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UNIT-I

SYLLABUS

Limits of functions , sequential criterion for limits, divergence criteria. Limit theorems, one sided
limits. Infinite limits and limits at infinity. Continuous functions, sequential criterion for continuity
and discontinuity.
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LIMITS

Limits of Functions

4.1.1 Definition LetA C . A point ¢ € R is a cluster point of A if forevery § > 0 there
exists at least one point x € A, x # ¢ such that |x — ¢| < é.

This definition is rephrased in the language of neighborhoods as follows: A point ¢isa
cluster point of the set A if every d-neighborhood V;(¢) = (¢ — 4, ¢ + ) of ¢ contains at
least one point of A distinct from ¢.

Note The point ¢ may or may not be a member of A, but even if it is in A, it is ignored
when deciding whether it is a cluster point of A or not, since we explicitly require that there
be points in V;(¢) M A distinct from ¢ in order for ¢ to be a cluster point of A.

For example, if A := {1, 2}, then the point 1 is not a cluster point of A, since choosing
d:i= % gives a neighborhood of 1 that contains no points of A distinct from 1. The same is

true for the point 2, so we see that A has no cluster points,|

4.1.2 Theorem A number ¢ € R is a cluster point of a subset A of R if and only if there
exists a sequence (a,) in A such that lim(a,) = cand a, % ¢ for all n € 1.

Proof. 1f ¢ is a cluster point of A, then for any n € N the (1/n)-neighborhood V,(c)
contains at least one point a,, in A distinct from ¢. Then a, € A, a, # ¢,and |a, —¢| < 1/n
implies lim(a,) = c.

Conversely, if there exists a sequence (a,) in A\{c} with lim(a,) = ¢, then
for any & = 0 there exists K such that if n > K, then a, € V;(c). Therefore the
d-neighborhood Vj(¢) of ¢ contains the points a,, for n > K, which belong to A and
are distinct from c. Q.E.D.

4.1.3 Examples (a) For the open interval A, := (0, 1), every point of the closed
interval [0,1] is a cluster point of A;. Note that the points 0, 1 are cluster points of Ay,
but do not belong to A,. All the points of A, are cluster points of A,.

(b) A finite set has no cluster points.
(¢) The infinite set ¥ has no cluster points.

(d) ThesetAy := {1/n:nc N} hasonly the point 0 as a cluster point. None of the points
in A, is a cluster point of Ay.
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4.1.4 Definition LetA C [, and let ¢ be a cluster point of A. For afunctionf : A — R, a
real number L is said to be a limit of fat ¢ if, given any ¢ > 0, there exists a § > 0 such that
if xeAand 0 < |x —¢| <4, then [f(x)—L| <e.

Remarks (a) Since the value of & usually depends on & we will sometimes write §(&)
instead of 4 to emphasize this dependence.

(b) The inequality 0 < |x — ¢| is equivalent to saying x # c.
If L is a limit of fat ¢, then we also say that f converges to L at ¢. We often write

L=1limf(x) or L=Ilmf.

K—C KN—C

4.1.5 Theorem If f:A — R and if ¢ is a cluster point of A, then f can have only one
limit at c.

Proof. Suppose that numbers L and L' satisfy Definition 4.1.4. For any & > 0, there exists
8(g/2) > Osuchthatifx € Aand 0 < |x — ¢| < 8(¢/2), then | f(x) — L| < &/2. Also there
exists &' (¢/2) such thatif x € A and 0 < |x — ¢| < §'(g/2), then | f(x) — L'| < &/2. Now
let § := inf{3(&/2), §'(&/2)}. Thenif x € A and 0 < |x — ¢| < 4, the Triangle Inequality
implies that

IL-L| < |L—f(x)|+|f(x)-L| <&/2+¢/2=c¢

Since & > 0 is arbitrary, we conclude that L — L' = 0, so that L = L', Q.ED.

The definition of limit can be very nicely described in terms of neighborhoods. (See
Figure 4.1.1.) We observe that because

Vilc) =(c—8,c+8)={x:|x—c| <},

the inequality 0 < |x — ¢| < & is equivalent to saying that x # ¢ and x belongs to the
s-neighborhood Vj(c) of ¢. Similarly, the inequality |f(x) — L| < & is equivalent to saying
that f(x) belongs to the eé-neighborhood V(L) of L. In this way, we obtain the following
result. The reader should write out a detailed argument to establish the theorem.
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Given V(L)%
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]
"

y
There exists V5(c)
Figure 4.1.1 The limit of fat ¢ is L

4.1.6 Theorem Let f:A — R and let ¢ be a cluster point of A. Then the following
statements are equivalent.

@ limf(x) = L.
(ii) Given any e-neighborhood V(L) of L, there exists a 8-neighborhood Vs(c) of ¢ such
that if x # ¢ is any point in Vi(c) NA, then f(x) belongs to V.(L).

4.1.7 Examples (a) limb=h.
X—+C

To be more explicit, letf(x) := b forall x € E. We want to show that limf(x) = b. It
& = (0 1s given, we let § := 1. (In fact, any strictly positive 8 will serve the pﬁEﬂRe_j Then it

0<|x—¢| <1, we have |f(x)—b|=|b—b|=0<e Since &> 0 is arbitrary, v

conclude from Definition 4.1.4 that lim f(x) = b.

X—+C

(h) limx = c.

X—C

Letg(x) := xforall x € R. Ife > 0, wechoose d(&) := & Then if 0 < |x — ¢| < (¢

we have [g(x) — ¢| = |x — ¢| < e. Since & > 0 is arbitrary, we deduce that lim g = c.
X—*C
(¢) limx* = ¢’

X—+C

Let /i(x) := x? for all x € R. We want to make the difference

|;‘1|[,\:} - cz‘ = |J-.'2 - c2|
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less than a preassigned & > 0 by taking x sufficiently close to ¢. To do so, we note that
x* — ¢ = (x+ ¢)(x — ¢). Moreover, if |x — ¢| < 1, then

|x| < |e| +1 so that |x+¢| < |x

+le| < 2)e| +1.

Therefore, if

x —c| < 1, we have

(1) X - =

Moreover this last term will be less than & provided we take
Consequently, if we choose

x+e|llx—¢ <(2)c|+1)

x =

x —c| <e/(2]c|+1).

E
8 . : f 11 5
() m{ Md+1}

then if 0 < |x — ¢| < 8(g), it will follow first that
therefore, since |x — ¢| < &/(2|e| 4+ 1) that

x —¢| <1 so that (1) is valid, and

IX* = | < (2le] + 1)

x—c| <e

Since we have a way of choosing &(¢) > 0 for an arbitrary choice of & > 0, we infer that
lim A(x) = limx* = ¢~
X—+C X—C
11,

(d) lim—=—ifec > 0.

x—=c X 'S

Let ¢(x) := 1/x for x > 0 and let ¢ > 0. To show that limy = 1 /c we wish to make
the difference o

1 1 1
‘ﬁ”‘;-z‘z
less than a preassigned & > 0 by taking x sufficiently close to ¢ > 0. We first note that
1 1 1 1
x o c_\'(c —X)| = .\:l'\ —d

for x > 0. It is useful to get an upper bound for the term 1/(cx) that holds in some
neighborhood of ¢. In particular, if |[x — ¢| < JEC, then JEC <X < %c (why?), so that
1 2 1

0<—<— for X—rcl <=c
cx 2 | | 2

Therefore, for these values of x we have

2) lﬁﬂ——
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In order to make this last term less than & it suffices to take |x — ¢| < 3 ¢e. Consequently, if
we choose

.1 1,
8(e) := 1nf{5c, 5¢ a},

then if 0 < [x — ¢| < &(e), it will follow first that |x — ¢| < 1¢ so that (2) is valid, and
therefore, since |x — ¢ < (§¢7)e, that

1 1 1
(x)——|=|———] <&
‘f.f( ) =2= 33
Since we have a way of choosing &(&) = 0 for an arbitrary choice of & > 0, we infer that
limg=1/¢c
X—C
(e) lim ¥—4_4
x—2 ,‘\.‘2 1 n 5 ]
Let r(x) := (x? —4)/(x* + 1) for x € R Then a little algebraic manipulation
gives us
x 4 |5x7 —d4x? 24
vix) _5‘ T 502+ 1)
|52 + 6x + 12|
= _ -|x = 2.
5(x*+1)
To get a bound on the coefficient of |[x — 2|, we restrict x by the condition 1 < x < 3.

For x in this interval, we have 53> +6x+12<5-346-3412=75 and
5(x*+1) > 5(1+1) = 10, so that

75, 15
2

4
) -z <=

5710
Now for given & > 0, we choose

2
de) = inf{l. —a}.

Then if 0 < [x — 2| < 48(¢), we have [(x) — (4/5)] < (15/2)|x —2| < &. Since & > 0 is
arbitrary, the assertion is proved. O

x—=2|.

—
Ln
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4.1.8 Theorem (Sequential Criterion) Let f : A — R and let ¢ be a cluster point of A.
Then the following are equivalent.
(i limf =L

X—C
(ii) For every sequence (x,) in A that converges to ¢ such that x, # ¢ for all n € N, the
sequence (f(x,)) converges to L.

Proof. (1) = (ii). Assume fhas limit L at ¢, and suppose (x,) is a sequence in A with
lim(x,) = ¢and x, # ¢ for all n. We must prove that the sequence ( f(x,)) converges to L.
Let & > 0 be given. Then by Definition 4.1.4, there exists § > 0 such that if x € A satisfies

0 < |x —c¢| <4, then f(x) satisfies |f(x)—L| < e We now apply the definition of
convergent sequence for the given 4§ to obtain a natural number K(8) such that if n >
K(§) then |x, — ¢| < 4. But for each such x,, we have | f(x,) — L| < & Thus if n > K(§),
then | f(x,) — L| < &. Therefore, the sequence ( f(x,)) converges to L.

(i1) = (i). [The proof is a contrapositive argument.] If (i) is not true, then there exists
an g-neighborhood V(L) such that no matter what §-neighborhood of ¢ we pick, there
will be at least one number x; in A N Vy(¢) with x; # ¢ such that f(x;) ¢ V., (L). Hence for
every n € I\ the (1/n)-neighborhood of ¢ contains a number x,, such that

0<|x,—¢c|<1/n and X, EA,
but such that
| f(xn) —L| = & for all nelN.

We conclude that the sequence (.x,,) in A\ {¢} converges to ¢, but the sequence ( f(x,)) does
not converge to L. Therefore we have shown that if (i) is not true, then (ii) is not true. We
conclude that (ii) implies (i). QED.

4.1.9 Divergence Criteria Let ACR, let f:A — R and let c € R be a cluster
point of A.

(a) IfL € R, then fdoes not have limit L at ¢ ifand only if there exists a sequence (x,,) in A
with x, # ¢ for all n € N such that the sequence (x,) converges to ¢ but the sequence
(f(xn)) does not converge to L.

(b) The function fdoes not have a limit at ¢ if and only if there exists a sequence (x,) in A
with x, # ¢ for all n € N such that the sequence (x,) converges to ¢ but the sequence
(f(xy)) does not converge in R.

We now give some applications of this result to show how it can be used.
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4.1.10 Examples (a) lim(1/x) does not exist in .

x—0

As in Example 4.1.7(d), let ¢(x) := 1 /x for x > 0. However, here we consider ¢ = 0.
The argument given in Example 4.1.7(d) breaks down if ¢ = 0 since we cannot obtain
a bound such as that in (2) of that example. Indeed, if we take the sequence (x,) with
Xy = 1/n for ne N, then lim(x,)=0, but ¢(x,) =1/(1/n) =n. As we know, the
sequence (¢(x,)) = (n) is not convergent in R, since it is not bounded. Hence, by
Theorem 4.1.9(b), 1{1’3} (1/x) does not exist in [E.

(b) ]in?] sgn(x) does not exist.
X—

Let the signum function sgn be defined by

+1 for x>0,
sgn(x) := 0 for x=0,
-1 for x <0.

Note that sgn(x) = x/|x| for x # 0. (See Figure 4.1.2.) We shall show that sgn does not
have a limit at x = (. We shall do this by showing that there is a sequence (x,) such that
lim(x,) = 0, but such that (sgn(x,)) does not converge.

16

) -1
Indeed, let x, := (—1)"/n for n € N so that lim(x,) = 0. However, since
sgn(x,) = (—1)" for nelN,

it follows from Example 3.4.6(a) that (sgn(x,)) does not converge. Therefore ]_irrglsgn(_\-)
does not exist. x—

(c) lirrglsin(l,fx} does not exist in R.
X—+

Let g(x) := sin(1/x) for x # 0. (See Figure 4.1.3.) We shall show that g does not have
a limit at ¢ = 0, by exhibiting two sequences (x,,) and (y,) with x, 7 0 and vy, # 0 for all
n € N and such that lim(x, ) = 0 and lim(y,) = 0, but such that lim(g(x,)) # lim(g(y,)).
In view of Theorem 4.1.9 this implies that ]irr{l]g cannot exist. (Explain why.)

X—
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Indeed, we recall from calculus that sinf = Qif f = n forn € Z, and that sint = +1

if 1 = Jir-r + 2r nforn € Z Now let x,, := 1 /nx for n € IN; then lim(x,) = Oand g(x,) =
sinnm =0 f?r all ne N, so that lim(g(x,))=0. On the other hand, let y,
({7 +27n)" for n€N; then lim(y,) =0 and g(y,) =sin(lx +27n) =1 for all

n & [N, so that lim(g(y,)) = 1. We conclude that lirr{ll sin(1/x) does not exist.
X—

Limit Theorems
4.2.1 Definition

constant M = O such that we have |f(x)| < M for all x € AN V;(c).

4.2.2 Theorem [IfA C R andf : A — B hasa limit ar ¢ € B, then fis bounded on some

neighborhood of ¢.

Proof. 1If L :=limf, then for & = 1, there exists § > 0 such that if 0 < |x — ¢| < &, then
X—+
|f(x) — L| < 1: hence (by Corollary 2.2.4(a)),

|f(x)] = L < | flx) = L] < 1.

Therefore, if x e ANVj(c), x# c,then [f(x)| < |L|+ 1. fc £ A, wetake M = |L| + 1,
while if ¢ € A we take M := sup{| f(c)|,|L| + 1}. It follows that if x € A N V;(c), then

|fi{x}| < M. This shows that f is bounded on the neighborhood V;(¢) of ¢. Q.ED.

LetA C B letf: A — B andlet ¢ € & be acluster point of A. We say
that fis bounded on a neighborhood of ¢ if there exists a §-neighborhood V(o) of cand a

]
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4.2.3 Definition LetA C B and let fand g be functions defined on A to E. We define the
sum f + g, the difference f — g, and the product fg on A to & to be the functions given by

(f +8)(x):=f(x) +gx), (f—g)x):=F(x)—glx),
(fe)(x):=f(x)g(x)
for all x € A. Further, if b € B, we define the multiple bf to be the function given by
(bf}(x) :=bf(x) forall xec A.
Finally, if h(x) # 0 for x € A, we define the quotient f/h to be the function given by
G_;) (x) =‘;}E—:i for all XEA.

L B

4.2.4 Theorem LetA C R, ler fand g be functions on A to B, and let ¢ € R be a cluster
point of A. Further, let b e B

{a) Iflimf =L and limg = M, then:
X— ;

m(f+g)=L+M, lim(f—g)=L—M.
lim (fg) = LM, lim (bf) = L.

by Ifh:A—= R, ifh(x)#0forall xe A, and if imh = H # 0, then

X—+

L
o (E) TH

Proof. One proof of this theorem is exactly similar to that of Theorem 3.2.3. Alterna-
tively, it can be proved by making use of Theorems 3.2.3 and 4.1 8. For example, let (x,) be
any sequence in A such that x, # ¢ forn € M, and ¢ = lim(x,). It follows from Theorem
4.1.8 that

im(f(xa)) =L, lim(g(x.)) = M.
On the other hand, Definition 4.2.3 implies that
(fg)(xn) = flxa)g(xa)  for mel.
Therefore an application of Theorem 3.2.3 yields
lim((fg)(x,)) = lim(f(x,)g(x,))
= [lim(f (x,))] [lim(g(xa))] = LM
Consequently, it tollows from Theorem 4.1.8 that

lim (fg) = lim{(fg)(x,)) = LM.
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Remark LetA C R andletf,, f3,..., fn be functions on A to &, and let ¢ be a cluster
point of A. If Ly :=limf; for k=1,..., n, then it follows tfrom Theorem 4.2.4 by an

Induction argument that
Li+La+-+ Ly =lim(fi+f2+-- +Fn),
X—
and
Ly-Ly-- Ly =hm(f, - f5---f,).
In particular, we deduce that it L = limf and n € M, then

L" =1lim (f(x))".

we apply orem 4.2.4(b), we have
t ly The 4.2 4(b) h

Gog Im@x-4)
lim - =x=2 =_.
-y . | . 2 3

Note that since the limit in the denominator [i.e., lim {.13 + 1) = 5] is not equal to 0, then
Theorem 4.2.4(b) is applicable. o
=4 4

If we let f(x) := x* — 4 and h(x) := 3x — 6 for x € B, then we cannot use Theorem
4.2.4(b) to evaluate lim (f(x)/h(x)) because

4.2.5 Examples (a) Some of the limits that were established in Section 4.1 can be
proved by using Theorem 4.2.4. For example, it follows from this result that since
lim x = ¢, then lim x~ = ¢~, and that if ¢ > 0, then
X—C X—C

1 1 1

lim— = — = —.
x—cXx  limx ¢
X—HC

(b) lim (x* + 1)(x" — 4) = 20.
x—2

It tollows from Theorem 4.2.4 that

lim (x* + 1) (x* —4) = (Iim (x* + |}) (Iim (x* - 4})

x—2 x—2 x—2

() lim x -4\ _4
—2\x24+1/)  §

= 5-4=20.
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It we apply Theorem 4.2.4(b), we have

G4 lm (x* —4) 4

lim - = x2 =_.

c2x2 41 lm(2+1) 5
x—2

Note that since the limit in the denominator [ie., lim {f + 1) = 5] is not equal to 0, then
Theorem 4.2 4(b) 1s applicable. e
x—=4 4

It we let f(x) := x> — 4 and /i(x) := 3x — 6 for x € B, then we cannot use Theorem
4.2.4(b) to evaluate lim (f(x)/h(x)) because

H=limh(x)=1m(3x —-6)=3-2—-6=10.
x—2 x—2

However, it x # 2, then it follows that
-4 (x+2)(x-2) 1

_Gt-y) 1

Ix—-6 I(x-2) 3

Theretore we have
x'—4 | |

i =lm-(x+2)==—lmx+2 | =—.

M6 a3t 3(31“:" ) 3

Note that the function g(x) = (x* — 4)/(3x — 6) has a limit at x = 2 even though it is not
defined there.

. ..
ie) lim— does not exist in E.
x— X

Of course Iin;nll =1 and H := |iIT1I].¥ = (). However, since H = (), we cannot use
X— X—*

Theorem 4.2.4(b) to evaluate Iin}]{lfx]-. In fact, as was seen in Example 4.1.10(a), the
X—+

function ¢@(x) = 1 /x does not have a limit at x = 0. This conclusion also follows from
Theorem 4.2.2 since the function ¢(x) = 1/x is not bounded on a neighborhood of x = (.
{f) If pis a polynomial function, then lim p{x) = p(c).
X—
Let p be a polynomial function on B so that p(x) = @, + @y x™ '+ 4 qyx+
ap for all x . It follows from Theorem 4.2.4 and the tact that lim x* = ¢ that

AL
limp{x) = lim [an.ﬁ.“ tgp x4 x4+ m]]
X—HC X—C
= lim (@yx") + lim {an_Lx”_l} +---+lim (@ x) + limag
A X—C X—H X—C
= dy tay - Laictag
= ple).

Hence lim p(x) = p(¢) for any polynomial function p.
x—c
{z) If p and g are polynomial functions on & and if g{¢) # 0, then
x—eg(x) qle)
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Since g{x) 1s a polynomial function, it follows from a theorem inal gebra that there are at most
a finite number of real numbers ¢y, . .., ¢y [the real zeroes of g(x)] such that q{u;} =) and
such that if x ¢ {a,..., ¢y}, then g(x) # 0. Hence, if x ¢ {a;...., ,, }» we can define
rix) == w
q(x)

If ¢is not a zero of g(x ). then g(¢) # 0, and it follows from part (ﬂﬂ'mt |IITI g{x) =glc) # 0.
Theretore we can apply Theorem 4.2.4(b) to conclude that

Lpx) B p(e)
x—eg(x) Ilmq{.".']- gle)’

4.2.7 Squeeze Theorem LetA C R, letf g h: A — R, and let ¢ € R be a cluster point
of A If
f(x) < g(x) < h(x) forall xeA, x#c¢,

and if limf = L =limh, then ]_imlg =L

4.2.8 Examples (a) llrr{l}\ 2=0(x>0).

Let f(x) := x*2 for x > 0. Since the inequality x < x'/> < I holds for 0 < x < 1
(why?), it follows that x> < f(x) = x*? < x for 0 < x < 1. Since

limx* =0 and limx=0

x—0 x—0

it follows from the Squeeze Theorem 4.2.7 that lim x¥/? = 0.

x—0

(b) l_mg} sinx = (.
It will be proved later (see Theorem 8.4.8), that
—x<sinx <x forall x>=0.

Since lim (4+x) = 0, it follows from the Squeeze Theorem that lim sin.x = 0.

(c) limcosx = 1.
x—

It will be proved later (see Theorem 8.4.8) that

(1) I —1x* <cosx<1 forall xeR.

Since l_irr{l} (1 —12,\: ) = 1, it follows from the Squeeze Theorem that limcosx = 1.

1—,{]
sx — 1
@) lim (&) —o.

x— X
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We cannot use Theorem 4.2.4(b) to evaluate this limit. (Why not?) However, it follows
from the inequality (1) in part (c) that

—ix < (cosx—1)/x<0 for x>0

and that
0<(cosx—1)/x<—Ix for x<0.

Now let f(x) := —x/2 for x > 0 and f(x) := 0 for x < 0, and let i(x) := 0 for x > 0 and
h{x) := —x/2 for x < 0. Then we have
flx) <(cosx—1)/x <h(x) for x#0.

Since it is readily seen that lim f = 0 = lim A, it follows from the Squeeze Theorem that
lim (cosx — 1)/x = 0. =0 0

X—

) .
sinx
(e) lim ( ) =1
x—l X

One-Sided Limits

There are times when a function f may not possess a limit at a point ¢, yet a limit
does exist when the function is restricted to an interval on one side of the cluster
point c.

For example, the signum function considered in Example 4.1.10(b), and illustra-
ted in Figure 4.1.2, has no limit at ¢ = (. However, if we restrict the signum function
to the interval (0, o), the resulting function has a limit of 1 at ¢ = 0. Similarly, if
we restrict the signum function to the interval (—oc, 0), the resulting function has a limit
of —1 at ¢ = 0. These are elementary examples of right-hand and left-hand limits at
c =0,

4.3.1 Definition LetA e Randletf:A — R

(i) Ife € Risa cluster point of the set A M (¢, oo) = {x € A: x > ¢}, then we say that
L € B is a right-hand limit of fat ¢ and we write

lim f=L or limf(x)=1L

X—r+ x—c+
if given any & > 0 there exists a § = 4(g) > 0 such that for all x £ A with

0<x—c<d, then [f(x) — L] <e.

(ii) If ¢ € Risacluster point of theset A N (—o0, ¢) = {x € A: x < ¢}, then we say that
L & R is a left-hand limit of f at ¢ and we write

lim f=L or lim f(x)=1L

X—o— X—0—
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if given any & > 0 there exists a § > 0 such that for all x € A with 0 < ¢ — x < 4,
then | f(x) —L| < .

Notes (1) Thelimits lim fand lim f are called one-sided limits of fat ¢. It is possible

that neither one-sided il_l‘,lfl]t may exist. Also, one of them may exist without the other
existing. Similarly, as is the case for f(x) := sgn(x) at ¢ = 0, they may both exist and be
different.

(2) If Ais an interval with left endpoint ¢, then it is readily seen thatf : A — [ has a limit
atc if and only if it has a right-hand limit at ¢. Moreover, in this case the limit lim f and the
right-hand limit lim f are equal. (A similar situation occurs for the left-hand limit when A
is an interval wi\tﬁﬁght endpoint ¢.)

The reader can show that f can have only one right-hand (respectively, left-hand) limit
ata point. There are results analogous to those established in Sections 4.1 and 4.2 for two-

sided limits. In particular, the existence of one-sided limits can be reduced to sequential
considerations.

4.3.2 Theorem LetAC R, letf :A — R, andlet c € R be a cluster point of A N (¢, o).
Then the following statements are equivalent:
X—+01
(ii) For every sequence (x,) that converges to c¢ such that x, € A and x,, > ¢ for all
n € N, the sequence (f(x,)) converges to L.

Figure 4.3.2  Graph of
Figure 4.3.1 Graph of hix) = 1/(6""" +1) (x#0)
g(x) =™ (x#0)
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We leave the proof of this result (and the formulation and proof of the analogous
result for left-hand limits) to the reader. We will not take the space to write out the
formulations of the one-sided version of the other results in Sections 4.1 and 4.2.

The following result relates the notion of the limit of a function to one-sided limits. We
leave its proof as an exercise.

4.33 Theorem Let ACR, let f:A — R, and let ¢ € R be a cluster point of both
of the sets AN(ec,00) and AN(—oo,¢). Then lim f=0L if and only if
lim f =L = lim f. A
x—ct+ X—r—
4.3.4 Examples (a) Let f(x):= sgn(x).

We have seen in Example 4.1.10(b) that sgn does not have a limit at 0. It is clear that
‘]ir{r}]F sgn(x) = +1 and that ‘]lI;l}”j_ sgn(x) = —1. Since these one-sided limits are different, it

also follows from Theorem 4.3.3 that sgn(x) does not have a limit at 0.
(b) Let g(x):=e"* for x # 0. (See Figure 43.1.)

We first show that ¢ does not have a finite right-hand limit at ¢ = 0 since it is
not bounded on any right-hand neighborhood (0, §) of 0. We shall make use of the
inequality

(1) 0<t<eée for >0,

which will belpmved later (see Corollary 8.3.3). It follows from (1) that if x = 0, then
0<1/x< e'/*. Hence, if we take x, = 1/n, then g(x,) > n for all n € N. Therefore
lim e'/* does not exist in R.

““MHowever, lim ¢'/* = 0. Indeed, if x < 0 and we take ¢ = —1/x in (1) we obtain

X—H)—

0 < —1/x < e '/*.Since x < 0, this implies that 0 < ¢!/* < —x forall x < 0. It follows

from this inequality that lim e'* = 0.

X—l—

(c) Let /i(x):=1/(e'/*+ 1) for x # 0. (See Figure 4.3.2.)
We have seen in part (b) that 0 < 1 /x < e!'/* for x > 0, whence
1 1

U{: 1/x < 1/x
el/l*4+1 el/x

{:«Yn

which implies that lim /= 0.

X—

Since we have seen in part (b) that _]ir{r}m e!/* =0, it follows from the analogue of
Theorem 4.2.4(b) for left-hand limits that

1 1 1
—o (e‘-“-" + l) lim ¢'/*+1 0+1

x—l—
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Note that for this function, both one-sided limits exist in [, but they are unequal.
Infinite Limits

The function f(x) := 1 /x? for x # 0 (see Figure 4.3.3) is not bounded on a neighborhood
of 0, so it cannot have a limit in the sense of Definition 4.1.4. While the symbols
oo(= +0o0) and —oc do not represent real numbers, it is sometimes useful to be able to
say that “f(x) = 1/x% tends to oo as x — 0.” This use of oo will not cause any

difficulties, provided we exercise caution and never interpret oo or —oo as being real
numbers.

Figure 4.3.3  Graph of
flx)=1/x* (x#0) Figure 4.3.4  Graph of
g(x) = 1/x (x#0)

4.3.5 Definition lLet A CR,let f: A — R, and let ¢ € R be a cluster point of A.

(i)  We say that f tends to oo as x — ¢, and write

lim f = oo,

X—

if for every « € R there exists § = d(«) = 0 such that for all x €A with
0 < |x —c| <4, then f(x) > c.

(ii) We say that [ tends to —o0 as x — ¢, and write
lim f = —o0,
X—C

if for every g€ R there exists é=4(f) > 0 such that for all x € A with
0 < |x —c| <4, then f(x) < B.
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4.3.6 Examples (a) ]_in;n}(lfxz) = 0.

For, if & > 0is given, let § := 1/\/a. It follows that if 0 < |x| < 4, then x* < 1/« so
that 1/x* > «.
(b) Let g(x):=1/x for x # 0. (See Figure 4.3.4.)

The function g does not tend to either oo or —oc as x — 0. For, if ¢ > Othen g(x) < o
for all x < 0, so that g does not tend to oc as x — 0. Similarly, if # < Othen g(x) > f forall
x > (0, so that g does not tend to —oo as x — 0. O

While many of the results in Sections 4.1 and 4.2 have extensions to this limiting
notion, not all of them do since 0o are not real numbers. The following result is an
analogue of the Squeeze Theorem 4.2.7. (See also Theorem 3.6.4.)

4.3.7 Theorem Let ACR, let f,g:A — R, and let ¢ € R be a cluster point of A.
Suppose that f(x) < g(x) for all x € A, x # c.

(a) Iflimf = oo, then limg = cc.

(b) Iflim g = —o0, then limf = —oc.

Proof. (a) If limf = o0 and « e R is given, then there exists d(«) > 0 such that if

0<|x—¢ <d(e)andx € A, thenf(x) > a. Butsince f(x) < g(x) forallx € A, x # ¢,
it follows that if 0 < [x — ¢| < §(«) and x € A, then g(x) > «. Therefore lim g = nc.

X—C

The proof of (b) is similar. Q.ED.

4.3.8 Definition Tet ACR and let f: A — R. If ¢ € R is a cluster point of the set
AN (c,00)={x €A:x >c}, then we say that f tends to oo [respectively, —oc] as
X — ¢+, and we write

_]im+f =00 {respectively, lim+f = —co],
if for every & € R there is § = §(«) > 0 such that for all x € A with 0 < x — ¢ < §, then
f(x) > « [respectively, f(x) < «].
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4.39 Examples (a) Letg(x):= 1/xforx # 0. We have noted in Example 4.3.6(b) that
]_in’{l}g does not exist. However, it is an easy exercise to show that

jkr{r}L (1/x) =cc and 1llr{r}l_ (1/x)=—o0,

(b) Tt was seen in Example 4.3.4(b) that the function g(x) := e'-"""l for x # 0 is not
bounded on any interval (0, §), § > 0. Hence the right-hand limit of '™ as x — 0+ does
not exist in the sense of Definition 4.3.1(i). However, since

1/x<e'™ for x>0,

it is readily seen that ]ir{rylr ¢'/* = 0o in the sense of Definition 4.3.8. O
X—

Limits at Infinity

[t is also desirable to define the notion of the limit of a function as x — oo. The definition as
X — —0o is similar.

4.3.10 Definition Let A CR and let f: A — R. Suppose that (a,00) C A for some
a c R. We say that L € R is a limit of fas x — oo, and write
lim f =L or limf(x)=1L
C X—00

X—0

if givenany & > 0 there exists K = K(&) > a such that for any x > K, then | f(x) — | < &.

The reader should note the close resemblance between 4.3.10 and the definition of a
limit of a sequence.

We leave it to the reader to show that the limits of fas x — +oo are unique whenever
they exist. We also have sequential criteria for these limits; we shall only state the criterion
as x — oo. This uses the hotion of the limit of a properly divergent sequence (see
Definition 3.6.1).

4.3.11 Theorem Let ACR, let f:A — R, and suppose that (a,00) T A for some
a € R. Then the following statements are equivalent:
(i) L= limf.

X—00
(ii) Forevery sequence (x,) inA M (a,o0) such that lim(x,) = oo, the sequence ( f(x,))
converges to L.
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We leave it to the reader to prove this theorem and to formulate and prove the
companion result concerning the limit as x — —oo.

4.3.12 Examples (a) Let g(x) :=1/x for x # 0.

It is an elementary exercise to show that \h_,r!,]c.(l"!x} =0= 1]_1,1‘_11%( 1/x). (See Figure
434) o '
(b) Let f(x) :=1/x? for x # 0.

The reader may show that ‘!irri(lj_rz) =0= ‘_]imx(l,’xz). (See Figure 4.3.3.) One
way to do this is to show thatif x > 1 then( < 1,"1-.‘2 < 1 /x.Inview of part (a), this implies
that lim (1 /x%) =0. O

Just as it is convenient to be able to say that f(x) — +oc as x — ¢ for ¢ € R, it is
convenient to have the corresponding notion as x — oo, We will treat the case where
X — 00.

4.3.13 Definition Let A CR and let f: A — R. Suppose that (a,oc) C A for some
a € A. We say that [ tends to oo [respectively, —oc] as x — oo, and write

lim f = o0 [respective]y, lim f = —rx,}

X—+DO

if given any « € R there exists K = K(«) > a such that for any x > K, then f(x) > «
[respectively, f(x) < «].

As before there is a sequential criterion for this limit.

4.3.14 Theorem Let AR, let f:A — R, and suppose that (a,>) C A for some
a € R. Then the following statements are equivalent:

(i)  lim f = oo [respectively, lim f = —oc|.
X—D0 X—D0

(ii) For every sequence (x,) in (a,o0)such that lim(x,) = oo, then lim( f(x,)) = oo
[respectively, im(f(x,)) = —o0].

The next result is an analogue of Theorem 3.6.5.

4.3.15 Theorem [Let ACR, let f,g: A — R, and suppose that (a,oc) C A for some
a € R. Suppose further that g(x) > 0 for all x > a and that for some L € R, L # 0, we have

L f()

= L.
e g(x)
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(i) IfL>0, then lim f = oo if and only if lim g = no.

X—DO X—+D0O

(ii) IfL < 0, then lim f = —o0 if and only if lim g = oc.
X—+D0 X—+ D0

Proof. (i)  Since L > 0, the hypothesis implies that there exists a; > a such that

{le:lL-:_:f(‘Y){iL for X > a.
2 glx) 2
Therefore we have (L_L)g(.\‘) < f(x) < @L)g(.\:) for all x > a,, from which the conclusion
follows readily. _
The proof of (ii) is similar)| Q.ED.

We leave it to the reader to formulate the analogous result as x — —o0.

4.3.16 Examples (a) lim x" = oo for n € [\,

Let g(x) := x" for x € (0,00). Given « € R, let K := sup{1,«}. Then for all x > K,
we have g(x) = X" = x > w. Since « € R is arbitrary, it follows that lim g = nc.

X—D0
(b) lim x" =00 forn e N, neven, and lim x"= —oc for n € N, n odd.
X——D0 X——D0
We will treat the case n odd, sayn =2k + I withk =0,1,.... Giveno € R, let
K :=inf{w, —1}. For any x < K, then since (x? }k > 1, we have x" = (x? }k,\' <x <.
Since « € R is arbitrary, it follows that lim X" = —oc.
X——00

(¢c) Let p:R — R be the polynomial function
px) = ap X" + ay X"+ -+ ayx + ag.

Then lim p=ocif g, >0, and lim p = - if a, < 0.

X—D0 X— D0

Indeed, let g(x) := x" and apply Theorem 4.3.15. Since

p(‘r):ﬂn—Fﬂn_J (l) +"‘+ﬂ']( 1_1) +ﬂ'.[]( 1)|
g(x) X X" X"

it follows that lim (p(x)/g(x)) = a,. Since lim g = oo, the assertion follows from
X—+D0 X—00

Theorem 4.3.15.
(d) Let p be the polynomial function in part (c). Then lim p = oc¢ [respectively, —oc] if
n is even [respectively, odd] and a, > 0. A

We leave the details to the reader. ]
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POSSIBLE QUESTIONS

2 Mark Questions:

© N> o
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Define cluster point.

Define limit of a function.

Define one sided limit.

State sequential criterion for limits.
State sequential criterion for continuity.
Define algebra of functions.

Define infinite limits.

Explain continuous function.

Mark Questions:

Prove that composition of two continuous function is also a continuous function.
If £ is continuous at c, prove that |f| is continuous at c.
If p is a polynomial function, prove that limp(x) = p(c).

X—C

Let A c R, let f and g be continuous functions on A to R. Suppose f and g are continuous at ¢ € A.

Then prove that f + g, fg and bf are continuous at c.
Prove that lin%(i) does not exist in R .

X—
Discuss about the limit of signum function at 0.

State and prove sequential criterion for limits.
State and prove squeeze theorem.
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UNIT-II

SYLLABUS

Algebra of continuous functions. Continuous functions on an interval, intermediate value theorem,
location of roots theorem, preservation of intervals theorem. Uniform continuity, non-uniform
continuity criteria, uniform continuity theorem.
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CONTINUOUS FUNCTIONS

Definition LetA C R letf:A — R, and letc € A. We say that fis continuous at
¢ if, given any number & > 0, there exists § > () such that if x is any point of A satisfying
x —c¢| < 4, then |f(x) — f(c)| <e.

If f fails to be continuous at ¢, then we say that [ is discontinuous at c.

As with the definition of limit, the definition of continuity at a point can be formulated
very nicely in terms of neighborhoods. This is done in the next result. We leave the
verification as an important exercise for the reader. See Figure 5.1.1.

.........

i T ey "
Ve(f (e)) {fﬂf} 8 Velr (e {:ﬁﬂ

N N

Va{c]
Figure 5.1.1 Given V.(f(c)), a neighborhood Vs(¢) is to be determined
5.1.2 Theorem A functionf : A — R is continuous at a point ¢ € A if and only if given

any e-neighborhood V. ( f(c)) of f(c) there exists a §-neighborhood Vs(c) of ¢ such that if
X is any point of AN Vs(c), then f(x) belongs to V.(f(c)), that is,

f(A M Vﬁ(c}) C Vf(f(c))

Remarks (1) If ¢ € A is a cluster point of A, then a comparison of Definitions 4.1.4
and 5.1.1 show that fis continuous at ¢ if and only if

(1) f(e) =limf(x).
Thus, if ¢ is a cluster point of A, then three conditions must hold for fto be continuous at ¢:
(i) f must be defined at ¢ (so that f(c¢) makes sense),

(ii) the limit of f at ¢ must exist in R (so that lim f(x) makes sense), and
(iii) these two values must be equal. e
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(2) Ifc € Ais nota cluster point of A, then there exists a neighborhood V;(c) of ¢ such
that A M Vs(c) = {c}. Thus we conclude that a function fis automatically continuous at a
point ¢ € A that is not a cluster point of A. Such points are often called “‘isolated points’” of
A.They are of little practical interest to us, since they have no relation to a limiting process.
Since continuity is automatic for such points, we generally test for continuity only at cluster
points. Thus we regard condition (1) as being characteristic for continuity at c.

A slight modification of the proof of Theorem 4.1.8 for limits yields the following
sequential version of continuity at a point.

5.1.3 Sequential Criterion for Continuity A function f : A — R is continuous at the
point ¢ € A if and only if for every sequence (x,) in A that converges to ¢, the sequence
(f(xy)) converges to f(c).

5.1.4 Discontinuity Criterion Ler ACR, let f: A — R, and let ¢ € A. Then f is
discontinuous at c if and only if there exists a sequence (x,,) in A such that (x,,) converges
to ¢, but the sequence (f(x,)) does not converge to f(c).

So far we have discussed continuity at a peinf. To talk about the continuity of a
function on a set, we will simply require that the function be continuous at each point of the
sel. We state this formally in the next definition.

5.1.5 Definition Let A CR and let f: A — R If B is a subset of A, we say that fis
continuous on the set B if fis continuous at every point of B.

5.1.6 Examples (a) The constant function f(x) := b is continuous on E.
It was seen in Example 4.1.7(a) that if ¢ € R, then hm f(x) = b.Since f(c) = b, we
have lim f(x) = f(c), and thus f is continuous at every point ¢ € R. Therefore f is

continuous on E.

(b) g(x):= x is continuous on .
It was seen in Example 4.1.7(b) that if ¢ € . then we have hm g = c.Since g(c) = ¢,
then g is continuous at every point ¢ £ R. Thus g is continuous on R.

(¢) h(x):= x* is continuous on .
It was seen in Example 4.1.7(c) that if ¢ € R, then we have lim/h = ¢*. Since

X—C

h(e) = ¢*, then h is continuous at every point ¢ € R. Thus 4 is continuous on R.

(d) @(x):=1/xis continnous on A := {x € R : x > 0}.
It was seen in Example 4.1.7(d) that if ¢ € A, then we have lim¢ = 1/¢. Since

X—C

¢(c) = 1/e, this shows that ¢ is continuous at every point ¢ € A. Thus ¢ is continuous on A.
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(e) ¢(x):=1/x is not continuous at x = 0.

Indeed, if ¢(x) = 1/x for x > 0, then ¢ is not defined for x = 0, so it cannot be
continuous there. Alternatively, it was seen in Example 4.1.10(a) that lim ¢ does not exist
in [, so ¢ cannot be continuous at x = 0. 0

(f) The signum function sgn is not continuous at (.

The signum function was defined in Example 4.1.10(b), where it was also shown that
]irH sgn(x) does not exist in . Therefore sgn is not continuous at x = 0 (even though sgn 0
X—

is defined). It is an exercise to show that sgn is continuous at every point ¢ # 0.

Note In the next two examples, we introduce functions that played a significant role in
the development of real analysis. Discontinuities are emphasized and it is not possible to
graph either of them satisfactorily. The intuitive idea of drawing a curve in the plane to
represent a function simply does not apply, and plotting a handful of points gives only a hint
of their character. In the nineteenth century, these functions clearly demonstrated the need
for a precise and rigorous treatment of the basic concepts of analysis. They will reappear in
later sections.

(g) Let A := IR and let f be Dirichlet’s “discontinuous function™ defined by

1 if xisrational,
flx):= {U if xisirrational.

We claim that fis not continuous at any point of . (This function was introduced in 1829
by P. G. L. Dirichlet.)

Indeed, if ¢ is a rational number, let (x,) be a sequence of irrational numbers that
converges to ¢. (Corollary 2.4.9 to the Density Theorem 2.4.8 assures us that such a
sequence does exist.) Since f(x,) =0 for all n € N, we have lim(f(x,)) =0, while
f(c) = 1. Therefore f is not continuous at the rational number c.

On the other hand, if A is an irrational number, let ( y,) be a sequence of rational
numbers that converge to b. (The Density Theorem 2.4.8 assures us that such a sequence
does exist.) Since f(y,) =1 for all n € N, we have lim(f(y,)) =1, while f(b) =0.
Therefore f is not continuous at the irrational number .

Since every real number is either rational or irrational, we deduce that f is not
continuous at any point in E.
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Figure 5.1.2 Thomae’s function

(h) Let A := {x € R: x > 0}. For any irrational number x > 0 we define h(x) := 0.
For a rational number in A of the form m/n, with natural numbers m, n having no
common factors except 1, we define h(m/n) := 1/n. (We also define 7(0) := 1.)

We claim that A is continuous at every irrational number in A, and is discontinuous at
every rational number in A. (This function was introduced in 1875 by K. J. Thomae.)

Indeed, if @ > 0 is rational, let (x,) be a sequence of irrational numbers in
A that converges to a. Then lim(h(x,)) = 0, while h(a) > 0. Hence / is discontinuous
at a.

On the other hand, if 4 is an irrational number and ¢ > 0, then (by the Archimedean
Property) there is a natural number nq such that 1/ng < & There are only a finite number
of rationals with denominator less than 7y in the interval (b — 1,5 + 1). (Why?) Hence
§ > 0 can be chosen so small that the neighborhood (b — 8, b + §) contains no rational
numbers with denominator less than ng. It then follows that for [x — b| < §,x € A,
we have |h(x) — h(b)| = |h(x)| < 1/ny < e. Thus h is continuous at the irrational
number b.

5.1.7 Remarks (a) Sometimes a function f: A — R is not continuous at a point ¢
because it is not defined at this point. However, if the function f'has a limit L at the point ¢
and if we define F on AU {¢} — R by

L. JL for x=¢,
Fx) := {f(x) for xeA,

then F' is continuous at ¢. To see this, one needs to check that lim F = L, but this follows
_ : m
(why?), since lim f = L.
X
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(b) If a function g : A — [ does not have a limit at ¢, then there is no way that we can
obtain a function G : AU {¢} — R that is continuous at ¢ by defining

v, |C for x=re¢,
Glx) := {g(.\‘} for xe€A.

To see this, observe that if lim G exists and equals C, then lim g must also exist and
X—c X—C
equal C.

5.1.8 Examples (a) The function g(x) := sin(1/x) for x # 0 (see Figure 4.1.3) does
not have a limit at x = 0 (see Example 4.1.10(c)). Thus there is no value that we can assign
at x = 0 to obtain a continuous extension of g at x = 0.

(b) Letf(x) := xsin (1/x) for x # 0. (See Figure 5.1.3.) It was seen in Example 4.2.8(f)
that 1Il_rl{'}l (xsin(1/x)) = 0. Therefore it follows from Remark 5.1.7(a) that if we define

F:R— Rby

N for x=0,
F(x) := {xsin(l;‘x} for x#0,

then F is continuous at x = (0.

Figure 5.1.3  Graph of f(x) = xsin(1/x) (x#0)
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Continuous Functions on Intervals

Definition A function f: A — R is said to be bounded on A if there exists a
constant M > 0 such that |f(x)| < M for all x € A.

L - R . i~

In other words, a function is bounded on a set if its range is a bounded set in . To say
that a function is nof bounded on a given set is to say that no particular number can serve
as a bound for its range. In exact language, a function fis not bounded on the set A if given
any M > 0, there exists a point xa € A such that |f(xa)| > M. We often say that f is
unbounded on A in this case.

For example, the function f defined on the interval A := (0, co) by f(x) := 1/x is not
bounded on A because for any M > 0 we can take the point x3; := 1/(M + 1) in A to get
flxp) = 1/xpy =M + 1 > M. This example shows that continuous functions need not be

bounded. In the next theorem, however, we show that continuous functions on a certain
type of interval are necessarily bounded.

5.3.2 Boundedness Theorem' Let I:=[a,b| be a closed bounded interval and let
f:1— R be continuous on 1. Then f is bounded on 1.

Proof. Suppose that f is not bounded on /. Then, for any n € N there is a number x,, € /
such that |f(x,)| > n. Since [ is bounded, the sequence X := (x,,) is bounded. Therefore,
the Bolzano-Weierstrass Theorem 3.4.8 implies that there is a subsequence X' = (x,, ) of X
that converges to a number x. Since /is closed and the elements of X’ belong to /, it follows
from Theorem 3.2.6 that x € /. Then fis continuous at x, so that ( f(x,, )) converges to f(x).
We then conclude from Theorem 3.2.2 that the convergent sequence (f(x,, )) must be
bounded. But this is a contradiction since

\f(xy )| >n, =2r for rel.

Therefore the supposition that the continuous function f is not bounded on the closed
bounded interval [ leads to a contradiction. Q.E.D.

To show that each hypothesis of the Boundedness Theorem is needed, we can
construct examples that show the conclusion fails if any one of the hypotheses is relaxed.

(i) The interval must be bounded. The function f(x) := x for x in the unbounded,
closed interval A := |0, 00) is continuous but not bounded on A.
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(ii) The interval must be closed. The function g(x) := 1/x for x in the half-open
interval B := (0, 1] is continuous but not bounded on B.

(iii) The function must be continuous. The function /i defined on the closed interval
C = [0,1] by h(x) := 1/x for x € (0,1] and &(0) := 1 is discontinuous and unbounded
on C.

The Maximum-Minimum Theorem

5.3.3 Definition TLetA C Randletf : A — [R. We say that f has an absolute maximum
on A if there is a point x* € A such that

f(x*) = f(x) forall xegA.
We say that f has an absolute minimum on A if there is a point x, € A such that
flx,) <f(x) forall xeA.

We say that x* is an absolute maximum point for f on A, and that x, is an absolute
minimum point for fon A, if they exist.

We note that a continuous function on a set A does not necessarily have an absolute
maximum or an absolute minimum on the set. For example, f(x) := 1/x has neither an
absolute maximum nor an absolute minimum on the set A := (0, 00). (See Figure 5.3.1.)
There can be no absolute maximum for fon A since fis not bounded above on A, and there
is no point at which f attains the value 0 = inf{f(x) : x € A}. The same function has

o e e e s e

I
L
= X x
1 2 1
Figure 5.3.1 The function Figure 5.3.2 The function
flx)=1/x (x>0) gx)=x* (|x<1)

neither an absolute maximum nor an absolute minimum when it is restricted to the set
(0, 1), while it has both an absolute maximum and an absolute minimum when it is
restricted to the set [1, 2]. In addition, f(x) = 1/x has an absolute maximum but no
absolute minimum when restricted to the set [1, o), but no absolute maximum and no
absolute minimum when restricted to the set (1, oo).
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It is readily seen that if a function has an absolute maximum point, then this point is
not necessarily uniquely determined. For example, the function g(x) := x7 defined for
x € A := [—1,41] has the two points x = =£1 giving the absolute maximum on A, and the
single point x = 0 yielding its absolute minimum on A. (See Figure 5.3.2.) To pick an
extreme example, the constant function i(x) := 1for x € R is such that every point of R is
both an absolute maximum and an absolute minimum point for /.

5.34 Maximum-Minimum Theorem Let I := [a,b| be a closed bounded interval and
let f:1— R be continuous on 1. Then f has an absolute maximum and an absolute
minimum on 1.

Proof. Consider the nonempty setf(f) := {f(x) : x € I} of values of fon . In Theorem 5.3.2
it was established that (/) is a bounded subset of F. Let s* := sup f(/) and s, := inf f(I ).
We claim that there exist points x* and x, in / such that s* = f(x*) and s, = f(x, ). We will
establish the existence of the point x*, leaving the proof of the existence of x, to the reader.

Since s* = sup f(/), if n € N, then the number s* — 1/n is not an upper bound of the
set f(I). Consequently there exists a number x,, € I such that

1
(1) st — . < f(x,) <s* forall nelN.

Since [ is bounded, the sequence X := (x,) is bounded. Therefore, by the Bolzano-
Weierstrass Theorem 3.4.8, there is a subsequence X' = (x,, ) of X that converges to some
number x". Since the elements of X’ belong to I = [a, b|, it follows from Theorem 3.2.6 that
x* € I. Therefore fis continuous at x* so that im(f(x,,)) = f(x*). Since it follows from
(1) that

1
s* o < flx,) <s* forall relN,

¥

we conclude from the Squeeze Theorem 3.2.7 that lim( f(x,, )) = s*. Therefore we have

F(x") = lim(£(m,)) = 8 = sup £(I).

We conclude that x* is an absolute maximum point of f on I. Q.E.D.

The next result is the theoretical basis for locating roots of a continuous function by
means of sign changes of the function. The proof also provides an algorithm, known as the
Bisection Method, for the calculation of roots to a specified degree of accuracy and can be
readily programmed for a computer. It is a standard tool for finding solutions of equations
of the form f(x) = 0, where fis a continuous function. An alternative proof of the theorem
is indicated in Exercise 5.3.11.
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5.3.5 Location of Roots Theorem Let! = [a,b|andletf : I — R be continuous onl.If
fla) <0< f(b), oriff(a) > 0 > f(b), then there exists a number ¢ € (a,b) such that
fle) =o0.

Proof. We assume that f(a) < 0 < f(b). We will generate a sequence of intervals by
successive bisections. Let I, := [ay, b, |, where a, := a, b, := b, and let p, be the midpoint
p1:=%(ay + by). I f(p,) = 0, we take ¢ := p, and we are done. If f(p, ) # 0, then either
f(py) = 0o0r f(p,) <0.If f(p,) >0, then we set a := ay, by := p,, while if f(p,) <0,
then we set a2 := p;, b2 := by. Ineither case, we let /> == |a2, b2]; then we have /2 C /) and
flaz) <0, f(by) > 0.

We continue the bisection process. Suppose that the intervals Iy, /1,,..., I have
been obtained by successive bisection in the same manner. Then we have f(a;) < 0 and
f(bi) >0, and we set p, == % (ar + by). If f(p) = 0, we take ¢ := p; and we are done.
If flpr) >0, we set aisy1 = ax, bre1 == pp, while if f(p,) <0, we set aps1 :=
Pirbis1 = bi. In either case, we let Ipyy := |a@p+1,bp]; then Ipy C 1 and
flaks1) <0, f(brsr) > 0.

If the process terminates by locating a point p, such that f(p,) = 0, then we are done.
If the process does not terminate, then we obtain a nested sequence of closed bounded
intervals 1, := |ay, b,| such that for every n € N we have

fla,) <0 and f(b,) > 0.

Furthermore, since the intervals are obtained by repeated bisection, the length of [, is
equal to b, —a, = (b —a)/2" '. Tt follows from the Nested Intervals Property 2.5.2
that there exists a point ¢ that belongs to I, for all n € M. Since a, < ¢ < b, for all
n € Nand lim(b, — a,) = 0, it follows that lim(a, ) = ¢ = lim(b, ). Since fis continuous
at ¢, we have

lim (f(an)) = f(c) = lim (f(by)).

The fact that f(a,) < 0 for all n € N implies that f(c) = lim ( f(a,)) < 0. Also, the fact
that f(h,) > 0 for all n € N implies that f(c) = lim (f(b,)) = 0. Thus, we conclude that
f(c) = 0. Consequently, ¢ is a root of f. QED.

The following example illustrates how the Bisection Method for finding roots is
applied in a systematic fashion.

5.3.6 Example The equation f(x) = xe* —2 =0 has a root ¢ in the interval [0, 1],
because fis continuous on this interval and f(0) = —2 < Oand f(1) = e — 2 > 0. Using a
calculator we construct the following table, where the sign of f( p,,) determines the interval
at the next step. The far right column is an upper bound on the error when p, is used to
approximate the root ¢, because we have

Py — | < 3(by—a,) =1/2".

Prepared byM.Indhumathi, Asst Prof, Department of Mathematics KAHE

Page 10




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: 11B.Sc MATHEMATICS COURSE NAME:THEORY OF REAL FUNCTIONS
COURSE CODE: 17/MMU302 UNIT: 11 BATCH-2017-2020

We will find an approximation p,, with error less than 1072

n y brr Pn Jr[pn] 'ITHJH - aﬂ')
10 1 5 ~1.176 5

2 S 1 .15 —.412 25

3 5 1 875 +.099 A25

4 5 875 8125 —.169 0625

5 8125 875 .84375 —.0382 03125

6 84375 875 .859375 +.0296 015625
7 84375 859375 .B515625 — 078125

We have stopped at n = 7, obtaining ¢ =~ p; = .8515625 with error less than .0078125.
This is the first step in which the error is less than 10~ 2. The decimal place values of

p+ past the second place cannot be taken seriously, but we can conclude that
843 < ¢ < .860. O

5.3.7 Bolzano’s Intermediate Value Theorem Let I be an interval and letf : 1 — R be
continuous onl. If a,b € I and ifk € R satisfies f(a) < k < f(b), then there exists a point
¢ €1 between a and b such that f(c) = k.

Proof. Suppose thata < band letg(x) := f(x) — k; then g(a) < 0 < g(bh). By the Location
of Roots Theorem 5.3.5 there exists a point ¢ with @ < ¢ < b such that 0 = g(¢) = f(c) — k.
Therefore f(c) = k.

If b <a,let h(x) := k — f(x)so that h(h) < 0 < h{a). Therefore there exists a point ¢
with b < ¢ < a such that 0 = h(¢) = k — f(c), whence f(c) = k. QED.

5.38 Corollary Let I =|a,b] be a closed, bounded interval and let f :1 — R be
continuous on 1. If k € R is any number satisfying

inf f(/) < k < supf(l),
then there exists a number ¢ € I such that f(¢) = k.

Proof. Tt follows from the Maximum-Minimum Theorem 5.3.4 that there are points ¢,
and ¢* in I such that

inf f(I) =f(c.) <k < f(c") = sup f(I).
The conclusion now follows from Bolzano's Theorem 5.3.7. Q.E.D.

The next theorem summarizes the main results of this section. It states that the image
of a closed bounded interval under a continuous function is also a closed bounded interval.
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5.3.9 Theorem Let I be a closed bounded interval and let f: 1 — R be continuous on I.
Then the set f(I) .= {f(x): x € I} is a closed bounded interval.

Proof. 1If we let m :=inf f(I) and M := sup f(I), then we know from the Maximum-
Minimum Theorem 5.3.4 that m and M belong to f (). Moreover, we have (/) C [m, M|].If
k is any element of [m, M], then it follows from the preceding corollary that there exists a

point ¢ € I such that £k = f(c). Hence, k € f(I) and we conclude that [m,M| C f(1).
Therefore, f([) is the interval [m, M]. Q.E.D.

Warning If 7 := [a,b] is an interval and f : / — R is continuous on /, we have proved
that f(/) is the interval [m, M]. We have not proved (and it is not always true) that (/) is the
interval [f(a), f(b)]. (See Figure 5.3.3.) O

fib)

fia)

Figure 5.3.3  f(I) = [m,M]

The preceding theorem is a “preservation” theorem in the sense that it states that the
continuous image of a closed bounded interval is a set of the same type. The next theorem
extends this result to general intervals. However, it should be noted that although the
continuous image of an interval is shown to be an interval, it is not true that the image
interval necessarily has the same form as the domain interval. For example, the continuous
image of an open interval need not be an open interval, and the continuous image of an
unbounded closed interval need not be a closed interval. Indeed, if f(x) := 1/(x? + 1) for
x € R, then f is continuous on R [see Example 5.2.3(b)]. It is easy to see that if
I :=(—1,1), then f(1,) = (3, 1], which is not an open interval. Also, if /; := [0, ),
then f(1,) = (0, 1], which is not a closed interval. (See Figure 5.3.4.)
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I |
I |
I |
-1 1

Figure 5.3.4 Graph of f(x) = 1/(x*+1) (xeR)
Uniform Continuity

Let ACR and let f : A — R. Definition 5.1.1 states that the following statements are
equivalent:

(i) fis continuous at every point u € A;

(ii) givene > 0 and u € A, there is a d(e, u) > 0 such that for all x such that x € A
and |x — u| < (e, u), then |f(x) — f(u)| <e.

The point we wish to emphasize here is that § depends, in general, on both & > 0 and
u € A. The fact that § depends on u is a reflection of the fact that the function f may change
its values rapidly near certain points and slowly near other points. [For example, consider
f(x) :=sin(1/x) for x > 0; see Figure 4.1.3.]

Now it often happens that the function fis such that the number § can be chosen to be
independent of the point # € A and to depend only on & For example, if f(x) := 2x for all
x € R, then

|f(x) —f ()| = 2|x —ul,

and so we can choose §(e,u) :=¢/2 for all ¢ > 0 and all ¥ € E. (Why?)
On the other hand if g(x) := 1/x for x € A := {x € R : x > 0}, then

u—Xx
1 X)) — g =1 .
(1) g(x) — g(u) = —
If u € Ais given and if we take
e, i) = inf{1u, Loe
2) (e, u) = inf {Lu, Lue},

then if |x — u| < 8(e, u). we have |x — u| < Jusothatiu < x < Fu, whence it follows that
1/x < 2/u. Thus, if |x — u| < u, the equality (1) yields the inequality

(3) l8(x) — g(u)| < (2/17)

X — ul.
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Consequently, if

X — u| < 8(e,u), then (2) and (3) imply that

1g(x) — g(u)] < (2/1)(ue) = .

We have seen that the selection of é(&, u) by the formula (2) “works™ in the sense that it
enables us to give a value of § that will ensure that |g(x) — g(u)| < e when |x — u| < § and

x,u € A, We note that the value of §(&, u) given in (2) certainly depends on the point u € A.
If we wish to consider all u € A, formula (2) does not lead to one value é(&) > 0 that will
“work™ simultaneously for all ¥ > 0, since inf{é(e,u) : u > 0} = 0.

In fact, there is no way of choosing one value of § that will “work™ for all ¥ > 0 for the
function g(x) = 1/x. The situation is exhibited graphically in Figures 5.4.1 and 5.4.2
where, for a given e-neighborhood V, (1) about 1 = f(2) and V,.(2) about 2 = f(}), the
corresponding maximum values of § are seen to be considerably different. As u tends to 0,
the permissible values of & tend to 0.

2\
v { %
1
2
v [t
-—'"‘--.___x .\ 1 -X
._..,_:.\2 Kl
§-neighborhood S5-neighborhood
Figure 5.4.1 g(x)=1/x (x=>0) Figure 5.4.2 g(x)=1/x (x>=0)

5.4.1 Definition TLetA C R and let f: A — R, We say that fis uniformly continuous
on A if for each & > 0 there is a 6(&) > 0 such that if x, u € A are any numbers satisfying
|x — u| < 3(g), then [f(x) — f(u)| <e&.

It is clear that if fis uniformly continuous on A, then it is continuous at every point of A.
In general, however, the converse does not hold, as is shown by the function g(x) = 1/x on
the set A := {x e R:x > 0}.

It is useful to formulate a condition equivalent to saying that f is nof uniformly
continuous on A. We give such criteria in the next result, leaving the proof to the reader as
an exercise.
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5.4.2 Nonuniform Continuity Criteria Ler A C Randlet f : A — R. Then the follow-
ing statements are equivalent:

(i)  fis not uniformly continuous on A.

(ii)  There exists an &y = 0 such that for every 5 > 0 there are points x5, us in A such that
x5 — us| < & and |f(x5) — f(us)| = eo-
(iii) There exists an g > 0 and two sequences (x,,) and (w,) in A such that lim(x, —

uy) =0 and | f(x,) — flun)| = & for all n € I.

We can apply this result to show that g(x) := 1/x is not uniformly continuous
on A:={xeR:x>0}. For, if x,:=1/n and u,:=1/(n+ 1), then we have
lim(x, — u,) =0, but |g(x,) — g(u,)| = 1 for all n € N.

54.3 Uniform Continuity Theorem Let I be a closed bounded interval and let
f: 1 — R be continuous on I. Then f is uniformly continuous on 1.

Proof. 1If fis not uniformly continuous on I then, by the preceding result, there exists
&op > 0 and two sequences (.x,,) and (u,)in I such that |x, — u,| < 1/nand |f(x,) — f(u,)| =
go for all n € M. Since I is bounded, the sequence (x,) is bounded; by the Bolzano-
Weierstrass Theorem 3.4.8 there is a subsequence (x,, ) of (x,,) that converges to an element
z. Since I is closed, the limit z belongs to I, by Theorem 3.2.6. Tt is clear that the
corresponding subsequence (u,, ) also converges to z, since

|uﬂi - 3| < |u"ic _‘\‘Hic| + |xﬂf< - :|

Now if fis continuous at the point z, then both of the sequences (f(x,, )) and (f (i, ))
must converge to f(z). But this is not possible since

|f(xn) = flun)| = &0

for all n € . Thus the hypothesis that fis not uniformly continuous on the closed bounded
interval / implies that f is not continuous at some point z € I. Consequently, if f is
continuous at every point of Z, then f is uniformly continuous on /. Q.E.D.

Lipschitz Functions

54.4 Definition LetA C Randletf : A — [E.If there exists a constant K > 0 such that
(4) [f(x) = fu)] < K|x —u|

for all x,u € A, then f is said to be a Lipschitz function (or to satisfy a Lipschitz
condition) on A.
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The condition (4) that a function f : I — R on an interval [ is a Lipschitz function can
be interpreted geometrically as follows. If we write the condition as

flx) —flu)

X —U

<K, x,uel,x#+u,

then the quantity inside the absolute values is the slope of a line segment joining the points
(x, f(x))and (u, f(u)). Thus a function f satisfies a Lipschitz condition if and only if the
slopes of all line segments joining two points on the graph of y = f(x) over I are bounded
by some number K.

54.5 Theorem Iff : A — R is a Lipschitz function, then f is uniformly continuous on A.

Proof. TIf condition (4) is satisfied, then given ¢ > 0, we can take § ;== ¢/K. If x,u € A
satisfy |x — u| < 4, then
£

() —fw)] <K%

Therefore f is uniformly continuous on A. QED.

= E.

5.4.6 Examples (a) If f(x) ;= x" on A := [0, b|, where b > 0, then
£(x) = £@)] = |x+ullx —u] < 2bx —u

for all x, w in [0, b]. Thus f satisfies (4) with K := 2b on A, and therefore fis uniformly
continuous on A. Of course, since fis continuous and A is a closed bounded interval, this
can also be deduced from the Uniform Continuity Theorem. (Note that f does not satisfy a
Lipschitz condition on the interval [0,00).)

(b) Not every uniformly continuous function is a Lipschitz function.

Let g(x) := /x for x in the closed bounded interval / := [0, 2]. Since g is continuous
on /, it follows from the Uniform Continuity Theorem 5.4.3 that g is uniformly continuous
on /. However, there is no number K > 0 such that [g(x)| < K|x| for all x € I. (Why not?)
Therefore, ¢ is not a Lipschitz function on /.

We consider g(x) := /x on the set A := [0, 00). The uniform continuity of g on the
interval / := [0, 2] follows from the Uniform Continuity Theorem as noted in (b). If
J := |1, 00), then if both x, u are in J, we have

l8(x) — gu)| = [vx — Vu| =

[x = u

VX +\u

< 3lx —ul.
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5.4.8 Continuous Extension Theorem A function f is uniformly continuous on the
interval (a, b) if and only if it can be defined at the endpoints a and b such that the ex-
tended function is continuous on [a, b].

Proof. (<) This direction is trivial.

(=) Suppose fis uniformly continuous on (a, b). We shall show how to extend f to a;
the argument for b is similar. This is done by showing that lim f(x) = L exists, and this is
accomplished by using the sequential criterion for limits. Ifl(_,’\:j,} is a sequence in (a, b) with
lim(x,) = a, then it is a Cauchy sequence, and by the preceding theorem, the sequence
(f(x,)) is also a Cauchy sequence, and so is convergent by Theorem 3.5.5. Thus the limit
lim(f(x,)) = L exists. If (u,) is any other sequence in (a, b) that converges to a, then
lim(u, — x,) = a — a =0, so by the uniform continuity of f we have

lim(f (1)) = Bm( f(n) —F(xa)) + lim(f (x,))
=04L=L.

Since we get the same value L for every sequence converging to a, we infer from the
sequential criterion for limits that f has limit L at a. If we define f(a) := L, then f is
continuous at a. The same argument applies to b, so we conclude that fhas a continuous
extension to the interval [a, b]. Q.ED.

Since the limit of f(x) := sin(1/x) at 0 does not exist, we infer from the Continuous
Extension Theorem that the function is not uniformly continuous on (0, 5] for any b > 0.
On the other hand, since lirr{ll xsin(1/x) = 0 exists, the function g(x) := xsin(1/x) is

.

uniformly continuous on (;f],ﬂh] for all b > 0.
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POSSIBLE QUESTIONS

2 Mark Questions:

o s wnhE

Find the location of root of xe* —2 =0

Define bounded function.

Define absolute minimum of a function.

Define absolute maximum of a function.

Find the location of root ofx? — 2sinx + 3 = 0.

8 Mark Questions:

O NG~ wWDd PR

©

State and prove boundedness theorem.

State and prove maximum —minimum theorem.

State and prove location of root theorem.

State and prove Bolzano’s intermediate value theorem.

State and prove preservation of intervals theorem.

Find the root of f(x) = xe* — 2 = 0 in the interval [0,1].

If f:[a, b] — R is a continuous function, prove that f is bounded on [a,b].

If f:[a, b] — R is a continuous function, prove that f has an absolute maximum and absolute
minimum on [a,b].

If f:[a, b] — R is a continuous function and if f(a) < 0 < f(b) orif f(b) < 0 < f(a), then
prove that there exists a number ¢ € (a, b) such that f(c) = 0.

10. State and prove uniform continuity theorem
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UNIT-111

SYLLABUS

Differentiability of a function at a point and in an interval, Caratheodory’s theorem, algebra of
differentiable functions. Relative extrema, interior extremum theorem. Rolle’s theorem.
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The Derivative

6.1.1 Definition Let/ C [R be an interval, letf : I — [, and let ¢ € I. We say that a real
number L is the derivative of fat ¢ if given any & > 0 there exists §(¢) > O such thatif x € [
satisfies 0 < |x — ¢| < &(g), then

f(x) —flc)

X—C

(1) ‘ - L‘ <&
In this case we say that f is differentiable at ¢, and we write f'(¢) for L.
In other words, the derivative of f at ¢ is given by the limit

) 0 — timl B £

x—c X —C
provided this limit exists. (We allow the possibility that ¢ may be the endpoint of the
interval.)

Note It is possible to define the derivative of a function having a domain more general
than an interval (since the point ¢ need only be an element of the domain and also a cluster
point of the domain) but the significance of the concept is most naturally apparent for
functions defined on intervals. Consequently we shall limit our attention to such functions.

Whenever the derivative of f : / — [R exists at a point ¢ € [, its value is denoted by
f'(c). In this way we obtain a function f’ whose domain is a subset of the domain of f. In
working with the function f’, it is convenient to regard it also as a function of x. For
example, if f(x) := x? for x € R, then at any ¢ in R we have

el e
) x)—fle . Xt -,
f'(e) = lll'llf( ) =/(¢) = lim = lim (x + ¢) = 2¢.

X—=C X =0 x—=c X — (¢ K=

Thus, in this case, the function f” is defined on all of R and f'(x) = 2x for x € R.

We now show that continuity of f at a point ¢ is a necessary (but not sufficient)
condition for the existence of the derivative at c.
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6.1.2 Theorem [If f:I — R has a derivative at ¢ € I, then f is continuous at c.

Proof. For all x € I, x # ¢, we have
J(x) —fle
700~ ft0) = ((LLD) - .
X —
Since f’(c) exists, we may apply Theorem 4.2.4 concerning the limit of a product to
conclude that

im () —(0) = tim (C D) (i - )

= A= X =0 A=

= f'(¢)-0 =0.

Therefore, lim f(x) = f(¢) so that f is continuous at c. QED.
X—C

The continuity of f : I — IR at a point does not assure the existence of the derivative at
that point. For example, if f(x):=|x| for x €R, then for x# 0 we have
(f(x)—f(0))/(x —0) = |x|/x, which is equal to 1 if x > 0, and equal to —1 if x < 0.
Thus the limit at O does not exist [see Example 4.1.10(b)], and therefore the function is not
differentiable at (. Hence, continuity at a point ¢ is not a sufficient condition for the
derivative to exist at c.

6.1.3 Theorem Let I C R be aninterval, let c €1, andletf :1 — Randg : 1 — R be
functions that are differentiable at c¢. Then:

(a) If « € R, then the function «f is differentiable at ¢, and

(3) (af) (c) = af'(c).

(b) The function f + g is differentiable at ¢, and

(4) (f +8)(c) =f'(c) + & (c).
(¢) (Product Rule) The function fg is differentiable at ¢, and
(5) (f8)'(¢) =f'(c)8(c) +£(c)8 (c).

(d) (Quotient Rule) If g(c) # 0, then the function f/g is differentiable at ¢, and

(Ji)’((,) _S'(98(e) ~f(e)g'(¢)
g (3(c))’

(6)
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Proof. We shall prove (c) and (d), leaving (a) and (b) as exercises for the reader.
(¢c) Let p := fg; then for x € I, x # ¢, we have
p(x) —ple) _ f(x)g(x) —flc)g(c)

X =0 X —=C
_ f(¥)8(x) ~ f()g(x) +£(0)8(x) — F(c)g(c)
X —0C
1) 1@ g0y 1 510 80 =8
X - X C

Since g is continuous at ¢, by Theurem 6.1.2, then lim g(x) = g(c). Since f and g are
differentiable at ¢, we deduce from Theorem 4.2.4 on properties of limits that
. p(x) — p(c) ,
_1{,11.1}_? = f(c)gle) +f(c)g'(c).
Hence p := fg is differentiable at ¢ and (5) holds.

(d) Let g :=f/g. Since g is differentiable at ¢, it is continuous at that point (by
Theorem 6.1.2). Therefore, since g(¢) # 0, we know from Theorem 4.2.9 that there exists an
interval J C I with ¢ € J such that g(x) # 0 for all x € J. For x € J, x # ¢, we have

q(x) —q(c) _ f(x)/g(x) —f(c)/g(c) _f(x)g(c) —flc)g(x)
xX—c xX—c glx)gle)(x—¢)
_ f(x)gle) —fle)gle) +f(c)gle) —fle)g(x)
g(x)g(c)(x —c)
| fix i glx c
LN 05 S G R ()
g(x)gle) [ x—c X
Using the continuity of g at ¢ and the differentiability of fand g at ¢, we get
J(0) = tim 40 4 _ /()26 ~S(e)(¢),
e X (8(c))?
Thus, ¢ = f /g is differentiable at ¢ and equation (6) holds. QE.D.

Mathematical Induction may be used to obtain the following extensions of the
differentiation rules.

6.1.4 Corollary Iff,, f,...., f, are functions on an interval I to R that are differen-
tiable at ¢ € I, then:

(a) The function | +f> + --- +f, is differentiable at ¢ and
(?) (fl +f3 +fn) ) f(l ) +f" ) +f:;r(()
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(b) The function f|f, ---f, is differentiable at ¢, and

(8) (fifa - fu) () =FL(e)fale) -+ Foule) + f1(e) () -+ fule)
+ - fi(e) frle) - S (e).

An important special case of the extended product rule (8) occurs if the functions are

equal, that is, f| =f> = --- = f, = f. Then (8) becomes
(9) (") (€) = n(£(e))"f (¢).
In particular, if we take f(x) := x, then we find the derivative of g(x) := x" to be

2'(x) = nx""!, n € N. The formula is extended to include negative integers by applying
the Quotient Rule 6.1.3(d).

Notation If / C R is an interval and f : I — R, we have introduced the notation f’ to
denote the function whose domain is a subset of / and whose value at a point ¢ is the derivative
f'(e) of f at ¢. There are other notations that are sometimes used for f* for example, one
sometimes writes Df for f'. Thus one can write formulas (4) and (5) in the form:

D(f +g) = Df + Dg, D(fg) = (Df) -g+f - (Dg).

When x is the ““independent variable,” itis common practice in elementary courses to write
df /dx for f'. Thus formula (5) is sometimes written in the form

(700 = (L0 ) +700 ()

rh

This last notation, due to Leibniz, has certain advantages. However, it also has certain
disadvantages and must be used with some care.

6.1.5 Carathéodory’s Theorem Let f be defined on an interval I containing the point c.
Then fis differentiable at ¢ if and only if there exists a function ¢ on I that is continuous at
¢ and satisfies

(10) F(0) = £(0) = o(x)(x —¢) for x€L
In this case, we have ¢(c) = f'(c).
Proof. (=) If f'(¢) exists, we can define ¢ by
f(x) = f(e)

o(x) := x—c

f(e) for x=c.

The continuity of ¢ follows from the fact that lim ¢(x) = f"(¢). If x = ¢, then both sides of

for x+# ¢, xel,

(10)equal 0, while if x # ¢, then multiplication of ¢(x) by x — ¢ gives (10) forall other x € I.
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(<) Now assume that a function ¢ that is continuous at ¢ and satisfying (10) exists. If
we divide (10) by x — ¢ # 0, then the continuity of ¢ implies that

¢(c) =limg(x) = limw
X—c X X —C
exists. Therefore f is differentiable at ¢ and f'(c) = ¢(c). QED.

To illustrate Carathéodory’s Theorem, we consider the function f defined by f(x) := x°
for x € I For ¢ € R, we see from the factorization

X=-7= (xz + cx + ('3)(3; - ¢)

that ¢(x) := x> + cx + ¢ satisfies the conditions of the theorem. Therefore, we conclude
that f is differentiable at ¢ € R and that f'(¢) = ¢(c) = 3.

We will now establish the Chain Rule. If f'is differentiable at ¢ and g is differentiable at
f(¢), then the Chain Rule states that the derivative of the composite function g o f at ¢ is the
product (g o f)'(¢) = g/ (f(¢)) - f'(¢). Note that this can be written as

(gof)=(of)-f.

One approach to the Chain Rule is the observation that the difference quotient can be
written, when f(x) # f(c), as the product

g(f(x)) —e(f(e)) _8(f(x) —&(f(c)) fx)—fle)

x—c &) -l x-ec
This suggests the correct limiting value. Unfortunately, the first factor in the product on the
right is undefined if the denominator f(x) — f(¢) equals 0 for values of x near ¢, and this

presents a problem. However, the use of Carathéodory’s Theorem neatly avoids this
difficulty.

6.1.6 Chain Rule Let I, J be intervals in R, let g : I — R and f : J — R be functions
such that f(J) C I, and let ¢ € J. If fis differentiable at ¢ and if g is differentiable at f (c),
then the composite function g o f is differentiable at ¢ and

(11) (g o f)(c)=4g(f(c))-f(c).

Proof. Since f'(¢) exists, Carathéodory’s Theorem 6.1.5 implies that there exists a
function ¢ on J such that ¢ is continuous at ¢ and f(x) — f(c) = ¢(x)(x — ¢) for
x € J, and where ¢(c) = f'(c). Also, since g'(f(c)) exists, there is a function v defined
on [ such that ¥ is continuous at d := f(c) and g(v) — g(d) = ¥(y)(y — d) fory € I, where
Ur(d) = g'(d). Substitution of y = f(x) and d = f(c) then produces
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g(f(x)) = 8(f() = Y(F () F(x) —F(0)) = [(¥ o Fx)) - px)](x — ©)

for all x € J such that f(x) € I. Since the function (v o f) - ¢ is continuous at ¢ and its
value at ¢ is g'(f(c)) - f'(c). Carathéodory’s Theorem gives (11). QED.

If g is differentiable on [, if fis differentiable on J, and if f(J) C [, then it follows from
the Chain Rule that (g of)’ = (g’ o f) -f', which can also be written in the form
D(g o f) = (Dg o f) - Df.

6.1.7 Examples (a) If f : 7 — R is differentiable on [ and g(y) := y" for y € R and
n € N, then since g'(y) = my"™", it follows from the Chain Rule 6.1.6 that

(g o f)(x) =g (f(x))-f'(x) for xel

Therefore we have (") (x) = n(f(x))""'f'(x) for all x € I as was seen in (9).

(b) Supposethatf : I — Ris differentiable on / and that f(x) # 0 and f'(x) # Ofor x € I.
Ifh(y) := 1/yfory # 0,then it is an exercise to show that &' (y) = —1/y* fory € R, y # 0.
Therefore we have

l)F ' ' fr[:x)

2) () = (ho fY(x) = H(FE)F(x) = -2 for xel.

(f (f(x))

(¢) The absolute value function g(x) := |x| is differentiable at all x # 0 and has derivative

g'(x) = sgn(x) for x # 0. (The signum function is defined in Example 4.1.10(b).) Though
sgn is defined everywhere, it is not equal to g’ at x = 0 since g'(0) does not exist.

Now if f is a differentiable function, then the Chain Rule implies that the function
g o f =|f] is also differentiable at all points x where f(x) # 0, and its derivative is
given by

r ! ’ X if J"- {):
F'(x) = sgn(f(x)) - f(x) = {{j"(}x) if j:gx; Zf’-

If f is differentiable at a point ¢ with f(¢) = 0, then it is an exercise to show that |f] is
differentiable at ¢ if and only if f'(¢) = 0. (See Exercise 7.)

For example, if f(x) := x> — 1 for x € IR, then the derivative of its absolute value
|f](x) = |:-;2 — l‘ is equal to | f|'(x) = sgn(x? — 1) - (2x) for x # 1, — 1. See Figure 6.1.1
for a graph of | f|.
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Figure 6.1.1 The function |f|(x) = |x* — 1|.

x

(d) It will be proved later that if §(x) := sin x and C(x) := cosx for all x € R, then
§'(x) =cosx =C(x) and C'(x)= —sinx = —S(x)
for all x € R. If we use these facts together with the definitions
sin x 1

SEC X 1=

tan x ;= , ,
Cos X COs X

for x # (2k + 1)7/2, k € Z, and apply the Quotient Rule 6.1.3(d), we obtain

(cos x)(cos x) — (sinx)(—sinx) 2

Dtanx = . = (sec x)°,
(cos x)”
0 — 1(—sinx sin x
Dsecx = ( 5 ) = 5 = (secx)(tan x)
(cos x)~ (cos x)~
for x # (2k + 1) /2,k € Z.
Similarly, since
COS X
coty := ——, CSC X 1= —
sin x sin x
for x # kn, k € Z, then we obtain
Dcotx = —(c.‘;c:-;)j and Dcsc x = —(cscx)(cotx)

for x # kn, k e Z.
(e¢) Suppose that f is defined by

. [ aPsin(1/x) for x #0,
ﬂl)'_{f} for x=0.
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If we use the fact that Dsin x = cos x for all x € R and apply the Product Rule 6.1.3(c) and
the Chain Rule 6.1.6, we obtain (why?)

f'(x) = 2xsin(1/x) — cos(1/x) for x #0.

If x= 0, none of the calculational rules may be applied. (Why?) Consequently, the
derivative of fat x = () must be found by applying the definition of derivative. We find that

2 .
: - flx)—f(0) . xsin(l/x)
0)=Ilm————=lim———= = limxsin(1/x) = 0.
f( ) x—0 x—0 x—l0 X x—0 ( /‘ )
Hence, the derivative f* of fexists at all x € R. However, the function f* does not have a
limitat x = 0 (why?), and consequently f” is discontinuous at x = (. Thus, a function fthat
is differentiable at every point of R need not have a continuous derivative f". ]

6.1.8 Theorem Let I be an interval in IR and let f : I — R be strictly monotone and
continuous on I. Let J := f(I) and let g: J — R be the strictly monotone and continuous

function inverse to f. If f is differentiable at ¢ € I and f'(¢) # 0, then g is differentiable at
d:= f(c) and

| |
o) Fleld)

(12) g(d) =

Proof. Givenc € R, we obtain from Carathéodory’s Theorem 6.1.5 a function ¢ on / with
properties that ¢ is continuous at ¢, f(x) — f(¢) = ¢(x)(x — ¢) for x € I, and ¢(¢) = f'(e).
Since ¢(c) # 0 by hypothesis, there exists a neighborhood V := (¢ — 4, ¢ + &) such that
@(x) # 0 for all x € VNI. (See Theorem 4.2.9.) If U :=f(V NI), then the inverse
function g satisfies f(g(yv)) = y for all y € U, so that

y —d =f(8(y)) = flc) = o(g(y)) - (8(y) — 8(d)).
Since @(g(y)) # 0 for y € U, we can divide to get

|
gly) —gld) = (y—d).
) ) ¢(g(v)) )
Since the function 1 /(¢ o g) is continuous at ¢, we apply Theorem 6.1.5 to conclude that
2'(d) exists and g'(d) = 1/¢(g(d)) = 1/¢(c) = 1/f'(c). Q.ED.
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6.1.10 Examples (a) The function f : R — R defined by f(x) := x” + 4x + 3 is con-
tinuous and strictly monotone increasing (since it i1s the sum of two strictly increasing
functions). Moreover, f'(x) = 5x* + 4 is never zero. Therefore, by Theorem 6.1.8, the
inverse function g = f~! is differentiable at every point. If we take ¢ = 1, then since
f(1) = 8, we obtain g'(8) = ¢/(f(1)) = 1/f'(1) = 1/9.

(b) Letn € Nbeeven, let / := [0,00), and let f(x) := x" for x € I. It was seen at the end
of Section 5.6 that f'is strictly increasing and continuous on [, so that its inverse function
g(y) := yY" fory € J := [0, 00) is also strictly increasing and continuous on J. Moreover,
we have f'(x) = nx"~" for all x € I. Hence it follows that if y > 0, then g’(y) exists and

1 1 1

gr(},) =f(( -1

g(}’)) N H(g(y})n e n}r{”—l.];"n ’

Hence we deduce that

1.,
gy) = —ytm=for vy > 0.
n

However, g is not differentiable at 0. (For a graph of fand g, see Figures 5.6.4 and 5.6.5.)
(¢) Letn€ N,n+# 1,be odd, let F(x) := x" for x € R, and let G(y) := y'/" be its inverse
function defined for all y € R, As in part (b) we find that G is differentiable for y # 0 and

that G'(y) = (1/n)y'"/"=! fory # 0. However, G is not differentiable at 0, even though G is
differentiable for all y # 0. (For a graph of F and G, see Figures 5.6.6 and 5.6.7.)

(d) Letr :=m/n be a positive rational number, let / := [0,00), and let R(x) := x" for
x € I. (Recall Definition 5.6.6.) Then R is the composition of the functions f(x) := x™ and
g(x) :=x"" x €l Thatis, R(x) = f(g(x)) for x € I. If we apply the Chain Rule 6.1.6
and the results of (b) [or (¢), depending on whether 1 is even or odd], then we obtain

R(x) = f/(2(x))g/(x) = m(x/m)" ™" xtm=

£ R .
— _x'i_m,-n] | - rx 1

n
forall x > 0. If r > I, then it is an exercise to show that the derivative also exists at x = 0
and R'(0) = 0. (For a graph of R see Figure 5.6.8.)
(e) The sine function is strictly increasing on the interval / := [~ /2, 7/2]; therefore its
inverse function, which we will denote by Arcsin, exists on J := [—1,1]. That is, if x €
|—m/2, w/2] and y € [—1, 1] then y = sin x if and only if Arcsin y = x. It was asserted
(without proof) in Example 6.1.7(d) that sin is differentiable on I and that D sin x = cos x
for x € I. Since cosx # 0 for x in (—m/2, 7/2) it follows from Theorem 6.1.8 that
1 1

D Arcsiny = — =
Dsinx cosx
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- 1 - 1
\/l — (sinx)? VI-y

for all y € (—1,1). The derivative of Arcsin does not exist at the points —1 and 1. [

We begin by looking at the relationship between the relative extrema ot a function and
the values of its derivative. Recall that the function f : I — R is said to have a relative
maximum [respectively, relative minimum]| at ¢ €/ if there exists a neighborhood
V 1= Vy(c) of ¢ such that f(x) < f(c) [respectively, f(c) < f(x)] for all x in V N1 We
say that fhas a relative extremum at ¢ € [ if it has either a relative maximum or a relative
minimum at c.

The next result provides the theoretical justification for the familiar process of finding
points at which fhas relative extrema by examining the zeros of the derivative. However, it
must be realized that this procedure applies only to interior points of the interval. For
example, if f(x) := xonthe interval I := [0, 1], then the endpoint x = 0 yields the unique
relative minimum and the endpoint x = 1 yields the unique maximum of fon /, but neither
point is a zero of the derivative of f|

6.2.1 Interior Extremum Theorem Let ¢ be an interior point of the interval I at which
f 1 — R has a relative extremum. If the derivative of f at ¢ exists, then f'(c) = 0.

Proof. We will prove the result only for the case that f has a relative maximum at ¢; the

proof for the case of a relative minimum is similar.
If f'(¢) > 0, then by Theorem 4.2.9 there exists a neighborhood V C I of ¢ such that

w;ﬂ) for xeV, x#ec.

If x €V and x > ¢, then we have

) —f(e) = (x— ) -1 > 0.

But this contradicts the hypothesis that f has a relative maximum at ¢. Thus we cannot
have f'(¢) > 0. Similarly (how?), we cannot have f'(¢) < 0. Therefore we must have
f(e)=0. QED.

x) —f(c)

6.2.2 Corollary Letf : I — R be continuous on an interval I and suppose that f has a
relative extremum at an interior point ¢ of I. Then either the derivative of f at ¢ does not
exist, or it is equal to zero.

We note that if f(x) := |x| on [ := [—1, 1], then f has an interior minimum at x = 0;
however, the derivative of ffails to exist at x = 0.
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6.2.3 Rolle’s Theorem Suppose that fis continuous on a closed interval I := |a, b, that
the derivative f' exists at every point of the open interval (a, b), and that f(a) = f(b) = 0.
Then there exists at least one point ¢ in (a, b) such that f'(c) = 0.

Proof. If fvanishes identically on [, then any ¢ in (a, b) will satisfy the conclusion of the
theorem. Hence we suppose that f does not vanish identically; replacing f by —f if
necessary, we may suppose that f assumes some positive values. By the Maximum-
Minimum Theorem 5.3.4, the function f attains the value sup{ f(x) : x € I} > 0 at some
point ¢ in I. Since f(a) = f(b) = 0, the point ¢ must lie in (a. b); therefore f'(c) exists.

fle)=0

|
I
|
|
|
|
|
l
I
o
c

Figure 6.2.1 Rolle’s Theorem

Since f has a relative maximum at ¢, we conclude from the Interior Extremum
Theorem 6.2.1 that f'(¢) = 0. (See Figure 6.2.1.) QED.
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POSSIBLE QUESTIONS
2 Mark Questions:
1. If f(x) = x?, prove thatf (x) = 2x.
2. Give an example for continuity is not sufficient for continuity.
3. State the product rule of derivative.
4. State the quotient rule of derivative.
5. Define relative extremum of a function.
8 Mark Questions:
1. If f:]a, b] = R has a derivative at ¢ € [a, b], prove that f is
continuous at c. Also prove that

the converse need not be true.

State and prove Caratheoodory theorem.

State and prove the product rule and quotient rule for derivative.
State and prove chain rule.

State and prove interior extremum theorem.

State and prove Rolle ’s Theorem.

If £:1 — R has a relative extermum at an interior point c of I and if
derivative of f exists at c, prove that f'(c) = 0.

~No koo
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UNIT-IV

SYLLABUS

Mean value theorem, intermediate value property of derivatives, Darboux’s theorem. Applications of
mean value theorem to inequalities and approximation of polynomials, Taylor’s theorem to
inequalities.
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6.2.4 Mean Value Theorem Suppose that f is continuous on a closed interval
I := |a, b, and that f has a derivative in the open interval (a, b). Then there exists at
least one point ¢ in (a, b) such that

f(b) —fla) =f(c)(b —a)
Proof. Consider the function ¢ defined on I by

_fb)~fla)

Py— X —a).

¢(x) :=f(x) — f(a)

[The function ¢ is simply the difference of f and the function whose graph is the line
segment joining the points (a, f(a)) and (b, f(b)); see Figure 6.2.2.] Th hypotheses of

|
| 1
| |
[ |
| I
I |
| I
| I
| l

da X <

Figure 6.2.2 The Mean Value Theorem

Rolle’s Theorem are satisfied by ¢ since ¢ is continuous on [a, b], differentiable on (a, b),
and ¢(a) = ¢(b) = 0. Therefore, there exists a point ¢ in (a, b) such that
r ] f(h} —fl:ﬂ')
0=¢/(c) =f(e) —————.

bh—a

Hence, f(b) — f(a) = f'(c)(b — a). Q.ED.
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Remark The geometric view of the Mean Value Theorem is that there is some point on
the curve y = f(x) at which the tangent line is parallel to the line segment through the
points (a, f(a)) and (b, f(h)). Thus it is easy to remember the statement of the Mean Value
Theorem by drawing appropriate diagrams. While this should not be discouraged, it tends
to suggest that its importance is geometrical in nature, which is quite misleading. In fact the
Mean Value Theorem is a wolf in sheep’s clothing and is t/he Fundamental Theorem of
Differential Calculus. In the remainder of this section, we will present some of the
consequences of this result. Other applications will be given later.

The Mean Value Theorem permits one to draw conclusions about the nature of a
function f from information about its derivative f. The following results are obtained in
this manner.

6.2.5 Theorem Suppose that fis continuous on the closed interval I := |a,b|, that f is
differentiable on the open interval (a, b), and that f'(x) =0 for x € (a,b). Then f is
constant on 1.

Proof. We will show that f(x) = f(a) for all x € . Indeed, if x € I, x > a, is given,
we apply the Mean Value Theorem to f on the closed interval [a, x|. We obtain a
point ¢ (depending on x) between a and x such that f(x) — f(a) = f'(¢)(x — a). Since
f'(¢) =0 (by hypothesis), we deduce that f(x) — f(a) = 0. Hence, f(x) = f(a) for
anv x € I. O.E.D.

6.2.6 Corollary Suppose that f and g are continuous on I := [a,b|, that they are
differentiable on (a, b), and that f'(x) = ¢'(x) for all x € (a, b). Then there exists a
constant C such that f =g+ C on 1.

Recall that a function f : I — R is said to be increasing on the interval / if whenever
X1, X7 in [ satisfy x| < xo, then f(x;) < f(x). Also recall that fis decreasing on / if the
function — f is increasing on /.

6.2.7 Theorem Let f : I — R be differentiable on the interval I. Then:

(a) fis increasing on I if and only if f'(x) = 0 for all x € I.
(b) fis decreasing on I if and only if f'(x) < 0 for all x € I.

Proof. (a) Suppose that f'(x) > 0 for all x € I. If x;, x; in [ satisfy x; < x,, then we
apply the Mean Value Theorem to fon the closed interval J := [x;, x»| to obtain a point ¢ in
(x1, x2) such that

flxa) = f(x1) =f(e)(x2 — x1).
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Since f'(¢) > 0 and x» — x1 > 0, it follows that f(x2) — f(x1) = 0. (Why?) Hence,
f(x;1) <f(x2) and, since x| < x, are arbitrary points in I, we conclude that f is
increasing on .

For the converse assertion, we suppose that fis differentiable and increasing on I
Thus, for any point x # ¢ in I, we have (f(x) —f(¢))/(x — ¢) = 0. (Why?) Hence, by
Theorem 4.2.6 we conclude that

f&yﬂmﬂﬂiﬂﬂga

x—c X —C

(b) The proof of part (b) is similar and will be omitted. Q.E.D.

A function fis said to be strictly increasing on an interval / if for any points xy, x2in/
such that x| < x, we have f(x;) < f(x;). An argument along the same lines of the proof
of Theorem 6.2.7 can be made to show that a function having a strictly positive derivative
on an interval is strictly increasing there. (See Exercise 13.) However, the converse
assertion is not true, since a strictly increasing differentiable function may have a derivative
that vanishes at certain points. For example, the function f : R — R defined by f(x) := x*
is strictly increasing on R, but f'(0) = 0. The situation for strictly decreasing functions is
similar.

Remark It is reasonable to define a function to be increasing at a point if there is a
neighborhood of the point on which the function is increasing. One might suppose that, if
the derivative is sirictly positive at a point, then the function is increasing at this point.
However, this supposition is false; indeed, the differentiable function defined by

o x4+ 2xsin(1/x) if x#0,
5“”_{0 if x=0,

is such that g'(0) = 1, yet it can be shown that g is not increasing in any neighborhood of
x = 0. (See Exercise 10.)

We next obtain a sufficient condition for a function to have a relative extremum at an
interior point of an interval.

6.2.8 First Derivative Test for Extrema Let f be continuous on the interval 1 -= |a, b|
and let ¢ be an interior point of I. Assume that f is differentiable on (a, ¢) and (¢, b) . Then:

(a) If there is a neighborhood (¢ — &, ¢+ &) C 1 such that f'(x) = 0forc— 6 < x < ¢
and f'(x) <0 for ¢ < x < ¢+ 8, then f has a relative maximum at c.

(b) If there is a neighborhood (¢ — &, ¢+ 68) C I such that f'(x) <0 forc—5 <x < ¢
and f'(x) = 0 for ¢ < x < ¢+, then f has a relative minimum at c.
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Proof. (a) If x € (¢ — 4, ¢), then it follows from the Mean Value Theorem that there
exists a point ¢, € (x, ¢) such that f(c) — f(x) = (¢ — x)f'(c,). Since f'(¢,) = 0 we infer
that f(x) <f(c) for x € (¢— 4, ¢). Similarly, it follows (how?) that f(x) < f(c)
for x € (e, ¢ +8). Therefore f(x) < f(¢) for all x € (¢ — §, ¢ 4+ §) so that f has a relative
maximum at ¢.

(b) The proof is similar. QED.

Remark The converse of the First Derivative Test 6.2.8 is not true. For example, there
exists a differentiable function f : R — R with absolute minimum at x = 0 but such that

f" takes on both positive and negative values on both sides of (and arbitrarily close to)
x = 0. (See Exercise 9.)

Further Applications of the Mean Value Theorem

We will continue giving other types of applications of the Mean Value Theorem; in doing
so we will draw more freely than before on the past experience of the reader and his or her
knowledge concerning the derivatives of certain well-known functions.

6.2.9 Examples (a) Rolle’s Theorem can be used for the location of roots of a function.
For, if a function g can be identified as the derivative of a function f, then between any two
roots of fthere is at least one root of g. For example, let g(x) := cos x, then g is known to be
the derivative of f(x) := sinx. Hence, between any two roots of sin x there is at least one
root of cos x. On the other hand, ¢’'(x) = —sin x = —f(x), so another application of Rolle’s
Theorem tells us that between any two roots of cos there is at least one root of sin.
Therefore, we conclude that the roots of sin and cos interlace each other. This conclusion is
probably not news to the reader; however, the same type of argument can be applied to the
Bessel functions J,, of order n =0, 1, 2,... by using the relations

[T, (X)) = X (%), [T (x)] = —x T (x) for x=0.

(b) We can apply the Mean Value Theorem for approximate calculations and to obtain
error estimates. For example, suppose it is desired to evaluate v/ 105. We employ the Mean
Value Theorem with f(x) := /x, @ = 100, b = 105, to obtain

5

m_mzz_ﬁ

for some number ¢ with 100 < ¢ < 105. Since 10 < /¢ < /105 < 121 = 11, we can
assert that
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5 5
2 V10510 <« ——
2011 <3010

whence it follows that 10.2272 < /105 < 10.2500. This estimate may not be as sharp as
desired. It is clear that the estimate /¢ < /105 < /121 was wasteful and can be
improved by making use of our conclusion that v105 < 10.2500. Thus, /¢ < 10.2500
and we easily determine that

5
02430 « — > < \/T05 — 10.
= 2(10.2500)

Our improved estimate is 10.2439 < /105 < 10.2500. O

6.2.10 Examples (a) Theexponential function f(x) := e* has the derivative f'(x) = e*
forall x € R. Thus f'(x) > 1 forx > 0,andf'(x) < 1 for x < 0. From these relationships,
we will derive the inequality

(1) e*>14x for xel,
with equality occurring if and only if x = 0.
If x = 0, we have equality with both sides equal to 1. If x > 0, we apply the Mean

Value Theorem to the function fon the interval [0, x]. Then for some ¢ with 0 < ¢ < x
we have

¢ —é" =e(x —0).
Since ¢” = 1and ¢ > 1, thisbecomes e® — 1 > xsothat wehave ¢ > 1 4+ xforx > 0. A

similar argument establishes the same strict inequality for x < 0. Thus the inequality (1)
holds for all x, and equality occurs only if x = 0.

(b) The function g(x) := sin x has the derivative g’( x) = cos x forall x € [R. On the basis
of the fact that —1 < cosx < 1 for all x € R, we will show that

(2) —x <sinx<x forall x>=0.

Indeed, if we apply the Mean Value Theorem to g on the interval [0, x], where x > 0, we
obtain

sinx — sin0 = (cosc)(x —0)

for some ¢ between 0 and x. Since sin0) = 0and —1 < cosc < 1, we have —x < sinx < x.
Since equality holds at x = 0, the inequality (2) is established.

(c) (Bernoulli’s inequality) If « > 1, then
(3) (14+x)">14ax forall x>-I,

with equality if and only if x = 0.
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6.2.11 Lemma Letl C R beaninterval, letf : I — R, let ¢ € I, and assume that fhas a
derivative at c. Then:

(@) Iff'(c) > 0, then there is a number § > 0 such that f(x) > f(c) for x € I such that
c<x<c+d.

(b) Iff'(¢) < 0, then there is a number § > 0 such that f(x) > f(c) for x € I such that
c—d<x<e.

Proof. (a) Since
b S = f()
X— X -7

it follows from Theorem 4.2.9 that there is a number § > 0 such that if x €I and
0 < |x —¢| < 4, then

=f'(e¢) > 0,

f(x)—fle)
X—rc
If x € [ also satisfies x > ¢, then we have

> 0.

f(x) = f(e)

X=rc

fx)=fle) =(x—¢)- > 0.

Hence, if x € [ and ¢ < x < ¢ + §, then f(x) > f(c).
The proof of (b) is similar. Q.E.D.

6.2.12 Darboux’s Theorem If f is differentiable on I = |a, b| and if k is a number
between f'(a) and f'(b), then there is at least one point ¢ in (a, b) such that ['(c) = k.

Proof. Suppose that f'(a) < k < f'(b). We define g on I' by g(x) := kx — f(x) for x € I.
Since g is continuous, it attains a maximum value on I. Since ¢'(a) =k — f'(a) > 0, it
follows from Lemma 6.2.11(a) that the maximum of g does not occur at x = a. Similarly,
since g'(h) = k — f'(b) < 0, it follows from Lemma 6.2.11(b) that the maximum does not
occur at x = b. Therefore, g attains its maximum at some ¢ in (@, b). Then from Theorem
6.2.1 we have 0 = ¢'(¢) = k — f'(c). Hence, f'(¢) = k. QED.
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6.2.13 Example The function g: [—1, 1] — R defined by

| for 0<x<1,
g(x) = 0 for x=0,
—1 for —1<x<0,

(which is a restriction of the signum function) clearly fails to satisfy the intermediate value
property on the interval [—1, 1. Therefore, by Darboux’s Theorem, there does not exist a
function fsuch that f'(x) = g(x) for all x € [—1, 1]. In other words, g is not the derivative
on [—1, 1] of any function. O

Convex Functions

The notion of convexity plays an important role in a number of areas, particularly in the
modern theory of optimization. We shall briefly look at convex functions of one real
variable and their relation to differentiation. The basic results, when appropriately
modified, can be extended to higher dimensional spaces.

6.4.5 Definition Let/ C R beaninterval. A function f : I — R is said to be convex on /
if for any ¢ satisfying 0 < r < 1 and any points xj, x2 in I, we have

FIL=t)x1+ 1x2) < (1 —2)f(x1) + £f(x2).

Note that if x; < x,, then as 7 ranges from 0 to 1, the point (1 — f)x; + x> traverses
the interval from x| to x,. Thus if fis convex on [ and if x|, x, € I, then the chord joining
any two points (x;, f(x;)) and (x2, f(x2)) on the graph of flies above the graph of f. (See
Figure 64.1.)

y=(1-1 flx) + tf (x3)

y=f((1- 1) x; + tx5)

| | | .
X1 (1-0x +m; ]

Figure 6.4.1 A convex function
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6.4.6 Theorem Let I be an open interval and let f : 1 — R have a second derivative on
L Then [ is a convex function on I if and only if f"(x) > 0 for all x € I.

Proof. (=) We will make use of the fact that the second derivative is given by the limit

(4) f"(a) = ]imf(ﬂ + h) —2f(a) +fla —h)

h—0 hz

foreach a € I.(See Exercise 16.) Givena € I, let hbe such thata + hand a — i belong to L.

Then a = 3((a+ h) + (a — h)), and since fis convex on I, we have

fla) =f(Gla+h)+3a—h) <3fla+h) +3f(a—h).

Therefore, we have f(a + h) — 2f(a) +f(a — h) = 0. Since h* > 0 for all h # 0, we see
that the limit in (4) must be nonnegative. Hence, we obtain f"'(a) > 0 for any a € I.

(«<) We will use Taylor’s Theorem. Let x,, x, be any two points of I, let 0 < ¢ < 1,
and let xq := (1 — £)x1 + tx2. Applying Taylor’s Theorem to f at x, we obtain a point ¢
between xp and x; such that

f(x1) = f(x0) + £ (x0)(x1 — x0) + L f"(e1)(x1 — x0)°,

and a point ¢, between x; and x, such that

F(x2) = f(x0) + £ (x0)(x2 — x0) + 1" (e2)(x2 — x0)°.

If f is nonnegative on I, then the term
R 2:15(1 —0)f"(er)(x) — X{])2 +J§%f”(02}(e\‘2 - e\‘{l}z

is also nonnegative. Thus we obtain

(1 —2)f(x1) + #f (x2) = fx0) +f (x0)((1 = £)x1 + tx2 — x0)
+ X1 = 0f"(er) (21 — x0) + L 11" (c2) (32 — x0)°
=f(xo) + R
= f(xo) =f((1 = 1)x1 + 1x2).

Hence, f is a convex function on 1.
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POSSIBLE QUESTIONS

2 Mark Questions:

1.
2.
3.
4.

5.

State the geometric view of mean value theorem.

Define an increasing function.

Define decreasing function.

Write the sufficient condition for a function to have a relative
extermum.

State first derivative test for extrema.

8 Mark Questions:

1.
2.

N o ok

State and prove mean value theorem.
Suppose f is continuous on [a, b] and differentiable on (a, b). Then
prove that f is constant on [a, b] if f'(x) = Ofor x € (a,b).

. Suppose f is continuous on [a, b] and differentiable on (a, b). Then

prove that there exists at least one point ¢ € (a, b) such that f(b) —
fla) = f'(c)(b—a)

State and prove first derivative test for extrema.

State and prove intermediate value property of derivatives.

State and prove Darboux’s theorem.

Apply the mean value theorem for approximate value of ¥105
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SYLLABUS

Cauchy’s mean value theorem. Taylor’s theorem with Lagrange’s form of remainder, Taylor’s
theorem with Cauchy’s form of remainder, application of Taylor’s theorem to convex functions,
relative extrema. Taylor’s series and Maclaurin’s series expansions of exponential and trigonometric
functions, In(1 + x), 1/ax+b and (1 +x)".
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6.3.2 Cauchy Mean Value Theorem Ler f and g be continuous on [a, b] and
differentiable on (a, b), and assume that ¢'(x) = 0 for all x in (a, b). Then there exists
¢ in (a, b) such that

Proof. As in the proof of the Mean Value Theorem, we introduce a function to which
Rolle’s Theorem will apply. First we note that since g'(x) # 0 for all x in (a, b), it follows
from Rolle’s Theorem that g(a) # g(b). For x in [a, b]. we now define

f(b) —f(a)

h(x) :==—"———(g(x) — gla)) = (f(x) = f(a)).

g(b) —gla)
Then £ is continuous on [a, b], differentiable on (g, b), and h(a) = h(b) = 0. Therefore, it
follows from Rolle’s Theorem 6.2.3 that there exists a point ¢ in (a, b) such that

f(b) —fla) , :
(b —g@)?® (¢) = f(e).

Since g'(¢) # 0, we obtain the desired result by dividing by g'(¢). QED.

0=h(c)=

Remarks The preceding theorem has a geometric interpretation that is similar to that of
the Mean Value Theorem 6.2 4. The functions fand g can be viewed as determining a curve
in the plane by means of the parametric equations x = f(r), y = g(f) where a <t < b.
Then the conclusion of the theorem is that there exists a point (f(¢), g(¢)) on the curve for
some ¢ in (a, b) such that the slope ¢'(¢)/f'(c) of the line tangent to the curve at that point is
equal to the slope of the line segment joining the endpoints of the curve.

Note that if g(x) = x, then the Cauchy Mean Value Theorem reduces to the Mean
Value Theorem 6.2.4.
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k=1,2,...,n In fact, the polynomial
, i X ,
(1) Pu(x) := f(x0) +f (x0)(x — xp) +f g,{]} (x — xo)”
':.H;] x
4+ —|—f JET {]} (J'L' —,\'.[]}n

has the property that it and its derivatives up to order n agree with the function fand its
derivatives up to order n, at the specified point xg. This polynomial P, is called the nth
Taylor polynomial for f at xp. It is natural to expect this polynomial to provide a
reasonable approximation to f for points near X, but to gauge the quality of the
approximation, it is necessary to have information concerning the remainder

R, :=f — P,. The following fundamental result provides such information.

6.4.1 Taylor’s Theorem Letn € N, let]:= [a,b], andlet f : I — R be such that f and
its derivatives ', f", ..., f'") are continuous on I and that f "*") exists on (a, b). If xy € 1,

then for any x in I there exists a point ¢ between x and xq such that

f H(-\‘(J )

2) F(x) =£(x0) +£'(x0) (x = Xo) +—7=(x = x0)°
7 (x0) w S0 -
o n!ﬂ (x = x) +(n+l}7(x_‘\} J
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Proof. Let x; and x be given and let J denote the closed interval with endpoints x,and x.
We define the function F on J by

! (‘\‘ - I)n (n'
F(1) = () —f() = (= 0f'()) = -+ ==L 1)
for 1 € J. Then an easy calculation shows that we have
x=0" .
Fr“} :_(\ T ) fl"’H—]‘](I}.
n!

If we define G on J by

- n+l
G(t) :== F(1) — (“ ;) F(xp)

X — Xp

fort € J, then G(xp) = G(x) = 0. An application of Rolle’s Theorem 6.2.3 yields a point ¢
between x and xg such that

0=G(c)=F'(c)+(n+1) 1 Flxo)
(x — xo)
Hence, we obtain
1 (x—xp }H-H ;
F(xp) = — F
(xo0) n+1 (x—¢)" (c)
L= x0)™ (= 0" iy L) e
i+l (x—¢)" n! Fe) = (n+1)! (r = %)™,
which implies the stated result. Q.E.D.

We shall use the notation P, for the nth Taylor polynomial (1) of f, and R, for the
remainder. Thus we may write the conclusion of Taylor’s Theorem as f(x) = P,(x) +

R.(x) where R, is given by

(3) Ru(x) =

for some point ¢ between x and x;,. This formula for R,, is referred to as the Lagrange form
(or the derivative form) of the remainder. Many other expressions for R,, are known; one is
in terms of integration and will be given later. (See Theorem 7.3.18.)
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6.4.2 Examples (a) UseTaylor’s Theorem with n= 2 to approximate v/1 + x, x > —1.
We take the function f(x) := (1 + ,\:}Jf"", the point x; = 0, and n = 2. Since f'(x) =
L1 +x) 7 and f7(x) = 1 (~ 2)(1 + x) 7, we have f'(0) = L and f"(0) = —2/9. Thus
we obtain
F(x) = Pa(x) + Ra(x) = 1 +4x — 527 + Ry (x),
where Ry (x) =3 f"(¢)x* =2-(1 + ¢)*7 x3 for some point ¢ between 0 and x.
For example, if we let x = 0.3, we get the approximation P»(0.3) = 1.09 for v/1.3.

—8/3
} /

Moreover, since ¢ > () in this case, then (1 + ¢ < 1 and so the error is at most

R(ﬂ3}<5 3) _ 1 < 0.17 x107°
2 =81\10) 600 '

Hence, we have |v/1.3—1.09| < 0.5 x 10, so that two decimal place accuracy is assured.
(b) Approximate the number e with error less than 1077,

We shall consider the function g(x) := ¢* and take x, = 0 and x = 1 in Taylor’s
Theorem. We need to determine n so that |R,(1)| < 107>, To do so, we shall use the fact
that ¢’(x) = ¢* and the initial bound of ¢* < 3 for 0 < x < 1.

Since g'(x) = ¢*, it follows that g*)(x) = ¢* for all k € N, and therefore g*)(0) = 1
for all k € M. Consequently the nth Taylor polynomial is given by

-1

X ;
Py(x) = 1_|_);_|_E_|_..._|_H

and the remainder for x = 1is givenby R, (1) = ¢ /(n + 1)! for some ¢satisfying 0 < ¢ < 1.
Since ¢ < 3, we seek a value of n such that 3/(n + 1)! < 107> A calculation reveals that
9! = 362, 880 > 3 x 10° so that the value n = 8 will provide the desired accuracy; moreover,
since 8! = 40, 320, no smaller value of n will be certain to suffice. Thus, we obtain

1 1
e~ Py(1) = 141+ 4 o+ o7 = 271828

with error less than 1072,
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6.4.3 Examples (a) 1 — %f < cosx for all x € R.
Use f(x) :=cosx and xg = 0 in Taylor’s Theorem, to obtain

1,
cosx =1 — o +R>(x),

where for some ¢ between 0 and x we have

L fMe) 2 sine 4
Ry(x) = X e ¥

If0 < x < 7, then 0 < ¢ < 7; since ¢ and x” are both positive, we have R,(x) > 0. Also,
if —m<x<0,then —7 < ¢ < 0; since sin ¢ and x° are both negative, we again have
R>(x) = 0. Therefore, we see that 1 — 1x? < cos xfor|x| < 7. If |x| > =, then we have
1 —1x? < —3 < cos xandthe inequa]_ity is trivially valid. Hence, the inequality holds for
all x € R.

(b) For any k € N, and for all x > 0, we have

1, | 1, 1 ,
X—5x + - —Ex‘k <In(l1+x) <x — 35X +‘“+2k+ 1.\"*“.
Using the fact that the derivative of In(1 + x)is 1/(1 + x) for x > 0, we see that the nth

Taylor polynomial for In(l 4+ x) with x; = 0 is

l ] _J].
Pri X =x——x" _1!! _J_r!
(x) =x 2\. 44 (=1) ”\.

and the remainder is given by
—1)* el
R,(x) = (}7,\:”“
n+1

for some ¢ satisfying 0 < ¢ < x. Thus for any x > 0, if » = 2k is even, then we have
Ry (x) > 0; and if n = 2k + 1 is odd, then we have R, (x) < 0. The stated inequality
then follows immediately.

(c) e > ="

Taylor’s Theorem gives us the inequality e¢* > 1 + x for x > 0, which the reader
should verify. Then, since = > e, we have x = /e — 1 > (0, so that

™D 51 4 (mwle—1) = n/e.
This implies e™¢ > (r/e)e = 7, and thus we obtain the inequality e™ > 7°. |

6.4.4 Theorem Let I be an interval, let x, be an interior point of I, and let n > 2.
Suppose that the derivatives ', " ..., f") exist and are continuous in a neighborhood
of xo and that f'(xq) = - - =" V(xy) = 0, but £ (x;) # 0.

(i) Ifn is even and " (xo) > 0, then f has a relative minimum at x.

(i) Ifn is even and f™ (xo) < 0, then f has a relative maximum at x,.

(iii) Ifn is odd, then [ has neither a relative minimum nor relative maximum at xy.
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Proaf. Applying Taylor’s Theorem at x;, we find that for x € I we have

(n)
F(x) = Ppi(x) + Ryi (x) = f(x0) +f REC}

where ¢ is some point between xg and x. SmcefL " is continuous, if £ (xg) # 0, then there
exists an interval U/ containing x,, such that £ (x) will have the same sign a%f‘”J(\{}) for
x € U.If x € U, then the point ¢ also belongs to U and consequently £ (c) and f™(x)
will have the same sign.

(i) Ifniseven and £ (xg) > 0, then for x € U we have f™)(¢) > 0 and (x — xo)" >
0 so that R, |(x) = 0. Hence, f(x) > f(xg) for x € U, and therefore f has a relative
minimum at x;,. _

(ii) If n is even and f'"'(xq) < 0, then it follows that R,_, (x) < 0 for x € U, so that
f(x) < f(xg) for x € U. Therefore, f has a relative maximum at xg.

(iii) If n is odd, then (x — x)" is positive if x > x; and negative if x < x;. Conse-
quently, if x € U, then R,—1(x) will have opposite signs to the left and to the right of x;,.
Therefore, f has neither a relative minimum nor a relative maximum at xg. Q.E.D.

(x —xo)",

Theorem 1 (Taylor-Maclaurin series). Suppose that f(x) has a power series expan-
sion at * = a with radius of convergence R > 0, then the series expansion of f(x)
takes the form

> fin) (2)
(2) f(x)= / nr(a}(;r—a]” = f(a) + f(a)(z — a) + / 2::a}{$—f1}2+....
n=0 ' ’
that is, the coefficient ¢, in the expansion of f(x) centered at © = a is precisely
_ f™(a)

. The expansion (2) is called Taylor series. [f a = 0, the expansion

It

n!

% r(n)
fay=3 L0y

n=0

(2)
= £(0) + £ (0)z + / 2.::”}.1"24-

is called Maclaurin Series.
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Example 1. The function f(x) = e* satisfies f"(z) = &* for any integer n > 1 and
in particular f(0) = 1 for all n and then the Maclaurin series of f(x) is

f@) =3~

n=_0

e TE
observe that the radius of convergence of f(x) is computed by noting that ¢, z" = —

n!
so that

n+1

Cn41T IJ"|

= lim = (),

n—roo {R — l)

and the radius of convergence is R = oo since the above computation shows that the
series converges absolutely for any x. Note that for any other center, say r = a we
have f(")(a) = e, so that the Taylor expansion of f(z) is

. i er —a)"
e = _
n!

n=I0

lim

=0

* TP
Cpd

and this series also has radius of convergence R = oc.

Taylor Series Expansions of Exponential Functions
2
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Taylor Series Expansions of Trigonometric Functions

_ = x %
N x=x5— — ———+ —OD < X <L 0D
C1 T R
2 4 i
Cogx:l—x_+x——x—+--- — ool K= 00
20041 8l
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POSSIBLE QUESTIONS

2 Mark Questions:

1.
2.

o s~ ow

State the geometric view of Cauchy’s mean value theorem.

Write the condition to obtain mean value theorem form Cauchy’s mean value
theorem.

Approximate Y1 + x with n = 2.

Approximate the number e with error less than 107°.

Define convex function.

8 Mark Questions:

H wbdE

State and prove Cauchy’s mean value theorem
State and prove Taylor’s theorem

Prove that 1 — %xz <cosxforallx eR

Let f:(a,b) - R have a second derivative on (a, b) . Prove that f is a convex
function on (a, b) iff f"(x) = 0 forall x € (a, b)

Forany k € N and forall x > 0, prove that x — %xz 4= ika <
_Y 2 1 | 2k+1

In(1+x) <x Sx°+ o X

State and prove mean value theorem. Hence approximate V105

State and prove Bernoulli’s inequality
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