

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University, Established Under Section 3 of UGC Act 1956) Coimbatore – 641 021.

Semester VI

BIOSTATISTICS

Scope: On successful completion of this course the learner gains a clear knowledge about various aspects of Statistics, measures, hypothesis testing and application of them in their respective fields.

Objectives: To enable the students to understand the meaning, definition and functions of statistics through collection, representation, finding various measures such as mean, median, mode, correlation etc of statistics.

Unit 1

Definitions-Scope of Biostatistics- Variables in biology, collection, classification and tabulation of data- Graphical and diagrammatic representation.

Unit 2

Measures of central tendency – Arithmetic mean, median and mode. Measures of dispersion-Range, standard deviation, Coefficient of variation.

Unit 3

Correlation – Meaning and definition - Scatter diagram –Karl Pearson's correlation coefficient. Rank correlation.

Unit 4

Regression: Regression in two variables – Regression coefficient problems – uses of regression.

Unit 5

Test of significance: Tests based on Means only-Both Large sample and Small sample tests - Chi square test - goodness of fit.

TEXT BOOK

Pillai R.S.N., and Bagavathi V., 2002., Statistics , S. Chand & Company Ltd, New Delhi.

REFERENCES

Jerrold H.Z., (2003). Biostatistical Analysis, Fourth Edition, Pearson Education (Pte) .Ltd, New Delhi.

Arora, P.N., (1997). A foundation course statistics, S.Chand & Company Ltd, New Delhi.

Navnitham, P.A., (2004). Business Mathematics And Statistics, Jai Publications, Trichy,

Gupta S.P., (2001). Statistical methods, Sultan Chand & Sons, New Delhi

(Deemed to be University Established Under Section 3 of UGC Act 1956) Coimbatore – 641 021.

LECTURE PLAN DEPARTMENT OF BIOCHEMISTRY

STAFF NAME: Dr.K.Poornima SUBJECT NAME: Biostatistics SEMESTER:VI

SUB.CODE:16BCU602A CLASS: III B.Sc (BC)

Sl. No	Duration of Period	Topics to be Covered	Support material
		UNIT I	
1	1	Definitions-Scope of Biostatistics Variables in biology	T1:4-5 R3:1.13 R1:1-3 R2:1-2
2	1	Collection of primary data	T1:31-35 R3:3.4-3.14 R1:5-6 R2:27-31
3	1	Collection of Secondary data	T1:36-40 R3:3.2-3.4 R1:6-7 R2:31-33
4		Classification of data	T1:56-73 R3:5.2-5.9 R1:6-7 R2:44-51
5	1	Tabulation of data	T1:73-81 R3:5.18-5.35 R1:8-20 R2:52-57
6	1	Graphical representation of data	T1:101-118 R3:6.27-6.53 R2:60-78
7	1	Diagrammatic representation of data	T1:84-100 R3:6.2-6.27 R2:79-94
8	1	Revision and possible questions discussion of Unit ITotal no of hours planned for UNIT I = 07	

Prepared by Dr.K.Poornima ,Department of Biochemistry ,KAHE

		Unit II	
	1	Measures of central tendency – Arithmetic mean	T1:121-146
1		problems	R3:7.5-7.19
1		1	R1:21-28
			R2:101-113
2	1	Median problems	T1:146-170
			R3:7.19-7.32
			R1:32-40
			R2:113-117
3	1	Mode problem	T1:117-275
			R3:7.33-7.43
			R1:44-47
			R2:117 -127
4	1	Measures of dispersion-Range	T1:234-239
			R3:8.8
			R1:64-65
5	1	Standard deviation	T1:249-304
			R3:8.26-8.27
			R1:75-85
			R2:117-179
6	1	Practicing problems in standard deivation	T1:305-317
			R3:8.27-8.32
			R1:98-101
7	1	Coefficient of variation- Practicing problems	T1:270-275
			R3:8.3-8.37
			R1:85-88
			R2:172-177
8	1	Revision and possible questions discussion of Unit II	
		Total no of hours planned for UNIT II = 08	
		Unit III	
1	1	Correlation – Meaning and definition	T1:359-363
			R3:10.2-10.3
			R1:103-104
2	1	Scatter diagram	T1:363-365
			R3:10.7-10.10
3	1	Karl Pearson's correlation coefficient	T1:365-385
			R3:10.25-10.28
			R1:112-122
			R2:260-263
4	1	Continuation of Karl Pearson's correlation	T1:412-424
		coefficient	R3:10.44-10.61
5	1	Practicing problems in Karl Pearson's correlation	T1:385-391
		coefficient	R3:10.37.10.43
6	1	Rank correlation	T1:412-424

7	1		R3:10.44-10.61 R1:125-130
-	1		
-	1		D2.260 271
-	1		R2:269-271
8		Working out of problems in Rank correlation	R3:10.44-10.61
8			R1:125-130
8			R2:269-271
0	1	Revision and possible questions discussion of Unit III	[
		Total no of hours planned for UNIT III = 08	
		Unit IV	
1	1	Regression - Introduction	T1:425-428
1			R3:11.2-11.4
	1	Regression in two variables	T1:425-428
2			R3:11.2-11.4
			R2:284-285
	1	Regression equation of x on y	T1:431-445
3			R3:11.7
			R1:149-170
4	1	Regression equation of y on x	T1:431-445
4			R3:11.9
	1	Regression coefficient problems	T1:445-476
5			R3:11.10-11.46
			R2:287-290
	1	Uses of regression	T1:476
6			R3:11.47
			R1:180
7	1	Revision and possible questions discussion of Unit IV	r
		Total no of hours planned for UNIT IV = 07	
	•	UNIT V	
1	1	Test of significance – An Introduction	T1:765-770
1			R3:3.14
	1	Tests based on Means only – Large sample	T1:779-785
2			R3:3.14-3.21
			R1:318-324
	1	Small samples – students t- test	T1:785-787
3		L	R3:3.30-3.32
			R1:324-327
4	1	Working out of problems in test of significance	T1:787-789
4			R3:3.31-3.47
	1	Chi square test - goodness of fit.	T1:790-792
5		0	
-			
	1	Practicing problems in chi square test	
6	1	ractioning problems in our square test	
7	1	Revision and possible question discussion of unit V	
-		Example 1 Total no of hours planned for UNIT $V = 07$	
5 6 7	1	Practicing problems in chi square test Revision and possible question discussion of unit V	T1:790-792 R3:4.2-4.7 R1:392-400 T1:792-805 R3:4.20-4.48

Lesson Plan

2016 -2019 Batch

Total number of hours planned to complete this course – 40

REFERENCE

TEXT BOOK

T1: Pillai R.S.N., and Bagavathi V., 2002., Statistics , S. Chand & Company Ltd, New Delhi.

REFERENCES

R1: Arora, P.N., (1997). A foundation course statistics, S.Chand & Company Ltd, New Delhi.

R2: Navnitham, P.A., (2004). Business Mathematics And Statistics, Jai Publications, Trichy,

R3:Gupta S.P., (2001). Statistical methods, Sultan Chand & Sons, New Delhi

COURSE CODE: 16BCU602-A

COURSE NAME: Biostatistics UNIT: I

BATCH-2016-2019

UNIT-I SYLLABUS

Definitions-Scope of Biostatistics- Variables in biology, collection, classification and tabulation of data- Graphical and diagrammatic representation.

Introduction

Statistical tools are found useful in progressively increasing of disciplines. In ancient times the statistics or the data regarding the human force and wealth available in their land had been collected by the rulers. Now-a-days the fundamental concepts of statistics are considered by many to be essential part of their knowledge.

Origin and Growth

The origin of the word 'statistics' has been traced to the Latin word 'status', the Italian word 'statista', the French word 'statistique' and the German word 'statistik'. All these words mean political state.

Meaning

The word 'statistics' is used in two different meanings. As a plural word it means data or numerical statements. As a singular word it means the science of statistics and statistical methods. The word 'statistics' is also used currently as singular to mean data.

Definitions

Statistics is " the science of collection, organization, presentation, analysis and interpretation of numerical data". - DrS.P.Gupta.

"Statistics are numerical statement of facts in any department of enquiry, placed in relation to each other". - Dr.A.L.Bowley.

Functions

The following are the important functions of statistics.

- * Collection
- * Numerical Presentation
- * Diagrammatic Presentation
- * Condensation
- * Comparison
- * Forecasting
- * Policy Making
- * Effect Measuring
- * Estimation

CLASS: III BSc., BC COURSE CODE: 16BCU602-A

COURSE NAME: Biostatistics A UNIT: I

BATCH-2016-2019

* Tests of significance.

Characteristics

- * Statistics is a Quantitative Science.
- * It never considers a single item.
- * The values should be different.
- * Inductive logic is applied.
- * Statistical results are true on the average.
- * Statistics is liable to be misused.

Collection of data

Data constitutes the base. The findings of an investigation depend on correctness and completeness of the relevant data. Sources of data are of two kinds- primary source and secondary source. The term source means origin or place from which data comes or got. A primary source is one that itself collects the data; a secondary source is one that makes available data which were collected by some other agency. Based on source, data are classified under two categories- Primary data and secondary data.

Primary data

The data which is collected by actual observation or measurement or count is called primary data.

Secondary Data

The data which are compiled from the records of others is called secondary data.

Methods of collection of primary Data

Primary Data is collected in any one of the following methods:

- * Direct personal interviews
- * Indirect oral interviews
- * Information from correspondence
- * Mailed questionnaire method.
- * Schedules sent through enumerators.

Sources of secondary data

Secondary data can be compiled either from published sources or from unpublished sources.

Classification

CLASS: III BSc., BC RPAGAM

COURSE NAME: Biostatistics COURSE CODE: 16BCU602-A

UNIT: I

BATCH-2016-2019

Classification is the process of arranging data into groups or classes according to the common characteristics possessed by the individual items.

Basis

Data can be classified on the basis of one or more of the following:

i) Geographical Classification or Spatial Classification

Some data can be classified area-wise such as states, towns etc.

ii)Chronological or Temporal or Historical Classification

Some data can be classified on the basis of time and arranged chronologically or historically.

iii) Qualitative Classification

Some data can be classified on the basis of attributes or characteristics.

iv)Ouantitative Classification

Some data can be classified in terms of magnitudes.

Tabulation

Tabulation is the process of arranging data systematically in rows and columns of a table.

There are two methods or modes in which data can be presented. They are

- i) Statistical Tables
- ii) Diagrams or Graphs

Parts of a table

A good table has the following parts or components:

- * Identification number
- * Title
- * Prefatory Note or Head note
- * Stubs
- * Captions
- * Body of the table
- * Foot note
- * Source

Frequency Distribution

The easiest method of organizing data is a frequency distribution, which converts raw data into a meaningful pattern for statistical analysis.

The following distribution: are the steps of constructing frequency a **1.** Specify the number of class intervals. A class is a group (category) of interest. No totally

CLASS: III BSc., BC **COURSE NAME: Biostatistics** COURSE CODE: 16BCU602-A

UNIT: I

BATCH-2016-2019

accepted rule tells us how many intervals are to be used. Between 5 and 15 class intervals are generally recommended. Note that the classes must be both *mutually exclusive and all-inclusive*. Mutually exclusive means that classes must be selected such that an item can't fall into two classes, and all-inclusive classes are classes that together contain all the data.

2. When all intervals are to be the same width, the following rule may be used to find the required class interval width:

 $\mathbf{W} = (\mathbf{L} - \mathbf{S}) / \mathbf{K}$

where:

RPAGAM

W= class width, L= the largest data, S= the smallest data, K= number of classes

Example

Suppose the of of 10 students age sample а are: 23.1, 21.3. 19.4. 25.3, 22.0. 23.9. 20.9, 18.1. 18.5. and 22.5 We select K=4 and W=(25.3 - 18.1)/4 = 1.8 which is rounded-up to 2. The frequency table is as follows:

Class Interval	Class Frequency	Relative Frequency
18-20	3	30 %
20-22	2	20 %
22-24	4	40 %
24-26	1	10 %

Cumulative Frequency Distribution

When the observations are numerical, cumulative frequency is used. It shows the total number of observations which lie above below or certain key values. Cumulative Frequency for a population = frequency of each class interval + frequencies of preceding intervals. For example, the cumulative frequency for the above problem is: 3, 5, 9, and 10.

Diagrams and Graphs Diagrams

Diagrams are various geometrical shapes such as bars, circles etc. Diagrams are based on scales but are not confirmed to points or lines. They are more attractive and easier to understand than graphs and are widely used in advertisement and publicity.

Rules for construction

* Title

CLASS: III BSc., BC C COURSE CODE: 16BCU602-A

COURSE NAME: Biostatistics A UNIT: I

BATCH-2016-2019

- * Proportion between width and height
- * Size
- * scale
- * Index
- * Suitable Diagram
- * Simplicity
- * Neatness
- * Foot-Note and source
- * Identification numbers.

Types of Diagram

The frequently used diagrams are divided into the following four heads:

- 1. One Dimensional diagram- Bar Diagram
- 2. Two Dimensional diagram Pie Diagram, Rectangle, squares and circles
- 3. Three Dimensional diagram Cubes
- 4. Pictograms and Cartograms.

Histograms are used to graph absolute, relative, and cumulative frequencies.

Ogive is also used to graph cumulative frequency. An ogive is constructed by placing a point corresponding to the *upper end of each class* at a height equal to the cumulative frequency of the class. These points then are connected. An ogive also shows the relative cumulative frequency distribution on the right side axis.

A less-than ogive shows how many items in the distribution have a value less than the upper limit of each class.

A more-than ogive shows how many items in the distribution have a value greater than or equal to the lower limit of each class.

A less-than cumulative frequency polygon is constructed by using the upper true limits and the cumulative frequencies.

A more-than cumulative frequency polygon is constructed by using the lower true limits and the cumulative frequencies.

Pie chart is often used in newspapers and magazines to depict budgets and other economic information. A complete circle (the pie) represents the total number of measurements. The size of a slice is proportional to the relative frequency of a particular category. For example, since a

CLASS: III BSc., BC C COURSE CODE: 16BCU602-A

COURSE NAME: Biostatistics A UNIT: I

BATCH-2016-2019

complete circle is equal to 360 degrees, if the relative frequency for a category is 0.40, the slice assigned to that category is 40% of 360 or (0.40)(360)=144 degrees.

POSSIBLE QUESTIONS UNIT I

PART A (20 x 1 = 20 Marks) Question number 1 – 20 online examinations

PART B (5 x 2= 20Marks)

- 1. Define Statistics.
- 2. Write the formula to calculate the angle in Pie Diagram.
- 3. Define Classification.
- 4. Define Mid-Value and also find the Mid-Value of 100 110.
- 5. Define Frequency Distribution.
- 6. What do you mean by size of the Class Interval?
- 7. Write a formula to calculate Percentage Bar Diagram.
- 8. Define Histogram.
- 9. What are the types of classification?
- 10. Write about Geographical Classification with example.
- 11. Define Frequency Distribution.
- 12. Write any two functions of Statistics.

PART C (5 X 6 = 30 Marks)

- 1. Explain about the Classification of data.
- 2. Draw a suitable Pie Diagram to represent the following submitted as a part of the budget proposal of the govt. of India for the year 1995 96.

Item of Expenditure	Percentage		
i) Interest	25		
ii) Defense	15		
iii) Other non plan expenditure	20		
iv) States share of taxes and duties	15		
v) State and UT plan assistance	10		

CLASS: III BSc., BC C COURSE CODE: 16BCU602-A

RPAGAM

IIGHER EDUCATION

COURSE NAME: Biostatistics A UNIT: I

BATCH-2016-2019

vi) Central plan

15

100

3. You are given the average expenditure of a family for a month.

Total

Average Expenditure per month (Rs)			
2,400			
200			
800			
150			
450			
	2,400 200 800 150		

Draw a Pie Diagram for the above data.

4. The following table shows the total sale in July 2005 of major brands of cars in India. Represent the following data by using Simple Bar Diagram.

Brand	July 2005
Dranu	Sales (in Rs. '000)
Maruti	81
Hyundai Santro	39
Honda city	14
Matiz	20
Opel Astra	10
Fait Uno	12
Ford	37
Mitsubishi Lancer	11
Mercedes	3

The most suitable form of presentation for publicity and Propaganda is	diagram	numerals	graph	map	diagram
Mailed enquiry method can be adopted if the respondents are	illiterate	literate	blind	physically challenged	literate
Pie-chart represents the components of a factor by	percentages	angles	sectors	deciles	sectors
The number of questions of a questionnaire should be	5	20	25	as small as possible keeping in view the purpose of the survey	as small as possible keeping in vie purpose of the survey
Primary data are	always more reliable compared to secondary	less reliable compared to secondary data	depends on the care with which data have been	depends on the agency collecting the data	always more reliable compared to
	data		selected		data
The census data published for state wise population in India will be known as	Quantitative classification	Two-way classification	Geographical classification	Quanlitative classification	Geographical classification
Statistics implies	both data and science	data only	data, science and measure in samples	samples	data, science and measure in sam
Data taken from the publication, 'Agricultural Situation in India' will be considered as	primary data	secondary data	primary and secondary data	published data	secondary data
Year wise recording of data of food production will be called as:	Geographical classification	Chronological classification	Quantitative classification	Quanlitative classification	Chronological classification
Who is the father of Biostatistics?	R.A.Fisher	W.Gosset	Sir Francis Galton	S.C.Gupta	Sir Francis Galton
Number of source of data is	2	3	4	1	2
Compared with primary data secondary data are	more reliable	less reliable	equally reliable	not reliable	less reliable
In quantitative classification data are classified on the basis of	attributes	time	location	magnitudes	magnitudes
Classification according to class-intervals would yield	raw data	discrete data	qualitative data	grouped data	grouped data
In qualitative classification data are classified on the basis of	attributes	time	location	class intervals	attributes
In generanhical classification data are classified on the basis of	ama	attributes	time	location	area
Which source is one that itself collects the data?	nrimory data	secondary data	published data	non rublished data	primary data
Individual observations are called	raw data	grouped data	unerouned data	simple data	raw data
Which one is Generathical classification?	1990.91	North	Male	447	North
In discrete frequency distribution values are given as	class intervals	grouped data	unground data	cound fromency data	ungrouped data
In continuous frequency distribution values are riven as	class intervals	grouped data	unerouped data	coual frequency data	class intervals
Which of the following is the one dimensional diagram?	square diagram	multiple bar diagram	rectangular diagram	Pie-Chart	square diagram
In a har diagram, the base line is	Horizontal	Vertical	False baseline	true baseline	Vertical
Pictograms are shown by	Dors	Lines	Circles	Pictures	Pictures
Histogram is suitable for the data presented as	continuous grouned frequency distribution	discrete grouped frequency distribution	individual series	discrete series	continuous grouped frequency di
Numerical data presented in descriptive form are called	classified presentation	tabular presentation	oraphical presentation	textual presentation	textual presentation
A simple table represents	only one factor or variable	always two factors or variables	two or more number of factors or variables	only four factors or variables	only one factor or variable
The row headings of a table are known as	sub-sitles	stabs	reference notes	contions	stubs
The origin of the word statistics has been traced from the Latin word	statista	status	statistic	statistione	status
Relative error is always	Positive	Neutive	Positive or Negative	Zem	Positive or Negative
Relative effort is inwave. The column headings of a table are known as	rosilive	Negative	reference notes	cantings	rosalve or Negative
The country nearings of a taste are known as	Collecting data without any nurmose	a given purpose	reference notes	for all nurmose	a given nurnose
In grouped data, the number of classes preferred are	Concentre data without any purpose	adequate	Maximum possible	for an burbose	a prven burbose adequate
in grouped data, the number of classes preferred are Class interval is measured as	The sum of the upper and lower limit	Half of the sum of the upper and lower limit		Upper limit + lower limit	The difference between the uppe
CARAN HINLI YAR DI HINLINYINI LA AN	and state of the upper and lower links	rain of the sam of the upper and lower mini-	limit	chier mus + source mus	limit
The share of the trilinear charts is that of a	Cone	Cube	Equilateral triangle	Pyramid	Familateral triangle

n Academy of Higher Education

Кап

I

UNIT: II

COURSE NAME: Biostatistics CODE: 16BCU602-A BATCH-2016-2019

UNIT-II SYLLABUS

Measures of central tendency - Arithmetic mean, median and mode. Measures of dispersion-Range, standard deviation, Coefficient of variation.

INTRODUCTION

In this chapter we are going to deal with Measures of central tendency and about the measures of dispersion. The measures of central tendency concentrate about the values in the central part of the distribution. Plainly speaking an average of a statistical series is the value of the variable which is the representative of the entire distribution. If we know the average alone we cannot form a complete idea about the distribution so for the completeness of the idea we use Measures of dispersion.

Measures of Central Tendency

According to Professor Bowley the measures of central tendency are "statistical constants which enable us to comprehend in a single effort the significance of the whole "

The following are the three measures of central tendency in this chapter we deal with

- Arithmetic Mean or simply Mean
- Median
- Mode

Arithmetic Mean or simply Mean

Arithmetic Mean or simply Mean is the total values of the item divided by

their number of the items. It is usually denoted by X.

Individual series

 $\Sigma X / N$

Example:

The expenditure of ten families are given below .Calculate arithmetic mean. 30 70 10 75 500 8 42 250 40 36

Solution

Here N=10

KARPAGAM ACADEMY OF HIGHER EDUCATION RPAGAM^{CLASS:} III BSc., BC

COURSE NAME: Biostatistics CODE: 16BCU602-A

BATCH-2016-2019

UNIT: II

X = 1061 / 10 = 106.1

Discrete series

 $X = \Sigma f X / \Sigma f$

Example

HER EDUCATION

Calculate the mean number of person per house.

No. of person : 2	3	4	5	6	
No. of house :10	25	30	25	10	

Solution

Х	f	f X
2	10	20
3	25	75
4	30	120
5	25	125
6	<u>10 60</u>	

 $\Sigma f = 100 \Sigma f X = 400$

X = 400 / 100 = 4.

Continuous series

 $X = \Sigma f m / \Sigma f$ where m represents the mid value.

Mid-value = (upper boundary + lower boundary) / 2.

Example

Calculate the m	ean for the	followi	ng.				
Marks	: 20-30	30-40	40-50	50-60	60-70	70-80	
No. of student	: 5		8	12	15	6	4
Solution:							
C.I	f	m	f m				
20-30	5	25	125				
30-40	8	35	280				
40-50	12	45	540				
50-60	15	55	825				

KARPAGAM ACADEMY OF HIGHER EDUCATION RPAGAM^{CLASS:} III BSc., BC

COURSE NAME: Biostatistics CODE: 16BCU602-A BATCH-2016-2019

60-70	6	65	390
70-80	4	75	<u>300</u>
$\Sigma f = 50$	$\Sigma f m = 2$	2460	

UNIT: II

X = 2460 / 50 = 49.2.

Median

The median is the value for the middle most items when all the items are in the order of magnitude. It is denoted by M or Me.

5

Individual series

For odd number of item

Position of the median = (N+1)/2

For even number of item

Position of the median = [(N/2)+((N/2)+1)]/2

Example

Calculate median for the following.

22 10 6 7 12 8

Solution

Here N = 7

Arrange in ascending order or descending order.

5 6 8 10 12 22 7 (N+1)/2 = (7+1)/2 $=4^{\text{th}} \text{item} = 8$

Discrete series

Position of the median = $(N+1) / 2^{th}$ item.

Example

Find the median for the following.

X :	10	15	17	18	21
F:	4	16	12	5	3
Sol	utio	n			
Х		f		c.f	2
10		4		4	

RPAGAM^{CLASS:} III BSc., BC UNIT: II

COURSE NAME: Biostatistics CODE: 16BCU602-A BATCH-2016-2019

15	16	20	
17	12	32	
18	5	37	
21	<u>3</u>	40	
	N=40		
(N+1)/2 = (40)	()+1)/2 =	20.5 th item
	= (2	0 th item -	-21^{st} item) /2 =(15+17) /2
	= 16	5 .	

Continuous series

M = L + [((N/2) - c.f) x i]f.

Where L- lower boundary, f-frequency, i-size of class interval, c.f- cumulative frequency.

Example

HIGHER EDUCATION

Calculate the m	edian heigl	nt given below	w.			
Height :	145-150	150-155	155-160	160-165	165-170	170-175
No. of student:	2	5	10	8	4	1

Solution :

Height	No. of student	c.f		
145-150	2	2		
150-155	5	7		
155-160	10	17		
160-165	8	25		
165-170	4	29		
170-175	<u>1</u>	30		
$\Sigma f = 30$				
Position of	f the median $= N_{i}$	/2 th item	n = 30 / 2 = 15	5.
$M = L + \underline{[(()]}$	N/2) –c.f) x i]			
	f.			
	= 155 + (15-7)2	x5] = 1	55+(40/10) =	= 159.
	10			

Mode:

RPAGAM CLASS: III BSc., BC UNIT: II

COURSE NAME: Biostatistics CODE: 16BCU602-A

BATCH-2016-2019

Mode is the value which has the greatest frequency density. Mode is usually denoted by Z.

Individual series

The value which occur more times are identified as mode.

Example

Determine the mode 32, 35,42, 32, 42,32.

Solution:

Unimode = 32.

Discrete series

Determine the mode

Size of dress	No. of set
18	55
20	120
22	108
24	45

here mode represents highest frequency . Mode = 20

Continuous series

 $Z = L + [i(f_1-f_0) / (2f_1 - f_0 - f_2)]$

Where L- lower boundary , f_1 -frequency of the modal class, f_0 – frequency of the preceding modal class, f_2 - frequency of the succeeding modal class, i-size of class interval , c.f- cumulative frequency.

Example

Determine the n	no	de				
Marks	:	0-10	10-20	20-30	30-40	40-50
No.of student	:	5	20	35	20	12

Solution

Enable | Englishten | Englishte

COURSE NAME: Biostatistics CODE: 16BCU602-A BATCH-2016-2019

Marks	No. of student
0-10	5
10-20	20
20-30	35
30-40	20

40-50

 $Z = L + [i(f_1-f_0)/(2f_1-f_0-f_2)]$

12

- = 20 + [10(35-20)/(2(35)-20-20)] = 20+5
- = 25.

Empirical relation

• Mode = 3 median -2 mean.

Measures of Dispersion

Measure of dispersion deals mainly with the following three measures

- Range
- Standard deviation
- Coefficient of variation

Range

Range is the difference between the greatest and the smallest value.

- Range = L S, where L-largest value & S-Smallest value
- Coefficient of range = (L-S)/(L+S)

Individual series

Example

Find the value of range and its coefficient of range for the following data.

8,10, 5, 9,12,11

Solution

Range = L - S= 12-5 =7 Coefficient of range = (L-S)/(L+S) = (12-5)/(12+5) = 7/17 = 0.4118

Continuous series

Range = L - S, where L-Mid-value of largest boundary & S-Mid-value of smallest boundary

RPAGAM CLASS: III BSc., BC

COURSE NAME: Biostatistics CODE: 16BCU602-A BATCH-2016-2019

Marks	: 20-30	30-40	40-50	50-60	60-70	70-80
No.of student	: 5	8	12	15	6	4
Solution						
C.I	f	m				
20-30	5	25				
30-40	8	35				
40-50	12	45				
50-60	15	55				
60-70	6	65				
70-80	4	75				
Here L=75 &	S=25					
Range = $L - S$	S = 75-25	= 50				
-						

Standard deviation

The standard deviation is the root mean square deviation of the values from the arithmetic mean . It is a positive square root of variants. It is also called root mean square deviation. This is usually denoted by σ .

Individual series

 $\sigma = \sqrt{(\Sigma x^2 / N) - (\Sigma x / N)^2}$

Example

Calculate standard deviation for the following data. 40,41,45,49,50,51,55,59,60,60.

Solution

Х	\mathbf{X}^2
40	1600
41	1681
45	2025
49	2401
50	2500
51	2601
55	3025
59	3481

RPAGAM^{CLASS:} III BSc., BC UNIT: II

HIGHER EDUCATION

COURSE NAME: Biostatistics CODE: 16BCU602-A BATCH-2016-2019

3600 60 603600 510 $\Sigma x^2 = 26504$ $\sigma = \sqrt{(\Sigma x^2 / N) - (\Sigma x / N)^2}$ $=\sqrt{(26514/10)-(510/10)^2}$ = 7.09 **Discrete series Discrete series** $\sigma = \sqrt{(\Sigma \text{ fx}^2 / \Sigma \text{ f}) - (\Sigma \text{ fx} / \Sigma \text{ f})^2}$ Example Calculate standard deviation for the following data. X: 01 2 3 4 5 F: 1 2 4 3 0 2 **Solution** \mathbf{x}^2 Х f fx 0 0 1 0 2 2 1 1 2 4 8 4 3 3 9 9 4 0 0 16 5 2 10 25 <u>50</u> $\Sigma fx^2 = 95$ $\Sigma f = 12$ Σ fx= 29

$$\sigma = \sqrt{(\Sigma fx^2 / \Sigma f)} - (\Sigma fx / \Sigma f)^2$$

$$=\sqrt{(95/12)} - (29/12)^2$$

Continuous series

$$\sigma = \sqrt{(\Sigma \text{ fm}^2 / \Sigma \text{ f}) - (\Sigma \text{ fm} / \Sigma \text{ f})^2}$$

Example

Prepared by Dr.K. Poornima, Associate Professor, Department of Biochemistry, KAHE

 fx^2

0 2

16

27

0

COURSE NAME: Biostatistics CODE: 16BCU602-A

(Deemed to be University			: III BSc UNI	., BC T: II		BAT		SE NAME: 16-2019	Biostatistics	COL
ihed Under Section	I :	0-10	10-20	20-30	30-4	40	40-50			
F	:	2	5	9	3		1			
So	lutio	on								
С	.I	f		m	fm		m ²	fm ²		
0-	10	2		5	10	2	25	50		
10	-20	5		15	75	22	25	1125		
20	-30	9		25	225	62	25	5625		
30	-40	3		35	105	12	25	3675		
40	-50	1		45	45	20)25	2025		
		20			460			12500		

$$\sigma = \sqrt{(\Sigma \text{ fm}^2 / \Sigma \text{ f}) - (\Sigma \text{ fm} / \Sigma \text{ f})^2}$$

$$=\sqrt{(12500/20)} - (460/20)^2$$

= 9.79

Coefficient of variation

Coefficient of variation = [standard deviation / arithmetic mean] x100

Example

Calculate the coefficient of variation. Mean = 51, standard deviation = 7.09

Solution

Coefficient of variation = [standard deviation / arithmetic mean] x100

 $= (7.09/51) \times 100$

= 13.9

RPAGAM^{CLASS:} III BSc., BC UNIT: II

HIGHER EDUCATION

COURSE NAME: Biostatistics CODE: 16BCU602-A BATCH-2016-2019

POSSIBLE QUESTIONS UNIT I

PART A (20 x 1 = 20 Marks) Question number 1 – 20 online examinations

PART B (5 x 2= 20Marks)

		-						
15. Calculate	e the M	ean for	the foll	owing.				
Х	20	30	35	15	10			
f	2	3	4	3	2			
16. Define N	/ledian	and give	Exam	ple.				
17. Calculate	e the Ra	ange and	l its Co	efficient	for the	followi	ng data	
Х	:	12	14	16	18	20		
f	:	1	3	5	3	1		
18. What is	mean b	y Bimod	lal?					
19. Calculate	e the M	edian fo	r the fo	llowing	data.			
80 1	00	50	90	120	110			
20. Write the	e relatio	on betwe	en Star	ndard De	eviation	and Va	riance.	
21. Calculate	e the A	verage n	umber	of stude	nts per	class for	r the fol	llowing data.
26 4	6 33	25	36	27	34	29		
22. Find Me	dian an	d Mode	for the	followi	ng data.			
13	16	17	15	18	14	19	15	12
23. Define R	lange.							
24. Find the	Arithm	etic Me	an for t	he follo	wing da	ta.		
70	60	75	50	42	95	46		
25. Calculate	e the Ra	ange and	l its Co	efficient	for the	followi	ng data	
17 1	0 56	19	12	11	18	14		
26. Find the	median	for 57,	58, 61,	42, 38,	65, 72,	and 66		
27. Write the	e empir	ical rela	tion for	Mode.				

PART C (5 X 6 = 30 Marks)

1. Draw the less than Ogive and hence find the Median of the following data.

Marks	20 - 29	30 - 39	40 - 49	50 - 59	60 - 69	70 - 79	80 - 89	90 - 99
No. of students	7	11	24	32	9	14	2	1
2. Draw Percenta	ge Bar Di	agram for	the follow	ving data.				
Food		Rs.200						
Clothing		Rs.60						

Erable | Era

COURSE NAME: Biostatistics CODE: 16BCU602-A BATCH-2016-2019

Education	Rs.70
Rent	Rs.130
Miscellaneous	Rs.40
	-

3. Draw a Multiple Bar Diagram for the following data.

Year	Sales (000	Gross Profit	Net Profits		
	Rs)	(000 Rs.)	(000 Rs)		
1974	100	30	10		
1975	120	40	15		
1976	130	45	25		
1977	150	50	25		

4. Nixon Corporation manufactures computers. The following data are the numbers of computers produced at the company for sample of 25 days.

24	32	27	23	33	33	29	25	23	28		21
										31	
	22										

Construct frequency distribution using classes 21 - 23, 24 - 26, 27 - 29, 30 - 32 and 33 - 35. And draw a Histogram to the frequency distribution.

5. The frequency distribution representing the number of days annually the employees at the Voltas Ltd. who were absent due to illness is

Number of days absent	0-2	3-5	6-8	9-11	12-14	Total
Frequency	5	12	20	10	3	50

Draw a Frequency Polygon to the above Frequency Distribution.

10. Calculate the Mode for the following Continuous Frequency Distribution.

	0				
Salary (in Rs. 1000s) :	0 – 19	20 - 39	40 - 59	60 – 79	80 - 99
No. of Employees:	5	20	35	20	12

11. Find the Mean and the Standard Deviation for the given below data set.

	10	14	20	12	21	16	19	17	14	25	
12. Calculate the Standard Deviation and Coefficient of Variance (CV) for the following data.											

Ca	actuate the Standard Deviation and Coefficient of Variance (CV) for the fo									
	Х	0 – 10	10 - 20	20 - 30	30 - 40	40 - 50				
	f	2	5	9	3	1				

13. Calculate the Median for the following Continuous Frequency Distribution.

Wages (in Rs.) :	0 - 19	20 - 39	40 - 59	60 – 79	80 - 99
No. of Workers:	5	20	35	20	12

COURSE NAME: Biostatistics CODE: 16BCU602-A

KARPAGAM CLASS: III BSc., BC CADEMY OF HIGHER EDUCATION UNIT: II

BATCH-2016-2019

		Χ	6	9		12	1:	5	18		
		f	7	12		13	10	0	8		
15. Calc	ulate the Me	dian for	the foll	owing.			•				
Hou	rly Wages ((in Rs.)	40 - 5	0 50	- 60	60	- 70	70	- 80	80 -	90
Nun	iber of Emp	ployees	10	2	20		15		30	1.	5
	following dates randomly	-							51 1 4 P		
employe			d from a	Pharm	aceuti	cal C	-	ıy.			
	Serial N				I	2	3	4	5	6	7
	Salary p	per Ann	um ('0	00)	89	57	104	73	26	121	81
(Calculate the	Standa	rd Devia	tion and	d Coe	fficier	nt of va	arianc	e of th	e giver	ı data.
17. Calc	ulate the Ari	ithmetic	Mean fo	or the fo	ollowi	ng da	ta.				
Heig	sht (cms):	160	161	16	2	163	10	64	165	160	5
No.	of Persons :	27	36	43	5	78	(65	48	28	
18. Calc	ulate the Co	efficien	t of Vari	ance for	r the f	ollow	ing da	ta.			
	77	73	75	70	72	76	- 7:	5	72	74	76

Kepagam Academy of Higher Education Department of Biochemistry Biostatistics 16BCU802-A UNIT II

1	Mean is a measure of	central value	dispersion	correlation	regression	central value
2	Mode is that value in a frequency distribution which possesses	minimum frequency	frequency one	maximum frequency	last frequency	maximum frequency
3	 The most stable measure of central tendency is	the mean	the median	the mode	ranse	the mean
4	Sum of the deviations about mean is:	minimum	2019	maximum	986	2010
5	The formula used to calculate arithmetic mean for individual series by direct method is	5 X/N	ΣFx/N	SEm/N	N/SFx	ΣX/N
8		A+ Yd/N	A+ 5Fd/N	A+5'Fm/N	A+ N/ Sd	A+ Yd/N
7	In continuous series the formula for A M is	XN	NYX	5X/N	∑fm/N	∑fm/N
8	A.M = 8. N = 12 then \(\Sigma\) X =	76	80	86	96	96
2	12, 34, 56, 34, 45, 11 in this series the mode is	12	56	34	11	34
10	The data siven as 5, 12, 16, 24, 35, 44 will be called as	a continuous series	a discrete series	an individual series	time series	an individual series
11	Which of the following divides the series into two equal parts	Mean	Mode	Median	Range	Median
12	Mode of the following data 3, 6, 5, 7, 8, 4, 9	3	7	no mode	5	no mode
13	 Which of the following is not a measure of dispersion?	Ranse	Ouartile deviation	Standard deviation	Median	Median
14	Range of the given values is given by	L-S	L+S	S-L	LS	L-S
15	Which one of the following is relative measure of dispersion?	range	0.D	S.D	Coefficient of variation	Coefficient of variation
16	Range of a set of values is 65 and maximum value in the series is 83. The minimum value of the series is	74	9	18	65	18
17	If standard deviation is 5, then the variance is	5	25	625	2.23068	25
18	If the value of mode and mean is 60 and 66 then the value of median is	64	46	54	44	64
19	Standard deviation is also called	Root mean square deviation	Mean square deviation	Root deviation	Root median square deviation	Root mean square deviation
20	 X: 10-15 15-20 20-25 25-30 30-35 35-40	8	30	33	12	30
21	f: 12 4 10 6 118, range is					
22	If the S.D and the C.V of a series are 5 and 25, then the mean	500	200	250	100	500
23	Which one of the following is a measure of central tendency	median	ranec	variation	correlation	median
24	Mean of the following values is 5 15 20 10 20	5	14	41	20	14
25	The position of the median for an individual casis: is taken as	(a) D/2	(n 12)/2	8/3	e//	(n+1)/2

CLASS: III BSc., BC C COURSE CODE: 16BCU602-A

COURSE NAME: Biostatistics A UNIT: III

BATCH-2016-2019

UNIT-III SYLLABUS

Correlation: Meaning and definition - Scatter diagram –Karl Pearson's correlation coefficient. Rank correlation.

The term Correlation refers to the relationship between the variables. Simple correlation refers to the relationship between two variables. Various types of correlation are considered.

Positive or Negative when the values of two variables change in the same direction, their positive correlation between the two variables.

Example : X	50	60	70	95	100	105
Y	23	32	37	41	46	50
Example : X	34	25	18	10	7	
Y	51	49	42	33	19	

Simple or Partial or Multiple

When only two variables are considered as under positive or negative correlation above the correlation between them is called Simple correlation. When more than two variables as considered the correlation between two of them when all other variables are held constant, i.e., when the linear effects of all other variables on them are removed is called partial correlation. When more than two variables are considered the correlation between one of them and its estimate based on the group consisting of the other variables is called multiple correlation.

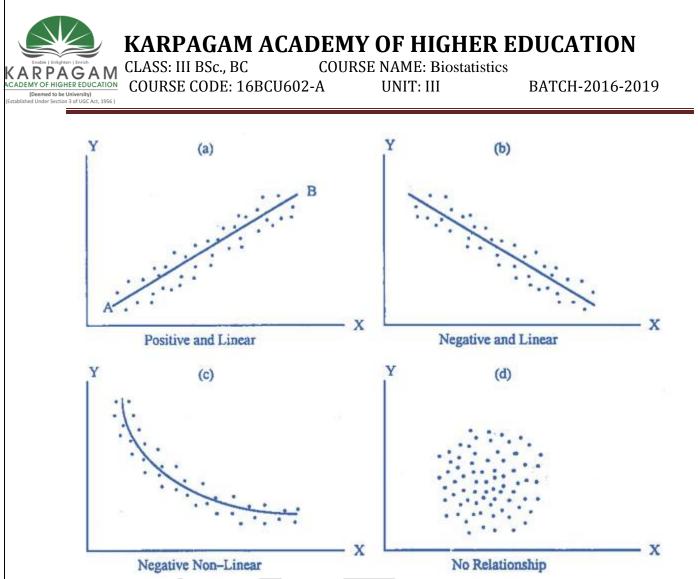
Methods

The following four methods are available under simple linear correlation and among them; product moment method is the best one.

Scatter Diagram

- ➤ Karl Pearson's correlation coefficient or product moment correlation coefficient (r)
- > Spearman's rank correlation coefficient (ρ)

CLASS: III BSc., BC C COURSE CODE: 16BCU602-A


COURSE NAME: Biostatistics A UNIT: III

BATCH-2016-2019

> Correlation coefficient by concurrent deviation method (r_c).

Scatter Diagram

Scatter diagram is a graphic picture of the sample data. Suppose a random sample of n pairs of observations has the values $(X_1, Y_1), (X_2, Y_2), (X_3, Y_3), \dots, (X_n, Y_n)$. These points are plotted on a rectangular co-ordinate system taking independent variable on X-axis and the dependent variable on Y-axis. Whatever be the name of the independent variable, it is to be taken on X-axis. Suppose the plotted points are as shown in figure (a). Such a diagram is called scatter diagram. In this figure, we see that when X has a small value, Y is also small and when X takes a large value, Y also takes a large value. This is called direct or positive relationship between X and Y. The plotted points cluster around a straight line. It appears that if a straight line is drawn passing through the points, the line will be a good approximation for representing the original data. Suppose we draw a line AB to represent the scattered points. The line AB rises from left to the right and has positive slope. This line can be used to establish an approximate relation between the random variable Y and the independent variable X. It is nonmathematical method in the sense that different persons may draw different lines. This line is called the regression line obtained by inspection or judgment.

Making a scatter diagram and drawing a line or curve is the primary investigation to assess the type of relationship between the variables. The knowledge gained from the scatter diagram can be used for further analysis of the data. In most of the cases the diagrams are not as simple as in figure (a). There are quite complicated diagrams and it is difficult to choose a proper mathematical model for representing the original data. The scatter diagram gives an indication of the appropriate model which should be used for further analysis with the help of method of least squares. Figure (b) shows that the points in the scatter diagram are falling from the top left corner to the right. This is a relation called inverse or indirect. The points are in the neighborhood of a certain line called the regression line. As long as the scattered points show closeness to a straight line of some direction, we draw a straight line to represent the sample data. But when the points do not lie around a straight line, we do not draw the regression line. Figure (c) shows that the plotted points have a tendency to fall from left to right in the form of a curve. This is a relation called non-linear or curvilinear. Figure (d) shows the points which apparently do not follow any pattern. If X takes a small value, Y may take a small or large value. There seems to be no sympathy between X and Y. Such a

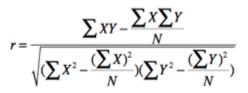
CLASS: III BSc., BC COURSE CODE: 16BCU602-A

COURSE NAME: Biostatistics A UNIT: III

BATCH-2016-2019

diagram suggests that there is no relationship between the two variables.

Karl Pearson's Coefficient


Karl Pearson's Product-Moment Correlation Coefficient or simply Pearson's Correlation Coefficient for short, is one of the important methods used in Statistics to measure Correlation between two variables.

A few words about Karl Pearson. Karl Pearson was a British mathematician, statistician, lawyer and a eugenicist. He established the discipline of mathematical statistics. He founded the world's first statistics department In the University of London in the year 1911. He along with his colleagues Weldon and Galton founded the journal "Biometrika" whose object was the development of statistical theory.

The Correlation between two variables X and Y, which are measured using Pearson's Coefficient, give the values between +1 and -1. When measured in population the Pearson's Coefficient is designated the value of Greek letter rho (ρ). But, when studying a sample, it is designated the letter r. It is therefore sometimes called Pearson's r. Pearson's coefficient reflects the linear relationship between two variables. As mentioned above if the correlation coefficient is +1 then there is a perfect positive linear relationship between the variables, and if it is -1 then there is a perfect negative linear relationship between the variables. And 0 denotes that there is no relationship between the two variables.

The degrees -1, +1 and 0 are theoretical results and are not generally found in normal circumstances. That means the results cannot be more than -1, +1. These are the upper and the lower limits.

Pearson's Coefficient computational formula

Sample question: compute the value of the correlation coefficient from the following table:

Subject	Age x	Weight Level y
1	43	99
2	21	65

CLASS: III BSc., BC C COURSE CODE: 16BCU602-A

COURSE NAME: Biostatistics A UNIT: III

BATCH-2016-2019

3	25	79
4	42	75
5	57	87
6	59	81

Step 1: Make a chart. Use the given data, and add three more columns: xy, x2, and y2.

Subject	Age x	Weight Level y	ху	\mathbf{x}^2	y^2
1	43	99			
2	21	65			
3	25	79			
4	42	75			
5	57	87			
6	59	81			

Step 2: Multiply x and y together to fill the xy column. For example, row 1 would be $43 \times 99 = 4,257$

Step 3: Take the square of the numbers in the x column, and put the result in the x^2 column.

Subject	Age x	Weight Level y	xy	\mathbf{x}^2	y^2
1	43	99	4257	1849	
2	21	65	1365	441	
3	25	79	1975	625	
4	42	75	3150	1764	
5	57	87	4959	3249	
6	59	81	4779	3481	

Step 4: Take the square of the numbers in the y column, and put the result in the y^2 column. **Step 5:** Add up all of the numbers in the columns and put the result at the bottom.2 column. The Greek letter sigma (Σ) is a short way of saying "sum of."

Subject	Age x	Weight Level y	xy	x ²	y ²
1	43	99	4257	1849	9801
2	21	65	1365	441	4225
3	25	79	1975	625	6241
4	42	75	3150	1764	5625
5	57	87	4959	3249	7569

CLASS: III BSc., BC CO COURSE CODE: 16BCU602-A

COURSE NAME: Biostatistics A UNIT: III

BATCH-2016-2019

6	59	81	4779	3481	6561
Σ	247	486	20485	11409	40022

Step 6: Use the following formula to work out the correlation coefficient. The answer is: 1.3787 10-4Х the range of the correlation coefficient is from -1 to 1. Since our result is 1.3787×10.4 , a tiny positive amount, we can't draw any conclusions one way or another.

Spearman's Rank Correlation Coefficient

The Spearman correlation coefficient is often thought of as being the Pearson correlation coefficient between the ranked variables. In practice, however, a simpler procedure is normally used to calculate ρ . The *n*raw scores X_i , Y_i are converted to ranks x_i , y_i , and the differences $d_i = x_i - y_i$ between the ranks of each observation on the two variables are calculated.

If there are no tied ranks, then $\boldsymbol{\rho}$ is given by

 $\rho = 1 - \frac{6 \sum d^2}{N(N^2 - 1)}$

If tied ranks exist, Pearson's correlation coefficients between ranks should be used for the calculation:

One has to assign the same rank to each of the equal values. It is an average of their positions in the ascending order of the values.

Example

X:2136423725Y:4740374243. For the data given above , calculate the rank correlation coefficient.

Solution					
		RANK	-		
Х	Y	X	Y	d	D^2
21	47	5	1	4	16
36	40	3	4	-1	1
42	37	1	5	-4	16
37	42	2	3	-1	1
25	43	4	2	2	4

KARPAGAM ACADEMY OF HIGHER EDUCATION COURSE NAME: Biostatistics

CLASS: III BSc., BC RPAGAM COURSE CODE: 16BCU602-A HIGHER EDUCATION

UNIT: III

BATCH-2016-2019

 $\sum d = 0$ $\sum d^2 = 38$

Total

 $\rho = 1 - \left(\frac{6 \sum d^2}{N(N^2 - 1)} \right)$ $= 1 - \left(\frac{6 \times 38}{5 (5^2 - 1)} \right)$

= 1 - 1.9 = -0.9

Tied Ranks

When one or more values are repeated the two aspects- ranks of the repeated values and changes in the formula are to be considered.

Example

Find the rank correlation coefficient for the percentage of marks secured by a group of 8 students in Economics and Statistics.

Marks in Economics	: 50	60	65	70	75	40	70	80
Marks in Statistics:	80	71	60	75	90	82	70	50
Solution								

Solution

Let X be Marks in Economics and Y be Marks in Statistics

		RANK			
Х	Y	X	Y	d	D^2
50	80	7	3	4	16
60	71	6	5	1	1
65	60	5	7	-2	4
70	75	3.5	4	-0.5	0.25
75	90	2	1	1	1
40	82	8	2	6	36
70	70	3.5	6	-2.5	6.25
80	50	1	8	-7	49
		Total		$\sum d = 0$	$\sum d^2 = 113.5$

 $\rho = 1 - \int_{N(N^2 - 1)} 6\{ \sum d^2 + m(m^2 - 1)/12 \}$

CLASS: III BSc., BC C COURSE CODE: 16BCU602-A

COURSE NAME: Biostatistics A UNIT: III

BATCH-2016-2019

When m=2, $m(m^2-1)/12 = 0.5$

Therefore $\rho = 1 - \left(6\{113.5 + 0.5\}/8(8^2 - 1)\} \right)$

= 1- 1.3571 = -0.3571

POSSIBLE QUESTIONS UNIT III

PART A (20 x 1 = 20 Marks) Question number 1 – 20 online examinations

PART B (5 x 2= 20Marks)

- 1) What are the types of Correlation?
- 2) Write any two properties of Correlation.
- 3) What is the range of Correlation Coefficient?
- 4) Define Positive Correlation.
- 5) What is meant by Regression?
- 6) What are the formulae for Regression co-efficients?
- 7) Distinguish between Correlation and Regression.
- 8) Write the formula for Rank Correlation, when more than one rank is repeated.
- 9) If $b_{xy} = -0.2337$ and $b_{yx} = -0.6643$ then find the Correlation Coefficient.
- 10) What is Negative Correlation? Give an example?
- 11) Write down the formula for Karl Pearson's Coefficient of Correlation.
- 12) Define Scatter Diagram.
- 13) What is Simple Correlation?

PART C (5 X 6 = 30 Marks)

1) Calculate the Correlation Coefficient from the following variables.

Sales in ('0000)	57	58	59	59	60	61	62	64
Advertisement	17	16	15	19	12	14	10	11
Expenditure ('000)	17	10	15	10	12	14	19	11

2) Marks obtained by 8 students in Accountancy (X) and Statistics (Y) are given below. Compute Rank Correlation Coefficient.

Х	25	20	28	22	40	60	20
---	----	----	----	----	----	----	----

CLASS: III BSc., BC CO COURSE CODE: 16BCU602-A

COURSE NAME: Biostatistics

BATCH-2016-2019

	Y	40	30	50	30	20	1()	30
3) Calculate the two Regression Equations from the following data.									
	Х	10	12	13	12	16	15	5	
	Y	40	38	43	45	37	43	3	
4) Ca	4) Calculate Karl Pearson's Coefficient of Correlation from the following data.								
Wage	S	100	101	102	102	100	99	97	98
Cost	of Living	98	99	99	97	95	92	95	94
5) From the data given below find the two Regression Equations.									
			Χ	10 1	2 13	12	16	15	

Х	10	12	13	12	16	15	
Y	20	28	23	25	27	30.	

i) Estimate Y when X = 20. ii) Estimate X when Y = 35.

Karpagam Academy of Higher Education Department of Biochemisity Biostatistics 16BCU802-A UNIT III

1	3	Scatter diagram method is a	Graphic	Mathematical	Numerical	Algebraical	Graphic
2	3	If every change in X produces a corresponding decrease in Y then X and Y are said to be	uncorrelated	independent	positively correlated	negatively correlated	negatively correlated
3	3	Rank correlation was discovered by	R.A.Fisher	Sir Francis Galton	Karl Pearson	Spearman	Spearman
4	3	Correlation is used to measure	closeness of relationship between variables	one variable from another	nature of the distribution	central value	closeness of relationship between variables
5	3	Coefficient of correlation lies between	1 and -1	0 and 1	0 and **	0 and -1	1 and -1
6	3	While drawing a scatter diagram if all points appear to form a straight linegetting downward from left to right, then it is inferred that there is	a perfect positive correlation	simple positive correlation	a perfect negative correlation	no correlation	a perfect negative correlation
7	3	The range of the rank correlation coefficient is	0 to 1	-1 to 1	0 to 10	-10 10 +10	-1 to 1
8	3	The technique used in measuring the closeness of the relationship between theVariables is referred to as	Range	standard deviation	median	correlation analysis	correlation analysis
2	3	Correlation is the	Relationship between two values	Relationship between two variables	Simificance between two variables	Significant level between two values	Relationship between two variables
10	3	If $r =+1$, the given two variables are	perfectly positive	perfectly negative	no correlation	Nerative	perfectly positive
11	3	If r =-1, the given two variables are	perfectly positive	perfectly negative	positive	negative	perfectly negative
12	3	If r =0, the given two variables are having	perfect positive correlation	perfect negative correlation	no correlation	slight correlation	no correlation
13	3	Coefficient of correlation lies between	1 and -1	0 and 1	0 and 10	0 and -1	l and -l
14	3	The range of the rank correlation coefficient is	0 to 1	-1 to 1	0 to 10	-10 10 +10	-1 to 1
15	3	Formula for rank correlation is					
· [3	The formula for computing Pearsonian r is	Σxy / Nσ _x σ _y	Σx / Nσ _x σ _y	Σy / Nσ ₄ σ ₂	$\Sigma xy / \sigma_x \sigma_y$	Σxy / No _c o _y
16	3	In rank correlation the sum of the differences of ranks between two variables shall be	2010	more than 1	less than 1	10	2270
17	3	Estimation of the value of one variable from the given value of another variable is done by	correlation analysis	regression analysis	chi souare test	student's t test	regression analysis
18	3	If advertising and sales are correlated the expected amount of sales for a give. Advertising expenditure is calculated by	correlation analysis	regression analysis	chi souare test	student's t test	regression analysis
		If advertising and sales are correlated the required amount of expenditure for attaininga given amount of sales is calculated	correlation analysis	regression analysis	chi square test	student's t test	regression analysis
19	3	by					
20	3	If three ranks are equal at 5 th place, the rank given to them is	5	6	7	5.5	6
	3	When equal ranks are assigned the adjustments made by adding	1/12(m3-m)	1/6(m2-m)	1/5(m2+m)	1/12(m2-m)	1/12(m3-m)
21	3	The only method used with ranks not the actual value is	Karl pearson's coefficient of correlation	rank correlation	scatter diagram method	concurrent deviation method	rank correlation
22	3	If the data are of a qualitative nature like honesty, efficiency and intelligence etc the method used is	Karl nearson's coefficient of correlation	rank correlation	scatter diagram method	concurrent deviation method	rank correlation
23	3	If the dots in scatter diagram is too scattered we can say that	r = +1	r = -1	r = 0	r = 5	r = 0

	UNIT V					
		Population	samele	total items		Peculation
		century	decade			decade
		Research design		clear nhan		sample desirn
		Research design				sample desirn
5	5 The followine is an example of finite universe	Number of stars in the sky	listeners of a specific radio programme	Throwing of a dice	the population of a city	the population of a city
6	5 The followine are infinite universe except	Number of stars in the sky	listeners of a specific radio programme	Throwing of a dice	the population of a city	the population of a city
7	5 One of the following is the example of infinite universe	the population of a city	the number of workers in a factory	the number of students in a college	listeners of a specific radio programme	listeners of a specific radio programme
8	5 A results from errors in the sampling procedures	systematic bias	sampling error	designing error	research bias	systematic bias
2	5 When the size of the samele increases sameling error	decreases	INCTODED	no change	zero	decreases
10	5 To study the economic status of a town or village the sumpling design used is	probability sampling	non-probability compliant	based on each item	based on items at random	non-probability sampling
		eraota sampline				random campling
		deliberate correline	nurrosive sampling	judeement sampline	chance sampling	chance samuline
		1/20			1/6	1/20
14	5. Selecting every (th item on a list is known as	systematic sampling	area sampling	multi-stare sambler	cluster sameline	systematic sampling
		one in every 10 th item				
						one in every 25 th item
		Stratified sampline	area samstine			Stratified sampling
		sub-datas	strata			strata
		Stratified sampline	area sampline			Stratified sampline
	5 Using proportional allocation, the sample sizes for different strata are 15,9 and 6 respectively which is in proportion to the sizes of the strat					4000:2400:1600
			area samoline			area samnline
		strata	mue acsure mue rat			mie assure mie nit
		nominal data	ordinal data			nominal data
		nominal data	ordinal data			ordinal data
		anotite is harder than evosum	apatite is softer than gypsum			anatite is harder than evosum
		feldspur is the most hardest				feldsnar is softer than sambire
26		nominal scale	ordinal scale	interval scale		nominal scale
27		nominal scale	ordinal scale			nominal scale
28	5 In nominal scale the measure of central tendency used is	mean	median	mode	quartiles	mode
29	5 Generally used measure of dispersion for nominal scales is	standard deviation	mean deviation	quartile deviation	no measure of dispersion	no measure of dispersion
30	5 The most common test of statistical significance that can be utilized in nominal scales is	F-test	t-test	Z-test	chi-square test	chi-square test
31	5 For the measure of correlation can be worked out for nominal scales	contingency coefficient	scatter diagram	Karl-pearson's coefficient of correlation	graphs	contingency coefficient
32	5 is the least rowerful level of measurement	nominal scale	ordinal scale	interval scale	ratio scale	nominal scale
	5. The lowest level of the ordered scale that is commonly used is the	nominal scale	ordinal scale	interval scale	ratio scale	ordinal scale
	5 A students rank in his organization class involves the use of an	nominal scale	ordinal scale	interval scale	ratio scale	ordinal scale
35	5 Multiplication and division can only be used with this scale but not with other scales.	nominal scale	ordinal scale	interval scale	ratio scale	ratie scale
35	5 Measures of central tendency used in ratio scale is	median	mode	arithmetic mean	peometric and harmonic mean	prometric and harmonic mean
		nominal scale	ordinal scale			ratio scale
		nominal scale	ordinal scale			interval scale
		nominal scale	ordinal scale	internal wale	ratio scale	ratio scale
40	5 refers to the extent to which a test measures what we actually wish to measure	Validity	Reliability	Practicality	append	Vulidity
		validity		practicality		reliability
42		validity	ndishelity	nearticality		marticality
		Criterion related validity		construct validity		content validity
43	5 if the instrument contains a representative sample of the universe ine is rood 5 enables the researcher to study the percentual structure of a set of stimuli and the cornitive processes underlying the development 5			multi-dimentional scaling	interval scale	multidimentional scaling
45		araline				water
		nominal scale	ordinal scale	interval scale		rating scale
		nominal scale	ranking scale			ranking scale
		nominal scale	ordinal scale	interval scale		naminal scale
		nominal scale	ardinal scale	interval scale		ardinal scale
		nominal scale	ordinal scale			
			item analysis areroach	interval scale consensus approach		interval scale
51		arbitrary approach	stem analysis approach ordinal scale			arbitrary approach
		nominal scale	ordinal scale			ratine scale ratine scale
		more points on a scale				more points on a scale
		error of central tendency				error of leniency
						error of central tendency
		J.P.Guiford				J.P.Guilford
		only written examination is done	can be performed without a namel of indues			can be performed without a nanel of indees
		semantic differential scale	ordinal scale			semantic differential scale
60	5 In which section of dissertation ,we can give our suggestions?	Introduction	Result	Discussion	Su mmary	Discussion

Enable | Enlighten | Enrich ARPAGAM DEMY OF HIGHER EDUCATION (Deemed to be University)

CLASS: II BSc., BC COURSE CODE: 16BCU602A

COURSE NAME: Biostatistics 2A UNIT: IV

BATCH-2016-2019

SYLLABUS

UNIT IV

Regression: Regression in two variables – Regression coefficient problems – uses of regression.

Simple Linear Regression

The line which gives the average relationship between the two variables is known as the regression equation. The regression equation is also called estimating equation.

Uses

- 1. Regression analysis is used in statistics and other displines.
- 2. Regression analysis is of practical use in determining demand curve, supply curve, consumption function, etc from market survey.
- 3. In Economics and Business, there are many groups of interrelated variables.
- 4. In social resarch, the relation between variables may not known; the relation may differ from place to place.
- 5. The value of dependent variable is estimated corresponding to any value of the independent variable using the appropriate regression equation.

Method of Least Squares

from a scatter diagram, there is virtually no limit as to the number of lines that can be drawn to make a linear relationship between the 2 variables

- the objective is to create a BEST FIT line to the data concerned
- the criterion is the called the method of least squares
- i.e. the <u>sum of squares</u> of the vertical deviations from the points to the line be a minimum (based on the fact that the dependent variable is drawn on the vertical axis)
- the linear relationship between the dependent variable (Y) and the independent variable(x) can be written as Y = a + bX, where a and b are parameters describing the vertical intercept and the slope of the regression.
- Similarly the linear relationship between the dependent variable (XY) and the independent variable(Y) can be written as X = a' + b'Y, where a and b are parameters describing the vertical intercept and the slope of the regression.

 CLASS:
 II
 BSc.,
 BC
 CO

 MYOF HIGHEREDUCATION
 COURSE CODE:
 16BCU602A

COURSE NAME: Biostatistics

BATCH-2016-2019

0

Calculating a and b:

The values of a and b for the given pairs of values of (xi,yi) i=1,2,3....are determined, Using the normal equations as ,

 $\sum y = Na + b\sum x$

 $\sum xy = a\sum x + b\sum x^2$

Similarly, the values of a' and b' for the given pairs of values of (xi,yi) i=1,2,3....are determined,

Using the normal equations as,

 $\sum x = Na' + b' \sum y$

 $\sum xy = a'\sum y+b'\sum y^2$

Methods of forming the regression equations

- Regression equations on the basis of <u>normal equations</u>.
- Regression equations on the basis of X and Y and b_{YX} and b_{XY} .

Problem

From the following data, obtain the two regression equations.

Xe	5 2	10 4	8		
Y S	9 11	5 8	7 use normal equ	ations.	
Solut	tion				
Х		Y	XY	\mathbf{X}^{2}	\mathbf{Y}^{2}
6		9	54	36	81
2		11	22	4	121
10		5	50	100	25
4		8	32	16	64
8		7	56	64	49
∑x=(0	∑y=($\sum xy=214$	$\sum x^2 = 220$	$\sum y^2 = 340$

Let the regression equation Y on X is Y = a + bX

The normal equations are , $\sum y = Na + b\sum x$

CLASS: II BSc., BC CO COURSE CODE: 16BCU602A

COURSE NAME: Biostatistics

BATCH-2016-2019

 $\sum xy = a\sum x + b\sum x^2$

By substituting the values from the table, we get 5a+30b = 40 ------1 30a + 180b = 214 -----2 Solving these two equations we get, a=11.90 and b=-0.65Therefore the regression Y on X is Y = 11.90-0.65X.

Let the regression equation X on Y is X = a' + b'YThe normal equations are, $\sum x = Na + b\sum y$ $\sum xy = a\sum y + b\sum y^2$

By substituting the values from the table, we get 5a'+40'b = 30 - 3 40a' + 340b' = 214 - 4Solving these two equations we get, a' = 16.40 and b = -1.30Therefore the regression equation X on Y is X = 16.40 - 1.30Y

Example From the data given below, find

- (i) the two regression equations
- (ii) The correlation coefficient between the variables X and y
- (iii) The value of Y when X = 30

		35 32						
Y: 43	46	49 41	36	32	31	30	33	39

Solution

Х	Y	x= X- X`	$Y = Y - Y^{$	xy	\mathbf{x}^2	y^2
25	43	-7	5	-35	49	25
28	46	-4	8	-32	16	64
35	49	3	11	33	9	121
32	41	0	3	0	0	9
31	36	-1	-2	2	1	4

CLASS: II BSc., BC CO COURSE CODE: 16BCU602A

RPAGAM

HIGHER EDUCATION

COURSE NAME: Biostatistics

BATCH-2016-2019

30	6	32	4	-6	-24	16	36
29	9	31	-3	-7	21	9	49
38	8	30	6	-8	-48	36	64
34	4	33	2	-5	-10	4	25
32	2	39	0	1	0	0	1
32	20	380	0	0	-93	140	398

 $X^{=}32$, $Y^{=}38$, $b_{xy} = \sum xy / \sum y^2 = -0.2337$, $b_{yx} = \sum xy / x^2 = -0.6643$

iv) Regression equation of Y on X ,(Y - Y`) = b_{yx} (X-X`)

 $(Y - 38) = -0.6643(X-32) \Longrightarrow Y = 59.26-0.6643X$

(ii) Regression equation of X on Y, $(X - X^{*}) = b_{xy} (Y-Y^{*})$

$$(X - 32) = -0.2337Y + 8.88 \Longrightarrow X = 40.88 - 0.233 Y$$

(iii)
$$r = +\sqrt{b_{yx}b_{xy}} = -0.3940$$

(iv)
$$Y = 59.26 - 0.6643 \times 30 = 39$$

Properties of Regression coefficients

- 1. The two regression equations are generally different and are not to be interchanged in their usage.
- 2. The two regression lines intersect at (X, Y).
- 3. Correlation coefficient is the geometric mean of two regression coefficients.
- 4. The two regression coefficients and the correlation coefficient have the same sign.
- 5. Both the regression coefficients and the correlation coefficient cannot be greater than one numerically and simultaneously.
- 6. Regression coefficients are independent of change of origin but are affected by the change of scale.
- 7. Each regression coefficient is in the unit of the measurement of the dependent variable.
- 8. Each regression coefficient indicates the quantum of change in the dependent variable corresponding to unit increase in the independent variable.

Entitle | Enginere | Dirich CAPPACAM CADEMY OF HIGHER EDUCATION Deemed to be University Deemed to be University

CLASS: II BSc., BC COU COURSE CODE: 16BCU602A

COURSE NAME: Biostatistics

BATCH-2016-2019

POSSIBLE QUESTIONS UNIT IV

PART A (20 x 1 = 20 Marks) Question number 1 – 20 online examinations

PART B (5 x 2= 20Marks)

- 1) What is meant by Regression?
- 2) What are the formulae for Regression co-efficients?
- 3) Distinguish between Correlation and Regression.
- 4) What is Simple Correlation?
- 5) Define Regression Equation.
- 6) When X = 40, Y = 60, $\sigma_x = 10$, $\sigma_Y = 15$ and r = 0.7 find the Regression Equation of Y on X. **PART C** (5 X 6 = 30 Marks)
- 1) Calculate the two Regression Equations from the following data.

Х	10	12	13	12	16	15
Y	40	38	43	45	37	43

2) Calculate Karl Pearson's Coefficient of Correlation from the following data.

Wages	100	101	102	102	100	99	97	98
Cost of Living	98	99	99	97	95	92	95	94

3) From the data given below find the two Regression Equations.

X	10	12	13	12	16	15
Y	20	28	23	25	27	30.
 v	20		:) Eat	in a ta	Vle a	$\sim V - 2$

i) Estimate Y when X = 20. ii) Estimate X when Y = 35.

4) A comparison of the undergraduate Grade Point Averages of 10 corporate employees with their scores in a managerial trainee examination produced the results shown *in* the following table.

Exam Score	89	83	79	91	95	82	69	66	75	80
GPA	2.4	3.1	2.5	3.5	3.6	2.5	2.0	2.2	2.6	2.7

Measure the Correlation Coefficient between Exam scores and GPA by using Rank Method and also interpret the data given with the help of Scatter Diagram.

5) Develop the Regression Equation that best fit the data given below using annual income as an independent variable and amount of life insurance as dependent variable.

Annual Income (Rs. in 000's)	62	78	41	53	85	34
Amount of Life Insurance (Rs. in 00's)	25	30	10	15	50	7

CLASS: II BSc., BC CO COURSE CODE: 16BCU602A

COURSE NAME: Biostatistics 02A UNIT: IV

BATCH-2016-2019

6) The ranks of ten students in Economics and Statistics subjects are as follows.

Economics	3	5	8	4	7	10	2	1	6	9
Statistics	6	4	9	8	1	2	3	10	5	7

Calculate Spearman's Rank Correlation Coefficient.

7) You are given the following data:

	Х	Y
Arithmetic Mean	36	85
Standard Deviation	11	8
Correlation coefficient between X an	nd Y	= 0.66

Find the two Regression Equations. And also find Correlation Coefficient.

Karpagam Academy of Higher Educ Department of Biochamistry Biostatistics 16BCU602-A UNIT IV UNIT IV

UNIT IV					
The study of regression is considerably used by	Economists and Businessmen	Bioscience researcher	Mathematician	Astronaut	Economists and Businessmen
The average relationship existing between X and Y variables is described by	Regression graph	Regression diagram	Regression Inc	Regression bar	Regression line
The regression equation of Y on X is expressed as	X=a+bY	X=b+aY	Y=a+bX	Y=b +aX	Y=a+bX
The regression coefficient of X on Y is	r * (o _x /o _{y)}	r * (σ ₃ /σ ₆)	σ_x/σ_y	σ_{y}/σ_{x}	r * (σ _x /σ ₃)
The under root of the product of two regression coefficients is equal to	coefficient of variation	coefficient of resression	correlation coefficient	correlation zero	correlation coefficient
Scatter diagram method is a	Graphic	Mathematical	Numerical	Algebraical	Graphic
If every change in X produces a corresponding decrease in Y then X and Y are said to be Rank correlation was discovered by	uncorrelated R A Fisher	independent Sir Francis Galtan	positively correlated Karl Pearson	negatively correlated Spearman	negatively correlated Spearman
Kink correlation was discovered by Correlation is used to measure	R.A.Fisher closeness of relationship between variables	Ser Frances Gallon one variable from another	Karl Pearson nature of the distribution	Spearman central value	closeness of relationship betwee
Correlation is used to measure Coefficient of correlation lies between	closeness of relationship between variables	one variable from another	nature of the distribution	central value	closeness of relationship betwee
Coefficient of correlation lies between While drawing a scatter diagram if all points appear to form a straight linegetting downward from left to right, then it is	a perfect positive correlation	simple positive correlation	a perfect negative correlation	o and -1 no correlation	a perfect negative correlation
while drawing a scatter diagram is an points appear to form a straight integening downward from test to right, men it is inferred that there is	a perfect positive correlation	simple positive correlation	a perfect negative correlation	no correlation	a perfect negative correlation
The range of the rank correlation coefficient is	0 to 1	-1 to 1	0 ao oo	-10 10 +10	-1 to 1
The technique used in measuring the closeness of the relationship between theVariables is referred to as	Range	standard deviation	median	correlation analysis	correlation analysis
If both the variables are varying in the same direction is known as	positive correlation	negative correlation	linear correlation	non linear correlation	positive correlation
X: 10 12 15 18 20 Y: 15 20 22 25 37 These two variables are	Positively correlated	negatively correlated	linearly correlated	non linearly correlated	Positively correlated
X: 20 30 40 60 80 Y: 40 30 22 15 10 These two variables are	Positively correlated	negatively correlated	linearly correlated	non linearly correlated	negatively correlated
If the two variables are varying in opposite direction the correlation is said to be	positive	negative	simple	partial	negative
When we study the relationship between the yield of rice per acre and both the amount of minfall and the amount of ertilizers used, it is the problem of	multiple correlation	Simple correlation	non linear correlation	linear correlation	multiple correlation
Study of three or more variables simultaneously is known as	Simple correlation	multiple correlation	linear correlation	non linear correlation	multiple correlation
If the amount of change in one variable tends to bear constant ratio to the amount of change in the other variable then the completion is could to be	non linear	linear	multiple	simple	linear
X: 10 20 30 40 50 Y: 70 140 210 280 350 The above said two variables are	non lincar	lincar	multiple	simple	linear
If the amount of change in one variable does not bear a constant ratio to the amount of change in the other variable is	non incar	linear	multiple	simple	non linear
known as In seatter diagram if the points are lying in a straight line from lower left hand corner to the upper right hand corner the	perfectly negative	perfectly positive	positive	negative	perfectly positive
correlation is said to be				-	
In scatter diagram if the points are lying in a straight line from upper left hand corner to the lower right hand corner the correlation is said to be	perfectly negative	perfectly positive	positive	negative	perfectly negative
A simple and non mathematical method of studying correlation between the variables is	Karl pearson's coefficient of correlation	scatter diagram method	concurrent deviation method	rank correlation	scatter diagram method
Correlation is the	Relationship between two values	Relationship between two variables	Significance between two variables	Significant level between two values	Relationship between two varial
If r =+1, the given two variables are	perfectly positive	perfectly negative	no correlation	Negative	perfectly positive
If r =-1, the given two variables are	perfectly positive	perfectly negative	positive	negative	perfectly negative
If r =0, the given two variables are having	perfect positive correlation	perfect negative correlation	no correlation	slight correlation	no correlation
Coefficient of correlation lies between	l and -l	0 and 1	0 and 10	0 and -1	l and -l
The range of the rank correlation coefficient is	0 to 1	-1 to 1	0 to 00	-90 \$0 +90	-1 to 1
Formula for rank correlation is		1		1	
The formula for computing Pearsonian r is	Σxy / Nσ _k σ _y	$\Sigma x / N\sigma_x \sigma_y$	$\Sigma y / N \sigma_x \sigma_y$	$\Sigma xy / \sigma_x \sigma_y$	Σxy / No _x o _y
In rank correlation the sum of the differences of ranks between two variables shall be	2010	more than 1	less than 1	10	2010
Estimation of the value of one variable from the given value of another variable is done by If advertising and sales are correlated the expected amount of sales for a give. Advertising expenditure is calculated by	correlation analysis correlation analysis	regression analysis regression analysis	chi square test chi square test	student's t test student's t test	regression analysis regression analysis
	correlation analysis correlation analysis			student's t test student's t test	
If advertising and sales are correlated the required amount of expenditure for attaininga given amount of sales is calculated by	correlation analysis	regression analysis	chi square test	student's t test	regression analysis
If yield of rice and rainfall are correlated the amount of rain required to achieve a certain production figure is calculated by	correlation analysis	regression analysis	chi square test	student's t test	regression analysis
The dictionary meaning of the term 'regression' is	act of returning	removing	reacting	relating	act of returning
The term 'Regrecion' was first used by	R.A.Fisher	Sir Francis Galton	Karl Pearson	Spearman	Sir Francis Galton
In 1877, the relationship between the height of the fathers and sons was studied by	R.A.Fisher	Sir Francis Galton	Karl Pearson	Spearman	Sir Francis Galton
The regression equation of X on Y is expressed as	X=a+bY	X=b+aY	Y=a+bX	Y=b +Ax	X=a+bY
The measure of the average relationship between two or more variables in terms of the original units of the data is referred to as	correlation	regression	standard deviation	correlation coefficient	regression
Due of the most frequently used techniques in Economics and Business research is	correlation	regression	standard deviation	correlation coefficient	regression
The variable which is used to predict the variable of interest is called the	dependent variable	independent variable	common variable	multidependent variable	independent variable
	dependent variable	independent variable	common variable	multidependent variable	dependent variable
In correlation analysis r _{ay} and r _{ys} are	symmetric	not symmetric	multiples of two	multiples of five	symmetric
In regression analysis the regression coefficients b _{sy} and b _{ys} are	symmetric	not symmetric	multiples of two	multiples of five	not symmetric
In the regression equation Y = a+bX, Y is a	dependent variable	independent variable	common variable	multidependent variable	dependent variable
	dependent variable	independent variable	common variable	multidependent variable	independent variable
In the regression equation Y = a+bX, X is a					
In the regression equation Y = a+bX, X is a The regression coefficient of Y on X is	r * (σ ₄ /σ ₂)	r * (o,/o,)	σ_s/σ_y	σ _x .iσ _x	r * (o,/o,

COURSE CODE: 16BCU602 A

COURSE NAME: Biostatistics UNIT: V

BATCH-2016-2019

UNIT-V **SYLLABUS**

Test of significance: Tests based on Means only-Both Large sample and Small sample tests – Student's t test, F-test, Chi square test - goodness of fit

Hypothesis:

A statistical hypothesis is an assumption that we make about a population parameter, which may or may not be true concerning one or more variables.

According to Prof. Morris Hamburg "A hypothesis in statistics is simply a quantitative statement about a population".

Hypothesis testing:

Hypothesis testing is to test some hypothesis about parent population from which the sample is drawn.

Example:

A coin may be tossed 200 times and we may get heads 80 times and tails 120 times, we may now be interested in testing the hypothesis that the coin is unbiased.

To take another example we may study the average weight of the 100 students of a particular college and may get the result as 110lb. We may now be interested in testing the hypothesis that the sample has been drawn from a population with average weight 115lb.

Hypotheses are two types

- 1. Null Hypothesis
- 2. Alternative hypothesis

Null hypothesis:

The hypothesis under verification is known as *null hypothesis* and is denoted by H₀ and is always set up for possible rejection under the assumption that it is true.

For example, if we want to find out whether extra coaching has benefited the students or not, we shall set up a null hypothesis that "extra coaching has not benefited the students". Similarly, if we want to find out whether a particular drug is effective in curing malaria we will take the null hypothesis that *"the drug"* is not effective in curing malaria".

Alternative hypothesis:

The rival hypothesis or hypothesis which is likely to be accepted in the event of rejection of the null hypothesis H₀ is called alternative hypothesis and is denoted by H_1 or H_a .

Entitle | Entitlet | Entitlet KARPAGAM ACADEMY OF HIGHER EDUCATION Distances to be University

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III BSc., BC CC COURSE CODE: 16BCU602 A

COURSE NAME: Biostatistics A UNIT: V

BATCH-2016-2019

For example, if a psychologist who wishes to test whether or not a certain class of people have a mean I.Q. 100, then the following null and alternative hypothesis can be established.

The null hypothesis would be

 $H_0: \mu = 100$

Then the alternative hypothesis could be any one of the statements.

$$H_1: \mu \neq 100$$

(or) $H_1: \mu > 100$

 $(or) H_1 : \mu < 100$

Errors in testing of hypothesis:

After applying a test, a decision is taken about the acceptance or rejection of null hypothesis against an alternative hypothesis. The decisions may be four types.

- 1) The hypothesis is true but our test rejects it.(type-I error)
- 2) The hypothesis is false but our test accepts it. .(type-II error)
- 3) The hypothesis is true and our test accepts it.(correct)
- 4) The hypothesis is false and our test rejects it.(correct)

The first two decisions are called errors in testing of hypothesis.

i.e.1) Type-I error

2) Type-II error

1)Type-I error: The type-I error is said to be committed if the null hypothesis (H_0) is true but our test rejects it.

2)Type-II error: The type-II error is said to be committed if the null hypothesis (H_0) is false but our test accepts it.

Level of significance:

The maximum probability of committing type-I error is called level of significance and is denoted by α .

 $\alpha = P$ (Committing Type-I error)

= $P(H_0 \text{ is rejected when it is true})$

This can be measured in terms of percentage i.e. 5%, 1%, 10% etc....... Power of the test:

The probability of rejecting a false hypothesis is called power of the test and is denoted by $1-\beta$.

Power of the test = $P(H_0 \text{ is rejected when it is false})$

= $1 - P(H_0 \text{ is accepted when it is false})$

= 1- P (Committing Type-II error)

COURSE CODE: 16BCU602 A

BATCH-2016-2019

 $= 1 - \beta$

A test for which both α and β are small and kept at minimum level is considered desirable.

COURSE NAME: Biostatistics

UNIT: V

- The only way to reduce both α and β simultaneously is by increasing sample size.
 - The type-II error is more dangerous than type-I error.

Critical region:

A statistic is used to test the hypothesis H_0 . The test statistic follows a known distribution. In a test, the area under the probability density curve is divided into two regions i.e. the region of acceptance and the region of rejection. The region of rejection is the region in which H_0 is rejected. It indicates that if the value of test statistic lies in this region, H_0 will be rejected. This region is called critical region. The area of the critical region is equal to the level of significance α . The critical region is always on the tail of the distribution curve. It may be on both sides or on one side depending upon the alternative hypothesis.

One tailed and two tailed tests:

A test with the null hypothesis $H_0: \theta = \theta_0$ against the alternative hypothesis $H_1: \theta \neq \theta_0$, it is called a two tailed test. In this case the critical region is located on both the tails of the distribution.

A test with the null hypothesis $H_0: \theta = \theta_0$ against the alternative hypothesis $H_1: \theta > \theta_0$ (right tailed alternative) or $H_1: \theta < \theta_0$ (left tailed alternative) is called one tailed test. In this case the critical region is located on one tail of the distribution.

 $H_0: \theta = \theta_0$ against $H_1: \theta > \theta_0$ ----- right tailed test

 $H_0: \theta = \theta_0$ against $H_1: \theta < \theta_0$ ----- left tailed test

Sampling distribution:

Suppose we have a population of size 'N' and we are interested to draw a sample of size 'n' from the population. In different time if we draw the sample of size n, we get different samples of different observations i.e. we can get ${}^{N}c_{n}$ possible samples. If we calculate some particular statistic from each of the ${}^{N}c_{n}$ samples, the distribution of sample statistic is called sampling distribution of the statistic. For example if we consider the mean as the statistic, then the distribution of all possible means of the samples is a distribution of the sample mean and it is called sampling distribution of the mean.

Standard error:

Standard deviation of the sampling distribution of the statistic t is called standard error of t.

CLASS: III BSc., BC CC COURSE CODE: 16BCU602 A

COURSE NAME: Biostatistics A UNIT: V

BATCH-2016-2019

i.e. S.E (t)= $\sqrt{Var(t)}$

Utility of standard error:

1. It is a useful instrument in the testing of hypothesis. If we are testing a hypothesis at 5% l.o.s and if the test statistic i.e. $|Z| = \left|\frac{t - E(t)}{S.E(t)}\right| > 1.96$ then

the null hypothesis is rejected at 5% l.o.s otherwise it is accepted.

- 2. With the help of the S.E we can determine the limits with in which the parameter value expected to lie.
- 3. S.E provides an idea about the precision of the sample. If S.E increases

the precision decreases and vice-versa. The reciprocal of the S.E i.e. $\frac{1}{SE}$

is a measure of precision of a sample.

4. It is used to determine the size of the sample.

Test statistic:

The test statistic is defined as the difference between the sample statistic value and the hypothetical value, divided by the standard error of the statistic.

i.e. test statistic
$$Z = \frac{t - E(t)}{S.E(t)}$$

Procedure for testing of hypothesis:

- 1. Set up a null hypothesis i.e. $H_0: \theta = \theta_0$.
- 2. Set up a alternative hypothesis i.e. $H_1: \theta \neq \theta_0$ or $H_1: \theta > \theta_0$ or $H_1: \theta < \theta_0$
- 3. Choose the level of significance i.e. α .
- 4. Select appropriate test statistic Z.
- 5. Select a random sample and compute the test statistic.
- 6. Calculate the tabulated value of Z at $\alpha \%$ l.o.s i.e. Z_{α} .
- 7. Compare the test statistic value with the tabulated value at $\alpha \%$ l.o.s. and make a decision whether to accept or to reject the null hypothesis.

Large sample tests:

The sample size which is greater than or equal to 30 is called as large sample and the test depending on large sample is called large sample test.

The assumption made while dealing with the problems relating to large samples are

Assumption-1: The random sampling distribution of the statistic is approximately normal.

RPAGAM

CLASS: III BSc., BC **COURSE NAME: Biostatistics** COURSE CODE: 16BCU602 A

UNIT: V

BATCH-2016-2019

Assumption-2: Values given by the sample are sufficiently closed to the population value and can be used on its place for calculating the standard error of the statistic.

Large sample test for single mean (or) test for significance of single mean:

For this test

The null hypothesis is $H_0: \mu = \mu_0$

against the two sided alternative $H_1: \mu \neq \mu_0$

where μ is population mean

 μ_0 is the value of μ

Let $x_1, x_2, x_3, \dots, x_n$ be a random sample from a normal population with mean μ and variance σ^2

i.e. if $X \sim N(\mu, \sigma^2)$ then $\bar{x} \sim N(\mu, \sigma^2/\mu)$. Where \bar{x} be the sample mean

Now the test statistic $Z = \frac{t - E(t)}{S E(t)} \sim N(0,1)$

$$= \frac{\overline{x} - E(\overline{x})}{S.E(\overline{x})} \sim N(0,1)$$
$$\Rightarrow Z = \frac{\overline{x} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$$

Now calculate |Z|

Find out the tabulated value of Z at α % l.o.s i.e. Z_{α}

If $|Z| > Z_{\alpha}$, reject the null hypothesis H₀

If $|Z| < Z_{\alpha}$, accept the null hypothesis H₀

Note: if the population standard deviation is unknown then we can use its estimate s, which will be calculated from the sample. $s = \sqrt{\frac{1}{n-1}\sum (x-\bar{x})^2}$.

Large sample test for difference between two means:

If two random samples of size n_1 and n_2 are drawn from two normal populations with means μ_1 and μ_2 , variances σ_1^2 and σ_2^2 respectively

Let \bar{x}_1 and \bar{x}_2 be the sample means for the first and second populations respectively

Then
$$\bar{x}_1 \sim N\left(\mu_1, \sigma_1^2 / n_1\right)$$
 and $\bar{x}_2 \sim N\left(\mu_2, \sigma_2^2 / n_2\right)$

RPAGAM

CLASS: III BSc., BC **COURSE NAME: Biostatistics** COURSE CODE: 16BCU602 A

UNIT: V

BATCH-2016-2019

Therefore
$$\overline{x}_1 - \overline{x}_2 \sim N\left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}\right)$$

For this test

The null hypothesis is $H_0: \mu_1 = \mu_2 \Longrightarrow \mu_1 - \mu_2 = 0$ against the two sided alternative $H_1: \mu_1 \neq \mu_2$

Now the test statistic
$$Z = \frac{t - E(t)}{S.E(t)} \sim N(0,1)$$

 $= \frac{(\bar{x}_1 - \bar{x}_2) - E(\bar{x}_1 - \bar{x}_2)}{S.E(\bar{x}_1 - \bar{x}_2)} \sim N(0,1)$
 $\Rightarrow Z = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{S.E(\bar{x}_1 - \bar{x}_2)} \sim N(0,1)$
 $\Rightarrow Z = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$ [since $\mu_1 - \mu_2 = 0$ from H₀]

Now calculate |Z|

Find out the tabulated value of Z at α % l.o.s i.e. Z_{α}

If $|Z| > Z_{\alpha}$, reject the null hypothesis H_0

If $|Z| \leq Z_{\alpha}$, accept the null hypothesis H₀

Note: If σ_1^2 and σ_2^2 are unknown then we can consider S_1^2 and S_2^2 as the estimate value of σ_1^2 and σ_2^2 respectively...

Large sample test for single standard deviation (or) test for significance of standard deviation:

Let $x_1, x_2, x_3, \dots, x_n$ be a random sample of size n drawn from a normal population with mean μ and variance σ^2 ,

for large sample, sample standard deviation s follows a normal distribution with mean σ and variance $\sigma^2/_{2n}$ i.e. $s \sim N(\sigma, \sigma^2/_{2n})$

For this test

The null hypothesis is $H_0: \sigma = \sigma_0$ against the two sided alternative $H_1: \sigma \neq \sigma_0$

CLASS: III BSc., BC **COURSE NAME: Biostatistics** COURSE CODE: 16BCU602 A

UNIT: V

BATCH-2016-2019

Now the test statistic
$$Z = \frac{t - E(t)}{S.E(t)} \sim N(0,1)$$

 $= \frac{s - E(s)}{S.E(s)} \sim N(0,1)$
 $\Rightarrow Z = \frac{s - \sigma}{\sigma/\sqrt{2n}} \sim N(0,1)$
Now calculate $|Z|$

Now calculate $|\mathbf{Z}|$

Find out the tabulated value of Z at $\alpha \%$ l.o.s i.e. Z_{α}

If $|Z| > Z_a$, reject the null hypothesis H₀

If $|Z| \leq Z_{\alpha}$, accept the null hypothesis H₀

Large sample test for difference between two standard deviations:

If two random samples of size n_1 and n_2 are drawn from two normal populations with means μ_1 and μ_2 , variances σ_1^2 and σ_2^2 respectively Let s_1 and s_2 be the sample standard deviations for the first and second

populations respectively

Then $s_1 \sim N\left(\sigma_1, \frac{\sigma_1^2}{2n_1}\right)$ and $\bar{x}_2 \sim N\left(\sigma_2, \frac{\sigma_2^2}{2n_2}\right)$ Therefore $s_1 - s_2 \sim N\left(\sigma_1 - \sigma_2, \frac{\sigma_1^2}{2n_1} + \frac{\sigma_2^2}{2n_2}\right)$

For this test

The null hypothesis is $H_0: \sigma_1 = \sigma_2 \Longrightarrow \sigma_1 - \sigma_2 = 0$ against the two sided alternative $H_1: \sigma_1 \neq \sigma_2$

Now the test statistic
$$Z = \frac{t - E(t)}{S.E(t)} \sim N(0,1)$$

 $= \frac{(s_1 - s_2) - E(s_1 - s_2)}{S.E(s_1 - s_2)} \sim N(0,1)$
 $\Rightarrow Z = \frac{(s_1 - s_2) - (\sigma_1 - \sigma_2)}{S.E(s_1 - s_2)} \sim N(0,1)$
 $\Rightarrow Z = \frac{(s_1 - s_2)}{\sqrt{\frac{\sigma_1^2}{2n_1} + \frac{\sigma_2^2}{2n_2}}} \sim N(0,1)$ [since $\sigma_1 - \sigma_2 = 0$ from H₀]

Now calculate |Z|

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III BSc., BC COURSE CODE: 16BCU602 A UNIT: V BATCH-2016-2019

Find out the tabulated value of Z at $\alpha \%$ l.o.s i.e. Z_{α}

If $|Z| > Z_{\alpha}$, reject the null hypothesis H_0

If $|Z| \leq Z_{\alpha}$, accept the null hypothesis H₀

Large sample test for single proportion (or) test for significance of proportion:

Let x is number of success in n independent trails with constant probability p, then x follows a binomial distribution with mean np and variance npq. In a sample of size n let x be the number of persons processing a given attribute

then the sample proportion is given by $\hat{p} = \frac{x}{n}$

Then
$$E(\hat{p}) = E\left(\frac{x}{n}\right) = \frac{1}{n}E(x) = \frac{1}{n}np = p$$

And $V(\hat{p}) = V\left(\frac{x}{n}\right) = \frac{1}{n^2}V(x) = \frac{1}{n^2}npq = \frac{pq}{n}$
 $S.E(\hat{p}) = \sqrt{\frac{pq}{n}}$

For this test

The null hypothesis is $H_0: p = p_0$ against the two sided alternative $H_1: p \neq p_0$

Now the test statistic $Z = \frac{t - E(t)}{S.E(t)} \sim N(0,1)$

$$= \frac{\hat{p} - E(\hat{p})}{S.E(\hat{p})} \sim N(0,1)$$
$$\Rightarrow Z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} \sim N(0,1)$$

Now calculate |Z|

Find out the tabulated value of Z at $\alpha \%$ l.o.s i.e. Z_{α}

If $|Z| > Z_{\alpha}$, reject the null hypothesis H₀

If $|Z| \leq Z_{\alpha}$, accept the null hypothesis H_0

Large sample test for single proportion (or) test for significance of proportion:

RPAGAM

CLASS: III BSc., BC **COURSE NAME: Biostatistics** COURSE CODE: 16BCU602 A

UNIT: V

BATCH-2016-2019

let x_1 and x_2 be the number of persons processing a given attribute in a random sample of size n_1 and n_2 then the sample proportions are given by $\hat{p}_1 = \frac{x_1}{n_1}$ and

$$\hat{p}_{2} = \frac{x_{2}}{n_{2}}$$
Then $E(\hat{p}_{1}) = p_{1}$ and $E(\hat{p}_{2}) = p_{2} \Rightarrow E(\hat{p}_{1} - \hat{p}_{2}) = p_{1} - p_{2}$
And $V(\hat{p}_{1}) = \frac{p_{1}q_{1}}{n_{1}}$ and $V(\hat{p}_{2}) = \frac{p_{2}q_{2}}{n_{2}} \Rightarrow V(\hat{p}_{1} - \hat{p}_{2}) = \frac{p_{1}q_{1}}{n_{1}} + \frac{p_{2}q_{2}}{n_{2}}$

$$S.E(\hat{p}_1) = \sqrt{\frac{p_1 q_1}{n_1}} \text{ and } S.E(\hat{p}_2) = \sqrt{\frac{p_2 q_2}{n_2}} \Longrightarrow S.E(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}$$

For this test

The null hypothesis is $H_0: p_1 = p_2$ against the two sided alternative $H_1: p_1 \neq p_2$

Now the test statistic
$$Z = \frac{t - E(t)}{S.E(t)} \sim N(0,1)$$

 $= \frac{\hat{p}_1 - \hat{p}_2 - E(\hat{p}_1 - \hat{p}_2)}{S.E(\hat{p}_1 - \hat{p}_2)} \sim N(0,1)$
 $\Rightarrow Z = \frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{S.E(\hat{p}_1 - \hat{p}_2)} \sim N(0,1)$
 $\Rightarrow Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{p_1q_1}{n_1} + \frac{p_2q_2}{n_2}}} \sim N(0,1)$
 $\Rightarrow Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{pq}{n_1} + \frac{pq}{n_2}}} \sim N(0,1)$ Since $p_1 = p_2$ from H₀
 $\Rightarrow Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{pq}{n_1} + \frac{pq}{n_2}}} \sim N(0,1)$

When *p* is not known *p* can be calculated by $p = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$ and q = 1 - p

CLASS: III BSc., BC **COURSE NAME: Biostatistics** COURSE CODE: 16BCU602 A

UNIT: V

BATCH-2016-2019

Now calculate |Z|

Find out the tabulated value of Z at $\alpha \%$ l.o.s i.e. Z_{α}

If $|Z| > Z_{\alpha}$, reject the null hypothesis H_0

If $|\mathbf{Z}| \leq \mathbf{Z}_{\alpha}$, accept the null hypothesis \mathbf{H}_0

CLASS: III BSc., BC COURS COURSE CODE: 16BCU602 A

COURSE NAME: Biostatistics

BATCH-2016-2019

• As σ is unknown,

$$\overline{x} \pm z_{\alpha/2} \frac{s}{\sqrt{n}} = \left[\overline{x} - z_{\alpha/2} \frac{s}{\sqrt{n}}, \overline{x} + z_{\alpha/2} \frac{s}{\sqrt{n}} \right]$$

Step 2: If μ_0 falls into the above confidence intervals, then do *not* reject H_0 . Otherwise, reject H_0 .

Example 1:

The average starting salary of a college graduate is \$19000 according to government's report. The average salary of a random sample of 100 graduates is \$18800. The standard error is 800. (a) Is the government's report reliable as the level of significance is 0.05.

- (b) Find the p-value and test the hypothesis in (a) with the level of significance $\alpha = 0.01$.
- (c) The other report by some institute indicates that the average salary is \$18900. Construct a 95% confidence interval and test if this report is reliable.

[solutions:]

(a)

$$H_0: \mu = \mu_0 = 19000$$
 vs. $H_a: \mu \neq \mu_0 = 19000$,
 $n = 100, \bar{x} = 18800, s = 800, \alpha = 0.05$

Then,

$$|z| = \left| \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \right| = \left| \frac{18800 - 19000}{800 / \sqrt{100}} \right| = |-2.5| = 2.5 > z_{\alpha/2} = z_{0.025} = 1.96$$

Therefore, reject H_0 .

(b)

p

-value =
$$P(|Z| > |z|) = P(|Z| > 2.5) = 2 \cdot P(Z > 2.5) = 0.0124 > 0.01$$

Therefore, *not* reject H_0 .

(c)

$$H_0: \mu = \mu_0 = 18900$$
 vs $H_a: \mu \neq \mu_0 = 18900$,

A 95% confidence interval is

$$\bar{x} \pm z_{\alpha/2} \frac{s}{\sqrt{n}} = 18800 \pm z_{0.025} \frac{800}{\sqrt{100}} = 18800 \pm 1.96 \cdot 80 = [18643.2, 18956.8].$$

Since $\mu_0 = 18900 \in [18643.2, 18956.8]$, Therefore, *not* reject H_0 . Example 2:

A sample of 49 provides a sample mean of 38 and a sample standard deviation of 7. Let

KARPAGAM ACADEMY OF HIGHER EDUCATION CLASS: III BSc., BC **COURSE NAME: Biostatistics** RPAGAM COURSE CODE: 16BCU602 A UNIT: V BATCH-2016-2019 $\alpha = 0.05$. Please test the hypothesis $H_0: u = 40 \text{ vs. } H_a: u \neq 40$ based on (a) classical hypothesis test (b) p-value (c) confidence interval. [solution:] $\overline{x} = 38, \ s = 7, \ u_0 = 40, \ n = 49, \ z = \frac{\overline{x} - u_0}{s / \sqrt{n}} = \frac{38 - 40}{7 / \sqrt{49}} = -2$ (a) $|z| = 2 > 1.96 = z_{0.025}$ we reject H_0 . (b) $p - value = P(|Z| > |z|) = P(|Z| > 2) = 2 * (1 - 0.9772) = 0.0456 < 0.05 = \alpha$ we reject H_{0} . (c)

 $100 \times (1 - \alpha)\% = 95\%$ confidence interval is

$$\overline{x} \pm z_{\alpha/2} \frac{s}{\sqrt{n}} = 38 \pm z_{0.025} \frac{7}{\sqrt{49}} = 38 \pm 1.96 = [36.04, 39.96].$$

Since $40 \notin [36.04, 39.96]$, we reject H_0 .

Hypothesis Testing for the Mean (Small Samples)

For samples of size less than 30 and when σ is unknown, if the population has a normal, or nearly normal, distribution, the *t*-distribution is used to test for the mean μ .

Using the t-Test for a Mean μ when the sample is small					
Procedure	Equations	Example 4			
State the claim mathematically and verbally. Identify the null and alternative hypotheses	State H_0 and H_a	$H_0: \mu \ge 16500$ $H_a: \mu < 16500$ $n = 14, \bar{x} = 15700, s = 1250$			
Specify the level of	Specify α	$\alpha = 0.05$			

CLASS: III BSc., BC CC COURSE CODE: 16BCU602 A

COURSE NAME: Biostatistics

BATCH-2016-2019

significance		
Identify the degrees of	d.f = n - 1	d.f. = 13
freedom and sketch the		
sampling distribution		
Determine any critical	Table 5 (<i>t</i> -distribution) in	The test is left-tailed. Since
values. If test is left tailed,	appendix B	test is left tailed and
use One tail, α column		d.f = 13, the critical value
with a negative sign. If test		is $t_0 = -1.771$
is right tailed, use One tail,		0
α column with a positive		
sign. If test is two tailed,		
use Two tails, α column		
with a negative and positive		
sign.		
Determine the rejection	The rejection region is	The rejection region is
regions.	$t < t_0$	<i>t</i> < -1.771
Find the standardized test	$\overline{x} - \mu \overline{x} - \mu$	15700-16500 2.20
statistic	$t = \frac{\overline{x} - \mu}{\sigma_{\overline{x}}} \approx \frac{\overline{x} - \mu}{s / \sqrt{n}}$	$t = \frac{15700 - 16500}{1250/\sqrt{14}} \approx -2.39$
Make a decision to reject or	If t is in the rejection	Since -2.39 < -1.771,
fail to reject the null	region, reject H_0 ,	reject H_0
hypothesis	Otherwise do not reject H_0	3 -0
Interpret the decision in the		Reject claim that mean is at
context of the original		least 16500.
claim.		

Chi-Square Tests and the F-Distribution

Goodness of Fit

DEFINITION A **chi-square goodness-of-fit test is** used to test whether a frequency distribution fits an expected distribution.

The test is used in a multinomial experiment to determine whether the number of results in each category fits the null hypothesis:

 H_0 : The distribution fits the proposed proportions

 H_1 : The distribution differs from the claimed distribution.

To calculate the test statistic for the chi-square goodness-of-fit test, you can use observed frequencies and expected frequencies.

Enable | Englishen | Enrich KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be <u>University</u>)

CLASS: III BSc., BC CC COURSE CODE: 16BCU602 A

COURSE NAME: Biostatistics A UNIT: V

DEFINITION The **observed frequency O** of a category is the frequency for the category observed in the sample data.

The **expected frequency** \mathbf{E} of a category is the calculated frequency for the category. Expected frequencies are obtained assuming the specified (or hypothesized) distribution. The expected frequency for the *i*th category is

$$E_i = np_i$$

where *n* is the number of trials (the sample size) and p_i is the assumed probability of the *i*th category.

The Chi-square Goodness of Fit Test: The sampling distribution for the goodness-of-fit test is a chi-square distribution with k-1 degrees of freedom where k is the number of categories. The test statistic is

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

where *O* represents the observed frequency of each category and *E* represents the expected frequency of each category. To use the chi-square goodness of fit test, *the following must be true*.

- 1. The observed frequencies must be obtained using a random sample.
- 2. The expected frequencies must be ≥ 5 .

Performing t	Performing the Chi-Square Goodness-of-Fit Test (p 496)					
Procedure	Equations	Example (p 497)				
Identify the claim. State the null and alternative hypothesis.	State H_0 and H_1	H_0 : Classical 4% Country 36% Gospel 11% Oldies 2% Pop 18% Rock 29%				
Specify the significance level	Specify α	$\alpha = 0.01$				
Determine the degrees of freedom	d.f. = #categories - 1	d.f. = 6 - 1 = 5				
Find the critical value	χ^2_{α} : Obtain from Table 6 Appendix B	$\varphi_{0.01}^2(d.f=5) = 15.086$				

CLASS: III BSc., BC CC COURSE CODE: 16BCU602 A

COURSE NAME: Biostatistics A UNIT: V

BATCH-2016-2019

Identify the rejection region	$\chi^2 \geq \chi^2_{\alpha}$	$\chi^2 \ge 15.086$
Calculate the test statistic	$\chi^2 = \sum \frac{(O-E)^2}{E}$	Survey results, n = 500 Classical O= 8 E = .04*500 = 20 Country O = 210 E = .36*500 = 180 Gospel O = 7 E = .11*500 = 55 Oldies O = 10 E = .02*500 = 10 Pop O = 75 E = .18*500 = 90 Rock O= 125 E = .29*500 = 145 Substituting $\chi^2 = 22.713$
Make the decision to reject or fail to reject the null hypothesis	Reject if χ^2 is in the rejection region Equivalently, we reject if the P-value (the probability of getting as extreme a value or more extreme) is $\leq \alpha$	Since $22.713 > 15.086$ we reject the null hypothesis Equivalently $P(X \ge 22.713) < 0.01$ so reject the null hypothesis. (Note Table 6 of Appendix B doesn't have a value less than 0.005.)
Interpret the decision in the		Music preferences differ from
context of the original claim		the radio station's claim.

Using Minitab to perform the Chi-Square Goodness-of-Fit Test (Manual p 237)

The data from the example above (Example 2 p 497) will be used.

Enter Three columns: Music Type: Classical, etc, Observed: 8 etc, Distribution 0.04, etc. (Note the names of the columns 'Music Types', 'Observed' and 'Distribution' are entered in the gray row at the top.)

Select Calc->Calculator, Store the results in C4, and calculate the Expression C3*500, click OK, Name C4 'Expected' since it now contains the expected frequencies

Music Type	Observed	Distribution	Expected
Classical	8	0.04	20
Country	210	0.36	180
Gospel	72	0.11	55
Oldies	10	0.02	10

ARPAGAM CLASS: III BSc., BC

COURSE CODE: 16BCU602 A

COURSE NAME: Biostatistics UNIT: V

BATCH-2016-2019

Рор	75	0.18	90
Rock	125	0.29	145

Next calculate the chi-square statistic, $(O-E)^2/E$ as follows: Click **Calc->Calculator**. Store the

results in C5 and calculate the Expression (C2-C4)**2/C4. Click on OK and C5 should contain the calculated values.

7.2000
5.0000
41.8909
0.0000
2.5000
2.7586

Next add up the values in C5 and the sum is the test statistic as follows: Click on Calc->Column Statistics. Select Sum and enter C5 for the Input Variable. Click OK. The chi-square statistic is displayed in the session window as follows:

Sum of C5 Sum of C5 = 22.7132

Next calculate the P-value: Click on Calc->Probability Distributions->Chi-square. Select

Cumulative Probability and enter 5 Degrees of Freedom Enter the value of the test statistic

22.7132 for the Input Constant. Click OK.

The following is displayed on the Session Window.

Cumulative Distribution Function

Chi-Square with 5 DF P(X <= x) Х 22.7132 0.999617

 $P(X \le 22.7132) = 0.999617$ So the P-value = 1 - 0.999617 = 0.000383. This is less that $\alpha =$

0.01 so we reject the null hypothesis.

Instead of calculating the P-value, we could have found the critical value from the Chi-Square

CLASS: III BSc., BC CC COURSE CODE: 16BCU602 A

COURSE NAME: Biostatistics

BATCH-2016-2019

table (Table 6 Appendix B) for 5 degrees of freedom as we did above. The value is 15.086, and since our test statistic is 22.7132, we reject the null hypothesis.

Chi-Square with M&M's

RPAGAM

*H*₀: Brown: 13%, Yellow: 14%, Red: 13%, Orange: 20%, Green 16%, Blue 24%

Significance level: $\alpha = 0.05$

Degrees of freedom: number of categories -1 = 5

Critical Value: $\chi^{2}_{0.05}(d.f.=5) = 11.071$

Rejection Region: $\chi^2 \ge 11.071$

Test Statistic: $\chi^2 = \sum \frac{(O-E)^2}{E}$, where *O* is the actual number of M&M's of each color

in the bag and E is the proportions specified under H₀ times the total number.

Reject H_0 if the test statistic is greater than the critical value (1.145)

Section 10.2 Independence

This section describes the chi-square test for independence which tests whether two random variables are independent of each other.

DEFINTION An r x c contingency table shows the observed frequencies for the two variables. The observed frequencies are arranged in r rows and c columns. The intersection of a row and a column is called a **cell**.

The following is a contingency table for two variables A and B where f_{ij} is the frequency that A equals A_i and B equals B_j.

	A ₁	A ₂	A ₃	A ₄	Α
B ₁	f_{11}	f_{12}	f_{13}	f_{14}	$f_{1.}$
B ₂	f_{21}	f_{22}	f_{23}	f_{24}	$f_{2.}$
B ₃	f_{31}	f_{32}	f_{33}	f_{34}	$f_{3.}$
B	$f_{.1}$	$f_{.2}$	$f_{.3}$	$f_{.4}$	f

If A and B are independent, we'd expect

COURSE NAME: Biostatistics COURSE CODE: 16BCU602 A

UNIT: V

BATCH-2016-2019

 $f_{ij} = prob(A = A_i) * prob(B = B_j) * f = \left(\frac{f_{i.}}{f}\right) \left(\frac{f_{.j}}{f}\right) f = \frac{(f_{i.})(f_{.j})}{f}$

(sum of row i) * (sum of column j)sample size

Example 1 Determining the expected frequencies of CEO's ages as a function of company size under the assumption that age is independent of company size.

	20	40 40	50 50	60 60		m 1
	<= 39	40 - 49	50 - 59	60 - 69	>= 70	Total
Small/midsize	42	69	108	60	21	300
Large	5	18	85	120	22	250
Total	47	87	193	180	43	550

	<= 39	40 - 49	50 - 59	60 - 69	>= 70	Total
Small/midsize	300*47	300*87	300*193	300*180	300*43	300
	550	550	550	550	550	
	≈ 25.64	≈ 47.45	≈105.27	≈ 98.18	≈ 23.45	
Large	250*47	250*87	250*193	250*180	250*43	250
	550	550	550	550	550	
	≈ 21.36	≈ 39.55	≈ 87.73	≈ 81.82	≈19.55	
Total	47	87	193	180	43	550

After finding the expected frequencies under the assumption that the variables are independent, you can test whether they are independent using the chi-square independence test.

DEFINITION A chi-square independence test is used to test the independence of two random variables. Using a chi-square test, you can determine whether the occurrence of one variable affects the probability of occurrence of the other variable.

To use the test,

CLASS: III BSc., BC CC COURSE CODE: 16BCU602 A

COURSE NAME: Biostatistics A UNIT: V

BATCH-2016-2019

- 1. The observed frequencies must be obtained from a random sample
- 2. Each expected frequency must be ≥ 5

The sampling distribution for the test is a chi-square distribution with

(r-1)(c-1)

degrees of freedom, where r and c are the number of rows and columns, respectively, of the contingency table. The test statistic for the chi-square independence test is

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

where *O* represents the observed frequencies and *E* represents the expected frequencies. To begin the test we state the null hypothesis that the variables are independent and the alternative hypothesis that they are dependent.

Performing a	Chi-Square Test for Indepen	ndence (p 507)
Procedure	Equations	Example2 (p 507)
Identify the claim. State the	State H_0 and H_1	H_0 : CEO's ages are
null and alternative		independent of company
hypotheses.		size
		H_1 : CEO's ages are
		dependent on company size.
Specify the level of	Specify α	$\alpha = 0.01$
significance		
Determine the degrees of	d.f. = (r-1)(c-1)	d.f. = (2-1)(5-1) = 4
freedom		
Find the critical value.	χ^2_{α} : Obtain from Table 6,	$\chi^2_{\alpha} \ge 13.277$
	Appendix B	
Identify the rejection region	$\chi^2 \ge \chi^2_{\alpha}$	$\chi^2 \ge 13.277$
Calculate the test statistic	$\chi^2 = \sum \frac{(O-E)^2}{E}$	$\sum \frac{(O-E)^2}{E} \approx 77.9$
		Note that O is in the table of
		actual CEO's ages above,
		and E is in the table of
		Expected CEO's ages (if
		independent of size) above

CLASS: III BSc., BC CC COURSE CODE: 16BCU602 A

RPAGAM

COURSE NAME: Biostatistics

BATCH-2016-2019

Make a decision to reject or fail to reject the null hypothesis	Reject if χ^2 is in the rejection region. Equivalently, we reject if the P-value (the probability of getting as extreme a value or more extreme) is $\leq \alpha$	Since 77.9 > 13.277 we reject the null hypothesis Equivalently $P(X \ge 77.0) < \alpha$ so reject the null hypothesis. (Note Table 6 of Appendix B doesn't have a value less than 0.005.)
Interpret the decision in the		CEO's ages and company
context of the original claim		size are dependent.

The test statistic (77.887) is greater than the critical value obtained from Table 6, Appendix B (13.277) so the null hypothesis is rejected. (Alternatively the P-Value (0.000) is less than the level of significance, α (0.01) so the null hypothesis is rejected.)

An urban geographer randomly samples 20 new residents of a neighborhood to determine their ratings of local bus service. The scale used is as follows: 0-very dissatisfied, 1- dissatisfied, 2- neutral, 3-satisfied, 4-very satisfied. The 20 responses are 0,4,3, 2,2,1,1,2,1,0,01,2,1,3,4,2,0,4,1. Use the sign test to see whether the population median is 2.

Solution:

There are 5 observations above the hypothesized median. Because the sample size is larger than 10, we test using the sample proportion p = 5/20 = 0.25. Using the PROB-VALUE method the steps in this test are:

- 1) $H_0: \pi = 0.5$ and $H_A: \pi^1 \ 0.5$
- 2) We will use the *Z*-distribution
- 3) We will use the 5%-level, thus $\alpha = 0.05$
- 4) The test statistic is $z = (0.25 0.5) / \sqrt{0.25 / 20} = -2.24$
- 5) Table A-4 shows that $P(|Z| > 2.24) \gg 0.025$.
- 6) Because PROB-VALUE $<\alpha$, we reject H₀. We conclude π is different than 0.5, and thus the median is different than 2.

UNIT: V

COURSE NAME: Biostatistics CLASS: III BSc., BC COURSE CODE: 16BCU602 A

4. A course in statistical methods was team-taught by two instructors, Professor Jovita Fontanez and Professor Clarence Old. Professor Fontanzez used many active learning techniques, whereas Old employed traditional methods. As part of the course evaluation, students were asked to indicate their instructor preference. There was reason to think students would prefer Fontanez, and the sample obtained was consistent with that idea: of the 12 students surveyed, 8 preferred Professor Fontanez and 2 preferred Professor Old. The remaining students were unable to express a preference. Test the hypothesis that the students prefer Fontanez. (*Hint:* Use the sign test.)

Solution:

RPAGAM

Although the sample is large enough for a normal approximation, we will use the binomial distribution to illustrate its application. Of the 12 observations, 8 preferred Prof. Fontanez, thus we need the probability of observing 8 or more successes in 12 trials of a Bernoulli process with the probability of success equal to 0.5. From Table A-1, we get

 $P(X^{3} | 8) = P(X = 8) + P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12)$ $P(X^{3} | 8) = 0.1208$ +0.0537 +0.0161 +0.0029+0.002= 0.1937 Adopting the 5% uncertainty level, we see that PROB-VALUE $>\alpha$. Thus we fail to reject H_0 . We cannot conclude students prefer Fontanez.

5. Use the data in Table 10-8 to perform two Mann–Whitney tests: (a) compare uncontrolled intersections and intersections with yield signs, and (b) compare uncontrolled intersections and intersections with stop signs.

Solution:

(a) The rank sums are 119.5 and 90.5 for the yield-signed and uncontrolled intersections respectively. Given the small sample size, we use an exact test rather than the normal approximation. The associated PROB-VALUE is 0.272. Adopting a 5% level of uncertainty, we fail to reject the hypothesis of no difference. We cannot conclude the samples were drawn from different populations.

CLASS: III BSc., BC **COURSE NAME: Biostatistics** COURSE CODE: 16BCU602 A

BATCH-2016-2019

(b) The rank sums are 130.5 and 59.5 for the stop-signed and uncontrolled intersections respectively. Given the small sample size, we use an exact test rather than the normal approximation. The associated PROB-VALUE is 0.013. Adopting a 5% level of uncertainty, we reject the hypothesis of no difference. We conclude the samples were drawn from different populations.

UNIT: V

6. Solid-waste generation rates measured in metric tons per household per year are collected randomly in selected areas of a township. The areas are classified as high-density, low density, or sparsely settled. It is thought that generation rates probably differ because of differences in waste collection and opportunities for on-site storage. Do the following data support this hypothesis?

High Density	Low Density	Sparsely Settled
1.84	2.04	1.07
3.06	2.28	2.31
3.62	4.01	0.91
4.91	1.86	3.28
3.49	1.42	1.31

Solution:

RPAGAM

We will use the multi-sample Kruskal-Wallis test with an uncertainly level $\alpha =$ 0.1. The null hypothesis is that all samples have been drawn from the same population. The rank sums are 55, 39 and 26 for the high density, low density, and sparsely settled samples respectively. The Kruskal-Wallis statistic is

$$H = \frac{12}{15(15+1)} \left(\frac{55^2}{5} + \frac{39^2}{5} + \frac{26^2}{5}\right) - 3(15+1) = 4.22$$

Using the χ^2 distribution with 3 - 1 = 2 degrees of freedom, the associated PROB-VALUE is 0.121. We fail to reject the null hypothesis. The sample does not support the hypothesis of differing waste generation rates.

7. The distances travelled to work by a random sample of 12 people to their places of work in 1996 and again in 2006 are shown in the following table.

Erable | Enighten | Erable Erable | Enighten | Erable KARPAGAMA CALENDA HIGHERE EUCATION Deemed to be (Iniversity)

KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III BSc., BC CC COURSE CODE: 16BCU602 A

COURSE NAME: Biostatistics

BATCH-2016-2019

	Distance (km)		Distance (k	m)
Person	1996	2006	Person	1996	2006
1	8.6	8.8	7	7.7	6.5
2	7.7	7.1	8	9.1	9
3	7.7	7.6	9	8	7.1
4	6.8	6.4	10	8.1	8.8
5	9.6	9.1	11	8.7	7.2
6	7.2	7.2	12	7.3	6.4

Has the length of the journey to work changed over the decade?

Solution:

The sample can be considered as twelve paired observations. By taking differences between paired values, we get measures of the change for each individual. If the median change for the population is zero, we expect a sample to have a median difference near zero. Thus we will do a sign test for the median difference with a hypothesized value of zero. In other words, the hypotheses are $H_0: \eta = 0$ and $H_A: \eta \neq 0$. We denote samples values whose distance decreased with a minus sign. Sample values with a positive difference get a plus sign. The sample becomes

 $S = \{-,+,+,+,+,0,+,-,+,-,+,+\}$

Ignoring the tie, this is a sample of size 11 with 8 values above the hypothesized median. We are using Format (C) of Table 10-1, thus the PROB-VALUE is $2P(X \ge 8)$ where X is a binomial variable with $\pi = 0.5$. From the equation for the binomial, the PROB-VALUE is found to be 0.113. At the $\alpha = 10\%$ level, we fail the reject the null hypothesis. We cannot conclude there has been a change in distance.

8. One hundred randomly sampled residents of a city subject to periodic flooding are classified according to whether they are on the floodplain of the major river bisecting the

CLASS: III BSc., BC CC COURSE CODE: 16BCU602 A

COURSE NAME: Biostatistics A UNIT: V

BATCH-2016-2019

city or off the floodplain. These households are then surveyed to determine whether they currently have flood insurance of any kind. The survey results are as follows:

	On the Floodplain	Off the Floodplain
Insured	50	10
No Insurance	15	25

Test a relevant hypothesis.

Solution:

We will do a χ^2 test for a relationship between insurance and house location. The null hypothesis is no relationship (independence). Augmenting the data with expected frequencies, we have:

	On the Floodplain	Off the Floodplain
Insured	50	10
	(39)	(21)
No Insurance	15	25
	(26)	(14)

The corresponding χ^2 value is 22.16. Table A-8 shows that with 1 degree of freedom, P($\chi^2 > 20$) is zero to 3 decimal places. Thus for any reasonable level of uncertainty (any $\alpha < 0.0005$), we can reject the null hypothesis.

9. The occurrence of sunshine over a 30-day period was calculated as the percentage of time the sun was visible (i.e., not obscured by clouds). The daily percentages were:

	Percentage		Percentage		Percentage
Day	of sunshine	Day	of sunshine	Day	of sunshine
1	75	11	21	21	77
2	95	12	96	22	100
3	89	13	90	23	90

	KARPAGA	M ACAI	DEMY (DF HIGHE	R EDU	CATION
	CLASS: III BSc.,	BC	COURSE N	NAME: Biostatis	stics	
OF HIGHER EDUCATION	COURSE COD	E: 16BCU602	2 A	UNIT: V	BAT	CH-2016-2019
Jnder Section						
	4	80	14	10	24	98
	5	7	15	100	25	60
	6	84	16	90	26	90
	7	90	17	6	27	100
	8	18	18	0	28	90
	9	90	19	22	29	58
	10	100	20	44	30	0

If we define a sunny day as one with over 50% sunshine, determine whether the pattern of occurrence of sunny days is random.

Solution:

For this we can use the number-of-runs test. Rather than calculate runs across two samples, here we will simply note if a day has 50% or more sunshine. The sample becomes

We see that the sample consists of 12 runs. There are $n_x = 21$ sunny days, and $n_y = 9$ cloudy days. Because $n_x < 20$, we cannot use the normal approximation given in Table 10-5. Instead the probability is computed using combinatorial rules, and is approximately 0.4. This is far too large for rejection of the randomness hypothesis. We cannot conclude the pattern is non-random.

- 10. Test the normality of the DO data (a) using the Kolmogorov–Smirnov test with the ungrouped data of Table 2-4 and (b) using the χ^2 test with k = 6 classes of Table 2-6. Solution:
 - (a) We will take the mean and standard deviation as known rather than estimated from the sample. Doing so results in calculated PROB-VALUES that are smaller than the true values (i.e., we are more likely to reject the null hypothesis). For the DO data the mean and standard deviation are 5.58 and 0.39 respectively. We sort the data, and then find the differences between the observed and expected

CLASS: III BSc., BC RPAGAM

COURSE CODE: 16BCU602 A

COURSE NAME: Biostatistics UNIT: V

BATCH-2016-2019

cumulative distributions. The table below shows the results for a few of the 50 observations:

X_i	$S(x_i)$	$F(x_i) / S(x_i)$	(x_i) - $F(x_i)/$
4.2	0.020	0.015	0.005
4.3	0.040	0.023	0.017
4.4	0.060	0.032	0.028
5.9	0.780	0.692	0.088
6.7	0.960	0.960	0.000
6.8	0.980	0.972	0.008
6.9	1.000	0.981	0.019

The maximum difference is 0.088. Table A-9 shows that with 50 degrees of freedom, the corresponding PROB-VALUE is about 0.6. We obviously cannot reject the hypothesis of normality.

(b) Here we will take the mean and standard deviation as unknown, to be estimated from the sample. In other words, we estimate two parameters from the sample. In building the χ^2 table, we combine the first two and the last two categories in Table 2-6 to ensure at least 2 expected frequencies per cell. This reduces the number of categories 4, as seen in the table below:

Group	Minimum	Maximum	\mathbf{O}_{j}	E_j	$(O_j-E_j)^2/E_j$
1	4.000	4.990	9	3.3	10.13
2	5.000	5.490	10	17.0	2.89
3	5.500	5.990	20	21.7	0.14
4	6.000	6.990	11	7.0	2.24

The observed Chi-square value is 15.4. With k - p - 1 = 4 - 2 - 1 = 1 degrees of freedom, Table A-8 shows that the PROB-VALUE is less than 0.0005. We therefore reject the null hypothesis.

CLASS: III BSc., BC CC COURSE CODE: 16BCU602 A

COURSE NAME: Biostatistics A UNIT: V

BATCH-2016-2019

Note that with only 4 classes, we can obtain only a rough idea of the distribution of DO. The 4 classes given in Table 2-6 do not yield a distribution that is at all similar to the normal distribution. In practice one would need many classes (and observations) for the χ^2 test to be reliable.

s Ai s Stu s Rej s Ao s Ao s Ao s In s In s Th	adent's text is applicable in case of geter H ₀ when it is faile is known as coppe H ₀ when it is true is known as the state of the state is known as	simple hypothesis randomized test small samples Type I error	alternative hypothesis non-randomized test for sample of size between 5 and 30	null hypothesis sequential test		nul hypothesis
5 Stu 5 Rej 5 Ac 5 Ac 5 In 5 In 5 Th	adent's text is applicable in case of geter H ₀ when it is faile is known as coppe H ₀ when it is true is known as the state of the state is known as	small samples				
s Rej s Ao s Ao s Ao s In s In s Th	jeer H, when it is fabe is known as Scept H, when it is true is known as Scept H, when it is that is known as				Bayes test	randomized test
s Ao s Ao s In s In s In s Th	ccept H ₀ when it is true is known as ccept H ₀ when it is false is known as	Type I error		large samples	sample size more than 100	small samples
5 Ao 5 In 1 5 If f	ccept H _i when it is false is known as		Type II error	Correct decision	wrong decision	Correct decision
5 In 1 5 If 1 5 Th		Type I error	Type II error	Correct decision	wrong decision	Correct decision
5 If (Type I error	Type II error	Correct decision	wrong decision	Type II error
5 Th	a sample of 10 items the degree of freedom for student's t test is	10	9	12	(u	9
	the sample size is less than 30 then those samples may be regarded as	large samples	small samples	parameter	attitude	small samples
	te range of statistic-t is	-1 to +1	-100 to +100	0 to 10	0 to 1	-100 to +100
	te distribution used to test goodness of fit is	F distribution	7 ² distribution	t distribution	Z distribution	7 ² distribution
5 Lat	are sample theory is applicable when	n>30	n<30	n=30	n=10	ap.30
5 959	% of fiducial limits of population mean are	A.M ± 1.96 S.E	A.M ± 3.96 S.E	A.M ± 2.58 S.E	A.M ± 3.58 S.E	A.M ± 1.96 S.E
5 999	% of fiducial limits of population mean are	A.M ± 1.96 S.E	A.M ± 3.96 S.E	A.M ± 2.58 S.E	A.M ± 3.58 S.E	A.M ± 2.58 S.E
5 A 1	nart of the population selected for study is called as	statistic	samok	parameter	event	samok
5 Tes	st statistic Z =	(X -u)/S.E(X)	$(X + \mu)/S.E(X)$	Xu/S.E(X)	(X* µ)(S.E(X)	(X - u)/S.E(X)
5 In :	students t test standard error of single mean =	S/ n-1	S/Vp-2	S/vn+1	S/vn+2	S/ n-1
s Nu	all hypothesis is denoted by	H	H	H ₂	н	H
Alt	ternative hypothesis is denoted by	8.	H.	H-	н	H.
6 Th.	e value of % level of similicance is	2.69	196	141	2 22	1.96
			164	196	2 33	2.58
5 10 1	the sample size n=2 the students Lifistribution reduces to	Normal distribution	F- distribution	Cauchy distribution	z - distribution	Canchy distribution
s If r	n, the sample size is larger than 30, the students t-distribution reduces to				Z- distribution	Normal distribution
5 The	e d.f. for students t based on a random sample of size n is	n-1	n	n-2	(n-2)/2	n-1
4 De	carees of freedom for statistic-chi-square in case of continuency table of order(3x3)is	3	4	2	(4
 Stu 	udents 't' test is defined by the statistic	$I = X_{AB}/N^{2}/n$	$\sqrt{1 - \chi_{s0}} \sqrt{2}$	t – v.u.s. ⁿ	$t = x \cdot w/s/n$	$f = y_{\mu} \mu / a^{\mu}$
5 01	hisometer variate has devere of freedom	2	1	<	7	1
De	aree of freedom is denoted by	ф.	,	2	6	v
		Arthur Henshalme	Broismin	William S.Cosset	Karl Pearson	William S Cosset
		Karl Pearson		A.Fischer	Snearman	Karl Pearson
		V=n++n+	$V=n_1+n_2-1$	V=n+n+ - 2	$V = n_1 + n_2 + 2$	V=n+n+ - 2
5 cal	kulated by					
5 An	nalysis of variance utilizes	F- test	Chi-square test	Z-test	I-test	F- test
5 An	adysis of variance technique originated in	Agricultural research	Industrial research	Biological research	Business research	Agricultural research
5 An	udysis of variance technique was developed by	Gosset	R.A.Fisher	Laplace	Karl Pearson	R.A.Fisher
5 De	sign of experiment was introduced by	R.A.Fisher	Spearman	Karl Pearson	Lorenz	R.A.Fisher
5 The	te variation within samples is known as	error	block	degrees of freedom	local control	block

00 S

[16BCU602 A]

Reg.No.

KARPAGAM ACADEMY OF HIGHER EDUCATION

COIMBATORE – 21 DEPARTMENT OF BIOCHEMISTRY III B.SC., BIOCHEMISTRY - SIX SEMESTER

16BCU602 A - BIOSTATISTICS

FIRST INTERNAL EXAMINATION -DECEMBER 2018

DATE: 17.12.18 AN TIME: 2 HOURS

MAXIMUM: 50 MARKS

PART- A (20 x 1 = 20 marks)

Answer ALL the following:

- Data taken from the publication, 'Agricultural Situation in India' will be considered as
 - (a) primary data
 (b) secondary data
 (c) both primary and secondary data
 (d) tertiary data
- 2. Statistics deals with
- (a)qualitative information (b)quantitative information c. both qualitative and quantitative information (d)only numerals
- Year wise recording of data of food production will be called as:
 (a) Geographical classification
 (b) Chronological classification
 (c) Quantitative classification
 (d) qualitative classification
- 4. Who is the father of Biostatistics?
 (a) R.A.Fisher
 (b) W.Gosset
 (c) Sir Francis Galton
 (d) S.C.Gupta
- 5. Statistics can be considered as a. an art b. a science C. both an art and a science d. neither an art nor a science
- The most suitable form of presentation for publicity and Propaganda is

 (a) diagram
 (b) graph
 - (c) map (d) numerals

7. Histogram is suitable for the data presented as (a) continuous grouped frequency distribution (b) discrete grouped frequency distribution (c) individual series وكالغ والمحاد (d), discontinuous series 8. Numerical data presented in descriptive form are called (a) classified presentation (b) tabular presentation (c) graphical presentation (d) textual presentation 5 A 120 - 11 na na den i 9. Mean is a measure of (b) dispersion (a) central value (d) significance (c) correlation an sector and the sec 10. Mode is that value in a frequency distribution which possesses (a). minimum frequency (b). frequency one (c). maximum frequency (d). only two frequency 11. The most stable measure of central tendency is (a) the mean (b) the median (c) the mode (d) percentile and the states of the second 12. Sum of the deviations about mean is: (a) minimum (b) zero (c) maximum (d) two 13. Mode of the following data 3, 6, 5, 7, 8, 4, 9 (a) 3 (b) 7 (c) no mode (d) 5 14. Which of the following is a measure of central tendency? (a) Range (b) Quartile deviation (c) Standard deviation (d) Median 2010 - 100 CMP 15. Median is also called as No. 1 (a) first quartile (b) second quartile (c) third quartile (d) fourth quartile and the suggest and so the set of 16. The census data published for state wise population in India will be known as (a) Quantitative classification (b) Two-way classification (c) Geographical classification (d) one way classification 17. Classification according to class-intervals would yield (a) raw data (b) discrete data in the on black when the main sheets (c) qualitative data (d) grouped data 18. In qualitative classification data are classified on the basis of

(c) location

(a) attributes (b) time

(d) class intervals

19 In geographical classification data are classified on the basis of (a) area (b) attributes (c) time (d) location

20. Which source is one that itself collects the data? (a) primary data (c) published data

يفتر وم

(b) secondary data (d) tertiary data

PART B (3x2=6 marks)

Answer ALL the questions 21. List out the parts of table. 22. What are the various methods of collecting primary data? 23. Define Median and give Example

PART C (3x8=24 marks) Answer ALL the questions 24.a. Explain about the Classification of data.

OR

b. Draw a suitable Pie Diagram to represent the following submitted as a part of the budget proposal of the govt. of India for the year 1995 - 96. Item of Dynamics

15

100

lt	em of Expenditure			Percentage
1)	Interest	and the second	1997 - 1998 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	25
	Defense		r = 1	15
iii)) Other non plan ex	penditure		20
iv)) States share of tax	es and duties	n to star in a d An an	- 15
v)	State and UT plan	assistance		10

vi) Central plan

Total

25.a. . Calculate the Arithmetic Mean for the following data. Height (cms): 160 161 162 163 164 165 166 36 43 No. of Persons : 27 78 65 48 28 OR MANN

b. Explain in detail the various methods of collecting primary data.

26. a. . Calculate the Median for the following Continuous Frequency Distribution. Wages (in Rs.): | 0 - 19 | 20 - 39 | 40 - 59 | 60 - 79 | 80 - 99 | No. of Workers: 5 20 35 20 12

OR 1124 b. . Differentiate diagrams and graph. In what way the graphic presentation is

advantageous than any other method?

elans: De Des Brochenie brij Srus : Biostatistics bubrude: VBBW602A Clars.

No Lopics.

· 1919年1月1日日日

and the first verte internet

a substitution of the second state of the second s second sec second sec

and a second of

a free and a second of the

and the state of the second second

医二、胆尿病 化硫酸盐 化热试验

and a star with a. A. A. MARTER, A. M. A. C.