

KARPAGAM ACADEMY OF HIGHER EDUCATION (Deemed to be University, Established Under Section 3 of UGC Act 1956) Coimbatore – 641 021.

Semester VI

BIOSTATISTICS PRACTICAL

- 1. Mean for individual, discrete series using SPSS Package.
- 2. Mean for continuous series using SPSS Package.
- 3. Median for individual and discrete series using SPSS Package..
- 4. Median for continuous series using SPSS Package..
- 5. Mode for individual and discrete series using SPSS Package..
- 6. Standard deviation for individual and discrete series using SPSS Package.
- 7. Coefficient of variation for individual and discrete series using SPSS Package.
- 8. Karl Pearson's Correlation using SPSS Package.
- 9. Rank Correlation Coefficient for Untied Rank using SPSS Package.
- 10. Rank Correlation Coefficient for Tied Rank using SPSS Package.

REFERENCES

Jerrold, H.Z., (2003). Biostatistical Analysis, Fourth Edition, Pearson Education Ltd, New Delhi.

Arora, P.N., (1997). A foundation course statistics, S.Chand & Company Ltd, New Delhi.

Navnitham, P.A., (2004). Business Mathematics And Statistics, Jai Publications, Trichy,

Gupta, S.P., (2001). Statistical methods, Sultan Chand & Sons, New Delhi.

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University Established Under Section 3 of UGC Act 1956) Coimbatore – 641 021.

LECTURE PLAN DEPARTMENT OF BIOCHEMISTRY

STAFF NAME: Dr.K.Poornima SUBJECT NAME: Biostatistics practical SUB.CODE: 16BCU612A SEMESTER: VI

CLASS: III B.Sc. (BC)

Sl. No	Duration	Topics to be Covered	Support material
	of Period		
1	4	Mean for individual, discrete series using SPSS	
1		Package.	
2	4	Mean for continuous series using SPSS Package.	
2	4	Median for individual, discrete and continues series	
3		using SPSS Package	
4	4	Mode for individual and discrete series using SPSS	
4		Package	
5	4	Standard deviation for individual and discrete series	SPSS -16 Package
3		using SPSS Package.	
6	4	Coefficient of variation for individual and discrete	
0		series using SPSS Package.	
7	4	Karl Pearson's Correlation using SPSS Package.	
0	4	Rank Correlation Coefficient for Untied Rank using	
8		SPSS Package.	
0	4	Rank Correlation Coefficient for Tied Rank using	
7		SPSS Package.	
10	4	Model practical examination	

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be University) (Established under Section 3 of UGC Act, 1956) Pollachi Main Road, Coimbatore – 641 021, Tamil Nadu

Department of Biochemistry

Subject: Statistics Practical	
Subject Code: 16BCU612A	

Semester VI Class : III B.Sc

Ex. No: 01

INTRODUCTION TO SPSS PACKAGE

Objective

To understand how SPSS package is useful for the purpose of data analysis.

Introduction

Originally it is an acronym of "Statistical Package for the Social Science" but now it stands for "Statistical Product of Service Solution".

One of the most popular statistical packages which can perform highly complex data manipulated and analysis with simple instruction.

The Four Windows

- Data Editor
- Output Viewer
- Syntax Editor
- Script Window

The Basic Analysis of SPSS Frequencies

The Analysis produces frequency table showing frequency counts and percentage of the values of individual variable.

Descriptive

This analysis shows the maximum, minimum, mean and standard deviation of the variables.

Correlation and Linear Regression Analysis

Association between correlation and linear regression estimates the co-efficient of the linear equation.

Chi-Square, ANOVA, T-Test

Independence (cross table), Frequency (Goodness of fit) one way and two way ANOVA and test.

Ex No: 02

WORKING WITH WINDOWS IN SPSS

Objectives

To understand how the windows in SPSS work.

The Four Windows

Data Editor

Output Viewer

Syntax Editor

Script Window

Data Editor

Spread sheet like system for defining entering, editing and displaying data, extension of the saved file will be 'save'.

Output Viewer

Displaying output and errors, extension of the saved file will be 'SPV'.

Syntax Editor

Text editor for syntax composition extension of saved file will be 'SPS'.

Script Window

To provides the opportunity to write full-blown programs in a basic like language. Tex editor for syntax composition extension of saved file will be 'SBS'.

WORKING WITH VARBIALE VIEW WINDOW IN SPSS

Objective

To know how to define variables in the variable view in data editor view.

Opening SPSS

Start \rightarrow All programs \rightarrow SPSSInc \rightarrow SPSS.

There are two sheets in the window.

- Data View
- Variable View

Data View Window

The data view window.

This sheet is visible when you first open the data editor and this sheet contains the

Click on the tab labeled variable view.

Variable View Window

This sheet contains information about the data set that is stored with the data set.

Name

data.

The first character of the variable name must be alphabetic.

Variable names must be unique, and have to be less than 64 characters. Spaces are NOT allowed.

Type

Click on the "type" box .The two basic types of variables that you will use are numeric and string. This column enables you to specify the type of variable.

Width

Width allows you to determine the number of character SPSS will allow to be entered for the variable.

Decimals

Number of decimals.

It has to be less than or equal to 16.

Label

You can specify the details of the variable.

You can write characters with spaces upto 256 characters.

Values

This is used and to suggest which numbers represent which categories when the variable represents a category.

Defining The Value Label

Click the cell in the value column.

For the value, and the label, you can put upto 60 characters.

After defining the values click add and then click OK.

Mean for individual series using SPSS package.

Objective

To know how to calculate the mean for individual series using SPSS package.

Algorithm:

Step 1: Start→ all programs → SPSS Inc.→ SPSS
Step 2: Enter the description of variable in variable view
Step 3:Click "Data view" and enter the given data
Step 4: Click Analyse → Descriptive statistics → Frequencies
Step 5: Click statistic option to choose the mean.
Step 6: Select "continue" and click "ok".

Problem

Calculate the mean for the following data using SPSS package.

Roll no	1	2	3	4	5	6	7	8	9	10
Marks	40	50	55	78	58	60	73	35	43	48

$$\overline{\mathbf{X}} = \underline{\sum \mathbf{x}}$$

Ν

= 540

Inference

The mean for the given data of individual series using SPSS Package is 54.

Mean for Discrete series using SPSS package.

Objective

To know how to calculate the mean for discrete series using SPSS package.

Algorithm:

Step 1: Start \rightarrow all programs \rightarrow SPSS Inc. \rightarrow SPSS

Step 2: Enter the description of variable in variable view

Step 3:Click "Data view" and enter the given data

Step 4: If the variable 'X' occurs 5 times, then we have to type the variable 5 times.

Step 5: Click Analyse \rightarrow Descriptive statistics \rightarrow Frequencies

Step 6: Click statistic option to choose the mean.

Step 7: Select "continue" and click "ok".

Problem

Calculate the mean for the following data using SPSS package.

Value	1	2	3	4	5	6	7	8	9	10
Frequency	21	30	28	40	26	34	40	9	15	57

N

 $X = \sum fx$

Inference

The mean for the given data of discrete series using SPSS package is 5.72

Mean for continuous series using SPSS package.

Objective

To know how to calculate the mean for Continuous series using SPSS package.

Algorithm:

Step 1: Start \rightarrow all programs \rightarrow SPSS Inc. \rightarrow SPSS

Step 2: Enter the description of variable in the variable view

Step 3:Find out the mid-point of X variable.

Step 4: Click data views and enter the given data.

Step 5: If midpoint of the variable 'X' occurs 5 times, then we have to type the midpoint of the variable 5 times.

Step 6: Click Analyse \rightarrow Descriptive statistics \rightarrow Frequencies

Step 7: Click statistic option to choose the mean.

Step 8: Select "continue" and click "ok".

Problem

Calculate the mean for the following data using SPSS package.

Profits Rs.	Mid-point (m)	No.of shops (f)	fm
100 - 200	150	10	1500
200 - 300	250	18	4500
300 - 400	350	20	7000
400 - 500	450	26	11700
500 - 600	550	30	16500
600 - 700	650	28	18200
700 - 800	750	18	13500
		$\sum f = 150$	Σ fm = 72900

 $X = \sum_{n} \frac{\text{fm}}{n}$ $= \frac{72900}{150}$ = 486

Inference

The mean for the given data of continuous series using SPSS package is 486.

Median for individual series using SPSS package

Objective

To know how to calculate the median for individual series using SPSS package.

Algorithm:

Step 1: Start \rightarrow all programs \rightarrow SPSS Inc. \rightarrow SPSS
Step 2:Enter the description of variable in the variable view
Step 3: Arrange the given data in ascending or descending order
Step 4: Click data views and enter the given data.
Step 5: Click Analyse \rightarrow Descriptive statistics \rightarrow Frequencies
Step 6: Click statistic option to choose the median.
Step 7: Select "Continue" and click "ok".

Problem

Calculate the median for individualseries the following data using SPSS package.

S.No	Size of item ascending order	Size of item descending order
	(X)	(X)
1	9	25
2	10	19
3	15	15
4	19	10
5	25	9

Median = size of
$$N+1$$

$$= \text{size of } \frac{5+1}{2}$$
$$= 3^{\text{rd}} \text{ item}$$

= 15

Inference

The median for the given data of individual series using SPSS package is 15.

Median for Discrete series using SPSS package.

Objective

To know how to calculate the median for discrete series using SPSS package.

Algorithm:

Step 1: Start \rightarrow all programs \rightarrow SPSS Inc. \rightarrow SPSS

Step 2:Enter the description of variable in the variable view

Step 3: Arrange the given data in ascending or descending order

Step 4: Click data views and enter the given data.

Step 5: If the variable 'X' occurs 5 times, then we have to type the variable 5 times.

Step 6: Click Analyse \rightarrow Descriptive statistics \rightarrow Frequencies

Step 7: Click statistic option to choose the median.

Step 8: Select "Continue" and click "ok".

Problem

Calculate the median for discrete series the following data using SPSS package.

Size of shoes	f	Cumulative frequency (Cf)
5	10	10
5.5	16	26
6	28	54
6.5	15	69
7	30	99
7.5	40	139
8	34	173

Median = size of
$$\frac{N+1}{2}$$

$$= \text{size of } \frac{173+1}{2}$$
$$= 87^{\text{th}} \text{ item } = 7$$

Median of size of the shoe = 7

Inference

The median for the given data of discrete series using SPSS Package is 7.

Median for Continuous series using SPSS package.

Objective

To know how to calculate the median for continuous series using SPSS package.

Algorithm:

Step 1: Start \rightarrow all programs \rightarrow SPSS Inc. \rightarrow SPSS

Step 2:Enter the description of variable in the variable view

Step 3: Arrange the given data in ascending or descending order

Step 4:Find out the mid-point of X variable.

Step 5: Click data views and enter the given data.

Step 6: If midpoint of the variable 'X' occurs 5 times, then we have to enter

the midpoint of the variable 5 times.

Step 7: Click Analyse \rightarrow Descriptive statistics \rightarrow Frequencies

Step 8: Click statistic option to choose the median.

Step 9: Select "Continue" and click "ok".

Problem

Calculate the median for continuous series the following data using SPSS package.

Marks	Frequency(f)
10-25	6
25-40	20
40-55	44
55-70	26
70-85	3
85-100	1

Median = L + N/2 - Cf *if

=48.18

Inference

The median for the given data of continuous series using SPSS Package is 48.18.

Mode for individual series using SPSS Package.

Objective

To know how to calculate the mode for individual series using SPSS package.

Algorithm:

Step 1: Start→ all programs → SPSS Inc.→ SPSS
Step 2: Enter the description of variable in the variable view
Step 3: Click data views and enter the given data.
Step 4: Click Analyse → Descriptive statistics → Frequencies
Step 5: Click statistic option to choose the mode.
Step 6: Select "continue" and click "ok".

Problem

Calculate the mode for individual and discrete series the following data using SPSS package.

Individual series

850,750,600,825,**850**,725,600,**850**,640,530 The mode salary is **850**

Inference

The mode for the given data of individual series using SPSS package is 850

Mode for individual and discrete series using SPSS Package.

Objective

To know how to calculate the mode for individual and discrete series using SPSS package.

Algorithm:

Step 1: Start→ all programs → SPSS Inc.→ SPSS
Step 2: Enter the description of variable in the variable view
Step 3: Click data views and enter the given data.
Step 4: Click Analyse → Descriptive statistics → Frequencies
Step 5: Click statistic option to choose the mode.
Step 6: Select "continue" and click "ok".

Problem

Calculate the mode for individual and discrete series the following data using SPSS package.

Discrete series Calculate the mode from following

Size	Frequency
10	10
11	12
12	15
13	19
14	20
15	8
16	4
17	3
18	2

Grouping table

Size	1	2	3	4	5	6
10	10					
11	12	22		37		
12			27		46	
13	15	34				54
14	19					
15	20		39	47		
16		28				
17	8		12		32	
18	4	-		0		15
	3		F	9		15
	2		5			

S.no	Size of item containing maximum frequency							
1	0	11	12	13	14	15		
1					1			
2			1	1				
3				1	1			
4				1	1	1		
5		1	1	1				
6			1	1	1			
		1	3	5	4	1		

Analysis Table

Inference

The mode for the given data of discrete series using SPSS package is 13

Ex. No: 07

STANDARD DEVIATION FORINDIVIDUAL AND DISCRETE SERIESUSING SPSS PACKAGE

Objective

To calculate the standard deviation for individual and discrete series using SPSS package.

Algorithm

Step 1: Start \rightarrow All programs \rightarrow SPSS Inc. \rightarrow SPSS

Step 2: Enter the description of variable in the variable view

Step 3: Click data views and enter the given data.

Step 4: In discrete series, if the variable 'X' occurs 5 times, then we have to enter the variable 5 times

Step 5: Click Analyse \rightarrow Descriptive statistics \rightarrow Frequencies

Step 6: Click Statistic option to choose the standard deviation

Step 7: Select "continue" and click "ok".

Problem

Individual Series

1. Calculate the standard deviation for the data given below	using SPSS package.
--	---------------------

x 25 18 27 10 30 42 20 53

Formula:

Standard deviation=
$$\sqrt{\frac{\sum (x-\bar{x})^2}{n}}$$

Discrete Series

2. Calculate the standard deviation for the following data using SPSS package.

					0		•	-	0			
No of Members	1	2	3	4	5	6	7	8	9	10	11	12
Frequency	1	3	5	6	10	13	9	5	3	2	2	1

Formula:

Standard deviation=
$$\sqrt{\frac{\Sigma f x^2}{\Sigma f} - [\frac{\Sigma f x}{\Sigma f}]^2}$$

1. OUTPUT

No. of students

N	Valid	9
	Missing	0
Std.	Deviation	13.14133

2. OUTPUT:

No. of members

Ν	Valid	60
	Missing	0
Std.	Deviation	2.35038

Inference

Standard deviation for the given data for individual series using SPSS Package is

13.141.

Standard deviation for the given data for discrete series using SPSS Package is 2.350.

Ex.No: 07

COEFFICIENT OF VARIATION FOR INDIVIDUAL SERIES AND DISCRETE SERIES USING SPSS PACKAGE

Objective

To know how to calculate the coefficient of variation individual and discrete series using SPSS package.

Algorithm

Step1: Start \rightarrow All programs \rightarrow SPPS in C \rightarrow SPPS.

Step 2: Enter the description of variable in the variable view

Step3: Click Analyze→ Descriptive Statistics→ Frequencies.

Step4: Click statistics option to choose the mean and standard deviation \rightarrow continue and click ok.

Step5: Collect themean and standard deviation values.

Step6: Click Transforms→ Compute variables.

Step7: Enter the target values.

Step8: Finally find the coefficient of variation.

Step9: The result will be appeared in data view.

Individual Series

Calculate the coefficient of mean and standard deviation for the given data below:

X	25	18	27	10	30	42	20	53	20	
										Ĩ

Formula

Formula for individual value for mean

Mean = $\sum X/N$

Where N=number of items.

Calculation

	Χ				
	25				
	18				
	27				
	10				
	30				
	42				
	20				
	53				
	20				
$\sum X =$	=245	Mean $=24$	45/9 = 27.22		
Formula	l				
	Stand	lard deviation	$=\sqrt{(\sum X - \overline{X})^2/n}$		
			$=\sqrt{1381.5556/9}$	=√153.5061778	=12.38976101
	Standa	ard deviation	= 12.39		
Coefficie	ent of va	riation of indiv	idual series value =s	stddev /mean	

OUTPUT

Individual Series

N Valid	9
Missing	0
Mean	27.2222
Std. Deviation	13.14133

Coefficient of variation is = 0.48

Discrete Series

Calculate the coefficient of variation for the data given below using SPSS

No.of. Members	1	2	3	4	5	6	7	8	9	10	11	12
Frequency	1	3	5	6	10	13	9	5	3	2	2	1

Prepared by Dr.K.Poornima, Associate professor, Department of Biochemistry, KAHE

Formula

Mean = $\sum f_x / \sum f$

Calculation

X	F	f _x
1	1	1
2	3	6
3	5	15
4	6	24
5	10	50
6	13	78
7	9	63
8	5	40
9	3	27
10	2	20
11	2	22
12	1	12
	$\sum f = 60$	$\sum f_x = 358$

Mean =
$$\sum f_x / \sum f$$

= 358 / 60 = 5.96667
Mean = 5.9 (or) 6.0

Formula

Standard deviation = $\sqrt{\sum} f_x^2 / \sum f - [\sum f_x / \sum f]^2$

Calculation

Χ	X ²	F	f _x	f _x ²			
1	1	1	1	1			
2	4	3	6	12			
3	9	5	15	45			
4	16	6	24	96			
5	25	10	50	250			
6	36	13	78	468			
7	49	9	63	441			
8	64	5	40	320			
9	81	3	27	243			
10	100	2	20	200			
11	121	2	22	242			
12	144	1	12	144			
		$\sum f = 60$	$\sum f_x = 358$	$\sum f_{x}^{2} = 2462$			
Standard deviation = $\sqrt{2462/60}$ -[358/60]							
$=\sqrt{41.03-[5.96]^2}$							

	=\\day{41.03} - 35.52
	=\(\sqrt{5.5}\)
	= 2.347
Coefficient of variation of disc	rete series value = std.dev /mean
	= 2.347 / 5.967
	= 0.3933

OUTPUT

Discrete Series

N Valid	60
Missing	0
Mean	5.9667
Std. Deviation	2.35038

Coefficient of variation is = 0.39

Inference

The coefficient of variation for the given data for individual series using SPSSPackage is **0.48**.

The coefficient of variation for the given data for discrete series using SPSS Package is **0.39**.

CALCULATION OF RANK CORRELATION USINGSPSS PACKAGE

Aim: To calculate the given value by Rank correlation coefficient in the package.

Algorithm

STEP 1: Start \rightarrow All program \rightarrow SPSS inc \rightarrow SPSS.

STEP 2: Enter the description of variable in the variable view

STEP 3: Click analyze \rightarrow Correlation \rightarrow Bivariate.

STEP 4: Click the variable X and Y, Put it into the variable box.

STEP 5: Select Spearman check box and continues, then click ok in the bivariate box.

STEP 6: Finally we get the output.

Calculation

Calculate rank correlation coefficient for the following data using SPSS package.

First exam Score(X)	88	95	70	60	50	80	75	85
Second exam Score (Y)	84	90	88	55	48	85	82	72

Formula

$$=1 - \left(\frac{6\Sigma(D^2)}{(N^3 - N)}\right)$$

Where D = Different between X and Y

N = Number of observation

Calculation

Χ	Y	RX	RY	D=(RX-RY)	$\mathbf{D}=(RX-RY)^2$
88	84	2	4	-2	4
95	90	1	1	0	0
70	88	6	2	4	16
60	55	7	7	0	0
50	48	8	8	0\	0
80	85	4	3	1	1
75	82	5	5	0	0
85	72	3	6	-3	9
					$\Sigma D^2 = 30$

$$=1 \cdot \left(\frac{6\Sigma(D^2)}{(N^3 - N)}\right)$$

 $=1 - \left(\frac{6(30)}{(8^3 - 8)}\right)$

$$=1 - \left(\frac{180}{8(64-1)}\right)$$
$$=1 - \left(\frac{180}{504}\right)$$

=1-0.3571=0.6429

SPSS OUTPUT

		Correlations		
			first exam score x	second exam score y
Spearman's rho	first exam score x	Correlation Coefficient Sig. (2-tailed)	1.000	.643 .086
		Ν	8	8
	second exam score y	Correlation Coefficient	.643	1.000
		Sig. (2-tailed)	.086	•
		Ν	8	8

Inference

 $0.25 \le 0.6429 < 0.75$, moderate degree positive relationship existing between the first exam score and second exam score.