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Scope: On successful completion of course the learners gain about the numbers , functions and
its properties.

Objectives: To enable the students to learn and gain knowledge about linear Diophantine
equation, Fermat’s Little theorem and Inversion formula

UNIT I
Linear Diophantine equation, prime counting function, statement of prime number theorem,
Goldbach conjecture, linear congruences, complete set of residues, Chinese Remainder theorem.

UNIT 1I
Fermat’s Little theorem, Wilson’s theorem. Number theoretic functions, sum and number of divisors,
Totally multiplicative functions , Definition and properties of the Dirichlet product.

UNIT III
The Mobius Inversion formula, the greatest integer function, Euler’s phi-function, Euler’s theorem
reduced set of residues-some properties of Euler’s phi-function.

UNIT IV
Order of an integer modulo n, primitive roots for primes, composite numbers having primitive
roots, Euler’s criterion, the Legendre symbol and its properties.

UNIT V
Quadratic reciprocity-quadratic congruences with composite moduli. Public key encryption,
RSA encryption and decryption, the equation x ? +y ? =z 2, Fermat’s Last theorem.

SUGGESTED READINGS

TEXT BOOK

1. David M. Burton, (2007). Elementary Number Theory, Sixth Edition, Tata McGraw-Hill,
Delhi.

REFERENCES

1. Neville Robinns, (2007). Beginning Number Theory, 2nd Ed., Narosa Publishing House Pvt.
Ltd., Delhi.

2. Neal Koblitz., (2006).A course in Number theory and cryptography,Second Edition,
Hindustan Book Agency, New Delhi.
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S.No Lecture Topics to be Covered Support Material/Page
Duration Nos
Period
UNIT-I

1. 1 Linear Diophantine equation T1:Chap2 P.No:38-39

2. 1 Theorem on Diophantine T1:Chap2 P.No:40
equation

3. 1 Problems on Diophantine T1:Chap2 P.No:41-44
equation

4. 1 Tutorial-1

5. 1 Prime counting function T1:Chap3 P.No:51-56

6. 1 Statement of prime number Ti:Appendix P.No:344-350
theorem

7. 1 Goldbach conjecture T1:Chap3 P.No:58-61

8. 1 Tutorial-2

9. 1 Theorem and Problems on T1:Chap3 P.No:61-65
Goldbach Conjecture

10. 1 Linear congruences T1:Chap 4 P.No: 72-73

11. 1 Theorem and Problems on linear | T1:Chap 4 P.No: 73-74
congruences

12. 1 Tutorial-3

13. 1 Complete set of residues T1:Chap 4 P.No:70-71

14. 1 Theorem on complete set of T1:Chap 4 P.No:71-72
residues

15. 1 Chinese Remainder theorem T1:Chap 4 P.No:87-88

16. 1 Tutorial-4
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Lesson Plan

2016-2019
Batch

17. Problems based on Chinese T1:Chap 4 P.N0:88-90
Remainder theorem
18. Recapitulation and Discussion

of possible questions

Total No of Hours Planned For Unit I=18

UNIT-II

1. Fermat’s Little theorem T1:Chap 5 P.N0:97-98

2. Corollary and problems on T1:Chap 5 P.N0:98-102
Fermat’s Little theorem

3. Wilson’s theorem T1:Chap 5 P.No:102-104

4. Tutorial-1

5. Theorems and problems on T1:Chap 5 P.No:104-107
Wilson’s theorem

6. Number theoretic functions T1:Chap 6 P.No:110-111

7. Theorems on Number theoretic | T1:Chap 6 P.No:111-114
functions

8. Tutorial-2

0. Problems on Number theoretic T1:Chap 6 P.No:114-115
functions

10. Multiplicative functions T1:Chap 6 P.No:115-117
definition and theorems

11. Continuation of theorems on T1:Chap 6 P.No:117-118
Multiplicative functions

12. Tutorial-3

13. Corollary and Problems on T1:Chap 6 P.No:118-120
Multiplicative functions

14. Dirichelet Product Ri:Chap 5 P.No:119-120

15. Theorems on Dirichelet Product | Ri:Chap 5 P.No:120-123

16. Tutorial-4

17. Continuation of theorems on Ri:Chap 5 P.No:123-124
Dirichelet Product

18. Continuation of theorems on Ri:Chap 5 P.No:124-125
Dirichelet Product

19. Recapitulation and Discussion

of possible questions

Total No of Hours Planned For Unit II1=19

UNIT-1I1
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Lesson Plan

2016-2019
Batch

1. 1 The Mobius Inversion formula- T1:Chap 6 P.No:120-122
Definition and theorem

2. 1 Continuation of theorems and Problems | T1:Chap 6 P.No:122-125
on Mobius Inversion formula

3. 1 Tutorial-1

4. 1 The greatest integer function-Definition | T1:Chap 6 P.No:126
with example

5. 1 Theorems on the greatest integer T1:Chap 6 P.No:126-130
function

6. 1 Problems on The greatest integer T1:Chap 6 P.No:130-132
function

7. 1 Tutorial-2

8. 1 Euler’s phi-function-Definition with T1:Chap 7 P.No:136-137
example

9. 1 Theorems on Euler’s phi-function Ti:Chap 7 P.No:137-138

10. 1 Continuation of theorems on Euler’s T1:Chap 7 P.No:138-140
phi-function

11. 1 Tutorial-3

12. 1 Euler’s theorem T1:Chap 7 P.No:142-144
reduced set of residues

13. 1 Some related theorems for Euler’s T1:Chap 7 P.No:144-147
theorem

14. 1 Properties of Euler’s phi-function T1:Chap 7 P.No:148-149
- Theorem and examples

15. 1 Tutorial-4

16. 1 Continuation of theorem on T1:Chap 7 P.No:149-150
Properties of Euler’s phi-
function

17. 1 Problems on properties of Euler’s phi- | T1:Chap 7 P.No:150-152
function

18. 1 Tutorial-5

19. 1 Recapitulation and Discussion of
possible questions

Total No of Hours Planned

For Unit II11=19

UNIT-IV
1 1 Order of an integer modulo n- T1:Chap 8 P.No:156
Definition with example
2. 1 Theorems on Order of an integer T1:Chap 8 P.No:156-160
modulo n
3. 1 Problems on Order of an integer T1:Chap 8 P.No:160-162
modulo n
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Lesson Plan

2016-2019
Batch

4. 1 Tutorial-1

5. 1 Theorems on Primitive roots for primes | T1:Chap 8 P.No:162-164

6. 1 Continuation of theorem on Primitive T1:Chap 8 P.No:164-168
roots for primes

7. 1 Problems on Primitive roots for primes | T1:Chap 8 P.No:168-169

8. 1 Tutorial-2

9. 1 Theorems on primitive roots for T1:Chap 8 P.No:170-172
composite numbers

10. 1 Continuation of theorems and problems | Ti:Chap 8 P.No:173-175
on primitive roots for composite
numbers

11. 1 Euler criterion T1:Chap 9 P.No:184-187

12. 1 Tutorial-3

13. 1 Problems on Euler criterion T1:Chap 9 P.No:187-190

14. 1 Definition and theorems on Legendre T1:Chap 9 P.No:190-193
symbol and its properties

15. 1 Continuation of theorem on Legendre | T1:Chap 9 P.No:194-197
symbol and its properties

16. 1 Tutorial-4

17. 1 Continuation of theorem on Legendre | T1:Chap 9 P.No:197-201
symbol and its properties

18. 1 Problems on Legendre symbol and its | T1:Chap 9 P.No:201-203
properties

19. 1 Tutorial-5

20. 1 Recapitulation and Discussion of
possible questions

Total No of Hours Planned

For Unit IV=20

UNIT-V

1 1 Quadratic reciprocity-Introduction and | Ti:Chap 9 P.No:203-206
theorems

2. 1 Continuation of theorem and problems | Ti:Chap 9 P.No:206-210
on Quadratic reciprocity

3. 1 Theorems on quadratic congruences T1:Chap 9 P.No:210-214
with composite moduli

4. 1 Tutorial-1

5. 1 Problems on quadratic congruences T1:Chap 9 P.No:215
with composite moduli
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Lesson Plan

2016-2019
Batch

6. 1 The idea of public key crptography R>:Chap 4 P.No:83-85

7. 1 Continuation of the idea of public key | R2:Chap 4 P.No:86-88
Crptography

8. 1 Tutorial-2

0. 1 Classical vesus public key and R2:Chap 4 P.No:88-89
Authentication

10. 1 Hash functions, key exchange and R2:Chap 4 P.No:89
Probabilistic Encryption

11. 1 RSA encryption and decryption R>:Chap 4 P.N0:92-95

12. 1 Tutorial-3

13. 1 Theorems on Fermat’s Last theorem T1:Chap 11 P.No:250-

254

14. 1 Continuation of theorems on Fermat’s | T1:Chap 11 P.No:254-
Last theorem 256

15. 1 Problems on Fermat’s Last theorem T1:Chap 11 P.No:257-

258

16. 1 Tutorial-4

17. 1 Recapitulation and Discussion of
possible questions

18. 1 Discuss on Previous ESE Question
Papers

19. 1 Discuss on Previous ESE Question
Papers

20. 1 Discuss on Previous ESE Question
Papers

Total No of Hours Planned

for unit V=20

Total Planned Hours 96
SUGGESTED READINGS
TEXT BOOK
1. David M. Burton, (2007). Elementary Number Theory, Sixth Edition, Tata McGraw-Hill,
Delhi.
REFERENCES

1. Neville Robinns, (2007). Beginning Number Theory, 2nd Ed., Narosa Publishing House Pvt.

Ltd., Delhi.

2. Neal Koblitz., (2006).A course in Number theory and cryptography,Second Edition,
Hindustan Book Agency, New Delhi.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Se MATHEMATICS COURSE NAME: NUMBER THEORY
COURSE CODE: 16 MMUS02A UNIT: 1 BATCH-2016-2019
UNIT-I
SYLLABUS

Linear Diophantine equation, prime counting function, statement of prime number theorem,
Goldbach conjecture, linear congruences, complete set of residues, Chinese Remainder theorem.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Se MATHEMATICS COURSE NAME: NUMBER THEORY
COURSE CODE: 16 MMUS02A UNIT: 1 BATCH-2016-2019

THE GREATEST COMMON DIVISOR
DeriniTion 2-1. An integer b is said to be divisible by an integer
a # 0, in symbols a | b, if there exists some integer ¢ such that b —ar.
We write @ ¥ b to indicate that 4 is not divisible by a.

Thus, for example, —12 is divisible by 4, since —12 = 4(—3).

However, 10 is not divisible by 3; for there is no integer ¢ which makes

the statement 10 = 3¢ true.

There is other language for expressing the divisibility relation

a|b. One could say that a is a divisor of b, that a is a factor of b ot that
b is a multiple of a. Notice that, in Definition 2-1, there is a restriction
on the divisor a: whenever the notation 4 | 4 is employed, it is understood
that 4 is different from zero.

If a is a divisor of &, then b is also divisible by —a (indeed, b = a¢

implies that &= (—a)(—¢)), so that the divisors of an integer always
occur in pairs. In order to find all the divisors of a given integer, it is
sufficient to obtain the positive divisors and then adjoin to them the
corresponding negative integers. For this reason, we shall usually limit
ourselves to a consideration of positive divisors,

THEOREM 2-2.  For integers a, b, ¢, the Sollowing hold:

(1)
()
(3)
*
()
©)
(7)

al|0,1|a,2|a

a|lifandonly if a= 4 1.

Ifa|band¢|d, then ac | bd.

Ifalbandb|c, thena|e.

a|bandb|aif and only if a= | b.

Ifa|band b0, then |a| <|b|.

If a|band a|c, then a|(bx + ¢y) Jor arbitrary integers x and .
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Se MATHEMATICS COURSE NAME: NUMBER THEORY
COURSE CODE: 16 MMUS02A UNIT: 1 BATCH-2016-2019

DerFINITION 2-2. Let a and 4 be given integers, with at least one of
them different from zero. The greatest common divisor of a and b,
denoted by gcd (g, ), is the positive integer 4 satisfying

(1) d|aandd|b,
(2) ifr|aandc|b, thene<d.

Example 2-1
The positive divisors of —12 are 1, 2, 3, 4, 6, 12, while those of

30arel, 2, 3,5,06, 10, 15, 30; hence, the positive common divisors of
—12 and 30 are 1, 2, 3, 6. Since 6 is the largest of these integers, it
follows that gcd (—12, 30) = 6. In the same way, one can show that

ged (—5,5)=5, gcd(8,17)=1, and gcd(—8, —36)=4.
Note
The next theorem indicates that gcd (4, £) can be represented as a
linear combination of a and & (by a /inear combination of a and b, we mean
an expression of the form ax -+ by, where x and y are integers). This is
illustrated by, say,
ged (—12,30)=6=(—12)2+30-1
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Se MATHEMATICS COURSE NAME: NUMBER THEORY
COURSE CODE: 16 MMUS02A UNIT: 1 BATCH-2016-2019

THEOREM 2-3.  Given integers a and b, not both of which are zero, there
exist integers x and y such that

ged (a, b) = ax + by.

Proof: Consider the set S of all positive linear combinations of
and b:

S={au+bv| au—+ bv > 0; u, v integers}.

Notice first that § is not empty. For example, if @ 0, then the
integer | a | = a# +& - 0 will lie in 5, where we choose ¥ =1 or #=
—1 according as 4 is positive or negative. By virtue of the Well-
Ordering Principle, 3 must contain a smallest element 4. Thus, from

the very definition of S, there exist integers x and y for which 4=
ax + by. We claim that 4= gcd (g, b).

Taking stock of the Division Algorithm, one can obtain
integers ¢ and r such that 2 = gd + r, where 0 <r < 4. 'Then r can
be written in the form

r=a—qgd=a— g(ax+ by)
= a(l — gx) + o(—q).
Were r > 0, this representation would imply that r is a member of 5,
contradicting the fact that 4 is the least integer in .S (recall that r < d).
Therefore, r =0 and so g = gd, or equivalently, 4 | @. By similar
reasoning d | 4, the effect of which is to make Za common divisor of
both z and 4.

Now if ¢ is an arbitrary positive common divisor of the
integers @ and &, then part (7) of Theorem 2-2 allows us to conclude
that ¢ | (ax + 4y); in other words, ¢ | 4. By (6) of the same theorem,
¢=|¢| <|d|=4d, so that d is greater than every positive common

divisor of  and /. Piecing the bits of information together, we see
that d= gcd (g, 5).
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CLASS: III B.Se MATHEMATICS COURSE NAME: NUMBER THEORY
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COROLLARY. If a and b are given integers, not both zero, then the set
T=/{ax 4 by| x, y are integers)
is precisely the set of all multiples of d= gcd (a, b).

Proof: Sinced| aandd| b, we know that d| (ax + by) for all integers
x,). Thus, every member of T'is a multiple of 4. On the other hand,

d may be written as d = ax, + by, for suitable integers x, and y,,
so that any multiple #d of 4 is of the form

nd = nlaxo + by,) = a(nx,) + b(ny,).
Hence, #d is a linear combination of 4 and b, and, by definition, lies
inT,
It may happen that 1 and —1 are the only common divisors of a
given pair of integers 4 and 4, whence ged (2, b)=1. For example:

ged (2, 5) = ged (—9, 16) = ged (—27, —35) = 1.

DEFINITION 2-3. Two integers @ and b, not both of which are
zero, are said to be relatively prime whenever ged (a, b)=1.

THEOREM 2-4. Let a and b be integers, not both zero. Then a and b
are relatively prime if and only if there exist integers x and y such that
1 =ax+ by.

Proof: 1f a and b are relatively prime so that ged (4, #) = 1, then
Theorem 2-3 guarantees the existence of integers x and y satisfying
l=ax+4y. As for the converse, suppose that 1=ax -+ by for
some choice of x and j, and that /= ged (4, 4). Sinced|aandd| &,
Theorem 2-2yields d | (ax + by),or d| 1. Inasmuch asd is a positive
integer, this last divisibility condition forces 4=1 (part (2) of
Theorem 2-2 plays a role here) and the desired conclusion follows.
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CLASS: III B.Se MATHEMATICS COURSE NAME: NUMBER THEORY
COURSE CODE: 16 MMUS02A UNIT: 1 BATCH-2016-2019

CoroLrAry 1. If ged (4, b) = d, then ged (ald, bjd) = 1.

Progf: Before starting with the proof proper, we should observe
that while 4/d and /d have the appearance of fractions, they are in
fact integers since 4 is a divisor both of @ and of 4. Now, knowing
that ged (4, b)) =4, it is possible to find integers x and y such that
d=ax -+ by. Upon dividing each side of this equation by 4, one
obtains the expression

1 = (afd)x + (5.
Because 4/d and b/d are integers, an appeal to the theorem is legiti-
mate. The upshot is that a/d and b/d are relatively prime.
For an illustration of the last corollary, let us observe that
ged (—12, 30) = 6 and
ged (—12/6, 30/6) = ged (—2, 5) =1,

COROLLARY 2. Ifal|candb|c, with ged (a, b) =1, then ab | c.

Proof: Inasmuchasa|c¢and | ¢, integers r and s can be found such
that ¢ = ar = bs. Now the relation ged (4, #) = 1 allows us to write
1= ax + by for some choice of integers x and y. Multiplying the
last equation by ¢, it appears that

¢=c¢-1=c(ax+ by) = acx + bey.

If the approptiate substitutions are now made on the right-hand side,
then
¢ = a(bs)x + blar)y = ab(sx + ry)

or, as a divisibility statement, ab | .
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CLASS: III B.Se MATHEMATICS COURSE NAME: NUMBER THEORY
COURSE CODE: 16 MMUS02A UNIT: 1 BATCH-2016-2019

THEOREM 2-5 (Euclid’s Lemma). If a | be, with ged (a, b) =1, then
al e

Proof: We start again from Theorem 2-3, writing 1= ax + by
where x and y are integers. Multiplication of this equation by ¢
produces

c=1:c=(ax+ by)c= acx + bey.

Since a | ar and 4| be, it follows that « | (acx + bey), which can be
recast as 4 | ¢.

If 4 and b are not relatively prime, then the conclusion of Euclid’s
Lemma may fail to hold. A specific example: 12| 9. 8, but 12 4 9 and
12 4 8.

TuroreM 2-6.  Let a, b be integers, not both zero. For a positive integer
d, d = gcd (a, b) if and only if
rd

(1) d|aandd|b,
(2) whenever ¢ | a and ¢ | b, then ¢ | d.

THE DIOPHANTINE EQUATION ax + by =
It is customary to apply the term Diophantine equation to any

equation in one or more unknowns which is to be solved in the integers.
The simplest type of Diophantine equation that we shall consider is

the linear Diophantine equation in two unknowns:
ax + by =¢,

where 4, b, ¢ are given integers and 4, b not both zero. A solution of this
equation is a pair of integers x,, yo which, when substituted into the
equation, satisfy it; that is, we ask that ax, + 4y, = <. Curiously cnough,
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A given linear Diophantine equation can have a number of
solutions, as with 3x + 6y = 18, where
3.4+ 6-1 = 18,
3(—6) + 6-6 =18,
3.10 + 6(—2) = 18.
By contrast, there is no solution to the equation 2x + 10y =17. Indeed,

the left-hand side is an even integer whatever the choice of x and y,
while the right-hand side 1s not.

THEOREM 2-9.  The linear Diophantine equation ax + by = ¢ has a solution
if and only if d| ¢, where d=gcd(a, b). If xq, yo is any particular

solution of this equation, then all other solutions are given by
x=xo+ (bld)t,  y=yo—(ald)t
Sfor varying integers £.
Proof: To establish the second assertion of the theorem, let us

suppose that a solution x,, 3, of the given equation is known. If
x', y' is any other solution, then

axy—+ by, =¢c=ax'+ by’,
which is equivalent to

a(x' — x0) =y —J'").
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Se MATHEMATICS COURSE NAME: NUMBER THEORY

COURSE CODE: 16 MMUS02A UNIT: I BATCH-2016-2019

By the Corollary to Theorem 2-4, there exist relatively prime integers
r and s such that a =dr, b =ds. Substituting these values into the
last-written equation and cancelling the common factor &, we find
that

r(x’ — xp) = 5(yo —").
The situation is now this: r | s(y, — "), with ged (r, 5) = 1. Using
Euclid’s Lemma, it must be the case that » | (¥, —»'); or, in other
words, y, — 3 = rtfor some integer #. Substituting, we obtain
x'— xo = st.

This leads us to the formulas

X" = xq + 5t = xq + (b]d)s,
V' =Yo—rt=y,— (ald)t.

It is easy to see that these values satisfy the Diophantine equation,
regardless of the choice of the integer #; for,

ax’ + by' = a[xo + (4/d)t] + b[ yo — (a|d)¢]
= (axo + by,) + (abld — abld)t
=¢+0.2=0¢.

Thus there are an infinite number of solutions of the given equa-
tion, one for each value of ~

Example 2-3
Consider the linear Diophantine equation

1725 4+ 20y = 1000.

Applying Euclid’s Algorithm to the evaluation of ged (172, 20), we
find that

172 =8-20 412,
2021“12—"_83
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: 111 B.Sc MATHEMATICS COURSE NAME: NUMBER THEORY
COURSE CODE: 16MMUS02A UNIT: I BATCH-2016-2019
12=1.844,
Resilf,

whence ged (172, 20) = 4. Since 4| 1000, a solution to this equa-
tion exists. To obtain the integer 4 as a linear combination of
172 and 20, we work backwards through the above calculations, as
follows:

4==12-8
=12— (20— 12)
=312 2

—=2(172 —8-20) — 20
=2.172 4 (—17)20.
Upon multiplying this relation by 250, one arrives at
1000 — 250 - 4 — 250[2 - 172 + (—17)20]
= 500 - 172 + (—4250)20,

so that x = 500 and y = —4250 provides one solution to the Dio-
phantine equation in question. All other solutions are expressed by

s = 500 4 (20/4)# = 500 4 54,
y= —4250 — (172/4)t = —4250 — 43¢

for some integer £

A little further effort produces the solutions in the positive
integers, if any happen to exist. For this, # must be chosen so as to
satisfy simultaneously the inequalities

5¢ -+ 500 >0, —43¢t— 4250 >0

or, what amounts to the same thing,

—9838 -~ s> —100.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Se MATHEMATICS COURSE NAME: NUMBER THEORY
COURSE CODE: 16 MMUS02A UNIT: 1 BATCH-2016-2019

Since 7 must be an integer, we are forced to conclude that f — —99.
Thus our Diophantine equation has a unique positive solution x = 5,
J =1 corresponding to the value # = —99,

COR{:.)LMRY.. If ged(a, b) =1 and if x,, 3o is a particular solution of
the linear Diophantine equation ax + by = ¢, then all solutions are given

by

x=ux,+bt, y=y,— at

Jor integral values of t.

Example 2-4

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE

A customer bought a dozen pieces of fruit, apples and oranges,
tor $1.32. If an apple costs 3 cents more than an orange and more
apples than oranges were purchased, how many pieces of each kind
were bought?

To set up this problem as a Diophantine equation, let x be
the number of apples and y the number of oranges purchased; also,
let z represent the cost (in cents) of an orange. Then the conditions
of the problem lead to

(z+3)x+%y: 132
or equivalently

3x + (> +3)z =132,
Since x 4 y = 12, the above equation may be replaced by
3x 4+ 122 =132,

which in turn simplifies to x -+ 4z — 44,
o Stripped of inessentials, the object is to find integers x and z
satisfying the Diophantine equation

(*) ' x4+ 4z = 44,
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Inasmuch as gcd (1, 4) = 1 is a divisor of 44, there is a solution to this
equation. Upon multiplying the relation 1 =1(—3) + 4.1 by 44 to

gct
44 = 1(—132) + 4 - 44,

it follows that x, — —132, 2z, = 44 serves as one solution. All other
solutions of (x) are of the form

x=—132 4 44,

z=44 — ¢

where / is an integer.

Not all of the infinite set of values of ¢ furnish solutions to
the original problem. Only values of # should be considered which
will ensure that 12 > x > 6. This requires obtaining those ¢ such that

12> —132 + 44> 6.

Now, 12> —132 + 4¢ implies that #< 36, while —13244£>6
gives # > 344. The only integral values of # to satisfy both inequali-

ties are # = 35 and #=36. Thus there are two possible purchases:

a dozen apples costing 11 cents apiece (the case where #=36), or

else 8 apples at 12 cents each and 4 oranges at 9 cents each (the
case where #= 35).

DeFiniTION 3-1.  Aninteger p > 1is called a prime number, ot simply

a prime, if its only positive divisors are 1 and p. An integer greater
than 1 which is not a prime is termed composite.

THE GOLDBACH CONJECTURE
While there is an infinitude of primes, their distribution within the positive
integers is most mystifying. Repeatedly in their distribution one finds
hints or, as it were, shadows of a pattern; yet an actual pattern amenable
to precise description remains unfound. The difference between con-
secutive primes can be small as with the pairs 11 and 13, 17 and 19, or
for that matter 1,000,000,000,061 and 1,000,000,000,063. At the same
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time there exist arbitrarily long intervals in the sequence of integers which
are totally devoid of any primes.

It is an unanswered question whether there are infinitely many
pairs of fwin primes; that is, pairs of successive odd integers p and p -+ 2
which are both primes. Numerical evidence leads us to suspect an
affirmative conclusion. Electronic computers have discovered 152,892
pairs of twin primes less than 30,000,000 and twenty pairs between 1012
and 10*2 + 10,000, which hints at their growing scarcity as the positive
integers increase in magnitude.

Consecutive primes can not only be close together, but also be
far apart; that is, arbitrarily large gaps can occur between consecutive
primes. Stated precisely: Given any positive integer #, there exist »
consecutive integers, all of which are composite. To prove this, we need
simply consider the integers

D2, ()43, .., (r+ D (4 1),

where (# + 1)l =@ +1) - n--.3.2.1. Cleatly there are # integers listed
and they are consecutive. What is important is that each integer is
composite; for, (# + 1)! + 2 is divisible by 2, (# + 1)! + 3 is divisible by
3, and so on.

For instance, if a sequence of four consecutive composite integers
is desired, then the argument above produces 122, 123, 124, and 125:

51 +2=122=2. 61,
51 43=123=3.4],
51 +4—=124—4.31,
5] 4 § w195 = 8.5,
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Of course, one can find other sets of four consecutive composites, such
as 24, 25, 26, 27 or 32, 33, 34, 35.

This brings us to another unsolved problem concerning primes,
the Goldbach Conjecture. In a letter to Euler (1742), Christian Goldbach

hazarded the guess that every even integer is the sum of two numbers

that are either primes or 1. A somewhat more general formulation is that
every even integer greater than 4 can be written as a sum of two odd
prime numbers. This is easy to confirm for the first few even integers:

2=1+41

4=2+42=1+3
6=3+43=145
8=3+45=147

10=3+7=5+5

12=547=1+11
4=3+11=74+7=1413
16=3+413=5+11
18=54+13=74+11=1+17
20=34+17=74+13=1+19
22=3419=54+17=11+11
24=54+19=74+17=11+4+13=1 423
26=3+4+23=7+19=13+13
28=5+423=11+17
30=74+23=11+19=13417=1 +29.
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It seems that Euler never tried to prove the result, but, writing to Gold-
bach at a later date he countered with a conjecture of his own: any even
integer (>>6) of the form 4# 4 2 is a sum of two numbers each being
either primes of the form 47 41 or 1.

The numerical evidence for the truth of these conjectures is
overwhelming (indeed Goldbach’s Conjecture has been verified for all
even integers up to 100,000), but a general proof or counterexample is
still awaited. The nearest approach of modern number theorists to
Goldbach’s Conjecture is the result of the Russian mathematician Vino-
gradov, which states: Almost all even integers are the sum of two primes.
The technical meaning of the term “almost all™ is that if 4(#) denotes
the number of even integers » <# which are not representable as the
sum of two primes, then

lim A(n)n=0.

= o
As Landau so aptly put it, “ The Goldbach conjecture is false for at most
09 of all even integers; this at most 0%, does not exclude, of course, the

possibility that there are infinitely many exceptions.”
We remark that if the conjecture of Goldbach is true, then each

odd number larger than 7 must be the sum of three odd primes. For,
take # to be an odd integer greater than 7, so that # — 3 is even and greater

than 4; if #— 3 could be expressed as the sum of two odd primes, then »
would be the sum of three. In 1937, Vinogradov showed that this does
indeed hold for every sufficiently large odd integer, say greater than IN.
Thus, it is enough to answer the question for every odd integer » in the
range 9 <z < N, which for a given integer becomes a matter of tedious

computation (unfortunately, N is so large that this exceeds the capabilities
of the most modern electronic computers).
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-

Vinogradov’s result implies that every sufficiently large even
integer is the sum of not more than four odd primes. Thus, there is a

number N such that every even integer beyond N is the sum of either
two or four odd primes.

Having digressed somewhat, let us observe that according to

the Division Algorithm, every positive integer can be written uniquely
in one of the forms

4n,4n + 1, 4n+ 2, 4n + 3

for some suitable » > 0. Clearly, the integers 4n and 4n + 2 — 2(2n + 1)
are both even. Thus, all odd integers fall into two progressions: one
containing integers of the form 4# + 1,
1, 5,9.13; 17, 21, ...
and the other containing integers of the form 4z + 3,
3, T 8,25, 19, 2% uv s

While each of these progressions includes some obviously prime numbers,
the question arises as to whether each of them contains infinitely many

primes. This provides a pleasant opportunity for a repeat performarice
of Euclid’s method for proving the existence of an infinitude of primes.
A slight modification of his argument reveals that there are an infinite

number of primes of the form 47 + 3. We approach the proof through a
simple lemma.

LemMma.  The product of two or more integers of the Jorm 4n 41 is of the
sarmie form.

Progf: It is sufficient to consider the product of just two integers.

Let A=4n+1 and A& =4m + 1. Multiplying these together, we
obtain

AR = (4n ++ 1)(4m + 1)
:16#m+4ﬂ—}—4m+1m4{4#m +n+m) 41,
which is of the desired form.

This paves the way for:
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THEOREM 3-6.  There is an infinite number of primes of the form 4n + 3.

Progf: 1In anticipation of a contradiction, let us assume that there
exist only finitely many primes of the form 4# 4+ 3; call them ¢,
G2, -+, gs. Consider the positive integer

N=44.19:- . — 1 =419z~ q.—1)+3

and let N=r,r,--.r, be its prime factorization. Since N is an odd
integer, we have 7, # 2 for all 4, so that each r, is either of the form
47 +-1 or 4n + 3. By the Lemma, the product of any number of
primes of the form 4x + 1 is again an integer of this type. For N to
take the form 4z + 3, as it clearly does, N must contain at least one
prime factor 7, of the form 47 -- 3. But , cannot be found among the
listing ¢, , ¢a, ..., 4y, for this would lead to the contradiction that
ri| 1. The only possible conclusion is that there are infinitely many
primes of the form 47 + 3.

Having just scen that there arce infinitely many primes of the form
4n 4 3, one might reasonably ask: Is the number of primes of the form
4n +1 also infinite? This answer is likewise in the affirmative, but a
demonstration must await the development of the necessary mathematical
machinery. Both these results are special cases of a remarkable theorem
by Dirichlet on primes in arithmetic progressions, established in 1837.
The proof is much too difficult for inclusion here, so that we content
ourselves with the mere statement.
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Tueorem 3-7 (Dirichlet). If a and b are relatively prime positive .
integers, then the arithmetic progression

a,a+t+b,a+2b,a+4 35, ..,

contains infinitely many primes.

There is no arithmetic progression a, a + b, a + 2b, ... that con-
sists solely of prime numbers. To see this, suppose that 2 ++ #b = p, where

pis a prime. If we put n,=» | £p for A=1, 2, 3, ..., then the #th
term in the progression is

a+mb=a+(n4 kp)b = (a + nb) + kpb = p + kpb.
Since each term on the right-hand side is divisible by p, so is @ + #,é.

In other words, the progression must contain infinitely many composite
numbers.

It has been conjectured that there exist arithmetic progressions of

. ® - r - =
finite (but otherwise arbitrary) length, composed of consecutive prime
numbers. Examples of such progressions consisting of three and four

primes, respectively, are 41, 47, 53 and 251, 257, 263, 269. Not long ago,
a computer search revealed progressions of five and six consecutive primes,
the terms having 2 common difference of 30; these begin with the primes

9,843,019 and  121,174.811.

We are not able to discover, at least for the time being, an arithmetic
progtession consisting of seven consecutive primes. When the restriction
that the prime numbers involved be consecutive is removed, then it is
possible to find infinitely many sets of seven primes in an arithmetic
progression; one such is 7, 157, 307, 457, 607, 757, 907.
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In interests of completeness, we might mention another famous
problem that so far has resisted the most determined attack. For cen-
turies, mathematicians have sought a simple formula that would yield
every prime number or, failing this, a formula that would produce
nothing but primes. At first glance, the request seems modest enough:
find a function f(#) whose domain is, say, the nonnegative integers and
whose range is some infinite subset of the set of all primes. It was widely
believed in the Middle Ages that the quadratic polynomial

f)y=n?4+n-+41

assumed only prime values. As evidenced by the following table, the

claim is a cotrect one for n=10,1, 2, ..., 39.
nfm o S n S
0 41 14 251 28 853
1 43 15 281 29 911
2 47 16 313 30 971
3 53 17 347 31 1033
4 61 18 383 32 1097
5 i 19 421 33 1163
6 83 20 461 34 1231
7 97 21 503 35 1301
8 113 22 547 36 1373
9 131 23 593 37 1447
10 151 24 641 38 1523
11 173 25 691 39 1601
12 197 26 743
13 223 27 797
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However, this provocative conjecture is shattered in the cases
n = 40 and #» = 41, where there is a factor of 41:

f(40) =40 - 41 + 41 = 417
and
f(41) =41 - 42 4 41 =41 - 43.

The next value f(42) = 1747 turns out to be prime once again. It is not
presently known whether f(#)=#%4 7+ 41 assumes infinitely many

prime values for integral .
The failure of the above function to be prime-producing is no

accident, for it is easy to prove that there is no nonconstant polynomial
f(n) with integral coefficients which takes on just prilne values for integral

n. We assume that such a polynomial f(#) actually does exist and argue
until a contradiction is reached. Let

f)=an* +a,_ 1 4 fagn® +ayn+a,

where the coefficients 4o, a,, ..., a, are all integers and 4, #0. For a
fixed value of n, say n=n,, p =f(#,) is a prime number, Now, for any
integer #, we consider the expression f(#, + £9):

Sno + 1p) = ay(no + 1p)* + - - 4+ as(mo + Ip) + ao
= (@ 7" + -+ + ayng + ao) + pO(?)

= f(n0) + pQO(*)
= p + pO() = p(1 +00)),
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where O(#) is a polynomial in # having integral coefficients. Our reason-
ing shows that p | f(n, + #p); hence, from our own assumption that f(#)
takes on only prime values, f(n, +7p) =p for any integer £ Since a
polynomial of degree 4 cannot assume the same value more than £ times,
we have obtained the required contradiction.

Recent years have seen a measure of success in the search for
prime-producing functions. W. H. Mills proved (1947) that there exists
a positive real number r such that the expression f(n) = [r®"] is prime
for n=1, 2, 3, ... (the bracket indicates the greatest integer function).
Needless to say, this is strictly an existence theorem and nothing is
known about the actual value of r.-

BASIC PROPERTIES OF
CONGRUENCE

DEeFINITION 4-1.  Let # be a fixed positive integer. Two integers 4
and & are said to be congruent modulo n, symbolized by

a=b (mod n)
if # divides the difference 4 — 4; that is, provided that 2 — b = kn
for some integer £.
To fix the idea, consider = 7. It is routine to check that
3=24(mod7), —31=11(mod7), —15=—64(mod 7),

since 3 —24=(—-3)7, —31—11=(—6)7, and —15—(—64)=7.7.
If # ¥ (a—b), then we say that a is incongruent to b modulo n and in this

case we write @3 & (mod #). For example: 253 12 (mod 7), since 7
fails to divide 25 — 12 =13,
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Complete Set Residue

Given an integer 4, let g and  be its quotient and remainder upon
division by #, so that

a=qgn-+r, | o g

Then, by definition of congruence, a=r (mod #»). Since there are »
choices for r, we see that every integer is congruent modulo # to exactly
one of the values 0, 1, 2, ..., »— 1; in particular, 2= 0 (mod ) if and
only if #|a. The set of » integers 0, 1, 2, ..., n— 1 is called the set of

least positive residues modulo n.

In general, a collection of # integers a,, a5, ..., a, is said to
form a complete set of residues (or a complete system of residues) modulo n if
every integer is congruent modulo # to one and only one of the 4, ; to
put it another way, ,, 45, ..., @, are congruent modulo # to 0, 1, 2, ...
n — 1, taken in some order, For instance,

12, —4, 11,13, 22, 82, 91
constitute a complete set of residues modulo 7; here, we have
—12=2, —4=3,11=4,13=6,22—1, 82=5, 91 =0,

all modulo 7. An observation of some importance is that any # integers
form a complete set of residues modulo # if and Dnl}r if no two of the
integers are congruent modulo ».

TueoreM 4-1.  For arbitrary integers a and b, a=b (mod n) if and
only if a and b leave the same nonnegative remainder when divided by n.

Progf: First, take a == b (mod #), so that a — b - 4» for some integer
4. Upon division by #, b leaves a certain remainder r: b= gn +r,
where 0 < r < #. Therefore,

a=b+kn=(gn+r)+hn=(q+Fntr,

which indicates that ¢ has the same remainder as .
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On the other hand, suppose we can write 2= 4,7 + r and
b = g, n + r, with the same remainder » (0 <» <#). Then

a—b=(qn+r)—(gan+7)=(q: — 92",
whence #| a—b. In the language of congruences, this says that
a=h (mod »).

Example 4-1
Since the integers —56 and — 11 can be expressed in the form

—56=(—79+17, —11=(=2)947
with the same remainder 7, Theorem 4-1 tells us that —56= _11
(mod 9). Going in the other direction, the congruence —31 =11

(mod 7) implies that —31 and 11 have the same remainder when
divided by 7; this is clear from the relations

—31=(-57+4, 11=1.7 44
THEOREM 4-2. Let n >0 be fixed and a, b, ¢, d be arbitrary integers.
Then the following properties hold:
(1) a=a(mod #).
(2) If a=b(mod #), then b==a (mod »).
(3) Ifa==b(mod #) and b= (mod ), then a= ¢ (mod »).
(4) Ifa=b(mod n) and c =d (mod #), then a + c=b 4 d (mod #)
and ac = bd (mod 7).
(5) Ifa=b(mod #), then a + ¢=b + ¢ (mod #) and ac = be (mod #).
(6) If a=b (mod n), then a*=0b* (mod #) for any positive integer k.
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Proof: For any integer a, we have 4 —a= 0.5, so that a=ua
(mod 7). Now if a=b (mod #), then a — b = £xn for some integer
k. Hence, b — a = —(kn) = (—A)n and, since —£ is an integer, this
yields (2).

Property (3) is slightly less obvious: Suppose that a==15
(mod #) and b ==¢ (mod #). Then there exist integers # and 4 satis-
fyinga— b= hnand b — ¢ = kn. It follows that

a—c=(a—b)+(b—c)=hn+ kn=(h - k)n,
in consequence of which a=¢ (mod #).

In the same vein, if a= 4 (mod #) and r=d (mod #), then
we are assured that a — b= A, n and ¢ — d = A, n for some choice of
k,and £,. Adding these equations, one gets

(@+0)~ @ +d)=(a—b)+(c—d)
—Kkyn+ hon—=(k, + ky)n

or, as a congruence statement, ¢ + ¢ =& 4 d(mod #)., As regards the
second assertion of (4), note that

ac = (b + kyn)(d + kon) = bd + (bky + dk, + ky kyn)n.

Since bk, + dAy + A, Ay m is an integer, this says that ac — bd is divis-
ible by #, whence a¢ = bd (mod #).

The proof of property (5) is covered by (4) and the fact that
¢=¢ (mod #). Finally, we obtain (6) by making an induction argu-
ment. The statement certainly holds for # = 1, and we will assume
it is true for some fixed £. From (4), we know that =4 (mod »)
and ¢* = b* (mod #) together imply that as* = bb* (mod #), or equiv-
alently, @*** = b**! (mod #). This is the form the statement should
take for £ + 1, so the induction step is complete.
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Example 4-2

Let us endeavor to show that 41 divides 22° - 1. We begin by
noting that 2°= —9 (mod 41), whence (2°)* =(—9)* (mod 41) by
Theorem 4-2(6); in other words, 22°= 81 . 81 (mod 41). But 81 =

—1 (mod 41) and so 81 - 81=1 (mod 41). Using parts (2) and (5)
of Theorem 4-2, we finally arrive at

220 —1=81:81—1=1—1=0(mod 41).

Thus 41 | 22° — 1, as desired.

THeOREM 4-3.  If ca=ch (mod #), then a=b (mod n|d), where d =
ged (¢, 7).

Proof: By hypothesis, we can write
t(a — by = ca — cb = kn

for some integer 4. Knowing that ged (¢, #) = 4, there exist relatively
prime integers r and s satisfying ¢ = dr, # = ds. When these values are
substituted in the displayed cquation and the common factor 4
cancelled, the net result is

rla— b) = k.

Hence, 5| r(@— &) and ged(r, 5)=1. Euclid’s Lemma implies that
5| a— b, which may be recast as a=5 (mod s); in other words,

a= b (mod nld).

CorOLLARY 1. If ca=ch (mod #) and gcd(e,m)=1, then a=b
(mod #).

CoROLLARY 2. Ifca=cb(mod p) and p } ¢, where p is a prime number,
then a= b (mod p).

.0‘.
Proof: The conditions p 4 ¢ and p a prime imply that ged (¢, p) = 1.
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Example 4-4

Consider the congruence 33 = 15 (mod 9) o, if one prefers, 3 - 11 =
3.5 (mod 9). Since gcd (3, 9) = 3, Theorem 4-3 leads to the con-
clusion that 11 =5 (mod 3). A further illustration is furnished by
the congruence — 35 = 45 (mod 8), which is the same as 5 - (—7) =
5.9 (mod 8). The integers 5 and 8 being relatively prime, we
may cancel to obtain a correct congruence —7 =9 (mod 8).

LINEAR CONGRUENCES
An equation of the form ax =4 (mod »)
is called a /inear congruence, and by a solution of such an equation we
mean an integer x, for which ax, =45 (mod #). By definition, ax, =}
(mod #) if and only if # | ax, — b or, what amounts to the same thing, if
and only if ax,— b =1ny, for some integer y,. Thus, the problem of
finding all integers satisfying the linear congruence ax =4 (mod #) is
identical with that of obtaining all solutions of the linear Diophantine
equation ax — ny = b,

It is convenient to treat two solutions of ax = # (mod #») which are
congruent modulo 7 as being “equal” even though they are not equal in
the usual sense. For instance, x =3 and x = —9 both satisfy the con-
gruence 3x = 9 (mod 12); since 3 = —9 (mod 12), they are not counted as
different solutions. In short: When we refer to the number of solutions

of ax = b (mod #), we mean the number of incongruent integers satisfying
this congruence.
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THEOREM 4-7. The linear congruence ax =b (mod #) has a solution if
and only if d| b, where d— ged (a, n). If d| b, then it has d mutually
incongruent solutions modulo n.

Proof: We have already observed that the given congruence is
equivalent to the linear Diophantine equation ax — #y=54. From
Theorem 2-9, it is known that the latter equation can be solved if
and only if 4| ; moreover, if it is solvable and x,, y, is one specific
solution, then any other solution has the form
;.;-:xn_g.f; J’=.}‘u+ff

d’ d
for some choice of *.

Among the various integers satisfying the first of these for-
mulas, consider those which occur when # takes on the successive
vahues =0, 1, 2, 5., d~—1;

(d—1)n g
S

:'*':xﬂ+

We claim that these integers are incongruent modulo #, while all

other such integers x are congruent to some one of them. If it hap-
pened that

i

xu—l—d

2, =5, -+ gfz (mod ),
where 0 < #, <7, <d— 1, then one would have

t =- 1, (mod »).

N
nLl @
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Now gcd (#/d, n) = n|d and so, by Theorem 4-3, the factor #/d could
be cancelled to arrive at the congruence

rf]_ — ;2 (m{]‘d d),

which is to say that 4| 7, — #,. But this is impossible, in view of
the inequality O0< £, — #, < d.

It remains to argue that any other solution x, + (#/d)? is
congruent modulo # to one of the d integers listed above. The
Division Algorithm permits us to write / as t=gd +r, where
0<r<d—1. Hence

n

"
X0 “|—3f:xu ‘f—d(ﬁj'd—l—f)

. A —I—r:g—i—gr

n

p r (mod n),

= X +

with x, + (#/d)r being one of our 4 selected solutions. This ends the
proof.

The argument that we gave in Theorem 4-7 brings out a point
worth stating explicitly: If x, is any solution of ax = b (mod #), then the
d = ged (4, #) incongruent solutions are given by

Xq, Xo +nld, xo +2(nd), ..., 30 +(d— 1)(n/d).

CoroLrAry. If ged (a, #) = 1, then the linear congruence ax = b (mod #)
has a unique solution modulo n.
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Example 4-6

Consider the linear congruence 18x == 30 (mod 42). Since gcd (18,
42) = 6 and 6 surely divides 30, Theorem 4-7 guarantees the existence
of exactly six solutions, which are incongruent modulo 42. By

inspection, one solution is found to be x = 4. Our analysis tells us
that the six solutions are as follows:

x=4+ (42/6)t =4+ 7t (mod 42), ¢t=0,1,...,5
or, plainly enumerated,

x=4, 11, 18, 25, 32, 39 (mod 42).
Example 4-7

Let us solve the linear congruence 9x = 21 (mod 30). At the outset,
since gcd (9, 30) = 3 and 3| 21, we know that there must be three
incongruent solutions.

One way to find these solutions is to divide the given con-
gruence through by 3, thereby replacing it by the equivalent con-
gruence 3x = 7 (mod 10). The relative primeness of 3 and 10 implies

that the latter congruence admits a unique solution modulo 10.
Although it is not the most cflicicnt mcthod, wc could test the inte-
gers 0, 1, 2, ..., 9 in turn until the solution is obtained. A better
way is this: multiply both sides of the congruence 3x =7 (mod 10)
by 7 to get

21x =49 (mod 10),

which reduces to x = 9 (mod 10). (This simplification is no accident,
for the multiples 0-3, 1.3, 2.3, ..., 9-3 form a complete set of
residues modulo 10; hence, one of them is necessarily congruent to
1 modulo 10.) But the original congruence was given modulo 30,

so that its incongruent solutions are sought among the integers

0,1,2,...,29. Taking =0, 1, 2, in the formula g

x =9+ 104
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one gets 9, 19, 29, whence
x =9 (mod 30), x=19 (mod 30), x =29 (mod 30)

are the required three solutions of 9x = 21 (mod 30).
A different approach to the problem would be to use the

method that is suggested in the proof of Theorem 4-7. Since the
congruence 9x = 21 (mod 30) is equivalent to the linear Diophan-
tine equation

9% — 30y = 21,

we begin by expressing 3 = ged (9, 30) as a linear combination of 9
and 30. It is found, either by inspection or by the Euclidean Algo-
rithm, that 3 =9(—3) 4 30 - 1, so that

21=7-3=9(—21) — 30(—7).

Thus, x = —21, y= —7 sarisfy the Diophantine equation and, in
consequence, all solutions of the congruence in question are to be
found from the formula

x=—21 80— 21 1102

The integers x= —21 4104, where #=0, 1, 2 are incongruent
modulo 30 (but all are congruent modulo 10); thus, we end up with
the incongruent solutions

= —21 (mod 30), x= —11(mod 30), x= —1 (mod 30)

or, if one prefers positive numbers, x=9, 19, 29 (mod 30).
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Having considered a single linear congruence, it is natural to
turn to the problem of solving a system

ayx=by(mod m,),a,x=b,(mod m,), ..., a,5x=b, (mod ,)

of simultaneous linear congruences. We shall assume that the moduli
m are relatively prime in pairs. Evidently, the system will admit no
solution unless each individual congruence is solvable; that is, unless
dy | b, for each £, where d, = gecd (,, m,). When these conditions are
satisfied, the factor 4, can be cancelled in the 4th congruence to produce
a new system (having the same set of solutions as the original one)

ayx =01 (mod ), a3 x =by(mod ny), ..., a4l x=1b, (mod #,),

where n, = m,[d, and gcd (n;, n,)=1 for i+£j; also, ged (4!, n)=1.
The solutions of the individual congruences assume the form

=¢; (mod n,), x=¢, (mod n,), ..., x=-¢, (mod #,).

Thus, the problem is reduced to one of finding a simultaneous solution of
a system of congruences of this simpler type.

The kind of problem that can be solved by simultaneous con-

gruences has a long history, appearing in the Chinese literature as eatly as
the first century A.p. Sun-Tsu asked: Find a number which leaves the
remainders 2, 3, 2 when divided by 3, 5, 7, respectively. (Such mathe-
matical puzzles are by no means confined to a single cultural sphere;
indeed, the same problem occurs in the Infroductio Arithmeticae of the
Greek mathematician Nicomachus, circa 100 A.p.) In honor of their
early contributions, the rule for obtaining a solution usually goes by the
name of the Chinese Remainder Theorem.
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TreoREM 4-8 (Chinese Remainder Theorem). Lefny, ng, ..., 7, be

positive integers such that gcd (n, n)) =1 for i #j. Then the system of
linear congruences

x = a, (mod #,),

x = a, (mod #,),

x == a, (mod #,)

has a simultaneous solution, which is unigue modulo nyng « -« n,.

Proof: We start by forming the product #=#,%,---n,. For each
A=1,2,...,r let

I\'Tkzﬁf”;czﬂl s MMy gq ot By

in other words, IN, is the product of all the integers »;, with the
factor », omitted. By hypothesis, the 7, are relatively prime in pairs,
so that gcd (N, 7,) = 1. According to the theory of a single linear
congruence, it is therefore possible to solve the congruence N, x =1
(mod #,); call the unique solution x;,. Our aim is to prove that the
integer

v=a, Ny x; +a; Nyx, ++--+a,IN,x,

is a simultaneous solution of the given system.
First, it is to be observed that N, =0 (mod #,) for 7 % &,
since 7, | IN, in this case. The result is that

X=a,Nyx,++-+a, N, x,=a, N,x, (mod ).

But the integer x, was chosen to satisfy the congruence N x =1
(mod #,), which forces

X =a, - 1 = a, (mod n,).

This shows that a solution to the given system of congruences
exists,
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As for the uniqueness assertion, suppose that x” is any other
integer which satisfies these congruences. Then

x = a, = x' (mod n), P e A

and so #, | ¥ — x’ for each value of 4. Because ged (i, , #,) = 1, Cot-
ollary 2 to Theorem 2-5 supplies us with the crucial point that
nymg-+en, | X —x'; hence, ¥=x'(modn). With this, the Chinese
Remainder Theorem is proven.
Example 4-8
The problem posed by Sun-Tsu corresponds to the system of three
congruences

x =2 (mod 3),
x =3 (mod 5),
x =2 (mod 7).

In the notation of Theorem 4-8, we have# =3 .5 .7 — 105 and
Ny=n[3=235, Ny==n/5=21, N;=n/T=15.
Now the linear congruences
35x=1(mod 3), 21x=1(mod5), 15x=1 (mod 7)

arc satisfied by x; =2, x; =1, x5 =1, respectively. Thus, a solu-
tion of the system is given by

¥x=2.35.243.21.14+2.15.1—233,
Modulo 105, we get the unique solution & = 233 =23 (mod 105).
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Example 4-9

For a second illustration, let us solve the linear congruence
17x =9 (mod 276).

Since 276 = 3 - 4 - 23, this is equivalent to finding a solution of the
system of congruences

17x=9 (mod 3) or x =0 (mod 3)
17%=9 (mod 4) x =1 (mod 4)
17x =9 (mod 23) 17x =9 (mod 23)

Note that if x =0 (mod 3), then x = 34 for any integer £. We sub-
stitute into the second congruence of the system and obtain

3k=1(mod 4).
Multiplication of both sides of this congruence by 3 gives us

k=94 =3 (mod 4),
so that 4= 3 -+ 4/, where j is an integer. Then
x=3(3 4 4/)=9 +12;.
For x to satisfy the last congruence, we must have
17(9 + 12f) =9 (mod 23)

or 204/ = —144 (mod 23), which reduces to 3/=06 (mod 23); that is,
j=2(mod 23). This yields j = 2 + 23¢#, # an integer, whence

x =9 4 12(2 + 23¢) = 33 + 276¢.

All in all, x= 33 (mod 276) provides a solution to the system of
congruences and, in turn, a solution to 17x =9 (mod 276).
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PROBLEMS

1. Solve the following linear congruences:
(a) 25x==15 (mod 29).
(b) 5x =2 (mod 26).
(c) 6x =15 (mod 21).
(d) 36x =8 (mod 102).
(e) 34x = 60 (mod 98).
(f) 140x = 133 (mod 301). [Hint: ged (140, 301) = 7.]
2. Using congruences, solve the Diophantine equations below:
(@) 4x+51y=9. [Hint: 4x=9 (mod 51) gives x = 15+ 514, while
51y = 9 (mod 4) gives y = 3 - 4s. Find the relation between sand 4
(b) 123 4 25y = 331.
() S5x —53=17.
3. Find all solutions of the linear congruence 3x — 7y == 11 (mod 13).

4. Solve each of the following sets of simultaneous congruences:
(a) x=1(mod 3), x =2 (mod 5), x=23 (mod 7)
(b) x=>5(mod 11), x = 14 (mod 29), x = 15 (mod 31)
() x=>5(mod 6), x=4 (mod 11), x= 3 (mod 17)
(d) 2x=1 (mod 5), 3x=9 (mod 0), 4x=1 (mod 7), 5x =9 (mod 11)
5. Solve the linear congruence 17x =23 (mod 2.3-5-7) by solving the
system

17x=3(mod 2), 17x=3(mod 3), 17x=3 (mod 5), 17x =3 (mod 7).
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Possible Questions
2 Mark Questions:

1. Define divisible with example.

2. Prove that if a|b and a

¢ ,then a|(bx + cy) for arbitrary integers x and y.

3. Define greatest common divisor with example.
4. What is relatively prime.

5. Discuss about Diophantine equation.

6. Prove thatif pis a prime and p|ab,then p|a or p|b .

7. State Euclid theorem.
8. Define Linear congruence.

9. Prove if gcd(a,n) =1,then the linear congruence ax = b(modn) has a unique solution modulo

n.
10. State Chinese Remainder theorem.
8 Mark Questions:

1. Prove that the linear Diophantine equation ax+by =c has a solution if and only if
d

solutions are given by

c,where d =ged(a,b) . If x,,y,1s any particular solution of this equation then all other

x=x,+(0b/d), y=y,—(ald)t
for varying integers t.
2. Determine all the solutions in the integers of each of the following Diophantine equations:
a) 56x+72y=40;
b) 24x+138y=18;
c) 221x+91y=117;

d) 84x—438y=156.
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3. Determine all the solutions in the Positive integers of each of the following Diophantine
equations:
a) 30x+17y=300;
b) 54x+21y=906;
c) 123x+360y=99;
4. State and prove fundamental theorem of Arithmetic.
5. State and prove Euclid Lemma.
6. Prove that if p is the n' prime number, then p, <22 .
7. Prove that there are infinite number of primes of the form4n +3.
8. Prove that the linear congruence ax = b(modn)has a solution if and only if d|b, where
d =gcd(a,n). if d|b,then it has d mutually in-congruent solutions modulo n.
9. State and Prove Chinese Remainder theorem.
10. Solve the following linear congruence:

a) 25x = 15(mod29) b)  5x=2(mod26)
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UNIT-1I
SYLLABUS

Fermat’s Little theorem, Wilson’s theorem. Number theoretic functions, sum and number of divisors,
Totally multiplicative functions , Definition and properties of the Dirichlet product.
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FERMAT’S FACTORIZATION METHOD

In a fragment of a letter, written in all probability to Father Marin Mer-
senne in 1643, Fermat described a technique of his for factoring large
numbers. This represented the first real improvement over the classical
method of attempting to find a factor of » by dividing by all primes not
exceeding V7. Fermat’s factorization scheme has at its heart the observa-
tion that the search for factors of an odd integer » (since powers of 2 are
easily recognizable and may be removed at the outset, there is no loss in
assuming that # is odd) is equivalent to obtaining integral solutions x
and y of the equation

— a2 2
=X —-‘}f .

If » is the difference of two squares, then it is apparent that # can be
factored as

7= X% 2= (o )% — )

Conversely, when # has the factorization # = ab, with 2 > b > 1, then we
may write
Y
2 2

Moreover, because # is taken to be an odd integer, 4 and b are themselves
odd; hence, (2 + £)/2 and (2 — 4)/2 will be nonnegative integers.

One begins the search for possible x and y satisfying the equation
n = x*— y2, ot what is the same thing, the equation

x2—~?3=_y3

by first determining the smallest integer 4 for which 42 >#. Now look
successively at the numbers

K2 (k12— (A 4+ 22 —n (F+3)2—n, ...
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until a value of » >4/n is found making »? — » a square. The process
cannot go on indefinitely, since we eventually arrive at

n4 132 n—1\2
(=) (=)
the representation of # corresponding to the trivial factorization # =# - 1.
If this point is reached without a square difference having been dis-
covered earlier, then # has no factors other than # and 1, in which case it
is a prime.
Fermat used the procedure just described to factor

2027651281 = 44021 - 46061

in only 11 steps, as compared to making 4850 divisions by the odd primes
up to 44021. This was probably a favorable case devised on purpose to
show the chief virtue of his method: it does not require one to know all

the primes less than v/ » in order to find factors of #.

Example 5-1
To illustrate the application of Fermat’s method, let us factor the

integer »=119143. From a table of squares, we find that 3452 <
119143 <2 3462; thus it suffices to consider values of A2 — 119143
for £ in the range 346 << 4 < (119143 + 1)/2 = 59572. 'The calcula-

tions begin as follows:

346% — 119143 = 119716 — 119143 = 573,

3472 — 119143 = 120409 — 119143 = 1266,

3482 — 119143 = 121104 — 119143 = 1961,

3492 — 119143 = 121801 — 119143 == 2658,

3502 — 119143 = 122500 — 119143 = 3357,

3512 — 119143 = 123201 — 119143 = 4058,

3522 — 119143 = 123904 — 119143 — 4761 — 692,
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This last line exhibits the factorization
119143 = 3522 — (692 = (352 +4- 69)(352—69) = 421 - 283,

the two factors themselves being prime. In only seven trials, we
have obtained the prime factorization of the number 119143. Of

course, one does not always fare so luckily; it may take many steps
before a difference turns out to be a square.

Fermat’s method is most effective when the two factors of # are of
nearly the same magnitude, for in this case a suitable square will appear
quickly. To illustrate, let us suppose that # = 23449 is to be factored.
The smallest square exceeding # is 1542, so that the sequence A%—n
starts with

1542 ~— 23449 = 23716 — 23449 = 267,

1552 — 23449 — 24025 — 23449 = 576 = 242,
Hence, tactors of 23449 are
23449 = (155 + 24)(155—24) = 179 - 131.

When examining the differences 42— as possible squates, many
values can be immediately excluded by inspection of the final digits.
We know, for instance, that a square must end in one of the six digits
0,1, 4,5, 6, 9 (Problem 1la, Section 4.3). This allows us to exclude all
values in the above example, save for 1266, 1961, and 4761. By calcula-
ting the squares of the integers from 0 to 99 modulo 100, one sees further
that, for a square, the last two digits are limited to the following twenty-
two possibilities:

00 21 41 64 89
01 24 44 69 96
04 25 49 76
09 29 56 81
16 36 61 84
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The integer 1266 can be eliminated from consideration in this way.
Since 61 is among the last two digits allowable in a square, it is only
necessary to look at the numbers 1961 and 4761; the former is not a
square, bur 4761 = 692,
PROBLEMS
1. Use Fermat’s method to factor
(a) 2279;
(b) 10541;
(c) 340663. [Hint: The smallest square just exceeding 340663 is 5872.]
2. Prove that a perfect square must end in one of the following pairs of
digits: 00, 01, 04, 09, 16, 21, 24, 25, 29, 36, 41, 44, 49, 56, 61, 64, 69, 76, 81,
84, 89, 96. [Hint: Since x?= (504 x)? (mod 100) and x?=(50 —x)?
(mod 100), it suffices to examine the final digits of x* for the 26 values
we='0y 1 2, iy 20
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THE LITTLE THEOREM

The most significant of Fermat’s correspondents in number theory was
Bernhard Frénicle de Bessy (1605-1675), an official at the French mint
who was renowned for his gift of manipulating large numbers. (Frénicle’s
facility in numerical calculation is revealed by the following incident:
On hearing that Fermat had proposed the problem of finding cubes which
when increased by their proper divisors become squares, as is the case
with 7% 4- (1 ++ 7 + 7%) = 20?, he immediately gave four different solutions;
and supplied six more the next day.) Though in no way Fermat’s equal as
a mathematician, Frénicle alone among his contemporaries could challenge
him in number theory and his challenges had the distinction of coaxing
out of Fermat some of his carefully guarded secrets. One of the most
striking is the theorem which states: If p is a prime and « is any integer
not divisible by p, then p divides 4! — 1. Fermat communicated the
result in a letter to Frénicle dated October 18, 1640, along with the
comment, “I would send you the demonstration, if 1 did not fear its
being too long.” This theorem has since become known as “Fermat’s
Little Theorem” to distinguish it from Fermat’s “Great” or “ Last
Theorem,” which is the subject of Chapter 11. Almost 100 years were to
elapse before Fuler published the first proof of the Little Theorem in

1736. Leibniz, however, seems not to have received his share of recogni-

tion; for he left an identical argument in an unpublished manuscript
sometime before 1683,

TreoreM 5-1 (Fermat’s Little Theorem). If p is a prime and p ) a,
then 2~ * =1 (mod p).

Proof: We begin by considering the first p—1 positive multiples

of a; that is, the integers

a,2a,3a,...,(p—Na.

None of these numbers is congruent modulo p to any other, nor is
any congruent to zero. Indeed, if it happened that
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ra = sa (mod p), 1<r<s<p—1

then 2 could be cancelled to give r = s (mod p), which is impossible.
Therefore, the above set of integers must be congruent modulo p
to 1,2, 3 ..., p—1, taken in some order. Multiplying all these
congruences together, we find that

a-2¢-3a---(p—Va=1-2.3...(p— 1) (mod p),
whence
ap-1(p_ 1)! E(p—— 1)1 (modp).
Once (p — 1)! is cancelled from both sides of the preceding con-

gruence (this is possible since p ¥(p — 1)!), our line of reasoning
culminates in #* ~! =1 (mod p), which is Fermat’s Theorem.

This result can be stated in a slightly more general way in whicl
the requirement that p ¥ « is dropped.

COROLLARY. If p is a prime, then a®==a (mod p) for any integer a.

Proof: When p|a, the statement obviously holds; for, in this
setting, #”* =0=a (mod p). If p t a, then in accordance with Fer-
mat’s Theotem, 4”~* =1 (mod p). When this congruence is multi-
plied by 4, the conclusion 2* = 2z (mod p) follows.

There is a different proof of the fact that 4% = 4 (mod p), involving
induction on 4. If a==1, the assertion is that 17 =1 (mod p), which
is clearly true, as is the case 2= 0. Assuming that the result holds for
a, we must confirm its validity for 2 4+ 1. In light of the binomial theorem,

@riy=at (et s (Dorri (2 )ast,

where the coefficient (i)) is given by

P __ B M=okt 1)
(ﬁ:)_k!(pmk)!“ T v 2 sl
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Our argument hinges on the observation that (£)50 (mod p) for
1<Ai<p—1. To see this, note that

,{.!(’f) = p(p— 1)+ (p— & + 1) =0 (mod p),

by-vikeneof solilels 5741 ox 5] (f). But p| £! implies that p|; for

some ; satisfying 1 <7 << 4 < p— 1, an absurdity. Therefore, p | (ﬁ) or,

COHVEItiI}g to a congruence statement,

(f) <0 (ariod B).
The point which we wish to make is that

(a+1P=a"+1=a+1(mod p),
where the right-most congruence uses our inductive assumption. Thus,
the desired conclusion holds for ¢ + 1 and, in consequence, for all 2 > 0.
If 2 is 2 negative integer, there is no problem: since a=r (mod p) for
some r, where 0 <r < p—1, we get a* =r?=r=a(mod p).

Fermat’s Theorem has many applications and is central to much
of what is done in number theory. On one hand, it can be a labor-

saving device in certain calculations. If asked to verify that 5% =4
(mod 11), for instance, we would take the congruence 5!%==1 (mod 11)
as our starting point. Knowing this,

538 _ 510-3+8 _ (510)3(52)4
==1%.34 =81 =4 (mod 11),

as desired.
Another use of Fermat’s Theorem is as a tool in testing the

primality of a given integer ». For, if it could be shown that the con-
gruence

a" = a (mod #)
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fails to hold for some choice of 4, then # is necessarily composite, As
an example of this approach, let us look at 7= 117. ‘The computation is
kept under control by selecting a small integer for ; say, 4=2. Since
217 may we written as

VT e PTABEE . (OTYIBDE
and 27 =128 = 11 (mod 117), we have
2117 == 1116 . 25 = (121)® 25 — 4% . 25 — 291 (mod 117).
But 22! = (27)3, which leads to
22 =11"=121-11=4.11=44 (mod 117).
Combining these congruences, we finally obtain
2117 =44 =£ 2 (mod 117),

so that 117 must be composite; actually, 117 = 13 . 9.

It might be worthwhile to give an example illustrating the failure
of the converse of Fermat’s Theorem to hold; in other words, to show
that if 4~ = 1 (mod #) for some integer «, then 7 need not be prime. As
a prelude we require a technical lemma:

Lemva.  If p and q are distinet primes such that a* =a (mod q) and
a'=aq (mod p), then a* == a (mod pg).

Proof: It is known from the last corollary that (4%) == 4% (mod p),
while 4% = 4 (mod p) by hypothesis. Combining these congruences,
we obtain 4" =4 (mod p) or, in different terms, p| 2" —a. In an
entirely similar manner, ¢| 4" — 4. The corollary to Theorem 2-4

now yields pg|a*—a, which can be recast as 4" =4 (mod pyg).

Our contention is that 234 =1 (mod 341) where 341 = 11 - 31,
In working towards this end, notice that 21° = 1024 = 31 - 33 + 1. Thus,

211=2.219=2.1=2(mod 31)
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Exploiting the lemma,

2118 =2 (mod 11 - 31)
or 2941 = 2 (mod 341). After cancelling a factor of 2, we pass to
2340 =1 (mod 341),

so that the converse to Fermat’s Theorem is false.

The historical interest in numbers of the form 2" —2 resides
in the claim made by the Chinese mathematicians over 25 centuries ago
that # is prime if and only if | 2" — 2 (in point of fact, this criterion is
reliable for all integers #» < 340). Needless to say, our example, whete
341 | 2341 — 2 although 341 = 11 . 31, lays the conjecture to rest; this was
discovered in the year 1819. The situation in which #| 2" — 2 occurs
often enough to merit 2 name though: call a composite integer » pses-
doprime whenever n| 2" — 2. It can be shown that there are infinitely

many pseudoprimes, the smallest four being 341, 561, 645, and 1105.
PROBLEMS

1. Verify that 185 =1 (mod 7%) for £ =1, 2, 3.
2. (a) If ged (g, 35) =1, show that '2 == 1 (mod 35). [Hint: From Fermat’s
Theorem 4% = 1 (mod 7) and 4* = 1 (mod 5).]
(b) If ged(a, 42) =1, show that 168 =3 -7 - B divides 2% —1.
(€) If ged (@, 133) = ged (b, 133) = 1, show that 133 | 418 — H15,
3. Prove that there exist infinitely many composite numbers #» for which

4. Derive each of the following congruences:
(a) @*'==a (mod 15) for all a. [Him: By Fermat’s Theorem, 2° =a
(mod 5).]
(b) 4" = a (mod 42) for all 4.
(c) @3=a(mod3:713)foralla.
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WILSON'S THEOREM

We now turn to an¢ther milestone in the development of number theory.
In his Meditationes Algebraicae of 1770, the English mathematician Edward
Waring (1741-1793) announced several new theorems. Foremost among
these is an interesting property of primes reported to him by one of his
former students, a certain John Wilson. The property is the following:
if p is a prime number, then p divides (p — 1)! 4-1. Wilson appears to
have guessed this on the basis of numerical computations; at any rate,
neither he nor Waring knew how to prove it. Confessing his inability to
supply a demonstration, Waring added, “ Theorems of this kind will be
very hard to prove, because of the absence of a notation to express prime
numbers.” (Reading the passage, Gauss uttered his telling comment on
“notationes versus notiones,” implying that in questions of this nature
it was the notion that really mattered, not the notation.) Despite Waring’s
pessimistic forecast, Lagrange soon afterwards (1771) gave a proof of
what in the literature is called “Wilson’s Theorem” and observed that
the converse also holds. It would be perhaps more just to name the
theorem after Leibniz, for there is evidence that he was aware of the
result almost a century eatlier, but published nothing upon the subject.
Now to a proof of Wilson’s Theorem.

TueoreM 5-2 (Wilson). If pis a prime, then (p — 1)! = —1 (mod p).

Proof: Dismissing the cases p=2 and p—3 as being evident,
let us take p > 3. Suppose that 7 is any one of the p — 1 positive
integers

1,2, 3,500 p—1

and consider the linear congruence ax=1 (mod p). Then ged
(2, p) = 1. By Theorem 4-7, this congruence admits a unique solution
modulo p; hence, there is a unique integer &', with 1 <2'<p—1,
satisfying @4’ = 1 (mod p).

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 11/ 28




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc MATHEMATICS COURSE NAME: NUMBER THEORY

COURSFE CODE: 16MMUS02B UNIT: 11 BATCH-2016-2019

Since p is prime, a=4" if and only if 4=1 or a=p—1.
Indeed, the congruence #*=1 (mod p) is equivalent to (a—1)-
(2 4+ 1)= 0 (mod p). Therefore, cither # — 1 =0 (mod p), in which
case a =1, or a + 1 =0 (mod p), in which case a = p — 1.

If we omit the numbers 1 and p— 1, the effect is to group the
remaining integers 2, 3, ..., p — 2 into pairs 4, &', where a + 4, such
that 42’ = 1 (mod p). When these (p — 3)/2 congruences are multi-
plied together and the factors rearranged, we get

2.3..](}5-—2)51 (mod p)

or rather
(p—2)! =1 (mod p).
Now multiply by p — 1 to obtain the congruence

(p—Di=p—1=—1(mod p),

as was to be proved.

A concrete example should help to clarify the proof of Wilson’s
Theotem. Specifically, let us take p=13. It is possible to divide the

integers 2, 3, ..., 11 into (p — 3)/2 =15 pairs each of whose products is
congruent to 1 modulo 13. To write these congruences out explicitly:
2-7=1(mod 13),
3-9=1(mod 13),
4.10=1 (mod 13),
5:8=1(mod 13),
6-11=1 (mod 13).

Multiplving the above congruences gives the result

111=(2-7)(3-9) (4-10) (5 -8) (6 - 11) =1 (mod 13)
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12! =12 = —1 (mod 13).

Thus, ( — 1)! = —1 (mod ), with p = 13.

The converse of Wilson’s Theorem is also true: If (# — 1)1 = —1
(mod #), then » must be prime. For, if # is not a prime, then » has a
divisor d, with 1 <<d <<n. Furthermore, since d <<# — 1, 4 occurs as one
of the factors in (#— 1)!, whence 4| (#— 1)!. Now we are assuming

that # |(n — 1)1 +1, and so 4| (#—1)! +1 too. The conclusion is that
d| 1, which is nonsense.

Taken together, Wilson’s Theorem and its converse provide a
necessary and sufficient condition for determining primality; namely,
an integer # >1 is prime if and only if (#— 1)! = —1 (mod #). Un-
fortunately, this test is of more theoretical than practical interest since as #
increases, (#n — 1)! rapidly becomes unmafiageablc in size.

We would like to close this chapter with an application of Wilson’s

Theorem to the study of quadratic congruences. [It is understood that
quadratic congruence means a congruence of the form ax2? + bx +¢c=0

(mod #), with a £ 0 (mod #).]
THEOREM 5-3.  The quadratic congruence x* +1=0 (mod p), where p
is an odd prime, has a solution if and only if p=1 (mod 4).

Proof: Let a be any solution of x2 + 1 =0 (mod p), so that a? = —1
(mod p). Since p f @, the outcome of applying Fermat’s Theorem
is:

=" 1=(?)r V2 =(-1)?"1/2(mod p).

The possibility that p = 44 + 3 for some 4 does not arise. If it did,
we would have

(_1)(p-13£2:(_1)2k+ 1 __ _1;
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hence 1 = —1 (mod p). The net result of this is that p | 2, which is
patently false. Therefore, p must be of the form 44 + 1.
Now for the opposite direction. In the product

o 1

we have the congruences

p—1==—1(modp),
p—2=-—2(mod p),

21 21

e (mod p).
Rearranging the factors produces
— 1 —]
(p—D1=1-(=1) - 2-(=2)--E= (~ L) (mod )

— (1)~ ”2(1 Bt ) (mod p),

since there are(p — 1)/2 minus signs involved. It is at this point that
Wilson’s Theorem can be brought to bear; for, (p — 1)! = —1 (mod
), whence

ey o (2 oo

If we assume that p is of the form 44 + 1, then (—1)®- V2 =1,
leaving us with the congruence

g . [(P-—"z'l) 1]2(modp).
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The conclusion: [(p—1)/2]! satisfies the quadratic congruence
x2 4+1=0 (mod p).
Let us take a look at an actual example; say, the case p— 13,

which is a prime of the form 44 + 1. Here, we have (p—1)/)2=6 and
it is easy to see that

6! =720 =5 (mod 13),

while
5% +1=26=0 (mod 13).
Thus the assertion that [(4(» —1))!]*+1=0 (mod p) is correct for
p=13.
Wilson’s Theorem implies that there exists an infinitude of
composite numbers of the form #!+ 1. On the other hand, it is an
open question whether #! -1 is prime for infinitely many values of #.

The only values of # in the range 1 <# <100 for which #! 4+ 1 is known
to be a prime number are # =1, 2, 3, 11, 27, 37, 41, 73, and 77.

PROBLEMS

1. (a) Find the remainder when 15! is divided by 17.
(b) Find the remainder when 2(26!) is divided by 29. [Hinz: By Wilson’s

Theorem, 2(p — 3)! = — 1 (mod p) for any odd prime p > ]
2. Determine whether 17 is a prime by deciding whether or not 16! = —1
(mod 17).

3. Arrange the integers 2, 3, 4, ..., 21 in pairs  and b with the propetty
that 2b = 1 (mod 23).

4. Show that 18! = —1 (mod 437).
5. (a) Prove thatan integer # > 1is prime if atid only if (n — 2)! = 1 (mod ).

(b) If # is a composite integer, show that (n — 1) =0 (mod #), except
when n == 4,
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Number-Theoretic
Functions

THE FUNCTIONS 7 AND ¢

Certain functions are found to be of special importance in connection
with the study of the divisors of an integer. Any function whose domain
of definition is the set of positive integers is said to be a number-theoretic
(or arithmetic) function. While the value of a number-theotetic function
is not required to be a positive integer or, for that matter, even an integer,
most of the number-theoretic functions that we shall encounter are
integer-valued. Among the easiest to handle, as well as the most natural,
are the functions r and o.

DerFmrrion 6-1. Given a positive integer #, let #(#) denote the
number of positive divisors of # and o(#n) denote the sum of these
divisors.

For an example of these notions, consider » = 12. Since 12 has
the positive divisors 1, 2, 3, 4, 6, 12, we find that

7(12)=06 and o(12)=1+4+2+3+4+6-412=28,
For the first few integers,

() =1,72)=2,7(3) =2, 7(4) =3, 7(5) = 2, 7(6) =4, ...
and

o(1)=1,02)=3,0(3)=4,0(4)=7, 0(5) =6, 0o(6) = 12, ....
It is not difficult to see that r(#) = 2 if and only if # is a prime number;
also, o(#) =# -+-1 and if only if » is a prime,
Before studying the functions r and o in more detail, we wish to
inttoduce a notation that will clarify a number of situations later on.
It is customary to interpret the symbol

> f@

ajn

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 16/ 28




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc MATHEMATICS COURSE NAME: NUMBER THEORY

COURSFE CODE: 16MMUS02B UNIT: 11 BATCH-2016-2019

to mean, “ Sum the values f(4) as 4 runs over all the positive divisors of
the positive integer n.”” For instance, we have

> fd)=1(1) +f@ +f@ +1E) +f(10) +f(20).
)20
With this understanding, r and ¢ may be expressed in the form
W(m)=> 1, ofn)= > d.
dln d|n

The notation Y 4. 1, in particular, says that we are to add together as
many 1’s as there are positive divisors of #. ‘To illustrate: the integer
10 has the four positive divisors 1, 2, 5, 10, whence

0= 1=1-+14+14+1=4,
while

o(10)= D d=1+2+5+10=18.

d|io
Our first theorem makes it easy to obtain the positive divisors
of a positive integer # once its prime factorization is known.

TaeoreM 6-1. If n=p,""ps 2. p/ " is the prime factorization of
n>1, then the positive divisors of n are precisely those integers d of the

form
d=P1a1.Pza2' =ik ra,,
where 0 <<a, <k (f=1,2,..., 7).

Proof: Note that the divisor d = 11is obtained wheng; = a; =+ =
a,=0, and # itself occurs when @, =4, dg=FKa, 10y @r="K.
Suppose that 4 divides # nontrivially; say #=dd’, WhCI'C' d ::—.1,
d'>1. Express both 4 and ' as products of (not necessarily dis-

tinct) primes:
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d=€h‘?2“'€u d'=187%-"-1,

with ¢, #, ptime. Then
P1hpak2' . 'Prkt Sy RN N SRRy

are two prime factorizations of the positive integer #. By the
uniqueness of the prime factorization, each prime g, must be one of

the p,. Collecting the equal primes into 2 single integral power,
we get
d=q1qs - gy=p1*p"* - 2,
whete the possibility that 2, = 0 is allowed.
Conversely, every number d= 2Up" e p (0 <a, < k)
turns out to be a divisor of #. For we can write
”:P1klﬁzk2 i .Prkr
g (Plalpﬂnz . 'Pra’)@lh - ulP2k3-ug s _prk,-u,)
= dd’,
with 4’ = p *17%1p =02, . p k= and k,— a,>0 for each 7. Then
d'>0and d|n
We put this theorem to work at once.

iHEOREM 6-2. If m=p\"p*- .. p.*" is the prime factorization ofn>1,
then

@) )=k + Dk +1) -  (h,+ 1), and

k”l—-lp"““-—] kbl _ 1
(b i 2 b
R e A
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Prmsf' According to Theotem 6-1, the positive divisors of » are
precisely those integers

ﬂ'=P1°'Pz“2' ’ 'Pra’,
where 0 <4, <4,. There ate 4, + 1 choices for the exponent a,;
k5 +1 choices for a,, ...; 4, +1 choices for a, ; hence, there are
(Fy+ D)k + 1) - (K, + 1)
possible divisors of #.
In order to evaluate o(#), consider the product

Atpr 21"+ 2N 4o+ 22 oo 4 p) .
(L +pr %+ 4 p,5).
Each positive divisor of # appears once and only once as a term in the
expansion of this product, so that
U(”)=(1 +P1 +P12 S e +_P1h) g (I +Pr +Pr2 R _I‘,prkr)-

Applying the formula for the sum of a finite geometric series to the
ith factor on the right-hand side, we get

Pikl+1'_“1
1 pbbd 4t p
Pi—
It follows that
p1k1+1_1P2k2+1‘_'1 Prky-i-l____l
Pl'_l Pz—‘1 Pr_ 1

o(n)=

Corresponding to the Y notation for sums, a notation for pro-
ducts may be defined using the Greek capital letter “pi.”” The restriction
delimiting the numbers over which the product is to be made is usually

put under the [[-sign. Examples are
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[ T rd=r0,@73/@10G),

1cd<5

[ /@ =r073)/®),

-d|

[ [ f=rf3)f0G).
o

With this convention, the conclusion to Theoren? 6-2 takes the compact
form: if 7= p,*1p,**-- - p,* is the prime factorization of # > 1, then

=[]+

legizgr

and

Pik;'i'l g -1
e | B
11_:£r P

Example 6-1
The number 180 =22 . 32 .5 has

7(180) =2 + 1)(2 +1)(1 +1)=18
positive divisors. Theseare integets of the form
201, 3% . 59
where 2, =0, 1, 2; a,=0, 1, 2; 2, =0, 1. Specifically, we obtain
1,2,3,4,5,6,9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180.

The sum of these integers is

23 _ 133 _ 2
#(180) = o121 THHU ., 13.5-5

One of the more interesting properties of the divisor function =
is that the product of the positive divisors of an integer #» > 1 is equal to
a*™2. It is not difficult to get at this fact: Let 4 denote an arbitrary
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positive divisor of #, so that #—dd’ for some d’. As 4 ranges over all
7(d) positive divisors of 7, (d) such equations occur. Multiplying these

together, we get
f:“'”=l—[d- 1_[0".

dfn a’|n

But as 4 runs through the divisors of #, so does 4'; hence, [Taind=
[la1nd'. The situation is now this:

7 — d &
(L1
or equivalently,
ptin)iz 4
W

The reader might (o1, at any rate, should) have one lingering
doubt concerning this equation. For it is by no means obvious that the
left-hand side is always an integer. If 7() is even, there is certainly no
problem. When (1) is odd, # turns out to be a perfect square (Problem
7), say n=m?; thus n*™'? = 7*™_ settling all suspicions.

For a numerical example, the product of the five divisors of 16
(namely, 1, 2, 4, 8, 16) is

[ [4=16%a012 = 1652 = 45 — 1024.

dj1a

Multiplicative functions arise naturally in the study of the prime
factorization of an integer. Before presenting the definition, we observe
that

7(2:10) =7(20) =6 #2 - 4 = (2) - 7(10).
At the same time
o(2-10)=0(20) =42 #3 - 18 =0(2) - a(10).

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 21/ 28




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc MATHEMATICS COURSE NAME: NUMBER THEORY

COURSFE CODE: 16MMUS02B UNIT: 11 BATCH-2016-2019

These calculations bring out the nasty fact that, in general, it need not
be true that

m(mn) = 1(m)r(n) and o(mn) = o(m)o(#).

On the positive side of the ledger, equality always holds provided we

stick to relatively ptime m and # This circumstance is what prompts

DerFINITION 6-2. A number-theoretic function f is said to be
multiplicative if

J(om) = f(m) ()
whenever ged (7, 7) = 1.

For simple illustrations of multiplicative functions, one need
only consider the functions given by f(#) =1 and g(#) =# for all n = 1.
It follows by induction that if / is multiplicative and 7y, #,, ..., #, are
positive integers which are pairwise relatively prime, then

Sy mye-om) = f(m) f(na) - - frr).

Multiplicative functions have one big advantage for us: they
are completely determined once their values at prime powers are known.
Indeed, if » > 1 is a given positive integer, then we can write # = p,“p,"*-++
P/ in canonical form; since the p are relatively prime in pairs, the
multiplicative property ensures that

Jy=F(p ) [0+ S(p.5).

If fis 2 multiplicative function which does not vanish identically,
then there exists an integer » such that f(#) 0. But

S =f(n- 1) =) f(1).
Being nonzero, f(r) may be cancelled from both sides of this equation
to give f(1)=1. The point to which we wish to call attention is that

(1) = 1 for any multiplicative function not identically zero.
We now establish that r and ¢ have the multiplicative propetty.
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THEOREM 6-3. The functions © and o are both multiplicative functions.

Proof: Let m and n be relatively prime integers. Since the result
is trivially true if either m or # is equal to 1, we may assume that

m>landw>1. If
mn =P1k1}"2k2 - .prkr and # = qlhggiz . ﬁ'sjs

are the prime factorizations of » and #, then, since ged (m, n) =1,
no p; can occur among the g,. It follows that the prime factorization
of the product m# is given by

mﬂplkl - 'Pl‘ '€1jl - _gsfs.
Appealing to Theorem 6-2, we obtain
) =[(kr + 1) -G+ DG +1) -+ (o + 1)
= r(m)r(n).
In a similar fashion, Theotem 6-2 gives
U(mﬂ) _ [P1k1+1 —1 - 'prh:,+1 . 1] [€111+t | N gsf.ﬁl . 1]
pr—1 pr—1 71— 1 gs— 1
= a(m)o(n).

Thus, T and o ate multiplicative functions.

We continue our program by proving a general result on multi-
plicative functions. This requires a preparatory lemma.

LemMa.  If ged (m, n) =1, then the set of positive divisors of mn consists
of all products dy dy , where dy | n,dy | m and ged (d, , dy) = 1; furthermore,

these products are all distinct.

Proof: It is harmless to assume that m>1 and #>1; let m —
J{)l’ilpz‘.‘ﬂ e pfrand n=g71 g, -+ g5 be their respective prime
fqt_:tF)rizatl;ons. Inasmuch as the primes py, ..., p,.,-g«'l, o ;?s are
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all distinct, the prime factorization of m» is
sk k
w”'_PIL”' frglh“'gsjs'

Hence, any positive divisor  of z# will be uniquely representable in
the form

d:Plﬂl,..Prarqlﬁ'l...qsbs’ Osaigki’ Dgéi __":;ji,

This allows us to write d as d = d, d,, where d, = P p, divides

mand dy=¢," .. ¢,” divides #. Since no p, is equal to any g,, we
surely have ged (4, , 4,) = 1.

A keystone in much of our subsequent work is
THEOREM G-4. If f is a multiplicative function and I is defined by

Fi)= > f@),
din
then F is also multiplicative.

Proof: Let m and n be relatively prime positive integers. Then

F(mn) = > fid)= D f(d.dy),

d|mn di|m
dygln

since every divisor 4 of mn can be uniquely written as a product of
a divisor 4, of m and a divisor d, of #, where gcd(d,, d;)=1. By
the definition of a multiplicative function,

f(d1d2) = f(d,) f(d2).
It follows that

Flmn)= > f(d) ()

dlvﬂ
dajn
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_ (;f(a‘o) (;f(da) — F(m)F(n).

It might be helpful to take time out and run through the proof
of Theorem 6-4 in a concrete case. Letting » =8 and »= 23, we have

F§-3)= > f(d)

d|24

= (1) +£2) +F(3) +/(4) +1(6) +1®) +/(12) +124)
—fA- ) +f@ D +HFA- D G D@D/ D
I3 463

—FOfD+f @D DB +fBHSO+H @SB+ ESD)
+fA)f(3) +/8)/(3)

— [AQ1) +£@) + &) + @ISO +/O)]
=> fd)- > fd)=FEFQ).

d|s

Theorem 6-4 provides a deceptively short way of drawing the
conclusion that r and ¢ are multiplicative.
COROLLARY. The functions v and o are multiplicative functions.

Proof: We have mentioned before that the constant function f(s) = 1
is multiplicative, as is the identity function f(#) =#. Since r and o

may be represented in the form
)= > 1 and a(n)= > d,

the stated result follows immediately from Theorem 6-4.
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PROBLEMS

1. Let m and # be positive integers and p,, ps, ..., p, be the distinct primes
which divide at least one of »# or n. Then # and # may be written in the
form

m:mk‘hm‘“ e with £, >0fori=1,2,...,r

ﬂ:;blhpiajz"',prjrr Withj{éﬁfﬁffZ‘l, 2,.,.,?'
Prove that

ng (M’, .‘2) :Plulp2u2 e fu'! lcm (‘W: ﬂ) :plvlpﬂ'Jn' e r‘!.',-'
where %, = min {#£,, j}, the smaller of 4, and j, ; and v, — max {,, j,}, the
larger of £, and ;,.
2. Use Problem 1 to calculate ged (12378, 3054) and lem (12378, 3054).

3. Deduce from Problem 1 that ged (m, #) lem (w, #) = mn for positive
integers » and ».

4. In the notation of Problem 1, show that gcd (m, ) =1 if and only if
&[J”_=U fOI32 1, 2, vy

5. (a) Verify that v(n) = v(n + 1) = 7(n + 2) = (n + 3) holds for # = 3655
and 4503.

(b) When n= 14, 206, and 957, show that o(#) = o(n + 1).
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Possible Questions
2 Mark Questions:

1. Whatis Fermat’s Factorization method.

2. Prove thatif pisaprime, thena” = a(mod p) for any integer a.
3. Verify that 18° =1(mod7*) for k =1,2,3.

4. Find the remainder when 15! is divided by 17.

5. Write about 7(n) and o(n) with example.

6. What is multiplicative function.

7. Prove thatif fis a multiplicative function and F is defined by

F(n)=Y f(d),

djn
then F is also multiplicative.

8. Define Dirichlet Product.

9. Find the remainder when 5! is divided by 7.

10. Use Fermat’s method to factor 23449.

8 Mark Questions:

1. State and prove Fermat’s Little theorem.

2. Prove thatif p andq are distinct primes such that a” = a(mod g) and ¢? = a(mod p), then
a” = a(mod pq) .

3. State and prove Wilson’s theorem.

4. Prove that the quadratic congruence x’ +1= 0(mod p), where p is an odd prime, has a

solution if and only if p =1(mod4).
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5. Prove thatif n=p" p,...p." is the prime factorization of n > 1,then the positive

divisors of n are precisely those integers d of the form

d= plalpzaz---prar 5

where 0<a, <k (i=12,..,r).

Prove thatif n = plk‘ pzkz...prk" is the prime factorization of »n >1,then

a) t(n)=(k +1)(k, +1)...(k, +1),and

ke +1 1 ky+1 1 1

k.+ _
b) O'(n)zp1 2 e 1.
p-1 p-1 p—1

Prove that the function 7 and o are both multiplicative functions.

Prove that if ged(m,n) =1, then the set of positive divisors of mn consists of all products
dd,,where d,|n,d,

m and gcd(d,,d,) =1; furthermore, these products are all distinct.
Discuss about Dirichlet Product.
Find the remainder when 72'"' is divisible by 31.

Prove that the quadratic congruence x° =—1(mod p), p is a prime, has a solution if and

only if p =1(mod4).
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UNIT-1IT
SYLLABUS

The Mobius Inversion formula, the greatest integer function, Euler’s phi-function, Euler’s theorem
reduced set of residues-some properties of Euler’s phi-function.
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THE MOBIUS INVERSION FORMULA

We introduce another naturally defined function on the positive integers,
the M&bius p-function.

Dermnrrion 6-3. For a positive integer #, define p by the rules
I ifp=1
p(n) = (0 if p?| » for some prime p
(=1 if n=p,ps-+-p,, where the p, are distinct primes
Put somewhat differently, Definition 6-3 states that p(#)=0
if # is not a square-free integer, while pu(#) = (—1)" if # is square-free with
r prime factors. For example: p(30)=pu(2.3.5)=(—1)*=—1. The
first few values of p are
) =1, 42 = —1, u(3) = —1, uld) = 0, u(5) = —1, () =1, ...

If p is a prime number, it is clear that u(p)= —1; also, u(p*¥)=0 for
k=2,

As the reader may have guessed already, the Mobius p-function is
multiplicative. This is the content of

TueEOREM 6-5.  The function p is a multiplicative fanction.

Proof: We want to show that u(mn) = u(m)u(n), whenever » and »
are relatively prime. If either p? | » or p* | #, p a prime, then p? | mn;
hence, u(mn) =0 = p(m)u(n), and the formula holds trivially. We
may therefore assume that both » and # are square-free integers.

Say, m=pyPs---Pry B=¢14s ¢, the primes p; and g, being all
distinct. Then

plmn) = u(pr- - Pegy - gs) =(—1)y*s
= (—1)(= 1) = p(m)ul),

which completes the proof.
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Let us see what happens if u(d) is evaluated for all the positive
divisors 4 of an integer » and the results added. In case » =1, the answer

is easy; here,
Zu*"(d)”“) =1.
Suppose that # > 1 and put
F(r) = ;u(d)-

To prepare the ground, we first calculate F(n) for the power of a prime,
say, #= p*. 'The positive divisors of p* are just the £+ 1 integers 1,

B D phosothat
F(p)= D uld)=p(1) +p(p) +pp%) + -+ (")
dlp*
— (1) () =1 +(~1) =0,

Since p is known to be a multiplicative function, an appeal to

Theorem 6-4 is legitimate; this result guarantees that F is multiplicative
too. Thus, if the canonical factorization of # is n=p,"'p,"*---p",

then F(#) is the product of the values assigned to F for the prime powers
in this representation:

F() = F(p")F(p,*%) ---F(p,*) = .

THEOREM 6-6. For each positive integer n > 1,
1ifr=1
;“@ - {0 if #>> 1

where d runs through the positive divisors of n.

For an illustration of this last theorem, consider # — 10. The
divisors of 10 are 1, 2, 5, 10 and the desired sum is

> wld) = (1) +p(2) +p(5) +p(10)

d|10
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— 14 (=) +(=1)+1=0.

The full significance of Mobius’ function should become apparent
with the next theorem.

TueoreMm 6-7 (Mobius Inversion Formula). Let F and f be two
number-theoretic functions related by the formula

Fin)=> f(@).
djn
Then
f) = D pd)En/d) = 2 uln/d)Fd).

djm dlm

Proof: 'The two sums mentioned in the conclusion of the theorem
are seen to be the same upon replacing the dummy index by d' =
nld; as d ranges over all positive divisors of #, so does d'.

Carrying out the required computation, we get

1) dzhpwcwd) = Z (,uw) ci;}f@) = Z (c,mzm"{""f("))'

It is easily verified that 4| # and ¢| (#/d) if and only if ¢|# and
d| (n/c). Because of this, the last expression in (1) becomes

€) Z (c;mu(d)f@) = 2 ( > f(v»»(d))

- Z (f(f)d;ﬂn(a’)).

In compliance with Theorem 6-6, the sum Y 4, p(d) must vanish
except when #/¢ = 1 (that is, when # = ¢), in which case it is equal to
1; the upshot is that the right-hand side of (2) simplifies to

> (f(c-*) > m) = ;f(f) 1= f(n),

c|n dj(nic)

giving us the stated result.
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Let us use #» = 10 again to illustrate how the double sum in (2)
is turned around. In this instance, we find that

> u(ﬂ')f(f)) = WBOLA) +£@) 1 /(5) +/(10)]

| ( e L) +£B)] + rELA) + /)] +u(10)/(1)
— S + (@) + p(5) + u(10)]

+ f@)[p(1) +p(B)] +fO)p(1) -+ p(2)] + F(10)u(1)

o (d,nzg-c,f(”}”(d))'

To see how Mobius inversion works in a particular case, we
remind the reader that the functions = and ¢ may both be described as
“sum functions”:

() = Z 1 and o(n)= Z d.

|n din
Theorem 6-7 tells us that these formulas may be inverted to give

1= Zp(n/d)r(d) and # = Z uin/d)a(d),

dln 4|n
valid for all » > 1.

Theorem 6-4 insures that if f is a multiplicative function, then
so is F(n)= Y 4» f(d). Tutning the situation around, one might ask
whether the multiplicative nature of F forces that of f. Surprisingly
enough, this is exactly what happens.

THEOREM 6-8. If F is a multiplicative function and
F(n)=> f(d),
djn

then f is also multiplicative.

Prosf: Let m and n be relatively prime positive integers. We recall
that any divisot d of mn can be uniquely written as d = d, d,, where
dy | m,dy | n,and ged (4, , dy) = 1. 'Thus, using the inversion formula,
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femny= > wa)F ()

d|mn

= > uwhdF(77)

dyjm
dgln

= > uld)uld:)F (;fl) d (;E)

i
~ 3 WaF (;)Z Wd)F (5) =1 1o,

which is the assertion of the theorem. Needless to say, the multipli-
cative character of u and of F is crucial to the above calculation.

PROBLEMS

1. (a) For each positive integer #, show that
p(mp(n + Dpln + Qpn + 3) = 0.

(b) For any integer #n =3, show that Y 1_, u(4#)) =1.
2. The Mangoldt function A is defined by

log p, if n = p¥, where p is a prime and £ >1
0, otherwise

A() — {

Prove that A(#)= Y g p(t/d)logd= —Y 4, u(d)logd. [Hint: First
show that 3 4, A(d) =log » and then apply the M&bius Inversion For-

mula.]
3. Let n=p,"p,"2---p," be the prime factorization of the integer » > 1.
If fis a multiplicative function, prove that

> wd)fd) = (1 = [ —f(p)-+- (1 = f(pr)-
in

d

[Hint: By Theotem 6-4, the function F defined by F(n) =}, u(d)f(d)
is multiplicative; hence, F(#) is the product of the values F(p,*).]
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THE GREATEST INTEGER FUNCTION

The greatest integer or “bracket” function [ ] is especially suitable for
treating divisibility problems. While not strictly a number-theoretic
function, its study has a natural place in this chapter.

DeFiniTiON 6-4. For an arbitrary real number x, we denote by
[x] the largest integer less than or equal to x; that is, [x] is the unique
integer satisfying x — 1 << [x] < x.

By way of illustration, [ ] assumes the particular values
[-3/2]=—2, [V2] =1, [1/3] =0, [n] = 3, [-n] = —4.

The important observation to be made here is that the equality
[x] = x holds if and only if x is an integer. Definition 6-4 also makes
plain that any real number x can be written as

x:[x]-i—t?

for a suitable choice of 8, with 0 <0 < 1.
We now plan to investigate the question of how many times a

particular prime p appears in #!. For instance, if p=3 and # =29, then

91=1.2.3.4.5.6-7-8-9
=27.34.5.7,
so that the exact power of 3 which divides 9! is 4. It is desirable to have
a formula that will give this count, without the necessity of always
writing #! in canonical form.
TrEOREM 6-9. If 7 is a positive integer and p a prime, then the exponent
of the highest power of p that divides n! is

2‘; o)
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(This is not an infinite series, since [n|p*] = O for p* >n.)

Proof : Among the first # positive integers, those which are divisible
by p are p, 2p, ..., ip, where # is the largest integer such that £p <
n; in other words, ¢ is the largest integer less than or equal to #/p

(which is to say #= [#[p]). Thus, there are exactly [#/p] multiples
of p occurring in the product that defines #!, namely,

™ b 2p, ., [7plp.

The exponent of p in the prime factorization of #! is obtained
by adding to the number of integers in (1), the number of integers
among 1, 2, ..., » which are divisible by p?, and then the number
divisible by p?, and so on. Reasoning as in the first paragraph, the
integers between 1 and # that are divisible by p? are

2 2% 2p% ., [n)p®]p7,
which are [#/p?] in number. Of these, [#/p®] are again divisible by p:
(3) 2%520°% . %),

After a finite number of repetitions of this process, we are led to
conclude that the total number of times p divides #! is ) 2., [#/p*].

This result can be cast as the following equation, which usually
appears under the name of Legendre’s formula:

n ;‘. [nip*l
#! — p k=1
P<n
Example 6-2
We would like to find the number of zeroes with which the decimal
representation of 50! terminates. In determining the number of times

10 enters into the product 50!, it is enough to find the exponents of
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10 enters into the product 501, it is enough to find the exponents of
2 and 5 in the prime factorization of 50!, and then to select the

smaller figute,
By direct calculation we see that

[50/2] -+ [50/27] - [50/29] -+ [50/2¢] + [50/2°]
—254124+6+3+1=47.
Theorem 6-9 tells us that 247 divides 501, but 2¢® does not. Similarly,
[50/5] + [50/5%] =10 42 =12

and so the highest power of 5 dividing 50! is 12, This means that 50!

ends with 12 zeroes.
THEOREM 6-10. If n and r are positive integers with 1 <r <n, then

the binomial coefficient
(r: ool
r) Tl —r)l

is also an integer.

Progf: 'The argument rests on the observation that if # and & are
arbitrary real numbers, then [+ 4] >[4] +[¢]. In particular, for
each prime factor of p of r! (n—r)|,

[5(p¥1 = [7[p"] + [(» — 1)IP], £=1,2,..

Adding these inequalities together, we obtain

) > B = D e + D [ — )P

Kx>1 k=1 kz1
The left-hand side of (1) gives the exponent of the highest power of
the prime p that divides #!, whereas the right-hand side equals the
highest power of this prime contained in rl(n —r)l. Hence, p
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appears in the numerator of »!/rl(# — r)! at least as many times as it
occurs in the denominator. Since this holds true for every prime
divisor of the denominator, rl(»—r)! must divide »), making
#ljri(m— r)! an integer.

CoROLLARY. For a positive integer r, the product of any r consecutive
positive integers is divisible by r!.

Proof: 'The product of r consecutive positive integers, the largest
of which is #, is
n(n—Dn—2)---(n—r+1).

Now we have

wp—1) . (n—r41)= (?‘[(ﬁ%ﬁ) rl.

Since #l/rl(n—r)! is an integer, it follows that r! must divide the
product #(n — 1) . -(n — r + 1), as asserted.

We pick up a few loose threads. Having introduced the greatest
integer function, let us see what it has to do with the study of number-
theoretic functions. Their relationship is brought out by

Tueorem 6-11. ILet f and F be number-theoretic functions such that
Fn)=> f(d).
an

Then, for any positive integer N,

i F(n) = Z SORINA).

Proof : We begin by noting that
N

N

(1) D F@)=> > fd)
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The strategy is to collect terms with equal values of f(d) in this
double sum. For a fixed positive integer £ < N, the term f(4)
appears in Y g1, f(d) if and only if £ is a divisor of #. (Since each
integer has itself as a divisor, the right-hand side of (1) includes
f(k), at least once.) Now, in order to calculate the number of sums
Y 41n J(d) in which f(£) occurs as a term, it is sufficient to find the
number of integers among 1, 2, ..., N which are divisible by 4.
There are exactly [IN/£] of them:

k, 2k, 3%, ..., [NJAA.

Thus, for each £ such that 1 <A <N, f(4) is a term of the sum
Y ainf(d) for [ IN/£] different positive integers less than or equal to N.
Knowing this, we may rewrite the double sum in (1) as

N

> fd)= Z JHBINIA]

n=1d|n

and our task is complete.
As an immediate application of Theorem 6-11, we deduce

Corovrrary 1. If N is a positive integer, then

N

D, m= > (-

n=1 n=1l

Proof: Noting that 7(n) = } ;,, 1, we may write = for F and take
J to be the constant function f(#) =1 for all #,

In the same way, the relation o(#) = 3} 4, 4 yields

CoroLLARY 2. If N is a pesitive integer, then

i a(n) = i n[IN/n].
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Example 6-3
Consider the case N = 6. The results on page 110 tell us that

> (m) =14
From Corollary 1,
(6/n] = [6] +[3] -+ [2] -+ [3/2] + [6/5] + (1]
=6+3+2+14+14+1=14,

as it should. In the present case, we also have

-
ul\/]m
e

i o(n) = 33,

n=1
while a simple calculation leads to

Z {6/] = 1[6] +2(3] + 3[2] + 4[3/2] + 5[6/5] -+ 6[1]

=1.64+2-343.244.14+5.146.1=33,
PROBLEMS

1. Given integers @ and & >0, show that there exists a unique integer r
with 0 <{r << b satistying a = [a/b]b - r.
2. Let x and y be real numbers, Prove that the greatest integer function
satisfies the following properties:
(a) [x+ n] = [x] <+ # for any integer .
(b) [x]+ [—x]=10or —1, according as x is an integer or not. [Hinz:
Write x = [x] 4 0, with 0 << < 1,50 —x= —[x] — 1+ (1-6).]
(© [x]+[»] <[x+y] and, when x and y are positive, [x][ y] <[xy].
(d) [x/n] = [[x]/n] for any positive integer #. [Hint: Let x[n = [x[n] + 6,
where 0 <Z 0 < 1; then [x] = #[x/x] + [#0].]
(€) [nm|k] = n[m[£] for positive integers n, m, £.
) XI+D1+ [x+3]<[2x] + [2)]. [Hint: Let x=[x] +6,0<0 <1,
and y=[y]+ 6, 0<< 6" << 1. Consider cases in which neither, one,
or both of § and @' are greater than 1.
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EULER’S PHI-FUNCTION

The present chapter deals with that part of the theory arising out of the
result known as Euler’s Generalization of Fermat’s Theorem. In a
nutshell, Euler extended Fermat’s Theorem, which concerns congruences
with prime moduli, to arbitrary moduli. While doing so, he introduced
an important number-theoretic function, described as follows:

Derinttion 7-1. For # > 1, let ¢(x) denote the number of positive
integers not exceeding # that are relatively prime to .

As an illustration of the definition, we find that $(30) — 8; for,
among the positive integers that do not exceed 30, there are eight which
are relatively prime to 30; specifically

1,7, 11, 13, 17, 19, 23, 29.

Similarly, for the first few positive integers, the reader may check that

BO=1, 6D =1, §3)=2, $(#)=2, $(5) =4, $(6) =2, $(7)=6,....

Notice that ¢(1) = 1, since ged (1, 1) = 1. While if # > 1, then ged (1, n) =
#n 71, so that ¢(#) can be characterized as the number of integers less
than # and relatively prime toit. The function ¢ is usually called the Ewn/er
Dhi-function (sometimes, the indicator or fotient) after its originator; the
functional notation ¢(»), however, is credited to Gauss.

If # is a prime number, then every integer less than # is relatively
prime to it; whence, ¢(#) ==»n— 1. On the other hand, if # >1 is com-
posite, then # has a divisor 4 such that 1 <4< # It follows that there
are at least two integers among 1, 2, 3, ..., # which are not relatively
prime to #, namely, 4 and # itself. As a result, ¢(r) <n— 2. This proves:
for 7 > 1,

$(#) = n— 1 if and only if # is prime.

The first item on the agenda is to derive a formula that will allow

us to calculate the value of ¢(#) directly from the prime-power factor-
ization of 7.
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TuroreMm 7-1.  If p is a prime and k >0, then
@) =p*—pt=p (1= 1)p)-

Proof: Cleatly, ged(n, p¥)=1 if and only if p y# There are
p*~* integers between 1 and p* which are divisible by p, namely

P:- ZP: 3)93 L r(pk_l)p‘

Thus, the set {1, 2, ..., p¥} contains exactly p* — p*~! integers which
are relatively prime to p* and so, by the definition of the phi-function,

M) =p" 1"
For an example, we have

$(9) = $(3%)=3*—3=06;
the six integers less than and relatively prime to 9 are 1, 2, 4, 5, 7, 8,
To give a second illustration, there are 8 integers which are less than
16 and relatively prime to it, to wit, 1, 3, 5,7, 9,11, 13, 15.  Theorem 7-1
yields the same count:

$(16) = $(24) =2¢ — 22 =16—8 =8,

We now know how to evaluate the phi-function for prime
powers and our aim is to obtain a formula for ¢(#) based on the factoriza-
tion of # as a product of primes. The missing link in the chain is obvious:
show that ¢ is a multiplicative function. We pave the way with an casy
lemma. |
Lemma.  Given integers a, b, ¢, ged (a, be) = 1if and only if ged (a, b) =1
and ged (a, ¢) = 1.

Proof: Suppose first that ged (2, 4c) = 1 and put d = ged (4, 5). Then
d|aand d| b, whence d| 2 and d| be. 'This implies that ged (o, be) =
d, which forces 4= 1. Similar reasoning gives rise to the statement

ged (g, 0)=1.
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For the other direction, let ged (s, #) =1 = gcd (4, ¢) and
assume that gcd (g, bc) = 4, > 1. Then 4, must have a prime divisor
p- Since 4, | be, it follows that p | be; in consequence, p | & or p| c.
If p | &, then (by virtue of the fact that p | 4) ged (g, #) > p,a contradic-
tion. In the same way, the condition p | ¢ leads to the equally false
conclusion that ged (¢, ¢) 2> p. Thusd, = 1 and the lemma 1s proven.

THEOREM 7-2. The function ¢ is a multiplicative function.

Proof: It is required to show that ¢(mn) = ¢(m)d(#), whenever »
and # have no common factor. Since ¢(1) = 1, the result obviously
holds if either » or # equals 1. Thus we may assume that » > 1 and
n>1. Arrange the integers from 1 to m» in m columns of » integers
each, as follows:

] 2 LU r Vo »
m—+1 w42 mt-r 2m

2m +1 2m + 2 2m+r dm
(ﬁ—ljm+1 (ﬁ-—-—ljﬁ~+—2 (ﬁ—ljm—f—r nm

We know that ¢(m#) is equal to the number of entries in the above
array which are relatively prime to wms; by virtue of the lemma,
this is the same as the number of integers which are relatively prime

to both » and ».
Before embarking on the details, it is worth commenting on

the tactics to be adopted: Since ged (g7 -+ 7, ) = ged (v, m), the
numbers in the rth column are relatively prime to » if and only if 7
itself is relatively prime to ». Therefore, only ¢(») columns contain
integers relatively prime to #, and every entry in the column will be
relatively prime to 7.  The problem is one of showing that in each of
these ¢(m) columns there are exactly ¢(») integers which are relatively
prime to #; for then there would be altogether ¢(#)é(#) numbers in
the table which are relatively prime to both » and ».
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Now the entries in the rth column (where it is assumed that
ged (r, m) =1) are

ramr2m+r, ..., (n—Dm+r.

There are # integers in this sequence and no two are congruent
modulo #». Indeed, were

km + r=jm +r (mod #)

with 0 < 4 < j <, it would follow that Am = m (mod #). Since
ged (m, #) = 1, we could cancel » from both sides of this congruence
to arrive at the contradiction that 4 = (mod #). Thus, the numbers
in the 7th column are congruent modulo #t0 0, 1, 2, ..., z—1, in
some order. But if s= ¢ (mod #), then ged (s, #) = 1 if and only if
gcd (7, #) =1. The implication is that the rth column contains as
many integers which are relatively prime to # as does the set {0, 1,
2, ..., n— 1}, namely, ¢(n) integers. 'Therefore, the total number of
entries in the array that are relatively prime to both » and 7 is
(m)p(»). This completes the proof of the theorem.

TuroreM 7-3. If the integer n>>1 has the prime factorization n =

P:“sz” 2 'Prkr* then

d() = (P — PN D" — ) - (BT —2T)
= n(1 —1/p)(1 —1/pa) -+ (1 = 1/py)-

Proof: We intend to use induction on 7, the number of distinct
prime factors of #. By Theorem 7-1, the result is true for r=1.
Suppose that it holds for r=/. Since

ng(Plklpgkn mAe ih: Pi+1kt+l) e 1:

the definition of multiplicative function gives
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(i - D™ ) = B e PP ")
= (P - PV P — P
Invoking the induction assumption, the first factor on the right-hand
side becomes
B(prF1ps 3 ) = (p1 — 91 NP 2T - (B — 257N
and this serves to complete the induction step, as well as the proof.

Example 7-1 . |
Let us calculate the value ¢(360), for instance. ‘The prime-power

decomposition of 360 is 2° - 32 - 5, and Theorem 7-3 tells us that
$(360) = 360(1 — H(1 - H(A — )
=360-%-%-%=90.
The sharp-eyed reader will have noticed that, save for ¢(1) and
#(2), the values of ¢(») in our examples are always even. This is no

accident, as the next theorem shows.
THEOREM 7-4. For n > 2, ¢(n) is an even integer.

Proof:  First, assume that » is a power of 2, let us say #» = 2*, with
A >2. By Theorem 7-3,

$(1) =2 =21 — ) =2""1,
an even integer. If # does not happen to be a power of 2, then it is
divisible by an odd prime p; we may therefore write » as #n = p*w,

where £>1 and ged(p*, »)=1. Exploiting the multiplicative
nature of the phi-function, one gets

d(n) = ¢(p*)p(m) = p*-(p — 1P(m),

which is again even since 2| p — 1.

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 17/32




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc MATHEMATICS COURSE NAME: NUMBER THEORY

COURSFE CODE: 16MMUS02B UNIT: IT1 BATCH-2016-2019

We can establish Euclid’s Theorem on the infinitude of primes
in the following new way: As before, assume that there are only a finite
number of primes. Call them p,, p,, ..., p, and consider the integer
n=p, ps -+ p,. We argue that if 1 <2 <n, then ged(a, n) A#1. For,
the Fundamental Theorem of Arithmetic tells us that # has a prime divisor
g. Since py, pa, ..., p, are the only primes, g must be one of these p;,
whence g | #; in other words, ged (g, #) > 4. The implication of all this
1s that ¢(#) = 1, which is clearly impossible by Theorem 7-4.
PROBLEMS
1. Calculate $(1001), $(5040), and $(36,000).

2. Verify that the equality ¢(#) = ¢(n + 1) = ¢(n + 2) holds when » = 5186,
3. Show that the integers » = 3* - 568 and # = 3" - 638, where £ > 0, satisfy
simultaneously

m(m) = 7(n), o(m) = o(n), p(m) = b(n).
4. Establish each of the assertions below:
(a) If nis an odd integer, then ¢(2n) = ().
(b) If #is an even integer, then ¢(2n) = 2(n).
(c) ¢(3n) = 3d(») if and only if 3 | n.
(d) é(3n) = 2¢(n) if and only if 3 } n.
(&) $(ny=n/2 if and only if n=2¢ for some A=>1. [Hint: Write n=
2% N, where N is odd, and use the condition ¢(#) = #/2 to show that
N=1]
5. Prove that the equation ¢(n)=(n+2) is satisfied by n=2(2p — 1)
whenever p and 2p — 1 are both odd primes.

6. Show that there are infinitely many integers # for which ¢(#) is a perfect
square. [Flint: Consider the integers 7= 26+l for k=1,2,....]

EULER’S THEOREM
As remarked earlier, the first published proof of Fermat’s Theorem
(that 27 ~*=1 (mod p) if p 4 a) was given by Euler in 1736. Somewhat
later, in 1760, he succeeded in generalizing Fermat’s Theorem from
the case of a prime p to an arbitrary integer #». This landmark result
states: if ged (e, #) = 1, then 4™ =1 (mod #).
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For example, putting # = 30 and 2 = 11, we have
11960 = 118 =(11%)* = (121)* = 1* =1 (mod 30).

As a prelude to launching our proof of Euler’s Generalization
of Fermat’s Theorem, we require a preliminary lemma.

Lemva., Let n>1 and ged (e, n)=1. If ay, az, ..., ayqm, are the
positive integers less than n and relatively prime to n, then

ddy, Adgy vy Gdgm)

are congruent modulo # 1o ay, ay, ..., Ay, in Some order.

Progf: Observe that no two of the integers aa;, aa,, ..., adym,
are congruent modulo # For if 22,=aa, (mod #), with 1 <i<
7 < $(#), then the cancellation law yields #; = a, (mod #), a contradic-
tion. Furthermore, since ged (a;, #) =1 for all 7 and ged (2, #) =1,
the lemma on page 137 guarantees that each of the aa, is relatively

prime to #.
Fixing on a particular aa,, there exists a unique integer b,

where 0 < b < n, for which ae; =& (mod #). Because
ged (b, n) = ged (eay, ) =1,

b must be one of the integers a,, s, ..., 4y - All told, this proves
that the numbers aa, , aa,, ..., ddysqm, and the numbers 4, , a5, ...,
4, are identical (modulo #) in a certain order.

TueoREM 7-5 (Euler). If n is a positive integer and ged(a, n)=1
then a*™ =1 (mod #).
Proof: 'There is no harm in taking n>>1. Let a;, a2, .+, dpwm) be
the positive integers less than # which are relatively prime to .
Since ged (4, ) = 1, it follows from the lemma that aa,, aa;, ...,
ady,, are congruent, not necessarily in order of appearance, to
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@y ; 8y, vy gy LheN

aa, = aj (mod #),
ady = ajy (mod #),

£l -
-

ddyn) = a;ﬁ{n} (de ﬁ):

whete @}, @}, ..., dypm are the integets a,, 4z, ..., Ay I0
order. On taking the product of these ¢(#) congruences, ¥

(aay)aay) -+ (@agem) =ai @y + - @y (mod 7)

Eal dﬂ e d@{ﬂ-} (de ﬂ)
and so
a®™ayag r Apmy) =dydg -+ Ao (mod #).

Since gcd (45, #) =1 for each 7, the lemma preceding Theore
implies that ged (4145 *** dy(m> #) =1 Therefore we may
both sides of the foregoing congruence by the common
4y dz - dpmy, leaving us with

" =1 (mod ﬂ).
This proof can best be illustrated by carrying it out with some

specific numbers. Let »=09, for instance. The positive integers less
than and relatively prime to 9 are

1,2,4,5,7,8.

These play the role of the integers 2, , 4, , . .., @4, in the proof of Theotem
7-5. If a = —4, then the integers aa, are

._._.4, _--.8, --—16, —20, —28, _323

where, modulo 9,
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—4=5 —8=1,-16=2, —20=7, —28=8, —32=4.
When the above congruences are all multiplied together, we obtain
(—H)(—8)(—16)(—20)(—28)(—32)=5-1.2-7.8-4(mod 9),
which becomes
(1-2-4.5.7.8)(—4)°=(1-2.4.5.7.8) (mod 9).

Being relatively prime to 9, the six integers 1, 2, 4, 5, 7, 8 may be suc-
cessively cancelled to give

(—4)f=1 (mod 9).
The validity of this last congruence is confirmed by the calculation

(—4)=4°=(64)>=1%=1 (mod 9).
Note that Theorem 7-5 does indeed generalize the one due to
Fermat, which we proved earlier. For if p is a prime, then ¢(p) = p —1;
hence, whenever gcd (4, p) =1, we get

at - 1 Edlﬂ(p) = 1 (mod P)
and so:

CoroLLARY (Fermat). If p is a prime and p ¥ a, then a?~1=1

(mod p).
Example 7-2
Euler’s Theorem is helpful in reducing large powers modulo ».

To cite a typical example, let us find the last two digits in the decimal
representation of 3?%9; this is equivalent to obtaining the smallest

nonnegative integer to which 3%%¢ is congruent modulo 100. Since
ged (3,100) =1 and

$(100) = $(2? - 59 = 100(1 — (1 — }) = 40,

Euler’s Theorem yields
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340 =1 (mod 100).
By the Division Algorithm, 256 = 6 - 40 4 16; whence

3256 — 36-40+ 16 — (340)6316 == 316 (mod 100)

and our problem reduces to one of evaluating 3'¢, modulo 100.
The calculations are as follows, with reasons omitted:

316 — (81)* = (— 19)* = (361)2 = 612 =21 (mod 100).

There is another path to Euler’s Theorem, one which requires the
use of Fermat’s Theorem.

Second Proof of Euler’s Theorem: To start, we argue by induction
that if p ¥ a(p a prime), then

(1) a®®* =1 (mod p*), A>0.
When 4= 1, this assertion reduces to the statement of Fermat’s

Theorem. Assuming the truth of (1) for a fixed value of £, we wish
to show that it is true with 4 replaced by 4 -+ 1.
Since (1) is assumed to hold, we may write

a0 =1 + gpt

for some integer 4. Notice too that

B =P — = p— ) = P
Using these facts, along with the Binomial Theorem, we obtain

gd@Ethy — gpd@F)

=1 -+ar7
1 (am+ (GJary o+ (2 1)y +ary
=1+ (4) @) (mod pr+2).
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But p| (§) and so p*** | (£)(¢p*). Thus, the last-written congruence
becomes

a®®*H =1 (mod p*+1),

completing the induction step.

Now let gcd (4, #) =1 and # have the prime factorization
n=p,"1p,%... p,*. In view of what has already been proved, each
of the congruences

(2) @) =1 (mod p ), i=1,2,...,r

holds. Noting that ¢(r) is divisible by ¢(p,*), we may raise both
sides of (2) to the power ¢(#)/¢(p/) and arrive at

2™ =1 (mod p,*), i=1,2 ...,r

Inasmuch as the moduli are relatively prime, this leads us to the
relation

ad}(“} = 1 (de plkl 2kg aliic ‘Prkr)

or a*™ =1 (mod »).

The usefulness of Euler’s Theorem in number theory would be
hard to exaggerate. It leads, for instance, to a different proof of the
Chinese Remainder Theorem. In other words, we seek to establish that
if ged (n;, #,) =1 for i £, then the system of linear congruences

x = a, (mod #,), i=1,2,...,r

admits a simultaneous solution. Let m=mn,#,.-.-#, and put N,=#n/n
fori=1,2,...,r. Then the integer

x=a, lenn + 4, Nﬂn&ma) _I_ vewialhige N,.M“’:'
fulfills our requirements. To see this, first note that N;=0 (mod #)
whenever 7 =~ 7; whence,
x = a; N°™ (mod #,).
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But, since ged (N, #,) = 1, we have
N =1 (mod #,)

and so x =4, (mod #,) for each i.

As a second application of Euler’s Theorem, let us show that if #
is an odd integer which is not a multiple of 5, then # divides an integer
all of whose digits are equal to 1. (For example: 7| 111111,) Since
ged (n, 10)=1 and ged (9, 10) =1, we have ged (97, 10)=1 Quoting
Theorem 7-5 again,

100¢™ =1 (mod 9»).

This says that 102¢™ — 1 = 94 for some integer A4 or, what amounts to
the same thing,

1 den)__,_l
1*?1:0—6“‘_.

The right-hand side of the above expression is an integer whose digits
are all equal to 1, each digit of the numerator being clearly equal to 9.

PROBLEMS

1. Use Euler’s Theorem to establish the following:
(a) Foranyinteger a,4%” = a(mod 1729). [Hint: 1729 =7.13-19.]
(b) For any integer a, 4% = ¢ (mod 2730). [Hint:2730=2-3-57 - 13/]
(c) For any odd integer 4, ¢°® = 4 (mod 4080). [Hins: 4080 = 1516 - 17.]
2. Show that if ged (@, #) = ged (¢ — 1, #) = 1, then
14+a+a24 .+ g*™M-1 =0 (mod n).
[Hint: Recall that g™ —1 = (¢ —1)(@®™ 14 ...+ &%+ a4 1).]

3. If m and n are relatively prime positive integers, prove that

m®M) | g =1 (mod mn).

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 24/32




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc MATHEMATICS COURSE NAME: NUMBER THEORY

COURSFE CODE: 16MMUS02B UNIT: IT1 BATCH-2016-2019

SOME PROPERTIES OF THE
PHI-FUNCTION

The next theorem points out a curious feature of the phi-function;
namely, that the sum of the values of ¢(d), as 4 ranges over the positive
divisors of #, is equal to # itself. This was fitst noticed by Gauss.

Tueorem 7-6 (Gauss). For each positive integer n > 1,

n=> $d),

d

the sum being extended over all positive divisors of n.

Proof: The integers between 1 and # can be separated into classes as
follows: if 4 is a positive divisor of #, we put the integer » in the
class 5, provided that gcd (m, #) = 4. Stated in symbols,

So={m| ged(m, mM)=d; 1 <m <n}.

Now ged (m, #) = difand only if ged (m/d, n/d) = 1. 'Thus the number
of integers in the class 3, is equal to the number of positive integers
not exceeding #/d which are relatively prime to #/d; in other words,

equal to ¢(n/d). Since each of the # integers in the set 1,2, syt
lies in exactly one class S, we obtain the formula

=" $(nld).
din
But as 4 runs through all positive divisors of #, so does #/d; hence,
> $nld) = > $(d)
dln din

and the theorem follows.
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Example 7-3

A simple numerical example of what we have just said is provided
by »=10. Here, the classes §,; are
‘5‘1 = {1: 3: 7& 9}:
St 4, 6,8,
5s=1{5}
510 = {10}.

These contain ¢(10) =4, $(5)=4, §(2)=1, and ¢(1) = 1 integers,
respectively. Therefore,

S $(d)=$(10) + $5) +9(D) + H(1) =4 +4+1+1=10
AR

It is instructive to give a second proof of Theorem 7-6, this one
depending on the fact that ¢ is multiplicative. ‘The details are as follows:
If n =1, then cleatly

> $d)=> Hd)=41)=1=n
dln gil
Assuming that #>1, let us consider the number-theoretic function
F(i)= > $(d).
din

Since ¢ is known to be a multiplicative function, Theorem 6-4 asserts

- [ - - k k kf . "
that F is also multiplicative. Hence, if #== p,"pa "+ pr" 18 the prime
factorization of #, then

F(n) = F(p,")F(po") - - - F(p:")-

For each value of 7,

Fpy= > #(d)

dl piti

=¢(1) +¢(2) + 423 +$(p°) + - - +$(p)
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— 2 =
=1+@Gi—=D+@2—p)+(p2—p2) + - + (@ — pY)
Y. <
=p,

since the terms in the foregoing expression cancel each other, save for
the term p*. Knowing this, we end up with

Fa)=p"ps"--p) =n

and so

n= "> $(d),
In

&

as desired.
We should mention in passing that there is another interesting

identity which involves the phi-function,
THEOREM 7-7. For n>>1, the sum of the positive integers less than n
and relatively prime to n is ynd(n); in symbols,

Ind(n) = Z k.
S

Proof: Let a;, a,, ..., @y, be the positive integers less than »
and relatively prime to n. Now, since ged (e, 7) =1 if and only if
ged (n— a, #) =1, we have

ay+ay+- - taym=@—a)+(n—ay)+- - (n—a,,,)
=¢(mn—(ay +az + -+ + apm)).

Hence,
20ay +ay+ - +apm) = $(n)n,

leading to the stated conclusion.
Example 7-4
Consider the case »=230. The ¢(30) = 8 integers which are less

than 30 and relatively prime to it are
1,7, 11, 13, 17, 19, 23, 29,
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In this setting, we find that the desired sum is
14+7+11 413 +17 419 +234+29=120=14-30. 8.

This is a good point at which to give an application of the Mobius
Inversion Formula.

THEOREM 7-8. For any positive integer n,

Bn)=n 2 pd)a.

din

Proof: The proof is deceptively simple: If one applies the inversion
formula to

Fr)=n="> $(d),
the result is
b(r) =D pd)F(pld) =" u(dyn|d.
din din

Let us illustrate the situation with #= 10 again. As can easily
be seen,

10 > uld)/d = 10[u(1) + w(2)/2 + u(5)/5 + u(10)/10]

allp
— 10[1 +(—1)/2 + (= 1)/5 +(—1)?/10]
= 10[1 — 1/2 —1/5 +1/10] =10 - 2/5 = 4 = ¢(10).
Starting with Theorem 7-8, it is an easy matter to determine the
value of the phi-function for any positive integer ». Suppose that the

prime-power decomposition of # is n= p,"*p,**... p,*" and consider the
product

P =TT +pdp -+ +1(pEip)

Piln
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Multiplying this out, we obtain a sum of terms of the form

p(Du(pr Yu(p2"?) - - - (™) [p1a" - - - o™, 0<a <4

or, since u is known to be multiplicative,

(P pa 2 )DL PR B, = pld)]d,
where the summation is ovet the set of divisors d= p,%p,"2. .- p,% of
n. Hence, P= ), , u(d)/d. It follows from Theorem 7-8 that

By =n > w@)ld=n | | GuCt) +aplpy + -+ +1p)pe).

dln Piln

But u(p,*) =0 whenever 2,>2. As a result, the last-written equation
reduces to

d=n] [ W) +u@ilp)=n] [(1—1)p),

piln piln
which agrees with the formula established eatlier by different reasoning.
What is significant about this argument is that no assumption is made
concerning the multiplicative character of the phi-function, only of p.
PROBLEMS

1. For a positive integer #, prove that

> (1reg=|

d

0 if # is even
—un if # is odd

[Hint: 1f n=2¥N, where N is odd, then Y, (— )" $(d) =
2aize-an (@) — 3 a1n $(24d).]
2. Confirm that } g 35 $(d) =36 and Y 456 (—1)28"4gh(d) = v.

3. For a positive integer #, prove that Y . u*(d)/d(d) = n/d(n). [Hint: See
the hint in Problem 1.]

4. Use Problem 3, Section 6.2, to give a different proof of the fact that

n > wld)d= g(n).

d}
5. 1If the integer #>1 has the prime factorization n=p,*1p,2...p % s
tablish the following:
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(@) D WD) =@ —p)2—pD)+(2—p)

a|

@ > o= (o) () (2

y h+1 po+1 by +1
© ;:ﬁ(d)}’dz (14_:{-_1_(%:_.1_))(1 _|_£2(Pf9) (1+£‘£P_:D._.r_l})

[Hint: For patt (a), use Problem 3, Section 6-2.]
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POSSIBLE QUESTIONS

2 Mark Questions:
1. Define Mobius Inversion Formula.
2. Prove that the function g is a multiplicative function.

3. Define greatest positive integer.

N N
4. If N is apositive integer, then Y 7(n)=>[N/n].

n=l1 n=l1
Define Euler Phi function with example.
Find the value of ¢(36000).

Prove that for n > 2, ¢(n) is an even integer.

® N oum

Prove that for any positive integer n, ¢(n)= ”Z u(d)/d.

dln
9. State Gauss lemma.
10. Prove thatif pisa prime and p does not divides «,then a”" =1(mod p).
8 Mark Questions:
1. State and prove Mobius inverse formula.
2. Prove thatif F is multiplicative function

F(n)=2 f(d),

d‘n
Then fis also multiplicative.
3. Prove thatif nis a positive integer and p is a prime, then the exponent of the highest
power of p that divides n! is

> n/ ph]

n=1
(That is an infinite series, since [n/ p*]= 0 for p*>n.)

4. Proveif nand r are positive integers with 1< < n, then the binomial coefficient

n n!
r) ri(n—r)!
is also an integer.

5. Let fand F be number-theoretic function such that

F(n)=Y_ f(d),

d‘n

then, prove for any positive integer N,
N N
> F(m) =Y SNk}
k=1 k=1

6. Prove that the function ¢ is a multiplicative function.
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7. Prove that if the integer »n >1has the prime factorization n = Plkl pzk2 p,k” ,then

$00=(p" =" )" =" (R =P
=n(1-1/p)(1-1/p,)..A=1/p,).
Let n>1and ged(a,n) =1. If a,,a,,...,a,,, are the positive integer less than n and
relatively prime to n, then
aa,,aa,,...,ad
are congruent modulo 7 to a,a,,...,a,,, in some order.

State and prove Euler theorem.
Prove that for each positive integer n>1,
n=2 ¢(d),
d‘n

the sum being extended over all positive divisor of n.
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UNIT-1V
SYLLABUS

Order of an integer modulo n, primitive roots for primes, composite numbers having primitive roots,
Euler’s criterion, the Legendre symbol and its properties.
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THE ORDER OF AN INTEGER MODULO n

In view of Euler’s Theorem, we know that 4" =1 (mod #), whenever
ged (g, #) = 1. However, there are often powers of # smaller than z4®
which are congruent to 1 modulo #. This prompts the following defini-
tion:

Dermarion 8-1. Let# > 1 and ged (¢, #) = 1. The order of a modulo
# (in older terminology: the exponent to whick a belongs modulo n) is
the smallest positive integer A4 such that #* =1 (mod #).

Consider the successive powers of 2 modulo 7. For this modulus,
we obtain the congruences

21=2,22=4,23=1,2'=2,2=4,2°=1,

from which it follows that the integer 2 has order 3 modulo 7
Observe that if two integers are congruent modulo #, then they
have the same order modulo 7. For if 2= b(mod #) and 2= 1 (mod »),

Theorem 4-2 implies that &% == #* (mod #), whence #* =1 (mod #).
It should be emphasized that our definition of order modulo #

concerns only integers 4 for which ged (¢, #) = 1. Indeed, if ged (2, #) > 1,
then we know from Theorem 4-7 that the linear congruence ax =1
(mod #) has no solution; hence, the relation

@ =1 (mod #), k=1

cannot hold, for this would imply that x =2*""' is 4 solution of ax =1
(mod #). Thus, whenever there is reference to the order of 4 modulo
7, it is to be assumed that ged (2, #) = 1, even if it is not explicitly stated.
In the example given above, we have 2¥= 1 (mod 7) whenever £
is 2 multiple of 3, the order of 2 modulo 7. Qur first theorem shows
that this is typical of the general situation.
THEOREM 8-1. Le# the integer a have order A moduio n. Then a* =1

(mod ) if and ondy if k | h; in particular, k | $(n).
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Proof: Suppose to begin with that 4| 4, so that s =j for some
integer ;. Since 4= 1 (mod »), Theorem 4-2 tells us that (@) =1
(mod #) or 2" =1 (mod »).

Conversely, let # be any positive integer satisfying 4" =
(mod 7). By the Division Algorithm, there exist ¢ and 7 such that
h= gk +r, where 0 < r < 4. Consequently,

dh :dq#c-i-r:(dk)qar.

By hypothesis both 4* =1 (mod #) and 4* =1 (mod ), the implica-
tion of which is that " = 1 (mod #). Since 0 <r < 4, we end up with
r — 0 otherwise, the choice of 4 as the smallest positive integer such
that #* = 1 (mod #) is contradicted. Hence /= gk, and 4 | 4.

Theorem 8-1 expedites the computation when attempting to
find the order of an integer # modulo #: instead of considering all powers
of 4, the exponents can be restricted to the divisors of ¢(r). Let us obtain,
by way of illustration, the order of 2 modulo 13. Since ¢(13) = 12,
the order of 2 must be one of the integers 1, 2, 3, 4, 6, 12. From

22=4, 23=8, 2¢=3,26=12, 2" =1 (mod 13),

it is seen that 2 has order 12 modulo 13.

For an arbitrarily selected divisor d of ¢(), it is not always
true that there exists an integet « having order d modulo 7. An example
is n—=12. Here $(12) =4, yet there is no integer which is of order 4

modulo 12; indeed, one finds that
12=52=T72=112=1 (mod 12)
and so the only choice for orders is 1 or 2.
Here is another basic fact regarding the order of an integer.
TueoreMm 82, If a has order k modulo n, then &' =4’ (mod ) if and
only if i =j (mod £).

Proof: First, suppose that 4' =4’ (mod #), where 7 > j. Since 4 is

relatively prime to #, we may cancel a power of @ to obtain &' /=1
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(mod rz): lAccording to Theorem 8-1, this last congruence holds
only if £ | 7 — j, which is just another way of saying that 7 ==/ (rnl:')d k).

Conversely, let =/ (mod #). Then we have i=j+gk
for some integer 4. By the definition of £, a“==1 (mod #), so that

d=a = (@) =a (mod "),

which is the desired conclusion.

CorOLLARY. If a has order k modulo n, then the integers a, a*, ..., a*
are incongrueni modulo .

Progf: 1f a* =4’ (mod #) for 1 <i <j < £, then the theorem insures
that / =/ (mod £). But this is impossible unless /i = ;.

TueoreMm 8-3. If the integer a has order A modulo n and h >0, then
a" has order kged (b, £) moduls n.

Proof: Letd= gcd(h, £). Then we may wtite b = A, dand A= £, 4,
with ged (4,, 4,) = 1. Clearly,

(Y = (@ = ()" =1 (mod »).
If 4" is assumed to have order » modulo #, then Theorem 8-1 asserts

that 7| £;. On the other hand, since # has order £ modulo 7, the

congruence
& =(a"y =1 (mod )

indicates that 4| 4r; in other words, &, d| by dr ot A, | h,r. But
ged (A4, 4,) = 1 and therefore 4, | . This divisibility relation, when
combined with the one obtained earlier, gives

r=»F, = kld= kjgcd (4, %),
proving the theorem.

The last theorem has a corollary for which the reader may supply
a proof.
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CorROLLARY. Let a have order k modulo n. Then a* also has order k if
and only if gcd (h, £) = 1.

Example 8-1
The following table exhibits the orders modulo 13 of the positive
integers less than 13:

integer|1 2 345 6 7 8 9 10 11 12

order'112364121243 6 12 2

We observe that the order of 2 modulo 13 is 12, while the ordets of
22 and 29 are 6 and 4, respectively; it is easy to verify that

6=12/gcd (2, 12) and 4—=12/ged(3, 12)

in accordance with Theorem 8-3. Those integers which also have
order 12 modulo 13 are powers 2* for which ged (£, 12) = 1; namely,

28=:6,2"=11, 21* =7 (mod 13).

If an integer « has the largest order possible, then we call it
a primitive root of .
DerinrrioN 8-2. If ged (4, #) =1 and « is of order ¢(#) modulo 7,
then a is a primitive root of n.

To put it another way, # has 4 as a primitive root if g™ =1
(mod 7), but a* £ 1 (mod #) for all positive integers k < d(#).
It is easy to see that 3 is a primitive root of 7, fot

31:=3,32=2 3=6,3t=4,3°=5, 3*=1 (mod 7). |
Mote generally, one can prove that primitive roots exist for any prime
modulus, a result of fundamental importance. While it is possible for
a primitive root of # to exist when z is not a prime (for instance, 21isa
primitive root of 9), thete is no reason to expect that every integer 7
will possess a primitive root; indeed, the existence of primitive roots is
more the exception than the rule.
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Example 8-2

Let us show that if F,=2%"+41, n>>1, is a prime, then 2 is not a
primitive root of F,. (Clearly, 2 is a ptimitive root of 5=F,.)
Since 22"** — 1 = (22" + 1)(22" — 1), we have

22**1 —1 (mod F,),

which implies that the order of 2 modulo F, does not exceed 27+,
But if F, is assumed to be prime,

W) =F,—1=2"

and a straightforward induction argument confirms that 2% >
2n+1 swhenever #>1. Thus the order of 2 modulo F, is smaller
than ¢(F,); referring to Definition 8-2 we see that 2 cannot be a

primitive oot of F,.

One of the chief virtues of primitive roots lies in our next theorem,

Tueorem 8-4. Let ged(a, m)=1 and let ay, ay, ..., ayw, be the
positive integers less than n and relatively prime to n. If a is a primitive
root of n, then

a,a’, ..., a®m

3 3

are CONgruent Modulo # 10 a, , ay, ..., dye,, i Some order.
Proof: Since 4 is relatively prime to #», the same holds for all the
powers of z; hence, each 4" is congruent modulo # to some one of the
a;. The ¢(n) numbers in the set {4, 22, ..., #*™} are incongruent by
the corollary to Theorem 8-2, hence these powers must represent
(not necessarily in order of appearance) the integers @y, @y, ..., @pn) -

One consequence of what has just been proved is that, in those
cases in which a primitive root exists, we can now state exactly how many

there arc.

CoROLLARY. If n has a primitive root, then it has exactly $(d(n)) of
them.
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Proof: Suppose that 2 is a primitive root of n. By the theorem, any
other primitive root of # is found among the members of the set
{a,d% ..., a*™}. But the number of powers &%, 1 < £ < ¢(»), which
have order ¢(#) is equal to the number of integers 4 for which
ged (£, ¢(n)) = 1; there are ¢(p(n)) such integers, hence ¢(d(#)) primi-

tive roots of #.

Theotem 8-4 can be illustrated by taking « =2 and #=19. Since
#(9) = 6, the first six powers of 2 must be congruent modulo 9, in some
order, to the positive integers less than 9 and relatively prime to it
Now the integers less than and relatively prime to 9 are 1, 2, 4, 5, 7, 8
and we see that

21=22,22=4,2%=8,2¢=7,25==5, 2=1 (mod 9).

By virtue of the corollary, there are exactly ¢(¢(9)) = ¢(6) =2
primitive roots of 9, these being the integers 2 and 5.

PROBLEMS

1. Find the order of the integers 2, 3, and 5: (a) modulo 17, (b) modulo 19,
and (¢) modulo 23,

2. Establish cach of the statements below:
(a) If 4 has order k4 modulo n, then a" has order £ modulo 7.
(b) If # has order 24 modulo the odd prime p, then 4= —1 (mod p).
(c) If a has order # — 1 modulo », then » is a prime,

3. Prove that $(2" — 1) is a multiple of # for any n > 1. [Hint: The integer
2 has order # modulo 2* — 1.]

4. Assume that the order of 2 modulo # is # and the order of & modulo #
is £. Show that the order of 26 modulo » divides b&; in particular, if

ged (A, £) = 1, then @b has order bk.
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5. Given that 4 has order 3 modulo p, where p is an odd prime, show that
a -+ 1 must have order 6 modulo p. [Hiut: Because a® 4-a+-1=0 (mod p),
it follows that (¢ 1)2=a(mod p) and (a4 1)3=—1 (mod p) ]

6. Verify the following assertions:

(a) The odd prime divisors of the integer #% 4 1 are of the form 4%+ 1.
[Hint: n2= —1(mod p), where p is an odd prime, implies that 4 | d(p)

by Theorem 8-1.]
(b) The odd prime divisors of the integer n* + 1 are of the form 84 -+ 1.

() The odd prime divisors of the integer #* 47 + 1 which are different
from 3 are of the form 64 + 1.

PRIMITIVE ROOTS FOR PRIMES

Since primitive roots play a crucial role in many theoretical investigations,
a problem exerting a natural appeal is that of describing all integers
which possess primitive roots. We shall, over the course of the next
few pages, prove the existence of primitive roots for all primes. Before
doing this, let us turn aside briefly to establish a theorem dealing with
the number of solutions of a polynomial congruence.

Treorem 8-5 (Lagrange). If p is a prime and
flo) =gy x™ - a, _gxt~tbovodgise doag, a, % 0 (mod p)
is a polynomial of degree n > 1 with integral coefficients, then the congruence
() =0 (mod p)
has at most n incongruent solutions modulo p.

Proof: We proceed by induction on #, the degree of f(x). Ifn=1,
then our polynomial is of the form

J()=a,x +a,.

Since ged (2, , p) = 1, we know by Theorem 4-7 that the congruence
a, x = —a, (mod p) has a unique solution modulo p. Thus, the
theorem holds for # — 1.
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Now assume inductively that the theorem is true for poly-
nomials of degree £ — 1 and consider the case in which f(x) has
degree 4. Either f(x)=0 (mod p) has no solutions (and we are

finished) or it has at least one solution, call it 2. If f(x) is divided
by x — a, the result is :

J() = (x — a)g() +r,

in which g(x) is 2 polynomial of degree £ — 1 with integral coeflicients
and 7 is an integer. Substituting x = a, we obtain

0=7(a) = (a — @)gla) +r =7 (mod 2)

and so f(x) = (x — a)g(x) (mod p).
If 4 is another one of the incongruent solutions of f(x)=0
(mod p), then

0 =/(4) = (b — a)q(b) (mod p).

Since & — a & 0 (mod p), this implies that g(¥) = 0 (mod p); in other
words, any solution of f(x) =0 (mod p) which is different from a
must satisfy g(x) =0 (mod p). By our induction assumption, the
latter congruence can possess at most & — 1 incongruent solutions
and so _f(x) = 0 (mod p) will have no more than 4 incongruent solu-
tions. This completes the induction step and the proof.

COROLLARY. If p is a prime number and d| p— 1, then the congruence

x%—1=0(mod p)
has excactly d solutions.

Proof: Since d|p— 1, we have p—1=d4i for some A Then
xPml—1=(x?—1)f(x),

where the polynomial f(x)= sef®~1) f-ocBUe=2p cun 58 | 1 has
integral coefficients and is of degree d(A —1)=p—1—4. By
Lagrange’s Theorem, the congruence f(x) =0 (mod p) has at most
p—1—d solutions. We also know from Fermat’s Theorem that
x?~1—1=0 (mod p) has precisely p — 1 incongruent solutions;
namely, the integers 1,2, ..., p— 1.
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Now any solution x =z of x?~! — 1 =0 (mod p) that is not
a solution of f(x) =0 (mod p) must satisfy x¢ — 1 =0(mod p). For

O==g""1—1=(a?—1)f(a) (mod p),
with p t f(a), implies that p|4*—1. It follows that x*—1=0

(mod p) must have at least

p—1—-(p—1-d)=d
solutions. This last congruence can possess no more than 4 solutions
(Lagrange’s Theorem enters again), hence has exactly 4 solutions,

We take immediate advantage of this corollary to prove Wilson’s
Theorem in a different way: given a prime p, define the polynomial

f(x) by
)= — 1) —2) - (x— (p— 1)) — (x2=2 — 1)

=dp o X7 7%t a, gx78 L. +ayx +a,,

jwhich is of degree p—2. Fermat’s Theorem implies that the p— 1
integers 1,2, ..., p—1 are incongruent solutions of the congruence

f(x)=0(mod p).

But this contradicts Lagrange’s Theorem, unless

Ay _s=day.z=---=ay=a,=0(mod p).
It follows that, for any choice of the integer x,

(= 1)x—2)++(x—(p— 1)) — (x>~ — 1) =0 (mod p)

Now substitute x = 0 to obtain

(—1)(=2)-(—(p— 1)) + 1=0 (mod p)
ot (—1p~*(p—1)! +1=0 (mod p). Either p—1 is even or else F=2
in which case —1 =1 (mod p); at any rate, we get

(p—1)!=—1(mod p).
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Lagrange’s Theorem has provided us with the entering wedge.
We are now in a position to prove that, for any prime p, there exist

integers with order cortesponding to each divisor of p—1. Stated
more precisely:

THEOREM 8-6. If p ir a prime number and d|p— 1, then there are
excactly (d) incongruent integers having order d modulo p.

Proof: Let d|p—1 and let y(d) denote the number of integers A,
1 <4< p—1, which have order 4 modulo p. Since each integer
between 1 and p — 1 has order 4 for some d| p— 1,

p—1= Z Y(d).
dip-1
At the same time, Gauss’ Theorem tells us that
p—1= > ¢(d)
dip -1

and so, putting these together,

(1) > Wdy= > $(d)

dlp—-1 dip-1
Our aim is to show that y(d) < ¢(d) for each divisor 4 of p—1,
since this, in conjunction with equation (1), would produce the
equality ¢(d) = ¢(d) # 0 (otherwise, the first sum would be strictly
smaller than the second).

Given an arbitrary divisor & of p — 1, there are two possi-
bilities: either Y(d)=0 or §(d)>0. If yi(d)=0, then certainly
Y(d) < é(d). Suppose that (d) >0, so that there exists an integer
aof orderd. ‘Then the dintegers «, 42, . .., a® are incongruent modulo

p and each of them satisfies the polynomial congruence
(2) x4 —1=2=0(mod p);
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for, (&) =(s*)*=1 (mod p). By the corollary to Lagrange’s
Theorem, there can be no other solutions of (2). It follows that
any integer which has order # modulo p must be congruent to one
of g, a*, ..., a*. But only ¢(d) of the just-mentioned powers have
order 4, namely those * for which the exponent & has the property
ged (A, d)=1. Hence, in the present situation, i(d) = ¢(d), and
the number of integers having order 4 modulo p is equal to ¢(d).
This establishes the result we set out to prove.

COROLLARY. If p is a prime, then there are exactly ¢(p — 1) incongruent
primitive roots of p.

An illustration is afforded by the prime p = 13. For this modulus,
1 has order 1; 12 has order 2; 3 and 9 have order 3; 5 and 8 have order 4;
4 and 10 have order 6; and four integers, namely 2, 6, 7, 11, have order
12. Thus,

D ) = g(1) + (@) + f(3) +(4) + §(6) -+ $(12)
dj12
=14+14242424+4=12
as it should. Notice too that
YD) =1=¢(1), J@4) =2=4¢(4)
Y)=1=¢@2), ¢(6) =2=4¢(6)
W(3)=2=¢(3), Y(12) = 4 = ¢(12)

Incidentally, there is a shorter and more elegant way of proving

that J(d)=(d) for each d|p—1. We simply subject the formula
d= Y.« Y(¢) to Mdbius inversion to deduce that

Y(d) = > p(e)dfc).

cld

In light of Theorem 7-8, the right-hand side of the foregoing equation
is equal to ¢(d). Of course, the validity of this argument rests upon
knowing that 4 is a multiplicative function.
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We can use this last theorem to give another proof of the fact
that if p is a prime of the form 44 - 1, then the quadratic congruence
x*=-—1 (mod p) admits a solution. Since 4|p—1, Theorem 8-6
tells us that there is an integer 4 having order 4 modulo p; in othet
words,

a*=1 (mod p)
or equivalently,
(@ — 1)(@® + 1) =0 (mod p).
Because p is a prime, it follows that either
a*—1=0(mod p) or 42+ 1=0(mod p).

It the first congruence held, then 2 would have otder less than or equal
to 2, a contradiction. Hence, 2% 4+ 1 =0 (mod p), making the integer 4
a solution to the congruence x? = —1 (mod p).

Theorem 8-6, as proved, has an obvious drawback; while it
does indeed imply the existence of primitive roots for a given prime p,
the proof is nonconstructive. To find 2 primitive root, one must usually
proceed by brute force or else fall back on the extensive tables that have
been constructed. The accompanying table lists the smallest positive
primitive root for each prime below 200.

If y(p) designates the smallest positive primitive root of the
prime p, then the table presented above shows that y(p) <19 for all
»<200. In fact, x(p) becomes arbitrarily large as p increases without
bound. The table suggests, although the answer is not yet known,
that there exist an infinite number of primes p for which yx(p)=2.

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 13/44




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc MATHEMATICS COURSE NAME: NUMBER THEORY
COURSFE CODE: 16MMUS02B UNIT: IV BATCH-2016-2019
Least positive Least positive
Prime primitive roof Prime pripifive roof

2 1 89 3

3 2 o7 5

5 2 101 2

T 3 103 5
11 2 107 2
13 2 109 G
17 3 113 3
19 2 127 3
23 5 131 2
29 2 137 3
3 3 139 2
L ¥ 2 149 2
41 6 151 6
43 3 157 5

T 5 163 2
53 2 167 ]
59 2 173 2
61 2 179 2
67 2 181 2
71 7 191 19
73 5 193 5
79 . 197 2
83 2 19% 3

——

In his Disquisitiones Arithmeticae, Gauss conjectured that there
are infinitely many primes having 10 as a primitive root. In 1927 Emil
Artin generalized this unresolved question as: For « not equal to 1, —1,
or a perfect square, do there exist infinitely many primes having # as
a primitive root ?

The restrictions in Artin’s conjecture are justified as follows.
Let « be a perfect square, say a = x?, and let p be an odd prime with

ged (o, )= 1. If p t x, then Fermat’s Theorem yields x? ! = 1 (mod p),
whence
gle=112 E(xz)(p_ 0e —1 (mod .P)
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Thus 4 cannot serve as a primitive root of p [if p | x, then p| a and sutely
a?~1 % 1 (mod p)]. Furthermore, since (—1)2 =1, —1 is not a primitive

toot of p whenever p--1 = 2.
Example 8-3

Let us employ the various techniques of this section to find the
#(6) == 2 integers having order 6 modulo 31. To start, we know that

there are

$($(31)) = $(30) =8

primitive roots of 31. Obtaining one of them is a matter of trial and
error. Since 2° =1 (mod 31), the integer 2 is clearly ruled out. We
need not search too far, since 3 turns out to be a primitive root of
31. Observe that in computing the integral powers of 3 it is not
necessary to go beyond 3'%; for the order of 3 must divide ¢$(31) =

30 and the calculation

315 = (27)5 = (—4)* =(—64)(16) = —2(16) = —1 3£ 1 (mod 31)

shows that its order is greater than 15.

Because 3 is a primitive root of 31, any integer which is
relatively prime to 31 is congruent modulo 31 to an integer of the
form 3% where 1 << 4 =< 30. Theorem 8-3 asserts that the order of
3% is 30/gcd (4, 30); this will equal 6 if and only if ged (4, 30) = 5.
The values of 4 for which the last equality holds are #=5 and
4#=25. Thus our problem is now reduced to evaluating 3° and 32°

modulo 31. A simple calculation gives
3 =27)9=(—49 = —36 =26 (mod 31),

3% = (35)8 = (26)° = (—5)° = (— 125)(25) = —1(25) = 6 (mod 31),

so that 6 and 26 are the only integers having order 6 modulo 31.
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PROBLEMS

1. If pis an odd prime, prove that
(@) the only incongruent solutions of x2=1 (mod p) are 1 and p —1;
(b) the congruence xP 24 ... 4+ 5?4 x+1=0 (mod p) has exactly
P — 2 incongruent solutions and they are 2, 3, ..., p — 1.

2. Verify that each of the congruences x” =1 (mod 15), x2= —1 (mod 065)
and x? = —2 (mod 33) has four incongruent solutions; hence, Lagrange’s
Theotem need not hold if the modulus is a2 composite number.

3. Determine all the primitive roots of the primes p =17, 19, and 23, ex-
pressing each as a power of some onc of the roots.

4. Given that 3 is a primitive root of 43, find
(a) all positive integers less than 43 having order 6 modulo 43;
(b) all positive integers less than 43 having order 21 modulo 43.

5. Find all positive integers less than 61 having order 4 modulo 61.

COMPOSITE NUMBERS HAVING
PRIMITIVE ROOTS

We saw earlier that 2 is a primitive root of 9, so that composite numbers
can also possess primitive roots. The next step of our program is to
determine all composite numbers for which there exist primitive roots.
Some information is available in the following two negative results.

THEOREM B-7.  For A => 3, the integer 2% has no primitive roots.

Progf:  For reasons that will become clear later, we start by showing
that if 2 is an odd integer, then for 4 >3

2**"* =1 (mod 25).
If £ = 3, this congruence becomes #? = 1 (mod 8), which is certainly
true (indeed, 1? =3?=52=72=1(mod 8)). For 4 > 3, we proceed
by induction on £. Assume that the asserted congruence holds for

the integer £; that is, ** ™" =1 (mod 2¥). This is equivalent to the
equation

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 16/44




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc MATHEMATICS COURSE NAME: NUMBER THEORY

COURSFE CODE: 16MMUS02B UNIT: 1V BATCH-2016-2019

a® =14 b2k,
where b is an integer. Squaring both sides, we obtain
a7 = (a2 = 1 + 2(h2%) + (b2k)?
= 1 42K+ 1(p 4 p22%-1)
=1 (mod 2++?),

so that the asserted congruence holds for 4 + 1 and hence for all
k=3

Now the integers which are relatively prime to 2% are precisely
the odd integers; also, ¢(2¥) = 2¥-1, By what was just proved, if 4
is an odd integer and £ > 3,

adsiz’mz == | (mod 21¢)

and, consequently, there are no primitive roots of 2%,

THEOREM 8-8. If gcd(m, n)=1, where m >2 and n>2, then the
integer mn has no primitive roots.

Proof: Consider any integer « for which ged (s, 7#)==1; then
ged (@, 7) =1 and ged (e, )= 1. Put = lem (¢(»), $(n)) and d=

ged ($(), $(7))-
Since ¢(#) and ¢(#) are both even (Theorem 7-4), surely

4> 2. In consequence,

b(m)bin) _ ()
k= ' < 5

Now Euler’s Theorem asserts that 22 =1 (mod ). Raising this
equation to the ¢(#)/d powet, we get

@ == (p?m)eMd = {$tm1d — 1 (mod 7).

Similar reasoning leads to & =1 (mod #). Together with the hypo-
thesis god (m, #)= 1, these congruences force the conclusion that
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&" =1 (mod mmn).

The point which we wish to make is that the order of any integer
relatively prime to mn does not exceed ¢(z#)/2, whence there can be
no primitive roots for mn.

Some special cases of Theorem 8-8 are of particular interest and
we list these below.

COROLLARY. The integer n fails to have a primitive roof if either
(1) # is divisible by two odd primes, or
(2) nis of the form n = 2mpF, where p is an odd prime and m > 2.

The significant feature of this last series of results is that they
restrict our search for primitive toots to the integers 2, 4, p* and 2p%,
where p is an odd prime. In this section, we shall prove that each of the
numbers just mentioned has a primitive root, the major task being the

establishment of the existence of primitive roots for powers of an odd
prime. The argument is somewhat long-winded, but otherwise routine;
for the sake of clarity, it is broken down into several steps.

LemMA 1. If p is an odd prime, then there exists a primitive root r of p
such that r?=1 % 1 (mod p?).

Proof : From Theorem 8-6, it is known that p has primitive roots.

Choose any one, call it . If 7~ =£ 1 (mod p?), then we ate finished.

In the contraty case, replace 7 by ' = r -i- p, which is also a primitive
root of p. Then employing the Binomial Theorem,

(P =0+ py ="t (p— 1pr - (mod 1),
But we have assumed that -1 =1 (mod p?); hence
(r P=T=T— 22 (i6d 52

Since r is a primitive root of p, ged (7, p) =1 and so p fr*-2. The
outcome of all this is that (#)? -1 =£ 1 (mod p?), as desired.
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COROLLARY.  If p is an odd prime, then p* has a primitive root; in fact,
Jor a prinmitive root r of p, either r or r 4 p is a primitive root of p2.

Proof:  The assertion is almost obvious: If r is a primitive root of p,
then the order of » modulo p? is either p — 1 ot else p(p — 1) = ¢(p2).
The foregoing proof shows that if r has order p — 1 modulo 2, then
r + p will be a primitive root of 2.

To reach our goal, another somewhat technical lemma is needed.

Lemma 2. Let p be an odd prime and r be a primitive root of p such that
r?=t 1 (mod p?).  Then for eack positive integer £ = 2,

pPTie -1 £ ] (mod p¥).

Proof:  The proof proceeds by induction on 4. By hypothesis, the
assertion holds for A =2. Let us assume that it is true for some
4 2>2 and show that it is true for 44 1. Since ged(r, pF—1) —
ged (r, p*) = 1, Euler’s Theotem indicates that

FPETRE 1) o pelp* ) — CITIO{] Pk-l}'
Hence, there exists an integer # satisfying
pPO -1 1 i dpk-« 13

whete p f @ by our induction hypothesis. Raise both sides of this
last-written equation to the pth power and expand to obtain

pRTHPED = (] a1 =] +-ap*(mod pF+1),
Since the integer « is not divisible by p, we have
fpk—lfn—l)s—,_(-_ 1 (modpk-kl)‘

This completes the induction step, thereby proving the lemma.
THEOREM 8-9. If p is an odd prime number and k =1, then there exists

a primitive root for p*.
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Proof: The two lemmas allow us to choose a primitive root 7 of p
for which r# 21 =£ 1 (mod p¥); in fact, any  satisfying the condi-
tion 72 -1 % 1 (mod p?) will do. We argue that such an 7 serves as a
primitive root for all powers of p. |

Let # be the order of r modulo p*. In compliance with
Theorem 8-1, 7 must divide ¢(p*) = pF~}(p —1). Sincer"=1 (mod
#¥) implies that 7" = 1 (mod p), we also have p— 1 | # (Theorem 8-1
serves again). Consequently, # assumes the form 7= pr(p—1),
where 0 <m <A 1. If it happened that n# pF~(p—1), then
=% p— 1) would be divisible by # and we would arrive at

pPe-20 -1 =1 (mod p¥),

contradicting the way in which r was initially picked. Therefore,
n=p* (p—1) and r is a primitive root for p¥.

This leaves only the case 2p* for our consideration.

CoROLLARY. There are primitive roots for 2p*, where p is an odd prime
and k> 1.

Proof: Let r be a primitive root for p*. There is no ha:rm in as-
suming that 7 is an odd integer; for, if it is even, thenr - Prisoddand
is still a primitive root for p¥. Then ged (7, 2°) = 1. The order #
of » modulo 2p¥ must divide

$(2pY) = $()b(p") = ().
But r"=1 (mod 2p*) implies that r*=1 (mod p*), and so q&( JRE2
Together these divisibility conditions force n = ¢(2p*), making r a
primitive root of 2p".
The prime 5 has ¢(4) = 2 primitive roots, namely the integers 2
and 3. Since

25-1==165£1(mod 25) and 3°~'=63% 1 (mod 25),
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these also serve as primitive roots for 52, hence for all higher powers
of 5. The proof of the last corollary guarantees that 3 is a primitive
root for all numbers of the form 2 . 5%,

We summarize what has been accomplished in

Trrorem 8-10.  Aw integer n>>1 has a primitive root if and only if
n=2, 4, p*, or 2p*,

where p is an odd prime,

Proof: By virtue of Theorems 8-7 and 8-8, the only positive integers
with primitive roots ate those mentioned in the statement of our
theorem. It may be checked that 1 is a primitive root for 2, while 3
is a primitive root of 4. We have just finished proving that primitive
roots exist for any power of an odd prime and for twice such a power.

This seems the oppottune moment to mention that Euler gave an
essentially cotrect (although incomplete) proof in 1773 of the existence
of primitive roots for any prime p and listed all the primitive roots for
p=37. Legendre, using Lagrange’s Theorem, managed to repair the
deficiency and showed (1785) that there are ¢(d) integers of order 4 for
cach d|(p~—1). The greatest advances in this direction were made by
Gauss when, in 1801, he published a proof that there exist primitive roots
of 7 if and only if 7= 2, 4, p¥, and 2p*, where p is an odd prime.
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PROBLEMS
1. (a) Find the four primitive roots of 26 and the eight primitive roots of
25,

(b) Determine all the primitive roots of 32, 33 and 34,

2. For an odd prime p, establish the following facts:
(@) There are as many primitive roots of 2p" as of p*.
(b) Any primitive root r of p™ is also a primitive root of p. [Hint:
Let r have order £ modulo p. Show that r™* =1 (mod 2?),...,
77" " =1 (mod p"), hence ¢(p") | p*~14.]

(c) A primitive root of p%is also a primitive root of p* for n > 2,

3. If risa primitive root of p?, p being an odd prime, show that the solutions
of the congruence x*~! = 1 (mod p?) are precisely the integers 7, r2?, ...,
ffP— iwp :

4. (a) Prove that 3 is a primitive root of all integers of the form 7% and

2.7%,
(b) Find a primitive root for any integer of the form 17%,

5. Obtain all the primitive roots of 41 and 82.

EULER’S CRITERION

As the heading suggests, the present chapter has as its goal another
major contribution of Gauss: the Quadratic Reciprocity Law. For those
who consider the theory of numbers ““the Queen of Mathematics,”
this is one of the jewels in her crown. The instrinsic beauty of the
Quadratic Reciprocity Law has long exerted a strange fascination for
mathematicians. Since Gauss’ time, over a hundred proofs of it, all
more or less different, have been published (in fact, Gauss himself even-
tually devised seven). Among the eminent mathematicians of the 19th
century who contributed their proofs appear the names of Cauchy,
Jacobi, Dirichlet, Eisenstein, Kronecker, and Dedekind.

Roughly speaking, the Quadratic Reciprocity Law deals with the
solvability of quadratic congruences. It therefore seems appropriate
to begin by considering the congruence

(D ax? <4 bx 4 ¢ =0 (mod p),
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where p is an odd prime and 4 £ 0 (mod p); that is, ged(a, p)=1. The

supposition that p is an odd prime implies that gcd (4a, p) — 1. Thus,
congruence (1) is equivalent to

da(ax? - bx -+ ) =0 (mod p).
Using the identity

da(ax® + bx + o) = (2ax + §)? — (b* — 4a0),

the last-written congruence may be expressed as
(2ax + b)? =(b* — 4ar) (mod p).

Now put y = 2ax + b and d= 52 — 4ac to get

(2) ?=d(mod p).

If x =x (mod p) is a solution of (1), then y ==2ax, 4- b (mod p) satisfies
the congruence (2). Conversely, if y =y, (mod p) is a solution of (2),

Thus, the problem of finding a solution to the quadratic con-
gruence (1) is equivalent to that of finding a solution to a linear congru-
ence and a quadratic congruence of the form

(3) x? ==a (mod p).

If p| a, then (3) has x =0 (mod p) as its only solution. To avoid triv-
ialities, let us agree to assume hereafter that p 1 a. .

Granting this, whenever x? =a (mod p) admits a solutionx = Xo,
then there is also a second solution x = p— x,. This scco_nd splut;cm
is not congruent to the first. For xp=p-— X (mod p) implies th:?t
2xo =0 (mod p), ot x, =0 (mod p), which is impossible. By Lagrange’s
Theorem, these two solutions exhaust the incongruent solutions of
x? =a (mod p). In short: x? ==z (mod p) has exactly two solutions or no
solutions. . o ‘

A simple numerical example of what we have just said is provided
by the congruence
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Sx% — 6x -2 =0 (mod 13).
To obtain the solution, one replaces this congruence by the simpler one
32 =9 (mod 13)
with solutions y =3, 10 (mod 13). Next, solve the lincar congruences
10x =9 (mod 13), 10x ==16 (mod 13).

It is not difficult to see that x =10, 12 (mod 13) satisfy these equations
and, by our previous remarks, the original quadratic congruence -allso.

The major effort in this presentation is directed towards providing
a test for the existence of solutions of the congruence

@ x? =a (mod p), ged(a, p)=1.

To put it differently, we wish to identify those integers # which are
perfect squares modulo p. Some additional terminology will help us to
discuss this situation in a concise way:

Dermrrion 9-1.  Let p be an odd prime and ged (a,. P):T 1. Ifthe
congruence x? =a (mod p) has a solution, then # is said to be 2
quadratic residue of p. Otherwise, a is called a guadratic nonresidue of p.

The point to be borne in mind is that if @ =b (mod p), then «
is a quadratic residue of p if and only if b is 2 quadratic residue of p.

Thus, we need only determine the quadratic character of those positive
integers less than p in order to ascertain that of any integer.

Example 9-1
Consider the case of the prime p=13. To find out how many of

the integers 1, 2, 3, ..., 12 are quadratic residues of 13, we must know
which of the congruences

x? =q (mod 13)
are solvable when # runs through the set {1, 2, ..., 12}. Modulo 13,
the squares of the integers 1, 2, 3, ..., 12 are
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12=122= 1,

22 =112 = 4,

=10= 9,

42= 92= 3,

2= B%2=12,

62 = T2=10.

Consequently, the quadratic residues of 13 are 1, 3, 4, 9, 10, 12, while
the nonresidues are 2, 5, 6, 7, 8, 11. Observe that the integers
between 1 and 12 are divided equally among the quadratic residues
and nonresidues; this is typical of the general situation.

Euler devised a simple criterion for deciding whether an integer
a 18 a quadratic residue of a given prime p.

TueoreM 9-1 (Euler’s Criterion). Let p be an odd prime and
ged(a, py=1. Then a is a quadratic residue of p if and only if
a®=112 =1 (mod ).
Proof: Suppose that « is a quadratic residue of p, so that x? =a
(mod p) admits a solution, call it x,. Since ged (g, p) = 1, evidently
ged (o, , p) = 1. We may therefore appeal to Fermat’s Theorem to
obtain

a® =12 =(5,2) P =102 = p0.p-1 =1 (mod p).

For the opposite direction, assume that ¢»-12 =1 (mod p)
holds and let » be a primitive root of p. Then a =r*(mod p) for some
integer A4, with 1 <4 <p— 1. It follows that

P =112 == g0 =112 =1 (mod p).

By Theorem 8-1, the order of r (namely, p— 1) must div.ide the
exponent A(p— 1)/2. The implication is that k is an even integer,

say A= 2_;. HEHC&,

(r')? = r? =r* =q (mod p),

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 25/44




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc MATHEMATICS COURSE NAME: NUMBER THEORY

COURSFE CODE: 16MMUS02B UNIT: 1V BATCH-2016-2019

making the integer 7 a solution of the congruence x* =4 (mod p).
This proves that 4 is 2 quadratic residue of the ptime p.

Now if p (as always) is an odd prime and ged (e, p) =1, then
(@112 — 1)(@®= 172 4 1) = g~ 1 — 1 =0 (mod p),

the last congruence being justified by Fermat’s Theorem. Hence either
4®-12 =1 (mod p) ot a® V%=1 (mod p),

but not both. For, if both congruences held simultaneously, then we
would have 1 = —1 (mod p), or equivalently, p | 2, which conflicts with
our hypothesis. Since a quadratic nonresidue of p does not satisfy
a#-12 =1 (mod p), it must therefore satisfy a?~ 12 =_—1 (mod p).
This observation provides an alternate formulation of Eulet’s Criterion:
the integet 4 is a quadratic nontesidue of p if and only if a® -2 =—1

(mod p).

COROLLARY. Le# p be an odd prime and ged(a, p)=1. Then a is a
quadratic residue or nonresidue of p according as

g7~V =1(mod p) or a® V2=—1(mod p).

Example 9-2
In the case p = 13, we find that

208-1)2 — 26 — 64 =12 =—1 (mod 13).
Thus, by virtue of the last corollary, the integer 2 is a quadratic non-
residue of 13. Since

3a3-12 = 36 = (27)2 =12 =1 (mod 13),

the same result indicates that 3 is a quadratic residue of 13 and so the
congruence x? =3 (mod 13) is solvable; in fact, its two incongruent

solutions are x =4 and 9 (mod 13).
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There is an alternative proof of Euler’s Criterion (due to
Dirichlet) which is longer, but perhaps more illuminating. The reasoning
proceeds as follows: Let # be 2 quadratic nonresidue of p and let ¢ be
any one of the integers 1, 2, ..., p— 1. By the theory of linear congru-
ences, there exists a solution ¢’ of ex =a (mod ), with ¢ also in the set
{I, 2, ..., p—1}. Notice that ¢' ¢, for otherwise we would have
¢*=a (mod p), contradicting what we assumed. Thus, the integers
between 1 and p— 1 can be divided into (p — 1)/2 pairs ¢, ¢', where c¢’ =a
(mod p). This leads to (p — 1)/2 congruences,

6,6, =a (mod p),
¢ych =a (mod p),

*

Cep-112 bep-132 =a {mod p).

Multiplying them together and observing that the product

r F Fi
€16y pb, °€{p-1J!2 ¢ r-1y2

is simply a rearrangement of 1 - 2. 3...(p— 1), we obtain
(p-— 1) =2®-172 (mod p).

At this point, Wilson’s Theorem enters the picture; for, (p — 1)l =—1
(mod p), so that

aP-112 — _q (mod b

which is Euler’s Criterion when « is a quadratic nonresidue of 22

We next examine the case in which « is a quadratic residue of jid
In this setting the congruence x? =« (mod 2) admits two solutions
x=2x; and x=p—x,, for some x, with 1 <x, <p—1. If x, and
P — xy are removed from the set {1, 2, ..., p— 1}, then the remaining
p—3 integers can be grouped into pairs ¢, ¢ (where ¢ #¢") such that
o' =a (mod p). To these (p— 3)/2 congruences, add the congruence

xp—x)=—x2=—g (mod p).
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Upon taking the product of all the congruences involved, we arrive at
the relation

{P__ 1)] = gPp=-1)2 (rm)dp).

Wilson’s Theorem plays its role once again to produce

g(]?—__\l).fﬂ E‘l (mod p).
Summing up, we have shown that 4®~*/? =1 (mod p) or 4~ V2 =—1
(mod p) according as a is a quadratic residue or nonresidue of p.

Euler’s Criterion is not offered as a practical test for determining
whether a given integer is or is not a quadratic residue; the calculations
involved are too cumbersome unless the modulus is small. But as a
crisp criterion, easily worked with for theoretical purposes, it leaves
little to be desired. A more effective method of computation is embodicd
in the Quadratic Reciprocity Law, which we shall prove later in the
chapter.

PROBLEMS

1. Solve the following quadratic congruences:
(a) x?- 7x+ 10=0(mod 11);
(b) 3x2+ 9x -+ 7 =0 (mod 13);
(c) 5x%+ 6x+ 1 =0 (mod 23).
2. (a) For an odd prime p, prove that the quadratic residues of p are con-
gruent modulo p to the integers

i
12, 22, 32, vaeay (T) s
(b) Verify that the quadratic residues of 17 are 1, 2, 4, 8,9, 13, 15, 16.
3. Employ the index calculus to derive Euler’s Criterion. [Hm#: See
Theorem 8-2.]
4. Show that 3 is a quadratic residue of 23, but a nonresidue of 19.
5. Given that « is a quadratic residue of the odd prime g, prove that
(a) a is not a primitive root of p;

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 28/44




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc MATHEMATICS COURSE NAME: NUMBER THEORY

COURSFE CODE: 16MMUS02B UNIT: 1V BATCH-2016-2019

(B) p—aisa quadratic residue or nonresidue of p according as p=1
(mod 4) or p= 3 (mod 4).
6. If p=2%+1 is prime, establish that every quadratic nonresidue of p
is a primitive root of p. [Hint: Apply Euler’s Criterion.]
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THE LEGENDRE SYMBOL AND ITS
PROPERTIES

Fuler’s studies on quadratic residues were further developed by the
French mathematician Adrien Marie Legendre (1752-1833). Legendre’s
memoir “Recherches d’Analyse Indéterminée” (1785) contains an ac-
count of the Quadratic Reciprocity Law and its many applications, a
sketch of a theory of the representation of an integer as the sum of three
squares and the statement of a theorem that was later to become famous:
Every arithmetic progression ax -+ b, where gcd (e, #) =1, contains an
infinite number of primes. The topics covered in ““Recherches” were
taken up in a more thorough and systematic fashion in his Essai sur I
Théorie des Nombres, which appeared in 1798. This represented the first
“modern” treatise devoted exclusively to number theory, its precursots
being translations or commentaries on Diophantus. Legendre’s Essai
was subsequently expanded into his Théorie des Nombres. The results
of his later research papers, inspired to a large extent by Gauss, were
included in 1830 in a two-volume third edition of the Théorie des Nombres.
This remained, together with the Disquisitiones Arithmeticae of Gauss, a

standard work on the subject for many years. Although Legendre made
no great innovations in number theory, he raised fruitful questions
which provided subjects of investigation for the mathematicians of the
19th century.

Before leaving Legendre’s mathematical contributions, we

should mention that he is also known for his work on elliptic integrals
and for his Eléments de Géométrie (1794). In this last book, he

attempted a pedagogical improvement of Euclid’s Elements by rearrang-
ing and simplifying many of the proofs without lessening the rigor of
the ancient treatment. The result was so favorably received that it
became one of the most successful textbooks ever written, dominating
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instruction in geometry for over a century through its numerous editions
and translations. An English translation was made in 1824 by the
famous Scottish essayist and historian Thomas Carlyle, who was in early
life a teacher of mathematics; Carlyle’s translation ran through 33 Ameri-
can editions, the last not appearing until 1890. In fact, Legendre’s
revision was used at Yale University as late as 1885, when Euclid was
finally abandoned as a text.

Our future efforts will be greatly simplified by the use of the
symbol (2/p); this notation was introduced by Legendre in his Essa/ and is
called, naturally enough, the Legendre symbol.

DerFmNITION 9-2. Let p be an odd prime and ged (4, p) =1. The
Legendre symbol (a[p) is defined by

1 if @ is a quadratic residue of p
(alp) = {——1 if « is a quadratic nonresidue of p

For the want of better terminology, we shall refer to 4 as the
numerator and p as the denominator of the symbol (g/p). Other standard

notations for the Legendre symbol ate (i) or (z| p).

Example 9-3 ‘
Let us look at the prime p — 13, in particular. Using the Legendre

symbol, the results of an earlier example may be expressed as
(1/13) = (3/13) = (4/13) = (9/13) = (10/13) = (12/13) =1

and
(2/13) = (5/13) = (6/13) = (7/13) =(8/13) = (11/13) =—1.

REMARK: For p|a, we have purposely left the symbol (a/p) undefined.
Some authors find it convenient to extend Legendre’s definition to this
case by setting (a/p) = 0. One advantage of this would be that the number
of solutions of x? = a (mod p) can then be given by the simple formula

1+ (a/p).
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The next theorem sets in evidence certain elementary facts con-
cerning the Legendre symbol,

Tueorem 9-2. Lez p be an odd prime and a and b be intogers which are

relatively prime to p. Then the Legendre symbol has the following pro-
perties:

(H If a=b(mod p), then (a[p)= (b|p).
2 (a%(p) = 1.

(3) (ap) =4~ (mod p).

) (abip) = (alp)(®lp).

(5) (1/p) =1 and (—1/p) = (— 1)@~ 172,

Proof: If a=b (mod p), then x* =« (mod p) and x2 =5 (mod p)
have exactly the same solutions, if any at all. Thus x? =4 (mod p)
and x? =/ (mod p) are both solvable, or neither one has a solution.
‘This is reflected in the statement that (a’p) o (b/p)

As regards (2), observe that the integer 4 trivially satisfies
the congruence x? =4?(mod p); hence, (a%/p) = 1. Part(3) is just the
corollary to Thearem 9-1 rephrased in terms of the Legendre symbol.
We use (3) to establish (4):

(abp) =(ab)®~ V' =a®=D2p> =012 =(a[p)(b[p) (mod p).

Now the Legendre symbol assumes only the values 1 or —1. Were
(abjp) = (a[p)(bp), we would have 1 = —1 (mod p) or 2 =0 (mod p);
this cannot occur, since p =>2. It follows that

(ab(p) = (a[p)(b[p)-
Finally, we observe that the first equality in (5) is a special
case of (2), while the second one is obtained from property (3) upon

setting 2= —1. Since the quantities (—1/p) and (—1)®~ 12 are
either 1 or —1, the resulting congruence
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(—1/p) =(—1) -2 (mod p)
implies that (—1/p) =(—1)® -2,

-
e

From parts (2) and (4) of Theorem 9-2, we may also abstract the
relation

(6) (ab*(p) = (a[p)(¥*(p) = (a|p)-

In other words, a square factor which is relatively prime to p can be
deleted from the numerator of the Legendre symbol without affecting
its value.

Since (p— 1)/2 is even for p of the form 44 + 1 and odd for p of

the form 44 + 3, the equation (—1/p) = (—1)®~12 permits us to add a
small supplement to Theorem 9-2.

COROLLARY. If p is an odd prime, then

1if p=1(mod 4)
(—1lp) = {_1 if p =3 (mod 4)
This corollary may be viewed as asserting that the congruence
x? =—1 (mod p) has a solution if and only if p is a prime of the form
4% + 1. The result is not new, of course; we have merely provided the
reader with a different path to Theorem 5-3.

Example 9-4
Let us ascertain whether the congruence x2?=—38 (mod 13) is
solvable. This can be done by evaluating the symbol (—38/13).
We first appeal to parts (4) and (5) of Theorem 9-2 to write

(—38/13) = (—1/13)(38/13) = (38/13).
Since 38 =12 (mod 13), it follows that
(38/13) = (12/13).
Now property (6) above gives
(12/13) = (3 - 22/13) = (3/13).
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But

(3/13) =3013-112 =38 =(27)2 =1 (mod 13),

where we have made appropriate use of (3) of Theorem 9-2; hence,
(3/13) = 1. Inasmuch as (—38/13) =1, the quadratic congruence
x? =—38 (mod 13) admits solution.

The Corollary to Theorem 9-2 lends itself to an application
concerning the distribution of primes. \

THEOREM 9-3.  There are infinitely many primes of the form 4% - 1.

Proof: Suppose that there are finitely many such primes; call them
D1s Pzs -5 P and consider the integet

N=(2p,ps-- ps)* + 1.
Clearly N is odd, so that there exists some odd prime p with p | N.
To put it another way,

(2p1 2+ pn)” =—1 (mod p)
ot, if one prefers to phrase this in terms of the Legendre symbol,
(—1/p)=1. Butthe relation(—1/p) = 1 holds only if p is of the form
4% -+ 1. Hence, p is one of the primes p,. This implies that p, di-
vides N — (2p, po- -« pn)% of p, | 1, a contradiction. The conclusion:
there must exist infinitely many primes of the form 44 + 1.
THEOREM 9-4. If p is an odd privse, then

-

S @p—o.

Hence, there are precisely (p — 1)/2 guadratic residues and (p— 1)/2
guadratic nonresidues of p.

Proof: Let r be a primitive root of p. We know that, modulo p,
the powers r, »2, ..., r? ! are just a permutation of the integers 1,
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2, ..., p—1. Thus for any a between 1 and p — 1, inclusive, there
exists a unique positive integer A (1 <A < p — 1), such that ¢ =r*
(mod p). By appropriate use of Eulet’s Criterion, we have

(1) @p)y=0*p) =(*)r- V2= (*" V2 =(—1)* (mod p),

where, since r is a primitive root of p, r# -2 =_1 (mod p). But
(a/p) and (—1)* are equal to either 1 or —1, so that equality holds in
(1). Now add up the Legendre symbols in question to obtain

S = 2_1(—1)*: 0,

the desired conclusion.
CorOLLARY. The guadratic residues of an odd prime p are congruent
niodulo p to the even powers of a primitive root r of p; the quadratic non-
residues are congruent to the odd powers of r.

For an illustration of the idea just introduced, we again fall
back on the prime p — 13. Since 2 is a primitive root of 13, the quad-
ratic residues of 13 are given by the even powers of 2, namely,

22 =4 28 =9
2t=3 210 =10
2B==12 212 =1

all congruences being modulo 13. Similarly, the nonresidues occur as
the odd powers of 2:

212 27 =11
29 —8§ 29 =
5= 211 =7

Most proofs of the Quadratic Reciprocity Law, and ours as well,
rest ultimately upon what is known as Gauss’ Lemma. While this lemma

gives the quadratic character of an integer, it is more useful from a
theoretical point of view than as a computational device.
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TreorEM 9-5 (Gauss’ Lemma). Let p be an odd prime and let
ged (2, p)=1. If 7 denotes the number of integers in the set

5={a,2a,3a,...,(‘p;1)a}

whose remainders upon division by p exceed p|2, then
(a/p) = (—=1)".

Proof: Since ged (4, p) =1, none of the (p — 1)/2 integers in S is
congruent to zero and no two are congruent to each other modulo p.
Let 7y, ..., r, be those remainders upon division by p such that
0 <r;<pf2ands,,..., 5 bethose remainders such that p > s, > p/2.

Then m +n=(p— 1)[2, and the integers
Tis ”':-rm:P"_-Fl: "'3,9'_';11

are all positive and less than p/2.
In otder to prove that these integers are all distinct, it suffices

to show that no p — s, is equal to any r,. Assume to the contrary
that

pP—si=r
for some choice of 7 and /. Then there exist integers # and », with

1 <u, 0= (p—1)/2, satisfying 5, =ma (mod p) and r; =va (mod p).
Hence,

(# +2)a =3, +r; =p =0 (mod p)

which says that # {-# =0 (mod p). But the latter congruence cannot
take place, since 1 < » |- <p—1.

The point which we wish to bring out is that the (p—1))2
numbers |

rl!‘“'srmgﬁ—fl, ...,p—.l'ﬂ
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are simply the integers 1, 2, ..., (p — 1)/2, not necessarily in order of
appearance. Thus, their product is [(p — 1)/2]!:

(1%__1) =rycoern(p—s51) (p—3,)

=1y ro(—s1)- (=) (mod p)
?_—.3(—"1)“?*1 won g '-Fn (mOdp)'

But we know that 7y, ..., 7., s, ..., s, are congruent modulo p to
a,2a, ..., [(p— 1)/2]a, in some ordet, so that

(55-) t=t=1re 20 (£5) amod )

E(+1)naw—i>rﬁ(f%i) | (mod p).

Since [(p — 1)/2]! is relatively prime to p, it may be cancelled from

both sides of this congruence to give |

1 =(—1)rgp-12 (mol:l 2]
ot, upon multiplying by (— 1),
a'? =% =(—1)" (mod p).
Use of Euler’s Criterion now completes the argument:
(4/p) =a®= 1% =(—1)" (mod p),

which implies that
(@/py=(—1)".

By way of illustration, let p=13 and #=5. Then(p— 1}/2=0,
so that

§— {5, 10, 15, 20, 25, 30}.
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Three of these are greater than 13/2; hence, » =3 and Theorem 9-5 says
that

(5/13) = (—1)® = —1.

Gauss’ Lemma allows us to proceed to a variety of interesting
results. For one thing, it provides a means for determining which
primes have 2 as a quadratic residue.

THEOREM 9-6. If p is an odd prime, then

5 1ifp=1(mod 8) or p=7 (mod 8);

@ip) = [—1 if p=3(mod 8) or p=>5(mod8).

Proof: According to Gauss’ Lemma, (2/p) = (—1)", where # is the
number of integers in the set

1
5:[2,2-2,3.2,...,(*”_2_-) -2}

which, upon division by p, have remainders greater than pf2. The
members of § are all less than p, so that it suffices to count the number
that exceed p/2. For 1 <4 <(p—1)/2, 2A< pf2 if and only if
k < p/4. If [] denotes the greatest integer function, then there are
[ #/4] integers in § less than /2, hence

P B )

integers which are greater than p/2.

Now we have four possibilities; for, any odd prime has one

of the forms 84 11, 84 +3, 84+5,0r 84 7. A simple calcula-
tion shows that
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if p= 8k +1, then 7= 44 — [24 + }] = 44 — 2% — 24,
£ p=8k+3, then m=4h +1— [2h+ 3] =4k - 1— 2% =24 +1,

fp=8k 15 thenn=44 +2—[24+1+ H=44+2—024 1)
=241,
ifp=84 7, thenn=4%+3 — 24 +1+ H=44+3-24+1)
= 2k = 2
Thus, when p is of the form 84 -+ 1 or 84 = 7,nisevenand (2/p) = 1;
on the other hand, when p assumes the form 84 +3or 845, nis
odd and (2/p) = —1.
Notice that if the odd prime p is of the form 84 4 1 (equivalently,
2 =1(mod 8) or p =7 (mod 8)), then
PP—1_(Bhk1)2—1  64k°+ 164
8 8 - 8

— 842 4 24,

which is an even integer; in this situation, (—1)®*-18 — 1 — (2/p).
On the other hand, if p is of the form 84 1 3 (equivalently, p =1 (mod 8)
or p =3 (mod 8)), then

PE—1 (BA 43 —1 G64A? L4848
8 8 B 8

which is odd; here, we have (— 1)@ -18 — _1 = (2/p). These observa-
tions are incorporated in the statement of the following corollary to

Theorem 9-6.
Corovrary.  If p is an odd prime, then

@lp) = (=1)o=-ve,

It is time for another look at primitive roots. As we have re-
marked, there is no general technique for obtaining a primitive root of an
odd prime p; the reader might, however, find the next theorem useful on

occasion.

= 842 4 64 -1,
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Tueorem 9-7. If p and 2p -1 are both odd primes, then the integer
(—1)P-V122 45 a primitive root of 2p + 1.
Proof: For ease of discussion, let us put g=2p+41. We dis-
tinguish two cases: p =1 (mod 4) and p =3 (mod 4).

If p =1 (mod 4), then (—1)"-122=2. Since ¢(g) =g —
1 = 2p, the order of 2 modulo ¢ is one of the numbers 1, 2, p, or 2p.
Taking note of part (3) of Theorem 9-2, we have

(2/g) =24-1/2 =27 (mod ¢).

But, in the present setting, 4 =3 (mod 8); whence, the Legendre
symbol (2/g) = —1. It follows that 27 = —1 (mod ¢) and so 2 cannot
have order p modulo 4. The order of 2 being neither 1, 2, (2% =
(mod g) implies that ¢ | 3, an impossibility) nor p, we are forced to
conclude that the order of 2 modulo g is 2p. This makes 2 a primi-
tive root of 4.

We now deal with the case p==3 (mod 4). This time,
(—1)®-122 = _2 and

(—2) =(—2/q) = (—1/9)(2/q) (mod g).

Since ¢=7 (mod 8), the corollary to Theorem 9-2 asserts that
(—1/g) = —1, while once again we have (2/g) = 1. This leads to the
congruence (—2)? =—1 (mod ¢). From here on, the atgument
duplicates that of the last paragraph. Without analyzing further,

we announce the decision: —2 is a primitive root of 4.
Theorem 9-7 indicates, for example, that the primes 11, 59, 107,
and 179 have 2 as a primitive root. Likewise, the integer —2 serves as

a primitive root for 7, 23, 47, and 167.
Before retiring from the field, we should mention another result

of the same character: if p and 4p + 1 are both primes, then 2 is a prim-
itive root of 4p 1. Thus, to the list of prime numbers having 2
for a primitive root, one could add, say, 13, 29, 53, and 173.
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There is an attractive proof of the infinitude of primes of the
form 84 — 1 which can be based on Theorem 9-6.

TueorReM 9-8. There are infinitely many primes of the form 8% — 1.

——

Proof: As usual, suppose that there are only a finite number of such
primes. Let these be p,, ps, ..., p, and consider the integer

N=Ap1ps+pn)*— 2.
There exists at least one odd prime divisor p of N, so that

(4p1p2-++ Pn)? =2 (mod p)

or (2/p) = 1. In view of Theorem 9-6, p = 41 (mod 8). If all the
odd prime divisors of N were of the form 84 -+ 1, then N itself would
be of the form 164 -+ 2; this is cleatly impossible, since N is of the
form 16z-— 2. Thus, IN must have a prime divisor ¢ of the form
84— 1. Butg| N and ¢|(4p,ps- - p.)? leads to the contradiction
that 4| 2.

Lemma.  If p is an odd prime and a an odd integer, with ged (a, p) =1,
then

(r=13/2

@l =(—1) = ™

inl

Proof: We shall employ the same notation as in the proof of Gauss’
Lemma. Consider the set of integers

sz{a,za,...,(P'z'l) a).

Divide each of these multiples of # by p to obtain

ka=q.p+ 4, 1<y <p—1.

Then Aalp =g, -+ 4/p, so that [fa/p] =gq.. Thus for 1 <i<
(p — 1)/2, we may write Az in the form
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(1) ka=[halplp+ 1.

If the remainder 4, << p/2, then it is one of the integers r,, ..
if £, > p/2, then it is one of the integers sy, ..., f§,.
Taking the sum of the equations (1), we get the relation

s Tm s

(p— 12 (p—132

(2) Z ka= Z [kafp]p—{—irk-{—ifk.

k=

It was learned in proving Gauss’ Lemma that the (p — 1)/2 numbers
Figeany J“m,.p—.fl, ...,P—.i'"

are just a rearrangement of the integers 1, 2, ...,(p— 1)/2. Hence,

(p—1y2 m

(3) z A:=Zrk—i-i(p—.fk)mpﬂ—{erk#z.rk.

Subtracting (3) from (2) gives

(p=1)/2 (p— 1332 i
4 =D > fs-—-p( > w;p]w)w 3

k=1 k=1

Let us use the fact that p =4 =1 (mod 2) and translate this last equa-
tion into a congruence modulo 2:

r —_1_:!2 (p—-1)2
0 - k=1 ( [a%a;’p]v—n) (mod 2)
ot
(p—-142
n= [4a]p] (mod 2).
The rest follows from Gauss’ Lemma; for,
? -ﬁ”[zkm'p]

(alp) = (=1 =(= 1)
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For an example of this last result, again consider p = 13 and 4= 5.
Since (p — 1)/2= 6, it is necessary to calculate [4a/p] for £=1, ..., 6:

[5/13] = [10/13] = 0;
[15/13] = [20/13] = [25/13] = 1;
[30/13] = 2.

By the lemma, we have
(5{13)___,_(_,_1)1+1+1+2:(__1)5: —1,

confirming what was earlier seen.

PROBLEMS

1. Use Gauss’ Lemma to evaluate each of the Legendre symbols below
(that is, in each case find the integer » for which (a/p) = (—1)"):
@) @/11), (b) (7/13), () (6/19), (@ (11/23), (e) (6/31).

2. 1If pis an odd prime, show that

> (ala+1)p) = —1

[Hint: If &' is defined by a4’ = 1 (mod p), then (a(a + 1)/p) = (1 + &)/p).
Note that 1 4- ¢ runs through a complete set of residues modulo p, except
for the integer 1.]
3. Prove the statements below:
(a) If pand g=2p 41 are both odd primes, then —4 is a primitive root
of 4.
(b) If p=1(mod 4) is a prime, then —4 and (p — 1)/4 are both quadratic
residues of p,
4. If p=7 (mod 8), show that p|2%-2 1, [Hint: By Theorem 9-6,
1= (2/p) =20~ D72 (mod p).]
5. Use Problem 4 to confirm that the numbers 2" — 1 are composite for
n=11, 23, 83, 131, 179, 183, 239, 251.
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POSSIBLE QUESTIONS

2 Mark Questions:

Define order of an integer modulo #.
If a has order k modulo 7, then prove the integer a,a’......,a" are in-congruent modulo

n.
3.  Whatis Primitive root with example.
If n has a primitive root, then prove it has exactly ¢(4(n)) of them.

5. Suppose pisan odd prime, then prove there exists a primitive root » of p such that
' £ 1(mod p*).
Prove that there are primitive roots for 2p*, where p isan odd prime and & >1.
Define quadratic residue and non residue for prime p.
Define Legendre symbol.

8 Mark Questions:

1. Letthe integer a have order k modulo #.then prove a”" =1(mod#) if and only if k|/; in

particular, k|¢(n).
2. [Ifahasorder k modulo n, then prove that ¢' = a’(modn)if and only if i = j(mod k).

3. [Ifthe integer a has order k modulo » and % >0, then a* has order
k/ ged(h,k)modulo n.
4. Let ged(a,n)=1andlet g, a,,...,q,,, be the positive integers less than » and relatively
prime to ».If a is a primitive root of », then prove
2 a’™
are congruent modulo » to )50y, Ay, IN SOME order.
5. State and prove Lagrange theorem.
If p is a prime number and d|(p—1), then prove there are exactly ¢(d) in-congruent
integer having order d modulo p.

7. Prove that for k£ >3, the integer 2¥ has no primitive roots.

8. Suppose gcd(m,n) =1, where m>2 and n>2, then the integer mn has no primitive
roots.

9. Let p be an odd prime and r be a primitive root of p such that ' #1(mod p*). then

for each positive integer k > 2,
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PP o 1(mod p"*).
10. If p is an odd prime number and & > 1, then prove there exists a primitive root for p".
11. State and prove Euler criterion.
12. State and Prove the properties of Legendre symbol.
13. If pisan odd prime, then prove

p-1

Z(a/p)zO.

a=1

Hence, there are precisely (p —1)/2 quadratic residues and (p —1)/2 quadratic non
residues of p.
14. State and prove Gauss lemma.
15. If pisan odd prime, then prove (2/p)={ : lf p=lmod8) or p=7(mods);

-1 if p=3(mod8) or p=5(mody).

16. If p and 2p+1 are both odd primes, then prove that the integer (—1)(1’_1)/22 isa

primitive root of 2p +1.

17. If p is an odd prime and ¢ an odd integer, with gcd(a, p)=1, then prove
(p=t)/
[

(a/p)=(-1) &
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UNIT-V
SYLLABUS

Quadratic reciprocity-quadratic congruences with composite moduli. Public key encryption,
RSA encryption and decryption, the equation x 2 +y 2 =z 2, Fermat’s Last theorem.
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QUADRATIC RECIPROCITY

Let p and ¢ be distinct odd primes, so that both of the Legendre symbols
(plg) and (g/p) are defined. It is natural to inquire whether the value' of
(plg) can be determined if that of (¢/p) is known. To put the question
more generally, is there any connection at all between the values of these
two symbols? The basic relationship was conjectured experimentally by
Euler in 1783 and impetfectly proved by Legendre two years there-
after. Using his symbol, Legendre stated this relationship in the elegant
form that has since become known as the Quadratic Reciprocity Law:

Pl)apH=(—1 T Z.

Legendre went amiss in assuming a result which is as difficult to prove as
the law itself, namely, that for any prime p =1 (mod 8), there exists
another prime g =3 (mod 4) for which p is a quadratic residue. Un-
daunted, he attempted another proof in his Essai sur la Théorie des Nombres
(1798); this one too contained a gap, since Legendre took for granted
that there are an infinite number of primes in certain arithmetical pro-
gressions (a fact eventually proved by Dirichlet in 1837, using in the
process very subtle arguments from complex variable theoty).

At the age of cighteen, Gauss (in 1795), apparently unaware of
the work of either Euler or Legendre, rediscovered this reciprocity law
and, after a year’s unremitting labor, obtained the first complete proof.
“It tortured me,” says Gauss, ““for the whole year and eluded my most

strenuous efforts before, finally, I got the proof explained in the fourth
section of the Disquisitiones Arithmeticae.”” 1In the Disquisitiones Arith-
meticae—which was published in 1801, although finished in 1798—Gauss
attributed the Quadratic Reciprocity Law to himself, taking the view
that a theorem belongs to the one who gives the first rigorous demonstra-
tion. The indignant Legendre was led to complain: “This excessive
impudence is unbelievable in 2 man who has sufficient petsonal merit
not to have the need of appropriating the discoveries of others.” All
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discussion of priority between the two was futile; since each clung to
the correctness of his position, neither tock heed of the other. Gauss
went on to publish five different demonstrations of what he called “ the

gem of higher arithmetic,” while another was found among his papers.
The version presented below, a variant of one of Gauss’ own arguments,
is due to his student, Ferdinand Eisenstein (1823-1852). The proof is
complicated (and it would perhaps be unreasonable to expect an easy
proof), but the underlying idea is simple enough.

THEOREM 9-9 (Gauss’ Quadratic Reciprocity Law). If p and g are
distinct odd primes, then

-1

(Pl)g/p) = (— 1)?"%1 Ep

Proof: Consider the rectangle in the xy coordinate plane whose
vertices are (0, 0), (p/2, 0), (0, ¢/2), and (p/2, 4/2). Let R denote the
region within this rectangle, not including any of the bounding lines.
The general plan of attack is to count the number of lattice points
(that is, the points whose coordinates are integers) inside R in two
different ways. Since p and g are both odd, the lattice points in R
consist of all points (#, m), where | <z <(p—1)/2and 1 <m <
(g — 1)/2; the number of such points is clearly

g—1 g—1

2 2
Now the diagonal D from (0, 0) to(p/2, 4/2) has the equation
¥=1{(q/p)x, or equivalently, py=gx. Since gcd(p, g)= 1, none of
the lattice points inside R will lie on D. For p must divide the
x coordinate of any lattice point on the line py = gx, and ¢ must divide
its y coordinate; there ate are no such points in R. Suppose that T}

denotes the portion of R which is below the diagonal D, and T, the
portion above. By what we have just seen, it suffices to count the

lattice points inside each of these triangles.
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The number of integers in the interval 0 <y < Aqfp 1s
[4g/p). Thus, for 1<4<(p—1)/2, there are preciscly [£4/p]
lattice points in T, directly above the point (£, 0) and below D;
in other words, lying on the vertical line segment from (4, 0) to
(4, kg/p). Tt follows that the total number of lattice points con-
tained in T, is

{(p-112
> [kl
k=1
\
(0, ¢/2) (p/2,4/2)
T, 3
Tk kg/p)
Ceee T
» L] [ ] [ ] - [ ] [ ] [ ] [ ] [ ] - L ] L] -.
(0,0) (k,0) (#/2,0)

A similar calculation, with the roles of p and g interchanged, show:

that the number of lattice points within T, is
(g—132

> Lipla)-

i=1
This accounts for all of the lattice points inside R, so that

(p—132 g—13/2

> kel + Y Uilal

k= !"..‘.1

p—1 9—1_
g 2 7
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The time has come for Gauss” Lemma to do its duty:

(a=1)/2 (=12
(iniql Y (kqrp)

(Glgalp) =(—1) = 7 <1y

(=112 (p—1y/2
[iplgl + X (kaip]

— ( £S5 1) :-EL k=1
=(—-1)
The proof of the Quadratic Reciprocity Law is now complete.
CoroLLARY 1. If p and q are distinct odd primes, then

Glaxalpy ={_; J 5= (roe Hra=limod4)

Progf: The number (p — 1)/2 - (9 — 1)/2is even if and only if at least
one of the integers p and g is of the form 44 |- 1; if both are of the
form 44 + 3, then(p — 1)/2 - (¢ — 1)/2 is odd.

Multiplying each side of the Quadratic Reciprocity equation by
(g/p) and using the fact that (g/p)*= 1, we could also formulate this a:

CoroLLAry 2. If p and q are distinet odd primes, then
(9/p) if p=1(mod4)org=1(mod 4)
—(9/p) ¥ p=4q=3(mod 4

Let us see what this last series of results accomplishes. Take

P to be an odd prime and 4 # -1 to be an integer not divisible by .
Suppose further that @ has the factorization

a= £2%p,"1p2. .. p R
where the p; are odd primes. Since the Legendre symbol is multiplicative,

(alp) = (£1p)2IP)(pr[p)" - - - (DY

(blg) =
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In otder to evaluate (4/p), we have only to calculate the symbols (—1 /P,
(2[p), and (p,/p). The values of (—1/p) and (2/p) were discussed eatlier,
so that the one stumbling block is (p,/p), where p, and p are distinct odd
primes; this is where the Quadratic Reciprocity Law enters. For Corol-

lary 2 allows us to replace (p,/p) by a new Legendre sym!ocfl.having
2 smaller denominator. Through continued inversion and division, the
computation can be reduced to that of the known quantities

(—1/g), (1/g), and (2/q).

Example 9-5 _ _
Consider the Legendre symbol (29/53), for instance. Since both
29 =1 (mod 4) and 53 =1 (mod 4), we see that

(29/53) = (53/29) = (24/29) = (2/29)(3/29)(4/29)
= (2/29)(3/29).
With reference to Theorem 9-6, (2/29) = —1, while inverting again,
(3/29) = (29/3) = (2/3) = —1,

where we used the congruence 29 =2 (mod 3). The net effect is
that

(29/53) = (2/29)(3/29) = (—1)(—1) = L,
The Quadratic Reciprocity Law provides a very satisfactory

answer to the problem of finding all odd primes p # 3 for Whiﬂlll Jisa
quadratic residue. Since 3 =3 (mod 4), Corollary 2 above implies that

3) if p=1(mod4)
Blp) = ‘__((‘1;1;3) if p=3(mod 4).

Now p =1 (mod 3) or p =2 (mod 3). By Theorems 9-2 and 9-6,

1 if p=1(mod3)
(Pl3)-—'{_*1 if p=2(mod 3)
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the implication of which is that (3/p) =1 if and only if
(1) p=1(mod4) and p=1 (mod 3),
ot

(2) p=3(mod4) and p=2(mod 3).

The restrictions in (1) are equivalent to requiring that p Ei_(mod _12)
while those in (2) are equivalent to p =11 =—1 (mod 12).

TueoreM 9-10.  If p £ 3 is an odd prime, then
{1 i p==+1(mod12)
3/p) =
(312) {_1 if p=15 (mod 12)

Example 9-6

The purpose of this example is to investigate the existence of solu-
tions of the congruence

x? =196 (mod 1357).
Since 1357 = 23 . 59, the given congruence is solvable if and only
if both
x? =196 (mod 23) and x2=196 (mod 59

are solvable. Our procedure is to find the values of the Legendre
symbols (196/23) and (196/59).

The evaluation of (196/23) requires the use of Theorem
9-10:

(196/23) = (12/23) = (3/23) = 1.

Thus, the congruence x2 =196 (mod 23) admits a solution. As

regards the symbol (196/59), the Quadratic Reciprocity Law enables
us to write

(196/59) = (19/59) = —(59/19) = —(2/19) = —(—1) = 1.
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It is therefore possible to solve x? =196 (mod 59) and, in con-
sequence, the congruence x? =196 (mod 1357) as well.

Let us turn to a quite different application of these ideas. At
an eatlier stage, it was observed that if F, = 22" | 1, n>>1, is a prime,
then 2 is not a primitive root of F,. We now possess the means to show
that the integer 3 serves as a primitive root of any prime of this type.

As a step in this direction, note that any F, is of the form 124 + 5.
A simple induction argument confirms that 47 =4 (mod 12) for m=
1, 2, ... ; hence, we must have

Fp=2"+41=2%"41=4" 11 =5 (mod 12).
If F, happens to be prime, then Theorem 9-10 permits the conclusion
(SJ'FH) Frm i 1:
or, using Euler’s Criterion,
Fa=-1
377 =—1(mod F,).
Switching to the phi-function, the last congruence says that

3eF0 12 = 1 (mod F,).

From this, it may be inferred that 3 has order ¢(F,) modulo F,, and so
3 is a primitive root of F,,.

PROBLEMS

1. Evaluate the following Legendre symbols:

@ (71/73), (b) (—219/383), () (461/773), (d) (1234/4567),
(e) (3658/12703). [Hint: 3658 =2-31.59.]

2. Prove that 3 is a quadratic nonresidue of all primes of the form 2%n 1T as
well as all primes of the form 22 —1, where p is an odd prime. [Hint:
For all #, 4"=4 (mod 12).]

3. Determine whether the following quadratic congruences are solvable:
(a) x2=219 (mod 419).

(b) 3x2 -+ 6x+ 5=0 (mod 89).

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 8/38




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc MATHEMATICS COURSE NAME: NUMBER THEORY

COURSFE CODE: 16MMUS02B UNIT:V BATCH-2016-2019

(c) 2x24 5x — 9 =0 (mod 101).
4, Verify that if p is an odd prime, then

— 1 if p=1(mod8) or p =3 (mod 8)
(—2(p) =\_1 if p=5(mod8) or p=7(mod8)

5. (a) Prove that if p >3 is an odd prime, then

1 if p=1(mod 6)
(—3/P)=[_1 if p=5(mod 6)

(b) Using part (a), show that there are infinitely many primes of the
form 6k + 1. [Hint: Assume that py, ps, - .., p, ate all the primes of
the form 64 + 1 and consider the integer (29, p,--- 7, + 3.]
6. Use Theorem 9-2 and Problems 4 and 5 to determine which primes can
divide each of #2 -+ 1, #2 + 2, n2 4+ 3 for some value of .

QUADRATIC CONGRUENCES WITH

COMPOSITE MODULI

So far in the proceedings, quadratic congruences with (odd) prime
moduli have been of paramount importance. The remaining theorems
broaden the hotizon by allowing a composite modulus. To start, let us
consider the situation where the modulus is a power of a prime.

TusoreM 9-11. If p is an odd prime and gcd (a, p) =1, then the con-
gruence

x? =g (mod p), n>1

has a solution if and only if (a/p) = 1.
Proof: As is common with many “if and only if” theorems, one
half of the proof is trivial while the other half requires considerable
effort: If x? =a (mod p") has a solution, then so does x? =a (mod p)
—in fact, the same solution—whence (a/p) = 1.

For the convetse, suppose that (g/p)=1. We argue that
x? =4 (mod p) is solvable by inducting on . If n=1 there is
reallv nothine to prove: indeed, (2/p) == 1 is just another way of say-
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ing that x2 =4 (mod p) can be solved. Assume that the result
holds for #= & > 1, so that x% =4 (mod p*) admits a solution x,.
Then

o2 = a + bp*

for an appropriate choice of 4. In passing from 4 to £ + 1, we shall
use xg and & to write down explicitly a solution to the congruence

x? =a (mod p**?). |
Towards this end, we first solve the linear congruence

2xo ) = —b (mod )

obtaining a unique solution y, modulo p (this is certainly possible,
since ged (2x,, p) = 1). Next, consider the integer

5y = X +Jo P
Upon squaring this integer, we get
(30 0 )% = %02 + 2%0 o + Yo p*
=a+(b+2x0)0)P" + 0%
But p | (b 4 2x, 1), from which it follows that
%1% = (%o +70¥)* =a (mod p*+1).

Thus, the congruence x? =4 (mod p") has a solution for # = 4 1 1
and, by induction, for all positive integers .

' Let us run through a specific example in detail. The first step
in obtaining a solution of, say, the quadratic congruence

x? =23 (mod 7?)

is to solve x? =23 (mod 7), or what amounts to the same thing, the
congruence

x? =2 (mod 7).
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Since (2/7) =1, a solution surely exists; in fact x,=3 is an obvious
choice. Now x,? can be represented as

32=90=-23 whe (—2)7,

so that #= —2 (in our special case, the integer 23 plays the role of a).
Following the proof of Theorem 9-11, we next determine ¥ so that
@*’ =2 (mod 7);

that is, 3y =1 (mod 7). This linear congruence is satisfied by y,=75.
Hence,

xo—l—?‘}'.}=3+7-5—"=38

serves as a solution to the original congruence x? =23 (mod 49). It
should be noted that —38 = 11 mod (49) is the only other solution.
If, instead, the congruence

x? =23 (mod 7°)
were proposed for solution, we would start with

x? =23 (mod 72),
obtaining a solution x, = 38. Since

387 =23 1 29.7¢

the integer /=29. We would then find the unique solution Yo=1 of
the linear congruence

76y =—29 (mod 7).
Then x? =23 (mod 7°) is satisfied by
o+ Yo 72=238|1-49 =187,
as well as —87 = 256 (mod 7°).

Having dwelt at length on odd primes, let us now take up the
case p = 2. The next theorem supplies the pertinent information.
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TueOREM 9-12.  Let a be an odd integer. Then

(1) 2% =a (mod 2) always has a solution;

(2) x? =a(mod 4) has a solution if and only if a =1 (mod 4);

(3) x2=a (mod 2"), for n=>3, has a solution if and only if a =1
(mod 8).

Proof: The first assertion is obvious. The second depends on the
observation that the square of any odd integer is congruent to 1 mod-
ulo 4. Thus, x2 =a (mod 4) can be solved only when  is of the
form 44 -4 1; in this event, there are two solutions modulo 4, namely

x=1and x=23,
Now consider the case in which # >3, Since the square of

any odd integer is congruent to 1 modulo 8, we see that for the
congruence x?=a (mod 2") to be solvable it is necessary that 4

should be of the form 84 + 1. To go the other way, let us suppose
that 2 =1 (mod 8) and proceed by induction on . When 7= 3,
the congruence x% =4 (mod 2") is certainly solvable; indeed, each of
the integers 1, 3, 5, 7 satisfies x? ==1 (mod 8). Fix a value of #>3
and assume, for the induction hypothesis, that the congruence
x? =4 (mod 2") admits a solution x,. Then there exists an integer
b for which
xa2=a -+ b2~

Since « is odd, so is the integer x,. It is therefore possible to find
a unique solution y, of the linear congruence

X0y =—b (mod 2).
We argue that the integer

2y =X+ o 2"}
satisfies the congruence x? =4 (mod 2"*?). Squaring yields
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(xD —f__}’gzn i 1)2 = Xﬂz -4 xﬂvyozﬂ _!_-y0222n Lig
— 0t (bt xogg2" 32,

By the way y, was chosen, 2| (b 4 x4 7,), hence
X2 =(Xg 1+ 02" )2 =4 (mod 27 *+1)

(one also uses the fact that 2#—2=#n |1 + (#n—3) >n-41).
Thus x? =4 (mod 2"*1) is solvable, completing the induction step
and the proof.

To illustrare: the congruence x2 =5 (mod 4) has a solution, but
x? =5 (mod 8) does not; on the other hand, x2 =17 (mod 16) and
x? =17 (mod 32) are both solvable,

In theory, we can now completely settle the question of when
there exists an integer x such that

x% =a (mod #), gcd(a,n) =1, n> 1.
For suppose that » has the prime-power decomposition
ﬁ_'zkﬂplklp2k2' "Prkr: ,%0 20) ’%i >0

where the p; are distinct odd primes. Since the problem of solving the
quadratic congruence x2 =gq (mod #) is equivalent to that of solving the
system of congruences

x? =a (mod 2*9),
xﬁ =i (de Plkl))

.;:2 =4 (mod p,*"),

our last two results may be combined to give the following general
conclusion.

TaeEOREM 9-13. Let n=2%p," .. p*" be the prime factorization

of n>1 and let ged (a, ) =1. Then x* =a (mod n) is solvable if and

only if
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(1) (afp)=1fori=1,2,
(2) a= 1(m0d4}y‘"4\ﬂ ém‘ﬁ,{’ﬁ a=1(mod 8) if 8| .
PROBLEMS

1.

4,

(mod e
(b) Use part (a) to find the solutions of x*= —1 (mod 5%).
Solve each of the following quadratic congruences:
(a) x?=T (mod 33);
(b) x?%=14 (mod 5%);
(¢) x?=2(mod 73).
Solve the congruence x* = 31 (mod 11¢).
Find the solutions of x2+45x4 6=0 (mod 5% and x*+x+3=0
(mod 3°).
Prove that if the congruence x2 = 4 (mod 2%), where # >> 3, has a solution,
then it has exactly four incongruent solutions. [Hiuz: If x, is any solution,
then the four integers x,, —xy, Xg+ 2"}, —x, - 2"~ are incongruent
modulo 2" and comprise all the solutions.]

From 232 =17 (mod 27), find three other solutions of the congruence
x2 =17 (mod 27},
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Public Key
1 The idea of public key cryptography

Recall that a cryptosystem consists of a 1-to-1 enciphering transformation f
from a set P of all possible plaintext message units to a set C of all possible
ciphertext message units. Actually, the term “cryptosystem” is more often
used to refer to a whole family of such transformations, each corresponding
to a choice of parameters (the sets P and C, as well as the map f, may
depend upon the valucs of the parameters). For example, for a fixed N-
letter alphabet (with numerical equivalents also fixed once and for all),
we might consider the affine cryptosystem (or “family of cryptosystems”)
which for each a € (Z/NZ)* and b € Z/NZ is the map from P = Z/NZ
to C = Z/NZ defined by C = aP + b mod N. In this example, the sets P
and C are fixed (because N is fixed), but the enciphering transformation f
depends upon the choice of parameters a, b. The enciphering transformation
can then be described by (i) an algorithm, which is the same for the whole
family, and (ii) the values of the parameters. The values of the parameters
are called the enciphering key Kg. In our example, K is the pair (a, b).
In practice, we shall suppose that the algorithm is publicly known, i.e., the
general procedure used to encipher cannot be kept secret. However, the
keys can easily be changed periodically and, if one wants, kept secret.

One also needs an algorithm and a key in order to decipher, i.e., com-
pute f~! The key is called the deciphering key Kp. In our example of the
affine cryptosystem family, deciphering is also accomplished by an affine
map, namely P = a™'C —~ a~'b mod N, and so the deciphering transfor-
mation uses the same algorithin as the enciphering transformation, except

with a different key, namely, the pair (a~! —a~'b). (In some cryptosys-
tems, the deciphering algorithm, as well as the key, is different fr})m the
enciphering algorithm.) We shall always suppose that t?le deciphering and
enciphering algorithms are publicly known, and that it is the keys K'g and
K p which can be concealed. .
Let us suppose that someone wishes to communicate secretly using
the above affine cryptosystem C = aP + b. We saw in §1I1.1 that it is not
hard to break the system if one uses single-letter message units in an N-
letter alphabet. It is a little more difficult to break the system if one uses
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digraphs, which can be regarded as symbols in an N?-letter alphabet. It
would be safer to use blocks of k letters, which have numerical equivalents
in Z/N*Z. At least for k > 3 it is not easy to use frequency analysis,
since the number of possible k-letter blocks is very large, and one will find
many that are close contenders for the title of most frequently occurring
k-graph. If we want to increase k, we must be concerned about the length
of time it takes to do various arithmetic tasks (the most important one
being finding a~! by the Euclidean algorithm) involved in setting up our
keys and carrying out the necessary transformations every time we send a
message or our friend at the other end deciphers a message from us. That
is, it is useful to have big-O estimates for the order of magnitude of time
(as the parameters increase, i.e., as the cryptosystem becomes “larger”)
that it takes to: encipher (knowing Kg), decipher (knowing Kp), or break
the code by enciphering without knowledge of Kg or deciphering without
knowledge of Kp.

In all of the examples in Chapter III — and in all of the cryptosystems
used historically until about fifteen years ago — it is not really necessary
to specify the deciphering key once the enciphering key (and the general
algorithms) are known. Even if we are working with large numbers — such
as N* with k fairly large — it is possible to determine the deciphering
key from the enciphering key using an order of magnitude of time which is
roughly the same as that needed to implement the various algorithms. For
example, in the case of an affine enciphering transformation of Z /N*Z, once
we know the enciphering key K = (a,b) we can compute the deciphering
key Kp = (a~! mod N¥, —a~'b mod N*) by the Euclidean algorithm in
O(log®(N*)) bit operations.

Thus, with a traditional cryptosystem anyone who knew enough to
decipher messages could, with little or no extra effort, determine the enci-
phering key. Indeed, it was considered naive or foolish to think that someone
who had broken a cipher might nevertheless not know the enciphering key.
We see this in the following passage from the autobiography of a well-known
historical personality:

Thus, with a traditional cryptosystem anyone who knew enough to
decipher messages could, with little or no extra effort, determine the enci-
phering key. Indeed, it was considered naive or foolish to think that someone
who had broken a cipher might nevertheless not know the enciphering key.
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We see this in the following passage from the autobiography of a well-known
historical personality:

Thus, with a traditional cryptosystem anyone who knew enough to
decipher messages could, with little or no extra effort, determine the enci-
phering key. Indeed, it was considered naive or foolish to think that someone
who had broken a cipher might nevertheless not know the enciphering key.

Five or six weeks later, she [Madame d'Urfé] asked me if I
had deciphered the manuscript which had the transmutation pro-

cedure. 1 told her that [ had.

“Without the key, sir, excuse me if I believe the thing impos-
sible.”

“Do you wish me to name your key, madame?”

“If you please.”

I then told her the key-word, which belonged to no language,
and I saw her surprise. She told me that it was impossible, for she
believed herself the only possessor of that word which she kept in
her memory and which she had never written down.

I could have told her the truth — that the same calculation
which had served me for deciphering the manuscript had enabled
me to learn the word — but on a caprice it struck me to tell her
that a genie had revealed it to me. This false disclosure fettered
Madame d'Urfé to me. That day I became the master of her soul,
and I abused my power. Every time I think of it, I am distressed
and ashamed, and I do penance now in the obligation under which
I place myself of telling the truth in writing my memoirs.

— Casanova, 1757, quoted in D. Kahn’s The Codebreakers

The situation persisted for another 220 years after this encounter be-
tween Casanova and Madame d'Urfé: knowledge of how to encipher and
knowledge of how to decipher were regarded as essentially equivalent in
any cryptosystem. However, in 1976 W. Diffie and M. Hellman discovered
an entirely different type of cryptosystem and invented “public key cryp-
tography.”

By definition, a public key cryptosystem has the property that someone
‘H.i'hﬂ ‘knﬂws only how to encipher cannot use the enciphering key to find
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the deciphering key without a prohibitively lengthy computal?ion.ﬂ In other
words the enciphering function f:P — C is easy to compute once the
enciphering key K is known, but it is very hard in practice to compute
the inverse function f~!:C — P. That is, from the standpoint of realistic
computability, the function f is not invertible (without some additional
information — the deciphering key Kp). Such a function f is called a
trapdoor function. That is, a trapdoor function f is a function which is
easy to compute but whose inverse f~! is hard to compute without having
some additional auxiliary information beyond what is necessary to compute
f. The inverse f~! is easy to compute, however, for someone who has this
information Kp (the “deciphering key”).

There is a closely related concept of a one-way function. This is a
function f which is easy to compute but for which £~ is hard to compute
and cannot be made easy to compute even by acquiring some additional
information. While the notion of a trapdoor function apparently appeared
for the first time in 1978 along with the invention of the RSA public-key
cryptosystem, the notion of a one-way function is somewhat older. What
seems to have been the first use of one-way functions for cryptography was

described in Wilkes’ book about time-sharing systems that was published in
1968. The author describes a new one-way cipher used by R. M. Needham
in order to make it possible for a computer to verify passwords without
storing information that could be used by an intruder to impersonate a

legitimate user.

In Needham'’s system, when the user first sets his password,
or whenever he changes it, it is immediately subjected to the enci-
phering process, and it is the enciphered form that is stored in the
computer. Whenever the password is typed in response to a de-
mand from the supervisor for the user’s identity to be established,
it is again enciphered and the result compared with the stored
version. It would be of no immediate use to a would-be malefac-
tor to obtain a copy of the list of enciphered passwords, since he
would have to decipher them before he could use them. For this
purpose, he would need access to a computer and even if full de-
tails of the enciphering algorithm were available, the deciphering
process would take a long time.
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In 1974, G. Purdy published the first detailed description of such a
one-way function. The original passwords and their enciphered forms are
regarded as integers modulo a large prime p, and the “one-way” map ¥, —
F, is given by a polynomial f(z) which is not hard to evaluate by computer
but which takes an unreasonably long time to invert. Purdy used p =

264 _ 59, f(x) = 2217 g ? 3 4 0023 + asz? + a4z + as, where the
coefficients a; were arbitrary 19-digit integers.

The above definitions of a public key cryptosystem and a one-way or
trapdoor function are not precise from a rigorous mathematical standpoint.
The notion of “realistic computability” plays a basic role. But that is an
empirical concept that is affected by advances in computer technology (e.g.,
parallel processor techniques) and the discovery of new algorithms which
speed up the performance of arithmetic tasks (sometimes by a large factor).
Thus, it is possible that an enciphering transformation that can safely be
regarded as a one-way or trapdoor function in 1994 might lose its one-way
or trapdoor status in 2004 or in the year 2994.

It is conceivable that some transformation could be proved to be trap-
door. That is, there could be a theorem that provides a nontrivial lower
bound for the number of bit operations that would be required (“on the
average,” i.e., for random values of the key parameters) in order to figure
out and implement a deciphering algorithm without the deciphering key.
Here one would have to allow the possibility of examining a large number of
corresponding plaintext—ciphertext message units (as in our frequency anal-
ysis of the simple systems in Chapter III), because, by the definition of a
public key system, any user can generate an arbitrary number of plaintext-
ciphertext pairs. One would also have to allow the use of “probabilistic”
methods which, while not guaranteed to break the code at once, would be

likely to work if repeated many times. (Examples of probabilistic algorithms
will be given in the next chapter.) Unfortunately, no such theorems have
been proved for any of the functions that have been used as enciphering
maps. Thus, while there are now many cryptosystems which empirically
seem to earn the right to be called “public key,” there is no cryptosystem
in existence which is provably public key.

The reason for the name “public key” is that the information needed
to send secret messages — the enciphering key Kg — can be made public
information without cnabling anyone to read the secret messages. That is,
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suppose we have some population of users of the cryptosystem, each one of
whom wants to be able to receive confidential communications from any of
the other users without a third party (either another user or an ontsider)
being able to decipher the message. Some central office can collect the
enciphering key Kg 4 from each user A and publish all of the keys in a
“telephone book” having the form

AAA Banking Company  (9974398087453930, 2975290017591012)
Aardvark, Aaron (8870004228331, 7234752637937)

Someone wanting to send a message merely has to look up the enciphering
key in this “telephone book” and then use the general enciphering algorithm
with the key parameters corresponding to the intended recipient. Only the
intended recipient has the matching deciphering key needed to read the
message.

In earlier ages this type of system would not have seemed to have
any particularly striking advantages. Traditionally, cryptography was used
mainly for military and diplomatic purposes. Usually there was a small,
well-defined group of users who could all share a system of keys, and new
keys could be distributed periodically (using couriers) so as to keep the
enemy guessing.

However, in recent years the actual and potential applications of cryp-
tography have expanded to inclnde many other areas where communication
systems play a vital role — collecting and keeping records of confidential
data, electronic financial transactions, and so on. Often one has a large
network of users, any two of whom should be able to keep their commu-
nications secret from all other users as well as intruders from outside the
network. Two parties may share a sccret commmunication on one oecasion,
and then a little later one of them may want 1o send a confidential HICSSage
to a third party. That is, the “alliances” -~ who is sharing a secret with
whom — may be continually shifting. It might be impractical always to be
exchanging keys with all possible confidential correspondents.

Notice that with a public key system it is possible for two parties to
initiate secret communications without ever having had any prior contact,
without having established any prior trust for one another, without ex-
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changing any preliminary information. All of the information necessary to
send an enciphered message is publicly available.

Classical vesus public key. By a classical cryptosystem (also called
a privale key cryptosystem or a symmetrical cryptosystem), we mean a
cryptosystem in which, once the enciphering information is known, the
deciphering transformation can be implemented in approximately the same
order of magnitude of time as the enciphering transformation. All of the
cryptosystems in Chapter III are classical. Occasionally, it takes a little
longer for the deciphering — because one needs to apply the Euclidean
algorithm to find an inverse modulo N or one must invert a matrix (and
this can take a fairly long time if we work with k x k -matrices for k larger
than 2) — nevertheless, the additional time required is not prohibitive.
(Moreover, usually the additional time is required only once — to find Kp
— after which it takes no longer to decipher than to encipher.) For example,
we might need only O(log?B) to encipher a message unit, and O(log’B)
bit operations to decipher one by finding Kp from Kg, where B is a bound
on the size of the key parameters. Notice the role of big-O estimates here.

If, on the other hand, the enciphering time were polynomial in log B
and the deciphering time (based on knowledge of Kg but not Kp) were,
say, polynomial in B but not in log B, then we would have a public key
rather than a classical cryptosystem.

Authentication. Often, one of the most important parts of a message
is the signature. A person’s signature — hopefully, written with an idiosyn-
cratic flourish of the pen which is hard to duplicate — lets the recipient
know that the message really is from the person whose name is typed be-
low. If the message is particularly important, it might be necessary to use
additional methods to authenticate the communication. And in electronic
communication, where one does not have a physical signature, one has to
rely entirely on other methods. For example, when an officer of a corporation
wants to withdraw money from the corporate account by telephone, he/she
is often asked to give some personal information (e.g., mother’s maiden
name) which the corporate officer knows and the bank knows (from data
submitted when the account was opened) but which an imposter would not
be likely to know.
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In public key cryptography there is an especially easy way to identify
oneself in such a way that no one could be simply pretending to be you. Let
A (Alice) and B (Bob) be two users of the system. Let f4 be the cncipher.ing
transformation with which any user of the system sends a message to Alice,
and let fg be the same for Bob. For simplicity, we shall assume that the
set P of all possible plaintext message units and the set C of all possible
ciphertext message units are equal, and are the same for all users. Let
P be Alice’'s “signature” (perhaps including an identification number, a
statement of the time the message was sent, etc.). It would not be enough
for Alice to send Bob the encoded message fg(P), since everyone knows how
to do that, so there would be no way of knowing that the signature was not

forged. Rather, at the beginning (or end) of the message Alice transmits
fafa'(P). Then, when Bob deciphers the whole message, inclnding this
part, by applying fﬁi, he finds that everything has become plaintext except
for a small section of jibberish, which is f;'(P). Since Bob knows that the
message is claimed to be from Alice, he applies f4 (which he knows, since
Alice’s enciphering key is public), and obtains P. Since no one other than
Alice could have applied the function f; ' which is inverted by f4, he knows
that the message was from Alice.

Hash functions. A common way to sign a document is with the help of
a hash function. Roughly speaking, a hash function is an easily computable
map f : z +— h from a very long input z to a much shorter output h
(for example, from strings of about 10° bits to strings of 150 or 200 bits)
that has the following property: it is not computationally feasible to find
two different inputs x and x' such that f(z') = f(z). If part of Alice’s
“signature” consists of the hash value h = f(z), where z is the entire text
of her message, then Bob can verify not only that the message was really
sent by Alice, but also that it wasn't tampered with during transmission.
Namely, Bob applies the hash function f to his deciphered plaintext from
Alice, and checks that the result agrees with the value h in Alice’s signature.
By assumption, no tamperer would have been able to change r without
changing the value h = f(x).

Key exchange. In practice, the public key eryptosystems for sending
messages tend to be slower to implement than the classical systems that are
in current use. The number of plaintext message units per second that can
be transmitted is less. However, even if a network of users feels attached
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to the traditional type of cryptosystem, they may want to use a public
key cryptosystem in an auxiliary capacity to send one another their keys
K = (Kg, Kp) for the classical system. Thus, the ground rules for the
classical cryptosystem can be agreed upon, and keys can be periodically
exchanged, using the slower public key cryptography; while the large volume
of messages would then be sent by the faster, older methods.

Probabilistic Encryption. Most of the number theory based cryptosys-
tems for message transmission are deterministic, in the sense that a given
plaintext will always be encrypted into the same ciphertext any time it is
sent. However, deterministic encryption has two disadvantages: (1) if an
eavesdropper knows that the plaintext message belongs to a small set (for
example, the message is either “yes” or “no”), then she can simply en-
crypt all possibilities in order to determine which is the supposedly secret
message; and (2) it secems to be very difficult to prove anything about the
security of a system if the encryption is deterministic. For these reasons,
probabilistic encryption was introduced. We will not discuss this further or
give examples in this book. For more inforination, see the fundamental pa-
pers on the subject by Goldwasser and Micali { Proe. 14th ACM Symp. The-
ory of Computing, 1982, 365-377, and J. Comput. System Sci. 28 (1984),
270-299).

2 RSA

In looking for a trapdoor function f to use for a public key cryptosystem,
one wants to use an idea which is fairly simple conceptually and lends itself
to easy implementation. On the other hand, one wants to have very strong
empirical evidence — based on a long history of attempts to find algorithms
for f~! — that decryption cannot feasibly be accomplished without knowl-
edge of the secret deciphering key. For this reason it is natural to look at an
ancient problem of number theory: the problem of finding the complete fac-
torization of a large composite integer whose prime factors are not known
in advance. The success of the so-called “RSA” cryptosystem (from the last
names of the inventors Rivest, Shamir, and Adleman), which is one of the
oldest (16 years old) and most popular public key cryptosystems, is based
on the tremendous difficulty of factoring.
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We now describe how RSA works. Each user first chooses two extremely
large prime numbers p and q (say, of about 100 decimal digits each), and
sets n = pg. Knowing the factorization of n, it is easy to compute p(n) =
(p—1)(g—1) =n+1— p— q. Next, the user randomly chooses an integer
e between 1 and y(n) which is prime to ¢(n).

Remark. Whenever we say “random” we mean that the number was
chosen with the help of a random-number generator (or “pseudo-random”
number generator), i.e., a computer program that generates a sequence of
digits in a way that no one could duplicate or predict, and which is likely
to have all of the statistical properties of a truly random sequence. A lot
has been written concerning efficient and secure ways to generate random
numbers, but we shall not concern ourselves with this question here. In
the RSA cryptosystem we need a random number generator not only to
choose e, but also to choose the large primes p and g (so that no one
could guess our choices by looking at tables of special types of primes, for
example, Mersenne primes or factors of b* + 1 for small b and relatively
small k). What does a “randomly generated” prime number mean? Well,
first generate a large random integer m. If m is even, replace m by m + 1.
Then apply suitable primality tests to see if the odd number m is prime
(primality tests will be examined systematically in the next chapter). If m
is not prime, try m+2, then m+4, and so on, until you reach the first prime
number > m, which is what you take as your “random” prime. According
to the Prime Number Theorem (for the statement see Exercise 13 of § 1.1),
the frequency of primes among the numbers near m is about 1/log(m), so
you can expect to test O(logm) numbers for primality before reaching the
first prime > m.

Similarly, the “random” number e prime to ¢(n) can be chosen by first
generating a random (odd) integer with an appropriate number of bits, and
then successively incrementing it until one finds an e with g.c.d.(e, ¢(n)) =
1. (Alternately, one can perform primality tests until one finds a prime
e, say between maz(p,q) and p(n); such a prime must necessarily satisfy
g-c.d.(e,p(n)) = 1)

Thus, each user A chooses two primes p4 and g4 and a random number
e4 which has no common factor with (ps — 1)(g4 — 1). Next, A computes
NA = PAaga, ¥(na) = na+1—ps—qa, and also the multiplicative inverse of
ea modulo p(ny): da dzere;l mod p(n 4). She makes public the enciphering

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 24/38




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc MATHEMATICS COURSE NAME: NUMBER THEORY
COURSFE CODE: 16MMUS02B UNIT:V BATCH-2016-2019

key Kg 4 = (na, ea) and conceals the deciphering key Kp,a = (na, da).
The enciphering transformation is the map from Z/n4Z to itself given by
f(P) = P*4 mod na. The deciphering transformation is the map from
Z[naZ to itself given by f~!(C) = C% mod ny4. It is not hard to see that
these two maps are inverse to one another, because of our choice of d 4.
Namely, performing f followed by f~' or f~! followed by f means raising
to the djes-th power. But, because d ey leaves a remainder of 1 when
divided by ¢(na), this is the same as raising to the 1-st power (see the
corollary of Proposition 1.3.5, which gives this in the case when P has no
common factor with n,; if g.c.d.(P,na) > 1, sce Exercise 6 below).

From the description in the last paragraph, it seems that we are work-
ing with sets P = C of plaintext and ciphertext message units that vary
from one user to another. In practice, we would probably want to choose
P and C uniformly throughout the system. For example, suppose we are
working in an N-letter alphabet. Then let k < £ be suitably chosen positive
integers, such that, for example, N* and N have approximately 200 dec-
imal digits. We take as our plaintext message units all blocks of k letters,
which we regard as k-digit base-N integers, i.c., we assign them numerical
equivalents between 0 and N* We similarly take ciphertext message units to
be blocks of € letters in our N-letter alphabet. Then each user must choose
his/her large primes p4 and g4 so that ng = paqa satisfies N¥ < ny < N¢
Then any plaintext message unit, i.e., integer less than N ’flmrmﬁqp_nd&_ to
an element in Z/naZ (for any user’s n4); and, since ny < N¢ the image
f(P) € Z/n4Z can be uniquely written as an £-letter block. (Not all f-letter
blocks can arise — only those corresponding to integers less than ny for
the particular user's n,4.)

Example 1. For the benefit of a reader who doesn’t have a computer
handy (or does not have good multiple precision software), we shall sac-
rifice realism and choose most of our examples so as to involve relatively
small integers. Choose N = 26, k = 3, £ = 4, That is, the plaintext con-
sists of trigraphs and the ciphertext consists of four-graphs in the usual
26-letter alphabet. To send the message “YES” to a user A with enci-
phering key (n4,e4) = (46927, 39423), we first find the numerical equiva-
lent of “YES,” namely: 24 - 26% + 4 - 26 + 18 = 16346, and then compute
16346°**?* mod 46927, which is 21166 = 1-26° 4-5-262 +8-26+2 =“BFIC.”
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The recipient A knows the deciphering key (n4,d4) = (46927, 26767),
and so computes 21166%°7%7 mod 46927 = 16346 =“YES.” How did user
A generate her keys? First, she multiplied the primes p4 = 281 and
ga = 167 to get n,; then she chose e4 at random (but subject to the
condition that g.c.d.(e4,280) = g.c.d.(e4,166) = 1). Then she found
Ay = e;l mod 280 - 166. The numbers pa, g4, da remain secret.

In Example 1, how cumbersome are the computations? The most time-
consuming step is modular exponentiation, e.g., 16346°%%* mod 46927. But
this can be done by the repeated squaring method (see §1.3) in O(k?) bit
operations, where k is the number of bits in our integers. Actually, if we were
working with much larger integers, potentially the most time-consuming
step would be for each user A to find two very large primes p4 and g4. In
order to quickly choose suitable very large primes, one must use an efficient
primality test. Such tests will be described in the next chapter.

Remarks. 1. In choosing p and q, user A should take care to see
that certain conditions hold. The most important are: that the two primes
not be too close together (for example, one should be a few decimal digits
longer than the other); and that p — 1 and g — 1 have a fairly small g.c.d.
and both have at least one large prime factor. Some of the reasons for
these conditions are indicated in the exercises below. Of course, if someone
discovers a factorization method that works quickly under certain other
conditions on p and g, then future users of RSA would have to take care to
avoid those conditions as well.

2. In §1.3 we saw that, when n is a product of two primes p and g,
knowledge of ¢(n) is equivalent to knowledge of the factorization. Let's
suppose now that we manage to break an RSA system by determining a
positive integer d such that a® = a mod n for all a prime to n. This
is equivalent to ed — 1 being a multiple of the least common multiple of
p—1 and q = 1. Knowing this integer m = ed — 1 is weaker than actually
knowing @(n). But we now give a procedure that with a high probability
is nevertheless able to use the integer m to factor n.

So suppose we know n —— which is a product of two unknown primes
— and also an integer m such that @™ = 1 mod n for all a prime to
n. Notice that any such m must be even (as we see by taking a = —1).
We first check whether m/2 has the same property, in which case we can
replace m by m/2. If a™/2 is not = 1 mod n for all a prime to n, then we

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 26/38




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc MATHEMATICS COURSE NAME: NUMBER THEORY
COURSFE CODE: 16MMUS02B UNIT:V BATCH-2016-2019

must have a™'? # 1 mod n for at least 50% of the a's in (Z/nZ)* (this
statement is proved in exactly the same way as part (a) of Exercise 21 in
§11.2). Thus, if we test several dozen randomly chosen a’s and find that
in all cases a™/2 = 1 mod n, then with very high probability we have this
congruence for all a prime to n, and so may replace m by m/2. We keep
on doing this until we no longer have the congruence when we take half of
the exponent. There are now two possibilities:
(i) m/2 is a multiple of one of the two numbers p -1, g — 1 (say, p— 1)
but not both. In this case a™/? is always = 1 mod p but exactly 50%

of the time is congruent to —1 rather than +1 modulo q.
(i) m/2 is not a multiple of cither p — 1 or q — 1. In this case a™/? is = 1
modulo both p and ¢ (and hence modulo n) exactly 25% of the time,

it is = —1 modulo bhoth p and ¢ exactly 25% of the time, and for the
remaining 50% of the values of a it is = 1 modulo one of the primes
and = —1 modulo the other prime.

Thus, by trying a’s at random with high probability we will soon find
an a for which a™/2 — 1 is divisible by one of the two primes (say, p) but not
the other. (Each randomly selected a has a 50% chance of satisfying this
statement.) Once we find such an a we can inmediately factor n, becanse
g.cd.(n, a™? — 1) = p,

The above procedure is an example of a probabilistic algorithm. We
shall encounter other probabilistic algorithms in the next chapter.

3. How do we send a signature in RSA? When discussing anthentica-
tion in the last section, we assumed for simplicity that P = C. We have
a slightly more complicated set-up in RSA. Here is one way to avoid the
problem of different n4's and different block sizes (k, the number of letters
in a plaintext message unit, being less than £, the number of letters in a ci-
phertext message unit). Suppose that, as in the last section, Alice is sending
her signature (some plaintext P) to Bob. She knows Bob's enciphering key
Kg.p = (ng,ep) and her own deciphering key Kp 4 = (na,da). What she
does is send fﬂfﬁ.l[f"] ifng < ng, or else fﬂjf;;{f-’] if ng > ng. That is, in
the former case she takes the least positive residue of P92 modnlo n4; then,
regarding that number modulo ng, she computes (P94 mod n4)™® mod npg,

which she sends as a ciphertext message unit. In the case ny > np, she
first computes P*® mod ny and then, working modulo n 4, she raises this
to the d 4-th power. Clearly, Bob can verify the authenticity of the message
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in the first case by raising to the dy-th power modulo ng and then to the
e a-th power modulo n4; in the second case he does these two operations
in the reverse order.
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THE FAMOUS “LAST THEOREM?”

With our knowledge of Pythagorean triples, we are now prepared to
take up the one case in which Fermat himself had a proof of his con-
jecture, the case #=4. The technique used in the proof is a form of
induction sometimes called “Fermat’s method of infinite descent.” In
brief, the method may be described as follows: It is assumed that a solu-
tion of the problem in question is possible in the positive integers.
From this solution, one constructs a new solution in smaller positive
integers, which then leads to a still smaller solution and so on. Since
the positive integers cannot be decreased in magnitude indefinitely, it
follows that the initial assumption must be false and therefore no solution
is possible.

Instead of giving a proof of the Fermat Conjecture for #» =4, it
turns out to be easier to establish a fact which is slightly stronger; namely,
the impossibility of solving the equation x* 4 y*= 2% in the positive
integers.

TueoreM 11-3 (Fermat). The Diophantine equation x* - y* = 22
has no solution in pesitive integers x, y, 2.
Proof: With the idea of deriving a contradiction, let us assume
that there exists a positive solution xq, ¥, 2 of x*-y*=2%
Nothing is lost in supposing also that gcd (xo, yo) = 1; otherwise, put
ged (%o, J0) = d, X0 = dx, yo = d1, Zo=d?z; 10 get x,* + 1" = 2,
with ged (%, )= 1.

Expressing the supposed equation x,! -+ yo* = 2,* in the
form

(302)2 + (),02)2 = 2,2

we see that x,2, y,2, 2, meet all the requirements of a primitive
Pythagorean triple, and so Theorem 11-1 can be brought into play.
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In such triples, one of the integers x,* or y,® is necessarily even,
while the other is odd. Taking x,2 (and hence x,) to be even, there
exist relatively prime integers s > # >> 0 satisfying

_}'DE; IE —_— 3'-2’
2."0:52 +f2,

where exactly one of s and #is even. Ifit happened that s were even,
then we would have

1 E‘J’DQ:IE_ 12=0—-1 53(1'1‘10‘21 4),

an impossibility. Therefore, s must be the odd integer and, in con-
sequence, 7 is the even one. Let us put #=2r. Then the equation
x,2 = 25t becomes x,? = 4sr, which says that

(x0/2)% = 7.
But Lemma 2 asserts that the product of two relatively prime integers
[ged (s, £) =1 implies that ged (s, 7) = 1] is 2 square only if each of
the integers is itself a square; hence, s=2,% r= w,? for positive
integers 2, , ¥, .

We wish to apply Theorem 11-1 again, this time to the equa-

tion

3:2 + J,ﬁz il Iz.
Since ged (s, £) = 1, it follows that ged (2, yo, £) =1, making 7, yo, s
a primitive Pythagorean triple. With / even, we obtain

1= 2,
J’o=”2"—1’2=
s=u% 402

for relatively prime integers # >y > 0. Now the relation

w=i2=r=uw,?
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signifies that # and » are both squares (Lemma 2 setrves its purpose
once more); say, #=x,? and v =y,%. When these values are sub-

stituted into the equation for s the result is
2l=s=u®t+0v2=2;*+"

A crucial point is that, 2, and 7 being positive, we also have the
inequality

Do, L= a4 f=3,.

What has happened is this: starting with one solution x,
Yo, 2 Of x*+ y*= 22 we have constructed another solution x,,
¥1, %, such that 0 < 2, < 2,. Repeating the whole argument, our
second solution would lead to a third solution x,, ¥,, 2, with 0 <
z, < z,, which in its turn gives rise to a fourth. This process can be
carried out indefinitely to produce an infinite decreasing sequence of
positive integers

ZioeE Rgawee
Since there is only a finite supply of positive integers less than z,,
a contradiction occurs. We are forced to conclude that x* 4 y* = 22
is not solvable in the positive integets.
CoroLLARY. The equation x* - y* = z* has no solution in the positive
inlegers.

Proof: 1If x4, ¥, 2, were a positive solution of x* 4 y* = z*, then
X0, Yo 202 would satisfy the equation x* 4 y* = 22, in conflict with

Theorem 11-3.

If > 2, then # is either a power of 2 or divisible by an odd
prime p. In the first case, # =44 for some A#>1 and the Fermat
equation x™ - " = 2" can be written as

(x5)* + () = (#9)*
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We have just seen that this equation is impossible in the positive integers.
When # = pk, the Fermat equation is the same as

(k) + () = (@)

If it could be shown that the equation #” -+ 1» =" has no solution,
then, in particular, there would be no solution of the form # = x*, v=
3%, w=2z* and hence x"-y"=2" would not be solvable. Fermat’s
Conjecture therefore reduces to this: for no odd prime p does the equation

AP _l_ -J;P — =P
admit a solution in the positive integers.

Although the problem has challenged the foremost mathe-
maticians of the last 300 years, their efforts have only produced partial
results and proofs of individual cases. Euler gave the first proof of the
Fermat Conjecture for the prime p =3 in the year 1770; the reasoning
was incomplete at one stage, but Legendre later supplied the missing
steps. Using the method of infinite descent, Dirichlet and Legendre
independently settled the case p =5 around 1825. Not long thereafter,
in 1839, Lamé proved the conjecture for seventh powers. With the in-
creasing complexity of the arguments came the realization that a successful
resolution of the general case called for different techniques. The best
hope seemed to lie in extending the meaning of “integer™ to include a
wider class of numbers and, by attacking the problem within this enlarged
system, obtaining mote information than was possible by using ordinary
integers only.

The German mathematician Kummer made the major break-
through. In 1843, he submitted to Dirichlet a purported proof of the
Fermat Conjecture based upon an extension of the integets to include the
so-called “algebraic numbers” (that is, complex numbers satisfying
polynomials with rational coefficients). Having spent considerable
time on the problem himself, Dirichlet was immediately able to detect
the flaw in the reasoning: Kummer had taken for granted that algebraic
numbers admit a unique factorization similar to that of the ordinary
integers, and this is not always true.
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But Kummer was undeterred by this perplexing situation and
returned to his investigations with redoubled effort. In order to restore
unique factorization to the algebraic numbers, he was led to invent the
concept of ideal numbers. By adjoining these new entities to the algebraic
numbers, Kummer successfully proved the Fermat Conjecture for a
large class of primes which he termed “regular primes” (that this repre-

sented an enormous achievement is reflected in the fact that the only
irregular primes less than 100 are 37, 59, and 67.). Unforttunately, it is
still not known whether there are an infinite number of regular primes,
while, in the other direction, Jensen (1915) established that there exist
infinitely many irregular ones. Almost all the subsequent progress on the
problem has been within the framework suggested by Kummer.

To round out our historical digression, we might mention that in
1908 a prize of 100,000 marks was bequeathed to the Academy of Science
at Gottingen to be paid for the first complete proof of Fermat’s Conjec-
ture. The immediate result was a deluge of incorrect demonstrations
by amateur mathematicians. Since only printed solutions were eligible,
Fermat’s Conjecture is reputed to be the mathematical problem for which
the greatest number of false proofs have been published; indeed, between
1908 and 1912 over 1000 alleged proofs appeared, mostly printed as
private pamphlets. Suffice it to say, interest declined as the German

inflation of the 1920’s wiped out the monetary value of the prize.
From x* 4 y* = 2%, we move on to a closely related Diophantine

equation, namely, x*—y*= 22 The proof of its insolubility parallels
that of Theorem 11-3, but we give a slight variation in the method of

infinite descent.

THEOREM 11-4 (Fermat). The Diophantine equation x* — y* = 22 has

no solution in positive integers x, ¥, z.
Proof: 'The proof proceeds by contradiction. Let us assume that the
equation admits a solution in the positive integers and among these
solutions xg, ¥4, 2 is one with a least value of x; in particulat, this
supposition forces x, to be odd (Why?). Were ged (xg, yo) =d > 1,
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then putting xo = dx;, ¥o = d¥,; , we would have #*(x;* — y,%) = 2,2,
whence 42| 2, or zo=d?z, for some z, >0. It follows that x,,
1, %; provides a solution to the equation under consideration with
0 < x; < Xy, an impossible situation. Thus, we are free to assume a
solution x, yo, 2, in which ged (x4, o) = 1. The ensuing argument
falls into two stages, depending on whether y, is odd or even.

First, consider the case of an odd integer y,. If the equation
Xot — yo* = 2o is written in the form z,? + (3,2)? = (x,?)?, one sees
that z,, 7,?, %07 constitute a primitive Pythagotean triple. Theorem

11-1 asserts the existence of relatively prime integers s > ¢ >0 for

hich
e e A,

Jo? = 52— o8
gt =82 1%
It thus appears that
st— = (52 1) — 1) = xo%e” = (*020)%

making s, £, x,_y, & (positive) solution to the equation x* — y* = 2°

Since
0"-’:.!(’:\/124»3‘2———}4‘.3,

we atrive at a contradiction to the minimal nature of ».
For the second part of the proof, assume that y, is an even
integer. Using the formulas for primitive Pythagorean triples, we

now write

Jo® = 254,
By tyg?
xoﬂ = 12 + ;.‘2’
It thus appears that
st — 1= (8 4 (8 — 1) = XoDo” = (¥ o)

making s, 4, Xo_yo 2 (positive) solution to the equation x* — yt=1%,
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Since

O{I{\’Iﬂ—|—f2—_—x'j,

we arrive at a contradiction to the minimal nature of ».
For the second part of the proof, assume that y, 1s an even
integer. Using the formulas for primitive Pythagorean triples, we

now write

o ; o’ = 25t 3
2o =82 — 12,
xﬂﬂ = §° —I_ 7 2;
where 5 may be taken to be even and 7 to be odd. Then, in the rela-
tion yo2 = 2st, we have ged (25, £}=1. The by—now-cgstomary
Lemma 2 tells us that 2r and 7 are each squares of positive integers;
say, 2s=w?, =12 Since » must of necessity be an even integer,
set w = 24 to get s=24%. Therefore,
a2=1s2 ;P2 =4yt + 0"
and so 242, 12, x, forms a primitive Pythagorean triple. Falling back
on Theorem 11-1 again, there exist integers @ > & > 0 for which
2u? = 2ab,
p8 = gt b2,
Xp = "22 —l_ i’ g’
whete ged (4, ) = 1. The equality 4% = ab ensures that 4 and b are

perfect squates, so that 2= ¢? and b =4 Knowing this, the rest of
the proof is easy; for, upon substituting,

12 =a?— b? =t —d*
. : _ , o,
The result is 2 new solution ¢, 4, » of the given equation x* — y* =2

and what’s more, a solution in_which
0 <<c=Va<a®+ b*=x,,

contrary to our assumption regarding xo.
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The only resolution of these contradictions is that the
equation x* — y* = 22 cannot be satisfied in the positive integers.

Tueorem 11-5. The area of a Pythagorean triangle can never be equal
to a perfect (integral) square.

Proof: Consider a Pythagorean triangle whose hypotenuse has
length z and other two sides have lengths x and y, so that x2 + y2 =
22, The area of the triangle in question is ixy and if this were a
square, say #°, it would follow that 2xy = 44®. By adding and sub-
tracting the last-written equation from x2? ++ y% = 22, we are led to

(x+y)°2=22+44 and (x—y)%= 22— 442

When these last two equations are multiplied together, the outcome
is that two fourth powers have as their difference a square:

(22 — %)% = 2t — 164* = 2* — (2)*.
Since this amounts to an infringement of Theorem 11-4, there can
be no Pythagorean triangle whose area is a square.

There are a number of simple problems pertaining to Pythagorean
triangles that still await solution. The Corollary to Theorem 11-3 may
be expressed by saying that there exists no Pythagorean triangle all the
sides of which are squares. However, it is not difficult to produce
Pythagorean triangles whose sides, if increased by 1, are squares; for
instance, the triangles associated with the triples 132 — 1, 102 — 1, 142 — |,
and 287% — 1, 265> — 1, 3292 — 1. An obvious—and as yet unanswered
—question is whether there are an infinite number of such triangles.
One can find Pythagorean triangles each side of which is a triangular
number. [By a triangular number, we mean an integer of the form
t,=n(n-+1)/2.] An example of such is the triangle corresponding to
f1325 t1as» Fres - It 1s not known if there exist infinitely many Pythagorean
triangles of this type.
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As a closing comment, we should observe that all the effort
expended on attempting to prove Fermat’s Conjecture has been far from

wasted. The new mathematics that was developed as a by-product laid
the foundations for algebraic number theory, as well as the ideal theory
of modern abstract algebra. It seems fair to say that the value of these
far exceeds that of the conjecture itself.

PROBLEMS

1. Show that the equation x2 4 j%=2® has infinitely many solutions for
x, y, % positive integers. [Hint: For any n>3, let x=n(n? —3) and
y=73n"—1]

2. Prove the theorem: The only solutions in nonnegative integers of the
equation x? + 2y = 2%, with gcd (x, 3, z) = 1, are given by

o= (252 —12), y=2t, g =252 4 #*

where s, ¢ are arbitrary nonnegative integers. [Hint: If u, v, w are such that
y == 2w, z + x = 24, z — X = 2v, then the equation becomes 2u? = uv ]
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POSSIBLE QUESTIONS

2 Mark Questions:

Evaluate the Legendre symbol (71/73).
Evaluate the Legendre symbol (—219/383)

Solve the congruence x* =31(mod11%).

What is Hash function.

Define Pythagorean triple.

If x,y,z is a primitive Pythagorean triple, then prove one of the integers x and y is even,
while the other is odd.

7. Give an example of Pythagorean triple.

Otk W N

8 Mark Questions:

1. State and prove Gauss Quadratic Reciprocity Law.
2. If p isan odd prime and gcd(a, p) =1, then prove that e congruence

x” = a(mod p"), n=1
has a solution if and only if (a/ p)=1.
3. Let a be an odd integer. then prove
(i)  x*=a(mod?2)always has a solution.
(ii)  x* =a(mod4) has a solution if and only if a =1(mod4).
(iii) x*=a(mod2"), for n >3, has a solution if and only if a =1(mod8).

4. Explain about Public key encryption.
Describe RSA encryption and decryption.

o »

If ab=c", where gcd(a,b)=1, then prove a and b are n ™ power. this is, there exist
positive integers a,,b, for which a=q",b=0".

7. Find all the solution of the Pythagorean equation

x2 +y2 — ZZ

Satisfying the conditions

ged(x,y,z)=1, 2/x,x>0,y>0,z>0
are given by the formulas
x=2st,y ="t z=s5"+1

for integers s > ¢ > 0 such that gcd(s,7) =1and s # t(mod2).
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8. Find all primitive solution of x*+ y* = z* having 0 <z <30.

Prove that the area of a Pythagorean triangle can never be equal to a perfect (integral)
square.

10. Prove that the Diophantine equation x*+ y*=z" has no solution in positive integer
X, V2.

11. Prove that the Diophantine equation x*—y*=z" has no solution in positive integer
X, ¥, 2.
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