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PO: After completing this course, the learner gain a clear knowledge on various
combinatorial numbers and the applications of combinatorial techniques in real life problems.

PLO: To be familiar with the Stirling numbers, Bell’s formula, Multinomial theorem, Euler
function and be exposed with the Necklace problem.

UNIT I
Basic Combinatorial Numbers — Stirling numbers of the second kind — Recurrence formula for
Pnm.

UNIT 11
Generating functions — Recurrence relations- Bell’s formula.

UNIT 11
Multinomial — Multinomial theorem- Inclusion and Exclusion principle.

UNIT IV
Euler function —Permutations with forbidden positions —the Menage Problem.

UNIT V
Problem of Fibonacci —Necklace problem — Burnside’s lemma.

TEXT BOOK

1. Krishnamurthy, V. (2002), Combinatorics: Theory and Applications, East West Press Pvt.

Ltd.

REFERENCES

1. Balakrishnan V.K., (1995). Theory and problems of Combinatorics, Schaums outline
series,McGraw Hill Professional.

2. Alan tucker, (2002). Applied Combinatorics, 4e, John wiley & Sons, New York.
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Subject Name: COMBINATORICS Subject Code: 16MMP305B
Lecture
S.No Duration Topics To Be Covered Support Materials
Hour
UNIT-I
1 1 Basic Combinatorial Numbers R4: Ch 6: Pg.No: 314-
' 316
1 Continuation of Basic Combinatorial Numbers | R3: Ch:1: Pg.No: 43-45
2.
1 Stirling numbers of the second kind R3: Ch:2: Pg.No: 117-
3. 120
4 1 Continuation of Stirling numbers of the second | R3: Ch:2: Pg.No: 120-
' kind 123
5 1 Continuation of Stirling numbers of the second | R3: Ch: 2: Pg.No: 124-
' kind 127
6 1 Recurrence formula for Pnm. R5: Ch 14: pg.No: 129-
' 131
- 1 Problems of Recurrence formula for Pnm. R5: Ch 14: pg.No: 131-
' 133
g 1 Problems of Recurrence formula for Pnm. R5: Ch 14: pg.No: 134-
' 137
Continuation of problems of Recurrence R5: Ch 14: pg.No: 138-
9. 1
formula for Pnm. 140
10. 1 Basic Combinatorial Numbers R4: Ch 6: Pg.No: 314-
316
11. 1 Continuation of Basic Combinatorial Numbers | R4: Ch 6: Pg.No: 316-
318
12 1 Recapitulation and Discussion of possible
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questions

Total 12Hours

Reference Book:

R3:. Russell Merris, (2003).Combinatorics, Second edition, John wiley & Sons, New York.

R4:. Veerarajan. T, (2007), Discrete Mathematics with Graph Theory and Combinatorics, Mc-Graw
Hill companies,New Delhi.

R5. Sebastian M. Cioaba and M. Ram Murty, A First Course in graph Theory and Combinatorics,
Hindhustan Book Agency Pvt. Ltd.

UNIT-II
Generating functions R1: Ch 3: Pg.No: 104-
1 1
105
) 1 Problems using Generating functions R1: Ch 3: Pg.No: 111-
' 114
3 1 Continuation of Problems using Generating R1: Ch 3: Pg.No: 114-
' functions 116
4 1 Continuation of Problems using Generating R1: Ch 3: Pg.No: 117-
' functions 120
5 1 Continuation of Problems using Generating R1: Ch 3: Pg.No: 120-
' functions 123
Recurrence relations R1: Ch 3: Pg.No:107-
6. 1
110
. 1 Problems using Recurrence relations R1: Ch 3: Pg.N0:128-
' 130
Continuation of Problems using Recurrence R1: Ch 3: Pg.No:131-
8. 1 relations 133
9 1 Continuation of Problems using Recurrence R1: Ch 3: Pg.No:134-
relations 138
10 1 Bell’s formula. R1: Ch 3: Pg.N0:139-
140
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11 1 Continuation of Bell’s formula. R1: Ch 3: Pg.No:140-
142
12 1 Recapitulation and Discussion of possible
guestions
Total 12 Hours

Reference Book:
1. Balakrishnan V.K., (1995). Theory and problems of Combinatorics, Schaums outline
series,McGraw Hill Professional.

UNIT-1I

1 1 Multinomial R3: Ch 1: Pg.No: 69

2 1 Multinomial theorem R3: Ch 1: Pg.No: 70-71

3 1 Examples of Multinomial theorem R3: Ch 2: Pg.No:72-74

4 1 Continuation of Inclusion and Exclusion R3: Ch 2: Pg.N0:75-76
principle.

5 1 Inclusion and Exclusion principle. R1: Ch 2: Pg.No: 47

6 1 Examples of Inclusion and Exclusion principle | R2: Ch 8: 328-330

7 1 R2: Ch 8: 330-333
Examples of Inclusion and Exclusion principle

8 1 Continuation of Examples of Inclusion and R2: Ch 8: 333-335
Exclusion principle

9 1 Continuation of Examples of Inclusion and R1: Ch 2: Pg.No: 54-56
Exclusion principle

10 1 Multinomial R3: Ch 1: Pg.No: 69

11 1 Examples on multinomial T1: Ch5: Pg.No. 55-58

12 1 Recapitulation and Discussion of possible
guestions

Total 12Hours
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Textbook:
1. Kirishnamurthy, V. (2002), Combinatorics: Theory and Applications, East West Press Pvt.
Ltd.

References:
1. Balakrishnan V.K., (1995). Theory and problems of Combinatorics, Schaums outline
series,McGraw Hill Professional.
2. Alan tucker, (2002). Applied Combinatorics, 4e, John wiley & Sons, New York.
3. Russell Merris, (2003).Combinatorics, Second edition, John wiley & Sons, New York.

UNIT-IV
1 1 Euler function R6: Ch:10.Pg.N0:92
2 1 Problems related to Euler function R6: Ch:10.Pg.N0:93-94
3 1 Permutations with forbidden positions R3:Ch 3: Pg.No: 183-185
4 1 Continuation of Permutations with forbidden | R3:Ch 3: Pg.No: 186-187
positions
5 1 The Menage Problem R6: Ch:10.Pg.N0:95
6 1 Continuation of Menage Problem R6: Ch:10.Pg.N0:96-97
7 1 Continuation of Menage Problem R6: Ch:10.Pg.N0:98-99
8 1 Continuation of Menage Problem R6: Ch:10.Pg.No: 100-
103
9 1 Continuation of Menage Problem R6: Ch:10.Pg.N0:103-
105
10 1 Euler function R6: Ch:10.Pg.N0:92
11 1 Continuation of Euler function R6: Ch:10.Pg.N0:93-95
12 1 Recapitulation and Discussion of possible
guestions
Total 12 Hours

Reference Book:

R3. Russell Merris, (2003).Combinatorics, Second edition, John wiley & Sons, New York.

R6. J. H. Van Lint and R.M. Wilson ,(2001) A Course in Combinatorics, Second Edition, Cambridge
University Press, New Delhi.

UNIT-V

1 1 Problem of Fibonacci R5: Ch 2: Pg.No: 47
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2 1 Continuation of Problem of Fibonacci R5: Ch 2: Pg.No: 48-51
3 1 Necklace problem R3: Ch: 3: Pg.No: 191-
193
4 1 Continuation of Necklace problem R3: Ch: 3: Pg.No: 194-
196
5 1 Burnside’s lemma. R6: Ch:10.Pg.No: 94
6 1 Continuation of Burnside’s lemma. R6: Ch:10.Pg.No: 95-
98
7 1 Theorems and examples of Burnside’s R3: Ch: 3: Pg.No0:197-
lemma. 200
8 1 Theorems and examples of Burnside’s R3: Ch: 3: Pg.No:200-
lemma. 203
9 1 Recapitulation and Discussion of possible
questions
10 1 Discussion on Previous ESE Question Papers
11 1 Discussion on Previous ESE Question Papers
12 1 Discussion on Previous ESE Question Papers
Total 12 Hours
Text Book:

T1: Herstein.l. N.,(2010). Topics in Algebra, Second edition, Wiley and sons Pvt Ltd, Singapore.
Reference Book:
R3. Russell Merris, (2003).Combinatorics, Second edition, John wiley & Sons, New York.
R5. Sebastian M. Cioaba and M. Ram Murty, A First Course in graph Theory and Combinatorics,
Hindhustan Book Agency Pvt. Ltd.
R6. J. H. Van Lint and R.M. Wilson ,(2001) A Course in Combinatorics, Second Edition, Cambridge
University Press, New Delhi

Total no. of Hours for the Course: 60 hours
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KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University
Established Under Section 3 of UGC Act 1956)
Pollachi Main Road,
Eachanari (Po),Coimbatore —641 021

DEPARTMENT OF MATHEMATICS
Subject: COMBINATORICS  Semester :111 LTPC
Subject Code: 16MMU305B Class :11-M.Sc Mathematics 400 4

UNIT I
Basic Combinatorial Numbers — Stirling numbers of the second kind —

Recurrence formula for Pnm.

REFERENCES:

1. Russell Merris, (2003).Combinatorics, Second edition, John wiley &

Sons, New York.
2. Veerarajan. T, (2007), Discrete Mathematics with Graph

Theory and Combinatorics, Mc- Graw Hill

companies,New Delhi.
3. Sebastian M. Cioaba and M. Ram Murty, A First Course in
graph Theory and Combinatorics, Hindhustan Book Agency

Pvt. Ltd.
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UNIT-I

THE FUNDAMENTAL COUNTING PRINCIPLE

How many different four-letter words, including nonsense words, can be
produced by rearranging the letters in LUCK? In the absence of a more inspired
approach,there is always the brute-force strategy: Make a systematic list. Once we
become convinced that Fig. 1.1.1 accounts for every possible rearrangement and
that no ““word”’ is listed twice, the solution is obtained by counting the 24 words
on the list.

While finding the brute-force strategy was effortless, implementing it required
some work. Such an approach may be fine for an isolated problem, the like of
which one does not expect to see again. But, just for the sake of argument, imagine
yourself in the situation of having to solve a great many thinly disguised variations
of this same problem. In that case, it would make sense to invest some effort in
finding a strategy that requires less work to implement. Among the most powerful
tools in this regard is the following commonsense principle.

Fundamental Counting Principle: Consider a (finite) sequence of decisions.
Suppose the number of choices for each individual decision is independent
of decisions made previously in the sequence. Then the number of ways to make
the whole sequence of decisions is the product of these numbers of choices.
To state the principle symbolically, suppose ci is the number of choices for
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decision i. If, for 1 i< n, cipl does not depend on which choices are made in

LUCK LUKC LCUK LCKU LKUC LKCU
ULCK ULKC UCLK UCKL UKLC UKCL
CLUK CLKU CULK CUKL CKLU CKUL
KLUC KLCU KULC KUCL KCLU KCUL

Figure 1.1.1. The rearrangements of LUCK

decisions 1 ;... ; i, then the number of different ways to make the sequence of
decisions is C1X C2X...X Cp.

Let’s apply this principle to the word problem we just solved. Imagine yourself
in the midst of making the brute-force list. Writing down one of the words involves
a sequence of four decisions. Decision 1 is which of the four letters to write first,
so c1=4. (Itis no accident that Fig. 1.1.1 consists of four rows!) For each way of
making decision 1, there are ¢, = 3 choices for decision 2, namely which letter

to write second. Notice that the specific letters comprising these three choices
depend on how decision 1 was made, but their number does not. That is what is
meant by the number of choices for decision 2 being independent of how the
previous decision is made. Of course, ¢3 = 2, but what about c4? Facing no
alternative, is it correct to say there is ‘‘no choice’’ for the last decision? If that
were literally true, then c4 would be zero. In fact, c4 ¥4 1. So, by the fundamental
counting principle, the number of ways to make the sequence of decisions, i.e., the
number of words on the final list, is ¢1 X ca X Cc3XCa= 4x 3x2x 1:

The product n x (n 1) x (n- 2) x....x2 x 1 is commonly written n! and

read n-factorial: The number of four-letter words that can be made up by
rearranging the letters in the word LUCK is 4! =24,

What if the word had been LUCKY? The number of five-letter words that can be
produced by rearranging the letters of the word LUCKY is 5! =120. A systematic
list might consist of five rows each containing 4! = 24 words.

Suppose the word had been LOOT? How many four-letter words, including
nonsense words, can be constructed by rearranging the letters in LOOT? Why not
apply the fundamental counting principle? Once again, imagine yourself in the
midst of making a brute-force list. Writing down one of the words involves a
sequence of four decisions. Decision 1 is which of the three letters L, O, or T to
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write first. This time, c; = 3. But, what about c.? In this case, the number of
choices for decision 2 depends on how decision 1 was made! If, e.g., L were
chosen to be the first letter, then there would be two choices for the second letter,
namely O or T. If, however, O were chosen first, then there would be three choices
for the second decision, L, (the second) O, or T. Do we take ¢c; =2 or ¢c; =3? The
answer is that the fundamental counting principle does not apply to this problem
(at least not directly).

The fundamental counting principle applies only when the number of choices for
decision i + 1 is independent of how the previous i decisions are made.

To enumerate all possible rearrangements of the letters in LOOT, begin by
distinguishing the two O’s. maybe write the word as LO0OT. Applying the
fundamental counting principle, we find that there are 4! = 24 different-looking
four-letter words that can be made up from L, O, o, and T.

LOoT LOTo LoOT LoT O LTOo LToO
OLoT OLTo OoLT OoTL OTLo OToL
oLOT oLTO oOLT 0OTL oTLO oTOL
TLOo TLoO TOLo TOoL ToLO ToOL

Figure 1.1.2. Rearrangements of LOoT.

Among the words in Fig. 1.1.2 are pairs like OLoT and oLOT, which look
different only because the two O’s have been distinguished. In fact, every word in
the list occurs twice, once with ‘“big O’ coming before *‘little 0’’, and once the
other way around. Evidently, the number of different words (with indistinguishable
O’s) that can be produced from the letters in LOOT is not 4! but 4 =2 %, 12.

What about TOOT? First write it as TOot. Deduce that in any list of all possible
rearrangements of the letters T, O, o, and t, there would be 4 ! ¥4 24 different-
looking words. Dividing by 2 makes up for the fact that two of the letters are O’s.
Dividing by 2 again makes up for the two T’s. The result, 24=082 2P % 6, is the
number of different words that can be made up by rearranging the letters in TOOT.
Here they are

TTOO TOTO TOOT OTTO OTOT OOTT
All right, what if the word had been LULL? How many words can be produced
by rearranging the letters in LULL? Is it too early to guess a pattern? Could the
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number we’re looking for be 4 =3 % 8? No. It is easy to see that the correct
answer must be 4. Once the position of the letter U is known, the word is
completely determined. Every other position is filled with an L. A complete list is
ULLL, LULL, LLUL, LLLU.

To find out why 4!/3 is wrong, let’s proceed as we did before. Begin by
distinguishing the three L’s, say L1, L2, and L3. There are 4! different-looking
words that can be made up by rearranging the four letters L1, L2, L3, and U. If we
were to make a list of these 24 words and then erase all the subscripts, how many
times would, say, LLLU appear? The answer to this question can be obtained from
the fundamental counting principle! There are three decisions: decision 1 has three
choices, namely which of the three L’s to write first. There are two choices for
decision 2 (which of the two remaining L’s to write second) and one choice for the
third decision, which L to put last. Once the subscripts are erased, LLLU would
appear 3! times on the list. We should divide 4 ! ¥4 24, not by 3, but by 3 1 % 6.
Indeed, 4 =3 ! ¥4 4 is the correct answer.

Whoops! if the answer corresponding to LULL is 4!/3!, why didn’t we get 4!/2!
for the answer to LOOT? In fact, we did: 21 = 2,

Are you ready for MISSISSIPPI? It’s the same problem! If the letters were all
different, the answer would be 11!. Dividing 11! by 4! makes up for the fact that
there are four I’s. Dividing the quotient by another 4! compensates for the four S’s.
Dividing that quotient by 2! makes up for the two P’s. In fact, no harm is done if
that quotient is divided by 1 ! = 1 in honor of the single M. The result is

1114 1412111)= 34,650

(Confirm the arithmetic.) The 11 letters in MISSISSIPPI can be (re)arranged in
34,650 different ways.*

There is a special notation that summarizes the solution to what we might call

the ‘“MISSISSIPPI problem.’’

Definition. The multinomial coefficient

where riy +rm + -+ +r. = n.
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So, “multinomial coefficient™ is a name for the answer to the question, how
many n-letter ““words™ can be assembled using r; copies of one letter, r, copies
ol a second (different) letter, r3 copies of a third letter, ..., and r; copies of a
kth letter?

Example. After cancellation,

9 Ox 8 xTxbx5xdx3I=x2x=xl

4.31,1) 4x3x2x1x3x2x1x1xI

=0 x 8 x7Tx5=2520.

Theretore, 2520 different words can be manufactured by rearranging the nine letters
in the word SASSAFRAS. [l

Example.

Suppose you wanted to determine the number of positive
mtegers that exactly divide n = 12, That 1sn’t much of a problem; there are six
of them, namely, 1, 2, 3, 4, 6, and 12. What about the analogous problem for
n = 360 or for n = 360,0007 Solving even the first of these by brute-force list
making would be a lot of work. Having already found another strategy whose
implementation requires a lot less work, let’s take advantage of 1t.

Consider 360 = 2 x 32 x 5, for example. If 360 = dg for positive integers d
and g, then, by the uniqueness part of the fundamental theorem of arithmetic, the
prime factors of d, together with the prime factors of g. are precisely the prime
factors of 360, multiplicities included. It follows that the prime factorization of d
must be of the formd = 29 x 3? x 5, where 0 <a <3, 0<bh <2, and0< ¢ < 1.
Evidently, there are four choices for a (namely 0, 1, 2, or 3), three choices for b, and
two choices for ¢. So, the number of possibile d's 1s 4 x 3 x 2 = 24, O
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COMBINATORIAL IDENTITIES

C(n,r) = (") is the same as multinomial coefficient
(. ). In fact, C(n,r) is commonly called a binomial coefficient.” Given that
binomial coefficients are special cases of multinomial coefficients, 1t 1s natural to
wonder whether we stll need a separate name and notation for n-choose-r. On the
other hand, 1t turns out that multinomial coetficients can be expressed as products of
binomial coefficients. Thus, one could just as well argue for discarding the multi-

nomial coefficients!

Theorem. Ifri+rm+---+ry=n, then

n (n\(n—-rn\{n—-n-n n—ry—ry—--—r
Fr,ra, ..., r; r r r F .

n

Proof. Multinomial coefficient (n - n) is the number of n-letter “words™ that

can be assembled using r; copies of one *‘letter™, say Ay: r» copies ol a second, As:
and so on, finally using r; copies of some kth character, A;. The theorem is proved
by counting these words another way and setting the two (different-looking)
answers equal to each other.

Think of the process of writing one of the words as a sequence ol k decisions.
Decision 1 is which of n spaces to fill with A{’s. Because this amounts to selecting
ri of the n available positions, it involves C(n, r1) choices. Decision 2 is which of
the remaining n — ry spaces to fill with Az’s. Since there are 7 of these characters,
the second decision can be made in any one of C(n — ry,r2) ways. Once the A;’s
and A;’s have been placed, there are n — r; — r2 positions remaining to be filled,
and A3’s can be assigned to r3 of them in C(n — ry — r2,r3) ways, and so on. By
the fundamental counting principle, the number ol ways to make this sequence of
decisions is the product
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Clnr)) xCn—ri,n)xChn—ri—rn,ms)x - xCn—r—rn— - —n_1mn.
(Because ry + ry + -+ + rp = n, the last factor in this product is C(ry,r) = 1.)

Chu’s Theorem.” If n > r, then

jZIC(k:F) =C(r,r)+C(r+1,r)+C(r+2,r)+---+C(n,r)

:C(n—l— l,r+ 1)

(where > ;o Clk,r)=>";_. C(k,r) because C(k,r) =0, k <r).

Proof. Replace C(r,r) with C(r+ 1,r + 1) and use Pascal’s relation repeatedly to
obtain

Cr+1,r+1)+C(r+1,r)=C(r+2,r+1),
Clr+2,r+1)+C(r+2,r)=C(r+3,r+1),

and so on, ending with

Clnyr+1)+C(n,r)=C(n+1,r+1). |

FOUR WAYS TO CHOOSE
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From its combinatorial definition, n-choose-r is the number of different »element
subsets of an n-element set. Because two subsets are equal if and only if they con-
tain the same elements, (f) depends on what elements are chosen, not when. In

computing C(n, r), the order in which elements are chosen is irrelevant. The
C(5,2) = 10 two-element subsets of {L, U, C,K, Y} are

{L, U} {L, C} {L, K}, {L, Y}, {U,C}, {U, K}, {U. Y}, {C. K}, {C, Y} {K, Y},

where, e.g., {L, U} = {U,L}. There are, of course, circumstances in which order is
important.

Example. Consider all possible “words™ that can be produced using two

letters from the word LUCKY. By the fundamental counting principle, the number
of such words is 5 x 4, twice C(5, 2). reflecting the fact that order is important. The
20 possibilities are

LU,LC,LK,LY,UC, UK, UY,CK,CY, KY,
UL, CL,KL, YL,CU,KU, YU,KC, YC, YK. O

Definition. Denote by P(n.r) the number of ordered selections of r ele-
ments chosen from an n-element set.

By the fundamental counting principle,

Pln,r)=nn—1)(n—2)---(n—[r—1])
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There is another way to arrive at this last identity: We may construe P(n,r) as
the number of ways to make a sequence of just two decisions. Decision | is which
of the r elements to select, without regard to order, a decision having C(n,r)
choices. Decision 2 is how to order the r elements once they have been selected,
and there are r! ways to do that. By the fundamental counting principle, the number
of ways to make the sequence of two decisions is C(n,r) x r! = P(n, r).

Example. Suppose nine members of the Alameda County School Boards

Association meet to select a three-member delegation to represent the association
at a statewide convention. There are C(9,3) = 84 different ways to choose the dele-
gation from those present. If the bylaws stipulate that each delegation be comprised
of a delegate, a first alternate, and a second alternate, the nine members can comply
from among themselves in any one of P(9,3) = 3!C(9,3) = 504 ways. O

Example. Door prizes are a common feature of fundraising luncheons.

Suppose each of 100 patrons i1s given a numbered ticket, while its duplicate is
placed in a bowl from which prize-winning numbers will be drawn. If the prizes
are $10, $50, and $150, then (assuming winning tickets are not returned to the

bowl) a total of P(100,3) = 970,200 different outcomes are possible. If, on the
other hand, the three prizes are each $70, then the order in which the numbers

are drawn 1s immaterial. In this case, the number of dilfferent outcomes 1s
C(l[]l),i%) = 161,700. ]

Both C(n,r) and P(n,r) involve situations in which an object can be chosen at
most once. We have been choosing without replacement. What about choosing with
replacement? What 1if we recycle the objects, putting them back so they can be cho-
sen again”? How many ways are there to choose r things from n things with replace-
ment? The answer depends on whether order matters. If it does. the answer 1s easy.
The number of ways to make a sequence of r decisions each of which has n choices
s n'.

Example. How many different two-letter “*words™ can be produced using
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the “*alphabet™ {L,U,C,K,Y}? If there are no restrictions on the number of times
a letter can be used, then 5% = 25 such words can be produced; i.e., there are 25
ways to choose 2 things from 5 with replacement if order matters. In addition to
the 20 words from Example 1.6.1, there are five new ones, namely, LL, UU, CC,
KK, and YY. [l

Theorem. The number of different ways to choose r things from n things
with replacement if order doesn’t matter is C(r +n— 1,r).

Proof. As in Example 1.6.6. there is a one-to-one correspondence between selec-
tions and [r + (n — 1)]-letter words consisting of » tally marks and n — | dashes.
The number of such words is C(r +n — 1,r). [
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Possible Questions
Name of the Faculty : Pavithra. K

Class : Il —= M.Sc. Mathematics
Subject Name :  Combinatorics
Subject Code : 16MMP305B

UNIT-I

1. State and Prove the Pascal’s Identity.

2. From a club consistiong of 6 men and 7 womwn, in how many ways can we select a
committee of

a) 3 men and 4 women

b) 4 persons which has atleast one women

c) 4 persons that has atmost one man

d) 4 persons that has persons of both sexes

e) 4 persons so that two specific members are not included.
3.The number of different permutations of n objects which include n; identical objects of
type 1, nz identical objects of type II,... and nk identical objects of type k is equal to

n!

—— where ny+na+nz+...4nk= n.
nin2'n3!..nk!

4. When repetition of n elements contained in a set is permitted in r-permutations, then prove
that the number of r-permutations is n".
5. There are 3 Piles of identical red, blue and green Balls, where each pile contains atleast 10
balls. In  how many ways can 10 balls be selected.
i) if there is no restriction
ii) if atleast one red ball must be selected
iii) if atleast one red ball, atleast 2 blue balls and atleast 3 green balls must be selected.
iv) if exactly one red ball and atleast one blue ball must be selected.
v) if at most one red ball is selected.
6. State and prove the pigeonhole principle.

7. Let A be a set consisting of n elements (n>2). Then prove that there are n;' even

permutations and %’ odd Permutations.
8. State and Prove the Vandermonde’s Identity.

9. Prove the number of onto functions in Fm is n!S(m,n).
10. The number of circular permutations of n objects is (n-1)!.

11. Prove that i) P(n,n) = P(n,n-1)
ii) P(n,r) = (n-r+1) P(n, r-1)
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Subject Name: COMBINATORICS

Question Option-1

°P, is equal to 13
6P4 is equal to

If "C,, = "C¢ value of n is

An arrangement of a finite number of objects taken some or all at a

time is called their AP

Letters of SAP taken all at a time can be written in 2 ways

6U8t 23743

n(n-1)(n-2)(n-

Factorial of a positive integer n is nt = 3)...3.2.1
"P,=30—n=

Number of word that can be formed out of letters of word

BOTSWANA is 81
1/20.19.18.17 = 201161

Value of '°C, x *C; is 12760
For a negative integer n, factorial n is unique
1/12.11.10 = 1/12t
"C, .n= "p,
Letters of CHORD taken all at a time can be written in 2 ways
°C, +°C, = °c,
10.9/2.1 = 1/10
Out of 7 consonants and 4 vowels, how many words of 3

consonants and 2 vowels can be formed?

In how many ways can the letters of the word LEADER' be

arranged?

In how many ways a committee, consisting of 5 men and 6 women

can be formed from 8 men and 10 women?

In how many ways can a group of 5 men and 2 women be made

out of a total of 7 men and 3 women?

In how many different ways can the letters of the word
'MATHEMATICS' be arranged so that the vowels always come

UNIT-I

36
12

210

72

266

63

together? 10080

How many 4-letter words with or without meaning, can be formed
out of the letters of the word, LOGARITHMS', if repetition of
letters is not allowed?

In a group of 6 boys and 4 girls, four children are to be selected. In
how many different ways can they be selected such that at least
one boy should be there?

How many 3-digit numbers can be formed from the digits 2, 3, 5,
6, 7 and 9, which are divisible by 5 and none of the digits is
repeated?

A box contains 2 white balls, 3 black balls and 4 red balls. In how
many ways can 3 balls be drawn from the box, if at least one black
ball is to be included in the draw?

In how many different ways can the letters of the word 'DETAIL'
be arranged in such a way that the vowels occupy only the odd
positions?

40

159

32

32

Option-2

Combination
6 ways

65
(n-1)(n-2)(n-
3)...3.2.1

21
161201

11760
is0
121
Pt

6 ways
5,
218V101

DEPARTMENT OF MATHEMATICS
Multiple Choice Questions (Each Question Carries One Mark)

Subject Code: 16MMP305B

12
360
14

Sequence

24 ways

Option-3

16

56

(n-Dn(n-1)(n-2)(n-

3)...3.2.1

4

8121
1/161

10760

does not exist

12UN
n—lPlr
24 ways
5C2
10v2181
1050
144
5040

90

4989600

400

194

10

48

36

25200

360

11760

126

120960

5040

205

15

96

48

Option-4

permutation

120 ways
Ys6

18

(n-2)(n-3)...3.2.1

8121
201

9760

is 1

121

IIPr

120 ways
5C1

101

720

21400

720

86400

45

13546

2520

209

20

64

60

Answer
6
360
18
permutation
6 ways
Vs6
n(n-1)(n-2)(n-
3)...3.2.1
6
8121
161201
11760
does not exist
121
nl:,r
120 ways
6Cl
10v2181
25200
360
11760
63
120960
5040
209
20
64
36
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UNIT 11

Generating functions — Recurrence relations- Bell’s formula.
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Generating Functions

On a superficial level, a generating function is simply a way to exhibit a sequence of
numbers ag, ay, as, . ... However, the act of writing

g()() :fto+a1x+a2x2+...

has some surprising consequences. Because the left-hand side of this expression
looks like a function, it is tempting to treat the right-hand side as if it were one,
a “mistake™ having some interesting implications.

Those sequences ap. ay,az, . .. with the property that a, is a polynomial function
of n are characterized in the first section. Ordinary generating functions and some
of their properties are discussed in Section 4.2. Applications, e.g.. to Newton’s
binomial theorem, are the focus of Section 4.3. Section 4.4 deals with some varia-
tions on the generating function idea. Techniques for solving recurrences occupy
the final section.

Definition. The notation {a,} is used to denote the sequence ap,a;.as,. ...

Note that the first number in the sequence {a,} is the zeroth rerm, ag. The 4th
number in Sequence (4.1) is 27 = a3. (While this system may seem awkward now,
it will simplify our work later on.)

Definition. The sequence {a,} is arithmetic if, for all n > 0, the difference

ay+1 —ap —=d 1s a constant, independent of n.

An arithmetic sequence satisfies the pattern. or recurrence, a1 = a, + d,
n > 0. Given that Sequence (4.1) comprises an arithmetic sequence, then d =7,
and there can be no ambiguity about the 5th number. It is a4 = 27 + 7 = 34. So
tar, so good. Now you know how to exhibit intelligence by the standards of the
last century.

What if you were asked to determine. not a4, but aso,? Using the recurrence
aso0 = azgg + 7 18 not much help. The key to solving Sequence (4.1) is to think
of it symbolically, as

6,.6+7,(6+7)+7.(6+7+7)+7,...
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From this perspective, it is clear that a, is a sum of n + 1 numbers, one 6 and n 7’s,
1.e., d, = Tn + 6. So, aspp = 7 x 400 4+ 6 = 2806. This solution illustrates the ten-
sion between mathematics and computation. Doing the arithmetic at each step leads
to aq00 = azgo + 7. Not doing the arithmetic reveals a pattern leading to the math-
ematical abstraction a, = 7n + 6.

More generally, every arithmetic sequence takes the form

ap,ap +d,ap + 2d,ap + 3d. . ..

So, the nth term of an arithmetic sequence (the (n + 1)st number in the sequence) is
an = dn + ap. (4.2)

An expression like Equation (4.2), in which a, is given as an explicit function of n,
is called a closed formula, or solution, for {a,}.

Associated with the sequence {a,} is a natural function of the nonnegative inte-
gers, namely, f(n) = a,, n > 0. Conversely, to any function /* of the nonnegative
integers, there corresponds a natural sequence, namely, {f(n)}. Informally, a closed
formula for {a,} is a “‘nice” description of the corresponding function, e.g., {a,} is
arithmetic if and only if it corresponds to a function of the form f(n) = dn + ao,
i.e., to a polynomial of degree (at most) 1.

Consider the sequence {n’}, i.e.,

0,1,4,9,16,25,...

It is not arithmetic. For one thing, the closed formula f(n) = n? is a nonlinear poly-
nomial. For another, while @, is obtained from «, by adding an odd number, that
number changes. The difference, a,+1 —a, = (n+ l)2 —n*=2n+1, is not
constant.

Definition. Let {a,} be a fixed but arbitrary sequence. Its difference

sequence, denoted {Aa,}, is defined by Aa, =a,, —a, n>0.

Perhaps A(a,) would be a better notation. Certainly, Aa, should not be confused
with a product of A and a,. Whatever the notation, {a, } is an arithmetic sequence if
and only if its difference sequence {Aa,} is constant, that is, Aa, =d, n > 0.
When a, = n%, Aa, = 2n + 1. In other words, {An?} = {2n + 1}.

If f(n) = ay. n >0, then Aa, = Af(n) =f(n+ 1) —f(n). It seems that
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arn) ~HE (4.3

is a kind of discrete derivative.

It can be revealing to look at a sequence and its difference sequence (also called
sequence of differences) side by side. In the case of {n*}, the side-by-side compar-
ison looks like this:

0, 1, 4, 9, 16, 25 36, 49,
5.7, 9, 11, 13,

Evidently, the difference sequence of the sequence of perfect squares is the
sequence of odd numbers. More useful to our present objective is the fact that
the difference sequence is arithmetic. This suggests looking at the difference
sequence of a difference sequence. The following difference array gives two
generations of difference sequences for {n?}:

0, I, 4 9, 16, 25 306, 49,
I, 3,5 7, 9, 11, 13,
2, 2, 2, 2, 2, 2

Denote by {A2a,} the difference sequence of the difference sequence, Then,
e.g.. {A%n*} = {2}, the constant sequence each of whose terms is 2. In general,

A%a, = Aay.1 — Aay,

= Upy2 — 2ap41 + an, (4.4)
o, ap, >, ds, Ay, as, dg.
Aay, Aay, Aas,. Ads, Aay, Aas, e
N A%ay, Ao, A?as, Aa,,
A3ao._ A3al ] A3a2, A?’a;,

Figure 4.1.1. A generic difference array.
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Letting A%, = a, and A'a, = Aa,. we can define A" 'a, = A(Aa,) for all
r>1, e.,

A a, = ATay — Alay,, r>1. (4.5)

Successive generations of difference sequences are displayed in Fig. 4.1.1.

4.1.4 Example. The difference array for {n’} is

0, 1, 8 27, 64, 125, 216, 343,
I, 7, 19, 37, 61, 91, 127,

6, 12, 18, 24, 30, 30,

6, 6, 6, 6, 6,

While one could write out additional rows, there isn’t much point in doing so. If the
fourth row, corresponding to {A3n?}, is constant. then each row after the fourth
consists entirely of zeros. But, is the fourth row really constant? Let’s see.

If {a,} is any sequence, then Aa, = a,| — a,. From Equation (4.4), A%a, =
an4+2 — 20,41 + a,. From Equation (4.5),

Ada, = A’a,. — A%a,
= (an43 — 2an42 + @ui1) — (Ans2 — 2ap41 + an)
= dp+3 — 3ps2 + 3dni1 — dn. (4.6)

Substituting a, =n’ into Equation (4.6) yields

AP =(n+3)7° =3n+2P+3n+1)7 -
(n* +9n* +27n +27) = 3(n’ +6n* + 120 +8) +3(n” +3n* +3n+ 1) —n’
=6

for all n. ]

Is it too early to guess a pattern? Might { A*a,} be constant when a,, = n*? More
generally, might {A”a,} be constant when {a,} = {n"}. If so, can the constant be
predicted in advance? Before we can answer such questions, we need to know a
little more about {A’a,}.

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE Page 5/17



UNIT-II GENERATING FUNCTIONS | 2016

4.1.5 Lemma. If{a,} is a sequence then, for all n > 0,

r

Aran = Z(— l)r+fCY(F.. f)an-H.

t=0

Proof. 'The identity has already been established for small r (see, e.g., Equations
(4.4) and (4.6)). From Equation (4.5) and induction on r,

A g, = Aap — ANa,
r r
= (=1)C(r, Danpree = > _(=1)TC(r, 1)ang
=0 =0
r+1

,
(=) = Daye + > (=1 Clr 1)y
t=0

=1
.
= dpirin + 3 _(=1)TNCr = 1) + Clr 0)]ans + (—1) ' ay
=1
r+1 |
— (—l)r+ -H‘C(F + l. f)anH.
t=0 .

With the help of Lemma 4.1.5, we can answer our questions about {A’n"}.
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4.1.6 Theorem. S’uppme r is a fixed but arbitrary positive integer. Let a, = n',
n >0, Then Afa, =1l n 210,

Proof. By Lemma 4.1.5,

A" =) (=1)™C(r,)(n + 1)

t
.I"-H‘«
C(r E(Z:mrmm

C(r,m)n"" mz 0

[l [l
Mﬂ I < |
= =

/'_"'\

3
o

r

C(r,m)n” "rIS(m,r)

=
g

by Stirling’s identity. Because the Stirling number of the second kind, S(m, r), is
equal to O when m < r and equal to 1 when m = r, the only surviving term in
the final summation is C(r,r)n" "r! = rl. [

4.1.7 Corollary. Suppose m is a fixed but arbitrary positive integer. Then
A gm — 0 for all n > 0 and all r > m.

Proof. From Theorem 4.1.6, A™'p™ = A(A™"n™) = Am! = m! —m! = 0. If
r > m, then A" pm = ATm(AmH ) = AT = 0. [ ]

Corollary 4.1.7 remains valid when n™ is replaced by any polynomial in n of
degree m.

4.1.8 Theorem. Let m be a fixed but arbitrary positive integer. Suppose [ is a
polynomial of degree m. If a, = f(n), n > 0, then A" 'a, =0 for all n > 0 and all
r = on.
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Proof.  Suppose {y,} and {z,} are sequences. Let b and ¢ be numbers. Then

A(by, + czn) = (byns1 + czns1) — (byn + czn)
= b0t — V) + (st — 2)
= b Ay, + ¢ Agz,.

So. A is linear. Therefore,

A (by, + czn) = A(A(by, + ¢zn))
= A(b Ay, + c Az,)
= b .ﬁz_‘}-’n +€ Azznn

and, more generally, A¥(by, + cz,) = bAFy, + c A¥z, for all k > 1. If f(x) =
™4 e L 4o dogy, andia;, =f{n), n >0, then

Ar+1({n _ Ar-rlf(”)
=A™ (con™ + 1™ 4 -+ Cn)
:COAr+1nm +Cl Ar-f—lnm—l K ¢ "‘('m AH—I(IJ
=0

by linearity and Corollary 4.1.7. i)

4.1.10 Theorem. Let {a,} be a sequence. If the mth difference sequence
{A™a,} is constant, i.c., if A" a, = 0 forall n > 0, then there exists a polynomial
[ of degree at most m such that a, = f(n) for all n > 0. Moreover,

f(n) => " Cln,r) Aa. (4.10)
r=0
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Proof. Equation (4.10) follows either by replacing n(r)/r! with C(n, r) in Equation
(4.9) or by replacing a,, with f(n) in Equation (4.7). [ |

Theorem 4.1.10 is a “*strong’” converse of Theorem 4.1.8 because it does more
than establish the existence of f. Equation (4.10) is an explicit formula; it is the
“easy way” to find f (short of solving a linear system of equations). Note, in par-
ticular, that if {A™a,} is a constant sequence then f, hence {a,}, is completely
determined by the m -+ 1 numbers ag, Aay., . ... AMaq from the first column (or
leading edge of the difference array for {a,}.

4.1.11 Example. Suppose {a,} is a sequence the first column of whose differ-
ence array is 1, 5, 4, 6, with zeros thereafter. Compute ajg9. Solution: Let f(n) = a,,
n>0. Because A"ap =0, r >4, Equation (4.10) yields

3
a, = Z C(n,r) Aaq
r=0

=C(n0)x1+C(n1)x54+C(n2)x4+4+C(n,3)x6
=1+4+5n+4nn—1)/2+6nn—1)(n—2)/6

= 1 +5n+2n*=2n+n* = 3n* 4+ 2n

=n’ —n*+5n+1,

S0 a0 = 10% — 10* +500+ 1 =990.501. ]

4.1.12 Example. Let m be a fixed positive integer and {a,} be the sequence
whose nth term is a, =n™, n > 0. From Equation (4.10) (and Corollary 4.1.7), we
obtain

i = Z C(n,r) A”ap.

On the other hand, from Corollary 2.2.3,

= Z r'S(m,r)C(n,r),

r=1
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4.1.13 Example. Perhaps the techniques of this section can be made to yield
additional new insights about Stirling numbers of the second kind. Consider, e.g.,
the sequence

S(k0), S(k+1,1). S(k+2.2), S(k+3.3).....

where £ is fixed but arbitrary. (The previous example involved S(m.r) where m was
fixed. This time, m — r =k is fixed.) When k =2, the first few terms of the sequence
are

0,1, 7,25, 65, 140, 266, 462, ...

The initial portion of the difference array for this sequence is illustrated in
Fig. 4.1.3. If the fourth difference sequence, corresponding to the fifth row of the
difference array, really is the constant sequence {3} then, from Equation (4.10),
there is some polynomial /5 of degree 4 such that S(2 4 n,n) = f5(n) for all
n > 0. Moreover, from the leading edge of Fig. 4.1.3,

fa(n) = C(n, 1) +5C(n,2) +7C(n,3) +3C(n,4)
= [C(n,1) + C(n,2)] +4[C(n,2) + C(n,3)] +3[C(n,3) + C(n,4)]
=Cn+1,2)+4C(n+1.3)+3C(n+ 1.4)
= Cn+1.2)+Cn+1,3)]+3[C(n+1,3)+ C(n+ 1,4)]
=C(n+2.3)+3C(n+2,4).

4.2.1 Definition. The sequence {a,} is geometric if it satisfies a recurrence of
the form a1 =da,, n>0, where d 1s a constant, independent of n.

Evidently, the nth term of a generic geometric sequence is given by the closed

formula a, = ag x d". n = 0.
Consider the sequence

3.4,22,46, 178,454, . .. (4.11)
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defined by ap = 3, a; =4, and a, = a,—1 + 6a,_2, n > 2. This one is neither arith-
metic nor geometric. While there is a simple closed formula for a,, its discovery
requires either an inspired guess or a new approach.

4.2.2 Definition. The (ordinary) generating function for the sequence {a,} is
g(x) = ag + a\x + arx* + azx® + - - - (4.12)

Generating functions come in assorted sizes, shapes, and flavors. The pattern
invent()ryﬂ: Walxr,xa, ..., X, ) 1s one kind of generating function; Equation (4.12)
is another. The name ‘“‘generating function™ is more than a little curious. The
pattern inventory doesn’t generate anything; it is generated by the cycle index poly-
nomial.” Moreover, as we are about to see, it is useful to view g(x) as something
other than a function!

If g(x) is the generating function for Sequence (4.11), then

g(x) = 3 + 4x + 2222 + 46x° + 178 + .- + apxt 4 e
—xg(x) — 3x — 4x? — 228 — 46t — - — X" —
—6x%g(x) = — 1827 — 2403 — 132x* — - — 6a, X" —

Summing these three equations produces

g(xX)(1 —x—6x) =3 +x

(The recurrence guarantees that [a, — a,—1 — 6a,—2]x" =0, n > 2.) Evidently,

g(x) =3 4 4x + 226 +46x° + 178x* +4540° + - (4.13a)
3+x

= . 4.13b

1 —x — 6x2 ( )

A typical backpacker will sacrifice many things to decrease weight. Freeze-dried
food is a good example. Why carry water (even as a constituent of food) if it is
available at campsites? Equation (4.13b) might be viewed as a freeze-dried version
of Equation (4.13a). (If you had to stuff g(x) into a backpack, which version would
you prefer?)
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-

Okay. Imagine yourself at a campsite. What is the easy way to resurrect (or
generate) the sequence {a,} from g(x) = (3 +x)/(1 —x—6x%)? One perfectly
acceptable alternative is long division. Another is to factor the denominator as
(I +2x)(1 — 3x), so that

g(x) = (3+X)(1 +l2x>(l 13X)'

Recall that

1 —1ltxt+ x>t (4.14)
— X
SO
I 2 3
— 14 (=2x) 4 (=2 20 4 4.15
T ox + (=2x) + (—2x)" + (—2x)" + (4.15)
and
1
— =14+3x+Bx) +(3x) +---. (4.16)
— 23X

Therefore, g(x) can be expressed as the (formidable looking) product

g(x) = B+ x)(1 —2x +4x* =83 + - ) (1 +3x + 9% + 272 +---).
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A third, easier approach is to make use of the method of partial fractions”, i.e., to
write

3+x 34+x ] 2

8lx) = I —x—6x2:(l—|—2x)(l —3x):l—|—2x+l—3x'

Together with Equations (4.15) and (4.16), this yields

g(x) = [1+ (=2x) + (=2x)* + -] + 2[1 +3x + (3x)° + -]
=1 —2x+4x* —8x* + - ]+ 2+ 60+ 187 +54x° + -]
=3+ 4x+ 2207 +46x° + - - -,

and

glx) =1[1+ (—2x) + (—2)()2 + -] 201+ 3x + (3)()2 + -

yields
a, = (—2)" +2(3"), n>0. (4.17)

It is striking, but is it right? Without checking for convergence, what justifies
manipulating the generating “function’ just as if it were an honest-to-goodness
function? It would appear that our derivation may have some holes in it. On the
other hand, independently of where it came from, we can prove that Equation
(4.17) is a valid identity.

Define a sequence {b,} by b, =2(3")+ (=2)", n > 0. Then by =2(3°)+
(=2)" =3 =qp and by =2(3) —2 =4 =q,. So, the first two numbers in the
sequences {a,} and {b, } are the same. If we could prove that the sequences satisfy
the same recurrence, i.e., if b, = b,,_1 + 6b,_», n > 2, it would follow that b, = «,
for all n.

Observe that

23") =6(3" ) =237 ) 143" ) =2(3" 1) +6[2(3" %))

and

(=2)" = =2(=2)""" = (=" = 3(=2)"" = (=2)" 4 6(-2)" 2,
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and the generating function has been reassembled. There is more. Obscured by the
rush to compute is a closed formula for a,. Comparing the coefficients of x"* in

8()5):ao+alx+agx2—|—a3x3+...

4.2.3 Definition. A formal power series in x is an infinite sum of the form
aop+ajx+arx>+azx> + -, where the coefficients ag,ay,az,as,... are fixed con-

stants. It is sometimes convenient to give a shorthand name to a power series,

writing, e.g.,

g(x) = ag + ayx + apx* + azx’ + -+

:Zanx".

Multiplication of polynomials also extends to formal power series:

(ap + ayx + arx> + - )(bo + byx + byx? + - )
= apho + (agh1 + aibo)x + (aoha + a1by + azbo)xz 4

In general,

D ax | DY b | =D e, (4.19a)

n>0 n>0 nz=0

where

Cn = Z; ayby . (4.19b)
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Most of the algebraic manipulations associated with polynomials extend natu-
rally to formal power series. (If all but finitely many of its coefficients are zero,
a formal power series is a polynomial.) If

S =) ax  and  glx) = by,

n=>0 n=>0

then f(x) = g(x) if and only if a, = b, for all n > 0. If ¢ and d are constants, then
h(x) = cf (x) + dg(x) is the formal power series defined by

h(x) =c Z anX" + dz byx" = Z(c‘an + dby, )X". (4.18)

n=0 n=0 n=0
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4.2.4 Example. Observe that

MT+x+2+3 4+ )1 =x) = 1. (4.20)

In fact, this product is just a variation of Equation (4.14). ]
It is instructive to turn Example 4.2.4 around. How do we know that

|
| —x

=l fx+x2 42t
One justification comes from calculus:

g) =1 +x+x2+x°0 0+
= lim I 4+x42"+ -+

=)
= lim

n—oc | —x
B |
Sl —x

x e (—1,1), because lim x" = 0 whenever [x| < 1. But, this argument depends
n—0G

upon viewing g(x) = 1 +x + x> + x> + x* 4 .-+ as a function, precisely the per-
spective we are trying to avoid. What we want is a justification that depends
only on the algebra of formal power series.
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Possible Questions
Name of the Faculty : Pavithra. K

Class : Il —= M.Sc. Mathematics
Subject Name :  Combinatorics
Subject Code : 16MMP305B

UNIT-I1I

1. Solve the recurrence relation an=4an-1-4an2+(n+1)2".
2. Use the method of generating function to solve the recurrence relation

an+1 - 8an +16an.1=4";n>1; ao=1,a:=8.
3. Form a recurrence relation satisfied by an= Y.%_, k® and find the value of X7_, k2.

4. Use the method of generating function to solve the recurrence relation a,==4an.1+3n.2" ;n>1,
given that ao= 4.
5. Use the method of generating function to solve the recurrence relation a,=3an-1+1;n>1, given
that
ao=1.
6. Solve the recurrence relation a,-7ar-1+10ar2= 3" given that ap=0 and a;=1.

7. Find a formula for the general term Fn of the Fibonacci sequence 0,1,1,2,3,5,8,13,...
8. Use the method of generating function to solve the recurrence relation an+1-an=3";n>0, given
that ao= 1.

9.Solve the recurrence relation an= 2an-1+2n; a0=2.
10.State and Prove the Bells formula.
11. Solve the recurrence relation an+2-6an+1+9an= 3(2")+7(3"),n> 0, given that ap=1,a:=4
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Subject Name: COMBINATORICS

Question
There are 30 people in a group. If all shake hands with one another , how many
handshakes are possible?
In how many ways can we arrange the word ‘FUZZTONE’ so that all the vowels
come together?
In Cricket League, in first round every team plays a match with every other team. 9
teams participated in the Cricket league. How many matches were played in the
first round?
How many combinations are possible while selecting four letters from the word
‘SMOKEJACK’ with the condition that ‘J* must appear in it?

In a room there are 2 green chairs, 3 yellow chairs and 4 blue chairs. In how many
ways can Raj choose 3 chairs so that at least one yellow chair is included?

In a room there are 2 green chairs, 3 yellow chairs and 4 blue chairs. In how many
ways can Raj choose 3 chairs so that at least one yellow chair is included?

On a railway line there are 20 stops. A ticket is needed to travel between any 2
stops. How many different tickets would the government need to prepare to cater
to all possibilities?

In Daya’s bag there are 3 books of History, 4 books of Science and 2 books of
Maths. In how many ways can Daya arrange the books so that all the books of
same subject are together?

Mayur travels from Mumbai to Jammu in 7 different ways. But he is allowed to
return to Mumbai by any way except the one he used earlier. In how many ways
can he complete his journey?

Without repetition, using digits 2, 3, 4, 5, 6, 8 and 0, how many numbers can be
made which lie between 500 and 1000?

If Suraj doesn’t want three vowels together, then in how many, can he arrange
letters of the word MARKER'?

How many words can be formed by using all letters of word ALIVE.

How many 3-letter words can be formed out of the letters of the word
‘CORPORATION?’, if repetition of letters is not allowed?

In how many different ways can the letters of the word ‘GEOMETRY” be
arranged so that the vowels always come together?

In how many ways can the letters of the word ENCYCLOPAEDIA be arranged
such that vowels only occupy the even positions?

In how many ways can the letters of the word INDIA be arranged, such that all
vowels are never together?

Evaluate 30!28!

Evaluate permutation equation 59P3

Evaluate permutation 5P5

Evaluate permutation equation 75P2

Evaluate combination 100C97=100!(97)!(3)!

Evaluate combination 100C100

How many words can be formed by using all letters of TIHAR

In how many words can be formed by using all letters of the word BHOPAL

In how many way the letter of the word "APPLE" can be arranged

In how many ways can the letters of the CHEATER be arranged

In how many way the letter of the word "RUMOUR" can be arranged

How many words can be formed from the letters of the word "SIGNATURE" so
that vowels always come together.

In how many ways can the letters of the word "CORPORATION" be arranged so
that vowels always come together.

In a group of 6 boys and 4 girls, four children are to be selected. In how
many different ways can they be selected such that at least one boy should
be there

How many words can be formed from the letters of the word "AFTER", so that the
vowels never comes together.

In a Cricket cup total 153 matches were played and every two teams played exactly
one match with each other. So what were the total number of teams participating in
Cricket Cup ?

A box contains 4 red, 3 white and 2 blue balls. Three balls are drawn at random.
Find out the number of ways of selecting the balls of different colours

A bag contains 2 white balls, 3 black balls and 4 red balls. In how many ways can
3 balls be drawn from the bag, if at least one black ball is to be included in the
draw

From a group of 7 men and 6 women, five persons are to be selected to form a
committee so that at least 3 men are there on the committee. In how many ways
can it be done

The Permutations of {a,b,c,d,e,f,g} are listed in lex order. What permutations are
just before and just after bacdefg? ge

The number of four letter words that can be formed from the let ters in BUBBLE
(each letter occurring at most as many times as it occurs in BUBBLE) is

The number of ways to seat 3 boys and 2 girls in a row if each boy must sit next to
atleast one girl is

How many different rearrangements are there of the letters in the word BUBBLE?

Subject Code: 16MMP305B

UNIT-II
Option-1 Option-2 Option-3 Option-4

870 435 30! 29! +1
1440 6 2160 4320
36 9! 9!-1 72

81 41 8!/2! 312!
3 30 84 64
Cyx 91 X 8! Cy x 81X 7! 8! X 7! Cg x 81X 9!
760 190 72 380
9 6 8640 1728
49 42 48 6
70 147 60 90
500 720 240 360
86 95 105 120
990 336 720 504
720 4320 2160 40320
453600 128000 478200 635630
48 42 28 36
970 870 770 670
195052 195053 195054 185054
120 110 98 24
5200 5300 5450 5550
161700 151700 141700 131700
10000 1000 100 1
100 120 140 160
420 520 620 720
20 40 60 80
20160 2520 360 80
2520 480 360 180
17280 4320 720 80
5760 50400 2880 80
109 128 138 209
48 52 72 100
15 16 17 18
12 24 48 168
64 128 132 222
456 556 656 756
Before:agedbc, After:bacdf  Before:agf edcb, Before:agf ebcd, After: Before:agf edcb,
After:badcef g bacedg After:bacdeg

72 74 76 78
36 48 148 184
40 120 50 70

Answer
435

2160

36

41

64

Cyx 81X 7!

380

1728

42
90

240
120

336
4320
453600
42
870
195054
120
5550
161700
1

120
720
60
2520
180
17280

50400

209

72

18

24

64

756
Before:agf edcb,
After:bacdeg
72

36

120
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THE PRINCIPLE OF INCLUSION AND EXCLUSION

Suppose f : A — A isa function from a set A to itself, i.e., suppose the domain and
range of f are equal. If A is the set of real numbers, it is not difficult to find func-
tions like f(x) =e* that are one-to-one but not onto and functions like

f(x) = x> — x that are onto but not one-to-one. This kind of thing cannot, happen if
A 1s finite. Specifically, f € F,, is one-to-one if and only if it is onto. (The same
thing cannot be said about functions in F,,, when m # n. There are P(5,3) = 60
one-to-one functions in F3 5, but F35 contains no onto functions at all: there are

315(5,3) = 150 onto functions in Fs3, but Fs3 does not contain a single one-to-
one function.)

2.3.1 Definition. A one-to-one function in F,, is called a permutation. The sub-
set of F,, consisting of the one-to-one (onto) functions is denoted S,,.

Of the n" functions in F,,,, P(n, n) = n! are one-to-one, so o(S,) = n!. (The same
conclusion follows by counting the n!S(n, n) = n! onto functions in F,,.) Recogniz-
ing the permutations in F,, is easy. They are the sequences in which no integer
occurs twice.

2.3.2 Example. F>r ={(1,1),(1,2).(2,1),(2,2)}and S, = {(1.2). (2, 1)}. Of
the 3% =27 functions in F33, only 3! =6 are permutations: S3 = {(1,2,3),

(1,3,2),(2,1,3),(2,3.1).(3,1,2), (3,2, D} ]

A fixed point of f € F,,, is an element i € {1,2,... ,n} such that f(i) = i. Some
of the deepest theorems in mathematics involve fixed points. Fixed points of per-
mutations comprise the foundation of Polya’s theory of enumeration (discussed in
Chapter 3). For the present, we will focus on permutations that have no fixed points.

2.3.3 Definition. A permutation with no fixed points is called a derangement.
The number of derangements in S, is denoted D(n).
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There is only one permutation p € Sy, and it is completely defined by p(1) = 1.
Because | is a fixed point of p, there are no derangements in Sy, i.e.. D(1) = 0.
There is one derangement in S>, namely (2, 1), so D(2)=1. In S§3 (see
Example 2.3.2), the derangements are (2, 3, 1) and (3. 1. 2), so D(3) = 2. While
one can tell at a glance whether a sequence represents a permutation, it usually takes
more than a glance to recognize a derangement. ldentification of functions with
sequences has many advantages, but picking out derangements is not one of them.

The easiest (and most illuminating) way to evaluate D(n) involves a new idea.
Let’s begin by recalling our discussion of the second counting principle: If A and B
are disjoint, then 0o(AUB) =0(A)+o(B). If A and B are not disjoint, then
o(AUB) < o(A) + o(B), because o(A)+ o(B) counts every element of ANB
twice. (See Fig. 2.3.1.) Compensating for this double counting yields the formula

0(AUB) =o0(A) +o(B) — o(ANB).

What if there are three sets? Then

o(AUBUC)=0(AU[BUC(])
=0(A)4+o(BUC)—o(AN[BUC]).

Figure 2.3.1
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Applying Equation (2.11) to o(BU C) gives
0o(AUBUC) =0(A) + [0(B) + 0(C) —o(BNC)|—o(AN[BUC]). (2.12)

Because AN (BUC) = (ANB)UJ(ANC), we can apply Equation (2.11) again to
obtain

o(AN[BUC]) =0(ANB)+0o(ANC)—o(ANBNC). (2.13)
Finally, a combination of Equations (2.12) and (2.13) produces

0(AUBUC) =[0o(A)4+0(B)+0o(C)]|— [o(ANB)+0o(ANC)+o(BNC)
+0(ANBNC). (2.14)

Adding back o(ANBNC) is, perhaps, the most interesting part of
Equation (2.14). It seems the subtracted term over compensates for elements that
belong to all three sets. An element of ANBNC is counted seven times in
Equation (2.14), the first three times with a plus sign, then three time with a minus
sign, and then once more with a plus. (See Fig 2.3.2

5 =l

2.34 Example. 1t A=1{1,2,3.4}, B={3,4,5,6}, and C = {2,4,6,7}, then
AUBUC=1{1,2,3,4,5,6,7}, a set of seven elements. Let’s see what
Equation (2.14) produces. Because o(A) = o(B) = o(C) = 4,

o(A) +o(B) +o(C) = 12.
In this case, it just so happens that 0(A NB) =0(ANC)=0(BNC) =2, so
o(ANB)+o0(ANC)+o(BNC)=0.

Finally, ANBNC = {4}, so o(ANBNC) = 1. Substituting these values into
Equation (2.14) yields o(AUBUC)=12—-6+1=1.
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N
N

Don’t misunderstand. No one is suggesting that Equation (2.14) is the easiest
way to solve rthis problem. The point of the example is merely to confirm that
Equation (2.14) generates the correct solution! ]

2.3.5 Principle of Inclusion and Exclusion (PIE). 1f A|.A>... A, are finite
sets, the cardinality of their union is

G(LHJAE) =i{—])’+'N,, (2.15)

i=1 r=1
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Because f € Q,, if and only if f is a strictly increasing function, N, is the sum of
the cardinalities of the intersections of the sets taken r at a time. That is,

n n n

Ny = Z”(Ae')s Ny = E 0(A; NA;j), N3 = E o(Ai NA; NAL),
i=1 ij=1 ijk=1
i< i<j<k

and so on. Written out, Equations (2.15)(2.16) look like this:

o(A1 U UA,) = 0(A:) = o(AiNA) + Y o(AiNA;NAL) — .

i i<f i<j<k

where

,
Ne= 3 ol (4w

fEQ:n i=1
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Proof. Let x be a fixed but arbitrary element of A;UA>,U---UA,. Then x
belongs to some k of the n sets. Without loss of generality, we may assume that
x belongs to the first k sets, ie., x €A, 1 <i<k and x€ A;, k <i<n. Let’s
compute the contribution of x to N,. For any f € Q, .. x € N_ Az it and only if
f(r) <k if and only if f € Q,;. Hence, the contribution of x to N, is
0(Qrx) = C(k,r), 1 <r <k So, the contribution of x to the right-hand side of
Equation (2.15) is

k k

S (=)TCk,r)=1=> (=1)Clk,r)

=1 r=I()

(because ZL” (—=1)'C(k,r) = [—1 +1]* = 0). In other words. the right-hand side
of Equation (2.15) counts every element of the union exactly once. [ |

It may seem hard to believe that PIE could ever be useful. In fact, it is exactly the

right tool for counting problems like the one in Example 2.3.4, where, for
I < r < n, “it just so happens™ that

()

is the same for all f € Q,,. Let’s illustrate with the derangement numbers. If
Ai={peSs, :pli)=i},1 <i<n then Ay UA, U---UA, is the set of permuta-
tions having at least one fixed print, so

D(n) =n! —0o(A{UA,U---UA,).

Using the Principle of Inclusion and Exclusion,

i

D(n) =n! = (=1)""'N,.

r=1
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To evaluate N, on the right-hand side of Equation (2.17), let f € Q,,. Then
P €Ary NAfy N+ -NAy, if and only if the numbers f(1), f(2)..., f(r) are
all fixed points of p. Because there are no restrictions on how p might permute
the remaining n — r numbers among themselves, there are exactly (n — r)! permu-
tations p € S, that fix f(i), | <i<r, ie,

G{Af{” ﬂA_r'.;:; Me--- ﬂAf{r}) = (H — I‘)!,

for all f € Q,, It follows that N,= (n—r)!C(n,r) =n!/rl. Thus, from
Equation (2.17),

,_n!l nl al (—1)"n!
TR T TR i
IR B (—1)"
—nll———4+ —_—_ 4 ... 2
"'LJ! TR TR TR (2.18)
Recall that the power series expansion
. X
Efl = E _l
n=0 -
is absolutely convergent for all x. Setting x = —1, we obtain the alternating series

I I I I I

P T TR TR TR
By the alternating-series test, the error in the estimate

e 0

[ (—1)"
nra 3 T
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is at most 1 /(n+ 1)!. (The notation “*="" means “‘approximately equal”.) It follows
that the error in the estimate

D) =% (2.19)

is at most 1/(n+ 1), which is enough to prove the following.

2.3.6 Theorem. The nth derangement number, D(n), is the integer closest to
n!/e.

2.3.7 Example. From Equation (2.18),

DE) =401~ 145 -+3)

=24 244124+ 1
=9,

whereas 4! /e =8.8291. Similarly,

D(S)=51(1—1+1-14 L1

=120 — 1204+ 60 —20+5 — 1
= 44,

while 5!/e =44.1455. (It turns out that D(n) > n!/e if nis even and D(n) < n!l/e if
n 1s odd.) ]

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE Page 9/14



UNIT-III INCLUSION-ECLUSION PRINCIPLE | 2016

How many permutations p € S, have exactly k fixed points? This is a job for the
fundamental counting principle. There are C(n,k) ways to choose the numbers to
be fixed and D(n — k) ways to derange the remaining n — k ““points”. So, among
the n! permutations of S,,, C(n,k) x D(n — k) have exactly k fixed points.

Denote by P(k) the fraction of permutations in §, that have exactly k fixed

. * - . ~ . -
points. If we assume that n is enough larger than k for the estimate D(n — k) =
(n— k)!/e to be valid, then

Pk) = = . (2.20)

It is proved in Section 3.3 that the average of the numbers of fixed points of the
permutations in S, is 1. Setting k = | in Equation (2.20) shows that the fraction of
permutations in S, that have exactly 1 fixed point is P(1)=1/e.

2.3.8 Example. let F(p) be the number of fixed points of p € §5 = {(1,2,3),
(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2, )}. Then F(1,2,3)=3, F(1,3,2) =
F(2,1,3)=F(3,2,1)=1,and F(2,3,1) = F(3,1,2) = 0. From these data, it is
easy to see that the average number of fixed points is 34+ 14+ 1414+
0+ 0]/6 = 1, and easy to confirm that the fraction of permutations in §; having
exactly one fixed point is C(3,1)D(2)/6 =2=0.5. (The estimate 0.5=1/e =
0.3678794 .. . afforded by Equation (2.20) when n = 3 and k = 1 is evidently not
very good.)

It follows from Theorem 2.3.6 that D(9) = 133,496. From Equation (2.20), the
fraction of permutations in §1p having exactly one fixed point is C(10, 1)D(9)/
10! = D(9)/9! = 03678792, which compares more favorably with 1/e. ]

Let’s see how the Principle of Inclusion and Exclusion might be used to produce
new information about Stirling numbers of the second kind. Let A; =

{f€Fun:f"'(s) =D}, 1 <s5<n. Observe that no f € A; can be onto. In
fact, g € F,,, 1s onto if and only if

gE€AIUAU---UA,.
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2.3. The Principle of Inclusion and Exclusion

Therefore,

n'S(m,n) =n" —o0(A; UA, U---UA,)

=n" = 0(A)+ ) o(AiNA))

=

E.
— > oA NAINA) +---.
<<k

Now, A, is the set of functions in F,,, that do not map anything to n. In fact, it
would be very easy to confuse A, with F,,,_. Certainly, 0(A,) = (n — 1)". But, the
number of functions in F,,, that map nothing to n is the same as the number of
functions that map nothing to | or nothing to 2. In other words,
o(A;)=(n—1)", 1 <i<n Similarly, there is a one-to-one correspondence
between the functions in A, NA,_; and F,,, 5. Thus, 0(A,NA,_ ;)= (n—2)".
Hence, o(A;NA;)=(n—2)", 1<i<j<n. Similarly, o(A;NA;NA;) =
(n—=3)", 1<i<j<k<n, and so on. Substituting these values into
Equation (2.21) yields

n!S(m.n) =n" —n(n —1)" +C(n,2)(n — 2)" — C(n,3)(n —3)" +---
=Y (=1)'Cla,5)(n —s)". (2.22)

Because C(n,n —t) = C(n,1), replacing s with n — ¢ in Equation (2.22) yields

n

nlS(m,n) = (=1)""C(n,0)".

=1

It seems we have done nothing more than rediscover Stirling’s identity
(Corollary 2.2.4)!

Let’s try something else, maybe an example from the intersection of combina-
torics and number theory.
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2.3.9 Definition. Let n be a positive integer. The Euler totient function ¢(n) is
the number of positive integers m < n such that m and n are relatively prime.

2.3.11 Theorem. Suppose n= pi‘pi’f .. .p?_ where r; >0, 1 <i<k and
P1.P2.....p are distinct primes. Then

Proof. Let S={1,2,...,n}. Define

AE': {pilezplls-%pf%"'5(:71_)1”!'}* ] S.‘:Ek
i

Then A; is the subset of § consisting of the multiples of p;. Moreover (just count its
elements), o(A;) = n/p;. If i # j, then A; N A; consists of those elements of § that
are multiples of p; and p; and. therefore, of p;p;. So,

n
A;NA; = {pip;. 2pipj. 3pipys - - - (”)pmj}

In particular, for i < j, o(A; NA;) = n/(pip;). If i <j <k, then o(A; NA; NAg) =

n/(pip;pr ), and so on.
If 1 <m<n (ie, if m €8§), then the greatest common divisor of m and n is

greater than | if and only if m and n have a common prime divisor if and only if
mecA UAU--- UAg. So,

o(n)=n— oA UA, U ---L_JA;;)

:n—Z +Z Zo(AmAijijr---

i<j i<j<k

n n n n n
Pr P2 PPz PiP3 PiP2P3

n :
=—(Ex—Ex1 + Eg2— -+ [—I]LEUJ,
PPz P
where E, = E,(p1, p2,- --,py) is the 1th elementary symmetric function, 1 <t < k.
Because (py —1)(p2 — 1) -+ (Pk —)=E—E 1 +E -+ [-1]"E,
¢(n) = (Pl—lj(ﬂ"*—lj (P —1).
plpr}. .. , .
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2.3.12 Example. A favorite number of the Babylonians was 60 = 22 x 3 x 5.

By Theorem 2.3.11,
(60) = 60 eV Einl A VElek
¢ o 2 3 5

= 16.

The 16 numbers less than 60 and relatively prime to 60 are 1, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 49, 53, and 59. ]
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POSSIBLE QUESTIONS

1. State and prove the Inclusion —Exclusion Principle.

2. Find the number of integers between 1 and 2000 inclusive that are not divisible by 2,3, 5
or7.

3. Let|A|=nand |B|= m and n> m. The number of onto functions f: A —B is given by m"-
[n(m-1)"-"Co(m-2)"+"C3(m-3)"+...(-1)™m].

4. Using the principle of inclusion and exclusion find the number of prime numbers not
exceeding 100.
5. State and prove the Binomial Theorem.

6. Use the principle of inclusion —exclusion to derive a formula for @(n) when the prime
factorization of n is n= p1*p2?...pm2".

7. Show that the number of dearrangements of a set of n elements is given by, Dy = n![1-

1 1 1 1
o +Z ~ 3 + ... +(-1)na].
8. Using principle of inclusion —exclusion find the number of onto functions from a set

with m elements to a set with n elements where m and n are positive integers with m>n.

9. Asurvey of 150 college students reveals that 83 own automobiles, 97 own bikes, 28 own
motorcycles, 53 own a car and a bike, 14 own a car and motorcycle, 7m own a bike and a
motorcycle and 2 all three.

How many students own a bike and nothing else.
How many students do not own any of the three.
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Question Option-1 Option-2
How many different rearrangements are there of the letters in the word
TATARS if the two A’s are never adjacent? 24 120
The number of partitions of X= {a,b,c,d}with a and b in the same block is 4 5
The number of partitions of X= {a,b,c,d,e,f,g}with a,b and c in the same block
and c,d and e in the same block is 2 5
A class of 15 students is visiting the Louvre and the teacher wants to take a
photograph of 5 of them lined up under the Mona Lisa. How many such
photographs are possible? P(15.5) 2
If n is an integer and n2 is odd ,then n is: even odd even or odd
In how many ways can 5 balls be chosen so that 2are red and 3 are black 910 970

Pigeonhole principle states that A — B and A> Bthen:

f is not onto

f is not one-one

Option-4

144

10

15 C(15,5)
prime

980

f is neither one-one nor onto  f may be one-one

The number of distinct relations on a set of 3 elements is 8 9

In how many ways can a party of 7 persons arrange themselves around a

circular table? 6! 5! 7!
In how many ways can a hungry student choose 3 toppings for his prize from a

list of 10delicious possibilities? 100 120

A debating team consists of 3 boys and 2 girls.Find the number of ways they

can sit in a row? 120 30
How many different words can be formed out of theletters of the word

VARANASI? 64 120
How many permutations are there for the 8 letters a,b,c,d,e,f,g,h start witha. 8! 6! 7!
How many permutations are there for the 8 letters a,b,c,d,e,f,g,h end with h. 8! 6! 7!
How many permutations are there for the 8 letters a,b,c,d,e,f,g,h start with a

and end with h. 8! 6! 7!
In how many ways can the symbols a,b,c,d,e,e,e.e,e be arranged so that no e is

adjacent to another e? 14 24
What is the number of arrangements of all the six letters in the word

PEEPER? 90 60
How many distinct four- digit integers can one make from the digits 1,3,3,7,7

and 8 90 60
How many different outcomes are possible when 5 dice are rolled? 522 252

In a group of 100people, several will have birth days in the same month.

Atleast how many must have birth days in the same month. 10 9
How many positive integers not exceeding 1000 are divisible by 7 or 11? 221 223

In how many ways can five letters be choosen from the list A,B,...1? In how

many ways can five letters be chosen. 9C5 9C6 5C9
A wife wants to present three shirts to her husband. At the shop the husband

finds seven shirts of his liking. What is the number of choices available to the

wife? 39 36
How many matricesof order 2x3can be formed,in which the digits from 0 to 9

occur not more than once. 10P5 10P6 10P10
How many four digit numbers can be formed using the seven digits 0,1,2...6 if

repetitions are not allowed? 720 630
thenumber of circular permutations of n objects is n! (n-1)! n!/2
if |A|= n, then |P(A)|= 2n n n!/2
How many numbers are there between 1 and 65, which are divisibleby any one

of 2,3 and 5 45 46
How many ways can we draw a club or a diamond from a pack of 2 cards. 26 15

In how many ways one candraw an ace or a king from an ordinary deck of

playing cards. 4 8
How many ways can we get a sum of 7 or 11 when two distinguishable dice

arerolled 6 2
How many ways can we get an even sum when two distinguishable dice

arerolled 6 8
How many possible outcomes are there when we roll a pair of dice one red and

one green. 6 30
In how many different ways one can answerall the true or false test consisting

of 4 question. 2 4
Find the number of licenceplates that can be made where each plate contains

two distinguish letters followed by three different digits. 4,68,000 6,84,000 8,64,000
In a railway compartment, 6 seats are vacant on a bench.In how many ways

can3 passengers can sit on them. 210 230

If there are 12 boys and 16 girls in a class, find the number of ways of selecting

one student as class representative. 12 16
How many different four letter words can be formed out of the word

LOGARITHMS if repetition of letters is not allowed. 5010 5040
How many different 8-bit strings are there that begin and end with 1. 36 64
How many different 8-bit string are there thatend with0 111 . 2 4
How many different 2-digit numbers can be made using the digits O to 9 when

repetition is allowed. 90 80
How many different 2-digit numbers can be made using the digits O to 9 when

repetition is not allowed. 90 80
How many words an be constructed with three English alphabet with

repetition. 17576 17570
How many words an be constructed with three English alphabet without

repetition. 15600 16500
There are 10-true false questions on a examination. In how many ways all the

questionsbe answered. 1000 1024
In how many ways can we geta sum of 4 or 8§ when two distinguishable dice

arerolled. 8 6
The value of 0! Is 1 0
The value of 1! Is 1 0
the value of 5lis 100 120
The value of 10!/8! Is 100 120
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120
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4010
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100

100

15676

12600
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2n

2n

160
90

Answer

180

15

P(15,5)

odd

990

f is not one-one
512

6!

110

60

720

8!

7!

6!

72

20

20

220

229

9C5

35
10P6
480
(n-1)!
2n

48

25

12
23
16
4,68,000
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28
4050
62
16
120
120
15346

13600
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150
60

120
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120
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24

60
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220

35
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16
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FUNCTION COMPOSITION

Let f : D — R be a function. While there is general agreement that D should be
called the domain of f. not everyone concurs that range is the proper name for
R; some authors use “‘range” to denote the set {f(x) : x € D}.

3.1.1 Definition. Let f:D — R be a function. The image of f is the set
f(D) ={f(x): x € D}, sometimes denoted image( f).

Note that image(f) =f(D) C R, with equality if and only if f is onto. If
f € Fun. then f(D) is the set of numbers that appear in the sequence
(f(1), £(2),--., fm)).

Suppose f : D — Rand g : A — B are functions. If f(D) C A, then the composi-
tion of g and f is the function go f : D — B defined by g o f(x) = g(f(x)). (In cal-
culus, the derivative of a composition of functions is described by the chain rule.)

There is an awkward “backwardness™ about the standard notation for function
composition. It is occasioned by the fact that we read from left to right but evaluate
a composition from right to left: The rule of assignment g o f is determined by first
applying fand then applying g. The French school has eliminated the difficulty by
putting the function on the right, i.e., writing xf rather than f(x). In the French

scheme, cumbersome expressions like g o f(x) and g(f(x)) become xfg. Because
this right-handed notation has not been widely accepted in the United States, we
will stick with the familiar f(x).

3.1.2 Example. 1ff € Fys5andg € Fs3, where might g o f be found? Because f
is applied first, gof shares the domain of f. Because g is applied second,
image(g o f) C image(g): so gof shares the range of g. Therefore, g of € F3 3.
To take a specific example, let f = (3,4) € F5 and g = (3,3,2,1,3) € F53. Then

sogof=(2,1).
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What about f o g7 Because that little circle looks like multiplication, one might
be tempted to conclude that gof = fog. Let’'s check it out. Observe that
fog(l)y= f(g(l)) =f(3). Given that f=(3,4), what is f(3)? (Don’t say
f(3) =4. This is no time to confuse sequences with cycles. The cycle idea is valid
only in the context of permutations. While f € F; 5 may be one-to-one, it most cer-
tainly is not onto.) Because 3 € {1, 2}, the domain of f, “*f(3)"" is nonsense; there is
no third component in the sequence (3,4) = (f(1), f(2)). Since f(3) doesn’t exist,
f o g doesn’t exist either. In other words, it doesn’t make sense even to write f o g,
much less expect that it should equal gof = (2,1). ]

3.1.3 Example. Suppose f = (3,2,1,1,2) € Fszand g = (2,1,1) € F35. Then
image( f)=range(f) = {1,2,3} =domain(g), so there is a function g of € Fs,.
To determine which function it is requires a little work:

gof(1)=g(f(1)) =g(3) =1
gof(2) =g(f(2) =g2)=1
gof(3)=g(f(3)) =g(1)=2
gof(4) =g(f(4)) =g(1)=2
gof(5)=g(f(5) =g2)=1

so gof=(1,1,2,2,1). What about fog? This time image(g)={1,2} C
{1,2,3,4,5} = domain(f), so f o g is a legitimate function. Maybe now fog =
g of? Let’s see. The domain of f o g is domain(g) ={1,2,3};

fog(l)=f(g(l 2,
fog(2)=f(g(2)) =f(1) =3,
fog(3)=r(g(3)) =f(1) =3,

so fog=1(2,3,3) € F33, which is not hard to distinguish from gof =
(1,1,2,2,1) € Fs.,. O
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What is the easy way to compute function compositions? Unfortunately, there
are no shortcuts. With a little experience, one can find g o f without taking up so
much space, but only by keeping track of all the steps in one’s head. Give it a try.
Letf,g € Fya be defined by f = (1,1,2,2)and g = (4,3, 1, 1). If you can, confirm
in your head that gof = (4,4,3,3) and f o g = (2,2, 1, 1). If you can’t manage to

do it in your head, that’s not a problem, provided you work it out with pencil and
paper!

What about composing three functions? The only really good news here is that
function composition is associative. 1f the domains and images match up so that
fo(goh) makes sense, then (f og) o h also makes sense, and

fol(goh)=(fog)oh. (3.1)

This is useful for two reasons. It means f o g o h is unambiguous, and it means that
f o goh can be evaluated, one composition at a time.

Suppose f € F,,,, is a permutation. Then f € §,, is one-to-one (and onto). So, f
has an inverse. It might be helpful at this point to recall the definition of “inverse™.

3.1.4.  Definition. Suppose f : D — R and g : R — D are functions. Then g is
the inverse of fif

gof(d)=d foreverydeD, (3.2)
and

fog(r)=r foreveryreR. (3.3)

If f has an inverse, then its rule of assignment is uniquely determined by
Equation (3.2). In other words, if f has an inverse, it is unique. The inverse of f
is typically written, not g, but f~!. Two things about this notation deserve comment.
The first is that £~ ! is just a name for the unique function g that, along with £, satis-
fies Equations (3.2) and (3.3). The second is that Equations (3.2) and (3.3) are
symmetric, i.e., f ! = g if and only if g~! = f. (In particular, [f"]_I =f.)
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3.1.5 Example. Focusing on permutations does not affect function composition,
but disjoint cycle notation changes the way it looks! If p; = (1473)(2)(56) and
p2 = (167)(24)(35), then

p1 o pr = (1473)(2)(56) o (167)(24)(35) (3.4)
= (15)(274)(36), (3.5)

and

There is a purely mechanical way to produce the disjoint cycle factorization of
p1 o pa. Write (17, Then place your finger at the right-hand end of Equation (3.4)
and start moving it to the left, searching for the number I. When your finger comes
to 1, stop. The number immediately to the right of 1 is p2(1) = 6. (So far, so good:
propa(l)=pi(p2(1)) = pi1(6). It remains to find p;(6).) Resume the leftward
motion of your finger, but with a new objective. Instead of searching for 1, look
for (another occurrence of) 6. When you come to 6, stop. (Having already deter-
mined that p»(1) =6, we are about to find p;(6).) Because 6 is the last number
in its cycle, move your finger leftward to the first number of that same cycle. In
this case, that number is 5. Write 5 next to | in (17", obtaining “*(157.

Now, return your finger to the far right-hand end of Equation (3.4) and repeat the
process, this time beginning your search with 5. Because 5 is the first number
encountered, the search is brief. As 5 is at the end of its cycle, move your finger
to the 3 at the beginning of the (same) cycle. (You have just determined that
p2(5) = 3. The next step is to determine p;(3).) Without writing anything down,
resume your leftward movement, looking for the next occurrence of 3. Since it is
found at the end of its cycle, move your finger to the front of that same cycle, bring-
ing it to rest on 1. Evidently, 1 = p{(3) = p;(p2(5)). In the disjoint cycle factoriza-
tion of p; op,, 1 follows 5. Since we opened the cycle with 1, it is time to close the
cycle, 1.e., change “(15” to “*(15)".

Next, find the smallest number that has not yet been used. In this case it is 2.
Replace “*(15)” with “(15) (2. Place your finger at the far right-hand end of
Equation (3.4) and repeat the process, searching for 2. Continue in this way until
you've obtained Equation (3.5). ]
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3.1.6 Definition. Let e, € S,, be the function defined by e,(i) =1i,1 <i<m
The permutation e, is called the identity of S,. In disjoint cycle notation,

€m = (])(2)(1’?’3)

Before reading on, convince yourself that
foen,=f=e,of (3.6)

for every f € §,,. A more significant application of Definition 3.1.6 is the following
useful alternative to the definition of inverse, one that is special to permutations.

3.1.7 Theorem. Suppose f.g €8, Then g =f " if and only if go f = e,, and
fog=en.

Proof. This is just a restatement of Definition 3.1.4 using e,,. [ |

We now come to an important technical observation.

3.1.8 Lemma. Ifp,q<S,, then, while they may not be equal, both p o g and
q o p exist, and both are permutations in S,,,.

Proof. Because S,, C F,m, both pog and g op exist as functions in F,,. It
remains to prove that they are permutations. By definition, §,, consists of those
functions f € F,,,, that are one-to-one (and onto), i.e., S,, consists (precisely) of
the invertible functions in F,,,,. It follows from [f"]_I = f that the inverse of
an invertible function is invertible, so p~!, g~ € §,,. To see that g o p is invertible,
observe that

(gop)o(p~og ) =qo(pop)og™

— —1
=goenogq
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by associativity, Theorem, 3.1.7, and Equation (3.6). The identity (p 'og o
(g o p) = ey can be proved similarly. Thus, by Theorem 3.1.7,
plogt=(qop)", (3.7)

the inverse of g o p. In particular, g o p has an inverse, which 1is the criterion that
must be met to guarantee that g o p € S, Interchanging p and ¢ in Equation (3.7)
yields (pog) ' =g 'op!, proving that po g € S, [ |

3.1.9 Example. Letp = (1524)(3) and g = (143)(25). Then p~! =(4251)(3) =
(1425)(3) and g ' = (341)(52) = (134)(25). Let’s confirm Equation (3.7) by
comparing p~' o g~ with (go p)~'. Observe that

Next, compute

3.1.13 Definition. A nonempty subset G of S,, i1s closed if fe € G for all
/2 €G.

We have already proved that f, g € G implies fg € S,,. That’s not the point. The
issue 1s whether the composition is an element of the subset G.
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3.1.14 Example. Of the 63 nonempty subsets of Sz, only six are closed. Apart
from 83, itself, the other five are {es},{es, (12)(3)}, {es,(13)(2)},{es,(1)(23)}.
and {es, (123), (132)}. If § is one of the remaining 57 nonempty subsets of S, there
exist permutations f, g € S such that fg & S.

From our perspective, there is a kind of aristocracy among the subsets of S,,. The
closed subsets are called subgroups. ]

3.1.15 Definition. Let G be a (nonempty) closed subset of §,,. Then G is a
subgroup of S,,, or a permutation group of degree m.

In biology, a riparian habitat 1s found at the boundary of water and land. Life
occurs in its richest diversity in the vicinity of such natural boundaries. A similar
richness may frequently be found near the boundaries of mathematical disciplines.
That is where we are now, at the boundary between combinatorics and algebra.
Because every finite group is isomorphic to a permutation group, the case is
sometimes made that combinatorial group theory embraces all finite group theory.
At best, that viewpoint is misleading. Two permutation groups that are isomorphic
as abstract groups may have very different combinatorial properties. It is the com-
binatorial properties of permutation groups that are of interest in this chapter.

One final pedagogical issue needs to be discussed. The group S, has been
defined in terms of the permutations of V = {1,2,...,m}. The fact that V is a
set of numbers is beside the point. We have used V because it is convenient. We
might just as well have discussed the set of permutations of ¥ = {y;,y2,...,Vm}
denoting it Sy. (In that notation, §,, becomes Sy.) Strictly speaking, elements of Sy
permute the y's, whereas elements of S, permute their subscripts. But, the “action”™
is the same. For our purposes, S, and Sy are clones. When the time comes to talk

about permutations of Y, we will talk about S,,, acting on Y.

Y] . . #* L. . .
3.2.2 Definition. A cycle is nontrivial if its length i1s greater than 1. A
permutation having just one nontrivial cycle in its disjoint cycle factorization

will, itself, be referred to as a cycle. A k-cycle in S,, 1s any permutation of cycle
type [k, 1"™*].
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3.2.3 Definition. 1If pS,,. let p’ =e, and p" =pop™ !, n>1. Denoted
o(p), the order” of p is the smallest positive integer k such that p* = e,,.

Observe that o(e,,) = 1 for all m. (In particular, order is independent of degree.)

Before getting to a proof of the existence of o( p), let’s see some examples.

3.2.4 Example. Let p= (123456) € §,, (where m > 6). Then (check the com-
putations)

p* = pp' = (123456)(123456) = (135)(246),

P’ = pp* = (123456)(135)(246) = (14)(25)(36),
pt = pp® = (123456)(14)(25)(36) = (153)(264)
p* = pp' = (123456)(153)(264) = (165432)

p® = pp’ = (123456)(165432) = ey,

so o( p) = 6. (It follows from Lemma 2.4.1 that o(g) = k for any k-cycle g € S,.)
Observe that the next few powers of p are

pl=p®=pe,=p, P =pp =pp=pt, P’ =pp®=pp*=p°

- 2
and so on. In particular, p'? = p°® = e,,.

If f=(12)(3456) € §7, then fis a permutation of degree 7. To find its order,
observe that

f = (12)(3456),

1% = (12)(3456)(12)(3456) = (35)(46)
(12)(3- 5)(46) = (12)(3654)
(12)( )

so o(f) = 4. (Does 12 = e77) O
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3.2.5 Lemma. Letn be a positive integer. Suppose p € S, has order o(p) = k
Then p" = e, if and only if k is a factor of n.

Proof. Dividing n by k yields a quotient ¢ and remainder r = n — kg, where
0 < r < k. Because function composition is associative, p" = p**t" = (p*)ip" =
(em)'p” = emp” = p”". In particular, p" =e, if and only if p” =e,. Because
r<k=o(p),p" = ey if and only if r = 0 if and only if n = kq. N

3.2.6 Theorem. Ifp € S, then o( p) is the least common multiple of the lengths
of the cycles in the disjoint cycle factorization of p. (In particular, o( p) exists.)

Proof. 1f p = e,,, there is nothing to prove. So, suppose p # e€,,. Then
p = Gli)Gy(i2) -+ - Gy (iy),

where C,(i;), 1 <t < r, are the nontrivial inequivalent cycles of p. In the aftermath
of Definition 3.2.2, this means p = pp2 - - - p,, where the cycle p, € §,, differs from
Cp(i;) at most by some fixed points. Because inequivalent cycles of p are disjoint,
and disjoint cycles commute, p" = pip5---pl.

Observe that e, = p" = pf(p4---p") if and only if

() = (338)

If p| # e, then p{(i) = j for some j # i. Because any fixed point of p; is a fixed
point of pf, this can happen only if i,j € C,(i;), only if both i and j are fixed points
of p2, p3,....pr. So, the left-hand side of Equation (3.8) sends j to i, but the right-
hand side fixes j. This contradiction proves that p] = e,,. Since any one of the
cycles could have been first, p" = e, if and only if pf! = ¢,. 1 <t < r. By Lemma
3.2.5 (and Lemma 2.4.1), p!' = e,, if and only if n is a multiple of o( p,). the length

of Cy(i;). Thus, p" = e,, if and only if n is a common multiple of these lengths, the
least of which is o( p). [
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3.2.7 Example. Let f=(3,8,5,6,7.2,9.4,1) € Sg. Apart from establishing
that o(f) exists, Theorem 3.2.6 1llustr’|tes one of the benefits of disjoint cycle
notation. From the expression f = (13579)(2846), it is easy to see that o(f) = 20.

What about p = (2,3,1,5,4)? Can you see that o( p) = 6 without expressing it
in the form p = (123)(45)? Let’s confirm that o( p) = 6. (Check the computations.)

p* = (123)(45)(123)(45) = (132)
p’ = (123)(45)(132) = (45),

p' = (123)(45)(45) = (123),

P’ = (123)(45)(123) = (132)(45)
p° = (123)(45)(132)(45) = es.

3.2.8 Theorem. Let p € S,.Ifo(p)=k> 1, thenp ' =p* .

Proof. By Exercises 16 and 19 of Section 3.1. p~! is a name for the unique
permutation f € §,, that solves the equation pf =e,. So, the theorem is a

consequence of pptl=pF =e,. [ |

3.2.9 Definition. Let p €S,. The cyclic group generated by p is (p)=
{P":0<n<o(p)}

3.2.10 Example. 1f o(p) =k, then p* = e,,, so

Observe that o({p)) = k = o(p): the number of elements in the subgroup (p) is
equal to the smallest positive integer k such that p* = e,,. In particular, calling k
the order of p is no great abuse of language after all.

As in Example 3.2.4,

Pt =ppt = pen = p.

pk-‘rE :ppfc-i-l =pp = p?_:
pk-‘rfi :ppfc-i-l — PPE _ p3:
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and so on. Evidently, the infinite sequence

0 1 2 1 k—1 1 k—1 1 k—1
P.P.P;:--=€mpP,....pP LY LAY 1€y Py P 1€y

1s cyclic with period k. In particular,

Prmn=0={p":0<n<kj}

= (p), (3.9)
which explains why (p) is a eyelic group. H

We now justify the word group in Definition 3.2.9.

3.2.11 Theorem. Ifp €S, then (p) is a subgroup of Sy,.

Proof. Because (associativity and induction) p'p* = p™* r, s > 0, the nonempty
subset of §,, on the left-hand side of Equation (3.9) is closed. [ |

3.2.12 Corollary. Let G be a permutation group of degree m. Then
1. e, € Gand

2.peG=p'led.

Proof. Because G cannot be empty, it contains a permutation that may as well be
denoted p. Suppose o(p)=k. If k=1, then p ' =e, =p € G. Otherwise,

by Implication (3.10), {(p) ={em.p.....p* '} € G. Thus, e, € G and, by
Theorem 3.2.8, p~! =p 1 €G. [ |
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POSSIBLE QUESTIONS
UNIT-IV

1. For A={1,2,3,4} and B= {u,v,w,x,y,z}, determine the number of one to one functions f:
A— B where f(1) #u,v, f(2) #w; f(3) #w.,x and f(4)# x,y,z.

2. Let f(n) and g(n) be functions defined for every positive integer n satisfying f(n) =
Ydjn &(d) Then g satisfies g(n) = Xqjn n(d) f(n/d).

3. In making seating arrangements for their son’s wedding reception, Grace and Nick are
down to four relatives, denoted by R; for 1<1<4 who do not get along with one another.
There is a single open seat at each of the five tables T; where 1 <j< 5. Because of family
differences
a. Ry will notsitat T, or T».

b. Rowill not sit at T»

c. Rswill not sit at Tz or Ta.

d. Rawill notsit at T4 or Ts

Find the number of ways these four relations can be seated at four different tables

satisfying the above stated conditions.

4. State and prove the Euler function

5. Let A= {1,2,3,4,5,6,7,8}. Find the number of one to one functions f: A—B where
fi)#1, forallie A.

6. A pair of dice, one red and the green is rolled six times. We know that the ordered
pairs (1,2), (2,1),(2,5),(3,4), (4,1),(4,5) and (6,6) did not come up what is the
probability every value came up on both the red die and the green one.

7. Prove the Menage problem.

8. For A={1,2,3,4,5} and B= {u,v,w,X,y,z}, determine the number of one to one
functions f: A— B where f(1) #v, w; f(2) #u,w; f(3) #x and f(4)# v, X,y.

9. Prove the g, @(d) =n.

10. Find the closed form expression for the Fibonacci sequence defined by Fn= Fn.1+Fn-2,

n>2.

11. Obtain Fractional Decomposition and identify the sequence having the expression
3-5z

1-2z-3z2
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Multiple Choice Questions (Each Question Carries One Mark)

Subject Name: COMBINATORICS

UNIT-1V

Question Option-1 Option-2
A e is an arrangement ofa number ofobjects in a definite order, taken s Permutation Combination combinatorics
The number of permutations of n things taken all at a time is n! (n-1)! (n+1)!
In how many different ways can the lettersof the word HEXAGON be permutted. 5040 4050
How many permutations of the characters in the word COMPUTER are there? Hc 15120 12150
In how many ways can first, second and third prize in pie-baking contest be givent 2730 3720
The arrangements of n objects in a circle is ----------- permutation combination factorial
The number of arrangements of n objects in a circle is ----------- n! (n-1)! (n+1)!
A - is a selection of some or all of a number of different objects wher¢ permutation combination factorial
The valueof nCn is ------------------- n! 1 n!
How many 16 bit strings are there containing exactly 5 zeroes? 348 4368
Three travellers arrive at a town where there are five hotels. In how many ways cai 56 60
In how many ways can 6 differentlycoloured marbles be arranged in a row. 720 70
In how many ways can 8 people be seated on a bench if only 3 seats are available. 330 320
Find the number of permutations of letters in the word STATISTICS 40500 41500
In how many ways can a committee of a persons be chosen out f 10. 200 220
In how many ways can 4 red balls be drawn from a bag containing 10 red balls. 200 220
In how many ways can a random sample of 5 citiesbe drawn from a total of 20. 15504 2456
In how many ways can a committee of 6 menand 2 women be formed out of 10 me 2000 2100
Find the number of permutations of letters in the word QUEUE 30 60
Find the number of permutations of letters in the word COMMITTEE 45360 53480
Find the number of permutations of letters in the word PROPOSITION 1,66,3200 1,553,200 1,44,3200
Find the number of permutations of letters in the word BASEBALL 5050 5040
How many permutations of the letterw A B C D E F G H contain the string ED 5040 4050
How many permutations of the letterw A B C D E F G H contain the string CDE 730 720
How many permutations of the letterw A B C D E F G H contain the string BA an 120 130
How many permutations of the letterw A B C D E F G H contain the string AB,DI 120 130
How many permutations of the letterw A B C D E F G H contain the string CAB ¢ 12 24
Find the number of permutations of the lettersof the word KAPIL beginning with ] 12 24
Find the number of permutations of the lettersof the word KAPIL vowels always t 24 48
Find the number of arrangements of the letters of the words MATHEMATICS 4989600 456700
Find the number of arrangements of the letters of the words COMMISSION 226800 236800
How many bit strings of length 12 contain exactly three 0's 210 220
How many bit strings of length 12 contain atleast three 1's 4017 4027
How many bit strings of length 12 contain atmost three 1's 928 968
How many bit strings of length 12 contain an equal number of O's and 1's 928 968
There are 6gentlemen and 4 ladies to dine at a round table. In how many can they t 43200 43500
From 6 gentlemen and 4 ladies, a committee of five is to be selected. In how many 240 246
Ravi has 5 friends. In how many ways can he invite one or more of them to a party 31 32
How many bytes contain exactly two 1's 25 50
How many bytes contain exactly four 1's 60 40
How many bytes contain exactly six 1's 25 50
How many bytes contain atleast six 1's 35 37
In how many can we distribute seven apples and six oranges among four childrens 1860 1680
A student has to answer 10 out of 13 questions in an examination. How many cho: 240 246
A student has to answer 10 out of 13 questions in an examination. How many cho: 156 15
A student has to answer 10 out of 13 questions in an examination. How many cho: 10 110
A student has to answer 10 out of 13 questions in an examination. How many cho: 60 70
A student has to answer 10 out of 13 questions in an examination. How many cho: 226 276
Find the number of 4 combinations of 5 objects with unlimited repetitions. 30 50
Find the number of ways of placing 8 similar balls in 5 numbered boxes. 456 495
Find the number of binary numbers with five 1's and three 0O's. 36 56
How many outcomes are possible by rolling six faced die 10 times. C(5,10) C(15,10) C(25,10)
How many different outcomes are possible from tossing 10 similar dice. 2003 3003
Find the number of 3 combinations of 5 objects with unlimited repetitions. 43 35

. , Coimbatore —641 021
(Peered to be Lniversty) DEPARTMENT OF MATHEMATICS

Option-3

Subject Code: 16MMP305B

Option-4
Factorial
(n/2)!
4150
14520
7230
circular permutation
(n/2)!
circular permutation
n!/2
538
62
60
336
50400
240
240
34567
2200
90
44360
1,33,3200
5060
4150
760
140
140
26
6
36
457600
267300
230
4016
978
924
43600
236
36
28
30
28
32
1540
286
165
120
80
256
60
465
42
C(10,10)
4003
36

Answer
Permutation
n!
5150 5040
13620 15120
3450 2730
circular permutation
(n-1)!
combination
1
5632 4368
64 60
26 720
332 336
51400 50400
210 210
210 210
12897 15504
2300 2100
120 30
42350 45360
1,66,3200
5070 5040
5150 5040
780 720
150 120
150 120
30 24
32 6
42 48
482300 4989600
234600 226800
250 220
4026 4017
948 968
948 924
43100 43200
226 246
39 31
100 28
70 70
100 28
43 37
1450 1680
226 286
172 165
130 110
90 80
236 276
70 70
432 495
52 56
C(15,10)
5003 3003
46 35
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BURNSIDE’S LEMMA

Getting from point a to point b can sometimes be a problem. Consider the case in
whicha,b € V = {1,2,...,m}. Let G be subgroup of S,,, and suppose the only way
to get from a to b is via some permutation p € G that maps a to b. It G were a
transportation system, the ideal situation would be one in which, for any
a,b € V, there is a p € G such that p(a) = b. But, few real-life systems are ideal.
Take the San Francisco Bay Area, for example, where public transportation is
relatively good. If @ and b are both in Oakland, an AC-Transit bus will take passen-
gers from point a to point b. If @ and b are in San Francisco, MUNI will do the job.
Getting from point a in Oakland to point b in San Francisco, however, is another
matter. If the system were enlarged to include BART,” there would be no problem.
But, anyone restricted to AC-Transit or MUNI would be out of luck.

3.3.1 Definition. 1If G is a permutation group of degree m, then x,y € V =
{1,2,...,m} are equivalent modulo G, written

x=y (mod G) (3.15)

if there is a permutation p € G such that p(x) = y.

L] 1 ™ N 1 . . PR

For the case modeled by Bay Area buses, any two points in Oakland are equiva-
lent, as are any two points in “the City”. Without BART, however, no point of
Oakland 1s equivalent to any point in San Francisco. The two cities are in different
transit districts or equivalence classes, language that depends on the next result.

3.3.2 Theorem. If G is a permutation group of degree m, then equivalence
modulo G is an equivalence relation.

To prove the theorem, it will be necessary to verify the following: For all
x,y,zeV={L2,...,m},

1. x =x (mod G).

2. x=y (mod G) = y=x (mod G).

3.x=y(mod G)and y=z (mod G) = x =z (mod G).

PREPARED BY K. PAVITHRA, MATHEMATICS, KAHE Page 2/14



UNIT-V NECKLACE PROBLEM | 2016

Proof of Theorem 3.3.2. By Corollary 3.2.12. e, € G. Because e,(x)=
x, 1 < x < m, criterion | 1s verified.
If x = y (mod G), there is a permutation p € G such that p(x) = y. By Corollary
3.2.12, p~! € G. Because p(x) =y if and only if p~!(y) = x. criterion 2 is proved.
If x =y (mod G) and y = z (mod G), there are permutations f, g € G such that
f(x) =y and g(y) =z. Because G is closed, p=gf € G. Since p(x)=
gf (x) = g(f(x)) = g(y) = z, criterion 3 is established. [

Equivalence classes arising from the action of a permutation group are of funda-
mental importance in combinatorial enumeration.

3.3.3 Definition. lLet G be a permutation group of degree m. Equivalence
classes modulo G are called orbits of G. The orbit of G containing x is

0, = {p(x) : p € G}. (3.16)

In this definition, x and p(x) are numbers. In particular, the orbits of G are sub-
sets, not of G, but of V ={1,2,...,m}. From the general theory of equivalence
relations, if O, and Oy overlap at all, they are identical, i.e., the different orbits
of G comprise a partition of V. In the bus metaphor, the orbit of a point in San
Francisco is the entire city, and the San Francisco orbit is disjoint from the Oakland
orbit.

PVALL el 05 1L WA s WML L A T Y U VLIV, @O UL U UUE L U,
v occurs as the value of p(x) exactly o( fG,) times. Moreover, by Equation (3.14),
the multiplicity o( fG,) = o(G,) is the same for every y € O,. [

2 € Oy, it follows from the general theory that O, = O;. This can, of course, be
confirmed directly: O, = {p(2) : p€ G} = {2, 1,2, 1}, multiplicities included.

3.3.6 Example. While the group
H = {es, (12)(34), (13)(24), (14)(23)},

from Example 3.3.4, is transitive, the group

K = {es, (12)(34), (13)(24), (14)(23)}
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1s not. The difference, of couse, 1s a matter of degree. Being of degree 4, the single
orbit of H is O = 0, = 03 = 04 = {1,2,3,4}. Because it is of degree 5, the
orbits of K are O = 0, = 03 = 04 ={1,2,3,4} and Os = {5}.

Perhaps the easiest way to see that S, is transitive is via sequence notation.
Suppose i,j € V={1,2,....m}. If f=(f(1), f(2),...,f(m)) € Fpm then f(i)
is the number in the ith component of the sequence. With j occupying that position,
there are (m — 1)! permutations f € S,, map i to j. ]

3.3.7 Lemma. Let G be a permutation group of degree m. If x € {1,2,....m},
then the number of elements in the orbit to which x belongs is

0(0,) = : (3.17)

Proof. The set O, = {p(x) : p € G} appears to contain o(G) elements but, as we
saw in Example 3.3.4, this includes the multiplicities that arise when
p1(x) =y = pa(x) for two different permutations py,p> € G. However, from Theo-
rem 3.2.18, if f(x) = y, then {p € G : p(x) = y} = fG,. Hence, as p runs through G,
v occurs as the value of p(x) exactly o( fG,) times. Moreover, by Equation (3.14),
the multiplicity o( fG,) = o(G,) is the same for every y € O,. [ |
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Having counted the elements in each orbit, how hard can it be to count the num-
ber of orbits? If every orbit had the same size, counting them would be as easy as
dividing m by o(0O,) for some fixed but arbitrary x € {1,2,...,m}. However, orbits
need not have the same size. (See, e.g., Example 3.3.6, where the orbits of K are
0,=1{1,2,3,4} and 05 = {5}.)

There is, in fact, a beautiful way to calculate the number of orbits of a permuta-
tion group, a method that is as powerful as it is unexpected. The significance of this
result may justify a brief anecdote about its history.

William Burnside (1852-1927) published the lemma in his 1897 book on finite
groups, along with a footnote citing an 1887 article by Georg Frobenius (1849—
1917) as its source. When the footnote was inadvertently omitted from the book’s
second edition, the result came to be known as “Burnside’s lemma™. In fact, the
same idea had appeared even earlier in an 1847 article by Cauchy (1789-1857)."
Before we can state this famous result, one more bit of notation is needed.

3.3.8 Definition. Denote by F(p) the number of fixed points of p € S,,,.

3.3.9 Burnside’s Lemma. Let G be a permutation group with a total of t orbits.
Then t is the average of the numbers of fixed points of the permutations in G. That
is,

O(L})ZF(&») =1 (3.18)

2cG
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3.3.10 Example. For the group H = {e4, (12)(34), (13)(24), (14)(23)}, from
Example 3.3.6, F(ey) =4, and F((12)(34)) = F((13)(24)) = F((14)(23)) = 0.
Because the average of these four numbers is 1, H has just one orbit, confirming
that it is transitive.

If K = {es, (12)(34), (13)(24), (14)(23)}, then F(es) = 5, and F((12)(34)) =
F((13)(24)) = F((14)(23)) = 1. (This would be a natural time to have misgivings
about suppressing I-cycles.) The average of these numbers of fixed points is
(54 1+ 1+ 1)/4=2, consistent with our observation in Example 3.3.6 that K
partitions {1,2,3,4,5} into two orbits. O

3.3.11 Example. Because S, is transitive, it has just one orbit. It follows from
Brunside’s lemma that, on average, the permutations of §,, have one fixed point.
(Recall from Section 2.3 that the fraction of permutations in §,, having exactly
one fixed point is something else entirely.)

In 83,F(e3) =3,F(12) =F(13) =F(23) =1, and F(123) = F(132) =0. So
(as predicted),

B+1+1+14+0+0]/6=1. ]
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Proof of Burnside’s Lemma. Define S = {(g,j): g € G and g(j) = j}. Then § is
the set of all ordered pairs (g, /) in which j is a fixed point of g. Because F(g) of
these ordered pairs begin with g,

o(S)=> F(g). (3.19)

2eG

On the other hand, exactly o(G;) permutations of G fix j. Therefore,

m

o(S) = Z 0(G;)

=1
m
j=1

by a rearrangement of Equation (3.17).
Let C;,Cs, ..., C, be the distinct orbits of G, so that O; € {C},Cy,...,

C,}, 1 <j < m. Then, continuing from Equation (3.20),

o(S) = o(G) Z Zﬁ

i=1 jeC;

o(G)
0(0;)

J

(3.20)

Note that, in the second of these summations. 1 /o(C;) is added to itself o(C;) times,
Le..

I
o(C;)
) =o(G
o(S) = o(G) 2 5(C)
= 10(G). (3.21)
Comparing Equations (3.19) and (3.21) completes the proof. [ |
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3.3.12 Corollary. If G is a subgroup of S,,, then

1
F(g) = 1
o(G) ;
with equality if and only if G is transitive.

Proof. Because t = | if and only if G is transitive, the result is an immediate
consequence of Equation (3.18). [ |

3.3.13 Example. From Example 3.3.4, the orbits of G = {e4,(12), (34),
(12)(34)} are {1,2} and {3,4}. Averaging the fixed points of the permutations

in G yields (4 +2+2+0) =2 > 1, confirming that G is not transitive. ]

A subgroup G of §,, is doubly transitive if, for all x;,x2, v, € {1,2,... m},
where x| # x; and y| # y,, there is a permutation p € G such that p(x,) = y; and
p(x2) = ya.

This definition looks complicated, in part, because of technical considerations: If
X| 7 X, but y; = y,, then ne one-to-one function could send x| to y; and x; to yp; if
X1 = x2 but y; # vz, then no function could send x| to y; and x; to yz. Informally, G
is doubly transitive if, for all appropriate sequences x = (x,x;) and y = (yy, y2),
there is a permutation p € G that maps x to y.

Would it surprise you to learn that, if m > 2, then

O(I_G)Z F(g)? > 2 (3.23)

2eG
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with equality if and only if G 1s doubly transitive? It is hard to look at Inequalities
(3.22)-(3.23) and not conjecture that, it m > 3, then the average over g € G of
F(g)3 is not less than 3 with equality if and only if G is triply transitive.

Let’s test this hypothesis. The numbers of fixed points of the permutations in S3
are listed in Example 3.3.11. The average of their third powers is £(3° + 1°+
14+ 1° +0° +07) =32 =5. Five? What happened to 3? Maybe we glided too
nimbly over the details of what “triply transitive’” might mean. If §3 turns out
not to be triply transitive, there is still hope for the conjecture. On the other
hand, maybe the correct lower bound is not 3 but 5. (After all, 1,2,3,... is not
the only sequence of positive integers.) Before doing anything else, let’s give a
proper definition of multiple transitivity.

3.3.14 Definition. Let G be a subgroup of §,,. Suppose | < r < m. Then G is
r-fold transitive if, for all one-to-one functions f, g € F, ,, there exists a permutation
p € G such that pf = g.

Using one-to-one functions enormously simplifies the statement of Definition
3.3.14. To see what it means, recall that f = (x;,xs,...,x,) € F,,, is one-to-one

plxi) =p(f()) =pf(i) =g() =y, 1<is<r

In other words, G is r-fold transitive if and only if, for any of the P(m,r)* ways to
choose (without replacement, where order matters) sequences of distinct integers
(x1,x2,...,%) and (y;,v2,...,v,) from {1,2,... m}, there exists a p € G such
that, simultaneously, p(x;) = yi,p(x2) = ya2,..., and p(x;) = y,.

Evidently, “transitive” 1s the same as “‘I-fold transitive” and “‘doubly transi-
tive”” is the same as “2-fold transitive”. Moreover, every (r + 1)-fold transitive
group is r-fold transitive.
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3.3.15 Example. Recall that H = {e4,(12)(34),(13)(24),(14)(23)} is transi-
tive. Suppose (x1,x2) = (1,2) and (y;,y2) =(2,3). The only permutation in H
that maps x; = 1 to y; = 2 is p = (12)(34). Because p(2) # 3, no permutation in
H simultaneously sends x| to y; and x, to y,, i.e., H is not doubly transitive.
What about S;? Any function in Fy4 of the form (2,3,r,s) maps x; = 1 to
vy =2 and x =2 to y» = 3. Two of these functions are permutations, namely,
p1=1(2,3,1,4) and p, =(2,3,4,1). (In disjoint cycle notation, p; = (123) and
p2 = (1234).) More generally, if f,g € F,,, are fixed but arbitrary one-to-one func-
tions, then (m — r)! permutations p € §,, satisty pf = g. In particular, S, is r-fold
transitive, 1 < r < m. (Compare with the last part of Example 3.3.6.) J

Consider another example. Suppose G is permutation group of degree m = 2.
Let je V={1,2,...,m} be fixed but arbitrary. Because p(j)=j for all p in
the stabilizer subgroup Gj, the set {j} is an orbit of G;. Thus, G; is not transitive.
Suppose, however, we ignore the orbit {j} and think of G; as a permutation group

of degree m — 1 acting on

Vi =V\{j}
={1.2,....j—1j+1,....m}

If G is (r + 1)-fold transitive on V, then G;j is r-fold transitive on V;. This observa-
tion even has a partial converse.

3.3.16 Lemma. Let G be a permutation group of degree m = 3. Let V =
{1,2,...,m}, and suppose 1 < r < m. If the stabilizer subgroup G; is r-fold tran-
sitive on V; = V\{j}, 1 <j < m, then G is (r + 1)-fold transitive on V.

Proof. Let (x1,x2,...,%41) and (y1,¥2,...,Vr11) be two one-to-one functions in
F, . 1m. Because m > 3, there is some ¢t € V such that x; # ¢ # y;. By hypothesis,
there is a permutation f € G, such that f(x;) =y,. Suppose f(x;) =22 <
k <r+41. Since f is one-to-one, and the y's are all different, zz # v, # v,
2 <k <r+ 1. So, another application of the hypothesis yields a permutation
g € Gy, such that g(zx) = w2 <k <r+ 1. If p=gf, then p(x1) = g(f(x1)) =
gvi)=w, and p(x)=g(f(x)) =¢glz) =w.2<k<r+1, ie, peG and
plxg) =y, 1 Sk <r+ 1. u
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3.3.17 Example. Let’s see what we get when we average the fourth powers of
the numbers of fixed points of the permutations in a 4-fold transitive group, e.g.,

TS Fle)*

TEES,

The cycle types of the permuations in Sy are [4],[3. 1], [22]. [2. 1?]. and [1%]. Permu-
tations with cycle types [4] and [2?] don’t have fixed points. There are
P(4,3)/3 =4 x 3 x2|/3 =8 permutations of cycle type [3.1] each of which
has one fixed point. Permutations of type [2, 1] have two fixed points, and there
are C(4,2) = 6 of these. Finally, e4 has four fixed points. So,

1 4
iz;ff(g) =48 x 1% 4+6x2%+4%
AT

= 15. [

3.3.18 Theorem. Let G be a permutation group of degree m. If | < r < m, then

the rth Bell number, with equality if and only if G is r-fold transitive.

Proof. The proof is by induction on r. The r = | case having already been estab-
lished in Corollary 3.3.12, we may assume r > 2. If m =2, then G= 8, or
G ={e;}. As the result is easily seen to be valid in both of these cases, we may
assume m = 3.
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As in the proof of Burnside's lemma, a certain set is counted in two different
ways. Let

By the fundamental counting principle, F(g)" of the elements of T begin with g.
Thus,

o(T) = 3 Flg)".

2eG

Any element of T that ends with j = i, must begin with a permutation g € G;. By
the fundamental counting principle, there are F(g)" ™' ways to choose the intermedi-
ate r — 1 entries. Therefore,

o) =33 Flay

J=1 geG;

Of course, every g € G; has at least one fixed point, namely j. Let
Fi(g) = F(g) — 1. Then, for g € G;, F(g) is the number of fixed points of the
restriction of g to

Substituting F(g) = Fi(g) + | in Equation (3.24) produces

m

Y Fle) =) Y [Filg)+1]"

2cG =1 geG
[ r—1 L
=Y > > Clr—LKbF(g)
J=1 g&G; k=0
m r—1 .
=32 Cr=1.0) Fig)
=1 k=0 £€G;
m r—1
> 0(Gy) Y Clr—1,k)By
Jj=1 k=0
i
= B,ZrJ(Gj] (3.25)
j=1
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by the binomial theorem, induction, and the Bell recurrence relation (Theorem
2.2.7). Moreover, by the induction hypothesis, equality holds in Equation (3.25)
if and only if G; is (r — 1)-fold transitive for all j, if and only if (Lemma 3.3.16)
G is r-fold transitive. Finally, by Equations (3.20) and (3.21), > 7, 0(G;) =
10(G) = o(G), with equality if and only if r = 1, if and only if G is transitive.
Because an r-fold transitive group is transitive, the proof is complete. |
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POSSIBLE QUESTIONS

1. Let G be a permutation group with a total of t orbits.Then prove that t is the average of

the numbers of fixed points of the permutations in G. That is, ﬁzggaf((;) =t

2. Let G be a permutation group acting on a set X. For g € G let y(g) denote the number of
points of X fixed by g. Then the number of orbits of G is equal to ﬁzgec v(g).

3. State and prove the Burnside’s Lemma.

4. Six married couples are to be seated at a circular table. In how many ways can they

arrange themselves so that no wife sits next to her husband?

5. Given the set S consisting of the first n positive integers and a fixed integer v satisfying 0
<v<n, how many different subsets A of S including the empty subset can be formed with
the property that a’-a’’ t v for any two elements a’,a’” of A(that is subsets A such that
integers | and i+v do not both appear in A for any 1=1,2,..,n-v)?

6.How many different 3 colourings of the bands of an n-band baton are there if the baton is
unoriented.
7. Suppose a necklace can be made from beads of three colors, black, white and red. How

many different necklaces with n beads are there?
8. Find the pattern inventory for Edge 2 colourings of a tetrahedron.

9. Determine the pattern inventory for 3-beadnecklaces distinct under rotations using black
and white beads. Repeat using black, white and red balls.

10.Determine the pattern inventory for 7-Bead necklaces distinct under rotations using three
black and four white beads.

11. Find the pattern inventory for corner 2 colourings of a cube.
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Subject Name: COMBINATORICS Subject Code: 16MMP305B
UNIT-V
Question Option-1 Option-2 Option-3 Option-4 Answer
Find the value of the combinatorial numbers C(8,3) 43 35 56 46 56
Find the value of the combinatorial numbers C(4,1) 5 6 3 4 4
Find the value of the combinatorial numbers C(7,2) 22 45 21 41 21
Find the value of the combinatorial numbers C(12,7) 762 782 792 800 792
Find the value of the combinatorial numbers C(15,10) 2003 4003 5003 3003 3003
Determine the number of integers between 1 and 250 that are not divisible by 2,3 or 5. 22 33 44 66 66
How many positive integers not exceeding 1000 are divisible by 7 or 11? 120 100 125 110 110
A permutation of objects such that no objects is in its position is called ----------- arrangement dearrangement permutation combination dearrangement
Ina------- nothing is in its right place. arrangement dearrangement permutation combination dearrangement
The dearrangement of 1 2 3 is 321 132 213 231 231
denotes the number of dearrangments of n objects. Fn Dn Sn Kn Dn
The number of dearrangements of 1 2 3 4 is------------ 7 8 9 9
How many dearrangements are there of a set with seven elements. 1654 1854 1236 3421 1854
How many dearrangement of {1,2,3,4,5,6} begin with the integer 1, 2 and 3 in some order. 4 5 6 7 4
How many dearrangement of {1,2,3,4,5,6} end with the integer 1, 2 and 3 in some order. 6 32 36 66 36
The ---------------- is used to find the arrangement with forbidden positions together with principle
of inclusion-exclusion. root polynomial cube polynomial rook polynomial polynomial rook polynomial
The rook polynomial is used to find the ------------- with forbidden positions together with principle
of inclusion-exclusion. arrangement dearrangement permutation combination arrangement
The rook polynomial is used to find the arrangement with forbidden positions together with --------- principle of inclusion-
——————————— principle of inclusion-exclusion. arrangement dearrangement permutation exclusion.
If {an} , n>0 represents a sequence of numbers, then an expression that relates a term of the
sequence to one or more of its preceeding terms is called a -------------- generating function recurrence relation exponential function  dearrangement recurrence relation
lower subscript- higher subscript- lower
Order of a recurrence relation = higher subscript- lower subscript higher subscript both a and b none of these subscript
When f(n) =0, the recurrence relation is said to be --------------- Homogenous non homogenous  linear non linear Homogenous
In how many ways can we geta sum of 4 or 8 when two distinguishable dice arerolled. 8 6 5 3 8

A debating team consists of 3 boys and 2 girls.Find the number of ways they can sit in a row? 120 30 50 60 120
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