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UNIT-I

Another counting principle — application of theorems — Cauchy theorem — Sylow’s
theorem — Direct products — Finite Abelian groups.

Another Counting Principle

DEFINITION 1Ifa, b € G, then b is said to be a conjugate of a in G if there
exists an element ¢ € G such that § = ¢~ 'ac.

We shall write, for this, a ~ b and shall refer to this relation as conjugacy.

LEMMA

Conjugacy is an equivalence relation on G.
Proof.  As usual, in order to establish this, we must prove that

l.a ~ g
2. a ~ b implies that b ~ a;
3.a~b, b~ ¢cimplies that a ~ ¢

for all a, b, ¢ in G.
We prove each of these in turn.

1. Since g = ¢~ 1

of conjugacy.

2. If a ~ b, then & = x™ "ax for some x e G, hence, @ = (x™ 1)~ 1p(x~ 1)
and since y = x"' e Gand a = 3y~ 'y, b ~ a follows.

3. Suppose that a ~ b and b ~ ¢ where a,b,ceG. Then b = x~ lax,
¢ =y~ 'by for some x, y € G. Substituting for 4 in the expression for ¢
we obtain ¢ = 37 '(x  lax) y = (%) la(xy); since e G, a ~c is a
CQnSC[luEnCC;

ae, a ~ a, with ¢ = ¢ serving as the ¢ in the definition

H

- For aeGlet Cla) = {xe G|a ~ x}. C(a), the equivalence class of a
in G under our relation, is usually called the conjugate class of a in G; it
consists of the set of all distinct elements of the form y~lay as J ranges
over G,

DEFINITION If ae G, then N{(a), the normalizer of a in G, is the sg
N(a) = {xe G|xa = ax}.

N (a) consists of precisely those elements in G which commute with a.

LEMMA
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N(a) is a subgroup of G.

Proof. In this result the order of G, whether it be finite or infinite, is of
no relevance, and so we put no restrictions on the order of G.

Suppose that x, ye N(a). Thus xa = ax and ya = ayp. Therefore,
(xp)a = x(ya) = x(ay) = (xa)y = (ax)y = a(xy), In consequence of which
xy € N(a). From ax = xa it follows that x " la =x" Y(ax)x™ ' =27 Yxa)x~ ! =
ax~1, so that x™' is also in N(a). But then N(a) has been demonstrated

to be a subgroup of G.
THEOREM

If G is a finite group, then ¢, = o(G)[o(N(a)); in other
words, the number of elements conjugate to a in G is the index of the normalizer of
ain G.

Proof. To begin with, the conjugate class of a in G, C(a), consists exactly
of all the elements ¥~ 'ax as x ranges over G. ¢, measures the number of
distinct ™ 'ax’s. Our method of proof will be to show that two elements in
the same right coset of N(a) in G yield the same conjugate of a whereas
two elements in different right cosets of N(a) in G give rise to different
conjugates of a. In this way we shall have a one-to-one correspondence
between conjugates of a and right cosets of N(a).

Suppose that x, y € G are in the same right coset of N(a) in G. Thus
y = nx, where n € N(a), and so na = an. Therefore, since ™! = (nx}l"' =
"l g7 la_y =x"'n lanx = x"'n" nax = ¥~ 'ax, whence x and J
result in the same conjugate of a.

If, on the other hand, x and y are in different right cosets of N(a) in 0
we claim that ¥~ 'ax # »~ 'ap. Were this not the case, from x™ lax =y~ '@
we would deduce that yx~'a = apx™'; this in turn would imply that
yx~1 e N(a). However, this declares x and y to be in the samg right coset
of N(a) in G, contradicting the fact that they are in different cosets. The
proof is now complete.

COROLLARY

: OG = ﬂ
)

img this sum runs over one element a in each conjugate class.
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THEOREM

If o(G) = p" where p is a prime number, then Z(G) # (e},

Proof. 1If a e G, since N(a) is a subgroup of G, o(N(a)), being a divisor
of o(G) = p", must be of the form o(N{(a)) = p"; ae Z(G) if and only if
n, = n. Write out the class equation for this G, letting z = o(Z(G)). We
get p" = o(G) = X (p"/p"); however, since there are exactly z elements
such that n, = n, we find that
?" )

Ng<n e

=z +

Now look at this! p is a divisor of the left-hand side; since n, < n for each
term in the 3 of the right side,

p" H—n
—_— = p "
b

so that p is a divisor of each term of this sum, hence a divisor of this sum.

Therefore,
PH
P‘(P”— 2. )=z+

Ng<n pﬂa

Since ¢ € Z(G), z # 0; thus z is a positive integer divisible by the prime .
Therefore, z > 1! But then there must be an element, besides ¢, in Z(G}!
This 1s the contention of the theorem.

?

COROLLARY

If 0(G) = p* where p is a prime number, then G is abelian.

Proof. Our aim is to show that Z(G) = G. At any rate, we already
know that Z(G) # (e) is a subgroup of G so that o(Z(G)) = porp* If
o(Z(G)) = p?,then Z(G) = G and we are done. Suppose that o(Z(G)) = p:
let aeG, a¢ Z(G). Thus N(a) is a subgroup of G, Z(G) <= N(a);
a€ N(a),so that o(N(a)) > p,yet by Lagrange’s theorem o( N (a)) |o(G) = I
The only way out is for o(N(a)) = p?, implying that ¢ € Z(G), a con-
tradiction. Thus o(Z(G)) = p is not an actual possibility.

Prepared by Y.Sangeetha, Asst Prof, Department of Mathematics, KAHE Page 3/18




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSE NAME: ALGEBRA
COURSE CODE: 18MMP101 UNIT: 1 BATCH-2018-2020
THEOREM

(Cavcny) If p is a prime number and p | o(G),
@ has an element of order p.

« Proof. We seek an element a # ¢ € G satisfying a? = ¢. To prove its
mtcncr we proceed by induction on ¢(G); that is, we assume the theorem
@ be true for all groups 7 such that O[T) < o(G). We need not worry

iﬁut starting the induction for the result is vacuously true for groups of
er 1.

. If for any subgroup W of G, W # G, were it to happen that ¢ | o(W),
J&cn by our induction hypothesis there would exist an element of order p in
;ﬂ’; and thus there would be such an element in G. Thus we may assume that
f‘ls not a divisor of the order of any proper subgroup of G. In particular, if
EZ(G}, since N(a) # G, p ¥ o(N(a)). Let us write down the class
‘#quation:

_ oG)

. o(6) = oAZO) + 2 wta ]
f.'s?ncef’ | o(G), p K o(N(a)) we have that

o(G)
o(N(a))’
and so
” o(G)

’ niarta o(N(a))

jMhce we also have that p | o(G), we conclude that

p' (o(G) - ﬁ) — o(Z(6)).

Ni{a) #G ”(N(ﬂ)]

%(G) is thus a subgmup of G whose order is divisible by p. But, after all,
have assumed that p is not a divisor of the order of any proper subgroup
B G, so that Z(G) cannot be a proper subgroup of G. We are forced to
aq,u:pt the only possibility left us, namely, that Z(G) = G. But then ¢
is abelian; now we invoke the result already established for abelian group

to complete the induction. This proves the theorem.
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Sylow’s Theorem

THEOREM

(Syrow) If p s a prime number and p* | o(G), then
G has a subgroup of order p*.

Before entering the first proof of the theorem we digress slightly to a
brief number-theoretic and combinatorial discussion.

The number of ways of picking a subset of £ elements from a set of n
elements can easily be shown to be

n) _ n!
k] k'n — k)
If n = $"m where p is a prime number, and if p" | m but p** ' } m, consider
(7r) - e
a () ('m — p*)!

_pmptm = ) — i) (pm = 4 1)
A= =) =+ D)

o,
The question is, What power of p divides (ﬁ m)? Looking at this number,
p#

written out as we have written it out, one can see that except for the term
m in the numerator, the power of p dividing ($*m — 1) is the same as that
dividing p* — i, so all powers of p cancel out except the power which
divides m. Thus
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r pam) but rd 1 * (ﬁ“??‘E).
p (pa ut g )9:

First Proof of the Theorem. Let .# be the set of all subsets of G which

¥ i
-:'imve t* elements. Thus .# has (‘bﬁfﬂ) elements. Given M, M, e &

S{M is a subset of G having p” elements, and likewise so is M,) define
M, ~ M, if there exists an element g € G such that M; = M,g. It is
wmcdmte to verify that this defines an equivalence relation on .#. We
Adaim that there is at least one equivalence class of elements in .# such that
ﬂm number of elements in this class is not a multiple t;th;b”L1 for if p’+1 18

a divisor of the size of each equivalence class, then g !
e

would be a divisor

of the number of elements in .#. Since .# has ([J m) elements and
PI

3
'ﬁ'*i,}’(p:n , this cannot be the case. Let {M,,..., M,} be such an
P

equivalence class in .# where ¢ !  n. By our very definition of equivalence
in M, if ge G, for each 1 = 1,...,n, Mg = M; for some j, |l <j<n

We let H= {ge G| Mg = M;}. Clearly H is a subgroup of G, for if
‘a, be H, then Mya = M,, M\b = M, whence M,ab = (Ma)b = M;b =
«M,. We shall be vitally concerned with o(H). We claim that no(H) =
@{G), we leave the proof to the reader, but suggest the argument used in
“the counting principle in Section 2.11. Now no(H) = o(G) = p*m; since
FF*Lfn and p**" | p*m = no(H), it must follow that p*|e(H), and so
"o(H) > p*. However, if m; € M,, then for all ke H, mhe M,. Thus
M, has at least o(H) distinct elements. However, M; was a subset of G
".“ﬂontaining p* elements. Thus p* > o(H). Combined with o(H) = p* we
“have that o(H) = p*. But then we have exhibited a subgroup of G having exactly
P" elements, namely H. This proves the theorem; it actually has done more—

COROLLARY Ifp™ | o(G), p™* 1 ¥ o(G), then G has a subgroup of order p
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Second Proof of Sylow’s Theorem. We prove, by induction on the order
of the group G, that for every prime p dividing the order of G, G has a
p-Sylow subgroup.

If the order of the group is 2, the only relevant prime is 2 and the group
certainly has a subgroup of order 2, namely itself.

So we suppose the result to be correct for all groups of order less than
0(G). From this we want to show that the result is valid for G. Suppose,
then, that p™ | o(G), p™* ' ¥ o(G), where p is a prime, m > 1. If p™ | o(H)
for any subgroup H of G, where H # G, then by the induction hypothesis,
H would have a subgroup T of order p™. However, since T is a subgroup
of H, and H is a subgroup of G, T too is a subgroup of G. But then 7" would
be the sought-after subgroup of order p™.

We therefore may assume that p™ ¥ o(H) for any subgroup H of G, where
H # G. We restrict our attention to a limited set of such subgroups.
Recall that if a € G then N(a) = {x € G| xa = ax} is a subgroup of G;
moreover, if a ¢ Z, the center of G, then N(a) # G. Recall, too, that the
class equation of G states that

o 0(G)
€)= 2 TN@y

where this sum runs over one element a from each conjugate class. We
separate this sum into two pieces: those ¢ which lie in Z, and those which
don’t. This oives

o(G)
(O =t N

agZ
where z = 0(Z). Now invoke the reduction we have made, namely, that
™ ¥ o(H) for any subgroup H # G of G, to those subgroups N(a) for a ¢ Z
Since in this case, p™ | o(G) and p™ } o(N(a)), we must have that

G)

of
P\ vy
Restating this result,
p o((G)
o(N(a))
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forevery a € G where a ¢ Z. Look at the class equation with this information
in hand. Since p™ | 0( G ), we have that p | o(G); also

.
5 Z o(G) ‘
a7 0(N(a))
S us the class equation gives us that p | z. Since p | 2 = o(£), by Cauchy’s
?‘?g&;corem (Theorem 2.11.3), Z has an element & # ¢ of order p. Let
.i'ﬂ = (b), the subgroup of G generated by b. B is of order p; moreover,
gince b € Z, B must be normal in G. Hence we can form the quotient group
& = G/B. We look at G. First of all, its order is o(G)/e(B) = o(G)/p,
pence is certainly less than o(G). Secondly, we have p"~!|o(G), but
I g o(G). Thus, by the induction hypothesis, G has a subgroup P of order
r"l. Let P = {xe G|xBe P}; by Lemma 2.7.5, P is a subgroup of
6. Moreover, P = P/B (Prove!); thus

o(P) _ o(P)

, o(B)  p

“This results in o(P) = p™. Therefore P is the required p-Sylow subgroup of
+@G. This completes the induction and so proves the theorem.

DEFINITION Let G be a group, 4, B subgroups of G. If x, y € G define
x ~ yif y = axb for some a € 4, b € B.

LEMMA

= 0(P) =

The relation defined above is an equivalence relation on G.

The equivalence class of x € G 1is the set AxB = {axb | a ‘e A, b e B}.

We call the set AxB a double coset of A, B in G.

If A, B are finite subgroups of G, how many elements are there in the
double coset AxB? To begin with, the mapping 7:4xB — AxBx~ ! given
by (axb)T = axbx™' is one-to-one and onto (verify). Thus o(dxB) =
o(AxBx~1). Since xBx~ ! is a subgroup of G, of order o(B), by Theorem 2.5.1,

1y o(Ao(xBx~1) _ o(A)o(B)
o(AxB) = oldxBx ) = 2 B ) o(d A xBx )
LEMMA
If A, B are finite subgroups of G then
0(AxB) = O(A)Q(B)_l ,
o(A N xBx™ ")
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LEMMA

Let G be a finite group and suppose that G is a subgroup of the

finite group M. Suppose further_tkat M has a p-Sylow subgroup Q. Then G has a
p-Sylow subgroup P. In fact, P = G ~ xQx~ " for some x € M.

Proof. Before starting the details of the proof, we translate the hypoth-
eses somewhat. Suppose that p™ | o(M), p™* ! ¥ o(M), @ is a subgroup
of M of order p™. Let o(G) = p"t where p f t. We want to produce a sub-
group P in G of order p".

Consider the double coset decomposition of M given by G and @;
M= U GxQ. By Lemma 2.12.4,

(o) = _NOW@ e
o(Gnx@Qx™1')  o(G nxQx"7)
Since G N xQx~ ! is a subgroup of xQx ', its order is p™=. We claim that
m, = n for some x € M. If not, then

0(GxQ) = f’pf% = g
so is divisible by p™ L. Now,since M = (] GxQ, and this is disjoint union,
o(M) = ¥ 0(GxQ), the sum running over one clement from each double
coset. But p™*1]0o(GxQ); hence p™* |o(M). This contradicts p™* ¥ o(M).
Thus m, = n for some xe M. But then o(G N xQx~ 1) = p". Since
G n xQ x~ ! = P is a subgroup of G and has order #", the lemma is proved.

b

THEOREM
(SEcoND PArT OF SyLow’s THEOREM) If G is a finite
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group, p a prime and p" | o(G) but p"* '} o(G), then any two subgroups of G of
order p" are conjugate.

Proof. Let A, B be subgroups of G, each of order ". We want to show
that 4 = gBg™! for some g € G.

Decompose G into double cosets of 4 and B; G = (J 4xB. Now, by
Lemma 2.12 .4, :

o(A)o(B)

0(AxB) = — .
old n xBx™ 1)

If A # xBx~' for every x € G then o(4 N xBx~ ') = p™ where m < n.
Thus

n

>

o(d)o(B) _
" "
and 22 — m > n + 1. Since p"*! | o(4xB) for every x and since o(G) =

2. o(4xB), we would get the contradiction p"*!|o(G). Thus 4 = gBg™!
for some g € G. This is the assertion of the theorem. -

o(AxB) = = pnom

THEOREM

(THIRD PART oF Syrow’s THEOREM)  The number of
p-Sylow subgroups in G, for a given prime, is of the form 1 + kp.

Proof. Let P be a p-Sylow subgroup of G. We decompose G into double

cosets of P and P. Thus G = | PxP.
o(P)?
o(P n xPx™ 1) )
Thus, if P xPx~! # P then p"*!|o(PxP), where p" = o(P). Para-
phrasing this: if x ¢ N(P) then p"*! | o(PxP). Also, if x € N(P), then PxP =
P(Px) = P*x = Px, so o(PxP) = p" in this case.
Now

o(PxP) =

o(G) = Y o(PxP) + 2 o(PxP),

xeN(P) x¢N(P)
where each sum runs over one element from each double coset. However,
if x e N(P), since PxP = Px, the first sum is merely X, . np) 0(Px) over
the distinct cosets of P in N(P). Thus this first sum is just o(N(P)). What
about the second sum? We saw that each of its constituent terms is divisible
by "1, hence

e z o(PxP).
x¢NCP)
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We can thus write this second sum as
Z o(PxP) = p"* lu.
x ¢ N(P)
Therefore o(G) = o(N(P)) + p"*'u, so
O(G) _ I + Pu+1u
o(N(P)) o(N(P))
Now o(N(P)) | o(G) since N(P) is a subgroup of G, hence p"* ujo(N(P))
is an integer. Also, since p"*! } o(G), p"* ! can’t divide o(N(P)). But then
2" ujo(N(P)) must be divisible by p, so we can write p" " 'ujo(N(P)) as kp,
where £ is an integer. Feeding this information back into our equation

above, we have
0(G)
o(N(P))
Recalling that o(G)/o(N(P)) is the number of p-Sylow subgroups in G,
we have the theorem.
Direct Products

DEFINITION Let G be a group and N,, A. N
G such that group 1 4725 » NV, normal subgroups of

1. G = N,N,--- N,

2. Given g € G then g = mym, - -m,, m; € N;in a unique way.

=1+ k.

We then say that G is the internal direct product of Ny, N, ..., N,

THEOREM
Suppose that G is the internal direct product of Ny, ..., N,

Then for i # j, Ny n N; = (e), and if a € N;, b € N; then ab = ba.
Proof. Suppose that x € N; n N;. Then we can write x as

X = € " T €j_qXejyq T €7 €6y
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where ¢, = ¢, viewing x as an element of N;. But every element—and so,
in particular x—has a unique representation in the form mm, - m,
where m; € N, ..., m, € N,. Since the two decompositions in this form for
x must coincide, the entry from N; in each must be equal. In our
first decomposition this entry is x, in the other it is e¢; hence x = ¢
Thus N; n N; = (e) for i # ;.

Suppose a € N;, b e N;, and 1 # j. Then aba™' € N; since N, is normal;
thus aba™'6~'e€ N;. Similarly, since a”'€ N, ba~'6"' € N, whence
aba™'b~ '€ N, Butthen aba” '6~'€ N; A N; = (¢). Thus aba™'b"" = ¢;
this gives the desired result ab = ba.

One should point out that if Ky,..., K, are normal subgroups of G
such that G = K,K,-+-K, and K; n K; = (¢) for i # j it need not be

true that G is the internal direct product of K 10, K

n*

THEOREM
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Let G be a group and suppose that G is the internal_direct.

product of Ny,..., N, Let T = M XN, x---xXN,, ThenG and T
are isomorphic.

Proof. Define the mapping y: T — G by

Y((bys by, .. ., b,) = biby - b,
where each b,e N, i = 1,...,n. We claim that ¥ is an isomorphism
of T onto G.

To begin with, ¥ is certainly onto; for, since G is the internal direct
product of N;,..., N, if x € G then x = a;a; " -+ a, for somea, € Ny,...,
a, € N,. But then y((a, a,,..., a,)) =aa, --a, = x. The mapping
Y is one-to-one by the unigueness of the representation of every element as
a product of elements from N,..., N,. For, if v((ay,-..,a,)) =
Y((ers .-, c,), where ag; € Ny, ;e Ny for i = 1,2,..., n then, by the
definition of ¥, a;a, " a, = ¢,c, - '¢,. The uniqueness in the definition
of internal direct product forces a; = ¢}, a, = ¢,,. .., a, = c, Thus y
is one-to-one.
¢ All that remains is to show that ¥ is a homomorphism of T onto G.
EIfX = (a,...58,), Y = (b,...,b,) are elements of T then

VXY) = Y((ay..., a)(by, ..., b,))
: = Y(aiby, azb,, .. ., a,b,)
= ajbjazb, - -ayb,.

However, by Lemma 2.13.1, ab; = ba; if i % j. This tells us that
aibazby - ab, = aja,--abby- b, Thus W(XY) = ajay---a,bby- b,
But we can recognize 418y " "a,as Y((ag, a5, ..., a,)) = Y(X) and biby-+-b,
as Y(Y). We therefore have Y(XY) = Y(X)¢¥(Y). Inshort, we have shown
that y is an isomorphism of 7 onto G. This proves the theorem.

Finite Abelian Groups
THEOREM

Lvery finite abelian group is the direct product of cyclic
groups.
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So suppose that G is an abelian group of order 4". Our objective 1s 1o
find elements a,, . . ., 4, in G such that every element x € G can be written
in a unique fashion as x = ,"'ay* - g™, Note that if this were true and
a4 -+ -, @ were of order g™, ... p"™ where ny 2 Mny 2 > m, then the
maximal order of any element in G would be /™ (Prove!). This gives us
a cue of how to go about finding the elements ag, ..., a that we seek.

The procedure suggested by this is: let a; be an element of maximal
order in G. How shall we pick a,? Well, if 4, = (a;) the subgroup
generated by a;, then a, maps into an element of highest order in G/4,.
If we can successfully exploit this to find an appropriate a,, and if 4, =
(a;), then a; would map into an element of maximal order in G|A,4,,
and so on. With this as guide we can now get down to the brass tacks of
the proof.

Let a; be an element in G of highest possible order, 4™, and Iét 4, =
(a;). Pick b, in G such that 6,, the image of b, in G = G/4,, has maximal
order p™. Since the order of b, divides that of by, and since the order of
a, is maximal, we must have that ny 2 ny. Inorder to get a direct product
of 4; with (b,) we would need 4y 1 (b)) = (¢); this might not be true
for the initial choice of b,, so we may have to adapt the element 6,. Suppose
that 4, n (b,) # (e); then, since 4,”" ¢ Ay and is the first power of 5, to
fall in 4; (by our mechanism of choosing b,) we have that 4,72 = 4’
Therefore (a,')?"™"2 = (p,P"2)p " = b,""t = ¢, whence a,"”" ™™ = ¢, Since
ay is of order p™ we must have that P ™7™, and so p™|i. Thus, re-
calling what 7 is, we have 6, = a;' = a2 This tells us that if a, =
a;7’b, then a,”" = ¢. The element a, is indeed the element we seek. Let
4y = (ay). We claim that 4, 0 4, = (¢). For, suppose that a,’ e 4, ;
since @, = 2,77, we get (a,79b,)" € 4, and so b, € 4. By choice of b,,
this last relation forces p™ | ¢, and since ;"2 = ¢ we must have that a,’ = e.
Tnshort 4. 0 4, = (e),

We continue one more step in the program we have outlined.” Let
b3 € G map into an element of maximal order in G/(4,4,). If the order
of the image of b, in G/(4,4,) is p"™, we claim that ny < n, < n,. Why?
Bv the choice of n,, 5,7" ¢ 4, so is certainly in A4,4,. Thus ny < n,. Sinc

o

i 8
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;;”":; ;4_;32, 63"";‘ =va1‘1a2‘2-. We claim ntl;l:lt ™| i and p"™ ]. iy. 111“'0:;
b?" e A, hence (a,"a,")P"" " = (bs72)P27"s = b7 € A_r This tepnsl 5
that a,"?"2™" € 4, and so p" | ;™ 7™, which is to say, ji':ﬁ‘ | i,. Also b3 ;
e, hence (a,/a,")7"1 ™" = by?"! = ¢; this says that le“P 1. = {42 m.A,m-.; lgeu;
thatis, a,/"?" " = e. Thisyields thatp™ |7,. Lety; = ™ 1a =12pp“3, E— '
byP" = a1PBay 7. Letay = a, a7y, Ay = (a3); note th_a;t as_h ——ré
We claim that 4, A (4;4,) = (¢). Forif a3’ € AlA% then E::l 1,7 I2b;) ‘
A, A,, giving us by’ € 4,4,. But then p™ | £, whence, since az?"* = e, we hav
as' = e. In other words, 43 N (4,4,) = (e).

Continuing this way we get cyclic subgroups 4, = (a,), 4, =
(32)5 -+ Ay = (@) of order p™, p"™, ..., p"™, respectively, with n, >
ny =" = m such that G = 4,4,---4, and such that, for each i,

4, n (4,4, - *A;-y) = (¢). This tells us that every x € G has a unique
_representation as x = ajay - -a, where aj € 4,,..., a,e4,. In other
swords, G is the direct product of the cyclic subgroups 4,, 4,,..., 4

. ¥
- The theorem is now proved.

DEFINITION If G is an abelian group of order " p a prime, and G =
A4y x 4y x -+ x A, where each 4, is cyclic of order p™ with nG=n, =
cer 2 m > 0, then the integers n,, n,,

‘of G.

PEFINITION If G is an abelian group and s is any integer, then G(s) =
WweG|x = el

««.yny arc called the invariants

LEMMA

If G and G’ are wsomorphic abelian groups, then for every
E!leger 8, G(s), and G'(s) are isomorphic.

Proof. Let ¢ be an isomorphism of G onto G'. We claim that ¢ m'aps
G(s) isomorphically onto G'(s). First we show that ¢(G(s)) = G(sz.
For, if x € G(s) then x* = ¢, hence ¢(x°) = d(e) = ¢. But ¢(x°) = ¢(x)%;
hence ¢(x)* = ¢ and so ¢(x) is in G'(s). Thus d(G(s)) < (?’(s). ‘

On the other hand, if &' € G'(s) then (u')° = ¢. But, since ¢ 1s onto,
u = ¢(y) for some y e G. Therefore ¢ = ()" = d(»)* = ¢(»"). Be-
cause ¢ is one-to-one, we have y* = ¢ and so y € G(s). Thus ¢ maps G(s)
onto G'(s). .

Therefore since ¢ is one-to-one, onto, and a homomorphism from G(s)
to G'(s), we have that G(s) and G'(s) are isomorphic.
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Two abelian groups of order p* are isomorphic if and only

- - - - z - Y

tf they have the same invariants.

In other words, if G and G' are abelian groups of order p" and G = Ay x -2 x A4,
where each A; is a cyclic group of order p™ n, > -+ > n >0, and G' =
By x <+ x By, where each B; is a cyclic group of order p¥i, by > -+ > h, > 0,
then G and G' are isomorphic if and only if k = s and for each i, n; = h;

Proof. One way is very easy, namely, if G and G’ have the same “n-
variants then they are isomorphic. For then G = 4, x - x A4, where
A; = (a;) is cyclic of order p™, and G’ = Bi x -+ x B; where B, = (b))
is cyclic of order p™. Map G onto G’ by the map ¢(a,* - g*) =
(61)% -+ - (bi)™. We leave it to the reader to verify that this defines an
isomorphism of G onto G'.

Now for the other direction. Suppose that G = A4, x -+ x 4,
G' = B} x -+ x B}, 4, B] as described above, cyclic of orders [
respectively, where ny >+ >n >0 and A > --->h >0 We
want to show that if G and G’ are isomorphic then £ = s and each n; = h;.

If G and G’ are isomorphic then, by Lemma 2.14.1, G(p™) and G’(p™)
must be isomorphic for any integer m > 0, hence must have the same order.
Let’s see what this gives us in the special case m = 1; that is, what in-
formation can we garner from o(G(p)) = o(G'(p)). According to the
corollary to Lemma 2.14.2, o(G(p)) = p* and o(G'(p)) = ¢*. Hence
P =pandso k = 5. At least we now know that the number of invariants
for G and G’ is the same.
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If n, # h; for some i, let ¢ be the first i such that n, # k; we may sup-
pose that n, > h. Letm = h, Consider the subgroups, H = {x*"|x € G}
and H' = {(+')"" | € G}, of G and G’, respectively. Since G and G’ are
isomorphic, it follows easily that H and H' are isomorphic. We now ex-
amine the invariants of H and H’.

Because G = A4, x --- x 4, where 4; = (a;) is of order p™, we get that

H=C x+xC x-xGC,

where C; = (a™) is of order p™~™, and where 7 is such that n, > m =
h, > n,_;. Thus the invariants of H are ny —m, np —m,...,n, —m
and the number of invariants of His r > f.

Because G' = B x -+ x Bj, where B; = (b;) is cyclic of order P,
we get that H' = D} x -+ x D;_y, where D; = ((6})?™) is cyclic of order
pMm Thus the invariants of H' are by — m,..., h_; — m and so the
number of invariants of H"is t — 1.

But H and H' are isomorphic; as we saw above this forces them to have
the same number of invariants. But we saw that assuming that n; # k;
for some i led to a discrepancy in the number of their invariants. In con-
sequence each n; = k;, and the theorem is proved.
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Possible Questions
PART-B (6 Mark)

Prove that if G is a finite group, then prove that c,=O(G)/O(N(a))

Suppose G is a finite abelian group and p|o(G), where p is prime numberthen prove
there is an element a= e e G such that a"=e.

State and prove second part of the Sylow’s Theorem.

Let G be a group and suppose that G is the internal direct product of N3, No, ....., Ny.
Let N; X N2 X...... X Np. Then G and T are isomorphic.

Show that the number of elements conjugate to a in G is the index of the normalizer
ofainG.

State and prove Cauchy’s theorem.

If G is a finite group, p a prime and p"|O(G) but p”-|—O(G), then any two subgroups

of G of order p" are conjugate.

Prove that if p is a prime number and p| O(G),then prove that G has an element of
order p.

State and prove first part of the Sylow’s Theorem.

If p is a prime number and p| O(G),then prove that G has an element of order p.

PART-C (10 Mark)
State and prove third part of the Sylow’s Theorem.
Prove that if G is a finite group, then prove that c,=O(G)/O(N(a))

If G is a finite group, p a prime and p"|O(G) but p”-|—O(G), then any two subgroups

of G of order p" are conjugate.
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Question Option-1 Option-2 Option-3 Option-4 Answer
A group is said to be Jif for every a,b in
group then a*b=b*a Abelian group normal sub group order Abelian group
If the number of element is finite then the group is
called Abelian group finite group infinite group group finite group
If the number of element is infinite then the group is
called Abelian group finite group infinite group group infinite group
An infinite group is said to be --------------- order [identity finite infinite symmetric infinite
For every aeG,(@a)™* = - at 1 a 0 a
If G is a group, then every acG has a ---------
inverse in G zero two unique three unique
Forall a,beG (a.b)? = - ab b.a® (a.b)* bla® bla®
The number of elements in a finite group is called -
—————————— of the group order Non-abelian infinite abeliean order
If G is a group, then the identity element of G is ----
------ zero two unique three unique
A nonempty subset H of a group G is said to be ----
-------- of G H itself forms a group coset subset normal-subgroup [subgroup subgroup
If G is a finite group and H is a subgroup of G then
———————— divisor of o(G) 0o(G) 0(S) o(H) o(A) o(H)
If Hisasubgroup of G,aeG then aH is called-----
————— coset left- coset right- coset ideal left- coset
If H is asubgroup of G,aeG then Ha is called------
coset left- coset right- coset ideal right- coset
If G is a finite group and H is a subgroup of G then
———————— divisor of o(G) 0(G) 0(S) o(H) o(A) o(H)
An isomorphic mapping @ of a group G onto
itself is called automorphism If @ is one-to-one onto into one to one & onto onto
An isomorphic mapping of a group G onto itself
is called ----------- automorphism isomorphism homomorphism  [monomorphism |automorphism
A homomorphism F from G into G is said to be ---
------ ifF is one-to-one automorphism isomorphism homomorphism  [monomorphism |isomorphism
A homomorphism @ from G into G is said to be
isomorphism if @ is one-to-one onto into one to one & onto |one-to-one
If G is a group, N normal subgroup of G then G/N c)normal-
is called ------- quotient group ring subgroup subgroup quotient group
A subgroup N of a group G is said to be normal
subgroup of G H if-—-—- gng’eG gng’eN gneN ng'eN gng’eN
A subgroup N of a group G is said to be -------------
of G Hifgng’eN coset subset normal-subgroup [subgroup normal-subgroup
If G is a finite group and aeG the --------- of ‘a’ is
least positive integer m such that a™ = e coset subset order infinite order order
If G is a finite group and aeG the order of a is
least positive integer m such that a™ = 1le Olp e
N(a) is @ ------------- of G coset subset normal-subgroup [subgroup normal-subgroup

equivalence equivalence

Conjugacy is ------------ on G reflexive symmetric transitive relation relation
If o(G) =p® where p is a prime number, then G is ---
————— Non-abeliean abeliean unity inverse abeliean
If p is a prime number, and p/o(G) then G has an
element of ---—--- order 1 order p order e order 0 order p
If p is a prime number, and p“/o(G) then G has a
subgroup of -------- order p* order p order 0 order e order p*
Let @ be a homomorphism of G onto G with
kernal K. Then ------------ G\K ~G G\K =G G\K =1 G\K =K G\K ~G
By an automorphism of a group G we shall mean
an ---------- of G onto itself automorphism isomorphism homomorphism  [monomorphism  |isomorphism
The sub group N of G is a normal sub group of G
if and only if every--------- of N in G is a right coset
of Nin G coset left- coset right- coset ideal left- coset
The sub group N of G is a normal sub group of G
if and only if every left coset of N in G is a ----- of
Nin G coset left- coset right- coset ideal right- coset
If N and M are sub groups of G then ------ is also a
normal sub group mN Nm N/M M/N N/M




The center of a group is always a normal sub group |normal-subgroup [subgroup group Abelian group normal-subgroup
If G is a group then A(G) the set of automorphism
of G is @ -----------—- normal-subgroup [subgroup group Abelian group group
Every group is to a sub group of A(S) for
some appropriate S automorphism isomorphism homomorphism  [monomorphism  |isomorphism
Every permutation is the product of its ---------- cycles 2-cycles group subgroup cycles
Every permutation is the --------- of its cycles sum division product difference product
Every -------------—--- is the product of its cycles normal-subgroup [subgroup group permutation permutation
If o(G)=p2 where p is a prime number then is -------
--- non-Abelian subgroup group Abelian Abelian
If —--mmoeee- where p is a prime number then is
abelian 0(G)=p2 o(G)=p 0(G)=1 0(G)=n 0(G)=p2
Let G be a -------- then the identity element is
unique normal-subgroup [subgroup group permutation group
The product of even permutation is an --------
permutation even even & odd odd prime even
The product of two odd permutation is an ---------
permutation even even & odd odd prime even
Conjugacy is an ---------- relation on G reflexive symmetric transitive equivalence equivalence
If G is a group of order231then the 11- sylow
subgroup is in the center of G sylow subgroup  |subgroup 11sylow subgroup [normal subgroup |11sylow subgroup
If G is a group of order231then the 11- sylow
subgroup is in the ---------- of G sylow subgroup  |subgroup normal subgroup |[center center
If o(G)=pq ,p and q are distinct primes p<q then
p/(g-1) there exists a unique group
of order pq non abelian abelian cyclic non cyclic non abelian
If o(G)= ,p and q are distinct primes p<q
then p/(g-1) there exists a unique non abelian
group of order pq p q pq p/q pq
If o(G)=pq ,p and q are distinct primes p<q then

there exists a unique non abelian group
of order pg p/(g-1) p-1/g-1 plq Pq p/(g-1)
Spk has ------- subgroup sylow k-sylow p-sylow 11sylow subgroup [p-sylow
Every finite ------------- group is the direct product
of cyclic groups abeliean Non-abeliean cyclic permutation abeliean
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UNIT-11

Ring Theory- Basic definition- More ideals and quotient rings- Euclidean rings-A
Particular Euclidean Rings —Polynomial Rings-Polynomial over the Rational Field.

Ring Theory

DEFINITION A nonempty set R is said to be an associative ring if in R
there are defined two operations, denoted by + and - respectively, such
that for all a, b, ¢ in R:

a + bisin R,

a+b=>+ a

{a+b)+c=a+ (b +c).

. There is an element 0 in R such that @ + 0 = a (for every a in R).

. There exists an element —a in R such that ¢ + (—a) = 0.

a-bisin R.

a~(b-¢c) = (a-b)-c.
a*(b+¢)=ab+acand(b+c¢)-a=b-a+ c-a (the two distrib-
utive laws).

PN TR RN

DEFINITION If R is a commutative ring, then a # 0 € R is said to be a
zero-divisor if there exists a b € R, b # 0, such that ab = 0.
DEFINITION A commutative ring is an inftegral domain if it has no zero-

divisors.
DEFINITION A ring is said to be a division ning if its nonzero elements
form a group under multiplication.

DEFINITION A field is a commutative division ring.

DEFINITION  An integral domain D is said to be of characteristic 0 if the

relation ma = 0, where 2 # 0 is in D, and where m is an integer, can hold
only if m = 0,

DEFINITION  An integral domain D is said to be of finite characteristic if
there exists a positive integer m such that ma = 0 for all a e D.

DEFINITION A mapping ¢ from the ring R into the ring R’ is said to be a
homomorphism if

1. ¢la +b) = ¢pla) + ¢(b),
2. ¢lab) = d(a)9(b),

for all a, b € R.
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DEFINITION A homomorphism of R into R’ is said to be an isomorphism

if it is a one-to-one mapping.

DEFINITION  Two rings are said to be isomorphic if there is an isomorphism

of one onto the other.

Ideals and Quotient Rings _

DEFINITION A nonempty subset U of R is said to be a (two-sided) idea;
of R if

1. U is a subgroup of R under addition.
2. For every u € U and r € R, both ur and ru are in U.

LEMMA 3.4.1 If U is an ideal of the ring R, then R|U is a ring and is a
homomorphic image of R.

More Ideals and Quotient Rings
LEMMA

Let R be a commutative ring with unit element whose only ideals
are (0) and R itself. Then R is a field.

Proof. In order to effect a proof of this lemma for any a # 0 € R we
must produce an element b # 0 € R such that ab = 1.

So, suppose that @ # 0 is in R. Consider the set Ra = {xa|x e R).
We claim that Ra is an ideal of R. In order to establish this as fact we must
show that it is a subgroup of R under addition and that if u € Ra and
7€ R then ru is also in Ra. (We only need to check that ru is in Ra for
then ur also is since ru = ur.)

Now, if u,ve Ra, then u = 7a, v = r,a for some r,r, € R. Thus
¥+ v =ra+ rna=(r + r)aeRa;similarly —u = —r;a = (—r,)a e Ra.
Hence Ra is an additive subgroup of R. Moreover, if r € R, ru = r(r,a) =
(1,)a € Ra. Ra therefore satisfies all the defining conditions for an ideal
of R, hence is an ideal of R. (Notice that both the distributive law and
associative law of multiplication were used in the proof of this fact.)
~ By our assumptions on R, Ra = (0) or Ra = R. Since 0 # a = lae Ra,
Ra +# (0); thus we are left with the only other possibility, namely that
Ra = R. This last equation states that every element in R is a multiple of

a by some element of R. In particular, 1 € R and so it can be realized as a
multiple of a; that is, there exists an element & € R such that ba = 1.
This completes the proof of the lemma.
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DEFINITION An ideal M # R in a ring R is said to be a maximal ideal of
R if whenever U is an ideal of R such that M « U < R, then either R = U
or M = U.

THEOREM

If R is a commutative ring with unit element and M is an
ideal of R, then M is a maximal ideal of R if and only if R|M is a field.

Proof. Suppose, first, that M is an ideal of R such that R/M is a field.
Since R/M is a field its only ideals are (0) and R/M itself. But by Theorem
3.4.1 there is a one-to-one correspondence between the set of ideals of
R/M and the set of ideals of R which contain M. The ideal M of R corre-
sponds to the ideal (0) of R/M whereas the ideal R of R corresponds to
the ideal R/M of R/M in this one-to-one mapping. Thus there is no ideal
between M and R other than these two, whence M is a maximal ideal.

On the other hand, if M is a maximal ideal of R, by the correspondence
mentioned above R/M has only (0) and itself as ideals. Furthermore R/M
is commutative and has a unit element since R enjoys both these properties.
All the conditions of Lemma 3.5.1 are fulfilled for R/M so we can conclude,
by the result of that lemma, that R/M is a field.

The Field of Quotients of an Integral Domain

DEFINITION A ring R can be imbedded in a ring R’ if there is an isomorphism
of Rinto R’. (If R and R’ have unit elements 1 and 1’ we insist, in addition,
that this isomorphism takes 1 onto 1°.)

THEOREM

Every integral domain can be imbedded in a field.
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In fact in what is to follow we make these considerations our guide. So
let us leave the heuristics and enter the domain of mathematics, with
precise definitions and rigorous deductions.

Let .# be the set of all ordered pairs (a, b) where a, be D and b # 0.
(Think of (g, b) as a/b.) In .# we now define a relation as follows:

(a, b) ~ (¢, d) if and only if ad = be.

We claim that this defines an equivalence relation on 4. To establish this

we check the three defining conditions for an equivalence relation for this

particular relation.

1. If (a, b) e M, then (a, b) ~ (a, b) since ab = ba.

2. If (a,4),(c,d)e M and (a,b) ~ (¢c,d), then ad = bc, hence c¢b = da,
and so (¢, d) ~ (a, b).

3. If (a,0),(c,d), (¢, f) are all in A and (a,b) ~ (c,d) and (c,d) ~

- (e,f), then ad = bc and ¢f = de. Thus bcf = bde, and since bc = ad,
it follows that adf = bde. Since D is commutative, this relation becomes
afd = bed; since, moreover, D is an integral domain and 4 # 0, this
relation further implies that g¢f = be. But then (a, b) ~ (e, f) and our
relation is transitive.

Let [a, b] be the equivalence class in J of (g, b), and let F be the set of
all such equivalence classes [a, 5] where a,beD and b # 0. F is the
-candidate for the field we are seeking. In order to create out of F a field
we must introduce an addition and a multiplication for its elements and then
show that under these operations # forms a field.

We first dispose of the addition. Motivated by our heuristic discussion at
the beginning of the proof we define

[a, b] + [c,d] = [ad + be, bd].

Since D is an integral domain and both 4 # 0 and d # 0 we have that
bd # 0; this, at least, tells us that [ad + bec, bd] € F. We now assert that
this addition is well defined, that is, if [a, ] = [a’, &'] and [¢,d] = [¢/, d],
then [a, 6] + [¢,d] = [, b'] + [¢,d"]. To see that this is so, from
[, 8] = [a’, #] we have that ab’ = ba’; from [c,d] = [¢’,d'] we have
that ¢d’ = dc’. What we need is that these relations force the equality of
[a, 6] + [¢,d] and [a’, '] + [¢/, d’]. From the definition of addition this
boils down to showing that [ad + be, bd] = [a'd" + b'¢’, b'd"], or, in equiva-
lent terms, that (ad + bo)b'd’ = bd(a'd” + b'c’). Using ab’' = ba', cd’ = d¢’
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this becomes: (ad + be)b'd’ = adb'd’ + beb'd" = ab'dd’ + bb'cd’ = ba'dd’ +
bb'de’ = bd(a’d’ + b'c’), which is the desired equality.

Clearly [0, b] acts as a zero-element for this addition and [ —a, b] as the
negative of [a, b]. It is a simple matter to verify that F is an abelian group
under this addition.

We now turn to the multiplication in F. Again motivated by our pre-
liminary heuristic discussion we define [a, bl[c, d] = [ac, bd]. As in the
case of addition, since b # 0, d # 0, bd # 0 and so [ac, bd] € F. A com-
putation, very much in the spirit of the one just carried out, proves that if
[a, b] = [a', b'] and [c, d] = [¢', d'] then [a, b][¢, d] = [a', &'][¢', d']. One
can now show that the nonzero elements of F (that is, all the elements
[a, b] where a # 0) form an abelian group under multiplication in which
[d, d] acts as the unit element and where

[c, d]~* = [d, ¢] (since ¢ # O, [4, ¢] is in F).

It is a routine computation to see that the distributive law holds in F.
F is thus a field.

All that remains is to show that D can be imbedded in F. We shall
exhibit an explicit isomorphism of D into F. Before doing so we first notice
that for x # 0, y # 0in D, [ax, x] = [ay,y] because (ax) y = x(ay); let us
denote [ax,x] by [a,1]. Define ¢:D - F by ¢(a) = [a, 1] for every
ze D. We leave it to the reader to verify that ¢ is an isomorphism of D
into F, and that if D has a unit element 1, then ¢(1) is the unit element of F.
The theorem is now proved in its entirety.

11

Euclidean Rings

EVEFINITION- An intcg-ral domain R is said to be a KEuclidean ring if for
ery a # 0 in R there is defined a nonnegative integer d(a) such that

1. For all 4, b € R, both nonzero, d(a) < d(ab)

2. For any a, b € R, both nonzero, there exist , r € R such that a = b + r
where either 7 = 0 or d(r) < d(b).

DEFINITION 1If a, b6 € R then d € R is said to be a greatest common divisor
of a and b if

1. d|aand d|b.
2. Whenever ¢ | a and ¢ | b then ¢ | d.

'W.’e.shall use the notation 4 = (g, b) to denote that d is a greatest common
divisor of @ and b.

LEMMA
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Let R be a FEuclidean ring. Then any two elements a and b in
R have a greatest common divisor d. Moreover d = ia + pub for some A, yu e R.

Proof. Let 4 be the set of all elements ra + s where r, s range over R.
We claim that 4 is an ideal of R. For suppose that x, y € 4; therefore
*=ra+s5b, y=rna+sbh and so x +y = (r, + r,)a + (5, £ ;)b € A.
Similarly, for any ue R, ux = u(rja + 5,0) = (ur,)a + (us,)b e A.

Since 4 is an ideal of R, by Theorem 3.7.1 there exists an element d € 4
such that every element in 4 is a mutiple of 4. By dint of the fact that
de 4 and that cvery element of 4 is of the form ra + sb, d = Aa + b
for some A, u € R. Now by the corollary to Theorem 3.7.1, R has a unit
element 1; thus a = la + 0bed, b =0a + lbe A Being in 4, they
are both multiples of d, whence d | @ and d | b.

Suppose, finally, that ¢|a and c¢|b; then ¢| Az and ¢ | b so that ¢
certainly divides i¢ + ub = d. Therefore d has all the requisite conditions
for a greatest common divisor and the lemma is proved.

DEFINITION Let R be a commutative ring with unit element. An
element a € R is a unit in R if there exists an element b € R such that ab = 1.

LEMMA
Let R be an integral domain with unit element and suppose that
Jor a, b e R both a| b and b | a are true. Then a = ub, where u is a unit in R.

Proof. Since a|b, b = xa for some x € R; since b |a, a = yb for some
yeR. Thus b = x(yb) = (x9)b; but these are elements of an integral
domain, so that we can cancel the b and obtain xy = 1; y is thus a unit in
R and a = yb, proving the lemma.

DEFINITION Let R be a commutative ring with unit element. Two
elements 2 and b in R are said to be associates if b = ua for some unit #in R,

LEMMA
Let R be a Euclidean ring and a, b € R. If b # 0 s not a unit
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in R, then d(a) < d(ab).

Proof. Consider the ideal 4 = (a) = {xa|x € R} of R. By condition
1 for a Euclidean ring, d(a) < d(xa) for x # 0 in R. Thus the d-value of
a is the minimum for the d-value of any element in 4. Now ab € 4; if
d(ab) = d(a), by the proof used in establishing Theorem 3.7.1, since the
d-value of ab is minimal in regard to 4, every element in 4 is a multiple of
ab. In particular, since a € 4, @ must be a multiple of ab; whence a = abx
for some x € R. Since all this is taking place in an integral domain we
obtain bx = 1. In this way b is a unit in R, in contradiction to the fact that
it was not a unit. The net result of this is that d(a) < d(ab).

DEFINITION In the Euclidean ring R a nonunit 7 is said to be a prime
element of R if whenever m = ab, where a, b are in R, then one of a or bisa

unit in R.

A prime element is thus an element in R which cannot be factored in R

in a nontrivial way.
LEMMA

Let R be a Euclidean ring. Then every element in R is either a
unit in R or can be written as the product of a finite number of prime elements of K.

Proof. The proof is by induction on d(a).

If d(a) = d(1) then a is a unit in R (Problem 3), and so in this case, the
assertion of the lemma 1s correct.

We assume that the lemma is true for all elements x in R such that
d(x) < d(a). On the basis of this assumption we aim to prove it for a.
This would complete the induction and prove the lemma. -

If a is a prime element of R there is nothing to prove. So suppose that

a = bcwhere neither b nor ¢is a unitin R. By Lemma 3.7.3, d(b) < d(bc) =
d(a) and d(c) < d(bc) = d(a). Thus by our induction hypothesis 6 and ¢
can be written as a product of a finite number of prime elements of R;
b=mny My, ¢ =MW, - -+ 7w, where the n’s and 7'’s are prime clements
of R. Consequently a = bc = mym, - m,nynh -+ 7w, and in this way a
‘has been factored as a product of a finite number of prime elements. This
completes the proof.

DEFINITION 1In the Euclidean ring R, a and 4 in R are said to be relatively
prime if their greatest common divisor is a unit of R.

LEMMA
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Let R be a Euclidean ring. Suppose that for a, b,c € R, a | be
but (a, b) = 1. Thena|ec. S o o

Proof. As we have seen in Lemma 3.7.1, the greatest common divisor
of a and b can be realized in the form Az 4+ ub. Thus by our assumptions,
Aa + pb = 1. Multiplying this relation by ¢ we obtain Aac + pbc = .
Now a| lac, always, and a|pbc since a|bc by assumption; therefore
a| (lac + pbc) = ¢. This is, of course, the assertion of the lemma.

THEOREM

(Unique FacrorizaTioNn Tueorem) Let R be a Eu-

clidean ring and a # 0 a nonunit in R. Suppose that a = my7y--- T, =
nymy +* - m, where the n; and ©; are prime elements of R. Then n = m and each
n, | < i <nis an associate of some wj, 1 <j < m and conversely each T
is an associate of some T,

Proof. Lookattherelationa=m 7, " m, =7y "My Butny 775 1,
hence n, | n, 7} * - * @l By Lemma 3.7.6, 7, mustdivide some 7;; since 7, and
7} are both prime elements of R and 7, | 7; they must be associates and
n; = w;m,, where u, is a unit in R. Thus myn,--- 7, = Ty Ty =
T T - T Whpy - T cancel off 7, and we are left with 7, m, =
UMy W Mpyy " M Repeat the argument on this relation with 7,.
After n steps, the left side becomes 1, the right side a product of a certain
number of 7’ (the excess of m over n). This would force n < m since the
7' are not units. Similarly, m < n, so that n = m. In the process we have

also showed that every 7; has some 7} as an associate and conversely.

Polynomial Rings
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DEFINITION If p(x) = ag + a;x + *** + a,»™ and q(x) = by + b;x +
**+ 4+ bx" are in F[x], then p(x) = g(x) if and only if for every integer
!: 2 0, ﬂl = bl"

‘Thus two polynomials are declared to be equal if and only if their corre-
sponding coefficients are equal.

DEFINITION If p(x) = ay + a,x + *** + a,™ and q(x) = by + byx +
***+ b " are both in F[x], then p(x) + ¢(x) = ¢y + ¢;x + - + ¢
where for each i, ¢; = a; + b,

In other words, add two polynomials by adding their coefficients and
collecting terms. To add 1 4+ x and 3 — 2x + x? we consider 1 + x as
1 4+ x + 0x? and add, according to the recipe given in the definition, to
obtain as their sum 4 — x 4 x2.

DEFINITION If p(x) = ay + ayx + -+ + a™ and g(x) = by + byx +
oo 4 bx" then p(x)q(x) = 6 + ¢ + -+ + g&* where ¢ = aby +
G1by + a_zby + 0+ by

DEFINITION If f(x) = a4y + a;x 4+ -~ + ax" # 0 and g, # 0 then
the degree of f (x), written as deg f (x), is n.

LEMMA

- s oW L] 1

If f (x), g(x) are two nonzero elements of F[x], then
deg (f (x)g(x)) = deg f(x) + degg(x).
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Proof. Suppose that f(x) = ay + a;x + -+ - + a,%™ and g(x) = b, +
byx + - + bx" and that a, # 0 and b, # 0. Therefore deg f(x) = m
and deg g(x) = n. By definition, f(x)g(x) = ¢y + ¢,x + -+ + ¢,x* where
6 = aby + a_1by + - + ah,_| + agb,. We claim that ¢,,,
ab, # 0and ¢; = 0 for i > m + n. That¢,,, = a,b, can be seen at a
glance by its definition. What about ¢, for i > m + n? ¢; is the sum of
terms of the form a;b;_;;since i = j + (i — j) > m + n then either j > m
or (i —j) > n. But then one of a; or b;_; is 0, so that a;b;_; = 0; since ¢;
is the sum of a bunch of zeros it itself is 0, and our claim has been

established. Thus the highest nonzero coeflicient of f (x) g(x) is ¢,,, ,, whence
deg f(x)g(x) = m + n = deg f(x) + deg g(x).

COROLLARY If f(x), g(x) are nonzero elements in F[x] then deg f(x) <
deg f (x) g(x).

Proof. Since deg f(x)g(x) = deg f(x) + deg g(x), and since deg g(x) >
0, this result is immediate from the lemma.

LEMMA 3.9.2 (TuEe Division ALGORITHM) Given two polynomials f (x)
and g(x) # 0 in F|[x], then there exist two polynomials t(x) and r(x) in F[x] such
that f (x) = t(x) g(x) + r(x) where r(x) = 0 or deg r(x) < deg g(x).

If the degree of f (x) is smaller than that of g(x) there is nothing to prove,
for merely put t(x) = 0, r(x) = f (x), and we certainly have that f(x) =
Og(x) + f(x) where deg f(x) < deg g(x) or f(x) = 0.

So we may assume that f (x) = a; + ax + *** + a,x™ and g(x) = by, +
byx + --+ + bx" wherea, # 0, b, # Oand m = n.

Let f,(x) = /' (x) — (aufb)#""2(x); thus degfi(x) < m — 1, s0 by
induction on the degree of f (x) we may assume that f,(x) = t,(x)g(x) +
r(x) where r(x) = 0 ordeg r(x) < deg g(x). Butthen f (x) — (a,,/b,)x™ "g(x) =
t,(x)g(x) + r(x), from which, by transposing, we arrive at f(x)=
(anfb)¥™™" + 1) 2(x) + r(x). If we put £(x) = (an/b)x™ " + £(x)
we do indeed have that f(x) = t(x)g(x) + r(x) where t(x), r(x) € F[x]
and where 7(x) = 0 or deg r(x) < deg g(x). This proves the lemma.
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DEFINITION A polynomial p(x) in F[x] is said to be irreducible over F if
whenever p(x) = a(x)b(x) with a(x), b(x) € F[x], then one of a(x) or b(x)
has degree 0 (i.e., is a constant).

Irreducibility depends on the field; for instance the polynomial x? + 1
is irreducible over the real field but not over the complex field, for there
#2 + 1 = (x + i)(x — i) where i* = —1.

LEMMA 3.9.5 Any polynomial in F[x] can be written in a unique manner as a
product of irreducible polynomials in F[x].

LEMMA 3.9.6 The ideal A = (p(x)) in F[x] is a maximal ideal if and only
if p(x) is irreducible over F.

Polynomials over the Rational Field

DEFINITION The polynomial f(x) = ay + a;x + * -+ + a,x", where the
dg, dy, dy, - . ., @, are integers is said to be primitive if the greatest common
divisor of ay, a, ..., a, is L.

LEMMA 3.10.1 If f(x) and g(x) are primitive polynomials, then f (x)g(x)
is a primitive polynomial.

Proof. Let f(x) =ay + ayx + - + a,x" and g(x) = by + byx + - +
b,x™. Suppose that the lemma was false; then all the coefficients of
S (x)g(x) would be divisible by some integer larger than 1, hence by some
prime number p. Since f(x) is primitive, p does not divide some coefficient
a;. Let a; be the first coefficient of f (x) which p does not divide. Similarly
let b, be the first coefficient of g(x) which p does not divide. In f (x)g(x)
the coefficient of x/*¥, Cj4ks 1S
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Cian = @by + (84105 + api0by 5 + 20 + ajyb)
+ (@j—1bysr + y_gbys + 00+ aghyyy). (1)

Now by our choice of by, p|b;_y, by_s, .. . 5O that p|(a; 4 65—y + a;420,_5 +
"** + aj44bp). Similarly, by our choice of a;, p| @j_ys @j_3, ... sO that
Pla;_\bysy + aj_zbyyy + -+ + aphys;). By assumption, P1¢44 Thus
by (1), p|a;b,, which is nonsense since p ¥ a; and p ¥ b,. This proves
the lemma.

DEFINITION The content of the polynomial f(x) = ay + ax + -+ +
fi,x", where the a’s are integers, is the greatest common divisor of the
Integers ay, a,, ..., 4,.
Clearly, given any polynomial p(x) with integer coefficients it can be

written as p(x) = dg(x) where d is the content of p(x) and where g(x) is a
primitive polynomial.

THEOREM 3.10.1 (Gauss’ LEmma) If the primitive polynomial f(x) can
be factored as the product of two polynomials having rational coefficients, it can be
Sfactored as the product of two polynomials having integer coefficients.

Proof. Suppose that f (x) = u(x)v(x) where u(x) and v(x) have rational
coefficients. By clearing of denominators and taking out common factors
we can then write f (x) = (a/b)A(x)pu(x) where a and & are integers and
where both A(x) and pu(x) have integer coefficients and are primitive.
Thus bf (x) = aA(x)u(x). The content of the left-hand side is b, since
f (x) is primitive; since both A(x) and u(x) are primitive, by Lemma 3.10.1
A(x)u(x) is primitive, so that the content of the right-hand side is a. There-
fore a = b, (a/b) =1, and f(x) = A(x)u(x) where A(x) and p(x) have
integer coefficients. This is the assertion of the theorem.

DEFINITION A polynomial is said to be integer monic if all its coefficients
are integers and its highest coefficient is 1.

Thus an integer monic polynomial is merely one of the form " +
a;x""! + -+« + a, where the a’s are integers. Clearly an integer monic
polynomial is primitive.

COROLLARY If an integer monic polynomial factors as the product of two non-
constant polynomials having rational coefficients then it factors as the product of two
integer monic polynomials.
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THEOREM 3.10.2 (THE Eisenstein CRITERION) Let f (x) = ay + a;x +
a,x% 4 <+ 4 ax" be a polynomial with integer coefficients. Suppose that for
some prime number p, p X @y p | @y play ..., p|ag, p* K ag. Then f(x) is
irreducible over the rationals. '

Proof. Without loss of generality we may assume that f (x) is primitive,
for taking out the greatest common factor of its coefficients does not disturb
the hypotheses, since p ¥ a,. If f(x) factors as a product of two rational
polynomials, by Gauss’ lemma it factors as the product of two polynomials
having integer coefficients. Thus if we assume that f'(x) is reducible, then

L(x) = (b + byx + -+ + bX) (e + 1% + -+ + + ¢,
where the b’s and ¢’s are integers and where r > 0 and s > 0. Reading off

the coefficients we first get a, = by,. Since p | ay, p must divide one of
bo or co. Since p? f g, p cannot divide both b, and ¢,. Suppose that p | by,
p X co- Not all the coefficients by, ..., b, can be divisible by p; otherwise
all the coefficients of f (x) would be divisible by p, which is manifestly false
since p f a,. Let b, be the first b not divisible by p, k¥ < r < n. Thus
P bi—y and the earlier b’s. But a, = by + by_1c, + by_p0p + -+ + bocy,
and play,p|b,_y, b_y,..., by, so that p|be, However, p ¥y, p ¥ by,
which conflicts with p | b,¢,. This contradiction proves that we could not
have factored f (x) and so f (x) is indeed irreducible.
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Possible Questions
PART-B (6 Mark)

Show that if f(x),g(x) are two nonzero elements of F[x], then prove that

deg (f(x)g(x)) = deg f(x)+deg g(x).

Let R be a commutative ring with unit element whose only ideals are 0 and R itself

then prove that R is a field.

State and prove Gauss Lemma.

State and prove the Eisenstein Criterion.

Prove that if f(x) and g(x) are primitive polynomials, then prove that f(x)g(x) is a
primitive polynomials.

Given two polynomials f(x) and g(x) in F[x],then prove that there exist two
polynomials t(x) and r(x) in F[x] such that f(x)=t(x)g(x)+r(x),where r(x)=0 or deg
r(x)<deg g(x).

If p is a prime number of the form 4n+1.then prove that p=a®+b? for some integer
a,b.

State and prove Fermat theorem

PART-C (10 Mark)

State and prove the Eisenstein Criterion.

Show that if R is a unique factorization domain, and then proves that the product of
two primitive polynomials in R[x] is again a primitive polynomial in R[x].

Prove that every integral domain can be imbedded in a field.
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Questions choice 1 choice 2 choice 3 choice 4 Answer
UNIT - 11
If in aring R there is an element 1 in R such that  |ring with unit ring with unit
a.l=l.a=athen R is -------- element commutative ring zero none element
If the multiplication of R such that a.b=b.a then R |ring with unit
[ element commutative ring zero none commutative ring
A commutative ring with unity without zero
divisors is called ------- integral domain zero identity commutative ring  integral domain
A commutative ring with unity ------------ is called without zero
integral domain without zero divisors |with zero divisors  |zero identity divisors
A commutative division ring is --------- ring Field integral domain Zero Field
Another name of division ring is------------- Field integral domain skew Field group Field
finite integral infinite integral finite integral
Every -------------- is a field integral domain domain domain ring domain
An elementa of aring R'is said to be idempotent if
------- a=1 a1l a’a a’.0 a’a
An element a of aring R is said to be ------------- if
a’.a idempotent nilpotent identity none idempotent
An element a of aring R is said to be -------------- if
a>.0 idempotent nilpotent identity none nilpotent
A commutative ring is an ---------- if it has no zero
divisors Division ring field integral domain Eucledian ring integral domain
Acring is said to be ------------------ if its nonzero
elements form a group under multiplication Division ring field integral domain Eucledian ring Division ring
Aring is said to be division ring if its nonzero
elements form a ----------------- under multiplication |Division ring group integral domain Eucledian ring group
A commutative ring is an integral domain if it has --
------------------ Division ring field no zero divisiors  |zero divisiors no zero divisiors
A finite integral domain is a ---------- Division ring field integral domain Eucledian ring field
finite integral finite integral
A — is a field- Division ring domain integral domain ring domain
A homomorphism of R into R’ is said to be an ------
--- if it is a one-to one mapping isomorphism automorphism homomorphism monomorphism  isomorphism
A homomorphism of R into R’ is said to be an
isomrphism if it is @ ------------—-| mapping one-one onto into into & onto one-one
A homomorphism of R into R’ is said to be an
isomrphism if and only if I(®)= ------- one zero two three Zero
A ring is an integral domain if it
has no zero divisors Division ring field commutative ring  |Eucledian ring commutative ring
Y — possesses a unit element Division ring field integral domain Eucledian ring Eucledian ring
A non-empty set | is called ------------ if it is both
left and right ideal K one-sided ideal two-sided ideal field integral domain two-sided ideal
A non-empty set | is called two sided ideal if it is --- both left and right both left and right
—————————————————— left ideal right ideal field ideal ideal
The polynomial is said to be --------- ifthe G.C.Dis
one primitive field integral domain Eucledian ring primitive
The polynomial is said to be primitive if the G.C.D
i§ ~mmmmmmnnnnn- two one Zero four one
A polynomial is said to be integer monic if all its
coefficients are -------------- integers rational real complex integers
A polynomial is said to be --------------- if all its
coefficients are integers integer monic rational monic real monic complex monic integer monic
N e —— integral domain Euclidean ring Field skew field Euclidean ring
---------------- is a Eucledian ring. F(i) J(i) M(i) A(l) J(0)
IfacRisan ----------------- and a/bc, then a/b or a/c |zero divisor primitive irreducible integers irreducible
is a commutative ring with unit
element (R, +,.) (Z,*) (R, *,.) (R, +,*) (R, +,)
(R, +,) isa with unit element field commutative ring Eucledian ring ring commutative ring
is an Integral domain. skew Field Field ring group Field
Field is an integer monic Eucledian ring integers integral domain integral domain

The smallest such positive integer n is called
if no positive integer then r is said to be

the characteristics of

infinite integral

the characteristics

a characteristic zero or infinite. Euclidean ring R aring R domain Division ring R ofaring R
The smallest such positive integer n is called the

characteristics of a ring R if no integer

then r is said to be a characteristic zero or infinite. |positive real rational complex positive




The smallest such positive integer n is called the
characteristics of a ring R if no positive integer

characteristic zero or

characteristic zero

then ris said to be a infinite characteristic one characteristic finite [characteristic ring or infinite

A has no proper ideals field group Field ring field

A field has no right ideal proper ideals one-sided ideal two-sided ideal proper ideals
An generated by a single element of

itself it called a principle ideal group ideal Field ring ideal

An ideal generated by a element of

itself it called a principle ideal two-sided ideal one-sided ideal double single single

An ideal generated by a single element of itself it

called a integral domain principle ideal ideal Eucledian ring principle ideal
AN — possess a unit element. integer monic Division ring Euclidean ring integral domain Euclidean ring
An Euclidean ring possess a element. |field unit double no unit

An is said to be of characteristics zero if

the relation Ma = 0, where a #0 is in D and where the characteristics

m is an integer can hold only if m=0 skew Field Integral domain D |Division ring R ofaring R Integral domain D

A e of R into R’ is said to be an

isomorphism if it is one- one mapping. homomorphism isomorphism automorphism monomorphism  homomorphism
A homomorphism of R into R’ is said to be an ---—-

--------- if it is one- one mapping. isomorphism identity integral domain Eucledian ring isomorphism

A homomorphism of R into R’ is said to be an

isomorphism if it is --------- mapping. onto one- one into into & onto one- one

We cannot define the ---------- of the zero

polynomial. sum degree order power degree
A--mmeee is a constant if it degree is zero. monomial trinomial polynomial binomial polynomial
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UNIT-1H

Fields — Extension Fields-Finite Extension of F — Some basic Definitions and Theorem —
Roots of a Polynomial — More about Roots — The elements of Galois theory.

Fields Extension Fields
DEFINITION The degree of K over F is the dimension of K as a vector

space over F.

DEFINITION The polynomial f(x) = a5 + a;x + **+ + a,x", where the

@g, @y, @y, . . . , @, are integers is said to be primitive if the greatest common
divisor of ag, @y, ..., a, is 1.

DEFINITION If p(x) = @y + a;x + *** + a,x™ and ¢(x) = by + byx +
**++ bx" are both in F[x], then p(x) + q(x) = ¢y + ¢;x + *** + ¢’
where for each i, ¢; = a; + b,

In other words, add two polynomials by adding their coefficients and
collecting terms. To add 1 + x and 3 — 2x + x? we consider 1 + x as
1 + x + 0x? and add, according to the recipe given in the definition, to
obtain as their sum 4 — x + x2.

DEFINITION If p(x) = ay + a;x + *** + a,x™ and ¢(x) = by + b;x +
o4 bx" then p(x)g(x) = ¢ + ¢,x + *+- + g¥* where ¢ = ab, +
a,_1by + a,_3b, + ** + agh,.

DEFINITION If f(x) = ay + ax + -+ + ax" # 0 and aq, # 0 then
the degree of f (x), written as deg f (x), is n.
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THEOREM 5.1.1 If L is a finite extension of K and if K is a finite extension of
F, then L is a finite extension of F. Moreover, [L:F] = [L:K][K:F].

Proof. The strategy we employ in the proof is to write down explicitly

a basis of L over F. In this way not only do we show that L is a finite

extension of F, but we actually prove the sharper result and the one which

is really the heart of the theorem, namely that [L:F] = [L:K][K:F].
Suppose, then, that [L:K] = m and that [K:F] =n. Let v,...,2,

be a basis of L over K and let w,, ..., w, be a basis of K over F. What

could possibly be nicer or more natural than to have the elements »a0;,

where i = 1,2,...,m, j=1,2,...,n, serve as a basis of L over F?

Whatever else, they do at least provide us with the right number of elements.

We now proceed to show that they do in fact form a basis of L over F.

What do we need to establish this? First we must show that every element

in L is a linear combination of them with coefficients in F, and then we

must demonstrate that these mn elements are linearly independent over F.

Let ¢ be any element in L. Since every element in L is a linear combination
of v,,..., v, with coefficients in K, in particular,  must be of this form.

Thus ¢ = ko, + -+ + kpVms where the elements k,, ..., k, are all in K.

However, every element in K is a linear combination of w,..., w, with

coefficients in F. Thus k, = fj,w, + " + fiWp - .- ki = fauw, + 0 +

s by = fit0r 0t [l Where every fi; is in F.

Substituting these expressions for k,..., k, into ¢ = ko + 0+ kb
we obtain t= (fi,w, + 4 fiaWa)ty + 0 F (S + 0+ Salln)Vm
Multiplying this out, using the distributive and associative laws, we finally
arrive at t = fi o, +° + fiw, + 0+ fipw; + 000+ SunPmin
Since the f;; are in F, we have realized ¢ as a linear combination over F of
the elements v, Therefore, the elements »,w; do indeed span all of L over
F, and so they fulfill the first requisite property of a basis.
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We still must show that the elements v;w; are linearly independent over F.,
"_511131305'3 that Jrllvl'wl +- +f1 n‘vlwn +- +ﬁjﬂiwj + 0 +-fmnﬂmwn = 0.1
-where the f;; are in F. Our objective is to prove that each Jfi; = 0. Re-
rgrouping the above expression yields (f,w, + - + fia0)vy + 0+
(fuwr + 2+ fuwn)v, + -+ (fawy + 0+ fraw,)v, = 0.

. Since the w; are in K, and since K > F, all the elements £, = fuw, + -

w4 S0, are in K. Now ko, + -+ + ko = 0 with ky,..., k,e K. But,
‘by assumption, v,, ..., », form a basis of L over K, so, in particular they
-must be linearly independent over XK. The net result of this is that k, =
&, ==k, = 0. Using the explicit values of the k,, we get

Juwy + -+ fiw, =0 for 1=1,2,..., m

But now we invoke the fact that the w, are linearly independent over F:
this yields that each f;; = 0. In other words, we have proved that the

waw; are lincarly independent over F. In this way they satisfy the other
‘requisite property for a basis.

~ We have now succeeded in proving that the mn elements vw; form a
Es’_?basis of L over F. Thus [L:F] = mn; since m = [L:K] and n = [K:F]
"'we have obtained the desired result [L:F] = [L:K][K:F].

' Suppose that L, K, F are three fields in the relation I > K > F and,
'ﬁjsuppose further that [L:F] is finite. Clearly, any elements in L linearly
rindependent over K are, all the more so, linearly independent over F.
gl‘rhus the assumption that [L:F] is finite forces the conclusion that [L:K]
Uis finite, Also, since K is a subspace of L, [K:F] is finite. By the theorem,

3_."![L:F 1 = [L:K][K:F], whence [K:F] | [L:F]. We have proved the

'COROLLARY If L is a finite extension of F and K is a subfield of L whith
“Gontains F, then [K:F] | [L:F)].

Thus, for instance, if [L:F] is a prime number, then there can be no
fields properly between F and L. A little later, in Section 5.4, when we
‘discuss the construction of certain geometric figures by straightedge and
‘Lompass, this corollary will be of great significance.

?DEFINITION An element a € K is said to be algebraic over F if there exist

\€lements o, @;,...,x, in F, not all 0, such that " + aga" "t e
e = 0
£ n =
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i If the polynomial ¢(x) e F[x], the ring of polynomials in x over F, and
L g(x) = o™ + Bx™~ 1 4+ --- 4 B then for any element b € K, by q(b)
We shall mean the element Bo6™ + B,6" ' +--- 4+ B _in K. In the ex-
ression commonly used, ¢(b) is the value of the polynomial g(x) obtained

PY substituting & for x. The element & is said to satisfy q(x) if q(b) = 0.

THEOREM 5.1.2 The element a € K is algebraic over F if and only if F(a)

15 a finite extension of F.

Proof. As is so very common with so many such “if and only if”* pro-
positions, one-half of the proof will be quite straightforward and easy,
whereas the other half will be deeper and more complicated.

Suppose that F(a) is a finite extension of F and that [F(a):F] = m
Consider the elements 1, a, a?, ..., a™; they are all in F(a) and are m + |
in number. By Lemma 4.2.4, these elements are linearly dependent over
F. Therefore, there are elements oy, &, ..., &, in F, not all 0, such that
ol + a,a + a,a® + -+ + a,a" = 0. Hence a is algebraic over F and
satisfies the nonzero polynomial p(x) = ay + ayx + -+ - + o, x™ in F[x]
of degree at most m = [F(a):F]. This proves the “if”” part of the theorem-

Now to the “only if”” part. Suppose that a in K is algebraic over F. By

E*’ﬁumptiﬂﬂ, a satisfies some nonzero polynomial in F[x]; let p(x) be a
;?olynumial in F[x] of smallest positive degree such that pla) = 0. We
glaim that p(x) is irreducible over F. For, suppose that plx) = f(x)g(x),
where f(x), g(x) € F[x]; then 0 = p(a) = f(a)g(a) (see Problem 1) and,

ce f (a) and g(a) are elements of the field K, the fact that their product
0 forces f{a) = 0 or g(a) = 0. Since p(x) is of lowest positive degree
.'_'th pla) = 0, we must conclude that one of deg f(x) > deg p(x) or
ﬂcgg(xj = deg p(x) must hold. But this proves the irreducibility of p(x).
55; We define the mapping  from F[x] into F(a) as follows. JFurr';Lnjy
%{x} € Flx], h(x){ = h(a). We leave it to the reader to verify that y is a
#ing homomorphism of the ring F[x] into the field F(a) (see Problem 1).
Iraﬁfhat is V, the kernel of y? By the very definition of W, V =
{h(x) € F[x] | A(a) = 0}. Also, p(x) is an element of lowest degree in the
ideal Vof F[x]. By the results of Section 3.9, every element in Vis a mul tiple
of p(x), and since p(x) is irreducible, by Lemma 3.9.6, V is a maximal ideal

A w w
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‘of F[x]. By Theorem 3.5.1, F[x]/V is a field. Now by the general homo-
‘morphism theorem for rings (Theorem 3.4.1), F[x]/V is isomorphic to the
E@agc of F[x] under y. Summarizing, we have shown that the image of
F[x] under  is a subfield of F(a). This image contains xf = a and, for
every o€ F, wf = «. Thus the image of F[x] under y is a subfield of
F[a] which contains both F and a; by the very definition of F (a) we are
dorced to conclude that the image of F[x] under  is all of F(a)
succinctly, F[x]/V is isomorphic to F(a)

. Put more

b

. Now, V = (p(x)), the ideal generated by p(x); from this we claim that
;thE dimension of F[x]/V, as a vector space over F, is precisely equal to
:I_d-tg p(x) (see Problem 2). In view of the isomorphism between F[x]/V and
F(a) we obtain the fact that [F(a):F] = deg p(x). Therefore, [F(a):F] is
certainly finite; this is the contention of the “only if”’ part of the theorem.
Note that we have actually proved more, namely that [F(a):F] is equal to
the degree of the polynomial of least degree satisfied by a over F.

Suppose that p(x) is of degree n; thus p(x)} = x" + a "+ + %,

where the «; are in F. By assumption, a" + a@" ' + -+ + o, = 0,

whence @" = —aa" ! — pa" % — -+ — o, What about a"*'? From

the above, a"*! = —ga" — aa" ! —---— a,a; if we substitute the

expression for " into the right-hand side of this relation, we realize o"*!

as a linear combination of the elements 1, a,...,a" ' over F. Con.

tinuing this way, we get that a"*¥, for £ = 0, is a lincar combination over

Fofl,a a*...,a" .

Now consider 7' = {By + Bya + *** + Bue1@" ' | Bo, Brs- - s Bu-r €1},
Clearly, T is closed under addition; in view of the remarks made in the
paragraph above, it is also closed under multiplication. Whatever further
it may be, T has at least been shown to be a ring. Moreover, T contains
both F and a. We now wish to show that T is more than just a ring, that
it is, in fact, a field.

Let 0 £#u=p, + f1a+---+ B,-1a" * be in 17and let a(x) = iy +
Bx + -+ 4 B,_1x" ‘e F[x]. Since u # 0, and u = h(a), we have that
h(a) # 0, whence p(x) ¥ h(x). By the irreducibility of p(x), p(x) and h(x)
must therefore be relatively prime. Hence we can find polynomials s(x)
and t(x) in F[x] such that p(x)s(x) + h(x)t(x) = 1. But then 1 =
pla)s(a) + h(a)t(a) = h(a)t(a), since p(a) = 0; putting into this that
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u = h(a), we obtain ut(a) = 1. The inverse of u is thus {(a); in t(a) all
powers of a higher than n — 1 can be replaced by linear combinations of 1,
a,...,a" ! over F, whence t(a) € T. We have shown that every nonzero
element of 7 has its inverse in 7'; consequently, 7 is a field. However,
T < F(a), yet F and a are both contained in 7, which results in 7" = F(a).
We have identified F(a) as the set of all expressions B, + fya + -+

n—1
B._1a"" . _
Now T is spanned over F by the elements I, a,..., @ *in consequence
of which [T:F] < n. However, the elements 1, a, a?,...,a"" 1 are

linearly independent over F, for any relation of the form y, + ya + -
+ 9,-,8"" 1, with the elements y; € F, leads to the conclusion that a

3

satisfies the polynomial y, + 7,8 + ** + 9,-.%" ' over F of degree
less than n. This contradiction proves the linear independence of 1, a, .. -
a"~1, and so these elements actually form a basis of T" over F, whence, 10
fact, we now know that [T:F] =an. Since T = F(a), the result
[F(a):F] = n follows.
DEFINITION The element a € K is said to be algebraic of degree n over
F if it satisfies a nonzero polynomial over F of degree n but no nonzer®

polynomial of lower degree.

THEOREM 5.1.3 If a € K is algebraic of degree n over F, then [F(a):F] = n.

This result adapts itself to many uses. We give now, as an immediate
consequence thereof, the very interesting

THEOREM 5.1.4 If a, b in K are algebraic over F then a + b, ab, and a/b
. (if b # 0) are all algebraic over F. In other words, the elements in K which are
algebraic over F form a subfield of K.

Proof.  Suppose that a is algebraic of degree m over F while b is algebraic
of degree n over F. By Theorem 5.1.3 the subfield 7' = F(a) of K is of
degree mover F. Now b is algebraic of degree n over F, a fortiori it is algebraic
of degree at most n over 7" which contains F. Thus the subfield W = T(b)
of K, again by Theorem 5.1.3, is of degree at most n over T. But [W:F] =
[W:T][T:F] by Theorem 5.1.1; therefore, [W:F] <mn and so W is a
finite extension of F. However, a and b are both in W, whence all of
a + b, ab, and af/b are in W. By Theorem 5.1.2, since [W:F] is finite
these elements must be algebraic over F, thereby proving the theorem. ,
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COROLLARY  Ifaand b in K are algebraic over F of degrees m and n, respectively,
then a 1 b, ab, and afb (if b # 0) are algebraic over F of degree at most mn.

In the proof of the last theorem we made two extensions of the field F.
The i?rst we called 7' it was merely the field F{a). The second we called W
and it was 7(h). Thus W = (F(a))(b); it is customary to write it as
F(a, b). Similarly, we could speak about F(b, a); it is not too difficult to
prove that F(a, b) = F(b, a). Continuing this pattern, we can define
F(ay, a,, ..., a,) for elements @y, ..., a,in K.

PEFINITION The extension K of F is called an algebraic extension of F
if every element in K is algebraic over F.

THEQHEM 51.5 If L is an algebraic extension of K and if K is an algebraic
extension of F, then L is an algebraic extension of F.

Fn:wf. Let u be any arbitrary element of L; our objective is to show that
u sa'tlsﬁcs some nontrivial polynomial with coefficients in F. What infor-
Mmation do we have at present? We certainly do know that u satisfies some

polynomial " + ¢,2"~ ' + -+ + @, where ¢y,...,0, are in K.' But K
is algebraic over F; therefore, by several uses of T+heorr:m 51.3, M =
F(o,...,0,) is a finite extension of F. Since u satlsﬁes' the pn]y.rmml,a]
& + 6,51 + -+ + g, whose coefficients are in M, u is algebraic over
M. Invoking Theorem 5.1.2 yields that M (u) is a finite extension of M.
However, by Theorem 5.1.1, [M(u):F] = [ M (u) :M][M:F],‘ whence
M (u) is a finite extension of F. But this implies that u is algebraic over F,
completing proof of the theorem.

A quick description of Theorem 5.1.5: algebraic over algebraic is algebraic.

The preceding results are of special interest in the particular case in
which F'is the field of rational numbers and K the field of complex numbers.

DEFINITION A complex number is said to be an algebraic number if it is
algebraic over the field of rational numbers.
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Roots of Polynomials _

DEFINITION If p(x) € F[x], then an element a lying in some extension
field of F is called a root of p(x) if p(a) = 0.

We begin with the familiar result known as the Remainder Theorem.

LEMMA 53.1 If p(x) € F[x] and if K is an extension of F, then for any ele-
ment b € K, p(x) = (x — b)q(x) + p(b) where q(x) € K[x] and where deg q(x) =
deg p(x) — 1.

Proof. Since F < K, F[x] is contained in K[x], whence we can con-
sider p(x) to be lying in K[x]. By the division algorithm for polynomials
in K[x], p(x) = (x — b)g(x) + r, where ¢(x) € K[x] and where r =0
or degr < deg (x — ) = 1. Thus either r =0 or degr = 0; in either
case r must be an element of K. But exactly what element of K is it?
Since p(x) = (x — b)g(x) + r, p(b) = (b — b)g(b) + r = r. Therefore,
p(x) = (x — b)g(x) + p(b). That the degree of g(x) is one less than that of
p(x) is easy to verify and is left to the reader.

COROLLARY Ifae K is a root of p(x) € F[x], where F < K, then in K[x],
(x — a) | p(x).

Proof. From Lemma 5.3.1, in K[x], p(x) = (x — a)g(x) + pla) =
(x — a)g(x) since p(a) = 0. Thus (x — a) | p(x) in K[x].

DEFINITION The element ae K is a root of p(x) € F[x] of multiplicity
m if (x — a)™| p(x), whereas (x — a)™* ! } p(x).

LEMMA 5.3.2 A polynomial of degree n over a field can have at most n roots in
any extension field.

Proof. We proceed by induction on n, the degree of the polynomial p(x).
If p(x) is of degree 1, then it must be of the form ax + B where o, f§ are
in a field F and where o # 0. Any a such that p(a) = 0 must then imply
that #a + f = 0, from which we conclude that a = (—f/«). That is,
p(x) has the unique root —ffa, whence the conclusion of the lemma
certainly holds in this case.
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Assuming the result to be true in any field for all polynomials of degree
less than n, let us suppose that p(x) is of degree n over F. Let K be any
extension of F. If p(x) has no roots in K, then we are certainly done, for the
number of roots in K, namely zero, is definitely at most n. So, suppose that
f(x) has at least one root a € K and that a is a root of multiplicity m. Since
(x — a)™| p(x), m < n follows. Now p(x) = (x — a)™q(x), where ¢(x) € K[x]
is of degree n — m. From the fact that (x — a)™*! y p(x), we get that
(x — a) t g(x), whence, by the corollary to Lemma 5.3.1, a is not a root
of g(x). If b # a is a root, in K, of p(x), then 0 = p(b) = (b — a)"q(b);
however, since b — a # 0 and since we are in a field, we conclude that
q(b) = 0. That is, any root of p(x), in K, other than a, must be a root of

¢(x). Since g(x) is of degree n — m < n, by our induction hypothesis, g{x)
has at most n» — m roots in K, which, together with the other root a
counted m times, tells us that p(x) has at most m -+ (n — m) = n roots ir:
K. This completes the induction and proves the lemma.

Proof. Let F[x] be the ring of polynomials in x over F and let ¥V =
(ﬁ{x?} be the ideal of F[x] generated by p(x). By Lemma 3.96, Vis a
ma_xlmal ideal of F[x], whence by Theorem 3.5.1, E = F[x]/V is a field.
Thl? E will be shown to satisfy the conclusions of the theorem,

First we want to show that E is an extension of F ; however, in fact, it is
not! But let /¥ be the image of F in E; that is, F= {a& + V|aeF}). We
assert that F'is a field isomorphic to F; in fact, if Y is the mapping from
F[x] into F[x]/V = E defined by f(x)yy = f(x) + V, then the restriction
of to F induces an isomorphism of F onto F. (Prove!) Using this iso-
morphism, we identify F and F; in this way we can consider E to be an extension
of B

We claim that E is a finite extension of F of degree n = deg p(x), for the
elements 1 + Vix + V, (x + V}2=x1+ Vyoooy(x + V}‘-—-xi#- V,...
(= + V)" 1 =x""1 L V form a basis of E over F, (Prove!) For’con-}
venience of notation let us denote the element xf = x 4+ V in the field
}E_":( :;S ?. Given :; (..x') € }; [x], what is f(x))? We claim that it is merely

» 101, since ¥ 1s a homomorphism, if f(x) = X4
then f(:) = By + (Byy) (=) + - +ﬁ§3k3#1(x§3*j- ilnd+ usiﬂ—gf' ﬁfé

identification indicated above of By with B, we see that £ ()W = f(a).
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In particular, since p(x) € V, p(x)yy = 0; however, p(x) = p(a). Thus
the element a = xiy in E is a root of p(x). The field E has been shown to satisfy
all the properties required in the conclusion of Theorem 5.3.1, and so this

theorem is now proved.

An immediate consequence of this theorem is the

COROLLARY If f(x) € F[x], then there is a finite extension E of F in which
f(x) has a root. Moreover, [E:F] < deg f(x).

Proof. Let f(x) be an irreducible factor of f(x); any root of p(x) is a
root of f(x). By the theorem there is an extension E of F with [E:F] =
deg p(x) < deg f(x) in which p(x), and so, f (x) has a root.

Although it is, in actuality, a corollary to the above corollary, the next
theorem is of such great importance that we single it out as a theorem.

THEOREM 5.3.2 Let f(x) € F[x] be of degree n = 1. Then there is an ex-
tension I of F of degree at most n! in which f (x) has n roots (and so, a full com-
plement of roots).
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Proof, In the statement of the theorem, a root of multiplicity m is, of
course, counted as m roots.

By the above corollary there is an extension F, of F with [E,:F] < n in
which f (x) has a root . Thus in Ey[x], f(x) factors as f (x) = (x — a)g(x),
where g(x) is of degree n — 1. Using induction (or continuing the above
process), there is an extension E of E, of degree at most (n — 1)! in which
q(x) has n — 1 roots. Since any root of f (x) is either a or a root of g(x), we
obtain in E all n roots of f (x). Now, [E:F]| = [E:E)]|[E,:F]1<(n—1)ln=n!

All the pieces of the theorem are now established.

Theorem 5.3.2 asserts the existence of a finite extension E in which the
given polynomial f(x), of degree n, over FF has n roots. If f(x) = aypx" +
ax ' + -+ +a, a # 0 and if the n roots in E are o, ..., a, making
use of the corollary to Lemma 5.3.1, f (x) can be factored over E as f (x) =
ao(x — a)(¥ — 3) =~ (x — a,). Thus f(x) splits up completely over E
as a product of linear (first degree) factors. Since a finite extension of F
exists with this property, a finite extension of F of minimal degree exists which
also enjoys this property of decomposing f (x) as a product of linear factors.
For such a minimal extension, no proper subfield has the property that
[ (x) factors over it into the product of linear factors. This prompts the
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DEFINITION 1If f(x) € F[x], a finite extension E of F is said to be a
splitting field over F for f(x) if over E (that is, in E[x]), but not over any
proper subfield of E, f(x) can be factored as a product of linear factors.

.‘.

LEMMA 5.3.3 t* defines an isomorphism of F[x] onto F'[t] with the property
that at* = o' for every o € F.

Iff (x) is in F[x] we shall write f (x)t* as f’(¢). Lemma 5.3.3 immediately
implies that factorizations of f(x) in F[x] result in like factorizations of
S'(t) in F'[t], and vice versa. In particular, f (x) is irreducible in F[x]
if and only if £'(¢) is irreducible in F'[¢].

However, at the moment, we are not particularly interested in polynomial
rings, but rather, in extensions of F. Let us recall that in the proof of
Theorem 5.1.2 we employed quotient rings of polynomial rings to obtain
suitable extensions of F. In consequence it should be natural for us to study
the relationship between F[x]/(f(x)) and F'[¢]/(f'(t)), where (f(x))
denotes the ideal generated by f (x) in F[x] and (f’(t)) that generated by
S'(¢) in F'[t]. The next lemma, which is relevant to this question, is actually

part of a more general, purely ring-theoretic result, but we shall content
ourselves with it as applied in our very special setting.

LEMMA 5.3.4 There is an isomorphism ©** of F[x|[( f (x)) onto F'[t][( f'(t))
with the property that for every . € F, at** = o, (x + (f(x)))t** =1t + (f'(t)).

Proof. Before starting with the proof proper, we should make clear what
is meant by the last part of the statement of the lemma. As we have already
done several times, we can consider F as imbedded in F[x]/( f(x)) by
identifying the element a € F with the coset a + (f(x)) in F[x]/(f(x)).
Similarly, we can consider F' to be contained in F'[t]/(f'(t)). The
isomorphism 7** is then supposed to satisfy [+ (f (x))]t** =o' + (f'(1)).

We seek an isomorphism t** of F[x]/(f(x)) onto F'[t]/(f'(t)).
What could be simpler or more natural than to try the t** defined by
[e(x) + (f (@)]T** = g'(t) + (£'(t) for every g(x) € F[x]? We leave
it as an exercise to fill in the necessary details that the t** so defined is well
defined and is an isomorphism of F[x]/( f(x)) onto F'[t]/(f'(t)) with the
properties needed to fulfill the statement of Lemma 5.3.4.
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THEOREM 5.3.3 If p(x) is irreducible in F|x] and if v is a root of p(x), then
F(v) is isomorphic to F'(w) where w is a root of p'(t); moreover, this isomorphism
o can so be chosen that

1. vo = w.
2. ao = o for every a € F.

Proof. Let v be a root of the irreducible polynomial f(x) lying in some
extension K of F. Let M = {f(x) e F[x]| f(v) = 0}. Trivially M is an
ideal of F[x], and M # F[x]. Since p(x) € M and is an irreducible poly-
nomial, we have that M = (p(x)). As in the proof of Theorem 5.1.2, map
F[x] into F(v) = K by the mapping  defined by ¢(x)} = g(v) for every
g(x) € F[x]. We saw earlier (in the proof of Theorem 5.1.2) that ) maps
F[x] onto F(v). The kernel of \ is precisely M, so must be (p(x)). By the
fundamental homomorphism theorem for rings there is an isomorphism *
of F[x]/(p(x)) onto F(v). Note further that ay* = a for every o€ F.
Summing up: ¥* is an isomorphism of F[x]/(p(x)) onto F(v) leaving
every element of F fixed and with the property that v = [x + (p(x))]y*.

Since p(x) is irreducible in F[x], p'(t) is irreducible in F'[{] (by Lemma
5.3.3), and so there is an isomorphism 6% of F'[t]/(p'(¢)) onto F'(w) where
w is a root of p'(t) such that 0* leaves every element of F’ fixed and such
that [t + (p'(1)]0* = w.

We now stitch the pieces together to prove Theorem 5.3.3. By Lemma
5.3.4 there is an isomorphism t** of F[x]/(p(x)) onto F'[t]/(p'(t)) which
coincides with 7 on F and which takes x + (p(x)) onto { + (p'(t)). Con-

sider the mapping ¢ = (Y*) ™ '¢**0* (motivated by

po 92 P P8
O e oy T

of F(v) onto F'(w). It is an isomorphism of F(z) onto F'(w) since all the
mapping Y*, t™*, and 6* are isomorphisms and onto. Moreover, since
o =[x + (PE)IWY, vo = (*)"N**0* = ([x + (p(x)]**)0* =
[t + (2'(¢))]0* = w. Also, for o€ F, ag = (a(ih*) ™ 1)r**0* = (ar**)0* =
@'0* = «’. We have shown that ¢ is an isomorphism satisfying all the
requirements of the isomorphism in the statement of the theorem. Thus
Theorem 5.3.3 has been proved.
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COROLLARY If p(x) € F[x] is irreducible and if a, b are two roots of p(x),

then F(a) is isomorphic to F(b) by an isomorphism which takes a onto b and which
leaves every element of F fixed.

The Elements of Galois Theory

THEOREM 5.6.1 If K is a field and if @y, ..., @, are distinct automorphiism;
of K, then it is impossible to find elements ay, ..., a,, not all 0, in K such tha
a,0,(u) + a,o,(u) +---+ a,0,(u) =0 forallueK.

Proof. Suppose we could find a set of elements a,, ..., a, in K, not al|
0, such that a;o,(u) + -+ + a,0,(u) = 0 for all ue K. Then we could
find such a relation having as few nonzero terms as possible; on renumbering
we can assume that this minimal relation is

-:11{]'1 [:H} + o+ amgm(u) =0 “JI

where a,, ..., a, are all different from 0.

If m were equal to 1 then a,0,(u) = 0 for all u € K, leading to a; = 0,
contrary to assumption. Thus we may assume that m > 1. Since the auto-
morphisms are distinct there is an element ¢ € K such that a,(¢c) # 0,(c).
Since cu € K for all u € K, relation (1) must also hold for cu, that is,
a,o,(ct) + a,o,(cu) + -+ + ayo,(cu) = 0 for all ue K. Using the hypo-
thesis that the ¢’s are automorphisms of K, this relation becomes

a,0,(c)a, (1) + ayo,(c)o,(u) + +* + ayo,(c)o,(u) = 0. (2)

Multiplying relation (1) by o¢,(¢) and subtracting the result from (2)
yields

ay(02(c) — 01(c))o2(u) + -+ + ap(om(c) — o1(c))om(u) = 0. (3)

If we put b; = a;(6;(c) — o,(c)) for i = 2,..., m, then the b; are in K,
b, = a,(c,(c) — a,(c)) # 0, since a, # 0, and a,(c) — a,(c) # 0 yet
b,o,(u) + -+ + b6, (t) =0 for all ue K. This produces a shorter rela-
tion, contrary to the choice made; thus the theorem is proved.

DEFINITION If G is a group of automorphisms of K, then the fixed field
of G is the set of all elements a € K such that g{(a) = a for all ¢ € G.
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LEMMA 5.6.1 The fixed field of G is a subjfield of K.

% Proof. Let a, b be in the fixed field of G. Thus for all ¢ € G, o(a) = a
end a’(b;l = b. But then cr{a + b;l = t'.r[:ﬂ} + rj‘{ﬁ:l =a 4+ b and a[:ab} _—
g(a)a(b) = ab; hence a + b and ab are again in the fixed field of G. If
£ 0, then g(b™") = a(b)"! = b1, hence b~ ' also falls in the fixed
8eld of G. Thus we have verified that the fixed field of G is indeed a sub-
eld of K.

DEFINITION Let K be a field and let F be a subfield of XK. Then the

group of automorphisms of K relative to F, written G (K, F), is the set of all
automorphisms of K leaving every element of F fixed; that is, the auto-
morphism ¢ of K is in G(K, F) if and only if a(a) = a for every a € F.

THEOREM 5.6.2 If K is a finite extension of F, then G (K, F) is a finile grouf
and its order, o(G(K, F)) satisfies o(G (K, F)) < [K:F].

Proof. Let [K:F] = n and suppose that u, ..., %, is a basis of K over
F. Suppose we can find n 4 1 distinct automorphisms @y, g5, ..., Gp+1

Prepared by Y.Sangeetha, Asst Prof, Department of Mathematics, KAHE Page 15/17




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSE NAME: ALGEBRA
COURSE CODE: 18MMP101 UNIT: III BATCH-2018-2020

in G(K, F). By the corollary to Theorem 4.3.3 the system of n homogeneous
linear equations in the n + 1 unknowns x;,...,x,,,:

oy (uy)x; + o3(uy)xy + 4+ G5y (U2, = 0
Fl{uijxl + o(uxy + 00 6,4, (w)x 4, =0

Oy (tp)%, + Glug)xy + -+ 0, (u)x,0 =0
has a nontrivial solution (not all 0) », =a,,...,%,,, = a,,, in K. Thus

2,0y (u;) + @;0,(4;) + -+ + @11 0,4,(u;) = 0 (1)

fori =12,...,n

Since every element in F is left fixed by each ¢; and since an arbitrary
element ¢ in K is of the form ¢ = oyu; + -+ - + o,u, with o,..., o,
in F, then from the system of equations (1) we get a,0,(f) 4+ -+~ +
a,410,41t) = 0 for all ¢t e K. But this contradicts the result of Theorem
5.6.1. Thus Theorem 5.6.2 has been proved.

Theorem 5.6.2 is of central importance in the Galois theory. However,
aside from its key role there, it serves us well in proving a classic result
concerned with symmetric rational functions. This result on symmetric
functions in its turn will play an important part in the Galois theory.

First a few remarks on the field of rational functions in n-variables over a
field F. Let us recall that in Section 3.11 we defined the ring of polynomials
in the n-variables x,,...,x, over F and from this defined the field of

rational functions in x,...,x,, F(x,,...,x,), over F as the ring of all

3 v 3ty

quotients of such polynomials.

DEFINITION K is a normal extension of F if K is a finite extension of F
such that F is the fixed field of G(K, F).
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10.

=

Possible Questions
PART-B (6 Mark)

Prove that a polynomial of degree n over a field can have at most n roots in any
extension field.

Show that if L is a finite extension of K and if K is a finite extension of F, then prove
that L is a finite extension of F. Moreover [L: F] = [L: K] [K: F].

Show that if K is a finite extension of F, then G(K,F) is a finite group and its order.
O(G(K,F)) satisfies O(G(K,F)) [K:F].

State and prove Remainder theorem.

Prove that the element a €K is algebraic over F if and only if F(a) is a finite
extension of F.

If p(x) is irreducible in F[x] and if v is a root of p(x), then F[v] is isomorphic to
F’[w] where w is a root of p’(t); moreover, this isomorphism o can so be chosen
that

Vo=w

a o =ao’ forevery aekF.

Show that the element a K is algebraic over F if and only if F(a) is a finite extension
of F.

Prove that if P(x) eF[x] and if K is an extension of F, then for any element b € K,
P(x) = (x-b) q(x) + p(b) where q(x) € K[x] and where deg q(x) € K[x] and where
degq(x) = deg p(x)-1. ’
Prove that the polynomial f(x) €F(x) has a multiple root if and only if f(x) and f (x)
have a nontrivial common factor.

PART-C (10 Mark)

State and prove Division Algorithm.
Show that if K is a finite extension of F, then G(K,F) is a finite group and its order.
O(G(K,F)) satisfies O(G(K,F)) [K:F].
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A field K is said to be an extension of F if ----
--------- FcK F=K KcF F<K FcK
Afield K is said tobean  ------------ Fif
FcK zero divisor primitive irreducible extension extension
The -------mmmmmeeeme is the dimension of K as a
vector space over F degree of F over K degree of K over F degree of F none degree of K over F
The degree of K over F is the -----------------
of K as a vector space over F degree of F over K dimension degree of F none dimension
If L is a finite extension of K and K is a L is a finite extension |K is a finite extension L is a finite K is a finite extension L is a finite

finite extension of F,then---- --------

of K

of K

extension of F

of L

extension of F

) and K is a finite

extension of F,then L is a finite extension of [L is a finite extension [K is a finite extension (L is a finite K is a finite extension L is a finite
F of K of K extension of F of L extension of K
If L is a finite extension of K and --------------- L is a finite extension |K is a finite extension |L is a finite K is a finite extension K is a finite

--- then L is a finite extension of F

of K

of F

extension of F

of L

extension of F

If aeK is algebraic of degree n over F,then ---

------------ [F(a):F]=n [F(a):F] =m [F(a):F] =0 [F(a):F]=a [F(a):F]=n
If aeK i§ ---mmmmmmmmmmm e ,then [F(a):F] =| algebraic of degree n |algebraic of degree n | algebraic of algebraic of degree n  algebraic of degree
n over F over F degree nover F |over F n over F
Ifaand b in K are ---------- F then a+b, a-b, algebraic of

ab, a/b are all algebraic over F algebraic over K algebraic over F degree F algebraicof degree K algebraic over F
The elements in K which are algebraic over F

form a --------- of K field subfield root group subfield

If o is constructible then a. lies in some

extension of the rationals of degree ------ power of 2 power of 3 nota power of 3 |nota power of 2 power of 2

If the ----------—- o satisfies an irreducible

polynomial over the field of rational

numbers of degree k,and if k is not a power

of 2 ,then o is not constuctible. real number rational number irrational number | complex number real number
If the real number o satisfies an irreducible

polynomial over the field of rational

numbers of degree k,and if K is----------- ,then

o is not constuctible. power of 2 power of 3 nota power of 3 [nota power of 2 nota power of 2
G(K,F) is @ ------------- of the group of all

automorphisms of K group sub group normal subgroup |none sub group

If U is an ideal of the ring Rthen R/U is a -----|

-- and is a homomorphic image of R field group sub group ring ring

If U is an ideal of the ring Rthen R/U is a

ring and is a --------------- image of R homomorphic isomorphic homeomorphic automorphic homomorphic
If U is --------- of the ring Rthen R/U is a ring

and is a homomorphic image of R group ring ideal field ideal

If R is a commutative ring with a unit

element and M is an --------—-- of RthenM is a

maximal ideal of R iff R/M is a field group ring ideal field ideal

If R is a commutative ring with a unit

element and M is an ideal of R then M is a

maximal ideal of R iff R/M is a ------- group ring ideal field field

If R is a commutative ring with a unit

element and M is an ideal of R then M is a ---

———————— of R iff R/M is a field maximal ideal ring ideal minimal ideal maximal ideal
If R is a commutative ring with a unit

element and M is an ideal of R then M is a

maximal ideal of R iff--------- is a field R R/IM R and M M R/IM

Every -------- can be imbedded in a field integral domaim ring ideal field integral domaim
Every integral domaim can be imbedded in a

———————————— integral domaim ring ideal field field

J A — possesses a unit element integral domain ring ideal Eucledian ring Eucledian ring
If - U of aring R contains a unit of R

then U=R Euclidean ring ring ideal field ideal

If an ideal U of @ --------- R contains a unit of

R then U=R Euclidean ring ring field ideal ring

If an ideal U of a ring R contains a unit of R

then-------- U=R U<R U>R UsR U=R

A -emeeeee said to be generating set of V if

L(S) =V set S ring ideal U Euclidean ring set S

A set S said to be ------------ of V if L(S) = V. |maximal ideal ideal generating set field generating set
A set S said to be generating set of V if -------

- L(S)=V L(S)=0 L(V) =S L(S)=1 L(S)=V




ANy ------mmm- F is a finite extension of F. ring field ideal group field

Any field F is @ -------------- of F. primitive irreducible extension finite extension finite extension
An element a ek is said to be ---------------

over Fif it is not algebraic over F generating set transcendental extension finite extension transcendental

An element a ek is said to be transcendental

finite extension of

not a finite extension of

over Fif it is ----------------- not algebraic over F algebraic over F L L not algebraic over F
A - K is said to be an extension F if

FcK field ring ideal group field

A - is said to be an algebraic

number if it is algebraic over field of rational

number. real number rational number irrational number | complex number complex number

A complex number is said to be an -------------|
- if it is algebraic over field of rational

number. rational number irrational number algebraic number |real number algebraic number
A complex number is said to be an algebraic

number if it is ---------- over field of rational

number. real algebraic integers rational algebraic

A complex number is said to be an algebraic

number if it is algebraic over ----- of rational

number. field ring ideal group field

A complex number is said to be an algebraic

number if it is algebraic over field of -----------

real number irrational number rational number  |algebraic number rational number
AN --eeeeeeeeee of a fields F is said to be

simple extension if k = F(a) for some aek Euclidean ring R transcendental k extension k finite extension k extension k

An extension k of a fields F is said to be ------|

- if k = F(a) for some aek Euclidean ring transcendental extension simple extension simple extension
An extension k of a fields F is said to be

simple extension if ------------ for some aeck |k =F(0) k =F(a) k=F(1) k =F(a*1) k = F(a)

A - is called Prefect if all its Finite

extension of F is separable. field ring ideal group field

A field F is called ----------| if all its Finite

extension of F is separable. algebraic Prefect prime normal Prefect

A field F is called Prefect if all its---------------

of F is separable. primitive irreducible extension finite extension finite extension
Afield F is called Prefect if all its Finite

extension of F is --------------- irreducible transcendental separable inseparable separable
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UNIT-1V

Linear Transformations-The Algebra Of Linear Transformation — Characteristic Root-
Matrices-Canonical Forms —Triangular form-Nilpotent Transformations—Jordan form.

PEFINITION Let K be a field and let F be a subfield of K. Then the
group of automorphisms of K relative to F, written G (K, F), is the set of all
agutomorphisms of K leaving every element of F fixed; that is, the auto-
morphism ¢ of K is in G(K, F) if and only if ¢(a) = « for every a € F.

DEFINITION K is a normal extension of F if K is a finite extension of F
such that F is the fixed field of G(K, F).

DEFINITION If f(x) € F[x], a finite extension E of F is said to be a
splitting field over F for f(x) if over E (that is, in £[x]), but not over any
proper subfield of E, f(x) can be factored as a product of linear factors.

DEFINITION If p(x) € F[x], then an element a lying in some extension
field of F is called a root of p(x) if p(a) = O.
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The Algebra of Linear Transformations

. For Ty, T,eHom (V, V), since 2Ty € V for any ve V, (2T,) T, makes

i;‘_,__smsc. As we have done for mappings of any set into itself, we define

. I)T, by o(T\T,) = (vTy) T, for any ve V. We now claim that 7,7, €

- Hom (V, V). To prove this, we must show that for all o, § € F and all

Cwoel, (au + Ppo)(T(Ty) = a(u(T,T,)) + B((T,T,)). We compute
(e + Bo)(T1T3) = ((au + Bo)T) T,

(x(uTy) + p(TY))T.

a(uTy) T, + B(T,)T,

= a(u(TyT3)) + B(u(T,T3)).

B

We leave as an exercise the following properties of this product in

?;""Hﬂm { v, V}

; 1 (Ty + T,)Ty = T, T; + T,T;;
;.f; 2. I3(Ty + Ty) = T5Ty + T,Ty;
- T\(T,T,) = (T, T,) T,;

4, ao(T\T,) = (aTy) T, = Ty(aT,);

for all T, T,, T, € Hom (V, V) and all o € F.

Note that properties 1, 2, 3, above, are exactly what are required to
'* ake of Hom (V, V) an associative ring. Property 4 intertwines the
_haracter of Hom (V, V), as a vector space over F, with its character as a
Ting.

DEFINITION A linear transformation on V, over F, is an element of Ag(V).

We shall, at times, refer to A(V) as the ring, or algebra, of linear trans-
formations on V. o
DEFINITION An associative ring A is called an algebra over F if A is a
vector space over F such that for all ¢, b€ 4 and aeF, a(ab) = (aa)b =

a(abh).
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LEMMA 6.1.1 If A is an algebra, with unit element, over F, then A is isomorphic
to a subalgebra of A(V) for some vector space V" over I.

Proof. Since A is an algebra over F, it must be a vector space over I
We shall use V' = 4 to prove the theorem.

If ae A, let T,:A — A be defined by vT, = va for every ve 4. We
assert that 77, is a linear transformation on V(=4). By the right-distribu-
tive law (v, + 2,)7T, = (9, + v)a = vya + v,a = v, Ty + v, T, Since A
is an algebra, (a)T, = (w)a = a(va) = a(v7T,) for ved, aelF. Thus
T, is indeed a linear transformation on 4.

Consider the mapping §:4 — A(V) defined by ay = T, for every
ae A. We claim that  is an isomorphism of 4 into A(V). To begin with,
if a, be A and o, pe F, then for all ved, vT 4 p = v(aa + pb) =
a(va) + B(vb) [by the left-distributive law and the fact that A4 is an algebra
over F] = a(vT,) + B(vT,) = v(aT, + BT since both T, and T, arc
linear transformations. In consequence, T,,4p = 00T, + BT, whence
is a vector-space homomorphism of 4 into 4(V). Next, we computc, for

a be A, _ 0Ty = v(ab) = (va)b = (vT,)T, = v(T,T,) (we have used
the associative law of 4 in this computation), which implies that 7, =
T, Ty In this way,  is also a ring-homomorphism of 4. So far we have
proved that ¥ is a homomorphism of 4, as an algebra, into A(V). All that
remains is to determine the kernel of . Let ae 4 be in the kernel of W
then ayy = 0, whence T, = 0 and so »T, = 0 for all ye V. Now V — A,
and A has a unit element, e, hence eT, = 0. However, 0 = ¢T, = ea = a,
proving that @ = 0. The kernel of § must therefore merely consist of 0,
thus implying that  is an isomorphism of 4 into A( V). This completes the
proof of the lemma.

LEMMA 6.1.2 Let A be anl algebra, with unit element, over F, and suppose that

] L " ’
A is of dimension m over F. Then every element in A satisfies some nontrivial poly-

~nomial in F[x)] of degree at most m.
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Proof. Let ¢ be the unit element of A; if ae A, consider the m + 1
elements e, a, a%, ..., a™ in A. Since A is m-dimensional over F, by Lemma
- 424, ¢,a,4%...,4a" being m + | in number, must be linearly dependent
over F. In other words, there are elements g Oy -« -, &y In F, not all

0, such that age + a,a + *++ + 0,a™ = 0. But then a satisfies the non-
_trivial polynomial ¢(x) = og + ax + - + 4™, of degree at most #,
- In F[x].

If V is a finite-dimensional vector space over F, of dimension r, by
] porollary 1 to Theorem 4.3.1, A(V) is of dimension n? over F. Since A(V)
B an algebra over F, we can apply Lemma 6.1.2 to it to obtain that every
- element in A(V) satisfies a polynomial over F of degree at most n?. This
fact will be of central significance in all that follows, so we single it out as

;_:THEOF{E‘N.I 6.1.1 If V{r an n-dimensional vector space over F, then, given any
4 T win A(V), there exists a nontrivial polynomial q(x) € F[x] of degree at
& most n?, such that ¢(T") = 0.

DEFINITION An element T e A(V) is called right-invertible if there exists
an § € A(V) such that 7S = 1. (Here ! denotes the unit element of A(V).)

Similarly, we can define left-invertible, if there is a Ue A(V) such
that UT = 1. If T is both right- and left-invertible and if TS = UT = 1,

it is an easy exercise that § = U and that § 1s umque.

DEFINITION An element T in A(V) is invertible or regular if it is both
right- and left-invertible; that is, if there is an element § € A(V) such that

ST =TS = 1. Wewrite Sas T~ 1,
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THEOREM 6.1.2 If V is finite-dimensional over F, then T € A(V) is in-
vertible if and only if the constant term of the minimal polynomial for T is not 0.

Proof. Let p(x) = o + oyx + =+ + ox*, o # 0, be the minimal
polynomial for 7T over F.

If oy # 0, since 0 = p(T) = o T5 + o T* 1 + - + a, T + &g, WE
obtain

1
1 = T( — — (o T* ' g T* 2 - + alj)
aﬂ -

(=L e a)r
ot
Therefore,
1
S = "_(D‘ka_I + 0+ oy)

o

acts as an inverse for T, whence T is invertible.
Suppose, on the other hapnd, that T is invertible, yet o, = 0. Thus
0= T+ aT* + -+ T = (o, + 0,7 + -+ + o, T*" )T Multi-
plying this relation from the right by T~' vyields o, + a, 7 + -+ +
o0 T* ! = 0, whereby T satisfies the polynomial g(x) = o, + oyx + -+« +
""" in F[x]. Since the degree of g(x) is less than that of p(x), this is
impossible. Consequently, o # 0 and the other half of the theorem is
established.

COROLLARY 1 If V is finite-dimensional over F and if Te A(V) is in-
vertible, then T~ is a polynomial expression in T over F.

Proof. Since T is invertible, by the theorem, oy + o, T + - -+ +
a,T* = 0 with oy # 0. But then

] 1
T~ = — — (o + 0,7+ + T+ V),
%
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COROLLARY 2 If V is finite-dimensional over F and if T € A(V) is singular,
then there exists an S # 0 in A(V) such that ST = TS = 0.

Proof. Because T is not regular, the constant term of its minimal
polynomial must be 0. That is, p(x) = a;x + -+ - + ax*, whence 0 =
a7+ + 7% I §S=o + -+ T then §# 0 (since
#; + - + ox* ! is of lower degree than p(x)) and ST = TS = 0. .

COROLLARY 3 If V is finite-dimensional over F and if T e A(V) is right-
invertible, then it is invertible.

Proof. Let TU = 1. If T were singular, there would be an § # 0
such that ST = 0. However, 0 = (ST)U = §(TU) = 81 = § # 0,
a contradiction. Thus T is regular.

TH EOREM 6.1.3 If V is finite-dimensional over F, then T € A(V) is singular
if and only if there exists a v # 0 in V such that vT = 0.

- Proof. By Corollary 2 to Theorem 6.1.2, T is singular if and only if]
fhere is an § # 0 in A(V) such that ST = TS = 0. Since § 3 0 there
15 an element w € V such that w§ # 0.

Let » = wS; then T = (wS)T = w(ST) = w0 = 0. We have produced
a nonzero vector v in ¥ which is annihilated by 7. Conversely, if 2T = 0
with o # 0, we leave as an|exercise the fact that 7" is not invertible.
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DEFINITION If Te A(V), then the range of T, VT, is defined by VT =
T veV}

The range of T is easily shown to be a subvector space of V. It merely
consists of all the images by T of the elements of V. Note that the range
of T is all of V if and only if T is onto.

THEOREM 6.1.4 If V is finite-dimensional over F, then T € A(V) 15 regular
if and only if T maps V onto V.

Proof. As happens so often, one-half of this is almost trivial; namely,
if T is regular then, given veV, v = (T~ !)T, whence VT =V and

T is onto.

On the other hand, suppose that T is not regular. We must show that
T is not onto. Since T is singular, by Theorem 6.1.3, there exists a vector
9, # 0 in V such that », T = 0. By Lemma 4.2.5 we can fill out, from v,

to a basis vy, ¥5, ..., v, of V. Then every clement in VT is a linear com-
bination of the elements w, = v, T, w, = v,T,...,w, = v,T. Since
w, =0, VT is spanned by the n — 1 clements w,,..., w,; therefore

dim VT < n—1 < n =dim V. But then VT must be different from V;
that is, 7 is not onto.

Theorem 6.1.4 points out that we can distinguish regular elements from
singular ones, in the finite-dimensional case, according as their ranges are
or arc not all of V. If T'e A(V) this can be rephrased as: T is regular if
and only if dim (VT) = dim V. This suggests that we could use dim (VT)
not only as a test for regularity, but even as a measure of the degree of
singularity (or, lack of regularity) for a given T € A(V).

DEFINITION If V is finite-dimensional over F, then the rank of T is the
dimension of VT, the range of T, over F.
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LEMMA 6.1.3 If V is finite-dimensional over F then for S, T'e A(V).

1. 7(ST) < r(T):
2. 1(TS) < r(T);

 (and 50, 7(ST) < min {(T), r(S)})
3. 1(ST) = 7(TS) = r(T) for S regular in A(V).
Proof.  We go through 1, 2, and 3 in order.

. L Since VSV, V(ST) = (VS)T < VT, whence, by Lemma 4.2.6,

dim (V(ST)) < dim VT; thatis, 7(ST) < r(T).

2. Suppose that 7(T) = m. Therefore, ¥'T has a basis of m elements,
Wy, W, -+, Wy. But then (VT)S is spanned by w8, w,S, ..., w,S, hence
has dimension at most m. Since 7{7S) = dim (V(TS)) = dim ((FT)S) <
m = dim VT = r(T), part 2 is proved.

3. If § is invertible then VS§ = V, whence V(ST) = (VS)T = VT.
Thereby, r(ST') = dim (V(ST)) = dim (VT) = r(T"). On the other hand,
- f VT has wy,...,w, as a basis, the regularity of § implies that w,S, . ..,
w,,S are linearly independent. (Prove!) Since these span V(TS) they form
a basis of V(TS). But then r(7S) = dim (V(TS)) = dim (VT) = #(T).

COROLLARY IfTe A(V)andifSe A(V') is regular, then (T = r(STS™ 1),

Proof. By part 3 of the lemma, r(STS™*) = r(S(TS™ 1)) = r((TS™1)S) =
r(T).
Characteristic Roots

DEFINITION If TeA(V) then AeF is called a characteristic root (or
eigenvalue) of T if A — T is singular.
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THEOREM 6.2.1 The element A€ F is a characteristic root of T € A(V) if
and only if for some v # 0 inV, oT = Av.

Proof. If 1is a characteristic root of T then 4 — T is singular, whence,
by Theorem 6.1.3, there is a vector v # 0 in V such that (A — T) = 0.
But then Av = vT.

On the other hand, if T = Av for some  # 0in ¥, thenv(A — T) =0,
whence, again by Theorem 6.1.3, A — T must be singular, and so, 4 is a
characteristic root of 7.

LEMMA 6.21 If AeF is a characteristic root of T € A(V), then for any
polynomial g(x) € F[x], q(A) is a characteristic root of g(T).

Proof. Suppose that A€ F is a characteristic root of T. By Theorem
6.2.1, there is a nonzero vector v in ¥ such that 27 = Av. What about 2 T2?

Now T2 = ()T = A(vT) = A(Av) = A*». Continuing in this way,
we obtain that »T% = 1% for all positive integers k. If g(x) = o™ +
2 ™1 4o+ o oy € F, then ¢(T) = o T™ + o, IT™ 1 + - +1m.,.,
whence og(T) = v(ogT™ + o, T 1 - o) = tp(2T™) + o, (T™ ") +
o ooy = (HpA™ + a A"+ -+ a)v = g(A)v by the remark m.adt‘
above. Thus 2(g(1) — ¢(T)) = 0, hence, by Theorem 6.2.1, ¢(4) 1s 2
characteristic root of ¢(T').

THEOREM 6.2.2 If A€ F is a characteristic root of T € A(V), then Aisa
root of the minimal polynomial of T. In particular, T only has a finite number of
characteristic roots in F.

Proof.  Let p(x) be the minimal polynomial over F of T; thus p(T) = 0.

If A€ Fis a characteristic root of T, there is a v % 0 in V with vT = o,
As in the proof of Lemma 6.2.1, p(T) = p(A)v; but p(7T) = 0, which
thus implies that p(1)p = 0. Since » # 0, by the properties of a vector
~space, we must have that p(1) = 0. Therefore, A is a root of p(x). Since
. p(x) has only a finite number of roots (in fact, since deg p(x) < n* where

5 A f s
- n =dimg V, p(x) has at most n* roots) in F, there can only be a finite
number of characteristic roots of T in F.
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IfTe A(V) and if S € A(V') is regular, then (STS™1)? = STS™ISTS 1 =
ST2S™1, (STS™')> = ST3S™', ..., (STS™1)i = ST'S 1. Consequently,
for any g(x) € F[x], q(STS™!') = Sq(T)S™!. In particular, if ¢(7T) = 0,
then ¢(S75™ ') = 0. Thus if p(x) is the minimal polynomial for T, then it

follows easily that p(x) is also the minimal polynomial for STS~!. We have
proved

LEMMA 6.2.2 If T,Se A(V) and if S is regular, then T and STS™ ' have
the same minimal polynomial.

DEFINITION The element 0 # ve V is called a characteristic vector of T
belonging to the characteristic root 1 e Fif oT = Jo.

: THEOREM 6.23 If 4,,..., A in F are distinct characteristic roots of T e
A(V) .and o vys-.., Y are characteristic veclors of T belonging to Aty
 Tespectively, then v, . . . , v, are linearly independent over F,

g

Proof. For the theorem to require any proof, £ must be larger than 1;
80 we suppose that k£ > 1.
- Ifw,..., y are linearly dependent over F, then there is a relation of the
!fm‘m o0y + - + o, = 0, where «,,..., o, are all in F and not all of
them are 0. In all such relations, there is one having as few nonzero co-
Etﬂiclents as possible. By suitably renumbering the vectors, we can assume

b this shortest relation to be -~
E ﬁlz’1+"'+.ﬁjﬂj=0: )31?{"03*"31817&”' [:1)
E_ We know that »,T" = Aiv, 50, applying T to equation (1), we obtain

Alﬁlvl + - 3 }'J‘ﬁjﬂj = D. (2)

;?ﬁ:}ulfiplying equation (l) by 1; and subtracting from equation (2), we
tain

(A2 = A)Bavs + -+ + (4; — A)Bjv; = 0.

Now A; — 4, #0 for 2 > 1, and B; # 0, whence (4, — 2,)f; # 0. But
then we have produced a shorter relation than that in (1) between o,
Usy - -, Ug. This contradiction proves the theorem.
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COROLLARY 1 If TeA(V) and if dimy V = n then T can have at most
n distinct characteristic roots in F.

Proof. Any set of linearly independent vectors in V can have at most n
elements. Since any set of distinct characteristic roots of T, by Theorem
6.2.3, gives rise to a corresponding set of linearly independent characteristic
vectors, the corollary follows.

COROLLARY 2 If Te A(V) and if dimg V = n, and if T has n distinct
characteristic roots in F, then there is a basis of V over F which consists of characteristic
vectors of T.

Matrices

DEFINITION Let ¥V be an n-dimensioned vector space over F and let
Dy, .-, U, be a basis for V over F. If T e A(V) then the matrix of T in the

basis v,, . .., v,, written as m(T"), is

Oy G2 "7 Gyp

o o M £}
m(T) — :21 :22 . n ,

Ony a’nZ e ann

where v, T = %, o;0;.

A matrix then is an ordered, square array of elements of F, with, as yet,
no further properties, which represents the effect of a linear transformation
on a given basis.

Let us examine an example. Let F be a field and let ¥ be the set of all
polynomials in x of degree n — 1 or less over F. On V let D be defined
by (Bo + Bix + -+ + Boey® )D = By + 2Bpx + -+ +if' T 4
(n — 1)B,_¥" 2. It is trivial that D is a linear transformation on V; in
fact, it is merely the differentiation operator.

What is the matrix of D? The questions is meaningless unless we specify
a basis of V. Let us first compute the matrix of D in the basis v, = 1,

2 _ Li-1 _ 1
v, = X% 03 = %%, ..., =x"",...,9, =457 Now,
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0,0 = 1D =0 = 0, + Op, + -+ + Op,

2,0 = xD =1 = lo; + Oy, + -+ Op,

2D = %D = (i — 1)x'"2

= 0;"1 + 0”2 + e + 0”[__2 + (i — 1)”:_1 + Oﬂ'i
+ -+ + Oo,
v, D = "D = (n - ]:]l::.J‘_2

Ov, + Ovy + <+ + 00,5 + (n — Do,—1 + Ov,

'Going back to the very definition of the matrix of a linear transformation
a given basis, we see the matrix of D in the basis v,, ..., 2, m, (D), is
fact

‘0 0 0 0 0
1 0 0 0 0
m(D)={0 2 0 0 0
0 0 3 0 0
0 0 0 (n—1) 0

. However, there is nothing special about the basis we just used, or in how
‘we numbered its elements. Suppose we merely renumber the elements of
| this basi_sj; we then get an equally good basis w; = "™, w, = "7 2, ...,
fw; =x""',...,w, = 1. What is the matrix of the same linear trans-
iformation D in this basis? Now, /

7D = (n— 1" %
i =0w, + (n — Dw, + Ow; + -+ + Ow

&
~
Il

[

. wD =D = (n— P!
= 0wy + -+ 0w + (n — Dwyyy + Owyyy + -0 + O,

w,D = 1D = 0 = Ow, + 0w, + -+ + Ow
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‘whence m, (D), the matrix of D in this basis is

¥

0 (n— 1) 0 0 0 0

0 0 (n — 2) 0 0 0

0 0 0 (n — 3) 0 0 v
mz(D)= 0

0 0 0 0 1

0 0 0 0 0

Canonical Forms: Triangular Form

Let V be an n-dimensional vector space over a field F.

DEFINITION The linear transformations S, Te A(V) are said to be
similar if there exists an invertible element C € A(V) such that T = CSC 1.

DEFINITION The subspace W of ¥ is invariant under T e A(V) if
WT < w.

LEMMA 6.4.1 If W < V is invariant under T, then T induces a linear
transformation T on V|W, defined by (v + W)T = oT + W. If T satisfies
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the polynomial q(x) € F[x], then so does T. If p(x) is the minimal polynomial
for T over F and if p(x) is that for T, then py(x) | p(x).

Proof. Let V = V|/W; the elements of V are, of course, the cosets
v+ W of Win V. Given =0 + We V define 2T =2T + W. To
verify that 7" has all the formal properties of a lincar transformation on ¥
is an casy matter once it has been established that T is well defined on V. We
thus content ourselves with proving this fact.

Suppose that o = v, + W = v, + W where 2,7, € V. We must show
that o,T + W = v,T + W. Since v; + W =v, + W, vy — v, must be
in W, and since W is invariant under T, (v; — v,) T must also be in W.
Consequently », T — »,Te W, from which it follows that nT + W=
v, T + W, as desired. We now know that T defines a linear transformation
on V = VIW.

If 5=0+ WeV, then (T2 =oT*+ W= (T)T + W =
T + W)T = ((o + W)T)T = %(T)?; thus (T?) = (T)% Similarly,
(T = (T)* for any k = 0. Consequently, for any polynomial ¢(x) e
F[x], ¢(T) = q(T). For any q(x) € F[x] with ¢(T) = 0, since 0 is the
zero transformation on 7, 0 = ¢(7) = ¢(T). ~ _

Let p,(x) be the minimal polynomial over F satisfied by 7. If ¢(7) =0
for q(x) € F[x], then py(x) | ¢(x). If p(x) is the minimal polynomial for T'
over F, then p(T) = 0, whence p(T) = 0; in consequence, py(x) | p(*).

THEOREM 6.4.1 If Te A(V) has all its characteristic roots in F, then there
is a basis of V in which the matrix of T is triangular.

Proof. The proof goes by induction on the dimension of V" over F.
If dimy V = I, then every clement in A(V) is a scalar, and so the
theorem is true here.
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Suppose that the theorem is true for all vector spaces over F of dimension
n — 1, and let V' be of dimension n over F.

The linear transformation 7 on ¥ has all its characteristic roots in F;
let A, € F be a characteristic root of 7. There exists a nonzero vector v,
in Vsuch that 9,7 = A,v,. Let W = {av, | « € F}; W is a one-dimensional
subspace of V, and is invariant under T. Let V = V/W; by Lemma 4.2.6,
dm V=dimV —dimW =nr — 1. By Lemma 6.4.]1, T induces a
linear transformation T on ¥ whose minimal polynomial over F divides
the minimal polynomial of T over F. Thus all the roots of the minimal
polynomial of T, being roots of the minimal polynomial of 7, must lie in F.
The linear transformation 7 in its action on F satisfies the hypothesis of
the theorem; since V is (n — 1)-dimensional over F, by our induction
hypothesis, there is a basis 7,, 75, ..., v, of V¥ over F such that

0, T = X302 + 3373

5T = o0, + a0y + - + o5

EHT = 95..252 + 3"353 + e+ mnnﬁn'

Let v;,...,v, be clements of V mapping into 7,,...,7,, respectively.
Then vy, v;,...,v, form a basis of ¥ (see Problem 3, end of this section).
Since U, T = t,,7,, 0,1 — 5,0, = 0, whence v,T — 0350, must be in W,
Thus 2, T — 3,0, is a multiple of v, say a,,7,, yielding, after transposing,
07 = a3y0; + appv,.  Similarly, 9,7 — o0, — Rty — *°° — auv; € W,
whence v;T = a;v; + a0, + -+ + oyw;. The basis vy, ...,0, of V over
- - . , -
Since U, T = 05,05, 05T — 330, = 0, whence v,T — 5,0, must be in W,
Thus 2,7 — a,,v, is a multiple of v, say a,,,, yielding, after transposing,
0,7 = ay,0; + 5,0, Similarly, 0,7 — a0, — 303 — *+ — a0, € W,
whence ;T = a,,v;, + &¢;,0, + +++ + o;v;. The basis v,,...,v, of V over

a

F provides us with a basis where every #;T is a linear combination of v
and its predecessors in the basis. Therefore, the matrix of 7 in this basis
is triangular. This completes the induction and proves the theorem.
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THEOREM 6.4.2 If V is n-dimensional over F and if T € A(V) has all its
characteristic roots in F, then T satisfies a polynomial of degree n over F.

Proof. By Theorem 6.4.1, we can find a basis #y,..., v, of V over F
such that:
u, T = A

-HIT = auvy + 0+ oV T Ai¥
fori=12,...,n
Equivalently
0 (T — 4) =0
0,(T — A3) = gy

;’E(T — Ay) = ayvy + 0+ % i—qli-1s
fori =1,2,...,n
What is E-'z(T — lz)(T — ;11)? AS a rﬂ5u1t Uf ﬂz(T _— )12) = 1111.'1 arld
2,(T — A,) = 0, we obtain 0,(T — 4)(T" - A;) = 0. Since
(T — L,)0(T = X)) = (T = A4)(T = 4),
o (T — 0T — Ay) = v(T = L)(T — 4,) = 0.

Continuing this type of computation yields

o (T — AT = Aiy) = (T = A4)
0 (T — AT — Ai—y) - (T — 4)

0,
0,

2(T — AT — A—q) -~ (T — A) = 0.

For i = n, the matrix § = (T — A)(T — A,—y) "~ (T — A,) satishes
0,8 = 1,8 = -++ = 1, = 0. Then, since § annihilates a basis of ¥, § must
annihilate all of V. Therefore, § = 0. Consequently, T satisfies the poly-
nomial (x — A;)(x — 4;) """ (x — 4,) in F[x] of degree n, proving the
theorem.

Canonical Forms: Nilpotent Transformations
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L!EMMA 6.5.1 {f V=V@V,® @V, where each subspace V, is of
~dimension n; and ts invariant under T, an element of A(V), then a basis of V can
be found so that the matrix of T in this basis is of the form

4, 0 ... 0
0 4, ... 0

o o .. 4
where each A; is an n; x n; matrix and is the matrix of the linear transformation
induced by T on V.

Proof. Choose a basis of ¥ as follows: 2,1, . . ., v, " is a basis of V],
_nl‘m, 9,?, ..., 2,.® is a basis of V,, and so on. Since each V; is invariant
under T, 27T eV, so is a linear combination of 2, 5,V . 2, P,
and of only these. Thus the matrix of 7 in the basis so chosen is of the
desired form. That each 4, is the matrix of T}, the linear transformation
induced on V; by T, is clear from the very definition of the matrix of a
linear transformation.

i;__. LEMMA 6.5.2 If T e A(V) is nilpotent, then oy + 0y T + -+ + o, T™,
| Where the o; € F, is invertible if g # 0.

Proof. 1f §is nilpotent and &, # 0 e F, a simple computation shows that

1 S S}! r—1
£rxn+53(_"—f+“—a+'“+ (=12 ) o,
4 Xy e (4} al:lr

L ST = 0. Now if 7" =0, S=ayT + ayT? + -+ + a, 7™ also must
ﬁ"—latl-'-‘f}’ 5" = 0. (Prove!) Thus for % 7* 0 in F, a, + § is invertible.

Notation. M, will denote the t x ¢ matrix

010 ...00
0 0 1 0 0
0 0 Lo 1]’
0 0 .. 0 0

of whose entries are 0 except on the superdiagonal, where they are all 1%.

-
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DEFINITION If T'e A(V) is nilpotent, then k is called the index of nil-
potence of T if T* = 0 but T 1 £ 0.

THEOREM 6.5.1 If T € A(V) is nilpotent, of index of nilpotence ny, then a
basis of V can be found such that the matrix of T in this basis has the form

M, 0O ... 0

0 M, ... 0
O 0 ... M

fr

where n, > n, > -+ = n, and where ny + ny + ++ + n, = dimg V.

Proof. The proof will be a little detailed, so as we proceed we shall
separate parts of it out as lemmas.

Since T™ =0 but 7" ! £ 0, we can find a vector ve V such that
oT™~1 £ 0. We claim that the vectors v, 07T, ...,2T™ ' are linearly
independent over F. For, suppose that 4o + avT + =+ + o, 2T™ "1 =0
where the a; € F; let a, be the first nonzero a, hence

0T Yoo, + gy T + - + a, T™7%) = 0.

Since o, # 0, by Lemma 6.5.2, &g + og4y T + -+ + o, T™7* is invertible,
and therefore #T°~ ! = 0. However, s < n,, thus this contradicts that
pT™~1' 2 0. Thus no such nonzero «, exists and v, v7, ..., 2T™ ' have
been shown to be linearly independent over F.

Let V,; be the subspace of V spanned by v, = v, v, = v7,...,0, =
pT™~'; V, is invariant under 7, and, in the basis above, the linear trans-
formation induced by 7 on V, has as matrix M .

LEMMA 6.5.3 If ueV, is such that uT™ % = 0, where 0 < k < ny, then
u = uyT* for some uy € V,.

. -1 Tk
Pf'ﬂﬂf. Sll‘lCE ue V].? u = aiﬂ + mzﬂT '+_ e + ﬂvak _]_ ‘:"’k+1UI T
o pT™ ' Thus 0 = uT™ % = goT™ % - 4 woT™ -
T ny 1 k
However, 7™ % ..., vT™ ™! are linearly independent over F, whcnc:
== 1 _ Ly
a0, =y =-"r=o, =0, and 50, u = o 0T* + -+ + 0, 2T =ul"
-i-1
where uy = a0 + + 0 + o, 0T™ e V;.
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IErElﬂh;'I{Q E;?Vd- There exists a subspace W of V, invariant under T, such that

Proof. Let W be a subspace of V, of largest possible dimension, such that

1. Vi n W = (0);
2. W is invariant under 7.

- We want to show that V = ¥, + W, Suppose not; then there exists an
- element ze V such that z ¢ Vi + W. Since T™ = 0, there exists an in-
teger £, 0 < k£ < n,, such that 27% € ¥V, + W and such that zT¢V, + W
for 1 < k. Thus 2T* = 4 + w, where u e Vi and where we W, Bl,:t then
0 =2T" = (ZTHT™ ™% = uTm=* 4 yrm—k, however, since both V,
and W are invariant under T, u7T™ % ¢ Viand wT™ *c W. Now sincé
Vi n W = (0), this leads to a T™ % = _jp7m—k Vinm W = (0) res,ulting
in uT™ ™k = 0, By Lemma 6.5.3, u = uy T* for some ug e Vy; ,thereforc
ZT*=u+ w=uT*+w. Let z, =z — uy; then 2, T% = 2T*% — 4 T* -
w e W, and since W is invariant under 7 this yields 2, 7™ e W for all
m 2 k. On the other hand, if i < k, 2,7 = 2T — uT'¢ V, + W, for

~otherwise 27" must fall in ¥, + W, contradicting the choice of F ’

Let W, be the subspace of V spanned by Wﬂand zyp 2Ty, 2, T 1,

Since z, ¢ W, and since W, > W, the dimension of W, must be largel.r than
that of W. Moreover, since z,7% e W and since W is invariant under 7,
W, must be invariant under 7. By the maximal nature of W there mus::
be an element of the form w, + .z, + 022, T 4+ + oz, T* 1 £ 0 in
W, n V|, where w, e W. Not all of Oy, .- ., 0 can be 0; otherwise we
would have 0 # wye WN ¥V, = (0), a contradiction. Let a, be the first
nonzero a; then wy + 2,7 Yo, + oy T + -+ + T %) e V,. Since
% # 0, by Lemma 6.5.2, o, + Ospr I+ -+« + o, T% % is invertible and its
Inverse, R, is a polynomial in T. Thus W and Vi are invariant under R:
however, from the above, wolk + 2,7°" ' e V,R < V,, forcing le’_lE:
_Vl + WR <V, +W. Since s — 1 <% this is impossible; therefore
Vi + W = V. Because VionW={(0), V=7, W, and the lemma is
Proved.
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The hard work, for the moment, is over: w
g , € now complet
f Theomer ps 1 , : mplete the proof of
_:.;thB}r L:::mma, 6.54, V =V, ® W where W is invariant under T Using
:'ﬁ e basis v, . . > Uny of V; and any basis of W as a basis of ¥, by Lemma
-3.1, the matrix of T in this basis has the form

M, 0
0 4,/

*herc 4, is the matrix of T,, the linear transformation induced on Why T,
.._':,. ny — Hz = .
pPince T 0, T," = 0 for some n, < n,. Repeating the argument used

—

for T on V for T, on W we can decompose W as we did V (or, invoke an
induction on the dimension of the vector space involved). Continuing this

way, we get a basis of ¥ in which the matrix of T is of the form

M, 0 ... 0

m
0 M,
0 e M,
That n, + n, + -+ + n, = dim V is clear, since the size of the matrix is
n X nwheren = dim V.
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DEFINITION The integers n,, ny,. .., n, are called the invariants of T.

DEFINITION If T e A(V) is nilpotent, the subspace M of V, of dimen-
sion m, which is invariant under T, is called ¢yclic with respect to T if

I MT™ = (0), MT™* # (0);
2. there is an element z € M such that z, zT, ..., z7™ ! form a basis of M.

(Note: Condition 1 is actually implied by Condition 2).

LEMMA 6.5.5 If M, of dimension m, is cyclic with respect to T, then the
dimension of MT* is m — k for all k < m.

Proof. A basis of MT* is provided us by taking the image of any basis of
M under T*, Using the basis z; 2T, ..., 27™ ! of M leads to a basis zT%,
ZzT**Y .., zT™ ' of MT* Since this basis has m — k elements, the

lemma is proved.

THEOREM 6.5.2 Two nilpotent linear transformations milar i
‘ are similar if and onl
tf they have the same invariants. Y and oy

.Praaﬁ "The discussion preceding the theorem has proved that if the two
nilpotent linear transformations have different invariants, then they can-
not be similar, for their respective matrices

M, ... 0 M, ... 0
: .ot and
0 . e Mn 0 . Mm -

cannot be similar.
In the other direction, if the two nilpotent linear transformations § and T’

have the same invariants ny = - = n, by Theorem 6.5.1 there are bases
Vg5 - .., 0, _and Wiy« .., Wy of V such that the matrix of § in ?y,..., 0, and
that of T"in w,,. .., w,, are each equal to

('M“l 0
0 ... M,

But if 4 is the lincar transformation defined on ¥ by 1;4 = w,, then § =

ATA™' (Prove! Com i i
! pare with Problem 32 at the end of Sect 6.
whence S and T are similar. eetion ©:3)

Prepared by Y.Sangeetha, Asst Prof, Department of Mathematics, KAHE Page 21/25




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSE NAME: ALGEBRA
COURSE CODE: 18MMP101 UNIT: IV BATCH-2018-2020

Canonical Forms: A Decomposition of V: Jordan Form

LEMMA 6.6.1 Suppose that V =V, @ V,, where Vi and V, are:}uﬁspaﬂﬂf
of V invariant under T. Let T, and T, be the linear .tmn;fwmatim:w induced "?J’
T on Vy and V,, respectively. If the minimal polynomial of T, over I 1 b, (x) while
that of T, is py(x), then the minimal polynomial for T over F is the least common
multiple of p,(x) and py(x).

Proof. 1f p(x) is the minimal polynomial for 7 over F, as we have seen
above, both p(7',) and p(T',) are zero, whence p, (x) | p(x) and palx) | plx).
But then the least common multiple of p,(x) and p,(x) must also divide p(x).

On the other hand, if ¢(x) is the least common multiple of p,(x) and
$2(x), consider q(T). For by € Vy, since f,(x) | g(x), 2,9(T) = ,q(T,) = 0:
similarly, for v, € V,, v,4(T") = 0. Given any ve V, v can be written as
v = vy + vy, where v; € V; and v, € V,, in consequence of which vg(T) =
(vy + 22)9(T) = 0,9(T) + v,9(T) = 0. Thus g(T") = 0 and T satisfies
g(x). Combined with the result of the first paragraph, this yields the lemma.

COBOLLA!?I‘I" If V=Vi® - ®V, where each V, is invariant under T
and if p(x) is the minimal polynomial over F of T,, the linear transformation induced
by T on V,, then the minimal polynomial of T over F is the least common multiple

qul[’x}, ﬁZl:x)! v 3ﬁk[:x)'
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- THEOREM 6.6.1 For eachi = 1,2,... k, Vi Q) and V=V, ®V, ®
" @ Vi. The minimal polynomial of T} is q,(x)".
Proof. If k =1 then V = V| and there is nothing that needs proving.
Suppose then that £ > 1.
~ We first want to prove that each V, # (0). Towards this end, we intro-
- duce the k£ polynomials:
hy(x) = ga(x)"2q3(x)" - - - g ()™,
ha(x) = q1(x)"'gs(x)" - - - g (), ...

hi(x) = _;IJ; ?j{-"]“a seay

%
: hk‘{x) = g1 ()" (%) - gy ()"0

.
i':__slnce k> 1, h(x) # p(x), whence h,(T) # 0. Thus, given i, there is a
eV such that_w = vh;(T) # 0. But wq,(T)* = v(h(T)q(T)") = vp(T)

= 0. In consequence, w # 0 is in V; and so V; # (0). In fact, we have
shown a little more, namely, that Vh,(T) # (0) is in V. .F%mHDthu:-rl remark
about the k;(x) is in order now: if v; € V; for j # i, since g;(x)" | k;(x),
v;h(T) = 0. . ‘ |

The polynomials &, (x), ky(%), . - ., h(x) are rela:tlvcly prime. [:vac',}
Hence by Lemma 3.9.4 we can find polynomials fl(x],..:,ak(x} in
F[x] such that a;(x)h(x) + -+ ay(x) (%) = 1 From this we get
a (T)h(T) + -+ + a(T)h(T) = 1, whence, given ve V, v =2l =
o(a (T (T) + - + a(T)h(T)) = vay (T)hy(T) + -~ + vay (T (T).
Now, each va,(T)h,(T) is in Vhi(T), and since we have shown above that
Vh(T) = V;, we have now exhibited v as » = v, + * - + v, where each

LA
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We must now verify that this sum 1s a direct sum. 10 SDOW LIS, It 13
enough to prove that if u; + w; + -+ % = 0 with each u; € V;, then
each u; = 0. So, suppose that u; + uy + " + & = 0 and that some u;,
say uy, is not 0. Multiply this relation by hy(T); we thz.lin uihl.[T] + e+
wh,(T) = Oh (T) = 0. However, uh,(T) = 0 for j ;étl since u; € Vi
the equation thus reduces to uh(T) = 0. But u,q,(T)"* = 0 and since
h,(x) and g,(x) are relatively prime, we are led to u; = 0 (Prove!) which
is, of course, inconsistent with the assumption that u, # 0. So far we
have succeeded in proving that V.=V, @ V, @ &® |

To complete the proof of the theorem, we must still prove that.thc
minimal polynomial of T'; on V; is ¢(x)". By the definition of V', snce
Vg, (T)* =0, ¢(T;)" = 0, whence the minimal equation of T'; must be a
divisor of g;(x)%, thus of the form g;(x)7* with f; < [;. By the corollary to
Lemma 6.6.1 the minimal polynomial of T over F is the least common
multiple of g,(x)’, ..., g.(x)7* and so must be g, ()7t - - g (x)7*. Since
this minimal polynomial is in fact g (X)) we must Favc t}!ﬂt
fizly, f =24 ..., fi = {,, Combined with the opposite inequality
above, this yields the desired result [; = f; for i = 1,2,...,% and so com-
pletes the proof of the theorem.

If all the characteristic roots of 7 should happen to lie in F, then
the minimal polynomial of T takes on the especially nice form q(x? =
(x — A)0 e (2 — 1) where A,..., 4, are the distinct chara.ctf:nsiilc
roots of T. The irreducible factors ¢,(x) above are merely ¢;(x) = » — 4
Note that on V,, T; only has 1; as a characteristic root.

DEFINITION The matrix

A=
N b

0 R |

with 4’s on the diagonal, 1°s on the superdiagonal, and 0’s elsewhere, is a
basic Jordan block belonging to A.
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Possible Questions
PART-B (6 Mark)

If ue vy is such that uT", = 0, where 0 < k <ny,then prove that u = ugT* for

some UpeVs.

Prove that two nilpotent linear transformations are similar if and only if they have the
same invariants.

Prove that if V is n-dimensional over F and if Te A(V) has all its characteristic roots
in F, then prove that T satisfies a polynomial of degree n over F.

If M, of dimension of m, is cyclic with respect to T, then the dimension of MT* is m-
k for all k<m.

Show that the element S and T in Ag(V) are similar in Ag(V) iff they have the same
elementary divisors.

Let A be an algebra with unit element, over F, and suppose that A is of dimension m
over F. then every element in A satisfies some nontrivial polynomial in F[x] of
degree at most m.

Prove that if T € A(v) has all its characteristic roots in F, then prove that there is a
basis of V in which the matrix of T is triangular.

Prove that there exist a subspace W of V, invariant under T, then V=V;© W.

Prove that if V is n-dimensional over F and if TeA(V) has all its characteristic roots
in F, then prove that T satisfies a polynomial of degree n over F.

PART-C (10 Mark)

Show that if T e A(v) is nilpotent, then prove that o, +a,T + o, T +...+a, T™ where
a, € F isinvertible ifa, # 0

Prove that if V is n-dimensional over F and if Te A(V) has all its characteristic roots
in F, then prove that T satisfies a polynomial of degree n over F.

Prove that two nilpotent linear transformations are similar if and only if they have the
same invariants.
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Questions choice 1 choice 2 choice 3 choice 4 Answer
UNIT - IV
F[x] is a----------- Euclidean ring |ring integral field integral
The set of all vector space-homomorphisms
of V into itself ---------- Hom(V,W) Hom(W,V) Hom(V,V) Hom(W,W) Hom(V,V)
Hom(V,V) is the set of all vector space-
homomorphisms of V into itself Vinto V Vinto W W into W W into V Vinto V
A linear transformation on V,over F is an
element of ----------- A(W) Br(V) Ac(V) We(V) A(V)
A linear transformation on ------------ is an
element of Ag(V) W over F V over V F over F V over F V over F
A complexnumber is said to be an algebraic
number if it is algebraic over the field of ------ complexnumbe rational irrational rational
----- r real number  |number number number
The number e is -------------- complexnumbe |real number  [irrational transcendental transcendental
If f(x) eF(x) then there is a ------------------ E | finite normal simple
of F in which f(x)has a root . extension extension extension extension finite extension
t* defines an ---------------- of F[x] onto Ft] homomorphis |monomorphis
with the property that at*=a/ for every a.eF |isomorphism |automorphism [m m isomorphism

t* defines an isomorphism of
the property that at*=a' for every acF

F[x] onto Ft]

fx] intof[t]

f[x] ontof[t]

F[x] into Ft]

F[x] onto Ft]

An element TeA(V) is called

there exists an Se A(V) such that TS =1 both invertible [right-invertible |left-invertible [invertible right-invertible
An element ----------- is called right-

invertible if there exists an Se A(V) such that

TS=1 VeA(V) TeA(T) TeAV) TeA(T) TeAV)

An element Te A(V) is called right-

invertible if there exists an Se A(V) such that

---------- TS =1 TS=0 ST=1 TS =2 TS=1

A e is said to be an algebraic

number if it is algebraic over the field of complexnumbe rational irrational complexnumbe
rational numbers r real number  [number number r

A complexnumber is said to be an -------- if it{complexnumbe |algebraic rational irrational algebraic

is algebraic over the field of rational numbers|r mumder number number mumder

t* defines an isomorphism of F[x] onto F'[t]

with the property that-------------- for every

oeF at*=a' a=a* at*=a a=a' at*=a'

If a is constructible then a lies in some ------ finite normal simple

--- of the rationals of degree a powerof extension extension extension extension extension

If a is constructible then o lies in some

extension of the rationals of degree a

powerof -------- 2 3 1 2
The ---------- of F is a simple extension of F  [finite extension c)normal simple

if K=F(a) for some o in K K extension K |extension extension extension K
The extension K of F is a------------ if K=F(a)|finite extension c)normal simple simple

for some o in K K extension K |extension extension of F extension of F
The extension K of F is a simple extension of

Fif-------- for some o in K K=F(a) KcF(o) K=f(a) K=F(a) K=F(a)
-------------- is separable over F, F(a,b) is a

simple extension of F aorb aandb ab a,b aorb

If one of aor b is ------------ over F, F(a,b) isa

simple extension of F non-separable |separable reduciable irreducible separable

If one of aor b is separable over F F(a,b) is a normal simple simple

Of F--mmmmmmeeo- of F finite extension|extension extension extension extension




The of elements in K which are -------- over F

forms a sub field of K non-separable |separable reduciable irreducible separable

The set of elements in K which are separable

over F forms a sub field of K field group sub group subfield subfield

If is a group of automorphisms of K then the -

---------- of G is the set of all elements aeK

such that o(a)=a. for all ceG field fixed field normal field |subfield fixed field

f G is a group of automorphisms of K then

the fixed field of G is the set of all

elements[JaeK such that -------- for all 6eG |o(a)=a K(a)=a o(a)=K o(a)=K o(a)=K

IfGis a group ----- of K then the fixed

field of G is the set of all elements a.eK such homomorphis |monomorphis

that o(o)=a for all ceG isomorphism  |automorphism |m m automorphism
G(K,F) isa subgroup of the group of all -------- homomorphis |monomorphis

------ of K isomorphism  |automorphism |m m automorphism
If Kis a ------------=--- then G(K,F) is a finite | finite

group and its order o(G(K,F)) extension of normal simple finite extension
satisfieso(G(K,F))<=[K.F] K extension K |extension extension of F of K

If K is a finite extension of F then G(K,F) is a

finite group and its order o(G(K,F)) satisfies - o(G(K,R)<=[K o(G(K,R)<=[K
----- o(G)=[K,F] o(G)=F F] 0o(G)=K F]

Kis a------------- of Fif K'is a finite

extension of F such that F is the fixed field of normal simple normal

G(K,F) finite extension|extension extension extension extension

K is a normal extension of F if K is a ----------

----- of F such that F is the fixed field of normal simple

G(K,F) finite extension|extension extension extension finite extension
K is a normal extension of F if K is a finite

extension of F such that F is the -------- of

G(K,F) field fixed field normal field  |subfield fixed field

K isa --------m-mmmmee- of Fifand only if K is | finite normal simple normal

the splitting field of some polynomial overF |extension extension extension extension extension

K is a normal extension of F if and only if K

is the----------—---—- of some polynomial overF |field splitting field |fixed field simple field  splitting field
If Gisa------------- and if G isa

homomorphic image of G then G™ is

solvable sovlable group |field group simple field sovlable group

If G is a sovlable group and if G is a----------
image of G then G is solvable

isomorphism

automorphism

homomorphis
m

monomorphis
m

homomorphis
m

If G is a solvable group and if G is a

homomorphic image of G then G™ is --------- non-separable |separable reduciable solvable solvable
Sn is---------- for n>5 separable not solvable  |sovlable non-separable not solvable
Sn is not solvable for ---------- n>5 n>5 n<5 n<4 n>5
If p(x)eF[x] is -------------- by radicals over F
then the Galois group over F of p(x) is a
solvable group non-separable |separable reduciable solvable solvable
If p(x)eF[x] is solvable by radicals over F
then the--------- over F of p(x) is a solvable
group sovlable group |Galois group |group simple field Galois group
If p(x) € F[x] is solvable by radicals over F
then the Galois group over F of p(x) is a ------ separable not solvable non-separable
----- group group sovlable group |group sovlable group
If Vis -------- over F then the rank of T is the infinite finite finite
dimension of VT the range of T over F field dimensional  [dimensional |dimensional  dimensional




If V is finite dimensional over F then the
rank of T is the dimension of the range of T

over F FT F V VT VT

If ---mmmee- A(V) has no two sided ideal other

than (0) and A(V) dim(V)=1 dim (V) >1 dim (v)<1 dim (v)z1 dim (V) >1
If dim (V) >1 A(V) has------------------ other | no two sided no one sided  no two sided
than (0) and A(V) ideal two sided ideal |one sided ideal |ideal ideal

If dim (V) >1 A(V) has no two sided ideal

other than ---------- 0{(0) and A(V) (0)or A(V)  A(V) (0) and A(V)
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UNIT-V

Trace and Transpose — Trace of T-Symmetric Matrix —Determinants—Hermitian
Transformation, Unitary Transformation and Normal Transformation — Real quadratic
forms.

Trace and Transpose

U:EFINITIDN The trace of 4 is the sum of the elements on the main
diagonal of 4.

We shall write the trace of 4 as tr 4; if 4 = (et;;), then
rd= Z &g
i=1

LEMMA 6.81 Ford. BeF and AeF,

1. tr (Ad) = At 4
2.uw{d+ B) =trd + tr B.
3. tr (AB) = tr (BA).

Proof. 'To establish parts | and 2 (which assert that the trace is a linear
functional on F)) is straightforward and is left to the reader. We only
present the proof of part 3 of the lemma.

If A4 = {a;;) and B = (fi;;) then AB = (y;;) where

Vi = ;_:1 aiklﬁkj
and BA = (u;;) where

Wy = &Z: .ﬁm-ﬂu-
Thus
tr (4B) = Z T = Z(; ﬂ’:;tﬁm)5
1 1
if we interchange the order of summation in this last sum, we get

tr (4B) = Z Zl Lufy = Z( Z ﬁnifxm) = ; My = tr (BA).

k=1 i= k=1 i=1
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COROLLARY  If A is invertible then tr (ACA™Y) = tr C.
Proof. Let B = CA™'; then tr (ACA™') = tr (4B) = tr (B4) =
tr (CA™'4) = tr C.

DEFINITION If T e A(V) then tr T, the trace of T, is the trace of m, (T
where m, (7] is the matrix of T in some basis of V.

LEMMA 6.8.2 If T e A(V) then tr T is the sum of the characteristic rools of
T (using each characteristic root as often as its multiplicity).

LEMMA 6.8.3 If Fis a field of characteristi ) _
i 3 IM‘ D’ ﬂﬂﬁr i E = A V |
that tr T' = 0 for all i > 1 then T is nilpotent, 4 p(V) is such

Pmaim_Slince T'e Ag(V), T satisfies some minimal polynomial p(x) =
x‘"_—l-rx,x Tt by from T4 T 4 i by T =0
taking traces of both sides yields " T

121"5'1""+4:a|:1t1‘f|i'"°"_1—i—*---+-ﬁ|:m_i tr T + tr o, = 0.

HGWevcr, by assumption, tr 7% = 0 for i > 1, thus we get tra, = 0; if
tdlmh V = n, tra,, = na,, whence noy, = 0. But the characteristic of F is 0;
fercforc, n # 0, hence it follows that a, = 0. Since the constant term
0 thlc minimal polynomial of T is 0, by Theorem 6.1.2 T is singular and
80 0 is a characteristic root of T
hWe can consider 7" as a matrix in F, and therefore also as a matrix in
:) ttarr: ;ff 15 an extension of F which in turn contains all the characteristihc
ots of 7. In K,, by Theorem 6.4.1, we can bring T to triangular form,

and < : ..
nd since 0 is a characteristic root of T, we can actually bring it to the form

0 ] o ... 0

.{32 , 0. 0 _ ([] 0

: . e * Tz)’
= JB;: x,
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LEMMA 6.9.5 Interchanging two rows of A changes the sign of its determinant.

Proof. Since two rows are equal, by Lemma 6.9.4, d(vygy ..., 0 q,
Ui + U gy s Vjogs 0 + Uy Ujyygy .., 0,) = 0. Using Lemma 6.9.3

several times, we can expand this to obtain d (v, ..., i 15 Vpy -5 Vj_yqs
Vpoer Up) + d(Vye ooy 0, 0y ey 05y gy ey 0) + d(Dgy et vy, U
g Uj_l, Z.JI-_,..., E'IH) + d[:!?l,. ' vy ﬂi—l: IJJ s os g U‘i'—li‘ :'Iji"" H") = U-

However, each of the last two terms has in it two equal rows, whence, by
Lemma 6.9.4, each is 0. The above relation then reduces to d(gy o504y,
'-’::-'-.,*ﬂj_l,.uj,..., Up) + A0y Vingy Uiy Upygy Ve, 0,) = 0,
Which is precisely the assertion of the lemma.

where
o, O 0
Tz = - .
o

is an (n — 1) x (n — 1) matrix (the #’s indicate parts in which we are

not interested in the explicit entries). Now

0 0
I
g (* Tzk)

hence 0 = tr T* = tr T,*. Thus T, is an (n — 1) x (n — 1) ma‘trix with
the property that tr 7,* = 0 for all k¥ > 1. Either using induction on n,
or repeating the argument on T, used for T, we get, since oy, . .., &, are
the characteristic roots of T,, that o, = -+ = o, = 0. Thus when T is
brought to triangular form, all its entries on the main diagonal are 0,

forcing 7 to be nilpotent. (Prove!)

Prepared by Y.Sangeetha, Asst Prof, Department of Mathematics, KAHE Page 3/25




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSE NAME: ALGEBRA
COURSE CODE: 18MMP101 UNIT: V BATCH-2018-2020

LEMMA 6.84 If F is of characteristic O and if S and T, in Ag(V), are such
that ST — TS commules with S, then ST — TS is nilpotent.

Proof. For any k > 1 we compute (ST — TS)*. Now (ST — TS)* =

(ST — TS Y(ST — TS) = (ST — TS)E=18T — (ST — TS)* T8
Since ST — TS commutes with S, the term (ST — T.8)*”'ST can be
written in the form S((S7T — TS)*"'T). If we let B = (ST — TS 'T,
we see that (ST — TS)* = SB — BS; hence tr ((§T — TS)kj. =
tr (SB — BS) = tr (SB) — tr (BS) = 0 by Lemma 6.8.1. The previous
lemma now tells us that S7° — TS must be nilpotent.

DEFINITION If 4 = (o) € F, then the transpose of A, written as A
is the matrix 4’ = (y,;) where y;; = a;; for each ¢ and j.

LEMMA 685 Forall A Be F,,

1. (4) = 4.
2. l:.A —|—_B}" = A + B
3. (AB)Y = B'A’.
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Proof. The proofs of parts 1 and 2 are straightforward and are left to
the reader; we content ourselves with proving part 3.
Suppose that 4 = («;;) and B = (Bij); then AB = (1;;) where

'J-u = Z ’Iikﬁkj-

k=1
Therefore, by definition, (4B)" = (g, ), where

iy = Aﬁ = E -’Ijkﬁkr

On the other hand, 4’ = (7i7) where y;; = «; and B = (€;;) where
¢ij = Bji» whence the (i, j) element of B'A’ is

n

i ] n
; 5.’;1’&; = J;l ﬁkiajk = E b = Hij-

k=1
That is, (AB)" = B'A’ and we have verified part 3 of the lemma.

In part 3, if we specialize 4 = B we obtain (4?)’ = (4')?. Continuing,
we obtain (4)" = (4')* for all positive integers k. When 4 is invertible
then (A™1)" = (4’)~ L j

There is a further property enjoyed by the transpose, namely, if e F
then (14)" = A4’ for all A€ F,. Now, if AeF, satisfies a polynomial
o A™ 4 oy A™ ! 4+ -+ 4 @ = 0, we obtain (d™ + -+ + a,) = 0" = 0.
Computing out (ayA™ + - + a,)" using the properties of the transpose,
we ﬂbti::lin o (A)" + ag (4™ + -+ + a, = 0, that is to say, A’ satisfies

any polynomial over F which is satisfied by 4. Since 4 = [E‘;I’]', by the
same token, A4 satisfies any polynomial over F which is satisfied by A'.
In particular, 4 and A’ have the same minimal polynomial over F and so
they have the same characteristic roots. One can show each root occurs with
the same multiplicity in 4 and 4'. This is evident once it is established that
4 and A4’ are actually similar (see Problem 14).

DEFINITION The matrix 4 is said to be a symmelric matrix if A’ = A,

EEFINITIDN The matrix A is said to be a skew-symmetric matrix if
"= —A
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DEFINITION A mapping * from F, into F, is called an adjoint on F, if

1. (A%)* = 4;
2. (4 + B)* = A* +| B¥;
3. (AB)* = B*A*;

for all 4, Be F,.

Determinants

DEFINITION If A = (o;;) then the determinant of A, written det A, is the
element ¥, 5. (—1)°®%16(1)%202) """ %no(m) in F.

We shall at times use the notation

TS I

LEMMA 6.91 The determinant of a lriangular malrix is the product of ils
entries on the main diagonal.

LEMMA 692 IfAeF,andyeF thend(vy,...,0; 1 Y0 Vigrs- - ) =

PA(01s - o5 Victs Vs Digns + o 05 V)

Note that the lemma says that if all the elements in one row of 4 are
multiplied by a fixed element y in F then the determinant of 4 1s itself
multiplied by y.

Proof. Since only the entries in the ith row are changed, the expansion
Of d(¥yy vy Vilgs Pis Vigps - v s V) 1S
Z (= 1)y " %im 1,006 - 1) PRig() R+ 1,06+ 1) """ Hna(n)>
g E Sy
since this equals 3, es (—1) g1)" " " Yisgi) " " Lno(my» 1t doES indeed
equal yd(v,, ..., 0,).
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LEMMA 6.9.4 If two rows of A are equal (that is, v, = v, for r # s), then
det 4 = 0.

Proof. Let A = (a;;) and suppose that for some 7, s where r 5,
a,; = o; for all . Consider the expansion

det 4 = Z (_ I}dalu(I]- o ara{_r}' o 'Is:r{s}' o ‘Inu(n}'
XE 8,

In the expansion we pair the terms as follows: For o € S, we pair the term
(= 1)%t1601)" * * Upomy With the term (= 1)y ro(1)" * * Oueo(my Where 7 is
the transposition (o(r), o(s)). Since t is a transposition and 72 = 1, this
indeed gives us a pairing. However, since Ora(ry = Ugo(r)» DY assumption,
and ) = Ug4, we have that Upo(ry = Osea(s) Oimilarly, o,y =
Oreorr On the other hand, for i # r and i # s, since ta(i) = o),
Rigi) = Oio(s)» Thus the terms o,y - CUpg(my AN Lyrgq) Tt Uy, aTE
equal. The first occurs with the sign (—1)° and the second with the sign
(=1)* in the expansion of det 4. Since ¢ is a transposition and so an
odd permutation, (—1)* = —(—1)°. Therefore in the pairing, the paired
terms cancel each other out in the sum, whence det 4 = 0. (The proof
does not depend on the characteristic of F and holds equally well even in
the case of characteristic 2.)

LEMMA 6.9.5 Interchanging two rows of A changes the sign of its determinant.

Proof. Since two rows are equal, by Lemma 6.94, d(vy,...,v;_y,
Ui+ Upy Vipgs e s Vjogs 03 + 0jy 0jyqy .., 0,) = 0. Using Lemma 6.9.3

several times, we can expand this to obtain d(oy, ..., Vit Uiy w3 Vj_ys
l'l'f_q.-.--,, ﬂ") + d{t"l}“'iui—ll Z':IJ'"""? =1 i-'i,...,i'n.] + d(vl,...,ﬂ;_“ [P
.y Uj_l, UI'J"‘J E-l") + d[:ul,-.-, ﬂi—l? EI'J veoay E-'J-_IJ, z’jj"" E’") = {]-

owever, cach of the last two terms has in it two equal rows, whence, by
Lemma 6.9.4, each is 0. The above relation then reduces to d(@gy 50 4,
ab'«“’,y‘i_“.ﬂj’“" V) + A0y, gy Vg iy Oy, Uy eeny 0,) = 0,
which is precisely the assertion of the lemma.
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'COROLLARY  If the matrix B is obtained Jrom A by a permutation of the rows

rgf A then det A = tdet B, the sign being +1 if the permutation is even, — |
if the permutation is odd.

THEOREM 6.9.1 For A, B € F,, det (4B) = (det A) (det B).

Proof. Let A = (a;;) and B = (f;;); let the rows of B be the vectors
Uy, Usy - - - U,. We introduce the n vectors wy, ..., w, as follows:

wy = Oy Uy + Oyalty + o Oyl
Wy = Oy Uy + Oaally + * 7"+ Uaullys

Wy, = Uyl + L) i Epnlin

Consider d(wy, ..., w,); expanding this out and making many uses of
Lemmas 6.9.2 and 6.9.3, we obtain

dwg, ..., w,) = Z Oyg, Oogy """ ant,diﬂm Uppy v v vy H:'..]'-
1,825 .05in
In this multiple sum i, . .., i, run independently from 1 to n. However, if
any two i, = i, then u; = u; whence d(U;, -« Uiy« ooy Uy o o5 U,) - 0
by Lemma 6.9.4. In other words, the only terms in the sum that may give a

nonzero contribution are those for which all of i, 4,,...,, are distinct,
that is for which the mapping

(1 2 .- rs)
T = . . .
1’1 z2 e i’l'l

is a permutation of 1,2,...,n. Also any such permutation is possible.
Finally note that by the corollary to Lemma 6.9.5, when

(l 2 - rz)
g = . . .
Il 32 T Iu
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is a permutation, then d(u;, u;,-..,%;,) = (=1)%d(uy, ..., u,) =

(=1)" det B. Thus we get
d{wl! R wn) = E ITTSS ana{u}{:_lja det B

acs,

= (dct B) Z [—1]‘1&15[1} e a’nn{n}

a=Sy,

= (det B) (det A).
We now wish to identify d(w,,...,w,) as det (4B). However, sincc

wy = Oty + b Gyl Wy = Oy T Kl - W
= Oty + 0+ Ugpll

we get that d(w,, . .., w,) is det C where the first row of C is w,, the second
is w5, etc.
However, if we write out w,, in terms of coordinates we obtain
wy = Qg+ oy, = 2y (B Bras s Bia)
+ 0+ aln(ﬁnl) A ﬁnn}
= (o111 + apafay + ot 0B 4y fra 0
+ oy uBrzs s 0y Bra + o 0y B,)

which 1s the first row of AB. Similarly w, is the second row of AB, and so
for the other rows. Thus we have C = AB. Since det (4B) = det C =
d(wy, ..., w,) = (det A)(det B), we have proved the theorem.

COROLLARY 1 If A is invertible then detA # 0 and det (A™1) =
(det )~

Proof Since AA™' = 1,det (AA™') = det 1 = 1. Thus by the theorem,
1 =det (AA™") = (det A)(det A~"). This relation then states that
det 4 # 0 and det A™! = 1/det A.

COROLLARY 2 If A is invertible then for all B, det (ABA~1) = det B.

Proof. Using the theorem, as applied to (AB)A™!, we get
det ((AB)A™") = det (AB) det (4™"') = det A det Bdet (A %). TInvoking
Corollary 1, we reduce this further to det B. Thus det (4BA~ ') = det B.

Prepared by Y.Sangeetha, Asst Prof, Department of Mathematics, KAHE Page 9/25




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSE NAME: ALGEBRA
COURSE CODE: 18MMP101 UNIT: V BATCH-2018-2020

LEMMA 6.9.6 det 4 = det (4).

Proof. Let A = (a;;) and 4" = (B,;); of course, p;; = a;;. Now
det 4 = Z (= 1) %101y " " Cnam

agES

while
det A' = —1)Brocty - = — )%,y
= Z_" ( ) 181 {1) ﬁna(n] crEZS,, { ) 'Iﬂ{l_ll [xﬂ'[ﬂ:li'l

1 d * ® "
However, the term (—1)%0gy """ %o(ayn 18 equal. to (— 1.] O1a-1(1)
=1 (m)- (Prove!) But g and ¢~ 1 are of the same parity, that is, if ¢ is odd,
then so is ¢~ !, whereas if ¢ is even then ¢~ ' is even. Thus

a1 s
(—1)%tyg-101) " " " Ono-1(m) = (=1)7 ay4-101) O g =1(n)*
Finally as ¢ runs over §, then ¢~ ! runs over §,. Thus

det 4" = Z (—1]6_1&15.-](1)'"[Im,—i{"}
a~ 18y

= D, (= D)%ty Lno(n)

FESH

= det A.

In light of Lemma 6.9.6, interchanging the rows and columns of a matrix
does not change its determinant. But then Lemmas 6.9.2-6.9.5, which held
for operations with rows of the matrix, hold equally for the columns of the same matrix.

We make immediate use of the remark to derive Cramer’s rule for solving
a system of linear equations.

Given the system of linear equations

?11""1 + oty = By

I:"'Iﬂl"rl + e+ Ennxn = ﬁm
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we call 4 = (x;;) the matrix of the system and A = det A the determinant of
the system.
Suppose that A # 0; that is,
Oy "7 Xy
A= - | # 0.
Lt Tt ®nn

By Lemma 6.9.2 (as modified for columns instead of rows),

all - ow w alixj L I txiﬂ

Ol X Xnn

nii

However, as a consequence of Lemmas 6.9.3, 6.9.4, we can add any multiple
of a column to another without changing the determinant (see Problem 5)-
Add to the ith column of x;A, x, times the first column, x, times the second,
..., x; times the jth column (for j # #). Thus

Oyt O g—p (0¥ + g%y 4ot F Oya¥Xa) Opitr 77 Oin

Opr """ Oy et {[xnlxi + oa%y + 0 -k [Iﬂ,,xﬂ:l Oy j41 Bnn

and using 0% + * '+ + og,x, = f,, we finally see that
o L S T Y Bi dy i ot oy,
A = | : P :
rxln U "'xn,l‘—l rgn an,:‘+1 Tt "Irm
Hence, x; = A;/A. This is

THEOREM 6.9.2 (Cramer’s RuLe) If the determinant, A, of the system of
linear equations

0%y + 0+ oagx, = By

|:'!i':l.""l"l + + aﬂ!‘lxﬂ = !Bn:

ts different from 0O, then the solution of the system is given by x, = A;JA, where

A; is the determinant obtained from A by replacing in A the ith column by By,
Bas s P
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THEOREM 6.9.3 A is invertible if and only if det A # 0.

Proof. If A is invertible, we have seen, in Corollary 1 to Theorem 6.9.1,
that det 4 # 0.

Suppose, on the other hand, that detd £ 0 where 4 = (o;)- By
Cramer’s rule we can solve the system

?‘11-"1 + o+ oy x, = By

Blyp¥y + o+ Bty = ﬁn

for x,,...,x, given arbitrary f,,..., #,. Thus, as a linear transformation
on F™ A’ is onto; in fact the vector (f,,..., B,) is the image under 4’ of
A A . . :
(j  eee, f . Being onto, by Theorem 6.1.4, A’ is invertible, hence 4
1s invertible (Prove!).
We can see Theorem 6.9.3 from an alternative, and possibly more in-
teresting, pomnt of view. Given 4 € FF, we can embed it in K, where K is an

extension of F chosen so that in K,, 4 can be brought to triangular form.
Thus there is a B € K, such that

i 0 - 0
Az

* .. . >

)

BAB™1 =

here 1;,..., 1, are all the characteristic roots of A, each occurring as
often as its multiplicity as a characteristic root of 4. Thus det 4 =
det (BAB™') = 1; A+, by Lemma 6.9.1. However, 4 is invertible
if and only if none of its characteristic roots is 0; but det 4 # 0 if and
only if A, A;+-- A4, # 0, that is to say, if no characteristic root of 4 is 0.
Thus 4 is invertible if and only if det 4 # 0.
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LEMMA 6.9.7 det 4 is the product, counting multiplicities, of the characteristic
roots of A.

DEFINITION Given A€ F,, the secular equation of A is the polynomial
det (x — A) in F[x].

Hermitian, Unitary, and Normal Transformations

DEFINITION The linear transformation 7€ A(V) is said to be umilary
if (uT,vT) = (u,v) forallu, ve V.

LEMMA 6.10.2 If (oT, vT) = (v, v) for all v € V then T is umitary.

Proof. The proof is in the spirit of that of Lemma 6.10.1. Let u,ve
by assumption ((u + 2)7T, (u + 0)T) = (u + »,u + v). Expanding this
out and simplifying, we obtain

(T, oT) + (T, uT) = (u, 0) + (o, ), (1)
for u, v € V. In (1) replace » by iv; computing the necessary parts, this yields
—(uT, oT) + (0T, uT) = —(u,v) + (2, u). (2)

Adding (1) and (2) results in (uT, 2T) = (u,2) for all u, v €V, hence
T 1s unitary.
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THEOREM 6.10.1 Tte linear transformation T on V is unitary if and only if
it takes an orthonormal basis of V into an orthonormal basis of V.

Proof. Suppose that {vy,...,v,} is an orthonormal basis of V; thus
(vpv;) = 0 for i # j while (v;,0) = 1. We wish to show that if T 15
unitary, then {»,T,...,,T} is also an orthonormal basis of V. But
(T, 0,T) = (v,0)) =0 for iy and (0,T,9,T) = (v;,0;) =1, thus
indeed {»,T,...,»,T} is an orthonormal basis of V.

On the other hand, if Te A(V) is such that both {z,,...,
{v,T,...,v,T} are orthonormal bases of V, if 4, w € V then

v, ) and

U= Z OLpllis w = I=EJ. ﬁi‘yi:

i=1

E whence by the orthonormality of the #,’s,

(u, w) = ; o f ;.

|

=_ However,

ul = E a;7 and wT = Z B, T
i=1

i=1

whence by the orthonormality of the »,T7s,

: (uT, wT) = ZH: of; = (u, w),

proving that T is unitary. i

DEFINITION If T e A(V) then the Hermitian adjoint of T, written asT*,
is defined by («T, v) = (u, vT*) for all u, v € V.

LEMMA 6.10.4 If T e A(V) then T* € A(V). ' Moreover,

1. (T*:]* = T,
2. (S + T)* = S*% 4 T*:

3. (A8)* = AS*;
4. (ST)* = T*5*;

Vorall S, T € A(V) and all 1. F.

Prepared by Y.Sangeetha, Asst Prof, Department of Mathematics, KAHE Page 14/25




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSE NAME: ALGEBRA
COURSE CODE: 18MMP101 UNIT: V BATCH-2018-2020

Proof. We must first prove that 7* is a linear transformation on V. If
u, v, warein V, then (u, (v + w)T*) = (Wl v + w) = (uT,2v) + T, w) =
(, vT*) + (u, wT*) = (u, vT* + wT*), In consequence of which
(v + w)T* = vT* + wT*. Similarly, for 1€ F, (u, (A0)T*) = (uT, iv) =
T, v) = X(u, oT*) = (u, A(vT*)), whence (J)T* = A(@T™*). We have
thus proved that T* is a linear transformation on V.

To see that (T*)* = T notice that (u,2(T*)*) = (uT*,v) = (v, ulT*) =
(vT, u) = (u,vT) for all u, v e V whence o(T*)* = vT which implies that
(T*)* = T. Weleave the proofs of (§ + T)* = §* + T* and of (AT)* =
IT* to the reader. Finally, (u, o(ST)*) = (uST,v) = (uS, v7T*) =
(u, vT*S*) for all u,veV; this forces »(ST)* = vT*5* for every veV
which results in (ST)* = T*5*,

LEMMA 6.10.56 T e A(V) is unitary if and only if TT* = 1.
Proof. If T is unitary, then for all u,ve V, (u, oTT*) = (uT,T) =

(u, v) hence TT* = 1. On the other hand, if 77* =1, then (4,2) =
(u, vTT*) = (uT, vT), which implies that T is unitary.

THEOREM 6.10.2 If {vy,...,v,} is an orthonormal basis of V and if the
matrix of T € A(V) in this basis is () then the matrix of T* in this basis is
{ﬁu): where ﬁi; = E;r

Proof. Since the matrices of T and T* in this basis are, respectively;
(a;;) and (B;)), then

v, T = E a;;v; and o T* = Z Bijvj.
i=1 i=1
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B A

Now
Biy = (@ T* v;) = (03 0, T) = (Hl" Z ﬂ!jkl-'*) = &
i=1
by the orthonormality of the #;’s. This proves the theorem.

DEFINITION T e A(V) is called self-adjoint or Hermitian if T* = T.

If T* = —T we call skew-Hermitian. Given any S e A(V),

* — *
S=S+S +i(S ?)
2 27

and since (§ + §*)/2 and (§ — 5%)/2; are Hermitian, § = A + iB where
both 4 and B are Hermitian.

THEOREM 6.10.3 If T e A(V) is Hermitian, then all its characteristic rools
are real.

Proof. Let A be a characteristic root of T'; thus there isa v # 0 in V
such that o T = Av. We compute: A(z,v) = (Ao, v) = (o7, 0) = (v, 0T*) =
(2, vT) = (v, Av) = A(v,2); since (2, v) # 0 we are left with 1 = 1 hence
A is real.

LEMMA 6.10.6 IfSe A(V) and if vSS* = O, then oS = 0.

Proof. Consider (s55%, v); since vS5*% = 0, 0 = (085*, v) = (o5, v($*)*) =

(S, oS) by Lemma 6.10.4. In an inner-product space, this implies that
o8 = 0.

COROLLARY If T is Hermitian and oT* = 0 for k > 1 then oT = 0.

Proof. We show that if vT'2™ = 0 then o7 = 0; for if S = T?™", then
§* = § and S§* = 7", whence (0S§*,v) = 0 implies that 0 = oS =
vT?""'. Continuing down in this way, we obtain »7 = 0. If oT* = 0,
then ¢T%™ = 0 for 2™ > k, hence ¢T = 0.
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DEFINITION T e A(V) is said to be normal if TT* = T*T.

LEMMA 6.10.7 If N is a normal linear transformation and if vN = 0 for
veV, then uN* = 0.

Proof. Consider (vN*, yN*); by definition, (o N*, s N*) = (v N*N, 2) =
(tNN*,v), since NN* = N*N. However, N = 0, whence, certainly,
vNN* = 0. In this way we obtain that (vN*, o N*) = 0, forcing vN* = 0.

COROLLARY 1 If 1 is a characteristic root of the normal transformation N
and if uN = Lv then uN* = Zu.

Proof. Since Nis normal, NN* = N* N, therefore, (N — 2)(N — 1)* =
(N — 2)(N* — &) = NN* — AN* — IN + Al = N*N — IN* — IN +
Al = (N* — J)(N — A) = (N — 2)*(N — 1), that is to say, N — A is
normal. Since (N — A) = 0 by the normality of N — A, from the lemma,
o(N — A)* = 0, hence oN* = Jo.

COROLLARY 2 If T is unitary and if A is a characteristic root of T, then
Al = 1.
Proof. Since T is unitary it is normal. Let 1 be a characteristic root of
T and suppose that 97 = Av with 2 # 0 in V. By Corollary 1, sT* = Jo,
thus » = oT7T* = JoT* = JAv since TT* = 1. Thus we get U= 1,
which, of course, says that |4| = 1.

LEMMA 6.10.8 If N is normal and if vN* = 0, then o N = 0.

Proof. Let § = NN*; § is Hermitian, and by the normality of N,
o§* = o(NN*)¥ = yN*(N*)* = 0. By the corollary to Lemma 6.10.6, we
deduce that »§ = 0, that is to say, yNN* = 0. Invoking Lemma 6.10.6
itself yields o N = 0.

COROLLARY If N is normal and if for A€ F, v(N — O)* =0, then
oN = Ao,

Proof. From the normality of N it follows that N — 1 is normal, whence
by applying the lemma just proved to N — 1 we obtain the corollary.

Real Quadratic Forms
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DEFINITION Two real symmetric matrices 4 and B are congruent if
there is a nonsingular real matrix 7 such that B = TAT".

LEMMA 6.11.1  Congruence is an equivalence relation.

Proof. Let us write, when A4 is congruent to B, 4 =~ B,

l. A2 Afor 4 = 141'.

2. If 4 = B then B = TAT' where T is nonsingular, hence 4 = SBS’
where § = 77!, Thus B =~ A.

3.If A~ B and B2 C then B = TAT' while C = RBR', hence C =
RTAT'R' = (RT)A(RTY, and so 4 ~ C.
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Possible Questions
PART-B (6 Mark)

If {v1, V2, .. vn} is an Orthonormal basis of V and if the matrix of TeA(V)
in this basis is (ojj)then the matrix of T in this basis is (LJ5), where [Jjj =0_g i,

If F is field of characteristic 0, and if T € A(V) is such that tr T'=0 for all
i= 1 then prove that T is nilpotent.

The Linear transformation T on V is unitary if and only if it takes an
orthonormal basis of V into an orthonormal basis of V.

Show that if two rows of a matrix A are equal, then prove that detA=0.

For A,BeF,and Ae F, prove

(1) tr AA) =Atr (A)

(i) tr (A+B) = tr(A)+tr(B)

(iii) tr (AB) =tr(BA).
Prove that if F is of characteristic 0 and if S and T, in Ag(V),are such that ST-TS
commutes with S, then prove that ST-TS is nilpotent.
Prove For A, B € F,, det (AB) = (det A) (det B).
For A, B € F, prove that det (AB)=(det A)(det B).
If Te A(V) is Hermitian, then all its characteristic roots are real.

PART-C (10 Mark)

For all A, B eF, prove that

(i) (A)=A.

(ii) (A+B)’=A +B

(i) (AB) =B'A. _
If F is field of characteristic 0, and if T € Ag(V) is such that tr T'=0 for all iZ 1 then
prove that T is nilpotent.
Prove that if F is of characteristic 0 and if S and T, in Ag(V),are such that ST-TS
commutes with S, then prove that ST-TS is nilpotent.
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UNIT -V
If V is finite dimensional and ------------
there is an Se A(V) such that E=TS #0 is an
idempotent T>0 T=0 T+0 T<0 T+#0
If V is finite dimensional and T=0 there is an
SeA(V) such that E=-------- is an idempotent [T>0 TS20 T+0 TS=0 TS=0
If V is finite dimensional and T=0 there is an
SeA(V) such that E=TS 0 is an -------------- regular idempotent grounded nilpotent idempotent
The -------=----- W of V is invariant under
TeAV) if WTcW subspace space field sub field subspace
The subspace W of V is invariant under
TeA(V) if-----m----- W over F Wc TV WTcT W=TV WTcT
The element A € F is a characteristic root of
T €A(V) if and only if for some ------- inV,
VT=AV A=0 A0 v=0 v£0 v£0
The element A € F is a characteristic root of
T €A(V) if and only if for some v=0 in V,----
----- vT=T VT=AV vT=v Tv=T VT=AV
If T eA(V) is nilpotent then Kk is called the ---|index of linear index of
----------- of Tk=0 but T¥* 20 nilpotence nilpotence transformation |idempotent nilpotence
The -------- of a matrix A is the sum of the
elements on the main diagonal of A transpose inverse trase conjucate trase
The trace of a matrix A is the --------------- of
the elements on the main diagonal of A sum inverse product subtract sum
The trace of a matrix A is the sum of the
elements on the --------- of A diagonal main diagonal |elements all elements main diagonal
skew-
The matrix A is said tobe a------------ if symmetric nonsingular symmetric symmetric
A'=A matrix singular matrix |matrix matrix matrix
The matrix A is said to be a symmetric
matrix if A'=A A=A A<A' ASA' A'=A A=A
skew- skew-
The matrix A is said to be a----------- if A'=- |symmetric nonsingular symmetric symmetric
A matrix singular matrix |matrix matrix matrix
The matrix A is said to be a skew- symmetric
matrix if -------- A=A A<A’ A'=-A A=A A=A
skew-
A and B are symmetric matrices,AB is -------- symmetric nonsingular symmetric symmetric
---- iff AB=BA matrix singular matrix |matrix matrix matrix
A and B are symmetric matrices,AB is
symmetric iff ------------ A=B AB=BA A=B AB=BA AB=BA
The determinant of a triangular matrix is the -
---------- of its entries on the main diogonal |sum inverse product subtract product
The determinant of a triangular matrix is the
product of its entries on the-------------- diagonal main diagonal |elements all elements main diagonal
The of a triangular matrix is the product of
its entries on the main diogonal transpose inverse trase determinant determinant
Interchanging two rows of A changing the
sign of its ----------- transpose inverse trase determinant determinant
Interchanging two rows of A changing the----
----- of its determinant value sign sign and value |transpose sign
Interchanging two columns of A changing
the sign of its ------------ transpose inverse trase determinant determinant
Interchanging two columns of A changing
the ------- of its determinant value sign sign and value |transpose sign




The characteristic roots of A are the roots
with the correct multiplicity of the secular

equation, ------- of A det (x-A) det(x-a) dm (x-a) dim(x+A) det (x-A)

The ----------- of A are the roots with the

correct multiplicity of the secular equation characteristic characteristic

,det (x-A) of A root multiple root roots product roots  roots

The characteristic roots of A are the roots

with the correct multiplicity of the---------- , non linear non-secular

det(x-A) of A linear equation |secular equation [equation equation secular equation

A polynomial with coefficients which are ----- complex irrational complex

-------- has all its roots in the complex field real number numbers rational number [number numbers

A polynomial with coefficients which are

complex numbers has all its------ in the characteristic

complex field root multiple root roots product roots root

A polynomial with coefficients which are
complex numbers has all its roots in the ---|real field rational field complex field |irrational field  complex field

The ---------- T eA(V) is said to be unitary if |normal linear Nilpotent linear

(uT,vT)=(u,v) for all uveV transformation |transformation |unitary transformation  transformation

The linear transformation T e A(V) is said to [normal linear Nilpotent

be--------mn-- if (uT,vT)=(u,v) forall uveV |transformation [transformation [unitary transformation  unitary

The linear transformation T e A(V) is said to

be unitary if (uT,vT)=for all u,veV (u,v) uv uT vT (u,v)

The -------mmeemmeeen Ton V is unitary if and

only if it takes an orthonormal basis of V into |normal linear Nilpotent linear

an orthonormal basis of V transformation |transformation |unitary transformation  transformation

The linear transformation Ton V is unitary if

and only if it takes an-------------- of Vinto an orthonormal orthonormal

orthonormal basis of V basis orthogonal basis |basis normal basis basis

The linear transformation Ton V is unitary if

and only if it takes an orthonormal basis of V orthonormal orthonormal

into an -------- of V basis orthogonal basis |basis normal basis basis

TeA(V) is unitary if and only if----------- TT*=1 TT*>1 TT*<1 TT*<1 TT*=1
normal linear Nilpotent

TeA(V) is --------- ifand only if TT* =1 transformation |transformation |unitary transformation  unitary
normal Nilpotent

TeA(V) is called harmitian if T*=T transformation |harmition unitary transformation harmition

TeA(V) is called harmitian if ------------ T=T* T=1 T#T* TT*=1 T#T*

If T e A(V) isHermitian then all its --------- characteristic characteristic

are real root multiple root roots product roots roots

If T e A(V) isHermitian then all its

characteristic roots are ------------ real complex rational irrational real

If T eAV)is --------- then all its normal Nilpotent

characteristic roots are real transformation |harmition unitary transformation  harmition

If T eA(V)is --------- if TT*=T*T normal harmition unitary Nilpotent normal

If T eA(V) is normal if ------------ T=T* T=1 T=T* TT*=1 T=T*

The Hermitian ----------------- T is non

negative if and only if its characterstic roots |normal linear Nilpotent linear

are non negative transformation |transformation |unitary transformation  transformation

The Hermitian linear transformation T is non
negative if and only if its------------ are non

characteristic

characteristic

negative root multiple root roots product roots roots

The Hermitian linear transformation T is non

negative if and only if its characterstic roots

are ------------ non negative negative rational irrational non negative
The Hermitian linear transformation T is ------

----if and only if its characterstic roots are

non-negative non negative negative rational irrational non negative
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