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Scope: On successful completion of course the learners gain about propositional equivalence,
relation and its applications.

Objectives: To enable the students to learn and gain knowledge about propositions, negation,
conjunction, disjunction, logical equivalences and counting principle.

UNITI

Introduction, propositions, truth table, negation, conjunction and disjunction. Implications,
biconditional propositions, converse, contra positive and inverse propositions and precedence of
logical operators.

UNIT I
Propositional equivalence: Logical equivalences.
Predicates and quantifiers: Introduction, Quantifiers, Binding variables and Negations.

UNIT III
Sets: Subsets, Set operations and the laws of set theory and Venn diagrams. Examples of finite
and infinite sets.

UNIT IV

Finite sets and counting principle. Empty set, properties of empty set. Standard set operations.
Classes of sets. Power set of a set. Difference and Symmetric difference of two sets. Set
identities, Generalized union and intersections.

UNIT V
Relation: Product set, Composition of relations, Types of relations, Partitions. Equivalence
Relations with example of congruence modulo relation, Partial ordering relations, n-ary relations.

SUGGESTED READINGS
TEXT BOOK

1. Grimaldi R.P.,(2004). Discrete Mathematics and Combinatorial Mathematics, Pearson
Education, Pvt.Ltd, Singapore.

REFERENCES
1. Bourbaki .N(2004),Theory of sets, Springer Pvt Ltd, Paris.
2. Halmos P.R.,(2011). Naive Set Theory, Springer Pvt Ltd, New Delhi.
3. Kamke E., (2010).Theory of Sets, Dover Publishers, New York.
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LECTURE PLAN
DEPARTMENT OF MATHEMATICS

Staff name: U. R. Ramakrishnan

Subject Name: Logic and Sets Sub.Code:18MMU103
Semester: 1 Class: I B.Sc Mathematics
S.No Lecture Topics to be Covered Support Material/Page
Duration Nos
Period
UNIT-I

1. 1 Introduction to logic and sets R4:Ch: 12; Pg.No:333

2. 1 Propositions-Definition with R4:Ch: 12; Pg.No:334,335
examples

3. 1 Truth table T1:Ch:2; Pg.No:47-49

4. 1 Tutorial-1

5. 1 Continuation of problems on T1:Ch:2;Pg.No:50-53
truth table

6. 1 Problems on Negation and R4:Ch:12; Pg.No:335-336
Conjunction

7. 1 Problems on disjunction R4:Ch:12;Pg.No:336-338

8. 1 Tutorial-2

0. 1 Implications-Definition and R4:Ch:12; Pg.No0:362-364
problems

10. 1 Biconditional propositions R4:Ch:12;Pg.N0:349-350

11. 1 Continuation of Biconditional R4:Ch:12;Pg.No:351-352
propositions

12. 1 Tutorial-3

13. 1 Converse and contra positive R4:Ch: 12; Pg.No:344-348
propositions

14. 1 Precedence of logical operators | R4: Ch: 12; Pg.No0:342-343

15. 1 Problems on logical operators R4: Ch:12; Pg.No:346-350
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16.

17. 1 Tutorial-4

18. 1 Continuation of problems on R4: Ch:12; Pg.No:350-351
logical operators

19. 1 Recapitulation and Discussion

of possible questions

Total No of Hours Planned For Unit I=18

T1. Grimaldi R.P.,(2004). Discrete Mathematics and Combinatorial Mathematics, Pearson

Education, Pvt.Ltd, Singapore.

R4.Sharma.J.K.,(2015).Discrete mathematics, Tata Mc Graw-Hill publishing company ltd, New

Delhi.
UNIT-II

1. 1 Propositional equivalence T1:Chap 5 P.N0:97-98

2. 1 Logical Equivalence T1: Ch: 2; Pg. No :55-56

3. 1 Properties on logical equivalence | T1: Ch: 2; Pg. No :55-56

4. 1 Tutorial-1

5. 1 Predicates :Introduction with R7: Ch: 2; Pg. No :2.1-2.2
example

6. 1 Quantifiers:Introduction with R7: Ch: 2; Pg. No :2.1-2.2
example

7. 1 Problems on Predicates R7: Ch: 2; Pg. No :2.2-2.3

8. 1 Tutorial-2

9. 1 Universal Quantifiers-Definition | R7: Ch: 2; Pg. No :2.2-2.3
with examples

10. 1 Existential Quantifiers- R7: Ch:2; Pg.No:2.3-2.4
Definition with examples

11. 1 Problems on Quantifiers R7: Ch:2; Pg.No:2.3-2.4

12. 1 Tutorial-3

13. 1 Continuation of problems on R1: Ch: 4; Pg. No :38-41
Quantifiers

14. 1 Binding Variables:Definition | R7: Ch: 2; Pg. No :2.4-2.5
with example

15. 1 Problems on binding variables R7: Ch: 2; Pg. No :2.4-2.5

16. 1 Tutorial-4

17. 1 Negations of a quantified | R4: Ch:12; Pg. No :336-337

expressions

2/4
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18.

Negations — problems

R7: Ch:2;Pg.No:2.7-2.8

19.

Recapitulation and Discussion
of possible questions

Total No of Hours Planned For Unit II1=19

T1. Grimaldi R.P.,(2004). Discrete Mathematics and Combinatorial Mathematics, Pearson

R1. Bourbaki .N(2004),Theory of sets, Springer Pvt Ltd, Paris

R4.Sharma.J.K.,(2015).Discrete mathematics, Tata Mc Graw-Hill publishing company Itd,

New Delhi

R7.Sundaresan,V.,Ganapathy Subramaniam,K.S and Ganesan.K.(2009).Discrete
mathematics,AR Publications,India.

UNIT-I11
1. Set-Definitions with examples T1: Ch: 3; Pg. No:123-124
2. Subsets: Definitions and examples | R3: Ch: 1; Pg. No:5-8
3. Tutorial-1
4. Theorems on subsets T1: Ch: 3; Pg. No:125-133
5. Set operations: Definitions and T1: Ch: 3; Pg. No :136-139
examples
6. Laws of set theory:Definitions and | T1: Ch:3;Pg.No:139-140
example
7. Tutorial-2
8. Theorems on laws of set theory T1:Ch:3;Pg.No:140-141
9. Venn diagrams:Definitions T1: Ch:3, Pg. No:140-141
10. Problems on venn diagrams T1: Ch: 3; Pg. No:142-150
11. Tutorial-3
12. Problems on finite sets R7: Ch: 2; Pg. No :3.7-3.8
13. Theorems on finite sets R7:Ch:2:Pg.No:3.8-3.9
14. Infinite sets-Definition with R7:Ch:2;Pg.No:3.10-3.11
example
15. Tutorial-4
16. Problems on infinite sets R7:Ch:2;Pg.No:3.10-3.11
17. Theorems on Infinite sets R7:Ch:2;Pg.No:3.11-3.12
18. Tutorial-5
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1

Recapitulation and Discussion of
possible questions

Total No of Hours Planned For Unit II1I=19

T1. Grimaldi R.P.,(2004). Discrete Mathematics and Combinatorial Mathematics, Pearson

R3. Kamke E., (2010).Theory of Sets, Dover Publishers, New York.

R7.Sundaresan,V.,Ganapathy Subramaniam,K.S and Ganesan.K.(2009). Discrete
mathematics,AR Publications,India.

UNIT-1V

1. 1 Finite set and counting principle R6:Ch:1; Pg,No:9-17
2. 1 Empty set and Property on empty | R5:Ch:1; Pg,No:6-7
3. 1 SSi;ndard set operations R5:Ch:1; Pg,No:7-8
4. 1 Tutorial-1
5. 1 Classes of sets R5:Ch:1; Pg.No:8-9
6. 1 Power set of a set R2:Ch:5; Pg,No:19-21
7. 1 Problems on power set R2:Ch:5; Pg,No:19-21
8. 1 Tutorial-2
9. 1 Difference of two sets R5:Ch:1; Pg,No:9-10
10. 1 Symmetric difference of two sets | R5:Ch:1; Pg,No:10-11
1. 1 Set identities R5:Ch:1;Pg.No:11-12
12. 1 Tutorial-3
13. 1 Generalized union R2:Ch:4;Pg.No:12-16
14. 1 Problems on generalized union R2:Ch:4;Pg.No:12-16
15. 1 Theorems on union R4:Ch:4;Pg.No:10-12
16. 1 Tutorial-4
17. 1 Theorem on intersection R4:Ch:4;Pg.No:12-13
18. 1 Continua}tion of theorem on R4:Ch:4;Pg.No:13

intersection
19. 1 Tutorial-5
20. 1 Recapitulation and Discussion of
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possible questions

Total No of Hours Planned For Unit IV=20

R2. Halmos P.R.,(2011). Naive Set Theory, Springer Pvt Ltd, New Delhi.
R5.Chowdhary.K.R.,(2012). Fundamentals of Discrete mathematical structures,second edition,
phi learning pvt Itd,New Delhi.
R6.Seymour Lipschutz,Marc Lars Lipson.,(2001).Theory and problems of discrete
mathematics, Tata Mc Graw-Hill publishing company Itd,New Delhi.

UNIT-V
1. Relation definition with example R4:Ch:3.1; Pg.No:72-73
Product set R4:Ch:3.1; Pg.No:73-74
3. Composition of relation and types | R4:Ch:3.1; Pg.No:79-80
of relations
4. Tutorial-1
5. Types of relations R4:Pg.No0:92-93
6. Partial order relations R1:Ch:3; Pg.No:78-79
7. Equivalence relations: Definitions | R4:Ch:3;Pg.No:82-83
and problems
8. Tutorial-2
0. Congruence modulo R4:Ch:3; Pg.No:83-84
10. Theorem on reduced groups R4:Ch:3; Pg.No:84-85
1. Partial ordering relations: problems | R4:Ch:3; Pg.No:80-81
12. Tutorial-3
13. Partial ordering relations: R4:Ch:3;Pg.No:81-82
Theorems
14. n-ary relations R7:Ch:1:Pg.No:20-21
15. Continuation of n-ary operation R7:Ch:1:Pg.No:21-22
16. Tutorial-4
17. Recapitulation and Discussion of
possible questions
18. Discuss on Previous ESE Question
Papers
19. Discuss on Previous ESE Question
Papers
20. Discuss on Previous ESE Question

Papers
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Total No of Hours Planned for unit V=20

R1. Bourbaki .N(2004),Theory of sets, Springer Pvt Ltd, Paris.
R4.Sharma.J.K.,(2015).Discrete mathematics, Tata Mc Graw-Hill publishing company ltd, New
Delhi.

R7.Sundaresan,V.,Ganapathy Subramaniam,K.S and Ganesan.K.(2009).Discrete
mathematics,AR Publications,India.

Total Planned Hours 96

SUGGESTED READINGS

TEXT BOOK
T1. Grimaldi R.P.,(2004). Discrete Mathematics and Combinatorial Mathematics, Pearson

REFERENCES

R1. Bourbaki .N(2004),Theory of sets, Springer Pvt Ltd, Paris.

R2. Halmos P.R.,(2011). Naive Set Theory, Springer Pvt Ltd, New Delhi.

R3. Kamke E., (2010).Theory of Sets, Dover Publishers, New York.
R4.Sharma.J.K.,(2015).Discrete mathematics,Tata Mc Graw-Hill publishing company Itd, New
Delhi.

R5.Chowdhary.K.R.,(2012). Fundamentals of Discrete mathematical structures,second edition,
phi learning pvt Itd,New Delhi.

R6.Seymour Lipschutz,Marc Lars Lipson.,(2001).Theory and problems of discrete
mathematics, Tata Mc Graw-Hill publishing company Itd,New Delhi.
R7.Sundaresan,V.,Ganapathy Subramaniam,K.S and Ganesan.K.(2009).Discrete
mathematics,AR Publications,India.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc MATHEMATICS COURSE NAME: LOGIC AND SETS
COURSE CODE: 18MMU103 UNIT:I BATCH-2018-2021
UNIT -1

Introduction, propositions, truth table, negation, conjunction and disjunction. Implications,
biconditional propositions, converse, contra positive and inverse propositions and precedence
of logical operators.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc MATHEMATICS COURSE NAME: LOGIC AND SETS
COURSE CODE: 18MMU103 UNIT:I BATCH-2018-2021
UNIT -1

Statements (Propositions ): Sentences that claim certain things, either true or false

Notation: A.B, ...P.Q.R. ..... p. q. 1, efc.

Examples of statements: Today 1s Monday. This book 1s expensive
If a number 1s smaller than 0 then it is positive.

Examples of sentences that are not statements: Close the door! What 1s the time?

Propositional variables: A, B, C, ....P.. Q. R, ... Stand for statements. May have true or
false value.
Propositional constants:
T —true
F - false
Basic logical connectives: NOT, AND, OR
Other logical connectives can be represented by means of the basic connectives

Logical connectives | pronounced Symbol in Logic
Negation NOT e
Conjunction AND A

Disjunction OR V

Conditional if then =

Biconditional if and only if s

Exclusive or Exclusive or @®

Propositions. Compound Statements. Truth Tables

Truth tables - Define formally the meaning of the logical operators.
The abbreviation iff means if and only if
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc MATHEMATICS COURSE NAME: LOGIC AND SETS
COURSE CODE: 18MMU103 UNIT:1 BATCH-2018-2021
a. Negation (NOT, ~, —, %)
F ~P : : e
~P 1s true if and only 1f P 1s false
T F
F T

b. Conjunction (AND, A, &&)

E----_-_-E__-______P_}_h : P A Q 1s true 1ff both P and Q are true. In all other
T T T cases P A Q 1s false

T F F

F T E

F F F

c. Disjunction / Inclusive OR (OR, V, |))

P Q PVQ P VQ 1strue iff P is frue or Q 1s true or both are
o true.

T T T

T F T P WV Q is false iff both P and Q are false

F T T

F E F

d. Conditional . known also as implication (—)

P Q P—Q The implication P— Q 1s false iff P is true however
e Q is false.

T T T

T F F In all other cases the implication is true

E T T

F F T

P Q P<Q P« Q is true iff P and Q have same values - both are
P e true or both are false.
T T T
T F F If P and Q have different values, the biconditional is
F T F false.
F F T
f. Exclusive OR (@)
P Q PEQ P® Q is true iff P and Q have different values
. . E We say: “P or Q but not both™
T F T
E T T
F F F
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc MATHEMATICS COURSE NAME: LOGIC AND SETS
COURSE CODE: 18MMU103 UNIT:1 BATCH-2018-2021

Precedence of the logical connectives:

Connectives within parentheses, innermost parentheses first

E negation

A conjunction

v disjunction

— conditional

“—, D biconditional, exclusive OR

Compound Statements: Logical expressions that consist of propositional variables and logical
connectives. They may contain also propositional constants.

Evaluating compound statements : by building their truth tables

Example: ~PV Q

P Q -P -PVQ
T i F T
T F F F
F T T T
F F T T

PVQA-(PAQ

P Q PVQ 'PAQ =RPAQ EVQA~PAQ)
A B - B AA-B (the letters A and B
are used as shortcuts)
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc MATHEMATICS COURSE NAME: LOGIC AND SETS
COURSE CODE: 18MMU103 UNIT:1 BATCH-2018-2021

1. Tautologies and Contradictions

A propositional expression is a tautology if and only if for all possible assignments of truth
values to its variables its truth value 1s T

Example: P V — P is a tautology

P - PP

A propositional expression is a contradiction if and only if for all possible assignments of
truth values fo its variables its truth value 1s F

Example: P A — P is a contradiction

P =P PP

Usage of tautologies and contradictions - in proving the validity of arguments; for rewriting
expressions using only the basic connectives.

Definition: Two propositional expressions P and Q are logically equivalent.
if and only if P <5 Q 1s a tautology. We write P=Q or P & Q.

Note that the symbols = and < are not logical connectives
Exercise:
a) Show that P — Q & —P V Q is a tautology.1.e. P—Q =—PVQ

P Q —-P -PVQ P—Q P—Qo-PVQ

=
- =
-
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc MATHEMATICS COURSE NAME: LOGIC AND SETS
COURSE CODE: 18MMU103 UNIT:1 BATCH-2018-2021

2. Logical equivalences

Similarly to standard algebra. there are laws to manipulate logical expressions. given as
logical equivalences.

1. Commutative laws B Q= N P
PAQ= QAP

|

. Associative laws PVQVR PV(Q VR

(P-A QAR = PA(Q ATR)
3. Distributive laws: PVQAEPVR=PV(Q A R)
PAQVEAR=PAQ V R)

4. Identity PV E=P
P A E=P

5. Complement properties PXN-P=TF (excluded middle)
P A-P=F (contradiction)

6. Double negation = (=P

7. Idempotency (consumption) PV R=1
PA P=P

8. De Morgan's Laws ={(PVQI==-P A Q

~(PAQ="P V —Q
9. Universal bound laws (Domination) P V T=T

P AF=F
10. Absorption Laws PV({PAQ=P

B A PV O)="

11. Negation of T and F: —T'=F
A =F
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc MATHEMATICS COURSE NAME: LOGIC AND SETS
COURSE CODE: 18MMU103 UNIT:1 BATCH-2018-2021

1. Truth table of the conditional statement

g

-]
o
l

©]

b e
H A

P is called antecedent
Q is called consequent
Meaning of the conditional statement: The truth of P implies (leads to) the truth of Q

MNote that when P is false the conditional statement is true no matter what the value of Q is. We say that in this
case the conditional statement 1s true by default or vacuously true.

2. Representing the implication by means of disjunction

P—-Q=—"PVQ
P Q P P—-Q —"PVQ
T T F T T
T F F F F
F T i ) T T
F F T T T
Same truth tables
Usage:
1. To rewrite "OR" statements as conditional statements and vice versa (for better
understanding)

2. To find the negation of a conditional statement using De Morgan's Laws
3. Rephrasing "or" sentences as "if-then' sentences and vice versa

Consider the sentence:
(1) "The book can be found in the library or i the bookstore".

Let
A = The book can be found in the library

B = The book can be found 1n the bookstore

Logical formof (1): AV B
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc MATHEMATICS COURSE NAME: LOGIC AND SETS
COURSE CODE: 18MMU103 UNIT:1 BATCH-2018-2021

Rewrite AV B as a conditional statement

In order to do this we need to use the commutative laws, the equivalence —(— P) =P, and the
equivalence P— Q = ~PVQ

Thus we have:
AVB=—-(—A)VB=—A—B
The last expression — A — B 1s translated into English as

"If the book cannot be found in the library,
it can be found in the bookstore".

Here the statement "The book cannot be found in the library" 1s represented by — A

There 1s still one more conditional statement to consider.
AV B =B V A (commutative laws)

Then. following the same pattern we have:
BVA=—("B)VA=—B—A

The English sentence 1s: "'If the book cannot be found in the bookstore, it can be found in the
library.

We have shown that:

AVB= ~(~A)VB=—-A—B
AVB=BVA=—(-B)VA=—B—A

Thus the sentence ""The book can be found in the library or in the bookstore"

can be rephrased as:
"If the book cannot be found in the library, it can be found in the bookstore".
"If the book cannot be found in the bookstore, it can be found in the library.

4. Negation of conditional statements

Positive: The sun shines
Negative: The sun does not shine

Positive: " If the temperature 1s 250°F then the compound 1s boiling "
Negative: ?

In order to find the negation. we use De Morgan's Laws.

Let

P = the temperature is 250°F

Q = the compound is boiling
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc MATHEMATICS COURSE NAME: LOGIC AND SETS
COURSE CODE: 18MMU103 UNIT:1 BATCH-2018-2021

Positive: P— Q = PV Q
Negative: ~(P— Q) = ~(PVQ)=—(-PAQ= PAQ

Negative: The temperature is 250°F however the compound is not boiling
IMPORTANT TO KNOW:

The negation of a disjunction is a conjunction.
The negation of a conjunction is a disjunction

The negation of a conditional statement is a conjunction. not another if-then statement

Question: Which logical connective when negated will result in a conditional statement?

5. Necessary and sufficient conditions

Definition:
"P is a sufficient condition for Q" means : if Pthen Q, P— Q
"P is a necessary condition for Q" means: if not P then not Q, ~P — ~Q
The statement ~P — ~Q is equivalent to Q — P

Hence given the statement P — Q,
P is a sufficient condition for Q, and Q is a necessary condition for P.

Examples:

If » 1s divisible by 6 then # is divisible by 2.
The sufficient condition to be divisible by 2 1s to be divisible by 6.
The necessary condition to be divisible by 6 1s to be divisible by 2

If n 1s odd then n is an integer.
The sufficient condition to be an integer to be odd.

The necessary condition to be odd is to be an integer.

If and only if - the biconditional

P Q PsQ
R G
T H
F T F
& W

P < Q 1s true whenever P and Q have same values. Otherwise it 1s false.

Prepared by: U.R.Ramakrishnan, Assistant Professor, Department of Mathematics,KAHE
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc MATHEMATICS COURSE NAME: LOGIC AND SETS
COURSE CODE: 18MMU103 UNIT:1 BATCH-2018-2021

This means that both P — Q and Q — P have to be true

P Q P-Q Q—P PsQ

T T T T T

T F F T P

F i T F F

F F T T T
Contrapositive

Definition: The expression ~Q — ~P is called contrapositive of P — Q

The conditional statement P — Q and its contrapositive ~Q — ~P are equivalent.
The proof is done by comparing the truth tables

The truth table for P— Qand 7 Q — — P1s:

P Q TP g P>Q Q5P
T T ¥ F T g L
T F F T F F
F T T F [ X i h
F F T T ik T

We can also prove the equivalence by using the disjunctive representation:
P = BN =Y =P =" 1V-PF=—3+—3P

Converse and inverse

Definition: The converse of P — Q is the expression Q — P

Definition: The inverse of P — Q is the expression ~P — ~Q
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc MATHEMATICS COURSE NAME: LOGIC AND SETS
COURSE CODE: 18MMU103 UNIT:I BATCH-2018-2021

Neither the converse nor the inverse are equivalent to the original implication.
Compare the truth tables and you will see the difference.

F O =F =0 =0 g=F =£=0
T ¥ I F T T
T F F 1) F T T
F ¥ W & T F F
F F T O ]

Valid and Invalid Arguments.

Definition: An argument is a sequence of statements. ending in a conclusion. All the statements
but the final one (the conclusion) are called premises(or assumptions. hypotheses)

Verbal form of an argument:
(1) If Socrates is a human being then Socrates 1s mortal.

(2) Socrates is a human being

Therefore (3) Socrates 1s mortal

Another way to write the above argument:
P20
E
S Q
2. Testing an argument for its validity

Three ways to test an argument for validity:

A. Critical rows

1. Identify the assumptions and the conclusion and assign variables to them.

2. Construct a truth table showing all possible truth values of the assumptions and the
conclusion.
3. Find the critical rows - rows in which all assumptions are true

4. For each critical row determine whether the conclusion is also true.
a. If the conclusion is true in all critical rows. then the argument is valid
b. Ifthere 1s at least one row where the assumptions are true, but the conclusion is

false. then the argument 1s invalid
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc MATHEMATICS COURSE NAME: LOGIC AND SETS
COURSE CODE: 18MMU103 UNIT:1 BATCH-2018-2021

B. Using tautologies
The argument is true if the conclusion is true whenever the assumptions are true.
This means: If all assumptions are true, then the conclusion is true.
"All assumptions"” means the conjunction of all the assumptions.
Thus, let Al. A2. ... An be the assumptions. and B - the conclusion.
For the argument to be valid. the statement
If (A1 A A2 A... A An) then B must be a tautology - true for all assignments of values to
its variables. 1.e. its column in the truth table must contain only T
e,
(AIAA2A...AAn)—B=T
C. Using contradictions
If the argument 1s valid, then we have (Al AA2A... AAn)—B=T
This means that the negation of (A1 A A2 A... A An) — B should be a contradiction -

contamning only F 1in its truth table

In order to find the negation we have first to represent the conditional statement as a
disjunction and then to apply the laws of De Morgan

(ATAA2A. .. AAn)—B=~(Al1AA2A.. AAn)VB=

~A1V-~A2V ... V~AnVB.

The negation 1s:

~((A1AA2A...AAn)—B)=~(~Al V~A2V ... V~AnVB)
=AIAA2A...AAnA-B

The argument 1s validif A1IAA2A ... AAnA~-B=F

There are two ways to show that a logical form 1s a tautology or a contradiction:

a. by constructing the truth table
b. by logical transformations applying the logical equivalences (logical identities)
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Examples:

1. Consider the argument:

P—Q
P
S Q

Testing 1ts validity:

a. by examining the truth table:

P Q P—{)
T X 2
T F F
1] i | r
¥ F ¢ &

b. By showing that the statement 'If all premises then the conclusion" is a tautology:
The premises are P and P— Q. The statement to be considered i1s:

PAP—Q)—Q

We shall show that it is a tautology by using the following identity laws:
1) P—=Q=~PVQ
QPVQVR=PVQVR) commutative laws
(PAQIAR =PA(Q AR)
BPAQVR=(PVREAQVR) distributive law
4HPA~P=F
I E V=P=T
(6 PVE =P
(TIRVE =T
(BYPAT=P
O PAF=FE
(1) \PA Q) =~PV ~Q De Morgan's Laws
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PAP—Q)—Q

by | = |[(PAP=Q)IVQ

by (10} | = | (~PV P03 ) VO

by() | = |(-PV~(-PVQ)VQ

by(10) | = |(-PVPA-Q)VQ

by3) | = |(-PVP)A(-PV~Q)VQ

by( | = |(TACPV-Q)VQ

by(® | = |(PV-QVQ

by@ | = |-PV(QVQ)

by(5) | = |~-PVT

by(7) = | T

2. Consider the argument

P—Q

Q
B

We shall show that this argument 1s invalid by examining the truth tables of the assumptions and
the conclusion. The critical rows are in boldface.

P Q P—Q

i | {5 T

fls F r

F T x here the assumptions are true, however the
conclusion is false

F F T
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Exercise:

Show the validity of the argument:

1. PVQ (premise)
2. ~Q (premise)
Therefore P (conclusion)

a. Dby using critical rows
b. by contradiction using logical identities

Solution:

a. by critical rows

conclusion Premises

P Q PVQ ~Q

T T ik F

T F f i £ i Critical row
F T T F

F F F T

b. By contradiction using identities

(PVQA~Q)A ~P=
(PA~Q)V(QA~Q))A ~P=
(PA~Q)V F)A ~P=
(PA-Q)A ~P=

PA~P A ~Q=FA ~Q=F
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Possible Questions

2 Marks Questions:

1. Define proposition with example.

2. Define tautology with example

3. Define modular statement with example

4. Define truth value.

5. Define conjunction with truth table formula.
6 Mark Questions:

6. Construct the truth table for (P—(Q—R)) — (P—Q) — (P—R))
7. State the converse, contrapositive and inverse of “A positive integer is a prime if it has no divisors other
than 1 and itself ”
8.  Write the following statement in symbolic form
1) You can access the internet from campus only if you are a computer science major or you are not a
freshman,
i1) You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old
9. Construct the truth table for (P —( Q—S)) A (—|RV P)AQ
10. Construct the truth table for (P — Q) > R) — S
11. State the converse, contrapositive and inverse of the following
1)If you watch television your mind will decay.
i) School is closed if more than 2 feet of snow falls.
12. Construct the truth table for |(Q—R) A R A (P—Q)
13. State the converse, contrapositive and inverse of the following
1) If today is Thursday, then I have a test today.
i) I come to class whenever there is going to be a quiz.
14. Construct the truth table for (P < Q) < (R < S).
15. State the converse, contrapositive and inverse of the following
1) If it snows today, [ will ski tomorrow.

i) A positive integer is a prime only if it has no divisors other than 1 and itself.
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Batch 2016-2019

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),

Coimb e —641 021
Subject: Liogic and Sets Subject Code: 1I8MMU103
Class _: I B.Sc Mathematics Semester  : 1
UNIT -1
PART A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
The equivalent statement for P and not P F T Fand T none F
The implications of P P not P PorQ Pand Q PorQ
The implications of P and Q is P Q PorQ not P P
P or P "equivalent to" P is called as idempotent associative closure identity idempotent
not(not P) "equivalent to" P is called as Involution Absorption Associative none Involution
If P then Q is "equivalent to" not P or Q not P and Q Pand Q PorQ not P or Q
A statement which has true as the truth value for all the assignments is called contradiction tautology cither tgutvolugy or none tautology
e contradiction
A statement which has false as the truth value for all the assignments is called contradiction tautology cither u?ulvology or none contradiction
contradiction
If P has T and Q has F as their truth value, then P or Q has ----- as truth value T F 0 none T

A biconditional statement P if and only if Q is " equivalent to "

(Not P or Q) and (not Q or P)

(Not P or Q) or (not Q or P)

(P orQ)and (not Q or P)

(Not P or Q)and (Q or P)

(Not P or Q) and (not Q or P)

A biconditional statement notP if and only if Q is " equivalent to "

(Not P or Q) and (not Q or P)

(Not P or Q) or (not Q or P)

(PorQ)and (not Q or P)

(Not P or Q) and (Q or P)

(PorQ)and (not Q or P)

A biconditional statement P if and only if not Q is " equivalent to "

(Not P or Q) and (not Q or P)

(Not P or Q) or (not Q or P)

(P orQ)and (not Q or P)

(Not P or Q) and (Q or P)

(Not P or Q)and (Q or P)

A biconditional statement notP if and only if not Q is " equivalent to "

(Not P or Q) and (not Q or P)

(PorQ)and (Q or P)

(PorQ)and (not Q or P)

(Not P or Q) and (Q or P)

(PorQ)and (Q or P)

if R: Mark is rich and H: Mark is happy , then Mark is poor or he is both rich and

unhappy can be s ically written as

not R or (R and not H)

not R or (R or not H)

not R and (R and not H)

R or (R and not H)

not R or (R and not H)

In the statement If P then Q the antecedent is P Q notP not Q P

In the statement If P then Q the consequent is P Q notP not Q Q

Out of the following which is the well formed formula Pand Q (PorQ if P then Q) if (if P then Q) then Q) Pand Q
Elementary products are P and not P P P andQ not P all of these
Elementary sum are P Not Q PorQ not P or P all of these

penf contains

product of maxterms

sum of max terms

sum of minterms

product of min terms

product of maxterms

pdnf contains

product of maxterms

sum of max terms

sum of minterms

product of min terms

sum of minterms

dual of a statement is obtained by replacing "and", "or", "not" by "or", "and", "not" "or", "and", "and" "and", "or", "not" "or", "or", "not" "or", "and", "not"
dual of the statement Pand Q is PorQ QandP Q and not P none PorQ

dual of "if P then Q" is not P and Q Pand Q PorQ Not P or Q not P and Q

P "exclusive or" Q is the negation of if P then Q if Q then P Pifand onlyif Q Q ifand only if P Pifand onlyif Q

The other name of tautology is identically true identically false universally false false identically true

The other name of contradiction is identically true identically false universally true true identically false

The converse of "if P then Q" is " If Q then P" "if not P then not Q" "if not Q then not P" all of these " If Q then P"

The contra positive of "if P then Q" is " If Q then P" "if not P then not Q" "if not Q then not P" all of these "if not Q then not P"
The inverse of "if P then Q" is " If Q then P" "if not P then not Q" "if not Q then not P" all of these "if not P then not Q"
;\ Als said to tautologically imply a Bifan donly if*" if A then B "is tautology contradiction false none tautology

Pand (P or Q) is P Q PorQ Pand Q P

P " exclusive or" Q is true if both P, Q has ---- truth values same different none all of these different

A conditional statement and its contrapositive are .

A tautulogy

a contradiction

Logically equivalent

an assumption

Logically equivalent

A rule of inference is a form of argument thatis ................

valid

a contradiction

an assumption

A tautulogy

valid

An or statement is false if, and only if, both components are ....................

TRUE

FALSE

not true

neither true nor false

FALSE

Two statement forms are logically equivalent if, and only if they always
have...

not same truth values

the same truth values

the different truth
values

the same false values

the same truth values

P " exclusive or" Q is false if both P, Q has --- truth values

same

different

none

all of these

same
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Logical Equivalences as Tautologies

The Idea, and Definition, of Logical Equivalence

In lay terms, two statements are logically equivalent when they say the same thing, albeit
perhaps in different ways. To a mathematician, two statements are called logically equivalent
when they will always be simultaneously true or simultaneously false. To see that these notions
are compatible, consider an example of a man named John N. Smith who lives alone at 12345
North Fictional Avenue in Miami, Florida, and haz a United States Social Security number 937-
G5-4325."% Of course there should be exactly one person with a given Social Security number.
Hence, when we ask any person the questions, “are you John N. Smith of 12345 North Fictional
Avenue in Miami, Florida? and “is your U.5. Social Security number 987-65-43257" we would
be in essence asking the same question in both cases. Indeed, the answers to these two questions
would always be both yves, or both no. so the statements “you are John N. Smith of 12345 North
Fictional Avenue in Miami, Florida.” and “your U.5. Social Security number is 987-65-4325."
are logically equivalent. The notation we would use is the following:

you are John N. Smith of 12345 North Fictional Avenue in Miami. Florida
<= your 11.5. Social Security number is 987-65-4325.

The motivation for the notation ¥ <= 7 will be explained shortly.
On a more abstract note, consider the statements ~ (P v @) and [~ P) A (~ (}). Below we
compute both of these compound statements’ truth values in one table:

PlRIPVQ|~(PVQ)|~P|~Q | (~P)A(~Q)
T|T T F F F F
T]|F T F F T F
F|T T F T F F
F|F F T T T T

the same

We see that these two statements are both true or both false, under any of the 22 = 4 possible
circumstances, those being the possible truth value combinations of the underlying, independent
component statements P and (. Thus the statements ~ (P WV () and ([~ P) A [~ @) are indeed
logically equivalent in the sense of always having the same truth value. Having established this,
we would write

~(PVQ) += (~P)A(~Q).

Note that in logic, this symbol “ <= 7 is similar to the symbol “=" in algebra and elsewhere.!®
There are a couple of ways it is read out loud, which we will consider momentarily. For now we
take the occasion to list the formal definition of logical equivalence:

De finition: (Given n independent statements P, ... P,. and two statements K. 5 which
are compound statements of the Py, --- | F,. we say that B and 5 are logically equivalent,
which we then denote B <= 8. if and only if their truth table columns have the same entries
for each of the 2" distinct combinations of truth values for the Py.--- . Fp. When R and S are
logically equivalent, we will also call B <= 5 a valid equivalence.
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Again, this is consistent with the idea that to say statements R and & are logically equivalent
is to say that, under any circumstances, they are both true or both false, so that asking if K is
true is—functionally—exactly the same as asking if S is true. (Recall our example of John N.
Smith’s Social Security number.)

Note that if two statements’ truth values always match. then connecting them with +—— yields
a tautology. Indeed, the bi-implication yields T if the connected statements have the same truth
value, and F otherwise. Since two logically equivalent statements will have matching truth values
in all cases, connecting with «—— will always yield T, and we will have a tautology. On the other
hand, if connecting two statements with —— forms a tautology, then the connected statements
must have always-matching truth values, and thus be equivalent. This argnment vields our first
theorem:'®

Theorem : Suppose R and S are compound statements of P... _P,. Then R and S are
logically equivalent if and only if B +—— 5 is a tautology.

The theorem above gives us the motivation behind the notation == . Assuming R and §
are compound statements built npon component statements Py --- , Py, then

R & § means that R +—— 5 is a tautology. (1.1}

To be clear, when we write H «—— 5 we understand that this might have truth value T or F, i.e.,
it might be true or false. However, when we write i <= 5, we mean that K +—— 5 is always
true (i.e., a tautology), which partially explains why we call R <= § a valid equivalence.'”

To prove B <= 5, we could (but usually will not) construet B «—— 5, and show that it is
a tautology. We do so below to prove

~(PVQ) = (~P)A(~Q).
— — — —

-.-Ru -..l;"'
H-T-.‘:-'
i 5 -
P e e e Im{PVfr}:l]
P Py o (P Y L B a PYA [~
)| Pve|~@Eve) 2 [ERACd| o i
T | T by F F F F T
T|F T F F T F T
F|T T F dl F F T
F | F F T dl T T T

However, our preferred method will be as in the previous truth table, where we simply show
that the truth table columns for R and 5 have the same entries at each horizontal level, i.e.,
for each truth value combination of the component statements. That approach saves space
and reinforces our original notion of equivalence (matching truth values). However it is still
important to understand the connection between «—— and <= . as given in (1.1).
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Equivalences for Negations

Much of the intuition achieved from studying symbolic logic comes from examining various logical
equivalences. Indeed we will make much use of these, for the theorems we use throughout the
text are often stated in one form, and then used in a different, but logically equivalent form.
When we prove a theorem. we may prove even a third, logically equivalent form.

The first logical equivalences we will look at here are the negations of the our basic operations.
We already looked at the negations of ~ P and Pv (). Below we also look at negations of PAQ,
P — (} and P «—— (). Historically, (1.3) and (1.4) below are called De Morgan's Laws, but
each basic negation is important. We now list these negations.

~(~P) = P
~(PVQ) = (~P)A(~Q)
~(PAQ) &= (~FP)V(~Q)
~(P—Q) & PA(~Q)
~(P+—Q) = [PA(~Q]VIQA(~P)L

(]

el
L it i B e e |

o

. B . T . B . TR, i |
[ I
oh

Fortunately, with a well chosen perspective these are intuitive. Recall that any statement B can
also be read “R is true.” while the negation asserts the original statement is false. For example
~ R can be read as the statement “R is false.” or a similar wording (such as “it is not the case
that R”). Similarly the statement ~ (P V¥ () is the same as “*P or )’ is false.” With that it is
not difficult to see that for ~ (P v ()) to be true requires both that P be false and () be false.
For a specific example. consider our earlier P and ()

P: 1 will eat pizza
() : I will drink soda
FPv: 1wil eat pizza or I will drink soda
~(Pv{J): Itisnotthe case that (either) I will eat pizza or I will drink soda
(~ PYA(~ @) : Itis not the case that I will eat pizza, and it is not the case that I

will drink =soda

That these last two statements essentially have the same content, as stated in (1.3), should be
intuitive. An actual proof of (1.3) is best given by truth tables, and can be found on page 15.

Next we consider (1.5). This states that ~ (P — }) <= P A (~ {}). Now we can read
~ (P — )} as “it is not the case that P — .” or “P — () is false.” Recall that there
was only one case for which we considered P — €} to be false, which was the case that P was
true but ()} was false, which itself can be translated to P A (~ }). For our earlier example, the
negation of the statement “if I eat pizza themn I will drink soda”™ is the statement *1 will eat
pizza but (and) I will not drink soda.” While this discussion is correct and may be intuitive, the
actual proof (1.5) is by truth table:

PlQIP—=Q|~(P=Q) | P|~Q| PA(~Q)
T T T F T F F
T|F F T T T T
F|T T F T F F
F|F T F F T F
\ /
the same
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We leave the proof of (1.6) by truth tables to the exercises. Recall that P —— () states that
we have P true if and only if we also have () true, which we further translated as the idea that we
cannot have P true without ) true, and cannot have (} true without P true. Now ~ (P — ()
is the statement that P +— () is false. which means that P is true and ) false, or {} is true and
P false, which taken together form the statement [P A (~ Q)] v [@ A (~ P)]. as reflected in (1.6)
above. For our example P and ) from before, P —— ()} is the statement “I will at pizza if and
only if I will drink soda.” the negation of which is “I will eat pizza and not drink soda. or I will
drink soda and not eat pizza.”

Another intuitive way to look at these negations is to consider the question of exactly when
is someone uttering the original statement lying? For instance, if someone states P A () (or some
English equivalent), when are they lying? Since they stated “P and Q.7 it is not difficult to see
they are lying exactly when at least one of the statements P. ()} is false, i.e.. when P is false or
) is false,'® i.e., when we can truthfully state (~ P)V (~ ). That is the kind of thinking one
should employ when examining (1.4), that is ~ (P A Q) = (~ P)V [~ @)}, intuitively.

Equivalent Forms of the Implication

In this subsection we examine two statements which are equivalent to P — (). The first is
more important conceptually, and the second is more important computationally. We list them
both now before contemplating them further:

P—@ & (~Q)—(~P) (1.7
P—Q = (~P)VO. (1.8)

We will combine the proofs into one truth table, where we compute P — €, followed in turn

by (~ Q) — (~ P) and (~ P)V Q.

PIlQIP Q| ~@Q | =P |{~Q)+(=P)|~P] Q]| (~F)VE
el i b T F F T F T T
T | F Iz F F F F F
F|T T F T T T T T
F|F T iz T T T F T
the same
The form (1.7) is important enough that it warrants a name:
Definition (iven any implication P — ), we call the (logically equivalent) statement

(~ ) — [~ P) its contrapositive (and vice-versa, see below).

In fact, note that the contrapositive of (~ Q) — (~ P) would be [~ (~ P)] — [~ (~ Q)] i.e.,
P— (.50 P— @} and {~ J) — (~ P) are contrapositives of each other.

We have proved that P — (., its contrapositive (~ ) — [~ P). and the other form
(~ P) v ) are equivalent using the truth table above, but developing the intuition that these
should be equivalent can require some effort. Some examples can help to clarify this.
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P : 1 will eat pizza
€J : I will drink soda
P — () : If I eat pizza, then I will drink soda
{~ ) — [~ P): If I do not drink soda, then I will not eat pizza
(e Py Q) : T will not eat pizza, or I will drink soda.
Perhaps more intuition can be found when ) is a more natural consequence of P. Consider the
following P, () combination which might be used by parents communicating to their children.
P : you leave your room messy
€J : you get spanked
P — ) : if you leave your room messy, then vou get spanked
{~ ) — [~ P) : if yvou do not get spanked. then you do (did) not leave your room messy
([~ P} () : you do not leave your room messy, or vou get spanked.
A mathematical example could look like the following (assuming r is a “real number.” as dis-
cussed later in this text):
P:z=10
Q:z" =100
P— @Q:if = 10, then % = 100
(~ Q) — (~ P) : if 2" # 100, then z # 10
(~ P}V :x# 10 or & = 100.

The contrapositive is very important because many theorems are given as implications, but
are often used in their logically equivalent, contrapositive forms. However, it is equally important
to avoid confusing P — () with either of the statements P «—— () or () — P. For instance,
in the second example above, the child may get spanked without leaving the room messy. as
there are quite possibly other infractions which would result in a spanking. Thus leaving the
room messy does not follow from being spanked, and leaving the room messy is not necessarily
connected with the spanking by an “if and only if.” In the last, algebraic example above, all the
forms of the statement are true, but 2 = 100 does not imply = = 10. Indeed, it is possible that
xr=—10. In fact, the correct bi-implication is * = 100 — [(x = 10) V (z = —10)].

Other Valid Equivalences

While negations and equivalent alternatives to the implication are arguably the most important
of our valid logical equivalences, there are several others. Some are rather trivial, such as

PAFP <= F < PV PF. (L.9)
Also rather easy to see are the “commutativities™ of A,V and «——:
PAQ = QMNF, PVl = QVF P} = Q—PFP (110)
There are also associative rules. The latter was in fact a topic in the previous exercises:

PA(QAR) & (PAQ)AR (1.11)
PV(QVR) « (PVQ)VA. (1.12)
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However, it is not so clear when we mix together V and A. In fact, these “distribute over
each other” in the following ways:

PA(QVR) & (PAQ)V(PAR), (1.13)
PV(QAR) & (PVQ)A(PVR). (1.14)

We prove the first of these distributive rules below. and leave the other for the exercises.

PIQIR|QVE| PAQVR) | PAQ|PAR|(PAQ)V(PAR)
T|T | T T T T T T
T|T|F| T T T F T
T|F|T| T T F T T
T|F|F F F F F F
®I|T K| T F F F F
FIT|F| T F F F F
FIF|T| T F F F F
F|F|F F F F F F

the same

To show that this is reasonable. consider the following:

F: 1 will eat pizza:
() : T will drink cola;

2 1T will drink lemon-lhime soda.

Then our logically equivalent statements become

Pa(Qv R): 1 will eat pizza, and drink cola or lemon-lime soda;
(PAQ) V(P AR): I will eat pizza and drink cola, or

I will eat pizza and drink lemon-lime soda.

Table 1.3, page 22 gives these and some further valid equivalences. It is important to be able
to read these and, through reflection and the exercises, to be able to see the reasonableness of
each of these. Each can be proved using truth tables.

For instance we can prove that P +«—— () &= (P — () A () — P), justifving the choice
of the double-arrow svmbol +——:

PIQIP—Q|P—Q|Q—P|(P—Q)A(Q— F)
TI|T T T T T
TI|F F F T F
FI|T F T F F
F|F T T T T
the same

This was discussed in Example 1.1.4 on page 7.
For another example of such a proof, we next demonstrate the following interesting equiva-
lence:
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P—(QAR) — (P—Q)A(P—R)

PIQ|IR|QAR|P—(QAR)|P—Q|P—R|(P—Q)A(P— R)
T|T|T T T T T T
T|T]|F F F T F F
T|F|T F F F T F
T|F|F F F F F F
F|T|T T T T T T
F|T]|F F T T T T
F|F|T F T T T T
F|F|F F T T T T
the =ame

This should be somewhat intuitive: if P is to imply QA R, that should be the same as P implying
€) and P implying K. This equivalence will be (1.33), page 22. According to (1.34) below it, we
can replace A with v and get another valid equivalence.

Still one must be careful about declaring two statements to be equivalent. These are all
ultimately intuitive, but intuition must be informed.' For instance, left to the exercises are
some valid equivalences which may seem counter-intuitive. These are in fact left off of our
Table 1.3 because they are somewhat obscure, but we include them here to illustrate that not
all equivalences are transparent. Consider

(PVQ)— R « (P— R)A(Q — R), (1.15)
(PAQ)— R «— (P— R)v(Q — R). (1.16)

Upon reflection one can see how these are reasonable. For instance, we can look more closely at
{1.15) with the following P, £} and R:

P : 1 eat pizea,
¢} : I eat chicken,
R : 1 drink cola.

Then the left and right sides of (1.15) become

(PW()) — R:If I eat pizza or chicken. then I drink cola
(P— R)A(Q} — R):If I eat pizza then I drink cola, and if I eat chicken then I drink cola.

In fact {1.16) is perhaps more difficult to see.

At the end of the chapter there will be an optional section for the reader interested in achieving
a higher level of symbolic logic sophistication. That section is devoted to finding and proving
valid equivalences (and implications as seen in the next section) without relying on truth tables.
The technique centers on using a small number of established equivalences to rewrite compound
statements into alternative, equivalent forms. With those techniques one can quickly prove (1.15)
and (1.16). again without truth tables. It is akin to proving trigonometric identities, or the leap
from memorizing single-digit multiplication tables and applying them to several-digit problems.
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PAP & P «— PVP (1.17)
i Py s P (1.18)
~(PVQ) &= (~P)A(~Q) (1.19)
~(PAQ) &= (~P)V(~Q) (1.20)
~(P—Q) += PA(~Q) (1.21)
~(P+—Q) <= [PA(~Q)V[QA(~P)] (1.22)
PvQ > QVP (1.23)
PAQ & QAP (1.24)
PV(QVR) = (PVQ)VR (1.25)
PA(QAR) & (PAQ)AR (1.26)
PA(QVR) &= (PAQ)V(PAR) (1.27)
PV(QAR) & (PVQ)A(PVR) (1.28)
P e PO (1.29)
P—Q ¢ (~Q) — (~P) (1.30)
P—Q = ~[PA(~0Q) (1.31)
Pe—Q <= (~P)e— (~Q) (1.32)
P—{OAR) — (P—OQ)NF — R) (1.33)
P—(QVR) & (P—Q)V(P— R) (1.34)
(P—OIA{Q—P) = P () (1.35)
(P—Q)A(Q — R)A(R— P) &= (P— Q)A(Q +— R)
AP — R) (1.36)

Table 1.3: Table of common valid logical equivalence.

For a glance at the process, we can look at such a proof of the equivalence of the contrapositive:
P— () = [~ Q) — [~ P). To do so, we require (1.29), that P — () <= (~ P)v Q.
The proof rmns as follows:

P—Q < (~P)VQ
= Qv (~PF)
= [~ (~Q)V(~P)
= (~Q)— (~P).

The first line used (1.29), the second commutativity (1.23), the third that § <= ~ (~ Q)
(1.18), and the fourth used (1.29) again but with the part of “P" played by (~ {J) and the part
of “Q)" played by {~ P). This proof is not much more efficient than a truth table proof, but
for (1.15) and (1.16) this technique of proofs without truth tables is much faster. However that
technique assumes that the more primitive equivalences used in the proof are valid, and those are
ultimately proved using truth tables. The extra section which develops such techniques, namely
Section 1.6, is supplemental and not required reading for understanding sutficient symbolic logic
to aid in developing the caleulus. For that we need only up through Section 1.4.
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Circuits and Logic

While we will not develop this next theory deeply, it is worthwhile to consider a short intro-
duction. The idea iz that we can model compound logie statements with electrical switching
circuits.® When current is allowed to How across a switch, the switch is considered “on™ when
the statement it represents has truth value T and current can flow through the switch, and
“off " and not allowing current to How through when the truth value is F. We ean decide if the
compound cireuit is “on” or “off” based upon whether or not current could flow from one end
to the other, based on whether the compound statement has truth value T or F. The analysis
can be complicated if the switches are not necessarily independent (P is “on” when ~ P is “off”
for instance), but this approach is interesting nonetheless.
For example, the statement PV () is represented by a parallel cirenit:

- P

in g | o oOut

—Q—

If either P or ) is on (T), then the current can How from the “in” side to the “out” side of the
circuit. On the other hand, we can represent P A () by a series circuit:

in o p Q « Out

Of course P A () is only true when both P and () are true, and the circuit reflects this: current
can Hlow exactly when both “switches” P and () are “on.”

It is interesting to see diagrams of some equivalent compound statements. illustrated as
circuits. For instance, (1.27), i.e., the distributive-type equivalence

PAQVR) < (PANQVI(PAR)

can be seen as the equivalence of the two cloruits below:

_Q_

ine  p | |, out
O R —
P ) ——

in g | L o out
F R —
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In both circuits, we must have P “on.” and also either @@ or £ for current to flow. Note that in
the second cireuit, P is represented in two places, so it is either *on” in both places, or “off” in
both places. Situations such as these can complicate analyses of switching circuits but this one
is relatively simple.

We can also represent negations of simple statements. To represent ~ P we simply put “~ P7
into the circuit, where it is “on” if ~ F is true. i.e.. if P is false. This allows us to construct
circuits for the implication by using (1.29), ie., that P — () <= (~ P)v Q:

~ P

m + Out

Q

We see that the only time the circuit does not flow is when P iz true (~ P is false) and () is
false, so this matches what we know of when P — () is false. From another perspective, if P
iz true, then the top part of the circuit won't fow =0 (@ must be true, for the whole circuit to be
“on.” or “true.”

When negating a whole circuit it gets even more complicated. In fact, it is arguably easier
to look at the original circuit and simply note when current will rot fow. For instance, we know
~(PAQ) = (~ P)V [~ (), s0 we can construct P A ():

in

P Q « Out

and note that it is off exactly when either P is off or } is off. We then note that that is exactly
when the circuit for {(~ P}V (~ Q@) is on.

~P

in g | |, out

~Q

There are, in fact, electrical fmechanical means by which one can take a cirenit and “negate”
its truth value, for instance with relays or reverse-position switch levers, but that subject is more
complicated than we wish to pursue here.

It is interesting to consider P «—— () as a circuit. It will be “on” if P and ) are both “on”
or both “off.” and the circuit will be “off” if P and (} do not match. Such a cirenit is actually
used commonly, such as for a room with two light switches for the same light. To construct such
a circuit we note that

P—Q = (P—QAQ—P)
= [(~P)VQIA[~Q)V P

We will use the last form to draw our diagram:
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~ P ~Q

in o | | 4 out

o P

The reader is invited to study the above diagram to be convineced it represents P —— ().
perhaps most easily in the sense that. “vou can not have one (P or €)) without the other, but
vou can have neither.” While the above diagram does represent P —— () by the more easily
diagrammed [(~ P} v Q] A [(~ @) v P]. it also suggests another equivalence, since the circuits
below seems to be functionally equvialent. In the first, we can add two more wires to replace
the “center” wire, and also switch the ~ ( and P, since (~ (J) W P is the same as PV [~ Q):

s ~Q

m o Ut

— |l o out

P Q

This circuit represents [(~ P) A (~ Q)] v [P A ()] and so we have (as the reader can check)
P—Q «= [(~P)A(~Q)]VIPAQ] (1.37)

which could be added to our previous Table 1.3, page 22 of valid equivalences. It is also consistent
with a more colloquial way of expressing P +~—— €}, such as “neither or both.”

Incidentally, the circuit above is used in applications where we wish to have two switches
within a room which can both change a light (or other device) from on to off or vice versa. When
switch P is “on.” switch ) can turn the cirenit on or off by matching P or being its negation.

Similarly when P is “off.” Mechanically this is accomplished with “single pole, double throw
(SPDT)" switches.

A f
L] !
in P : i Q out
\
7 %
! \
— b

In the above, the switch P is in the "up” position when P is ‘true, and “down”™ when P is false.
Similarly with .
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Becanse there are many possible “mechanical” diagrams for switching circuits, reading and
writing such circuits is its own skill. However, for many simpler cases there is a relatively easy
connection to our symbolic logic.

The Statements 7 and F

Just as there is a need for zero in addition, we have use for a symbol representing a statement
which is always true, and for ancther symbol representing a statement which is always false. For
convenience, we will make the following definitions:

Definition Let T represent any compound statement which is a tautology, ie. whose
truth value is always T. Similarly, let F represent any compound statement which is a contra-
diction, i.e., whose truth value is always F.

We will assume there is a universal T and a universal F, i.e., statements which are respectively
true regardless of any other statements’ truth values, and false regardless of any other statements’
truth values. In doing so. we consider any tautology to be logically equivalent to T, and any
contradiction similarly equivalent to F.2!

So. for any given P --- . Py, we have that T is exactly that statement whose column in the
truth table consists entirely of T's, and F is exactly that statement whose column in the truth
table consists entirely of F's. For example, we can write

Py({~P) < T; (1.38)
PA(~P) <= F. (1.39)
These are easily seen by observing the truth tables.

Pl~P|Pvi~P)| PA(~P)
1y F T F
F T

T F

We see that PV (~ P) is always true, and P A (~ P) is always false. Anything which is always
true we will dub 7, and anything which is always false we will call F. In the table above, the
third column represents 7, and the last column represents JF.

From the definitions we can also eventually get the following.

PVT & T (1.40)
PAT < P (1.41)
PVF & P (1.42)
PAF < F. (1.43)

Hn fact it is not difficult to see that all tantologies are logically equivalent. Consider the tautologies Pv i~ P,
(P — Q) — [[~ ) — (~ P)], and B — K. A truth table for all three must contain independent component
statements P, ), K, and the abridged version of the table would leok like

PR R PVI~F] | (FP—U)+—l~Q)— [~F)]| | R— R
T 717 T T T
T|T|F T T T
T|F |1 I T I
T|F |F I T I
F|T|T i T I
F|T|F g T 1
FlF |1 1 T I
F|F|F I T I

S0 when all possible underlying independent component statements are included, we see the truth table columns
of these tautologies are indeed the same (all T7s!). Similarly all contradictions are equivalent.
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To demonstrate how one would prove these, we prove here the first two, (1.40) and (1.41),
using a truth table. Notice that all entries for T are simply T:

P\ TEWPYT | PAT
T [T T T
F [T T F

Equivalence (1.40) is demonstrated by the equivalence of the second and third columns, while

{1.41) is shown by the equivalence of the first and fourth columns. The others are left as exercises.
These are also worth reflecting upon. Consider the equivalence PAT + P. When we use

M to connect P to a statement which is always true, then the truth of the compound statement

only depends npon the truth of P. There are similar explanations for the rest of (1.40)—(1.43).
Some other interesting equivalences involving these are the following:

T—P += P (1.44)
P—F = n~P (1.45)

We leave the proofs of these for the exercises. These are in fact interesting to interpret. The
first says that if a true statement implies P, that is the same as in fact having P. The second
says that if P implies a false statement, that is the same as having ~ P, i.e., as having P false.
Both types of reasoning are useful in mathematics and other disciplines.

If a statement containg only T or JF, then in fact that statement itself must be a tautology
(T) or a contradiction {F). This is because there i only one possible combination of truth
values. For instance, consider the statement T — JF, which is a contradiction. One proof is in
the table:

Fl|T—F
F

T
T F

Since the component statement T — F always has truth value F. it is a contradiction. Thus
T —F = F.
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Quantifiers

In this section we introduce quantifiers, which form the last class of logic symbols we will consider
in this text. To use quantifiers, we also need some notions and notation from set theory. This
section introduces sets and quantifiers to the extent required for our study of calenlus here. For
the interested reader, Section 1.5 will extend this introduction, though even with that section
we would be only just beginng to delve into these topics if studying them for their own sakes.
Fortunately what we need of these topics for our study of caleulus is contained in this section.

Sets

Put simply. a set is a collection of objects, which are then called elements or members of the
set. We give sets names just as we do variables and statements. For an example of the notation,
consider a set A defined by

A=1{2135"7.11,13,17}

We usually define a particular set by describing or listing the elements between “curly braces”
{ } (so the reader understands it is indeed a sef we are discussing). The defining of A above was
accomplished by a complete listing, but some sets are too large for that to be possible, let alone
practical. As an alternative, the set A above can also be written

A={z| r is a prime mumber less than 18}.

The above equation is usually read, *A is the set of all  such that r is a prime number less
than 15." Here r is a “dummy variable.” used only briefly to describe the set !® Sometimes it
is convenient to simply write

A = {prime numbers between 2 and 17, inclusive}.

(Usually “inclusive” is meant by defanlt, so here we would include 2 and 17 as possible elements,
if they also fit the rest of the description.) Of course there are often several ways of deseribing
a list of items. For instance, we can replace “between 2 and 17, inclusive” with *less than 18,7
as before.

Often an ellipsis i used when a pattern should be understood from a partial listing.
This is particularly useful if a complete listing is either impractical or impossible. For instance,
the set B of integers from 1 to 100 could be written

B={1,2.3.--,100}.

To note that an object is in a set. we use the symbol £. For instance we may write 5 € B,
read “5 is an element of B." To indicate concisely that 5, 6, 7 and 8 are in B. we can write
5.6,7.8 B.

Just as we have use for zero in addition, we also define the empiy set, or null set as the set
which has no elements. We denote that set @. Note that = € & is always false. ie.

red = F,

because it is impossible to find any element of any kind inside &. We will revisit this set repeatedly
in the optional, more advanced Section 1.5.
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The number line representing the set B of real numbers, with a few points
plotted. On this graph, the hash marks fall at the integers.

Of course for calculus we are mostly interested in sets of numbers. While not the most
important, the following three sets will occur from time to time in this text:

Natural Numbers: M=1{1,234, -} (1.67)
Intesers: E={--,—-3-2-10,1.23---} (1.68)

Rational Numbers: Q= { P
q

tp.qezzmm#m}. (1.69)

Here we again use the ellipsis to show that the established pattern continues forever in each of
the cases N and Z. The sets M, Z and Q are examples of infinite sets, i.e., sets that do not have
a finite number of elements. The rational oumbers are those which are rafios of integers, except
that division by zero is not allowed, for reasons we will consider later.*”

For caleulus the most important set is the set R of real numbers, which cannot be defined
by a simple listing or by a simple reference to M, Z or . One intuitive way to describe the
real numbers is to consider the horizontal number line. where geometric points on the line are
reprezented by their displacements {meaning distances, but counted as positive if to the right
and negative if to the left) from a fixed point. called the origin in this context. That fixed
point is represented by the number 0, since the fixed point is a displacement of zero units from
itself. In Figure 1.2 the number line representation of B is shown. Hash marks at convenient
intervals are often included. In this case, they are at the integers. The arrowheads indicate the
number line is an actual line and thus infinite in both directions. The points —2.5 and 4.8 on the
graph are not integers, but are rational numbers, since they can be written —25/10 = —5/2, and
48/10 = 24/5, respectively. The points /2 and & are real, but not rational, and so are called
irrational. To summarize,

Definition The set of all real numbers is the set R of all possible displacements, to the
right or left, of a fired point 0 on a line. If the displacement is to the right, the number is the
positive distance from 0. If to the left, the number is the negative of the distance from (.48

Thus
E = {displacements from 0 on the number line}. (1.70)

Thiz i= not a rigorous definition, not least becanse “right” and “left” require a fived perspective.
Ewven worse, the definition is really a kind of “circular reasoning.” since we are effectively defining
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the number line in terms of . and then defining B in terms of (displacements on) the oumber
line. We will give a more rigorous definition in Chapter 2 for the interested reader. For now this
should do, since the number line is a simple and intuitive image.

Quantifiers

The three quantifiers used by nearly every professional mathematician are as follow:

universal quantifier: V. read. “for all.” or “for every:”
existential quantifier: 3.  read, “there erists;”
uniqueness quantifier: || read, “unigue.”

The first two are of equal importance, and far more important than the third which is usually
only found after the second. Quantified statements are usually found in forms such as:

(Vx £ 5)P(zx), ie. for all z € §, P(r) is true;
(3x e S)P(z), i.e., there exists an r € 5 such that P(r) is true;
(3r £ 5)P(z), i.e.. there exists a unique (exactly one) x € 5 such that

P(x) is true.

Here S is a set and P(r) is some statement about r. The meanings of these gquickly become
straightforward. For instance, consider
(VreR)r+xr=2r): forallz e R, r+ =21
(dr € B)(r + 2 =2) : there exists (an) r £ B such that + + 2 = 2;
(Alr e B)(r+2=2): there exists a unique r € K such that r+ 2 =2

All three quantified statements above are true. In fact they are true under any circumstances,
and can thus be considered tautologies. Unlike unquantified statements P, ), R, etc., from our
first three sections, a quantified statement is either true always or false always, and is thus, for
our purposes, equivalent to either T or F. Each has to be analyzed on its face, based upon known
mathematical principles: we do not have a brute-force mechanism analogous to truth tables to
analyze these systematically.*® For a couple more short examples, consider the following cases
from algebra which should be clear enough:

(VzeR)D-z=0) — T;
(3r e R)(z? =—1) = F.

The optional advanced section shows how we can still find equivalent or implied statements from
quantified statements in many circumstances.

Statements with Multiple Quantifiers

Many of the interesting statements in mathematics contain more than one quantifier. To il-
lustrate the mechanics of multiply quantified statements, we will first turn to a more worldly
setting. Consider the following sets:

M = {men},

W = {women}.
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In other words, M is the set of all men, and W the =et of all women. Consider the statement™

(¥m € M)(Jw € W)[w loves m]. (1.71)

Set to English, (1.71) could be written, “for every man there exists a woman who loves him.”%!
So if (1.71) is true, we can in principle arbitrarily choose a man m, and then know that there
is a woman w who loves him. It is important that the man m was quantified first. A common
syntax that would be used by a logician or mathematician would be to say here that. once our
choice of a man is fired, we can in principle find a woman who loves him. Note that (1.71) allows
that different men may need different women to love them, and also that a given man may be
loved by more than (but not less than) one woman.
Alternatively, consider the statement

(Fw € W)(¥m € M)[w loves m)]. (1.72)

A reasonable English interpretation would be, “there exists a woman who loves every man.”
Granted that is a summary, for the word-for-word English would read more like, “there exists
a woman such that, for every man, she loves him.” This says something very different from
(1.71), because that earlier statement does not assert that we can find a woman who, herself,
loves every man. but that for each man there is a woman who loves him.*?

We can also consider the statement

(¥m € M)(Vw € W)w loves m]. (1.73)

This can be read, “for every man and every woman, the woman loves the man.” In other words,
every man is loved by every woman. In this case we can reverse the order of quantification:

(Vw € W)(¥m € M)[w loves m]. (1.74)

In fact, if the two quantifiers are the same type—both universal or both existential—then the
order does not matter. Thus

(¥m € M)({Vw € W)[w loves m] <= (Yw € W)(¥m € M)[w loves m],
(3m € M)(Fw € W)[w loves m] < (3w € W)(Im € M)[w loves m].

In both representations in the existential statements, we are stating that there is at least one
man and one woman such that she loves him. In fact that above equivalence is also valid if we
replace 3 with 3!, though it would mean then that there is exactly one man and exactly one
woman such that the woman loves the man, but we will not delve too deeply into uniqueness
here.

Note that in cases where the sets are the same, we can combine two similar quantifications
into one, as in

(VreR)(VycR)z4+y=y+z] = (Vr.ycR)jz+ty=y+1. (1.75)
Similarly with existence.

However, we repeat the point at the beginning of the subsection, which is that the order does
matter if the types of quantification are different.
For another, short example which is algebraic in nature, consider

(vz € R)(3K € R)(z = 2K). (True.) (1.76)
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This is read, “for every ¢ € B, there exists £ £ R such that ¥ = 2K." That K = z/2 exists
(and is actually unique) makes this true, while it would be false if we were to reverse the order
of quantification:

(3K € R)(¥z € R)(z = 2K). (Falze.) (1.77)

Statement (1.77) claims (erroneously) that there exists K € B so that, forevery re B, r = 2K
That is impossible, because no value of K is half of every real number z. For example the value
of K which works for r = 4 is not the same as the value of K which works for r = 100.

Detour: Uniqueness as an Independent Concept

We will have occasional statements in the text which include uniqueness. However, most of those
will not require us to rewrite the statements in ways which require actual manipulation of the
uniqueness quantifier. Still, it is worth noting a couple of interesting points about this quantifier.

First we note that uniqueness can be formulated as a separate concept from existence, inter-
estingly instead requiring the universal quantifier.

Definition Uniqueness is the notion that if ©1. x2 € 5 salisfy the same particular state-
ment P ), then they must in fact be the same object. That is, if ¥1. 12 € § and P{x,) and
P(x2) are true, then 1 = ra. This may or may not be true, depending upon the set S5 and the
statement P( ).

Note that there is the vacnous case where nothing satisfies the statement P( ), in which case the
uniqueness of any such hypothetical object is proved but there is actually no existence. Consider
the following. syvmbolic representation of the uniqueness of an object = which satisfies P(x):>

(V. y € S)[(P(z) A Py)) — = =y]. (1.78)

Finally we note that a proof of a statement such as (Ilzr € S)P(x) is thus usunally divided
into two separate proofs:

(1) Eristence: (dz € 5)P(z);
(2) Uniqueness: (Vz.y € S)[(P(z) A Py)) — = =1y

For example, in the next chapter we rigorously, axiomatically define the set of real numbers R.
One of the axioms™ defining the real numbers is the existence of an additive identity:

(FzeR)(VzeR)(z+z=21). (1.79)

The above statement indeed says that any two elements z,y € 5 which both satisfy P must be the same.
Note that we use a single arrow here, because the statement between the brackets | | is not likely to be a tautology,
but may be true for enough cases for the entire quantified statement to be true. Indeed, the symbols = and
& belong between quantified statements, not inside them.

Recall that an ariom is an assumption, usually self-evident. from which we can logically argue towards theo-
rems. Axioms are also known as postulates. If we attempt to argue only using “pure logic” (as & mathematician
does when developing theorems, for instance), it eventually becomes clear that we still need to make some assump-
tions because one can not argue “from nothing.” Indeed, some “starting points” from which to argue towards
the conclusions are required. These are then called axioms.

The word “axiomatic” is often used colloquially to mean clearly evident and therefore not requiring proof. In
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In fact it follows quickly that such a “z” must be unique, so we have
(Az e R){Vz € R){z + z =z). (1.80)

To prove (1.80), we need to prove (1) exdstence, and (2) uniqueness. In this setting, the existence
is an axiom so there is nothing to prove. We turn then to the uniqueness. A proof is best written
in prose, but it is based upon proving that the following is true:

(V21,22 € R)[(2: an additive identity) A (22 an additive identity) — z; = 23]

Now we prove this. Suppose z; and z; are additive identities. ie.. they can stand in for z in
(1.79), which could also read (3= € R)(¥zx € R){x = z + z). Note the order there, where the
identity z (think “zero”) is placed on the left of r in the equation ¢ = z + z. S0, assuming =z, 23
are additive identities, we have:

n=zz+mn (since 2z is an additive identity)
=21+ 22 (since addition is commmtative—order is irrelevant)
=z (since 2y is an additive identity).

This argument showed that if z; and 2, are any real numhbers which act as additive identities,
then z; = 25, In other words, if there are any additive identities, there must be only one. Of
course, assmming its existence we call that unique real nnmber zero. (It should be noted that the
commutativity used above is another axiom of the real numbers. We will list fourteen in all.)

The distinction between existence and uniqueness of an object with some property P is often
smmmarized as follows:

(1) Existence asserts that there is at least one such object.
(2) Unigueness asserts that there is at most one such object.
If both hold, then there is exactly one such object.
Negating Universally and Existentially Quantified Statements

For statements with a single universal or existential quantifier, we have the following negations.

~ [(Vz € §)P(z)] « (3r € 8)]~ P(z)]. (1.81)
~ [(3z € §)P(z)] += (vz € S)|~ P(z)]. (1.52)

The left side of (1.81) states that it is not the case that P(r) is true for all r £ 5; the right
side states that there is an r € S for which P(r) is false. We could ask when is it a lie that for
all x, P(r) is true? The answer is when there is an r for which P(r) is false, i.e., ~ P{r) is true.

The left side of (1.82) states that it is not the case that there exists an r € 5 =o that P(x)
iz true; the right side says that P(r) is false for all r € §. When is it a lie that there iz an x
making P(z) true? When P(r) is falze for all r.

Thus when we negate such a statement as (vr)P(zr) or (3r)P(zr), we change ¥ to 3 or vice-
versa, and negate the statement after the quantifiers.

Example Negate (Yx € S)[P(z) — Q(z)].
Solution; We will need (1.21), page 22, namely ~ (P — () &= PA(~ Q).
~[(vz € S)(P(z) — Q(z))] = (3r € S)]~ (P(z) — Q(z))]
= (3 € S)[P@) A (~ QE))].
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The above example should also be intuitive. To say that it is not the case that, for allz € 5,
P(x) — }{x) is to say there exists an r so that we do have P(r), but not the consequent ¢J{x).

Example = = Negate (3z € 5)[P(z) A Q(z)).
Solution: Here we use ~ (P A Q) & [~ P)V (~ (), so we can write

~ [z € S)(P(x) A Q(z))] = (vz)[(~ P(z)) V (~ (Q(z)))].

This last example shows that if it is not the case that there exists an @ € 5§ so that P(r) and
€)(x) are both true, that is the same as saying that for all x, either P{x) is false or (x) is false.

Negating Statements Containing Mixed Quantifiers

Here we simply apply (1.81) and (1.82) two or more times, as appropriate. For a typical case of
a statement first quantified by ¥, and then be 3, we note that we can group these as follows:*

(Vz € R)(3y € §)P(z.y) < (Vz € R)[(Iy € S)P(z.y)]
(Here “R" is another set, not to be confused with the set of real numbers B.) Thus
~ [(vz € R)3y € S)P(z.y)] += ~ {(vz € R)[(3y € $)P(z.y)]}
<= (3r € R}{~ [(3y € S)P(z.y)]}
<= (3z € R)(Vy € S)|~ Pz, y)].
Ultimately we have, in turn, the ¥'s become 3's, the 3's become ¥'s, the variables are quantified
in the same order as before, and finally the statement P is replaced by its negation ~ P. The

pattern would continue no matter how many universal and existential quantifiers arise. (The
uniqueness quantifier is left for the exercises.) To summarize for the case of two quantifiers,

~ [(¥x € R)(3y € 5)F(z.y)] &= (3r € R){Vy € 5)|~ P(z.y)] (1.83)
~ [(3z € R)(¥y € 5)P(z.y)] = (¥z € R){(Iy € 5)|~ P(z.y))- {1.84)
Example Consider the following statement, which is false:

(¥z € R)(Jy € B)[zy = 1].

One could say that the statement savs every real number r has a real number reciprocal y. This
is false. but before that is explained, we compute the negation which must be true:

~ [(¥x € R)(Iy € R)(zy = 1)] <= (3r € R)(Vy € R)(zy # 1).
Indeed, there exists such an x, namely = = 0, such that ry # 1 for all y.

In the above, we borrowed one of the many convenient mathematical notations for the negations
of various symbols. Some common negations follow:

~{r=y) = x#u,

(T Sy) &= T2y,
~(z=y

~(re S

= I >,
= rgs

)
)
)
)

Of course we can negate both sides of any one of these and get, for example,. € § &= ~ (¢ &
5). Reading one of these backwards, we can have ~ (r > y) == = <y.
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Possible Questions

2 Mark Questions:

1. Give the symbolic form of the statement “every book with blue cover is a mathematics book”
2. Define subject with example.
3. Define contingency
4. Define Essential quantifier with example.
5. Define Predicates with examples.
6 Mark Questions:
1. Show that the following is a tautology implication P>(Q—R) = (P>Q)—(P—R)
2. Let Q(x,y,z) be the set “x+y=z".what are the truth values of the set
(1) VxVy3z Q(x,y,z) (i) IzvxVy Q(x,y,z)  (iil) VxVyVz Q(X,y,z)
3. Show that P>(Q—P) < [P—(P—Q)
4. Let Q(x, y) denote “x + y=0". what are the truth value of the quantification
(») Fyvx Qx.y) (i) Vx3y Q(xy)
5. Show that | PAQ) > (—| Pv (—| PvQ) e (—| P v Q) (use only the laws)
6. Prove that R v S follows logically from the premises C v D, (C v D) —1H, 1 H—(A Al B)
and (A A|B) > (RVS).
7. Show that the following are implication.
i) P = (Q—P).
i) (P-Q—-R)=EFP-Q—-((P—-R)
8.  Use quantifiers to express each of the following:

(1) All humming birds are richly colored
(i1) No large birds line on honey
(iii) Birds that do not line honey are dull in color

(iv) Humming birds are small
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9. Show that the following premises are Inconsistent.

1) If Jack misses many classes through illness, he fails in school.
i1) If jack fails in school, then he is uneducated.
1) If jack reads a lot of books, then he is not uneducated.

v) Jack misses many classes through illness and reads a lot of books.

10. Show that (IP A (1Q AR))v(QAR) v (PAR) <R
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UNIT-IT
PART A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

{ "and", "not"} is called a - set functionally complete minimal functionally complete |maximal functionally complete complete minimal functionally complete
{"and", "or", "not"} is called a —— set functionally complete llyi 1 1 functional functionally complete
For two variables the number of possible assignment of truth values is 2(2"n n 2n 2’n
The substitution instance of a tautology is a tautology contradiction identically false all of these tautology
Equivalenceis a ----- relation reflexive symmetric transitive asymmetric symmetric
A statement "A" is said to imply another statement "B" if ---- is a tautology if A then B if B then A if (not A) then B if (not B) then A if A then B
The dual of "and" is "and" "or" "not and" "not or" "or"
The dual of " or" is "and" "or" "not and" "not or" "and"
The dual of NANDis NAND NOR "or " "and" NOR
The dual of NOR is NAND NOR "or " "and" NAND

The other name for penfis

product of sums canonical form

sum of products canonical form

product of products canonical form

sum of sums canonical form

product of sums canonical form

The other name for pdnfis

product of sums canonical form

sum of products canonical form

product of products canonical form

sum of sums canonical form

sum of products canonical form

The minterms are

PandQ

not P and Q

PandQ, not P and Q

none of these

Pand Q, notPand Q

The max terms are

PorQ

Pornot Q

not P or P

PorQ,PornotQ

PorQ,PornotQ

The statement B follows logically from the statement A if only if

if A then B is a tautology

if A then B is a contradition

if B then A is a tautology

if B then A is a contradiction

if A then B is a tautology

The Rule P in the inference is used to indicate the introduction of the

Premise

conclusion

contradiction

none

Premise

Symbolize the expression "Every student in this class has studied logic" by taking
p(x) : x studied logic, q(x) : x is in this class

(¥X)(ifq(x) then p(x))

(¥X)(ifp(x) then q(x))

(yx)(ifnot q(x) then p(x))

(yx)(ifq(x) then not p(x))

(¥X)(ifq(x) then p(x))

Symbolize the statement "This cricket ball is white" W(b) B(w) W(b.c) C(bw) W(b)
Symbolize the statement "Jack is taller than Smith" T(j.s) T(s.j) J(s,t) J(t,s) T(j.s)

Symbolize the statement " Canada is to the north of United States" N(c,s) N(s.c) S(n,c) S(c,n) N(c,s)

Universal Quantifier is Forall x For some x there exists x there exists no x Forall x

Essential Quantifier is Forall x For some x there exists x there exists no x there exists x

In the statement "The cricket ball is white", the predicate is 'white ball cricket ball none white

In the statement "Every mammal is warm blooded", the predicate is 'warm blooded mammal warm none warm blooded

In the statement "Every mammal is warm blooded", the object is warm blooded mammal warm none mammal

Use quantifiersto say that V3 is not a rational number negation (there exists x a rational |(there exists x a rational negation (there exists x a rational none negation (there exists x a rational

number)(x"2=3)

number)(x"2=3)

number)(x"2#=3)

numberi(x"2=3)

Existential Specification is a rule of the form

(Forall x ) (A(x)) implies A(y)

A(x) implies (For all y)(A(y))

(there exists x )(A(x)) implies A(y)

A(x) implies (there exists y)(A(y))

(there exis
)

X )(A(x)) implies

Existential Generalisation s a rule of the form

(Forall x ) (A(x)) implies A(y)

A(x) implies (For all y)(A(y))

(there exists x )(A(x)) implies A(y)

A(x) implies (there exists y)(A(y))

A(x) implies (there exists y)(A(y))

Universal Specification is a rule of the form

(Forall x ) (A(x)) implies A(y)

A(x) implies (For all y)(A(y))

(there exists x )(A(x)) implies A(y)

A(x) implies (there exists y)(A(y))

(Forall x ) (A(x)) implies A(y)

Universal Generalisation is a rule of the form

(Forall x ) (A(x)) implies A(y)

A(x) implies (For all y)(A(y))

(there exists x )(A(x)) implies A(y)

A(x) implies (there exists y)(A(y))

A(x) implies (For all y)(A(y))

Symbolize the statement"” Every mammal is warm blooded"

(Forall x ) (M(x))— W(x))

(there exists x ) (M(x))— W(x))

(Forall x ) (W(x))— M(x))

(there exists x ) (W(x))— M(x))

(For all x ) (M(x))— W(x))

"x is shorter than y" can be symbolized as G(x,y) X(g) Y(g) G(y,x) G(x,y)

The painting is red can be symbolizedas R(p) P(r) S(p.r) Rand P R(p)

"Zaheer is a bowler and the ball is white" can be symbolizedas B(z) and W(b) B(z) or W(b) not B(z) and W(b) not B(z) or W(b) B(z) and W(b)
The rules used to check the validity of the premises is US,uG ES,EG both none both

The statement form pv(~p)isa...........cccccceeeennn Satisfiable Unsatisfiable Tautology Invalid Tautology
Let p and q be statements given by “p —q". Then q is called hypothesis conclusion TRUE FALSE conclusion
The statement form p(~p)isa............ contradiction Unsatisfiable Tautology Invalid contradiction
If p and q are statement variables, the conditional of q by p is given by

------ ~p—~q p—~q p—q pP—q p—q

Let p and q be statements given by “p —q". Then p is called......... hypothesis conclusion TRUE FALSE hypothesis
The statement (p — 1) A(q — 1) is equivalent to pVq—o~r pVg—or pV~q—or ~p Vg—or pVgq—or
The Negation of a Conditional Statement p —q is givenby ...... pA-q ~pA-q pV-q p Aq pA-q
Given statement variables p and q, the biconditional of p and q is given

by ... pe~q p—q ~p«q p«q p«q

The inverse of “if p then @ is ............ if ~ pthen-gq if~ pthen-gq if~ pthen-gq if~ pthen-gq if~ pthen-gq

The Some men are clever can be symbolizedas

(there exists x)(M(x)—C(x))

(for all x)(M(x)>C(x))

(there exists x)(M(x) or C(x))

(for all x)(M(x) or C(x))

(there exists x)(M(x)—C(x))
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Sets: Subsets, Set operations and the laws of set theory and Venn diagrams. Examples of finite
and infinite sets.
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Sets

In this section we introduce set theory in its own right. We also apply the earlier symbolic
logic to the theory of sets (rather than vice-versa). We also approach set theory visually and
intuitively, while simultanecusly introducing all the set-theoretic notation we will use throughout
the text. To begin we make the following definition:

Definition A set is a well-defined collection of objects.

By well-defined, we mean that once we define the set, the objects contained in the set are
totally determined, and so any given object is either in the set or not in the set. We might also
note that in a sense a set is defined (or determined) by its elements; sets which are different
collections of elements are different sets, while sets with exactly the same elements are the same
set. We can also define equality by means of quantifiers:

Definition Given two sets A and B, we defined the statement A = B as being equivalent
to the statement (Vz)|(z € A) +— (z € B)):

A=B = (¥z)[(z € A) — (z € B)]. (1.85)

If we allow ourselves to understand that x is quantified universally (that is, we assume “(Vz)”
s understood) unless otherwise stoted, we can write, instead of A= B, thatz € A & z € B.

When we say a set is well-defined we also mean that once defined the set is fired, and does not
change. If elements can be listed in a table (finite or otherwise),®” then the order we list the
elements is not relevant; sets are defined by exactly which objects are elements, and which are
not. Moreover, it is also irrelevant if objects are listed more than once in the set, such as when
we list Q= {r |z =pfq. p.g€ Z, q# 0}. In that definition 2 = 2/1 = 4/2 = (/3 is “listed”
infinitely many times, but it iz simply one element of the set of rational numbers . While it
actually is possible to “list” the elements of (J if we allow for the elipsis (- - - ), it is more practical
to describe the set, as we did, using some defining property of its elements (here they were ratios
of integers, without dividing by zero), as long as it is exactly those elements in the set—no more
and no fewer—which share that property. One usunally uses a “dummy variable” such as r and
then describes what properties all such x in the set should have. We could have just as easily
used z or any other variable.®

Subsets and Set Equality

When all the elements of a set A are also elements of another set B, we say A is a subset of B. To
express this in set notation, we write 4 € B. In this case we can also take another perspective,
and say B is a superset of A, written B 2 A. Both symbols represent types of set inclusions,
i.e., they show one set is contained in another.

A useful graphical device which can illustrate the notion that A € B and other set relations
is the Venn Diagram, as in Figure 1.3. There we see a visual representation of what it means
for A C B. The sets are represented by enclosed areas in which we imagine the elements reside.
In each representation given in Figure 1.3, all the elements inside 4 are also inside B.
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@) |27

Three possible Venn Diagrams illustrating A € B, (Note that in the first
figure, for example. B is the set of all elements within the interior of the larger eirele)) What
is important is that all elements of A are necessarily contained in B as welll We do not
necessarily know “where™ in A are the elements of A, except that they are in the area which
is marked by A. Sinee the area in A is also in B, we know the elements of A must also be
contained in 5 in the illustrations above,

Using symbolic logic, we can define subsets, and the notation, as follows:
ACE + (Vz)(z € A— z € B). (1.86)

The role of the implication which is the main feature of {1.86) should seem intuitive. Perhaps
less intuitive are some of the statements which are therefore logically equivalent to (1.86):

ACB « (Vr)(re A—z e B)
= (Vz)[(~ (z € 4)) v (z € B)]
= (Vz)[(x ¢ A) v (z € B)].

which uses the fact that P — @ < (~ P)Vv . and

AC B < (Vz)[(~ (x € B)) — (~ (z € 4))]
= (Vz)[(z ¢ B) — (z ¢ 4)]
which uses the contrapositive P — ) <= [~ J) — [~ FP). Note that we used the

shorthand notation ~ (xr € A) <= = ¢ A. With the definition (1.86) we can quickly see two
more, technically interesting facts about subsets:

Theorem For any setz A and B, the following hold true:
ACA, and (L8T7)
A=B & (ACB)A(BCA). (L.88)

Now we take a moment to remind ourselves of what is meant by theorem:

Definition i A theorem iz a statement which we know to be true because we have a proof
of it. We can therefore accept it as a tautology.

A theorem’s scope may be very limited (the above theorem only applies to sets and subsets as we
have defined them.) Furthermore, a theorem’s scope and “truth” depends upon the axiomatic
system upon which it rests, such the definitions we gave our symbolic logic symbols (which
might not have always been completely obvious to the novice, as in our definitions of “v" and
“longrightarrow”). For another example there is Euclidean geometry, the theroems of which
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Venn Diagram ilhustrating NCEZCQ CR.

rest upon Euclid’s Postulates (or axioms, or original assumptions), while other geometric systems
begin with different postulates.

Nonetheless once we have the definitions and postulates one can say that a theorem is a
statement which is always true (demonstrated by some form of proof), and in fact therefore
equivalent to T (introduced on page 26). We will usze that fact in the proof of (L.87), but
for (1.88) we will instead demonstrate the validity of the equivalence { <= ). For the first
statement’s proof, we have

ACA &= (Vo)[zed) —(zc i) — T.

Note that the above proof is based upon the fact that P — P is a tautology (i.e.. equivalent
to T). A glance at a Venn Diagram with a set A can also convince one of this fact, that any set
is a subset of itself. For the proof of (1.88) we offer the following:

A=EB = (Vz)[(zr € A) «— (z € B)|
+ (Vr)[((r€ A) — (z € B}) A((z € B) — (z € 4))]
&= [(¥z)[(r € A) — (x € B)] A[(¥z)[(z € B) — (z € A)]
= (AC B)A(BC A). ged®

A consideration of Venn diagrams also leads one to believe that for all the area in A to be
contained in B and vice versa, it must be the case that 4 = B. That A = B implies they are
mutual subsets is perhaps easier to see.

Note that the above arguments can also be made with supersets instead of subsets, with 2
replacing € and «— replacing —.

One needs to be careful with quantifiers and symbolic logic, as is discussed later in Section 77,
but in what we did above the (¥x) effectively went along for the ride.

Of course, Venn Diagrams can accommodate more than two sets. For example, we can
illustrate the chain of set inclusions

NCZCQCR (1.89)

using a Venn Diagram. as in Figure 1.4. Note that this is a compact way of writing six different
set inclusions: HCZ. NCQ NCR ZCO.ZCR and QCR.
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a<b a=h a>bh
R
b

For any two real numbers a and b, we have the three cases concerning their
relative positions on the real line: a < b a = b, a > b Arrows indicate the possible positions
of a for the three cases.

Intervals and Inequalities in E

The number line, which we will henceforth dub the real line, has an inherent order in which the
numbers are arranged. Suppose we have two mumbers a. b £ K. Then the order relation hetween
a and b has three possibilities, each with its own notation:

1. ais to the left of b, written a < b and spoken “a is less than b
2. a is to the right of b, written a > b and spoken “a is greater than b.”

3. a is at the same location as b, written a = b and spoken “a equals b.”

Figure 1.5 shows these three possibilities. Note that “less than” and “greater than” refer to
relative positions on the real line, not how “large” or “small” the numbers are. For instance,
4 = 5 but —5 < —4, though it is natural to consider —5 to be a “larger” number than —4.
Similarly —1000 < 1.5 Of course if a < b <= b > a. We have further notation which
describes when a is left of or at b, and when a is right of or at &

4. ais at or left of b, written a < b and spoken “a is less than or equal to 6."
5. a is at or right of b, written a = b and spoken “a is greater than or equal to b7

Using inequalities, we can describe intervals in B, which are exactly the connected subsets of
R, meaning those sets which can be represented by darkening the real line at only those points
which are in the subset, and where doing so can be theoretically accomplished without lifting
our pencils as we darken. In other words, these are “unbroken” subsets of E. Later we will see
that intervals are subsets of particular interest in caleulus,

Intervals can be classified as finite or infinite (referring to their lengths), and open, closed or
half-open (referring to their “endpoints”). The finite intervals are of three types: closed. open
and half-open. Intervals of these types, with real endpoints a and b, where a < b (though the idea
extends to work with @ < b) are shown below respectively by graphical illustration. in interval
notation, and using earlier set-theoretic notation:
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open: ® % (a,b) {reR|a<x<b)
closed: —E—g— [a. B] {reR|a<z<b}
half-open: ¢ f [a.b) {reR|a<z<b}
half-open: & g (. b] {reR|a<z<b)

Note that @ < < b is short for (e < z)A({x < b), ie, (r > a) Az < b). The others are similar.

We will concentrate on the open and closed intervals in caleulus. For the finite open interval
above, we see that we do not include the endpoints @ and b in the set, denoting this fact with
parentheses in the interval notation and an “open” circle at each endpoint on the graph. What is
crucial to caleulus is that immediately surrounding any point r € (a, b) are only other points still
inside the interval; if we pick a point r anywhere in the interval (a. b), we see that just left and
just right of x are only points in the interval. Indeed, we have to travel some distance—albeit
possibly short—to leave the interval from a point = € (a,b). Thus no point inside of (a, b) is on
the boundary, and so each point in (a,b) is “safely” on the interior of the interval. This will be
crucial to the concepts of continuity, limits and (especially) derivatives later in the text.

For a closed interval [r1._ Er]. we do include the endpoints @ and b, which are not surrounded
by other points in the interval. For instance, immediately left of a is outside the interval [a, ],
though immediately right of a is on the interior.*! We denote this fact with brackets in the
interval notation, and a “closed” circle at each endpoint when we sketch the graph. Half-open
{or half-closed) intervals are simple extensions of these ideas. as illustrated above.

For infinite intervals, we have either one or no endpoints. If there is an endpoint it is either
not included in the interval or it is. the former giving an open interval and the latter a closed
interval. An open interval which is infinite in one direction will be written (a, oc) or (—oc, a),
depending upon the direction in which it is infinite. Here oo (infinity) means that we can move
along the interval to the right “forever.” and —oc means we can move left without end. For
infinite closed intervals the notation is similar: [a,>c) and (—2c,a]. The whole real line is also
considered an interval, which we denote B = (—oc. 2¢).%% When an interval continues without
bound in a direction, we also darken the arrow in that direction. Tlus we have the following:

open: (a.2c) {reR|x>a}
open: *—?— (—nc.a) {reR|z<a}
closed: ¢ = [a. oc) {reR|z>a}
Cloped:, “—————— (—oc.a] [reR|z<a}

Note that we never use brackets to enclose an infinite “endpoint.” since —oc, 0o are not actual
boundaries but rather are concepts of unending continuance. Indeed, —oc, oo ¢ B, ie., they are
not points on the real line, so they can not be boundaries of subsets of B; there are no elements
“heyond” them.
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Most General Venn Diagrams

Before we get to the title of this subsection, we will introduce a notion which we will have
occasional nse for, which is the concept of proper subset.

Definition IfF{ACB)A(A+# B), we call A a proper subset of B, and write A ¢ B%,

Thus A € B means A is contained in B, but Aisnot allof B. Notethat AC B = ACBH
(just as P A} = F). When we have that 4 is a subset of B and are not interested in
emphasizing whether or not A ¥ B (or are not sure if this is true), we will use the “inclusive”
notation €. In fact, the inclusive case is less complicated logically (just as P v () iz easier than
P XOR ) and so we will usually opt for it even when we do know that A # B. We mention
the exclusive case here mainly because it is useful in explaining the most general Venn Diagram
for two sets A and B.

M course it is possible to have two sets, A and B, where neither is a subset of the other.
Then A and B may share some elements, or no elements. In fact, for any given sets A and B,
exactly one of the following will be true:

case 1: A= B;

case 2: AC B, ie., Ais a proper subset of B;

case 3: B C A ie., B is a proper subset of A;

case 4: A and B share common elements, but neither is a subset of the other;

case §H: A and B have no common elements. In such a case the two sets are said to he disjoint.

Even if we do not know which of the five cases is correct, we can use a single illustration which
covers all of these. That illustration is given in Figure 1.6, with the various regions labeled. (We
will explain the meaning of [ in the next subsection.) To see that this covers all cases, we take
them in turn:

u

Most general Venn diagram for two arbitrary sets A and B, Here [7 is some
superset of both A and B,

A
aYa
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case 1: A = B: all elements of A and B are in Region IV; there are no elements in Regions 11
and ITL

case 2: A C B! there are elements in Regions I1I and IV, and no elements in Region 1L
case 3: B C A: there are elements in Hegions I and IV, and no elements in Region 111

case 4: A and B share common elements. but neither is a subset of the other: there are elements
in Region I, III and IV.

case 5: A and B have no common elements: there are no elements in Region IV.

Note that whether or not Region I has elements is irrelevant in the diseussion above, though it
will become important shortly.

The most general Venn diagram for three sets is given in Figure 1.7, though we will not
exhaustively show this to be the most general. It is not important that the sets are represented
by circles, but only that there are sufficiently many separate regions and that every case of an
element being, or not being, in A, B and C is represented. Note that there are three sets for an
element to be or not to be a member of, and so there are 2¥ = § subregions needed.

Set Operations

When we are given two sets A and B, it is natural to combine or compare their memberships
with each other and the universe of all elements of interest. In particular, we form new sets
called the union and intersection of A and B, the difference of 4 and B (and of B and A), and
the complement of 4 (and of B). The first three are straightforward, but the fourth requires

Ar B B—A

Some Venn Diagrams involving two sets A and B inside a universal set 7, which
is represented by the whole “box.”

some clarification. Usually A and B contain only objects of a certain class like numbers, colors,
etc. Thus we take elements of A and B from a specific universal set [T of objects rather than an
all-encompassing universe of all objects. It is unlikely in mathematics that we would need, for
instance, to mix numbers with persons and planets and verbs, so we find it convenient to limit
our universe [/ of considered objects. With that in mind (but without presently defining [7), the
notations for these new sets are as follow:
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Definition

AuB={z | (zx€ A)V(z € B)} (1.90)

AnB={z | (zre A)A(z € B)} (1.91)

A-B={zr | (zreA)A(z ¢ B)} (1.92)

A={zelU| (z¢A)}. (1.93)

These are read “A union B.” “A intersect B,” “A minus B.” and *A complement,” respectively.
Mote that in the first three. we conld have also written {.r e f.-’i - e } but since A, B C [, there
it iz unnecessary. Also note that one could define the complement in the following way, though
(1.93) is more convenient for symbolic logic computations:

A={zr|(zelU)A(zgA)}=U—-A (1.94)

These operations are illustrated by the Venn diagrams of Figure 1.8, where we also construct B’
and B — A. Note the connection between the logical V and A, and the set-theoretical U and n.%

Example Find AUB. AnB. A— B and B— A if

A=1{1.2.34567}
B = {5.6.7.8,9.10}.

Solution: Though not necessary (and often impossible), we will list these set elements in a
table from which we can easily compare the membership.

T, }
7. 8 9. 10 }

A =9{1 2 3 4
B = {

& en
oo

Now we can compare the memberships using the operations defined earlier.

AUB={1,2,3,4,5,6,7,8,9,10},
AnB={56.7}.
A—B=1{1234},
B—A={89.10}

The complements depend upon the identity of the assumed universal set. If in the above example
we had 7 = N, then A’ = {8,9.10.11,---} and B = {1.2.3.4,11,12,13. 14,15 - - -}. If instead
we took I7 = Ewe have 4" = {--- | —3,—2 —1.0.89,10,11,---}, for instance. (We leave B to
the interested reader.)

Just as it is important to have a zero element in R for arithmetic and other purposes, it is
also useful in set theory to define a set which contains no elements:

Definition The set with no elements is called the empty set,® denoted &.

One reason we need such a device is for cases of intersections of disjoint sets. If A = {1,2.3} and
B={4.56,7,89, 10}, then AUB ={1.2,3,--- .10}, while AN B = @. Notice that regardless
of the zset A, we will alwayshave A — A=0. A-—@=4 AUF=4 AN@ =&, and & C A.
The last statement is true because, after all, every element of & is also an element of A.%6 Note
also that " = U and /' = @&.
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The set operations for two setz 4 and B can only give us finitely many combinations of the
areas enumerated in Figure 1.6. In fact, since each such area is either included or not, there are
24 = 16 different diagram shadings possible for the general case as in Figure 1.6. The situation
is more interesting if we have three sets A, B and . Using Figure 1.7, we can prove several
interesting set equalities. First we have some fairly obvious commutative laws (1.95), (1.96) and
azsociative laws (1.97), (1.98):

AuB=BUA (1.95)
AnNB=BnA (1.96)
AU(BuO)=(AuB)ucC (1.97)
AN(BNC)=(AnB)NC (1.98)

Next are the following two distributive laws, which are the set-theory analogs to the logical
equivalences (1.27) and (1.28), found on page 22.

An(Bu)=(AnBlu(AncC), (1.99)
AUu(BNO)=(AuB)N(AuC). (1.100)

N\

A
o/

BUC

An{BUO)

LN

A

A
o/

AnEB
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AncC (AnBYu{ANC)

Figure Venn Diagrams for Example 1.5.2 verifying one of the distributive laws, specifi-
cally AN{BUC)=(AnB)U{ANC). It is especially important to note how one construets
the third box in each line from the Grst two.

Example We will show how to prove (1.99) using our previous symbolic logic, and then
give a visual proof using Venn diagrams. Similar techniques can be used to prove (1.100). For
the proof that AN[(BUC) = (AN B)U(ANC), we use definitions, and (1.27) from page 22 to
get the following:
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ze AN(BUC) = (zc A)a(z e BULD)
= (zreA)Aal(zeB)v(zel]]
= [(zeA)A(zeB)|V[zeA)A(zx e )]
<= [re(ANB)V[xe(ANnC)]
= re[(ANB)U(ANC). qed.

We proved that (Vz)[(x € AN(BUC)) +— (xr € (AN B)U(ANC))], which is the definition for
the sets in question to be equal. The visual demonstration of AN{BUC) ={ANB)uU(ANC)
is given in Figure 1.9, where we construct both sets of the equality in stages.

To construct the left-hand side of the equation, in the first box we color A, then BU C in
the second. and finally we take the area from the first, remove the area from the second, and are
left with the difference A — (B U ). To construct the right-hand side of the equation, we colar
A— B and A — ' in separate boxes. Then we color the intersection of these, which is the area
colored in the previous two boxes. This gives us our Venn Diagram for (A — B)n {4 - C). We
see that the left- and right-hand sides are the same, and conclude the equality is valid.

The next two are distributive in nature also:

A—{BUCT={A—B)N{A—C) (1.101)
A—(BNC)=(A—B)u(A-0O). (1.102)

Finally, if we replace A with [, we get the set-theoretic version of de Morgan's Laws:

(BUCY =B'NC” (1.103)
(BnCY =B'uC. (1.104)

Note that these are very much like our earlier de Morgan's laws. and indeed use the previous
versions (1.3) and (1.4}, page 17 (also see page 22) in their proofs. For instance, assuming r € [7
where [ is fixed, we have

re(BUCY = ~(ze BUl)
=~ ((ze B)Vizel))
+= [~ (ze B)]Al~ (z€C)]
= [reBAalrel
— re B'nc’, qed

That proves (1.103), and (1.104) has a similar proof. It is interesting to prove these using Venn
Diagrams as well (see exercises).

Example Another example of how to prove these using logic and Venn diagrams is in
order. We will prove (1.101) using both methods. First, with symbolic logic:

reA—(BUC) + (re A)A[~(z e BUC)]

(xre A)a[~((z e B)v(xe )

(ze AA[(~(zeB)n(~(ze0))]

(re A)a(~(re B)A(~(zxe))

(e Aya(~(re B Aalze A)A(~ [z )
[(xe AA(~(zeB)A[(ze A)A(~ (ze0))]
(re A—B)A(ze A—C)
ze(A—B)n(A-C), qg.ed.

EREREN!
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If we took the steps above in turn, we used the definition of set subtraction, the definition
of union, (1.19), associative property of A, added a redundant (x € A), regrouped, used the
definition of set subtraction. and finally the definition of intersection.

Now we will see how we can use Venn diagrams to prove (1.101). As before, we will do this
by constructing Venn Diagrams for the sets A— (BUC) and (A — B)N (A — ) separately, and
verify that we get the same sets. We do this in Figure 1.10. (If it is not visually clear how we
proceed from one diagram to the next “all at once,” a careful look at each of the 2* = 8 distinct
regions can verify the constructions.)

More on Subsets

Before closing this section. a few more remarks should be included on the subject of subsets.
Consider for instance the following:

Example Let A = {1.2}. List all subsets of A.
Solution: As A= {1,2} has two elements, it can have suhsets which contain zero elements,
one element, or two elements. The subsets are thus &, {1}, {2} and {1.2} = A.

A BUC

SN
o/

A-C (A—B)N(A—C)

Figure Venn Diagrams for Example 1.5.3 verifving that A={BUC) = (A=8B)n(A=C).

It is common for novices studying sets to forget that & € A, and A C A, though by definition,

TEE = £ A (vacuously),
red = re A (trivially).
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If one wanted only proper subsets of A, those would be @, {1}, {2} (we omit the set A).

Note that with our set A = {1,2}, we can reduce rephraze the question of which subset we
might refer to, instead into a question of exactly which elements are in it, from the choices 1 and
2. In other words, given a subset B C A, which (if any) of the following are true: 1 € B, 2 € B.
From these statements we can construct a truth table-like structure to describe every possible
subset of A:

A=1{1.2}
le BE|2e B subset B
T T {1.2} = A
T F {1}
F T {2}
F F %]

Similarly. a question about subsets B of A = {a. b, ¢} can be placed in context of a truth table-like
construct:

A={a.b,.c}
ac B | beB|ce B subset B

T T T {a.bc}=A
T T F {a.b}

T F T {a.c}

T F F {a}

F T T {b.c}

F T F {5}

F F T {c}

F F F &

It would not be too difficult to list the elements of A = {1,2, 3} by listing subsets with zero,
one, two and three elements separately, ie. @, {a}, {6}, {c}. {a. b}, {a.c}. {b.c}, {a. b, c}. but
if we were to need to list subsets of a set with significantly more elements, it might be easier to
use the lexicographical order embedded in the truth table format to exhaust all the possibilities.
The only disadvantage is that the order in which subsets are listed might not be quite as natural
as the order we would likely find if we listed subsets with zero, one, two elements and so on.
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Possible Questions

2 Mark Questions:

1. Define null set and singleton set.
2. Define subset
3. When two sets are said to be equal?
4. Define finite set with example
5. Define Poset.
6 Mark Questions:
1. IfA={3,4,2},B={3,4,5,6} and C={2,4,6,8} then prove that
ANnB-CO)=(AnB)-(AnC)
2. LetU={x:xinN, 1 <x <12} be the universal set and A = {1, 9, 10},
B=1{3,4,6,11} and C= {2, 5, 6} are subsets of U. Find the sets
1 (AUB)N(ANC) (()AuBNC)
3. If A, B, C are any three sets then prove that AU (BN C)=(AuB)n (AU C)
4. Use venn diagram to find the sets A and B if
1) A-B=1{1,3,7,11},B-A=1{2,6,8} and AnB={1, 9}
i) A-B={1,2,4},B-A={7,8} and AUuB={1,2,4,5,7,8,9}
5. Prove that (A-C) N (C-B)=®
6. If A, B, C are the sets then prove that A— (BN C)=(A-B)uU (A-C)
7. If A,B,C are sets prove that AU (BNC) = ( CuBN A using set identities
8. If A, B, C are any three sets then prove that AN (BuU C)=(AnB)uU(AnC)
9. Use venn diagram to prove that An(B—C) = (ANB)—(A©

10. Simplify the following set using set identities AUB U (ANBNC)
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Possible Questions

Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
s a collection of well-defined objects. element member set none of these set
a,b,c} then cardinality of the set is nullset one two three three
The two sets A and B are called as ifn(a) = n(B) equal set equalent set null set Subset equalent set
The two sets A and B are called as if the sets have the same elements. equal set equalent set null set Subset equal set
If every element of the set A is an element of the another set B then A is of B [subset superset empty set universal set subset
If every element of the set A is an element of the another set B then B is of A |subset superset empty set universal set superset
if the cardinality of the set is zero then the set is subset superset empty set universal set empty set
Empty set is a of every set. subset superset empty set universal set subset
Universal set is the of all the sets. subset superset empty set universal set superset
If A= {1,2,3,4} and B = {2,4} then A intersection B = 2,4} 11,2,3,4} 11,2} {} {2,4}
If A= {1,2,3,4} and B = {2,4} then A union B= {2,4} 11,2,3,4} 11,2} {} {1,2,3,4}
Two sets are said to be disjoint if A intersection B = A B A union B {}
If n subsets of a set are given, then the number of is 2 power n min terms minimax terms sets none of these min terms
If n subsets of a set are given, then the number of is 2 power n max terms minimax terms sets none of these max terms
Every singleton subset constitutes a set partition min term max term partition
The least uper bound of any element in a poset are unique dual zero one unique
The greatest uper bound of any element in a poset are unique dual zero one unique
An element m in a poset L is called the greatest element if forallainL a less than or equal to m |a greater than or equal tom [a =m a=0 a less than or equal to m
An element m in a poset L is called the least element if forallainL a less than or equal to m |a greater than or equal tom [a=m a=0 a greater than or equal to m
A set is a well defined collection of object called , the of theset.  [object languages element letters element
A is a well defined collection of objects called members of the set. object set element letters set
A set is represented in ways one two three four two
In notation , all the elements of the set are listed member roster element object roster
In notation we specify elements of the set by specifying a property. |builder roaster object number builder
the set which contains all the objects under consideration is called set.  [singular universal null empty universal
A set which contains no elements at all is called set. singular null universal finite null
A set which contains clements at all is called empty set. all no two one no
Any subset A of the set B is called proper subset of B if there is atleast one element of B . . . . R . .
which A belongs to does not belongs to is contained in [is not contained in |is contained in
Two sets are said to be if A and B are contained in both the sets equal set not equal empty set power equal set
If A is a subset of B then B is called of A super set subset proper set power set super set
Everysetisa __ ofitself singleton set subset universal empty set subset
Asetissaidtobea  of Biffevery element of A is also an element of B subset power set universal set  [empty set subset

A set is said to be a subset of B iff of A is also an element of B

one element

every element

two element

three element

every element

A set which contains only _ element is called a singleton set 2 1 3 5 1

A set which contains only one element is called a universal set singleton set null set empty set singleton set
A set which contains number of elements is called finite sets more single finite infinite finite

A set which contains finite number of elements is called infinite set finite sets subset super set finite sets

A set which contains number of elements is called infinite sets more single finite infinite infinite

A set which contains infinite number of elements is called infinite set finite sets subset super set infinite sets
If a set A is finite set then the number of elements in A is called the __of A member degree cardinality order cardinality
We can find a size of A if itis _ infinite set finite sets subset super set finite sets
We can find a size of A ifitis infinite set finite sets subset super set finite sets
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Finite sets and counting principle. Empty set, properties of empty set. Standard set operations.
Classes of sets. Power set of a set. Difference and Symmetric difference of two sets. Set identities,
Generalized union and intersections.
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Sets

“A set is a Many that allows itself fo be thought of as o One.”
(Georg Cantor)

In the previous chapters, we have often encountered "sets”. for example,
prime numbers form a set, domains in predicate logic form sets as well.
Defining a set formally is a pretty delicate matter, for now, we will be happy
to consider an intuitive definition, namely:

Definition 24. A set is a collection of abstract objects.

A set is typically determined by its distinct elements, or members, by
which we mean that the order does not matter, and if an element is repeated
several times, we only care about one instance of the element. We typically
use the bracket notation {} to refer to a set.

Example 42. The sets {1,2,3} and {3. 1,2} are the same, because the or-
dering does not matter. The set {1,1,1.2,3,3,3} is also the same set as
{1,2,3}, because we are not interested in repetition: either an element is in
the set. or it is not, but we do not count how many times it appears.

One may specify a set erplicitly, that is by listing all the elements the
set contains, or implicitly, using a predicate description as seen in predicate
logic, of the form {r, P(z)}. Implicit descriptions tend to be preferred for
infinite sets.

Example 43. The set A given by A = {1.2} is an explicit description. The
set {x, r is a prime number } is implicit.

(Given a set S, one may be interested in elements belonging to S, or in
subset of 5. The two concepts are related, but different.

Definition 25. A set A is a subset of a set B, denoted by A C B. if and
only if every element of A is also an element of B. Formally

ACB < Vz(r€e A— r € B).

Note the two notations A C B and A C B: the first one says that
A is a subset of B, while the second emphasizes that A is a subset of B,
possibly equal to B. The second notation is typically preferred if one wants
to emphasize that one set is possibly equal to the other.
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To say that A is not a subset of S, we use the negation of Vr(zr € A —
r € B), which is (using the rules we have studied in predicate logic! namely
negation of universal quantifier, conversion theorem, and De Morgan’'s law)
Jx(r € ANz € B). The notation is A € B.

For an element r to be an element of a set 5, we write r € 5. This is a
notation that we used already in predicate logic. Note the difference between
r € S and {r} C S: in the first expression, r is in element of S, while in
the second, we consider the subset {r}, which is emphasized by the bracket
notation.

Example 44. Consider the set S = { rock, paper, scissors }, then R = {
rock } is a subset of S, while rock € S, it is an element of S.

Definition 26. The empty set 1s a set that contains no element. We denote
it @ or {}.

There is a difference between @ and {@}: the first one is an empty set,
the second one is a set, which is not empty since it contains one element: the
empty set!

Definition 27. The emptv set is a set that contains no element. We denote
it @ or {}.

Example 45. We say that two sets A and B are equal, denoted by A = B,
if and only f ¥z, (r € A & r € B).

To say that two sets A and B are not equal. we use the negation from
predicate logic, which is:

—(Vr,(z€eAereB))=Tr((re ANz g B)V(r€e Bax g A)).

Empty Set

The set that contains no element is called the
empty set or null set.

— The empty set is denoted by & or by { }.

— Note: & = {(&}
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Set Equality

A=B £ Vx(xeA & xeB)

— Two sets A, B are equal iff they have the same
elements.

— Two sets are not equal if they do not have
identical members, i.e., there is some element in
one of the sets which is absent in the other.

* Example:
{1,2,3}=1{3,1,2}={1,3,2}=-{1,1,1, 2, 3, 3, 3}

This makes our earlier example {1,2,3} = {1,1,1,2,3.3.3} easier to
justify than what we had intuitively before: both sets are equal because
whenever a number belongs to one, it belongs to the other.

Definition 28. The cardinality of a set &5 is the number of distinct elements
of S. If |S| is finite, the set is said to be finite. It is said to be infinite
otherwise.

We could say the munber of elements of 5. but then this may be confusing
when elements are repeated as in {1,2.3} = {1,1,1,2,3, 3,3}, while there
is no ambiguity for distinct elements. There |S| = |{1.2,3}| = 3. The set
of prime numbers is infinite, while the set of even prime numbers is finite,
because it contains only 2.

Definition 29. The power set P(S) of a set S is the set of all subsets of S:
P(S)={A, ACS}.

If S = {1.2,3}, then P(S) contains S and the empty set &, and all
subsets of size 1, namely {1}, {2}, and {3}, and all subsets of size 2, namely
{1.2}, 1.3} 2.3}

The cardinality of P(S) is 2" when |S| = n. This is not such an obvious
result, it may be derived in several ways, one of them being the so-called
binomial theorem, which says that

(z+y)" = Z (?)rjy”_j.

j=0
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where {:} counts the number of wavs to choose j elements out of n. The
notation Z;’ _p means that we sum for the values of j going from 0 to n. See
Exercise 33 for a proof of the binomial theorem. When n = 3. evaluating in

r =y =1, we have
3 3 3 3
b
(ﬂ) * (1) ! (z) ’ (3)

and we see that (;) says we pick no element from 3, there is one way, and it
corresponds to the empty set, then {?] is telling us that we have 3 ways to
choose a single subset, this is for {1}, {2}, and {3}, (3) counts {1,2}, {1,3},
{2,3} and (3) counts the whole set {1,2,3}.

When dealing with sets, it is often useful to draw Venn diagrams to
show how sets are interacting. They are useful to visualize *unions” and
“intersections”.

Cardinality

The cardinality |S| of S is the number of elements in S.
— e.g. for S={1, 3}, |5] =2

If |S| is finite, S is a finite set; otherwise, S is infinite.
— The set of positive integers is an infinite set.
— The set of prime numbers is an infinite set.
— The set of even prime numbers is a finite set.

* Note: | | =0
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Power Set

The power set P(S) of a given set S is the set of all
subsets of S: P(S)={A | Ac S}.
* Example
- For S={1,2,3}
P(s)={<{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}

» |f aset A has n elements, then P(s) has
elements.

* Hint: Try to leverage the Binomial theorem

{.I' )" = G_:):'-"".Uﬂ | (T).r""'n" f (E:)Ir'i—if f [” i IJ'?IE'J'”_I | (:)J'“J}“'

Venn Diagram

A Venn diagram is used to show/visualize

the possible relations among a collection
of sets.

lohn Venn
(1834-1923)

Pictures from wikipedia
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Union and Intersection

The union of sets A and B The intersection of the sets
is the set of those A and B is the set of all
elements that are either in elements that are in both A
A orin B, or in both. and B.

3

: / A

Disjoint Sets

Sets A and B are disjoint iff A B=&
- |AnB| =0

Lions M Fishes = &

© photographer
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Cardinality Of Union

laugl=|al|+]|8|-|anB]

Definition 30. The union of the sets A and B is by definition
AUB={x, z€ AVz € B}.

The intersection of the sets A and B is by definition
ANB={x, x € ANz € B}.

When the intersection of A and B is empty, we say that A and B are
disjoint.

The cardinality of the union and intersection of the sets A and B are
related by:

|AU B| = |A| + |B| - |ANn B

This is true, because to count the number of elements in A U B, we start
by counting those in A. and then add those in B. If A and B were disjoint,
then we are done, otherwise, we have double counted those in both sets, so
we must subtract those in AN B.

Definition 31. The difference of A and B, also called complement of B with
respect to A is the set containing elements that are in B but not in B:

A=B={z, r€ ANz &€ B}.
The complement of A is the complement of A with respect to the universe

[
A=U-A={z, ¢ A}.
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The universe U is the set that serves as a framework for all our set compu-

tations. the biggest set in which all the other sets we are interested in lie.
—

Note that A = A.

Definition 32. The Cartesian product A x B of the sets A and B is the set
of all ordered pairs (a,b), wherea € A, b€ B:

Ax B={(a,b), a€ AAbE B)}.
Example 46. Take A = {1,2}, B = {z.y.z}. Then
Ax B={(ab), ae {1.2} Ab€ {z.y,z}}

thus a can be either 1 or 2, and for each of these 2 values, b can be either z,
y or z:
Ax B={(1,z).(1,¥).(1,2),(2,7),(2,9), (2, 2)}.
Note that A x B # B x A, and that a Cartesian product can be formed
from n sets A;.....A,. which is denoted by A; x A, x ---x A,.

Set Difference & Complement

The difference of A and B (or complement of B with
respect to A) is the set containing those elements
that are in A but not in B.

The complement of A is the complement of A with

respect to U.

A=U-A
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Cartesian Product

The Cartesian product AxB of the sets A and
B is the set of all ordered pairs (a,b) where a
e Aand b € B.

René Descartes

(1596-1650)
* Example: A ={1,2}, B = {x,y,z}
AxB={(1x), (Ly), (1,2), (2:%), (2,y), (2,2)} (2:2)
..-- Al
Bx A= (1), (62), (y1), (2), (21), (.2) SR
* In general: -4 %

e Ay xAx XA | =]A] [Ay] o |A, |

Xy 2
Picture from wikipedia
Definition 33. A collection of nonempty sets {A4;,...,. An} is a partition of
a set A if and only if
1. 4= 211 U :13 B ."1,,
2. and Ay, ..., A, are mutually disjoint: A; N A4; = @, 1 # j, i,j =

| B 1.

Example 47. Consider A = Z, A; = { even numbers }, A; = { odd numbers
}. Then A, A; form a partition of A.

We next derive a series of set identities:
ANnB=A-B.

By Definition 31, A= B ={r, r€ AAr g B}. Then ANB = {z, r €
A Az € B}, but by the definition of B, ANB = {z, = € AAx & B}, which

completes the proof.

We have the set theoretic version of De Morgan's law:

|AnB=AuB.|
We have ANB={z, st € AN B} = {z, ~(xr € AAz € B)}, and using the
usual De Morgan’s law, we get ANB = {z, t &€ AV r € B} as desired.
Applying de Morgan’s law on AN B, and B=Bwe get:
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ANB=AUB.

Recall that [7 denotes the universe set, the one to which belongs all the
sets that we are manipulating. In particular, A C . We have

[AUZ=A, ANU=A, AUU=U, AN@ =0, AUA=A, ANA=A|

Furthermore, the order in which U or N is done does not matter:
[;’lL..IB =BUA ANB=BnNA, AU(BUC)=(AUB)UC, An(BNnC)=(AnB)nC.
Distributive laws hold as well:

AN(BUC)=(ANB)U(ANC), AU(BNC)=(AUB)N(AUC).

For example, AN(BUC) ={z, z € AA(r € BVz € C)} and we can
apply the distribute law from propositional logic to get the desired result.
And finally

|AU(ANB)=A, AN(AUB)=A.|

This follows from the fact that AN B i1s a subset of A, while 4 is a subset of
AuB.

Partition

A collection of nonempty sets {A ,A,,...,A_} is a partition

of a set A, iff A=A1LJA2 LJUAH

and A, A,, ..., A, are mutually disjoint, i.e.

ANnA=Cforalli,j=1,2,.n,and i #j.

%

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 11/ 21




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I B.Sc MATHEMATICS COURSE NAME: LOGIC AND SETS
COURSE CODE: 18MMU103 UNIT: 1V BATCH-2018-2021

Set Identities

ANB =A-B

B (.

Compare AHE with A-B = {x | xeA » x&B}
(not a formal proof)

Set Identities

A

 Consider A—B = A B

e,

« Apply DEMGrgan’s Law X AY = X UY with X=A
and Y=B
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Set Identities

Identity
8 el Identity laws
AU =A
AU=U Domination laws
AN =
AVA=A Idempotent laws
ANA=A
f =A Double Complement laws
Set Identities
Identity
AUB =BUA '
AAB = BAA Commutative laws

AU (BUC) = (AuB) UC
AN (BNC) = (ANB) NC
A (BUC) = (AnB) v (ANC)
AU (BMC) = (AuB) N (AuC)
AOB=ANB
AnB=AUB

Associative laws

Distributive laws

De Morgan'’s laws
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Set Identities

Identity
ﬁ:—h\) (IESJBB}):AA Absorption laws
. Alternate
A-B=AMB Representation for
set difference

Suppose that you want to prove that two sets A and B are equal. We
will discuss 3 possible methods to do so:

1. Double inclusion: AC B and B C A.

2. Set identities.

3. Membership tables.
Example 48. To show that (B — A)U(C = A) = (BUC) - A, we show the

double inclusion.

e Take an element € (B — A)U (C — A), then either z € (B — A), or
r€(C—=A). Thenz € BAr € A orx € C Ax € B. Then either way,
r€EBUCArg A, thatisz € (BUC)—A, and (B—A)U(C—-A) C
(BUC) — A is shown.

e Now take an element r € (BUC) — A, that isz € BUC but = € A.
Thenr € Bandnotin A, orr € C"and not in A. Thenr € B— A or
r € C — A. Thus either way, x € (B — A)U(C — A), which shows that
(B=A)Uu(C-A)2(BUC)—A
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Example 49. We show that (A— B)—(B— (') = A— B using set identities.

(A=B)=(B=C) = (A=-B)n(B=-0C)
(ANB)n(BNC)
(AnB)n(BuC)
(ANB)NBlU[(ANB)NC]

where the third equality is De Morgan’s law, and the 4rth one is distributivity.
We also notice that the first term can be simplified to get (AN B). We then
apply distributivity again:

(ANB)U[(ANnB)NC)=[AU[(AnB)nCIn[BU[(AnB)n ).
Since (AN B) N C is a subset of A, then the first term is A. Similarly, since
(AN B)NC is a subset of B, the second term is B. Therefore

(A-B)=(B=C)=AnB=A-B.

The third method is a membership table. where columns of the table rep-

resent different set expressions, and rows take combinations of memberships

in constituent sets: 1 means membership, and () non-membership. For two
sets to be equal, they need to have identical columns.

Proving Set Equality

» Recall. Two sets are equal if and only if they contain
exactly the same elements, i.e.,

» Three methods to prove set equality:
— Show that each set is a subset of the other

— Apply set identities theorems
— Use membership table
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Each Others’ Subset
Show that (B-A)U (C-A)=(B U C)-A.

For any x €LHS, x €(B-A) or x €(C-A) [or both].

when xe B—A —=>(xeB)a(xgA)
—(xeBul)al(xeg A)
—xe(BulC)—A

when xeC — A —>(xeC)A(xe A)
= (xeBuC)a(xgA)
— xe(BulC)—-A

Therefore, LHS c RHS

Each Others’ Subset
Show that (B-A)v (C-A)=(B v C)-A.
For any x eRHS, x €(BUC) and x gA.

when x eBand x gA
(xeB)Aa(xg A) —=>xe€B-A
—>xe(B-A)U(C-A)
when x eC and x A, .
A) —=>xelC-A
GELINGED) (B AC=A)

Therefore, RHS < LHS

With LHS — RHS and RHS — LHS, we can conclude that LHS = RHS
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Using Set Identities

Show that (A-B)-(B-C)=A-B

(A-B)—(B-C) ={An B)n(BAC) (By alternate representation for set difference)
=(A ﬂE] r"q{Eu (N By De Morgan's laws)
=[(Ar By BlUl{A~B~C) (By Distributive laws)
=IAﬁ{EﬁE}]U|J’I r‘"‘I{EﬁC}] (By Associative laws)
=(An BYU[AR(BAC)] (By Idempotent laws)
=An[BU(BNCO)] (By Distributive laws)
=A F\F |By Absorption laws)
=A-8 (By the alternate representation for set difference)

Using Membership Tables

Similar to truth table (in propositional logic)

Columns for different set expressions

Rows for all combinations of memberships in constituent sets

Ed

— Two sets are equal, iff they have identical columns

Prove that (AUB)-B = A-B
ALl LRB L A

0l0
01
110
111

=

I-—‘I—‘I—‘CIE

0
1
0
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Example 50. To prove (AU B) — B = A — B, we create a table

A B|AUB (AUB)-B A-B
0D 0
0 1
1 0
1 1

The first row, if x is not in A and not in B, it will not be in any of the sets,
therefore the first row contains only zeroes. If r is only in B, then it belongs
to AU B, but not in the others, since B is removed. So the second row has
only a 1 in AU B. Then if r is only in A, it belongs to all the three sets.
Finally. if r is in both A and B, it is in their intersection, therefore it belongs
to AU B, but not in the 2 others, since B is removed.

Exercises for Chapter 4

Exercise 33. 1. Show that

() + (2= (%)

for 1 < k < 1. where by definition

G):A'(nn—la}' nl=n-(n=1)-(n=2)---2-1

2. Prove by mathematical induction that

i

A

k=0
You will need 1. for this!

3. Deduce that the cardinality of the power set P(S) of a finite set S with
n elements is 2.

Exercise 34. Let P(C) denote the power set of C. Given A = {1,2} and
B = {2. 3}, determine:

P(AnB), P(A), P(AUB), P(Ax B).
Exercise 35. Prove by contradiction that for two sets A and B

(A-B)N(B-A)=2.
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Exercise 36. Let P((') denote the power set of C. Prove that for two sets
Aand B
P(A)=P(B) < A=B.

Exercise 37. Let P((') denote the power set of C. Prove that for two sets
Aand B

P(A)C P(B) — ACB.
Exercise 38. Show that the empty set is a subset of all non-null sets.

Exercise 39. Show that for two sets A and B

AZB=3r[(re ANz gB)V(z€ Bhx & A).
Exercise 40. Prove that for the sets A, B, C. D

(Ax B)JU(Cx D)C (AUC) x (BUD).

Does equality hold?
Exercise 41. Does the equality

(A U Ay) x (B, U B;) = (A; x B)) U (A; x By)
hold?

Exercise 42. For all sets A, B, ', prove that

(A-B)—(B-C)=AUB.
using set identities,

Exercise 43. This exercise is more difficult. For all sets A and BE. prove
(AUB)NANB = (A= B)U (B — A) by showing that each side of the
equation is a subset of the other.
Exercise 44. The symmetric difference of A and B. denoted by A& B. is
the set containing those elements in either A or B, but not in both A and B.

1. Prove that (A& B) & B = A by showing that each side of the equation
is a subset of the other.

2. Prove that (A& B) @ B = A using a membership table.

Exercise 45. In a fruit feast among 200 students, 8% chose to eat durians,
73 ate mangoes, and 46 ate litchis. 34 of them had eaten both durians and
mangoes, 16 had eaten durians and hitchis, and 12 had eaten mangoes and
litchis, while 5 had eaten all 3 fruits. Determine, how many of the 200
students ate none of the 3 fruits, and how many ate only mangoes?
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Possible Questions
2 Mark Questions:
1. Define generalized union of two sets.
2. Define partial ordering with an example
3. Define the symmetric difference of two sets
4. Define the difference of two sets

5. What is a power set?

6 Mark Questions:

1. Consider U={1, 2, ....., 9} and the sets A={1, 2, 3,4, 5}, B={4, 5,6, 7},
C={5,6,7,8,9},D={1,3,5,7,9}, E={2, 4, 6,8} and F={1, 5, 9}. Find
(i) AS, B¢, D€, EC, (ii) A\B, B\A, D\E, F\D, (iii) A+B, C+D, E+F.

2. Prove the following identity (A W B) N (A U B%) = A
3. Prove that (AUB)\( AnB) = (A\B) U (B\A).
4. ConsiderU={1,2,.....,9} and the sets A= {1,2,3,4,5},B=1{4,5,6,7},C={5,6,7, 8,9},

D={1,3,5,7,9}, E={2,4,6,8} and F={1,5,9}. Find
i) AN(BUE) iy (AE)¢ iii) (AnD)\B iv) (BAF) U (CHE).

5. ConsiderU={1,2,.....,9} andthe sets A= {1,2,3,4,5},B={4,5,6,7},
C=1{5,6,7,8,9},D={1,3,5,7,9},E={2,4,6,8} and F = {1, 5, 9}. Find
i) AuBand AnB i) BuDand BN D iii) AuCandANnC
iv) DUEand DNE V) EuFand ENnF vi) DuUFand DNF.

6. Consider the class A of sets A={{1, 2, 3}, {4, 5}, {6, 7, 8} }. Determine whether each of the
following is true or false :
)1leA i) {1,2,3} cA iii) {6,7,8}eA iv){4,5}cA Vv)deAvi)dcA
7. In a survey of 60 people,it was found that 25 read news week magazine,26 read
time,26 read fortune,9 read both news week and fortune,11 read both news week and time, 8 read

both time and fortune and 3 read all three magazines. Find
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1) The number of people who read atleast one of the 3 magazines,

i) The number of people who read exactly one magazine.

8.  Find the power set for 1) A={1,2,3,4,5},ii)) B={a,b,c} iii) C={}
9. If A and B are finite sets,then A W B and A m B are finite and
N(AUB)=Nn(A)+n(B)-Nn(ANB)

10. 1) Let S = {red, blue, green, yellow}. Determine which of the following is a partition
of S.
P1={{red},{blue, green}}
P2={{red, blue, green, yellow}}
P3={¢,{red, blue},{green, yellow}}
P4={{blue},{red, yellow, green}}
ii) Find all partitions of S={1, 2, 3}
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Possible Questions
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer

A pair of objects whose components occur in a specific order is called an ---------- ordered pair binary pair order ordered pair
The ordered pairs (a,b) and (b,a) are ----- unless a=b. equal not equal parallel not parallel not equal
Two or more sets can be combined using --- set identities identities operations set operations set operations
The --- of two sets A and B is the set of elements that belongs to A or to B empty set universal set intersection union union
The set of all subsets of the set S is called the ---- of S. power set proper set super set subset power set
Number of subsets of S having no element is called ------ null set proper set super set subset null set
| P(S)| =---- 2n n n2 2n
The ordered pairs (a,b) and (c,d) are ---- iff a=c and b=d equal unequal parallel not parallel parallel
The --- is finite subset superset empty set universal set empty set

The set N,Z,Q and R are ----

finite sets

infinite sets

singleton sets

universal sets

infinite sets

The set of all lines in a given --- is an infinite set line point plane set plane

Every ---- number is an integer Real rational natural irrational natural

A set having only one element is called --- singleton set superset empty set universal set singleton set
A set is said to be --- if the number of its elements is a positive integer infinite finite empty singleton finite

A set having an unlimited number of elements is called an ---- sets infinite finite empty singleton infinite

The set of ---less than 100 is a finite set.

even numbers

odd numbers

both even and odd

cither even or odd

even numbers

N is a ---- subset of Z regular improper proper regular proper
Every integer need not be a ---- number whole real rational natural natural
The --- is unique empty set singleton set universal set finite set empty set
If ---- then A and B are comparable sets A=B A<B A>B A'B A=B

Ifa set S has n elements, then its power set has ------ 2 n m 2’n 2’n

If A and B are sets, the set of all ordered pairs whose first component belongs to A and

Binary product

Cartesian product

Ordered product

Binary relation

Cartesian product

second belongs to B is called the------
The Cartesian product of more than n sets is the set of ordered of ----- s-tubles n-tubles 2-tubles 4-tubles n-tubles
The ------- of two sets Aand B is the set of elements that belongs to both A and B. Universal set Empty set intersection Union intersection
If A and B do not have any element in common then the sets A and B are said to be . . .
Disjoint intersection Uni Complement Disjoint
- nion -
The sets of elements which belongs to union but not belongs to A is called the of ------ A Union complement Disjoint intersection complement
If A and B are any two sets, then the set of elements that belongs to A but do not belongs . . . .
. re any W(_ i 0 ents ongs o ut domo NS | difference Union Intersection Sum difference
to B is called -------- of A and B
If A and B are any two sets, then the set of elements that belongs to A or B ,but not to .
. N symmetric Antisymmetric Reflexive Irreflexive symmetric
both is called the - - difference of A and B
The principal of duality states that wherever S ,a statement of ------- of two expressions is . . B .
. N Intersection equality Unequal Union equality
valid then its dual is also valid
All the sets identities of various laws one simply the --- of the corresponding set identities | Equal duals Non dual Non equal duals
The set of all points on a given ------- is an infinite set Plane Point Set Line Line

{x/xeR AND 0<X<1} is an

Finite set

Infinite set

Singleton set

Universal set

Infinite set

Q C R ,since every rational number is a ----- number whole real Rational Irrational real
If A={3,4,5} and B={x/xeN and 2<x<6} then . A=B A<B A>B AB A=B
An -----es is a subset of every set Finite set Singleton set Empty set Universal set Empty set

If A is the set of odd integers and B is the set of even integers, then A and B are --------

Comparable set

Disjoint set

Equivalent set

Power set

Disjoint set

Union and intersection of sets are Empty Comp Idemp 1 Idempotent

A set whose elements are also sets is called a-------- of sets Degree family Order Member family
Complement of the intersection of two sets is the--------- of their complements Union complement Disjoint intersection Union

Sets can also be represented graphically by means of------ Chart diagram venn diagrams Pie chart Bar diagram venn diagrams
The complement of union of two sets is the--------- of their complements Idempotent Complement intersection Union intersection
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Relations

Relations: Assume that we hav e a set of men M and a set
of women W, some of whom are married. We want to express which
men in M are married to which women in W. One way to do that is by
listing the set of pairs (m, w) such that m is a man, w is a woman, and
m is married to w. So, the relation “married to” can be represented
by a subset of the Cartesian product M x W. In general, a relation R
from a set A to a set B will be understood as a subset of the Cartesian
product A x B, i.e., RC A x B. If an element a € A is related to an
element b € B, we often write a R b instead of (a,b) € R.

The set
{a€ A|aRb for some b € B}

is called the domain of ZR. The set
{be B|aRb for some a € A}

is called the range of R. For instance, in the relation *married to”
above, the domain is the set of married men, and the range is the set
of married women.

If A and B are the same set, then any subset of A x A will be a
binary relation in A. For instance, assume A = {1,2,3,4}. Then the
binary relation “less than™ in A will be:

<a={(r,y) e AxA|z <y}
= {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}.

Notation: A set A with a binary relation R is sometimes represented
by the pair (A, R). So, for instance, (Z, <) means the set of integers
together with the relation of non-strict inequality.

Representations of Relations.

Arrow diagrams. Venn diagrams and arrows can be used for repre-
senting relations between given sets. As an example, figure 2.14 rep-
resents the relation from A = {a.b,c,d} to B = {1.2,3.4} given by
R = {(a,1),(b.1),(c,2), (,3)}. In the diagram an arrow from r to y
means that x is related to y. This kind of graph is called directed graph
or digraph.

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 2/ 17




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: 1 B.Sc MATHEMATICS COURSE NAME: LOGIC AND SETS
COURSE CODE: 18SMMU103 UNIT:V BATCH-2018-2021
. G
ll
A B
Relation.

Another example is given in diagram 2.15, which represents the
divisibility relation on the set {1,2,3.4.5,6,7.8,9}.

L0

IRG
y O

Binary relation of divisibility.

Matrir of a Relation. Another way of representing a relation R
from A to B is with a matrix. Its rows are labeled with the elements
of A, and its columns are labeled with the elements of B. It a € A
and b € B then we write 1 in row a column b if a Rb, otherwise we
write (). For instance the relation R = {(a,1). (b, 1), (e, 2), (¢, 3)} from
A={a,b.c d} to B={1,2 3,4} has the following matrix:

1 2 3 4
a 1 0 0 0
b |1 0 0 0
c |0 11
d \0 0 0 0

Inverse Relation. Given a relation R from A to B, the
inverse of R, denoted R}, is the relation from B to A defined as

bR 'aeaRb.
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For instance, if R is the relation “being a son or daughter of”, then
R~ is the relation “being a parent of”.

Composition of Relations. Let A. B and (' be three sets.
(Given a relation R from A to B and a relation & from B to C, then
the composition & o R of relations R and & is a relation from A to
defined by:

a (8 o R) ¢ & there exists some b € B such that aRband bsc.

For instance, if R is the relation “to be the father of”, and & is the
relation “to be married to”, then & o R is the relation “to be the father
in law of”.

Properties of Binary Relations. A binary relation R on
A is called:

1. Reflexive if for all x € A, x Rx. For instance on Z the relation
“equal to” (=) is reflexive.

2. Transitive if for all r.,y,z € A, TRy and yR z implies TR z.
For instance equality (=) and inequality (<) on Z are transitive
relations.

3. Symmetricifforallz.y € A, s Ry = y Rz. For instance on Z,
equality (=) is symmetric, but strict inequality (<) is not.

4. Antisymmetric if for all z.y € A, r Ry and y Rz implies & = y.
For instance, non-strict inequality (<) on Z is antisymmetric.

Partial Orders. A partial order, or simply. an erder on a
set A is a binary relation <" on A with the following properties:

1. Reflexive: forallz € A, r < =.

2. Antisymmetric: (z S YAy S r)=>r=1.

3. Transitive: (zx K Y)A(y < )= = =
Examples:

1. The non-strict inequality (<) in Z.

2. Relation of divisibility on Z*: a|b < 3t, b= at.

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE

Page 4/ 17




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: 1 B.Sc MATHEMATICS COURSE NAME: LOGIC AND SETS
COURSE CODE: 18MMU103 UNIT:V BATCH-2018-2021

3. Set inclusion (€) on P(A) (the collection of subsets of a given
set A).

Ezercise: prove that the aforementioned relations are in fact partial
orders. As an example we prove that integer divisibility is a partial
order:

1. Reflexive: a = al = ala.

2. Antisymmetric: alb = b = at for some t and bla = a = bt' for
some . Hence a = att', which implies ## =1 = ' =t~'. The
only invertible positive integeris l.sot=+=1=a=".

3. Transitive: a|b and b|c implies b = at for some t and ¢ = bt' for
some t', hence ¢ = att’, 1.e., alc.

Question: is the strict inequality (<) a partial order on Z7

Two elements a,b € A are said to be comparable if either r < y
or y = x, otherwise they are said to be non comparable. The order
is called totfal or linear when every pair of elements =,y € A are com-
parable. For instance (Z, <) is totally ordered, but (Z*,|), where “|”
represents integer divisibility, is not. A totally ordered subset of a par-
tially ordered set is called a chain; for instance the set {1,2,4,8,16,... }
is a chain in (Z7, ).

Hasse diagrams. A Hasse diagram is a graphical represen-
tation of a partially ordered set in which each element is represented
by a dot (node or vertex of the diagram). Its immediate successors are
placed above the node and connected to it by straight line segments. As
an example, fipure 2.16 represents the Hasse diagram for the relation
of divisibility on {1,2,3,4,5,6,7,8,9}.

Quesfion: How does the Hasse diagram look for a totally ordered
set?

Equivalence Relations. An eguivalence relation on a set
A 15 a binary relation “~" on A with the following properties:

1. Reflexive: forallz € A, x ~ =.
2. Symmetric: ¢ ~ y=y ~ .
3. Transitive: (z ~ yY)A(y ~ 2)=> T ~ 2.
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Hasse diagram for divisibility.

For instance, on Z, the equality (=) is an equivalence relation.

Another example, also on Z, is the following: z = y (mod 2) ("r is
congruent to y modulo 27) iff r—y is even. For instance, 6 = 2 (mod 2)
because 6 —2 = 4 is even, but 7 # 4 (mod 2), because 7 =4 = 3 is not
even. Congruence modulo 2 is in fact an equivalence relation:

1. Reflexive: for every integer x. r—x = 0 is indeed even. sor =
(mod 2).

2. Symmetric: if r = y (mod 2) then r — y = t is even, but
y —r = —t is also even, hence y = r (mod 2).

3. Transitive: assume r = y (mod 2) and y = 2z (mod 2). Then
Tr—y=1tand y =2z = u are even. From here, r — 2 = (r = y) +
(y = z) =t + u is also even, hence r = z (mod 2).

Equivalence Classes, Quotient Set, Partitions. Given
an equivalence relation ~ on a set A, and an element * € A, the
set of elements of A related to x are called the equivalence class of

x, represented [z] = {y € A | y ~ z}. Element r is said to be a
representative of class

[x]. The collection of equivalence classes, represented A/~ = {[z] |
x € A}, is called quotient set of A by ~.
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Congruence Modulo Relation:

Congruences are an important and useful tool for the study of divisibility. As we shall see,
they are also critical in the art of cryptography.

Definition: If a and b are integers and n=0,wewrite
a=hbmodn

to mean n|(b— a). We read this as “a is congruent to b modulo {or mod) n.

For example, 20 = 8 mod 7, and 60 = () mod 15.

The notation is used because the properties of congruence *=" are very similar to the
properties of equality “=". The next few result make this clear.

Theorem For any integers a and b, and positive integer n, we have:

1. a = a mod n.
2 Ifa=bmod n then b = a mod n.
J Ifa=bmod n and b =c mod n then a = ¢ mod n

These results are classically called: 1. Reflexivity; 2. Symmetry; and 3. Transitivity. The
proof is as follows:

1. n|(a — a) since 0 is divisible by any integer. Therefore a = a mod n.

2. If a = bmod n then n|(b — a). Therefore, n|(=1)(b — a) or n|(a — b). Therefore,
b= a mod n.

3. If a = b mod n and b = ¢ mod n then n|(b—a) and n|(c=b). Using the linear combination
theorem, we have n|(b—a + ¢ —b) or n|(c — a). Thus, a = ¢ mod n.

The following result gives an equivalent way of looking at congruence. It replaces the con-
gruence sign with an equality.

Theorem If a = b mod n then b= a 4+ ng for some integer . and conversely.

Proof: If a = b mod n then by definition n|(b— a). Therefore, b — a = ng for some g. Thus
b= a+ng. Conversely if b = a+ng, then b—a = ng and so n|(b—a) and hence a = b mod n
then b = a + nq.

We will use often this theorem for calculations. Thus, we can write 15 = —2 mod 17 by
subtracting 17 from 15: =2 = 15 + (—1) - 17. Similarly, 52 = 12 mod 20. Just subtract 40
(2 times 20) from 52.
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A simple consequence is this: Any number is congruent mod n to its remainder when divided
by n. For if 2 = ng + r, the above result shows that a = r mod n. Thus for example, 23 =
2 mod 7 and 103 = 3 mod 10. For this reason, the remainder of a number a when divided
by n is called a mod n. In EXCEL, as in many spreadsheets, this is written "MOD(a,n).” If
you put the expression =MOD(23.7) in a cell, the readout will be simply 2. Try it!

Another way of relating congruence to remainders is as follows.

Theorem If a = b mod n then a and b leave the same remainder when divided by n.
Conversely if a and b leave the same remainder when divided by n. then a = b mod n.

Proof: Suppose a = b mod n. Then by Theorem 3.3. b = a + ng. If a leaves the remainder
r when divided by n, we have a = n() + r with ) < r < n. Therefore, b = a + ng =
n@ +r+ng=n(Q +r)+r, and so b leaves the same remainder when divided by n. The
converse is straightforward and we omit the proof.

We can now show some useful algebraic properties of congruences. Briefly, congruences can
be added and multiplied.

Theorem Ifa=bmod n and ¢ = d mod n then
l.a4+c=b+d mod n.
2. ac = bd mod n.

Proof: Write b = a 4+ ng; and d = ¢ + ngs, using Theorem 3.3. Then adding equalities, we
get b+d=a+c+nq +ng: =a+ c+ n(q + g2). This shows that a + ¢ = b+ d mod n by
Theorem 3.3.

Similarly, multiplying, we get bd = (a + nqi1)(c + ng2) = ac + nagz + ncq1 + nqigs. Thus,
bd = ac + n(agz + eq1 + nquge, and so ac = bd mod n, again by Theorem 3.3.

Some Examples.

We have noted that 23 = 2 mod 7. We can square this (i.e. multiply this congruence by
itself) to get 23* = 4 mod 7. What a nice way to find the remainder of 23* when it is divided
by 7! Multiply again by 23 = 2 mod 7, to get

23 =8=1mod 7

(This string of congruences is similar to a string of inequalities. It is read 23* is congruent
to 8 which is congruent to 1 mod 7. By transitivity (Theorem 3.2) this implies that 23* is
congruent to 1 mod 7.) Once we know that 23° = 1 mod 7, we can raise to the 5th power
(i.e. multiply this by itself 5 times) to get 23'° = 1 mod 7. The application of a few theorems
and we have found remainders of huge numbers rather easily!
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Example Find 17" mod 5. As explained on page 26. this is the remainder when 173!

is divided by 5.

Method. We have
17=2mod 5

Squaring, we have
=7 .
1IW"=4d==1mod 5

Squaring again, we find
17"=1mod 5

Now, 1 to any power is 1. so we raise this last congruence to the 85th power. Why 857 Just
wait a moment to find out. We then find

17 =1 mod 5
Finally, multiply by the first congruence to obtain

17" =2 mod 5
So the required remainder is 2.

The strategy is to find some power of 17 to be 1 mod 5. Here, the power 4 worked. The
we divided 4 into 341 to get a quotient 85, and this is the power we used on the congruence
17! = 1 mod 5. Note also the little trick of replacing 4 by —1 mod 5. This gives an easier
number to square.

Example Solve forx: 5r =1 mod 12.

One method is as follows. We know that ged(5,12) = 1, so some linear combination of 5
and 12 is equal to 1. In Section 1 we had a general method for doing this, and we also had
a spreadsheet approach. However, we can simply note by observation that

1=5-5+(-2)-12
So both sides of this equality are congruent to each other mod 12. Hence
1=5-54(-2)-12=5-5mod 12
So one solution is x = 5. More generally, if r = 5 mod 12 then
hr=25=1mod 12

Here is another approach: Start with the equation 5r = 1 mod 12. If this were an equality,
we would simply divide by 5 to get x = 1/5. But we are in the realm of integers so this
won't work. Instead we multiply by 5 to get 26 = 5 mod 12 or * = 5 mod 12. Note that
we multiplied by 5 to get a coefficient of 1: 5-5=1 mod 12.
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The algebra of congruences is sometime referred to as “clock arithmetic.” This example
illustrates this. Imagine you are a mouse and that each day you travel clockwise around a
clock, passing through 25 minutes on the clock. You start at 12 o'clock. Here is what you
journey will look like:

Start Day 1 Day 2 Day 3 Diay 4 Day 5
12 Midnight | 5 o'clock | 10 o'clock | 3 o'clock | 8 o'clock | 1 o'clock

Note that the transition from 10 o’clock was not to 15 o'clock, but (working mod 12) to
15 mod 12 or 3 o'clock. In terms of clocks, we asked when the mouse would land at the 1
o'clock spot on the clock.

We can quickly find when the mouse will land at 4 o'clock. The equation is

ar =4 mod 12

Multiply by 5 to get 25x = 20 mod 12 or simply = = 8 mod 12. It take 8 days.

Example Same clock. different mouse. This mouse goes 23 minutes a day and starts
at 12 o’clock. How many days before she reaches 9 minufes before 12¢

The appropriate congruence is 23r = —9 mod 60. We'll use the ged method and find 1 as a
linear combination of 23 and 60. A spreadsheet calculation gives

1=-13-2345-60
Taking this mod 6(), we find
23(—13) = 1 mod 60.

Multiply by —9 to get
23(117) = —9 mod 60.

But 117 = 57 mod 60. And so the mouse must travel 57 days to reach 9 minutes before
the hour. Note that 57 = —3 mod 60 so the mouse will take 3 days if she goes in the other
direction.

Up to now, all of our congruences have been modulo one fixed n. The following results show
how to change the modulus in certain situations.

Theorem If a = b mod n, and ¢ is a positive integer, then ca = cb mod en

Proof: This is little more than a divisibility theorem. Since n|(b — a). we have cn|c(b — a)
or cn|(ch — ca), and this is the result.

The converse 1s also valid. Thus, if ca = b mod cn with ¢ = () then a = b mod n.

These results can be stated: A congruence can by multiplied through (including the modulus)
and similarly, it can be divided by a common divisor.
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Finally, we can mention that if @ = b mod n and if d|n, then a = b mod d. We leave the
proof to the reader.

We can now tackle the general question of solving a linear congruence ar = b mod n. We will
find when this congruence has a solution, and how many solutions it has. We first consider
the case ged(a,n) = 1. (In the examples above, this was the situation.) The following
theorem answers this question and also shows how to find the solution.

Theorem If ged(a,n) = 1. then the congruence ar = b mod n has a solution r = ¢.
In this case, the general solution of the congruence is given by © = ¢ mod n.

Proof: Since a and n are relative prime, we can express 1 as a linear combination of them:
ar 4+ ns =1
Multiply this by b to get abr + nbs = b. Take this mod n to get
abr + nbs = b mod n or abr = b mod n

Thus ¢ = br is a solution of the congruence ar = b mod n. In general, if © = ¢ mod n we
have axr = ac = b mod n.

We now claim that any solution of ax = b mod n is necessarily congruent to ¢ mod n. For
suppose ar = b mod n. We already know that ac = b mod n. Subtract to get

ar —ac =) mod n or a(r —c) =0 mod n

But this means that n|a(x — br). But since a and n are relatively prime, this implies that
n|(x — ¢) and r = ¢ mod n. This completes the proof.

An important special case occurs when n is a prime p.

Corollary If p is a prime, the congruence ar = bmod p has a unigue solution
x mod p provided a 2 () mod p.

The reason we single this case out is that this result is almost exactly like the similar result
in high school algebra: The equation ax = b has a unique solution provided a #£ (). We shall
soon delve further into this analogy. The reason this is true is that if an integer a is not
divisible by p. it is relatively prime to p. Thus, if @ 2 () mod p. then a and p are relatively
prime.
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Theorem If ab = ac mod n and if ged(a,n) = 1, then we have b = ¢ mod n.

In short, we can cancel the factor a from both sides of the congruence so long as ged(a,n) = 1.
In algebra, we learn that we “can divide an equation axr = ay by a” if a # (). Here we can
“cancel the factor a from both sides of the congruence ar = ay mod n” if a and n are
relatively prime. This theorem is sometimes called the cancelation law for congruences.

Now suppose that we wish to solve the congruence ar = b mod n where d = ged(a.n) > 1.
For example, consider the congruence 18r = 12 mod 24. Here d = ged(18,24) = 6. We can
divide this congruence by 6 to get the equivalent'® congruence 3r = 2 mod 4. So we end up
with the congruence 3z = 2 mod 4, in which ged(3,4) = 1 and which has general solution
r = 2mod 4. So this is the solution of the original congruence 18z = 12 mod 24. This
worked because the ged also divided the constant term 12. If it didn’t there would be no
solution. This is the content of the following theorem which generalizes this problem.

Theorem Given the congruence ar = b mod n. Let d = ged(a,n). Then

1. If d does not divide b, the congruence has no solution.

2. If d|b then the congruence is equivalent to the congruence (a/d)r = (b/d) mod (n/d)
which has a unique solution mod n/d.

Proof: Suppose there were a solution of ax = b mod n. Then we would have ax = b mod d.
But a = 0) mod d since d|a. So we would have () = b mod d or d|b. So a necessary condition
for a solution is that d|b. This prove part 1. As for part 2, divide the entire congruence by d
as i the above example. The reduced congruence has a unigue solution mod n/d since a/d
and n/d are relatively prime.

Algebra on a Small Scale.

Corollary 3.11 has an interesting interpretation—if p is a prime and we work mod p, the
integers mod p behave algebraically like the real numbers. In the real number system the
equation ar = b has a solution r = bfa = ba~! where a=! = 1/a is the reciprocal of a and is
the solution of the equation ax = 1. What is the situation if we try to do this mod p?

Example What is the value of 5! mod 77

Method. It is required to find the solution of br = 1 mod 7. We can do this using the
method of Example 3. Since

354 (=2)7T=1
be observation, we have

3:-6=1mod 7

So 57! = 3 mod 7, or simply 57! = 3 mod 7. where equality if used because it is understood
that we are working mod 7.
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Since we are working mod 7, there are only 7 different numbers mod 7, namely the remainders
() through 6 when a number is divided by 7. So the algebra of numbers mod 7 is a strictly
finite algebra. Here is the multiplication table for these numbers mod 7. We omit 0.

x|1 2 3 45 6
1]1L 2 3 45 6
212 4 6 1 3 5
313 6 2 5 1 4
44 15 2 6 3
5(5 3 16 4 2
66 5 4 3 2 1

Multiplication Table mod 7

The number 1 is underlined in the body of the table. The row and column where a 1 appears
are inverses, because the product is 1. By observation. we can see that 2 and 4 are inverses
mod 7, as are 3 and 5. Both 1 and 6 are self inverses. (Note that 6 = —1 mod 7, and so it
is not surprising that 6 is its own inverse: (=1)~!' = —1.

Example Solve the congruence 8r = 13 mod 29,

First method. In analogy with algebra we expect the solution r = 13- 8! mod 29. So we
first compute 87! mod 29. We express 1 as a linear combination of 8 and 29 by the method
given in section 1, or using a spreadsheet. A possible result is

1=11-8-3-29
Taking this mod 29, we find 8! = 11 mod 29. So, solving for x, we find

r=13-8"1=13-11= 143 = 27 mod 29
Second method. Using fractions, we write

L,

r= s maod 29

Ordinarily. we cancel factors in the numerator and denominator. We can’t do this here, but
we can mulfiply numerator and denominator by the same (non-zero) mumber. We choose 4,
because this gets the denominator close to the modulus 29, making the guotient simpler.

Eloe _138_52_2
I_?_E_T“JG g

Now do it again, using a factor 10:

23 230 27
—_—— = — 9
3= -1 = 27 mod 29
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This is the same answer, of course. Here's the way the full solution works in one line:

. . : 1: .
Third method. When we write r = " mod 29, we can cancel at least one factor 2, if we

add 29 to the numerator. Thus,

We don’t necessarily recommend this method, but we use it to illustrate that there are
often many ways to attack a problem and to show the inner consistency of our small scale
arithmetic.

Divisibility Tricks. The number 345.546.711 is divisible by 3. In fact it is divisible by 9.
We can discover this easily using the following trick, which we shall prove.

A number is congruent mod 9 to the sum of the digits in that number.

Here we have

345,546,711l =34+ 4+54+54+44+06+7+141=36=34+6=9=0mod 9

In fact, using this result. it is not even necessary to find the sum. There are short cuts. For
example 3 4+ 4 + 5 = 12 which is congruent to its digit sum 1 4+ 2 = 3 mod 9. Continuing,
add 54+5=10=1, so we add 1 to 3 to get 4. And so on. This is a lot easier to do than to
explain. Briefly, any time vou get a two digit answer, replace it by its digit sum.

The proof of this trick depends on the knowledge that the digits in an expansion of a number
represent coefficient of powers of 10, Thus,

3.412=3x1PF+4x10°+1x10"+2x1

Since 10 = 1 mod 9, we can square to get 10° = 1 mod 9. Similarly, by cubing we get
1(0# =1 mod 9, and so on. Thus,

3M12=3x100+4x10°+1x10'+2x1=3+4+1+2mod 9

where the latter sum is simply the sum of the digits of 3412. This generalizes to give the
result. It follows that a number is congruent to its digit sum mod 3, because if a = b mod n
and d|n then a = b mod n. (Here n =9 and d = 3.)

This simple trick has a useful application. It is a check on possible calculation errors.
For example, suppose vou are given the multiplication 341 x 167 = 56847 and you are
suspicious of this result. (Perhaps someone was sloppy or didn’t copy it down correctly.)
Now if this multiplication were true, it would also be true mod 9. But 341 = 8 mod 9
(just add the digits!) and 167 = 14 = 5 mod 9 so 341 x 16T = 8 x 5 = 40 = 4 mod 9.
But the answer given us was 56847 = 30 = 3 mod 9, and so it was in error. This method
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is not failsafe, but it is a quick check.'® Incidentally, you know that the multiplication
1234567 x 245678 = 303305951435 is wrong. (Hint: look at the last digits.) You know it’s
wrong by checking the answer mod 10.

There is another simple trick to find a number mod 11 using its digits. In this case, we find
the alternating sum starting with the units column. For example, to find 56744 mod 11, we
compute 56743 =3 -4+ 7—64+5 =5 mod 11. The proof is similar to the proof above, and
is based on the simple congruence 10) == —1 mod 11. Squaring, we get 100 == 1 mod 11.
Cubing. we get 1000 = 1 mod 11, ete. Thus,

56743 =3+ 4x 10+ 7x 107 +6x 10° +5x10'=3-4+47—-6+5="5mod 11
The general proof is the same.
For example, the alleged calculation 345 x 3456 = 1129320 can be check mod 11. We have
MHx M= (—-44+3)(6—-5+4+4=-3)=4x2=8mod 11

The alleged answer is 1129320 =0-243-942=141= =6 =5 # 8 mod 11. The actual
answer for this multiplication is 119232(), so the error was a simple transposition of digits, a
common error. The alternating sum will catch such an error.
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Possible Questions
2 Mark Questions:
1. Define a relation on a set with examples
2. Define composition of relations with an example
3. Define equivalence class
4. Define partition of a set
5. Define generalized intersection of two sets.
6 Mark Questions:
1. State and prove equivalence class theorem on relations.

2. Rand S are “congruent modulo 3 and “congruent modulo 4” relations respectively on the
set of integers. Find

()RUS (i) RNS (iii))R-S (iv)S-R (V) R®S.

3. IfR s the relation on the set of integers such that (a, b) in R, iff 3a+4b = 7n for some
integer n, prove that R is an equivalence relation.

4. Determine whether the relation R on the set off all integers is reflexive, symmetric, —antisymmetric
and /or transitive, where a R b iff (i)a=zb (ii)ab>0 (i) ab>1 (iv) a is multiple of b

5. [IfRis the relation on A = {1, 2, 3} such that (a, b) in R, iff a + b = even. Find the
relational matrix Mr.Find also the relational matrices R™' R, R2.

0 1 0 0 1 0
6. If R and S be relations on a set A represented by the matrices MR=[1 1 1] and Ms=[0 1 1].
1 0 0 1 1 1

Find the matrices that represent i) RU S ii)) RNS iii)) ReS iv) SeR v) R®S
7.  If the relation Ry,Ro,.....R¢ are defined on the set of real numbers as given below

Ri={(a,b)/a>b},Ra={(a,b)/a>b}, R3={(a,b) /a<b},Rs= {(a,b) /a<b}, Rs={(a, b) /a=Db},
Rs= {(a, b) / a # b}. Find the following composite relations Ri® R, Rze Rz, Ri e R4, R3e R5, Rse R3,
Rs e R3, Rs® R4, Rs® Ro.
8. LetR={(1,1),(1,3),(3,2),(3,4),(4,2)}and S={(2, 1), (3, 3), (3, 4), (4, 1)}. Find the following
composite relations Re S, Se R, ReR,SeS (ReS)eR, Re(SeR),ReReR.
9. The relation R on the set A={1, 2, 3, 4, 5} is defined by the rule (a, b) in R, if 3 divides a-b.
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@A) List the elements of R and R*!

(i1) Find the domain and range of R

(iii) Find the domain and range of R*!

10. IfR={(1,2), (2,4), (3, 3)} and S={(1, 3), (2,4), (4,2)}.Find i) RuU S
(1)RNS (i) R-S (iv) S—R (v) R® S. Also verify that
dom (R U S) =dom (R) U dom (S) and range (R n S) < range (R) M range(S)
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PART A (20x1=20 Marks)
(Question Nos. 1 to 20 Online E inations)
Possible Q
Question Choice 1 Choice 2 Choice 3 Choice 4 Answer
A R from a set A to a set B is a subset R of the cartesian product A'B |Relation Binary relation duality principle  |partition of a set Binary relation
Let R be a relation on a set A then if aRa for all a in A then R is . . . .
reflexive symmetric transitive antisymmetric reflexive
called
Let R be a relation on a set A then if aRb then bRa for all a,b in A thenR is . . . . . .
called reflexive symmetric transitive antisymmetric symmetric
Let R be a relation on a set A then if aRb and bRc then aRc for all a,b,c in A then . . . . . .
. reflexive symmetric transitive antisymmetric transitive
R is called
reflexive , reflexive , irreflexive , irreflexive ,
A relation R on a set A is called an equivalence relation if R is symmetric and [antisymmetric and |symmetric and antisymmetric and reflexive , symmetric and transitive
rcﬂc;wc R rcﬂcgivc R u‘rcﬂv‘:;&ivc R lrrcﬂéxivc R
A relation R on a set A is called an partial order relation if R is symmetric and [antisymmetric and |symmetric and antisymmetric and reflexive , antisymmetric and transitive
A poset in which every pair of elements have both a least upper bound and a - .
hasse diagram |maximal element |minimal element  |lattice lattice
greatest lower bound is called a
If a relation is reflexive, symmetric and transitive then the relation is Relation Binary relation oqux\j'a]cncc pam‘llal ordered equivalence relation
- relation relation
If a relation is reflexive, anti symmetric and transitive then the relation is Relation Binary relation oqulxja]cncc parll}lal ordered partitial ordered relation
relation relation
The two relations symmetric and antisymmetric are unique equal not equal none of these not equal
aRb,bRc implies
A binary relation R ina set X is said to be symmetric if aRa aRb implies bRa |aRc aRb,bRa implies a=b |aRb implies bRa
aRb,bRc implies
A binary relation R ina_set X is said to be reflexive if ----— aRa aRb implies bRa |aRc aRb,bRa implies a=b |aRa
aRb,bRc implies
A binary relation R ina set X is said to be antisymmetric aRa aRb implics bRa |aRc aRb,bRa implies a=b |aRb,bRa implies a=b
aRb,bRc implies
A binary relation R ina set X is said to be transitive if ---- aRa aRb implies bRa _|aRc aRb,bRa implies a=b_|aRb,bRc implies aRc
If R= {(1,2),(3,4),(2,2)} and S = {(4,2).(2,5).(3,1),(1,3)} are relations then SoS = -| {(4,2),(3,2),(1,
""" 4)} {(1,5),3,2),2,9)} |1(1,2),(2,2)} {(4,5),3,3),(1, 1)} {(4,5),(3.3).(1,D)}
Let x = {1,2,3,4}, R = {(2.3),(4,1)} then the domain of R = ------- {13} 2.3} (2.4} (14} 2,4}
Let x = {1,2,3,4}, R = {(2,3),(4,1)} then the range of R = ------——- {1,3} {3,1} {2,4} {14} {3,1}
In a relation matrix all the diagonal elements are one then it satisfies ------- symmetric antisymmetric transitive reflexive reflexive
In a relation matrix A=(aij) a; =aj then it satisfies ------- relation symmetric reflexive transitive antisymmetric symmetric
ic,
A relation R on a set is said to be an equivalence relation if it is ------ Reflexive Symmetric Transitive Transitive Reflexive,Symmetric, Transitive
If R= {(1,2),(3,4),(2,2)} and S = {(4,2).(2,5).(3,1),(1,3)} are relations then RoS = |{(4,2),(3.2),(1,
—————— 4} {(1,5),3,2),2,9)} |1(1,2),(2,2)} {(4,5),3,3),(1, 1)} {(1,5),(3.2),2,5)}
A relation R in a set X i ---------- if for every x in X, (x,x) in R transitive symmetric irreflexive reflexive irreflexive
In N, define aRb if a+b = 7. This is symmetric when ------— bta =7 ata =7 btc=7 atc=7 bta =7
If the relation is ---------- relation if aRb,bRa implies a = b. symmetric reflexive Antisymmetric not reflexive Antisymmetric
ffromR toR, g fromR to R defined by f(x) = 4x-1 and g(x) = cos x..The value of
fog is ------ 4cosx —1 4cosx 4cosx +1 1/4cosx 4cosx —1
The subsets in a partition are also called -- of partition blocks members order degree blocks
The equivalence classes of A forma -—-of A partition
member partition degree order
The - A/R is a partition of A quotient set subset super set power set quotient set
Symmetry and --- are not negative of each other symmetry not symmetry anti symmetry not anti symmetry anti symmetry
The relation of similarity of --- is reflexive,symmetric and transitive triangle square rectangle cube triangle
A relation R on a set A is aid to be --- if (a,a) in R symmetric reflexive antisymmetric irreflexive reflexive
A relation R on a set A is ---- if there is no a in A symmetry not symmetry reflexive irreflexive irreflexive
The quotient set A/R is ---of A member partition degree order partition
equivalen equivalen
The --- of A form a partition of A logic classes class logic equivalence classes
Any element bl [a] is called --- of equivalence class [a] member order degree representative representative
The collection of all equivalence classes of elements of A under an equivalence subset super set quotient set quotient set
relation R is called --- of A by R universal set
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Reg no------------- 10. The other name of tautology is
(18MMU103) (a) identically true (b)identically false
KARPAGAM ACADEMY OF HIGHER EDUCATION (c)universally false (d)false
Coimbatore-21 11. The notation of “x+1>x” for all real value x, is
DEPARTMENT OF MATHEMATICS (@) VxP(x)  (b) P(x) (c) IxP(x) (d) ~P(x)

First Semester

. i YxlP
| Internal Test - AUG'2018 12. In this statement¥xP{x), P(x) denotes

Logic and Sets (a) Essential quantifier (b) Universal quantifier
Date: 01-08-2018 Time: 2 Hours (c) Predicates (d) subject
Class: 1-B.Sc Mathematics Maximum Marks:50 13. The statement ________is tautology.
@Pv—=P (P—>Q (c)P—>(Q—R) (dP
PART-A(20X1=20 Marks) 14. Proposition is called
Answer all the Questions: (a) Statement (b) tautology  (c) true (d) false
1. The equivalent statement for P and not P is ---------- 15. Tautologically implication means
@T (F (c)FandT  (d)TandF (@) P—>Q (b) P—>Q is fallacy
2. Theimplications of P is -------------- (c) P—Q is tautology (d) P—Q is Contradiction
@P (b)notP (c)PorQ (dPandQ 16. The operation is called unary operator.
3. A statement which has true as the truth value for all the @ — (b) A ©) v d) ®
assignments s called ------- 17. The disjunction of two statement is denote the symbol
(@) C_ontradlctlon o (b) tautology @ — ) A © v @) ®
©) Eltrler te}utology c')lr C(?ntradlctlon (d) true 18. The equivalence Pv T <> T is called
4. P or_ P "equivalent to" P |s_ca1_lled as ------- _ _ (a) identity law (b) Negation law
(@) |dempt?ltent_ (b)assol?latl_ve (c)closure (d)identity (c) Domination law (d) Absorption law
5. not(not P) "equivalent to" P is called as-------- i
(a)Involution  (b)Absorption (c)Associative (d)none 19. The Precedence of the operator <>is_____
6. If P then Q is "equivalent to"---------- @) 1 . (0) _2 o (©)3 (d)5
@notPorQ (b)notPandQ (cPandQ (d)P or Q 20. Which one is not Distributive?
7. The substitution instance of a tautology is a----- @Pv@QAR) = (PVvQAPVR)
(a) tautology  (b)contradiction  (c)identically false  (d)false b)PAQVR)& (PAQV(PAR)
8. IfA={1,23,4}and B = {2,4} then A intersection B = -------- C©)PVvQAR< (PAR)V(QCAR)
(@{2.4}(b){1.234}  (c){1.2} d{} d)PAQQAR=PA(QAR)
9. A biconditional statement P if and only if Q is "equivalent to " --
(a)(Not P or Q) and (ot Q or P) PART-B (3X2=6 Marks)
(b)(Not P or Q) or (not Q or P) Answer all the Questions:
(€)(P or Q) and (not Q or P) 21. Give the symbolic form of the statement “every book with a

(d)(Not P or Q) and ( Q or P)
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22. Construct the truth table for (P —>Q) —>P

23. Define bound variable.

PART-C (3X8=24 Marks)
Answer all the Questions:
24. (a) Without construct the truth table show that
(=PA(=QAR)V(QAR)V(PAR)=R
(OR)
(b) Construct the truth table for(P < Q)< (R< S)

25. (a) Show that the following is an implication.
P>(Q—>R)=(P—->Q) —>(P—R)
(OR)
(b) Define Tautology, Contraction and Fallacy with
example.
26. (a) Write about predicate calculus.
(OR)
(b) Discuss about the types of quantifiers with example.
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