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Scope: On successful completion of this course student will gain knowledge about fundamental
concepts of duality, economic interpretation of dual constraints and game theory.

Objectives: This course has been intended to provide the knowledge in understanding the need
and origin of the optimization methods which plays an essential role in present future in the
application of Mathematics.

UNIT |

Introduction to Linear Programming Problem — Graphical Linear Programming Solution- Theory
of Simplex Method-Optimality and unboundedness-the Simplex algorithm —Simplex method in
tableau format- Introduction to artificial variables — two —phase method — Big —M method and
their comparison.

UNIT Il

Duality — Definition of the dual Problems-Formulation of the dual Problem-Primal Dual
relationship: Review of simplex matrix Operations —Simplex tableau Layout-Optimal Dual
Solution-Simplex Tableau computations. Economic interpretation of the dual: Economic
Interpretation of Dual Variables-Economic Interpretation of Dual Constraints.

UNIT 111

Transportation Problem: Definition of the Transportation model — Nontraditional Transportation
model — The Transportation Algorithm: Determination of the Starting Solution-Northwest —
corner method, Least — corner method, VVogel approximation method- Iterative Computations of
the Transportation Algorithm.

UNIT IV

The Assignment Model: Introduction to Assignment model- Mathematical Formulation of
Assignment model- Hungarian method for solving assignment problem —Simplex Explanation of
the Hungarian method.

UNIT V

Game theory: Formulation of two person zero games — Solving two person zero sum games,
games with mixed strategies, graphical solution procedure, linear programming solution of
games.
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Department of Mathematics
LECTURE PLAN
Subject: Linear Programming Subject Code: 16MMU504B
S.No | Lecture Topic to be covered Support Material
Duration
Unit -1
1. 1 Introduction to Linear Programming problem R1:Ch3:Pg:24-26
2. 1 Probl_ems on the Graphical Linear Programming T1:Ch2:Pg:15-19
solution
3. 1 Tutorial-1
4. 1 Theory of Simplex Method R1:Ch5:Pg:190-192
5. 1 Optimality and Unboundedness R2:Ch3:Pg:114-120
6. 1 Tutorial-11
7. 1 The Simplex Algorithm R2:Ch3:Pg:120-125
8. 1 Problems on the Simplex method in tableau format R2:Ch3:Pg:125-131
9. 1 Tutorial-111
10. 1 Introduction to artificial variables R2:Ch3:Pg:153-154
11. 1 Problems on the Two Phase Method R2:Ch3:Pg:154-160
12. 1 Tutorial-1V
13. 1 Problems on the Big M method and their R2:Ch3:Pg:165-173
comparison
14, 1 Tutorial-V
15. 1 Recapitulation and discussion of possible question

Total No. of Lecture hours planned — 15 hours

T1. Handy .A. Taha., (2007). Operations Research, Seventh edition, Prentice Hall of India Pvt Ltd,
New Delhi .

R1. Hillier F.S., and Lieberman G.J., (2009). Introduction to Operations Research, Ninth Edition,
Tata McGraw Hill, Singapore.

R2. Mokhtar S. Bazaraa, John J. Jarvis and Hanif D. Sherali, (2004). Linear Programming and
Network Flows, Second Edition, John Wiley and Sons, India.

Unit - 11
1. 1 Definition of dual problems T1:Ch4:Pg:151-155
2. 1 Problems on Formulation of dual problem R3:Ch8:Pg:233-234
3. 1 Tutorial-|
4. 1 Primal _Dual relationship: Review of Simplex Matrix T1:Cha:Pg:156-158
Operations
5. 1 Tutorial-V1I
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6. 1 Simplex tableau Layout T1:Ch4:Pg:158-159
7. 1 Problems on Optimal dual Solution T1:Ch4:Pg:159-161
8. 1 Tutorial-V1II
9. 1 Simplex tableau computations T1:Ch4:Pg:165-166
10. 1 Economic interpretation of the dual: hA-Br1 RQ.

Economic interpretation of dual Variables T1:Cha:Pg:169-171
11. 1 Tutorial-1X
12. 1 Economic interpretation of Dual Constraints T1:Ch4:Pg:172-173
13. 1 Recapitulation and discussion of possible question

Total No. of Lecture hours planned — 13 hours

T1. Handy .A. Taha., (2007). Operations Research, Seventh edition, Prentice Hall of India Pvt Ltd,

New Delhi .
R3. Hadley G.,(2002). Linear Programming, Narosa Publishing House, New Delhi.
Unit — 111

1. 1 Definition of Transportation Model T1:Ch5:Pg:194-195

2. 1 Tutorial-X

3. 1 Nontraditional Transportation model T1:Ch5:Pg:201-204

4. 1 Tutorial-XI

5. 1 Terminology for Transportation model R1:Ch8:Pg:354-356

6. 1 The Transportation Algorithm T1:Ch5:Pg:206-207

7. 1 Tutorial-X11

8. 1 Prpblems on Determination of Starting Solution T1:Ch5:Pg:207-208
using Northwest corner method

9. 1 Prpblems on Determination of Starting Solution T1:Ch5:Pg:208-209
using Least cost method

10. 1 Tutorial- X111

11. 1 Prpblems on Determlnat_lon of Starting Solution T1:Ch5:Pg:209-211
using Vogel approximation method

12. 1 Problems on the Itera_tlve computations of the T1:Ch5:Pg:211-215
Transportation Algorithm

13. 1 Tutorial-XIV

14, 1 Recapitulation and discussion of possible question

Total No. of Lecture hours planned — 14 hours

T1. Handy .A. Taha., (2007). Operations Research, Seventh edition, Prentice Hall of India Pvt Ltd,

New Delhi .

R1. Hillier F.S., and Lieberman G.J., (2009). Introduction to Operations Research, Ninth Edition,
Tata McGraw Hill, Singapore.

Unit— IV

Introduction to Assignment Model

R1:Ch8:Pg:381-382

Tutorial-XV

Mathematical Formulation of Assignment Model

R1:Ch8:Pg:383-386

Terminology for Hungarian Method

R2:Ch10:Pg:535-538

Tutorial-XVI

SHEAEIE N

A

Continuation of terminology of Hungarian Method

R2:Ch10:Pg:538-539
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7. 1 Alggrlthm for Hungarian Method for solving T1:Chs:Pg:222-223
Assignment Problem
8. 1 Tutorial-XV1I
9. 1 Problems on Hungarian Method for solving ) A
Assignment Problem T1:Ch5:Pg:223-225
10. 1 Continuation of Problems on Hungarian Method for PR
solving Assignment Problem T1:.Chb:Pg:225-227
11. 1 Tutorial-XVIII
12. 1 Simplex Explanation of the Hungarian Method T1:Ch5:Pg:228-229
13. 1 Tutorial-X1X
14. 1 Recapitulation and discussion of possible question

Total No. of Lecture hours planned — 14 hours

T1. Handy .A. Taha., (2007). Operations Research, Seventh edition, Prentice Hall of India Pvt Ltd,
New Delhi .

R1. Hillier F.S., and Lieberman G.J., (2009). Introduction to Operations Research, Ninth Edition,
Tata McGraw Hill, Singapore.

R2. Mokhtar S. Bazaraa, John J. Jarvis and Hanif D. Sherali, (2004). Linear Programming and
Network Flows, Second Edition, John Wiley and Sons, India.

Unit-V
1. 1 Introduction to Game Theory R1:Ch14:Pg:726
2. 1 Formulation of two person zero games R1:Ch14:Pg:767-728
3. 1 Tutorial-XX
4. 1 Solving simple games R1:Ch14:Pg:728-729
5. 1 Problems on Solving two person zero sum games T1:Ch13:Pg:521-522
6. 1 Tutorial-XXI
7. 1 Problems on Games with mixed strategies R1:Ch14:Pg:733-735
8. 1 Tutorial-XXI11
9. 1 Graphical solution Procedure R1:Ch14:Pg:735-738
10. 1 Tutorial-XXXIII
11. 1 Problems on linear Programming solution of games R1:Ch14:Pg:738-741
12. 1 Tutorial-XXI1V
13. 1 Recapitulation and discussion of possible question
14. 1 Discussion of pervious ESE question papers
15. 1 Discussion of pervious ESE question papers
16. 1 Discussion of pervious ESE question papers

Total No. of Lecture hours planned -16 hours

T1. Handy .A. Taha., (2007). Operations Research, Seventh edition, Prentice Hall of India Pvt Ltd,
New Delhi .

R1. Hillier F.S., and Lieberman G.J., (2009). Introduction to Operations Research, Ninth Edition,
Tata McGraw Hill, Singapore.

TEXT BOOK
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc MATHEMATICS COURSE NAME: Linear Programming
COURSE CODE: 16MMU504B BATCH-2016-2019
UNIT: I(Introduction to Linear Programming)

UNIT-I

SYLLABUS

Introduction to Linear Programming Problem — Formulation of LPP — Graphical Linear
Programming Solution- Theory of Simplex Method-Optimality and unboundedness-the Simplex
algorithm —Simplex method in tableau format- Introduction to artificial variables — two —phase
method — Big —M method and their comparison.

Introduction to Linear Programming Problem

The idea of Linear Programing is conceived by George B. Bantzing in 1947 and the work
named ““ Programing in Liner Structure” done by Kantorovich (1939) was published in 1959.
Koopmans coined the term linear programing in 1948.

Linear Programing is a versatile technique which can be applied to a variety of problems of
management such as production, refinery operation, advertising, transportation, distribution
and investment analysis. Over the years linear programing has been found useful not only in
business and industry but also in non-profit organizations such as government, hospitals,
libraries and education.

Terminology:

e  The problem variable X and Y are called decision variables and they represent the
solution or output decision from the problem.

e The profit function that the manufacture wishes to increase, represents the
objective of making the decisions on the production quantities and it is called
objective function.

e  The conditions matching the resource requirements are called constraints.

e The decision variables should take non negative values. This is called non-
negativity restriction.

e  The problem written in algebraic form represents the mathematical model of the
given system and is called Problem Formulation.

Formulation:

The problem formulation has the following steps:

> ldentifying the decision variables.

> Writing the objective function.

> Writing the constraints.

> Writing the non-negativity restrictions.

In the above formulations, the objective function and the constraints are linear therefore the
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formulated model is known as Linear Programming Problem.
The formulation of a linear programming problem can be illustrated through what is known as

the product mix problem. Typically, it occurs in a manufacturing industry where it is possible to
manufacture a variety of products. Each of the products has a certain margin of profit per unit.
These products use a common pool of resources whose availability is limited. The linear
programming techniques identify the combination of the products which will maximize the profit
without violating the resource constraints.

STANDARD and CANONICAL form of the model: sometimes referred to as
the canonical form:

MINIMIZATION

MAXIMIZATION

PROBLEM
n

Minimize z = Y CjX;j
jZ;JJ

PROBLEM
n

Maximize z = lzcj' Xj

STANDAR | subject to subject to
D FORM| " .
zajXj =bi, Q= YajXj =bi, i=
1,...,m 1,...,m
j=1 j=1
xi=20,j=1,...,n xi=20,j=1,..,n
n n
Maximize z = 1201' X Maximize z = 1201' Xj
)= )=
CANONICA | subject to subject to
L FORM | " f
YaijXj = bj, i = YaijXj < bi, I =
].'I"'Im ].'I"'Im
1=1 1=1
x;=20,j=1,...,n x;=20,j=1,..,n

[y

. All RHS parameters b;> 0 and n >m.
2. Use the n-dimensional vector x to represent the decision variables; i.e., X
= (X1,...,Xn).
. Might have simple upper bounds, say, xj < uj.
. Convert inequalities to equalities in (2).
5. Vector form of constraint: a;yx; + « « ¢ +a;,x, = bi ; aix = b; ;Ax =b Maximize {z = cx
:Ax=b, x> 0}
Feasible Solution and Feasible Region:

LSOy

Any no-negative value of (X3,X2) i.e. X1 >0, X>>0 is a feasible solution of the linear
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programing problem if it satisfies all the constraints. The collection of all feasible solutions is
known as the feasible region.

Formulation as a Linear Programming Problem

To formulate the mathematical (linear programming) model for this problem, let

x; = number of batches of product 1 produced per week
x2 = number of batches of product 2 produced per week
Z = total profit per week (in thousands of dollars) from producing these two products

Thus, x; and x5 are the decision variables for the model. Using the bottom row of Table

, we obtain

£ =13x 4+ 5xa.

The objective is to choose the values of x; and x, so as to maximize Z = 3x; + 3x,, sub-
ject to the restrictions imposed on their values by the limited production capacities avail-
able in the three plants. Table 3.1 indicates that each batch of product | produced per
week uses | hour of production time per week in Plant 1, whereas only 4 hours per week
are available. This restriction is expressed mathematically by the inequality x; = 4. Simi-
larly, Plant 2 imposes the restriction that 2x, = 12. The number of hours of production

Example Data for the Wyndor Glass Co. problem

Production Time
per Batch, Hours
Product
Production Time
Plant 1 2 Available per Week, Hours
1 1 0 4
2 a 2 12
3 3 2 18
Profit per batch 33,000 $5,000

time used per week in Plant 3 by choosing x; and x> as the new products’” production rates
would be 3x; + 2x;. Therefore, the mathematical statement of the Plant 3 restriction is
3x; + 2x, = 18, Finally. since production rates cannot be negative, it is necessary to re-
strict the decision variables to be nonnegative: x; = 0 and x> = (.

To summarize, in the mathematical language of linear programming, the problem is
to choose values of x; and x, so as to
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Maximize £ =13x; + 5x2.

subject to the restrictions

Xy = 4
2, = 12
3.1'| T 1‘2’1 =18
and
x, =0, =0,
Example

Reddy Mikks produces both interior and exterior paints from two raw materials, M1 and M2.
The following table provides the basic data of the problem:

Tons of raw material per ton of

Maximum daily

Exterior paint Interior paint availability (tons)
Raw material, M1 4 2;
Raw material, M2 1 2
Profit per ton ($1000) 5 4

A market survey indicates that the daily demand for interior paint F:anm.:pt cxcfeed_ that for
exterior paint by more than 1 ton. Also, the maximum daily demand f.c-r interior paint is 2 tons.

Reddy Mikks wants to determine the optimum (best) product mix of interior and exterior
paints that maximizes the total daily profit.

The LP model, as in any OR model, has three basic components.
1. Decision variables that we seek to determine.
2. Objective (goal) that we need to optimize (maximize or minimize).
3. Constraints that the solution must satisfy.

The proper definition of the decision variables is an essential first step in the development of the
model. Once done, the task of constructing the objective function and the constraints becomes
more straightforward.

For the Reddy Mikks problem, we need to determine the daily amounts to be produced of
exterior and interior paints. Thus the variables of the model are defined as
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x, = Tons produced daily of exterior paint

x; = Tons produced daily of interior paint

To construct the objective function, note that the company wants to maximize (i.e., increase
as much as possible) the total daily profit of both paints. Given that the profits per ton of exteri-
or and interior paints are 5 and 4 (thousand) dollars, respectively, it follows that

Total profit from exterior paint = 5x, (thousand) dollars

T'otal profit from interior paint = 4x, (thousand) dollars

Letting z represent the total daily profit (in thousands of dollars), the objective of the company
is

Maximize z = 5x; + 4x;

Next, we construct the constraints that restrict raw material usage and product demand. The
raw material resirictions are expressed verbally as

(Usage of a raw mat&rial) - (Maximunl raw mat-::rial)
by both paints availability

The daily usage of raw material M1 is 6 tons per ton of exterior paint and 4 tons per ton of inte-
rior paint. Thus

Usage of raw material M1 by exterior paint = 6x; tons/day

Usage of raw material M1 by interior paint = 4x, tons/day

Hence

Usage of raw material M1 by both paints = 6x; + 4x, tons/day
In a similar manner,

Usage of raw material M2 by both paints = 1x; + 2x; tons/day
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Because the daily availabilities of raw materials M1 and M2 are limited to 24 and 6 tons, respec-
tively, the associated restrictions are given as

6x; +4x; =24 {Raw material M1)
Xy +2x; = 6 (Raw material M2)

The first demand restriction stipulates that the excess of the daily production of interior
over exterior paint, X, — Xy, should not exceed 1 ton, which translates to

x; —x =1 (Market limit)
The second demand restriction stipulates that the maximum daily demand of interior paint is
limited to 2 tons, which translates to
x3 = 2 (Demand limit)
An implicit (or “understood-to-be™) restriction is that variables x; and x, cannot assume

negative values. The nonnegativity restrictions, x, = 0, x; = 0, account for this requirement.
The complete Reddy Mikks model is

Maximize z = 5x; + 4x;
subject to
6x, + 4x, = 24 (1)
x, +2x,= 0 (2)
—x; +tx;= 1 (3)
Xa = 2 {4)
xll xz = G (5)

Any values of x; and x, that satisfy all five constraints constitute a feasible solution. Otherwise,
the solution is infeasible. For example, the solution, x; = 3 tons per day and x; = 1 ton per day,
is feasible because it does not violate any of the constraints, including the nonnegativity restric-
tions. To verify this result, substitute (x; = 3, x5 = 1) in the left-hand side of each constraint. In

constraint (1) we have 6x; + 4x, = 6 X 3 + 4 % 1 = 22, which is less than the right-hand side
of the constraint {= 24). Constraints 2 through 5 will yield similar conclusions (verify!). On the
other hand, the solution x; = 4 and x; = 1 is infeasible because it does not satisfy constraint
(1)—namely,6 X 4 + 4 X 1 = 28, which is larger than the right-hand side (= 24).

Graphical Linear Programming Solution
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The graphical procedure includes two steps:

1. Determination of the feasible solution space.

2. Dete‘rmination of the optimum solution from among all the feasible points in the
solution space.

Example
This example solves the Reddy Mikks model

Step 1.  Determination of the Feasible Solution Space:

First, we account for the nonnegativity constraints x; = O and x; = G._
the horizontal axis x, and the vertical axis x; represent the exterior- and interior-paint
variables, respectively. Thus, the nonnegativity of the variables restricts the solution-
space area to the first quadrant that lics above the x,-axis and to the right of the
Zo-axis.

To account for the remaining four constraints, first replace cach inequality
with an equation and then graph the resulting stratght line by locating two distinct
points on it. For example, after replacing 6x, + 4x; = 24 with the straight line
6x, + 4x, = 24, we can determine two distinct points by first setting x, = 0 to

. : 24 . :
obtain x; = 274 = 6 and then setting x, = 0 to obtain x; = 7 = 4. Thus, the line

passes through the two points (0,6) and (4,0), as shown by line (1)
Next, consider the effect of the inequality. All it does is divide the (x1, X3)-plane
into two half-spaces, one on each side of the graphed line. Only one of these two

halves satisfies the inequality. To determine the correct side, choose (_U, Grl} asa
reference point. If it satisfies the inequality, then the side in which it lies is the

FIGURE
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Feasible space of the Reddy Mikks model

X2
Gl —
\ Constraints:
6 N— 6x, + 4x; =24 (1)
x| + 2x, = o @
> —x+ xz= 1 D
wn= 2 (@
4 B Xy = 0 @
xx= O @
a3 e
5 @
1 A
ol o e v - T xy
o i 2 3 an 5 6 (O]

feasible half-space, otherwise the other side is. The use of the reference point (0,0) is
illustrated with the constraint 6x; + 4x, < 24, Because 6 X (t + 4 X 0 = Qs less
than 24, the half-space representing the inequality includes the origin

It is convenient computationally to select (0, 0) as the reference point, uniess the
line happens to pass through the origin, in which case any other point can be used.
For example, if we use the reference point (6, 0), the left-hand side of the first con-
straintis 6 X 6 + 4 X 0 = 36, which is larger than its right-hand side (= 24), which
means that the side in which (6, 0) lies is not feasible for the inequality
6x; + 4x, = 24. The conclusion is consistent with the one based on the reference
point (0, 0).

Application of the reference-point procedure to all the constraints of the model
produces the constraints The feasible solution space of
the problem represents the area in the first quadrant in which all the constraints are

satisfied simultaneously. Tn  any point in or on the boundary of the area

ABCDEF is part of the feasible solution space. All points outside this area are
infeasible.

Step 2.  Derermination of the Optimum Solution:
The feasible space in Figure 2.1 is delineated by the line segments joining the points
A, B, C, D, £,and F. Any point within or on the boundary of the space ABCDEF is
feasible. Because the feasible space ABCD EF consists of an infinite number of
points, we need a systematic procedure to identify the optimum solution.
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The determination of the optimum solution requires identifying the direction in
which the profit function z = 5x; + 4x, increases (recall that we are maxintizing z).
We can do so by assigning arbitrary increasing values to z. For example, using z = 10
and z = 15 would be equivalent to graphing the two lines 3x; + 4x, = 10 and
5x; + 4x, = 15. Thus, the direction of increase in z is as shown Figure 2.2. The opti-
mum solution occurs at C, which is the point in the solution space beyond which any
further increase will put z outside the boundaries of ABCDEF.

The values of x; and x, associated with the optimum point C are determined by
solving the equations associated with lines (1) and (2)—that is,

611 + 4.):3:24
x; + 2xs =6

The solutionis x; = 3and x; = 1.5withz = 5 X 3 + 4 X 1.5 = 21. This calls for a

daily product mix of 3 tons of exterior paint and 1.5 tons of interior paint. The associ-
ated daily profit is $21,000.

o (Maximize z = 5x; + 4x;)

3 —
X + 212 =6
N
2 - u-v;"::lr.;\i SRy : o
/ ?&s&&g‘ Optimum: x; = 3 tons
i Yéx‘ X = 1.5 tons
T i S z = $21,000

LN e

< y 3 i Eree) = :‘g‘.:‘&.-‘“:mzw = -
0 1 2\\ 3

Optimum solution of the Reddy Mikks model
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An important characteristic of the optimum LP solution is that it is alway.s asso-
ciated with a corner point of the solution space (where two lines intersect). This is
true even if the objective function happens to be parallel to a constraint. Ecr exam-
ple, if the objective function is z = 6x; + 4x;, which is parallel to ccnsr:a}nt 1: we can
always say that the optimum occurs at either corner point B or corner point C. Actu-
ally any point on the line segment BC will be an alrernative optimurmn (see falsa Exam-
ple 3.5-2), but the important observation here is that the line segment BC is totally
defined by the corner points B and C.

THE SIMPLEX METHOD

Simplex method also called Simplex Technique was developed by G. B. Dantzig, an
American mathematician. It has the advantage of being universal i.e. any linear model for
which the solution exist can be solved by it. In principle, it consists of starting with a certain
solution of which all that we know is that, it is feasible i.e. it satisfies non-negatively
conditions. We improve this solution at consecutive stages until after a certain finite number
of stages we arrive at optimal solution.

Basic Terminology Involved in Simplex Method
Standard Form—A linear program in which all of the constraints are written as equalities.
The optimal solution of the standard form of a linear programming is the same optimal solution of
the original formulation of the linear programme.
Slack Variable—Variables added to convert less than or equal to (<) type constraints into
equality are known as slack variable.
e.qg. Let any constraint a1Xq +as Xo <b
Some values have to be added to the L.H.S. of the constraints. Let this amount is
S1
ThenaiXxq +ag xp +s1 =bq

S, is known as slack variable.

Surplus Variable—Variables subtracted to convert greater than or equal to (>)
type constraints into equality are known as surplus variable.
e.g. Let any constraint

agxg+ag X4 > b2
Some amount of values has to be subtracted to the R.H.S. of the constraints.

Let this amount is S,

Then 83X3 + 84 X4 —$2 =0
Artificial Variable—Sometimes to avoid negativity of the variables and to make

an identity in the simplex table variable has to be introduce known as artificial variable.
e.g. Let any constraint

agXg +ay X4 = bo
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To change into equality agxg + a4 X4 —So + A1 =Dy

Al is an artificial variable.
Note an artificial variable has no physical meaning in theoretical problem.

TYPES OF SIMPLEX PROBLEM

Broadly, simplex problem either maximization or minimization types is solve by
the method—
(a) Problem with only slack variables.
(b) Problem with artificial variables.
(c) Problem with degeneracy.
(d) Problem with unbounded solution.
(e) Primal dual problem.
(f) Problem with unrestricted problem.
Procedure to solve any LPP by Simplex Method—To solve any LPP by this method require
to construct a _simplex tableaul which can be done by the following steps—
Step I—Formulate the given problem into Linear Programming problem as mathematical
form—objective function
Maximize Z=CqX{ +CpXp +1+CpXp,
Subject to constraints
a1X1 +a12 X2 H +anXn Sbl
an1X1 +ago Xo + HasnpXp sz

and Non-negative restrictions are decision variable.

Step II—Now to express the model of LPP in the standard form as change the objective
function as maximize if given problem minimize as

Maximize(z) = Minimize(z)

Objective function must be always maximize type. If, it does not so make it.
In the constraints, adding slack variables in the left hand side of the constraints and
assign a zero coefficient to these in the objective function.

Thus, we can restate the problem as follows: —

Maximize(z)=CqX{ +CoX2 +.ovuruue ChXp +0.51 ++0.5,

Subject to the linear constraints
a11X1 +ta12 X2 +la1nXn +$1 =b1

a21x1 +a22 X2 R TTTIN azn Xn +82 =b2
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amlxl + am2 X2 T amn Xn + Sm :bm

and X1,X9,.......... X,51,52, Sm =0

As, the contribution of slack variable is nothing due to zero coefficient in the

objective function.
Step III—An initial basic feasible solution is obtained by setting

X1:X2: ........ :Xn:O,wegetS]_:SZ: ....... :Sm:bm
Step IV—To set up the initial simplex table
Basic Coefficient [Solution| ¢; | ¢ [ .. [cn [ O] O] ...] O Min.
Variables of B.V. Coefficient Matrix | Identify Matrix Ratio
X1 | X2 | wee | Xn | 51| S2 | «e | Sm | (CB/KB)
S1 0 b1 dii dio din 1 0 0
So 0 b> dri dr> don 0 1 0
Sn 0 bn Ami | @m2 | .- amn | O 0 |
C1 C Cn 0 0 0

Let Z; represent the amount by which the value of objective function Z would be
decreased or (increased) if one unit of given variable is added to the new solution.

Cj—Zj(Net Effect) = Cj (Incoming Unit Profit / Cost)
-Z j (Outgoing total profit / Cost)

Where Z i =(Coefficient of basic Variables Column)x(Exchange Coefficient Column j)
Optimality Test—Calculate Aj = Cj - Zj value for all non-basic variables. The

decision variable value corresponding to column of Basic variable coefficient. These may
be following three cases:—
(i) If all Cj - Zj <0, then the basic feasible solution is optimal and alternative

solution also exist if any non-variable with Aj is zero.

(ii) If at least one column of the coefficient matrix say key column leaving all the
elements are negative, then there exists an unbounded solution to the given

problem.
(i)  Ifatleastone Aj=(Cj —Zj)<0Oand each of these has at least one positive
element (i.e. ajj) for some row, then it indicates that an improvement in the

value of objective function Z is possible.
(iv) Select the variable to enter the basis if (iii) case holds, then select

the variable with largest (Cj —Zj ) value to enter into the new

solution. The column to be entered is known as key column.
o Test for Feasibility—Corresponding variable in the key column with minimum ratio of non-

negative amount.
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‘YBJ.P = min J, ‘YB_?. ary = U}
anry 1 ary )
Step (V) —Finding the new Solution

(i) If the key element is 1, then the row remains the same in the new simplex
table.

(ii) If the key element is other than 1, then divide each element in the key row
(including elements in Xg column) by the key element, to find the new

values for that now.

(iii) ~ The new values of the elements in the remaining rows for the new
simplex table can be obtained by performing elementary row operations

on all rows so that all elements except the key element in the key column

are zero.

For each row other than key row, we use the following formula:—
Number in new row= (Number in old row) +

[ ( Number above or \ (Corresponding number in the new )|
X

|_\| | below keyelemenjt '\ " row, that is row replaced in step (ii))|

The new entries in Cg (Coefficient of Basic Variables) and Xg (Value of basic
variables) columns are updated in the new simplex table of the current solution.

Step (VI1)—Repeat the procedure, until all the entries in the Cj - Zj row are either negative or

Zero.
Example-1—Use the simplex method to solve the following Linear Programming Problerm—

Maximize(Z) = 2x,+ 3x,
Subject to the Constraints

n+x=l
3n+x,=4
and X. X520

5155

Solution—Step I—Introducing non-negative slack variables e tn convert inequality

constraints to equality. Then LPP becomes—

Maximize(Z) = 2x,+ 3x,+ 0.5, + 0.5,
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Subject to the constraints
n+x+5=1

3 +x5+5,=4

and &L:xI:SI:SEE 0

Step II—Si 2 Q{;? 0, (i=1, 2) we can choose initial basic feasible solution as

L=x=0,5=1,5=
tahle by putting all the equations.
Step ITI—Jp test the optimality of the solution calculate Aj = C:r-— Zjas

Z=(Basic Variable Coefficients, C') x( 7" column of data matrix)
£ B

4 and maximum Z=0. This solution can be read from the simplex

Zi=0=x1)+{0=x3)=0 Cy =2
Z2=(0=x1)+({0=x1)=10 C:=13
N=Ci—Z; A=C—Z; A=C,—-Z,
=2-0=2 =3-0=23
G 2 3 | 0] o
Profit per Unit | Basic Variable | Solution | x; X2 S1 S2 Min Ratio
CB BV b=Xs Xe/ X2
0 S1 1 1 1 1 0 1/1
0 S2 4 4/1
Z=0 Z 0] 0 | o 0
G -7 2 3 0 0
) A = 0, so current solution is not optimal. Largest positive number of A ;is
Since all — ¥ J

3,50 ;,’E;EE' columnis the key column.
Step 4—The vanable to leave the basis is determined by /,./ to leave the basis.

Step 5—Jhe new row can be obtained by new operation ratio
R (new) — R (old ) =1(Key element )
—1/1,1/1.1/71.1/1,0/1
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—1.1.1.1.0
Ry(New) — R,(Old ) —1R,(New)

4-1=1=3

3-1=x1=2
1-1x1=0
0-1=x1=-1

1-1=0=1

Improved Table

(o] 2 3 0 0

CB BV| b=Xs | x1 X2 S1 Sz
3 X2 1 1 1 1 0

0 S2 3 2 0 -1 1

z=3 A |-t 0 [3] o

J
=G-2
an A:=0 for non-basic variables, The optimal solution is X,=0.4, =1, optimalz

=3
Introduction to artificial variables

As demonstrated in Example 3.3-1, LPs in which all the constraints are (=) with non-
negative right-hand sides offer a convenient all-slack starting basic feasible solution.
Models involving (=) and/or (=) constraints do not.

The procedure for starting “ill-behaved” LPs with (=) and (=) constraints is to
use artificial variables that play the role of slacks at the first iteration, and then dispose
of them legitimately at a later iteration. Two closely related methods are introduced
here: the M-method and the two-phase method.

M-Method

The M-method starts with the LP in equation form (Section 3.1). If equation i does not
have a slack (or a variable that can play the role of a slack), an artificial variable, R;, is
added to form a starting solution similar to the convenient all-slack basic solution.

However, because the artificial variables are not part of the original LP model, they are
assigned a very high penalty in the objective function, thus forcing them (eventually) to
equal zero in the optimum solution. This will always be the case if the problem has a
feasible solution. The following rule shows how the penalty is assigned in the cases of
maximization and minimization:
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Penalty Rule for Artificial Variables.

Given M, a sufficiently large positive value (mathematically, M — o0), the objec-
tive coefficient of an artificial variable represents an appropriate penalty if:

—M, in maximization problems

Artificial variable objective coefficient = { S
M, in minimization problems

Example
Minimize z = 4x; + x;
subject to

Ixy + x,=3
dx; + 3x; = 6
nt+tdn=4
X, 1 =0
Using x; as a surplus in the second constraint and x, as a slack in the third constraint, the
equation form of the problem is given as

Minimize z = 4x; + x;

subject to
31] + Xy =3
4x; + 3x; = x5 =6

'x].'l IZ: I]-, Xy = ﬂ

The third equation has its slack variable, x,, but the first and second equations do not. Thus,
we add the artificial variables R, and R; in the first two equations and penalize them in the ob-
jective function with MR, + M R, (because we are minimizing). The resulting LLP is given as

Minimize z = 4x; + x, + MR, + MR,

subject to
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3_1‘] + X3 + Rl =3
4£|+3I2‘I3 + Ry =0
X + 212 + Iy = 4

Xy, X3, X3, Xg, Rl! ‘RE =0

The associated starting basic solution is now given by (R, R, x4) = (3,6,4).

From the standpoint of solving the problem on the computer, M must assume a numeric
value. Yet, in practically all textbooks, mncluding the first seven editions of this book, M is manip-
ulated algebraically in all the simplex tableaus. The result is an added, and unnecessary, layer of
difficulty which can be avoided simply by substituting an appropriate numeric value for M
(which is what we do anyway when we use the computer). In this edition, we will break away
from the long tradition of manipulating M algebraically and use a numerical substitution in-
stead. The intent, of course, is to simplify the presentation without losing substance.

e

Using M = 100, the starting simplex tableau is given as follows (for convenience. the z-col-
umn is eliminated because it does not change in all the iterations);

Basic Xy X, X3 Rl Rz X4 Solution
z ~4 -1 0 0 0
R, 3 1 0 3
Xy 2 0 1 4

Before proceeding with the simplex method computations, we need to make the Z-row
consistent with the rest of the tableau. Specifically, in the tableau, x; = x3 = x3 = 0, which
yields the starting basic solution Ry=3 R, = 6 and x, =4 This solution yields
2 =100 X 3 + 100 X 6 = 900 (instead of 0, as the right-hand side of the z-row currently
shows). This inconsistency stems from the fact that Ry, and R, have nonzero coefficients
(=100, —100) in the z-row (compare with the all-slack starting solution in Example 3.3-1,
where the z-row coefficients of the slacks are ZE10).

iTr. a

ey

We can eliminate this inconsistency by substitu ting out R and R, in the z-row using the a p-
propriate constraint equations. In particular, notice the highlighted elements (= 1) in the
Ry-row and the R;-row. Multiplying each of Ry-row and R;-row by 100 and adding the sum to
the z-row will substitute out R; and R, in the objective row—that is,

New z-row = Old z-row + (100 X Ry-row + 100 X Ryrow)
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The modified tableau thus becomes (verify!)

R, X4 Solution

Notice that z = 900, which is consistent now with the values of the starting basic feasible solu-
tion: Ry, = 3, R; = 6, and Xy = 4.

The last tableau is ready for us to apply the simplex method using the simplex optimality
and the feasibility conditions, exactly as we did in Section 3.3.2. Because we are minimizing the
objective function, the variable x, having the most pesitive coefficient in the z-row (= 696) en-
ters the solution. The minimum ratio of the feasibility condition specifies R, as the leaving vari-

able (verify!).
Once the entering and the leaving variables have been determined, the new tableau can be
computed by using the familiar Gauss-Jordan operations.

Ry R X4 Solution

Xy
AR
T

fietr (et
R B L g

Xy

The last tableau shows that x; and R, are the entering and leaving variables, respectively.
Continuing with the simplex computations, two more iterations are needed to reach the opti-
mum: x; = %, X = %_ z= 151 (verify with TORA!).

Note that the artificial variables R and R; leave the basic solution in the first and second it-
erations, a result that is consistent with the concept of penalizing them in the objective function,
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Two-Phase Method

In the M-method, the use of the penalty M, which by definition must be large relative
to the actual objective coefficients of the model, can result in roundoff error Phat may
impair the accuracy of the simplex calculations. The two-phase method alleviates this
difficulty by eliminating the constant M altogether. As the name suggests:, the met%md
solves the LP in two phases: Phase I attempts to find a starting basic feasible solution,
and, if one is found, Phase IT is invoked to solve the original problem.

Summary of the Two-Phase Method

Phase I. Put the problem in equation form, and add the necessary artificial vari-
ables to the constraints (exactly as in the M-method) to secure a starting
basic solution. Next, find a basic solution of the resulting equations that,
regardless of whether the LP is maximization or minimization, always
minimizes the sum of the artificial variables. If the minimum value of the

sum is positive, the LP problem has no feasible solution, which ends the
process (recall that a positive artificial vanable signifies that an original
constraint is not satisfied). Otherwise, proceed to Phase II.

Phase II. Use the feasible solution from Phase I as a starting basic feasible solu-
tion for the original problem.

Example
Minimize z = 4x; + x;
subject to
31| + X = 3
4.‘.’1 + 3):1 =6

Xy Xp = 0
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Phase |
Minimize r = R, + R,

subject to

3X| + Xa + R| =3
4X| t 3X2 - X3 + Rz =0
X, + 2x; + x4 =4

X1, X2, X3, Xy, R], Rz =0

The associated tableau is given as

Basic X X3 xy X4 Solution
¥ 0 0 ] 1] (v}
Ry 3 1 0 3
XLy 1 2 1 q

Asin the M-method, B, and R; are substituted out in the r-row by using the following com-
putations:

New r-row = Old r-row + (1 X Ry-row + 1 X Ry-row)

The new r-row is used to solve Phase I of the problem, which yields the following optimum
tableau (verify with TORA's Tterations = Two-phase Method):

Basic X X3 X ; X4 Solution
r 0 0 0 0 0
x 1 0 : 0 :
X3 0 "'% 0 g
X, 0 1 1 1

) . . =3 = &
Because minimum r = 0, Phase I produces the basic feasible solution xy = 5, %2 = 5,

and x, = 1. At this point, the artificial variables have completed their mission, and we can elim-
inate their columns altogether from the tableau and move on to Phase II.
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Phase IT
After deleting the artificial columns, we write the original problem as
Minimize z = 411 + Xp

subject to

1

3 _
Xa — §x3 =

L T T - LT U

Xy, Xa, X3, X4 =1
Essentially, Phase I is a procedure that transforms the original constraint equations in a manner

that provides a starting basic feasible solution for the problem, if one exists. The tableau associ-
ated with Phase I problem is thus given as

X, Solution

= LAl hbdad

Again, because the basic variables x; and x; have nonzero coefficients in the z-row, they
must be substituted out, using the following computations.

New z-row = Old z-row + (4 X xj-tow + 1 X X9-TOW)

The initial tableau of Phase II is thus given as

Basic X Xa Xy Xy Sﬂlutiﬂﬂ
1
z 0 a % 0 f
X, 1 0 0 %
x; 1 - 0 §
x4 0 0 1 1 1

Because we are minimizing, X3 must enter the solution.
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5. The Big-M Method

The following steps are involved in solving an LPP using the Big-M Method.
Step I—Express the given Linear Programming problem into Standard form.

Step II—Add non-negative artificial variables to the left side of each of the equations
corresponding to constraints of the type > or =. However, addition of these artificial
variable causes violation of the corresponding constraints. Therefore, we would like to
get rid of these variables and would not allow them to appear in the final solution.

This is achieved by assigning a very large penalty (=M for maximization problems and M
for minimization problems) in the objective function.

Step III—Solve the modified LPP by Simplex Method, until any one of the three
causes may arises.

(i) If no artificial variable appears in the basis and optimal conditions are satisfied, then the
current solution is an optimal basic feasible solution.

(ii) If at least one artificial variable in the basis at zero level and the optimality condition is
satisfied then the current solutions is an optimal basic feasible solution.

(iii) If at least one artificial variable appears in the basis at positive level and the optimality
condition is satisfied, then the original problem has no feasible solution. The solution satisfies the constraints
but does not optimize that objective function, since it contains a very large penalty M and is called Pseudo
optimal solution.

Example: |Solve the following LPP—

Minimize(Z )=12x,+20x,
Subject to the constraints

6x,+ 8x, =100
Tx;+12x, 2120
ang T 420

Solution—Convert the given LPP into standard form
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Maximize(Z) = —12x,— 20x,+ 0.5, + 0.5,— Md; — MA,

st 6x,+8x,— 5+.4,=100
Tx,+12x,—5,+4,=120
M x5, 5, 520

Initial Simplex Table

C; -12 -20 0 0 -M -M Min
Basic Cs X X1 X2 S1 S2 Ax A> Ratio
Variable
Aq -M 100 6 8 -1 0 1 0 12.5
Az -M 120 7 12 0 -1 0 1 «—10
A — | -12 -20 M M 0 0
i
+13M | +20M
Key element = 12, Outgoing variable is A, Incoming Variable is Xz
C; -12 -20 0 0 -M -M Min
Basic Cs X X3 X2 Si S2 A, A2 Ratio
Variable
A: -M 20 4/3 0 -1 2/3 1 - <15
X2 -20 10 7/12 1 0 -1/12 0 - 120/7
A,— AM-1T |0 M ‘M —-510 - =17.14
3 3
Key element is 4/3. Outgoing variable is A; and Incoming variable is X;.
Ci -12 -20 0 0 -M -M Min
Basic Cs X X1 X2 S1 S2 Ai A> Ratio
Variable
X1 -12 15 1 0 -3/4 1/2 - -
X2 -20 /4 0 1 7/16 -3/4 - -
A — 0 0 -1/4 -9 - -
i

All A ;= 0, so we have optimal solution.
¥y =15, ¥;= 5/14
Maximize Z = (-12 = 15)%(-20 = 5/4)
= - 205
Minimize Z = - Maximize (Z)

=205
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POSSIBLE QUESTIONS
PART - A (20 x 1 =20 Marks)
(Question Nos. 1 to 20 Online Examinations)

PART-B (5 x 2 =10 Marks)

Answer all the questions
Write the canonical form of LPP.
Write the standard form of LPP.
Define feasible solution.
Define degenerate basic solution.
Express the following LPP in standard form.
Maximize Z = 4xy + 2Xo + 6X3
Subject to 2x1 + 3x2 + 2X3 = 6

3X1 +4x2, =8

6X1 - 4X2 + X3 < 10

and X1, X2, X3 =0

agkrwpE

PART-C (5 x 6 =30 Marks)
Answer all the questions

1. A company manufactures 2 types of printed circuits. The requirements of transistors,
resistors and capacitors for each type of printed circuits along with other data are given

below.
Circuit Stock available
A B
Transistor 15 10 180
Resistor 10 20 200
Capacitor 15 20 210
Profit Rs.5 Rs.8

How many circuits of each type should the company produce from the stock to earn
maximum profit. Formulate this as a LPP and solve it graphically also.

2. A firm manufactures two types of product A and B and sells them at a profit of Rs. 2
ontype A and Rs. 3 ontype B. Each product is processed on two machines M;and M,.
Type A requires 1 minute of processing time on M; and 2 minutes on M,. Type B
requires 1 minute on M, and 1 minute on M,. Machine M, is available for not more
than 6 hours 40 minutes, while machines M, is a available for 10 hours during any work
hours. Formulate the problem as LPP so as to maximize the profit.

3. Solve the following LPP by the graphical method.

Maximize Z = 3x1 + 2x2
Subject to the constrains
—-2X1+tx2< 1
X1 <2
X1 +X2< 3
and x1, X2 >0
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4. Use graphical method to solve the following LPP
Maximize Z = 4x; + 10x.
Subject to the constrains
2X1+ X< 50
2X1 + 5x2< 100
2X1 + 3%2 < 90
and X1, X2=0

5. Use simplex method to solve the following LPP
Maximize Z = 5x1 + 8x2
Subject to the constrains
2x1+ X<1
xX1< 2
X1+ X2 <3
and x1, x2 =0
6. Use simplex method to solve the following LPP
Maximize Z = 4x; + 10x.
Subject to the constrains
2X1+ X2<50
2x1+ 5x2 < 100
2x1+ 3x2 < 90
and X1, X2= 0
7. Solve the following LPP using Big M method.
Maximize Z = 3x1 + 2x2
Subject to 2X1+ X2 < 2
3x1 + 4% = 12
And xi, Xo =0
8. Use Penalty method to solve
Minimize Z = 4x1 + 3x.
Subject to 2x; + x2 =10
-3X1+ 2% <6
X1+ X2=>6
and X3, X2 >0
9. Use Two — phase simplex method to solve
Maximize Z = 5x1 + 8%,
Subjectto 3x1 +2x2 >3
X1+ 4% = 4
X1+X2<5
and xi, X2 =0
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10. Solve the following using Two — phase simplex method.
Minimize Z = -2X1 — X2
Subject to X1 + x2 > 2
X1+ X2=>4
and x1, X2 >0
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UNIT-11
SYLLABUS

Duality — Definition of the dual Problems-Formulation of the dual Problem-Primal Dual
relationship: Review of simplex matrix Operations —Simplex tableau Layout-Optimal Dual
Solution-Simplex Tableau computations. Economic interpretation of the dual: Economic
Interpretation of Dual Variables-Economic Interpretation of Dual Constraints.

Duality

This chapter dealt with sensitivity of the optimal solution by determining the ranges for the
model parameters that will keep the optimum basic solution unchanged. A natural sequel
to sensitivity analysis is post-optimal analysis, where the goal is to determine the new
optimum that results from makin targeted chanes in the model parameters. Although opst-
optimal analysis can e carried out using the simplex tableau computations, this chapter is
based entirely on the dual problem.

At a minimum we will need to study the dual problem and its economic interpretation. The
mathematical definition of the dual problem is purely abstract. Yet, when we study, we will
see that the dual problem leads to intriguing economic interpretations of the LP model,
including dual prices and reduced costs. It also provides the foundation for the
development of the new dual simplex algorithm, a prerequisite for post-optimal analysis.

DEFINITION OF THE DUAL PROBLEM

The dual problem is an LP defined directly and systematically from the primal (or orig-
inal) LP model. The two problems are so closely related that the optimal solution of
one problem automatically provides the optimal solution to the other.

In most LP treatments, the dual is defined for various forms of the primal depend-
ing on the sense of optimization (maximization or minimization), types of constraints

(=, =, or =), and orientation of the variables (nonnegative or unri:slrictad]_l."_[‘l_]is type
of {reatmant is somewhat confusing, and for this reason we offer a single definition that
automatically subsumes all forms of the primal.

. N NN, W, P Y
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Our definition of the dual problem requires EXpressing uie piuar pavisss ==
the equation form presented in Section 3.1 (all the constraints are equaﬁtmns "ﬁ:’lth
nonnegative right-hand side and all the variables are nonnegative). This require-
ment is consistent with the format of the simplex starting tableau. Hence, any results
obtained from the primal optimal solution will apply directly to the associated dual

roblem. _ ) '
° To show how the dual problem is constructed, define the primafl in eymntove G
as follows:

n
Maximize or minimize z = 2{.-:,-:: ;
l"-
subject to

n

zﬂ”xi = bl'.,f = 1,2,-r-a,m

The variables x, j = 1,2,...,n, include the surplus, slack, and artiﬁcial‘ variables, 1f any.
Table 4.1 shows how the dual problem is constructed from the primal. Effectively,
we have

1. A dual variable is defined for each primal (constraint) equation.

2. A dual constraint is defined for each primal variable. .

3. The constraint (column) coefficients of a primal utaria:blc dcfn}e' the left-hand-
side coefficients of the dual constraint and its objective coefficient define the
right-hand side. ‘ ' +

4. The objective coefficients of the dual equal the right-hand side of the primal con-
straint equations.

Formulation of the dual problem:

TABLE 4.1 Construction of the Dual from the Primal

Primal variables

Xy Xy e IJ' - X,
1, £ .
Dual variables € C aes e "
o f. ;
b4 ay ay o In
Ry P 'ﬂh
Y2 dyy axn s 2
T e a
J’m anr‘l am! ot .".- T
jth dual Dual objective
constraint coefficients
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TABLE 4.2 Rules for Constructing the Dual Problem

Dial problem

Primal problem

objective” Objective Congstraints type Variables sign
Maximization Minimization = Unrestricted
Minimization Maximization = Unrestricted

* All primal constraints are equations with nonnegative right-hand side and all the variables are nonnegative.

The rules for determining the sense of optimization (maximization or minimization),
the type of the constraint (=, =, or =), and the sign of the dual variables are summarized
in Table 4.2. Note that the sense of optimization in the dual is always opposite to that of the
primal. An easy way to remember the constraint type in the dual (ie.,, = or = )isthatif
the dual objective is minimization (1., pointing down), then the constraints are all of the
type = (i.e., pointing up). The opposite is true when the dual objective is maximization.

The following examples demonstrate the use of the rules in Table 4.2 and also
show that our definition incorporates all forms of the primal automatically.

Example

Primal Frimal in equation form Dual variables
Maximize z = 5x; + 12x; + 4xy Maximize z = 5x; + 12x; + dx; + Oxg
subject to subject to
x4+ 2y + x3 =10 n+ 2+ a3+ x,=10 W
2x) = x3+3xy=8 26 = xy#+3x3+ 0xy =8 ¥
Xy, ¥g, X3 =0 Xy, X2, X3, xq =)
Dual Problem
Minimize w = 10y; + 8y,
subject to
nt2p= 5
2}’] - H= 12
n+t+3iIn= 4

== restricted
yl,)‘zunres(ricted} (» = 0, y; unrestricted)

PRIMAL-DUAL RELATIONSHIPS

Changes made in the original LP model will change the elements of the current opti-
mal tableau, which in turn may affect the optimality and/or the feasibility of the cur-
rent solution, This section introduces a number of primal-dual relationships that can be
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used to recompute the elements of the optimal simplex tableau. These relationships
will form the basis for the economic interpretation of the LP model as well as for post-
optimality analysis.

This section starts with a brief review of matrices, a convenient tool for carrying
out the simplex tableau computations.

Review of Simple Matrix Operations

The simplex tableau computations use only three elementary matrix operations:
(row vector) X (matrix), (matrix) X (column vector),and (scalar) X (matrix). These
operations are summarized here for convenience. First, we introduce some matrix
definitions:'

1. A matrix, A, of size (m X n) is a rectangular array of elements with m rows and

n columns.

2. A rowvector,V,of size misa (1 X m) matrix.

3. A column vector, P,of size n is an (n X 1) matrix.

These definitions can be represented mathematically as

ay ap . Ayn P

_ | @  an : Qyp _ | P2
V={(v,v,..,mA= o o P=1""
Ay g . @1 Pn

1. (Row vector X matrix, VA). The operation i : : .
. peration is defined only if th
row vector V equals the number of rows of A. In this casc, ’ ¢ size ofthe

m m m
VA = (Evjad, 2‘”{012’ seey Evial")
=1

i=] =1

For example,
1 2

(11,22,33)[ 3 4 =(1X11+3x22+5x%x33,2x 11 +4 % 22 + 6 x 33)
5 6

= (242,308)

2. (Matrix X column vector, AP). The operation i i
. . peration is defined only if the num
of columns of A equals the size of column vector P. In this case, ’ et
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/E“uﬁ’;\
j=1
H

Z“ljpf
i=1
) s
\E“"u’f’i/
j=1
As an illustration, we have

11
(1 3 5) ” ___(1x1]+3><22+5><33)_ 242
2 4 6 2 2X11+4x22+46 X33 ‘(303

_ 3. (Scalar X matrix,
plication operation aA will result in a matrix of the
ment equals aay;. For example, given o = 10,

{IU](I 2 3) _ (IG‘ 20 30
4 5 6 40 50 60
In general, aA = Aa. The same op

vectors by scalars. For example, aV = Va and aP = Pa.

Simplex Tableau Layout
In Chapter

we followed a specific format for setting up the simplex tableau. This for-
mat is the basis for the development in this chapter.

)

«A). Given the scalar (or constant) quantity e, the multi-
same size as A whose (i, /)th ele-

eration is extended equally to the multiplication of

Figure 4.1 gives a schematic representation of _the starting and genlemf Si!:l'l];l)liﬁx
tableaus. In the starting tableau, the constraint coefficients under the starting Val'l‘;l les
form an identity matrix (all main-diagonar efemeues -::qunl _1 and all of:f d;agonable e-
ments equal zero). With this arrangement, su_bs-:quent iterations of lt_le mmp_lex lla: c{:u
generated by the Gauss-Jordan row operations (see Chapte:r 3) will modify the e eu
ments of the identity matrix to produce what is known as the inverse mat_tix. Aswe \\il
see in the remainder of this chapter, the inverse matrix is key to computing all the ele-

ments of the associated simplex tableau.
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FIGURE 4.1

Schematic representation of the starting and general simplex tableaus

Starting variables

Objective z-row { [

oo onnmn

Constraint {
columns

-

G A N I N B SN Gy SN g S

Identity matrix

(Starting tableau)
Starting variables

Objective z-row {_ |
, —1 — 1 r1r | _1

Constraint
columns w

gEiNIE N

(General iteration)

Optimal Dual Solution
The primal and dual solutions are so closely related that the optimal solution of either
problem directly yields (with little additional computation) the optimal solution to the
other. Thus, in an LP model in which the number of variables is considerably smaller
than the number of constraints, computational savings may be realized by solving the
dual, from which the primal solution is determined automatically. This result follows
because the amount of simplex computation depends largely (though not totally) on
the number of constraints

This section provides two methods for determining the dual values. Note that the
dual of the dual is itself the primal, which means that the dual solution can also be used
to yield the optimal primal solution automatically.

Method 1.
( Optimal value nf) ) Optimal primal z-caefflci:nt of starting variable x;
dual variable y;

Original objective coefficient of x;
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Method 2.
. Row vector of . .
Optimal values - _— . Optimal primal
i = | original objective coefficients X )
of dual variables inverse

of optimal primal basic variables

The elements of the row vector must appear in the same order in which the basic vari-
ables are listed in the Basic column of the simplex tableau.

Example
Consider the following LP:

Maximmﬁz = 51’1 + 1212 + dx_'_;
subject to
X +2x+ x =10
211 — Xxa+ 31‘3 = 8

Xy, x5, x3 =20

To prepare the problem for solution by the simplex method, we add a slack x4 in the first
constraint and an artificial R in the second. The resulting primal and the associated dual prob-
lems are thus defined as follows:

Primal Dual

Maximize z = 5x; + 12x, + 4x; — MR Minimize w = 10y, + 8y,

subject to subject to
X+ 2+ 13+ x, = 10 nt2yp=5
2x, = x; + 3g +R=8 2y, - =12
Xy, Xy, X3, X RZ 0 Nn+t3p=4
N =0

¥ = —M (= y, unrestricted)

We now show how the optimal dual values are determined using the two methods described
at the start of this section.
Method 1. In Table 4.4, the starting primal variables x4 and R uniquely correspond to the dual
variables y, and y,, respectively. Thus, we determine the optimum dual solution as follows:

Starting primal basic variables Xy R
z-equation coefficients 2 -+ M
Original objective coefficient 0 -M

Dual variables by ¥

Optimal dual values % +0 =% —E + M+ (-M) = —%

Method 2. The optimal inverse matrix, highlighted under the starting variables x; and R, is
given in Table 4.4 as
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P |
Optimal inverse = f ;
5 5

First, we note that the optimal primal variables are listed in the tableau in row order as x; and
then x,. This means that the elements of the original objective coefficients for the two variables

must appear in the same order—namely,
{Original objective coefficients) = (Coefficient of x;, coefficient of x;)

= (12,5)
ITAELE 4.4 Optimal Tableau of the Primal of Example 4.2-1
Basic X X3 Ty ..; :4 R . Solution
z 0 0 : 544
x; 0 1 ~3 4
X 1 0 ! $

Thus, the optimal dual values are computed as

Original objective
coefficients of x,, x,

(Yy2) = ( ) X (Optimal inverse)

LA g L e

= (12,5)

Lt LA

- @)

Simplex Tableau Computations
This section shows how any iteration of the entire simplex tableau can be generated
from the original data of the problem, the inverse associated with the iteration, and the
dual problem. Using the layout of the simplex tableau in Figure
we can divide the compulations into two types:
1. Constraint columns (left- and right-hand sides).
2. Objective z-row.
Formula 1: Constraint Column Computations. In any simplex iteration, a left-hand or
a right-hand side column is computed as follows:

(Cr}nstraint column) _ (!nvcrse in) o« ( Original )

in iteration i iteration { constraint column

Formula 2: Objective z-row Computations. In any simplex iteration, the objective
equation coefficient (reduced cost) of x; is computed as follows:
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( Primal z-equation ) B ( Left-hand side of ) B (Rightvhand side l:lf)
coefficient of variable x; Jth dual constraint jth dual constraint
Example

We use the LP in Example 4.2-1 to illustrate the application of Formulas 1 and 2. From the opti-
mal tableau in Table 4.4, we have

Optimal inverse =

Ll L RS
L Py P

The use of Formula 1 is illustrated by computing all the left- and right-hand side columns of
the optimal tableau:

x-column in ) B ( Inverse in ) » ( original )
optimal iteration optimal iteration xj-column

<(2)-C)

In a similar manner, we compute the remaining constraint columns; namely,

( xy-column in )__
optimal iteration

Ll LAl
RS LA

[ I T | ]
|
o
o,
|
= D
L
]
o~
[
S

( x;-column in ) _ : -4 « (1) _ (';
optimal iteration : % 3 !
( x,-column in )= 2 —%) y (1) _ 2
optimal iteration "\;. % 0 k%
( R-column in )= 1 —é) y ({}) (-
optimal iteration l\;- 2 1 \ 2

. Xz
column in e =
X

Right-hand side
optimal iteration

whie= uaiRs
|
LA LA
=
.r""_""-».,
-
e - ]
e
I
i wlis

Next, we demonstrate how the objective row computations are carried out using Formula 2.

The optimal values of the dual variables, (y;, 32) = (25—'; —%} were computed in Example 4.2-1

using two different methods. These values are used in Formula 2 to determine the associated z-
coefficients; namely,
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z-cofficientof x; = y, + 2, =5 =2 +2x-2-35

0
z-cofficientof x; =2y, =y — 12 =2x % - (=) - 12 =0

z-cofficientof xy =y + 3y — 4 = % + 3 % —% -4 %
z-cofficient of x; = y, — 0 =¥_¢ =2
z-cofficientof R = » = (-M) = —% — (—M) =-1iM

Notice that Formula 1 and Formula 2 calculations can be applied at any iteration of either
the primal or the dual problems. All we need is the inverse associated with the (primal or dual)
iteration and the original LP data.

ECONOMIC INTERPRETATION OF DUALITY

The linear programming problem can be viewed as a resource allocation model in
which the objective is to maximize revenue subject to the availability of limited re-
sources, Looking at the problem from this standpoint, the associated dual problem of-

fers interesting economic interpretations of the LP resource allocation model.
To formalize the discussion, we consider the following representation of the gen-
eral primal and dual problems:

Primal Dual
Maximize z = » cx; Minimize w = > by,
jl-l i
subject to subject to
Ea,-jxfﬂb,-.i=1,2..,.,m Ea,ryiacr_;=l.l....n
=1 i=1
xj.‘ﬁ_-ﬂ,j=1,1,...,n w=0i=12....m

Viewed as a resource allocation model, the primal problem has n economic activities
and m resources. The coefficient ¢; in the primal represents the revenue per unit of ac-
tivity j. Resource i, whose maximum availability is b;, is consumed at the rate a;; units
per unit of activity j.

Economic Interpretation of Dual Variables
It states that for any two primal and dual feasible solutions, the values of the
objective functions, when finite, must satisfy the following inequality:

] L
z = ECJ'IJ; = Ebﬂ-’,‘ = w
i=1 i=1

The strict equality, z = w, holds when both the primal and dual solutions are optimal.

Let us consider the optimal condition z = w first. Given that the_pnmal problem
represents a resource allocation model, we can think of z as representing revenue cl_cnl-
lars. Because b; represents the number of units available of resource i, the equation
z = w can be expressed dimensionally as
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$ = ' (units of resource i) X (§ per unit of resource i)
i

This means that the dual variable, y, represents the worth per unit of resource i. As
stated in Section 3.6, the standard name dual (or shadow) price of resource i replaces
the name worth per unit in all LP literature and software pa_ck:e_tgc& .

Using the same logic, the inequality z < w associated with any two Ieasioie pn-
mal and dual solutions is interpreted as

(Revenue) < (Worth of resources)

This relationship says that so long as the total revenue from all the act.ivities. is less tha!l
the worth of the resources, the corresponding primal and dual solutions are not opti-
mal. Optimality (maximum revenue) is reached only when the resources have been ex-
ploited completely, which can happen only when the input (worth of the re'soumes)
equals the output (revenue dollars). In economic terms, the system is said to be
unstable (nonoptimal) when the input (worth of the resources) exceeds the output
(revenue). Stability occurs only when the two quantities are equal.

Example

The Reddy Mikks model and its dual are given as:

Reddy Mikks primal Reddy Mikks dual
Maximize z = 5x, + 4x, Minimize w = 24y, + 6y, + ya + 2y,
subject to subject to
6x, + 4x;, = 24 (resource 1, M1) T S Ul =35

x, + 2x; = 6 (resource 2, M2) dpy+ 2ttty =4

—-x, + x, =1 (resource 3, market) Vie ¥ ¥ ¥a =0

x; = 2 (resource 4, demand)

=0
Optimal solution: Optimal solution:
xy=3xn=15z2=121 yi=T15y,=05y,=y=0w=1l

Briefly, the Reddy Mikks model deals with the production of two types of paint (interior
and exterior) using two raw materials M1 and M2 (resources 1 and 2) and subject to market and

demand limits represented by the third and fourth constraints. The model determines the
amounts (in tons/day) of interior and exterior paints that maximize the daily revenue (expressed
in thousands of dollars).

‘The optimal dual solution shows that the dual price (worth per unit) of raw matenal M1 (re-
source 1) is y; = .75 (or §750 per ton), and that of raw material M2 (resource 2) is y» = .5 (or
$500 per ton). These results hold true for specific feasibility ranges as we showed in Section 3.6.
For resources 3 and 4, representing the market and demand limits, the dual prices are both zero,
which indicates that their associated resources are abundant. Hence, their worth per unit is zero.

Economic Interpretation of Dual Constraints
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The dual constraints can be interpreted by using Formula 2 in Section 4.2.4, which
states that at any primal iteration,

_ (cht-hand side c-f) B (Right-hand side 0[)
dual constraint j dual constraint j

Obijective coefficient of x;

m
= D ayy — ¢
i=1
We use dimensional analysis once again to interpret this equation. The revenue per
unit, ¢;, of activity j is in dollars per unit. Hence, for consistency, the quanuty Ea‘=1"§f Vi
must also be in dollars per unit. Next, because ¢; represents revenue, the quantity
2?__1&;‘,-}5-, which appears in the equation with an opposite sign, must represent cost.

Thus we have

= M ( usage of resource i cost per unit

$cﬂst:2aﬁy,=2( 8e! X per e

= & \ per unit of achwvity | of resource i

The conclusion here is that the dual variable y, represents the imputed cost per unit of
5 " " ] s

resource i, and we can think of the quantity 2 ;11"-' ;yi as the imputed cost of all the re-

sources needed to produce one unit of activity J.

In Section 3.6, we referred to the quantty (Ei':la”yi - c_,-} as 1he reduced vose
of activity j. The maximization optimality condition of the simplex method says that
an increase in the level of an unused (nonbasic) activity j can improve revenue only 1f
its reduced cost is negative. In terms of the preceding interpretation, this condition

states that

Imputed cost of '
resources used by (

Revenue per unit)

. L of activity j
one unit of activity j

The maximization optimality condition thus says that it is economically advanta-
geous to increase an activity to a positive level if its unit revenue exceeds its unit im-

puted cost.

A L.
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POSSIBLE QUESTIONS
PART - A (20 x 1 =20 Marks)
(Question Nos. 1 to 20 Online Examinations)

PART-B (5 x 2 =10 Marks)
Answer all the questions
Write the statement of Fundamental theorem of Duality.
Write the statement of Existence theorem.
Write the statement of complementary slackness theorem.
Define unbounded solution.
What are the conditions to be followed to convert the primal problem which is of
maximization type to dual problem?

ko E

PART-C (5 x 6 =30 Marks)
Answer all the questions
1. Explain the guidelines to construct the dual problem.
2. Write the dual of the following primal LPP.
Maximize F = X1 + 2x2 + X3
Subject to 2x; + X2 —x3 < 2
-2X1 + X2 -5X3 = -6
AX1+ X2+ X3< 6
and x1, X2, X3 =0
3. Construct the dual of the LPP.
Minimize Z = 4x; + 6x2 + 18x3
Subject to X1 + 3x2 > 3
X2+ 2X3=5
and x1, X2, X3 =0
4. Write the dual of the following primal LPP.
Minimize Z = 4x1 + 5%z - 3X3
Subjectto X1 + X2 + X3 = 22
3X1 + 5X2 - 2X3 < 65
X1+ 7Xo + 4x3 > 120
x1 = 0, X2 = 0 and x3 unrestricted.
5. Express the dual of the following primal LPP.
Maximize Z = 6x1 + 6X2 + X3 +7X4 + 5X5
Subject to 3x1 + 7X2 + 8X3 +5Xa + X5 = 2
2X1 + X2 +3X4 + 9OX5 = 6
X1, X2, X3, X4 = 0 and xs unrestricted.
6. Write down the dual of the following LPP and solve it.
Maximize Z = 4x1 + 2x»
Subject to -x1 - x2 < -3
-X1+ X2 = -2
and X1, X2 > 0
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7. Prove using duality theorem that the following linear program is feasible but has no
optimal solution.
Minimize Z = X1 - X2 + X3
Subjectto x1-x3=>4
X1-X2+2X3>3
and X1, X2, X3 =0
8. Write the procedure for dual simplex method.
9. Using dual simplex method solve the LPP.
Minimize Z = 2x1 + X2
Subject to 3x1 + X2 =3
41+ 3X2 =6
X1+2X2 >3
and X1, X2 >0
10. Use dual simplex method to solve the LPP.
Maximize Z = -3x1 -2X2
Subjectto x1+x2>1
X1+X2<7
X1+ 2X2 > 10
X2 <3
and X1, X2 >0
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UNIT-111

SYLLABUS

Transportation Problem: Definition of the Transportation model — Nontraditional Transportation
model — The Transportation Algorithm: Determination of the Starting Solution-Northwest —
corner method, Least — corner method, VVogel approximation method- Iterative Computations of
the Transportation Algorithm.

Transportation Problem

The transportation model is a special class of linear programs that deals with
shipping a commodity from sources (e.g., factories) to destinations (e.., warehouses). The
objective is to determine the shipping schedule that minimizes the total shipping cost while
satisfying supply and demand limits. The application of the transportation model can be
extended to other areas of operation, including inventory control, employment scheduling
and personnel assignment.

Sources Destinations
iy b'l.
Units of b Units of
supply 2 2 demand
a by

Representation of the transportation model with nodes and arcs

DEFINITION OF THE TRANSPORTATION MODEL

The general problem is represented by the network There are m

sources and n destinations, each represented by a mode. The arcs represent the
routes linking the sources and the destinations. Arc (i, j) joining source i to destina-
tion j carries two pieces of information: the transportation cost per unit, c;;, and the
amount shipped, x;. The amount of supply at source i is a; and the amount of de-
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mand at destination j is b;. The objective of the model is to determine the unknowns

x;; that will minimize the total transportation cost while satisfying all the supply and

demand restrictions.

Example

MG Auto has three plants in Los Angeles, Detroit, and New Orleans, and two major distribution
centers in Denver and Miami. The capacities of the three plants during the next quarter are 1000,
1500, and 1200 cars. The quarterly demands at the two distribution centers are 2300 and 1400
cars. The mileage chart between the plants and the distribution centers is given in Table

The trucking company in charge of transporting the cars charges 8 cents per mile per car.

The transportation costs per car on the different routes, rounded to the closest dollar, are given

The LP model of the problem is given as

TABLE 5.1 Mileage Chart

Denver Miami

Los Angeles 1004 2690
Detroit 1250 1350
MNew Orleans 1275 R50

TABLE 5.2 Transportation Cost per Car

Denver (1) Miami (2)

Los Angeles (1) $80 $215
Detroit (2) £100 $108
New Orleans (3) 107 £68
subject to
n ¥ X = 1000 (Los Angeles)
T + xp = 1500 (Detroit)

+ X3 + x = 1200 (New Oreleans)
X + xy + X3 = 2300 (Denver)
Xy + Xy + xy = 1400 (Miami)
X =0,i=1,23,j=1,2

These constraints are all equations because the total supply from the three sources {= 1000 +

1500 + 1200 = 3700 cars) equals the total demand at t inati _
3700 cars). nd at the two destinations (= 2300 + 1400 =
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The LP model can be solved by the simplex method. However, with the special structure of

the constraints we can solve the problem more conveni i i
1 niently using the transpo
shown in Table 5.3. e riation ableau

TABLES5.3 MG Transportation Model

Denver Miami Supply

Los Angeles | 80| 215
i X1z 1000
Detroit 100 108
| I | Xp 1500
Mew Orleans 102 68
| *3 2 ‘ 1200
Demand 2300 1400

FIGURE 5.2

Optimal solution of MG Auto model

The optimal solution in Figure 5.2 calls for shipping 1000 cars from

Los Angeles to Denver, 1300 from Detroit to Denver, 200 from Detroit to Miami, and 1200 from

New Orleans to Miami. The associated minimum transportation cost is computed as 1000 x $80 +

1300 = $100 + 200 = $108 + 1200 x $68 = $313,200.
Balancing the Transportation Model. The transportation algorithm is based on the
assumption that the model is balanced, meaning that the total demand equals the total
supply. If the model is unbalanced, we can always add a dummy source or a dummy
destination to restore balance.

Example

In the MG model, suppose that the Detroit plant capacity is 1300 cars (instead of 1500). The total
supply (= 3500 cars) is less than the total demand (= 3700 cars), meaning that part of the de-

mand at Denver and Miami will not be satisfied.
Because the demand exceeds the supply, a dummy source (plant) with a capacity of 200 cars

(= 3700 — 3500) is added to balance the transportation model. The unit transportation costs
from the dummy plant to the two destinations are zero because the plant does not exist.

Table 5.4 pives the balanced model together with its optimum solution. The solution shows
that the dummy plant ships 200 cars to Miami, which means that Miami will be 200 cars short of
satisfying its demand of 1400 cars.
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We can make sure that a specific destination does not experience shortage by assigning a
very high unit transportation cost from the dummy source to that destination. For example, a
penalty of $1000 in the dummy-Miami cell will prevent shortage at Miami. Of course, we cannot
use this “trick™ with all the destinations, because shortage must occur somewhere in the system.

The case where the supply exceeds the demand can be demonstrated by assunung that the
demand at Denver is 1900 cars only. In this case, we need to add a dummy distribution center to
“receive” the surplus supply. Again, the unit transportation costs to the dummy distribution cen-
ter are zero, unless we require a factory to “ship out” completely. In this case, we must assign a
high unit transportation cost from the designated factory to the dummy destination.

TABLE 5.4 MG Mode! with Dummy Plant

Denver Miami Supply

80 215
Los Angeles
| 1000 I 1000
100 108
Detroit
1300 1300
102 68
New Orleans
Dummy Plant

Demand

TABLES.S MG Model with Dummy Destination

Denver Miami Dummy
80 215 l_t;'.a 33T be s
Los Angeles
1000 1060
100 108 |
Detroit
900 200 1500
102 68
New Orleans
11200 : 1200
Demand 1900 1400 400

NONTRADITIONAL TRANSPORTATION MODELS

The application of the transportation model is not limited to transporting commodities
between geographical sources and destinations. This section presents two applications
in the areas of production-inventory control and tool sharpening service.

Example (Production-lnventory Control)
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Boralis manufactures backpacks for serious hikers. The demand for its product occurs during
March to June of each vear. Boralis estimates the demand for the four months to be 100, 200,
180, and 300 units, respectively. The company uses part-titne labor to manufacture the backpacks
and, accordingly, its production capacity varies monthly. It is estimated that Boralis can produce
50, 180, 280, and 270 units in March through June. Because the production capacity and demand
for the different months do not match, a current month's demand may be satistied in one of
three ways.

1. Current month’s production.

2. Surplus production in an earlier month.

3. Surplus production in a later month (backordering).

In the first case, the production cost per backpack is $40. The second case incurs an addi-
tional holding cost of $.50 per backpack per month. In the third case, an additional penalty cost
of $2.00 per backpack is incurred for each month delay. Boralis wishes to determine the optimal
production schedule for the four months.

The situation can be modeled as a transportation model by recognizing the following paral-
lels between the elements of the production-inventory problem and the transportation model:

Transportation Production-inventory

1. Source i 1. Production period i

2. Destination | 2. Demand period j

3. Supply amount at source { 3. Production capacity of period i

4. Demand at destination j 4. Demand for period |

5. Unit transportation cost from source i 5. Unit cost (production + inventory + penalty) in period i
to destination j for period j

The resulting transportation model is given in Table 5.12.

TABLE 5.12 Transportation Model for Example 5.2-1

1 2 3 4 Capacity
| $40.00 $40.50 £41.00 §41.50 20
2 $42.00 $40.00 £40.50 $41.00 180
3 $44.00 $42.00 $40.00 $40.50 280
4 $46.00 $44.00 £42.00 $40.00 270
Demand 100 200 150 300
FIGURE 5.2

Optimal solution of the production-inventory model

The unit “transportation” cost from period i 10 period j is computed as

Production cost in i,i = j o
Cj = Production cost in i + holding cost fmm.t to .I'.I < ;
Production cost in i + penaty cost fromitoj,i = |

For example,
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l:11 L $4ﬂ.ﬂﬂ

Ca4 = $40.00 + ($.50 + $.50) = $£41.00

Cy1 = $£40.00 + (52(}& + $2ﬂﬂ + $20CI] = $4ED{]
The optimal solution is summarized in Figure 5.3.The dashed }ings indicate backor.der?ng,
the dotted lines indicate production for a future period, and the solid lines show production in a

period for itself. The total cost is $31,455.
Example (Tool Sharpening)

bRt |

_sized saw mill. The mill prepares different types of wood

ding to a weekly schedule. Depending on the type of
to day according to the follow-

Arkansas Pacific operates a medium
that range from soft pine to hard oak accor )
wood being milled, the demand for sharp blades varies from day

ing 1-week (7-day) data:

Day Mon. The. Wed. Thu. Fri. Sat. Sun.

Demand (blades) 24 12 14 20 18 14 22

The mill can satisfy the daily demand in the following manner:

1. Buy new blades at the cost of §12 a blade.
2. Use an overnight sharpening service at the cost of $6 a blade.
3. Use a slow 2-day sharpening service at the cost of $3 a blade.

The situation can be represented as a transportation model with eight sources and seven
destinations. The destinations represent the 7 days of the week. The sources of the model are
defined as follows: Source 1 corresponds to buying new blades, which, in the extreme case, can
provide sufficient supply to cover the demand for all 7 days (=24 + 12 + 14 + 20 + 18 +
14 + 22 = 124). Sources 2 to 8 correspond to the 7 days of the week. The amount of supply for

each of these sources equals the number of used blades at the end of the associated day. For ex-
ample, source 2 (i.€., Monday) will have a supply of used blades equal to the demand for Mon-

day. The unit “transportation cost” for the model is $12, $6, or $3, depending on whether the blade
1s supplied from new blades, overnight sharpening, or 2-day sharpening. Notice that the overnight
service means that used blades sent at the end of day i will be available for use at the start of day
i + 1 or day i + 2, because the slow 2-day service will not be available until the start of day
i + 3. The “disposal” column is a dummy destination needed to balance the model. The com-
plete model and its solution are given in Table 5.13.

TABLE 513  Tool Sharpening Problem Expressed as a Transportation Model

1 2 3 4 5 6 7 8
Mon. Tue. Wed. Thu. Fri. Sat. Sun. Disposal
312 12 $12 $12 f12 512 $12 30
1-New
24 r 98 124
M $6 %6 53 3 $3 5] $0
2-Mon, A
Sy 10 8 6 24
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3-Tue.
§ 12
4.Wed.
] 14
$6 $3 $0
5-Thu.
20
$0
6-Fri.
4 | 18
$0
7-Sat.
14
$0
8-Sun.
: i BRIIPLASH (e i PR 2 2
24 12 14 20 18 14

22

The problem has alternative optima at a cost of $840 (file toraEx5.2-2.txt). The following table
summarizes one such solution.

Number of sharp blades (Target day)

Pesioy New Overnight 2day ~ Disposal
Mon. | 24 (Mon.) 10(Tue.) + 8(Wed,) 6 (Tl'fu.} 0
Tues. 2 (Tue.) 6 (Wed.) 6 (Fri.) g
Wed. 0 14 (Thu.) 0

Thu. 0 12 (Fri) 8 (Sun.) 0
Fri. 0 14 (Sat.) 0 :n]
Sat. 0 14 (Sun.) 0 ”
Sun. 0 0 0

Remarks. The model in Table 5.13 is suitable only for the first week :f .oplet:ati:::sl]e;:s:h::
i [ he days of the week, In the §

not take into account the rotational nature of t the se tl .
:::esk ’s days can act as sources for next week’s demand. One way to handle this situation 1: to as
sume that the very first week of operation starts with all new l:gladf:s for each d_ay. lertr:e tdan OZE
we use a model consisting of exactly 7 sources and 7 destinations cc]:;rcs?o:gtgis t?naﬁﬂna“jr]; °
i imi Table 5.13 less source “New™ a -

the week. The new model will bﬂ_ﬁjl’_ﬂlk.ﬂ'- tu1 ble 5.13 less source “New” and aes e e
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posal” Also,only diagonal cells Will bE DIOCKEX (Uit Luse = ey »oe »weme

unit cost of either $3.00 or $6.00. For example, the unit cost for cell (Sat.,Mon.) is $6.00 and that
for cells (Sat., Tue.), (Sat., Wed.), (Sat., Thu.), and (Sat., Fri.) is $3.00. The table below gives the
solution costing $372. As expected, the optimum solution will always use the 2-day service only.
The problem has alternative optima (see file toraEx5.2-2a.txt).

Weeki + 1

Week & Mon. Tue. Wed. Thue Fri. Sar. Sun. Total
Mon. i 18 24

Tue. B 4 12

Wed. 12 2 14

Thu. 8 12 20

Fri. 4 14 18

Sat. 14 14

Sun. 10 12 22

Total 24 12 14 20 18 14 22

THE TRANSPORTATION ALGORITHM

The transportation algorithm follows the exact steps of the simplex method (Chapter 3).
However, instead of using the regular simplex tableau, we take advantage of the spe-
cial structure of the transportation model to organize the computations in a more con-
venient form.

The special transportation aigoritim way ubvabpasaashae when_hand compu-
tations were the norm and the shortcuis were warranted. Today, we have powerful
computer codes that can solve a transportation model of any size as a regular LP* Nev-
ertheless, the transportation algorithm, aside from its historical significance, does pro-
vide insight into the use of the theoretical primal-dual relationships (introduced in
Section 4.2) to achieve a practical end result, that of improving hand computations. The
exercise is theoretically intriguing.

The details of the algorithm are explained using the following numeric example.

Prepared by A. Henna Shenofer, Asst Prof, Department of Mathematics, KAHE Page 8/22




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IIIB.Sc MATHEMATICS COURSE NAME: Linear Programming
COURSE CODE: 16MMU504B UNIT: III(Transportation Problem) BATCH-2016-2019

TABLE 5.16 SunRay Transportation Model

Mill
1 2 3 4 Supply
10 2 20 11
1
Xy X3 I Xy 15
12 7 9 20
Silo 2
X E5)] in X3y 25
4 14 16 18
3
X3 In Iy X34 10
Demand 5 15 15 15

Example (SunRay Transport)

SunRay Transport Company ships truckloads of grain from three silos to four mills. The supply
(in truckloads) and the demand (also in truckloads) together with the unit transportation costs
per truckload on the different routes are summarized in the transportation model in Table 5.16.
The unit transportation costs, ¢;;, (shown in the northeast corner of each box) are in hundreds of
dollars. The model seeks the minimum-cost shipping schedule x; between silo i and mill j

(i=1,2,3;j=1,2,3,4).

Summary of the Transportation Algorithm. The steps of the transportation algorithm
are exact parallels of the simplex algorithm.

Step 1. Determine a starting basic feasible solution, and go to step 2.

Step 2. Use the optimality condition of the simplex method to determine the
entering variable from among all the nonbasic variables. If the optimality
condition is satisfied, stop. Otherwise, go to step 3.

Step 3. Use the feasibility condition of the simplex method to determine the leaving
variable from among all the current basic variables, and find the new basic so-
lution. Return to step 2.

Determination of the Starting Solution

A general transportation model with m sources and n destinations has m + n constraint

equations, one for each source and each destination. However, because the transporta-

tion model is always balanced (sum of the supply = sum of the demand), one of these
equations is redundant. Thus, the model has m + n — 1 independent constraint equa-
tions, which means that the starting basic solution consists of m + n — 1 basic variables.

Thus, in Example 5.3-1, the starting solution has 3 + 4 — 1 = 6 basic variables.

The special structure of the transportation problem allows securing a nonartifi-
cial starting basic solution using one of three methods:
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1. Northwest-corner method
2. Least-cost method
3. Vogel approximation method

The three methods differ in the “quality” of the starting basic solution they produce, in
the sense that a better starting solution yields a smaller objective value. In general,
though not always, the Vogel method yields the best starting basic solution, and the
northwest-corner method yields the worst. The tradeoff is that the northwest-corner

method involves the least amount of computations.

Northwest-Corner Method. The method starts at the northwest-corner cell (route) of
the tableau (variable xy;).

Step 1. Allocate as much as possible to the selected cell, and adjust the associated
amounts of supply and demand by subtracting the allocated amount.

Step2. Cross out the row or column with zero supply or dewand to indicate that no
further assignments can be made in that row or column. If both a row and a

column net to zero simultaneously, cross out one only, and leave a zero sup-
ply (demand) in the uncrossed-out Tow (column).
Step 3. If exactly one row or column is left uncrossed out, stop. Otherwise, move o

the cell to the right if a column has just been crossed out or below if a row has
been crossed out. Go to step 1.

Example 5.3-2

The application of the procedure to the model of Example 5.3-1 gives the starting basic solution

in Table 5.17. The arrows show the order in which the allocated amounts are generated.

The starting basic solution is
Xy = 5 x2 = 10

Xn = 5,xu=15,x2,. =5
Iyzlﬂ
The associated cost of the schedule is
z=5xm+1ﬂx2+5x7+15x?+5x20+10x13=$520

Least-Cost Method. The least-cost method finds a better starting solution by
concentrating on the cheapest routes. The method assigns as much as possible to the
cell with the smallest unit cost (ties are broken arbitrarily). Next, the satisfied row or
column is crossed out and the amounts of supply and demand are adjusted accordingly.
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TABLE 5.17 Northwest-Corner Starting Solution

| : : N Supply
IDL ? 20 11
! 5 ‘10 15
|
2y 7 . _
]
4 14 TR
3 05 | 10
Demand 5 I — 15

If both a row and a column are satisfied simultaneously, only one is crossed out, the
same as in the northwest-corner method. Next, look for the uncrossed-out cell with
the smallest unit cost and repeat the process until exactly one row or column is left
uncrossed out.

Example 5.3-3

The least-cost method is applied to Example 5.3-1 in the following manner:

L. Cell (1, 2) has the least unit cost in the tableau (= $2). The most that can be shipped
through (1, 2) is x,; = 15 truckloads, which happens to satisfy both row 1 and column 2 si-
multaneously. We arbitrarily cross out column 2 and adjust the supply in row 1 to 0.

2. Cell (3,1) has the smallest uncrossed-out unit cost (= $4). Assign x3; = 5, and cross out
column 1 because it is satisfied, and adjust the demand of row 3t0 10 ~ 5 = 5 truckloads.

3. Continuing in the same manner, we successively assign 15 truckloads to cell (2, 3),
0 truckloads to cell (1, 4), 5 truckloads to cell (3, 4), and 10 wtuckloads to cell (2, 4)

The resulting starting solution is summarized in Table 5.18. The arrows show the order in
which the allocations are made. The starting solution (consisting of 6 basic variables) is
xy2 = 15, x4 = 0, X33 = 15, xp4 = 10, x3; = 3, x5, = 5. The associated objective value is

z=15X24+0X11+15X9+10xX20+5x4+5X18 = §475

The quality of the least-cost starting solution is better than that of the northwest-

corner method (Example 5.3-2) because it yields a smaller value of z ($475 versus $520
in the northwest-corner method).

Vogel Approximation Method (VAM). VAM is an improved version of the least-cost
method that generally, but not always, produces better starting solutions.
Step 1. For each row (column), determine a penalty measure by subtracting the

smallest unit cost element in the row (column) from the next smallest unit
cost element in the same row (column).
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TABLE 5.18 Least-Cost Starting Solution

Demand

2 3 4

(start)

1 Supply

15

12

/

4

sz

5

3 19

Step 2.

Step 3.

Identify the row or column with the largest penalty. Break ties arbitrarily.
Allocate as much as possible to the variable with the least unit cost in the se-
lected row or column. Adjust the supply and demand, and cross out the satis-
fied row or column. If a row and a column are satisfied simultaneously, only
one of the two is crossed out, and the remaining row (column) is assigned
zero supply (demand).

(a) If exactly one row or column with zero supply or demand remains un-
crossed out, stop.

(b) If one row (column) with positive supply (demand) remains uncrossed"
out, determine the basic variables in the row (column) by the least-cost
method. Stop.

(¢) If all the uncrossed out rows and columns have (remaining) zero supply
and demand, determine the zero basic variables by the least-cost
method. Stop.

(d) Otherwise, go to step 1.

Example 5.3-4

VAM is applied to Example 5.3-1. Table 5.19
Because row 3 has the largest penalty (=

computes the first set of penalties.
10) and cell (3, 1) has the smallest unit cost in that

row, the amount § is assigned to x3;. Column 1 is now satisfied and must be crossed out. Next,
new penalties are recomputed as in Table 5.20.

Table 5.20 shows that row 1 has the highest penaity (=

¥j. Hence, we assop dhe anerimae

amount possible to cell (1,2), which yields x;; = 15 and simultaneously satisfies both row 1 and

column 2.

Continuing in the same manner. row 2 will produce the highest penalty (=

sign Xy =

it has a positive supply of 15 uni

ASSIEN X4

adjust the supply in row 1 to zero.

11), and we as-
15. which crosses out column 3 and leaves 10 units in row 2. Only column 4 is left, and’
ts. Applying the least-cost method to that column, we successively
_The associated objective value for this solution is

We arbitrarily cross out column 2 and

= ﬂ, Xy — 5, and Xgg = 10 (\’Eﬂf}'!)

z=15x2+ﬂx11+15><9+1[ix2(}+5><4+5><18=$4?5
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This solution happens to have the same objective value as in the least-cost method.

TABLE 5.19 Row and Column Penalties in VAM

1 2 3 4 Row penalty
10 2 20 11 W0W-2=8
1 15
12 7 9 20 9=7=12
2 25 .
4 14 16 8 14 — 4 =30
3 5 _ 10
5 15 15 15
Column penalty 10 - 4 T—1 16 -9 18 = 11
-6 -5 =7 -7

TABLE 5.20 First Assignment in VAM (xy = 3)

1 2 3 4 Row penalty

1 ~rely 2 20 11 9:

15
2 7 9 20 2

25
14 16 18 2

3 10

15 15
Column penalty —_ 5 7 7

Iterative Computations of the Transportation Algorithm

After determining the starting solution (using any of the three methods ),

we use the following algorithm to determine the optimum solution:

Step 1. Use the simplex optimality condition to determine the entering variable as the
current nonbasic variable that can improve the solution. If the optimality con-
dition is satisfied, stop. Otherwise, go to step 2. -

Step 2. Determine the leaving variable using the simplex feasibility condition. Change
the basis, and return to step 1.

The optimality and feasibility conditions do not involve the familiar row opera-
tions used in the simplex method. Instead, the special structure of the transportation
model allows simpler computations.

Example 5.3-5

Solve the transportation model of Example 5.3-1, starting with the northwest-corner solution.
Table 5.21 gives the northwest-corner starting solution as determined in Table 5.17, Ex-

ample 5.3-2.

e

Prepared by A. Henna Shenofer, Asst Prof, Department of Mathematics, KAHE Page 13/22




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IIIB.Sc MATHEMATICS COURSE NAME: Linear Programming
COURSE CODE: 16MMU504B UNIT: III(Transportation Problem) BATCH-2016-2019

The determination of the entering variable Irom among INE CUITENt NONVASIL Valiaucs
(those that are not part of the starting basic solution) is done by compulting "h[e nnnhas!lc coeffi-
cients in the z-row, using the method of multipliers (which, as we show in Section 5.3.4, is rooted

in LP duality theory). _ N o _
In the method of multipliers, we associate the MUILPIETS & N vj Wil uw aus’ s

of the transportation tableau. For each current basic variable x;;, these multipliers are shown in
Section 5.3.4 to satisfy the following equations:

u; + v; = ¢y, for each basic x;;

As Table 5.21 shows, the starting solution has 6 basic variables, which leads to 6 Fquatic_ms in 7
unknowns. To solve these equations, the method of multipliers calls for arbitrarily sefting any
u; = 0, and then solving for the remaining variables as shown below.

Basic variable (r, v) Equation Solution
Xy wy vy =10 Setw, = 00— v, = 10
X2 I£J+V}=2 ﬂ|=ﬂ—f'll’1'='2
X33 g + vy =7 vy =2 —uy =235
Xay Uy + ¥y =9 by = 5wy =4
X4 Uy + vy = 20 wy = 5—=wy = 15
Xag [-!3+V|,=|.8 1‘¢=15—}H3:‘3

To summarize, we have

uy =0,u; =5 u,=3

v =10,v, = 2,05 = 4, v = 15
Next, we use u; and v; to evaluate the nonbasic variables by computing

u; + v; — ¢, for each nonbasic x;;

TABLE 5.21 Starting [teration

1 2 3 4 Supply

[ 10 2 20/ 11

! 5 10 15
12 7 9 20

2 5 15 | s 25
B 4 14 16 18

3 | 10 10

Demand 5 15 15 15

The results of these evaluations are shown in the following table:

MNonbasic variable w + v =
Ty wtvi—g;=0+4-20= 16
X4 My tvs—cy=0+15~-11=4
%31 My tyy—ey=23+10—-12=3
Xy ey vy —cy=3+10-~-4=9
X U+ v —cp=3+2-14= -9
Iy Uyt vi—cp=3+4-16= -9
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The preceding information, together with the fact that u; + v; — ¢;; = 0 for each basic x;;, is
actually equivalent to computing the z-row of the simplex tableau, as the following summary shows.

Basic Xy Xy X3 Xy X5 tn In X

: 0 o 4 3 - 0 0 =89 -9 -9 0

Because the transportation model seeks to minimize cost, the entering variable is the one hav-
ing the most positive coefficient in the z-row. Thus, x5, is the entering variable.

The preceding computations are usually done directly on the transportation tableau as
shown in Table 5.22, meaning that it is not necessary really to write the (u, v)-equations explicitly.
Instead, we start by setting 1, = 0.° Then we can compute the v-values of all the columns that
have basic variables in row 1—namely, v; and v,. Next, we compute u; based on the (i, v)-equation
of basic x3,. Now, given u,, we can compute vy and v,. Finally, we determine uy using the basic
equation of xs33. Once all the &'s and v's have been deterimined, we can evaluate the nonbasic
variables by computing ; + v; — ¢; for each nonbasic x;;. These evaluations are shown in
Table 5.22 in the boxed southeast corner of each cell.

Having identified x4, as the entering variable, we need to determine the leaving variable,
Remember that if x5, enters the solution to become basic, one of the current basic variables must
leave as nonbasic (at zero level).

TABLE 5.22 Tieration 1 Calculations

COURSE NAME: Linear Programming
BATCH-2016-2019

m=l0  wm=2 v =4 ve=15  Supply
H 2 20 i1
u =0 5 10 15
—16 4
12 7 9 20
iy = 5 5 15 5 25
(3
4 14 16 18
uy =3 — 10 0
29’ -9 -9
Demand 5 15 15 15

The selection of x3,

because it reduces the total shipping cost. _ st th
route? Observe in Table 5.22 that if route (3, 1) ships 6 umts (ie., xq

value of @ is determined based on two conditions.

1. Supply limits and demand requirements remain satisfied.

2. Shipments through all routes remain nonnegative.

These two conditions determine the maximum value

i t starts an
lowing manner. First, construct a closed loop tha i
o= E - i - sacmsame tad havivantal and v.r-?rﬂr'.‘ﬂ'.f SEEmﬂI'ltE on

Prepared by A. Henna Shenofer, Asst Prof, Department of Mathematics, KAHE

as the entering variable means that we want to ship through this route

What is the most that we can ship through ths:: new
= @), then the maximum

of & and the leaving variable in the fol-
d ends at the entering variable cell, (3,
ly (no diagonals are al-

Page 15/22




KARPAGAM ACADEMY OF HIGHER EDUCATION

o CLASS: IIIB.Sc MATHEMATICS COURSE NAME: Linear Programming
URSE CODE: 16MMU504B UNIT: III(Transportation Problem) BATCH-2016-2019

1}. ‘The IQDP CONSISTS (1 COIFIELIELL FILTF LS IMBSE tapsns = = =m=oos = g L. ]
Jowed).” Except for the entering vanable cell, each corner of the closed loop must coincide with

a basic variable. Table 5.23 shows the loop for x;. Exactly one loop exists for a given entering

variable.
Next, we assign the amount  to the entering vaifatnc voll (3, 1 Fow she synnlyv and demand

limits to remain satisfied, we must alternate between subtracting and adding the amount & at the
successive corners of the loop as shown in Table 5.23 (it is immaterial whether the loop is traced
in a clockwise or counterclockwise direction). For 8 = 0, the new values of the variables then re-
main nonnegative if

xp= 5-6=0

Xy = 5—-0=10
ru=10-0=0

The corresponding maximum value of 8 is 5, which occurs when both xy; and xj, reach zero level.
Because only one current basic variable must leave the basic solution, we can choose either xy,

Or X, as the leaving variable. We arbitrarily choose xy; to leave the solution.
‘I'he seleclion o1 X3y (= Jj as dls vimdariog namiahla and v, a2 the leaving varia ble requires

adjusting the values of the basic variables at the corners of the closed loop as Table 5.24
shows. Because each unit shipped through route (3, 1) reduces the shipping cost by
$9 (= u3 + v, = c31), the total cost associated with the new schedule is $9 X 5 = $45 less

than in the previous schedule. Thus, the new cost is $520 — $45 = $475.

TABLE 5.23 Determination of Closed Loop for x4

vy =10 v =12 vy = 4 vy =15 Supply
10 2 20 11
w =0 5 - Q=t 10+ 0 15
et i EE A -16 [ 4
: 12 7 9 20
uy = 5 : § — ) e 15 i 5+ © 25
Pl s eEE g A
* 4 14 16 i i8
=3 | S ke -0 | 10
R [ 9 [—9 [ —o [3
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TABLE 5.24 [lteration 2 Calculations

vy =1 v =2 Supply
10 2
uy =10 15— 15
| o iz A
12 P T
;= 5 _ 0+ 0= 25
| —6 |
4 14
iy =3 5 5 10
-9 -9
Demand s 15 15 15
TABLE 5.25 [teration 3 Calculations (Optimal)
‘..l! = "_'3 |-"1 = 2 VJ =4 Wy = 11 Suppl}f
10 2 20 11
=0 5 10 15
=13 —16
12 7 9 20
i = 5 10 15 25
—14 —4
4 14 16 18
wy =7 5 5 10
1 =5 | -5
Demand 5 15 15 15

(iven the new basic solution, we repeat the computation of the multipliers « and v, as Table 5.24
shows, The entering variable is xy4. The closed loop shows that x4y = 10 and that the leaving

variable is x,.

The new solution, shown in Table 525, costs $4 X 10 = $40 less than the preceding one,
thus yielding the new cost $475 — $40 = $435. The new u; + w; — ¢;; are now negative for all
nonbasic x;. Thus, the solution in Table 5.25 is optimal.

The following table summarizes the optimum solution.
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From silo To mill Number of truckloads

1 2 h)
1 4 10
2 2 10
2 3 15
3 I 5
3 4 5

Optimal cost = $433
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POSSIBLE QUESTIONS
PART - A (20 x 1 =20 Marks)
(Question Nos. 1 to 20 Online Examinations)

PART-B (5 x 2 =10 Marks)
Answer all the questions

Define unbalanced transportation problem.
Define basic feasible solution.
Define balanced transportation problem.
Write the method for solving transportation problem using North west corner Rule.
Explain the algorithm to determine the optimum solution using iterative computations of
the transportation algorithm.

PART-C (5 x 6 =30 Marks)

gk~ owpneE

Answer all the questions
1. Find the optimal solution to the following transportation problem.

1 2 3 4 Supply
I 21 16 25 13 11
1 17 18 14 23 13
i 32 27 18 41 19
Demand 6 10 12 15
2. Solve the transportation problem.
To Supply
1 2 3 4 6
From 4 3 2 0 8
0 2 2 1 10
Demand 4 6 8 6

3. Solve the transportation problem.

Distribution Centers

D1 D2 D3 D4 Available
11 13 17 14 250
Origin 16 18 14 10 300
21 24 13 10 400
Demand 200 225 275 250

Prepared by A. Henna Shenofer, Asst Prof, Department of Mathematics, KAHE
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4. Find the initial basic feasible solution by using North-West Corner Rule and Least cost entry
method

W—
F Factory
l Wi We W W Capacity
F1 19 30 50 10 7
() 70 30 40 60 9
Fs 40 8 70 20 18
Warehouse | 5 g 7 g4 |34
Requirement

5. Determine an initial basic feasible solution to the following transportation problem

using Vogel’s approximation method.

I ] 11 v Supply
A 13 11 15 20 2000
From B 17 14 12 13 6000
C 18 18 15 12 7000
Demand 3000 3000 4000 5000

6. Determine basic feasible solution to the following transportation problem using North
west corner rule.
Sink
A B C D E Supply

P 2 11 10 3 ¢ 4
Origin Q 1 4 7 2 1 8
R 3 9 4 8 12 9

Demand 3 3 4 5 6
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7. Find the non-degenerate basic feasible solution for the following transportation problem
using
(1 North west corner rule
(i) Least cost method
(iif)  Vogel’s approximation method

To Supply
10 20 ) 7 10
13 9 12 8 20
From| 4 5 7 9 30
14 7 1 0 40
3 12 5 19 50

Demand 60 60 20 10

8. Solve the transportation problem with unit transportation costs in rupees, demands and
supplies as given below:
Destination
D D> Ds Supply (units)
A 5 6 9 100

B 3 5 10 75

Origin C 6 7 6 50

D 6 4 10 75

Demand (units) 70 80 120
9. Solve the following transportation problem to maximize profit.
Profit (Rs) / Unit
Destination

A B C D Supply

1 4 19 22 11 100

Source 2 0 9 14 14 30

3 6 6 16 14 70

Demand 40 20 60 30

Prepared by A. Henna Shenofer, Asst Prof, Department of Mathematics, KAHE Page 21/22




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IIIB.Sc MATHEMATICS COURSE NAME: Linear Programming
COURSE CODE: 16MMU504B UNIT: III(Transportation Problem) BATCH-2016-2019

10. Solve the following transportation problem to maximize profit.

Destination
A B C D Supply
1 15 51 42 33 23
Source 2 80 42 26 81 44
3 90 40 66 60 33

Demand 23 31 16 30 100
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UNIT-IV

SYLLABUS

The Assignment Model: Introduction to Assignment model- Mathematical Formulation of

Assignment model- Hungarian method for solving assignment problem —Simplex Explanation of
the Hungarian method.

Introduction to Assignment model

The assignment problem is a special type of linear programming problem where as-
signees are being assigned to perform tasks. For example, the assignees might be em-
ployees who need to be given work assignments. Assigning people to jobs is a common

application of the assignment problem. However, the assignees need not be people. They
also could be machines, or vehicles, or plants, or even time slots to be assigned tasks. The
first example below involves machines being assigned to locations, so the tasks in this

case simply involve holding a machine. A subsequent example involves plants being as-
signed products to be produced.

To fit the definition of an assignment problem, these kinds of applications need to be
formulated in a way that satisfies the following assumptions.

1. The number of assignees and the number of tasks are the same. (This number is de-
noted by n.)

Each assignee is to be assigned to exactly one task.
Each task is to be performed by exactly one assignee.
There is a cost ¢;; associated with assignee [ (i =1, 2,..., n) performing task j

ol

]

. The objective is to determine how all n assignments should be made to minimize the
total cost. ) .

Any problem satisfying all these assumptions can be solved extremely efficiently by al-

gorithms designed specifically for assignment problems.

The first three assumptions are fairly restrictive. Many potential applications do not
quite satisfy these assumptions. However, it often is possible to reformulate the problem
to make it fit. For example, dummy assignees or dummy tasks frequently can be used for

this purpose.
Mathematical Formulation of Assignment model

The general assignment model with n workers and »n jobs is represented in
Table 5.31.
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The element c;; represents the cost of assigning worker i to job j (i,) =
1,2,...,n). There is no loss of generality in assuming that the number of workers always

TABLE 5.31  Assignment Model

Jobs
| 2 . n
1 i Cj2 - Cia
€1 ‘n ver Cour 1
Worker
n | Crl Ca2 = Cor 1
i 1 1

equals the number of jobs, because we can always add fictitious workers or fictitious
jobs to satisfy this assumption.

The assignment model is actually a special case of the transportation model in
which the workers represent the sources, and the jobs represent the destinations. The
supply (demand) amount at each source (destination) exactly equals 1. The cost of
“transporting” worker i to job jis ¢;;. In effect, the assignment model can be solved di-

rectly as a regular transportation model. Nevertheless, the fact that all the supply and
demand amounts equal 1 has led to the development of a simple solution algorithm
called the Hungarian method. Although the new solution method appears totally un-
related to the transportation model, the algorithm is actually rooted in the simplex
method, just as the transportation model is.

Hungarian method for solving assignment problem

We will use two examples to present the mechanics of the new algorithm. The next sec-
tion provides a simplex-based explanation of the procedure.

Example 5.4-1

Joe Klyne’s three children, John, Karen, and Terri, want to earn some money to take care of per-
sonal expenses during a school trip to the local zoo. Mr. Klyne has chosen three chores for his
children: mowing the lawn, painting the garage door, and washing the family cars. To avoid antic-

ipated sibling competition, he asks them to submit (secret) bids for what they feel is fair pay for
each of the three chores. The understanding is that all three children will abide by their father’s
decision as to who gets which chore.

The assignment problem will be solved by the Hungarian method.

Step 1. For the original cost matrix, identify each row’s minimum, and subtract it from all the
‘entries of the row.
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TABLE5.32 Klyne's Assignment Problem

Mow Paint Wash

John %15 $10 $9
Karen 9 f15 $10
Terri 210 12 58

Step 2. For the matrix resulting from step 1, identify each column’s minimum, and subtract it
from all the entries of the column.

Step 3. Identify the optimal solution as the feasible assignment associated with the zero ele-
ments of the matrix obtained in step 2.

Let p; and g; be the minimum costs associated with row { and column j as defined in steps 1
and 2, respectively. The row minimums of step 1 are computed from the original cost matrix as
shown in Table 5.33.

Next, subtract the row minimum from each respective row to obtain the reduced matrix in
Table 5.34.

The application of step 2 yields the column minimums in Table 5.34. Subtracting these val-
ues from the respective columns, we get the reduced matrix in Table 5.35.

TABLE 5.33 Step 1 of the Hungarian Method

Mo Paint Wash Fow minimum
John 15 10 9 Py =9
Karen 9 15 10 P2 =9
Terri 10 12 8 py=8

TABLE 5.34 Step 2 of the Hungarian Method

Mow Paint Wash
John 6 | )]
Karen 0 6 1
Terri 2 4 0
Column minimum g =0 g; = 1 gy =10

i 3/10
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TABLE 5.35 Step 3 of the Hungarian Method

Mow Paini Wash
John 6 0 0
Karen 0 5 1
Terri s 3 0

The cells with underscored zero entries provide the optimum solution. This means that John

gets to paint the garage door, Karen gets 1o mow the lawn, and Terri gets to wash the family
el it il AM- Wluma ie @ 4 10 + R = $27. This amount also will always equal
CArS. LNE [OLAL CUSL 1O JVLE. Iyl 1a s« s o

(oot pr+ps)+ (@ +a+a)=(9+9+8)+(0+1+0)=32
Example 5.4-2

Suppose that the situation discussed in Example 5.4-1 is extended to four children and four
chores. Table 5.36 summarizes the cost elements of the problem.

The application of steps 1 and 2 to the matrix in Table 5.36 (using py = L,pp =7,
pr=4p=5q=04g0=04qg= 3, and g4 = 0) yields the reduced matrix in Table 5.37
RVELILY! ). _

The locations of the zero entries do not allow assigning unique chores to all the children.
For example, if we assign child 1 to chore 1, then column 1 will be eliminated, and child 3 will
not have a zero entry in the remaining three columns. This obstacle can be accounted for by
adding the following step to the procedure outlined in Example 5.4-1:

Step 2a. If no feasible assignment (with all zero entries) can be secured from steps 1 and 2,
(i) Draw the minimum number of horizontal and vertical lines in the last reduced
matrix that will cover all the zero entries.

TABLE 5.36 Assignment Model

Chore
1 2 3 4
1 | 5 $4 $6  $3
2 | 9 7 S0 $9
Child 5 1 g4 $s  $11 87
4 | 38 $7 38 §5

Prepared by A. Henna Shenofer, Asst Prof, Department of Mathematics, KAHE Page 4/10




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IIIB.Sc MATHEMATICS COURSE NAME: Linear Programming
COURSE CODE: 16MMU504B UNIT: IV(The Assignment Model) BATCH-2016-2019

TABLE 5.37 Reduced Assignment Matrix

Chore
1 2 3 4
1 0 3 2 2
L2 2 0 L] 2
4 3 2 L] 0

TABLE 538 Application of Step 2a

TABLE 5.39 Optimal Assignment

Chore
1 2 3 4
1 0 2 1 1
by 2 3 0 0 2
Child 3 0 0 3 5
4 4 2 0 0

(ii) Select the smallest uncovered entry, subtract it from every uncovered entry,
then add it to every entry at the intersection of two lines.

(iti) If no feasible assignment can be found among the resulting zero entries, repeat
step 2a. Otherwise, go to step 3 to determine the optimal assignment.

The application of step 2a to the last matrix produces the shaded cells in Table 5.38. The smallest
unshaded entry (shown in italics) equals 1. This entry is added to the bold intersection cells and
subtracted from the remaining shaded cells to produce the matrix in Table 5.39.
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The optimum solution (shown by the underscored zeros) calls for assigning child 1 to chore
1, child 2 to chore 3, child 3 to chore 2, and child 4 to chore 4. The associated optimal cost is
1+ 10 + 5 + 5 = §21. The same cost is also determined by summing the p;’s, the ¢;’s, and the
eniry that was subtracted after the shaded cells were determined—that is, (1 + 7 + 4 + 5) +
(0+0+3+0)+ (1) = $21.

simplex Explanation of the Hungarian Method

The assignment problem in which n workers are assigned to n jﬂt:'vs can be repre:s,enfed
as an LP model in the following manner: Let ¢;; be the cost of assigning worker i to job

j.and define
1, if worker i is assigned to job j
%= 10, otherwise

Then the LP model is given as

Minimize z =

n
CijXi

n
1j=1

subject to

EI”' = 1,!' = 1,2,.,.,”
=i

i
Sxi;=1,j=12,...,n
i=1

II'J,':UU[I

The optimal solution of the preceding LP model remains unrjhanged if a constant
is added to or subtracted from any row or column of the cost matrix (c;j)- To prove this
point, let p; and g; be constants subtracted from row i and column j. Thus, the cost ele-

ment ¢;; is changed to
C:j =Cj— Pi — 4

Now
= E;C.;Ii; = ZP&U} - 2;‘11;(1)

= > M eyx; — constant
L
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Because the new objective function differs from the original one by a constant, the op-
timum values of x; must be the same in both cases. The development thus shows that
steps 1 and 2 of the Hungarian method, which call for subtracting p; from row i and

then subtracting g; from column j, produce an equivalent assignment model. In this re-
gard, if a feasible solution can be found among the zero entries of the cost matrix cre-
ated by steps 1 and 2, then it must be optimum because the cost in the modified matrix
cannot be less than zero.

If the created zero entries cannot yield a feasible solution (as Example 5.4-2
demonstrates), then step 2a (dealing with the covering of the zero entries) must be ap-
plied. The validity of this procedure is again rooted in the simplex method of linear

programming and can be explained by duality theory and the complemen-

tary slackness theorem .We will not present the details of the proof here
because they are somewhat involved.

The reason (py + po + - + p,) + (g + ¢ + --- + g,) gives the optimal
objective value is that it represents the dual objective function of the assignment
model. This result can be seen through comparison with the dual objective function of

the transportation model
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POSSIBLE QUESTIONS
PART - A (20 x 1 =20 Marks)
(Question Nos. 1 to 20 Online Examinations)

PART-B (5 x 2 =10 Marks)
Answer all the questions

Write the general form of an assignment problem.

Define cost matrix.

What are the difference between the transportation problem and the assignment problem?
Define optimal solution.

Define bounded solution.

gk~ owpneE

PART-C (5 x 6 =30 Marks)
Answer all the questions

1. Write algorithm for assignment problem (Hungarian Method)

2. The assighment cost of assigning any one operator to any one machine is
given in the following table

Operator
| I i v
1 10 5 13 15
Machine 2 3 9 18 3
3 10 7 3 2
4 5 11 9 7

3. A company has four machines to do three jobs. Each job can be assigned to one and only
one machine. The cost of each job on each machine is given in the following table.

A B C D
I 18 24 28 32
I 8 13 17 19
Il 10 15 19 22

What are job assignments which will minimize the cost?
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4. Consider the problem of assigning five jobs to five persons. The assignment costs are

given as follows: Job
12 3 45
.
Al84 2 6 1
B{09 5 5 4
FromC |38 9 2 6
D43 1 0 3
E[95 8 9 5
5. Solve the assignment problem.
A B C D
I 11 17 8 16

I 9 7 12 6
Il 13 16 15 12
v 14 10 12 11

6. Explain the comparison of assignment problem with transportation model.
7. Solve the assignment problem.
Machines

Ml |\/|2 M3 M4

J1 5 7 11 6
J2 8 5 9 6

J3 4 7 10 7

Ja 10 4 8 3

8. Assign four trucks 1, 2, 3 and 4 to vacant spaces A, B, C, D, E and F so that the distance
travelled is minimized. The matrix below shows the distance.
1 2 3 4

SR

8 2 5 5

m O O W >»
I
©
o
©

(o]
w

5 4

F Q 8 7 y
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9. Find the assignment of salesmen to various districts which will yield maximum profit.
Districts
1 2 3 4

14 11 15 15

/A 16 10 14 11\
Salesmen B
C

15 15 13 12

\D 13 12 14 15/

10. Solve the assignment problem for maximization given the profit matrix (profit in rupees).

Machines
P Q R S

51 53 54 50

49 50 60 61

"

Job [B 47 50 48 50
C
o

63 64 60 60
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UNIT-V

SYLLABUS

Game theory: Formulation of two person zero games — Solving two person zero sum games,
games with mixed strategies, graphical solution procedure, linear programming solution of
games.

Game Theory

Life is full of conflict and competition. Numerous examples involving adversaries in con-
flict include parlor games, military battles, political campaigns, advertising and market-
ing campaigns by competing business firms, and so forth. A basic feature in many of these
situations is that the final outcome depends primarily upon the combination of strategies
selected by the adversaries. Game theory is a mathematical theory that deals with the gen-
eral features of competitive situations like these in a formal, abstract way. It places par-
ticular emphasis on the decision-making processes of the adversaries.

As briefly surveyed research on game theory continues to delve into

rather complicated types of competitive situations. However, the focus in this chapter is
on the simplest case, called two-person, zero-sum games. As the name implies, these
games involve only two adversaries or players (who may be armies, teams, firms, and so
on). They are called zero-sum games because one player wins whatever the other one
loses, so that the sum of their net winnings is zero.

introduces the basic model for two-person, zero-sum games, and the next

four sections describe and illustrate different approaches to solving such games. The chap-
ter concludes by mentioning some other kinds of competitive situations that are dealt with
by other branches of game theory.

THE FORMULATION OF TWO-PERSON, ZERO-5SUM GAMES

To illustrate the basic characteristics of two-person, zero-sum games, consider the game
called odds and evens. This game consists simply of each player simultaneously showing
either one finger or two fingers. If the number of fingers matches, so that the total number
for both players is even, then the player taking evens (say, player 1) wins the bet (say, $1)
from the player taking odds (player 2). If the number does not match, player 1 pays $1 to
player 2. Thus, each player has two strategies: to show either one finger or two fingers.

The resulting payoff to player 1 in dollars is shown in the paveff table given in Table 14.1.
In general, a two-person game is characterized by
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1. The strategies of player 1
2. The strategies of player 2
3. The payoff table

TABLE 14.1 Payoff table for
the odds and
evens game

Player 2

Strategy 1 2

Player 1

Before the game begins, each player knows the strategies she or he has available, the ones
the opponent has available, and the payoff table. The actual play of the game consists of
each player simultaneously choosing a strategy without knowing the opponent’s choice.

A strategy may involve only a simple action, such as showing a certain number of
fingers in the odds and evens game. On the other hand, in more complicated games in-
volving a series of moves, a strategy is a predetermined rule that specifies completely
how one intends to respond to each possible circumstance at each stage of the game. For
example, a strategy for one side in chess would indicate how to make the next move for
every possible position on the board, so the total number of possible strategies would be
astronomical. Applications of game theory normally involve far less complicated com-
petitive situations than chess does. but the strategies involved can be fairly complex.

The payoff table shows the gain (positive or negative) for player 1 that would result
from each combination of strategies for the two players. It is given only for player 1 be-
cause the table for player 2 is just the negative of this one, due to the zero-sum nature of
the game.

The entries in the payoff table may be in any units desired, such as dollars, provided
that they accurately represent the ufility to player 1 of the corresponding outcome. How-

ever, utility is not necessarily proportional to the amount of money (or any other com-
modity) when large quantities are involved. For example, $2 million (after taxes) is prob-

ably worth much less than twice as much as $1 million to a poor person. In other words,
given the choice between (1) a 50 percent chance of receiving $2 million rather than noth-
ing and (2) being sure of getting $1 million, a poor person probably would much prefer
the latter. On the other hand, the outcome corresponding to an entry of 2 in a payoff table
should be “worth twice as much”™ to player | as the outcome corresponding to an entry
of 1. Thus, given the choice, he or she should be indifferent between a 50 percent chance
of receiving the former outcome (rather than nothing) and definitely receiving the latter
outcome instead.’

A primary objective of game theory is the development of rational criteria for se-
lecting a strategy. Two key assumptions are made:
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Both players are rational.

. Both players choose their strategies solely to promote their own welfare (no compas-
sion for the opponent).

o=

Game theory contrasts with decision analysis where the assumption
is that the decision maker is playing a game with a passive opponent—nature—which
chooses its strategies in some random fashion.

We shall develop the standard game theory criteria for choosing strategies by means
of illustrative examples. In particular, the next section presents a prototype example that
illustrates the formulation of a two-person, zero-sum game and its solution in some sim-
ple situations. .

Solving two person zero sum games

Two politicians are running against each other for the U.S. Senate. Campaign plans must
now be made for the final 2 days, which are expected to be crucial because of the close-
ness of the race. Therefore, both politicians want to spend these days campaigning in two
key cities, Bigtown and Megalopolis. To avoid wasting campaign time, they plan to travel
at night and spend either 1 full day in each city or 2 full days in just one of the cities.
However. since the necessary arrangements must be made in advance, neither politician

will learn his (or her) JI opponent’s campaign schedule until after he has finalized his own.
Therefore, each politician has asked his campaign manager in each of these cities to as-
sess what the impact would be (in terms of votes won or lost) from the various possible
combinations of days spent there by himself and by his opponent. He then wishes to use
this information to choose his best strategy on how to use these 2 days.

Formulation as a Two-Person, Zero-Sum Game

To formulate this problem as a two-person, zero-sum game, we must identify the two play-

ers (obviously the two politicians), the strategies for each player, and the payaff table.
As the problem has been stated, each player has the following three strategies:

Strategy 1 = spend 1 day in each city.

Strategy 2 = spend both days in Bigtown.

Strategy 3 = spend both days in Megalopolis.

By contrast, the strategies would be more complicated in a different situation where
each politician learns where his opponent will spend the first day before he finalizes his
own plans for his second day. In that case, a typical strategy would be: Spend the first
day in Bigtown: if the opponent also spends the first day in Bigtown. then spend the sec-
ond day in Bigtown: however, if the opponent spends the first day in Megalopolis, then

spend the second day in Megalopolis. There would be eight such strategies, one for each
combination of the two first-day choices, the opponent’s two first-day choices, and the

two second-day choices.
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Each entry in the payoff table for player 1 represents the wutility to player 1 (or the
negative utility to player 2) of the outcome resulting from the corresponding strategies
used by the two players. From the politician’s viewpoint, the objective is to win vores,

TABLE 14.2 Form of the payoff table for
politician 1 for the political
campaign problem

Total Net Votes Won
by Politician 1
{in Units of 1,000 Votes)

Politician 2

Strateqy 1 2 3

1
Politician 1 2
3

and each additional vote (before he learns the outcome of the election) is of equal value
to him. Therefore, the appropriate entries for the payoff table for politician 1 are the fo-
tal net votes won from the opponent (i.e., the sum of the net vote changes in the two cities)
resulting from these 2 days of campaigning. Using units of 1,000 votes, this formulation
is summarized in Table 14.2. Game theory assumes that both players are using the same

formulation (including the same payoffs for player 1) for choosing their strategies.
However, we should also point out that this payoff table would not be appropriate if

additional information were available to the politicians. In particular, assume that they
know exactly how the populace is planning to vote 2 days before the election, so that each
politician knows exactly how many net votes (positive or negative) he needs to switch in
his favor during the last 2 days of campaigning to win the election. Consequently, the only
significance of the data prescribed by Table 14.2 would be to indicate which politician
would win the election with each combination of strategies. Because the ultimate goal is
to win the election and because the size of the plurality is relatively inconsequential, the
utility entries in the table then should be some positive constant (say. +1) when politi-
cian 1 wins and —1 when he loses. Even if only a probability of winning can be deter-
mined for each combination of strategies, the appropriate entries would be the probabil-
ity of winning minus the probability of losing because they then would represent expected
utilities. However, sufficiently accurate data to make such determinations usually are not
available, so this example uses the thousands of total net votes won by politician 1 as the
entries in the payoff table.

Using the form given in Table 14.2, we give three alternative sets of data for the pay-
off table to illustrate how to solve three different kinds of games.

Variation 1 of the Example
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Given that Table 14.3 is the payoff table for player 1 (politician 1), which strategy should

each player select?
This situation is a rather special one, where the answer can be obtained just by ap-

plying the concept of dominated strategies to rule out a succession of inferior strategies
until only one choice remains.

TABLE 14.3 Payoff table for player 1
for variation 1 of the

political campaign

problem
Player 2
Strateqgy 1 2 3
1 1 2 4
Player 1 2 1 0
3 0 1 =1

A strategy is dominated by a second strategy if the second strategy is always al least as
good (and sometimes better) regardless of what the opponent does. A dominated strategy
can be eliminated immediately from further consideration.

At the outset, Table 14.3 includes no dominated strategies for player 2. However, for
player 1, strategy 3 is dominated by strategy | because the latter has larger payoffs
(1=0,2=1,4 = —1)regardless of what player 2 does. Eliminating strategy 3 from fur-
ther consideration yields the following reduced payoff table:

1 2 3
1 1 2 4
2 1 0 5

Because both players are assumed to be rational, player 2 also can deduce that player
1 has only these two strategies remaining under consideration. Therefore, player 2 now
does have a dominated strategy—strategy 3, which is dominated by both strategies 1 and
2 because they always have smaller losses for player 2 (payoffs to player 1) in this re-
duced payoff table (for strategy 1: 1 << 4, 1 << 5; for strategy 2: 2 << 4, 0 << 5). Eliminat-

ing this strategy yields

1 2
1 1 2
2 1 0

At this point, strategy 2 for player | becomes dominated by strategy 1 because the
latter is better in column 2 (2 = 0) and equally good in column 1 (1 = 1). Eliminating

the dominated strategy leads to
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1 2

1 1 2

Strategy 2 for player 2 now is dominated by strategy 1 (1 < 2), so strategy 2 should be

eliminated.
Consequently, both players should select their strategy 1. Player 1 then will receive

a payoff of 1 from player 2 (that is, politician 1 will gain 1,000 votes from politician 2).

In general, the payoff to player 1 when both players play optimally is referred to as
the value of the game. A game that has a value of 0 is said to be a fair game. Since this
particular game has a value of 1, it is nof a fair game.

The concept of a dominated strategy is a very useful one for reducing the size of the
payoff table that needs to be considered and, in unusual cases like this one, actually iden-
tifying the optimal solution for the game. However, most games require another approach
to at least finish solving, as illustrated by the next two variations of the example.

Variation 2 of the Example

Now suppose that the current data give Table 14.4 as the payoff table for player 1 (politi-
cian 1). This game does not have dominated strategies, so it is not obvious what the play-
ers should do. What line of reasoning does game theory say they should use?

Consider player 1. By selecting strategy 1. he could win 6 or could lose as much as
3. However, because player 2 is rational and thus will seek a strategy that will protect
himself from large payoffs to player 1. it seems likely that player 1 would incur a loss by
playing strategy 1. Similarly, by selecting strategy 3. player 1 could win 5, but more prob-
ably his rational opponent would avoid this loss and instead administer a loss to player 1

which could be as large as 4. On the other hand, if player 1 selects strategy 2, he is guar-
anteed not to lose anything and he could even win something. Therefore, because it pro-

vides the best guarantee (a payoff of 0), strategy 2 seems to be a “rational” choice for

player 1 against his rational opponent. (This line of reasoning assumes that both players
are averse to risking larger losses than necessary, in contrast to those individuals who en-

joy gambling for a large payoff against long odds.)

Now consider player 2. He could lose as much as 5 or 6 by using strategy 1 or 3, but
is guaranteed at least breaking even with strategy 2. Therefore, by the same reasoning of
secking the best guarantee against a rational opponent, his apparent choice is strategy 2.

If both players choose their strategy 2, the result is that both break even. Thus, in this
case, neither player improves upon his best guarantee, but both also are forcing the op-
ponent into the same position. Even when the opponent deduces a player’s strategy. the
opponent cannot exploit this information to improve his position. Stalemate.
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TABLE 14.4 Payoff table for player 1 for variation 2 of the political campaign

problem
Player 2
Strateqy 1 2 3 Minimum
1 —3 -2 6 -3
Player 1 2 2 0 2 0 « Maximin value

3 5 —2 —4 —4

Maximum: 5 0 6

T

Minimax value

The end product of this line of reasoning is that each player should play in such a
way as to minimize his maximum losses whenever the resulting choice of strategy cannot
be exploited by the opponent to then improve his position. This so-called minimax cri-
terion is a standard criterion proposed by game theory for selecting a strategy. In effect,
this criterion says to select a strategy that would be best even if the selection were being
announced to the opponent before the opponent chooses a strategy. In terms of the pay-
off table, it implies that plaver I should select the strategy whose minimum payoff is
largest, whereas player 2 should choose the one whose maximum pavoff to player 1 is the
smallest. This criterion is illustrated in Table 14.4, where strategy 2 is identified as the
maximin strategy for player 1 and strategy 2 is the minimax strategy for player 2. The re-
sulting payoff of 0 is the value of the game, so this is a fair game.

Notice the interesting fact that the same entry in this payoft table yields both the max-
imin and minimax values. The reason is that this entry is both the minimum in its row
and the maximum of its column. The position of any such entry is called a saddle point.

The fact that this game possesses a saddle point was actually crucial in determining
how it should be played. Because of the saddle point, neither player can take advantage
of the opponent’s strategy to improve his own position. In particular, when player 2 pre-
dicts or learns that player 1 is using strategy 2, player 2 would incur a loss instead of
breaking even if he were to change from his original plan of using his strategy 2. Simi-
larly, player 1 would only worsen his position if he were to change his plan. Thus, nei-
ther player has any motive to consider changing strategies. either to take advantage of his
opponent or to prevent the opponent from taking advantage of him. Therefore, since this
is a stable solution (also called an equilibrium solution), players 1 and 2 should exclu-
sively use their maximin and minimax strategies, respectively.

As the next variation illustrates, some games do not possess a saddle point, in which
case a more complicated analysis is required.

Variation 3 of the Example
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Late developments in the campaign result in the final payoff table for player 1 (politician 1)
given by Table 14.5. How should this game be played?

Suppose that both players attempt to apply the minimax criterion in the same way as
in variation 2. Player | can guarantee that he will lose no more than 2 by playing strategy
1. Similarly, player 2 can guarantee that he will lose no more than 2 by playing strategy 3.

TABLE 14.5 Payoff table for player 1 for variation 3 of the political campaign

problem
Player 2
Strategy 1 2 3 Minimum
1 0 -2 2 —2 + Maximin value
Player 1 2 5 4 -3 -3
3 2 3 —4 —4
Maximum: 5 4 2
T

Minimax value

However, notice that the maximin value (—2) and the minimax value (2) do not co-
incide in this case. The result is that there is no saddle point.

What are the resulting consequences if both players plan to use the strategies just de-
rived? It can be seen that player 1 would win 2 from player 2, which would make player
2 unhappy. Because player 2 is rational and can therefore foresee this outcome. he would
then conclude that he can do much better, actually winning 2 rather than losing 2. by play-
ing strategy 2 instead. Because player | is also rational. he would anticipate this switch
and conclude that he can improve considerably, from —2 to 4, by changing to strategy 2.
Realizing this, player 2 would then consider switching back to strategy 3 to convert a loss
of 4 to a gain of 3. This possibility of a switch would cause player 1 to consider again
using strategy 1, after which the whole cycle would start over again. Therefore, even
though this game is being played only once, any tentative choice of a strategy leaves that
player with a motive to consider changing strategies, either to take advantage of his op-
ponent or to prevent the opponent from taking advantage of him.

In short, the originally suggested solution (player 1 to play strategy 1 and player 2 to
play strategy 3) is an unstable solution, so it is necessary to develop a more satisfactory
solution. But what kind of solution should it be?

The key fact seems to be that whenever one player’s strategy is predictable, the op-
ponent can take advantage of this information to improve his position. Therefore, an es-
sential feature of a rational plan for playing a game such as this one is that neither player
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should be able to deduce which strategy the other will use. Hence, in this case, rather than
applying some known criterion for determining a single strategy that will definitely be
used, it is necessary to choose among alternative acceptable strategies on some kind of
random basis. By doing this, neither player knows in advance which of his own strategies

will be used, let alone what his opponent will do.
This suggests, in very general terms, the kind of approach that is required for games

lacking a saddle point. In the next section we discuss the approach more fully. Given this
foundation, the following two sections will develop procedures for finding an optimal way
of playing such games. This particular variation of the political campaign problem will
continue to be used to illustrate these ideas as they are developed.

GAMES WITH MIXED STRATEGIES

Whenever a game does not possess a saddle point, game theory advises each player to as-
sign a probability distribution over her set of strategies. To express this mathematically, let

x; = probability that player 1 will use strategy i (i = 1, 2, . . . . m),

= probability that player 2 will use strategy j (j = 1, 2 ..... n),
whcre m and n are the respective numbers of available strategies. Thus, pla}.fcr I would
specify her plan for playing the game by assigning values to x;, xo. . . ., x;. Because these

values are probabilities, they would need to be nonnegative and add to 1. Similarly, the
plan for player 2 would be described by the values she assigns to her decision variables
Vi- ¥2, - - - . ¥y These plans (x, x3. . . ., xy) and (yy, V2. . . ., ¥,) are usually referred to
as mixed strategies, and the original strategies are then called pure strategies.

When the game is actually played, it is necessary for each player to use one of her
pure strategies. However, this pure strategy would be chosen by using some random de-
vice to obtain a random observation from the probability distribution specified by the mixed
strategy, where this observation would indicate which particular pure strategy to use.

To illustrate, suppose that players 1 and 2 in variation 3 of the political campaign prob-
lem (see Table 14.5) select the mixed strategies (x, X, x3) = (%, %, 0) and (yy, ¥2. ¥3) =
(0, 3. 3), respectively. This selection would say that player 1 is giving an equal chance (prob-
ability of 1) of choosing either (pure) strategy 1 or 2, but he is discarding strategy 3 en-
tirely. Similarly, player 2 is randomly choosing between his last two pure strategies. To
play the game, each player could then flip a coin to determine which of his two accept-
able pure strategies he will actually use.

Although no completely satisfactory measure of performance is available for evalu-
ating mixed strategies, a very useful one is the expected payoff. By applying the proba-
bility theory definition of expected value, this quantity is

m fl

Expected payoff for player 1 = z E PiiXiYj»
i=1j=1
where p;; is the payoff if player 1 uses pure strategy i and player 2 uses pure strategy j. In
the example of mixed strategies just given, there are four possible payoffs (—2. 2. 4, —3),
each occurring with a probability of Jlf, so the expected payoff is %{—2 +2+4-3)= ;l
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Thus, this measure of performance does not disclose anything about the risks involved in
playing the game, but it does indicate what the average payoff will tend to be if the game

is played many times.
By using this measure, game theory extends the concept of the minimax criterion to

games that lack a saddle point and thus need mixed strategies. In this context, the minimax
criterion says that a given player should select the mixed strategy that minimizes the max-
imum expected loss to himself. Equivalently, when we focus on payoffs (player 1) rather
than losses (player 2), this criterion says to maximin instead, i.e., maximize the minimum ex-
pected payoff to the player. By the minimum expected payoff we mean the smallest possi-
ble expected payoff that can result from any mixed strategy with which the opponent can
counter. Thus, the mixed strategy for player 1 that is optimal according to this criterion is
the one that provides the guarantee (minimum expected payoff) that is best (maximal). (The
value of this best guarantee is the maximin value, denoted by v.) Similarly, the optimal strat-

egy for player 2 is the one that provides the best guarantee, where best now means mini-
mal and guarantee refers to the maximum expected loss that can be administered by any of

the opponent’s mixed strategies. (This best guarantee is the minimax value, denoted by v.)
Recall that when only pure strategies were used, games not having a saddle point
turned out to be unstable (no stable solutions). The reason was essentially that v < v, so
that the players would want to change their strategies to improve their positions. Simi-
larly, for games with mixed strategies, it is necessary that v = v for the optimal solution
to be stable. Fortunately, according to the minimax theorem of game theory, this condi-
tion always holds for such games.
Minimax theorem: If mixed strategies are allowed, the pair of mixed strategies
that is optimal according to the minimax criterion provides a stable solution with
v = v = v (the value of the game), so that neither player can do better by uni-
laterally changing her or his strategy.

Although the concept of mixed strategies becomes quite intuitive if the game is played
repeatedly, it requires some interpretation when the game is to be played just once. In this
case, using a mixed strategy still involves selecting and using one pure strategy (randomly
selected from the specified probability distribution), so it might seem more sensible to ig-
nore this randomization process and just choose the one “best” pure strategy to be used.
However, we have already illustrated for variation 3 in the preceding section that a player
must not allow the opponent to deduce what his strategy will be (i.e., the solution proce-
dure under the rules of game theory must not definitely identify which pure strategy will
be used when the game is unstable). Furthermore, even if the opponent is able to use only
his knowledge of the tendencies of the first player to deduce probabilities (for the pure
strategy chosen) that are different from those for the optimal mixed strategy, then the op-
ponent still can take advantage of this knowledge to reduce the expected payoff to the
first player. Therefore, the only way to guarantee attaining the optimal expected payoff v
is to randomly select the pure strategy to be used from the probability distribution for the
optimal mixed strategy.
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Now we need to show how to find the optimal mixed strategy for each player. There
are several methods of doing this. One is a graphical procedure that may be used when-
ever one of the players has only two (undominated) pure strategies: this approach is de-
scribed in the next section.

GRAPHICAL SOLUTION PROCEDURE

Consider any game with mixed strategies such that, after dominated strategies are elimi-
nated, one of the players has only two pure strategies. To be specific, let this player be
player 1. Because her mixed strategies are (x, x;) and x; = 1 — x, it is necessary for her

to solve only for the optimal value of x;. However, it is straightforward to plot the ex-
pected payoff as a function of x, for each of her opponent’s pure strategies. This graph

can then be used to identify the point that maximizes the minimum expected payoff. The
opponent’s minimax mixed strategy can also be identified from the graph.

To illustrate this procedure, consider variation 3 of the political campaign problem
Notice that the third pure strategy for player 1 is dominated by her sec-
ond, so the payoff table can be reduced to the form given in Table 14.6. Therefore, for

TABLE 14.6 Reduced payoff table for player 1 for variation 3 of the political
campaign problem

Player 2
Probability ¥1 ¥2 ¥a
Pure
Probability Strategy 1 2 3
X 1 0 —2 2
Player 1 1— 5 5 4 3

each of the pure strategies available to player 2, the expected payoff for player 1 will be

(¥1. ¥z2: ¥a) Expected Payoff
(1, 0, 0) Ox; + 5(1 —x3) =5 — 5x
{Dr 1r 0} _2X1 + 4(1 - X]} =4 — 6){1
{Dr ﬂr 1} 2X‘| _3(1 _Xl}= _34‘.5.](1

Now plot these expected-payoff lines on a graph. as shown in Fig. 14.1. For any given
values of x; and (v, v2. v3), the expected payoff will be the appropriate weighted aver-
age of the corresponding points on these three lines. In particular,

Expected payoff for player 1 = y1(5 — 5x;) + v2(4 — 6x;) + y3(—3 + 5xy).
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Remember that player 2 wants to minimize this expected payoff for player 1. Given x,
player 2 can minimize this expected payoff by choosing the pure strategy that corresponds

to the “bottom™ line for that x;, in Fig. 14.1 (either —3 + 5x; or 4 — 6x,, but never
5 — 5x;). According to the minimax (or maximin) criterion, player 1 wants to maximize

this minimum expected payoff. Consequently, player 1 should select the value of x; where
the bottom line peaks, 1.e., where the (—3 + 5x;) and (4 — 6x,) lines intersect, which
yields an expected payoff of

r=v= max {min{—3 + 5x;,4 — 6x;}}.
O=x=]

| =

To solve algebraically for this optimal value of x, at the intersection of the two lines
—3 + 5x; and 4 — 6x,, we set

—3 + 5x;, =4 — 6x,,
FIGURE 14.1

Graphical procedure for
solving games
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which yields x; = ;. Thus, (x, x;) = (5. i) is the optimal mixed strategy for player 1, and

v=-3+5\y7) =17

v

11 1

is the value of the game.

To find the corresponding optimal mixed strategy for player 2, we now reason as fol-
lows. According to the definition of the minimax value v and the minimax theorem. the
expected payoff resulting from the optimal strategy (vy, v2. ¥3) = (¥7, ¥3. ¥3) will satisfy
the condition
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Yi(5 — 5x) +y3(4 —6x)) +¥5(—3+ 5x) =v=v= %

for all values of x, (0 = x; = 1). Furthermore, when player 1 is playing optimally (that

is, x; = 77), this inequality will be an equality (by the minimax theorem), so that
20 2 2 2
ke & + — s + — i v —_
TR TR FEE T

Because (v, ¥2. y3) is a probability distribution, it is also known that

yi+yvi+yi=1.
Thcre:forc vl = 0 because y{ =0 would violate the next-to-last equation: i.e., the ex-
pected pa}foff on the graph at x; = {7 would be above the maximin point. (In general, any
line that does not pass through the maximin point must be given a zero weight to avoid
increasing the expected payoff above this point.)
Hence,

for0 =x, = 1.,
vi5 (4 — 6xy) + ¥vE(—3 + 5x))

:|r-» =[r

for x;, = 11
But y3 and y?% are numbers, so the left-hand side is the equation of a straight line, which
is a fixed weighted average of the twc- ‘bottom™ lines on the graph. Bccau:-.c the ordinate
of this line must equal {7 at x; = {7, and because it must never exceed 7. the line neces-
sarily is horizontal. (This conclusion is always true unless the optimal value of x, is ei-

ther 0 or 1. in which case player 2 also should use a single pure strategy.) Therefore,

y3(4 — 6x)) + yi(—3 + 5x) = for0 = x, = 1.

2
11’
Hence, to solve for y5 and y%, select two values of x, (say, 0 and 1), and solve the re-
sulting two simultaneous equations. Thus,

. 2
_.:'I_}"‘Ek — 3_11]? = —l 1 :

. 2
_ z}n"zk _I_ 2-"]? = ﬁ"

which has a simultaneous solution of y35 = ]5, and y% = ﬁ Therefore, the optimal mixed
strategy for player 2 is (yy, v2, y3) = (0, ,-l,

If, in another problem. there should happen to be more than two lines passing through
the maximin point, so that more than two of the y¥values can be greater than zero, this con-
dition would imply that there are many ties for the optimal mixed strategy for player 2. One
such strategy can then be identified by setting all but two of these y; values equal to zero
and solving for the remaining two in the manner just described. For the remaining two, the
associated lines must have positive slope in one case and negative slope in the other.

Although this graphical procedure has been illustrated for only one particular prob-
lem, essentially the same reasoning can be used to solve any game with mixed strategies
that has only two undominated pure strategies for one of the players.

Prepared by A. Henna Shenofer, Asst Prof, Department of Mathematics, KAHE Page 13/21




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IIIB.Sc MATHEMATICS COURSE NAME: Linear Programming
COURSE CODE: 16MMU504B UNIT: V (Game Theory) BATCH-2016-2019

SOLVING BY LINEAR PROGRAMMING

Any game with mixed strategies can be solved by transforming the problem to a linear
programming problem. As you will see, this transformation requires little more than ap-
plying the minimax theorem and using the definitions of the maximin value v and mini-
max value v.

First, consider how to find the optimal mixed strategy for player 1.

m n

Expected payoff for player 1 = z E PijXiV;
i=1j=1

and the strategy (xy, x2, . . . , X,;) is optimal if

m i

> D pxy=v=v

i=1j=1

for all opposing strategies (v, ¥a. . . . ., ¥,). Thus, this inequality will need to hold, e.g.,

for each of the pure strategies of player 2, that is, for each of the strategies (v, y2. . ..,
vn) where one y; = 1 and the rest equal 0. Substituting these values into the inequality
yields

m

Ep,jx!-zv forj=1,2....,n,

i=1
so that the inequality implies this set of n inequalities. Furthermore, this set of n inequalities
implies the original inequality (rewritten)

A m L "

T 1 Z - 1qF — Y
2. Vi PijXi | = E Yy =muv
j=1 i=1

since

n
> y=1
=1

Because the implication goes in both directions, it follows that imposing this set of n lin-
ear inequalities is equivalent to requiring the original inequality to hold for all strategies
(V1. ¥2. - - . . ¥y). But these n inequalities are legitimate linear programming constraints,
as are the additional constraints
ntxnt-- tx,=1
x; =0, fori=1.2, ..., m

that are required to ensure that the x; are probabilities. Therefore, any solution (x}, x». . . .,
Xp) that satisfies this entire set of linear programming constraints is the desired optimal
mixed strategy.

Consequently, the problem of finding an optimal mixed strategy has been reduced to
finding a feasible solution for a linear programming problem, which can be done as de-
scribed in Chap. 4. The two remaining difficulties are that (1) v is unknown and (2) the
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linear programming problem has no objective function. Fortunately, both these difficul-
ties can be resolved at one stroke by replacing the unknown constant v by the variable
Xm+1 and then maximizing X, ., so that x,, automatically will equal v (by definition)
at the optimal solution for the linear programming problem!

To summarize, player 1 would find his optimal mixed strategy by using the simplex
method to solve the linear programming problem:
Maximize Xt 1s

subject to

puxy T paxa + o F pix;m — X =0
PioXy + PagXa + 0 Py — Xy =0
PirXt T PagXz + 0 T+ PunXm — Xmid =0

x1tx+ o tax,=1

and

x =0, fori=1.2,....m.
Note that x,,,, is not restricted to be nonnegative, whereas the simplex method can be
applied only after all the variables have nonnegativity constraints. However, this matter
can be easily rectified, as will be discussed shortly.

Now consider player 2. He could find his optimal mixed strategy by rewriting the
payoff table as the payoff to himself rather than to player 1 and then by proceeding ex-
actly as just described. However. it is enlightening to summarize his formulation in terms
of the original payoff table. By proceeding in a way that is completely analogous to that
Just described, player 2 would conclude that his optimal mixed strategy is given by an op-
timal solution to the linear programming problem:

Minimize Vat1s
subject to

puvi Py o+ Pia¥e — Va1 =0
pavi t paaya + o+ pag¥e — Yae1 =0

Pmi¥1 + Pm2¥2 + o+ Pmn¥n — Vne1 = 0
Vit yat ooy, = 1

and

yi =0, forj=1.2,..., n.
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It is easy to show (see Prob. 14.5-5 and its hint) that this linear programming problem and
the one given for player | are dual to each other in the sense described in Secs. 6.1 and 6.4.
This fact has several important implications. One implication is that the optimal mixed strate-
gies for both players can be found by solving only one of the linear programming problems
because the optimal dual solution is an automatic by-product of the simplex method calcu-
lations to find the optimal primal solution. A second implication is that this brings all du-
ality theory (described in Chap. 6) to bear upon the interpretation and analysis of games.

A related implication is that this provides a simple proof of the minimax theorem.
Let x5, ., and v}, denote the value of x,,,, and y,., in the optimal solution of the re-
spective linear programming problems. It is known from the strong duality property given
in Sec. 6.1 that —x,.; = —Vh, 1. so that x5, = ¥}, ,. However. it is evident from the
definition of v and v that v = x3,, | and v = y7, ,, so it follows that v = v, as claimed by
the minimax theorem.

One remaining loose end needs to be tied up, namely, what to do about x,,,, and v,
being unrestricted in sign in the linear programming formulations. If it is clear that v = 0 so
that the optimal values of x,,,, and y,, are nonnegative, then it is safe to introduce non-
negativity constraints for these variables for the purpose of applying the simplex method.
However, if v < (), then an adjustment needs to be made. One possibility is to use the ap-
proach described in Sec. 4.6 for replacing a variable without a nonnegativity constraint by
the difference of two nonnegative variables. Another is to reverse players 1 and 2 so that the
payoff table would be rewritten as the payoff to the original player 2, which would make the
corresponding value of v positive. A third, and the most commonly used, procedure is to add
a sufficiently large fixed constant to all the entries in the payoff table that the new value of
the game will be positive. (For example, setting this constant equal to the absolute value of
the largest negative entry will suffice.) Because this same constant is added to every entry,
this adjustment cannot alter the optimal mixed strategies in any way, so they can now be ob-
tained in the usual manner. The indicated value of the game would be increased by the amount
of the constant, but this value can be readjusted after the solution has been obtained.

To illustrate this linear programming approach, consider again variation 3 of the po-
litical campaign problem after dominated strategy 3 for player 1 is eliminated (see Table
14.6). Because there are some negative entries in the reduced payoff table. it is unclear at
the outset whether the value of the game v is nonnegative (it turns out to be). For the mo-
ment, let us assume that v = 0 and proceed without making any of the adjustments dis-
cussed in the preceding paragraph.

To write out the linear programming model for player 1 for this example, note that
pi; in the general model is the entry in row i and column j of Table 14.6, fori = 1, 2 and
Jj =1, 2, 3. The resulting model is
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Maximize X3,

subject to

S5x; —x3 =0

—2xp +4x; —x3=0
2x; — 3x; —x3; =0
X+ 1 =1

and
= D, n= 0.

Applying the simplex mc!h-:u:l to this. linear programming problem (after adding the

constraint x; = 0) yields x{ = {;, x3 = ﬁ, xt= ]—2] as the optimal solution. (See Probs. 14.5-7

and 14.5-8.) Consequently, just as was found by the graphical procedure in the preceding
section, the optimal mixed strategy for player 1 according to the minimax criterion is (x,
(5 7). and the value of the game is v = x% = . The simplex method also yields

Xﬂ} =
the -:nptjmal mlunon for the dual (given next) of this problem, namely, y§ = 0, '} 5 =2
yvi= "_ vi= fu so the optimal mixed strategy for player 2 is (v, ¥5. v3) = (0, ﬁ, ﬁ}.

The dual of the preceding problem is just the linear programming model for player
2 (the one with variables vy, v, . . ., ¥u. ¥p+1) shown earlier in this section. (See Prob.

14.5-6.) By plugging in the values of p; from Table 14.6, this model is

Minimize Vi.
subject to
- 2_'!}-‘2 + 2}'3 — V4 = ]
Syp+4y2 — 33 —ya =0
Vit Y2t ¥ =1
and
) = D, }‘1 = D, _"|.-'3 = D
Applying the simplex method directly to t_his mod:l (after adding the constraint y; = 0)
yields the optimal solution: }-‘J =0, y5 =3, v§ = 5. y§ = i (as well as the optimal dual
solution x§ = ﬁ, x% =3, x% =). Thus, the optimal mixed strategy for phycr 2 s (vy.

v, v3) = (0, 7, ©), and the value of the game is again seen to be v = y§ =

Because we already had found the optimal mixed strategy for player 2 whilc dealing
with the first model. we did not have to solve the second one. In general, you always can
find optimal mixed strategies for both players by choosing just one of the models (either
one) and then using the simplex method to solve for both an optimal solution and an op-

timal dual solution.
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When the simplex method was applied to both of these linear programming models,
a nonnegativity constraint was added that assumed that v = 0. If this assumption were vi-
olated, both models would have no feasible solutions, so the simplex method would stop
quickly with this message. To avoid this risk, we could have added a positive constant,
say. 3 (the absolute value of the largest negative entry), to all the entries in Table 14.6.
This then would increase by 3 all the coefficients of x,, x;. ¥;, ¥2. and y; in the inequal-
ity constraints of the two models.
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POSSIBLE QUESTIONS
PART - A (20 x 1 =20 Marks)
(Question Nos. 1 to 20 Online Examinations)

PART-B (5 x 2 =10 Marks)
Answer all the questions
Define n-player game.
Define Zero-Sum Game.
What are the main characteristics of game theory
Define pay-off matrix.
Write a note on saddle point.

gk~ owpneE

PART-C (5 x 6 =30 Marks)
Answer all the questions
1. Solve the game whose pay-off matrix is given by
Player B
B1 B- Bs

A1 1 3 1
Player A Az 0 -4 -3
As 1 5 -1

2. Determine the range of value of p and g that will make the payoff element a2, a saddle
point for the game whose payoff matrix (a;) is given below:
Player B
2 4 5

Player A 10 7 q
4 p 8
3. Solve the following 2 x 2 game.

B

()

Prepared by A. Henna Shenofer, Asst Prof, Department of Mathematics, KAHE Page 19/21




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: IIIB.Sc MATHEMATICS COURSE NAME: Linear Programming
COURSE CODE: 16MMU504B UNIT: V (Game Theory) BATCH-2016-2019

4. In a game of matching coins with two players, suppose A wins one unit value when there are
two heads, wins nothing when there are two tails, and looses %2 unit value when there are one
head and one tail. Determine the payoff matrix, the best strategy for each player, and the value of
the game.

5. For the payoff matrix given below, decide optimum strategies for A and B.
B
1 2
1 [ 200 80 J
A 2 110 170

6. Solve the following game using dominance property.

B
I I I
I 1 7 2
A I 6 2 7
Il 6 1 6

7. Use the notion of dominance to simplify the rectangular game with the following payoff, and
solve it graphically.

Player K
I I i v

1/184 64\

Player L 2 6 2 13 7

3 11 5 17 3

4 K7 6 12 2/
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8. Solve the following 2 x 4 game graphically.

Player B
Player A 1 0 4 -1
-1 1 -2 5

9. Solve the following game by using simplex method.

Player B
1 -1 3
Player A 3 5 -3
6 2 -

10. Two companies A and B competing for the same product. Their strategies are given in the
following payoff matrix.

Company A

Company B :[2 -2 SJ
-3 5 -
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