Semester -V

LTPZC
16MMU502B BOOLEAN ALGEBRA AND AUTOMATA THEORY 6 2 0 6

Scope: On successful completion of course the learners gain about finite Automata and regular languages.

Objectives: To enable the students to learn and gain knowledge about context free grammars and
pushdown automata.

UNIT I

Definition of ordered set with examples and basic properties of ordered sets, maps between ordered sets ,
duality principle, lattices as ordered sets- lattices as algebraic structures, sublattices, products and
homomorphisms, modular and distributive lattices.

Boolean algebras: Boolean polynomials, minimal forms of Boolean polynomials, Quinn-McCluskey
method, Karnaugh diagrams, switching circuits and applications of switching circuits.

UNIT 11

The central concept of Automata: Alphabets, strings, and languages. Finite Automata and Regular
Languages: deterministic and non-deterministic finite automata, regular expressions, regular languages and
their relationship with finite automata, pumping lemma and closure properties of regular

languages.

UNIT 11

Context Free Grammars and Pushdown Automata: Context free grammars (CFG), parse trees,
ambiguities in grammars and languages, pushdown automaton (PDA) and the language accepted
by PDA, deterministic PDA, Non- deterministic PDA, properties of context free languages,
normal forms, pumping lemma, closure properties, decision properties.

UNIT IV
Turing Machines: Turing machine as a model of computation, programming with a Turing
machine, variants of Turing machine and their equivalence.

UNIT V

Undecidability: Recursively enumerable and recursive languages, undecidable problems about
Turing machines: halting problem, Post Correspondence Problem, and undecidability problems
About CFGs.

SUGGESTED READINGS

TEXT BOOKS

1. Davey B A., and Priestley H. A., (2002). Introduction to Lattices and Order, Cambridge University
Press, Cambridge. (For Unit-1)

2. Hopcroft J. E., Motwani R., and Ullman J.D., (2001). Introduction to Automata Theory, Languages,
and Computation, Second Edition, Addison-Wesley, USA. (For Unit-11 to V)

Bachelor of Science, Mathematics, 2016. Karpagam University, Coimbatore-21, India .

34

REFERENCES

1. Edgar G. Goodaire and Michael M. Parmenter, (2003). Discrete Mathematics with Graph Theory,
Second Edition, Pearson Education P.Ltd., Singapore.

2. Rudolf Lidl and Glnter Pilz, (2004). Applied Abstract Algebra, Second Edition , Undergraduate
Texts in Mathematics, Springer (SIE).

3. Lewis H.R., Papadimitriou C.H.,and Papadimitriou C.,(1997). Elements of the Theory of
Computation, Second Edition ,Prentice-Hall. New Delhi.

4. Anderson J.A., (2006). Automata Theory with Modern Applications, Cambridge University Press,
Cambridge.

Bachelor of Science, Mathematics, 2016. Karpagam University, Coimbatore-21, India .

35

Lesson Plan

2016 -2019 Batch

LY

ST —

Enabie | Enlighten | Encic
ACADEMY OF HIGHER EDUCATION
(Deemed to be University)

(Established Under Section 3 of UGE Act

(Established Under Section 3 of UGC Act 1956)

Coimbatore — 641 021.
LECTURE PLAN

DEPARTMENT OF MATHEMATICS

STAFF NAME: Dr. K.KALIDASS
SUBJECT NAME: BOOLEAN ALGEBRA AND AUTOMATA THEORY
UB.CODE:16MMU502B

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

SEMESTER: V

CLASS: Il B. Sc. MATHEMATICS

Lecture
S. No | Duration Topics To Be Covered Support Materials
Hour
UNIT-I
1 1 Introduction to ordered set T1:Ch1,1-3
2 1 Basic properties of ordered sets R1: Ch 2, 63-67
3 1 Maps between ordered sets T1:Ch 1, 23-24
4 1 Tutorial
5 1 Duality principle T1:Ch1,25
6 1 lattices as ordered sets T1: Ch 2, 33-38
7 1 lattices as algebraic structures T1: Ch 2, 39-40
8 1 Tutorial
9 1 Sublattices T1:Ch 2, 41-43
10 1 Products and homomorphisms T1: Ch 2, 44-46
11 1 Modular and distributive lattices T1: Ch 2, 46-49
12 1 Tutorial
13 1 Theorem Boolean polynomials T1: Ch 4, 83-88
14 1 Quinn-McCluskey method T1:Ch 4,89
15 1 Problems on Karnaugh diagrams T1: Ch 4, 90-91
16 1 Tutorial
17 1 Problems on minimal forms of Boolean polynomials R1: Ch 1, 40-50
18 1 Applications of switching circuits R1: Ch 2, 55-62
19 1 Recapitulation and discussion of possible questions
Total number of hours planed for unit I 18 hours
. UNIT-I1I
1 1 Alphabets, strings, and languages./Tutorial T2: Ch1, 28-37
Finite Automata Languages R3: Ch 2,28-37
Prepared by Dr K. Kalidass, Department of Mathematics, KAHE Pagel/4

Lesson Plan

2016 -2019 Batch

3 1 Regular Languages T2: Ch 2, 40-45
4 1 non-deterministic finite automata T2: Ch 2, 55-57
5 1 Tutorial
6 1 non-deterministic finite automata T2: Ch 2. 58-60
7 1 regular expressions T2:Ch 3,83-91
8 1 regular expressions T2: Ch 3, 92-106
9 1 Tutorial
10 1 regular languages & their relationship with finite

automata T2: Ch 3,107-113
11 1 regular languages & their relationship with finite

automata T2: Ch 3, 114-120
12 1 regular languages & their relationship with finite

automata T2: Ch 4, 126
13 1 Tutorial
14 1 pumping lemma T2: Ch 4,127
15 1 pumping lemma T2: Ch 4,131-133
16 1 closure properties of regular languages T2: Ch 4, 133-137
17 1 Tutorial
18 1 closure properties of regular languages T2:Ch 4, 133-137
19 1 Recapitulation and discussion of possible questions

Total number of hours planed for unit Il 19 hours
. UNIT-11
1 1 Context free grammars T2: Ch5,169-179
2 1 parse trees Tutorial T2: Ch 5, 181-204
3 1 parse trees T2: Ch 5, 205-213
4 1 ambiguities in grammars and languages
5 1 pushdown automaton T2: Ch 6, 219-228
6 1 Tutorial
7 1 the language accepted by PDA T2: Ch 6, 229-236
8 1 deterministic PDA T2: Ch 6, 247-248
9 1 Non- deterministic PDA T2: Ch 6, 249-250
10 1 Tutorial
11 1 Non- deterministic PDA T2: Ch 6, 250-253
12 1 properties of context free languages T2: Ch 7, 255-266
13 1 properties of context free languages T2: Ch 7, 266-268
14 1 Tutorial
15 1 normal forms T2: Ch7,274-280
16 1 pumping lemma T2: Ch 7, 281-302
17 1 closure properties and decision properties T2: Ch 7, 281-302
18 1 Recapitulation and discussion of possible questions
Prepared by Dr K. Kalidass, Department of Mathematics, KAHE Page2/4

Lesson Plan

2016 -2019 Batch

. UNIT-1V
1 1 Turing Machines T2: Ch 8, 307- 316
2 1 Turing Machines T2: Ch 8, 318-320
3 1 Turing Machines T2: Ch 8, 320-328
4 1 Tutorial
5 1 Turing machine as a model of computation T2: Ch 8, 329-332
6 1 programming with a Turing machine
7 1 programming with a Turing machine T2: Ch 8, 333-337
8 1 Tutorial
9 1 programming with a Turing machine T2: Ch 8, 338-340
10 1 variants of Turing machine T2: Ch 8, 341-345
11 1 variants of Turing machine T2: Ch 8, 346-350
12 1 Tutorial
13 1 variants of Turing machine T2: Ch 8, 351-353
14 1 variants of Turing machine T2:Ch 8, 354
15 1 Turing machine equivalence T2:Ch8, 355
16 1 Tutorial
17 1 Turing machine equivalence T2: Ch 8, 356
18 1 Turing machine equivalence
19 1 Recapitulation and discussion of possible questions
Total number of hours planed for unit IV 9 hours
UNIT-V
1 1 Recursively enumerable and recursive languages T2:Ch9, 367-370
2 1 Recursively enumerable and recursive languages T2: Ch9, 371-373
3 1 Recursively enumerable and recursive languages T2: Ch9, 374-376
4 1 Recursively enumerable and recursive languages T2:Ch9, 374-376
5 1 Tutorial
6 1 undecidable problems about Turing machines T2: Ch9, 378-380
7 1 undecidable problems about Turing machines T2: Ch9, 381-386
8 1 undecidable problems about Turing machines T2: Ch9, 387-340
9 1 Tutorial
10 1 halting problem T2: Ch9, 341-343
11 1 Post Correspondence Problem T2: Ch9, 344-346
12 1 undecidability problems about CFGs T2: Ch9, 344-346
13 1 Tutorial
14 1 undecidability problems about CFGs T2: Ch9, 347-350
15 1 Recapitulation and discussion of possible questions T2: Ch9, 352-363
16 1 Discusion of ESE gns T2:Ch9, 364-373
17 1 Tutorial
18 1 Discusion of ESE gns
Prepared by Dr K. Kalidass, Department of Mathematics, KAHE Page3/4

Lesson Plan

2016 -2019 Batch

19

Discusion of ESE qns

20

[E=N

Discusion of ESE qns

21

Discusion of ESE gns/ Tutorial

Total number of hours planed for unit V 21 Hours

Unit

Hours(L+T)

18(14+4)

20(15+5)

18(14+4)

v

19(15+4)

21(15+6)

Total

96(73+23)

Prepared by Dr K. Kalidass, Department of Mathematics, KAHE

Paged/4

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory

COURSE CODE: 16MMU502B UNIT: I BATCH-2016-2019

UNIT I

Definition of ordered set with examples and basic properties of ordered sets, maps between ordered
sets, duality principle, lattices as ordered sets- lattices as algebraic structures, sublattices, products and
homomorphisms, modular and distributive lattices. Boolean algebras: Boolean polynomials, minimal
forms of Boolean polynomials, Quinn-McCluskey method, Karnaugh diagrams, switching circuits and

applications of switching circuits.

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 1/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I BATCH-2016-2019

Introduction

Partial order and lattice theory now play an important role in many disciplines of computer science
and engineering. For example, they have applications in distributed computing (vector clocks, global
predicate detection), concurrency theory (pomsets, occurrence nets), programming language
semantics (fixed-point semantics), and data mining (concept analysis). They are also useful in other
disciplines of mathematics such as combinatorics, number theory and group theory. This book
differs from earlier books written on the subject in two aspects. First, the present book takes a
computational perspective — the emphasis is on algorithms and their complexity. While
mathematicians generally identify necessary and sufficient conditions to characterize a property,
this book focuses on efficient algorithms to test the property. As a result of this bias, much of the
book concerns itself only with finite sets. Second, existing books do not dwell on applications of
lattice theory. This book treats applications at par with the theory. In particular, applications of
lattice theory to distributed computing are treated in extensive detail. | have also shown many
applications to combinatorics because the theory of partial orders forms a core topic in
combinatorics. This chapter covers the basic definitions of partial orders.

A partial order is simply a relation with certain properties. A relation R over any set X is a
subset of X x X. For example, let
X ={a,b,c}.

Then, one possible relation is
R = {(a,c),(a,a),(b,c),(c,a)}.

It is sometimes useful to visualize a relation as a graph on the vertex set X such that there is a
directed edge from z to y iff (z,y) € R. The graph corresponding to the relation R in the previous
example is shown in Figure 1.1.

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 2/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
RSE DE:1 2B UNIT: I BATCH-2016-2019

Figure 1.1: The graph of a relation

R={(z,y) | x mod 5=y mod 5}. (1.1)

A symmetric relation can be represented using an undirected graph. R is antisymmetric if for all
r,y € X, (z,y) € R and (y,x) € I} implies x = y. For example, the relation less than or equal to
defined on A is anti-symmetric. A relation R is asymmetric if for all z,y € X, (z,y) € R implies
(y,x) € R. The relation less than on N is asymmetric. Note that an asymmetric relation is always
irreflexive.

A relation R is transitive if for all x,y,2 € X, (z,y) € R and (y,2) € R implies (z,2) € R.
The relations less than and equal to on N are transitive.

A relation is reflexive if for each = € X, (z,2) € R. In terms of a graph, this means that there
is a self-loop on each node. If X is the set of natural numbers, A/, then “z divides y” is a reflexive
relation. R is irreflexive if for each x € X, (z,2) € R. In terms of a graph, this means that there
are no self-loops. An example on the set of natural numbers, N, is the relation “z less than y.”
Note that a relation may be neither reflexive nor irreflexive.

A relation R is symmetric if for all z,y € X, (z,y) € R implies (y,z) € R. An example of a
symmetric relation on A is

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 3/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I BATCH-2016-2019

A relation R is an equivalence relation if it is reflexive, symmetric, and transitive. When R
is an equivalence relation, we use z =g y (or simply # = y when R is clear from the context) to
denote that (z,y) € R. Furthermore, for each x € X, we use [z]g, called the equivalence class
of z, to denote the set of all y € X such that y = z. It can be seen that the set of all such
equivalence classes forms a partition of X. The relation on N defined in (1.1) is an example of
an equivalence relation. It partitions the set of natural numbers into five equivalence classes.

Given any relation R on a set X, we define its irreflexive transitive closure, denoted by R, as
follows. For all z,y € X : (z,y) € R™ iff there exists a sequence zg,z1,...,xz;,7 > 1 with xg =
and z; = y such that

Vi:0<i<j:(zizis) € R

Thus (z,y) € RT iff there is a nonempty path from z to y in the graph of the relation R. We define
the reflexive transitive closure, denoted by R*, as

R* =R U{(z,z) |z € X}

A relation is a total order if R is a partial order and for all distinct =,y € X, either (z,y) € R
or (y,z) € R. The natural order on the set of integers is a total order, but the “divides” relation
is only a partial order.

A relation R is a reflexive partial order (or, a non-strict partial order) if it is reflexive,
antisymmetric, and transitive. The divides relation on the set of natural numbers is a reflexive
partial order. A relation R is an irreflexive partial order, or a strict partial order if it is
irreflexive and transitive. The less than relation on the set of natural numbers is an irreflexive
partial order. When R is a reflexive partial order, we use x <p y (or simply < y when R is clear
from the context) to denote that (x,y) € R. A reflexive partially ordered set, poset for short, is
denoted by (X, <). When R is an irreflexive partial order, we use £ <pg y (or simply z < y when
R is clear from the context) to denote that (z,y) € R. The set X together with the partial order
is denoted by (X, <). We use PP = (X, <) to denote the poset.

The two versions of partial orders — reflexive and irreflexive — are essentially the same. Given
an irreflexive partial order, we can define # < y as x < y or = y which gives us a reflexive partial
order. Similarly, given a reflexive partial order (X, <), we can define an irreflexive partial order
(X, <) by defining z < y as * < y and x # y. In this book, we use a poset to mean a set X with
either an irreflexive partial order or a reflexive partial order.

Finite posets are often depicted graphically using Hasse diagrams. To define Hasse diagrams,
we first define a relation covers as follows. For any two elements z,y € X, y covers z if &z < y
and ¥z € X 1z < z < y implies 2 = 2. In other words, there should not be any element z with
r < 2z <y. We use x <y to denote that y covers = (or x is covered by y). We also say that y is
an upper cover of x and z is a lower cover of y. A Hasse diagram of a poset is a graph with
the property that there is an edge from = to y iff z < y. Furthermore, when drawing the graph
on a Kuclidean plane, z is drawn lower than y when y covers x. This allows us to suppress the
directional arrows in the edges. For example, consider the following poset (X, <),

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 4/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory

COURSE CODE: 16MMU502B UNIT: I BATCH-2016-2019

XE parsh < EA{0a),(@r), @7) (,9)) (12)

Its Hasse diagram is shown in Figure 1.2. Note that we will sometimes use directed edges in Hasse
diagrams if the context demands it. In general, in this book, we switch between the directed graph
and undirected graph representations of Hasse diagrams.

Given a poset (X, <x) a subposet is simply a poset (Y, <y) where ¥ C X, and

. def
Vr,ycY x<yy=1x<xvy

q

P

Figure 1.2: Hasse diagram

Let z,y € X with x # y. If either z < y or y < x, we say = and y are comparable. On the other
hand, if neither = < y nor z > y, then we say z and y are incomparable, and write z||y. A poset
(Y, <) (or a subposet (Y, <) of (X, <)) is called a chain if every distinct pair of elements from Y
is comparable. Similarly, we call a poset an antichain if every distinet pair of elements from Y is
incomparable. For example, for the poset represented in Figure 1.2, {g,r} is a chain, and {q, s} is
an antichain.

A chain C of a poset (X, <) is a maximum chain if no other chain contains more elements
than C'. We use a similar definition for maximum antichain. The height of the poset is the
number of elements in the maximum chain, and the width of the poset is the number of elements
in a maximum antichain.For example, the poset in Figure 1.2 has height equal to 3 (the maximum
chain is {p, ¢,r}) and width equal to 2 (a maximum antichain is {g, s}).

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 5/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I BATCH-2016-2019

We now define two operators on subsets of the set X—meet or infimum (or inf) and join or
supremum (or sup). Let Y C X, where (X, <) is a poset. For any m € X, wesay that m =infY
iff

1. YyeY :m <y, and
2VvmeX:(VyeY m'<y)=m'<m.

The condition (1) says that m is a lower bound of the set Y. The condition (2) says that if m’
is another lower bound of V', then it is less than m. For this reason, m is also called the greatest
lower bound (glb) of the set Y. It is easy to check that the infimum of Y is unique whenever it
exists. Observe that m is not required to be an element of Y.

The definition of sup is similar. For any s € X, we say that s = sup Y iff

1. VvyeY:y<s
2.V e X:(VWyeY :y<s)=s<4

Again, s is also called the least upper bound (lub) of the set Y. We denote the glb of {a,b}
by a b, and lub of {a,b} by a Ub. In the set of natural numbers ordered by the divides relation,
the glb corresponds to finding the greatest common divisor (ged) and the lub corresponds to finding
the least common multiple of two natural numbers. The greatest lower bound or the least upper
bound may not always exist. In Figure 1.3, the set {e, f} does not have any upper bound. In the

third poset in Figure 1.4, the set {b, ¢} does not have any least upper bound (although both d and
e are upper bounds).
The following lemma relates < to the meet and join operators.

Lemma 1.1 [Connecting Lemma]

l.Lz<y=(xUy) =y, and

2. rx<y=(xNy) ==

Proof:

x < y implies that ¥ is an upper bound on {z,y}. y is also the least upper bound because any
upper bound of {z,y} is greater than both = and y. Therefore, (xrUy) = y. Conversely, (zMy) =y

means y is an upper bound on {z,y}. Therefore, z < y.
The proof for the second part is the dual of this proof.

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 6/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I BATCH-2016-2019

Definition 1.2 (Lattice) A poset (X.<) is a lattice iff Yo,y € X : x Uy and x Ny exist.
Definition 1.3 (Distributive Lattice) A lattice L is distributive if

Ya,bce L:aml(bUec)=(alb)L(alc)

={a,b.c,d,e, [} / \

Generalizing the notation for intervals on the real-line, we define an interval [z, y] in a poset (X, <)
as

{zlz <z <y}
The meaning of (z,y) and [x,y) and (x,y] is similar. A poset is locally finite if all intervals are
finite. Most posets in this book will be locally finite if not finite.

O'ﬁﬁ Q

d S

L/

e N

Figure 1.4: Various posets.

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 7/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I BATCH-2016-2019

A poset is well-founded iff it has no infinite decreasing chain. 'I'he set of natural numbers under
the usual relation is well-founded but the set of integers is not well-founded. A poset corresponding
to a distributed computation may be infinite but is usually well-founded.

Poset @ = (X, <) extends the poset P = (X, <p) if
Ve,ye Xz <py=1x<gy

If @ is a total order, then we call @ a linear extension of P. For example, for the poset (X, <)
defined in Figure (1.2), a possible linear extension @ is

X iparsh <o ©{(P4). @)), (p9),(a5), (r,9)}.

Let (X, <) be any poset. We call a subset Y C X a down-set if
Yy,zeX:zeYrny<z=yecY.

Down-sets are also called order ideals. It is easy to see that for any x, D[z] defined below is an
order ideal. Such order ideals are called principal order ideals,

Dla] = {y € X|y < a}.
For example, in Figure 1.2, D[r] = {p,q,r}. Similarly, we call Y C X an up-set if
yeYrny<z=zeV.

Up-sets are also called order filters. We also use the notation below to denote principal order
filters
U] ={y € X|z < y}.

In Figure 1.2, Ulp| = {p.q,1,5}.
The following lemmas provides a convenient relationship between principal order filters and
other operators defined earlier.

Lemma 1.4 1. z<y=Uly] CU|z]

2. x=sup(Y)=Ulz| = Nyey Uy

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 8/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I BATCH-2016-2019

In some applications, the following notation is also useful:
Ulx)={yc X|z <y}

D(z) = {y € Xy < z}.

We will call U(z) the upper-holdings of z, and D(x), the lower-holdings of z. We extend
the definitions of D[z|, D(z),U[z],U(z) to sets of elements, A. For example,

An element x is a bottom element or a minimum element of a poset P if x € P, and
Yye P:z <y

For example, 0 is the bottom element in the poset of whole numbers, and) is the bottom clement in
the poset of all subsets of a given set W. Similarly, an element x is a top element, or a maximum
element of a poset P if z € P, and

YVye P:y<x

A bottom element of the poset is denoted by L and the top element by T. It is easy to verify
that if bottom and top elements exist, they are unique.

An element x is a minimal element of a poset P if
Yye P:y < x.

The minimum element is also a minimal element. However, a poset may have more than one
minimal element. Similarly, an element z is a maximal element of a poset P if

Yye P:y #

Definition 1.5 An element x is join-irreducible in P if it cannot be expressed as join of other
elements of P. Formally, = is join-irreducible if

ZWCPix=suplY)=xzecY
Theorem 1.6 Let P be a finite poset. Then, for any x € P
x = sup(D[z] N JT(P))

Proof: We use I[z] to denote the set D[z] N J(P). We need to show that = = sup([[z]) for any x.
The proof is by induction on the cardinality of D[z].

(Base case) D|x] is singleton.
This implies that x is a minimal element of the poset. If x is the unique minimum, = ¢ 7(P) and
I[z] is empty; therefore, x = sup(I[z]. Otherwise, = € J(P) and we get that « = sup(I[z]).

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 9/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory

COURSE CODE: 16MMU502B UNIT: I BATCH-2016-2019

(Induction case) D[z] is not singleton.

First assume that x is join-irreducible. Then, = € I[z] and all other elements in I[x] are smaller than
x. Therefore, = equals sup(I[z]). If z is not join-irreducible, then « = sup(D(x)). By induction,
each y € D(z) satisfles y = sup(I[y]). Therefore, we have

vy € D(z) : Uly] = NaepyUl2] (1.3)

We now have,
z = sup(D(x))
= { property of sup }
U[.l:} = ﬁyeg(m}U [y]
= { Equation 1.3 }
Ulz] = Nyep(a) Nierpy VL]
= { definition of I[y] }
Ulz] = Nyep) Nzepiing) Ule]
= { definition of [[z] and simplification }
U—[;ﬂ = szI[:r]U—[z]
= { property of sup }
z = sup(I[z])

Theorem 1.7 For a finite poset P, x € J(P) iff 3y € P : x € minimal(P — D|y|)

Proof: First assume that =z € J(P).
Let LC(x) be the set of elements covered by z. If LC(x) is singleton, then choose that element

as y. It is clear that = € minimal(P — Dly|).

Now consider the case when LC'(z) is not singleton (it is empty or has more than one element).
Let @ be the set of upper bounds for LC(z). @ is not empty because z € (). Further, x is not the
minimum element in @ because z is join-irreducible. Pick any element y €) that is incomparable
to . Since D[y] includes LC'(x) and not z, we get that = is minimal in P — D[y].

The converse is left as an exercise.

Definition 1.8 For a poset P, =z € P is an upper dissector if there exists y € P such that

P —Ulz] = Dly]

Theorem 1.9 x is a dissector implies thal x is join-irreducible.

Proof: If « is an upper dissector, then there exists y such that x is minimum in P — D[y|. This
implies that x is minimal in P — D[y].

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 10/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I BATCH-2016-2019

S is a sublattice of a given lattice L = (X, <) iff it is non-empty, and:
Ya,be S : sup(a,b) € S Ninf(a,b) € S.

Note that the sup and inf of any two elements in the sublattice S must be the same as the sup
and inf of those elements in the original lattice L.

For S to be a sublattice, S being a subset of a lattice is not sufficient. In addition to S being a
subset of a lattice, sup and inf operations must be inherited from the lattice.

We have so far looked at a lattice as a special type of poset, P = (X, <), where the operator <
is reflexive, antisymmetric and transitive. We have defined the operations of [J and ' on lattices
based on the given < relation.

An alternative method of studying lattices is to start with a set equipped with LI and M operator
and define < relation based on these operations. Consider any set X with two algebraic operators
L and 1. Assume that the operators satisfy the following properties:

(L1) au(bUe)=(aUb)lUc (associativity)
(L1)° ari(bMe) =(amb) e

(L2) aub=bUa (commutativity)
(L2)° anb=ba

(L3) al(anb)=a (absorption)
(L3)° amn(aub)=a

Theorem 5.2 Let (X,L,1M) be a nonempty set with the operators LI and I which satisfy (L1)—(L3)
above. We define the operator < on X by:

a<b=(allb="0)
Then,

a b c d C f g
a a allb aflle afld anfe aflf alg
b|bua b brmie brid brie brf brg
c|lclda cUb c cfld cne cnf chg
d|duJa dub due d drie drnf dng
ella elb elde elld e elf erng
fua fub fue fud fUue f frig
glla glub gue gud glle gUf g

T3 = @

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 11/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I BATCH-2016-2019

o < is reflerive, antisymmetric and transitive
e sup(a,b) =allb
e inf(a,b) =anb.

Proof: Left as an exercise.

Theorem 5.3 For a lattice L,

P _ Il
n—lﬂ_xe<ﬂ_\n3’2

We prove that e. < n3/2,

Proof: The lower bound is clear because every element in the lattice has at least one lower
cover (except the smallest element). We show the upper bound.

Let L be an inf-semilattice. Consider two distinct elements x, y € L. Let B(x) denote the set
of elements covered by =. B(z)()B(y) cannot have more than one element because that would
violate inf-semilattice property. Let B'(z) = B(z)|J{z}. Hence,

B@ (B <1
Let

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 12/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I BATCH-2016-2019
= [B(zi)|

Because there is no pair in common between B'(z) and B'(y) for distinct = and y, we get
i (b + l) - (-n)
i=0 2 2

n—1

> 0 +bi) <0 —n
=0

Dropping b; from the left hand side and —n from the right hand side, we get

n—1
S8 < n?
=0

Simplifying, we get

Since e = > b;, we get

(e_<)9: (Z!’H)Q < > b2 < 1_%:-7;.

n n mn

The first inequality follows from Cauchy-Schwarz inequality.

Therfore,

n3

[

2
€

Example 1: In the lattice shown in Figure 5.4, z and y are the only join-irreducible elements.

J—irr X v

Figure 5.4: Join-irreducible elements: J(L) = {x,y}

Lemma 5.4 Let L be a finite lattice. The following two are equivalent.
1. Vabel:x=(aUb)= (r=a)V(x=0>)

2 Va,beLl:(a<z)n(b<z)= (aLb<zx)

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 13/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I BATCH-2016-2019

Proof: (=) Assume z is join-irreducible. In general, we know:
Va,beL:(a<z)h(b<z)= (aUb<z)= (aUb<z)V(aUb=12x)

If (e U b = z), then since z is join-irreducible, x = a or x = b must be true, which is clearly a
contradiction to our assumption in (2). Therefore, (a LI b < x) has to be true.

(<) Assume (z = a Ub). This means, z > a Az = b. It is given that (z > a) A\ (z > b) = (z >
allb),
which is a contradiction to our assumption in (1). So either (z = b) or (z = a) must be true.

Lemma 3 For a finite lattice L, a < b is equivalent toVx:xz € J(L):x <a= x <D.

Proof: For the forward direction, a < b and = < a implies, for any x, x < b by transitivity. For
the reverse direction, denote by h(z) the height of z, i.e. the length (number of edges) of the longest
path from =z to inf L in the cover graph (well-defined, since L is a finite lattice). We will prove the
property
Pa) == Vb: ((Ve:zeJ(L):x<a=x<b)=a<h)
for all a € L by strong induction on h(a). Given a, consider an arbitrary b and assume
(LHS) Ve:zeJ(L):x<a=x<b and (IH) P(ec) holds for all ¢ with h(c) < h(a).

(1) If h(a) =0, then a = inf L < b, and P(a) is vacuously true.

(2) If a is join-irreducible, then, using z := a in (LHS), a < b follows, and P(a) is again vacuously
frue.

(3) Now assume h(a) > 0 and a not join-irreducible. Then there exist ¢ # a,d # a such that
a = clld. Since ¢ # a, we can conclude that h(a) > h(c) +1 (h measures longest paths!). By (IH),
P(c) holds, ie. Vb : (Vx:z € J(L):x <c=x <b) = ¢ <b). We will use P(c) to show ¢ < b:
assume x € J(L) with z < ¢, then # < ¢ d = a, hence x < a, thus, by (LHS), x < b. Property
P(c) delivers that ¢ < b. Similarly, one can derive d < b, hence ¢ U d < b, and with a = ¢ U d we
obtain a < b.

|
Lemma 5.5 For a finite lattice L and any a € L,

a=| {zeJ(L):z<a}.

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 14/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I BATCH-2016-2019

Proof: Let T'= {z € J(L) : * < a}. We have to show that a = lub(T').
Since any x € T satisfies x < a, a is an upper bound on T'. Consider any upper bound u:

u is an upper bound on T'
< (Definition of upper bound)
relT=z<u
< (Definition of T')
(reJ(L)hz<a)=1<u
& (Elementary propositional logic: (a Ab) = c=a= (b= ¢))
reJl)=(r<a=x<u)
< (Lemma 3)
a < u,

so a is in fact the least upper bound on T'.

Lemma 5.6 In a finite distributive lattice (FDL) L, an element x is join-irreducible if and only if
zF#FinfL and Va,bel:z<alb= (z<avz<D). (5.1)
Proof: If z is join-irreducible, then = # inf L by definition, and

r<alb
& (property of < and I1)
r=xzM(alb)
& (L distributive)
r=(xMNa)d(zrb)
= (z join-irreducible)
r=zMNavVz=xzUb
< (property of < and 1)
r<aVz<h.

Conversely, assume (9.2), and let = aUb. Then = < a b, hence * < a vz < b. On the other
hand, x = a b implies x = a A x = b. From the last two, since v distributes over A, it follows that
r=avz=>

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 15/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I1 BATCH-2016-2019
UNIT Il

The central concept of Automata: Alphabets, strings, and languages. Finite Automata and Regular
Languages: deterministic and non-deterministic finite automata, regular expressions, regular languages
and their relationship with finite automata, pumping lemma and closure properties of regular languages.

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 1/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I1 BATCH-2016-2019

Formal language

The alphabet of a formal language is the set of symbols, letters. or tokens from which the strings
of the language may be formed: frequently it is required to be finite. The strings formed from this
alphabet are called words. and the words that belong to a particular formal language are
sometimes called well-formed words or well-formed formulas. A formal language is often
defined by means of a formal grammar such as a regular grammar or context-free grammar. also

called its formation rule.

The field of formal language theory studies the purely syntactical aspects of such languages—
that 1s. their internal structural patterns. Formal language theory sprang out of linguistics, as a
way of understanding the syntactic regularities of natural languages. In computer science, formal
languages are often used as the basis for defining programming languages and other systems in

which the words of the language are associated with particular meanings or semantics.

A formal languageL over an alphabet X is a subset of I*, that is. a set of words over that

alphabet.

In computer science and mathematics. which do not usually deal with natural languages. the

adjective "formal" is often omitted as redundant.

While formal language theory usually concerns itself with formal languages that are described by
some syntactical rules. the actual definition of the concept "formal language" is only as above: a
(possibly infinite) set of finite-length strings. no more nor less. In practice. there are many
languages that can be described by rules. such as regular languages or context-free languages.
The notion of a formal grammar may be closer to the intuitive concept of a "language." one

described by syntactic rules.
Formal language

A formal grammar (sometimes simply called a grammar) is a set of formation rules for strings in

a formal language. The rules describe how to form strings from the language's alphabet that are *

R i 2l e mrer—— s A — = ——— el B s P T L TR T B g~ ——

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I1 BATCH-2016-2019

valid according to the language's syntax. A grammar does not describe the meaning of the strings

or what can be done with them in whatever context—only their form.

A formal grammar is a set of rules for rewriting strings, along with a "start symbol" from which
rewriting must start. Therefore. a grammar is usually thought of as a language generator.
However. it can also sometimes be used as the basis for a "recognizer"—a function in computing
that determines whether a given string belongs to the language or is grammatically incorrect. To
describe such recognizers. formal language theory uses separate formalisms, known as automata
theory. One of the interesting results of automata theory is that it is not possible to design a

recognizer for certain formal languages.

Alphabet

An alphabet. in the context of formal languages. can be any set. although it often makes sense to
use an alphabet in the usual sense of the word, or more generally a character set such as ASCIL
Alphabets can also be infinite: e.g. first-order logic is often expressed using an alphabet which.
besides symbols such as”. —. _ and parentheses. contains infinitely many elements x0. x1. x2. ...

that play the role of variables. The elements of an alphabet are called its letters.
word

A word over an alphabet can be any finite sequence, or string. of letters. The set of all words
over an alphabet I is usually denoted by Z* (using the Kleene star). For any alphabet there is
only one word of length 0. the empty word. which is often denoted by e. € or A. By concatenation
one can combine two words to form a new word. whose length is the sum of the lengths of the

original words. The result of concatenating a word with the empty word is the original word.

Operations on languages

Certain operations on languages are common. This includes the standard set operations. such as
union. intersection. and complement. Another class of operation is the element-wise application

of string operations.

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I1 BATCH-2016-2019

Examples: suppose L1 and L2 are languages over some common alphabet.

¢ The concatenation L1L2 consists of all strings of the form vw where v is a string from L]
and w 1s a string from L2.
e The intersection L1 N L2 of L1 and L2 consists of all strings which are contained in both
languages
¢ The complement —L of a language with respect to a given alphabet consists of all strings
over the alphabet that are not in the language.
e The Kleene star: the language consisting of all words that are concatenations of 0 or mor
words in the original language:
e Reversal:
o Let e be the empty word. then eR = e. and
o for each non-empty word w = x1...xn over some alphabet. let wR = xn...x1.

o then for a formal language L. LR = {wR |w Z_ L}.

L]

String homomorphism

Such string operations are used to investigate closure properties of classes of languages. A class
of languages is closed under a particular operation when the operation. applied to languages in
the class. always produces a language in the same class again. For instance. the context-free
languages are known to be closed under union. concatenation. and intersection with regular
languages. but not closed under intersection or complement. The theory of trios and abstract
families of languages studies the most common closure properties of language families in their

own right.

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 4/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I1 BATCH-2016-2019
Language

“A language is a collection of sentences of finite length all constructed from a finite alphabet of
symbols.In general. if ®is an alphabet and L is a subset of ¥, then L is said to be a languageover
B. or simply a language if®is understood. Each element of L is said to be a senfenceor a word or a

stringof the language.

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 5/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I1 BATCH-2016-2019

Example 1 [0, 11, 001}, &, 10}, and {0, 1}* are subsets of {0, 1}*, and so they are languages
over the alphabet {0, 1}.

The empty set © and the set {5} are languages over every alphabet. @ is a language that contains

no string. {&} is a language that contains just the empty string.

The unionof two languages L, and L,. denoted L;JL,. refers to the language that consists of all
the strings that are either in L; or in L,. thatis, to { x |xis in Lj or x is in L, }. The infersectionof
L; and L,. denoted L{1L;. refers to the language that consists of all the strings that are both in L,
and L,. thatis. to { x |x is in L; and in L, }. The complementationof a language L over B. or just
the complementation of L when %is understood. denoted I . refers to the language that consists of

all the strings over Ethat are not in L, thatis. to { x [x 1s in ¥* butnotin L }.

Example 2 Consider the languages Ly = {x, 0, 1} and L; = {5 01, 11}. The union of these
languages is Ly3L; =& 0, 1, 01, 11}, their intersection is LNL; = &}, and the complementation

of L; is B1= {00, 01, 10, 11, 000, 001, . . . }.

© JL =L for each language L. Similarly, © NnL = @ for each language L. On the other hand. i=3

* and B¥= O for each alphabet X.

The differenceof L1 and L. denoted L; - L. refers to the language that consists of all the strings
that are in L; but not in L;. that 1s. to { x | x is in L; but not in L, }. The crossproduct of L, and
L,. denoted L; = L,. refers to the set of all the pairs (x. y) of strings such that x is in L; and y is in
L,. that is, to the relation { (x. v) |xisin L; and y is in L, }. The compositionof L; with L,.

denoted L;L,. refers to the language { xy|xisinL;and yisin L, }.

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 6/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I1 BATCH-2016-2019

Example3 IfL;=1,01,11} and L= {1, 01, 101} then L;-L;= &, 11} and L;-L;= {101}.

On the other hand. if L; = {s. 0. 1} and L, = {01, 11}. then the cross product of these languages
1sLy = Lo= {(e 01). (5. 11). (0. 01). (0. 11). (1. 01). (1. 11)}. and their composition is L;L, = {01.
11,001,011, 101, 111}.

L-O0=L.O-L=0.0L=0, and {s}L =L for each language L.

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 7/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I1 BATCH-2016-2019

L' will also be used to denote the composing of 1 copies of a language L. where L’ is defined as {
5. The set LL'JLAL? called the Kleeneclosure or just the c/osure of L. will be denoted

by L*. The set L'JLAUL_ called the positiveclosure of L. will be denoted by L.

L' consists of those strings that can be obtained by concatenating i strings from L. L* consists of

those strings that can be obtained by concatenating an arbitrary number of strings from L.

Example 4 Consider the pair of languages L; = {6, 0, 1} and L, = {01, 11}, For these
languages L;’= 5 0,1,00,01, 10, 11}, and L= {010101, 010111, 011101, 011111, 110101,
110111, 111101, 111111} In addition, sis in L;*, in L;~, and in L;* but not in L;".

The operations above apply in a similar way to relations in ¥* * A*. when Band Aare alphabets.
Specifically. the unionof the relations R; and R,. denoted R;UR,;. is the relation { (x. y) | (x. y) is
in R; orin R, }. The infersectionof Ry and R,. denoted RiNR.. is the relation { (xX.¥) | (X. ¥) is in
R; and in Ry }. The compositionof Ry with R,. denoted RyRo. is the relation { (x1%7. v1v2) | (X1.

vi1) is in Ry and (x2. v2) is in Rz .
Grammar

It is often convenient to specify languages in terms of grammars. The advantage in doing so
arises mainly from the usage of a small number of rules for describing a language with a large
number of sentences. For instance. the possibility that an English sentence consists of a subject
phrase followed by a predicate phrase can be expressed by a grammatical tule of the form
<sentence>—<subject><predicate>. (The names in angular brackets are assumed to belong to the
grammar metalanguage.) Similarly, the possibility that the subject phrase consists of a noun

phrase can be expressed by a grammatical rule of the form <subject>—<noun=.

G is defined as a mathematical system consisting of a quadruple <N. E. P. S>, where

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 8/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I1 BATCH-2016-2019

N : is an alphabet. whose elements are called nonterminalsymbols.
¥ : 1s an alphabet disjoint from N. whose elements are called terminalsymbols.
P :1s a relation of finite cardinality on (N J¥)*. whose elements are called productionrules.

Moreover. each production rule (2. &) in P. denoted a2~ must have at least one nonterminal

symbol in . In each such production rule. wis said to be the left-handside of the production rule.
and Fis said to be the right-handside of the production rule.

S 1s a symbol in N called the start, or sentence, symbol.
Types of grammars

Prescriptive: prescribes authoritative norms for a language
Descriptive: attempts to describe actual usage rather thanenforce arbitrary rules
Formal: a precisely defined grammar. such as context-free

Generafive: a formal grammar that can generate naturallanguage expressions

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 9/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I1 BATCH-2016-2019

Chomsky hierarchy of languages.

The Chomsky hierarchy consists of the following levels:

Type-0 grammars (unrestricted gramimars) include all formal grammars. They generate exactly

all languages that can be recognized by a Turing machine. These languages are also known as
the recursively enumerable languages. Note that this is different from the recursive languages
which can be decided by an always-halting Turing machine.

Type-1 gramimars (context-sensitive grammars) generate the context-sensitive languages. These

grammars have rules of the form Efl.ﬂ — oy #ﬁ with /A a nonterminal and €¥. ﬁ'ﬁ and 7 strings of

terminals and nonterminals. The strings G¥and I may be empty, but ¥ must be nonempty. The rule
S — €is allowed if §does not appear on the right side of any rule. The languages described by
these grammars are exactly all languages that can be recognized by a linear bounded automaton
(a nondeterministic Turing machine whose tape is bounded by a constant times the length of the
nput.)

Type-2 gramimars (context-free grammars) generate the context-free languages. These are

defined by rules of the form A= “fwith Aa nonterminal and ¥a string of terminals and

nonterminals. These languages are exactly all languages that can be recognized by a non-

deterministic pushdown automaton. Context-free languages are the theoretical basis for the

syntax of most programming languages.

Type-3 grammars (regular grammars)generate the regular languages. Such a grammar restricts
its rules to a single nonterminal on the left-hand side and a right-hand side consisting of a single
terminal. possibly followed (or preceded. but not both in the same grammar) by a single
nonterminal. The rule & — €is also allowed here if Sdoes not appear on the right side of any
rule. These languages are exactly all languages that can be decided by a finite state automaton.
Additionally, this family of formal languages can be obtained by regular expressions. Regular
languages are commonly used to define search patterns and the lexical structure of programming

languages.

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 10/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS

COURSE NAME: Boolean algebra and Automata

BATCH-2016-2019

theory
COURSE CODE: 16 MMU502B UNIT: II
<" recursively enumerable -
l.. f’... I ..“""l ..|
| . context-sensitive |
’ T T g |
~ | .+ rcontextfree - |
. I- .--__ = -, -I :
I. . ' . .|
s, D oreaular b s L
RaE I
Examples:

1. The language consists of all strings begin with 0.

{03{0, 1}

2. The language consists of all strings begin with 0. and end with 1.

10340, 13{1}
3. The language consists of all strings with odd lengths.

{0,1}2n-1,n=1,2,. ..

4. The language consists of all strings with substring of three consecutive 0.

{0, 1}*000{0, 1}*

5. The language consists of all strings without substring of three consecutive 0.

{001, 01, 1}*

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 11/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I1 BATCH-2016-2019

Regular grammar

A regular grammar is any right-linear or left-linear grammar.

A right regular grammar (also called right linear grammar) is a formal grammar (N, Z. P. S) such
that all the production rules in P are of one of the following forms:

B — a - where B is a non-terminal in N and a is a terminal in X

B —aC-whereBand CareinNandaisinX

B — & - where B is in N and € denotes the empty string. i.e. the string of length 0.

In a left regular grammar (also called left linear grammar). all rules obey the forms

A — a-where A is a non-terminal in N and a is a terminal in

A —Ba-where AandBareinNandaisin X

A — g -where A is in N and £ is the empty string.

An example of a right regular grammar G with N = {S. A}. ¥ = {a. b. ¢}. P consists of the
following rules

S —aS

S —bA

A—e

A —cA

ands is the start symbol. This grammar describes the same language as the regular expression
a*bc*.

Extended regular grammars

An extended right regular grammar is one in which all rules obey one of
1. B — a-where B is a non-terminal in N and a is a terminal in X
2. A— wB-where A and B are in N and w is in I*
3. A — &-where A is in N and ¢ 1s the empty string.
Some authors call this type of grammar a right regular grammar (or right linear gramimnar) and the

type above a strictly right regular grammar (or strictly right linear grammar).

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 12/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I1 BATCH-2016-2019

An extended left regular grammar is one in which all rules obey one of
1. A — a-where A is a non-terminal in N and a is a terminal in £
2. A — Bw-where A and B are in N and w is in £*
3. A — e-where AisinN and ¢ is the empty string.

Regular expression

A regular expression (or regexp. or pattern. or RE) is a text string that describes some
(mathematical) set of strings. A RE r matches a string s if s is in the set of strings described by r.
Regular Expressions have their own notation. Characters are single letters for example ‘a’.
*(single blank space). ‘1° and ‘-’ (hyphen). Operators are entries in a RE that match one or more

characters.

Regular expressions consist of constants and operator symbols that denote sets of strings and
operations over these sets, respectively. The following definition is standard. and found as such
in most textbooks on formal language theory. Given a finite alphabet X. the following constants

are defined as regular expressions:

o (empty set)® denoting the set @.
e (empty string) £ denoting the set containing only the "empty" string. which has no
characters at all.

o (literal character) a in T denoting the set containing only the character a.

Given regular expressions R and S, the following operations over them are defined to produce

regular expressions:

s (concatenation) RS denoting the set { «ff | o in set described by expression R and p in set
described by S }. For example {"ab". "¢"} {"d". "ef"} = {"abd". "abef". "cd". "cef"}.

e (alternation) R | S denoting the set union of sets described by R and S. For example. if R
describes {"ab". "c¢"} and S describes {"ab". "d". "ef"}. expression R | S describes {"ab".
et d", ef"}.

o (Kleene star) R* denoting the smallest superset of set described by R that contains & and
1s closed under string concatenation. This is the set of all strings that can be made by

concatenating any finite number (including zero) of strings from set described by R. For

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I1 BATCH-2016-2019

¢ (Kleene star) R* denoting the smallest superset of set described by R that contains € and
is closed under string concatenation. This is the set of all strings that can be made by

concatenating any finite number (including zero) of strings from set described by R. For

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 14/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I1 BATCH-2016-2019

example, {"0"."1"}* is the set of all finite binary strings (including the empty string). and

"ab". HCII})E(— {E. llabll- ”C”‘ “abab“. uabcn‘ "Cﬂb”. ”CC". nabababu- rrabcabrr‘ }

To avoid parentheses it 1s assumed that the Kleene star has the highest priority, then
concatenation and then alternation. If there is no ambiguity then parentheses may be omitted. For

example. (ab)c can be written as abe. and a|(b(c*)) can be written as ajbc*.

Examples:

¢ a|b* denotes {e. "a". "b". "bb". "bbb", ...}

¢ (alb)* denotes the set of all strings with no symbols other than "a" and "b". including the
empty string: {e, "a". "b". "aa". "ab". "ba". "bb". "aaa". ...}

+« ab*(cle) denotes the set of strings starting with "a". then zero or more "b"s and finally

optionally a "c¢": {"a". "ac". "ab". "abc". "abb". "abbc". ...}
Deterministic finite automaton (D.F.A)

« In the automata theory, a branch of theoretical computer science. a deterministic finite
automaton (DFA)—also known as deterministic finite state machine—is a finite state
machine that accepts/rejects finite strings of symbols and only produces a unique
computation (or run) of the automaton for each input string. Deterministic' refers to the
uniqueness of the computation.

e« A DFA has a start state (denoted graphically by an arrow coming in from nowhere)
where computations begin. and a set of accept states (denoted graphically by a double
circle) which help define when a computation is successful.

¢ A DFA is defined as an abstract mathematical concept. but due to the deterministic nature
of a DFA. 1t is implementable in hardware and software for solving various specific
problems. For example, a DFA can model a software that decides whether or not online

user-input such as email addresses are valid.

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 15/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I1 BATCH-2016-2019

+ DFAs recognize exactly the set of regular languageswhich are, among other things. useful
for doing lexical analysis and pattern matching. DFAs can be built from nondeterministic

finite automata through the powerset construction.

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 16/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I1 BATCH-2016-2019

Formal definition

A deterministic finite automaton M is a S-tuple. (Q. E. 8, qg. F) consisting of

« a finite set of states (Q)

« a finite set of input symbols called the alphabet (X)

¢ atransition function (6 : Q *x T — Q)

e astart state (o€ Q)

o aset of accept states (F € Q)
Letw=ala2 ... an be a string over the alphabet £. The automaton M accepts the string w
if a sequence of states, 1g.17. Iy. exists in Q with the following conditions:

e ITp=(o

o T1i1=0(r. ag1). fori=0,...n-1

e 1,eF.
In words. the first condition says that the machine starts in the start state qq. The second
condition says that given each character of string w. the machine will transition from
state to state according to the transition function 6. The last condition says that the
machine accepts w if the last input of w causes the machine to halt in one of the accepting
states. Otherwise. if is said that the automaton rejects the string. The set of strings M

accepts is the language recognized by M and this language is denoted by L(M).

Transition Function Of DFA

A deterministic finite automaton without accept states and without a starting state is known as a

transition system or semi automaton.

Given an input symbol €& € 2 one may write the transition function as g Q - Q using

the simple trick of currying. that is, writing é'(q-' ﬂ) = élﬂ-(:q)for alld € Q This way, the

transition function can be seen in simpler terms: it's just something that "acts" on a state in Q.

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 17/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I1 BATCH-2016-2019

yielding another state. One may then consider the result of function composition repeatedly

applied to the various functions da. 8 and so on. Using this notion we define

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 18/15

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: I1 BATCH-2016-2019

5 . " 1 v
4 Q XI" — Q Given a pair of letters @, bE L ope may define a new function & . by

mnsisting that 5::2? = 5& o '51‘.'. where sadenotes function composition. Clearly, this process can be

recursively continued. So. we have following recursive definition

3

Sl

(.Q'.- E) = Q-wheretis empty string and

5('3! tt.'t‘.i} = 68{5{‘?! w:')'wherew el a €Dy EQ

is defined for all words W & n*

Advantages and disadvantages

[

DFAs were invented to model real world finite state machines in contrast to the concept
of a Turing machine. which was too general to study properties of real world machines.
DFAs are one of the most practical models of computation, since there is a trivial linear
time, constant-space. online algorithm to simulate a DFA on a stream of input. Also.

there are efficient algorithms to find a DFA recognizing:

the complement of the language recognized by a given DFA.

the union/intersection of the languages recognized by two given DFAs.

Because DFAs can be reduced to a canonical form (minimal DFAs). there are also

efficient algorithms to determine:

whether a DFA accepts any strings
whether a DFA accepts all strings
whether two DFAs recognize the same language

the DFA with a minimum number of states for a particular regular language

DFAs are equivalent in computing power to nondeterministic finite automata (NFAs).
This is because, firstly any DFA is also an NFA. so an NFA can do what a DFA can do.

Also. given an NFA. using the powerset construction one can build a DFA that

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: 111 BATCH-2016-2019
UNIT I

Context Free Grammars and Pushdown Automata: Context free grammars (CFG), parse trees,
ambiguities in grammars and languages, pushdown automaton (PDA) and the language accepted by
PDA, deterministic PDA, Non- deterministic PDA, properties of context free languages, normal forms,
pumping lemma, closure properties, decision properties..

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 1/16

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: 111 BATCH-2016-2019

Context free grammars

A context-free grammar G is defined by the 4-tuple:
G=(V.T.P.S) where

1. Vis a finite set; each element v €V is called a non-terminal character or a variable. Each
variable represents a different type of phrase or clause in the sentence. Variables are also
sometimes called syntactic categories. Each variable defines a sub-language of the

language defined by G.

!\J

T is a finite set of terminals. disjoint from V. which make up the actual content of the
sentence. The set of terminals is the alphabet of the language defined by the grammar G.
3. Pisaset of production rule.

4. S is the start variable (or start symbol). used to represent the whole sentence (or

program). It must be an element of V.

Example:
I. S—x
2. S—y
3. S—z
4. S—S+S
5. S—S-S
6. S—S*S
7. S—S/S
8. S—(S)

This grammar can. for example. generate the string

(x+y)*x-z*y/(x+x)

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 2/16

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory

COURSE CODE: 16MMU502B UNIT: 111 BATCH-2016-2019

as follows:

S (the start symbol)
— S-S (byrule 5)
— §* 8 - S (byrule 6. applied to the leftmost S)
— S *S-8/S (byrule 7, applied to the rightmost S)
— (S)*S-S/S (byrule 8. applied to the leftmost S)
— (8)*S-S/(S) (byrule 8. applied to the rightmost S)
— (S+S)*S-S/(8S) (etc)
—(S+8)*S-S*S/(S)
—(S+S)*S-S*S/(S+S)
—(Xx+S)¥S-S*S/(S+8)
—(x+y)*S-S*S/(S+S)
—(X+¥)*x-S*y/(S+S)
—(x+y)*x-S*y/(x+S)
—(x+y)*x-2%y/(x+S)
—(x+y)*x-z*y/(x+x)

Problem 1. Give a contexi-free graminar for the language
L= {a"b™:n+#2mj}.
Is your grammar ambiguous?
Ans:
A grammar for the language is
S —aaSb|A|B|ab
A —aAla
B —bB |b
This grammar is unambiguous; it is not hard to prove that every string in the langauge has
one
and only one parse tree.

Problem 2. Give a context-free grammar for the language
L= {xe{0.1} :xhas the same number of 0’s and 1’s}

Is your grammar ambiguous?
1

ricpaitu vy I.INCINAHUAdD /A22010Lal il M1UITOoVIL, wTpal UlITHIL UL viauiciiauud, INAI I rayc o/iv

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: 111 BATCH-2016-2019
Ans:

A grammar for the language is
S —S0S1S | S1S0S | &
This grammar 1s ambiguous: for example. 0101 has two different parse trees
Problem 3. Prove that L = {aibjck : j = max{i, k}} is not context free.
Ans:
Suppose for contradiction that L were context free. Let N be the “N” of the pumping
lemma
for context-free languages. Consider the string w = abie Suppose W = uvxyz. where

= 1. If vy contains only a’s or vy contains only ¢’s. then pump up: the

[vxy| =N and |[vy
string u\'zxy2 z ¢ L. Suppose vy contains only b’s. Then we can pump either way to get a
string not in L. Suppose v contains two different letters or y contains two different letters.
Then u\-'gxyzz is not even of the form a*b*c*, so certainly it is not in L. Finally. suppose
(veatand) y eb+. or ve b+ (and y € ¢+). Then we can pump down and there will be

too few b’s. By [vwy| < N, these are all the possible cases. So in all cases there 1s some 1

; Cod .o
for which uv'xy'z¢ L. a contradiction.

Theorem : L cA*is CF iffANPDA M that accepts L.

Proof ->: Given CFL L. consider any grammar G(L) for L. Construct NPDA M that simulates all
possible derivations of G. M is essentially a single-state FSM. with a state q that applies one of
G’s rules at a time. The start state q0 initializes the stack with the content S ¢. where S is the start
symbol of G. and ¢ is the bottom of stack symbol. This initial stack content means that M aims to
read an input that is an instance of S. In general. the current stack content is a sequence of
symbols that represent tasks to be accomplished in the characteristic LIFO order (last-in first-
out). The task on top of the stack. say a non-terminal X, calls for the next characters of the input
string to be an instance of X. When these characters have been read and verified to be an
instance of X. X is popped from the stack. and the new task on top of the stack is started. When ¢
is on top of the stack. i.e. thestack is empty. all tasks generated by the first instance of S have
been successfully met. i.e. the input string read so far is an instance of S. M moves to the accept
state and stops.

1The following transitions lead from q to q: .

TIVMUILU VY LG ENUTTUUOU 7 WOT0MUTIL 1 TUVILOUVL) L/UNUELTIVTHIL VT VAU IUTHTULIUD, I T 1 uyve T FRV]

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: 111 BATCH-2016-2019

1) L. X->w for each rule X -> w. When X is on top of the stack. replace X by a right-hand side
for X.

2)a. a->_ for each a € A. When terminal a is read as input and a is also on top of the stack. pop
the stack.

Rule 1 reflects the following fact: one way to meet the task of finding an instance of X as a
prefix of the inputstring not yet read. is to solve all the tasks. in the correct order, present in the

right-hand side w of the productionX -> w. M can be considered to be a non-deterministic parser

for G. A formal proof that M accepts precisely Lcan be done by induction on the length of the
derivation of any w € L.

Ambiguous Grammar;

A grammar is said to be ambiguous if more than two parse trees can be constructed from it.

Example 1:

The context free grammar
A= AtAlA-Ala
is ambiguous since there are two leftmost derivations for the string a +a +3;
A= AtA A=AtA
—at+h = A+A+A (First Als replaced by A+A. Replacement of the second A would yield a similar derivation)
—atAtA —atAthA
—at+at+h —atath

—atata —atata

As another example, the grammar is ambiguous since there are two parse trees for the string a +a - a;

The language that it generates, however, is not inherently ambiguous; the following is a non-ambiguous grammar generating the same language:

A=At+alA-ala

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 5/16

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: 111 BATCH-2016-2019

Example 2 :Show that the following grammar is ambigious

S — L
L — E
L — LE
L — if B E else E
| — i BE
E — X
L —)
B — 0
B — 1
Answer :
S S
L L
1 /E
If)EN If B E else I|S
If B if B E else E If B E else v
H B if B E ese ¥y H B 8 B E vse y
f 0 if 1 x elsey f 0 if 1 x elsey

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 6/16

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: 111 BATCH-2016-2019

As you can see we can have two corresponding parse trees for the above grammar. so the

grammar is ambiguous.

Removal of Ambiguity

For compiling applications we need to design unambiguous grammar. or to use ambiguous

grammar with additional rules to resolve the ambiguity.

1. Associativity of operators.
2. Precedence of operators.

3. Separate rules or Productions.

1. Associativity of Operators:
If operand has operators on both side then by connection. operand should be associated with

the operator on the left.

In most programming languages arithmetic operators like addition. subtraction, multiplication,

and division are left associative.

+ Token string: 9-35+2
+ Production rules
list — list - digit | digit

digit—01]12]...]9

In the C programming language the assignment operator, =, is right associative. That is, token

string a = b = ¢ should be treated as a = (b = ¢).

o« Token string: a=Db =c.
s Production rules:
right — letter = right | letter

letter — a|b|...|z

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 7/16

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: 111 BATCH-2016-2019

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 8/16

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: 111 BATCH-2016-2019

2. Precedence of Operators:

An expression 9 + 5 * 2 has two possible interpretation:

(9+5)*2and 9+ (5*L)

The associativity of '+' and '*' do not resolve this ambiguity. For this reason. we need to know the
relative precedence of operators.

The convention is to give multiplication and division higher precedence than addition and
subtraction.

Only when we have the operations of equal precedence. we apply the rules of associative.

So. in the example expression: 9 + 5 * 2.

We perform operation of higher precedence i.e.. * before operations of lower precedence i.e., +.

Therefore. the correct interpretation is 9 + (5 *).

3. Separate Rule:

Consider the following grammar and language again.

S — IFbTHEN SELSE S
| IFbTHENS

| a

An ambiguity can be removed if we arbitrary decide that an ELSE should be attached to the last

preceding THEN.

We can revise the grammar to have two nonterminals S; and S,. We insist that S, generates IF-

THEN-ELSE. while S; is free to generate either kind of statements.

The rules of the new grammar are:

Sy — IFbTHEN §4
| IFbTHEN S; THEN §;
| a

S; — IFbTHEN S, ELSE S,

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: 111 BATCH-2016-2019

Although there is no general algorithm that can be used to determine if a given grammar is
ambiguous. it is certainly possible to isolate tules which leads to ambiguity or ambiguous

grammar.
Example:

Show that the given grammar is ambiguous and also remove the ambiguity.

E—I/E+E/ExE/(E)
I —a/b/Ia/Ib/I0/11
Answer :
Consider the sentential form E + E = E. It has two derivations from
E.
i Bies B BB B
2. F= FxF = F+ FxFE.

E

g g
E #* E E -+ E
@) (b)

As two parse trees can be possible so the above given grammar is ambigious.

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 10/16

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: 111 BATCH-2016-2019

The solution to the problem of enforcing precedence is to introduce several different
variables, each of which represents those expressions that share a level of binding
strength. Specially:

1. A factor is an expression that can not be broken apart by any adjacent oper-
ator, either a * or a +. The only factors in our expression language are:

(a) Identifiers. It is not possible to separate the letters of an identifier by
attaching an operator.

(b) Any parenthesized expression, no matter what appears inside the paren-
theses. It is the purpose of parentheses to prevent what is inside from
becoming the operand of any operator outside the parentheses.

2. A term i1s an expression that cannot be broken by the + operator. In our
example, where + and * are the only operators, a term is a product of one
or more factors. For instance, the term a = b can be broken if we use left
associativity and place alx to its left. That is, al xa=b is grouped (al xa) = b,
which breaks apart the a + b. However, placing additive term, such as al+ to
its left or +al to its right cannot break a=b. The proper grouping of al +a b
is al + (a # b), and the proper grouping of a + b + al is (a*b)+al.

3. An expression will henceforth refer to any possible expression, including those
that can be broken by either an adjacent * or an adjacent +. Thus, an ex-
pression for our example 1s a sum of one or more terms.

An unambiguous expression grammar

E—-T/E+T
T—F/T+F

F — I1/(E)

I — a/b/la/Ib/10/11

Now the same parse tree can be drawn as follows.

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 11/16

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: 111 BATCH-2016-2019
E

m—-—.-—hj-—i—]-—-h'l\

QJ-——H-—-H'I—-'—]\l—‘
3 ——
m—'—"—-"d/

Inherent Ambiguity

A context-free language L is said to be inherently ambiguous if all its grammars are ambiguous.
If even one grammar for L is unambiguous, then L is an unambiguous language.
Example :

A grammar for an inherently ambiguous language

5 — AB/C

A — aAb/ab

B — cBd/ecd
C — aCd/faDd
D — bDe/be

This grammar 1s ambiguous. For example, the string aabbcedd has the two leftmost
derivations:

1. S=n AB =, aAbB =, aabbB =}, aabbcBd =, aabbeedd.

2. 8= C =2, alCd =, aaDdd =, aabDdd = ,, aabbeedd

PN I
/’I‘\/B\ I

C d

/’\\/\ I
/\

N

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: 111 BATCH-2016-2019
Pumping Lemma For CFL

For every CFL L there is a constant n such that every z € L of length |z| = n can be written as
z=u v w X y such that the following holds:

Nvx#C

2) lvwx|=n.and

3uvkwxkye Lforallk=0.

Proof:

Given CFL L. choose any G = G(L) in Chomsky NF. This implies that the parse tree of any z €
L is a binary tree. as shown in the figure below at left. The length n of the string at the leaves and
the height h of a binary tree are related by h = log 1. i.e. a long string requires a tall parse tree.
By choosing the critical length n =2 [V | + 1 we force the height of the parse trees considered to
be h = [V| + 1. On a root-to-leaf path of length = |V| + 1 we encounter at least [V| + 1 nodes
labeled by non-terminals. Since G has only |V] distinct non-terminals, this implies that on some
long root-to-leaf path we must encounter 2 nodes labeled with the same non-terminal. say W. as

shown at right.

=IVI+1

\
Lo fvl w ey

For two such occurrences of W (in particular. the two lowest ones). and for some u. v. y. X, w
€A* wehave: S ->*u Wy, W->*% v W x and W ->* w. But then we also have W ->* v2 W x2.

and in general, W ->* vkWxk, and S ->* uvk Wxkvand S ->*uvkwxk yforallk =0,

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 13/16

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: 111 BATCH-2016-2019

Example-1 :Let G be a CFG in Chomsky normal form that contains b variables. Show that. if G
generates some string with a derivation having at least 2b steps. L(G) is infinite.

Answer:

Since G is a CFG in Chomsky normal form, every derivation can generate at most two non-
terminals. so that in any parse tree using G. an internal node can have at most two children. This
implies that every parse tree with height k has at most 2%_1 internal nodes.If G generates some
string with a derivation having at least 2° steps. the parse tree of that string will have at least 2°
internal nodes. Based on the above argument. this parse tree has height is at least b + 1. so that
there exists a path from root to leaf containing b + 1 variables. By pigeonhole principle. there is
one variable occurring at least twice. So. we can use the technique in the proof of the pumping

lemma to construct infinitely many strings which are all in L(G).

Example-2 :
LetC={xy|x.v2 {0.1} . [x|=ly|. and x 6= y}. Show that C is a context-free language.

Answer:

We observe that a string 1s in C if and only if it can be written as xywith [x| = [y| such that for
some 1. the i character of x is different from the i character of y. To obtain such a string, we
start generating the corresponding i®characters, and fill up the remaining characters. Based on
the above idea, we define the CFG for C is as follows:

S — AB |BA

A -XAX |0

B—-XBX |1

X—0]1

LetA =

Example-3 :

Let A= {wrwR| w. t € {0, 1}*and (w|=|t| } Prove that A is not a context-free language.
Answer:

Suppose on the contrary that A is context-free. Then. let p be the pumping

length for A. such that any string in A of length at least p will satisfy the pumping lemina.

Now, we select a string s in A with s = 0%P0P1P0%". For s to satisfv the pumping lemma,

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: 111 BATCH-2016-2019

there is a way that s can be written as uvxyz. with [vxy| < p and |vy| =1. and for any 1.

uv'xy'z is a string in A. There are only three cases to write s with the above conditions:

Case 1: vy contains only Os and these Os are chosen from the last 0% of s. Letibea

number with 7p > |[vy| * (1 + 1) = 6p. Then. either the length of u\'ixyizis not a multiple of 3. or

this string is of the form wtw0 such that |w| = [t| = |w’| with w'is all 0s and w is not all Os (this is.
w =wh),

Case 2: vy does not contain any 0s in the last 02p of s. Then. either the length of 11\'2xy)z

is not a multiple of 3. or this string is of the form wtw” such that [w| = |t = /w’| with

w is all Os and w” is not all Os (that is, w’ = WR).

Case 3: vy is not all 0s. and some Os are from the last Ozp of s. As [vxy

_ p. vXy in this

case must be a substring in 1pp. Then, either the length of uv2xy2z is not a multiple

of 3. or this string is of the form wtw’such that [w| = |t| = |w’| with w is all 0s and

w’ is not all Os (that is, W’ 6= w™).

In summary. we observe that there is no way s can satisfy the pumping lemma. Thus. a
contradiction occurs (where?). and we conclude that A is not a context-free language.

Theorem : L1 ={ 0k 1k 2k/ k= 0 } is not context free.

Pf (by contradiction): Assume L is CF, let n be the constant asserted by the pumping lemina.
Consider z=0n In 2n=u v w x y. Although we don’t know where vwx is positioned within z.
the assertion [vw x| < n implies that v w x contains at most two distinct letters among 0, 1. 2. In
other words. one or two of thethree letters 0. 1. 2 is missing in vwx. Now consider u v2 w x2 y.
By the pumping lemma. it must be in L. Theassertion [v x| = 1 implies that u v2 w x2 y is longer
than u v w x y. But u v w X y had an equal number of 0s. 1s.and 2s. whereas u v2 w x2 v cannot,
since only one or two of the three distinct symbols increased in number. Thiscontradiction
proves the theorem.

Theorem : L2 ={ww/w e {0, 1} } is not context free.

Proof (by contradiction): Assume L is CF, let n be the constant asserted by the pumping lemma.
Consider z=0n+1 In+1 On+1 In+1l =u v wx y. Using k = 0. the lemma asserts z0=uwvye L.
but we showthat z0 cannot have the form t t. for any string t. and thus that z0 € L. leading to a

" contradiction. Recall that [v wx| < n. and thus. when we delete v and x. we delete symbols that

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II BSC MATHEMATICS COURSE NAME: Boolean algebra and Automata
theory
COURSE CODE: 16MMU502B UNIT: 111 BATCH-2016-2019

are within a distance of at most n from eachother. By analyzing three cases we show that. under
this restriction. it is impossible to delete symbols in such away as to retain the property that the
shortened string z0 = u w x has the form t t. We illustrate this using theexample n = 3. but the
argument holds for any n.Givenz=000011110000111 1. slide a window of lengthn =3
across z. and delete any characters vouwant from within the window. Observe that the blocks of
0s and of 1s within z are so long that the truncated z.call it z’, still has the form “0s 1s 0s 1s”.
This implies that if z* can be written as z° = t t. then t must have theform t =*0s 1s”. Checking
the three cases: the window of length 3 lies entirely within the left half of z; thewindow straddles
the center of z; and the window lies entirely within the right half of z. we observe that in noneof
these cases z” has the form z’ =t t, and thus thatzZ0 =uw y e L.

Context sensitive grammars and languages

The rewriting rules B -> w of a CFG imply that a non-terminal B can be replaced by a word w €
(V Z A)* “in any context”. In contrast, a context sensitive grammar (CSG) has rules of the form:
uBv->uwv.whereu. v.w e (V Z A)* implying that B can be replaced by w only in the
context “u on the left. v on the right™. It turns out that this definition is equivalent (apart from the
nullstring) to requiring that any CSG rule be of the form v -> w. where v. w € (V Z A)*. and
| = [w|. This monotonicity property (in any derivation, the current string never gets shorter)
implies that the word problem for CSLs: “given CSG G and given w, is w € L(G)?” is decidable.
An exhaustive enumeration of all derivations up to the length [w| settles the issue. As an example
of the greater power of CSGs over CFGs. recall that we used the pumping lemma to prove that

the language 0* 1% 2% is not CF.

Parikh's theorem

Parikh's theorem in theoretical computer science says that if we look only at the relative number of
occurrences of terminal symbols in a context-free language, without regard to their order, then the
language is indistinguishable from a regular language. It is useful for deciding whether or not a string
with given number of some terminals is accepted by a context-free grammar. It was first proved by Rohit

Parikh in 1961 and republished in 1966.

Prepared by Dr.K.Kalidass Assistant Professor, Department of Mathematics, KAHE Page 16/16

Date:

Class: III B.Sc Mathematics

16MMU502B

Karpagam Academy of Higher Education
Karpagam University
Coimbatore-21
Department of Mathematics
V Semester- I Internal test
Boolean Algebra and Automata theory

Time: 2 hours
Max Marks: 50

Answer ALL questions
PART - A (20 X 1 = 20 marks)

. Hasse diagrams are drawn for

b. lattice
d. neither anorb

a. poset
c. bothaandb

. The idempotent is defined as

b.ana=a
d. neither anor b

a.aVa=a
c. bothaandb

In a poset (P, <), a,b € P are called caomparable if
a.a<b b.b<a
c. bothaandb d. eitheraorb

The relation < is a— order on the set of real num-
bers R.

a. partial

b. total

c. bothaandb

The set {5, 15, 25,35} with usual <, is a — set
a. partial b. total
c. bothaandb d. eitheraorb

d. eithera orb

10.

11.

12.

13.

14.

In a poset (IN, <), the zero element is
a.0
c. bothaandb

b. 1
d. eitheraorb

Number of zero elements in a poset
a. 0 b. 1
c.3 d.5
In IN with a < biff alb, < is — order
a. partial b. total

c. bothaandb d. eitheraorb

. A lattice is a poset in which every two elements
have
a. glb b. Lub

c. bothaandb d. eitheraorb

Suppose a < b. Then

b.anb
d. either a or b

a.avb=>
c. bothaand b

Suppose L is a lattice with 0 and 1. Then 0" =
a. 0
c. bothaandb

b. 1
d. eitheraorb

Therelation{(1,2),(1,3),(3,1),(1,1),3,3),(3,2),(1,4),(4,2),3,4)}

is
a.reflexive
c. antisymmetric

b. symmetric
d. transitive

Hasse diagram are drawn for
a. poset
c. Boolean algebera

b. lattice
d. all the above

Let R be a non-empty relation on a collection of
sets defined by A < Bifand onlyif ANB =0

a. <is relexive and transitive

b. <is an equivalence relation

15.

16.

17.

18.

19.

20.

21.
22.
23.

c. <is symmetric and not transitive
d. <is not relexive and not symmetric

Let A be a set with n elements. Then number of
relations defined on A is
a.n

b. ni
c. 2"

d. 2"

A self-complemented, distributive lattice is called
a. Boolean algebra b. Modular lattice
c. Complete lattice d. Self dual lattice

Let X = {2,3,6,12,24}, and = be the partial order
defined by a < b if a divides b. Number of edges
in the Hasse diagram of (X, <) is

a. 2 b. 4
c. 6 d. 8

The absorption law is defined as
a.aV@Ab)=a
c. bothaand b

b.an(avb)=a
d. neitheranorb

Power set of empty set has exactly — subset.
a. 0 b. 1
c.2 d.3

What is the cardinality of the set of odd positive
integers less than 10?

a. 10 b. 15
c.5 d. 20

Part B-(3 X 2 = 6 marks)

Define partially oredered set
Give an example for a poset which is not a lattice

Define comparable elements

24.

25.

26.

Part C-(3 X 8 = 24 marks)

a) Show that in a poset the L.u.b and g.1b of a
subset need not exist

OR

b) Let L be a lattice and a,b.c € L. Thena < b
and ¢ < d implies

i)avec<bvd
ii) aNnc<bAd

a) State and prove associative law for a lattice
OR

b) Prove that in a lattice
iavV(bAc)y=@VvbA@Vve
ian(bVey=@Ab)Vv@anc

a) Prove that the lattice of normal subgroups of
any group is modular lattice
OR

b) Let G be a group. Let L be the set of all sub-
groups of G. Define A < B iff A C B. Prove
that (L, <) is a lattice

	01.pdf (p.1-2)
	02.pdf (p.3-6)
	03.pdf (p.7-21)
	04.pdf (p.22-40)
	05.pdf (p.41-56)
	06.pdf (p.57-58)

