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1 1 Reimann Steiltjes integral.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc COURSE NAME: REAL ANALYSIS ANALYIS
COURSE CODE: 18MMP102 UNIT: | BATCH-2018-2020
UNIT I
THE RIEMANN - STIELTJES INTEGRAL
SYLLABUS

Introduction — Basic Definitions — Linear Properties — Integration by parts —
Change of variable in a Riemann — Stieltjes Integral — Reduction to a Riemann
Integral — Step functions as integrators — Reduction of a Riemann — Stieltjes
Integral to a finite sum — Monotonically increasing — Additive and linear
properties — Riemann condition — Comparison theorems — Integrators of bounded
variation — Sufficient condition for Riemann Stieltjes integral.

7.1 INTRODUCTION

Calculus deals principally with two geometric problems: finding the tangent line
to a curve, and finding the area of a region under a curve. The first is studied by a
limit process kmown as differemtiztion; the second by another limit process—
infegration—to which we turn now,

The reader will recall from elementary caleulus that to find the area of the
region ender the graph of a positive function f defined on [a, 5], we subdivide
the interval [a, &) into a finite number of subintervals, say », the &th subinterval
having length Ax,. and we consider sums of the form ¥, (1) Ax,, where 1, is
some point m the kth subimterval. Such & sum is an approximation to the area by
means of rectangles. If f is sufficiently well behaved in [e, bl —continuous, for
example—then there is some hope that these sums will tend 1o a limit as we et
a = oo, making the snccessive subdivisions finer and finer, This, roughly speaking,
is what is involved in Riemann's definition of the definite integral [® f(x) dx. (A
precise definition is given below.)

The two concepts, derivalive and integral, arise im entirely different ways and
itis a remarkable fact indeed that the two are intimately connected. If we consider
the definite integral of a continuous function / as a function of its upper linvit,
say we wrile

Fix) = I'.rw dt,

then F has a derivative and Fix) = fix). This important result shows that
differentiation and imtegration are, in a sense, inverse operations.
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T2 NOTATION
For brevity we make certain stipulations concerning notation and terminology to
be used in this chapter. We shall be working with a compact interval [a, #] and,
uniess otherwise stated, all functions denoted by £, g, &, f, etc., will be assumed to
be real-valued functions defined and bownded on [a, b]. Complex-valued functions
are deaht with in Section 7.27, and extensions to unbounded functions and infinite
intervals will be discussed in Chapier 1)

As in Chapter 8, a partition P of [a, &] is a finite set of points, say

F-[Jﬂ:"x':'l"lx-}l

such that a = xy < x; < -** < X,_, < x, = b. A partition P’ of [a, b] is said
to be finer than P (or a refinement of P)if P < P’, which we also write P* 2 F.
The symbol Az, denotes the difference Ax, = a{x) — afx,_,), so that

2 A = olb) - =(a).
The set of all possible partitions of [, §] is dencted by #[a, b].
The norm of a partition P is the length of the largest subinterval of P and
denoted by | PJ. MNote that ==
P= P implies ||&) <= 1P|
That is, refinement of a partition decreases its porm, bul the converse does not
necessarily hold, +

7.3 THE DEFINITION OF THE RIEMANN-STIELTJES INTEGRAL

Definition 7.1, Let P = {xg, 5y, .. -, x,} be a partition of |a, b] and let 1, be &
point in the subinterval [x,_,, x.]. A sum of the form

S(P.f,2) = Z £(n) Az,

is called @ Riemann—Sticltjes sum of £ with respect to «. We sap [ is Riemann-
integrable with respeci to  on [a, b}, and we write “f e Ria) on [a, b]" if there
axists @ number A having the following properry: For every & > 0, there exists a
partition P, of [a, b such that for every partition P finer than P, and for every
choice of the points ty in [xy_ 1, %], we have |S(P, [, 2) — A| < &
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T4 LINEAR PROPERITIES

it 15 an easy matfer to prove that the integral operates in & Linear fashion on both
the integrand and the integrator. This is the context of the next two theorems.

Theorem 7.2. If fe R(z) and if g€ Rix) on [a, b], then c,f + c39 € R(2) on
[a, &] (for amy two constants ¢, and £;) and we have

J-'[c“f+ n;g]da.=:1j.fd=+ [ rgd-u:

-

Proaf. Leth = ¢, + c;g. Given a partition # of [a, b], we can write

S by a) = 3 0) Ay = € 30100 Ay + e 3 000 B

= ¢, 8(P, f, @) + ¢;8(P, g, a).
Given £ > 0, choose P; so that P = P implies [S(P, f, o) = [} fdx| < g, and
choose Py so that P = P; implies |S(P,g,a) = [gda] <& IF we take
£, = P, _P3, then, for P finer than P,, we have

|.5'(.P. h, &) — g, I.fdm — iy r g dn:L < legle + legle,

and this proves the theorem.

Theorem 7.3. If [& Ria) and f & Rifiy on [a, b], then { & Ric,a + ¢3ff) on [a, b]
{ for any fwo constants ¢, and ¢5) and we have

]-‘f:f{rlu + eaffh = rlrfd::+ r,Jq_fdﬂ.

The proof is similar to that of Theorem 7.2 and is left a5 an exercise.

A result somewhat analogous to the previous two theorems tells us that the
integral 18 also additive with respect to the interval of integration.
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Theorem 7.4. Assume that ¢ € (g, B). If two of the three integrals in (1) exist, then
the third also exists and we have

rjdu+I'fm=rfa (1)

Proof. If P is a partition of [a, 5] such that c € P, let
PF=Pnrlac] and P =Pneb],

denote the cormesponding partitions of [a, c] and [e, 5], respectively. The Rie-
mann-Stieltjes sums for these partitions are connected by the equation

S(P, [, a) = S(P', [, a} + S(P", ], a).

Assume that [T dz and [? fdx exist. Then, given & > 0, there is a partition
P; of [a, ¢] such that :

S(P". f, &) ~ erdal < ; whenever P is finer than P,
and & partition P§ of [, ] such that

‘sn". fo) - j"'f s
Then P, = P;w P is a partition of [a, ] such that P finer than P, implics

F'= Fiand " 3 F;. Hence, il P is finer than F,, we can combine the foregoing
results to obtain the inequality

SP, [, 4) — J";:m - J“er:

This proves that [7 £ du exists and equals [ fda + [* fdx. The reader can easily
verify that a similar argument proves the thearem in the remaining cases,

1:; whenever P is finer Lhan P*,

< E

Using mathematical induction, we can prove a similar result for 3 decomposi-
tion of [a, &] into a finite number of subintervals,

Definition 7.5. If a < b, we define [Jfdz = — [ fdx whenever [® fdx exisis.
e alsa define [2 f du. = 0.

The equation in Theorem 7.4 can now be written as follows:

rfda + rfda + J.'r.m - 0.
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75 INTEGRATION BY PARTS

A remarkable connection exists between the inicgrand and the intcgrator in a
Riemann-Sticltjes integral. The existence of [ fdx implies the existence of
|2 « df, and the converse is also true. Moreover, a very simple relation holds
betrween the two integrals.

Theorem 7.6. If f e Riz) on [a, b], then @ € R(f) on [a, b] and we have
f ' fx) datx) + J“ #(x) df(x) = fBalb) — flae(a).

woTE. This eguation, which provides a kind of reciprocity law for the integral, is
knowm as the formmda for integration by parts.
Proof. Let & > 0 be given, Since [}/ dx exists, there is a partition P, of [a, b]
such that for every P finer than P, we have

5(P, f, &) — J‘bfdul < B (1)

Consider an arbitrary Riemann-Stieltjes sum for the integral [} « df; say

SP. . f) = E ) By = 3 )Sx) — 3 alt)f s,
where P is finer than P,. Writing A = f(b)x(b) — fledx(a), we have the identity

A= EI{ILHIJ - ‘Elﬂxtllhf!l—]}'
Subtracting the last two displayed equations, we find

A—5F,af)= g.ﬁ-‘t}ﬁl{rﬂ = m{i)] + gﬂn-ﬂf!ﬁﬂ = E{II']]]'

The two sums on the right can be combined into a single sum of the form S{F', f, «),
where P is that partition of [a, 5] obtained by taking the points x; and r, together.
Then P’ is finer than P and hence finer than P,. Therefore the inequality {2) is
valid and this mcans that we have

'.-i - 5P, w1~ J.bfd'u

< F,

7.6 CHANGE OF VARIABLE IN A RIEMANN-STIELTJES INTEGRAL

Theorem 7.7, Let fe Rix) on [a, b] and let g be a steicily morotonic continsors
Junction defined on an interval § having endpoints ¢ and d.  Assumie that a = gie),
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b = gld). Let h and § be the composite functions defined as follows:

h(x) = flgla],  flx) = dlo(x)], fxes.

Then k € R(f) on S wnd we have [5 fda = [$hdB. That is,

" fie) datt) = j " leto)] dfalotl)

#ic)

Proof. For definiteness, assume that ¢ is steictly increasing on 5. (This implies

¢ = d.) Then g is one-to-one and has a strictly increasing, continuous inverse g~

1

defined on {a, b]. Therefore, for every partition P = {yg, ..., 3.} of [e, €],
there corresponds one and only one partition P = {xg, ..., x,} of [a, ] with
xy = g(¥). In fact, we can write '

P'=g(P) and F =g "(F)

Furthermore, a refinement of £ produces a corresponding refinement of F£', and
the converse also holds.

If £ = 0 is given, there is a partition P; of [a, 5] such that P’ finer than P]
implies |S(P', f, &} — [fdz| < & Let P, = g~ '(P}) be the corresponding par-
tition of [¢, 4], and let P = {y,, ..., »,} be a partition of [¢, 4] finer than P,
Form a Riemann-Stieltjes sum

S(P, b, f) = g k(i) A,

where u, € [¥-;, 3] and Afy = H(3) — Blye-,). 1f we put 4, = g(ty) and
x; = g(w), then P' = {xg, ..., x,}isa partition of [a, b] finer than P,. Moreover,
we then have

S, ) = 3 STatelaloty] ~ alo(su- 1))

= Z Fio) ) = alx,_ )} = S(P'. f, ),

since #; € [y, x;]. Therefore, {S(P, k, §) — i fda| < & and the theorem is

proved.

%OTE. This theorem applies, in particular, to Riemann integrals, that is, when
afx) = x, Another theorem of this type, in which g is not required to be mono-
tonic, will later be proved for Riemann integrals. (See Theorem 7.36.)

7.7 REDUCTION TO A RIEMANN INTEGRAL

The next theorem tells us that we are permitted to replace the symhbol dx{x) by
a'{x) dx in the integral ﬁf{x} dr{x) whenever o has a continuous derivative «'.
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Theorem 7.8. Assume fc R{z) on [a, b} and assume that o has a continuous
derivative & on [a, b, Then the Riemann integral (3 f(x)a'(x) dx exists and we have

Jq J(x) de(x) = r,_f{x}u'{x} dx.

Proof. Let g{x) = f(x)2'(x) and consider a Riemann sum

S(P, g) = :,::1 g(ty) Ax, = ?;:ﬂ:mu‘ua Ax,.

The same partition P and the same choice of the #, can be used to form the
Riemann-Stieltjes sum

S(P,f @) = 2 f(1) A,
Applying the Mean-¥alue Theorem, we can write

Az, = a'(o) Az, where v € (-, X0,
and hence

S(P, f, @) — S(P, g) = gﬂt.}[a’(m} ~ a'(f)] Ax,.

Since f is bounded, we have |f{x)| < M for all x in [a, b], where M > 0. Con-
tinuity of &' on [a, b] implies uniform continuity on [a, b]. Hence, if & > 0 is
given, there exists a § = 0 (depending only on &) such that

I £
0=x=—pl<d implies x'(x) — o' A v —
Ix = ¥ P le’(x) = «'(y)| MG — a)

If we take a partition P, with norm | P]| < &, then for any finer partition P we
will have Jo'(ry) — p:'{r.]'li < ef[2M{b — n)] in the preceding equation. For such
P we therefore have

IS(P, f. ) — S(P, g)] < 5

On the other hand, since e R(2) on [a, b], there exists a partition P, such that
£ finer than P} implics

|S(P.f, a) — J.bfd::

<%
2

Combining the last iwo inequalities, we see that when P is inesrthan P, = P, U P},
we will have |S(P, g) — [ fdx| < & and this proves the theorem,
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7.8 STEP ¥UNCEIONS AS INTEGRATORS

If « is constant throughout [, &], the integral {3 f d exists and has the value 0,
gince each sum S(F, £, ) = 0. However, if « is constant except for a jump dis-
continnity at one point, the integral |} f dx need not exist and, if it does exist, its
value need not be zero. The situation is described more fully in the following

theorem:

Theorem 7.9, Given a < ¢ < b, Define o on [a, b] as follows: The values «{a),
u(e), a(l) are arbitrary;

a(x) = afa) ifa<x<.

und
a(x) = albh) fe<x<h

Let [ be defined on [a, b] in such a way that at least one of the functions f or z iz
continuous from the left at ¢ and at least one is continuous from the vight at ¢, Then
J & Rix) on |a, k] and we have

-f ' fda = fONelc+) — ale—)])

NOTE. The result also holds if ¢ = a, provided that we write «(r) for a(c—), and
it holds for ¢ = b if we write a{c) for a{c+). We will prove Iater (Theorem 7.29)
that the integral does not exist if both fand a are discontinuous from the right or
from the lefi at ¢

Procf. If ¢ € P, every terman the sum S(P, £, o) is zero except the two terms arising
from the subinterval separated by ¢, say

SP. 1. &) = flty_ Na(c) — a(c=)] + fltd[ale+) — ald)],

where #,_, < ¢ < 4. This equation can also be written as follows:

A = [flt-1) = fO][ale) = alc=)] + [t ~ fle))[ale+) - ald)],
where A = S(P, f, o) = fic)alc+) = afc=)]. Hence we have

|Al < 1Sty 1) — Ae)l lale) — ale—)| + 17() — fle)l lalc+) — aie)j.
If f iz continwous at ¢, for every ¢ > Othereisa é > 0 such that [P < § implies

flte—y) — flel <& and  |f{#) — fle)l <e
In this case, we obtain the inequality
Al < elac) — ale=)] + elalc+) — afe).

But this inequality holds whether or not fis continuous at ¢. For example, if fis
discontinuous both from the right and from the Ieft at ¢, then #(c) = afe=) and
ale) = afe4+) and we get A = 0. On the other hand, #f fis continvous from the
left and discontinucus from the right at ¢, we must have a(c) = =(c+) and we get
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|Al = gaf(c) — afc—)|. Similarly, if / is continuous from the right and discon-
tinuows from the left at ¢, we have alc) = afc—) and |A| < glafc+) — alc).
Hence the last displayed inequality holds in every case. This proves the theorem.

79 REDUCTION OF A RIEMANN-STIELTJES INTEGRAL TO A FINITE SUM

The integrator « in Theorem 7.9 is a special case of an important class of functions
known as step functions. These are functions which are constant throughout an
interval except for 2 finite number of jump discontinuities,

Definition 7.10 ( Step function). A function x defined on [a, b is called a step funcrmu
if there is a partition

=X <Xy < v <x,=b
such that « is constant on each open subinterval (x, _y, %), The manber a(x,+) —

sl —) is called the fump ar x, If | < &k < a. The jump af x, is 200, +) — =(x,)
and the jump at x, fs a(x,) — «(x,—).

Step functions provide the connecting link between Ricmann—5Suoieltjes inlegrals
and finite sums:

Theorem 7.11 { Reduction of a Riemann—Sticlijes integral to a finite sum). Let a be
a siep function defined on [a, b] with jump 2, ai x,, where g, . . ., X, are as described
in Definition 7.00. Let f be defined on |a, b] in such a way that not both [ and = are

discontinuous from the right ar from the left at each x,. Then |’ f du exists and we
have

j " () dalx) = 3 s

Proaf. By Theorem 7.4, [® fdx can be written as a sum of integrals of the type
considered in Theorem 7.9.
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MONOTONICALLY INCREASING INTEGRATORS. UPPER AND
LOWER INTEGRALS
Definition 7,14, Ler P be a partition of [a. &) and let

M) = sup [ f(x):xe [, 0]k

mif) = inf {fixi:xe{x_., ]k

The nunibers

UIPf,9) = 3 My(f) Ax,  and  L(P.f,a) = 2 my(f) Az,

k=1 w=1

are called, respectively, the upper and lower Stielijes sums of f with respect 10 a for
the pariition P,

noTE, We always have my(f) < MU ). If 2.2 on [g 5], then Az, > O and we
can also write m{ f) Az, = M,/ Az, from which it follows that the lower sums
do not exceed the upper sums. Furthermore, if 1, 2 [x,_,, x.]. then

md Yy = finy = MU
Therefore, when 4.7, we have the inequalities
L{P, f, o) = §(F fLa) < UIP, £, 9)

relating the upper and lower sums to the Riemann-Sticlties sums, These ineguali-
ties, which are frequently used in the material that follows, do not necessarily hold
when = is not an increasing function.

The next theorem: shows that, for increasing =, refinement of the parttion
increases the lower sums and decreases the upper sums.

Thearem 7.15. Assume thar o 7 on [a, b]. Then:
1y If P is finer than F, we have

UP,fa) <= (P fiay  and  LIP' . f 2) 2 L{P, [ 2).
iy For any two pariitions Py and Py, we have

L(P, £, 3) = U(Py, /. 3.
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Proof. It suffices to prove (i) when P’ contains exactly one more point than P,
say the point c. If ¢ 1s im the ith subinterval of P, we can write

U{P,f.a) = ;l M) Axy, + M'Tale) - w(x;_ )] + M"[a(x) — ofc}],
ki

where M* and M” denote the sup of £in [x;_, ¢] and [¢, x;]. But, since
M < MAf) and M" = M{f),

we have U{P’, f, %) < U(P, [, o). (The inequality for lower sums is proved in a
sarmilar fashion.)
To prove (i), let P = P; v P;. Then we have

L(P,, fia) < L(P,f,a) < U(P, f, &) < U(Py, f, a).

Definition 7.16. Assume that a» on [a, b). The upper Sticltjes integral of f with
respect to a is defined as follows:

J-'fdu = inf {U(P, f, a) : P € P[a, b]}.

The lower Stieltjes integral is similarly defined; _
b
J. fdx = sup {I{P. f, %) : P e #[a, b]}.

NOTE. We sometimes write J(f, @) and I(f, o) for the upper and lower integrals.
In the special case where a{x) = x, the upper and lower sums are denoted by
U(P, Y and I(P, f) and are called upper and lower Riemann sums. The corre-

sponding integrals, denoted by {; f(x) dx and by [® fix) dx, are called upper and
lower Riemann integrals. They were first introduced by J. G. Darboux (1875).

Theorem 7.17. Assume that «# on [a, b]. Then Kf, a) < I(f, ).
Proof, If s = 0 is given, there exists a partition P, such that
UP,, fo) <I(f,a) + &

By Theorem 7.15, it follows that I(f, ) + & is an upper bound to all lower sums
I{P, f,a). Hence, I(f,a) < I(f, 2) + &, and, since ¢ is arbitrary, this implies
I{f, &) < I(f, o).
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713 RIEMANN'S CONDITION

If we are to expect equality of the upper and lower integrals, then we must also
expect the upper sums to become arbitrarily close to the lower sums. Hence it
seems reasonable to seck those funchions f for which the difference ULP, f, «) —
L(P, f, @) can be made arbitrarily small.

Definition 7.18. We say that [ satisfies Riemann's condition with respect to @ on
[a, b) if, for every & > O, there exisis a partition P, such that P finer than P, implies

0= VP fa)y— P fa)<sa

Theorem 7.19. Assume that w.” on [a, b]. Then the following three statements are
equivalent

i) fe R{z) on [a, b].
ii) f satisfies Riemann's condition with respect fo a on [a, b).
i) I(f, @) = I(f, %).
Proof. We will prove that part (i) implies (ii), part {ii) implies (iii}, and part (iii)
implies {i). Assume that (i) holds. If a{¥) = afa), then (ii) holds trivially, s0 we

can assume that a{a) < «(5). Given £ > 0, choosc P, so that for any finer P and
all choices of ¢, and #; in [x,_,, x;], we have

-tt'.; and Lilf{:ﬂé.ak-dl-::g,

where 4 = |} fde. Combining thesc inequalities, we find

g_ﬂf&] Az, — A
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> ) ~ 1] A < %c-

Since My(f) — my(f) = sup {fix) — fix'): x, ' in [x._,, %]}, it follows that
for every it > 0 we can choose r, and 1 so that

) — i) > M) — m(f) — k.
Making a choice corresponding to k = $ef[a(b) — x(z)], we can write

UP,f @) — LB, [ @) = 2 [M{f) — myf)] A,

< LU — F0D] Az, + b 35 ey <c.
Hence, (i) implies (ii}.

Next, assume that (i) holds. [fe > O is given, there exists a partition P, such
that 2 finer than P, implies U{P, f, &) < L(P, [, o) + &. Hence, for such P we
have

Ifia) s UPfo) < LA fia) +e< I{fia) +&

That is, f(f, a} < I(f, 2) + & for every z > 0. Therefore, I(f, 2) < I(f, 2). But,
by Theorein 7,17, we also have the opposite inequality. Hence (ii) implies {ii).
Finally, assume that I(f, a) = I, «} and let A denote their common value.
We will prove that |5 f da exists and equals 4. Given ¢ > 0, choose P, so that
U(P, f, a} < I(f, o) + & for all P finer than P;. Also choose P” such that

LiP,fia) > I(f,a) — ¢
for all P fincr than P, If P, = P, U P?, we can wrile
Hfo)—e< LP.fia) < S(P, fLa) < U(P, f,a) < Nf,a) + ¢

for every P finer than P,. But, since [(f, @) = I(f, ) = A, this means that
IS(P, f, a) — A| < & whenever P is finer than P,. This proves that [ fdx exists
and equals A, and the proof of the theorem is now complete.

7.14 COMPARISON THEOREMS

Theorem 7.20. Assume that a » on {a, ). If fc Rix) and g e R(&) on [a, ¥) and
i fix) = g{x) for all x in [a, b], then we hane

b b
I Fx) dux) < J‘ 9() def).
Proof. For every partition P, the corresponding Ricmann-Sticltjes sums satisfy

S(P.f, a) = .,EJ"-““- < .}.:. g(t) Aa, = S(P, g, a),

since a » on {a, #]. From this the theorem follows easily.

In particular, this theorem implies that {3 g(x) du(x) = @ whenever g(x) = 0
and =~ on [a, 5].
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Theorem 7.21. Assume that a » on [a, b]. ¥f fe R(a)on [a, b), thea |f] € Rix) on
[a, &] and we have the inequality

]
I S(x) dxdx)

»
< I 1N dat).

Proof. Using the notation of Definition 7.14, we can write
M(f) = my(f) = sup {fx) — fy) 1 x, y in [xa-p, 1]}
Since the inequality il f(x) — | f{¥)]] £ [f(x) — f(¥)| always holds, it follows that

we have
M(/D — m(lf) = M(f) — m(f).
Multiplying by A«, and summing on k, we cbiain
U(P, |fl. &) — (P, |f], &) < U(P, f, @} — L{P, ], o),

for every partition P of {a, 5]. By applying Riemann’'s condition, we find that
|f] € R(z) on [a, ¥]. The inequality in the theorem follows by taking g = |f] in
Theorem 7.20. :

noTE. The converse of Theorem 7.21 is not true. (Sec Excrcise 7.12.)

Theorem 7.22. Assume that o # on [a, b]. Iffe R(x) on [a, B), then f* € R() on
[a, B].

Proof. Using the notation of Definition 7.14, we have
M) = [MUfD)  and  m(f?) = [m(fD].
Hence we can wrile
M) — my(f*?) = [MASD + m(SDIMUSD — mallD]
< 2MMASD — md1/D)

POSSIBLE QUESTIONS

1. Foranyfe R (a)on[ab]and ge R (o) on[a,b]thencif+c2g€R (a)on[ab]

and
Wehavef:( cif+czg)da =01f;(fd0t)+02 f:(gdu)

2. Let fbe of bounded variation on[a,b] . if x € [a,b], let V (X) =V (a,x) and
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put V (‘a) =0. Then show that every point of continuity of f is also a point of
continuity of V and Converse is also true.

3. Assume that a is increasing on [a,b] then prove that the following are equivalent

(i1)feR(a)on] a,b]
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(i) fsatisfies Riemann condition w.r.to a. on [a,b]

i)l _(F,a)=1"(f a)

. Assume that c € (a,b). If two of the three integrals in are exist, then prove that the

third also exists and we have [ fda + [ fda = [, f da.

. State and prove change of variable in Riemann — Stieltjes integral .

If f € R (o) on [ a,b] then prove that for o € R (f) on [a,b,] we have
[ FOOd o)+ [ o (x)d f(x)=F(b) a(b) - f(a)a(a).

. State and prove Riemann — Stieltjes condition

Letf:[a,b] - R "and g: [c,d] = R " be two paths in R " each of which is
one —to —one on its domain, then prove that f and g are equivalent iff they
have the same graph

9. State and Prove a Reduction to a Riemann integral.
10. If fis continuous on [a,b] and if f* exists and is bounded in the interior ,say

| f*(x) | <A for all in (a, b) then prove that fis of bounded variation on [a,b ]

11. Assume that a is increasing on [a,b ] ,then 1 - (f ;o)< I~ (f ,a).
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(Deemed to be University)

Subject: Real Analysis

Part A (20x1=20 Marks)

Question
X(y+2z)=xy+xzis
If x <Yy, then for every z we have -----------

Ifx>0andy>0, then
Ifx>yandy >z then

If a less than equal to b + $ for every $ > 0, then

The set of all points between a and b is called
The set {x: a < x < b} is ~-------------
A real number is called a positive integer if it belongs to -

If d is a divisor of n, then
If ajbc and (a, b) =1, then

If ajbc and (a, b) =1, then alc is ---------------
Rational numbers is of the form

An integer n is called
divisors of nare 1 and n

If dja and dJb, then d is called
If (a, b) = 1, then a and b are called
If an upper bound b’ of a set S is also a member of S
then 'b' is called
If an lower bound 'b' of a set S is also a member of S
then 'b' is called
A set with no upper bound is called
A set with no lower bound is called
The least upper bound is called
The greatest lower bound is called
The supremum of {3, 4} is ----------
Every finite set of numbers is
A set S of real numbers which is bounded above and
bounded below is called
The set N of natural numbers is ----------
The completeness axiom is ------------
The infimum of {3, 4} is ------------

if the only possible

Sup C =Sup A + Sup B is called -------------- property
For any real x, there is a positive integer n such that ------
If x > 0 and if y is an arbitrary real number, there is a
positive number n such that nx >y is --------------
property

The set of positive integers is -------------

The absolute value of x is denoted by ---------------

If X < 0 then
If S=1[0, 1) then sup S = ----------------

Triangle inequality is -------------------
[x +y| greater than equal to -----------------

(Established Under Section 3 of UGC Act 1956)

Pollachi Main Road, Eachanari (Po),
Coimbatore —641 021

Class :I-M.Sc. Mathematics
Unit |
Possible Questions

Choice 1 Choice 2
commutative associative
(x+z)<(y+z) (x+2)>(y+2)
xy less than equal
to 0 xy >0
X<y X=z
a<bh a>b
integer interval
(a b) [a, b]
interval open interval
n=c n<cd
alc alb
Unique
factorisation
theorem additive property
pa p+q
rational irrational
rational irrational
LCM common divisor
twin prime common factor
rational irrational
rational irrational

bounded above
bounded above
bounded above
bounded above
3

bounded

bounded set
bounded
b=supS

3

approximation

n>x

approximation
bounded above
x|

x| = x

0

|a] + |b] greater
equal to Ja + b)
x| + Iyt

bounded below
bounded below
bounded above
bounded below
4

unbounded

inductive set
not bounded
S=supb

4

additive

n<x

additive
bounded below
(IxI

I = x|

1

lal > [a + bl
x| 1y!

Choice 3
distributive
(x+2)=(y+2)
Xy greater than
equal to 0

X>z

a greater than
equal to b

elements
(a b]

closed interval
n>cd
bla

approximation
property

plq

prime

prime
prime
LCM

maximum element

maximum element
prime

prime

supremum
supremum

(3.4)

unbounded

super set
irrational
b=infS
(3,4

archimedean

n=x

archimedean
unbounded above
x<0

fIx]l = -x

(0,1)

ol > fa + bf
Xl -

Subject

(Question Nos. 1 to

Choice 4
closure
x+z=0

xy<0

X<z

a less than equal
tob

set
[a b)

inductive set
n=cd
cla

Euclid's lemma
p-q
composite

composite
function
relatively prime

minimum element

minimum element
function

function
supremum
infimum

[3.4]

bounded above

subset
rational
S=infb
[3,4]

comparison

n=0

comparison
unbounded below
x>0

x| = -x

[01]

|a + bj less than
equal to [a |+ |b|
[1X]- v

distributive
x+z)<(y+2)

xy>0

X>z

a less than equal
tob

interval
(a b)

inductive set
n=cd
alc

Euclid's lemma
plg
irrational

prime
common divisor
relatively prime

maximum element

minimum element
bounded above
bounded below
supremum
infimum

4

bounded

bounded set
not bounded
b=supS

3

additive

n>x

archimedean
unbounded above
|

Ix] = -x

1

[a + b] less than
equal to fa | + [b|
[1x]- v |



Set of real numbers S is bounded above implies S has a --

In{ (3n +2) / (2n + 1) such that n is in N}, the greatest
lower bound is --------------
In Cauchy-Schwarz inequality, the equality holds iff ------

If a set consists of a finite number of elements is called

If A,B,C are three sets then whatis A-(B -C) =

If P (A) denotes the power set of A and A is the void set
then P {P {P{P(A)}}}} =

If X Rthen

If x < 0 then ------------——-

If R *is an extended real number system then the least
upper bound is

Let f: R — R be a functiondefined as f (x) = x | x| then

The value of (0, ) is

supremum
5 divided by 3

akx =0
infinite set

(A-B)u@ANC

)

0
X/oo = o0
X(-0)=-0

o0
fis 1-1 but not
onto

infimum
8 divided by 5

akx + bkx =0
finite set

A-(BNC)

1

X/o=0
X(-0)=owo
negative infinity
neither fis 1-1

nor onto

0

additive property

11 divided by 47

akx + bk =0
cantor set
(A-B)UuC
4

X/oo =X
X(-0)=0
0

fis 1-1 both onto

not defined

comparison
property

3 divided by 2

bk=0
null set

(A-B)U(A-C)

16

X/oo= -0
X(-0)=X
no least upper
bound

fis onto but not
one-one

can not be
determined

supremum
3 divided by 2
akx + bk =0
finite set

(A-B)UMANC
)

16
X/oo=0
X (-0)=-0

fis 1-1 both onto

0
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UNIT 11
INFINITE SERIES AND INFINITE PRODUCTS
SYLLABU

Introduction — Basic definitions — Ratio test and root test — Dirichlet test
and Able’s test —Rearrangement of series — Riemann’s theorem on conditionally
convergent series — Sub series - Double sequences — Double series —
Multiplication of series — Cesaro summability.

#.14 THE RATIO TEST AND ROOT TEST
Theorem 8.25 ( Ratlo test). Given a series Y a, of nonzero complex terms, let

g4y

ay

Qut1
a,

r = lim inf

=

) R = lim sup

a) The series Y a, converges absolutely if R < 1.
b) The series 3 g, diverges if r > 1.
c) The test is inconclusive if r < 1 = R

Proof. Assume that R < 1 and choose x 30 that R < x < 1. The definition of R
implies the existence of N such that |a,,,/a,] < xif # = N. Since x = x**![x",
this means that

a a, a ]
__|f.::|{%£|xﬂ_ﬂ|‘ ifr = N,

and hence |a} < cx™if n = N, where ¢ = |ay|x~". Statement (a) now follows by
applying the comparison test.

To prove (b), we simply observe that r > 1 implies |a,,,| > la,/foralln > N
for some N and hence we cannot have lim_, , @, = 0.

To prove (c), consider the two examples Tn~ ' and ¥a~ 2 In both cases,
r = R = | but ¥n~? diverges, whereas T'n~? converges.

Theorem 8.26 ( Root test). Given a series S a, of complex terms, let
p = lim sup vla,l.

a) The series T a, comverges absolutely if p < 1.
b) The series } a, diverges if p > 1.
<) The test is inconclusive if p = 1.
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Proof. Assume that p < 1 and choose x so that p < x < 1. The definition of p
implies the existence of N such that |a| < x* forn > N. Hence, 3 [a,| converges
by the comparison test. This proves (a).

To prove (b), we observe that p > | implies |a,| > | infinitely often and
hence we cannot have lim,__ a, = 0.

Finally, (c) is proved by using the same examples as in Theorem 8.25.

~OTE. The root test is more “powerful” than the ratio test. That is, whepever the
root test is inconclusive, so is the ratio test. But there are examples where the ratio
test fails and the root test js conclusive. (See Exercise 8.4.)

8.15 DIRICHLET'S TEST AND ABEL'S TESL

All the tests in the previous section help us to determine absolute convergence of a
serics with complex terms. It is also important (o have tests for determining

convergence when the series might not converge absolutely. The tests in this
seclion are particularly useful for this purpose. They all depend on the pariial

summation formula of Abel (equation (%) in the next theorem).
Theorem 8.27. If {a,} and {b.} are two sequences of complex numbers, define
A, =a; + ' + @,
Then we have the identity
E ayb, = Ab,,, = 1-21 Afbyyy — by 9

k=1

Therefore, T | ab, converges if both the series 35, Adby,, — b)) and the
sequence {AD, .} converge.

Proof. Writing A, = 0, we have

2 ab, = ‘g (A — A )by = ‘-il Ab, — g‘ Ale-[ + Ab, ..

The second assertion follows at once from this identity.

NOoTE. Formula (9) is analogous to the formula for integration by parts in a
Riemann-Sticltjes imegral.
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Theorem 8.28 ( Diricklet's test). Let 3 a, be a series of complex terms whose partial
sums form a bounded sequence. Let {b.} be a decreasing sequence which converges
te 0. -Then 3 a b, converges.

Proof. Let A, = a; + - + a, and assume that [4,| < M for all n. Then
him Ab,., = 0.

Therefore, toestablish convergence of Y a,b, we need only show that ¥ A(b, ,, — 5,)
is convergent. Since b, ~, we have

[AuBys . — b)Y = Mib, — by, )

But the series 3 (b, ,; — b)) is a convergent telescoping series. Hence the com-
parison test implics absolute convergence of S A (b, ., — b,).

Theorem 8.29 ( Abel's test). The series Y ab, converges if ¥a, converges and if
{b,} is @ monotonic convergent sequence.

Proof. Convergence of Ya, and of {b,} establishes the existence of the limit
lim, ., Ab,., where A, = a, + - + a,. Also, {A,} 15 a bounded sequence.
The remainder of the proof is similar to that of Theorem 8.28. (Two forther tests,
similar to the above, are given in Exercise 8.27))

B.16 PARTIAL SUMS OF THE GEOMETRIC SERIES }:* ON THE
UNIT CIRCLE |z| =1

To use Dirichlet’s test effectively, we must be acquainted with a few series having
bounded partial sums. Of course, all compergens series have this property. The next
theorem gives an example of a divergent series whose partial sums are bounded.
“This is the geometric series ¥.z* with |z]| = 1, that is, with z = ¢** where x is real,
The formula for the partial suma of this series is of fundamental importance in the
theory of Fourier serics.

Theorem 8.30. For every real x % 2mx (m is an integer), we have

. _al =€ sin(mx2) iap
"Z;“u ¢ I — €% sin (x/2) “ 1 o

NOTE. This identity yields the following estimate:
LE P [ p—— (1
fsin (x/2)|
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Proof. (1 — &) 0., € =TI, (e — Y5y = g% _ Jt 15 Thig estab-
lishes the first equality in (10). The second follows from the identity '

ehl —- & @ gimi2 gt Nz

L — e gu2 _ giil

NOTE. By considering the real and imaginary parts of (10), we obtain

Zmakx=sin"—xm{n+ I}"—‘:XsirnE
=1 2 2 2

1 1 . xf. x
= — -4 = 2 1= '
2~E-Isr:r1{i'1+ }:,sz’ (12)
- . . HX x I . X
= —_— - —
:2-1: sin kx = sin 2 sinf{m + 1) z/sm 2" (13)
Using (10), we can also write
Zﬂ P-Tx _ =ix Z:. S _ sin nx g (14)
k=1 k=1 sin x ?

an identity valid for every x # mn (m is an integer). Taking real and imaginary

parts of (14) we obtain

3 cos (2K — 1)x = SR2MX (15)
=1 2sinx

L] .|

¥ sin(2k = 1x = ELE (16)
k=1 SN X

Formulas (12) and (16} occur in the theory of Fourier series.
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8.17 REARRANGEMENTS OF SERIES
We recall that Z* denotes the set of positive integers, Z* = {1,2,3,...}

Definition 831, Let f be a function whose domain is ¢ and whose range is ",
and assume that f is one-fo-one on L. Let Ya, and ¥ b, be two series such that

by=apy form=12... (17)
Then 3 b, is said to be a rearrangement of 3 a,.

NOTE  Equation (17) implies @, = b, ., and hence Fa, is also a rearrangement
of 3 5,

Theorem 8.32. Let Ta, be an absolutely convergent series having sum 5. Then
every rearrangement of 3 a, also converges absolutely and has sum s,

Proof. Let {b,} be defined by (17). Then

Byl 4 ==+ |B = lag)l + - + Jagml < lE:,: s

s0 ¥, |5, has bounded partial sums. Hence 35, converges absolutely.
To show that 36, = 5, let t, = b, + -+ b_ 5, =a, + -+ + a,. Given
g > 0, choose N so that |sy — 5| < &2 and so that 3, |ay,,] < £/2. Then

|:.-s15|1.—s,,|+|s,—s|~:u.—s,,|+§.
Choose M so that {1,2,..., N} < {f(1), f(2),..., f(M)}. Thenn > M implies
fin) > N, and for such n we have
Il‘.— SNI L Fb] +"'+ b-_{a| +"'+a”}‘|
= |ﬂ_iru;|+”‘+ Apy — (@) + -~ + ay)|

£
S @yq) + lagsa] + 00 < 57

since all the terms a,, ..., ay cancel out in the sobtraction. Hence, n > M im-
plies |1, = 5] < ¢ and this means ¥b, = ».
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£.18 RIFMANN'S THEOREM ON CONDITIONALLY CONVERGENT SERIES

The hypothesis of absolute converpence is essential in Theorem 8.32. Riemann
discovered that any conditiomally convergent series of real terms can be rearranged
to yicld a serres which converges to any preseribed sum. This remarkable factis a
consequence of the following theorem:

Theorem 8.33. Let 3 a, be a conditionally convergent series with real-valued terms.
Let x and y be given numbers in the closed interval [ — w0, + @], withx < y. Then
there exists a rearrangement b, of Y a, such thar

fiminft,=x and limsupi, =y,

Bov e -

where t, = b, + - + b

Proof. Discarding those terms of a series which are zero dees not affect its con-
vergence or divergence. Hence we might as well assume that no terms of 3a, are
zero, Let p, denote the ath positive tesm of 3 &, and let —g, denote its nth negative
term. Then ¥ p, and Fg, are both divergent series of positive terms. [Why?]
Next, construct two sequences of real numbers, say {x,} and {y.}, such that

fim x, = x, lims y, = ¥, withx, <y, ¥ >0
L o

n—tm

The idea of the proof is now quite simple. We take just enough (say k,) positive

terms so that
Fi + - +Fk1 - yl!
followed by just enough (say r,) megative terms so that
Prt b Py T gy S X
Next, we take just enough further pasitive terms so that

Pty =g = =G Py T By B Y
followed by just enough further negative terms to satisfy the mequality
[P S ol Tl Ml 2 NP S
t Py ey T T T Gy < X

These steps are possible since 3 p, and 3 g, are both divergent series of positive
t¢rms. If the process is continued in this way, we obviously obtain a rearrangement
of Y'a,. We leave it 1o the reader o show that the partial sums of this rearrangement
have limit superior y and limit inferior x.
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8.19 SUBSERIES
Definition 8.34. Let [ be a fimction whose domain is Z' and whose range is an
infinite subset of Z*, and assume that [ is ene-to-one on L. Let Ya, and T'b, be
Iwo series such that

by = Gy ifmel’.
Then 3°b, is said to be a subseries of Y a,’

Theorem 8.35. If T a, converges absolutely, every subseries 3 b, also converges
absaiutely. Moreover, we have

)IAPS WP I

FProof. Given i, let N be the largest integer in the set {f(1), ..., fin)}. Then

" " i o
A INEDMTNED WL
k=] k=1 ke ] -

The inequality 33_, 16 < &, |a,] implies absolute convergence of 15,.
Theorem 8.36. Let {f,, f;. ...} be a countable collection of functions, each defined
on I, having the following properties:

a) Each f, is one-to-ome on Z* .

b) The range f(Z") is a subset O, of Z*.

¢) {Qy, Q;, ...} is a collection of disjoint seis whose union is Z.*.
Let 3 a, be an absolutely convergent series and define

bk{"] = ypimp ':i(" € z+r keZ".

Then:
i) For each k, 30 | by(n) is an absolutely convergent subseries of Ta,.
i) If 5, = Yoo, by(n), the series 3 | 5, converges absolutely and has the same
sum as 3 3%, O
Proof. Theorem 8.35 implics (1). To prove (ii), let {, = |5,] + - - + |5). Then

b < g; By(m)| + -+ + Zl |by(n)] = “Z; (B} + -+ + |b(m))

(= 1]
= IZ; uqflfl]' +-+ Iaj’;.(ﬂ”*

But 3.0, (lap gl + - + aruml) = Tol4 la). This proves that Zlsl has
bounded partial sums and bence }s, converges absolutely.
To find the sum of 3 5,, we proceed as follows: Let ¢ > 0 be given and choose

N so that # > N implies
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Choose enough functions f), ..., f; so that each term a,, a,, .. ., ay will appear
somewhere in the sum

o ol

2 By + 00+ 2 a s imy-
- -

The number r depends on N and hence one. If 5 = rand n > N, we have

5y + 83 +-"'+5._Z'ﬂt 5'“N+1|+fa3+1|+"'{§- {(19)

because the terms a,, a, ..., ay cancel in the subtraction. Now (18) implies

Em_zm

-

f
1 -
When this is combined with (19) we find

[-+]
s s, - Dl <6
k=1

if m > r,n > N. This completes the proof of (ii).

820 DOUBLE SEQUENCES

Definition 8.37. A function f whose domain is Z* x Z* is called a double sequence.
NOTE. We shall be interested only in real- or complex-valued double aequ:n&&

Definition 8.38. If ae C, we write lim, ... f(p. q) = a and we say that the
double sequence f converges to a, provided that the following condition is satisfied :
For every ¢ > 0, there exists an N such that |f(p, g§) — al < & whenever both
p > Nandg > N

Theorem 8.39. Assume that lim, .., f(p, q) = a. For each fixed p, assume that
the limit lim_ ., j{p, q) exists. Then the limit lim,., (img., f(p, ) also exists
and has the value a.

NOTE. To distinguish lim, ... f(p, ¢} from lim,__ (lim_ ., f(p, q)), the first is
called a double limit, the second an iterated limiz.

Proaf. Let F(p) = lim,_, f(p, ¢). Given e > 0, choose N, so that
I/ p. q) = al {f. ifp> N,and g > N,. (20)
For each p we can choose N, so that

IF(p) — £(p, )| -r:—;. Cifg > N, (21)
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{Note that N; depends on p as well as one.) Forcachp > N, choose N,, and then
choose a fixed g greater than both &, and N;. Then both (20) and (21) hold and
hence

F(p) —df <& itp > N,.
Therefore, lim . F(p) = a.
NOTE. A similar result holds if we interchange the roles of p and g.

Thus the existence of the double limit lim,, ... f{p, ¢) and of lim, .. f(p. q)
implies the existence of the iterated limit

lim (l'u'n fip, q}) .

p=wm h g«

The following example shows that the converse is not true.

821 DOUBLE SERIES

Definition 8.40. Let [ be a double sequence and let 5 be the double sequence defined
by the equation

sip,q) =2 2 flm, n).

The pair (£, 1) is called a dowuble series and is denoted by the symbol %, , fim, n) or,
mare briefly, by 3. fim, n). The double series s said 1o converge to the sum a if

lim s(p, g) = a.
Rt
Each numbeér f(m, n) is called a term of the double series and each s(p, g) is
a partial sum. If ¥ f{m, ) has only positive terms, it is easy to show that it con-
verges if, and only if, the set of partial sums is bounded, (See Exercise 8.29.) We
say Y fim, n) converges absoftrtely it ¥ | fim, n)| converges. Theorem 8.18 is valid
for double series. (See Exercise 8.29.)
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824 MULTIPLICATION OF SERIES

Given two series Y g, and 3°b,, we can always form the double series 3 f{(m, n),
where fim, n) = a_b, For every arrangement g of f into a sequence G, we are led
to a further series T ((n). By analogy with finite sums, it scems natural to refer to
3. f(m, n} or to T.G(n) as the “product” of T a, and ¥'5,, and Theorem 8.44 justifies
this terminology when the two given series Y a, and T b, arc absolutely convergent.
However, if cither 3 @, or b, is conditionally convergent, we have no guarantee
that either 3 f(m, n) or 3 .G(n) will converge. Moreover, if one of them does
converge, its sum need not be AB, The convergence and the sum will depend on
the arrangement g. Different choices of g may yield different valves of the product.
There is onc very important case in which the terms f(m, #) are arranged “diag-
onally” to produce Y G{a), and then parcntheses are inscrted by grouping together
those terms a b, for which m + » has a fixed value. This product is called the
Cauchy product and is defined as follows:

Definition 8.£5. Given two series Y=, a, and ¥'=. , b,, define

Ey = i aibn—h ifn =0,12... {22}

k=0

The series 3 gug g i5 called the Cauchy product of ¥ a, and Tb,.

woTE. The Cauchy product arises in a natural way when we multiply two power
serics. (Sec Exercise 8.33)

Because of Theorems 8.44 and 8.13, absolute convergence of both 34, and
b, implies convergence of the Cauchy product to the value

_Z:; Cy = (g ﬂ.) (,g b.) . (23)

This equation may fail to hold if both Ya, and T°5, are conditionally convergent.
(See Exercise 8.32)) However, we can prove that (23) is valid if at least one of
>a,, 3b, is absolutely convergent.

Theorem 8.46 ( Meriens). Assume that 3 5., a, converges absolutely and has sum
A, and suppose Y. o b, converges with sum B. Then the Cauchy product of these
two series converges and has sum AB.

H‘*‘#—- Define "‘n = E:=L'l @, 'Hn = E:l’: bh Cl = g-n Cs where Cy is ﬂi‘fﬂﬂ. bll"
(22). letd, = B — B ande, = 35 o ad, ;. Then

G, = ; ;ﬂﬁ.-x = 'Z.; ;f.(klh (24)

where
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ab, . ifn>k,

Jik) = { ifn < k.

Then (24) becomes

Cy = i: if:(k} i ﬁ‘tbu-: = i ay

k=0 m={ n=k k=4

a
-

P
b = 2, a:B,_,

=0 k=0

= B-—d_)=AB -

t!tﬂai{ " j} P i".

To complete the proof, it suffices to show that ¢, - 0 as p -+ c0. The sequence
{d.} converges to 0, since B = 3'b,. Choose M > 0 so that |d| < M for all a,
andlet X = 377, |a,|. Givene > 0, choose Nsothata > Nimplies |d} < £/(2K)
and also so that

'l'ﬁen, for p > 2N, we can write

N

leol < ZB [aud, sl + ;-):: layd, il < —§ jag| + M Z; ||

Yolal+M 3 ol <+ =e

REN+1 2 2

<-4
2K &
This proves that e, -+ 0 as p — 0, and hence C, -+ ABasp - ®,

A related theorem {due to Abel), in which no absolute convergence is assumed,
will be proved in the next chapter. (See Theorem 9.32.)

Another product, known as the Dirichlet product, is of particular importance
in the Theory of Numbers. We take @, = b, = 0 and, instead of defining ¢, by
(22), we use the formuia

cy = :/_.:a..b..-., (n=1,2...) (25)

where 37, means a sum extended over all positive divisors of a (including 1 and
n). For example, ¢4 = a,bs + a;by + a3b; + agb,, and ¢, = a,b, + aqb,.
The analog of Mertens’ theorem holds also for this product. The Dirichlet product
ariscs in a natural way when we multiply Dirichlet series. {See Exercise 8.34)

Prepared by K.Aarthiya, Asst Prof, Department of Mathematics, KAHE

Page 11/14




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc COURSE NAME: REAL ANALYSIS ANALYIS
COURSE CODE: 18MMP102 UNIT: 1l BATCH-2018-2020

B25 CESARDO SUMMABILITY

Definition 8.A47. Let s, denote the nth partial sum of the series ¥ a,, and let {6,) be
the sequence of arithmetic means defined by

ﬂ.=%' Ern=‘l‘1|‘11 {26}
The series T a, is said to be Cesdro summabie (or (C, 1) summable) if {6} converges.
Iflim, . 6, = 8, then § is called the Cesdro sum (or (C, 1) sum) of Ya,, and we

write
g, =85 (G
Example 1. leta, = 2" |z] = 1,z # 1. Then
AU ST S B | K §
il -z 1 -2z 1=z n(l-2zP
Therefore,
= I
_1_ A
?;;z‘ T, @
In particular,

P L TN (8 )}
k=1
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Example 2. Leta, = (—1*'a. In this case,
lim sup o, = 1, liminf o, = 0,

H=m A~ @

and hence 3°(— 1y * 'a is not (C, 1) summable.

Theorem 8.48. 1f a series is convergent with sum S, then it is also (C, 1) surnmable
with Cesdro sum 8.

Proof. Let s, denote the nth partial sum of the series, define o, by (26), and
introduce 7, = 5, — 5, 7, = o, — 5. Then we have

¥t i,

Ty = e
n

(27)

and we must prove that 7, - 0 asn — o. Choose A > 0 so that cach |¢,] < A.

Given ¢ > 0, choose N so that a > N implies |1, < &. Taking » > N in (27),
we obtain

Il < Itll+"'+llﬂj+|tﬂ'+ll+"'+“u| {E_i_
n n n

Hence, lim sup, . ., 1] < & Since ¢ is arbitrary, it follows that lim,_, . |t,| = 0.

NOTE. We have really proved that if a sequence {s,) converges, then the sequence
{g,} of arithmetic means also converges and, in fact, to the same Jimit.

Cesaro summability is just one of a large class of “summability methods”
which can be used to assign a *“sum”™ (o an infinite series. Theorem 8.48 and
Exampie 1 (following Definition 8.47) show us that Cesiro’s method has a wider
scope than ordinary convergence. The theory of summability methods is an
important and fascinating subject, but one which we cannot enter into here. For
an excellent account of the subject the reader is referred to Hardy’s Divergent
Series (Reference 8.1). We shall see later that (C, 1) summability plays an impor-
tant role in the theory of Fourier series. (See Theorem 11.15.)
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POSSIBLE QUESTIONS
1. Prove that if }; a,, converges to s, every series ), b,, obtained from )’ a,, by inserting
parentheses also converges to s.
2. State and prove Ratio Test Theorem.
3. Let) an and b be two absolute converges series with sumaand b respectively.
Let f be a double sequence defined by f (m,n) = am b if f(m,n) € z* x z* then
prove that Y., , f (m, n) converges absolutely and has sum X5, 1 X7-1 am
4. State and prove Dirchlet’s test.
5. State and prove Rearrangement Theorem for double sequence .
6. Let ) a, be an absolutely convergent series f having sum S'then prove that every
rearrangement of )’ a,, also converges absolutely f has sum.S.
7. State and Prove iterated limit Theorem.
8. Let ) a, be a given series with real valued-forms and define
Pn= Wﬂ% ; On= WT_‘I” wheren= 1,2,...... n then prove that
(i) If X a, is conditionally convergent both ) B, & Y. q,, diverges.
(i) If X |an| convergent both )} B, & ). g, converges and we have
=1 An = 2p=1 Pn — Zi=1 n -
9. State and Prove Riemann theorem on conditionally convergent.

10. State and prove Merten’s Theorem.

11. Let (fy, f

........ f n } be a countable collection of function each defined on

Z* having following properties

(i) Each function f ', is one- one Z *.

(ii) therange fn( Z* ) isasubset Q nof Z ¥,

(ii){Q 1,Q 2......Qn }is the collection of disjoint sets whose unionis Z *.
Let Xo—;a, be anabsolute convergent series and define bk (n) =a k)
fork,ne Z* then (i) for each fixed k the series Y., by (n) is an absolutely
convergent subseries of Y a,, . (ii) if s, = Yooy b (), the series Y7, sk «
converges absolutely & has the sum same as Y., a; .
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Part A (20x1=20 Marks)

Question

The coordinates (x,y) of a point represent an

numbers

(a, b) = —mmmmmmeeeeee

(a, b) = (c, d) if and only if

AXxB denotes the

Any set of ordered pairs is called

of the sets A & B

Pollachi Main Road, Eachanari (Po),

Class

If S is a relation, the set of all elements that occur as first
members in S is called the
If S is a relation, the set of all elements that occur as second
members in S is called the

If (x, y) belongs to F and (X, z) belongs to F, then
A mapping S into itself is called
If F(X) = F(y) impliesx =y is a
One-one function is also called
S = {(ab) : (b,a) isin S} is called
The composite functions are denoted by
GOF(X) = --------

In general the composite function GoF is

If m < n, then K(m) < K(n) implies that K is

Similar sets are also called as

function

If A and B are two sets andif there exists a one-one

correspondence between them,then it is called

set

A set which is equinumerous with the set of all positive

integers is called

A set which is either finite or countably infinite is called ----

Uncountable sets are also called

Countable sets are also called
Every subset of a countable set is
The set of all real numbers is

The cartesian product of the set of all positive integers is ----

The set of those elements which belong either to A or to B

or to both is called

The set of those elements which belong to both A and B is

called

Union of sets is

The complement of A relative to B is denoted by

Coimbatore —641 021
Subject: Real Analysis

: 1 - M.Sc. Mathematics
Unit 11

Possible Questions

Choice 1
function
{{a}.{b}.{ab}
}
a=c&b=d

product
function

function
function
X=z
function
one-one
injective
inverse

GxF

G[F(x)]

GoF = FoG
sequence
denumerable
denumerable
finite
countable
denumerable
denumerable
countable
countable
countable
complement
complement

commutative

B-A

Choice 2
relation

{{a}{b}}
a=b&c=d
cartesian
product
relation

codomain

codomain

X=y
relation

onto
bijective
domain

GoF

FIG(¥)]

GoF is not
equal to FoG

subsequence
uncountable

uncountable
infinite

uncountable
non-
denumerable
non-
denumerable
uncountable
uncountable

uncountable
intersection
intersection
not

commutative

B

Choice 3
ordered pair

{{a}{ab}}
a=d&c=b

polar form
ordered pair

domain
domain

Xy =12z
domain
into
transformation
codomain
GF

G(x)

GoF < FoG
order

preserving
finite

finite
countably
infinite
similar
similar
similar
rational
rational
rational
union
union

not associative

A

Choice 4
set

{a}{b}.{}}
ab=cd

complement
set

range
range

y=z
transformation
inverse
codomain
converse
G+F

F(x)

GoF > FoG
equinumerous
equinumerous
equinumerous
countably finite
equal

equal

equal
irrational
irrational
irrational
disjoint
disjoint
disjoint

A-B

(Question

ordered pair

{{a}{ab}}
a=c&b=d
cartesian
product
relation

domain
range

y=z
transformation
one-one
injective
converse

GoF

G[F(x)]

GoF is not
equal to FoG
order
preserving
equinumerous

equinumerous
countably
infinite
countable
non-
denumerable
denumerable
countable
uncountable
countable
union
intersection

commutative

B-A



If Aintersection B is the empty set, then A and B are called

B - (UNion A) = ------nnnnmmeeeee

B - (intersection A) = -----=--==-cmmememeeem
Union of countable sets is --
The set of all rational numbers is ---------------

The set S of intervals with rational end points is ----------
set

A relation which is symmetric, reflexive and transitive is
called relation

Any collection of disjoint intervals of positive length is ----

If A similar to B and B similar to C, then
If the root of an algebraic equation f(x) = 0, then the real
number is called
For all subsets A and B of S with B contained in A, we

]2 e —

The sequence< (-1)n> is

An unbounded sequence
Every absolutely convergent series is

The sequence { 1/n } is

If a sequence {an}n=1 to co converges to a real number then

the given sequence is

Every subsequence has a ----------------

The series 1+ r+r "2 +r"3 +............ is oscillatory if

commutative
union (B -A)
union (B -A)
uncountable
uncountable
uncountable
equivalence
equivalence
relation

C similarto A
prime

f(A +B) =f(A)

additive

f(A) + f(B)

monotonically
increasing

a limit point

convergent
convergent &
bounded
unbounded
sequence

limit pount
r=1

not
commutative
B-
(intersection A)

B - (union A)
infinite
infinite
infinite
component

countable set
A similarto C

positive
f(A + B) = f(B)
multiplicative

f(A) - 1(B)

monotonically
decreasing

does not have a
limit point
conditionally
convergent
divergent
&unbounded

convergent

convergent
r=-1

not associative
intersection (B -
A)

intersection (B -
A)

countable
countable

countable

composite
composite
function
A<C

algebraic
f(A-B) =f(A) -
f(B)

disjoint
f(A) + f(B) -
f(B-A)

either
increasing or
decreasing
may or may not
have a limit
point
absolutely
divergent
divergent &
bounded
divergent &
bounded
monotonic
subsequence
r>1

disjoint
{
b

disjoint
disjoint

disjoint
countable

uncountable set
A=C

composite
f(A - B) =f(A)
equinumerous

f(A) +f(B - A)
neither
monotonically
increasing nor
monotonically
decreasing

unique limit
point

need not
convergent
convergent &
Unbounded

bounded

non monotoni
sequence
r<l1

disjoint
intersection (B -
A)

union (B -A)
countable
countable

countable
equivalence

countable set
A similarto C

algebraic
f(A-B) =f(A) -
f(B)

additive

f(A) +f(B - A)
neither
monotonically
increasing nor
monotonically
decreasing

may or may not
have a limit
point

convergent
convergent &
bounded
unbounded
sequence
monotonic
subsequence
r=-1
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SEQUENCES OF FUNCTIONS

SYLLABU

of infinite series of functions — Uniform convergence and Riemann — Stieltjes
integration — Non uniformly convergent sequence — Uniform convergence and
differentiation — Sufficient condition for uniform convergence of a series

Basic definitions — Uniform convergence and continuity - Uniform convergence

9.4 UNIFORM CONVERGENCE AND CONTINUITY

Theorem 9.2. Assume that f, — f uniformly on S. If each f, is continuous at a
point ¢ of S, then the limit function f is also continuous at c.

NOTE, If ¢ is an accumulation point of S, the conclusion implies that
lim lim f(x) = lim lim f(x).

xrcRrwm B Xog

Proof. If c is an isolated point of S, then f is automatically continuous at c.
Suppose, then, that ¢ is an accumulation point of S. By hypothesis, for every
¢ > O there is an M such that n > M implies

|£(x) — f(x)| < -; for every x in S.
Since fy; is continuous at ¢, there is a neighborhood B(c) such that x € B(¢) n §
implies
%) ~ fide)l < ;
But
1Atx) = [l < [fx) — ful¥) + |fuelx) = fuulO)] + |fil) — (O

If x € B(c) n §, each term on the right is less than £/3 and hence | f(x) — f(¢)] < &.
This proves the theorem.

NOTE. Uniform convergence of {/,) is sufficient but not necessary to transmit
continuity from the individual terms to the limit function. In Example 2 (Section
9.2), we have a nonuniformly convergent sequence of continuous functions with
a continuwous limit function.
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9.6 UNIFORM CONVERGENCE OF INFINITE SERIES OF FUNCTIONS

Definition 9.4. Given a sequence { [} of functions defined on a set S. For each x in
S, let

sa(x) = ;:f.(x) (r=12..) (4)

If there exists a function f such that s, — f uniformly on S, we say the series 3.1(x)
converges uniformly on S and we write

2 Jixy=f(x)  (uniformiy on 5).
Theorem 9.5 (Cauchy condition for uniform comvergence of series}). The infinite series
3. f(x) comverges uniformly on S if, and only if, for every & > O there is an N such
that n > N implies

nip
' Sl <e foreachp = 1,2,..., and every x in S.
1

t=n

Proof. Define 3, by (4) and apply Theorem 9.3.

Theorem 9.6 (Welerstrass M-test). Let {M,} be a sequence of nonnegative mumbers
such that

oslfn(x)ISM'n f“"‘lgl---,mfwmyxfhs.
Then Y.fAx) converges uniformly on S if 3 M, converges.
Proof. Apply Theorems 8.11 and 9.5 in conjunction with the inequality

atp

Li i< 3, My

=avl

Theorem 9.7, Assume that ¥ f(x) = f(x) (uniformly on S). If each f, is continuous
at a point x, of S, then f is also continuous at x,.

Proof. Define s, by (4). Continuity of each £ at x, implies continuity of s, at
Xg, and the conclusion follows at once from Theorem 9.2,

NOTE. If X, is an accumulation point of S, this theorem permits us to interchange
limits and infinite sums, as follows:

lim SfAx) = i: lim f(x).

X=Xg &= =1 x*xp
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9.8 UNIFORM CONVERGENCE AND RIEMANN-STIELTJES INTEGRATION

Theorem 9.8. Let a be of bounded vartation on [a, b]. Asswne that each term of
the sequence {f,) is a reai-valued function such that f, € R(z) on [a, b] for each
n=1,2,... Assume that f, — funiformly on|a, b) and define g,(x) = | f.(1) dx(t)
ifxela,bl,n=1,2,... Then we have:
a) f€ R@) on [a, b].
b) g, = ¢ wniformly on [a, b), where g(x) = [2 f{t) da(t).
NOTE. The conclusion implies that, for each x in [a, &), we can write

lim f 1 ) = [ tm 1)t

This property is often described by saying that a uniformly convergent sequence
can be integrated term by term.

Proof. We can assume that « is increasing with a(a) < a(b). To prove (a), we
will show that f satisfies Riemann’s condition with respect to « on [a, b]. (See
Theorem 7.19.)

Given £ > 0, choose N so that

& " .
(x) = fulx)i < 3[a(b) — la)]’ for ali x in [a, b).

Then, for every partition P of [a, b}, we have

VP, f ~ fr )] < 3‘ and  |LP.f— [y, @) < ;
{using the notation of Definition 7.14). For this N, choos¢ P, so that P finer than
P, implies U(P, fy, ©) — (P, fy, @) < &/3. Then for such P we have

U(Pr.{- a) amr L(P)f~ G) < U(P'f—fﬂn a) - L(P-l = /}4" a)
+ U(Pvfﬂ' :) o up) fﬁ' a)
< WS — Sy @) + 1P, S ~ fu )l + S s &

This proves (a). To prove (b), let £ > 0 be given and choose ¥ so that

z
A = S(0)] < 2Aokb) — xa)]’
for all # > N and every ¢ in [a, b]. If x € [a, b], we have
_ . ” ox) — ala)e _ ¢
09 = 06 < [710) - S0 dae) < D~ e o 2
This proves that g, — g uniformly on [a, b).
Theorem 9.9. Let o be of bounded variation on | @, b] and assume that ¥ f(x) = f(x)

(uniformly on [a, b]), where each f, is a real-valued function such that f, ¢ R(x) on
la, &). Then we have:

a) fe R(x) on [a, b).
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b) JIZN Al0) da(t) = T, §5Au0) dx(t) (uniformly on [a, b]).

Proof. Apply Theorem 9.8 to the sequence of partial sums,

NOTE, This theorem is described by saying that a uniformly convergent series

can be integrated term by term.

99 NONUNIFORMLY CONVERGENT SEQUENCES THAT CAN BE
INTEGRATED TERM BY TERM

Uniform convergence is a sufficient but not a necessary condition for term-by-
term integration, as is seen by the following example.

1, 1)

Figure 9.6

S

Example. Letf(x) = 2if0 < x < 1, (See Fig. 9.6.) The limit function /has the value
0in [0, 1) and £(1) = 1. Since this is a sequence of continuous functions with discon-
tinuous limit, the convergence is not uniform on [0, 1]. Nevertheless, term-by-term
integration on [0, 1] leads to a correct result in this case. In fact, we have

f'f.(x)dx-f'x'dx-
o 0

—+0asa— %0,
n +

50 lim, . o §3 /(%) dx = 5 f(x) dx = 0.

The sequence in the forcgoing example, although not unifermly convergent
on [0, 1], is uniformly convergent on every closed subinterval of [0, 1] not con-
taining 1. The next theorem is a general result which permits term-by-term inte-
gration in examples of this type. The added ingredient is that we assume that (£}
is uniformly bounded on [a, 5] and that the limit function fis integrable.

Definition 9.10. A sequence of functions {f,} is said to be boundedly convergent on
T if { .} is pointwise convergent and uniformly bounded on T,

Theorem 9.11. Let {f,} be a boundedly convergent sequence on |a, b). Assume that
each f, € R on [a, b), and that the limit function f € R on [a, b]. Assume also that
there is a partition P of [a, b), say

P= {Xov Xy voon xn}!

such that, on every subinteroal ¢, d] not containing any of the poinis x,, the sequence
{/,} converges uniformly to f. Then we have

lim [‘L(z) dt = J. lim f(t) dt = J‘.ﬂr) dt. (6)

=0 g Ao
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Proof. Since f is bounded and {f,} is uniformly bounded, there is a positive
number M such that [f(x)} < M and |f(x)] < M for all x in [0, b] and all
n > |. Given & > 0 such that 28 < P, let A = £/(2m), where m is the number
of subintervals of P, and consider a new partition P’ of [, 5] given by

Pro{xoXog+hxy —hxy+h...,Xpoy = Xy +hxe—h 3
Since |/ — f,| is integrable on [a, 5] and bounded by 2, the sum of the integrals

of | f — 1! taken over the intervals
[xosXo + k), [Xg—hx, +4), ..., [Xp-1—H Xuoy + k), [x.—4, Xu)

is at most 2M(2mh) = 2Me. The remaining portion of [, 5] (call it ) is the
union of a finite number of closed intervals, in each of which {f,} is uniformily
convergent to f. Therefore, there is an integer N (depending only on ¢) such that
for all x in S we have

bA(x) — f{x}} <&  whenevern = N.

Hence the sum of the integrals of |/ — f;| over the intervals of S is at most &b — a),
S0

J‘. |f(x) = fix)|dc < 2M + b — @)t  whenever n > N,

This proves that [} f.(x) dx — 2 fix) dx as m — 0.

There is a stronger theorem due to Arzeld which makes no reference whatever
to uniform convergence.

Theorem 9.12 (Arzela). Assume that {/,} is boundedly convergent on [a,b) and sup-
pose each [, is Riemann-integrable on [a, b). Assume also that the limit function
[ is Riemann-integrable on [a, b]. Then

» L L
lim j f(x)dx = J‘ lim f(x) dx = J- f(x) dx. (7)
L e - ™ L a1 a

The proof of Arzela’s theorem is considerably more difficult than that of
Theorem 9.11 and will not be given here. In the next chapter we shall prove a
theorem on Lebesgue integrals which includes Arzeld’s theorem as a special case.
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9.10 UNIFORM CONVERGENCE AND DIFFERENTIATION

By analogy with Theorems 9.2 and 9.8, one might expect the following result to
hold: If f, — f uniformly on [a, &] and if f, exists for each n, then f* exists and
Sfo = £ uniformly on [a, §]. However, Example 3 of Section 9.2 shows that this
cannot be true. Although the sequence {/,} of Example 3 converges uniformly on
R, the sequence {f) does not even converge pointwise on R. For example,
{/.(0)} diverges since f(0) = Jn. Therefore the analog of Theorems 9.2 and
9.8 for differentiation must take a different form.

Theorem 9.13. Assume that each term of ([} is a real-valued function having a
finite derivative at each point of an open interval (a, b). Assume thai for at least one
point xq in (a, b) the sequence { f{xs)} converges. Assume further that there exists
a function g such that [, — g uniformly on (a, b). Then:

a) There exists a function f such that f, — f uniformly on (a, b).

b) For each x in (a, b) the derivative ['(x) exists and equals g(x).

Proof. Assume that ¢ € (a, &) and define a new sequence {g,} as follows:

f'(x) -.[.("_) le £ ¢,
gdx) = X—c (8)

£(c) ifx =c
The sequence {g,) so formed depends on the choice of c. Convergence of {g,.(¢)}

follows from the hypothesis, since g,(c) = fi(c). We will prove next that {g,}
converges uniformly on (@, 8). If x # ¢, we have

h(x) — Mc)
XxX=c¢
where (x) = f{x} — f.(x). Now i'(x) exists for each x in (a, ) and has the value
S a(x) = fax). Applying the Mcan-Value Theorem in (9), we get
gdx) = guhx) =[xy} = [dx1) (10)

where x, lies between x and c. Since {f,} converges uniformly on (a, b) (by hy-
pothesis), we can usc (10), together with the Cauchy condition (Theorem 9.3),
1o deduce that {g,} converges uniformly on (a, b).

Now we can show that {f;} converges uniformly or (g, b). Let us form the
particular sequence {g,} corresponding to the spectal point ¢ = x, for which
{/filxo)} 15 assumed to converge. From (8) we can write

Sfx) = fx) + (x — xpdglx),

an equation which holds for every x in (a, b). Hence we have

9dx) — gufx) = (9)

1x) = fulx) = filxp) = fulXe) + (x = Xo)[9.(x) — gu(x0)].
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This equation, with the help of the Cauchy condition, establishes the uniform
convergence of {/,} on (a, b). This proves (a).

To prove (b), return to the sequence {g,} defined by {8) for an arbitrary point
¢ in (a, b) and let G(x) = lim,., g,x). The hypothesis that f; exists means that
lim .. g,x) = gfc). In other words, each g, is continuous at ¢. Since g, — G
uniformly on (a, &), the limit funttion G is also continuous at ¢. This means that

Gle) = lim G(x), (I1)

i ¥

the existence of the limit being part of the conclusion. But, for x # ¢, we have

G(x) = lim g(x) = lim Jdx) = fifc) tf(x) = f(c).

n-* o n== X - X =-¢
Hence, (11) states that the derivative f”(¢) exists and equals G(¢). But
Glc) = lim gfc) = hm fi(c) = g(c);
hence f'(c) = g(c). Since ¢ is an arbitrary point of (a, b}, this proves (b).
When we reformulate Theorem 9.13 in terms of series, we obtain

Theorem 9.14. Assume that each f, is a real-valued function defined on (a, b) such
that the derivative f,(x) exists for each x in (a, b). Assume that, for at least one
point x, in (a, b), the series 3 f,(x,) converges. Assume further that there exists a
Junction g such that 3T.f}(x) = g(x) (uniformly on (a, b)). Then:

a) There exists a function f such that Tf,(x) = f(x) (uniformly on (a, b)).

b) ¥f x € (a, b), the derivative f*(x) exists and equals ¥ [1(x).
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9.11 SUFFICIENT CONDITIONS FOR UNIFORM CONVERGENCE OF
A SERIES

The importance of uniformly convergent series has been amply illustrated in some
of the preceding theorems. Therefore it scems natural to seek some simple ways of
testing a series for uniform convergence without resorting to the definition in each
case, One such test, the Weierstrass M-test, was described in Theorem 9.6. There
arc other tests that may be useful when the M-test is not applicable. One of these
is the analog of Theorem 8.28.

Theorem 9,15 ( Dirichlet’s test for uniform comvergence). Let F(x) denote the mh
partial sum of the series 3. f(x), where each f, is a complex-valued fumction defined
on a set S. Assume that {F,} is uniformly bounded on S. Let {g,} be a sequence of
real-valued functions such that g,,,(x) < gAx) for each x in S and for every
n=1,2,..., and assume that g, — O uniformly on S. Then the series ¥ [(x)g.(x)
concerges uniformly on S.

Proof. Let 5(x) = 3., f(x)qu(x). By partial summation we have

sdx) = IZI F:(“Xﬂn(x) — Bks 1("» + Gus 1 (X)F(x),

and hence if n > m, we can write

W) = 5ux) = 20 o) = 0401() + Gasr(IFUD) = Gy s(RFul).
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Therefore, if M is a uniform bound for {F,}, we have

[sg(x) = s(x)| = M \ T (B0 = gusi(X) + Moy (x) + Mgy ()

“mt1l
- M(9-+ (x) = 9-+|(x)) + MgpsifX) + Mgy, (X)
= 2Mg s 4(X).

Since g, — 0 uniformly on S, this incquality (together with the Cauchy condition)
implies that 3’ f,(x)g,(x) converges uniformly on S.

The reader should have no difficulty in extending Theorem 8.29 (Abel’s test)
tn a similar way so that it yields a test for uniform convergence. (Exercise 9.13.)

Example. Let Fi(x) = 334 ¢™. In the last chapter (see Theorem 8,30), we derived the
inequality |F(x)| = 1/|sin (x{2)|, valid for every real x # 2mm (m is an integer). There-
fore, if 0 < § < =, we have the estimate

|EL) < Vsin (82) ifd<x<2x— 4

Hence, {F,) is uniformly bounded on the interval [3, 2x — J]. If {g,} satisfies the condi-
tions of Theorem 9.15, we can conclude that the scries g (x)e™* converges uniformly
on [4, 2x — &), In particular, if we take g (x) = 1/n, this establishes the uniform con-
vergence of the serics e

Fr

on 4, 2n — 8]if0 < & < x. Note that the Weierstrass M-test cannot be used to estab-
Jish uniform convergence in this case, since [¢™¥| = 1.
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oo

POSSIBLE QUESTIONS

Assume that lim f = fon [a,b].if g € R on [a,b]. define h(x) = fbf(t)g(t)dt

n—>oo

and ho () = [” £ (£)g(t)d t if x € [a,b] then prove that h,— h uniformly on [a,b].

State and prove uniform converges and double sequences.

State and prove Cauchy’s condition for Uniform conyergence .

Assume that Y} fu( X) = f (X) ( Uniformly continuous on S)) if each f » is continuous
at a point x o of S then prove that f is also continuous at X o.

State and Prove Cauchys condition for uniform converges theorem.
Assume that lim f = fand lim g n=g on [ ab ];define

n—>oo n—oo

hx) = [ fOgOdt &hn()2f F ()9 n(t) dtif x € [ ab ] then prove that

hn— h uniformly on [a,b].

Assume that each term of a sequence { fn } is a real valued function

having a finite derivative at each point of a non [a,b ].Assume that for
atleast one point x o in [a,b].the sequence { f» (X o) } converges,
assume further that 3 a functionG such that.f - — G uniformly on [a,b]

(1) 3 atfunction fsuch that fn — f uniformly on [a,b] .

(i) for each x in [a,b ] the derivative f " (x) exists and equals G (x)
Let a be bounded variation on [a,b ]. Assume that each term of the sequence

{ fn} isareal valued function such that f € R (a ) on [a,b] forcachn=1,2,...

Assume that f n— f uniformly on [a,b ] and define g n(x) = [~ f (£)da(t)
n=1,2,.... Then prove that (i) f€ R (o) on [ a,b ] (i) gn— g uniformly on [a,b].

where g (x) = [ f()d(a)(t).

Let a be of bounded variation on [a,b] & assume that Y. f»(X) = f (X) where each f;

is a real valued function such that f,€ R (o) on [a,b ] then prove that

(DfeR@)onfab] (i) [* X" f Oda(®)=F" [*f (Bda(®)
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10 Let fo— funiformly on S. If each f,is continuous at a point ¢ of S, then prove that

the limit function f is also continuous at ¢

1 State and prove Arzela Theorem.

Prepared by K.Aarthiya, Asst Prof, Department of Mathematics, KAHE

Page 11/11







KARPAGANM ACADEM Y UF HIGHER EDUCA | TUN
(Deemed to be University)

—_—

KARPASAM

Subject: Real Analysis

Part A (20x1=20 Marks)

Question

A collection of well defined object is called
A Sequence of functions is said to boundadly convergent
on T is seq

Aset Fis closed if

Every open set of real numbers is the union of

composite number n is

The union of a finite or collection of countable sets is
An element a is an minimal element of set S,then

For every real number x,there is a positive integer n such
that

Every infinite set has a

Set of real numbers is bounded above is Sup S
The half interval [ 0,1 ) have
Set of real numbers is unbounded above is Sup S

The arbitrary intersection of closed set is

The set of intelligent student in a class is

Every integer n>1 is

The set of integer is

The closed interval S=[0,1] is

If S is a set of real numbers which is bounded below then
infSis

If E is a nonemptyset then

If R is a extended real number system then inf R is

The set of negative integers having least upper bound is

Let S =[ 0,1) the maximal elementof S is

the intersection finite collection of open set is
The set of real numbers is

The intersection of any collection of closed set is
An infinite set must possess a

single ton set { x } is

Every bounded infinite set has

The set of all integers is

The cartesian product of two countable set is
Let E " is the set of point of closure of E

Null set

$=(0, 1] is

Pollachi Main Road, Eachanari (Po),
Coimbatore —641 021

Class

: 1 - M.Sc. Mathematics
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Possible Questions

Choice 1

set

point wise
convergent

it contains all of its
limit points
countable
collection of

open intervals
a prime number

countable
abelongsto S

n>x
countable subset

infinite
maximal element
infinite

open

a null set

prime numbers
ordered set
bounded above

a point of closure
toS

infE<sup E

0

1

¢

open set
unbounded
open set

does not have a
closed

smallest limit
uncountable
uncountable

E "is closed

open set
bounded above by
1 & maximal

Choice 2

uniformly bounded
it contains no

limit points
uncountable
collection of

open intervals

a non-prime
number and n >1
Uncountable

a does not belongs
toS

n <x

uncountable subset
finite

minimal element
only

finite

closed

a singleton set

sum of prime
numbers

non ordered set
unbounded below
1

closed set

o0

1

closure of E
contains non
empty opensets
its complement is
closed set

finite set

closed set

limit point

open intervals
open set
countable
countable

E "isnull

semi open
bounded above by
0 & minimal
element is 0

A - B is non empty
set

(Established Under Section 3 of UGC Act 1956)

Choice 3

convergent

it contains some
limit points
countable
collection of

closed intervals
a non-prime
number and n <1
infinite

a is not lower
bound of S

n=x

proper subset
countable
maximal and
minimal
countable
semi open

a finite set

product of prime
numbers

set of irrational
numbers
unbounded above
2

uncountable set
oo ( negative)

closure of E
contains empty
opensets

its complement is
null set
unbounded set
empty set

infinite limit point
open

{0}

finite

finite

E "is open

closed intervals
bounded below by
1 & no maximal
element

A - Bis closed set

Subject

(Question Nos. 1 to 20

Choice 4

point wise
convergent and
uniformly bounded
it contains infinite
limit points
uncountable
collection of

closed intervals
a prime number
and n<1

finite

a is not upper
bound of S
n#x

improper subset
uncountable

no maximal no
minimal
uncountable

semi closed

not a well defined
set

prime numbers or
a product of prime
numbers

does not satisfies
principle induction
no maximal
empty

countable set

no infimum

2

closure of E
contains no non
empty closedsets
its complement is
semiclosed set
unbounded set
non empty set
finite limit point
closed intervals
¢

infinite

infinite

E "is closed
open intervals
bounded above by
1 & maximal
element is 1

A - B is empty set

Answer
point wise
convergent and
uniformly bounded
it contains all of its
limit points
countable
collection of

open intervals

countable

countable subset
finite

minimal element
only

infinite

closed

not a well defined
set

prime numbers or
a product of prime
numbers

ordered set
bounded above
1

closed set

oo ( negative)

-1

closure of E
contains no non
empty opensets
its complement is
closed set

open set

closed set

limit point

open

open set
countable
countable

E "is closed
open set

bounded above by
1 & maximal
element is 1

A - B is open set



If A'is open set and B is closed set then
The union of an arbitrary family of closed set

The set of all distict element of a sequence is called
A bounded sequence
A sequence can not converge to

limit point of a sequence
Everu bounded real sequence has

A - B is open set
closed set

constant sequence
converges

more than one
limit

member of the
sequence

many limit point

may be closed set
equal sequence

bounded below
one limit

must a member of
the sequence

no limit point

may not always be
a closed set
range set of a

bounded
many limit
need not be a
member of the

a limit point

open set

null sequence
neither bounded
above nor bounded
below

no limit point

not a member of
the sequence

more than two
limit point

may not always be
a closed set

range set of a
neither bounded
above nor bounded
below

more than one
need not be a
member of the

a limit point
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UNIT IV

The Lebesgue integral: SYLLABUS

Introduction- The class of Lebesgue — integrable functions on a general interval-
Basic properties of the Lebesgue integral- Lebesgue integration and sets of
measure zero- The Levi monotone convergence theorem- The Lebesgue
dominated convergence theorem-Applications of Lebesgue dominated
convergence theorem- Lebesgue integrals on unbounded intervals as limit of
integrals on bounded intervals- Improper Riemann integrals- Measurable
functions.

10.6 THE CLASS OF LEBESGUE-INTEGRABLE FUNCTIONS ON A
GENERAL INTERVAL

If » and v are upper functions, the difference ¥ - v is not necessarily an upper
function. We eliminate this undesirable property by enlarging the class of inte-
grable functions.

Definition 10,12, We denote by L{I} the set of all functions f of the form f = u — v,
where ue U(I) and ve U(I). Each function f in L(I) is said to be Lebesgue-
integrable on I, and its integral is defined by the equation

(-] .

If f'e L{J} it is possible to write fas a difference of two upper functions ¥ — v
in more than one way. The next theorem shows that the integral of fis independent
of the choice of w and ».

Theorem 10.13. Let u, v, u,, and v, be funciions in U(I) such thatu — v = uy, — Uy,

Then
fu—Ju=Iu,-—juh ®)
) ¥ r I

Proof. The functions w + v; and u; + v are in U() and w + v, = u, + v
Hence, by Theorem 10.6(a), we have [, u + [; », = {; u; + [; o, which proves (8).
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NOTE. If the interval / has endpoints @ and 4 in the extended real number system R*,
where a < b, we also write

'r f  or Jﬁ S(x) dx

for the Lebesgue integral §; /. We also define [§ /= — [! .

If [a, 4] is a compact interval, every function which is Riemann-integrable on
[a. b] is in U([a, b)) and therefore also in L([a, &]).

10.7 BASIC PROPERTIES OF THE LEBESGUE INTEGRAL
Theorem 10.14. Assume [ e L(I) and g € L(I). Then we have:
2) (af + bg) e ILI) for every real a and b, and

J.(ﬂf+bg)=aj.f+bjg.
'] I I

b) {f20 if f(x}) > 0 ae onl
Afif=ji9 if f(x) = g{x)a.e on i
d) ;1 f =g ¥/x)=gx}aeonl

Proof. Part (a) follows casily from Theorem 10.6. To prove (b) we write
f=u — v, where ue U(I) and v e U(J). Then ufx) > t{x) almost everywhere
on 7 so, by Theorem 10.6(c), we have [; # > |; v and hence

fre o [
I f i

Part {c) follows by applying (b) to f — g, and part (d) follows by applying (c)
twice.

Definition 10.15. If f is a real-valued function, its positive part, denoted by [~ , and
its negative part, denoted by [~ , are defined by the equations

ff=max (f,0), [~ = max(-/, 0.
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Note that f* and f~ are nonnegative functions and that
S=f"=f", Ul=F +f"

Theorem 10.16. If f and g are in L(I), then so are the functions f*, £, |f1,
max (f, g) and min (f, g). Moreover, we have

ffstL ©)

Proof, Write f = u — p, where u € U(I) and v € U(I). Then
Jf = max (u — v, 0) = max (&, 0) — v.

But max (¥, v) € U(f), by Theorem 109, and v & U(D), so f* e L{I). Since

[~ =f% — f, we see that /'~ e L(I). Finally, |f| = f* + f~, so |fl € L{D.
Since — |f(x)] < f(x) < |f(x}] for all x in I we have

¥LMstsLm,

which proves (9). To complete the proof we use the relations
max (f,g) =¥Sf+g+|f—9gl), mn(fg9)=3+g-1f- gD

The next theorem describes the behavior of a Lebesgue integral when the inter-
val of integration is translated, expanded or contracted, or reflected through the
origin. We use the following notation, where ¢ denotes any real number:

IFT+e={x+c:xel}, el = {ex:xel).
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Theorem 10.17. Assume f € L(I). Then we have:
a) Invariance under transiation. If g(x) = f(x — c)forxinI + ¢, thenge L(I + ¢©),

aﬂd
i+ I

b) Behavior under expansion or contraction. If g(x) = fix/¢) for x in cf, where

¢ > 0, then g € L(cl) and
f g = c'[ﬁ
el f

) Invariance under reflection. If g{x) = f(—x)for xin —1I, theng e I{—1) and

o7

NOTE. If I has endpoints a < b, where g and b are in the extended real number
system R¥, the formula in (a) can also be written as follows:

bte

a4

fix — o)dx = J.#f(.r) dx.

Properties (b) and (c) can be combined into a single formula which includes both
positive and negative values of ¢:

J‘“f(x,’c) dx = |c| jtf(x} dx ife #0.

Proof. In proving a theorem of this type, the procedure is always the same. First,
we verify the theorem for step functions, then for upper functions, and finally for

Lebesgue-integrable functions. At each step the argument is straightforward, so
we omit the details.
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Theorem 10.18. Let I be an interval which is the wnion of two subintervals, say
I =1, v, where I, and I, have no interior points in common.

a) If fe L(I), then f € L(I,), fe I(I,), and

7=l

b} Assume f, € L(I,), f5 € L(I,), and let  be defined on I as follows:

_ (A fxel,
16 = {fz(ﬂ ifxel — I,

Then fe L) and §; f = |1, f + §1, /2

Proof. Write f = u — o where ue U(f) and ve U(l). Then u = u* — u~ and
v=0v" —pv7,s50 f=u’+v" — (@ +v’'). Now apply Theorem 10.10 to
each of the nonnegative functions u* + v~ and ¥~ + »* to deduce part (a). The
proof of part (b) is left to the reader.

NOTE. There is an extension of Theorem 10.I8 for an interval which can be
expressed as the union of a finite number of subintervals, no two of which have
interior points in common. The reader can formulate this for himself,

We conclude this section with two approximation properties that will be
needed later. The first tells us that every Lebesgue-integrable function f is equal
to an upper function # minus a nonnegative upper function » with a small integral.
The second tells us that fis ‘equal to a step function s plus an integrable function
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Q with a small integral. More precisely, we have:
Theorem 10.19. Assume f€ L(I) and let € > ( be given. Then:

a) There exist functions u and v in U(I) such that f = u — v, where v is non-
negative a.e. on I and [; v < &,

b) There exists a step function s and a function g in L{I) suck that f = 5 + g,
where [, |g] < &

Proof. Since fe L(I), we can write f = #, — v, where &, and v, are in U(J).
Let {1,} be a sequence which generates v,. Since [, #, -+ {; v,, we can choose N so
that 0 < [; (v, — ty) < ¢ Nowletr =5 — #yand u = u;, — ¢, Then both
wand vare in U(f) and ¥ — v = u; — v, = f. Also, v is nonnegative g.e. on I
and [;» < & This proves (a).

To prove (b) we use (a) to choose u and p in U([) s0 that v = 0 @.e. on

f=u—v and Oﬁjuqf.
i 2

Now choose a step function s such that 0 < [, (¥ — 5) < ¢/2. Then
f=u—v=5+uUu—-s)—v=5+4g,

where g = (u — 5) — v. Hence g &€ L(J) and

g .4
Iglsjlu—3|+-l‘lv|<—+—=s.
_[r I I 2' 2

108 LEBESGUE INTEGRATION AND SETS OF MEASURE ZERO

‘The theorems in this section show that the behavior of a Lebesgue-integrable
function on a set of measure zero does not affect its integral.

Theorem 10.20, lLet f be defined on 1. If f = O almost everywhere on 1, then
fe L{l}and f; f = 0.
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Proof. Let 5(x) = 0 for all x in I. Then {s,} is an increasing sequence of step
functions which converges to 0 everywhere on I. Hence {s,} converges to falmost
everywhere on 1. Since [; s, = 0 the sequence {[, 5.} converges. Therefore f is
an upper function, so fe L(Nand §, /= lim,., [;5 =0

Theorem 10.21. Let f and g be defined on 1. If fe L(I) and if f = g almost every-
where on I, then g€ L(D) and |1 [ = [, g.

Proof. Apply Theorem 10.20t0 f — g. Thenf —ge L{(F)and [, (f — g) = ﬂ
Henceg =~ (f—g@elandf,g=§f - (/- 9) =1

Example. Define f on the interval [0, 1] as follows:

1 if x is rational
flx) = .
0 if x is irrational.

'rhmf=_ﬂ almost everywhere on [0, 1] so / is Lebesgue-integrabie on [0, 1] and its
l’.ab;sgu; integral is 0. As noted in Chapter 7, this function is not Riemann-integrable
on [0, 1]

NOTE. Theorem 10.2] suggests a definition of the integral for functions that are
defined almost everywhere on I. If ¢ is such a function and if g(x} = f(x) almost
everywhere on I, where /' e I(7), we say that ¢ € L(f) and that

[r-]

10.9 THE LEVI MONOTONE CONVERGENCE THEOREMS

We turn next to convergence theorems concerning term-by-term integration of
monotonic sequences of functions. We begin with three versions of a famous
theorem of Beppo Levi. The first concerns sequences of step functions, the second
sequences of upper functions, and the third sequences of Lebesgue-integrable
functions. Although the theorems are stated for increasing sequences, there are
corresponding results for decreasing sequences.
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Theorem 10.22 (Levi theorem for step functions). Let {s,} be a sequence of step
Sfunctions such that

a) {s.} increases on an interval I, and
by lim, ., [, s, exists.

Then (s,} converges almost everywhere on I to a limit function [ in U, and

Jf: lim‘[s_.
1 n=w Jr

Proof. We can assume, without loss of generality, that the step functions s, are
nonnegative. (If not, consider instead the sequence {s, — s,}. [f the theorem is
true for {5, — 5}, then it is also true for {s5,}.) Let D be the set of x in 7 for which
{s.(x)} diverges, and let £ > 0 be given. We will prove that D has measure 0 by
showing that D can be covered by a countable collection of intervals, the sum of
whose lengths is < &

Since the sequence {J, s,} converges it is bounded by some positive constant
M. Let

t(x) = [ﬁ s,,(x}] ifxel,

where [ y] denotes the greatest integer <y. Then {¢,} is an increasing sequence of
step functions and each function value 1,(x) is a nonnegative integer,

If {s,(x)} converges, then {s5,(x)} is bounded so {r(x)} is bounded and hence
Iy 1{%) = to(x) for all sufficiently large n, since each 7,(x) is an integer.

If {s,(x)} diverges, then {1(x)} also diverges and ¢, ,(x) — 1,(x) = | for
infinitely many values of n. Let

D,={x:xel and . ,(x) — 1(x) = 1}

Then D, is the union of a finite number of intervals, the sum of whose lengths we
denote by {D,|. Now

L -

Dc

D,,

1
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so if we prove that 377, |B,| < ¢, this will show that D has measure 0,
To do this we integrale the nonnegative step function f,,; — 1, over J and
obtain the inequalities

I(:“. - .)aj (fay — ,)af I = D,
I + Dy

Hence for every m = 1 we have
"

1Dy < J.(fu -'n}m-l.:m _If—‘;-l‘tm Si " _3.
Z -; , +1 s I ‘ YV ;5“52

=1

Therefore 3., |D,| < &/2 < &, so D has measure 0.
This proves that {s,] converges almost cverywhere on 7. Let

_ {lim,,,sxy fxel -~ D,
Ax) {0 if xeD.

Then fis defined everywhere on 7 and s, — falmost everywhere on I. Therefore,
SeUDand [, f = tim_,_ {; s,

Theorem 10.23 ( Levi theorem for upper functions), Let {f,} be a sequence of upper
Junctions such that

a) {f,} increases almost everywhere on an interval I,
and
b} lim,.. ., [, £, exists.

Then {/,} converges aimost everywhere on ! to a limit function f in U(1}, and

If: lim J‘f,,.
1 Ll N ¥
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Proof. For cach k there is an increasing sequence of step functions {s, ;} which
penerates f,. Definc a new step function 7, on I by the equation

fox) = max {s, ,(x), 5,,5(x), ... , 5, (X))}

Then {1,} is increasing on [ because

fr+1(x} = max {"n-l-l.l(x)q ooy Sy e (X3 = max {5003, ..., Sun4 ((x)}
> max {5, ,(x), ..., 5..(x)] = £(x).

But 5, ,(x) < fi(x) and {,} increases almost everywhere on 7, so we have
1x) < max {fi(x), ..., A(x)} = [ilx) (10)
almost everywhere on I. Therefore, by Theorem 10.6(c) we obtain

Ir,ﬂ.{ﬁ,. (i1)

But, by (b), {[; f,} is bounded above so the increasing sequence {i; 1.} is also
bounded above and hence converges. By the Levi theorem for step functions,
{r,} converges almost everywhere on 7 to a limit function fin U(Z), and §; f =
Em,.. §; t.. We prove next that £, - f almost everywhere on 7,

The definition of #,(x) implies s, ,(x) < 1,(x) for all ¥ < n and all x in 1.
Letting n — oo we find

A(x) < fix) almost everywhere on 1. (12}

Therefore the increasing sequence {£(x)} is bounded above by f(x) almost every-
where on 1, so it converges almost everywhere on £ to a limit function g satisfying
g(x} < f(x) almost everywhere on /. But (10) states that 1,{x) < f,(x) almost
everywhere on I so, letting n — oo, we find f(x) < g(x) almost everywhere on I.
In other words, we have
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lim f(x) = f(x) almost everywhere on I.

w—+an

Finally, we show that |, f = lim,_, {, ;. Letting # — o in (11) we obtain

f < hm J:L. (13)

I o=
Now integrate (12), using Theorem 10.6(c) again, to get {, £; < [; £ Letting
k — oo we obtain lim,., [;fi < {; f which, together with (13), completes the
proof.

NOTE. The class U(7) of upper functions was constructed from the class 5(7) of
step functions by a certain process which we can call P. Beppo Levi's theorem
shows that when process P is applied to U(J) it again gives functions in U(1). The
next theorem shows that when P is applied to L(f) it again gives functions in
L{D).

Theorem 10.24 (Levi theorem for sequences of Lebesque-integrable functions), Let
{£.) be a sequence of functions in L{{) such that

a) {1} increases almost everywhere on I,

and
b) lim,._ !, £ exists.

Then {f,} converges almost everywhere on I to a limit function f in L(I), and

If= lim."j;,.

We shall deduce this theorem from an equivalent result stated for series of
functions.
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Theorem 10.25 (Levi theorem for series of Lebesgue-integrable functions). Let
{g.} be a sequence of functions in L{(1) such that
a) each g, is nonnegative almost everywhere on I,
anid
b) the series ¥, |; g, converges.

Then the series Y7, g, converges almost everywhere on I to a sum function g in
L{I), and we have

fa= 2.0.= 2 | o (14)
wd i

=1 wm]

Proof. Since g, € L(1}), Theorem 10.19 tells us that for every ¢ > 0 we can write

Hu = U, — Vs
where 1, € U({), v, € U(l), v, > 0 ae. on 7, and [;», < &. Choose u, and v,
corresponding to ¢ = (3)". Then
u, =g, + v, Wln:rﬂ‘[l v, < (3)".
r

The inequality on §; v, assures us that the series 32, [, v, converges. Now
u, 2 0 almost everywhere on 7, so the partial sums

Ux) = ?;; 4, ()

form a sequence of upper functions {U,} which increases almost everywhere on 1.

LU.=£;W=§L%=§J1§;+§L%

the sequence of integrals {f; U,} converges because both series 32 , , g, and
%1 §i vy converge. Therefore, by the Levi theorem for upper functions, the
sequence {U,} converges almost everywhere on I to a limit function U in U(D),
and ; U = lim,_, §; U,. But

LU.=E ‘u;,
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LU=§LM.

Similarly, the sequence of partial sums {¥,} given by

V) = 2. nlx)

k=1

convefges almost everywhere on 7 to a limit function V in U(f) and
j. V = Z Oy
I k=1 Jr

Therefore U — ¥V e L(I) and the sequence {¥i., o) = {U, = V,} converges
almost everywhere on fto U — V. Letg = U — V. Then g € L(J) and

jrg:LU—JrV=i I{u,‘—v,‘)=§J.,g,‘.

This completes the proof of Theorem 10.25.

Proof of Theorem 10.24. Assume {f,} satisfies the hypotheses of Theorem 10.24,
Let g, = f, and let g, = f, — fo., forn = 2, so that

’;=§§n-

Applying Theorem 10.25 to {g,}, we find that 33 ; g, converges almost everywhere
on I to a sum function g in L{J), and Equation (14) holds. Therefore f, = g
almost everywhere on /and |, g = lim,., {, £

In the following version of the Levi theorem for series, the terms of the series
are not assumed to be nonnegative.

Theorem 10.26. Let {g,} be a sequence of functions in L(I) such that the series

> Lmﬂf
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is convergent. Then the series Y., g, converges almost everywhere on I 10 a sum

Sunction g in L(I) and we have
o= o

Fo=i =1
Proof. Write g, = g — g and apply Theorem 10.25 to the sequences {g, }
and {g, } separately.
The following examples illustrate the use of the Levi theorem for sequences.
10.10 THE LEBESGUE DOMINATED CONVERGENCE THEOREM

Levi's theorems have many important consequences. The first is Lebesgue’s
dominated convergence theorem, the cornerstone of Lebesgue’s theory of inte-
gration.

Theorem 10.27 (Lebesgue dominated comvergence theorem). Let {f.) be a mqﬁeuce
of Lebesgue-integrable functions on an interval I Assume that

a) {f.} converges almost everywhere on I to a limit function f,

and
b) there is a nonnegative function g in L(I) such that, for alin > 1,

)| < g(x) ae. onl
Then the limit function f € L), the sequence {L .} converges and

I f = lim f. (13)

Proof. The idea of the proof is to obtain upper and jower bounds of the form
9ux) < fi(x) £ G(x) (16)
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where {g,} increases and {(,} decreases almost everywhere on I to the limit function
J. Then we use the Levi theorem to show that fe L(J) and that {,f =
limyw o §; s = lim,., [y G,, from which we obtain (15),

To construct {g,} and {G,}, we make repeated use of the Levi theorem for
sequences in L(7). First we define a sequence {G, ,} as follows:

Gp.1(x) = max {fi(x), f2(x), ..., fL(¥)}.

Each function G, , € L(f), by Theorem 10.16, and the sequence {G, ,} is in-
creasing on I. Since |G, ,(x)| < g(x) almost everywhere on F, we have

J. Gn,l —{»j IGI,IE < I g. “?)
T I I

Because of (17) we also have the inequality —[; ¢ < |, G,. Note that if x is a
point in f for which G, ,(x) — G,(x), then we also have

Gy(x) = sup {fi(x), /r{x},... }.

In the same way, for each fixed r = 1 we let

G, x) = max {£(x), LX) ..., So(x)}

for n > r. Then the sequence {G,,} increases and converges almost everywhere
on I to a limit function G, in L({J) with

F I I

Also, at those points for which G, (x} = G,(x) we have
G(x) = sup {.rr(x)! fre (2.0 )

fix) < G{x) ae. onl.

SO

Now we examine properties of the sequence {G (x)}. Since 4 = B implies
sup A < sup B, the sequence {G,(x)} decreases almost everywhere and hence
converges almost everywhere on /. We show nexi that G (x) — f{x) whenever

lim f(x) = f(x). (18)

If (18) holds, then for every ¢ > O-there is an integer N such that
fx)—e < fix)< f(xy+ ¢ foralln > AN.
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Hence, if m > N we have
Sx} — & < sup {f (%), fusa(x), ..} S F(0) + &
In other words,
mz N  implies flx) - &< G (x) < f(x) + ¢
and thss implies that

lim G, (x) = f(x) almost everywhere on f. (19)

m—top

On the other _hand, the decreasing sequence of numbers {[; G,} is bounded below
by —[; g, so it converges. By (19) and the Levi theorem, we see that f'e L{J) and

rimj.s,=fﬁ

By applying the same type of argument to the sequence
ylll.?('x) = min {fr(x)-.fr-b-[(x)s ] )L(x).l)

f:n:rr.n = r, we find that {g,,} decreases and converges almost everywhere to a
limit function g, in L(J), where

gf(x} i il'lf {J:-(x}:f;inl(\x)a .- } a.e. on .

Also, almost everywhere on I we have g(x) < fi(x), {g,} increases, lim, .. , g,(x) =

f(x), and
lim f Iy j y;
[ Rl = ] " !

Since (16) holds almost everywhere on 7 we have It 9, < §1 £, < §; G,. Letting
n — oo we find that {[, 7.} converges and that

]imff,.=jf.
e gt 1
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10.11 APPLICATIONS OF LEBESGUE’S DOMINATED CONVERGENCE
THEOREM

The first application concerns term-by-term integration of series and is a com panion
result to Levi’s theorem on series,

Theorem 10.28. Let {g,} be a sequence of functions in L(I) such that :

a} each g, is nonnegative almost everywhere on 1,
and

b) the series 37| g, converges almost everywhere on I to a Junction g which is
bounded abave by a function in L(I).

Then g € L(I), the series T.7_, (1 g, converges, and we have

>o=3 s

=1 =] jy

Proof Let
fi(x) = ; g(x) ifxel

Then f, -» g almost everywhere on I, and {f} is dominated almost. everywhere
on I by the function in L{I) which bounds ¢ from above. Therefore, by the Le-
besgue dominated convergence theorem, g € L(f), the sequence ({; £,} converges,
and [, ¢ = lim,_, {;/,- This proves the theorem.

The next application, sometimes called the Lebesgue bounded convergence
theorem, refers 1o a bounded interval.
Theorem 10.29, Let I be a bounded interval. Assume {f.} is a sequence of functions
in L(I} which is boundedly convergent almost everywhere on I. That is, assume there
is a fimit function f and a positive consiant M such that
lim fi(x} = fix}) and |f{x)} < M, almost everywhere on .

M=o

Then fe L(I) and lim,, ,, | /. = |, f.
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Theorem 10,30. Let {f,} be a sequence of functions in L{I) which converges almost
everywhere on I to a limit function . Assume that there is a nonmegative function g

in L(I) such that _
) = g(x) ae.onl

Then f e L(I).
Proof. Define a new sequence of functions {g,} on 7 as follows:
ga = max {min (f,, ), —g}.
10.12 LEBESGUE INTEGRALS ON UNBOUNDED INTERVALS AS LIMITS
OF INTEGRALS ON BOUNDED INTERVALS

J’ﬁwrcn 10.31. Let f be defined on the half-infinite interval I = [a, + a0). Assume
that f is Lebesque-integrable on the compact interval (e, &) for each b > a, and
that there is a positive constant M such that

]

J fl<M forallh > a. (20)

Then [ & L(I), the limit limy_, , ., [® f exists, and
+ 0 (]
= i .
£ il vl ] S/ (21

{’roof. Let {4,} be any increasing sequence of real numbers with b, = a such that
lim, ., b, = +co. Define a sequence {/} on [ as follows:

Ji) = {“"’ ifa <x<b,
0

otherwise.

Each f, € L(I) (by Theorem 10.18) and f, » fon I. Hence, |f| - |f| on 7. But
FART increasing and, by (20), the sequence {[; |f[} is bounded above by M.
Therefore lim,_..,, f; [/} exists. By the Levi theorem, the limit function |£1e L.
Now each |£f < |f] and f, - fon 7, s0 by the Lebesgue dominated convergence
theorem, '€ L) and lim,_, {; f, = {; /- Therefore

:EF:, J‘b,.f _ J‘i-m‘f

for ali sequences {b,} which increase to +co. This completes the proof.,
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There is, of course, a corresponding theorem for the interval (— ¢, | which

concludes that
a8 a8
j f = ﬁm.J.ﬁ

provided that ¢ |f] < M forall ¢ < a. If [21f] < M for all real ¢ and b with
¢ < b, the two theorems together show that f € L(R) and that

I+mf= im | f+ lim I'f_

c2=~m J. bwt+w Jg

10.13 IMPROPER RIEMANN INTEGRAILS
:)qiu'ﬁm 10.32. If [ is Riemann-integrable on [a, b] for every b > a, and if the
imit
b

lim f(x) dx exists,

bt |
then [ is said to be improper Riemann-integrable on [a, + ) and the improper
Riemann integral of f, denoted by [} f(x) dx or {* f(x) dx, is defined by the
equation

+ b
I J(x)dx = lim f(x) dx.

b=+w |,
In Example 2 of the foregoing scction the improper Riemann integral
f5® f(x) dx exists but f is not Lebesgue-integrable on [0, +c0). That example
should be contrasted with the following theorem.

Theorem 10.33. Assume [ is Riemann-integrable on [a, b] for every b > a, and
assume there i3 a positive constant M such that

J'” Uldx <M forevery b 2 a. @)

Then both [ and |f| are improper Riemann-integrable on [a, + ). Also, f is
Lebesgue-integrable on [a, + ) and the Lebesgue integral of f is equal to the im-
proper Riemann integral of f.
Proof. Let F(b) = [ f(x)| dx. Then Fis an increasing function which is bounded
above by M, so lim,_. ; ,, F(b) exists. Therefore || is improper Riemann-integrable
on [a, + ). Since

0 < Ifx)| - /(x) < 215,
the limit
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lim I 1G] — F ()} dx

also exists; hence the limit Limy, , o, {3 f(x) dx exists. This proves that fis improper
Riemann-integrable on [a, + o). Now we use inequality (22), along with Theorem
10.31, to deduce that f is Lebesgue-integrable on [a, + <o) and that the Lebesgue
integral of f'is equal to the improper Riemann integral of f.

NOTE, There are corresponding results for improper Riemann integrals of the

form
0 fi{x)dx = lim jbf(x) dx,
j cf (x)dx = lim J-bf(x) dx,
and

jbf(x) dx = lim h_p"(Jr:) dx,

=¥ a
which the reader can formulate for himself,

If both integrals [« f(x) dx and []* f{x) dx exist, we say that the integral
X2 f(x) dx exists, and its value is defined to be their sum,

+ o - + o
j‘ f(x)dx = I f(x) dx + J. f(x) dx.
If the integral [*® f(x) dx exists, its value is also equal to the symmetric limit

b
lim J. J(x) dx.
b=t J_4

However, it is important to realize that the symmetric limit might exist even when
f*2 f(x) dx does not exist (for example, take f(x) = x for all x). In this case the
symmetric limit is called the Cauchy principal value of [*= f{x) dx. Thus {12 x dx
has Cauchy priacipal value 0, but the integral does not exist.

Prepared by K.Aarthiya, Asst Prof, Department of Mathematics, KAHE Page 20/22




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc COURSE NAME: REAL ANALYSIS ANALYIS
COURSE CODE: 18MMP102 UNIT: IV BATCH-2018-2020

10.14 MEASURABLE FUNCTIONS

Every function f which is Lebesgue-integrable on an interval  is the limit, almost
everywhere on f, of a certain sequence of step functions. However, the converse
is not true. For example, the constant function f = 1 is a limit of step functions
on the real line R, but this function is not in L(R). Therefore, the class of functions
which are limits of step functions is larger than the class of Lebesgue-integrable
functions. The functions in this larger class are called measurable functions.

Definition 10.34. A function f defined on I is called measurable on I, and we write
f e M(D), if there exists a sequence of step fumctions {s,} on I such that

iim s5(x) = f(x) almost everywhere on I.

PR
NoTe. If fis measurable on J then f is measurable on every subinterval of 1.

As already noted, every function in L{J} is measurable on 7, but the converse
is not true. The next theorem provides a partial converse.

Theorem 10.35. If e M(I) and if | f(x)}| < g(x) almost everywhere on I for some
nonnegative g in L(I), then f € L(I).

Proof. There is a sequence of step functions {s,} such that 5,(x) — f(x) almost
everywhere on . Now apply Theorem 10.30 to deduce that f € L({J).

Corollary 1. If f € M(I) and |f| € L({), then f& L{I).
Corollary 2. If f is measurable and bounded on a bounded interval I, then f € L(I).
Further properties of measurable functions are given in the next theorem.

Theorem 10.36. Let ¢ be a real-valued function continuous on R, If fe M(I) and
g € M(I), define h on I by the equation

hix) = @[ £(x), g{x)].
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Then h e M(I). In particular, f + g, f+g, |f], max {, g), and min (f, g) are in
M(I). Also, 1{fe M(I} if f(x) # 0 almost everywhere on I

Proof. Let {s,} and {1,} denote sequences of step functions such that s, — fand
1, — g almost everywhere on 1. Then. the function u, = ¢(s,, t,) is a step function
such that u, — & almost everywhere on 7. Hence 4 € M(J).

The next theorem shows that the class M(F) cannot be enlarged by taking
limits of functions in M(J).

POSSIBLE QUESTIONS
1. Letu,v,us and v be functions in U ( 1) such that u-v = ug - v then prove that

Jyu- [ v=J u- [ vi.

Let { fn} be a sequence of functions in L ( 1) which converges a.e on 1 to a limit
function f.Assume that there is a non-negative function g in L (1)

such that | f(x)|<g (x) a.eonl. Then provethat fe L (I).

3. State and prove Lesgue dominated convergence Theorem.

N

4. Prove that, let f is Riemann integrable on [a,b] V b > a and assume that there is a
positive constant M such that f: [f(x)]dx< M Vb>a.

5. Let fbedefinedon I.I1ff=0a.eon lthenprovethatf eL (1) & fI f=0.

6. Assumef €L (1) and Let € >0 be given then prove that
(i) there exist a function inu and v in U ( 1) such that f=u — v, where V is

Non —negative integer on | and fl v< E.
(ii) there exist a step function S and a function g inL (I ) suchthatf=S + g,

where [ |g|< €.

7. State and P rove Lebesgue integrals on unbounded intervals as limits
of integrals on bounded intervals .

8. State and P rove Levitheorem for series of Lebesgue integrals functions.

9. State and prove Levi Monotone converges Theorem.
10. State and prove Levi theorem for upper functions .

11. Let f be defined on | & assume that {f » } is a sequence of measurable functions on |
such that f, — f(x) a.e on I.Then prove that f is measurable on I.
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Part A (20x1=20 Marks)

Question
If a sequence of real number has cluster points
then

Sequence [1/n]is

The sequence { 1,0,1,0,1,......

Every convergent sequence is
The series 1+3+5+7+.....
Cauchy sequence is

Which one of the following test does not give
absolute convergence series

If <xn>and <y n > sequence of real number

The sequence < 1+ (-1) n > has

Let <an > = least power of 2 that divides n.then
<an>is

A conditionally converges series is a series which
is

The set of limit points of a bounded sequence is
Cauchy sequence is convergent if it is a

If a sequence is not a cauchy sequence then it is
The set of limit points of a bounded sequence is
If {xn}and { xnt+1 }=V(2+x n) then the
sequence { x n } converges to

Every cauchy sequence contains
The series . (n=1)"cii (-1) nn

Every convergent sequence is bounded and it has
If f: [a,b ] >R is continuous and monotonic
functions then

The notation of a sequence is

Union of two measurable sets is

Cantor ternary set is measurable and its measure
A set without measure different from zero is

A set Ais said to be Compact if it has a
The empty set ¢ and whole set X

Finite sets in a metric space have

A subset A of R is connnected if and only if

In a metric space every singleton set { p } is
If A'is open set and B is closed set then

A sequentially compact metric space is

The total Variation on [a,b ] is

Class

Choice 1

convergent
unbounded &
increasing

bounded
divergent
unbounded &

comparison test

n) <lim Sup x ,
+limSupy,
exactly one
constant sub

divergent to
infinity
absolutely
convergent

unbounded
sequence of real
numbers
divergent
sequencee
unbounded

1
convergent
bounded

finite limit
fis Riemann
integrable on

S

not measurable
0

countable

many subcover
open

more than one
it is an interval

open
B - Alis open set

bounded
non positive
finite number

Unit IV

Possible Questions
Choice 2

bounded &
convergent
decreasing sequence
unbounded

convergent
convergent
root test

lim Sup (X +Ys)
> lim Sup x,, +lim
Supy,

exactly two constant
sub sequence

bounded
convergent but not
absolutely
convergent

bounded

sequence of rational
numbers
convergent
sequencee

bounded
2

need not be
convergent
divergent

infinite limit

fis not Riemann
integrable on [a,b]

Q

divergent

1

uncountable

only one subcover

closed

one limit

it ia set

closed

B - Ais semi open
set

unbounded

non negative finite
number

itis not of bounded
variation of [a,b]

: 1 - M.Sc. Mathematics

Choice 3

Subject

(Question Nos. 1 to 20

Choice 4
unbounded &

bounded & divergent divergent
monotonic sequence oscillating sequence

bounded below

unbounded
bounded
ratio test

lim Sup (X +Ys)
=lim Sup x, +lim
Sup Yn

constant sub
sequence

having a
subsequence

absolutely divergent
not necessarily
bounded

sequence of
irrational numbers

bounded sequencee
not necessarily
bounded

3

may be convergent
convergent

unique limit

fis Riemann
integrable on R

[s]

Uniformly
Convergent
infinity
bounded

finite subcover
open as well as
closed

many limit

It is a limit point
semi open

B - Ais closed set
totally bounded
extended real
number

itis not of bounded
variation of R

bounded above

both converges and
diverges

divergent

leibnitz test

lim Sup (X +Y)
<lim Sup x, +lim
Supy,

exactly four constant
sub sequence

convergent

divergent
neither bounded nor
unbounded

bounded sequence of

rational numbers
unboundedt
sequencee

neither bounded nor
unbounded

4

divergent
subsequence
unbounded
no limit

fis integrable on R

{Sn}

does not Uniformly
Convergent

2

un bounded

no subcover
neither open nor
closed

no limit point

it is empty

semi closed

B - Ais empty set
bounded below
extended rational
number

it is of bounded
variation of R

bounded &
convergent
bounded
divergent

bounded
comparison test

lim Sup (X +Ya)
<lim Sup x , +lim
Supy,

exactly two constant
sub sequence

bounded
convergent but not
absolutely
convergent

bounded
sequence of real
numbers

divergent sequencee

bounded
2

convergent
subsequence
bounded

unique limit

fis Riemann
integrable on [a,b]

{Sn}
Uniformly
Convergent

0

uncountable
finite subcover
open as well as
closed

no limit point
it is an interval
closed

B - Ais closed set
totally bounded
non negative finite
number

it is of bounded
variation of [a,b]



If f is absolutely continuous on [a,b ]

A continuous function is

Every infinite sequence { x n } in X has

If Ais closed subset of a complete metric space
A collection F of sets have finite intersection
property if

If Ais ao open subset of complete metric space X
then

A metric space ( X, p) is complete , if
The union of any finite collection of non empty
closed set is

The empty set ¢ of a metric space is

Theset[0,1]is

Let C be Cantor's middle third set then

The set of rational numbers lebesque outer
measure is

If Fis aclosed and bounded aet of real numbers
then each open covering is

what is not correct about cantor ternary set

If f is a measurable function and f =g almost
everywhere,then g is

The length of an interval | is

it is of bounded
variation of [a,b]
be a function of
bounded
variation

more cluster
point

Ais incomplete
metric space
any finite
subcollection of

Ais incomplete
every sequence
in X'is

open set

open

countable

Cis not

0

finite
subcovering of F

it is closed

measurable
difference of an

it is always a
bounded variation

atmost one cluster
point

A is complete metric
space

any infinite
subcollection of F
has empty
intersection

A is complete

every sequence in X
is divergent

closed set

closed

not countable

C is of measure zero
1

infinite subcovering
of F

it is uncountable
not measurable

sum of an end points

of the interval
every interval is

end points of the measurable

its never a function
of bounded variation

atleast one cluster
point

undefined

any finite
subcollection of F
has empty set
completment of A is
closed

every cauchy
sequence in X is
convergent

empty set
open and closed
may be countable

C is uncountable and
of measure zero

2

no finite
subcovering of F

it ia dense

neither measurable
nor not measurable
Product of an end
points of the
interval

every open set in R
is measurable

may be a function of
bounded variation

unique cluster point
need not be a
complete metric
space

any finite
subcollection of F
has non-empty
intersection
completment of A is
open

every cauchy
sequence in X is
divergent

non empty set
does not exist

need not be a
countable

C is uncountable and

of positive measure
3

no infinite
subcovering of F

it is perfect set

need not be
measurable

division of an end
points of the
interval

every closed setin R
is measurable

may or may not be a
function of bounded
variation

atleast one cluster
point

A is incomplete
metric space

any finite
subcollection of F
has empty
intersection
completment of A is
closed

every cauchy
sequence in X is
convergant

closed set
open and closed
not countable

C is uncountable and
of measure zero

0

finite subcovering of
F

it ia dense

measurable
difference of an end
points of the
interval

every closed setin R
is measurable
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UNIT V
IMPLICIT FUNCTIONS AND EXTREMUM PROBLEMS
SYLLABUS

Introduction — Functions with non zero Jacobian determinant — Inverse function
theorem — Implicit function theorem — Extrema of real valued functions of one
variable and several variables

13.1 INTRODUCTION

This chapter consists of two principal parts. The first part discusses an important
theorem of analysis called the implicit function theorem; the second part treats
extremum problems. Both parts use the theorems developed in Chapter 12.

The implicit function theorem in its simplest form deals with an equation of
the form

fix, 1) = 0. (1

The problem is to decide whether this equation determines x as a function of ¢
If so, we have

x = g(t),
for some function g. We say that ¢ is defined “implicitly” by (1).

The problem assumes a more general form when we have a system of several
equations involving several variables and we ask whether we can solve these
equations for some of the variables in terms of the remaining variables. This is
the same type of problem as above, except that x and ¢ are replaced by vectors,
and f and g are replaced by vector-valued functions. Under rather general con-
ditions, a solution always exists. The implicit function theorem gives a description
of these conditions and some conclusions about the solution.

An important special case i$ the familiar problem in algebra of sclving » linear
equations of the form

m

o ax =t (i=1,2,.... . (2)

i=l1

Prepared by K.Aarthiya, Asst Prof, Department of Mathematics, KAHE Page 1/16




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc COURSE NAME: REAL ANALYSIS ANALYIS
COURSE CODE: 18MMP102 UNIT: V BATCH-2018-2020

where the g;; and ¢; are considered as given numbers and x,, ..., X, Tepresent
unknowns. In linear algebra it is shown that such a system has a unique solution
if, and only if, the determinant of the coefticient matrix 4 = [a;;] is ronzero.

NOTE. The determinant of a square matrix A = [a,;] is denoted by det 4 or
det [a;;]. If det [a;;] # 0, the solution of (2) can be obtained by Cramer’s rule
which expresses each x; as a quotient of two determinants, say x; = A,/D, where
D = det [a;;] and A4, is the determinant of the matrix obtained by re¢placing the
kth column of [a;;] by ¢,..., f,. (For a proof of Cramer’s rule, see Reference
13.1, Theorem 3.14.) [n particular, if each 7, = 0, then each x, = 0.

Next we show that the system (2) can be written in the form (1). Each equation
in (2) has the form '

.ff(x:t)=0 Whemx=(x1r'-':xu}: t={t1,...,f,},

and
f‘{x, t) = jzl a,,x.,. - fi.

Therefore the system in -(2) can be expressed as one vector equation f(x, t) = 0,
where f = (f,, ..., /). If D;f; denotes the partial derivative of f; with respect to
the jth coordinate x,, then D, fi(x, t) = a,;. Thus the coefficient matrix A = [a;;]
in {2) is a Jacobian matrix, Linear algebra tells us that (2) has a unique solution if
the determinant of this Jacobian matrix is nonzero.
Theorem 13.1. If f = u + iv is a complex-valued function with a derivative af a
point z in C, then J(z) = 11'@)I.
Proof. We have f'(z) = Dy + iDyo, so |f'(Z)1* = (Dw)* + (D)% Also,
Du Dyu

JAz) = det
.f(] [Dlu D;l’

] = Du D — DD = (Dyu)* + (D),

by the Cauchy-Riemann eguations.

13.2 FUNCTIONS WITH NONZERO JACOBIAN DETERMINANT

This section gives some properties of functions with nonzero Jacobian determinant
at certain points, These results will be used later in the proof of the implicit function
theorem.
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Theorem 13.2. Let B = B(a; r) be an n-bail in R", let 3B denote its boundary,
0B = {x:|x — af =r},

and let B = B u 0B denote its closure. Letf = (f,, ..., f) be continuous on B,
and assume that all the partial derivatives D, f(x) exist if x € B. Assume further
that f(x) # f(a) if x € OB and that the Jacobian determinant J(x) # 0 for each
X in B. Then §(B), the image of B under 1, coniains an n-ball with center at 1(a).

Proof. Define a real-valued function g on 9B as follows:
g(x) = jf(x) — f(@)| ifxedB.

Theng(x) > 0for each x in @B because f(x) # f(a) if x € 28. Also, g is continuous
on OB since f is continuous on B. Since 88 is compact, g takes on its absolute
minimum (call it m) somewhere on 3B. Note that m > 0 since g is positive on J5.
Let T denote the n-ball

T= B(i(n); g.) -

We will prove that T < f(B) and this will prove the theorem. (See Fig. 13.1.)
To do this we show that y € T implies y € f{B). Choose a point y in T, keep
vy fixed, and define a new real-valued function A on B as follows:

ax) = |If(x) — ¥l ifxeB.

Then A is continuous on the compact set B and hence attains its absolute minimum
on B. We will show that 4 attains its minimuem somewhere in the open »-ball B.
At the center we have k(a) = |f(a) — ¥ < m/2since y e T. Hence the minimum
value of # in B must also be <mj2. But at each point x on the boundary 48 we

have
h(x) = |f(x) — ¥ = If(x) — fa) — (v — f@)}]

> [ftx) — f(a)] — Ifa) — ¥ > g(x) — % > g

so the minimum of 4 cannot occur on the boundary dB8. Hence there is an interior
point ¢ in B at which 4 attains its minimum. At this point the square of 4 also has
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a minimum, Since
B = 1) - ¥l = 25 0600~y

and since each partial derivative D,(//*) must be zero at ¢, we must have

S LA — 5 IDS) =0 fork = 1,2,....n.
r=d

But this 1s a system of linear equations whose determinant .f,(c) is not zero, since
ce B. Therefore f(c) = y, for each r, or f{c) = y. That is, y £ f(B). Hence
T < f(B) and the proof is complete.

A function f:S§ - T from one metric space (5, dg) to another (T, ) is
called an open mapping if, for every open set A in S, the image f(A4) is open in T.
The next theorem gives a sufficient condition for a mapping to carry open sets
onto open sets. (See also Theorem 13.5.) i

Theorem 13.3. Let A be an open subset of R® and assume that £: A - R" is con-
tinuous and has finite partial derivatives D, f; on A. If { is one-to-one on A and if
Jo(x) # O for each x in A, then §(A) is apen.

Proof. If b € f(A), then b = f(a) for some a in 4. There is an n-ball B(a; r) = 4
on which f satisfies the hypotheses of Theorem 13.2, so f(B) contains an »-ball
with center at b. Therefore, b is an interior point of f(4), so f{4) is open.

The next theorem shows that a function with continuous partial derivatives is
locally one-to-one near a point where the Jacobian determinant does not vanish.

Theorem 13.4. Assume that £ = (f,, ..., [} has continuous partial derivaiives
D;f, on an open set S in R", and that the Jacobian determinant Jy(a) # 0 for some
point ain 8. Then there is an n-ball B(a) on which I is one-to-one.

Proof. Let Z,,..., Z be n points in S and let Z = (Z,;...; Z,) denote that
poiat in R" whose first n components are the components of Z.,, whose next z
components are the components of Z,, and so on. Define a real-vaiued function
#r as follows:

h(Z) = &ﬁt [,Djfr(Zf}}'
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This function is continuous at those points Z in R™ where #(Z) is defined because
cach D;f; is continuous on S and a determinant is 4 polynomiai in its n* entries.
Let Z be the special point in R™ obtained by putting

Z,=Z,="=2,=a

Then HWZ) = J,{&) # 0 and hence, by continuity, there 15 some #-ball 5(a) such
that det [D,f(Z)] # ¢ if each Z, € B{a). Wc will prove that f is one-to-cne on
B(a).

Assume the contrary. That is, assume that f(x) = f(y){ for some pair of points
X # y in B(a). Since B(a) is convex, the line segment L(x, ¥} & £(a) and we can
apply the Mean-Value Theorem io each component of { to write

0=ffy) — fix) = VAZ) - (y — x) fori= 12 ...,m

where each Z;e L(x, y) and hence Z, e B(a). (The Mean-Value Theorem is
applicable because f is differentiable on S.) But this is a system of linear equations
of the form

:E {(y — xa, =0 ~ with ay = Dy f{Z;).
=]

The determinant of this system is not z¢ro, since Z; € 8{(a). Hence y, — x, = 0
for cach &, and this comtradicts the assumption that x # y. We have shown,
therefore, that x # y implies f(x) # f(y) and hence that f is one-to-one on B(a).

Theorem 13.5. Let A be an open subset of R" and assume that £: 4 - R" has
continuous partial derivatives D, f; on A. If J(x) # O for all x in A, ther { is an

open mapping.

Proof. Let S be any open subset of A. If x € S there is an a-ball B(x} in which f
is one-to-one (by Theorem 13.4). Therefore, by Theorem 3.3, the image I(B(x))
is open in R". But we can write § = | )5 8(x). Applying f we find f(S) =
Uxes f{B(x)), so f(S) is open.
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133 THE INVERSE FUNCTION THEOREM

Theorem 13.6. Assume f = (f,,...,[,) e C’ on an open set § in R, and let
T = 1(S). If the Jacobian determinant J,(8) # 0 for some poimt a in S, then there
are twoopem sets X = S and Y = T and a uniquely determined function g such that

a) acXandf(a)e Y,

b) ¥ = f(X),

¢) f is one-to-one on X,

d) g isdefined on Y, g(Y) = X, and g[f(X)] = x for every x in X,
e)geC’ onY.

Proof. The function J; is continuous on S and, since J(a) # 0, there is an n-ball
B,(a) such that J(x) # 0 for all x in B,(a). By Theorem 13.4, there is an n-ball
B(a) = B,(a) on which f is one-to-one. Let B be an n-ball with center at a and
radius smaller than that of 8(a). Then, by Theorem 13.2, f{B) contains an #-ball
with center at f(a). Denote this by Y and let X = f " %(¥) n B. Then X is open
since both (¥} and B are open. (See Fig. 13.2)

Figure 13.2

The set B (the closure of B) is compact and f is one-to-one and continuous on
B. Hence, by Theorem 4.29, there exists a function g (the invers. function £~! of
Theorem 4.29) defined on (B) such that g{f(x)] = x for all x in B. Morcover, g
is continuous on f(B). Since X < Band ¥ < (B), this proves parts (a}, (b), (¢}
and (d). The uniqueness of g follows from (d).
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open, ¥y + fu, € Y if ¢ is sufficiently small.) Let x = g(y) and let X’ = g(y + fu,).
Then both x and x’ are in X and f(x) — f(x) = ra,. Hence f{x') — fi(x)is O if
i # r,and is £if i = r. By the Mean-Value Theorem we have

)~ X | g2y X=X fori=1,2,...,n
t t
where each Z, is on the line segment joining x and x'; hence Z; € B. The expression
on the left is 1 or 0, according to whether i = r or i # r. This is a system of n
linear equations in n unknowns (x; — x,)/¢ and has a unique solution, since

det [D,(Z)] = WZ) # 0.

Solving for the kth unknown by Cramer's rule, we obtain an expression for
[g:y + ra,) — gx(¥)]/t as a quotient of determinants. As? — 0, the point x — X,
since g is continuous, and hence each Z; — x, since Z, is on the segment joining
x to x’. The determinant which appears in the denominator has for its limit the
number det [D,f{x)] = J(x), and this is nonzero, since x € X. - Therefore, the
following limit exists:

lim oy + m;) ~ 80 _ p o).

This establishes the existence of D g,(y) foreachyin Yandeachr = 1,2,..., .
Moreover, this limit is a quotient of two determinants involving the derivatives
D;f{x). Continuity of the D,f, implies continuity of each partial D,g,. This
completes the proof of (¢). '

noTe. The foregoing proof alse provides a method for computing D,g,(y). In
practice, the derivatives D,g, can be obtained more easily (without recourse to a
limiting process) by using the fact that, if y = f{x), the product of the two Jacobian
matrices DI(x) and Deg(y) is the identity matrix, When this is written out in detail
it gives the following sysiem of n* equations:

1 ifi = j,

‘; Dygi(¥)D,fux) = {0 14
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For each fixed /i, we obtain n lincar equations as j runs through the values
1, 2,..., n. These can then be solved for the » unknowns, D g(y), ..., D.gd¥),
by Cramer’s rule, or by some other method.

134 THE IMPLICIT FUNCTION THEOREM

The reader knows that the equation of a curve in the xy-plane can be expressed
either in an “explicit” form, such as y = f{x), or in an “implicit” form, such as
F(x, y) = 0, However, if we are given an equation of the form F(x, y) = 0, this
does not necessarily represent a function. (Take, for example, x* + y* — 5 = 0.)
The equation F(x, y) = 0 does always represent a refation, namely, that set of all

Theorem 13.7 ( Implicit function theorem). Let f = (f,, ..., f.) be a vector-valued
Sunction defined on an open set S in R*** with values in R*. Suppose fe C’' on S.
Let (xy; to) be a point in S for which f(xq; t,) = 0 and for whick the n X n determi-
nant det [D;f(Xo; t5)] # 0. Then there exists a k-dimensional open set Ty con-
taining ty and one, and only one, vector-valued function g, defined on Ty and having
values in R®, such that

a)geC' onT,

b) glte) = x,,
c) f(g(€); t) = O for everytin T,.

Proof. We shall apply the inverse function theorem to a certain vector-valued
function F = (F,, ..., F: F,,(,..., F,;;) defined on S and having values in
R***. The function F is defined as follows: For | < m < n,let F(x; t) = f,{x; 1),
and for 1 < m < &k, let F,, (x; ) = 1,. We can then write F = (f; I}, where
f = (f,,-..,\) and where L is the identity function defined by I(t) = t for each t
in R*, The Jacobian Jg(x; t) then has the same value as the n x n determinant
det [ D, f(x; t)] because the terms which appear in the last k rows and also in the
last & columns of Je(x; t) form a k& x k determinant with ones along the main
diagonal and zeros clsewhere; the intersection of the first » rows and » columns
consists of the determinant det [ D,f(x; t)], and

DF  f(x;t) =0 fort<i<n 1 <)<k
Hence the Jacobian Je(x,: t) # 0. Also, F(x,; ty) = (0; t,). Therefore, by

Theorem 13.6, there exist open sets X and Y containing (x,; t,) and (0; t,),
respectively, such that F is one-to-one on X, and X = F~(Y). Also, there exists
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a local inverse function G, defined on Y and having values in X, such that

G[F{x; )] = (x; t),

and such that Ge C"on ¥,

Now G can be reduced to components as follows: G = (v; w) where
¥ = (v,,..., ) 1s a vector-valued function defined on ¥ with values in R" and
w = (w.. ..., w)isalso defined on Y but has values in R*, We can now determine
v and w explicitly. The equation G[F(x; t})] = (x; t), when written in terms of the
compenents ¥ and w, gives us the two equations

PO t)] =x  and wF(x; )] =t
Hence the function G can be described as follows: Given a point (x; t) in ¥, we

have G(x:t) = (x’; t), where x’ is that point in R* such that (x; t} = F(x'; t).
This statement implies that

Flv(x; t); t] = (x; ) for every (x; 1) in Y.
Now we are ready to define the set T, and the function g in the theorem. Let
To = {t:teRY, (0;t)e ¥},

and for each t in T, define g(t) = ¥(0; t). The set Ty is open in R*. Moreover,
g € C' on T, because G € C’ on Y and the components of g are taken from the
components of G. Also,

gte) = v(0:ty) = x,

because (0; ty) = Fixo: ty). Finally, the equation F{v(x; §); t] = (x; t), which
holds for every {x;t) in Y, yields {by considering the components in R") the
equation f[v(x; t); t] = x. Taking x = 0, we sec that for every t in T, we have
f[g(1); 1] = 0, and this completes the proof of statements (a), (b), and (c). It
remains to prove that there is only one such function g. But this follows at once
from the one-to-one character of f. If there were another function, say h, which
satisfied (c), then we would have f[g(t); t] = f{h(t); t], and this would imply

(g(t); ) = (h(1); 1), or g{t) = h{t) for every tin T,.
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13.5 EXTREMA OF REAI-VALUED FUNCTIONS OF ONE VARIABLE

In the remainder of this chapler we shall consider real-valued functions f with a
view toward determining those peints (if any) at which £ has a local extremum,
that is, either a local maximum or a local mmimum.

We have already obtained one result in this connection for functions of one
variable (Theorem 5.9). In that theorem we found that a necessary condition for a
function f to have a local extremum at an interior point ¢ of an interval is that
f'(¢) = 0, provided that "(c) exists. This condition, however, is not sufficient, as
we can see by taking f(x) = x°, ¢ = 0. We now derive a sufficient condition.

Theorem 13.8. For some integer n = 1, let f have a continuous nth derivative in the
open interval (a, b). Suppose also that for some interior point ¢ in (a, b) we have

J@=f@= =% =0 bat f*)+0.

Then for n even, f has a local minimum at ¢ if f™(c) > 0, and a local maximum at
c if f™(c) < 0. If nis odd, there is neither a local maximum nor a local minimum
at c.

Proaf. Since f®™(c) # 0, there exists an interval B(c) such that for every x in B(c),
the derivative £™(x) will have the same sign as f™(c). Now by Taylor’s formula
(Theorem 5.19), for every x in B{c) we have

f(x) - fle) = j:::ff—l)(x - )", where x, € B{c). '

If n is even, this equation jmplies f(x} = f{c) when f™(c) > 0, and f(x) < f(c)
when f™(c) < 0. If n is odd and f™(c) > 0, then f(x) > f(c) when x > ¢, but
JS(x) < f(c) when x < ¢, and there can be no extremum at ¢, A similar statement
holds if n is odd and f™(¢} < 0. This proves the theorem.

13.6 EXTREMA OF REAI-VALUED FUNCTIONS OF SEVERAL VARIABLES

We turn now to functions of several variables: Exercise 12.1 gives a necessary
condition for a function to have a local maximum or a local minimum at an interior
point a of an open set. The condition is that each partial derivative D, f(a) must
be zero at that point. We can also state this in terms of directional derivatives by
saying that f'(s; w) must be zero for every direction u.

The converse of this statement is not true, however. Consider the following
example of a function of two real variables:
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Here we have D, f(0,0) = D, f(0,0) = 0. Now (0, 0) = 0, but the function
assumes both positive and negative values in every neighborhood of (0, 0), so
there is neither a local maximum nor a local minimum at (0, 0). (See Fig. 13.3)

This example illustrates another interesting phenomenon. If we take a fixed
straight line through the origin and restrict the point (x, ¥) to move along this line
toward (0, 0), then the point will finally enter the region above the parabola
y = 2x* (or below the parabola y = x?) in which f(x, y) becomes and stays
positive for every (x, ¥) # (0, 0). Therefore, along every such line, fhas a minimum
at {0, 0), but the origin is not a local minimum in any two-dimensional neighbor-
hood of {0, 0).

Y 1z, >0
in unshuded regions Fi 13.3

Definition 13.9. If f is differentiable at a and if Vf(a) = 0, the point a is called a
stationary point of . A stationary point is called a saddle point if every n-ball B(a)
contains poinis X such that f(x) > f(a) and other points such that f(x} < f(a).

In the foregoing example, the origin is a saddle point of the function.

To determine whether a function of n variables has a local maximum, a Eucgl
minimum, or a saddle point at a stationary point &, we must determine the algebrazc
sign of f(x) — (&) for all x in a neighborhood of a. As in the one¢-dimensional
case, this is done with the help of Taylor’s formula (Theorem 12.14). Takem = 2
and y = a + tin Theorem 12.14. If the partial derivatives of f are differentiable

on an a-ball B(a) then
f(a+t) — fla) = Vi@t + 1/"(z 1), (3}
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where z lies on the line scgment joining » and a + t, and

Mzt = Z E D; ; 1(z)tt;.
i=1

i=1
At a stationary point we have Vf{(a) = 0 so (3} becomes
fla +t) — f(a) = 1/"(z; )

Therefore, as a + t ranges over B(a), the algebraic sign of f(a + €) — f(a) is
determined by that of /"(z; t). We can write (3) in the form

fa + t) — f(a) = 4/ (a; 1) + [t]EQ), (4)
where
] 2E(E) = 4 f"(z; 1) — 1/7(a; 1)
The inequality .

1607 |E)] < ; 3> 32 1Duf@ - DS ik

4

shows that E(f) — 0 as t — 0 if the second-order partial derivatives of f are
continuous at a. Since |t]2£(1) tends to zero faster than [|¢]7, it seems reasonable

10 expect that the algebraic sign of f(a + 1) — f(a) should be determined by that
of /"(a; t). This is what is proved in the next theorem.

Theorem 13.10 ( Second-derivative test for extrema). Assume that the second-order
partial derivatives D ; f exist in an n-ball B() and are continuous at a, where a is a
stationary point of f. Let

" L

oW = 1f"@: 0 = - 3 3 D fa, )

23 j=1
a) If Q(t) > O for allt # 0, f has a relative minimum at a.

b) If Q(t) < O for alit # 0, f has a relative maximum at a.
©) I Q(t) takes both positive and negative values, then { has a saddle point at a.
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Proof. The function Q is continuous at each point tin R". Let S = {t: |t} = 1}
denote the boundary of the »n-ball B(0; 1). If @(t) > O for alit # 9, then O(t) is
positive on S. Since S is compact, { has a munimum on S (call it m), and m > 0.
Now Q{ct) = 2Q(t) for every real ¢. Taking ¢ = 1/||t] where t # 0 we see that
ct € S and hence ?Q(t) > m, so O(t) = m|t|>. Using this in (4) we find

fla + 1) — f(a) = QO + |tI*E(®) > m It§* + [It]*E(L).

Since E(t) - 0 as t — 0, there is 2 positive number » such that [E(t)] < m
whenever 0 < [jt] < r. For sucht we have 0 < ||[t]|® |E(0)] < dmljt]|?, so

fa + 6 — fa) > mit]* — dmit]? = dmie)* > 0.

Therefore £ has a relative minimum at a, which proves (a). To prove (b) we use a
similar argument, or simply apply part (a) to —f.
Finally, we prove (c). For each 1 > 0 we have, from (4),

S + ) — f(a) = QU0 + P EAD) = 2H{Q(O + [tI*EAD).

Suppose ((t) # 0for somet. Since E(y) —» 0asy — 0, there is a positive r such
that
)| 2EAt) < O8] if0<i<r

Therefore, for each such A the quantity A?{Q(€) + ||t)*£(it)} has the same sign as
Q(t). Therefore, if 0 < A < r, the difference f(a + At} — f(a) has the same sign
as Q(t). Hence, if Q(t) takes both positive and negative values, it follows that f
has a saddle point at a.

NOTE. A real-valued function ( defined on R* by an equation of the type

O(x}) = E E “u‘xa-'fj’

i=l j=1

where x = (x4, ..., x,) and the a,; are real is called a quadratic form. The form is
called symmetric if a;; = a;; for all { and j, pesitive definite if x # 0 implies
{Xx) > 0, and negative definite if x # 0 implies Q(x) < 0.

In general, it is not easy to determine whether a quadratic form is positive or
negative definite.  One criterion, involving eigenvalues, is described in Reference
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13.1, Theorem 9.5. Another, involving determinants, can be described as follows.
Let A = det {a;;] and let A, denote the determinant of the X x & matrix obtained
by deleting the last (# — &) rows and columns of [g,;]. Also, put Ay = 1. From
the theory of quadratic forms it is known that a necessary and sufficient condition
for a symmetric form to be positive definite is that the » + | numbers
Ags Ag, ..., A, be positive. The form is negative definite if, and only if, the same
n + 1 numbers are alternately positive and negative. (See Reference 13.2, pp.
304-308.) The quadratic form which appears in (5) is symmetric because the
mixed partials D, ;f(a) and D; ,f(a) are equal. Therefore, under the conditions of
Theorem 13.10, we see that / has a local minimum at a if the (n + 1) numbers
Ag, Ay, ..., A, are ail positive, and a local maximum if these numbers are
alternately positive and negative. The casen = 2 can be handled directly and gives
the following criterion.

Theorem 13.11. Let f be a real-valued function with continuous second-order partial
derivatives at a stationary point a in R%. Let

A = D, ,f(=), B = D, ,f(a), C = D, ,f(a),
and let
A= det[A B] = AC — B*.
B C

Then we have:

a) If A > 0 and A > 0, f has a relative minimum at a,
b) JfA > Oand A < 0, f has a relative maximum at a.
c) If A < 0, f has a saddie point ar a,

Proof. In the two-dimensional case we can write the quadratic form in (5} as

follows:
O(x, ) = H{Ax" + 2Bxy + CyY).
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If A # O, this can also be written as
1
0(x, ») = — {(dx + Byy® + Ay*}.

If A > 0, the expression in brackets is the sum of two squares, so @Q(x, y) has the
same sign as 4. Therefore, statements (a) and (b) follow at once from parts(a)
and (b) of Theorem 13.10, '

If A < 0, the quadratic form is the product of two linear factors. Therefore,
the set of points (x, y) such that O(x, y) = 0 consists of two lines in the xy-plane
intersecting &t (0, 0). These lines divide the plane into four regions; Q(x, y) is
positive in two of these regions and negative in the other two. Therefore fhas a
saddle point at a.

POSSIBLE QUESTIONS

1. Let A be an open subset of R"and assume that f: A — R" has continuous partial
derivatives Dj fjon A . If J¢(x)#0 ¥ xin A ,then prove that fisan open mapping.

2. Prove that, let A be an open subset of R " and assume that f:'A — R" has
continuous partial derivatives Dj fjon A.Iffis. 1-lon Aand if Js(x ) #0 V xin A,
then f (A) isan open.

w

Let { fn } be boundadly ‘convergent sequence [a,b] Assume that each f, €. R
on [a,b] and that the limit function' f €. R on [a;b ].assume also that there is a
partition P of [a,b] say { xoXx1 X2 ,...... Xm } Such that on every sub interval [c,d]
not containing any of the points x « the sequence { fn } uniformly converges to f.

then prove that we have f; fn@dt= f; wﬁ,(t)dt = f: f®dt.

limy,

4. State and prove functions with-non Zero Jacobian determinant.

5. Assumethatf={ff2, . ......... ,fn } has continuous partial derivativesD j f j on
an open set in R" & that prove that the Jacobian determinant J ¢ ( a) # 0 for some
point a in S ,then there is an n- ball B (a) on which f is 1 1.

6. State and prove Implicit function theorem.

7. Define saddle point with example and Define Jacobian determinant .

8. (i)State and prove Cauchy condition for uniform convergence

(if) Assume that f,— f uniformly on S.If each f, is continuous at a point C of S,
then show that the limit function f is also continuous at ¢
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9. State and Prove Second derivative for Exreme

10. For some integer n > 1, Let f have continuous n ™ derivative in the open interval
(a,b). Suppose for some interior point ¢ in (a,b) we have
f (), f (c)..... £™D(c) =0 but f" (c) # 0.Then prove that for n even,f has a local
minimum at c if f" (c) >0 & a local maximumatcif f" (c) <0 .Ifnisodd,
there is neither alocal minimum nor a local maximum at c.

11. State and prove Inverse function Theorem.
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Subject: Real Analysis
Class :1- M.Sc. Mathematics

Part A (20x1=20 Marks)

Question
The outer measure of its interval is its
Every increasing function of its

Vv (X) is monotonic-- function

A function f of bounded variation is the expressible as a

Outer Lebesgue measure is also known as

If set A is Lebesgue measurable and m *( A A B ) =-------—--
The sets S 1,S 2,...... S n are called the
the partition P

The Refinement of P is denoted by
Every singleton set is

Intersection of finite number of open set is

Union of finite number of closed set is
Every closed interval is
In a metric space ( X, d ) a non-empty X is

Every infinite set A has a
If f is a continuous mapping of a compact metric space X
into M.space y

If E1 and E 2 are lebesgue measurable set then

Let f be an open covering of A, then
If f is continuous Real valued function of Compact metric
space then

If f is an open covering of a closed and bounded set A then
Any Countable set of points on the real axis line

A real valued function ¢ is function if it is
lebesgue measurable

Every open and closed set is
measurable

set is lebesgue measurable

Which one of the following is true ?

If Lebesgue outer measure of a set E, m * E= 0 then

Which one of the following is true ?
If A'is countable , then

Coimbatore —641 021

Unit v

Possible Questions
Choice 1 Choice 2
value length
bounded variation  variational value
increasing decreasing
monotonic monotonic
increasing increasing
functions functions
Lebesgue exterior
measure measure
0 1
components parts
pl p2
disconnected set  connected
closed open
closed open
closed compact
closed compact
no limit point neibourhood
fis uniformly not uniformly
continuous continuous
E1 union E2 is also
lebesgue
measurable sets El1=E2
there exist there exist

countable collection
of F which covers
A

f is bounded

there exist a finite
subcollection of F
which covers A
no measure

large

zero
cantor set

Family M of
Lebesgue
measurable sets is
an algebra of sets

E is measurable
Lebesgue exterior
measure , m * is
translation is
invariant
m*A=0

Uncountable
collection of F
which covers A

f is unbounded

a finite
subcollection of F
which covers A
measure is 1

simple

lebesgue

empty set

Family M of
Lebesgue
measurable sets is
not algebra of sets

E is not measurable
Lebesgue exterior
measure , m * is
not translation is
invariant

m * A =infinity

(Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),

Choice 3

size of the interval
bounded

either increasing or
decreasing
monotonic
increasing
functions

Lebesgue measure
2

partition

p'

measurable
neither open nor
not closed
neither open nor
not closed
closed

closed

limit point

continuous

E1l >E2

there exist
collection of F
which covers A

f is constant
infinite
subcollection of F
which covers A
measure zero

minor

not measurable
heine borel

Family M of
Lebesgue
measurable sets
Eis need not be
measurable

need not be
measurable
m*A=1

Subject
Semester

(Question Nos. 1 to 20

Choice 4

value

variation

neither increasing
nor decreasing
monotonic
increasing
functions
Lebesgue interior
measure

combined
P *
unmeasurable

semiopen

semi closed

not compact

not compact

need not be a limit
point

discotinuous

El <E2

there exist
Uncountable
collection of F
which not covers
A

fis a function
there exist a finite
collection of F
which covers A
not measurable

major

need not be
measurable
non -empty set

Lebesgue
measurable sets
neither measurable
nor not measurable
Lebesgue interior
measure , m * is
not translation is
invariant
m*A#0

length
bounded variation

increasing
monotonic
increasing
functions

components
connected
open

closed
compact
compact

limit point

f is uniformly
continuous

E1 union E2 is also
lebesgue
measurable sets

there exist
countable collection
of F which covers
A

f is bounded

there exist a finite
subcollection of F
which covers A
measure zero

simple

lebesgue

Heine borel
Family M of
Lebesgue
measurable sets is
an algebra of sets

E ist measurable
Lebesgue exterior
measure , m * is
translation is
invariant
m*A=0



If f: [a,b ] =R monotonic then

Every sequence x n in a metric space X is convergent then

every cauchys sequence

If function f is the difference of two monotonic real valued

functions on [a,b] then

C

If x is an accumulation pointof S R

IfasetS R”n contains all its adherent points then S is

IfR ~n-Sisopen,thenS R™is

Let X is metric Space If X is sequentially compact then X

[

A metric space X has the BolZana weierstrass property , if

X is

If we take g(x)=x and h(x) =1 in general mean value

theorem we obtain

Any closed interval with usual metric is
The Euclidean Space R n is

Every dense subset is

The usual metric space (R ,d ) is

The set of rational numbers lebesque outer measure is =

Every measurable set is nearly a finite union of

Everuy convergent sequence of measurable functions is

nearly

fis of bounded
variation

convergent
fis of bounded
variation

every open ball B
(x) contains X

closed
open

unbounded
sequentially
compact
Lagrange's mean
value theorem

compact

not separable
countable
seperable

1

set

convergence

f is unbounded

divergent

fis of not bounded
variation

every open ball B
(x) contains finitely
many points

open
closed

not compact

unbounded
Cauchy's mean
value theorem

not compact
separable
uncountable
not separable
0

open sat

divergence

discontinuity of f
are uncountable

constant

fis of need not
bounded variation
(x) does not
contains many of
itspoints

neither open nor
not closed

not open

compact
not compact

Rolle's theorem
need not be
compact
connected
bounded

not compact

3

closed
uniformly
convergence

of fare
uncountable
convergent as well
as divergent

fis of may be
bounded variation
every open ball B
(x) contains few
points

not closed
not closed

bounded
compact

Taylor's theorem
sequentially
compact
disconnected
unbounded
compact

4

intervals
absolutely
convergence

f is of bounded
variation

convergent
f is of bounded
variation

every open ball B
(x) contains X

closed
closed

compact
sequentially
compact
Cauchy's mean
value theorem

not compact
seperable
countable
compact

0

intervals
uniformly
convergence
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M.Sc., DEGREE EXAMINATION, NOVEMBER 2017
First Semester

MATHEMATICS
REAL ANALYSIS
Time: 3 hours Maximum : 60 marks

PART - A (20 x 1 =20 Marks) (30 Minutes)
(Question Nos. 1 to 20 Online Examinations)

(Part -B & C 2 ' Hours)

PART B (5 x 6 =30 Marks)
Answer ALL the Questions

2l.a. IffeR(a)on[ablandffeR(B)on[ab]thenfeER (c; a+cyf)
on [ab]wehave [ fd(c,a+c,p=c,[ fda+c,[ fdp

Or
b. State and prove change of variable in Riemann — Stieltjes integral .

22. a. State and prove Merten’s Theorem
Or
b. State and prove Ratio Test Theorem.

23. a. State and prove Cauchy’s condition for Uniform convergence .
Or
b. Assume that X £, (x) = f (x) ( Uniformly continuous on S ) if each f,, is
continuous at a point xo of S then fis also continuous at X ¢,

24. a. State and prove Lesgue dominated convergence Theorem
Or
b. Assume f is Riemann integrable on [a,b] ¥ b > a and assume that there is a

b
positive constant M such that J" [fx)ldx<M vb>a.

1

25.a. Let A be an open subset of R" and assume that f: A - R" has continuous
partial Derivatives D; fjon A.If fis 1-1onAandifJ¢(x)#0VvxinA,
then f(A )isan open.

Or
b. State and prove functions with non Zero Jacobian determinant.

PART C (1 x 10 = 10 Marks)
(Compulsory)

26. State and prove Rearrangement Theorem for double sequence .
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First Semester

MATHEMATICS
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REAL ANALYSIS
l'ime: 3 hours Maximum : 60 marks
PART — A (20 x 1 =20 Marks) (30 Minutes)
(Question Nos. 1 to 20 Online Examinations)
(Part - B & C 2 % Hours)
PART B (5 x 6 = 30 Marks)
Answer ALL the Questions
2l.a)IffeR(a)on[ablandffeR(B)on[ab]thenfeR(c, a+c,P)

...

on [ab] wehave [*fd(c, @ + ¢, 8)=c, [} fdatC [7fdB.
Or
b) State and prove change of variable in Riemann — Stieltjes integral .

. a) State and prove Merten’s Theorem

Or
b) State and prove Ratio Test Theorem.

. a) State and prove Cauchy’s condition for Uniform convergence .

Or
b) Assume that Z £, ( x) = f (x) (uniformly on S ) if each f, is continuous at a
point xo of S then f is also continuous at x,

24. a) State and prove Lesgue dominated convergence Theorem

Or
b) Assume f'is Riemann integrable on [a,b] ¥ b > a and assume there is a positive
constant M such that [* |f(x)]dx< M vb>a.

25. a) Let A be an open subset of R" and assume that f: A = R" has continuous
partial Derivatives D; f; on A.If fis 1- TonAand ifJ¢(x ) #0 ¥xin A,
then f(A )isan open.

Or
b) State and prove functions with non Zero Jacobian determinant.

PART C (1 x 10 = 10 Marks)
(Compulsory)

26. State and prove Rearrangement Theorem for double sequence.
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