 2p = 4 units below the x-axis, then using comers of the box as a guide,
yields the graph in Figure 10.4.10. «
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» Example 2 Find an equation of the parabola that is symmetric about the y-axis, has
its vertex at the origin, and passes through the point (5, 2).

Solution.  Since the parabola is symmetric about the y-axis and has its vertex at the origin,
the equation is of the form

x> =dpy or x*=—dpy

where the sign depends on whether the parabola opens up or down. But the parabola must

open up since it passes through the point (3, 2), which lies in the first quadrant. Thus, the
equation is of the form 5
x*=4dpy (5)

2

Since the parabola passes through (5. 2), we must have 52 =4p - 2ordp = Tj Therefore,
(3) becomes

-
.

e
rr=zy 4

I EQUATIONS OF ELLIPSES IN STANDARD POSITION

ELLIPSES IN STANDARD POSITION

¥

= - '2 i
X ¥ X ¥
—:,——._,—1 —-_.+——1
: ' o I ;s
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Il A TECHNIQUE FOR SKETCHING ELLIPSES

Ellipses can be sketched from their standard equations using three basic steps:

Sketching an Ellipse from Its Standard Equation

Step 1. Determine whether the major axis is on the x-axis or the y-axis. This can be
ascertained from the sizes of the denominators in the equation. Referring to
Figure 10.4.14, and keeping in mind that a® = b* (since a = b), the major axis
is along the x-axis if x* has the larger denominator, and it is along the y-axis
if ¥* has the larger denominator. If the denominators are equal, the ellipse is a
circle.

Step 2. Determine the values of a and b and draw a box extending a units on each side
of the center along the major axis and b units on each side of the center along
the minor axis.

Step 3. Using the box as a guide, sketch the ellipse so that its center is at the origin
and it touches the sides of the box where the sides intersect the coordinate axes
(Figure 10.4.16).

» Example 3 Sketch the graphs of the ellipses

7

] y? - -

T A 2y 942
(a) 9+16 1 (b) x=+ 2y 4
showing the foci of each.

Solution (a). Since y* has the larger denominator, the major axis is along the y-axis.
. L 3 9
Moreover, since a® = b*, we must have a® = 16 and b* = 9, so

a=4 and b=3
Drawing a box extending 4 units on each side of the origin along the y-axis and 3 units on
each side of the origin along the x-axis as a guide yields the graph in Figure 10.4.17.
The foci lie ¢ units on each side of the center along the major axis, where ¢ is given by
(7). From the values of a® and b? above, we obtain
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c=vVal—p=J16—-90=~T=26
Thus, the coordinates of the foci are (0, +/7 ) and (0, —+/7 ), since they lie on the y-axis.

Solution (b). We first rewrite the equation in the standard form

y) y.
X ¥

gtz =l

Since x° has the larger denominator, the major axis lies along the x-axis, and we have
a® = 4 and b* = 2. Drawing a box extending @ = 2 units on each side of the origin along
the x-axis and extending b = /2 = 1.4 units on each side of the origin along the y-axis as
a guide yields the graph in Figure 10.4.18.

From (7), we obtain R _
— -,,.-"ﬂj —b3 = \,-""2 = 1.4

Thus, the coordinates of the foci are (+/2, 0) and (—+/2, 0). since they lie on the x-axis. «
&Y

4 0. A ¥

A Figure 10.4.17 A Figure 10.4.18
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» Example 4 Find an equation for the ellipse with foci (0, =2) and major axis with end-
points (0, +=4).
Solution.  From Figure 10.4.14, the equation has the form
_1.2 v
b at
and from the given information, a = 4 and ¢ = 2. It follows from (6) that
Br=at—ct=16-4=12

s0 the equation of the ellipse is .

I AR
2 " 16

@ EQUATIONS OF HYPERBOLAS IN STANDARD POSITION

HYPERBOLAS IN STANDARD POSITION

'

fs)
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@ A TECHNIQUE FOR SKETCHING HYPERBOLAS
Hyperbolas can be sketched from their standard equations using four basic steps:

Sketching a Hyperbola from Its Standard Equation

Step 1. Determine whether the focal axis is on the x-axis or the y-axis. This can be
ascertained from the location of the minus sign in the equation. Referring to
Figure 10.4.22, the focal axis is along the x-axis when the minus sign precedes
the y*-term, and it is along the y-axis when the minus sign precedes the x*-term.

Step 2. Determine the values of @ and b and draw a box extending a units on either
side of the center along the focal axis and b units on either side of the center
along the conjugate axis. (The squares of @ and b can be read directly from the
equation.)

Step 3. Draw the asymptotes along the diagonals of the box.

Step 4. Using the box and the asymptotes as a guide, sketch the graph of the hyperbola
(Figure 10.4.24).

» Example 5 Sketch the graphs of the hyperbolas
@i 2 = b) ¥ —xl=1
showing their vertices, foci, and asymptotes.

Solution (@). The minus sign precedes the y*-term, so the focal axis is along the x-axis.
From the denominators in the equation we obtain

a*=4 and B =09
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Since a and b are positive, we must have @ = 2 and b = 3. Recalling that the vertices lie a
units on each side of the center on the focal axis. it follows that their coordinates in this case
are (2, ) and (=2, 0). Drawing a box extending @ = 2 units along the x-axis on each side
of the origin and # = 3 units on each side of the origin along the y-axis, then drawing the
asymptotes along the diagonals of the box as a guide, yields the graph in Figure 10.4.25.
To obtain equations for the asymptotes, we replace 1 by 0 in the given equation; this
yields R 3
179 =0 or }—:I:Z_r
The foci lie ¢ units on each side of the center along the focal axis, where ¢ is given by (11).
From the values of a” and b* above we obtain

c=val+ b =JI59=13~36
Since the foci lie on the x-axis in this case, their coordinates are (+/13, 0) and (—+/13, 0).

Solution (b). The minus sign precedes the x’-term, so the focal axis is along the y-axis.
From the denominators in the equation we obtain a® = 1 and b* = 1. from which it follows

that a=1 and b=1

Thus, the vertices are at (0, —1) and (0, 1). Drawing a box extending @ = | unit on either
side of the origin along the y-axis and b = 1 unit on either side of the origin along the x-axis,
then drawing the asymptotes, yields the graph in Figure 10.4.26. Since the box is actually

a square, the asymptotes are perpendicular and have equations y = £x. This can also be
seen by replacing 1 by 0 in the given equation, which yields }-‘2 —xi=00r v = £x. Also,
c=val+pl=VI+1=2

s0 the foci, which lie on the v-axis. are (0, —+/2) and (0, V2). -

3.
J="3

A Figure 10.4.25 A Figure 10.4.26

Prepared by A. Henna Shenofer, Asst Prof, Department of Mathematics, KAHE Page 20/31




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IB.Sc MATHEMATICS COURSE NAME: Calculus
COURSE CODE: 18MMU101 UNIT: III (Concavity and conic sections)
BATCH-2018-2021

» Example 6 Find the equation of the hyperbola with vertices (0, £8) and asymptotes
4
y==x3x.
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Solution.  Since the vertices are on the y-axis, the equation of the hyperbola has the form

(vt/a?) — (x2/b?) = 1 and the asymptotes are

a
y==%—x
’ b
From the locations of the vertices we have a = 8, so the given equations of the asymptotes
yield a 8 4
y=t—x=4+—x=+4—x
b b 3
from which it follows that & = 6. Thus, the hyperbola has the equation
}J _1{2 1
64 36

» Example 7 Find an equation for the parabola that has its vertex at (1, 2) and its focus
at (4, 2).

Solution. Since the focus and vertex are on a horizontal line, and since the focus is to
the right of the vertex, the parabola opens to the right and its equation has the form

f}*—kf =4pix —h)
Since the vertex and focus are 3 units apart, we have p = 3. and since the vertex is at

— (1. 2). we obtai
(h, k) = (1, 2), we obtain Y2 =12(x—1) =

» Example 8 Describe the graph of the equation
v —8r—6y—23=0

Solution. The equation involves quadratic terms in v but none in x, so we first take all
of the y-terms to one side:

vo — 6y =8x +23

Next, we complete the square on the y-terms by adding 9 to both sides:
(v —3)" =8x 432

Finally, we factor out the coefficient of the x-term to obtain

(v — 3)* = 8(x+4)

This equation is of form (12) with h = —4,k = 3, and p = 2, so the graph is a parabola
with vertex (—4, 3) opening to the right. Since p = 2, the focus is 2 units to the right of the
vertex, which places it at the point (—2, 3); and the directrix is 2 units to the left of the vertex,
which means that its equation 1s x = —6. The parabola is shown in Figure 10.4.27. «
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P —8Bxr—6y—23=0

& Figure 10.4.27

» Example 9 Describe the graph of the equation
163 + 9y —64x — 54y +1=0

Solution. This equation involves quadratic terms in both x and v, so we will group the
x-terms and the y-terms on one side and put the constant on the other:

(16x7 — 64x) + (9y? — 54y) = —1
Next, factor out the coefficients of x? and v? and complete the squares:
16(x> —dx +4) +9(y> —6y +9) = —1 + 64 + 81
or

16(x —2)> +9(yv —3)" = 144

Finally, divide through by 144 to introduce a | on the right side:

(x=2)7  (y—3)
o T 16
This is an equation of form (17). with i = 2. k = 3. a? = 16, and b* = 9. Thus, the graph
of the equation is an ellipse with center (2, 3) and major axis parallel to the y-axis. Since
a = 4, the major axis extends 4 units above and 4 units below the center. so its endpoints
are (2,7) and (2, —1) (Figure 10.4.28). Since b = 3, the minor axis extends 3 units to the
left and 3 units to the right of the center, so its endpoints are (—1, 3) and (3, 3). Since

c=+alt -k = J16 —0 =7

the foci lie /7 units above and below the center, placing them at the points (2,3 4+ /7)
and (2,3 — /7). «

1
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2.7)

: 2,347
g 7\

[-1.3}( AL J(*’n 3)
I —
ll".
| | \\H y/
- |:"l _1} {'}3

1607+ 9y —6dx— 5y +1=10
A Figure 10.4.28
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» Example

Solution.
x-terms and

We leave 1t 1

This is an eq
represents a
the vertices
(—1.4)yand,
units to the |

The equa
to obtain

This can be

With the aic

above and b

METTTATTT T T 1T 7

e —__r-;" —dx+8y-21=0

A Figure 10.4.29
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B REFLECTION PROPERTIES OF THE CONIC SECTIONS
Parabolas, ellipses, and hyperbolas have certain reflection properties that make them ex-
tremely valuable in various applications. In the exercises we will ask you to prove the

following results.

10.4.4 THEOREM (Reflection Property of Parabolas) The tangent line at a point P on a
parabola makes equal angles with the line through P parallel to the axis of symmetry
and the line through P and the focus (Figure 10.4.30a).

10.4.5 THEOREM (Reflection Property of Ellipses) A line tangent to an ellipse at a point
P makes equal angles with the lines joining P to the foci (Figure 10.4.30b).

10.4.6  THEOREM (Reflection Property of Hyperbolas) A line tangent to a hyperbola at a
point P makes equal angles with the lines joining P to the foci (Figure 10.4.30¢c).

| Axis of Tangent line at P
| symmetry -~ F

]
[
L ]

{13
Sy

-~ Tangent
line at P

(a) (8) (9

Tangent line at P
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ROTATION OF AXES; SECOND-DEGREE EQUATIONS

@ ROTATION OF AXES
To study conics that are tilted relative to the coordinate axes it is frequently helpful to
rotate the coordinate axes, so that the rotated coordinate axes are parallel to the axes of the
conic. Before we can discuss the details, we need to develop some ideas about rotation of
coordinate axes.

In Figure 10.5.24a the axes of an xy-coordinate system have been rotated about the origin
through an angle & to produce a new x'y’-coordinate system. As shown in the figure, each
point P in the plane has coordinates (x', ¥') as well as coordinates (x, v). To see how the
two are related, let r be the distance from the common origin to the point P, and let o be
the angle shown in Figure 10.3.2b. It follows that

xy=rcos(f 4+a), y=rsin?+ua) (3)

and ¥ =rcosw, VvV =rsing (4)

Using familiar tnigonometric identities, the relationships in (3) can be written as
x =rcosfcosa — rsind sinw
y=rsin#cosa +rcosfsing
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and on substituting (4) in these equations we obtain the following relationships called the

rotation equations: ) o
x =xcost — y sin#

(5)

v =2x"sinf# 4+ v cosd

» Figure 10.5.2

» Example 1 Suppose that the axes of an xy-coordinate system are rotated through an
angle of & = 45” to obtain an x"y’-coordinate system. Find the equation of the curve

xP—xy 4y —6=0

in x"v'-coordinates.

Solution. Substituting sin# = sin45° = 1/4/2 and cos# = cos45° = 1/4/2 in (5)
yields the rotation equations
x' v’

AR

Substituting these into the given equation yields

(G- (- 3) (e )+ e ) o
V2 V2 v2. V2)\V2 V2 V2 V2

x and y= +

S
=

or 1 F P #7 7 7 .l oo 3
L e A S Ul B il S i e 6
5 —
or 2 2
x's n v'- |
1 4

which is the equation of an ellipse (Figure 10.5.3). =«

If the rotation equations (3) are solved for x” and y" in terms of x and vy, one obtains

{Exercise 16): )
x'=xcosf + ysind

(6)

¥ = —xsiné + ycosd
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» Example 2 Find the new coordinates of the point (2, 4) if the coordinate axes are
rotated through an angle of 8 = 30°.

Solution. Using the rotation equations in (6) withx = 2, y =4, cos 8 = cos 30° = /3/2,
and sin & = sin 30° = 1/2, we obtain

=232+ 41/ =3+2

V' =—2(1/2) + 4(+3/2) = -1 4+ 243
Thus, the new coordinates are (v3 +2, —1 +2/3). «

B ELIMINATING THE CRO55-PRODUCT TERM

10.5.1 THEOREM Ifthe equation

Ax* + Bxy+ Cy' + Dx+ Ey+ F=10 W)
is such that B £ 0, and if an x'y'-coordinate system is obtained by rotating the xy-axes
through an angle 0 satisfving A_C

cot28 = (8)

then, in x"v'-coordinates, Equation (7 ) will have the form

Ax? 4+ CY 4+ DX+ EY +F =0

CONIC SECTIONS IN POLAR COORDINATES

S — 3
» Example 1 Sketch the graph of r = T cosd in polar coordinates.
— COS

Solution. The equation is an exact match to (4) withd = 2 and e = 1. Thus, the graph is
a parabola with the focus at the pole and the directrix 2 units to the left of the pole. This tells

us that the parabola opens to the right along the polar axis and p = 1. Thus. the parabola
looks roughly like that sketched in Figure 10.6.4. -«

» Example 2 Find the constants a, b, and ¢ for the ellipse r = ——.
2+ cosé

Selution.  This equation does not match any of the forms in Theorem 10.6.2 because they
all require a constant term of 1 in the denominator. However, we can put the equation into
one of these forms by dividing the numerator and denominator by 2 to obtain

3

=
l+%cos;f4
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This is an exact match to (3) with & =6 and ¢ = % so the graph is an ellipse with the
directrix 6 units to the right of the pole. The distance ry from the focus to the closest vertex

can be obtained by setting & = 0 in this equation, and the distance r| to the farthest vertex
can be obtained by setting ¢ = m. This vields

3 3 3

n=——— = _
1-I—3lcu:+.l;[}

=2_ j'lz—l =
|+ 5cosm

=6

rale]| i

]|

Thus, from Formulas (8), (10), and (9), respectively, we obtain
(j:%{;']-l—f’(]\]:d.. f)=\fﬁ=2f‘?. E‘=1i;|:rl_-"i:l\l=2

The ellipse looks roughly like that sketched in Figure 10.6.6. «
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POSSIBLE QUESTIONS
PART - A (20 x 1 =20 Marks)
(Question Nos. 1 to 20 Online Examinations)

PART-B (5 x 2 =10 Marks)
Answer all the questions

Define discriminant test.

Define an ellipse.

Define eccentricity of the ellipse.

Find the eccentricity of the hyperbola 9x2 — 16y? = 144.

Find an equation for the hyperbola with eccentricity 3/2 and directrix x = 2.

PART-C (5 x 6 =30 Marks)

ks 0N E

Answer all the questions

1. Sketch the graph of the ellipse i)%2 + 31’—: =1 ii) x*+ 2y* = 4. and showing the
foci of each.
2. Find a Cartesian equation for the hyperbola centered at the origin that has a focus at
(3,0) and the line x = 1 as the corresponding directrix.
3. Find the equation of the curve x2 — xy + y? — 6 = 0 in x"y’ - coordinates. if the
coordinate axes are rotated through an angle of 8 = 45°

Find the constants a, b and ¢ for the ellipse r =
2+cos6

5. Sketch the graph of the parabolas i) x? = 12y i) y? + 8x = 0 and show that focus
and directrix of each.
6. ldentify and sketch the curve 153x2 — 193xy + 97y? — 30x — 40y — 200 = 0.
7. Identify and sketch the curve xy = 1
8. Find the directrix of the parabola r = —
10+10 cos6
9. Find the equation for the hyperbola with eccentricity 3/2 and directrix x = 2.
10. Describe the graph of the equation 16x2 + 9y2 — 64x — 54y + 1 = 0.
11. Find a polar equation for an ellipse with semimajor axis 39.44 AU and eccentricity size

of pluto’s orbit around the sun.
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Subject: Calculus Subject Code: 18MMU101
Class: I - B.Sc. Mathematics Semester: 1
Unit IV
Reduction formulae and curve tracing
Part A (20x1=20 Marks) (Question
Nos. 1 to 20 Online Examinations)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
Which one is the example for conic section ? parabola solid triangle rectangle parabola
is the set of all points in the plane that are
equiditant from a fixed line and fixed point not on the line
ellipse hyperbola parabola circle parabola
is the set of all points in the plane, the sum of
whose distance from two fixed point is a given positive
constant that is greater than the distance between the fixed
point. ellipse hyperbola parabola circle ellipse
is the set of all points in the plane, the sum of
whose distance from two fixed point is a given positive
constant that is less than the distance between the fixed
point. ellipse hyperbola parabola circle hyperbola
In a ellipse the midpoint of the line segment joining the
foci is called vertices axis symmetry center center
In an ellipse ,the end point of the major axis is called
minor axis vertices symmetry center vertices
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The midpoint of the line segment joining the foci is called

the of the hyperbola vertices axis symmetry center center

The hyperbola intersect the focal axis at two points is

called the center vertices axis symmetry vertices

In a hyperbola the line through the center that is standard

perpendicular to the focal axis is called asymptotes vertices conjugate axis [position conjugate axis

is the set of points in a plane whose distance from

a given fixed point in the plane is constant. ellipse hyperbola parabola circle circle
standard

The fixed point is the of the circle. center vertices radius position center

Find the focus of the parabola y2 =10x (0,5/2) (-5/2,0) (5/2,0) (0,-5/2) (5/2,0)

The eccentricity of a parabola is e<l e>1 e=0 e=I e=I

The eccentricity of a hyperbola is e<l e>1 e=0 e =1 e>1

Find the radius of the circle r =4 cos 0 2 8 4 16 2

The eccentricity of a ellipse is e<l e>1 e=0 e=1 e<l

If B> - 4AC =0 then it is called ellipse hyperbola parabola circle parabola

If B*- 4AC <0 then it is called ellipse hyperbola parabola circle ellipse

If B>- 4AC > 0 then it is called ellipse hyperbola parabola circle hyperbola

An ellipse is the set of all points in the plane, the sum of

whose distance from two fixed point is a given positive

constant that is the distance between the fixed

point. greater than  [equal to less than not equal to greater than

An hyperbola is the set of all points in the plane, the sum

of whose distance from two fixed point is a given positive

constant that is the distance between the fixed

point. greater than  [equal to less than not equal to less than

If e =1 then it is the eccentricity of a ellipse hyperbola parabola circle parabola

If e > 1 then it is the eccentricity of a ellipse hyperbola parabola circle hyperbola

If e < 1 then it is the eccentricity of a ellipse hyperbola parabola circle ellipse
standard

The constant distance is the of the circle center vertices radius position radius

Find the radius of the circle r = 6 cos 0 2 3 6 36 3
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In a ellipse the midpoint of the line segment joining

the is called center minor axis foci major axis vertices foci
Which one is the not a example for conic section ? rectangle ellipse hyperbola parabola rectangle
Intersection of two straight lines is -------------- Surface Curve Plane Point Plane
Plane is a --------------- surface 1-D 2-D 3-D Dimensionless |2 -D
The angle between the asymptotes of a rectangular

hyperbola is 30 45 60 90 90

The intersection of a cone with a plane gives Point Line Conic Section | Two points Point
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UNIT-V
SYLLABUS

Introduction to vector functions, operations with vector-valued functions, limits and continuity of
vector functions, differentiation and integration of vector functions, tangent and normal
components of acceleration, modeling ballistics and planetary motion, Kepler’s second law.

VECTOR-VALUED FUNCTIONS

The twisted cubic defined by the equations in (3) is the set of points of the form (¢, 1%, t°)
for real values of ¢. If we view each of these points as a terminal point for a vector r whose
initial point is at the origin,

r={x,v.z)=(tt5. ) =ti+t5j+ 'k

then we obtain r as a function of the parameter ¢, that is, r = r(f). Since this function
produces a vector, we say that r = r(r) defines r as a vector-valued function of a real
variable, or more simply, a vector-valued function. The vectors that we will consider in
this text are either in 2-space or 3-space, so we will say that a vector-valued function is in
2-space or in 3-space according to the kind of vectors that it produces.

If r(t) 1s a vector-valued function in 3-space, then for each allowable value of t the vector
r = r(f) can be represented in terms of components as

r=r(t) = (x(f), y(r). z(t)) = x(Oi + vit)j+ z()k i4)

The functions x(1). yir), and z(t) are called the component functions or the components
of r(t).

» Example 3 The component functions of
r(t) = (1,15, 0) = ti + 17+ £k

are x(y=t, viy=t, ziH=t «

Prepared by A. Henna Shenofer, Asst Prof, Department of Mathematics, KAHE Page 1/29




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IB.Sc MATHEMATICS COURSE NAME: Calculus
COURSE CODE: 18MMU101  UNIT: V (Vector-valued functions) = BATCH-2018-2021

» Example 4 Find the natural domain of
r(t)={lnjt — 1], €. 1) =(n|t —1])i+€'j+ V1K

Solution. The natural domains of the component functions
xty=Injt=1], v(t)=¢€, z(t)=1

are (—oo, DU (1, 420), (—oo, 4o0), [0, +ox)

respectively. The intersection of these sets is
[0, 1) U (1, 420)
(verify). so the natural domain of r(f) consists of all values of ¢ such that

O=t=<1 or t=1 =

B LIMITS AND CONTINUITY
Our first goal in this section is to develop a notion of what it means for a vector-valued
function r(t) in 2-space or 3-space to approach a limiting vector L as t approaches a number
a. That is, we want to define !lim r(f) = L 1)
—+ T

One way to motivate a reasonable definition of (1) 1s to position r(t) and L. with their initial
points at the origin and interpret this limit to mean that the terminal point of r(t) approaches
the terminal point of L as t approaches a or, equivalently, that the vector r(¢) approaches
the vector L in both length and direction at t approaches a (Figure 12.2.1). Algebraically,
this is equivalent to stating that

=0 (2)

lim ||r(t) — L
I—a

12.2.1 perFiNiTion  Let v(t) be a vector-valued function that is defined for all ¢ in
some open interval containing the number a, except that r(1) need not be defined at a.
We will write .
limr(t) =L

t—a

if and 0I‘I|}-‘ if Jllim ||r{f} — I-" =0

» Example 1 Letr(t) =t%i+é'j — (2cosmt)k. Then

lim r(1) = ( 1im ) i + ( me')j— (JleraEcosm) k=j—2k

li
r—=0
Alternatively, using the angle bracket notation for vectors,

. R . T qs . .
lim rif) = lim{t-, &', —2cos 7t} = { lim 7, lim €', |1111{—2c05;m}) ={0,1,-2) «
t—=10 t—=0

t—0 t—10 t—=0
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B DERIVATIVES
The derivative of a vector-valued function is defined by a limit similar to that for the
derivative of a real-valued function.

12.2.3 permiTion  If r(r) is a vector-valued function, we define the derivative of r
with respect to t to be the vector-valued function r’ given by

hYy —
) = Jim "D =0 @

The domain of r’ consists of all values of ¢ in the domain of r(t) for which the limat
exists.

» Example2 Letrir)= i+ e'j — (2cosmt)k. Then
d - d d
1) =—(t" )i+ —(e)j — —(2cosmt)k
r'it) dr{ ]ll-l—m{e M f“{ cos )

=Ui+ej+ (2asinma)k -
12.2.4 GEOMETRIC INTERPRETATION OF THE DERIVATIVE Suppose that C is the
graph of a vector-valued function r(t) in 2-space or 3-space and that r'(1) exists and is
nonzero for a given value of ¢. If the vector r'(#) 1s positioned with its initial point at

the terminal point of the radius vector r(t), then r'(f) is tangent to C and points in the
direction of increasing parameter.

B DERIVATIVE RULES

d
{a) EILI:“

d d
(b) EMIUH:RE““H

d d d
(@) —lr() + (0] = —r0] + —[ra2(0)]

d d d
(d) Elrlir}—lszJl—EIFIUH—EhE“”

© Lirorml = fo Lol + Lo
O LAOrO] = ) e O] + L F Ol
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M TANGENT LINES TO GRAPHS OF VECTOR-VALUED FUNCTIONS

Motivated by the discussion of the geometric interpretation of the derivative of a vector-
valued function, we make the following definition.

12.2.7 pEFINITION Let P be a point on the graph of a vector-valued function r(t).

and let r(t;) be the radius vector from the origin to P (Figure 12.2.4). If r'(t;) exists
and r'(15) # 0, then we call v'(t;) a tangent vector to the graph of r(1) at r(1y), and we
call the line through P that is parallel to the tangent vector the tangent line to the graph

of v(r) at r(ty).

» Example 3 Find parametric equations of the tangent line to the circular helix
x=cost, Vv=sint, 7=t
where t = f, and use that result to find parametric equations for the tangent line at the point
where t = .
Solution. The vector equation of the helix is
rit)y =costi+sintj +tk

s0 we have
ro = rifp) = cos i + sinfoj + ok

vop =r'(fp) = (—sinfy)i+costpj+ Kk
It follows from (3) that the vector equation of the tangent line at t = ty is
r=cospl+ sintyj+ fok + [{— sinfp)i + costpj + K]
= (costy — tsintp)i+ (sinty + t costp)j + (tp + 1)K
Thus. the parametric equations of the tangent line at t = # are
X =cosfy—tsinfy, y=sinfy+rcosty, =t +1
In particular, the tangent line at t = 7 has parametric equations
x=—-1, y=—f, z=m+t

The graph of the helix and this tangent line are shown in Figure 12.2.5. -
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> Example 4 Let riit) = {tan_] )i+ (sint)j + t°k

and

ro(t) = (17 — )i+ (2t —2)j+ (In )k
The graphs of r|(f) and r2(t) intersect at the origin. Find the degree measure of the acute
angle between the tangent lines to the graphs of r((f) and r,(¢) at the ongin.

Solution. The graph of r|(t) passes through the origin at t = 0, where its tangent vector
is
i =

= (1,1,0)

cosf, 2:}
=0

1
141
The graph of r2() passes through the origin at t = 1 (verify), where its tangent vector is

1
ri(l) = (Er -1,2, ?>

By Theorem 11.3.3, the angle & between these two tangent vectors satisfies

(LLO0}-{1,2,1) 14240 3 V3

={1,2.1)

=1

cosf =

HLLONIL2 DI~ V2v6 ViZ 2

It follows that & = 7/6 radians, or 30°. -

Il DEFINITE INTEGRALS OF VECTOR-VALUED FUNCTIONS

If vit) 1= a vector-valued function that 15 continuous on the interval a < r < b, then we
define the definite integral of r(t) over this interval as a limit of Riemann sums, just as

in Definition 5.5.1, except here the integrand is a vector-valued function. Specifically, we
define

] n
f r(idt = lim Y r(t))An (10)
o k=

» Example 6 Letr(r) = t%i + e'j — (2cosmr)k. Then

1 1 l l
f r{r}dfz(f ngr)i—l-(f E’d!)j—(f chrsmf!:)k
0 0 0 0

I 1

P 2.1, L .
= _—| ite| j——sinmt| k=ci+(e—1)) =
3 0 0 ¥/} 0 3
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@ RULES OF INTEGRATION
As with differentiation, many of the rules for inte grating real-valued functions have analogs
for vector-valued functions.

B B
(a) [kr(:}a‘r:k[ r(t) dt

B b b
(b) [[rjfrj+rg{r}|d:=[ r.{:}dr+f ra(t) dt

wf i

b b ]
(c) [[rﬁr;—r:{r}ld::[ r.[:}dr—f ra(t) dt

w

» Example 7

f{?ri—l—ﬁ:jj] dt = (fzm':)i—l- ([3!3 a‘r)j

= (1 + Ci+ (I + C2)j
= (Fi+ )+ (Cli+ Q) =i+ )+C

where C = C1i + Cz]j is an arbitrary vector constant of integration. <

- 2
» Example 8 Ewvaluate the definite integral [ (2ti + 3r3jJ dt.
- l:-l

Solution. Integrating the components yields

-

[fzri+3r3j,1dr::3} i+r‘] j=4i+8j
J0 i) ]

» Example 9 Find r(r) given that r'(r) = (3, 2t} and r(1) = (2, 5).
Solution.  Integrating r'(1) to obtain r(f) yields
rif) =fr’fir,1dr = f:j3, 2t) dt = :j3r.r3}| +C

where C is a vector constant of integration. To find the value of C we substitute t = 1 and
use the given value of r(1) to obtain

r(l)=(3,1)+C=(2,5)
so that C = (—1,4). Thus,
r() =32+ (=14 =3t — 1,11 +4) «
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M NORMAL AND TANGENTIAL COMPONENTS OF ACCELERATION

12.6.2 THEOREM [Ifa particle moves along a smooth curve C in 2-space or 3-space,
then at each point on the curve velocity and acceleration vectors can be written as

2

v=21 A=ty (d—”‘)h (10-11)
di dte dt

where s is an arc length parameter for the curve, and T, N, and k denote the unit tan-
gent vector, unit normal vector, and curvature ar the point (Figure 12.6.4).

» Example 4 Suppose that a particle moves through 3-space so that its position vector
at time £ 1s -
(t) =i+ 15+ £k

(a) Find the scalar tangential and normal components of acceleration at time .

(b) Find the scalar tangential and normal components of acceleration at time t = 1.
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(c) Find the vector tangential and normal components of acceleration at time t = 1.

(d) Find the curvature of the path at the point where the particle is located at time 1 = 1.
Solution (a).  We have
vih=r'(t)=i+2tj+ 3’k

a(t)y =v'(1) =2+ 6rk
Iv(t)]| = VT + 4T 497

v(r) - a(f) = 4t + 18¢°

i j k
v(f) X a(t)=|1 2 32| =61 —6tj+ 2k
0 2 6t

Thus, from (15) and (16)
v-:a 4t + 187

IVl 142 L0
Ivxal 364 +36:2+4 9 02 41
Ay = — p—— — I| —j
T Maarzor VoA +ar+

Solution (b).  Attime 1 = 1, the components ar and ay in part (a) are

—

ar = 3 ~ 588 and ay =2 ,I'IIE 7z 2.33
/1 Vi

Solution (¢). Since T and v have the same direction, T can be obtained by normalizing
v, that 1s, v(t)

o
T
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At time t = 1 we have
v(l) i+2j+3k
T(1) = =— = (i+2j+3k)
IviDI li+2j+3k) V14
From this and part (b) we obtain the vector tangential component of acceleration:
22 11 11 22 33
riHT(l) = —=T(l)= =—(i+2j+3K) = —=i+—=—j+ =Kk
ar(1)I'(1) vﬂ{] _J,I[l-l— 1+ 3K) ?‘+?J+;r

To find the normal vector component of acceleration, we rewrite a = a; T + a, N as
ayN=a—a;T
Thus. at time t = 1 the normal vector component of acceleration is

an(1IN(1) = a(l) —ar (1HYT(1)

1. 2. 33

i e (1 . ]

(2) 4 6k) (_?l+_?‘l+_'.-' ,
1. 8. 9
—_— ] — —1 —]vnL
71 —71+7

Solution (d). We will apply Formula (17) with t = 1. From part (a)
Ivi)] =14 and (1) x a(l) = 6i — 6j + 2k

Thus, at time 1 = 1
lvxal V76 1

— = _ = 0.17
NP (Vidp 14V )

[38
T

In the case where ||a]| and ar are known, there is a useful alternative to Formula (16) for
dy that does not require the calculation of a cross product. It follows algebraically from
Formula (14) (see Exercise 51) or geometrically from Figure 12.6.6 and the Theorem of
Pythagoras that

prm—
a,-;,-=,||Ila'||=:1||3—ﬂ.fr (18)
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KEPLER'S LAWS OF PLANETARY MOTION

¢ First law (Law of Orbits). Each planet moves in an elliptical orbit with the Sun
at a focus.

* Second law (Law of Areas). Equal areas are swept out in equal times by the line
from the Sun to a planet.

* Third law (Law of Periods). The square of a planet’s period (the time it takes the
planet to complete one orbit about the Sun) is proportional to the cube of the
semimajor axis of its orbit.

Bl KEPLER'S FIRST AND SECOND LAWS

It follows from our general discussion of central force fields that the planets have elliptical
orbits with the Sun at the focus, which is Kepler's first law. To derive Kepler's second law,

we begin by equating (10) and (13) to obtain
L a8

FF— = rgug (24)

dt

To prove that the radial line from the center of the Sun to the center of a planet sweeps

out equal areas in equal times, let r = f(#) denote the polar equation of the planet, and

let

A denote the area swept out by the radial line as it varies from any fixed angle 8 to an angle

. It follows from the area formula in 10.3.4 that A can be expressed as

] I ,
a= [ Sir@ras
a.l Fa

where the dummy variable ¢ is introduced for the integration to reserve # for the upper
limit. It now follows from Part 2 of the Fundamental Theorem of Calculus and the chain

rule that dA _dAdo _ 1. 0d0 1 5d0
dt — dedr 2 dt 2 dt
Thus, it follows from (24) that dA 1
= = Srw (25)

which shows that A changes at a constant rate. This implies that equal areas are swept out
in equal times.
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B KEPLER'S THIRD LAW
To derive Kepler's third law, we let a and b be the semimajor and semiminor axes of the
elliptical orbit, and we recall that the area of this ellipse is mab. It follows by integrating
(25) that in ¢ units of time the radial line will sweep out an area of A = lrpvot. Thus, if T
denotes the time required for the planet to make one revolution around the Sun (the period),
then the radial line will sweep out the area of the entire ellipse during that time and hence

mab = ;rnvuT

Fa

from which we obtain Alalh?
»  dma 26)

— 9
s

r'ﬂz v
However, it follows from Formula (1) of Section 10.6 and the relationship ¢ = a? — b2
for an ellipse that —

a a
Thus, b* = a?(1 — ¢?) and hence (26) can be written as

,  Artat(l — &
T S @n
Fo g
But comparing Equation (20) to Equation (17) of Section 10.6 shows that
k=a(l —e)
Finally, substituting this expression and (21) in (27) yields
drla’ dmlad rdvd  4a?
MP=—Dak=—a ol = g (28)
Fyvh rjvg GM  GM

Thus, we have proved that T2 is proportional to a®, which is Kepler's third law. When
convenient, Formula (28) can also be expressed as

a’? (20)

» Example 1 A geosynchronous orbit for a satellite is a circular orbit about the equator
of the Earth in which the satellite stays fixed over a point on the equator. Use the fact that
the Earth makes one revolution about its axis every 24 hours to find the altitude in miles

of a communications satellite in geosynchronous orbit. Assume the Earth to be a sphere of
radius 4000 mi.
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Solution. To remain fixed over a point on the equator, the satellite must have a period of
T = 24 h. It follows from (28) or (29) and the Earth value of GM = 1.24 x 10" mi’ /h’
from Table 12.7.1 that

YGMT?  3(1.24 % 1012)(24)?
a =, - = .| -
q\|' d= \ A7
and hence the altitude f of the satellite 15

h 7= 26,250 — 4000 = 22,250 mi «

== 26,250 mi
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POSSIBLE QUESTIONS

PART - A (20 x 1 =20 Marks)
(Question Nos. 1 to 20 Online Examinations)

PART-B (5 x 2 =10 Marks)

Answer all the questions

gk WD E

Write down the polar formulas for velocity and acceleration.
Write down the polar formulas for velocity and acceleration.
Find ltlrrzl F(t) , where F(t) = (t%2 — 3)i + e'j + (sinmt)k.

For what values of tis G(t) = |t|i + (cost)j + (t — 5)k differentiable.
Write down the tangential and normal components of acceleration.

PART-C (5 x 6 =30 Marks)

Answer all the questions

2.

3.

State and prove Kepler’s second law of motion.
Find the tangential and normal components of the acceleration of an object the moves
with position vector R(t) = (t3,t?,t).
If the position vector of a moving body is R(t) = 2ti — t?j for t = 0. Express R
and the velocity vector V(t) in terms of u,, and ug.
If the velocity of a particle moving in space is V(t) = eti + t?j + (cos2t)k. Find the
particle’s position as a function of't if the position at time t=0is R(0) = 2i + j — k.
Find the second and third derivative of the vector function F(t) = e'i + (sint)j +
(t3 + 5tk
Find the second and third derivative of the vector function F(t) = e?%i + (1 — t?)j +
(cos2t)k
A boy standing at the edge of a cliff throws a ball upwards at a 30° angle with an initial
speed of 64 ft/s. suppose that when the ball leaves the boy’s hand, it is 48 ft above the
ground as the base of the cliff.

i) what are the time of flight of the ball and its range?

ii) what are the velocity of the ball and its speed at impact?
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Unit V
Vector - valued functions
Part A (20x1=20 Marks) (Question Nos.
1 to 20 Online Examinations)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
(uxv)+(ux (uxv)+(ux
Ifu, vand ware vectors in R thenux (v+w)=|w) uwvtuw uv Hu +w) u+w W)
F+G) @)= F(t) - G(t) F(t) + G(t) F(t) x G(t) F(t)/ G(t) |F(t) + G(t)
F-G)@)= F(t) - G(t) F(t) + G(t) F(t) x G(t) F(t)/ G(t) |F(t) - G(t)
FxG) ()= F(t) - G(t) F(t) + G(t) F(t) x G(t) F(t)/ G(t) |F(t) x G(t)
R0 F(OF FOFQ () F(0) FOFQ
F.G) @)= F(t) - G(t) F(t) + G(t) F(t) x G(t) F(t). G(t) |F(t). G(t)
The square of the time of one complete revolution
of a planet about its orbit is proportional to the semi major semi minor |semi major
cube of the length of the of its orbit. minor axis axis major axis axis axis
lim F(t) - lim |[lim F(t)] [ lim |lim F(t) + [lim F(t) + lim
lim [ F(t) + G(t) | = lim F(t) - G(t) [G(t) G(1)] lim G(t) G(t)
lim F(t) - lim |[lim F(t)] [ lim |lim F(t) + [lim F(t) - lim
lim [ F(t) - G(t) ] = lim F(t) - G(t) |G(t) G(t)] lim G(t) G(t)
lim F(t) - lim |[lim F(t)] x [ |[lim F(t) +1lim [[lim F(t)][ |[lim F(t)] [
lim [ F(t). G(t) ] = G(t) lim G(t)] G(t) lim G(t)] lim G(t)]
lim F(t) - lim  |[lim F(t)] x [ |lim F(t) + lim ([lim F(t)][ [[lim F(t)] x [
lim [ F(t) x G(t) ] = G(t) lim G(t)] G(t) lim G(t)] lim G(t)]
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A vector function F(t) is said to be attift

is in the domain of F bounded continuous differentiable |derivative |continuous
lim [ F(t) + lim [ F(t) x lim [ F(t) . G(t) [lim [ F(t)- |lim [ F(t) +

lim F(t) + lim G(t) = G(t) ] G(t) ] ] G(1) | G(t) ]

The planets moves about the sun in elliptical orbit ,

with the sun at focus one two three four one

mass x acceleration = speed velocity force momentum |force

The derivative of velocity is equal to speed acceleration |force momentum |acceleration

The square of the time of  complete revolution

of a planet about its orbit is proportional to the

cube of the length of the semi major axis of its

orbit. four one two three one

The magnitude of velocity is a momentum force speed acceleration |speed

The derivative of position is a momentum velocity speed acceleration |velocity
lim [ F(t) + lim [ F(t) x lim [ F(t) . G(t) [lim [ F(t)- |lim [ F(t) x

[lim F(®] x [ lim G(t)] G() | G() | ] G(t) ] G() |

Ifa, b and c are vectors in R then (c.a)b - (b.a)c= [ax(bxc) (axc)xb (bxc)xa cx(axb) |lax(bxc)

Ifvisavectorthe vx 0= 1 0 \% (-v) 0

If v and w are vectors and s and t are scalars then

st(vyw)= st(v) . st(w) st(v) x st(w)  [s(V) x t(w) s(v) . t(w)  [s(V) X t(w)
(F'.G)®t) - (F (F.G)t)+ [(F.G)(t)+

F.GQ)@®)= .G)(t) F'(t) . G'(t) F'G'(t) F.GY1) [(F.G)Y)
(F'xG)(t)+ (F'.G)H)®)+ |[(FFxG)(t)+

FxQG)' ()= (F x G')(t) F(t)yxG'(t) |F'xG'(t) F.G1) [(FxG)()

Range of the projectile is v sina. 2v/g v’ sino/g 2vsina/g |V’ sina/g

Time of flight of a projectile is v* sina/g 2v sina/g v* sina 2v/g 2v sina/g

The square of the time of one complete revolution

of a planet about its orbit is to the cube of

the length of the semi major axis of its orbit. greater than proportional |less than equal to proportional
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The square of the time of one complete revolution
of a planet about its orbit is proportional to the
cube of the of the semi major axis of its
orbit. radius length distance center length
lim [ F(t) + lim [ F(t) x lim [ F(t) . G(t) [lim [ F(t)- [lim [ F(t).
[lim F(H)] [ lim G(t)] = G() | G() | ] G ] G() |
Time of
of the projectile is v’ sina/ g speed Range Distance flight Range
Time of
of the projectile is 2vsino/g speed Range Distance flight Time of flight
F@® . G(t) = FE+G)® F-G® ExG) (1) F.QOWO® |F.G®
F®) x G = F+G) 1) F-G6@® FExG) ® FE.GO@® |EFxG(®
F@® - G(H) = FE+G)® F-G® ExG) (1) F.QOWO® |F-GOO®
F@®) + G(t) = F+G) 1) F-G6® FExG) ® F.GO [EF+G®)
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(18MMU101)

KARPAGAM ACADEMY OF HIGHER EDUCATION ) (- coshx) b sinh2x - ¢) coshxd) (- sinhx)
COIMBATORE-21 8. What is the third derivative of x3-3x?+4x-1?
DEPARTMENT OF MATHEMATICS a)1 b) 6 Q)2 d) 0
First Semester ] o )
Calculus 9. Differentiation of sinhx =
I Internal Test - July*2018 a) (- coshx) b) sinh2x c) coshx d) (-sinhx)
Date : 31.07.2018 (FN) Time : 2 Hours fx=0th hy =
Class : 1 B. Sc Mathematics Maximum: 50 Marks 10. 1fx=0thencoshx=___
a) (-1) b) 1 c)0 d) 2
PART - A (20 x 1 = 20 Marks) 11. Range of tanhxis

Answer all the questions: a)(-1,-1) b) (1,1) c)(0,1) d) (-1, 1)
1. The odd parts of e* is called the hyperbolic 12. The is defined to be the derivative of (n-1)"" derivative of f.

a) cosine  b) tangent c) sine d) secant a) f2 b) f! c) 8 d) f
2. cosh?x - sinhx = 13. coshx coshy + sinhx sinhy =

a)l b) 0 c) cosh2x d) sinh2x a) cosh(x +y) b) sin(x-y) c¢)cosh(x-y) d)sinh(x+y)
3. If f(x) = cosechx cothx dx, then find (x). 14. Differentiation of y = In (sinhx) is

a) -sinhx  b) —sechx c) —tanhx d) —cosechx a) sinhx b) cothx c) tanhx d) coshx
4.J(1x)dx=_ 15. Jtan hx dx =

a) X b) 2x c) log x d) x2 a) In(sinhx) b) In(sechx) c) In(coshx) d) cothx
5. For , f is called the higher order derivative of f. 16. Find the second derivative of e**.

a) n=0 b) n>1 ¢) n<1 d) n a) e b) 26 C) 46 d) (-e%)
6. What is the value of £’(a) when f(x)=x?(1-2x); if a=2? 17. For f (x) = sinh(x), what is the value of f" (x)?

a) 22 b) 24 c) -24 d) -22 a) sinhx b) cothx c) tanhx d) sechx



18. Jsechx tanhx dx =

a) cothx b) sechx c) sinhx d) coshx
19. sinh (2x) =
a) 2sinhxcoshx b) sinhx + coshx
c) coshxcoshx d) sinhxcoshx
20. sinhx =
eX+e™* eX¥—e™* eX+e™* eX—e™*
) 2 b) 1 ) 1 d) 2

PART - B (3 x 2 = 6 Marks)

Answer all the questions:
21. Find the derivative of f(x)=5x3-2x?+6x+1.
22. Prove that sinh2x = 2sinhxcoshx.

23. Find j—z when y=e**cosh4x

PART — C (3 x 8 =24 Marks)

Answer all the questions:
24. a) Find the integral of [ 457h2Xcosh2x dx.
(OR)

b) If y = sin(msin~1x), prove that (1 — x2)y, — xy; +
m?y = 0 and hence show that (1 + x2)y,,4, —
2n+ 1)xy,41 + (m? —n?)y, = 0. Also find

Yna+x=0.

. tanhx+tanh
25.a) Show that i) tanh(x +y) = %

ii)cosh? x — sinh? x = 1.
(OR)
b) Find the n'" derivative of cosx cos2x cos 3x.

25. a) State and prove Leibniz Rule for n' derivative.
(OR)

T
4

b) If I, = [,

tan™ x dx then prove that I, + I, = ﬁ and

hence evaluate Is
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