Semester - III

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956) Coimbatore – 641 021.

SYLLABUS

		L	Т	P	C
17MMU301	NUMERICAL METHODS	4	0	0	4

Scope: This course provides a deep knowledge to the learners to understand the basic concepts of Numerical Methods which utilize computers to solve Engineering Problems that are not easily solved or even impossible to solve by analytical means.

Objectives: To enable the students to study numerical techniques as powerful tool in scientific computing.

UNIT I

Convergence, Errors: Relative, Absolute, Round off, Truncation. Transcendental and Polynomial equations: Bisection method - Newton's method - False Position method - Secant method - Rate of convergence of these methods.

UNIT II

System of linear algebraic equations: Gaussian Elimination - Gauss Jordan methods - Gauss Jacobi method - Gauss Seidel method and their convergence analysis -LU decomposition - Power method.

UNIT III

Interpolation: Lagrange and Newton's methods. Error bounds - Finite difference operators. Gregory forward and backward difference interpolation – Newton's divided difference – Central difference – Lagrange and inverse Lagrange interpolation formula.

UNIT IV

Numerical Differentiation and Integration: Gregory's Newton's forward and backward differentiation- Trapezoidal rule, Simpson's rule, Simpsons 3/8th rule, Boole's Rule. Midpoint rule, Composite Trapezoidal rule, Composite Simpson's rule.

UNIT V

Ordinary Differential Equations: Taylor's series - Euler's method – modified Euler's method - Runge-Kutta methods of orders two and four.

SUGGESTED READINGS

TEXT BOOK

1. Jain. M.K., Iyengar. S.R.K., and Jain R.K., (2012). Numerical Methods for Scientific and Engineering Computation, New Age International Publishers, New Delhi .

REFERNCES

1. Bradie B., (2007). A Friendly Introduction to Numerical Analysis, Pearson Education, India,

2.Gerald C.F., and Wheatley P.O., (2006). Applied Numerical Analysis, Sixth Edition, Dorling Kindersley (India) Pvt. Ltd., New Delhi.

3. Uri M. Ascher and Chen Greif., (2013). A First Course in Numerical Methods, Seventh Edition., PHI Learning Private Limited.

4. John H., Mathews and Kurtis D. Fink., (2012). Numerical Methods using Matlab, Fourth Edition., PHI Learning Private Limited.

5. Sastry S.S., (2008). Introductory methods of Numerical Analysis, Fourth edition, Prentice Hall of India, New Delhi.

(Deemed to be University Established Under Section 3 of UGC Act 1956) Coimbatore – 641 021.

LECTURE PLAN DEPARTMENT OF MATHEMATICS

STAFF NAME: K.AARTHIYA SUBJECT NAME: NUMERICAL METHODS SEMESTER: III

SUB.CODE:16MMU301 CLASS: I B.SC MATHEMATICS

S.No	Lecture Duratio n Period	Topics to be Covered	Support Material/Page Nos
		UNIT-I	
1.	1	Introduction to Convergence	T1:ch-1, Pg.No:12-15
2.	1	Convergence, Errors: Relative, Absolute, Round off, Truncation	T1:ch -1,Pg.No:7-8
3.	1	Solution of Algebraic and Transcendental Equation -Bisection Method	T1: ch -2,Pg.No:20-22
4.	1	Newton's method and its rate of convergence- problems	R2:Ch 1,Pg.No:48-49
5.	1	Continuous on Newton's method and rate of convergence problems	R2:Ch 1,Pg.No:50-51
6.	1	False Position method and its rate of convergence related examples	T1: ch -2,Pg.No:23-24
7.	1	Continuous on False Position method and its rate of convergence related examples	T1: ch -2,Pg.No:25-26
8.	1	Secant method related problems and its rate of convergence	R5:ch-2,Pg.No:43-44
9.	1	Recapitulation and Discussion of possible questions	
	Total No	of Hours Planned For Unit I=9	
		UNIT-II	
1.	1	Introduction to Solution of Simultaneous Linear algebraic Equations	T1:ch -3,Pg.No:114-115
2.	1	Gauss Elimination Method: Procedure	T1:ch -3,Pg.No:116-117
3.	1	Gauss Jordan Method and their convergence related examples	T1:ch -3,Pg.No:119-120

4.	1	Gauss Jordan Method and its	R1:chater-3,Pg.No:216-
_		convergence related examples	224
5.	1	Gauss Jacobic Method and its	T1:ch -3,Pg.No:146-149
		convergence related examples	
6.	1	Gauss Seidal Method and its	T1:ch -3,Pg.No:150-152
		convergence problems	
7.	1	Continuation of Problems on Gauss	R2:ch-2,Pg.No:129-134
		Seidal Method	
8.	1	LU Decomposition related problems	R3: ch -5 Pg.No:100-105
9.	1	Power Method with examples	T1: ch -3,Pg.No:192-194
10.	1	Recapitulation and Discussion of	
		possible questions	
	Total No	of Hours Planned For Unit II=10	
		UNIT-III	
1.	1	Introduction on Interpolation and its	T1: ch -4,Pg.No: 212-214
		formulas	
2.	1	Lagrange and Newton's Methods	T1: ch -4, Pg.No: 215-216
		related problmes	
3.	1	Continuous on Lagrange and Newton's	T1: ch -4, Pg.No: 216-217
		Methods related problmes	
4.	1	Error bounds - Finite difference operators	T1: ch -4,Pg.No: 218-220
		related examples	
5.	1	Continuous on Error bounds - Finite	T1: ch -4,Pg.No: 221-224
	1	difference operators related examples	T1 1 4 D N 000 006
6.	1	Gregory Forward and backward	T1: ch -4, Pg.No: 230-236
		difference Interpolation related	
7	1	examples	T1 1 4 D NL 206 200
7.	1	Newton's Divided difference and its	T1: ch -4,Pg.No: 226-229
0	1	problems	D2.ab 10 D- N- 206 210
8.	1	Central difference	R3:ch -10,Pg.No:306-310
9.	1	Lagrange and Inverse Interpolation	R4: ch -6,Pg.No:334-335
10	1	formula	
10.	1	Recapitulation and Discussion of	
	Tatal NL	possible questions	
	1 otal No	of Hours Planned For Unit III=10	
1	1	UNIT-IV	T1 1 5 D N 200 202
1.	1	Introduction to Numerical Differentiation	T1: ch -5,Pg.No: 320-322
2.	1	and Integration Gregory 's Newton's Forward and	T1: ch -5,Pg.No: 323-324
۷.	1	Backward differentiation	11. CII - J, F g. NO. 525-524
3.	1		T1. ab. 5 Da No. 225 226
э.	1	Continuous on Gregory 's Newton's Forward and Backward differentiation	T1: ch -5, Pg.No: 325-326
1	1		T1. ch 5 Da No.250 252
4. 5.	1	Trapezoidal rule and its examples	T1: ch -5,Pg.No:350-352
5.	1	Simpson's 1/3 rule and Simpson's	T1: ch -5,Pg.No:353-355

		3/8 rule-Problems		
6.	1	Boole's Rule & Midpoint rule related problems	R5:ch-5,Pg.No:200-202	
7.	1	Composite Trapezoidal rule and its problems	T1: ch 5,Pg.No:386-387	
8.	1	Composite Simpson' rule related examples	T1: ch 5,Pg.No:388-390	
9.	1	Recapitulation and Discussion of possible questions		
	Total I	No of Hours Planned For Unit IV=9		
		UNIT-V		
1.	1	Introduction to Ordinary Differential Equations	R4:ch 9,Pg.No:451-453	
2.		Taylor's series with examples	R4:ch 9,Pg.No:454-456	
3.	1	Euler's method and modified Euler's method with problems		
4.	1	Continuous on Euler's method and modified Euler's method with problems	R2:ch:6,Pg.No:455-458	
5.	1	Runge-Kutta methods of orders two and four with problems	T1: ch -6, Pg.No:451-456	
6.	1	Milne's predictor – corrector method & Adam's Bashforth predictor – corrector method and its examples	R2:ch:6,Pg.No:467-468 T1: ch -6,Pg.No:487-492	
7.	1	Recapitulation and Discussion of possible questions		
8.	1	Discuss on Previous ESE Question Papers		
9.	1	Discuss on Previous ESE Question Papers		
10.	1	Discuss on Previous ESE Question Papers		
	Tot	al No of Hours Planned for unit V=10		
Total Planne d Hours	48			

SUGGESTED READINGS

TEXT BOOK

T1. Jain. M.K., Iyengar. S.R.K., and Jain R.K., (2012). Numerical Methods for Scientific and Engineering Computation, New Age International Publishers, New Delhi .

REFERNCES

R1. Bradie B., (2007). A Friendly Introduction to Numerical Analysis, Pearson Education, India,

R2. Gerald C.F. and Wheatley P.O., (2006). Applied Numerical Analysis, Sixth Edition, Dorling Kindersley (India) Pvt. Ltd., New Delhi.

R3. Uri M. Ascher and Chen Greif., (2013). A First Course in Numerical Methods, Seventh Edition., PHI Learning Private Limited.

R4. John H., Mathews and Kurtis D. Fink., (2012). Numerical Methods using Matlab, Fourth Edition., PHI Learning Private Limited.

R5. Sastry S.S., (2008). Introductory methods of Numerical Analysis, Fourth edition, Prentice Hall of India, New Delhi.

CLASS: II B.Sc COURSE CODE: 17MMU301

COURSE NAME: NUMERICAL METHODS UNIT: I BATCH-2017-2020

UNIT I SYLLABUS

Convergence, Errors: Relative, Absolute, Round off, Truncation. Transcendental and Polynomial equations: Bisection method - Newton's method - False Position method - Secant method - Rate of convergence of these methods.

SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

Introduction

The solution of the equation of the form f(x) = 0 occurs in the field of science, engineering

and other applications. If f(x) is a polynomial of degree two or more ,we have formulae to find

solution. But, if f(x) is a transcendental function, we do not have formulae to obtain solutions.

When such type of equations are there, we have some methods like Bisection method, Newton-

Raphson Method and The method of false position. Those methods are solved by using a

theorem in theory of equations, *i.e.*, If f(x) is continuous in the interval (a,b) and if f(a) and f(b)

are of opposite signs, then the equation f(x) = 0 will have at least one real root between a and b.

Bisection Method

Let us suppose we have an equation of the form f(x) = 0 in which solution lies between in the range (a,b). Also f(x) is continuous and it can be algebraic or transcendental. If f(a) and f(b) are opposite signs, then there exist atleast one real root between a and b. Let f(a) be positive and f(b) negative. Which implies atleast one root exits between a and b. We assume that root to be $x_0 = (a+b)/2$. Check the sign of $f(x_0)$. If $f(x_0)$ is negative , the root lies between aand x_0 . If $f(x_0)$ is positive , the root lies between x_0 and b. Subsequently any one of this case occur.

$$X_{0}+a$$
 (or) $x_{0}+b$
 $X_{1}=2$ 2

When $f(x_1)$ is negative, the root lies between xo and x1 and let the root be $x_2=(x_0+x_1)/2$.

Again $f(x_2)$ negative then the root lies between x_0 and x_2 , let $x_3 = (x_0+x_2)/2$ and so on. Repeat the

CLASS: II B.Sc COURSE CODE: 17MMU301 COURSE NAME: NUMERICAL METHODS UNIT: I BATCH-2017-2020

process x_0, x_1, x_2, \dots Whose limit of convergence is the exact root.

Steps:

1. Find a and b in which f(a) and f(b) are opposite signs for the given equation using trial and error method.

2. Assume initial root as $x_o = (a+b)/2$.

3.If $f(x_0)$ is negative, the root lies between a and x_0 and take the root as $x_1 = (x_0+a)/2$.

4. If $f(x_0)$ is positive, then the root lies between x_0 and b and take the root as $x_1 = (x_0 + b)/2$.

5. If $f(x_1)$ is negative, the root lies between x_0 and x_1 and let the root be $x_2 = (x_0 + x_1) / 2$.

6. If $f(x_2)$ is negative, the root lies between x_0 and x_1 and let the root be $x_3 = (x_0 + x_2) / 2$.

7. Repeat the process until any two consecutive values are equal and hence the root.

Example:

Find the positive root of $x^3 - x = 1$ correct to four decimal places by bisection method.

Solution:

Let $f(x) = x^{3} - x - 1$

$$f(0) = 0^{3} - 0 - 1 = -1 = -ve$$

$$f(1) = 1^{3} - 1 - 1 = -1 = -ve$$

$$f(2) = 2^{3} - 2 - 1 = 5 = +ve$$

So root lies between 1 and 2, we can take (1+2)/2 as initial root and proceed.

i.e.,
$$f(1.5) = 0.8750 = +ve$$

and $f(1) = -1 = -ve$

So root lies between 1 and 1.5,

Let x o = (1+1.5)/2 as initial root and proceed.

$$f(1.25) = -0.2969$$

So root lies between x 1 between 1.25 and 1.5

Now
$$x_1 = (1.25 + 1.5)/2 = 1.3750$$

$$f(1.375) = 0.2246 = +ve$$

So root lies between x_2 between 1.25 and 1.375

CLASS: II B.Sc COURSE CODE: 17MMU301	COURSE NAME: N UNIT: I	IUMERICAL METHODS BATCH-2017-2020
Now $x_2 = (1.25 + 1.375)/(1.3125) = -0.051514 = -ve$	/2 = 1.3125	
J(1.3123) = -0.031314 = -ve		
Therefore, root lies between 1.375and	d 1.3125	
Now $x_3 = (1.375 + 1.3125)$	(5)/2 = 1.3438	
f(1.3438) = 0.082832 = +ve		
So root lies between 1.3125 and 1.34	38	
Now $x_4 = (1.3125 + 1.343)$	(38)/2 = 1.3282	
f(1.3282) = 0.014898 = +ve		
	11.0000	
So root lies between 1.3125 a		
Now $x_5 = (1.3125 + 1.328)$	(32)/2 = 1.3204	
f(1.3204) = -0.018340 = -ve		
So root lies between 1.3204 and 1.32	282	
Now $x_6 = (1.3204 + 1.328)$	(32)/2 = 1.3243	
f(1.3243) = -ve		
So root lies between 1.3243 and 1.32	282	
Now $x_7 = (1.3243 + 1.3282) / 2$	= 1.3263	
f(1.3263) = +ve		
So root lies between 1.3243 and 1.32	263	
Now $x_8 = (1.3243 + 1.3263) / 2$	= 1.3253	
f(1.3253) = +ve		
So root lies between 1.3243 and 1.32	253	
Now $x_9 = (1.3243 + 1.3253) / 2$	= 1.3248	
f(1.3248) = +ve		
So root lies between 1.3243 and 1.32	248	

CLASS: II B.Sc COURSE CODE: 17MMU301	COURSE NAME: N UNIT: I	IUMERICAL METHODS BATCH-2017-2020
Now $x_{10} = (1.3243 + 1.3248) / 1000$	2 = 1.3246	
f(1.3246) = -ve		
So root lies between 1.3248 and 1.3	246	
Now $x_{11} = (1.3248 + 1.3246) / 2$	2 = 1.3247	
f(1.3247) = -ve		
So root lies between 1.3247 and 1.3	248	
Now $x_{12} = (1.3247 + 1.3247) / 2$	2 = 1.32475	
Therefore, the approximate re-	oot is 1.32475	
Example		
Find the positive root of $x - \cos x =$	0 by bisection method.	
Solution :		

Let $f(x) = x - \cos x$

$$f(0) = 0 - \cos(0) = 0 - 1 = -1 = -ve$$

$$f(0.5) = 0.5 - \cos(0.5) = -0.37758 = -ve$$

$$f(1) = 1 - \cos(1) = 0.42970 = +ve$$

So root lies between 0.5 and 1

Let
$$x o = (0.5 + 1)/2$$
 as initial root and proceed.
f(0.75) = $0.75 - cos(0.75) = 0.018311 = +ve$

So root lies between 0.5 and 0.75

$$x_{I} = (0.5 + 0.75) / 2 = 0.625$$
$$f(0.625) = 0.625 - \cos(0.625) = -0.18596$$

So root lies between 0.625 and 0.750

$$x_2 = (0.625 + 0.750) / 2 = 0.6875$$
$$f(0.6875) = -0.085335$$

CLASS: II B.ScCOURSE NAME: NUMERICAL METHODSCOURSE CODE: 17MMU301UNIT: IBATCH-2017-2020
So root lies between 0.6875 and 0.750
x3 = (0.6875 + 0.750) / 2 = 0.71875
$f(0.71875) = 0.71875 - \cos(0.71875) = -0.033879$
So root lies between 0.71875 and 0.750
x4 = (0.71875 + 0.750) / 2 = 0.73438
f(0.73438) = -0.0078664 = -ve
So root lies between 0.73438 and 0.750
x5 = 0.742190
f(0.742190) = 0.0051999 = + ve
x6 = (0.73438 + 0.742190) / 2 = 0.73829
f(0.73829) = -0.0013305
So root lies between 0.73829 and 0.74219
x7 = (0.73829 + 0.74219) = 0.7402
$f(0.7402) = 0.7402 - \cos(0.7402) = 0.0018663$
So root lies between 0.73829 and 0.7402
x8 = 0.73925
f(0.73925) = 0.00027593
x9 = 0.7388
The root is 0.7388.
Newton-Raphson method (or Newton's method)
Let us suppose we have an equation of the form $f(x) = 0$ in which solution is lies between in the range (a,b) .
Also $f(x)$ is continuous and it can be algebraic or transcendental. If $f(a)$ and $f(b)$ are opposite signs, then there exist
atleast one real root between a and b.

Let f(a) be positive and f(b) negative. Which implies at least one root exits

CLASS: II B.Sc	COURSE NAME: NUMERICAL METHODS	
COURSE CODE: 17MMU301	UNIT: I	BATCH-2017-2020

between *a* and *b*. We assume that

root to be either a or b, in which the value of f(a) or f(b) is very close to zero. That number is assumed to be

initial root. Then we iterate the process by using the following formula until the value is converges.

 $f(X_n)$

 $X_{n+1} = Xn$ -

f'(Xn)

Steps:

1. Find a and b in which f(a) and f(b) are opposite signs for the given equation using trial and error method.

2. Assume initial root as $X_o = a$ i.e., if f(a) is very close to zero or Xo = b if f(a) is very close to zero

3. Find X1 by using the formula

$$f(X_o)$$

$$X_1 = Xo - \frac{f'(X_o)}{f'(X_o)}$$

4. Find X_2 by using the following formula

 $X_2 = X_1 - \frac{f(X_1)}{f'(X_1)}$

5. Find $X_3, X_4, ..., X_n$ until any two successive values are equal.

Example:

Find the positive root of $f(x) = 2x^3 - 3x-6 = 0$ by Newton – Raphson method correct to five decimal places.

Solution:

Let
$$f(x) = 2x^3 - 3x - 6$$
; $f'(x) = 6x^2 - 3$

	URSE NAME: NUMERICA UNIT: I	AL METHODS Batch-2017-2020
f(1) = 2-3-6 = -7 = -ve		
f(2) = 16 - 6 - 6 = 4 = +ve		
So, a root between 1 and 2. In which 4 is	closer to 0 Hence we assume	e initial root as 2.
Consider $x_0 = 2$		
So $X_1 = X_0 - f(X_0)/f'(X_0)$		
$= X_0 - ((2X_03 - 3X_0 - 6) / 6\alpha_0 - 3)$	$= (4X_03 + 6)/(6X_02 - 3)$	
$X_{i+1} = (4X_i3 + 6)/(6X_i2-3)$		
$X_1 = (4(2)^2 + 6)/(6(2)^2 - 3) = 38/21 = 1.809$	9524	
$X_{2} = (4(1.809524)^{3}+6)/(6(1.809524)^{2}-3)$	= 29.700256/16.646263 = 1.	.784200
$X_{3} = (4(1.784200)^{3}+6)/(6(1.784200)^{2}-3)$	= 28.719072/16.100218 = 1.	783769
$X_{4} = (4(1.783769)^{3} + 6)/(6(1.783769)^{2} - 3)$	= 28.702612/16.090991 = 1.	.783769

Example:

Using Newton's method, find the root between 0 and 1 of $x^3 = 6x - 4$ correct to 5 decimal places.

Solution :

Let $f(x) = x^3 - 6x + 4$; f(0) = 4 = +ve; f(1) = -1 = -ve

So a root lies between 0 and 1

f(1) is nearer to 0. Therefore we take initial root as $X_0=1$

$$f'(x) = 3x^{2} - 6$$

= x - f(x)
f'(x)
= x - (3x^{3} - 6x + 4)/(3x^{2} - 6)
= (2x^{3} - 4)/(3x^{2} - 6)

CLASS: II B.Sc	COURSE NAME: NUMERICAL METHODS	
COURSE CODE: 17MMU301	UNIT: I	BATCH-2017-2020

 $X_{1} = (2X_{0} 3 - 4)/(3X_{0} 2-6) = (2-4)/(3-6) = 2/3 = 0.666666$ $X_{2} = (2(2/3)^{3} - 4)/(3(2/3)^{2} - 6) = 0.73016$ $X_{3} = (2(0.73015873)^{3} - 4)/(3(0.73015873)^{2} - 6)$ = (3.22145837/ 4.40060469) = 0.73205 $X_{4} = (2(0.73204903)^{3} - 4)/(3(0.73204903)^{2} - 6)$ = (3.21539602/ 4.439231265) = 0.73205

The root is 0.73205 correct to 5 decimal places.

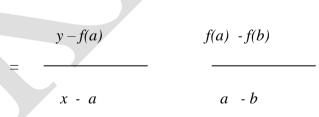
Method of False Position (or Regula Falsi Method)

Consider the equation f(x) = 0 and f(a) and f(b) are of opposite signs. Also let a < b.

The graph y = f(x) will Meet the x-axis at some point between A(a, f(a)) and

B (b,f(b)). The equation of the chord joining the two points A(a, f(a)) and

B(b,f(b)) is



The x- Coordinate of the point of intersection of this chord with the x-axis gives an approximate value for the of f(x) = 0. Taking y = 0 in the chord equation, we get

-f(a)	f(a) - f(b)
= $x - a$	a - b

CLASS: II B.ScCOURSE NAME: NUMERICAL METHODSCOURSE CODE: 17MMU301UNIT: IBATCH-2017-2020

x[f(a) - f(b)] - a f(a) + a f(b) = -a f(a) + b f(b)

 $\mathbf{x}[f(a) - f(b)] = b f(a) - a f(b)$

This *x*₁ gives an approximate value of the root f(x) = 0. (a < x₁ < b)

Now $f(x_1)$ and f(a) are of opposite signs or $f(x_1)$ and f(b) are opposite signs.

 $x^2 =$

If $f(x_1)$, f(a) < 0. then x2 lies between x_1 and a.

 $af(x_1)-x_1f(b)$

Therefore

 $f(x_1) - f(a)$

This process of calculation of $(x_3, x_4, x_5,)$ is continued till any two successive values are equal and subsequently we get the solution of the given equation.

Steps:

1. Find *a* and *b* in which f(a) and f(b) are opposite signs for the given equation using trial and error method.

2. Therefore root lies between a and b if f(a) is very close to zero select and

compute x_1 by using the following formula:

xl =

$$a f(b) - b f(a)$$

f(b) - f(a)

3. If $f(x_1)$, f(a) < 0. then root lies between x_1 and a. Compute x_2 by using the

following formula:

$$x2 = \frac{f(x_1) - x_1 f(b)}{f(x_1) - f(a)}$$

4. Calculate the values of ($x_{3}, x_{4}, x_{5}, \dots$) by using the above formula until any

CLASS: II B.Sc COURSE CODE: 17MMU301

COURSE NAME: NUMERICAL METHODS UNIT: I BATCH-2017-2020

two successive values are equal and subsequently we get the solution of the given

equation.

. Example:

Solve for a positive root of $x^3-4x+1=0$ by and Regula Falsi method

Solution :

Let $f(x) = x^3 - 4x + 1 = 0$

$$f(0) = 0^3 - 4 (0) + 1 = 1 = +ve$$

$$f(1) = 1^{3} - 4(1) + 1 = -2 = -ve$$

So a root lies between 0 and 1

We shall find the root that lies between 0 and 1.

Here a=0, b=1

$$xI = \frac{a f(b) - b f(a)}{f(b) - f(a)}$$

= $\frac{(0 x f(1) - 1 x f(0))}{(f(1) - f(0))}$
= $\frac{-1}{(-2 - 1)}$
= 0.333333
 $f(x_1) = f(1/3) = (1/27) - (4/3) + 1 = -0.2963$

Now f(0) and f(1/3) are opposite in sign.

Hence the root lies between 0 and 1/3.

$$(0 \text{ x } f(1/3) - 1/3 \text{ x } f(0))$$

 $x_2 =$

(f(1/3) - f(0))x_{2 =}(-1/3)/(-1.2963) = 0.25714

CLASS: II B.Sc	COURSE NAME: N	NUMERICAL METHODS
COURSE CODE: 17MMU301	UNIT: I	BATCH-2017-2020

Now $f(x_2) = f(0.25714) = -0.011558 = -ve$

So the root lies between 0 and 0.25714

 $x_3 = (0 \times f(0.25714) - 0.25714 \times f(0)) / (f(0.25714) - f(0))$

= -0.25714/-1.011558 = 0.25420

 $f(x_3) = f(0.25420) = -0.0003742$

So the root lies between 0 and 0.25420

 $x_4 = (0 \ x \ f(0.25420) - 0.25420 \ x \ f(0)) \ / \ (f(0.25420) - f(0))$

= -0.25420 / -1.0003742 = 0.25410

 $f(x_4) = f(0.25410) = -0.000012936$

The root lies between 0 and 0.25410

 $x_5 = (0 \ x \ f(0.25410) - 0.25410 \ x \ f(0)) / (f(0.25410) - f(0))$

= -0.25410 / -1.000012936 = 0.25410

Hence the root is 0.25410.

Example:

Find an approximate root of $x \log_{10} x - 1.2 = 0$ by False position method.

Solution :

Let $f(x) = x \log_{10} x - 1.2$

 $f(1) = -1.2 = -ve; f(2) = 2 \times 0.30103 - 1.2 = -0.597940$

f(3) = 3x0.47712 - 1.2 = 0.231364 = +ve

So, the root lies between 2 and 3.

= 2.721014

 $f(x_1) = f(2.7210) = -0.017104$

The root lies between x_1 and 3.

 $_1 xf(3) - 3 x f(x_1)$ 2.721014 x 0.231364 - 3 x (-0.017104)

CLASS: II B.ScCOURSE NAME: NUMERICAL METHODSCOURSE CODE: 17MMU301UNIT: IBATCH-2017-2020

= 2.740211 $f(x_2) = f(2.7402) = 2.7402 \text{ x} \log(2.7402) - 1.2$ = -0.00038905So the root lies between 2.740211 and 3 2.7402 x f(3) - 3 x f(2.7402) $2.7402 \ge 0.231336 + 3 \ge$ (0.00038905)X3 = f(3) - f(2.7402)0.23136 + 0.000389050.63514 - = 2.7406270.23175 f(2.7406) = 0.00011998So the root lies between 2.740211 and 2.740627 2.7402 x f(2.7406) – 2.7406 x f(2.7402) X4 = f(2.7406) - f(2.7402)2.7402 x 0.00011998 + 2.7406 x 0.00038905 0.00011998 + 0.000389050.0013950 0.00050903 = 2.7405Hence the root is 2.7405 **POSSIBLE QUESTIONS**

- 1 Define round-off error with example.
- 2 Define relative error with example.
- 3 Write the rate of convergence of the Regula falsi method.
- 4 Define absolute error with example
- 5 If x=2.536, find the absolute error and relative error.
- 6 Using secant method find the real root of the equation $f(x)=x^3 5x + 1=0$ lies in the interval (0,1)
- 7 Find all the roots of the equation $x^3 4x^2 + 5x 2 = 0$ by method of false position.
- 8 Find the positive roots of the equation $3x \cos x 1 = 0$ by Newton's method.
- 9 Solve the equation $x \log x 1.2=0$ by Regula Falsi method.
- 10 Find the positive root of the equation $x^3 x = 1$ by bisection method.

CLASS: II B.Sc COURSE CODE: 17MMU301

COURSE NAME: NUMERICAL METHODS UNIT: I BATCH-2017-2020

- 11 Solve the following by Secant method $2x log_{10}x = 7$.
- 12 Find the real positive root of $3x \cos x 1 = 0$ by Newton's method correct to 3 decimal place.
- 13 Solve for the positive root of $x^3-4x+1=0$ by method of false position.
- 14 Assuming that a root of $x^3-9x+1 = 0$ lies in the interval (2,4) ,find that root by bisection method.
- 15 Find the positive root of $f(x)=2x^3-3x-6=0$ by using Newton Raphson method correct to five decimal places.

Part A (20x1=20 Marks)

(b) are of _____ signs.

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University) (Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021 Subject: Numerical Methods Class : II - B.Sc. Mathematics Unit I

(Ouestion Nos.

Possible Questions Choice 3 Question Choice 1 Choice 2 Choice 4 Answer ----- Method is based on the repeated application of the Regula Falsi Gauss Seidal Bisection Newton Raphson Bisection intermediate value theorem. The order of convergence of Newton Raphson method is ------4 2 1 0 2 polynomial Graeffe's root squaring method is useful to find -----complex roots single roots unequal roots polynomial roots roots $_{X} = (f(a) +$ The approximate value of the root of f(x) given by the bisection $\mathbf{x} = \mathbf{a} + \mathbf{b}$ x = f(a) + f(b)x = (a + b)/2x = (a + b)/2method is --f(b))/2 In Newton Raphson method, the error at any stage is proportional to the ---cube square square root equal square of the error in the previous stage. The convergence of bisection method is -----. linear quadratic slow fast slow The order of convergence of Regula falsi method may be assumed 1 0 1 618 05 1.618 to -----Newton ----- Method is also called method of tangents. Gauss Seidal Newton Raphson Secant Bisection Raphson If f (x) contains some functions like exponential, trigonometric, logarithmic etc., Algebraic transcendental numerical polynomial transcendental then f (x) is called ----- equation. A polynomial in x of degree n is called an algebraic equation of f(x) = 0f(x) = 0f(x) = 1f (x) <1 f (x) >1 degree n if -----The method of false position is also known as ----- method. Gauss Seidal Secant Bisection Regula falsi Regula falsi The Newton Rapson method fails if -----. f'(x) = 0f(x) = 0f (x) =1 f'(x)=1 f'(x) = 0slowly slowly slowly fast The bisection method is simple but ----divergent divergent convergent convergent convergent _Method is also called as Bolzano method or interval Newton Bisection false position Horner's Bisection having method. raphson Regula falsi Giraffes The another name of Bisection method is Bozano Newtons Bozano In Regula-Falsi method, to reduce the number of iterations we start Small large equal none Small with interval The rate of convergence in Newton-Raphson method is of order 2 1 3 4 2 Newton's method is useful when the graph of the function crosses vertical horizontal close to zero vertical none the x-axis is nearly If the initial approximation to the root is not given we can find any two values of x say a and bsuch that f(a) and f(b) are of opposite same positive negative opposite _signs. The Newton - Raphson method is also known as method of interpolation secant tangent iteration tangent If the derivative of f(x) = 0, then _____ method should be Newton -Regula-Falsi Regula-Falsi iteration interpolation Raphson used. The rate of convergence of Newton - Raphson method is _ 4 quadratic 5 quadratic cubic If f (a) and f (b) are of opposite signs the actual root lies between (a, b) (0, a) (0, b) (0, 0)(a, b) The convergence of root in Regula-Falsi method is slower than Gauss -Gauss -Newton -Newton -Power method Raphson Raphson Elimination Jordan Regula-Falsi method is known as method of ____ chords elimination chords secant tangent Newton -Newton -_method converges faster than Regula-Falsi method. Power method elimination interpolation Raphson Raphson If f(x) is continuous in the interval (a, b) and if f (a) and f (b) are of opposite signs the equation f(x) = 0 has at least one function polynomial equation root root lying between a and b. Rounding errors arise during_ Solving Algorithm Truncation Computation Computation Algorithm The other name for truncation error is _ ___error. Absolute Rounding Inherent Algorithm Rounding off Rounding off Rounding errors arise from the process of _ Truncating Approximating Solving the numbers. Absolute error is denoted by_ Ea Er. Ep Ex Ea Truncation errors are caused by using _ Approximate Approximate _ results. Exact True Real Truncation errors are caused on replacing an infinite process by Finite Finite Approximate True Exact one. If a word length is 4 digits, then rounding off of 15.758 is 15.75 15.76 15.758 16 15.76 The actual root of the equation lies between a and b when f (a) and f Opposite same negative positive Opposite

CLASS: II B.Sc COURSE CODE: 17MMU301 COURSE NAME: NUMERICAL METHODS UNIT: II BATCH-2017-2020

UNIT-II

SOLUTIONS OF SIMULTANEOUS LINEAR ALGEBRAIC EQUATIONS

System of linear algebraic equations: Gaussian Elimination - Gauss Jordan methods – Gauss Jacobi method - Gauss Seidel method and their convergence analysis – LU decomposition - Power method

INTRODUCTION

We will study here a few methods below deals with the solution of simultaneous Linear Algebraic Equations

GAUSS ELIMINATION METHOD (DIRECT METHOD).

This is a direct method based on the elimination of the unknowns by combining equations such that the n unknowns are reduced to an equation upper triangular system which could be solved by back substitution.

Consider the *n* linear equations in *n* unknowns, viz.

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$

.....

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \dots (1)$$

Where a_{ij} and b_i are known constants and x_i 's are unknowns.

The system (1) is equivalent to AX=B(2)

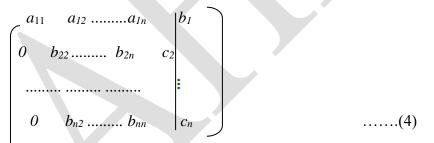
Where
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 and $B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$

Now our aim is to reduce the augmented matrix (A,B) to upper triangular matrix.

CLASS: II B.ScCOURSE NAME: NUMERICAL METHODSCOURSE CODE: 17MMU301UNIT: IIBATCH-2017-2020

$$(\mathbf{A},\mathbf{B}) = \begin{pmatrix} a_{11} & a_{12} \dots a_{1n} & b_1 \\ a_{21} & a_{22} \dots a_{2n} & b_2 \\ \dots & \dots & \dots & \vdots \\ a_{n1} & a_{n2} \dots a_{nn} & b_n \end{pmatrix} \dots (3)$$

Now, multiply the first row of (3) (if $a_{11} \neq 0$) by - a_{11} and add to the ith row of (A,B), where i=2,3,...,n. By thia, all elements in the first column of (A,B) except a_{11} are made to zero. Now (3) is of the form



Now take the pivot b_{22} . Now, considering b_{22} as the pivot, we will make all elements below b_{22} in the second column of (4) as zeros. That is, multiply second

 b_{i2}

row of (4) by - b_{22} and add to the corresponding elements of the ith row (i=3,4,...,n). Now all elements below b_{22} are reduced to zero. Now (4) reduces to

 $\begin{pmatrix} a_{11} & a_{12} & a_{13}, \dots, a_{1n} & b_1 \\ 0 & b_{22} & b_{23}, \dots, b_{2n} & c_2 \\ 0 & 0 & c_{23}, \dots, c_{3n} & d_3 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & c_{n3}, \dots, c_{nn} & d_n & \dots & \dots \\ \end{pmatrix}$

CLASS: II B.ScCOURSE NAME: NUMERICAL METHODSCOURSE CODE: 17MMU301UNIT: IIBATCH-2017-2020

Now taking c_{33} as the pivot, using elementary operations, we make all elements below c_{33} as zeros. Continuing the process, all elements below the leading diagonal elements of A are made to zero.

Hence, we get (A,B) after all these operations as

a_{11}	<i>a</i> ₁₂	<i>a</i> ₁₃		a_{1n}	b_1	
0	b_{22}	<i>b</i> ₂₃		b_{2n}	<i>C</i> ₂	
0	0	C23	<i>C34</i>	C3n	d3	
•••••		•••••••				
0	0	0	0	C _{nn}	d_n	(6)

From, (6) the given system of linear equations is equivalent to

 $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$

 $b_{22}x_2+b_{23}x_3+\ldots+b_{2n}x_n=c_2$

 $c_{33}x_3 + \dots + c_{3n}x_n = d_3$

.

 $\alpha_{nn}x_n = k_n$

Going from the bottom of these equation, we solve for $x_n = \overline{\alpha_{nn}}$. Using this in the penultimate equation, we get x_{n-1} and so. By this back substitution method for we solve x_n , x_{n-1} , x_{n-2} , ..., x_2 , x_1 .

 κ_n

CLASS: II B.ScCOURSE NAME: NUMERICAL METHODSCOURSE CODE: 17MMU301UNIT: IIBATCH-2017-2020

GAUSS – JORDAN ELIMINATION METHOD (DIRECT METHOD)

This method is a modification of the above Gauss elimination method. In this method, the coefficient matrix A of the system AX=B is brought to a diagonal matrix or unit matrix by making the matrix A not only upper triangular but also lower triangular by making the matrix A not above the leading diagonal of A also as zeros. By this way, the system AX=B will reduce to the form.

$$\begin{pmatrix} a_{11} & 0 & 0 & 0 & \dots & a_{1n} & b_1 \\ 0 & b_{22} & 0 & 0 & \dots & b_{2n} & c_2 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & \alpha_{nn} & k_n \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \end{pmatrix}$$

From (7)

$$x_n = \frac{k_n}{\alpha_{nn}}, \dots, x_2 = \overline{b_{22}}, x_n = \overline{a_{11}}$$

Note: By this method, the values of x_1, x_2, \dots, x_n are got immediately without using the process of back substitution.

Example 1. Solve the system of equations by (i) Gauss elimination method (ii) Gauss – Jordan method.

x+2y+z=3, 2x+3y+3z=10, 3x-y+2z=13.

Solution. (By Gauss method)

This given system is equivalent to

$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 3 \\ 3 & -1 & 2 \end{pmatrix} \begin{pmatrix} \chi \\ y \\ Z \end{pmatrix} = \begin{pmatrix} 3 \\ 10 \\ 13 \end{pmatrix}$$
$$A X = B$$

Now, we will make the matrix A upper triangluar.

$$(A,B) = \begin{bmatrix} 1 & 2 & 1 & | & 3 \\ 2 & 3 & 3 & | & 10 \\ 3 & -1 & 2 & | & 13 \end{bmatrix}$$
$$\begin{pmatrix} 1 & 2 & 1 & | & 3 \\ 0 & -1 & 1 & | & 4 \\ - & 0 & -7 & -1 & | & 4 \\ 4 & R_2 + (-2)R_1, R_3 + (-3)R_1 \end{bmatrix}$$

Now, take b_{22} =-1 as the pivot and make b_{32} as zero.

$$(A,B) \sim \begin{bmatrix} 1 & 2 & 1 & 3 \\ 0 & -1 & 1 & 4 \\ 0 & 0 & -8 & -24 \end{bmatrix} R_{32}(-7) \dots (2)$$

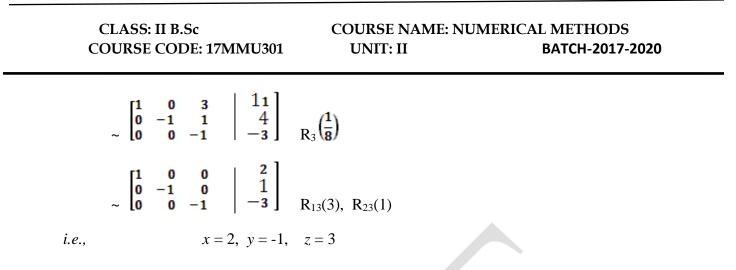
From this, we get

$$x+2y+z=3$$
, $-y+z=4$, $-8z=-24$
 $z=3, y=-1, x=2$ by back substitution.
 $x=2, y=-1, z=3$

Solution. (Gauss – Jordan method)

In stage 2, make the element, in the position (1,2), also zero.

$$(A,B) \sim \begin{bmatrix} 1 & 2 & 1 & | & 3 \\ 0 & -1 & 1 & | & 4 \\ 0 & 0 & -8 & | & -24 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & 3 & | & 11 \\ 0 & -1 & 1 & | & 4 \\ 0 & 0 & -8 & | & -24 \end{bmatrix} R_{12}(2)$$



METHOD OF TRIANGULARIZATION (OR METHOD OF FACTORIZATION) (DIRECT METHOD)

This method is also called as *decomposition* method. In this method, the coefficient matrix A of the system AX = B, decomposed or factorized into the product of a lower triangular matrix L and an upper triangular matrix U. we will explain this method in the case of three equations in three unknowns.

Consider the system of equations

 $a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} = b_{1}$ $a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3} = b_{2}$ $a_{31}x_{1} + a_{32}x_{2} + a_{33}x_{3} = b_{3}$

This system is equivalent to AX = B

Where
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, \quad X = \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix}, \quad B = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Now we will factorize *A* as the product of lower triangular matrix

$$L = \begin{pmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{pmatrix}$$

CLASS: II B.Sc	COURSE NAME: NU	JMERICAL METHODS
COURSE CODE: 17MMU301	UNIT: II	BATCH-2017-2020

And an upper triangular matrix

$$U = \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix} \text{ so that}$$

$$LUX = B \text{ Let} \qquad UX = Y \text{ And hence } LY = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$
That is,
$$\begin{pmatrix} 1 & 0 & 0 \\ l_{31} & l_{32} & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

 $\therefore \qquad y_1 = b, \ l_{21}y_1 + y_2 = b_2, \ l_{31}y_1 + l_{32}y_2 + y_3 = b_3$

By forward substitution, y_1 , y_2 , y_3 can be found out if *L* is known.

From (4),
$$\begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{32} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

$$u_{11}x_1 + u_{12}x_2 + u_{13}x_3 = y_1$$
, $u_{22}x_2 + u_{23}x_3 = y_2$ and $u_{33}x_3 = y_3$

B

From these, x_1 , x_2 , x_3 can be solved by back substitution, since y_1 , y_2 , y_3 are known if U is known.Now L and U can be found from LU = A

$$\begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ l_{21} & \mathbf{1} & \mathbf{0} \\ l_{31} & l_{32} & \mathbf{1} \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ \mathbf{0} & u_{22} & u_{23} \\ \mathbf{0} & \mathbf{0} & u_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

i.e.,

Equating corresponding coefficients we get nine equations in nine unknowns. From these 9 equations, we can solve for 3 l's and 6 u's.

CLASS: II B.ScCOURSE NAME: NUMERICAL METHODSCOURSE CODE: 17MMU301UNIT: IIBATCH-2017-2020

That is, *L* and *U* re known. Hence *X* is found out. Going into details, we get $u_{11} = a_{11}$. $u_{12} = a_{12}$. $u_{13} = a_{13}$. That is the elements in the first rows of *U* are same as the elements in the first of *A*.

Also, $l_{21}u_{11} = a_{21}$ $l_{21}u_{12} + u_{22} = a_{22}$ $l_{21}u_{13} + u_{23} = a_{23}$

$$\frac{a_{21}}{a_{11}} = \frac{a_{21}}{a_{11}}, \ u_{22} = a_{22} = \frac{a_{21}}{a_{11}}, \ a_{12} \ \text{and} \ u_{23} = \frac{a_{23}}{a_{23}} - \frac{a_{21}}{a_{11}}, \ a_{13}$$

again, $l_{31}u_{11} = a_{31}$, $l_{31}u_{12} + l_{32}u_{22} = a_{32}$ and $l_{31}u_{13} + l_{32}u_{23} + u_{33} = a_{32}$

solving, $l_{31} = \frac{a_{31}}{a_{11}}, l_{32} = \frac{a_{32} - \frac{a_{31}}{a_{11}} \cdot a_{12}}{a_{22} - \frac{a_{21}}{a_{11}} \cdot a_{12}}$

$$u_{33} = \begin{bmatrix} a_{32} & \frac{a_{31}}{a_{11}} \end{bmatrix}_{a_{13}} \begin{bmatrix} \frac{a_{32} - \frac{a_{31}}{a_{11}} \cdot a_{12}}{a_{22} - \frac{a_{21}}{a_{11}} \cdot a_{12}} \end{bmatrix}_{a_{32}} \begin{bmatrix} \frac{a_{31}}{a_{11}} \cdot a_{13} \\ a_{33} - \frac{a_{31}}{a_{11}} \\ a_{33} - \frac{a_{31}}{a_{11}} \end{bmatrix}_{a_{13}} \begin{bmatrix} \frac{a_{31}}{a_{32}} - \frac{a_{31}}{a_{11}} \cdot a_{13} \\ a_{33} - \frac{a_{31}}{a_{11}} \\ a_{33} - \frac{a_{31}}{a_{11}} \end{bmatrix}_{a_{13}} \begin{bmatrix} \frac{a_{31}}{a_{32}} - \frac{a_{31}}{a_{11}} \cdot a_{13} \\ a_{33} - \frac{a_{31}}{a_{11}} \\ a_{33} - \frac{a_{31}}{a_{11}} \end{bmatrix}_{a_{13}} \begin{bmatrix} \frac{a_{31}}{a_{32}} - \frac{a_{31}}{a_{11}} \cdot a_{13} \\ a_{33} - \frac{a_{31}}{a_{11}} \\ a_{33} - \frac{a_{31}}{a_{11}} \end{bmatrix}_{a_{13}} \begin{bmatrix} \frac{a_{33}}{a_{33}} - \frac{a_{33}}{a_{33}} \\ a_{33} - \frac{a_{33}}{a_{33}} \end{bmatrix}_{a_{33}} \begin{bmatrix} \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \\ a_{33} - \frac{a_{33}}{a_{33}} \end{bmatrix}_{a_{33}} \begin{bmatrix} \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \\ a_{33} - \frac{a_{33}}{a_{33}} \end{bmatrix}_{a_{33}} \begin{bmatrix} \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \\ \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \end{bmatrix}_{a_{33}} \begin{bmatrix} \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \\ \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \end{bmatrix}_{a_{33}} \end{bmatrix}_{a_{33}} \begin{bmatrix} \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \\ \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \end{bmatrix}_{a_{33}} \end{bmatrix}_{a_{33}} \begin{bmatrix} \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \\ \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \end{bmatrix}_{a_{33}} \end{bmatrix}_{a_{33}} \begin{bmatrix} \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \\ \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \end{bmatrix}_{a_{33}} \end{bmatrix}_{a_{33}} \begin{bmatrix} \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \\ \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \end{bmatrix}_{a_{33}} \end{bmatrix}_{a_{33}} \begin{bmatrix} \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \\ \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \end{bmatrix}_{a_{33}} \end{bmatrix}_{a_{33}} \end{bmatrix}_{a_{33}} \end{bmatrix}_{a_{33}} \begin{bmatrix} \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \\ \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \end{bmatrix}_{a_{33}} \end{bmatrix}_{a_{33}} \end{bmatrix}_{a_{33}} \end{bmatrix}_{a_{33}} \begin{bmatrix} \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \\ \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \end{bmatrix}_{a_{33}} \end{bmatrix}_{a_{33}} \end{bmatrix}_{a_{33}} \end{bmatrix}_{a_{33}} \end{bmatrix}_{a_{33}} \begin{bmatrix} \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \\ \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \end{bmatrix}_{a_{33}} \end{bmatrix}_{a_{33}} \end{bmatrix}_{a_{33}} \end{bmatrix}_{a_{33}} \end{bmatrix}_{a_{33}} \end{bmatrix}_{a_{33}} \begin{bmatrix} \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \\ \frac{a_{33}}{a_{33}} & \frac{a_{33}}{a_{33}} \\ \frac{$$

Therefore L and U are known.

Example 2 By the method of triangularization, solve the following system.

$$5x - 2y + z = 4$$
, $7x + y - 5z = 8$, $3x + 7y + 4z = 10$.

Solution. The system is equivalent to

$$\begin{pmatrix} 5 & -2 & 1 \\ 7 & 1 & -5 \\ 3 & 7 & 4 \end{pmatrix} \begin{pmatrix} \chi \\ \mathcal{Y} \\ \mathcal{Z} \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \\ 10 \end{pmatrix}$$
$$A \qquad X = B$$

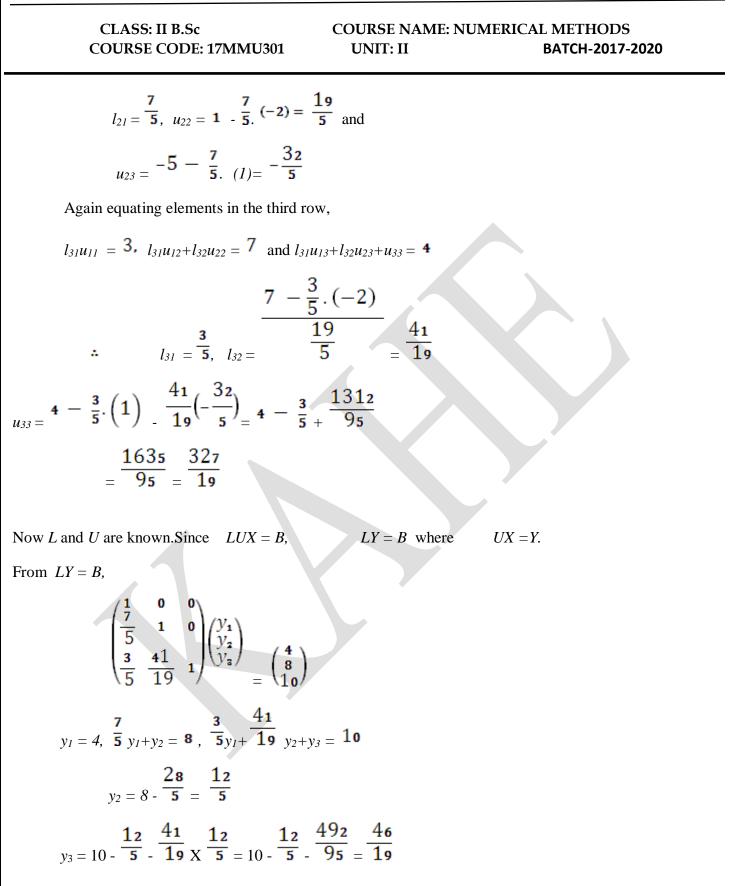
Now, let

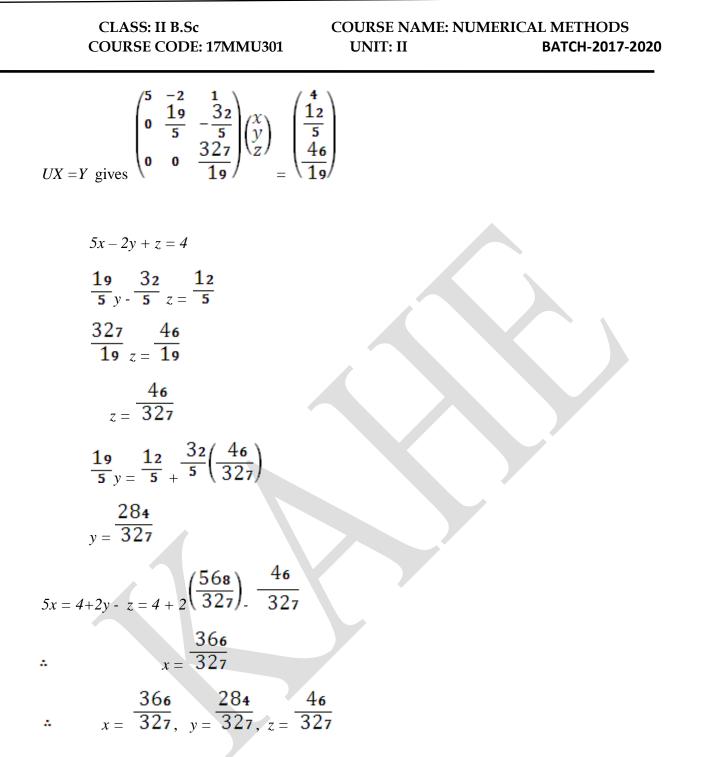
That is, $\begin{pmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix} = \begin{pmatrix} 5 & -2 & 1 \\ 7 & 1 & -5 \\ 3 & 7 & 4 \end{pmatrix}$

Multiplying and equating coefficients,

LU = A

$$u_{11} = 5$$
, $u_{12} = -2$, $u_{13} = 1$
 $l_{21}u_{11} = 7$, $l_{21}u_{12} + u_{22} = 1$, $l_{21}u_{13} + u_{23} = -5$





Crout's Method

Crout's Method is a root-finding algorithm used in LU decomposition (see Foundation). Also known as Crout Matrix Decomposition and Crout Factorization, the method decomposes a matrix into a lower triangular matrix (L), an upper triangular matrix (U), and a permutation matrix (P). The last matrix is optional and not always needed.

CLASS: II B.Sc COURSE CODE: 17MMU301

COURSE NAME: NUMERICAL METHODS UNIT: II BATCH-2017-2020

Crout's Method solves the N²equations

$$\begin{split} & i < j \quad l_i 1 u_1 j + l_i 2 u_2 j + \ldots + l_{ii} u_{ij} = a_{ij} \\ & i = j \quad l_i 1^u 1 j^+ l_i 2^u 2 j^+ \ldots + l_{ii} u_{jj} = a_{ij} \end{split}$$

i > j $l_i 1u_1 j + l_i 2u_2 j + ... + l_{ij} u_{jj} = a_{ij}$

for the N^2 + N unknowns l_{ij} and u_{ij} .

ITERATIVE METHODS

This iterative methods is not always successful to all systems of equations. If this method is to succeed, each equation of the system must possess one large coefficient and the large coefficient must be attached to a different unknown in that equation. This condition will be satisfied if the large coefficients are along the leading diagonal of the coefficient matrix. When this condition is satisfied, the system will be solvable by the iterative method. The system,

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} = b_{1}$$
$$a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3} = b_{2}$$
$$a_{31}x_{1} + a_{32}x_{2} + a_{33}x_{3} = b_{3}$$

will be solvable by this method if

$$|a_{11}| > |a_{12}| + |a_{13}|$$

$$|a_{22}| > |a_{21}| + |a_{23}|$$

$$|a_{33}| > |a_{31}| + |a_{32}|$$

In other words, the solution will exist (iteration will converge) if the absolute values of the leading diagonal elements of the coefficient matrix A of the system AX=B are greater than the sum of absolute values of the other coefficients of that row. The condition is *sufficient* but not *necessary*.

JACOBI METHOD OF ITERATION OR GAUSS – JACOBI METHOD

Let us explain this method in the case of three equations in three unknowns.

Consider the system of equations,

$$a_1x+b_1y+c_1z=d_1$$

KANFAGAN	ACADEMIT OF HIGHER	LUCATION		
CLASS: II B.Sc COURSE CODE: 17MMU301	COURSE NAME: NU UNIT: II	UMERICAL METHODS BATCH-2017-2020		
$a_2x+b_2y+c_2z$	$d = d_2$ $d = d_3 \dots (1)$			
Let us assume $ a_1 > b_1 + a_1 $				
$ b_2 > a_2 $				
$ C_3 > a_3 $ Then, iterative method can be	be used for the system (1).			
coefficients are the larger values) in $x = \frac{1}{a_1} (d_1 - d_2)$		s. That is,		
$y = \frac{1}{b_2} (d_2 - d_2)$	$-a_2x-c_2z$)			
	$a_{3x} - b_{3y})$ (2)			
If x° , y° , z° are the initial values of x, y, z respectively, then				

$$x^{(1)} = \frac{1}{a_1} (d_1 - b_1 y^{(0)} - c_1 Z^{(0)})$$
$$y^{(1)} = \frac{1}{b_2} (d_2 - a_2 x^{(0)} - c_2 Z^{(0)})$$

 $Z^{(1)} = \frac{1}{C_{a}} (d_{3} - a_{3} \chi^{(0)} - b_{3} \mathcal{Y}^{(0)}) \dots (3)$

Again using these values $x^{(2)}$, $y^{(2)}$, $z^{(2)}$ in (2), we get

$$\begin{aligned} x^{(2)} &= \frac{1}{a_1} (d_1 - b_1 y^{(1)} - c_1 z^{(1)}) \\ y^{(2)} &= \frac{1}{b_2} (d_2 - a_2 x^{(1)} - c_2 z^{(1)}) \\ z^{(2)} &= \frac{1}{C_2} (d_3 - a_3 x^{(1)} - b_3 y^{(1)}) \dots (4) \end{aligned}$$

CLASS: II B.ScCOURSE NAME: NUMERICAL METHODSCOURSE CODE: 17MMU301UNIT: IIBATCH-2017-2020

Proceeding in the same way, if the rth iterates are $\chi^{(0)}$, $\chi^{(0)}$, $Z^{(0)}$, the iteration scheme reduces to

$$\begin{aligned} x^{(r+1)} &= \frac{1}{a_1} (d_1 - b_1 \mathcal{Y}^{(r)} - c_1 Z^{(r)}) \\ y^{(r+1)} &= \frac{1}{b_2} (d_2 - a_2 x^{(r)} - c_2 Z^{(r)}) \\ z^{(r+1)} &= \frac{1}{c_2} (d_3 - a_3 x^{(r)} - b_3 \mathcal{Y}^{(r)}) \dots (5) \end{aligned}$$

The procedure is continued till the convergence is assured (correct to required decimals).

GAUSS – SEIDEL METHOD OF ITERATION:

This is only a refinement of Guass – Jacobi method. As before,

$$x = \frac{1}{a_1} (d_1 - b_1 y - c_1 z)$$
$$y = \frac{1}{b_2} (d_2 - a_2 x - c_2 z)$$
$$z = \frac{1}{c_2} (d_3 - a_3 x - b_3 y)$$

We start with the initial values \mathcal{Y}° , Z° for y and z and get $\chi^{(1)}$ from the first equation. That is,

$$x^{(1)} = \frac{1}{a_1} (d_l - b_l \mathcal{Y}^{(0)} - c_l z^{(0)})$$

While using the second equation, we use $Z^{(0)}$ for z and $x^{(1)}$ for x instead of x° as in Jacobi's method, we get

$$y^{(1)} = \overline{b_2} (d_2 - a_2 x^{(1)} - c_2 z^{(0)})$$

Now, having known $x^{(1)}$ and $y^{(1)}$, use $x^{(1)}$ for x and $y^{(1)}$ for y in the third equation, we get

CLASS: II B.Sc **COURSE NAME: NUMERICAL METHODS COURSE CODE: 17MMU301** UNIT: II

BATCH-2017-2020

$$Z^{(1)} = \frac{1}{C_{a}} (d_{3} - a_{3} \chi^{(1)} - b_{3} \mathcal{Y}^{(1)})$$

In finding the values of the unknowns, we use the latest available values on the right hand side. If x^{σ_2} , y^{σ_2} , z^{σ_3} are the rth iterates, then the iteration scheme will be

$$\begin{aligned} x^{(r+1)} &= \frac{1}{a_1} (d_1 - b_1 \mathcal{Y}^{(r)} - c_1 \mathcal{Z}^{(r)}) \\ y^{(r+1)} &= \frac{1}{b_2} (d_2 - a_2 \mathcal{X}^{(r+1)} - c_2 \mathcal{Z}^{(r)}) \\ z^{(r+1)} &= \frac{1}{c_2} (d_3 - a_3 \mathcal{X}^{(r+1)} - b_3 \mathcal{Y}^{(r+1)}) \end{aligned}$$

This process of iteration is continued until the convergence assured. As the current values of the unknowns at each stage of iteration are used in getting the values of unknowns, the convergence in Gauss – seidel method is very fast when compared to Gauss – Jacobi method. The rate of convergence in Gauss – Seidel method is roughly two times than that of Gauss – Jacobi method. As we saw the sufficient condition already, the sufficient condition for the convergence of this method is also the same as we stated earlier. That is, the method of iteration will converge if in each equation of the given system, the absolute value of the largest coefficient is greater than the sum of the absolute values of all the remaining coefficients. (The largest coefficients must be the coefficients for different unknowns).

Example 3 Solve the following system by Gauss – Jacobi and Gauss – Seidel methods:

10x-5y-2z = 3; 4x-10y+3z = -3; x+6y+10z = -3.

Solution: Here, we see that the diagonal elements are dominant. Hence, the iteration process can be applied.

That is, the coefficient matrix $\begin{bmatrix} 10 & -5 & -2 \\ 4 & -10 & 3 \\ 1 & 6 & 10 \end{bmatrix}$ is diagonally dominant, since $\begin{bmatrix} 10 \end{bmatrix}$ > |-5| + |-2||-10| > |4| + |3|

| 10 | > | 1 | + | 6 |

Gauss – Jacobi method, solving for x, y, z we have

CLASS: II B.Sc COURSE CODE: 17MN		MERICAL METHODS BATCH-2017-2020
$x = \frac{1}{10} (3+5y+2z)$	(1)	
1	(2)	
<u>1</u>	(3)	
	the initial values be $(0, 0, 0)$.	
Using these initial values in	(1) (2) (2) we get	

Using these initial values in (1), (2), (3), we get

$$x^{(1)} = \frac{1}{10} (3 + 5(0) + 2(0)) = 0.3$$
$$y^{(1)} = \frac{1}{10} (3 + 4(0) + 3(0)) = 0.3$$
$$z^{(1)} = \frac{1}{10} (-3 - (0) - 6(0)) = -0.3$$

Second iteration: using these values in (1), (2), (3), we get

$$x^{(2)} = \frac{1}{10} (3 + 5(0.3) + 2(-0.3)) = 0.39$$

$$y^{(2)} = \frac{1}{10} (3 + 4(0.3) + 3(-0.3)) = 0.33$$

$$z^{(2)} = \frac{1}{10} (-3 - (0.3) - 6(0.3)) = -0.51$$

Third iteration: using these values of $x^{(2)}$, $y^{(2)}$, $z^{(2)}$ in (1), (2), (3), we get,

$$x^{(3)} = \frac{1}{10} (3 + 5(0.33) + 2(-0.51)) = 0.363$$
$$y^{(3)} = \frac{1}{10} (3 + 4(0.39) + 3(-0.51)) = 0.303$$
$$z^{(3)} = \frac{1}{10} (-3 - (0.39) - 6(0.33)) = -0.537$$

Fourth iteration:

$$x^{(4)} = \frac{1}{10} (3 + 5(0.303) + 2(-0.537)) = 0.3441$$

CLASS: II B.Sc COURSE CODE: 17MMU301	COURSE NAME: NU UNIT: II	MERICAL METHODS BATCH-2017-2020
$y^{(4)} = \frac{1}{10} (3 + 4(0.363) + 3(-0.537)) =$	0.2841	
$Z^{(4)} = \frac{1}{10} (-3 - (0.363) - 6(0.303)) = -0$).5181	
Fifth iteration:		
$\chi^{(5)} = \frac{1}{10} (3 + 5(0.2841) + 2(-0.5181))$) = 0.33843	
$y^{(5)} = \frac{1}{10} (3 + 4(0.3441) + 3(-0.5181))$	= 0.2822	
$Z^{(5)} = \frac{1}{10} (-3 - (0.3441) - 6(0.2841)) =$	- 0.50487	
Sixth iteration:		
$\chi^{(6)} = \frac{1}{10} (3 + 5(0.2822) + 2(-0.50487))$	(')) = 0.340126	
$y^{(6)} = \frac{1}{10} (3 + 4(0.33843) + 3(-0.5048))$	7)) = 0.283911	
$Z^{(6)} = \frac{1}{10} (-3 - (0.33843) - 6(0.2822))$	= - 0.503163	
Seventh iteration:		
$x^{(7)} = \frac{1}{10} (3 + 5(0.283911) + 2(-0.50310))$	63)) =0.3413229	
$y^{(7)} = \frac{1}{10} (3 + 4(0.340126) + 3(-0.50316))$	53)) = 0.2851015	

$$Z^{(7)} = \frac{1}{10} (-3 - (0.340126) - 6(0.283911)) = -0.5043592$$

Eighth iteration:

$$\boldsymbol{\chi^{(8)}} = \frac{1}{10} \left(3 + 5(0.2851015) + 2 \left(-0.5043592 \right) \right)$$

CLASS: II B.ScCOURSE NAME: NUMERICAL METHODSCOURSE CODE: 17MMU301UNIT: IIBATCH-2017-2020
=0.34167891
$\mathcal{Y}^{(8)} = \frac{1}{10} \left(3 + 4(0.3413229) + 3(-0.5043592)\right)$
= 0.2852214
$\mathbf{Z}^{(8)} = \frac{1}{10} (-3 - (0.3413229) - 6(0.2851015))$
= - 0.50519319
Ninth iteration:
$x^{(9)} = \frac{1}{10} (3 + 5(0.2852214) + 2(-0.50519319))$
= 0.341572062
$\mathcal{Y}^{(9)} = \frac{1}{10} \left(3 + 4(0.34167891) + 3(-0.50519319)\right)$
= 0.285113607
$Z^{(9)} = \frac{1}{10} (-3 - (0.34167891) - 6(0.2852214)) = -0.505300731$
Hence, correct to 3 decimal places, the values are
x = 0.342, y = 0.285, z = -0.505
Gauss – seidel method : Initial values : $y = 0$, $z = 0$.
First iteration: $x^{(1)} = \frac{1}{10} (3 + 5(0) + 2(0)) = 0.3$
$\mathcal{Y}^{(1)} = \frac{1}{10} (3 + 4(0.3) + 3(0)) = 0.42$
$Z^{(1)} = \frac{1}{10} (-3 - (0.3) - 6(0.42)) = -0.582$
Second iteration:
$\chi^{(2)} = \frac{1}{10} (3 + 5(0.42) + 2(-0.582)) = 0.3936$

CLASS: II B.ScCOURSE NAME: NUMERICAL METHODSCOURSE CODE: 17MMU301UNIT: IIBATCH-2017-2020
$y^{(2)} = \frac{1}{10} (3 + 4(0.3936) + 3(-0.582)) = 0.28284$
$Z^{(2)} = \frac{1}{10} (-3 - (0.3936) - 6(0.28284)) = -0.509064$
Third iteration:
$\chi^{(3)} = \frac{1}{10} (3 + 5(0.28284) + 2(-0.509064)) = 0.3396072 \mathcal{Y}^{(3)} = \frac{1}{10} (3 + 4(0.3396072) + 3(-0.509064)) = 0.28312368$
$Z^{(3)} = \frac{1}{10} (-3 - (0.3396072) - 6(0.28312368))$
= - 0.503834928
Fourth iteration:
$\chi^{(4)} = \frac{1}{10} \left(3 + 5(0.28312368) + 2(-0.503834928) \right)$
= 0.34079485
$\mathcal{Y}^{(4)} = \frac{1}{10} \left(3 + 4(0.34079485) + 3(-0.503834928)\right)$
= 0.285167464
$Z^{(4)} = \frac{1}{10} (-3 - (0.34079485) - 6(0.285167464))$
= - 0.50517996
Fifth iteration:
$\chi^{(5)} = \frac{1}{10} (3 + 5(0.285167464) + 2(-0.50517996))$
= 0.34155477
$y^{(5)} = \frac{1}{10} (3 + 4(0.34155477) + 3(-0.50517996))$
= 0.28506792
$Z^{(5)} = \frac{1}{10} (-3 - (0.34155477) - 6(0.28506792))$

CLASS: II B.Sc COURSE CODE: 17MMU301	COURSE NAME: N UNIT: II	UMERICAL METHODS BATCH-2017-2020
= - 0.505196229		
Sixth iteration:		
$\chi^{(6)} = \frac{1}{10} (3 + 5(0.28506792) + 2(-1000000000000000000000000000000000000$	0.505196229))	
= 0.341494714		
$y^{(6)} = \frac{1}{10} (3 + 4(0.341494714) + 3(0.34149714) + 3(0.341749714) + 3(0.341749714) + 3(0.341749714) + 3(0.341749714) + 3(0.341749714) + 3(0.341749714) + 3(0.341749714) + 3(0.341749714) + 3(0.341749714) + 3(0.341749714) + 3(0.341749714) + 3(0.341749714) + 3(0.34149714) + 3(0.34149714) + 3(0.34149714) + 3(0.34149714) + 3(0.34149714) + 3(0.34149714) + 3(0.341749714) + 3(0.341749714) + 3(0.341749714) + 3(0.341749714) + 3(0.3417497714) + 3(0.34174777877877800000000000000000000000000$	(-0.505196229))	
= 0.285039017		
$Z^{(6)} = \frac{1}{10} (-3 - (0.341494714) - 6(0.341494714)) - 6(0.341494714) - 6(0.341494714)) - 6(0.341494714) - 6(0.341494714)) - 6(0.34149714))) - 6(0.34149714))) - 6(0.34149714))) - 6(0.34149714))) - 6(0.34149714))) - 6(0.34149714))) - 6(0.34149714))) - 6(0.3414900))) - (0.3414900))) - (0.3$).28506792))	
= - 0.5051728		
Seventh iteration:		
$\chi^{(7)} = \frac{1}{10} (3 + 5(0.285039017) + 20)$	(-0.5051728))	
= 0.3414849		
$y^{(7)} = \frac{1}{10} (3 + 4(0.3414849) + 3(-0.3414849)) + 3(-0.3414849) + 3(-0.3414849)) + 3(-0.3414849) + 3(-0.3414849)) + 3(-0.3414869)) + 3(-0.3414869)) + 3(-0.3414869)) + 3(-0.3414869)) + 3(-0.3414866)) + 3(-0.34166)) + 3(-0.34166)) + 3(-0.34166)) + 3(-0.34166)) + 3(-0.34166)) + 3(-0.34166)) + 3(-0.34166)) + 3(-0.34166)) + 3(-0.34166)) + 3(-0.34166)) + 3(-0.34166)) + 3(-0.34166)) + 3(-0.340$).5051728))	
= 0.28504212		
$Z^{(7)} = \frac{1}{10} (-3 - (0.3414849) - 6(0.2))$	8504212))	

= - 0.5051737

CLASS: II B.Sc COURSE CODE: 17MMU301

COURSE NAME: NUMERICAL METHODS UNIT: II BATCH-2017-2020

The values at each iteration by both methods are tabulated below:

Iterat ion	Gauss - jacobi method			Gauss – seidel method			
	x	У	Z.	x	У	z.	
1	0.3	0.3	-0.3	0.3	0.42	-0.582	
2	0.39	0.33	-0.51	0.3936	0.2828	-0.5090	
3	0.363	0.303	-0.537	0.3396	0.2831	-0.5038	
4	0.3441	0.2841	-0.5181	0.3407	0.2851	-0.5051	
5	0.3384	0.2822	-0.5048	0.3415	0.2850	-0.5051	
6	0.3401	0.2839	-0.5031	0.3414	0.2850	-0.5051	
7	0.3413	0.2851	-0.5043	0.3414	0.2850	-0.5051	
8	0.3416	0.2852	-0.5051				
9	0.3411	0.2851	-0.5053				

The values correct to 3 decimal places are

x = 0.342, y = 0.285, z = -0.505

CLASS: II B.Sc COURSE CODE: 17MMU301

COURSE NAME: NUMERICAL METHODS UNIT: II BATCH-2017-2020

POSSIBLE QUESTIONS

- *1.* Write the formulae for method of triangularization.
- 2. Define iterative method.
- 3. Define power method.
- 4. Write the difference between the direct method and iterative method.
- 5. Explain the power method.
- 6. Solve the following system by Gauss elimination method.

$$3x + y - z = 3$$
$$2x - 8y + z = -5$$
$$x - 2y + 9z = 8$$

7. Solve the following system by Gauss Jacobi method.

$$8x + y + z = 82x + 4y + z = 4x + 3y + 3z = 5$$

8. Solve the following system by Gauss Jordan method.

9. Solve the following system of equations by Gauss-Jacobi method

$$10x - 5y - 2z = 3$$

 $4x - 10y + 3z = -3$
 $x + 6y + 10z = -3$

10. Solve the following system by triangularization method.

$$5x - 2y + z = 4$$

$$7x + y - 5z = 8$$

$$3x + 7y + 4z = 10$$

11. Solve the following system of equations by Gauss-Seidal method.

$$28x + 4y - z = 32$$

 $x + 3y + 10z = 24$
 $2x + 17y + 4z = 35$

12. Solve the following system by Gauss Jordan method.

$$x + 2y + z = 3$$

 $2x + 3y + 3z = 10$
 $3x - y + 2z = 13$

	CLASS: II B.Sc COURSE CODE: 17MMU301	COURSE NAME: NU UNIT: II	MERICAL METHODS BATCH-2017-2020
	13. Find the numerically largest E	Sigen value of $A = \begin{pmatrix} 25 & 1 \\ 1 & 3 \\ 2 & 0 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ and the
	corresponding Eigen vector.	×2 0	-4/
	14. Solve the following system by	r triangularization method.	
		x + y + 5z = 16	
		2x + 3y + z = 4	
		4 x + y - z = 4	
	15. Solve the following system of		method
		4x + 2y + z = 14	
l .		x + 5y - z = 10	
l .		x + y + 8z = 20	

Subject: Numerical Methods

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University) (Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021

Class : II - B.Sc. Mathematics Unit II

Possible Questions

Subject

Part A (20x1=20 Marks)

(Question Nos. 1 to 20

Question	Choice 1	Choice 2	Choice 3	Choice 4	Answer
Iterative method is a method	Direct method	InDirect method	both 1st & 2nd	either 1st &2nd	InDirect method
is also a self-correction method.	Iteration method	Direct method	Interpolation	none	Iteration method
The condition for convergence of Gauss Seidal method is that the should be diagonally dominant	Constant matrix	unknown matrix	Coefficient matrix	Unit matrix	Coefficient matrix
In method, the coefficient matrix is transformed into diagonal matrix	Gauss elimination	Gauss jordan	Gauss jacobi	Gauss seidal	Gauss jordan
Method takes less time to solve a system of equations comparatively than ' iterative method'	Direct method	Indirect method	Regula falsi	Bisection	Direct method
The iterative process continues till is secured.	convergency	divergency Elementary	oscillation Elementary	none Elementary	convergency
In Gauss elimination method, the solution is getting by means of from which the unknowns are found by back substitution.	Elementary operations	column operations	diagonal operations	row operations	Elementary row operations
The is reduced to an upper triangular matrix or a diagonal matrix in direct methods.	Coefficient matrix	Constant matrix	unknown matrix	Augment matrix	Augment matrix
The augment matrix is the combination of	Coefficient matrix and constant matrix	Unknown matrix and constant matrix	Coefficient matrix and Unknown matrix	Coefficient matrix, constant matrix and Unknown matrix	Coefficient matrix and constant matrix
The given system of equations can be taken as in the form of	A = B	BX= A	AX= B	AB = X	AX= B
Which is the condition to apply Gauss Seidal method to solve a system of equations?	1st row is dominant	1st column is dominant	diagonally dominant	last row dominant	diagonally dominant
Crout's method and triangularisation method are method.	Direct	Indirect	Iterative	Interpolation	Direct
The solution of simultaneous linear algebraic equations are found by using	Direct method	Indirect method	both 1st & 2nd	Bisection	InDirect method
The matrix is if the numerical value of the leading diagonal element in each row is greater than or equal to the sum of the numerical value of other element in that row.	orthogonal	symmetric	diagonally dominant	singular	diagonally dominant
If the Eigen values of A are -6, 2, 4 then is dominant.	2 Gauss	-6	4	-2	2 Gauss
The Gauss – Jordan method is the modification of method.	-Elimination	Gauss – Jacobi	Gauss – Seidal	interpolation	-Elimination
$x^2 + 5x + 4 = 0$ is a equation. $a + b \log x + c \sin x + d = 0$ is a equation.	algebraic algebraic	transcendental transcendental	wave wave	heat heat	algebraic transcendental
In Gauss - Jordan method, the augmented matrix is reduced into	upper	lower	diagonal	scalar	diagonal
matrix	triangular	triangular	C		C
The 1st equation in Gauss – Jordan method, is called equation.	pivotal	dominant	reduced	normal	pivotal
The element all in Gauss – Jordan method is called element.	Eigen value	Eigen vector	pivot	root	pivot
The system of simultaneous linear equation in n unknowns AX = B if A is diagonally dominant then the system is said to be system The convergence of Gauss – Seidal method is roughly that of Gauss –	dominant	diagonal	scalar	singular	diagonal
Jacobi method	twice	thrice	once	4 times	twice
Jacobi's method is used only when the matrix is	symmetric	skew- symmetric	singular	non-singular	symmetric
Gauss Seidal method always for a special type of systems.	Converges Coefficient	diverges	oscillates Coefficient	equal	Converges Coefficient
Condition for convergence of Gauss Seidal method is	matrix is diagonally dominant	pivot element is Zero	matrix is not diagonally dominant	pivot element is non Zero	matrix is diagonally dominant
Modified form of Gauss Jacobi method is method.	Gauss Jordan	Gauss Siedal	Gauss Jacobbi	Gauss Elimination	Gauss Siedal
In Gauss elimination method by means of elementary row operations, from which the unknowns are found by method	Forward substitution	Backward substitution	random	Gauss Elimination	Backward substitution
In iterative methods, the solution to a system of linear equations will exist if the absolute value of the largest coefficient is the sum of the absolute values of all remaining coefficients in each equation.	less than	greater than or equal to	equal to	not equal	greater than or equal to

In iterative method, the current values of the unknowns at each stage of iteration are used in proceeding to the next stage of iteration.	Gauss Siedal	Gauss Jacobi	Gauss Jordan	Gauss Elimination	Gauss Siedal
The direct method fails if any one of the pivot elements become	Zero	one	two	negative	Zero
In Gauss elimination method the given matrix is transformed into	Unit matrix	diagonal matrix	Upper triangular matrix	lower triangular matrix	Upper triangular matrix
If the coefficient matrix is not diagonally dominant, then by that diagonally dominant coefficient matrix is formed.	Interchanging rows	Interchanging Columns	adding zeros	Interchangingr ow and Columns	Interchangingro w and Columns
Gauss Jordan method is a	Direct method	InDirect method	iterative method	convergent	Direct method
Gauss Jacobi method is a	Direct method	InDirect method	iterative method	convergent	InDirect method
The modification of Gauss – Jordan method is called	Gauss Jordan	Gauss Siedal	Gauss Jacobbi	gauss elemination	Gauss Siedal
Gauss Seidal method always converges for of systems	Only the special type	all types	quadratic types	first type	Only the special type
In solving the system of linear equations, the system can be written as In solving the system of linear equations, the augment matrix is	BX = B (A, A)	AX = A (B, B)	AX = B (A, X)	AB = X (A, B)	AX = B(A, B)
In the direct methods of solving a system of linear equations, at first the given system is written as form.	An augment matrix	a triangular matrix	constant matrix	Coefficient matrix	An augment matrix
All the row operations in the direct methods can be carried out on the basis of	all elements	pivot element	negative element	positiveeleme nt	pivot element
The direct method fails if	1st row elements 0	1st column elements 0	Either 1st or 2nd	2 nd row is dominant	Either 1st or 2nd
The elimination of the unknowns is done not only in the equations below, but also in the equations above the leading diagonal is called	Gauss elimination	Gauss jordan	Gauss jacobi	Gauss siedal	Gauss jordan
but also in the equations above the reading diagonal is called	without using	By using back	by using	Without using	By using back
In Gauss Jordan method, we get the solution	back substitution method	substitution method	forward substitution method	forward substitution method	substitution method
If the coefficient matrix is diagonally dominant, then method	Gauss	Gauss jordan	Direct	Gauss siedal	Gauss siedal
converges quickly. Which is the condition to apply Jocobi's method to solve a system of equations	elimination 1st row is dominant	1st column is dominant	diagonally dominant	2 nd row is dominant	diagonally dominant
Iterative method is a method	Direct method	InDirect method	Interpolation	extrapolation	InDirect method
As soon as a new value for a variable is found by iteration it is used immediately in the equations is called	Iteration method	Direct method	Interpolation	extrapolation	Iteration method
is also a self-correction method.	Iteration method	Direct method	Interpolation	extrapolation	Iteration method
The condition for convergence of Gauss Seidal method is that the should be diagonally dominant	Constant matrix	unknown matrix	Coefficient matrix	extrapolation	Coefficient matrix
In method, the coefficient matrix is transformed into diagonal matrix	Gauss elimination	Gauss jordan	Gauss jacobi	Gauss seidal	Gauss jordan
We get the approximate solution from the	Direct method	InDirect method	fast method	Bisection	InDirect method
The iterative process continues till is secured.	convergency	divergency	oscillation	point	convergency
In Gauss elimination method, the solution is getting by means of from which the unknowns are found by back substitution.	Elementary operations	Elementary column operations	Elementary diagonal operations	Elementary row operations	Elementary row operations
The method of iteration is applicable only if all equation must contain one coefficient of different unknowns as than other coefficients.	smaller	larger	equal	non zero	larger
The is reduced to an upper triangular matrix or a diagonal matrix in direct methods.	Coefficient matrix	Constant matrix	unknown matrix	Augment matrix	Augment matrix
The augment matrix is the combination of	Coefficient matrix and constant matrix	Unknown matrix and constant matrix	Coefficient matrix and Unknown matrix	Coefficient matrix, constant matrix and Unknown matrix	Coefficient matrix and constant matrix
The sufficient condition of iterative methods will be satisfied if the large	Rows	Coloumns	Leading	elements	Leading
coefficients are along the of the coefficient matrix. Which is the condition to apply Gauss Seidal method to solve a system of equations.	1st row is dominant	1st column is dominant	Diagonal diagonally dominant	Leading Diagonal	Diagonal diagonally dominant
In the absence of any better estimates, theof the function are taken as $x = 0$, $y = 0$, $z = 0$.	initialapproxim ations	roots	points	final value	initialapproxima tions
The solution of simultaneous linear algebraic equations are found by using-		InDirect method	fast method	Bisection	InDirect method

CLASS: II B.Sc **COURSE CODE: 17MMU301**

COURSE NAME: NUMERICAL METHODS UNIT: III BATCH-2017-2020

UNIT-III

INTERPOLATION

Interpolation: Lagrange and Newton's methods. Error bounds - Finite difference operators. Gregory forward and backward difference interpolation – Newton's divided difference – Central difference – Lagrange and inverse Lagrange interpolation formula.

Introduction

Interpolation means the process of computing intermediate values of a function a given set of tabular values of a function. Suppose the following table represents a set of values of x and y.

 $X: X_1$ X2 X3.....Xn $\mathbf{y}:\mathbf{y}_1$ **Y**2 y3.....yn

We may require the value of $y = y_i$ for the given $x = x_i$, where x lies between x_0 to x_n Let y = f(x) be a function taking the values $y_0, y_1, y_2, \dots, y_n$ corresponding to the values $x_0, x_1, x_2, \dots, x_n$. Now we are trying to find $y = y_i$ for the given $x = x_i$ under assumption that the function f(x) is not known. In such cases, we replace f(x) by simple fan arbitrary function and let $\Phi(x)$ denotes an arbitrary function which satisfies the set of values given in the table above. The function $\Phi(x)$ is called interpolating function or smoothing function or interpolation formula.

Newton's forward interpolation formula (or) Gregory-Newton forward interpolation formula (for equal intervals)

Let y = f(x) denote a function which takes the values $y_0, y_1, y_2, \dots, y_n$ corresponding to the values $x_0, x_1, x_2, ..., x_n$.

Let suppose that the values of x i.e., $x_0, x_1, x_2, \ldots, x_n$ are equidistant.

 $x_1 = x_0 + h$; $x_2 = x_1 + h$; and so on $x_n = x_{n-1} + h$;

Therefore xi = x0 + ih, where $i = 1, 2, \dots, n$

CLASS: II B.ScCOURSE NAME: NUMERICAL METHODSCOURSE CODE: 17MMU301UNIT: IIIBATCH-2017-2020

Let $P_n(x)$ be a polynomial of the nth degree in which x is such that

 $y_I = f(x_i) = P_n(x_i), I = 0, 1, 2, \dots, n$

Let us assume Pn(x) in the form given below

$$P_{n}(\mathbf{x}) = a_{0} + a_{1}(\mathbf{x} - \mathbf{x}_{0})^{(1)} + a_{2}(\mathbf{x} - \mathbf{x}_{0})^{(2)} + \dots + a_{r}(\mathbf{x} - \mathbf{x}_{0})^{(r)} + \dots + a_{r}(\mathbf{x} - \mathbf{x}_{0})^{(n)}$$
(1)

This polynomial contains the n + 1 constants $a_0, a_1, a_2, \dots, a_n$ can be found as

follows :

 $P_n(x_0) = y_0 = a_0$ (setting x = x0, in (1))

Similarly $y_1 = a_0 + a_1 (x_1 - x_0)$

$$y_2 = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)$$

From these, we get the values of $a_0, a_1, a_2, \dots, a_n$

i.e.,

Therefore, $a_0 = y_0$

 $\Delta y_0 = y_1 - y_0 = a_1 (x_1 - x_0)$

 $=> a_1 \qquad = \Delta y_0 /h$

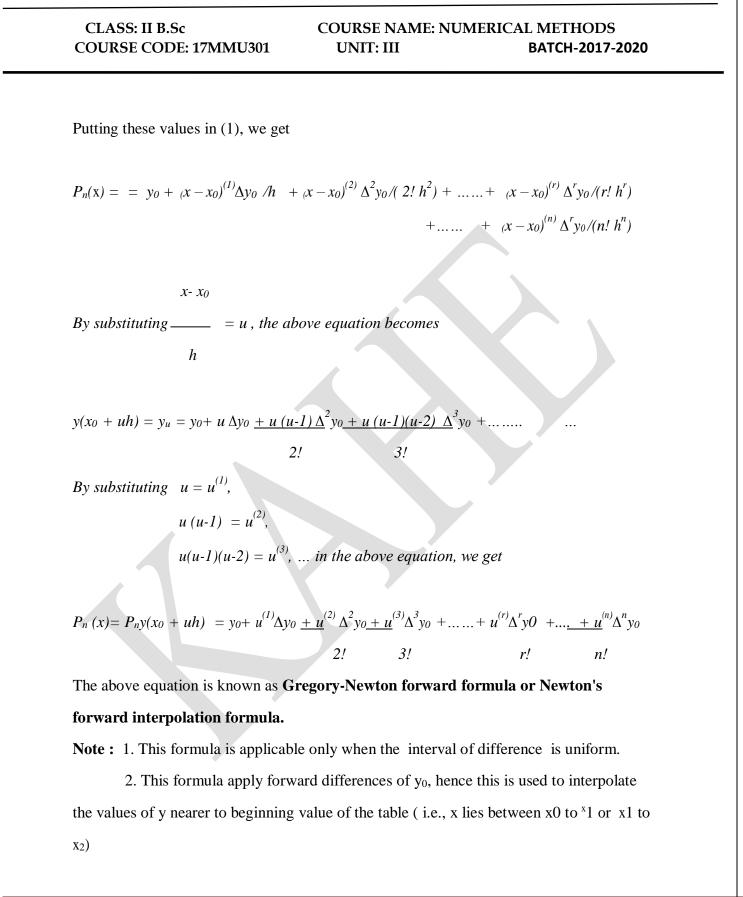
$$- a_{l}n$$

 $=> a_3 = \Delta^3 y_0 / 3! h^3$

lly

 $=>a_2 = (\Delta y_1 - \Delta y_0)/2h^2 = \Delta^2 y_0/2! h^2$

lly



	5: II B.Sc E CODE: 1	7MMU301	COURSE NAM UNIT: III	IE: NUMERICAL METHODS BATCH-2017-2	2020
Exampl	e.				
Find the	values of y	at $x = 21$ from	the following data.		
x: 2	0	23 20	6		
x: 0	.3420	0.3907			
		0.4384			
		29			
		0.4848			
Solution					
Step 1.Si	ince $x = 21$	is nearer to be	ginning of the table.	. Hence we apply Newton's	
forward 1					
		e difference tab	ole		
X	У	Δy_0	$\Delta^2 y_0$	$\Delta^3 y_0$	
20	0.342	•	-0.3907)		
23	0.39	0.048 07	87 (0.0477-0.0 -0.001	0487)	
26	0.43	0.04 [′] 84	-0.0013	-0.0003	
		0.040			
29	0.484	+0			
Step 3. V	Vrite down	the formula and	d put the various va	lues :	
$P_n(x) \equiv B$	$P_n y(x_0 + uh)$	$= v_0 + u^{(1)} \Lambda v_0$	$u + u^{(2)} \Lambda^2 v_0 + u^{(3)} \Lambda^3$	${}^{B}y_{0} + \dots + u^{(r)}\Delta^{r}y_{0} + \dots + u^{(n)}\Delta^{n}z_{0}$	ⁿ vo
- n (N) - 1	ny no i un	$y - y 0 + n \Delta y 0$	$\underline{-u} = y_0 + u = \Delta_1$	$\gamma \circ \cdots \circ \alpha \bigtriangleup \gamma \circ \cdots \circ \alpha \sqcup \Omega$. yu

CLASS: II B.Sc	COURSE NAME: NUMERICAL METHODS		
COURSE CODE: 17MMU301	UNIT: III	BATCH-2017-2020	

Where $u^{(1)} = (x - x_0) / h = (21 - 20) / 3 = 0.3333$

 $\underline{u}(2) = \underline{u}(u-1) = (0.3333)(0.6666)$

 $P_n (x=21) = y(21) = 0.3420 + (0.3333)(0.0487) + (0.3333)(-0.66666)(-0.001) + (0.3333)(-0.66666)(-1.66666)(-0.0003)$

= *0.3583*

Example: From the following table of half yearly premium for policies maturing at different ages, estimate the premium for policies maturing at age 46.

Age	x:	45	50	55	60	65
Premium	y:	114.84	96.16	83.32	74.48	68.48

Solution.

Step 1.Since x = 46 is nearer to beginning of the table and the values of x is equidistant i.e., h = 5. Hence we apply Newton's forward formula.

Step 2. Construct the difference table

x	у	Δy_0	$\Delta^2 y_0$	$\Delta^3 y_0$	$\Delta^4 y_0$
45	114.84				
		-18.68			
50	96.16		5.84		
		-12.84		-1.84	
55	83.12		4.00		0.00
		-8.84		-1.16	0.68
60	74.48		2.84		
		-6.00			
65	68.48				

CLASS: II B.Sc COURSE CODE: 17MMU301	COURSE NAME: UNIT: III	NUMERICAL METHODS BATCH-2017-2020
Step 3. Write down the formula a	and put the various value	s :
$P_n(x) = P_n y(x_0 + uh) = y_0 + u^{(1)} \Delta y_0$	$y_0 + \underline{u}^{(2)} \Delta^2 y_0 + \underline{u}^{(3)} \Delta^3 y_0 + \underline$	++ $u^{(r)}\Delta^r y \theta$ + <u>+</u> $u^{(n)}\Delta^n y_{\theta}$
	2! 3!	r! n!
Where $u = (x - x_0) / h = 0$	(46 - 45) / 5 = 01/5 = 0.5	2
$P_n(x=46) = y(46) = 114.84 + [6]$	0.2 (-18.68)] +[0.2 (-0.8	?) (5.84)/3]
+ /	[0.2 (-0.8) (-1.8)(-1.84)/0	5]
+ /	[0.2 (-0.8) (-1.8)(-2.8)(0.	68)]
= 114.84 - 3.73	360 - 0.4672 - 0.08832	- 0.228

= 110.5257

Example. From the following table , find the value of $\tan 45^{\circ} 15$ '

x. 45 40		-10	ч 7	50
tan x^0 : 1.0 1.03	553 1.07237	1.11061	1.15037	1.19175

Solution.

Step 1.Since $x = 45^{\circ} 15^{\circ}$ is nearer to beginning of the table and the values of x is equidistant i.e., h = 1. Hence we apply Newton's forward formula.

Step 2. Construct the difference table to find various Δ 's

CLASS: I COURSE (MMU301	COURSE I UNIT: I			RICAL METHODS BATCH-2017-2020	
x y		Δy_0	$\Delta^2 y_0$	$\Delta^3 y_0$	$\Delta^4 y_0$	$\Delta^5 y_0$	
460 1.0 47 ⁰ 1.0 48 ⁰ 1.1 49 ⁰ 1.1 50 ⁰ 1.1 Step 3. Wri			0.00131 0.00140 0.00152 0.00162 ad substitute th $o \pm u^{(2)} \Delta^2 y_0 \pm u$			-0.00005	
	= 1 = (,)= P_5 (2	45° 15') =1.0	$\dots(\text{since } 1^0 = 0) + (0.25)(0.0) + (0.25)(-0.7)(-0.7) + (0.25)(-0.7)(-0.7) + (0.25)(-0.7)(-0.7) + (0.25)(-0.7)(-0.7) + (0.25)(-0.7)(-0.7)(-0.7) + (0.25)(-0.7)$	3553) + (0.25) (5)(-1.75)(0.00) (5) (-1.75) (-2.7) (-1.75) (-2.7)	009)/6 75) (0.0003)/2	4	

CLASS: II B.Sc COURSE CODE: 17MMU301

COURSE NAME: NUMERICAL METHODS UNIT: III BATCH-2017-2020

Newton's backward interpolation formula (or) Gregory-Newton backward interpolation formula (for equal intervals)

Let y = f(x) denote a function which takes the values y_0 , y_1 , y_2 ..., y_n corresponding to the values x_0 , x_1 , x_2 ..., x_n .

Let suppose that the values of x i.e., x_0 , x_1 , x_2 , x_n are equidistant .

 $x_1 = x_0 + h$; $x_2 = x_1 + h$; and so on $x_n = x_{n-1} + h$;

Therefore xi = x0 + ih, where $i = 1, 2, \dots, n$

Let $P_n(x)$ be a polynomial of the nth degree in which x is such that $y_I = f(x_i) = P_n(x_i), I = 0, 1, 2, ..., n$

$$P_n(\mathbf{x}) = a_0 + a_{1}(\mathbf{x} - \mathbf{x}_n)^{(1)} + a_{2}(\mathbf{x} - \mathbf{x}_n)(\mathbf{x} - \mathbf{x}_{n-1})^{\prime} + \dots + a_{n}(\mathbf{x} - \mathbf{x}_n)(\mathbf{x} - \mathbf{x}_{n-1}) \dots \dots (1)$$

This polynomial contains the n + 1 constants $a_0, a_1, a_2, \dots, a_n$ can be found as follows :

 $P_{n}(x_{n}) = y_{n} = a_{0} \text{ (setting } x = xn, \text{ in (1) })$ Similarly $y_{n-1} = a_{0+} a_{1} (x_{n-1} - x_{n})$ $y_{n-2} = a_{0+} a_{1} (x_{n-2} - x_{n}) + a_{2} (x_{n-2} - x_{n})$

From these, we get the values of $a_0, a_1, a_2, \dots, a_n$ Therefore, $y_n = y_n - y_n - 1 = a_1(x_{n-1} - x_n)$

 $=>a_1$ $= y_n/h$

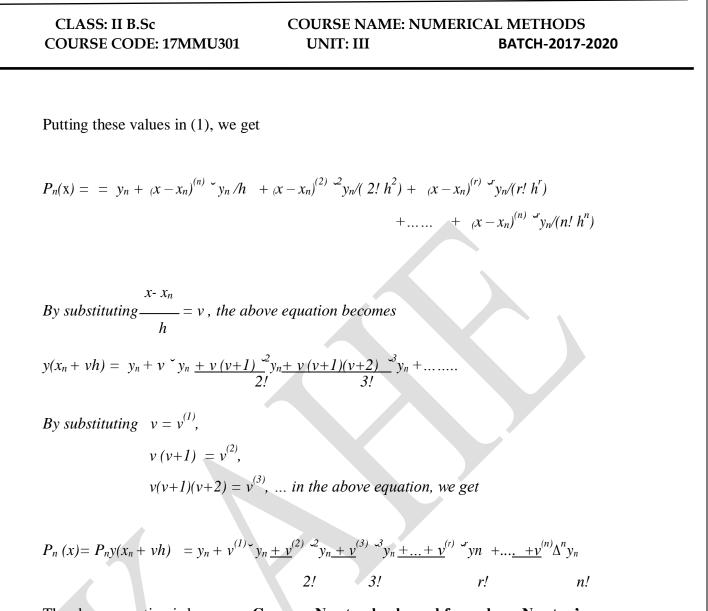
 $=> a_3 = \frac{3}{3!}h^3$

$$=>a_2$$
 = (y_1 - y_n) /2 h^2 = y_n / 2! h^2

 $= a_1 h$

lly

lly



The above equation is known as **Gregory-Newton backward formula or Newton's** backward interpolation formula.

Note : 1. This formula is applicable only when the interval of difference is uniform.

2. This formula apply backward differences of y_n , hence this is used to interpolate the values of y nearer to the end of a set tabular values. (i.e., x lies between xn to xn-1 and xn-1 to x_{n-2})

	: II B.Sc E CODE: 17MM		COURS UNIT		MERICAL METHODS BATCH-2017-2020
Example	e: Find the value	tes of y at $x =$	28 from	the following	data.
x: 20 y 0.		23 3907 (26).4384	29 0.4848	
Solution.					
_	nce x = 28 is ne l formula.	arer to begini	ning of th	e table. Henc	e we apply Newton's
Step 2. C	onstruct the diff	erence table			
X	У	с yn		$J_{y_n}^2$	$^{3}y_{n}$
20	0.3420	(0.3420-0.3	· · · · · · · · · · · · · · · · · · ·		
23	0.3907	0.0487		477-0.0487) .001	
26	0.4384	0.0477			-0.0003
29	0.4848	0.0464	-0	.0013	
Step 3. W	Trite down the fo	ormula and p	ut the var	ious values :	
$P_{3}(x)=P$	$P_{3}y(x_{n}+vh)=y_{n}$	$+ v^{(1)} y_n + v^{(1)}$	$y_{n} + 1$	$\underline{y}^{(3)}_{n} \xrightarrow{\mathcal{S}}_{n} y_{n}$	
				3!	
W	There $v^{(1)} = (\mathbf{x} - \mathbf{x})^{(1)}$				
		-1) =(-0.333			
	$v^{(3)} = v(v)$	(v+2) - (v+2	-0.333)(().6666)(1.666	6)

 $P_n(x=28) = y(28) = 0.4848 + (-0.3333)(0.0464) + (-0.3333)(0.66666)(-0.0013)/2$

CLASS: II B.ScCOURSE NAME: NUMERICAL METHODSCOURSE CODE: 17MMU301UNIT: IIIBATCH-2017-2020

+(-0.3333) (0.6666)(1.6666) (-0.0003)/6

= 0.4848 - 0.015465 + 0.0001444 + 0.0000185

= **0.4695**

Example: From the following table of half yearly premium for policies maturing at different ages, estimate the premium for policies maturing at age 63.

Age	x:	45	50	55	60	65
Premium	y:	114.84	96.16	83.32	74.48	68.48

Solution.

Step 1.Since x = 63 is nearer to beginning of the table and the values of x is equidistant i.e., h = 5.. Hence we apply Newton's backward formula. Step 2. Construct the difference table

Х	у	уo	$^{2}y0$	-3 У0	$^{\mathcal{A}}y_0$
45	114.84	-18.68			
50	96.16	-12.84	5.84	-1.84	
55	83.12	-8.84	4.00	1.16	-
60	74.48	-6.00	2.84		
65	68.48				0.68

Step 3. Write down the formula and put the various values :

v(2) = v(v+1)

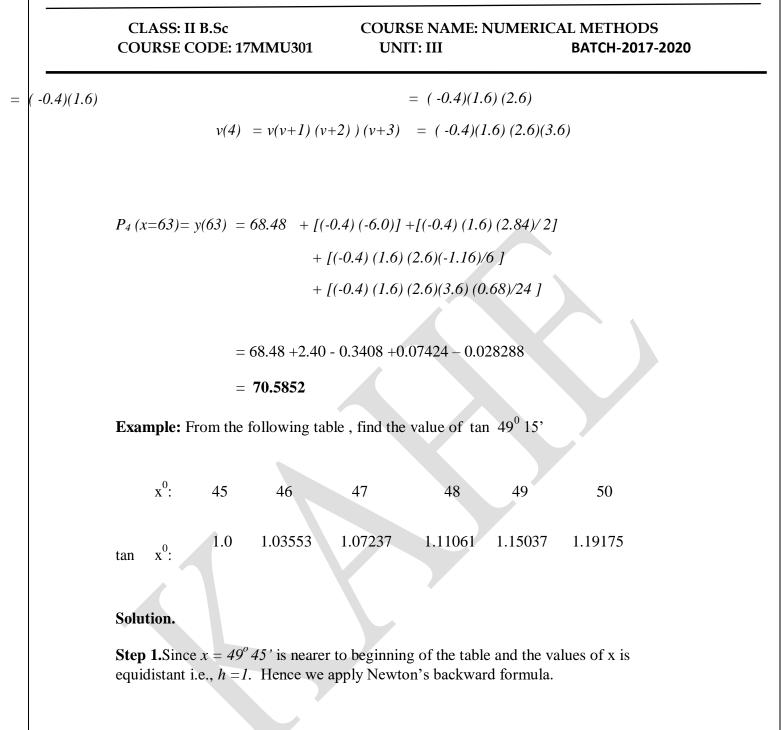
$$P_{3}(x) = P_{3}y(x_{n} + vh) = y_{n} + v^{(1)} y_{n} + v^{(2)} y_{n} + v^{(3)} y_{n} + v^{(4)} y_{n}$$

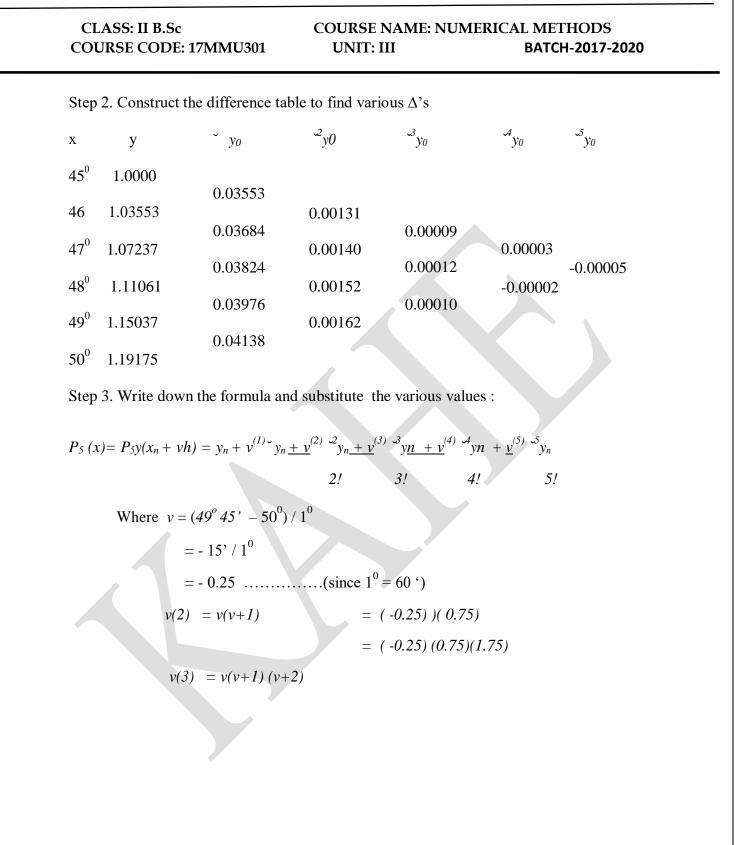
$$2! \qquad 3! \qquad 4!$$

 $v^{(1)} = (x - x_n) / h = (63 - 65) / 5 = -2/5 = -0.4$

Where

$$v(3) = v(v+1) (v+2)$$





CLASS: II B.Sc COURSE CODE: 17MMU301	COURSE NAME: NUMERICAL METHODS UNIT: III BATCH-2017-2020
v(4) = v(v+1) (v+1)	(+2))(v+3) = (-0.25)(0.75)(1.75)(2.75)
$y(x=49^{\circ}15') = P_5(49^{\circ}15') = 1.$	19175 + (-0.25)(0.04138) + (-0.25)(0.75) (0.00162)/2
	+(-0.25) (0.75)(1.75) (0.0001)/6
	+(-0.25)(0.75) (1.75) (2.75) (-0.0002)/24
	+(-0.25)(0.75) (1.75) (2.75) (3.75) (-0.00005)/120
= 1.19175 - 0.010	$0345 - 0.000151875 + 0.000005 + \dots$
= 1.18126	
Lagrange's Interpolation Formula Interpolation means the pr	rocess of computing intermediate values of a function a
	unction. Suppose the following table represents a set of
values of x and y.	
values of A and y.	
x : x_0 x_1	x_2 x_3 x_n
y: yo y1	$y_2 y_3 y_n$
We may require the value of $y = y$	y_i for the given $x = x_i$, where x lies between x_0 to x_n
Let $y = f(x)$ be a function taking t	the values $y_0, y_1, y_2, \dots y_n$ corresponding to the values
$x_{0}, x_{1}, x^{2}, \dots, x_{n}$. Now we	e are trying to find $y = y_i$ for the given $x = x_i$ under
assumption that the function $f(x)$	is not known. In such cases, x_i 's are not equally spaced
we use Lagrange's interpolation j	formula.

Newton's Divided Difference Formula:

The divided difference $f[x_0, x_1, x_2, ..., x_n]$, sometimes also denoted $[x_0, x_1, x_2, ..., x_n]$, on n + 1 points

CLASS: II B.Sc	COURSE NAME: NU	MERICAL METHODS
COURSE CODE: 17MMU301	UNIT: III	BATCH-2017-2020

 X_0 , x_1 , ..., x_n of a function f(x) is defined by $f[x_0] \equiv f(x_0)$ and

$$f[x_0, x_1, ..., x_n] = \frac{f[x_0, ..., x_{n-1}] - f[x_1, ..., x_n]}{x_0 - x_n}$$

for $n \ge 1$. The first few differences are

 $f[x_0, x_1] = \frac{f_0 - f_1}{x_0 - x_1}$

$$f[x_0, x_1, x_2] = \frac{f[x_0, x_1] - f[x_1, x_2]}{x_0 - x_2}$$

$$f[x_0, x_1, ..., x_n] = \frac{f[x_0, ..., x_{n-1}] - f[x_1, ..., x_n]}{x_0 - x_n}$$

Defining

 $\pi_n (x) \equiv (x - x_0) (x - x_1) \cdots (x - x_n)$ and taking the derivative

 $\pi'_{n}(x_{k}) = (x_{k} - x_{0}) \cdots (x_{k} - x_{k-1}) (x_{k} - x_{k+1}) \cdots (x_{k} - x_{n})$ gives the identity

$$f[x_0, x_1, ..., x_n] = \sum_{k=0}^n \frac{f_k}{\pi'_n(x_k)}.$$

Lagrange's interpolation formula (for unequal intervals)

Let y = f(x) denote a function which takes the values y_0 , y_1 , y_2 ..., y_n corresponding to the values x_0 , x_1 , x_2 ..., x_n .

Let suppose that the values of x *i.e.*, x_0 , x_1 , x_2 ..., x_n . are not equidistant.

 $y_I = f(x_i)$ I = 0, 1, 2, ..., N

CLASS: II B.ScCOURSE NAME: NUMERICAL METHODSCOURSE CODE: 17MMU301UNIT: IIIBATCH-2017-2020

Now, there are (n+1) paired values $(x_i, y_i,)$, $I = 0, 1, 2, \dots n$ and hence f(x) can be represented by a polynomial function of degree n in x.

Let us consider f(x) as follows

Substituting $x = x_0$, $y = y_0$, in the above equation

$$y_0 = a_0(x - x_1) (x - x_2) (x - x_3) \dots (x - x_n)$$

which implies $a_0 = y_0 / (x_0 - x_1) (x_0 - x_2) (x_0 - x_3) \dots (x_0 - x_n)$ Similarly $a_1 = y_1 / (x_1 - x_0) (x_1 - x_2) (x_1 - x_3) \dots (x_1 - x_n)$ $a_2 = y_2 / (x_2 - x_0) (x_2 - x_1) (x_2 - x_3) \dots (x_2 - x_n)$

.....

$$a_n = y_n (x_n - x_0) (x_n - x_2) (x_n - x_3) \dots (x_n - x_{n-1})$$

Putting these values in (1), we get

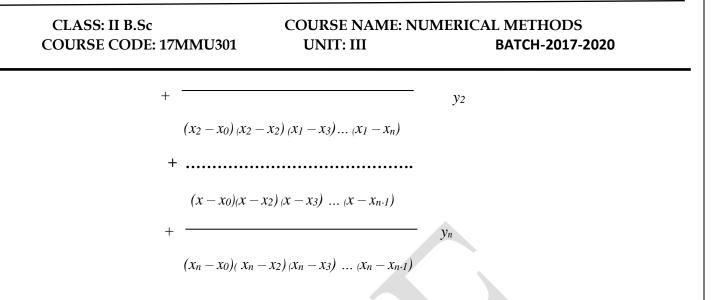
$$y = f(x) = \frac{(x - x_1) (x - x_2) (x - x_3) \dots (x - x_n)}{(x_0 - x_1) (x_0 - x_2) (x_0 - x_3) \dots (x_0 - x_n)}$$

$$y_0$$

$$(x - x_0) (x - x_2) (x_0 - x_3) \dots (x - x_n)$$

$$+ \frac{(x - x_0) (x - x_2) (x - x_3) \dots (x - x_n)}{(x_1 - x_2) (x_1 - x_3) \dots (x_1 - x_n)}$$

$$(x - x_0) (x - x_1) (x - x_3) \dots (x - x_n)$$



The above equation is called *Lagrange's interpolation formula* for unequal intervals. **Note :** 1. This formula is will be more useful when the interval of difference is not uniform.

CLASS: II B.Sc COURSE CODE: 17MMU301

COURSE NAME: NUMERICAL METHODS UNIT: III BATCH-2017-2020

POSSIBLE QUESTIONS

1. Prove that $E\Delta = \Delta = \nabla E$.
 Write Gregory Newton backward interpolation formulae.
3. Define Inverse Lagrange's interpolation
4. Prove that $\mu = (1 + \frac{\delta^2}{4})^{\frac{1}{2}}$
5. Prove that $\Delta \nabla = \Delta - \nabla = \delta^2$.
6. From the following table, find the value of tan 45°15′
x° : 45 46 47 48 49 50
$\tan x^{\circ} : 1.0000 1.0355 1.072 1.1106 1.1503 1.1917$
7. Using inverse interpolation formula, find the value of x when $y=13.5$.
x: 93.0 96.2 100.0 104.2 108.7
y: 11.38 12.80 14.70 17.07 19.91
8. From the following table find $f(x)$ and hence $f(6)$ using Newton interpolation formula.
x : 1 2 7 8
f(x): 1 5 5 4
9. Find the values of y at $X=21$ and $X=28$ from the following data.
X: 20 23 26 29
Y: 0.3420 0.3907 0.4384 0.4848
10. Using Newton's divided difference formula. Find the values of $f(2), f(8)$ and
f(15) given the following table
x: 4 5 7 10 11 13
f(x): 48 100 294 900 1210 2028
11. Using Lagrange's interpolation formula find the value corresponding to $x =$
10 from the following table
x:5 6 9 11
y:12 13 14 16
12. From the following table of half-yearly premium for policies maturing at
different ages. Estimate the premium for policies maturing at age 46 & 63.
Age x : 45 50 55 60 65
Premium y : 114.84 96.16 83.32 74.48 68.48

CLASS: II B.Sc COURSE CODE: 17MMU301	COURSE NAME: NU UNIT: III	MERICAL METHODS BATCH-2017-2020	
Find the value of y at $x = 1.05$ from	om the table given below.		
x: 1.0 1.1 1.2	1.3 1.4 1.5	;	
•	0.932 0.964 0.985	1.015	
Using inverse interpolation formul			
x: 93.0 96.2 y: 11.38 12.8)8.7 19.91	
Find the age corresponding to the			
		0	
Annuity Value(y): 15.9			
-			
<u>~</u>			

Subject: Numerical Methods

has

the

the

the

the -

The differences Dy are called -----differences f(x).

The value (delta +1)is

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University) (Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021

Class : II - B.Sc. Mathematics Unit III

Subject

Part A (20x1=20 Marks) (Question Nos. 1 to 20 Possible Questions Choice 1 Choice 2 Choice 3 Choice 4 Answer Ouestion The x values of Interpolating polynomial of newton -Gregory even space equal space odd space unequal equal space The value of E is delta -1 1-delta delta+1 delta+2 delta+1 We use the central difference formula such as _ lagrange's Newton Euler bessel's bessel's Newton's Newton's ----- Formula can be used for unequal intervals. stirling Lagrange Lagrange forward backward Simpson's 1/3 Simpson's 3/8 Trapezoidal Simpson's 3/8 Simpson's rule By putting n = 3 in Newton cote's formula we get ------ rule. rule rule rule rule The process of computing the value of a function outside the range is triangularisati interpolation extrapolation integration extrapolation called -on The process of computing the value of a function inside the range is triangularisati interpolation integration extrapolation interpolation called -on Formula can be used for interpolating the value of f(x) near Newton's Newton's Newton's Lagrange stirling backward backward forward end of the tabular values. The technique of estimating the value of a function for any intermediate forward backward interpolation interpolation extrapolation value is method method The $(n+1)^{\text{th}}$ and higher differences of a polynomial of the nth degree are - $_{\text{zero}}$ three one two zero triangularisatio Numerical evaluation of a definite integral is called -----integration integration differentiation interpolation n The values of the independent variable are not given at equidistance Newton's Newton's stirling Lagrange Lagrange intervals, we forward backward ----- formula use -----To find the unknown values of v for some x which lies at the ------ of beginning outside end center end table, we use Newton's Backward formula. To find the unknown values of y for some x which lies at the ----- of beginning end center outside beginning table, we use Newton's Forward formula. Newton's Newton's To find the unknown value of x for some y, which lies at the unequal inverse Lagrange Lagrange intervals we use ------- formula. forward backward interpolation If the values of the variable y are given, then the method of finding the Newton's Newton's inverse inverse interpolation unknown forward backward interpolation interpolation variable x is called --In Newton's backward difference formula, the value of n is calculated $n = (x - x_n) / h$ $n = (x_n - x) / h$ $n = (x - x_0) / h \quad n = (x_0 - x) / h$ $n = (x - x_n) / h$ by -----. ---- Interpolation formula can be used for equal and unequal Newton's Newton's Lagrange Lagrange none intervals. forward backward The fourth differences of a polynomial of degree four are ---three zero one two zero If the values $x_0 = 0$, $y_0 = 0$ and h = 1 are given for Newton's forward 0 1 n Х n method, then the value of x is ------Not equal to The differences of constant functions are ----zero one two zero In Newton's forward interpolation formula, the first two terms will give parabolic linear linear extrapolation interpolation interpolation interpolation interpolation In Newton's forward interpolation formula, the three terms will give the linear parabolic parabolic extrapolation interpolation interpolation interpolation interpolation The difference $D^3f(x)$ is called -----differences f(x). first fourth second third third n th difference of a polynomial of n th degree are constant and all higher constant variable negative zero zero order difference are In divided difference the value of any difference is ----- of the order of Independent dependent Inverse direct Independent their argument

first

Е

fourth

h

second

h2

third

h4

first

Е

~

▲ ⊽

CLASS: II B.Sc COURSE CODE: 17MMU301 COURSE NAME: NUMERICAL METHODS UNIT: IV BATCH-2017-2020

UNIT-IV

NUMERICAL DIFFERENTIATION AND INTEGRATION

Numerical Differentiation and Integration: Gregory's Newton's forward and backward differentiation- Trapezoidal rule, Simpson's rule, Simpsons 3/8th rule, Boole's Rule. Midpoint rule, Composite Trapezoidal rule, Composite Simpson's rule.

Numerical differentiation

The problem of Interpolation is finding the value of y for the given value of x among (x_i, y_j) for i = 1 to n. Now we find the derivatives of the corresponding arguments. If the required value of y lies in the first half of the interval then we call it as Forward interpolation. If the required value of y (derivative value) lies in the second half of the interval we call it as Backward interpolation also if the derivative of y lies in the middle of of class interval then we solve by central difference.

Newton's forward formula for Interpolation :

 $Y = y_0 + u \Delta y_0 + u(u-1)/2! \Delta^2 Y_0 + u(u-1)(u-2) / 3! \Delta^3 Y_0 + \dots$

Where $u = (x-x_0)/h$

Differentiating with respect to x,

dy/dx = (dy/du). (du/dx) = (1/h) (dy / du)

$$(dy / dx) x \neq x_0 = (1 / h) [\Delta y_0 + (2u-1)/2 \ \Delta^2 y_0 + (3u^2 - 6u + 2)/6 \ \Delta^3 y_0 + \dots]$$

 $(dy / dx) x = x_0 = (1 / h) [\Delta y_0 - (1/2) \Delta^2 y_0 + (1/3) \Delta^3 y_0 + \dots]$

 $(d^2y / dx^2) x \neq x_0 = d/dx (dy / dx) = d/dx(dy / du. du / dx)$

$$= (1/h^2) \left[\Delta^2 y_0 + 6(u-1) / 6 \Delta^3 y_0 + (12u^2 - 36u + 22) / 2 \Delta^4 y_0 + \dots \right]$$

$$(d^2y / dx^2) x = x_0 = (1/h^2) [\Delta^2 y_0 - \Delta^3 y_0 + (11/12) \Delta^4 y_0 + \dots]$$

Similarly,

$$\begin{array}{l} (d^{3}y \ / \ dx^{3}) \ x \neq x_{0} = (1/h^{3}) \ [\ \Delta^{3}y_{0} + (\ 2u - 3) \ / \ 2 \ \Delta^{4}y_{0} + \ldots] \\ \\ (d^{2}y \ / \ dx^{2}) \ x = x_{0} = (1/h^{3}) \ [\Delta^{3} \ y_{0} \ - (3/2)\Delta^{4}y_{0} + \ldots]. \end{array}$$

In a similar manner the derivatives using backward interpolation an also be found out.

CLASS: II B.ScCOURSE NAME: NUMERICAL METHODSCOURSE CODE: 17MMU301UNIT: IVBATCH-2017-2020

Using backward interpolation .

 $\begin{array}{l} (dy \ / \ dx) \ x \neq x_n \ = (1 \ / \ h) \ [\nabla y_n \ + (2u + 1) / 2 \ \ \nabla^2 y_n \ + (3u^2 \ + 6u + 2) / \ 6 \ \ \nabla^3 y_n \ + \ldots \ldots] \\ (dy \ / \ dx) \ x = x_n \ = (1 \ / \ h) \ [\nabla y_n \ - (1/2) \ \ \nabla^2 y_n \ + (1/3) \ \ \nabla^3 y_n \ + \ldots \ldots] \\ (d^2y \ / \ dx^2) \ x \neq x_0 = (1/h^2) \ [\nabla^2 \ y_0 \ + \ 6(u - 1) \ / \ 6 \ \ \nabla^3 y_0 \ + (\ 12u^2 \ - \ 36 \ u \ + 22) \ / \ 2 \ \ \nabla^4 y_0 \ + \ldots \ldots] \\ (d^2y \ / \ dx^2) \ x = x_0 = (1/h^2) \ [\nabla^2 \ y_0 \ - \ \ \nabla^3 y_0 \ + (11/12) \ \ \nabla^4 y_0 \ + .]$

Example

Find the first two derivatives of x $^{(1/3)}$ at x= 50 and x= 56, given the table below.

X: 50 51 52 53 54 55 56

Y: 3.6840 3.7084 3.7325 3.7563 3.7798 3.8030 3.8259

Х	Y	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
50	3.6840				
51	3.7084	0.0244			
52	3.7325	0.0241	-0.0003	0	
53	3.7563	0.0238	-0.0003	0	0
54	3.7798	0.0235	-0.0003	0	0
55	3.8030	0.0232	-0.0003	0	0
56	3.8259	0.0229	-0.0003		

At x= 50,

$$(dy/dx)_{x = x0} = (1 /h)[\Delta y_0 - (1/2) \Delta^2 y_0 + (1/3)\Delta^3 y_0 + \dots]$$

= (1/1)[0.024-(1/2)(-0.0003)+0] = 0.02455
$$(d^2y/dx^2)_{x = x0} = (1/h^2) [\Delta^2 y_0 - \Delta^3 y_0 + (11/12) \Delta^4 y_0 + \dots]$$

= (1/1)[-0.003-0]= -.0003

At x=56,

$$\begin{aligned} (dy/dx)_{x = xn} &= (1/h) [\nabla y_n + (1/2) \nabla^2 y_n + (1/3) \nabla^3 y_n + \dots] \\ &= (1/1) [0.0229 + (1/2)(-0.0003) + 0] = 0.02275. \\ (d^2y/dx^2)_{x = xn} &= (1/h^2) [\nabla^2 y_n + \nabla^3 y_n + (11/12) \nabla^4 y_n + \dots] \\ &= (1/1) [-0.003 - 0] = -0.0003. \end{aligned}$$

CLASS: II B.Sc	COURSE NAME: NU	MERICAL METHODS
COURSE CODE: 17MMU301	UNIT: IV	BATCH-2017-2020

For the above ptroblem let us find the first two derivatives of x when x = 52 and x = 55.

When x=52, From Newton's forward formula

 $(dy / dx) x \neq x_0 = (1 / h) [\Delta y_0 + (2u-1)/2 \Delta^2 y_0 + (3u^2 - 1)/2 \Delta^2 y_0 + (3u^2 - 1)$

 $6u+2)/ 6 \Delta^3 y_0 + \dots],$

= (1/1) [0.0244+(3/2)(-0.0003)+0] = 0.02395,

Since here $u = (x-x_0) / h = (52-50)/1 = 2$.

 $(d^{2}y / dx^{2}) \ x \neq x_{0} = (1/h^{2}) \ [\Delta^{2} \ y_{0} + 6(u-1) / 6 \ \Delta^{3}y_{0} + (12u^{2} - 36 \ u + 22) / 2 \ \Delta^{4}y_{0} + \dots]$

= (1/)m [-0.0003+0] = -0.0003.

When x = 55, from backward interpolation

 $(dy / dx) x \neq x_n = (1 / h) [\nabla y_n + (2v+1)/2 \nabla^2 y_n + (3v^2 + 6v+2)/6 \nabla^3 y_n + \dots]$

= (1/1) [0.0229 + (-1/2)(-0.0003) + 0] = 0.02305,

Since here $v = (x-x_n) / h = (55-56)/1 = -1$.

$$(d^2y / dx^2) x \neq x_n = (1/h^2) [\nabla^2 y_n + 6(v+1) / 6 \nabla^3 y_n + (12v^2 + 36v + 22) / 2 \nabla^4 y_n + \dots]$$

= (1/1) [0.0229+(-1/2)(-0.0003)+0] = 0.02305.

Numerical Integration:

We know that $\int_a^b f(x) dx$ represents the area between y = f(x), x - axis and the ordinates x = a and x = b. This integration is possible only if the f(x) is explicitly given and if it is integrable. The problem of numerical integration can be stated as follows: Given as set of (n+1) paired values (x_i, y_i) , i = 0, 1, 2, ..., n of the function y=f(x), where f(x) is not known explicitly, it is required to compute $\int_{x_0}^{x_n} y \, dx$.

A general quadrature formula for equidistant ordinates (or Newton – cote's formula)

For equally spaced intervals, we have Newton's forward difference formula as

$$y(x) = y(x_0 + uh) = y_0 + u\Delta y_0 + \frac{u(u-1)}{2!}\Delta^2 y_0 + \dots$$
 (1)

Now, instead of f(x), we will replace it by this interpolating formula of Newton.

CLASS: II B.ScCOURSE NAME: NUMERICAL METHODSCOURSE CODE: 17MMU301UNIT: IVBATCH-2017-2020

Here, $u = \frac{x - x_0}{h}$ where *h* is interval of differencing. Since $x_n = x_0 + nh$, and $u = \frac{x - x_0}{h}$ we have $\frac{x - x_0}{h} = n = u$.

$$\int_{x_0}^{x_n} f(x) dx = \int_{x_0}^{x_n + nh} f(x) dx$$

= $\int_{x_0}^{x_n+nh} P_n(x) dx$ where $P_n(x)$ is interpolating polynomial

$$= \int_0^n \left(y_0 + u \,\Delta y_0 + \frac{u(u-1)}{2!} \,\Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \,\Delta^3 y_0 + \dots \right) (hdu)$$

Since dx = hdu, and when $x = x_0$, u = 0 and when $x = x_0+nh$, u = n.

$$=h\left[y_{0}(u)+\frac{u^{2}}{2}\Delta y_{0}+\frac{\left(\frac{u^{3}}{3}-\frac{u^{2}}{2}\right)}{2}\Delta^{2}y_{0}+\frac{1}{6}\left(\frac{u^{4}}{4}-u^{3}+u^{2}\right)\Delta^{3}y_{0}+\cdots \right]_{0}^{n}$$

$$\int_{x_{0}}^{x_{n}}f(x)dx=hny\left[0+\frac{n^{2}}{2}\Delta y_{0}+\frac{1}{2}\frac{n^{3}}{3}-\frac{n^{2}}{2}\Delta^{2}y_{0}+\frac{1}{6}\right]$$

$$\left(\frac{n^{4}}{4}-n^{3}+n^{2}\right)\Delta^{3}y_{0}+\cdots =0$$

The equation (2), called Newton-cote's quadrature formula is a general quadrature formula. Giving various values for n, we get a number of special formula.

Trapezoidal rule:

By putting n = 1, in the quadrature formula (i.e there are only two paired values and interpolating polynomial is linear).

$$\int_{x_0}^{x_n+nh} f(x) dx = h \left[1. y_0 + \frac{1}{2} \Delta y_0 \right] \text{ since other differences do not exist if } n = 1.$$

$$= \int_{x_0}^{x_n} f(x) dx = \int_{x_0}^{x_n+nh} f(x) dx$$

$$= \int_{x_0}^{x_0+h} f(x) dx + \int_{x_0+h}^{x_n+2h} f(x) dx + \dots + \int_{x_0+(n-1)h}^{x_n+nh} f(x) dx$$

$$= \frac{h}{2} \left[(y_0 + y_n) + 2(y_1 + y_2 + y_3 + \dots + y_{n-1}) \right]$$

CLASS: II B.ScCOURSE NAME: NUMERICAL METHODSCOURSE CODE: 17MMU301UNIT: IVBATCH-2017-2020

 $=\frac{h}{2}$ [(sum of the first and the last ordinates) + 2(sum of the remaining ordinates)]

This is known as Trapezoidal Rule and the error in the trapezoidal rule is of the order h^2 .

Romberg's method

For an interval of size h, let the error in the trapezoidal rule be kh^2 where k is a constant. Suppose we evaluate $I = \int_{x_0}^{x_n} y \, dx$, taking two different values of h, say h_1 and h_2 , then

$$I = I_1 + E_1 = I_1 + k{h_1}^2 \quad I = I_2 + E_2 = I_2 + k{h_2}^2$$

Where I_1 , I_2 are the values of I got by two different values of h, by trapezoidal rule and E_1 , E_2 are the corresponding errors.

$$I_{1} + kh_{1}^{2} = I_{2} + kh_{2}^{2}$$
$$k = \frac{I_{1} - I_{2}}{h^{2} - h^{2}}$$

substituting in (1), $I = I_1 + \frac{I_1 - I_2}{h_2^2 - h_1^2} h_1^2$ & $I = \frac{I_1 h_2^2 - I_2 h_1^2}{h_2^2 - h_1^2}$

This I is a better result than either I_1 , I_2 .

If $h_1 = h$ and $h_2 = \frac{1}{2}h$, then we get

$$I = \frac{I_1(\frac{1}{4}h^2) - I_2h^2}{\frac{1}{4}h^2 - h^2} = I_2 + \frac{1}{2}(I_2 - I_1), \quad I = I_2 + \frac{1}{2}(I_2 - I_1)$$

We got this result by applying trapezoidal rule twice. By applying the trapezoidal rule many times, every time halving h, we get a sequence of results A_1 , A_2 , A_3 ,..... we apply the formula given by (3), to each of adjacent pairs and get the resultants B_1 , B_2 , B_3 (which are improved values). Again applying the formula given by (3), to each of pairs B_1 , B_2 , B_3 we get another sequence of better results C_1 , C_2 , C_3 continuing in this way, we proceed until we get two successive values which are very close to each other. This systematic improvement of Richardson's method is called Romberg method or Romberg integration.

Simpson's one-third rule:

Setting n = 2 in Newton- cote's quadrature formula, we have $\int_{x_0}^{x_n} f(x) dx = h$ $2y_0 + \frac{4}{2}\Delta y_0 + \frac{1}{2} \frac{8}{3} - \frac{4}{2} \Delta^2 y_0$ (since other terms vanish)

CLASS: II B.Sc	COURSE NAME: NUMERICAL METHODS	
COURSE CODE: 17MMU301	UNIT: IV	BATCH-2017-2020

$$=\frac{h}{3}(y_2+y_1+y_0)$$

Similarly, $\int_{x_2}^{x_4} f(x) dx = \frac{h}{3} (y_2 + 4y_3 + y_4)$

$$\int_{x_2}^{x_4} f(x) dx = \frac{h}{3} (y_i + 4y_{i+1} + y_{i+2})$$

If n is an even integer, last integral will be

$$\int_{x_{n-2}}^{x_n} f(x) dx = \frac{h}{3} (y_{n-2} + 4y_{n-1} + y_n)$$

Adding all the integrals, if *n* is an even positive integer, that is, the number of ordinates y_0 , y_1 , $y_2...,y_n$ is odd, we have

$$\int_{x_0}^{x_n} f(x) dx = \int_{x_0}^{x_2} f(x) dx + \int_{x_2}^{x_4} f(x) dx + \dots + \int_{x_{n-2}}^{x_n} f(x) dx$$
$$= \frac{h}{3} \left[y_0 + y_n \right] + 2(y_2 + y_4 + \dots) + \dots + 4(y_1 + y_3 + \dots)$$

 $=\frac{h}{3}[(\text{sum of the first and the last ordinates}) + 2(\text{sum of remaining odd ordinates}) + 2(\text{sum of even ordinates})]$

Simpson's three-eighths rule:

Putting n = 3 in Newton – cotes formula

$$=\frac{3h}{8}(y_0+y_n) + 3(y_1+y_2+y_4+y_5+\ldots+y_{n-1}) + 2(y_3+y_6+y_9+\ldots+y_n)$$

Equation (2) is called *Simpson's three* - *eighths rule* which is applicable only when n is a multiple of 3.Truncation error in simpson's rule is of the order h

CLASS: II B.Sc COURSE CODE: 17MMU301

COURSE NAME: NUMERICAL METHODS UNIT: IV BATCH-2017-2020

Example

Evaluate $\int_{-3}^{3} x^4 dx$ by using (1) trapezoidal rule (2)simpson's rule. Verify your results by actual integration.

Solution.

Here $y(x) = x^4$. Interval length(b - a) = 6. So, we divide 6 equal intervals with $h = \frac{6}{6} = 1$.

We form below the table

x	-3	-2	-1	0	1	2	3
						16	

(i) By trapezoidal rule:

 $\int_{-3}^{3} y \, dx = \frac{h}{2}$ [(sum of the first and the last ordinates) +

2(sum of the remaining ordinates)]

$$=\frac{1}{2}[(81+81)+2(16+1+0+1+16)]$$

=115

(ii) By simpson's one - third rule (since number of ordinates is odd): $\int_{-3}^{3} y \, dx = \frac{1}{3} [(81+81) + 2(1+1) + 4(16+0+16)]$

= 98.

(iii) Since n = 6, (multiple of three), we can also use simpson's three - eighths rule. By this rule,

$$\int_{-3}^{3} y \, dx = \frac{1}{3} \left[(81 + 81) + 3(16 + 1 + 1 + 16) + 2(0) \right]$$

= 99

(iv) By actual integration, $\int_{-3}^{3} x^4 dx = 2^* \left[\frac{x^5}{5} \right]_{0}^{3} = \frac{2*243}{5} = 97.2$

From the results obtained by various methods, we see that simpson's rule gives better result than trapezoidal rule.

CLASS: II B.ScCOURSE NAME: NUMERICAL METHODSCOURSE CODE: 17MMU301UNIT: IVBATCH-2017-2020

POSSIBLE QUESTIONS

- 1. Write the formulae for Newton forward difference formula for derivatives.
- 2. Write the formula for Newton backward difference formula for derivatives.
- 3. Write the Simpson's $3/8^{\text{th}}$ rule formula.
- 4. Write Boole's rule formula.
- 5. Write the Simpson's $3/8^{\text{th}}$ rule formula.
- 6. Given the following data, find y'(6) and the maximum value of y.

		0					
Y	:	4	26	58	112	466	922

- 7. Evaluate I= $\int_{0}^{6} dx / (1 + x)$ using both of the Simpson's rule.
- 8. Find the first and second derivative of the function tabulated below at x = 0.6

X: 0.4	0.5	0.6	0.7	0.8
Y:1.5836	1.7974	2.0442	2.3275	2.6511

9. Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by (i) Trapezoidal rule (ii) Simpson's rule. Also check up

the result by actual integration.

10. Find the gradient of the road at the middle point of the elevation above a datum line of seven point of road which are given below:

Χ	:	0	300	600	900	1200	1500	1800	
Y	:	135	149	157	183	201	205	193	

11. By dividing the range into the ten equal parts .Evaluate $\int_{0}^{\infty} \sin x dx$ by Trapezoidal rule

and Simpson's rule.

12. The population of a certain town is given below, Find the rate of growth of population in 1931, 1941, 1961 and 1971.

Year	: 1931	1941	1951	1961	1971
Population	: 40.62	60.80	79.95	103.56	132.65
in thousands					

13. b) Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using Trapezoidal rule with h = 0.2. Hence obtain the approximate

value of π .

CLASS: II B.Sc COURSE CODE: 17MN		DURSE NA UNIT: IV	ME: NUN		METHOI BATCH-201	
14. Find the first two de	rivatives of $x^{\frac{1}{3}}$ a	t x=50 and	x=56 give	en the table	e below:	
	50 51	52	53	54	55	56
	6840 3.7084			3.7798		3.8259
15. Evaluate $\int_{0}^{6} \frac{dx}{1+x^{2}}$ by	(i) Trapezoidal	rule (ii) Si	mpson's ru	ıle. Also c	heck up the	e
$\int_{0}^{1} 1 + x^{2}$			1		1	
result by actual integ						
				\mathbb{C}		

Part A (20x1=20 Marks)

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University) (Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021 Subject: Numerical Methods Class : II - B.Sc. Mathematics Unit IV

(Question Nos. 1

Possible Questions								
Question	Choice 1	Choice 2	Choice 3	Choice 4	Answer			
If the given integral is approximated by the sum of 'n' trapezoids, then the rule	Newton's method	Trapezoidal rule	simpson's rule	power	Trapezoidal rule			
The order of error in Trapezoidal rule is	h	h ³	h^2	h^4	h^2			
The general quadratic formula for equidistant ordinates is	raphson	Newton-cote's	interpolation	divide difference	Newton-cote's			
h/2[(sum of the first and last ordinates)+2(sum of the remaining ordinates)] is	simphson's 3/8	simphson's 1/3	trapezoidal	taylor series	trapezoidal			
Use trapezoidal rule for y(x)	linear	second degree	third degree	degree n	linear			
Simpson's rule is exact for a even though it was derived for a	cubic	less than cubic	linear	quadratic	linear			
What is the order of the error in Simpson's formula? Simpson's 1/3 is findind y(x) upto In simpson's 1/3, the number of intervels must be In simpson's 1/3, the number of ordinates must be Simpson's one-third rule on numerical integration is called a	Four linear any integer any integer closed	three second degree odd odd open	two degree n even prime semi closed	one third degree prime even semi opened	Four second degree even odd closed			
In simphson's 3/8 rule, we calculate the polynomial of degree	degree n	linear	second degree	third degree	third degree			
The number of interval is multiple of three the use The number of interval is multiple of six The error in Simpson's 1/3 is The order of error is h^2 for h^4 is the error of	simpson's 1/3 simpson's 1/3 h lagrange's simphson's 3/8	trapezoidal simphson's 3/8 h ³ trapezoidal simphson's 1/3	simpson's 3/8 weddle h ² weddle trapezoidal	taylor series trapezoidal h ⁴ simpson's 1/3 taylor series	simpson's 3/8 weddle h ⁴ trapezoidal simphson's			
The value of integral e^x is evaluated from 0 to 0.4 by the following formula. Which method will give the least error ?	Trapezoidal rule with $h = 0.2$	Trapezoidal rule with $h = 0.1$	Simpson's $1/3$ rule with h = 0.1.	weddle	Simpson's $1/3$ rule with $h = 0.1$.			
Using Simpson's rule the area in square meters included between the chain line, irregular boundary and the first and the last offset will be	7.33.28 sq-m	744.18 sq-m	880.48 sq-m.	820.38 sq-m	820.38 sq-m			
By putting n = 1 in Newton cote's formula we get rule.	Simpson's 1/3 rule	Simpson's 3/8 rule	Trapezoidal rule	Simpson's rule	Trapezoidal rule			
$I = (3h / 8) \{ (y_0 + y_n) + 3 (y_1 + y_2 + y_4 + y_5 + \dots) + 2(y_3 + y_6 + y_9 + \dots) \}$	Simpson's 1/3 rule	Simpson's 3/8 rule	Trapezoidal rule	Simpson's rule	Simpson's 3/8 rule			
$\mathbf{I} = (\mathbf{h} / 3) \{ (y_0 + y_n) + 2 (y_2 + y_4 + y_6 + y_8 + \dots) + 4(y_1 + y_3 + y_5 + \dots) \}$	Simpson's 1/3	Simpson's 3/8	Trapezoidal	Simpson's	Simpson's			
} is	rule	rule	rule	rule	1/3 rule			
The differentiation of logx is	1/x	e(x)	sinx	cosx	1/x			
h/3[(sum of first and last ordinates)+2(sum of even ordinates)+4(sum of odd ordinates)] is the formula for	trapezoidal	simphson's 1/3	simphson's 3/8	taylor series	simphson's 1/3			
Differentiation of sinx is	cosx	tanx	sinx	logx	COSX			
Integration of cosx	cosx	tanx	sinx	logx	sinx			
If y(x) is linear then use	simphson's 3/8	simphson's 1/3	trapezoidal	taylor series	trapezoidal			
The differentiation of secx is	secx tanx	cotx	cosecx	tanx	secx tanx			
The notation h is	differece of ordinates	sum of ordinates	number of ordinates	product of ordinates	differece of ordinates			
While evaluating the definite integral by Trapezoidal rule, the accuracy can be increased by taking	Large number of sub-intervals	even number of sub-intervals	multipleof6	has multiple of 3	Large number of sub-			
Numerical integration when applied to a function of a single variable, it is known as	maxima	minima	quadrature	quadrant	quadrature			

CLASS: II B.Sc COURSE CODE: 17MMU301 COURSE NAME: NUMERICAL METHODS UNIT: V BATCH-2017-2020

UNIT-V

ORDINARY DIFFERENTIAL EQUATIONS

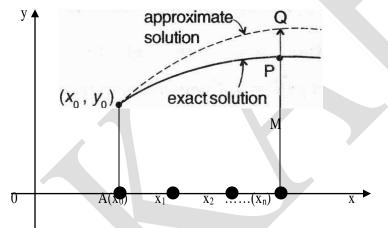
Ordinary Differential Equations: Taylor's series - Euler's method – modified Euler's method - Runge-Kutta methods of orders two and four.

INTRODUCTION

Suppose we require to solve dy/dx=f(x,y) with the initial condition $y(x_0)=y_0$. By numerical solution of y at $x=x_0$, x_1 , x_2 ,... let y=y(x) be the exact solution. If we plot and draw the graph of y=y(x), (exact curve) and also draw the approximate curve by plotting (x_0, y_0) , (x_1,y_1) , (x_2, y_2) ,... we get two curves.

PM= exact value, QM=approximate value at x=x_i. Then

QP=MQ-MP= y_i - $y(x_i) = \varepsilon$ is called the truncation error at $x = x_i$



 $QP=MQ-MP=y_i-y(x_i)=\varepsilon_i$ is called return error at $x=x_i$

RUNGE- KUTTA METHOD

Second order Runge-Kutta method (for first order O.D.E)

AIM : To solve dy / dx = f(x,y) given $y(x_0)=y_0$ (1)

Proof. By Taylor series, we have,

 $y(x+h) = y(x) + hy'(x) + h^2/2! y''(x) + O(h^3)$ (2)

Differentiating the equation (1) w.r.t.x,

CLASS: II B.ScCOURSE NAME: NUMERICAL METHODSCOURSE CODE: 17MMU301UNIT: VBATCH-2017-20	20
$\partial f \partial f dy$	
$y'' =+ = f_x + y' f_y = f_x + ff_y$	
$\partial \mathbf{x} \partial \mathbf{y} \mathbf{d} \mathbf{x}$	
Using the values of y' and y" got from (1) and (3), in (2), we get,	
$Y(x + h)-y(x) = hf + \frac{1}{2}h^2 [f_x + ff_y] + O(h^3)$	
$\Delta y = hf + \frac{1}{2} h^2(f_x + ff_y) + O(h^3)$	
Let $\Delta_1 y = k_1 = f(x,y)$. $\Delta x = hf(x,y)$, $\Delta_2 y = k_2 = hf(x+mh,y+mk_1)$	
and $\Delta y=ak_1+bk_2$, Where a, b and m are constants to be determined to get the better accuracy of Δy . Expand k_2 and Δy in powers of h.	
Expanding k ₂ , by Taylor series for two variables, we have	
$K_2 = hf(x+mh, y+mk_1)$	
$= h[f + mhf_x + mhff_y + \{(mh\partial/\partial x + mk_1 \partial/\partial y)^2 f / 2!\} + \dots] \dots (8)$	
$= hf + mh_2(f_x + ff_y) + \dots \text{ Higher powers of h} \qquad \dots \dots \dots (9)$	
Substituting k_1, k_2 in (7),	
$\Delta y = ahf + b[hf + mh^{2}(f_{x} + ff_{y}) + O(h^{3})]$	
= $(a+b)hf+bmh^2(f_x+ff_y)+O(h^3)$ 10)	
Equating Δy from (4) and (10), we get	
=hf+mh ² (f_x +ff _y)+ higher powers of h(9)	
Substituting k_1 , k_2 in (7),	
$\Delta y = ahf + b[hf + mh^{2}(f_{x} + ff_{y}) + O(h^{3})] = (a+b)hf + bmh^{2}(f_{x} + ff_{y}) + O(h^{3}) \dots (10)$	
Equating Δy from (4) and (10), we get	
$a+b=1 \text{ and } bm=\frac{1}{2} $ (11)	
Now we have only two equations given by (1) to solve for three unknowns a,b,m.	
From $a+b=1$, $a=1-b$ and also $m=1/2b$ using (7),	

CLASS: II B.ScCOURSE NAME: NUMERICAL METHODSCOURSE CODE: 17MMU301UNIT: VBATCH-2017-2020

 $\Delta y = (1-b)k_1 + bk_2$, Where $k_1 = hf(x,y)$

K₂=hf(x+h/2b, y+hf/2b) Now $\Delta y=y(x+h)-y(x)$

Y(x+h)=y(x)+(1-b)hf+bhf(x+h/2b,y+hf/2b)

i.e., $y_{n+1}=y_n+(1-b)hf(x_n,y_n) +bhf(x_n+h/2b,y_n+h/2bf(x_n,y_n))+O(h^3)$

from this general second order Runge kutta formula, setting a=0, b=1, m=1/2, we get the second order Runge kutta algorithm as

 $k_1=hf(x,y)$ & $k_2=hf(x+\frac{1}{2}h, y+\frac{1}{2}k_1)$ and $\Delta y=k_2$ where $h=\Delta x$

Since the derivation of third and fourth order Runge Kutta algorithm are tedious, we state them below for use.

The third order Runge Kutta method algorithm is given below :

 $K_1 = hf(x,y)$

 $K_2 = hf(x+1/2h, y+1/2k_1)$

 $K_3 = hf(x+h, y+2k_2-k_1)$

and $\Delta y = 1/6$ (k₁+4k₂+k₃)

The fourth order Runge Kutta method algorithm is mostly used in problems unless otherwise mentioned. It is

 $K_1 = hf(x,y)$

 $K_2 = hf(x+1/2h, y+1/2k_1)$

 $K_3 = hf(x+1/2h, y+1/2k_2)$

 $K_4=hf(x+h, y+k_3)$

and $\Delta y = 1/6 (k_1 + 2k_2 + 2k_3 + k_4)$

```
y(x+h)=y(x)+\Delta y
```

Working Rule :

```
To solve dy/dx = f(x,y), y(x_0)=y_0
```

Calculate $k_1 = hf(x_0, y_0)$

 $K_2 = hf(x_0+1/2h, y_0+1/2k_1)$

CLASS: II B.Sc COURSE CODE: 17MMU301

COURSE NAME: NUMERICAL METHODS UNIT: V BATCH-2017-2020

 $K_3 = hf(x_0+1/2h, y_0+1/2k_2)$

 $K_4 = hf(x_0+h, y_0+k_3)$

and $\Delta y = 1/6 (k_1 + 2k_2 + 2k_3 + k_4)$

where $\Delta x = h$

Now $y_1 = y_0 + \Delta y$

Now starting from (x_1, y_1) and repeating the process, we get (x_2, y_2) etc.,

Example

Obtain the values of y at x=0.1, 0.2 using R.K method of (i) second order (ii) third order and (iii) fourth order for the differential equation y'=-y, given y(0)=1.

Solution :Here f(x,y)=-y,x₀=0, y₀=1, x₁=0.1, x₂=0.2

(i) Second Order:

 $\begin{aligned} k_1 = hf(x_0, y_0) = (0.1)(-y_0) &= -0.1 \\ k_2 = hf(x_0 + \frac{1}{2} h, y_0 + \frac{1}{2} k_1) &= (0.1) f(0.05, 0.95) \\ &= -0.1(x0.95) = -0.095 = \Delta y \\ y_1 = y_0 + \Delta y = 1 - 0.095 = 0.905 \\ y_1 = y(0.1) = 0.905 \end{aligned}$

Again starting from (0.1, 0.905) replacing (x_0, y_0) by (x_1, y_1) we get

 $k_1 = (0.1) f(x_1, y_1) = (0.1) (-0.905) = -0.0905$

 $k_2 = hf(x_1 + \frac{1}{2} h, y_1 + \frac{1}{2} k_1)$

=(0.1)[f(0.15, 0.85975)]=(0.1)(-0.85975)=-0.085975)

 $\Delta y = k_2$ $y_2 = y(0.2) = y_1 + \Delta y = 0.819025$

(ii) Third Order:

 $k_1 = hf(x_0, y_0) = -0.1$

$$k_2 = hf(x_0 + \frac{1}{2} h, y_0 + \frac{1}{2} k_1) = -0.095$$

CLASS: II B.ScCOURSE NAME: NUMERICAL METHODSCOURSE CODE: 17MMU301UNIT: VBATCH-2017-2020

 $k_3 = hf(x_0+h, y_0+2k_2-k_1)$

= (0.1)f(0.1,0.9)=(0.1)(-0.9)=-0.0.9

 $\Delta y=1/6 (k_1+4k_2+k_3)$

 $y(0.1)=y_1=y_0+\Delta y=1-0.09=0.91$

Again taking (x_1, y_1) has (x_0, y_0) repeat the process

 $k_1 = hf(x_1, y_1) = (0.1) (-0.91) = -0.091$

 $k_2 = hf(x_1 + \frac{1}{2}h, y_1 + \frac{1}{2}k_1)$

= (0.1)f(0.15, 0.865) = (0.1)(-0.865) = -0.0865

 $k_3 = hf(x_1+h, y_1+2k_2-k_1)$

= (0.1)f(0.2, 0.828) = -0.0828

 $y_2=y_1+\Delta y=0.91+1/6$ (k₁+4k₂+k₃)

= 0.91 + 1/6 (-0.091 - 0.3460 - 0.0828)

y(0.2)=0.823366

(iii) Fourth order:

 $k_1 = hf(x_0, y_0) = (0.1)f(0.1) = -0.1$

 $k_2 = hf(x_0 + \frac{1}{2} h, y_0 + \frac{1}{2}k_1) = (0.1)f(0.05, 0.95) = -0.095$

 $k_3=hf(x_0+\frac{1}{2}h, y_0+\frac{1}{2}k_2) = (0.1) f(0.05, 0.9525) = -0.09525$

 $k_4 = hf(x_0+h, y_0+k_3) = (0.1)f(0.1, 0.90475) = -0.090475$

 $\Delta y = 1/6 (k_1 + 2k_2 + 2k_3 + k_4)$

 $y_1 = y_0 + \Delta y = 1 + 1/6 (k_1 + 2k_2 + 2k_3 + k_4)$

y₁=y(0.1)=0.9048375

Again start from this (x_1, y_1) and replace (x_0, y_0) and repeat

 $k_1 = hf(x_1, y_1) = (0.1)(-y_1) = -0.09048375$

 $k_2 = hf(x_1 + 1/2h, y_1 + 1/2k_1)$

= (0.1)f(0.15, 0.8595956) = -0.08595956

CLASS: II B.Sc COURSE CODE: 17MMU301

COURSE NAME: NUMERICAL METHODS UNIT: V BATCH-2017-2020

 $k_3 = hf(x_1 + \frac{1}{2} h, y_1 + \frac{1}{2} k_2)$

= (0.1)f(0.15, 0.8618577) = -0.08618577

 $k_4 = hf(x_1 + h, y_1 + k_3)$

= (0.1)f(0.2, 0.8186517) = -0.08186517

 $\Delta y = \frac{1}{6}(-0.09048375 - 2x\ 0.08595956 - 2x\ 0.08618577 - 0.08186517) = -0.0861066067$

 $y_2 = y(0.2) = y_1 + \Delta y = 0.81873089$

Tabular values are:

X	Second order	Third order	Fourth order	Exact value Y=e-x
0.1	0.905	0.91	0.9048375	0.904837418
0.2	0.819025	0.823366	0.81873089	0.818730753

CLASS: II B.ScCOURSE NAME: NUMERICAL METHODSCOURSE CODE: 17MMU301UNIT: VBATCH-2017-2020

POSSIBLE QUESTIONS

- 1. Write the difference between Euler and modified Euler Method.
- 2. Define Euler method with formula.
- 3. Write the formula for Milne's predictor corrector method.
- 4. Write the formula for Adam's Bash forth predictor corrector method.
- 5. Write the modified Euler method formula.
- 6. Solve dy/dx = x + y, given y(1)=0 and get y(1.1),y(1.2) by Taylor's series method.
 Compare your result with the explicit method
- 7. Find y (1.5) taking h=0.5 given y' = y 1, y(0) = 1.1 by using Euler method.
- 8. Using Adam's method for y (0.4) given $\frac{dy}{dx} = \frac{1}{2}xy$, y(0)=1,y(0.1)=1.01,y(0.2)=1.022, y(0.3)=1.023.
- 9. Apply fourth order Runge-Kutta method to find y(0.2) given that y' = x + y, y(0) = 1.

10. Using Taylor method compute y(0.2) and y(0.4) correct to four decimal places given by $\frac{dy}{dx} = 1-2xy$ and y(0)=0

- 11. Compute y at x=0.25 by modified Euler method. Given $y^1=2xy$, y(0)=1
- 12. Solve the equation dy/dx=1-y, given y(0)=0 using modified Euler method and tabulate the values at x=0.1, 0.2, 0.3 compare your results with the exact solutions
- 13. Determine the value of y (0.4) using Milne's methods given $y' = xy + y^2$ use Taylor series to get the values of y(0.1),y(0.2) and y(0.3).
- 14. Find y (1.1) given $y^1=2x-y$, y (1) =3 by using Taylor series method
- 15. Obtain the values of y at x=0.1, 0.2 using R-K method of
 - (i) Second order

(ii) Fourth order

For the differential equation $y^1 = -y$ given y(0)=1.

(Deemed to be University) (Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore -641 021 Subject: Numerical Methods Class : II - B.Sc. Mathematics Unit V

Part A (20x1=20 Marks)

(Question Nos. 1 to 20

Question	ible Questions Choice 1	Choice 2	Choice 3	Choice 4	Answer
•	h	h ³	h ²	h ⁴	h ²
The order of error in Trapezoidal rule is					
The order of error in Simpson's rule is	h	h ³ Differentiatio	h ²	h ⁴ Triangularizati	h^4
Numerical evaluation of a definite integral is called	Integration	n	Interpolation	on	Integration
Simpson's ³ / ₈ rule can be applied only if the number of sub interval is in -	· Equal	even	multiple of three	unequal	multiple of
By putting n = 2 in Newton cote's formula we get rule.	Simpson's 1/3	Simpson's 3/8	Trapezoidal	Romberg	Simpson's 1/3
The Newton Cote's formula is also known as formula.	Simpson's 1/3	Simpson's 3/8	Trapezoidal	quadrature	quadrature
By putting n = 3 in Newton cote's formula we get rule.	Simpson's 1/3	Simpson's 3/8	Trapezoidal	Romberg	Simpson's 3/8
By putting n = 1 in Newton cote's formula we get rule.	Simpson's 1/3	Simpson's 3/8	Trapezoidal	newton's	Trapezoidal
The systematic improvement of Richardon's method is called method	Simpson's 1/3	Simpson's 3/8	Trapezoidal	Romberg	Romberg
Simpson's 1/3 rule can be applied only when the number of interval is -	- Equal	even	multiple of three	unequal	even
Simpson's rule is exact for a even though it was derived for a	cubic	less than cubic	linear	quadratic	linear
The accuracy of the result using the Trapezoidal rule can be improved by	Increasing the interval h	Decreasing the interval h	Increasing the number of iterations	altering the given function	Increasing the number of iterations
A particular case of Runge Kutta method of second order is	Milne's method	Picard's method	Modified Euler method	Runge's method	Modified Euler method
Runge Kutta of first order is nothing but the	modified Euler method	⊽ Euler method	Taylor series	none of these	Euler method
In Runge Kutta second and fourth order methods, the values of k1 and k2 are	same	differ	always positive	always negative	same
values are calculated in Runge Kutta fourth order method.	k ₁ , k ₂ , k ₃ , k ₄ and Dy	k_1 , k_2 and Dy	k_1 , k_2 , k_3 and Dy	none of these	k_1 , k_2 , k_3 , k_4 and Dy
The use of Runge kutta method gives to the solutions of the differential equation than Taylor's series method.	Slow convergence	quick convergence	oscillation	divergence	quick convergence
In Runge – kutta method the value x is taken as	$x=x_{0}+h$	$x_0 = x + h$	$\mathbf{h} = \mathbf{x}_0 + \mathbf{x}$	$\mathbf{h} = \mathbf{x}_0 - \mathbf{x}$	$x=x_{0}+h$
In Runge – kutta method the value y is taken as	$y = y_0 + h$	$y_0 = x_0 + h$	$y = y_0 - Dy$	$y = y_0 + Dy$	$y = y_0 + Dy$
is nothing but the modified Euler method.	Runge kutta method of second order	Runge kutta method of third order	Runge kutta method of fourth order	Taylor series method	Runge kutta method of second order
In all the three methods of Rungekutta methods, the values are	$k_4 \And k_3$	k ₃ & k ₂	$k_2 \And k_1$	$k_1, k_2, k_3 \& k_4$	$k_2 \& k_1$
The formula of Dy in second order Runge Kutta method is given by	- k ₁	k_2	k ₃	k_4	k ₂
The Runge – Kutta methods are designed to give and they posses the advantage of requiring only the function values at some selected points on the sub intervals	greater accuracy	lesser accuracy	average accuracy	equal	greater accuracy
If dy/dx is a function x alone, then fourth order Runge – Kutta method reduces to	Trapezoidal rule	Taylor series	Euler method	Simpson method	Simpson method
In Runge Kutta methods, the derivatives of are not require and we require only the given function values at different points.	higher order	lower order	middle order	zero	higher order
The use of method gives quick convergence to the solutions of the differential equation than Taylor's series method.	Taylor series	Euler	Runge – Kutta	Simpson method	Runge – Kutta
If dy/dx is a function x alone, then Runge – Kutta method reduces to Simpson method	fourth order	third order	second order	first order	fourth order
If dy/dx is a function of then fourth order Runge – Kutta method reduces to Simpson method.	x alone	y alone	both x and y	none	x alone

Reg. No.

[16MMU301]

KARPAGAM UNIVERSITY Karpagam Academy of Higher Education (Established Under Section 3 of UGC Act 1956) COIMBATORE – 641 021 (For the candidates admitted from 2016 onwards)

B.Sc., DEGREE EXAMINATION, NOVEMBER 2017 Third Semester

MATHEMATICS

NUMERICAL METHODS

Time: 3 hours

Maximum: 60 marks

PART – A (20 x 1 = 20 Marks) (30 Minutes) (Question Nos. 1 to 20 Online Examinations)

PART B (5 x 2 = 10 Marks) (2 ½ Hours) Answer ALL the Questions

- 21. Find the initial approximation of $x^3 x = 1$ by bisection method.
- 22. List out the methods to find the solution of simultaneous linear algebraic Equations.
- 23. Write down the Newton's Gregory forward interpolation formula.
- 24. What are the methods available to find the value of the integration?

25. Write down the modified Euler's formula.

PART C (5 x 6 = 30 Marks) Answer ALL the Questions

26. a. Find the real positive root of $3x - \cos x - 1 = 0$ by Newton's method.

Or

b. Derive the order of convergence of Newton's method.

27. a. Solve the system of equations by the Gauss Elimination method. x + 2y + z = 3; 2x + 3y + 3z = 10; 3x - y + 2z = 13b. Solve the following system of equations by Gauss-Seidel method 8x - 3y + 2z = 204x + 11y - z = 336x + 3y + 12z = 3528. a. Find a polynomial of degree four which takes the value X: 2 4 6 8 10 Y: 0 Ó 0 Or b. Using Lagrange's formula of interpolation find y(0.5) given X: 7 8 9 10 Y: 3 9 29. a. Evaluate $I = \int_0^{\infty} \frac{1}{1+x} dx$ using simpson's rule. b. The population of a certain town is given below. Find the rate of growth of the population in 1931

yearx :19311941195119611971population in thousandsy : 40.6260.8079.95103.56132.65

30. a. Using Taylor series method, find correct to four decimal places, the value of

2

y (0.1), given
$$\frac{dy}{dx} = x^2 + y^2$$
 and y(0) =1
Or
b. Compute (0.3) given $\frac{dy}{dx} + y + xy^2 = 0$; y(0) =1 by taking h=0.1 using R.K
method of IVth order