

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.

SYLLABUS

17MMP301

FUNCTIONAL ANALYSIS

Semester – III L T P C 4 0 0 4

Scope: This course provides a systematic study of linear, topological or metric structures and it also deals with spaces and operators acting on them.

Objectives: To be thorough with Banach spaces, related theorems, orthonormal sets, normal and unitary operators and to be familiar with Banach algebras.

UNIT I

Banach Spaces- Normed linear space – Definitions and Examples-Theorems. Continuous Linear Transformations – Some theorems- Problems. The Hahn- Banach Theorem –Lemma and Theorems. The Natural imbedding of N in N**-Definitions and Theorems.

UNIT II

The Open Mapping Theorem- Theorem and Examples – Problems. The closed graph theorem. The conjugate of an operation- The uniform boundedness theorem- Problems.

UNIT III

Hilbert Spaces- The Definition and Some Simple Properties – Examples and Problems. Orthogonal Complements - Some theorems .Ortho-normal sets – Definitions and Examples-Bessel's inequality- The conjugate space H*.

UNIT IV

The Adjoint of an operator – Definitions and Some Properties-Problems. Self- adjoint operators – Some Theorems and Problems. Normal and Unitary operators – theorems and problems. Projections - Theorems and Problems.

UNIT V

Banach algebras: The definition and some examples of Banach algebra – Regular and singular elements – Topological divisors of zero – The spectrum – The formula for the spectral radius.

SUGGESTED READINGS

TEXT BOOK

1. Simmons. G. F., (2004). Introduction to Topology & Modern Analysis, Tata McGraw-Hill Publishing Company Ltd, New Delhi.

REFERENCES

1. Balmohan V. and Limaye., (2004). Functional Analysis, New Age International Pvt.Ltd, Chennai.

- 2. Chandrasekhara Rao, K., (2006). Functional Analysis, Narosa Publishing House, Chennai.
- 3. Choudhary, .B and Sundarsan Nanda. (2003). Functional Analysis with Applications, New Age International Pvt. Ltd, Chennai.
- 4. Ponnusamy, S., (2002). Foundations of functional analysis, Narosa Publishing House, Chennai.

(Deemed to be University Established Under Section 3 of UGC Act 1956)

Coimbatore – 641 021.

LECTURE PLAN DEPARTMENT OF MATHEMATICS

STAFF NAME: K.AARTHIYA

SUBJECT NAME:FUNCTIONAL ANALYSIS SUB.CODE:17MMP301 SEMESTER: III CLASS: II M.SC MATHEMATICS

S.No	Lecture Duration Period	Topics to be Covered	Support Material/Page Nos		
		UNIT-I			
1	1	Banach Spaces – Definition & Examples	R1. Chapter 9 : 211-212 R3:Chapter 3: 46		
2	1	Normed linear spaces – Basic definition	R1. Chapter 9: 213		
3	1	Theorems on Normed linear Spaces, Some definition & Examples	R1. Chapter 9: 214-216		
4	1	Continuous Linear Transformations – Definition & Theorem	R1. Chapter 9: 219-220		
5	1	Continuous Linear Transformations – Theorem	R1. Chapter 9: 221-222		
6	1	Conjugate Space of N & Hahn- Banach lemma	R1. Chapter 9: 224-226		
7	1	Continuous of Hahn- Banach lemma	R1. Chapter 9 : 227-229 R2:Chapter 2:44-46		
8	1	The Natural imbedding of N in N** & Properties of N**	R1. Chapter 9: 231 - 233		
9	1	Recapitulation and discussion of possible questions			
	Total No o	of Hours Planned For Unit I=9			
		UNIT-II			
1	1	The Open Mapping - Lemma	R1. Chapter 9 :235-236 R2: Chapter 2 : 52-54		
2	1	Continuation of Open Mapping - Theorem	R1. Chapter 9: 236-237		

3	1	Projection of an operator	R1. Chapter 9: 237		
4	1	Theorems on Projection	R1. Chapter 9: 237-238		
5	1	Closed Graph Definition & Lemma	R1. Chapter 9: 238		
6	1	The Closed Graph Theorem	R1. Chapter 9: 238-239		
7	1	Uniform Boundedness and Conjugate of an operator	R1. Chapter 9: 239-240 R4. Chapter 5:305-306		
8	1	Theorem based on Uniform boundedness Property	R1. Chapter 9: 240-242		
		Recapitulation and discussion of possible questions			
	Total No				
		UNIT-III			
1	1	Hilbert Spaces- Definitions , Examples and Properties.	R1. Chapter 10: 244-246		
2	1	Schwarz inequality & some problems	R1. Chapter 10: 246-247		
3	1	Theorem based on Inner product spaces	R1. Chapter 10: 247-248		
4	1	Orthogonal Complements - Theorems	R1. Chapter 10 : 249-250 R2: Chapter 3: 96-97		
5	1	Continuous on Orthogonal complements and Orthonormal set.	R1. Chapter 10 : 251-252 R2: Chapter 3: 97-98		
6	1	Theorems on Orthonormal set	R1. Chapter 10: 252-253 R3. Chapter 5:113-116		
7	1	Bessel's Inequality- Theorem	R1. Chapter 10 : 253-256 R2: Chapter 3: 99-100		
8	1	The conjugate space H*, Theorem on H*	R1. Chapter 10: 260-261		
9	1	Riesz Representation Theorem	R1. Chapter 10: 261-262		
10	1	Recapitulation and discussion of possible questions			
	Total No	of Hours Planned For Unit III=10			
		UNIT-IV			
1	1	Introduction of Adjoint Operators	R1. Chapter 10: 262-263		
2	1	Adjoint operator – Basic Definition and Problems	R1. Chapter 10: 263-265		

3	1	Adjoint operator - Theorem	R1. Chapter 10 : 265 T1.Chapter 7: 460-461	
4	1	Some properties and problems on adjoint operator	R1. Chapter 10: 265-266	
5	1	Theorem on Self Adjoint operator	R1. Chapter 10: 266-269	
6	1	Normal operator – Theorem	R1. Chapter 10: 269-271	
7	1	Unitary operator – Theorem	R1. Chapter 10: 271-273	
8	1	Theorems on projection	R1. Chapter 10: 273- 274 T1: Chapter 6: 420	
9	1	Continuous of Theorems on projection	R1. Chapter 10 : 275-276 T1. Chapter 6 : 421	
10	1	Recapitulation and discussion of possible questions		
	Total N	No of Hours Planned For Unit IV=10		
		UNIT-V		
1	1	Basics on Finite Dimensional Spectral theory	R1. Chapter 11: 278-280	
2	1	Examples of Banach Algebra	R1. Chapter 11: 302-305	
3	1	Regular & Singular Element -Theorem	R1. Chapter 11: 305-306	
4	1	Continuation of Regular & Singular Element -Theorem	R1. Chapter 11: 306-307	
5	1	Topological divisors of zero	R1. Chapter 11 : 307-308 R2. Chapter 4: 143	
6	1	The Spectrum –Definition, theorems on spectrum , Formula for the Spectral Radius	R1. Chapter 11: 308-313	
7	1	Recapitulation and discussion of possible questions		
8	1	Previous year question paper discussion		
9	1	Previous year question paper discussion		
10	1	Previous year question paper discussion		
	To	tal No of Hours Planned for unit V=10		
Total Planned Hours	48			

TEXT BOOKS:

T1: Balmohan V., and Limaye., 2004. Functional Analysis, New Age International Pvt. Ltd, Chennai.

REFERENCES:

R1: Simmons. G.F., 1963. Introduction to Topology & Modern Analysis, Tata McGraw-Hill Publishing Company Ltd,New Delhi.

R2: Chandrasekhara Rao.K., 2006. Functional Analysis, Narosa Publishing House, Chennai.

R3: Choudhary .B., and Sundarsan Nanda., 2003. Functional Analysis with Applications,

New Age International Pvt. Ltd, Chennai.

R4: Ponnusamy.S., 2002. Foundations of functional analysis, Narosa Publishing House, Chennai.

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS
UNIT: I BATCH-2017-2019

UNIT I BANACH SPACES SYLLABUS

Banach Spaces- Normed linear space – Definitions and Examples-Theorems. Continuous Linear Transformations – Some theorems- Problems. The Hahn- Banach Theorem –Lemma and Theorems. The Natural imbedding of N in N^{**} -Definitions and Theorems.

Metric Spaces:

A metric d on a nonempty set X is a function

 $d: X \times X \to R$ such that for all x, y, z ϵX .

- i. $d(x,y) \ge 0$ and d(x,y) = 0 iff x = y
- ii. d(y, x) = d(x,y)
- iii. $d(x,y) \le d(x, z) + d(z, y)$

A metric space is a non empty set X along with a metric on it

Normed Linear space:

A (real) complex normed space is a (real) complex vector space X together with a map : $X \rightarrow \mathbb{R}$, called the norm and denoted ||x|| such that

- (i) $||x|| \ge 0$, for all $x \in X$, and ||x|| = 0 if and only if x = 0.
- (ii) $\|\alpha(x)\| = |\alpha| \|x\|$, for all $x \in X$ and all $\alpha \in C$ (or R).
- (iii) $||x + y|| \le ||x|| + ||y||$, for all $x, y \in X$.

Remark:

If in (i) we only require that $x \ge 0$, for all $x \in X$, then ||.|| is called a seminorm.

Remark:

If X is a normed space with norm $\|.\|$, it is readily checked that the formula $d(x, y) = \|x - y\|$, for $x, y \in X$, defines a metric d on X. Thus a normed space is naturally a metric space and all metric space concepts are meaningful. For example, convergence of sequences in X means convergence with respect to the above metric.

Definition 1.4. A complete normed space is called a Banach space.

Thus, a normed space X is a Banach space if every Cauchy sequence in X converges (where X is given the metric space structure as outlined above). One may consider real or complex Banach spaces depending, of course, on whether X is a real or complex linear space.

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS
UNIT: I BATCH-2017-2019

Problem:

Show that in a normed linear space $N \mid ||x|| - ||y|| \mid \le ||x - y||$

Solution:

It is enough to prove that $||x|| - ||y|| \le ||x - y||$ as $||y|| - ||x|| = -(||x|| - ||y||) \dots (1)$

so that,

$$||y|| - ||x|| \le ||y - x||$$

$$= ||(-1)(x-y)|| = ||x-y||$$

Then, $-(||x|| - ||y||) \le ||x - y||$(2)

Also, ||x|| = ||x-y+y||,

$$\leq ||x\text{-}y|| + ||y||$$

$$||x|| - ||y|| \le ||x - y||, \quad x, y \in \mathbb{N}................(3)$$

From (2) & (3)

Thus $|||x|| - ||y|| \le ||x - y||$

Hence shown.

Problem:

Show that norm is a continuous function i.e., $x_n \to x \Rightarrow ||x_n|| \to ||x||$.

Solution:

Suppose $x_n \to x \Rightarrow d(x_n , x) \to 0$ as $n \to \infty$ where d is the Metric In the normed linear space.

We have
$$\Rightarrow ||x_n - x|| \to 0$$
 as $n \to \infty$.

From the previous problem we have $|||x_n|| - ||x||| \le ||x_n - x||$

$$\Rightarrow ||x_n - x||| \rightarrow 0 \text{ as } n \rightarrow \infty.$$

$$\Rightarrow ||x_n|| \rightarrow ||x||.$$

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS
UNIT: I BATCH-2017-2019

Hence shown.

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS
UNIT: I BATCH-2017-2019

Theorem:

Let M be a closed linear subspace of a normed linear space N. If the norm of a coset x+M is the quotient space then N/M is defined by $||x + M|| = \inf\{ ||x + M|| / m \in M \}$ Then N/M is a normed linear space. Also if N is a banach space, then N/M is also a banach space.

Proof:

To prove N/M is a normed linear space under the norm ||x + M||.

To verify norm properties.

i)
$$||x + M|| \ge 0$$
 as $||x + M|| \ge 0$, for $m \in M$ now $||x + M|| = 0$.

$$\begin{split} ii) & \mid \mid (x + M) + (y + M) \mid \mid \\ & = \mid \mid x + y + M \mid \mid \mid \\ & = \inf \{ \mid \mid (x + y + M \mid \mid / m \in M \} \\ & = \inf \{ \mid \mid (x + m_1) + (y + m_2) \mid \mid / m_1, m_2 \in M \} \\ & \leq \inf \{ \mid \mid (x + m_1) \mid \mid + \mid \mid (y + m_2) \mid \mid / m_1, m_2 \in M \} \\ & = \inf \{ \mid \mid (x + m_1) \mid \mid / m_1 \in M \} + \inf \{ \mid \mid (y + m_2) \mid \mid / m_2 \in M \} \\ & = \mid \mid x + M \mid \mid + \mid \mid y + M \mid \mid \end{split}$$

iii) similarly we can prove

$$||\alpha(x + M)|| = |\alpha| ||x + M||$$
.

Hence the quotient N/M is a normed linear space.

It reminds to prove that N/M is a banach space whenever N is a banach space.

Starting with the Cauchy sequence in N/M it is enough to show that this sequence has a convergent subsequence.

This will prove that the Cauchy sequence itself is convergent in N/M and hence N/M will be complete and also banach.

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS
UNIT: I BATCH-2017-2019

We can find a subsequence $\{x_n + M\}$ of the original Cauchy sequence such that $||x|_1 + M|| + ||x_2|| + M|| < 1/2$,

$$||x|_2+M||+||x_3+M|| < 1/2^2$$
 and so on .

In general we have $||x_n + M|| + ||x_{n+1} + M|| < 1/2^n$.

We prove that the sequence $\{x_n + M\}$ is convergent in N/M. Choose a vector $y_1 \in x_1 + M, y_2 \in x_2 + M$, so that

$$||y_1 - y_2|| < \frac{1}{2}$$
.

Having chosen in the same way $y_3 \in x_3 +\! M$, so that $\|y_2 - y_3\| <\! 1/2^2$ and so on.

Thus we obtain a sequence $\{y_n\}$ in N, so that

$$||y_n - y_{n+1}|| < 1/2^n$$
.

$$\begin{array}{l} \text{Let m$$

i.e., $\|y_m - y_n \ \| < 1 \ / 2^{m\text{-}1}.$ thus y_n is a Cauchy sequence in N.

But N in a banach space is complete, \Rightarrow { y_n } is convergent to a vector y in N .

but ,
$$\|(x_n + M) - (y_n + M)\| \le \|(y_n - y)\|$$
 and $y_n \to y$ means that $\|(y_n - y)\| \to 0$.

$$\Rightarrow \|(x_n + M) - (y_n + M)\| \to 0$$

$$\Rightarrow (x_n + M) \to (y_n + M) \text{ as } n \to \infty.$$

Hence the sub sequence $(x_n + M)$ of the original Cauchy sequence is convergent. This proves that N/M is a complete normed linear space.

Hence N/M is a banach space.

Hence the proof.

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS
UNIT: I BATCH-2017-2019

Complete:

A complete metric space is a metric space in which every Cauchy sequence is convergent.

Example:

1. The space R and C are the real number and the complex number are the simplest of all normed linear spaces. The norm of a number x is of course defined by ||x|| = |x| and each space R and C are complete.

Hence R and C are banach.

2. The linear spaces Rⁿ and Cⁿ of all n-tuples

 $x = (x_1, x_2, ..., x_n)$ of real number and the complex number can be made into normed linear spaces in a infinite variety of way. If the norm is defined by

$$||x|| = (\sum_{i=1}^{n} |x_i|^2)^{1/2}$$

3. Let P be a real number such that $1 \le P < \infty$. We denote by lp^n the space of all n-tuples $x=(x_1,x_2,....x_n)$ of scalars with the norm defined by

$$||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$$

here, p=2 so the real and complex numbers l_2^n are the n- dimensional Euclidean and unitary spaces R^n and C^n .

Then, the completeness of lpⁿ comes from the same reasoning of theorem.

lpⁿ is a banach space.

4. Let P be a real number such that $1 \le P < \infty$. We denote by lp the space of all sequences

$$x=(x_1,x_2,....x_n,....)$$
 of scalars such that $\sum |x_n|^p < \infty$

with the norm defined by

$$||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$$

here lp is actually a banach space.

5. The linear spaces of all n-tuples $x = (x_1, x_2, ..., x_n)$ of scalars, we define the norm by

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS
UNIT: I BATCH-2017-2019

$$||\mathbf{x}|| = \max \{ |\mathbf{x}_1|, |\mathbf{x}_2|, \dots, |\mathbf{x}_n| \} \dots (1)$$

This banach space commonly denoted by l_{∞}^{n} . i.e., $||x||_{\infty} = \lim ||x||_{p}$ as $p \to \infty$.

6. Consider the linear space of all bounded sequences $x=(x_1, x_2,....x_n,....)$ of scalars. We define the norm x by

 $||x|| = \sup |x_n|$. This we denote in banach space by l_{∞} . The set C of all convergent sequence is to be aclosed linear subspace of l_{∞} and is therefore itself a banach space.

7. The C(x) of all bounde continuous scalar –valued function defined on a topological space X, with the norm given by

$$||\mathbf{f}|| = \sup |\mathbf{f}(\mathbf{x})|$$
.

This norm is sometimes called Uniform norm.

Continuous Linear transformation:

Let N and N' be the normed linear space with the same scalars and let T be a linear transformation of N into N'. T is continuous if it is continuous as a mapping of the metric space N into the metric space N', $x_n \to x$ in N $\Rightarrow T(x_n) \to T(x)$ in N'.

Theorem:

Let N & N' be a normed linear space and T be a linear transformation of N into N'. Then the following condition on T are equivalent to one another.

- i. T is continuous.
- ii. T is continuous at the origin in the sense that $x_n \rightarrow 0 \Rightarrow T(x_n) \rightarrow 0$;
- iii. There exist a real no. $K \ge 0$ with the property that $||T(x)|| \le K ||x||, \forall x \in N$.
- iv. If $s=\{x: ||x|| \le 1\}$ is the closed unit sphere in N .then its image T(s) is a bounded set in N.

Proof:

 $(i) \Rightarrow (ii)$

If T is continuous, then since T(0)=0 it is certainly continuous at the origin.

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS
UNIT: I BATCH-2017-2019

i.e., If $x_n \rightarrow 0$ then $T(x_n) \rightarrow T(0) = 0$.

On the other hand if T is continuous at the origin, then $x_n \to x$.

$$\Rightarrow x_n - x \Rightarrow T(x_n - x) \rightarrow 0$$

$$\Rightarrow T(x_n) - T(x) \rightarrow 0$$

$$\Rightarrow T(x_n) \rightarrow T(x)$$

So T is continuous.

It is obvious that (iii)⇒ (ii)

If such a K exists, then $x_n \rightarrow 0$. Clearly implies that $T(x_n) \rightarrow 0$.

To show that (ii) \Rightarrow (iii).

We assume that there is no such K. It follows from that for each positive integer n, we can find a vector \mathbf{x}_n such that

 $\|T(x)\| > n \ \|x_n\|$, or equivalently such that

$$||T(x) > n ||x_n|| || > 1.$$

If we put
$$y_n = x_n / n || x_n ||$$
.

Then it is easy to see that $y_n \to 0$, but $T(y_n)$ does not tend to zero. So T is not continuous at the origin.

$$(iii) \Rightarrow (iv)$$

Since a non-empty subset of a normed linear space is bounded iff it is contained in a closed sphere centered in the origin , it is evident that (iii) \Rightarrow (iv), for if all $\parallel x \parallel \leq 1$, then $\parallel T(x) \parallel \leq K$ for all $x \in N$. suppose $x \in s$.

i.e.,
$$||x|| \le 1$$
, then $||T(x)|| \le K$

 \Rightarrow T(S) is bounded.

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS
UNIT: I BATCH-2017-2019

We assume that T(S) is contained in a closed sphere of radius of K centered on the origin. If x=0, then T(x)=0 and clearly, $||T(x)|| \le K ||x||$ and if $x \ne 0$ then $x/||x|| \in S$.

$$\therefore \|T(x/\|x\|)\| \leq K,$$

Again, we have $||T(x)|| \le K ||x||$.

Hence the proof.

Theorem:

The norm of a continuous linear transformation is equivalent to the following condition.

- i) $||T|| = \sup \{||T(x)|| : ||x|| \le 1\}$
- ii) $||T||_0 = \sup \{||T(x)|| : ||x|| = 1\}$
- iii) $||T||_1 = \sup \{||T(x)|| / ||x|| : x \in \mathbb{N} \& ||x|| \neq 0 \}$
- iv) $||T||_2 = \inf \{ k: k \ge 0 \& ||T(x)|| \le k ||x|| \forall x \}$

Proof:

$$(i) \Leftrightarrow (ii)$$

Let us denote the norm of T in (ii) by $||T||_0$ and prove $||T|| = ||T||_0$ where ||T|| is given by (i)

Let
$$A = \{ ||T(x)|| : ||x|| \le 1 \}$$

$$B = \{ ||T(x)|| : ||x|| = 1 \}.$$

Clearly $B \subseteq A$, then sup $B \le \sup A$.

$$||T||_0 \le ||T|| \dots \dots (1)$$

We now prove

$$||T||_0 \ge ||T||$$

Let $x \in \mathbb{N}$, $x \neq 0$ such that $||x|| \leq 1$.

Define y = x / ||x||, then ||y|| = ||x||/||x|| = 1.

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS
UNIT: I BATCH-2017-2019

Now,
$$||T(y)|| = ||T(x/||x||)|| = ||T(x)/||x||||$$

 $= ||T(x)||/||x||$
 $\geq ||T(x)|| \text{ as } ||x|| \leq 1.$
 $\Rightarrow \sup \{ ||T(y)|| : ||y|| = 1 \}$
 $\geq \sup \{ ||T(x)|| : ||x|| \leq 1 \}$

$$\Rightarrow ||T||_0 \ge ||T|| \dots (2)$$

from (1) and (2)

$$\Rightarrow ||T||_0 = ||T||$$

(ii)
$$\Leftrightarrow$$
 (iii) For $x \in \mathbb{N}$, $x \neq 0$, $\| T(x) \| / \|x\| = \| T(x/\|x\|) \| = \| T(y) \|$ where $y = x/\|x\|$ and $\|y\| = 1$.

Thus
$$||T||_1 = \sup \{ ||T(x)|| / ||x|| ; x \in \mathbb{N} \& ||x|| \neq 0 \}$$

= $\sup \{ ||T(y)|| : ||y|| = 1 \} = ||T||_0$

$$\Rightarrow ||T||_1 = ||T||_0$$

$$(i) \Leftrightarrow (iv)$$

Let
$$P = \{ ||T(x)|| : ||x|| \le 1 \}$$
 and

$$Q = \{ k: k \ge 0 \text{ and } ||T(x)|| \le k ||x|| \forall x \text{ such that } ||x|| \le 1 \}$$

Let m be the upper bound of the set P. Then $||T(x)|| \le m \ \forall x \ \text{such that} \ ||x|| \le 1$.

∴ $m \in Q$.

Conversely,

Let $k \in Q$, then $k \ge 0$ and $||T(x)|| \le k ||x|| \forall x$ such that $||x|| \le 1$.

- \therefore k is an upper bound of P.
- \therefore Q= the set of all upper bound of P.

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS
UNIT: I BATCH-2017-2019

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS
UNIT: I BATCH-2017-2019

Let $x \in \mathbb{N}$, $||x|| \neq 0$ and y = x/||x|| \therefore ||y|| = 1

$$\therefore \|T(y)\| \in P.$$

$$\Rightarrow ||T(y)|| \le \sup P = \inf Q \le k, k \in Q.$$

$$\Rightarrow ||T(x)|| / ||x|| \le k, k \in Q \& x \in N \& ||x|| \ne 0$$

For $k \in Q$,

$$||T(x)|| \le k ||x|| \forall x \in \mathbb{N}.$$

Hence Q= {
$$k : k \ge 0$$
, $||T(x)|| \le k ||x|| \forall x \in \mathbb{N}$, $||x|| \ne 0$ }

Thus, $\sup \{ ||T(x)|| : ||x|| \le 1 \} = \sup P$

$$= \inf Q.$$

= inf { k : k \ge 0, ||T(x)|| \le k ||x || \forall x \in N }.

Hence the proof.

Conjugate space of N:

Let N be an arbitrary normed linear space . The set of all continuous linear transformation of N into R or C in

 $\mathbf{B}(N,R)$ or $\mathbf{B}(N,C)$ (as N is real or complex). It is denoted by N^* is called the conjugate space of N.

The elements of N^* are called continuous linear functional or functional. If f is functional

$$|| f || = \sup \{ || f(x) || : || x || \le 1 \}.$$

Theorem:

Let N & N' be a normed linear space the set B (N,N') of all continuous linear transformation of N into N' is a normed linear space with respect to the point wise linear operations

i)(T+U)(x)=T(x)+U(x);

ii)(αT)(x)= αT (x). and the norm defined by

 $||T|| = \sup \{||T(x)|| : ||x|| \le 1\}$. Also if N' is a Banach space

then **B** (N,N') is also a Banach space.

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS
UNIT: I BATCH-2017-2019

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS
UNIT: I BATCH-2017-2019

Proof:

First we prove that \mathbf{B} (N,N') is a linear space.

Let $T_1, T_2 \in \mathbf{B} (N,N')$.

Then
$$(T_1+T_2)(x+y) = T_1(x+y)+T_2(x+y)$$

= $T_1(x)+T_1(y)+T_2(x)+T_2(y)$.
= $(T_1+T_2)(x)+(T_1+T_2)(y)$

Thus (T_1+T_2) is linear.

Similarly,
$$(T_1 + T_2)(\alpha x) = \alpha (T_1 + T_2)(x)$$
.

Thus (T_1+T_2) is a continuous linear transformation. Since $T_1 \& T_2$ are continuous linear transformation. Also, αT is a continuous linear transformation.

Thus **B** (N,N') is a linear space.

To verify norm axioms:

Clearly $||T|| \ge 0$ and as $||T(x)|| \ge 0$

i) Also,
$$||T|| = \sup \{ ||T(x)|| / ||x|| ; x \in \mathbb{N} \& ||x|| \neq 0 \}$$

Now, ||T|| = 0 iff $||T(x)|| = 0 \forall x$.

iff
$$T(x)=0 \forall x$$

ii) Also if

$$\begin{split} \parallel T_1 + T_2 \parallel &= \sup \; \{ \parallel T_1 + T_2 \; (x \;) \parallel \; : \parallel x \parallel \; \leq 1 \} \\ &= \sup \; \{ \parallel T_1(x) + T_2 \; (x \;) \parallel \; : \parallel x \parallel \; \leq 1 \} \\ &\leq \sup \; \{ \parallel T_1(x) \parallel \; : \parallel x \parallel \; \leq 1 \} + \sup \; \{ \parallel \; T_2 \; (x \;) \parallel \; : \parallel x \parallel \; \leq 1 \} \\ &= \parallel T_1 \parallel + \parallel T_2 \parallel \; . \end{split}$$

iii) Similarly, $\|\alpha T\| = |\alpha| . \|T\|$.

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS
UNIT: I BATCH-2017-2019

Hence \mathbf{B} (N,N') is a normed linear space. Finally we have to prove \mathbf{B} (N,N') is a banach space whenever N' is a banach space.

For doing this consider a Cauchy sequence $\{Tn\}$ in **B** (N,N'). If x is an arbitrary vector in N, then $\{Tn(x)\}$ is a sequence in N', which is Cauchy.

But N' is a banach space which is complete. Hence $\{T_n(x)\}$ is convergent.

Let $T_n(x) \to T(x)$ this defines the mapping T of

N into N'. By the joint continuity of addition and scalar multiplication T is seen to be a linear transformation .

To conclude the proof we have to show that T is continuous and $T_n \to T$ w.r.to the norm on **B** (N,N').

Since
$$| \parallel T_n(x) - T_m(x) \parallel | \leq \parallel T_n(x) - T_m(x) \parallel$$

 $< \epsilon \text{ (fix } \epsilon \text{)}$

Fix M so that $||T_n(x)|| < \varepsilon + ||T_m(x)||$.

Thus sequence $\{T_n(x)\}$ is a Cauchy sequence in N' & the norm of the terms of this Cauchy sequence form a bounde set of numbers.

Hence T is bounded and therefore continuous.

It remains to prove that $T_n \to T$. i.e., To prove $||T_n - T|| \to 0$

For a given $\epsilon>0$, let n_0 be a positive integer such that $\parallel T_m-T_n\parallel<\epsilon\ \forall\ m,n\geq n_0$ as T_n is a cauchy sequence .

$$\begin{split} \therefore \parallel T_m(x) - T_n\left(x\right) \parallel & \leq \parallel T_m - T_n \parallel \parallel \left(x\right) \parallel \\ & \leq \parallel T_m - T_n \parallel \quad \text{for } \parallel \left(x\right) \parallel \leq 1. \\ & < \epsilon \end{split}$$

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS
UNIT: I BATCH-2017-2019

Thus, $\parallel T_m(x) - T(x) \parallel < \epsilon \ \forall \ m,n \ge n_0 \ as \ T_n(x) \rightarrow T(x)$.

This shows that $T_m \rightarrow T$ and

$$||T_m - T|| \rightarrow 0$$

Hence the proof.

Operators:

Let N be a normed linear space . A continuous linear transformation N into itself is called an operator of N. We denote the normed linear space of all operator of N by $\mathbf{B}(N)$ instead of $\mathbf{B}(N,N')$.

Note:

- i) **B**(N) is a banach space when N is a banach space.
- ii) $\mathbf{B}(N)$ is indeed an algebra in which multiplication of operator is given by TT'(x) = T(T'(x)) and

$$|| T T' || \le || T || || T' ||.$$

iii) Addition, scalar multiplication are jointly continuous in

B(N) i.e.,
$$T_n \to T$$
, $T'_n \to T' \Longrightarrow T_n T'_n \to T$ T'.

The identity transformation I,I(x)=x is in identity for the algebra B(N) and ||I||=1.

Isometrically isomorphic of N intoN':

Let N and N' be a normed linear spaces. A 1 to 1 linear transformation of N into N' such that ||T(x)|| = ||(x)||

for $x \in N$, $Tx \in N'$ is called an isometrically isomorphic of N into N'. We also say that N and N' are isometrically isomorphic if it satisfies onto also.

Hahn-Banach:

Any functional defined on a linear subspace of a normed linear spaces can be extended linearly and continuously to the whole space without increasing its norm.

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS
UNIT: I BATCH-2017-2019

Lemma:

Let M be a linear subspace of a normed linear space N.let f be a functional defined on M of x_0 is a vector not in M and if $M_0 = M + x_0$. Then f can be extended to a functional f_0 defined on M_0 such that $||f_0|| = ||f||$.

Proof:

Case (i):

Let N be a real normed linear spaces. Assume ||f|| = 1 where f is a functional defined on M, a linear subspace of N.

We may assume, without loss of generality ||f||=1.

Since $x_0 \not\in M$,each vector $y \in M_0$ is uniquely expressible as $y = x + \alpha \ x_0$ with $x \in M$. Define a mapping f_0 on M_0 as follows f_0 (y) = f_0 ($x + \alpha \ x_0$) = f_0 (x)+ αf_0 (x_0) = $f(x) + \alpha r_0$.

Where $r_0 = f_0(x_0)$. This is an linear extension of f to M_0 and f_0 is linear for every choice of the real number x.

Clearly, f_0 is continuous as f is a functional on M. we've to choose r_0 so that $||f_0||=1$.

But
$$f_0(x+\alpha \ x_0) = f(x) + \alpha \ r_0$$

i.e., $|f(x)+\alpha \ r_0| \le \|x+\alpha \ x_0\|$
i.e., $-f(x/\alpha) - ||(x/\alpha)+x_0\| \le r_0 \le -f(x/\alpha) + ||(x/\alpha)+x_0\|$
.....(1)

So, if we choose r_0 satisfying (1), then $||f_0|| = 1$. Since f is linear and continuous, for any two vectors $x_1, x_2 \in M$, we've

$$\begin{array}{ll} f(x_2) - \! f(x_1) \leq \| f (x_2 - \! x_1) \| \\ & \leq \| f \| \| \| x_2 - \| x_1 \| \\ & = \| x_2 - \| x_1 \| = \| (x_2 + \! x_0) - \! (x_1 + \! x_0) \| \\ & \leq \| \| x_2 + \| x_0 \| + \| \| x_1 + \| x_0 \| \| \end{array}$$

$$\therefore$$
 - f (x₁) - $|| x_1 + x_0 || \le$ - f (x₂) + $|| x_2 + x_0 || \dots (2)$

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS
UNIT: I BATCH-2017-2019

Define 2 real numbers a,b by

$$a = \sup \{ -f(x) - ||x + x_0|| : x \in M \}$$

b= inf \{ -f(x) - ||x + x_0|| : x \in M \}

By(2)
$$a \le b$$

If we choose r_0 to be any real number $a \le r_0 \le b$, then the sequence inequality in (1) is satisfied.

Hence the proof in the case (i)

Case(ii):

Let N be a complex number in a normed linear spaces. f is a complex valued functional defined on M for which

 $\|f\| = 1$. A complex linear space can be regarded as a real linear space by restricting the scalars to be real.

Let g and h be the real and imaginary parts of f so that

$$f(x) = g(x) + i h(x) \quad \forall x \in M$$

Then both g and h are real valued functionals on the real space M.

Since
$$||f|| = 1$$
, we've $||g|| \le 1$.

Also, we've
$$f(ix) = i f(x)$$
 and

$$i f(x) = g(ix) + ih(ix)$$
$$= i[g(x) + ih(x)]$$

$$\therefore h(x) = -g(ix)$$

$$\therefore f(x) = g(x) - ig(ix).$$

By case (i) we extend g to areal valued functional g_0 on the real space M_0 in such a way that $||g_0|| = ||g||$.

We define f_0 for $x \in M_0$ by $f_0(x) = g_0(x) -ig_0(ix)$.

Then f is an extension of f from M to M_0 . Also, f_0 is linear, as

$$\begin{split} f_0(x+y) &= g_0(x+y) - ig_0(i(x+y)) \\ &= g_0(x) + g_0(y) - ig_0(i(x)) + ig_0(y) \\ &= f_0(x) + f_0(y) \quad \text{[since g_0 is linear]} \end{split}$$

Similarly, $f_0(\alpha x) = \alpha f_0(x)$ for all real α .

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS
UNIT: I BATCH-2017-2019

This is true for complex α also as $f_0(ix) = i f_0(x)$.

So f_0 is linear as a complex valued function defined on the complex space M_0 . Finally to prove $||f_0|| = 1$.

If x is avector in M_0 , for which $\|x\| = 1$, then we prove , so that $\|f_0\| = \sup\{|f_0(x)| : \|x\| = 1\} = 1$.

If f_0 (x) is complex , then we can write $f_0(x)=re^{i\theta}$ with r>0 so that $\mid f_0(x)\mid=r$.It follows that f_0 ($e^{-i\theta}$ x) is real.

 $| \cdot | \cdot | \cdot | \cdot | \le 1$

Hence the proof.

Hahn-Banach theorem:

Let M be a linear subspace of a normed linear space N. Let f be a functional defined on M. Then f can be extended to afunctional f_0 defined on the whole space N such that $||f_0|| = ||f||$.

Proof:

By the above lemma, for any $x \in N$ and $x \notin M$. We've an extension of f on M+[x] such that ||f|| is preserved for the extension.

Consider the set G of all such extensions of f to functionals g with the same norm, defined on subspaces which contain M. This is a partially ordered set w.r.to the following relation.

 $g_1 \le g_2$ iff domain of g_1 is contained in domain of g_2 and g_2 $(x) = g_1(x)$, for all x in the domain of G.

Now, every chain in G has an upper bound.

By Zorn's lemma,

"There is a maximal extension f_0 . The f_0 is the required extension of the entire space n. For if f_0 is not defined on the whole of x, then there is an $x \in N$ and not in the domain M_0 of f_0 , so that f_0 can be extended to $M_0 + [x]$. But f_0 is maximal."

This is a contradiction to our assumption. Hence the proof.

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS
UNIT: I BATCH-2017-2019

Corollaries of Hahn-Banach theorem:

Corrollary:

If N is a normed linear space and x_0 is non-zero vector in N then there exist functional f_0 in N* such that $f_0(x_0) = ||x_0||$ and $||f_0|| = 1$.

Proof:

Let $M = \{\alpha \ x_0\}$ be the linear subspace of N spanned by x_0 . Define f on M by $f(\alpha \ x_0) = \alpha \ |x_0|$. Clearly, f is afunctional on M such that $f(x_0) = |x_0|$, taking $\alpha = 1$ and |f| = 1.

By Hahn Banach theorem f can be extended to a functional f_0 in N* such that $f_0(x_0) = f(x_0) = |x_0|$.

And $||f_0|| = ||f|| = 1$.

Hence the proof.

Corrollary:

If M is a closed linear subspace of a normed linear space N and x_0 is a vector not in M, then there exist a functional f_0 in N* such that f_0 (M)=0, f_0 (x_0) \neq 0.

Proof:

The natural mapping T of N onto N/M is a continuous linear transformation such that T(m) = 0 and

$$T(x_0) = x_0 + M \neq 0.$$

By the previous corollary there exist a functional f in $(N/M)^*$ such that $f(x_0 + M) \neq 0$. Define f_0 by $f_0(x) = f(T(x))$.

Then f_0 is the desired functional with the property that $f_0(M)$.

i.e.,
$$f_0(M)=0$$
, $f_0(x_0)=f(T(x_0))=f(x_0+M)\neq 0$.

Second Conjugate space:

The conjugate space of N^* is itself a Normed linear space. We can form the conjugate space $(N^*)^*$. It is denoted by N^{**} and is called the second conjugate space of N.

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS
UNIT: I
BATCH-2017-2019

Each vector $x \in N$ gives raises to a functional F_x in N^{**} defined by $F_x(f) = f(x)$, $x \in N$.

Properties of natural embedding on N into N**:

- 1. F_x is linear.
- 2. $||F_x|| = ||x||$.
- 3. The mapping $x \to F_x$ is a norm preserving mapping of N into N**. F_x is called an induced functional. Thus the isometric isomorphism $x \to F_x$ is a natural embedding on N into N**.

POSSIBLE QUESTIONS

- 1. Prove that if N is a normed linear space and x_0 is non-zero vector in N then there exist functional f_0 in N* such that $f_0(x_0) = ||x_0||$ and $||f_0|| = 1$.
- 2.Let M be a closed linear subspace of a normed linear space N and let x_0 be a point not in M. If d is the distance from x_0 to M. Show that there exist a functional $f \in N^*$ such that f(M) = 0, $f(x_0) = 1$ and ||f|| = 1/d.
- 3. State and prove Hahn Banach theorem.
- 4. Prove that let M be a closed linear subspace of a normed linear space N. If the norm of a cosetx+M in the quotient space N/M is defined by ||x +M|| =inf { ||x +M|| / m∈ M} then N/M is a NLS. Also, if N is a Banach space then N/M is also a Banach space.
- 5. Prove that if M is a closed linear subspace of a normed linear space N and x_0 is a vector not in M, then there exist a functional f_0 in N* such that f_0 (M)=0, f_0 (x) \neq 0.
- 6. If N is a normed linear space then each vector x induces a functional F_x on N^* by $F_x(f) = f(x)$ for every $f \in N^*$ such that $||F_x|| = ||x||$. Moreover there is an isometric isomorphism from N into N^{**}
- 7. Prove that if N is a normed linear space and x_0 is non-zero vector in N then there exist functional f_0 in N* such that $f_0(x_0) = |x_0|$ and $|f_0| = 1$.
- 8. Prove that let N & N' be a normed linear space the set B (N,N') of all continuous linear transformation of N into N' is a normed linear space with respect to the pointwise linear operations

i)(T+U)(x)=T(x)+U(x);

ii)(αT)(x) = αT (x).and the norm defined by $||T|| = \sup \{||T(x)|| : ||x|| \le 1\}$. Also if N' is a Banach space then B (N,N') is also a Banach space.

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS
COURSE CODE: 17MMP301 UNIT: I BATCH-2017-2019

- 9. Prove that let M be a linear subspace of a normed linear space N.let f be a functional defined onM of x_0 is a vector not in M and if $M_0 = M + x_0$. Then f can be extended to a functional f_0 defined on M_0 such that $||f_0|| = ||f||$.
- 10. Prove that let N & N' be a normed linear space and T be a linear transformation of N into N'. Then the following conditions on T are equivalent to one another.
 - i. T is continuous.
 - ii. T is continuous at the origin in the sense that $x_n \rightarrow 0 \Rightarrow T(x_n) \rightarrow 0$;
 - iii. There exist a real no. $K \ge 0$ with the property that $||T(x)|| \le K ||x||, \forall x \in N$.
 - iv. If $s=\{x: ||x|| \le 1\}$ is the closed unit sphere in N .then its image T(s) is a bounded set in N.

(Deemed to be University)
(Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),
Coimbatore –641 021
Subject: FUNCTIONAL ANALYSIS

Class : II - M.Sc. Mathematics

Unit I

Part A (20x1=20 Marks)		Omt I				(Question Nos. 1
		Possible Question				
	Question	Choice 1	Choice 2	Choice 3	Choice 4	Answer
	The norm of x is called as the of the vector	direction	length	weight	scalar .	Length
	Every normed linear space is a banach space	complete	metric	compact	connected	complete
	A banach space is a normed linear space which is complete as a	complete	connected	compact	metric	metric
	The metric space arise on norm as $d(x,y)=$	x+y	x	x-y	xy	x-y
	The linear operation is denoted by	R	 N	L L	K	Ľ .
	The term of the control of the contr	Linear	Arithmetic	0	0	Linear
	The two primary operation in alinear space is called	operation	operation	Operators	Operations	operation
	The size of an element x is a real number denoted by	norm x	real x	banach x	complex x	norm x
	A linear space is called real linear space when its scalar is	norm	real	banach	complex	real
	A linear space is called linear space when its scalar is	norm	real	banach	complex	complex
	is called the distance between x and y	c(x,y)	r(x,y)	d(x,y)	p(x,y)	d(x,y)
	Every cauchy sequence has a convergent	sequence	subsequence	series	serial	subsequence
	The real part of Z is denoted by	Re(Z)	Re(x+y)	Im(Z)	Im(x+y)	Re(Z)
	The imaginary part of Z is denoted by	Re(Z)	Re(x+y)	Im(Z)	Im(x+y)	Im(Z)
	The of A is the lub of the distance between pair of its points.	direction	distance	weight	scalar	distance
	If f is a function if there is a real number K such that $ f(x) \le k$.	norm	finite	bounded	unbounded	bounded
	Aset is one whose diameter is finite.	complete	connected	metric	bounded	bounded
	Every sequentially compact metric space is	complete	connected	compact	metric	compact
	Every sequentially metric space is totally	complete	connected	compact	metric	compact
	A mapping of a nonempty set b in to a metric space is called					
	a	norm	finite	bounded	unbounded	bounded
	mapping					
	A metric space is compact iff it is and totally	complete	connected	metric	bounded	complete
	A closed subspace of a complete metric space is iff it is	complete	connected	compact	metric	compact
	totally					
	A metric space is said to be sequentially compact if every		,			,
	sequence in it has	sequence	subsequence	space	subspace	subsequence
	a convergent	N**	N	N"	N*	N**
	The is called second conjugate space of N.	IN	N	IN	IN."	IN "
	A complete metric space is ametric space in which every cauchy sequence	complete	connected	compact	convergent	convergent
	is	complete	connected	compact	convergent	convergent
	If N is a banach space then the product N/M is	Banach space	hilbert space	Inner product	linear space	Banach space
	The elements of N* are called continuous linear functional	-		•	•	•
	or	continuous	functional	linear space	convergent	functional
	The identity transformation I is anfor the algebra B(N)	continuous	functional	linear space	identity	identity
	N is said to be isometrically isomorphic to N' if ther exist an			isometric		icomotrio
	of N	isomorphic	isometric	isomorphism	isomorphism	isometric isomorphism
	into N'			isomorphism		isomorphism
	If T is continuous at the origin , then Xn $\!$	Xn→0	$T(Xn)\rightarrow 0$	Xn→1	$T(Xn) \rightarrow \infty$	$T(Xn)\rightarrow 0$
	The set of all for T equals the set of all radii of closed	bounds	convex set	continuous	functional	bounds
	sphere	o o unu o	convent sec		Tuniona	Counas
	Any infinite set which is numerically equivalent to N is said to be	Countable	uncountable	uncountably infinite	countably finite	countably finite
	A set is if it is nonempty and finite	Countable	uncountable	uncountably	countably finite	countable
	Any countable union of countable set is	countably finite	not countable	Countable	uncountable	Countable
	Uncountable is otherwise called as	countably finite		Countable	uncountably	uncountably
	The absolute value is the between the numbers.	direction	distance	weight	scalar	distance

The triangle inequality for metric space is	$d(x,y) \\ \leq d(x,z) + d(y,z)$	d(x,y) < d(x,z)+d(y,s)	d(x,y) < d(x,y)+d(y,z)	d(x,y) > $d(x,z)+d(y,z)$	d(x,y) < d(x,z)+d(y,z)
The elements of x are called the points ofspace (x,d)	Banach space	hilbert space	Metric space	linear space	Metric space
Let x be a metric space then it is property is $d(x,y)=d(y,x)$	asymmetry	symmetry	abelian	commutate	symmetry
Let x be a metric space then it is symmetry Property is $d(x,y)=\dots$	d(x,y) < d(x,z)+d(y,z)	d(x,y) < d(x,z)+d(y,s)	d(x,y)	d(y,x)	d(y,x)
f is said to be continuous if it is at each point of x.	continuous	functional	linear space	convergent	continuous

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: II BATCH-2017-2019

UNIT II

Open & Closed mapping syllabus

The Open Mapping Theorem- Theorem and Examples — Problems. The closed graph theorem. The conjugate of an operation- The uniform boundedness theorem- Problems.

Lemma:

If B and B' are banach spaces and if T is a linear transformation of B onto B', then the image oech open sphere centered on the origin in B contains an open sphere centre on the origin in B'.

Proof:

We denote by Sr and Sr' the open spheres with radius r centered on the origin in B and B'.

$$T(S_r) = T(r S_1) = r.T(S_1).$$

So it suffices to show that $T(S_1)$ contains some S_r .

We begin by proving that $\overline{T(S_1)}$ contain some S_r . Since T

is onto,
$$B'=\mathop{\cup}\limits_{n=1}^{\infty}T(S_n$$
). B' is complete, so Baire's theorem

implies that some $T(S_{n0})$ has an interior point y_0 , which may be assumed to lie in $T(S_{n0})$.

The mapping $y \to y - y_0$ is a homeomorphism of B' onto itself, so $T(S_{n0})$ $-y_0 \subseteq T(S_{2n0})$. From this we obtain

 $\overline{T(S_{n0})}$ $-y_0 = \overline{T(S_{n0})}$ $-y_0 \subseteq \overline{T(S_{2n0})}$, which shows that the origin is an interior point of $T(S_{2n0})$.

Multiplication by an nonzero scalar is a homeomorphism of B' onto itself, so $T(S_{2n0}) = 2n_0 \cdot T(S_1) = 2n_0 \cdot T(S_1)$

It follows from the fact that the origin is also an interior point of $T(S_1)$, so $S_{\epsilon}' \subseteq T(S_1)$ for some positive number ϵ .

We complete the proof by showing that

$$S_{\epsilon}$$
' $\subseteq T(S_3)=3.T(S_1)$.

Let $y \in S_{\epsilon}$ '. Therefore $y \in T(S_1)$. hence each neighbourhood of y intersects $T(S_1)$.

There is an open sphere centre on y and with radius $\epsilon/2$, that intersects $T(S_1)$. There is a point on

 $y_1 \in T(S_1)$ such that $||y-y_1|| < \varepsilon/2$ and there is a point $x_1 \in B$ such that $y_1 = T(x_1)$ and $||x_1|| < 1$. Now

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: II BATCH-2017-2019

 $S_{\epsilon}'\subseteq \overline{T(S_1).} \text{ i.e., } S_{\epsilon/2}'\subseteq \overline{T(S_{1/2}}).$

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: II BATCH-2017-2019

Since $| y-y_1 | < \epsilon/2$, $y-y_1$ is a vector in $\overline{T(S_{1/2})}$. Each neighbourhood of $y-y_1$ intersects $T(S_{1/2})$.

Let
$$y_2 \in T(S_{1/2})$$
 such that $||y-y_1-y_2|| < \epsilon/4$ where

$$y_2 = T(x_2) \text{ for } x_2 \in B \text{ and } ||x_2|| < 1/2.$$

Continuing like this we get a sequence of vector

$$\{x_n\} \text{ in B so that } | |x_n| | <1/2^{n-1} \text{ and } \\ | |y_-(y_1+y_2+\ldots\ldots+y_n)| |<\epsilon/2^n, \text{ where } y_n=T(x_n).$$

Define $S_n = x_1 + x_2 + \dots + x_n$. We find that $\{S_n\}$ is a Cauchy sequence in B.

$$| | S_n | | \le | | x_1 | | + | | x_2 | | + \dots + | | x_n | |$$

 $< 1+1/2+\dots+1/2^{n-1}.$
 $< 1/(1-1/2) < 2.$

Since B is complete the sequence $\{S_n\}$ converges to x in B. i.e., $S_n \to x$.

$$\Rightarrow$$
 x \in S₃.

Consider
$$T(x) = T(\lim_{n \to \infty} S_n) = \lim_{n \to \infty} T(S_n)$$
.

$$= \lim \left[T(x_1 + x_2 + \dots + x_n) \right]$$

$$= \lim \left[T(x_1) + T(x_2) + \dots + T(x_n) \right]$$

$$= y.$$

$$y \in S_{\epsilon}' \implies S_{\epsilon}' \in T(S_3)$$

$$\Rightarrow S'_{\epsilon/3} \in T(S_1)$$

Hence the proof.

Theorem: Open Mapping theorem

If B and B' are banach spaces and if T is a linear transformation of B onto B',then T is an open mapping .

Proof:

We must show that if G is open in B, then T(G) is also open set in B'. If Y is appoint in T(G) it Suffices to produce an open sphere centered on y and contained in T(G).

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: II BATCH-2017-2019

Let x be a point in G such that T(x)=y. Since G is open, x is the centre of an open sphere which can be written in the form $x+\delta r$ contained in G.

Our lemma now implies that T(Sr) contains some Sr'. It is clear that y+Sr' is an open sphere centered on y and the fact that it is contained in T(G) at once from

$$y+Sr' \subseteq y + T(Sr) = T(x)+T(Sr)$$

$$\Rightarrow T(x+Sr) \subseteq T(G).$$

Hence the proof.

Interior point:

Let X be an arbitrary metric space and let A be a subset of X. A point in 'A' is called an interior point of A if it is the center of some open sphere contained in A, and the interior of A denoted by Int(A), is the set of all interior points.

$$Int(A) = \{ x: x \in A \text{ and } Sr(x) \subseteq A \text{ for some } r \}.$$

Projection:

Projection E determines a pair of linear subspace M & N such that L= M \oplus N where M= { $E(x) \colon x \in L$ } and

 $N=\{x: E(x)=0\}$ are the range and null space of E.

Theorem:

If P is a projection on a banach space B and if M and N are its range and null space , then M& N are closed linear subspace of B such that $B=M\oplus N$.

Proof:

P is an algebraic projection . So the above definition gives everything except the fact that M and N are closed.

The null space of any continuous linear transformation is closed, so N is obviously closed. The fagt that M is also closed is aconsequences of

$$M= \{ P(x): x \in B \}$$
= $\{x: P(x) = x\}$
= $\{x: (I-P)(x) = 0\}$

Which exhibits M as the nullspace of the operator (I-P).

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS
UNIT: II BATCH-2017-2019

Hence the proof.

Theorem:

Let B be a Banach space and let M and N be a closed linear subspace of B such that $B=M\oplus N$. If Z=x+y is the unique representation of a vector in B as a sum of vectors in M and N, then the mapping P defined by P(Z)=x is a projection on B whose range and null spaces are M & N.

Proof:

A pair of linear subspace M and N such that $L=M\oplus N$ determines a projection E whose range and nullspace are M and N .we want to prove that P is continuous.

If B' denotes the linear space B equipped with the norm defined by | |Z| | '= | |x| | + | |y| |.

Then B' is a banch space and since
$$| | P(Z) | | = | | x | | \le | | x | | + | | y | | = | | Z | |$$
.

P is clearly continuous as a mapping of B' into B. It suffices to prove that B' and B have the same topology.

If T denotes the identity mapping of B' onto B, then
$$| |T(Z)| = |Z| = |x| \le |x| + |y| = |Z|$$
.

This shows that T is continuous as 1 to 1 linear transformation of B' onto B. Then by previous theorem implies that T is a homeomorphism.

Hence the proof.

Definition:

The graph of a linear transformation of a banach space B into another banach space B' is that subset of BXB' which consist of all ordered pairs (x, T(x)) where $x \in B$.

Lemma:

If T is continuous, then its graph is closed as a subset of the metric space $B \times B$ With metric defined by

$$d((x_1,y_1), (x_2,y_2))=\max \{ || x_{1-} x_2 ||, || y_{1-} y_2 || \}.$$

Proof:

Let (x_0, y_0) be in the closure of the graph of T.

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: II BATCH-2017-2019

Then there is a sequence $\{x_n, T(x_n)\}$ in the graph of T such that $x_n \to x_0$; $T(x_n) \to y_0$.

T is continuous, $T(x_n) \rightarrow T(x_0)$.

$$\therefore T(x_0) = y_0.$$

Thus the point $(x_0, T(x_0))$ belongs to the graph of T.

Hence graph of T is closed as a subset of B X B'.

Hence the proof.

Theorem: Closed graph theorem:

If B and B' are Banach and if T is a linear transformation of B into B'. Then T is continuous iff the graph of T is closed.

Proof:

T is continuous.

 \Rightarrow The graph T is closed.

Converse,

Let the graph of T be closed. Denote by B, the linear space 'B' with the norm defined by

We can prove that B₁ is a normed linear space under the norm, now

$$| | T(x) | | \le | | x | | + | T(x) | = | x |$$

This shows that T is bounded and hence continuous as the linear transformation from B₁ to B'.

It is enough to prove that B and B' have the same topology.i.e., B and B' are homeomorphic.

The identity mapping of B_1 to B' is continuous for | | T(x) | |.

We show that B_1 is a banach space to show the completeness of B_1 .

Consider a Cauchy sequence $\{x_n\}$ in B_1 . Thus $\{x_n\}$ is a Cauchy sequence in B and $\{T(x_n)\}$ is a cauchy sequence in B as $||x_m-x_n||<\epsilon$.

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: II BATCH-2017-2019

$$\Rightarrow | | x_m - x_n | | + | | T(x_m) - T(x_n) | | < \epsilon$$

Since B and B' are complete, there exist a sequence $x \in B$, $y \in B'$ Such that $x_n \to x \in B$ and $T(x_n) \to y \in B'$.

By hypothesis the graph of T is closed in BXB'. This implies (x,y) lies in the graph i.e., y=T(x).

 $\Rightarrow x_n \rightarrow x$ in B_1 . $\therefore B$ is complete and its banach. Thus T is continuous from B to B'.

Hence the proof.

Conjugate of an operator:

Each operator T on a normed linear space N induces a corresponding operator , denoted by T^* and it is called the conjugate space N^* .

Theorem: Uniform boundedness theorem

Let B be abanach space and N a normed linear space . If $\{Ti\}$ is a non-empty set of continuous linear transformations of B into N with the property that $\{Ti(x)\}$ Is a bounded subset of N for each Vector x in B, then $\{|Ti|\}$ is a bounded set of numbers, that is $\{Ti\}$ is bounded as a subset of B(B,N).

Proof:

For each positive integer n, the set

Fn= $\{x: x \in B \text{ and } || Ti(x)|| \le n \text{ for all } i \}$ is clearly a closed subset of B, and by assumption we have

$$B = \bigcup_{n=1}^{\infty} F_n$$

Since B is complete ,Baire's theorem shows that one of the Fn's, say Fn₀ has non-empty interior, and thus contains aclosed sphere S_0 with center x_0 and radius $r_0 > 0$.

It means that each vector in every set $Ti(S_0)$ has norm less than or equal to n_0 :

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS UNIT: II BATCH-2017-2019

For the sake of brevity $||\operatorname{Ti}(S_0)|| \le n_0$. It is clear that $S_0 - x_0$ is the closed sphere with radius r_0 centered on the origin , $S_0 (S_0 - x_0) / r_0$ is the closed unit sphere S. Since x_0 is in S_0 , it is evident to show that $||\operatorname{Ti}(S_0 - x_0)|| \le 2n_0$.

This yields $|| \text{Ti}(S_0) || \le 2n_0/r_0$, so $|| \text{Ti}(S_0) || \le 2n_0/r_0$ for every i.

Hence the proof.

Theorem:

A non-empty subset of a normed linear space N is bounded iff f(x) is a bounded set of numbers for each f in N*.

Proof:

Since $|f(x)| \le ||f|| ||x||$, it is obvious that if X is bounded, then f(x) is bounded, then f(x) is also bounded for each f.

Second part of the theorem , it is convenient to exhibit that the vectors in X by writing $X \! = \{x_i\}.$

We use the natural imbedding from X to the corresponding subset $\{Fx_i\}$ of N^{**} .

Our assumption that $f(x) = \{f(x_i)\}$ is bounded for each f is clearly equivalent to $\{Fx_i\}$ is bounded for each f, and since N^* is complete.

By previous theorem shows that $\{Fx_i\}$ is a bounded subset of N^{**} .

Hence the proof.

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: II BATCH-2017-2019

POSSIBLE QUESTIONS

- 1. i) Prove that a nonempty subset X of anormed linear space N is bounded iff f(X) is a bounded set of numbers for each f in N*.
 - ii) Show that E is a projection on M along N iff I E is a projection on N along M.
- 2. Let T be an operator, a normed linear space N, T* be its conjugate defined by $T^*(f) = f_0T$ (or) $(T^*f)x = f(T(x))$ for every $f \in N^*$ and $x \in N$ then T* is an operator on N* and the mapping $\varphi \colon B(N) \to B(N^*)$ such that $\varphi(T) = T^*$ for every $T \in B(N)$ is an isometric isomorphism of B(N) into $B(N^*)$ and also preserves the identity transformation.
- 3. State and prove closed graph theorem.
- 4. Prove that let B be a Banach space and let M and N be a closed linear subspace of B such that $B=M\oplus N$. If Z=x+y is the unique representation of a vector in B as a sum of vectors in M and N, then the mapping P defined by P(Z)=x is a projection on B whose range and null spaces are M & N.
- 5. Prove that if B and B' are Banach space and if T is a continuous linear transformation of B on to B' then the image of each open sphere centered on the origin in B contains an open sphere centered on the origin in B'.
- 6. State and prove uniform boundedness theorem.
- 7. i) Prove that if P is a projection on a Banach space B and if M and N are its range and null space then M and N are closed linear subspace of B such that $B = M \oplus N$.
- 8. Prove that if B and B' are Banach space and if T is a continuous linear transformation of B on to B' then the image of each open sphere centered on the origin in B contains an open sphere centered on the origin in B'.
- 9. State and prove open mapping theorem.
- 10. Prove that T is a closed linear transformation iff its graph T_G is closed subspace.

(Deemed to be University)
(Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),
Coimbatore –641 021

Subject: FUNCTIONAL ANALYSIS
Class : II - M.Sc. Mathematics

Subject Code: Semester

Unit II

Part A (20x1=20 Marks)		(Question Nos. 1 to 20
	Possible Questions	

Question	Choice 1	Choice 2	Choice 3	Choice 4	Answer
The centre of some open sphere contained in A is called the Each operator T on a normed linear space N induces a corresponding	closed	open	interior	exterior	interior
operator denoted by	T'	T**	T*	T	T*
The M is the null space for the projection on	P	I-P	Space	subspace	I-P
If P is a projection on a $\ Banach\ space\ B$ and if M and N are its	dense sets	range and null space	subspaces	projection	range and null space
A projection on E determines a pair of linear subspace M and N then	L=m+N	$L\!\!=\!\!M\!\!+\!\!N$	L=M-N	L= MÅ N	L= MÅ N
The image of open sphere centered on the origin in B contains an					
	closed	open	interior	exterior	open
Sphere centered on the origin in B and B' The is the null space of the operator on the projection on I-P	M	N	L=M-N	L= m+N	M
The is the null space of the operator on the projection on P	M	N	L=M-N	L= m+N	N N
The is the range of the operator on the projection on I-P	M	N	L=M-N	L= m+N L= m+N	N
The is the range of the operator on the projection on P	M	N	L=M-N	L= m+N	M
A pair of linear subspace M and N such L= MÅN determines a	141	range and null	L-M-IV	L- III I I	141
on E.	dense sets	space	subspaces	projection	projection
If T is continuous, then its graph is as a subset of BxB'	closed	open	interior	exterior	closed
A closed set in a topological space in a set whose compliment is	closed	open	interior	exterior	open
A is iff $A = Int(A)$	closed	open	interior	exterior	open
Int(A) equals the union of all of A.	closed	open	open subset	open set	open subset
The interior of A is denoted by	Int(A)	Cl(A)	Ext(A)	Im(A)	Int(A)
Int(A) is an open subset of A which contains every of A	closed	open	open subset	open set	open subset
Let x be any metric space then any union of open set in x is	closed	open	open subset	open set	open
Let x be any metric space then any finite intersection ofin x is open.	closed	open	open subset	open set	open set
In any metric space x, each open sphere is an	closed	open	open subset	open set	open set
The open sphere $Sr(x_0)$ with center x_0 and radius r is the subset of x define by	d(x,y)	d(y,x)	$d(x,x_0) < r$	$d(x,x_0)=r$	$d(x,x_0) < r$
An open sphere is always non empty for it contain its	center	radius	distance	length	center
An sphere with radius 1 contain only its center.	closed	open	open subset	open set	open
If the open sphere is bounded open interval $(x_0 - r, x_0 + r)$ with midpoint					
X ₀	r	2r	3r	0	2r
and total length $Sr(x_0)$ is an open sphere with radiuscentered on x_0	r	2r	3r	0	r
In the linear space the transformation I defined by $I(x)=x$	identity	linear	one to one	onto	identity
The mapping $P(Z) = x$ is a on B.	dense sets	range and null	subspaces	projection	projection
B and B' have same topology means they are	homomorphic	homeomorphic	linear	connected	homeomorphic
B and B' have same means they are homeomorphic	strong topology	nullspace	topology	weak topology	topology
The identity mapping of B' to B is for $ T(x) = x $.	continuous	functional	linear space	convergent	continuous
If T is continuous linear transformation of B onto B' then T is an			-	=	
mapping.	closed	open	open subset	open set	open
A 1-1 linear transformation T of abanach space onto itself is continuous					
then	continuous	functional	linear space	convergent	continuous
its inverse is automatically					
The mapping $T \rightarrow T^*$ is thus anorm preserving map onf B(N) into					
	B(N)*	B(N')	B(N)	B(N)**	B(N')

EDUCATION

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

UNIT III

Hilbert Spaces

SYLLABUS

Hilbert Spaces- The Definition and Some Simple Properties – Examples and Problems. Orthogonal Complements - Some theorems .Ortho-normal sets – Definitions and Examples-Bessel's inequality- The conjugate space H*.

Inner Product Space:

Let X be a complex vector space over the complex scalars C. Then (x,y) is said to be an inner product of x and y.

i) $(x, x) \ge 0$ for all x in X and (x, x) = 0 iff x = 0

ii)
$$(y,x) = \overline{(x,y)}$$
 for all x and y in X

iii)
$$(x+y, z) = (x,z) + (y,z)$$
 for all x, y and z in X

iv) $(\lambda x, y) = \lambda(x,y)$ for all x,y in X and all complex number λ

A complex vector space X having the inner product is said to be an inner product space.

Hilbert Space:

A complete inner product space is said to be a Hilbert Space.

Examples:

1. Consider the spaces l_2^n where we denote l_2^n as the linear spaces of all n-tuples of scalars with the norm of a vector $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$ defined by

$$||x|| = (\sum_{i=1}^{n} |x_i|^2)^{1/2}$$

We know that l_2^n is a banach space .Now,we show that the inner product of 2 scalars $x = (x_1, x_2,, x_n)$ and $y = (y_1, y_2,, y_n)$ is defined by inner product

EDUCATION

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

$$(x,y) = \sum_{i=1}^{n} x_i y_i$$

Then l_2^n is a Hilbert space.

2. Consider the banach spaces l_2 consisting of all infinite sequence $x = (x_n)^{\infty}_{n=1}$ of a complex number with the norm of a vector defined by

$$||x|| = (\sum_{n=1}^{\infty} |x_n|^2)^{1/2}$$

Also, if the inner product of two vectors $\mathbf{x} = (x_1, x_2, \dots, x_n)$ And $\mathbf{y} = (y_1, y_2, \dots, y_n)$ is defined by inner product

$$(x,y) = \sum_{n=1}^{\infty} x_n y_n$$

Then l_2 is a Hilbert space.

Theorem: (Schwartz inequality)

If (x,y) are any two vectors in ahilbert space then

$$|(x\,,\,y)\,|_{\,\underline{<}\,}\,|\,|_{X}\,|\,|\,.\,|\,|\,y\,|\,|$$

Proof:

If y=0 then the above inequality becomes equality as both side vanishes. Now y \neq 0 for any scalar λ we have

$$(x + \lambda y, x + \lambda y) \ge 0.$$

$$\Rightarrow$$
 $(x,x)+(x, \lambda y)+(\lambda y, x)+(\lambda y, \lambda y) $\geq 0.$$

$$\Rightarrow (x,x) + \overline{\lambda}(x,y) + \overline{\lambda}(x,y) + |\lambda|^2 \cdot ||y||^2 \ge 0.$$
.....(1)

Since $y \neq 0$, $||y|| \neq 0$.

Therefore put $\lambda = -(x,y)/||y||^2$ in equation (1)

$$\Rightarrow | | x | |^2 \ge | (x,y) |^2 / | | y | |^2$$

$$\Rightarrow ||x||^2.||y||^2 \ge |(x,y)|^2$$

$$\Rightarrow |(x, y)| < ||x||.||y||$$

EDUCATION

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

Hence the proof.

Remark:

Using these inequality we see that the inner product function is jointly continuous.

Problem:

If x and y are any two vectors in a Hilbert space H then

i)
$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$$
. (parallelogram law)

ii)
$$||x + y||^2 - ||x - y||^2 = 2(x,y) + 2(y,x).$$

iii)||
$$x + y ||^2 + || x - y ||^2 + i|| x + iy ||^2 + i || x - iy ||^2$$

= $4(x,y)$.

(polarization identity)

Solution:

i)||
$$x + y \|^2 + \| x - y \|^2 = (x+y,x+y) + (x-y,x-y)$$

$$= (x,x) + (y,x) + (x,y) + (y,y) + (x,x) - (y,x) - (x,y) + (y,y)$$

$$= 2(x,x) + 2(y,y)$$

$$= 2 \| x \|^2 + 2 \| y \|^2$$

Hence (i) solved.

ii)
$$|| x + y ||^2 - || x - y ||^2 = (x+y,x+y) - (x-y,x-y)$$

= $(x,x)+(y,x)+(x,y)+(y,y)-[(x,x)-(y,x)-(x,y)+(y,y)]$
= $2(y,x)+2(x,y)$

Hence (ii) solved.

iii)||
$$x + y ||^2 + || x - y ||^2 + i|| x + iy ||^2 + i || x - iy ||^2$$

= $(x+y,x+y) - (x-y,x-y) + i((x+iy,x+iy) - i(x-iy, x-iy))$
= $2(y,x) + 2(x,y) + i[(x,x) + i(y,x) - i(x,y) + (y,y)] - i[(x,x) - i(y,x) + i(x,y) + (y,y)]$
= $2(y,x) + 2(x,y) - 2(y,x) + 2(x,y)$

EDUCATION

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

$$= 4(x,y)$$

Hence (iii) solved

Problem:

Every inner product space is a normed linear space

Solutions:

Let V be an inner product space. In order to prove that it is a normed linear space it must satisfy the properties of normed linear space.

If
$$x \in V$$
 then $||x||^2 = (x,x)$

By the definition of an inner product space we know that

i)
$$(x,x) \ge 0 & (x,x) = 0 \iff x = 0$$
.

Hence
$$\parallel x \parallel^2 \ge 0 \& \parallel x \parallel^2 = 0 \Leftrightarrow x = 0$$
.

ii)
$$\|\alpha x\|^2 = (\alpha x, \alpha x) = \alpha \alpha (x,x)$$
$$= |\alpha|^2 (x,x)$$
$$= |\alpha|^2 ||x||^2$$

$$||\alpha \ x \ ||^2 \ = \ |\alpha \ | \ || \ x \ ||$$

Hence (ii)

iii)
$$\| x + y \|^2 = (x+y, x+y)$$

$$= (x,x) + (y,x) + (x,y) + (y,y)$$

$$= \| x \|^2 + \| y \|^2 + \overline{(x,y)} + (x,y)$$

$$= \| x \|^2 + \| y \|^2 + 2 \operatorname{Re}(x,y)$$

$$= \| x \|^2 + \| y \|^2 + 2(x,y)$$

$$= \| x \|^2 + \| y \|^2 + 2 \| x \| \| y \|.$$

$$\| x + y \|^2 \le \| x \| + \| y \|$$

It shows that every inner product space is a normed linear space.

Theorem:

COURSE NAME: FUNCTIONAL ANALYIS CLASS: II M.Sc COURSE CODE: 17MMP301 UNIT: III BATCH-2017-2019

A closed convex subset "C" of a Hilbert space H contains a unique vector of smallest norm.

EDUCATION

CLASS: II M.Sc COURSE CODE: 17MMP301

COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

Proof:

Let $d = \inf\{ \|x\| : x \in c \}$ then there exist a $\{x_n\}$ such that $\|x_n\| \to d$.

Consider two vectors x_n , $x_m \in \{x_n\}$. Since c is aconvex subset of H. x_n , $x_m \in C$.

$$\Rightarrow$$
 $(x_n + x_m)/2 \in C$. By the definition of d we have $\|(x_n + x_m)/2\| \ge d$. so that $\|(x_n + x_m)\| \ge 2d$.

By the parallelogram law we have

$$|| x + y ||^2 + || x - y ||^2 = 2|| x ||^2 + 2|| y ||^2$$

$$\Rightarrow \parallel x_m + x_n \parallel^2 + \parallel x_m - x_n \parallel^2 = 2 \parallel x_m \parallel^2 + 2 \parallel x_n \parallel^2$$

$$\Rightarrow \| x_m - x_n \|^2 = 2\| x_m \|^2 + 2\| x_n \|^2 - \| x_m + x_n \|^2$$

$$\leq 2 \parallel x_m \parallel^2 + 2 \parallel \ x_n \parallel^2 \ - 4 d^2$$

Now.

2||
$$x_m$$
 ||² +2|| x_n ||² - || $x_m + x_n$ ||² \rightarrow 2d² +2d² - 4d² =0.

Hence,
$$||x_m - x_n||^2 \to 0$$
 as $m,n \to \infty$.

 \therefore {x_n} is a Cauchy sequence in c.

Since H is complete and c is a closed subset of H. \therefore c is also complete Hence the Cauchy sequence $\{x_n\}$ in c is also a Cauchy sequence in c.

Therefore there exist a vector x in c such that $x_n \to x$. Now, $x = \lim x_n$.

$$||x|| = ||\lim x_n|| = \lim ||x_n|| = d.$$

Hence x is avector in c with the smallest norm d.

To prove uniqueness of x:

Suppose x' is a vector in c other than x, which also has norm d.Then $(x+x')/2 \in c \&$ by the parallelogram law .

We have
$$\|(x+x')/2\|^2 = \|x\|^2/2 + \|x'\|^2/2 - \|x-x'\|^2/2$$

$$< ||x||^2/2 + ||x||^2/2 = d^2$$

EDUCATION

CLASS: II M.Sc COURSE CODE: 17MMP301

COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

Which contradicts the definition of d.

Hence x is unique.

Hence the proof.

Theorem:

If B is a complex Banach space whose norm obeys the parallelogram law and if an inner product is defined on "B" by

$$4(x,y) = ||x + y||^2 - ||x - y||^2 + i||x + iy||^2 - i||x - iy||^2$$
.

Proof:

We have to show that the inner product defined above has three properties required by the definition of a Hilbert space namely,

i) To prove $(x.x)= ||x||^2$

$$4 (x,x) = || x + x ||^2 - || x - x ||^2 + i|| x + ix ||^2 - i || x - ix ||^2.$$

$$= 4|| x ||^2 + 2i|| x ||^2 - 2i|| x ||^2$$

$$= 4 || x ||^2$$

Hence (i) proved.

ii) To prove
$$(x,y) = 4 \overline{(y,x)}$$

$$4(x,y) = 4 (\overline{y,x})$$

$$4(y,x) = ||y + x||^2 - ||y - x||^2 + i||y + ix||^2 - i||y - ix||^2$$

Then,

$$4(y,x) = || x + y ||^2 - || x - y ||^2 + i|| x + iy ||^2 - i || x - iy ||^2$$

$$\begin{split} 4\overline{(y,x)} &= ||\ x+y\ ||^2 + ||\ x-y\ ||^2 \\ &-i||\ x-iy\ ||^2 + i\ ||\ x+iy\ ||^2 \\ &= 4(x,y) \end{split}$$

EDUCATION

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

Then (x,y) = (y,x).

Hence (ii) proved.

iii)
$$(x+y, z) = (x,z) + (y,z)$$

$$4(\ x+y,z) = ||\ x+y+z||^2 - ||\ x-y-z||^2 + i||\ x+y+iz\ ||^2 \\ - i\ ||\ x+y-iz\ ||^2$$

$$=4 \text{ re}(x+y,z) + i4 \text{ im}(x+y,z)$$

$$4(x,z) = || x + z ||^2 - || x - z ||^2 + i|| x + iz ||^2 - i || x - iz ||^2$$

$$= 4 \operatorname{re}(x,z) + i4 \operatorname{im}(x,z) \dots (2)$$

Similarly,

$$4(y,z) = 4 \text{ re}(y,z) + i4 \text{ im}(y,z) \dots (3)$$

Now,
$$(2) + (3)$$

$$\Rightarrow 4(x,z) + 4(y,z)$$
=4 re(x+y,z)+i4 im(x+y,z)..(4)

From (1) & (4)

$$4(x+y, z) = 4(x,z) + 4(y,z)$$

Hence (iii) proved.

iv)
$$(\alpha x, y) = \alpha (x,y)$$

$$4(\alpha x , y) = || \alpha x + y ||^2 - || \alpha x - y ||^2 + i|| \alpha x + iy ||^2 - i || \alpha x - iy ||^2$$

$$= |\alpha| \; [\mid\mid x+y\mid\mid^2 - \mid\mid x-y\mid\mid^2 \\ + i\mid\mid x+iy\mid\mid^2 - i\mid\mid x-iy\mid\mid^2]$$

$$= \alpha [4(x,y)]$$

Hence (iv) proved.

Then B is a Hilbert space.

Hence the proof.

EDUCATION

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

Orthogonal:

Two vectors x and y in a Hilbert space H are said to be orthogonal (written $x \perp y$) if (x,y) = 0 i.e., $x \perp y$ [this \perp symbol is read as related].

Remark:

- 1. The relation of orthogonality in a Hilbert space is symmetry.
- 2. If x is orthogonal to y then every scalar multiple is $\perp y$.
- 3. The zero vector is orthogonal to every vector.
- 4. The zero vector is the only vector which is orthogonal to itself.

Result:Pythogorian theorem

If x and y are any two orthogonal vectors in a Hilbert space H then we can show that

$$\mid\mid x+y\mid\mid^2 = \mid\mid x-y\mid\mid^2 = \mid\mid x\mid\mid^2 + \mid\mid y\mid\mid^2$$

Proof:

$$|| x + y ||^{2} = (x+y, x+y)$$

$$= (x,x) + (y,x) + (x,y) + (y,y)$$

$$= || x ||^{2} + || y ||^{2} + 0 + 0$$
[since $x \perp y$ i.e., $x,y=0$]
$$= || x ||^{2} + || y ||^{2}$$

Similarly, $\parallel x$ - $y \parallel^2 = \parallel x \parallel^2 + \parallel y \parallel^2$

Hence proved.

Definition:

Let S be a nonempty subset of a Hilbert space H the orthogonal compliment of S written as S^{\perp} is defined by

$$S^{\perp} = \{ \ x \in H \colon x \perp y \qquad \forall \ y \in S \}$$

Theorem:

The following statement follows directly from the orthogonal compliment of the set definition.

EDUCATION

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

i)
$$\{0\}^{\perp} = H$$

ii) H
$$^{\perp}$$
 ={0}

iii)S
$$\cap$$
 S $^{\perp} \subseteq \{0\}$

iv)
$$S_1 \subset S_2 \Rightarrow S_1^{\perp} \supset S_2^{\perp}$$
.

v) S^{\perp} is a closed linear subspace of H, $\alpha x_1 + \beta x_1 \in S^{\perp}$.

vi)
$$S \subset S^{\perp\perp}$$

Proof:

$$S \perp = \{x \in H \mid x \perp y\}$$

i) To prove $\{0\}^{\perp} = H$

$$\{0\}^{\perp} = \{x \in H / x \perp 0\}$$

= \{x \in H / (x \cdot, 0) = 0\}
= H.

ii) To prove $H^{\perp} = \{0\}$

Let $x \in H^{\perp}$ then by definition $(x,y) = 0 \quad \forall y \in H$.

Taking
$$y=x$$
, $(x,x) =0$

$$\Rightarrow || \mathbf{x} ||^2 = 0 \Rightarrow || \mathbf{x} || = 0$$

$$\Rightarrow x \in \{0\}$$

Then,
$$H^{\perp} = \{0\}$$

iii)To prove $S \cap S^{\perp} \subseteq \{0\}$

Let
$$x \in S \cap S^{\perp} \Rightarrow x \in S \&$$

$$x \in S^{\perp}/(x,y) = 0 \quad \forall y \in S.$$

If S is orthogonal to x itself, then $(x,x) = 0 \Rightarrow ||x||^2 = 0 \Rightarrow x \in \{0\}.$

Then,
$$S \cap S^{\perp} \subseteq \{0\}$$

iv)To prove
$$S_1 \subseteq S_2 \Rightarrow S_1^{\perp} \supseteq S_2^{\perp}$$

Let $x \in S_2^{\perp} \Rightarrow x$ is orthogonal to every vector in S_2 . $\Rightarrow x$ is orthogonal to every vector in S_1 .

EDUCATION

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

$$\Rightarrow$$
 x \in S₁ $^{\perp}$

Then , $S_1^{\perp} \supseteq S_2^{\perp}$

v)To prove S^{\perp} is a closed linear subspace of H, $\alpha x_1 + \beta x_1 \in S^{\perp}$.

Let $x_1, x_2 \in S^{\perp}$ then $(x_1, y) = 0 & (x_2, y) = 0 \quad \forall y \in S$.

$$(\alpha x_1 + \beta x_2, y) = \alpha(x_1, y) + \beta(x_2, y)$$

=0

$$\therefore (\alpha \ x_1 + \beta \ x_2 \ , y) \ \in S^{\perp}.$$

To prove S^{\perp} is closed:

Let x be a limit point of S^{\perp} . Then, to prove $x \in S^{\perp}$. By definition of limit point there exist $\{x_n\}$ in S^{\perp} such that $\{x_n\} \to x$.i.e., $(x_n,y) = 0 \ \forall \ y \in S$.

$$|(x_n-y)-(x,y)| = |(x_n-x, y)|$$

$$\leq \ \parallel x_n \text{ -}x \parallel \parallel y \parallel \to 0$$

$$\lim(x_n, y) = (x,y)$$

$$\Rightarrow$$
 x \in S ^{\perp} .

vi) To prove $S \subset S^{\perp \perp}$

$$S^{\perp \perp} = \{ x/(x,y) = 0 \quad \forall y \in S^{\perp} \}$$

If $x \in S$, then $(x,z) = 0 \forall z \in S^{\perp}$.

$$\Rightarrow$$
 x \in S ^{\perp \perp} .

Hence the proof.

Theorem:

Let M be a closed linear subspace of a Hilbert space H. Let x be a vector not in M & let d be the distance from x to M. Then there exist a unique vector $y_0 \in M$ such that $||x - y_0|| = d$.

EDUCATION

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

Proof:

Since M is closed, the set c=x+M is a closed convex set.

To prove c is closed:

Let $\{x+y\}$ be a limit point of x+M then to prove $\{x+y\} \in x+M$.

There exist a $\{x+x_n\}$ in x+M such that $\{x+x_n\} \rightarrow x+y$.

Now $\{x_n\}$ is a sequence in M and $\{x_n\} \rightarrow y$. But M is closed.

Let $y \in M$. Thus $\{x+y\} \in x+M$.

Since d is the distance from x to M, dis the distance from the origin to c.

By previous theorem there exist a unique vector z_0 in c such that $||z_0|| = d$.

Now, the vector
$$y_0 = x$$
- z_0 is in M and $||x - y_0|| = ||z_0|| = d$.

Uniqueness of y₀:

It follows from the fact that y_1 is a vector in Msuch that $y_1 \neq y_0$ and $||x - y_1|| = d$, then $z_0 = x - y_0$ is in c such that $z_1 \neq z_0$ and $||z_1|| = d$.

Which contradict the uniqueness of z_0 .

Hence the proof.

Theorem:

If M is a proper closed linear subspace of a Hilbert space then there exist a non-zero vector $z_0 \in H$, $z_0 \perp M$.

Proof:

Let x be avector not in Mand let d be the distance from x to M.

By previous theorem there exist a unique vector $y_0 \in M$ such that $||x - y_0|| = d$.

We define z_0 by $z_0 = x - y_0$.

EDUCATION

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

$$||z_0|| = ||x - y_0|| = d.$$

 \Rightarrow z₀ is anon zero vector.

We conclude the proof by showing that if y is an arbitrary vector M, then $z_0 \perp y$.

For any scalar α we have

$$||z_0 - \alpha y|| = ||x - (y_0 + \alpha y)|| \ge d = ||z_0||.$$

$$\Rightarrow \| z_0 - \alpha y \|^2 - \| z_0 \|^2 \ge 0.$$

$$\Rightarrow$$
 $(z_0 - \alpha y, z_0 - \alpha y) - (z_0, z_0) \ge 0$

$$\Rightarrow (z_0, z_0) - \alpha(\overline{z_0, y}) - \alpha(z_0, y) + \alpha \alpha(y,y) - (z_0, z_0) \ge 0$$
.....(1)

It is true for every scalar α .

Let $\alpha = \beta$ (z₀,y) where β is an arbitrary real number.

Then $\alpha = \beta$ ($\overline{z_0}$, \overline{y}) sub the values of α and α in (1) we have

$$\beta \mid (z_0, y)|^2 \ge 0.$$
(2)

The equation (2) is true for real β .

Suppose $(z_0$,y) $\neq 0.$ Then taking β as positive and so small that $\beta \parallel y \parallel^2 < \alpha$,

 \therefore We must have $(z_0, y) = 0$ which means that $z_0 \perp M$.

Hence the proof.

Theorem:

If M and N are closed linear subspaces of a Hilbert space H such that $M \perp N$, Then the linear subspace M+N is closed.

Proof:

Let Z be limit point of M+N such that $Z \in M+N$ such that $Zn \rightarrow Z$.

EDUCATION

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

Since Z is alimit point of M+N there exist a $\{Zn\}$ in M+N such that $Zn\rightarrow Z$.

Since $M \perp N$, $M \cap N = \{0\}$. i.e., M and N are disjoint so each Zn can be written uniquely in the form.

 $Zn = \{x_n + y_n\}$ where $x_n \in M$ and $y_n \in N$. Consider two vectors $\{Zm = x_m + y_m \& Zn = x_n + y_n\} \in \{Zn\}$.

Let us consider,

$$Zm-Zn = (x_m - x_n) + (y_m - y_n)$$

Where $x_m - x_n \in M$ and $y_m - y_n \in N$.

And
$$M \perp N$$
. $\therefore (x_m - x_n) \perp (y_m - y_n)$.

Then by the pythogorian theorem we have

$$||Zm-Zn||^2 = ||(x_m - x_n)||^2 + ||(y_m - y_n)||^2$$
.

Now {Zn } is a Cauchy sequence in H. Every convergent sequence is a cauchy sequence.

 \therefore we have $||Zm-Zn||^2 \to 0$ as $m,n \to \infty$.

$$\Rightarrow \parallel (x_m \text{ - } x_n) \parallel^2 \rightarrow 0 \parallel (y_m \text{ - } y_n) \parallel^2 \rightarrow 0.$$

 \Rightarrow {x_n} &{y_n} are the Cauchy sequence in M & N respectively.

Since, H is complete, M & N are closed subspaces of H.

... M & N are complete . Hence the Cauchy sequence x_n & y_n in M& N are convergent sequences in M & N.

Then there exist a sequence x & y in M & N such that $x_n \to x$ & $y_n \to y$.

Now, $Z = \lim_{n \to \infty} Z_n$

$$= \lim(x_n + y_n)$$

$$= x+y \in M+N.$$

Thus if Z is alimit point of M+N then $Z \in M+N$.

EDUCATION

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

 \therefore M +N is closed.

Hence the proof.

Theorem: (Orthogonal decomposition theorem)

If M is a closed linear subspace of a hilbert space H then H is the direct sum of M & M $^{\perp}$ i.e., $H=M+M^{\perp}$.

Proof:

Since $M \& M^{\perp}$ are orthogonal, closed linear subspace of H, then by previous theorem shows that M and M^{\perp} is also a closed subspace of H.

We must prove that $M+M^{\perp}=H.$ If possible let we assume that $M+M^{\perp}\neq H.$

Then , $M+M^{\perp}$ is a proper , closed linear subspace of H. Hence by theorem" If M is a proper closed linear subspace of a Hilbert space then there exist a non-zero vector $z_0 \in H$, $z_0 \perp M$."

There exist a vector $z_0 \neq 0$ in H, $z_0 \perp M + M^{\perp}$. i.e., $(Z_0, x+y) = 0$ where $x \in M$ and $y \in M^{\perp}$.

(or)
$$(Z_0, x) = 0 & (Z_0, y) = 0$$

$$\text{(or) } Z_0 \in M^\perp \quad \& \quad Z_0 \in (M^\perp)^\perp = M^{\perp \perp}.$$

 $\therefore~Z_0\in M^\perp\cap M^{\perp\perp}=\!\{0\}$. This is not possible as Z_0 is anon-zero vector.

Thus we conclude that $M+M^{\perp}$ is not a proper closed linear subspace of H.

$$\therefore M + M^{\perp} = H.$$

Since $M \cap M^{\perp} = \{0\}$, H is a direct sum of M & M^{\perp} . i.e., $H = M \oplus M^{\perp}$.

Hence the proof.

Theorem:

If M is a linear subspace of a Hilbert space, Show that it is closed iff $M=M^{\perp\perp}$.

EDUCATION

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

Proof:

Let us assume that

$$M=M^{\perp\perp}=(M^{\perp})^{\perp}=S^{\perp}$$
 where $S=M^{\perp}$.

 S^{\perp} is a closed subspace of H. M is a closed linear subspace of H.

Conversely, M is a closed subspace of H.

Claim: M=M ^{⊥ ⊥}

 $M \subset M^{\perp \perp}$.

Assume that the inclusion $M \subset M^{\perp \perp}$ is proper $M \neq M^{\perp \perp}$.

M is a proper closed linear subspace of M $^{\perp \perp}$.

Hence by theorem" If M is a proper closed linear subspace of a Hilbert space then there exist a non-zero vector $z_0 \in H$, $z_0 \perp M$."

There exist a vector $z_0 \neq 0$ in $M^{\perp \perp}$, $z_0 \perp M^{\perp}$.

$$\Rightarrow Z_0 \in M^\perp \cap M^{\perp \perp}. = \{\ 0\}.$$

There exist a contradiction.

Then
$$M = M^{\perp \perp}$$
.

Hence the proof.

Orthonormal set:

A non-empty set $\{e_i\}$ of a Hilbert space H is said to be an orthonormal set if

i)
$$i \neq j \Rightarrow e_i \perp e_j$$
 (i.e.,) $(e_i, e_j) = 0 \quad \forall i \neq j$
= 1 $\forall i = i$

ii)
$$\parallel e_i \parallel = 1 \quad \forall i$$

Theorem:

Let $\{e_1, e_2, \dots, e_n\}$ be a finite orthonormal set in a Hilbert space H . If x is any vector in H, then

EDUCATION

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

n
$$\sum_{i=1}^{n} |(x, e_i)|^2 \le ||x||^2 \dots (1)$$

Further,

n
x-
$$\sum_{i=1}^{n} (x, e_i)e_i \perp e_j$$
 for each j.

[Bessel's inequality for finite orthonormal set]

Proof:

We have

$$0 \leq \|x - \sum_{i=1}^{n} (x, e_i) e_i \|^2$$

$$n = (x - \sum_{i=1}^{n} (x, e_i) e_i . x - \sum_{j=1}^{n} (x, e_j) e_j)$$

$$= \|x\|^2 - \sum_{i=1}^{n} (x, e_i)(x, e_i) - \sum_{i=1}^{n} (x, e_i)(x, e_i) + \sum_{i=1}^{n} (x, e_i)(x, e_i)$$

$$i = 1 \qquad i = 1$$

$$0 \le \|x\|^2 - \sum_{j=1}^{n} |(x, e_j)|^2$$

which gives

$$\sum_{i=1}^{n} |(x, e_i)|^2 \leq \|x\|^2$$

To conclude the proof, we observe that

$$\begin{array}{c} n \\ (x - \sum (x, e_i) \ e_i, e_j) = (x, e_j) - \sum (x, e_i) (\ e_i, e_j) \\ i = 1 \\ &= (x, e_j) - (x, e_j) = 0 \\ \Rightarrow x - \sum (x, e_i) \ e_i \perp e_j \ \text{for each } j. \\ i = 1 \end{array}$$

Hence the proof.

EDUCATION

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

Theorem:

If $\{e_i\}$ is an orthonormal set in a Hilbert space, H and if X is any vector in H then the set $S = \{e_i : (x, e_i) \neq 0\}$ is either empty or countable.

Proof:

For each positive integer n, consider the set

$$Sn = \{e_i : |(x, e_i)|^2 > ||x||^2/n \}$$

By Bessel's inequality Sn contain atmost n-1 vectors . For if Sn contains say n vectors $\{e_1, e_2, \dots, e_n\}$ then

$$|(x, e_i)|^2 > ||x||^2/n$$
 for each i=1,2......

Adding up we get

$$\Rightarrow |(x, e_i)|^2 > n \parallel x \parallel^2 / n$$

$$\Rightarrow |(x, e_i)|^2 > \parallel x \parallel^2$$

This contradicts

$$\begin{array}{ll}
n \\
\sum |(x, e_i)|^2 & \leq \|x\|^2 \\
i-1
\end{array}$$

Thus for each positive integer n the set Sn is finite. Now suppose, the set $\{e_i\}$ \in S then (x,e_i) $\neq 0$. However small be the value of $|(x,e_i)|^2$, we can take n so large that

$$|(x,\,e_i)|^2 \quad > \parallel x \parallel^2/n.$$

If $\{e_i\;\}\in S$ then e_i must belong to some Sn. So we can

write
$$S = \bigcup_{n=1}^{\infty} Sn$$
.

Hence S is expressed as a countable union of finite set.

∴S itself is a countable set.

EDUCATION

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

If we have $(x,e_i) = 0 \forall I$ then S is empty.

Hence the proof.

Theorem: Bessel's inequality

If $\{e_i\}$ is an orthonormal set in a Hilbert space H, then $\sum |(x, e_i)|^2 \le ||x||^2$ for every vector x in H.

Proof:

Let $S = \{e_i : (x,e_i) \neq 0\} > By$ the previous theorem either S is empty (or) it is countable.

If S is empty, then we have $(x,e_i)=0 \ \forall i$. In this case we define $\ \Sigma \ |(x,e_i)|^2$ to be the number 0 and we have

 $0 \le \|x\|^2$. Thus if S is empty then we have

$$\sum |(\mathbf{x}, \mathbf{e_i})|^2 \leq \|\mathbf{x}\|^2$$

Now, we assume that S is not empty,. Then either S is finite or it is countably finite. If S is finite then we can write

 $S = \{e_1, e_2, \dots, e_n\}$ for some positive integer n.

In this case we define

$$\Sigma |(x, e_i)|^2 = \sum_{i=1}^{n} |(x, e_i)|^2 \text{ which is } \leq \|x\|^2 \text{ by bessel's }$$

inequality.

For Finite case:

Finally, assume that S is countably infinite. Let the vectors in S be arranged in a definite order

$$S{=}\{e_1,\,e_2,.....e_n,.....\}.By$$
 the theory of absolutely

convergent series if
$$\sum |(x, e_n)|^2$$
 converges then every series $n=1$

obtained from this by rearranging its term also converges and all series have the same sum.

We define therefore
$$\Sigma |(x,e_i)|^2$$
 to be $\Sigma |(x,e_n)|^2$ (1).

Hence this sum will depend only on the set S and not on the rearrangement of its vectors.

EDUCATION

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

Now by the bessels inequality in the finite case, we have

n

$$\sum_{i=1}^{\infty} |(x, e_i)|^2 \le \|x\|^2 \dots (2)$$

For various values of n, the sum on the left side of (2) are non negative . So they form a monotonic increasing sequence. Since this sequence is bounded above by $\parallel x \parallel^2$ It converges.

Since this sequence is the sequence of the partial sum of the series on the right side of (1) it converges and we have

For $e_i \in S$,

$$\Sigma \ |(x, \, e_i)|^2 = \sum_{n=1}^{\infty} \! |(x, \, e_n)|^2 \! \! \leq \ \parallel x \parallel^2$$

Hence the proof.

Complete:

An orthonormal set $\{e_i\}$ in a Hilbert space H is complete if it is not possible to adjoint a vector e to $\{e_i\}$ in such a way that $\{e_i,e\}$ is an orthonormal set which properly contains $\{e_i\}$.

Theorem:

Let H be a Hilbert space and let $\{e_i\}$ be an orthonormal set in H then the following conditions all are equivalent to one another.

- i) $\{e_i\}$ is complete.
- ii) $x \perp \{e_i\} \Rightarrow x=0$
- iii) If x is an arbitrary vector in H then $x = \sum (x, e_i) e_i$.
- iv) If x is an arbitrary vector in H then $\|x\|^2 = \sum |(x, e_i)|^2$.

Proof:

$$(i) \Rightarrow (ii)$$

If (ii) is not true there exist a vector $x \neq 0$ such that $x \perp \{e_i\}$. we now define e by $e = x / \|x\|$ & we observe that $\{e_i, e\}$ is an orthonormal set which properly contains $\{e_i\}$.

EDUCATION

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

This contradicts the completeness of e_i.

$$(ii) \Rightarrow (iii)$$

It is given that $x \perp \{e_i\} \Rightarrow x=0$. we have to show that if x is an arbitrary vector in H then $x = \sum (x, e_i) e_i$.

By the previous theorem the vector x - $\sum (x, e_i) e_i$ is orthogonal to every vector in the set e_i i.e., x - $\sum (x, e_i) e_i \perp e_i$.

Therefore by hypothesis

$$x - \sum (x, e_i) e_i = 0 \Rightarrow x - \sum (x, e_i) e_i$$
.

$$(iii) \Rightarrow (iv)$$

It is given that for any vector $x \in H$. We have $x = \sum (x, e_i) e_i$. We have to prove that $||x||^2 = \sum |(x, e_i)|^2$

$$|| x ||^{2} = (x,x)$$

$$= (\sum (x, e_{i})e_{i}, \sum (x, e_{j})e_{j})$$

$$= \sum \sum (x, e_{i}) (x,e_{j}) (e_{i}, e_{j})$$

$$= \sum |(x, e_{i})|^{2}$$

$$(iv) \Rightarrow (i)$$

Suppose $\{e_i\}$ is not complete. Then $\{e_i\}$ is a proper subset of an orthonormal set $\{e_i,e\}$. By hypothesis we have

$$\| \mathbf{e} \|^2 = \sum |(\mathbf{e}, \mathbf{e}_i)|^2 = 0$$

Since $e \perp e_i$ for each i.

Now, $\|e\|^2 = 0$ which contradicts the fact that e is a unit vector.

 \therefore The orthonormal set $\{e_i\}$ must be complete.

Hence the proof.

Conjugate space H*:

Let H be a Hilbert space . A continuous linear transformation from H into c is called a continuous linear functional or more briefly a functional of H.

EDUCATION

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

The elements of H* are called continuous linear functional

$$H^* = \{ f/f : H \rightarrow C \}$$

Theorem:

Let y be a fixed vector in a Hilbert space H. Let f_y be a scalar valued function defined on H as $f_y(x) = (x,y)$ for every $x \in H$. Show that f_y is functional in H* and $||f_y|| = ||y||$.

Proof:

Since inner product (x,y) is a scalar, clearly $f_y: H \rightarrow C$.

To prove that f_v is functional on H.we must show that f_v is linear and continuous.

i)To prove fy is linear:

Let $x_1, x_2 \in H$ and $\alpha, \beta \in C$.

We have

$$\begin{split} f_y\left(\alpha x_1 + \beta x_2\right) &= (\alpha x_1 + \beta x_2 \ ,y) \\ &= (\alpha x_1,y) + (\beta x_2 \ ,y) \\ &= \alpha \ f_y\left(x_1\right) + \beta f_y\left(x_2\right) \end{split}$$

 \Rightarrow f_y is linear

ii) To prove f_y is continuous:

For every
$$x \in H$$
, $f_y(x) = (x,y)$.

$$\Rightarrow | f_y(x) | = |(x, y)|$$

$$\leq ||x|| ||y||$$

Since y is a fixed vector in H.

Let ||y|| = k.

Then
$$| f_y(x) | \le k ||x|| \quad \forall x \in H$$
.

 \Rightarrow f_y is bounded.

EDUCATION

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

 \Rightarrow f_y is continuous.

f_v is norm preserving:

To prove that $||f_y|| = ||y||$

$$|| f_y || = \sup \{ || f_y (x) || : || x || \le 1 \}$$

$$\leq \sup\{ \| x \| \| y \| : \| x \| \leq 1 \}$$

$$= ||y|| \sup\{ ||x|| : ||x|| \le 1 \}$$

Thus
$$f_y \le ||y|| \dots (1)$$

Now we show that the relation takes the form an equality. If y=0 then ||y||=0.

Also, if y=0 then
$$f_y(x) = (x,y) = (x,0) = 0 \forall x \in H$$
.

Then f_v is a zero functional & $||f_v|| = 0$.

Thus if y=0; then $f_v = ||y|| = 0$.

Now let us take $y \ne 0$. then H is not a zero space.

We have
$$||f_y|| = \sup \{||f_y(x)|| : ||x|| \le 1\}$$

Since $y \ne 0$; y / ||y|| is a unit vector

Taking x = y / ||y||.

we have
$$f_y \ge ||y||$$
(2)

From (1) & (2) we have

$$|| f_{v} || = || v ||$$

Hence the proof.

Theorem: Riesz Representation theorem

Let H be a Hilbert space and let f be an arbitrary functional In H then there exist a unique vector $y \in H$ such that $f(x) = (x,y) \quad \forall x \text{ in } H$.

Proof:

EDUCATION

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

First we shall show that if there exist a vector y such that $f(x) = (x,y) \quad \forall x \text{ in H.}$ Then y is necessarily unique.

Suppose y₁,y₂ are any two vectors satisfying the property we have

$$f(x) = (x,y_1) \quad \forall x \text{ in H.}$$

&
$$f(x) = (x,y_2) \forall x \text{ in H.}$$

 \therefore we have $(x,y_1) = (x,y_2) \forall x \text{ in H.}$

$$\Rightarrow$$
 $(x,y_1-y_2)=0 \quad \forall x \text{ in } H$.

$$\Rightarrow$$
 $y_1 - y_2 = 0 \Rightarrow y_1 = y_2$.

If f is a zero functional then $f(x) = 0 \forall x \text{ in H}$.

Also, if y=0 then
$$f(x) = (x,y) = (x,0) = 0$$
.

If f is a zero functional then the vector y=0 such that

$$f(x) = (x,y) \forall x \text{ in } H.$$

Suppose f is not a zero functional. Let M be the null space of f. i.e., $M = \{x \mid f(x) = 0\}$. Then M is aproper subspace of H.Also the null space of any continuous linear transformation is closed.

Hence M is a proper closed linear subspace of a Hilbert space H.

We claim that for some suitably chosen scalar α , the vector $y = \alpha y_0$.

Case(i)

We take any value for scalar α in the vector $y=\alpha y_0$. Satisfies the property (1) for every $x \in M$.

If $x \in M$ then f(x) = 0. Also if $x \in M$, then

$$(x,y) = (x, \alpha y_0) = \alpha(x,y_0) = 0.$$

Thus if $x \in M$ & if $y = \alpha y_0$ then we have f(x) = (x,y) = 0.

Hence case (1) is satisfied.

Case(ii)

Let us try to choose the scalar α in such a way that

EDUCATION

CLASS: II M.Sc COURSE CODE: 17MMP301 COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

The vector $y=\alpha y_0$ satisfies equation(1) for $x=y_0$. Then

$$f(y_0) = (y_0, \alpha y_0) = \alpha (y_0, y_0) = \alpha || y_0 ||^2.$$

Here we take $\alpha = f(y_0) / ||y_0||^2$, then the veactor $y = \alpha y_0$ satisfies for every $x \in M$ & for every $x = y_0$ then it must satisfy (1) for every $x \in H$.

Let x be an arbitrary vector in H. Since $M \cap M^{\perp} = \{0\}$ and y_0 is anon zero vector belongs to M^{\perp} .

$$\therefore y_0 \notin M. \text{ Then}$$

$$\Rightarrow f(x) - \beta f(y_0) = 0.$$

$$\Rightarrow x - \beta y_0 \in M$$

$$\Rightarrow x - \beta y_0 = m \in M$$

Thus $x \in H \implies x = m + \beta y_0$ where β is some scalar & $m \in M$. now,

$$f(x) = f(m + \beta y_0) = f(m) + \beta f(y_0) = (m,y) + \beta (y_0, y)$$

$$= (m + \beta y_0, y) = (x,y)$$

Thus if a vector y satisfying (1) for every $x \in M$ & for every $x = y_0$ then it must satisfy (1) for every $x \in H$.

Hence $y = \alpha \ y_0$ the required vector where $\frac{}{\alpha = f(y_0) \ / \ \parallel y_0 \parallel^2} \ .$

Hence the proof.

EDUCATION

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS UNIT: III BATCH-2017-2019

POSSIBLE QUESTIONS

- 1. Prove that a closed convex subset 'C' of a Hilbert space H contains a unique vector of smallest norm.
- 2.i) State and prove Schwartz inequality.
- ii) Show that inner product function is jointly continuous.i.e., $x_n \rightarrow x$, $y_n \rightarrow y$ the $(x_n, y_n) \rightarrow (x, y)$.
- 3. Prove that if B is a complex Banach space whose norm obeys the parallelogram law and if an inner product is defined on "B" by $4(x,y)=||x+y||^2 ||x-y||^2 + i||x+iy||^2 i||x-iy||^2$.
- 4. Prove that let M be a closed linear subspace of a Hilbert space H. Let x be a vectornot in M and let d be the distance from x to M. Then there exist a unique vector $y_0 \in M$ such that $||x y_0|| = d$.
- 5. Prove that if M is a proper closed linear subspace of a Hilbert space then there exist non-Zero vector $z_0 \in H$, $z_0 \perp M$.
- 6. If the $\{e_i\}$ is an orthonormal set in a Hilbert space H and if x is an arbitrary vector in H then $(x \sum (x, e_i) \cdot e_i)$ is $\perp e_i$ for every j.
- 7. State and prove Bessel's inequality.
- 8. i) Prove that if M is a linear subspace of a Hilbert space, Show that it is closed iffM=M¹.
 - ii) Prove that if $\{e_i\}$ is an orthonormal set in a Hilbert space, H and if X is anyvector in H then the set $S = \{e_i: (x, e_i) \neq 0\}$ is either empty or countable.
- 9. State and prove Riesz representation theorem.
- 10. i) Prove that if M and N are closed linear subspaces of a Hilbert space H such that $M \perp N$, then the linear subspace M+N is closed.
 - ii) State and prove Bessel's inequality for finite orthonormal set.

(Deemed to be University)
(Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),
Coimbatore –641 021

Subject: FUNCTIONAL ANALYSIS Class : II - M.Sc. Mathematics

Part A (20x1=20 Marks)

Unit III

(Question Nos. 1 to 20 Online

Subject Code: 17MMP301 Semester : III

Part A (20x1=20 Marks)				(Question Nos.	to 20 Online
	Possible Quest				
Question	Choice 1	Choice 2	Choice 3	Choice 4	Answer
Every inner product space is a	normed linear space	hilbert space	banach space	continuous	normed linear space
The is orthogonal to any vector	product	scalar	zero vector	real value	zero vector
The relation of orthogonality in a Hilbert space is	asymmetry	symmetry	abelian	commutate	symmetry
The zero vector is the only vector which is to itself.	asymmetry	symmetry	orthogonal	direction	orthogonal
A complex banach space is said to be a if there is an inner product which satisfies the three conditions.	Banach space	hilbert space	Inner product space	linear space	hilbert space
For the space $l_2^{\ n}$ we use cauchy inequality to proveinequality	minkowski's	schwartz	triangle	cauchy triangle	schwartz
Two vectors \boldsymbol{x} and \boldsymbol{y} in a hilbert space H are said to be orthogonal if	(x,y)>1	(x,y)=0	(x,y)=1	(x,y)<1	(x,y)=0
If x is orthogonal to y then every scalar multiple is to y.	parallel	symmetry	orthogonal	perpendicular	perpendicular
The is orthogonal to every vector.	product	scalar	zero vector	real value	zero vector
The d is the distance from to c.	center	vertices	edges	origin	origin
If M is a closed linear subspace of ahilbert space H then H is the					
	product	scalar	zero vector	Direct sum	Direct sum
of M and M perp					
If M and N are closed linear subspace of ahilbert space H such that	closed	open	open subset	open set	closed
M [⊥] N then the linear subspace M+N is		•	•	•	
The scalars in a Hilbert space are usuallynumbers.	Irrational	algebraic	complex	rational	complex
The distance property in inner product space is $(ax+by, Z) =$	a(x,z)+b(y,z)	a(x,x)+b(y,x)	a(x,z)-b(y,z)	a(x,z)+b(x,z)	a(x,z)+b(y,z)
The distance property in inner product space is $(ax-by, Z) = \dots$	$a(x,\!z)\!\!+\!b(y,\!z)$	$a(x,\!x)\!\!+\!\!b(y,\!x)$	a(x,z)- $b(y,z)$	a(x,z) + b(x,z)	a(x,z)- $b(y,z)$
An orthonormal set cannot has an	product	scalar	zero vector	real value	zero vector
The set S is finite or	Countable	uncountable	countably infinite	countably finite	countably infinite
The orthonormal set is either or countable.	Countable	uncountable	finite	empty	empty
The orthonormal set is either empty or	Countable	uncountable	finite	empty	Countable
A nonempty set {e _i } of a hilbert space H is said to be an orthonormal set	() 0				
if for all i=j	$(e_i, e_j) > 0$	$(\mathbf{e}_{\mathbf{i}},\mathbf{e}_{\mathbf{j}})=0$	$(e_i, e_j) = 1$	$(e_i, e_j) < 1$	$(e_i, e_j) = 1$
A nonempty set {e _i } of a hilbert space H is said to be an orthonormal set	()>0	() 0	() 1	() 4	() 0
if for all $i \neq j$	$(e_i, e_j) > 0$	$(\mathbf{e}_{\mathbf{i}},\mathbf{e}_{\mathbf{j}})=0$	$(\mathbf{e}_{i}, \mathbf{e}_{j}) = 1$	$(e_i, e_j) < 1$	$(e_i, e_j) = 0$
If H contains only the zero vector then it has no	orthonormal set	orthonormal basis	Banach space	hilbert space	orthonormal set
If H contains a nonzero vector and if we normalised x then $\ e\ = \dots$	zero	four	five	one	one
If (x,y) are any two vectors in a Hilbert space then $ (x,y) \le \dots$	x y	x / y	x - y	x + y	x y
The sum of Z and Z conjugate is equal to	2 im Z	2 Re z	2 z	Re z	2 Re z
Every inner product space is expressed as $\ \mathbf{x}\ ^2$	(x,y)>1	(x,x)	(y,y)	(y,x)	(x,x)
A close convex subset of a hilbert space H contains a unique vector of	metric	space	subset	norm	norm
smallest		•			
A close subset of a hilbert space H contains a unique vector of smallest norm.	concave	convex	linear	metric	convex
Parseval's equation is otherwise called as parseval's	transform	fourier	identity	subscript	identity
Let x be anarbitrary vector in H the numbers (x,ei) are called the ,,,,,,,,, coefficient of x.	parseval	fourier	schwartz	bessels	fourier
The set of all continuous linear functional on H is denoted by	Н	H**	H*	T*	H*
The expression $x=å(x,ei)ei$ is called the expansion of x.	parseval	fourier	schwartz	bessels	fourier

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

UNIT IV

Adjoint In Banach Spaces

SYLLABUS

The Adjoint of an operator – Definitions and Some Properties-Problems. Self- adjoint operators – Some Theorems and Problems. Normal and Unitary operators – theorems and problems. Projections - Theorems and Problems.

Adjoint of an operator:

Let T be an operator on a Hilbert spaces H. We define the adjoint of T denoted by T^* on H as follows whenever $(x, y) \in H$. We have $(Tx, y) = (x, T^*y)$

The mapping T* is unique:

If T' is any mapping of H into itself such that $(Tx, y) = (x, T' y) \forall (x, y) \in H$.

Then,
$$(x,T'y) = (Tx,y) = (x, T*y)$$

$$\Rightarrow$$
 (x, T'y) = (x, T*y)

$$\Rightarrow$$
 (x, T'y- T*y) = 0

$$\Rightarrow$$
 (x, (T'- T*)y) = 0 \forall x ϵ H.

$$\Rightarrow$$
 (T'- T*)y = 0

$$\Rightarrow$$
 T'=T*.

Thus T is unique.

The adjoint mapping T* is linear and bounded:

Let y_1 and y_2 be any two vectors in H and let α , β be any 2 scalars. For any vector $x \in H$ we have

$$(x, T^* (\alpha y_1 + \beta y_2)) = (Tx, (\alpha y_1 + \beta y_2))$$

$$= \alpha (Tx, y_1) + \beta (Tx, y_2).$$

$$= \alpha (x, T^*y_1) + \beta (x, T^*y_2).$$

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 **UNIT: IV** BATCH-2017-2019

$$= (x, \alpha T^*y_1) + (x, \beta T^*y_2) = (x, \alpha T^*y_1 + \beta T^*y_2)$$

$$\Rightarrow$$
 T* ($\alpha y_1 + \beta y_2$) = α T* $y_1 + \beta$ T* y_2

 \Rightarrow T* is linear.

To prove T* is bounded:

For any vector y in H. we have

$$| | T*y | |^2 = (T*y, T*y)$$

$$= (TT*y,y)$$

$$= | (TT*y,y) |$$

$$\leq | | TT*y | | . | | y | |$$

$$\leq | | T | | . | | T*y | | . | | y | |$$

$$\leq ||T||.||T*y||.||y||$$

$$\Rightarrow | |T^*y| | \leq | |T| |.||y||.$$

 \therefore T is bounded . $| |T| | \le k$, where k is finite. Hence we

get
$$| |T^*y| | \le k | |y| | \forall y \in H$$
.

- \Rightarrow T* is bounded.
- \Rightarrow T* is a bounded linear operators on H.

 \Rightarrow T* ϵ B(H) where B(H) is the set of all bounded linear operators on a Hilbert space H.

Theorem:

The adjoint operator T to T^* on B(H) has the following properties.

i)
$$(T_1+T_2)^* = T_1^* + T_2^*$$

 $-$
ii) $(\alpha T)^* = \alpha T^*$
iii) $(T_1 T_2)^* = T_2^* T_1^*$
iv) $T^* = T$
v) $\|T\| = \|T^*\|$
vi) $\|T^* T\| = \|T\|^2$

Proof:

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

$$i)(T_1+T_2)^*$$

$$\Rightarrow (x, (T_1+T_2)^*y)$$

$$=((T_1+T_2)x,y)$$

$$= (T_1x,y) + (T_2x,y)$$

$$= (x,T_1^*y) + (x,T_2^*y)$$

$$= (x,T_1^*y + T_2^*y)$$

$$= (x,(T_1^* + T_2^*)y)$$

$$(T_1+T_2)^* = T_1^* + T_2^*$$

Hence (i) proved.

ii)(x, (
$$\alpha$$
T)* y)
$$= (\alpha$$
Tx ,y)
$$= \alpha$$
(Tx ,y)
$$= \alpha$$
(x , T*y)
$$= (x , \alpha$$
T*y)
$$- (\alpha$$
T)* = α T*

Hence (ii) proved.

iii)
$$(x, (T_1 T_2)^* y)$$

 $=((T_1 T_2) x, y)$
 $= (T_2 x, T_1^* y)$
 $= (xT_2^*, T_1^* y)$
 $(T_1 T_2)^* = T_2^* T_1^*$

Hence (iii) proved

iv)
$$(x,T^{**}y) = (x, (T^{*})^{*}y)$$

$$= (T^{*}x,y)$$

$$= (y, T^{*}x)$$

$$= (Ty,x)$$

CLASS: II M.Sc COURSE CODE: 17MMP301

COURSE NAME: FUNCTIONAL ANALYIS
UNIT: IV BATCH-2017-2019

$$=(x,Ty)$$

$$T* * = T$$

Hence (iv) proved.

v) To prove $\parallel T \parallel = \parallel T^* \parallel$

We know that $||T^*y|| \le ||T|| ||y|| \forall y \in H$.

$$\Rightarrow || T^* || \le || T || \dots (1)$$

Applying (1) to the operator T^* we get

$$|| (T^*)^* || = || T^{**} || = || T || \le || T^* || \dots (2)$$

From (1) & (2)

$$\Rightarrow \parallel T \parallel = \parallel T^* \parallel$$

Hence (v) proved

vi) To prove $||T^*T|| = ||T||^2$.

We have , $|T^*T| \le |T^*|$.

$$= ||T||.||T||$$

$$= | |T| |^{2}$$

$$| | T * T | | \le | | T | |^2 \dots (3)$$

Also,

$$| |T(x)| |^2 = (Tx,Tx)$$

$$= (T*Tx,x)$$
$$= |(T*Tx,x)|$$

$$\leq | | T^* T_X | | . | |_X | |$$

$$\leq ||T*T||.||x||^2$$

$$\Rightarrow ||T||^2 \le ||T*T|| \dots (4)$$

From (3) & (4)

$$\parallel T \! \ast T \parallel \ = \parallel T \parallel^2$$

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

Hence (vi) proved

Show that the adjoint operaion on B(H) is 1 to 1 and onto.

Solution:

Let $\phi : B(H) \rightarrow B(H)$ such that $\phi (T) = T^*$

 ϕ is $1 \rightarrow 1$:

Let T_1 , $T_2 \in B(H)$, then $\phi(T_1) = T_1^*$; $\phi(T_2) = T_2^*$;

$$\begin{split} \varphi(T_1) &= \varphi(T_2) \ ; \Longrightarrow T_1{}^* = T_2{}^* \\ & \Longrightarrow (T_1{}^*){}^* = (T_2{}^*){}^* \end{split}$$

For every element $T^* \in B(H)$ then $\phi(T^*) = (T^*)^* = T$

Hence solved.

 \Rightarrow T₁ = T₂.

Problem:

Show that 0* = 0 & I* = I.

Solution:

$$(0*x, y) = (x,0y) = (x,0) = 0 = (0x,y)$$

$$\Rightarrow 0*=0.$$

$$(I*x, y) = (x,Iy) = (x, y) = (Ix,y).$$

$$\Rightarrow$$
 I* = I.

Hence solved.

Problem:

If T is nonsingular operator on H then T^* is also nonsingular then $(T^*)^{-1} = (T^{-1})^*$

Solution:

If T is nonsingular

Now T* is nonsingular when T is non singular, then

CLASS: II M.Sc COURSE NA
COURSE CODE: 17MMP301 UNIT: IV

COURSE NAME: FUNCTIONAL ANALYIS
UNIT: IV BATCH-2017-2019

$$TT^{-1} = T^{-1}T = I(TT^{-1})^*$$

= $(T^{-1}T)^* = I^* = I$.

$$(T^{-1})*T* = T*(T^{-1})* = I.$$

 \Rightarrow T* is non singular.

$$(T^{-1})^* = (T^*)^{-1}$$
.

Hence solved.

Self Adjoint operator:

An operator T in B(H) is said to be self adjoint. If $T=T^*$. clearly, 0 and 1 are self adjoint operators.

Theorem:

The self adjoint operators in B(H) form a closed real linear subspace of B(H) and therefore a real banach space which contains the identity transformation.

Proof:

Let S be the set of all self adjoint operators on a Hilbert space H.

To prove that $\, S \,$ is a closed real linear subspace of B(H). Let $\, T_1 \,$ & $\, T_2 \in S \,$ then

$$T_1*=T_1$$
 and $T_2*=T_2$.

For any α , β we have

$$(\alpha T_1 + \beta T_2) * = (\alpha T_1) * + (\beta T_2) *$$

$$= \alpha T_1 * + \beta T_2 *$$

$$=\alpha T_1 + \beta T_2$$

$$= \alpha T_1 + \beta T_2$$

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

 $\Rightarrow \alpha T_1 + \beta T_2 \in S$.

 \Rightarrow S is areal linear subspace of B(h) . next, we show that S is closed. Let A be a limit point of s. Then the show that

 $A \in S$.

Since A is a limit point of S.there exist $\{A_n\}$ in S such that $A_n \to A$.

We have
$$\parallel A\text{-}\ A^{*}\parallel = \parallel A\text{-}\ A_{n}\ + A_{n}\ - A^{*}\parallel$$

$$\leq \parallel A\text{-}\ A_n\parallel + \parallel A_n\ \text{-}A^*\parallel$$

Since $A_n \in S$, $A_n^* = A_n$.

$$= \| A- A_n \| + \| A_n^* - A^* \|$$

$$= \| A- A_n \| + \| (A_n - A)^* \|$$

$$= \| A- A_n \| + \| A_n - A \|$$

$$= 2 \| A- A_n \| . \rightarrow 0. \text{ as } A_n \rightarrow A.$$

 \Rightarrow A = A* and so A \in S .Then S is a closed real linear subspace of B(H) and hence s is a real banac space. Also

 $I \in S$ as I is self adjoint.

Hence the proof.

Theorem:

If $A_1 & A_2$ are self adjoint operator on H then their product $A_1 A_2$ is self Adjoint iff $A_1 A_2 = A_2 A_1$.

Proof:

Let $A_1 A_2 = A_2 A_1$ and also it is given that $A_1 = A_1 \& A_2 = A_2$.

Now,
$$(A_1A_2)^* = A_2^*A_1^*$$

= $A_2 A_1$.
= $A_1 A_2$.

Conersely, let A₁ A₂ be a self adjoint and show that they commute.

By hypothesis,
$$(A_1A_2)^* = A_1 A_2 \dots (1)$$

But
$$(A_1A_2)^* = A_2^*A_1^* = A_2 A_1 \dots (2)$$

From (1) & (2) we have

$$A_1 A_2 = A_2 A_1$$
 Hence the proof.

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

If T is an operator on H for which $(T_x,x) = 0$, $\forall x$ in H iff T = 0.

Proof:

Suppose T=0 then $x \in H$.

We have,
$$(Tx,x) = (0x,x)$$

= $(0,x)$
= 0.
∴ $(Tx,x) = 0$.

Given that T is an operator on h, for which (Tx,x)=0, $\forall x \in H$.

To prove: T is zero operator on H.

If α,β be any 2 scalars and x,y are anu two vectors in H.

Then we have,

$$(T(\alpha x+\beta y), \alpha x+\beta y) = (\alpha Tx +\beta Ty, \alpha x+\beta y)$$

$$= (\alpha \operatorname{Tx}, \alpha x) + (\alpha \operatorname{Tx}, \beta y) + (\beta \operatorname{Ty}, \alpha \operatorname{Tx}) + (\beta \operatorname{Ty}, \beta y)$$

$$= \left| \alpha \right|^2 (Tx,x) + \alpha \overline{\beta}(Tx,y) + \overline{\beta} \overline{\alpha}(Ty,x) + \left| \beta \right|^2 (Ty,y)$$

By hypothesis, $(Tx,x) = 0 \quad \forall x \in H$.

$$\alpha\beta(Tx,y) + \beta\alpha(Ty,x) = 0 \dots (1)$$

Put $\alpha = 1$, $\beta = 1$ in (1) we have,

$$(Tx,y) + (Ty,x) = 0.$$
(2)

Put $\alpha = i$, $\beta = 1$ in (1) we have,

$$i(Tx,y) - i(Ty,x) = 0.$$
(3)

(2) x i, we get

$$i(Tx,y) + i(Ty,x) = 0$$
(4)

$$(3) + (4)$$

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

$$2i(Tx,y) = 0 \forall x, y \in H.$$

$$(Tx,y) = 0 \ \forall \ x, y \in H.$$

$$\therefore T=0$$

.. T is a zero operator on H.

Hence the proof.

Theorem:

An operator T on a Hilbert space H is self adjoint if (Tx,x) is real $\forall x$.

Proof:

Let T be self adjoint then $T = T^*$.

To prove:

(Tx,x) is real.

Now,
$$(Tx,x) = (x,T*x)$$

= (x,Tx)

$$(Tx,x) = (Tx,x)$$

 \therefore (Tx,x) is real.

Conversely, Let (Tx,x) is real $\forall x$

To prove: T on H is self adjoint.

$$(Tx,x) = (Tx,x)$$

$$=(x,T*x)$$

$$=(T*x,x)$$

$$(Tx,x)$$
- $(T^*x,x) = 0 \forall x \in H.$

$$((T-T^*)x,x)=0$$

$$T-T* = 0$$

$$T=T*$$

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

T on H is self adjoint.

Hence the proof.

Normal Operator:

An operator N on H is said to be normal if it commutes with its adjoint.

i.e., NN*=N*N

Remark:

Every self adjoint operator is normal. Since T is self adjoint then $T=T^*$, we have $TT^*=T^*T$ is true so that T is normal.

Theorem:

The set of all normal operators on H is a closed subset of B(H) which contains the set of all self adjoint operators and is closed under scalar multiplication.

Proof:

Let M be the set of all normal operators on ahilbert space H.

To prove: H is a closed subspace of B(H).

Let N be a limit point of M. We have to show that $N \in M$. Since N is a limit point of msuch that a sequence $\{N_k\}$ of disjoint points of M such that $N_k \to N$ as $K \to \infty$

Consider,

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

Hence $|| NN^*-N^*N|| = 0$

- \Rightarrow NN*=N*N and so N \in M.
- \Rightarrow M is a closed subset of B(H). we know that every self adjoint operator is normal.
- \therefore M is closed subset of B(H) which contains the set of all self adjoint operators.

To prove: H is closed under scalar multiplication.

i.e., If α is a scalar & $N \in M$.then $\alpha N \in H$.

$$(\alpha N)(\alpha N)^* = (\alpha N)(\overline{\alpha} N^*) = (\overline{\alpha} \alpha)(NN^*)$$

$$(\alpha N)^*(\alpha N) = (\overline{\alpha} N^*)(\alpha N) = (\overline{\alpha} \alpha)(N^*N)$$

Since, N is normal we get,

$$(\alpha N)(\alpha N)^* = (\alpha N)^* (\alpha N)$$

This proofs if N is normal, (αN) is also normal

for any scalar.

Hence M is closed under scalar multiplication.

Hence the proof.

Theorem:

If N_1 and N_2 are normal operators on H with the property that either commutates with the adjoint of the otl $i)N_1 + N_2$

ii) N₁ and N₂ are normal

Proof:

Given that $N_1 \& N_2$ are normal operators.

$$: N_1 N_1^* = N_1^* N_1$$
 and

$$N_2 N_2 * = N_2 * N_2$$

$$N_1 N_2^* = N_2^* N_1$$
 And $N_1^* N_2 = N_2 N_1^*$

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

$$\begin{split} i)(N_1 + N_2) & (N_1 + N_2)^* \\ &= N_1 N_1^* + N_2 N_1^* + N_1 N_2^* + N_2 N_2^* \\ &= N_1^* (N_1 + N_2) + N_2^* (N_1 + N_2) \\ &= (N_1 + N_2)^* (N_1 + N_2) \end{split}$$

 \Rightarrow (N₁ +N₂) is normal.

$$\begin{split} ii) \; (N_1N_2)(N_1N_2) \; * &= (N_1N_2)(N_2*N_1*) \\ &= N_1(N_2N_2*) \; N_1* \\ &= (N_2 \; *N_1*)(N_1 \; N_2) \\ &= (N_1N_2)*(N_1N_2) \end{split}$$

 \Rightarrow (N₁N₂) is normal

Hence the proof.

Theorem:

An operator T on H is normal iff $||T^*x|| = ||Tx|| \forall x$.

Proof.:

$$\parallel T^* \ x \parallel = \parallel Tx \parallel \ \Leftrightarrow \parallel T^* \ x \parallel^2 = \parallel Tx \parallel^2$$

$$\Leftrightarrow$$
 (T* x, T*x) =(Tx,Tx)

$$\Leftrightarrow$$
 (TT*x,x) = (T*Tx,x)

$$\Leftrightarrow$$
 ((TT* - TT*)x,x) =0

$$\Leftrightarrow$$
 TT* - TT* =0

$$\Leftrightarrow$$
 TT* = TT*

Hence the proof.

Theorem:

If N is a normal operator on H, then $||N^2|| = ||N||^2$.

Proof:

We have
$$||Tx|| = ||T^*x|| \forall x$$

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

Replace T by N & Nx in place of x. we have,

$$|| N(Nx) || = || N*(Nx) ||$$

$$\Rightarrow || \mathbf{N}^2 \mathbf{x} || = || \mathbf{N} * \mathbf{N} \mathbf{x} || \quad \forall \mathbf{x}.$$

Now,
$$|| N^2 || = \sup\{ || N^2 x || : || x || \le 1 \}$$

= $\sup\{ || N^* N x || : || x || \le 1 \}$
= $|| N^* N ||$

But we know

$$|| T^* T ||^2 = || T ||^2$$

Hence
$$||N^2|| = ||N||^2$$
.

Hence the proof.

Theorem:

If T is an operator on H, then T is normal iff its real and imaginary parts commutes.

Proof:

Claim: T is normal if AB=BA.

If A& B are the real and imaginary parts of T, so that T = A + iB and $T^* = A - iB$.

Then,
$$TT^* = (A+iB) (A-iB)$$

$$= A^2 + B^2 + i(BA - AB) \dots (1)$$

$$T*T = (A-iB) (A+iB)$$

$$= A^2 + B^2 + i(AB - BA) \dots (2)$$

Suppose AB=BA then from (1) & (2). We have

$$TT^* = T^*T \implies T$$
 is normal.

Conversely , suppose that $\ T$ is normal then

$$TT* = T*T$$

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

From (1) & (2) we have

$$A^2 + B^2 + i(BA - AB) = A^2 + B^2 + i(AB - BA)$$

$$\Rightarrow$$
 BA-AB = AB-BA

$$\Rightarrow$$
2 BA = 2 AB

$$\Rightarrow$$
 AB= BA.

Hence the proof.

Definition:

Let A_1,A_2 be two self adjoint operators. We say that $A_1 \le A_2$ if $(A_1x, x) \le (A_2x,x)$ $\forall x$.

Theorem:

The real banach space of all self adjoint operators on a Hilbert space H is a partially ordered set whose linear structure and order structure are related by the following properties.

i. If $A_1 \le A_2$ then $A_1 + A \le A_2 + A$ for every $A \in S$.

ii.If $A_1 \le A_2$ and $\alpha \ge 0$ then $\alpha A_1 \le \alpha A_2$.

Proof:

Let S be the set of all self adjoint operators on H. If $A \in S$ Then (Ax,x)

i.e.,
$$(Ax,x) = (Ax,x)$$
 $\therefore A \leq A$.

Hence" ≤ " is reflexive.

Suppose $A_1 \le A_2$ and $A_2 \le A_3$

Then $(A_1x,x) \le (A_2x,x)$ & $(A_2x,x) \le (A_3x,x) \forall x \in H$.

$$\Rightarrow$$
 $(A_1x,x) \leq (A_3x,x)$

$$\Rightarrow A_1 \leq A_3$$

Hence "≤" is transitive.

Suppose if $A_1 \le A_2$ and $A_2 \le A_1$. Then

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

$$(A_1x,x) \le (A_2 x,x)$$
 & $(A_2 x,x) \le (A_1 x,x)$

$$\Rightarrow$$
 (A₁x,x) = (A₂x,x)

$$\Rightarrow$$
 (($A_1 - A_2$) x,x) =0

$$\Rightarrow$$
 A₁ -A₂ =0.

$$\Rightarrow A_1 = A_2$$
.

Hence "≤" is antisymmetric.

So \leq is a partially ordered set in S.

i) Suppose $A_1 \le A_2$ Then $(A_1x,x) \le (A_2x,x)$.

Hence $(A_1x,x) + (Ax,x) \le (A_2x,x) + (Ax,x)$.

$$\Rightarrow$$
 (($A_1 + A$) x,x) \leq (($A_2 + A$) x,x)

$$\Rightarrow$$
 A₁+A \leq A₂+A for every A \in S.

ii) Given $A_1 \leq A_2$ and $\alpha \geq 0$

then
$$(A_1x,x) \leq (A_2x,x)$$

$$\Rightarrow \alpha(A_1x,x) \leq \alpha(A_2x,x) \ \forall \ x \in H.$$

$$\Rightarrow$$
 ($(\alpha A_1)x,x$) \leq ($(\alpha A_2)x,x$)

$$\Rightarrow \alpha A_1 \leq \alpha A_2$$
.

Hence the proof.

Positive operator:

The self adjoint operator "A" is said to be positive if $A \ge 0$ i.e., $(Ax,x) \ge 0 \ \forall \ x \in H$.

Theorem:

If A is a positive operator on H then If A is non-singular. In particular $I+T^*T$ and $I+TT^*$ are non-singular operator T on H .

Proof:

To prove that I+A is non – singular. We have to show that I+A is 1 to 1, onto mapping of H into it

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

I+A is 1 to 1. First we show that (I+A) $x=0 \Rightarrow x=0$.

We have $(I+A) x=0 \Rightarrow x+Ax=0$.

$$Ax = -x$$

$$\Rightarrow (Ax,x) = (-x,x) = - ||x||^2.$$

Since A is a positive operator.

i.e., $(Ax, x) \ge 0$. Hence given - $||x||^2 \ge 0$.which cannot be unless ||x|| = 0.

This proves that x = 0.

Thus $(I+A)x = 0 \Rightarrow x=0$.

Now
$$(I+A)$$
 $x = (I+A)$ $y \Rightarrow (I+A)$ $(x-y) = 0$

$$\Rightarrow$$
 x-y =0

$$\Rightarrow x = y$$
.

Hence I+A is 1 to 1.

Now, we show that I+A is into.If M is the range of I+A then I+A is onto if M=H.

For every vector $x \in H$. We have

$$\| (I+A) x \|^2 = \| x + Ax \|^2 = (x + Ax, x + Ax)$$

$$= (x,x) + (x,Ax) + (Ax,x) + (Ax,Ax)$$

$$= \| x \|^2 + (Ax,x) + (Ax,x) + \| Ax \|^2$$

$$= \| x \|^2 + 2(Ax,x) + \| Ax \|^2 \ge \| x \|^2$$

Thus $||x|| \le ||(I+A)x|| \forall x \in H$(1)

Let $\{(I+A)x_n\}$ be a Cauchy sequence in M.

$$\parallel$$
 (I+A) $x_n -$ (I+A) $x_m \parallel \rightarrow 0$ as $m,n \rightarrow \infty$.

$$\Rightarrow$$
 (I+A) $x_n \rightarrow$ (I+A) x .

& (I+A) $x \in M$. Thus every Cauchy sequence $\{(I+A)x_n\}$ in M coverges to $\{(I+A)x\}$ in M.

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

... M is complete. But every complete subspace is closed. Hence M is closed.

Now M is a proper closed subspace of H. Then by an earlier theorem there exist a nonzero vector $\mathbf{x}_0 \in \mathbf{x}_0 \perp \mathbf{M}$.

Now $\{(I+A)x_0\}$ is in M & $x_0 \perp M$.

 \Rightarrow (x_0 ,($(I+A)x_0$) =0

 \Rightarrow (x_0 , x_0) +(x_0 , Ax_0) =0

 \Rightarrow (Ax₀, x₀) = -(x₀, x₀)(2)

Since A is a positive operator.

 $(Ax_0\ ,\, x_0\)\geq 0.$ so(2) gives - $\parallel x_0\parallel^2\geq 0$ which implies $\parallel x_0\parallel^2\leq 0$, which cannot be unless $\parallel x_0\parallel^2=0.$ so that $x_0=0.$

Contradicting the fact that x_0 is anon zero vector.

 \therefore M= H.

 \Rightarrow (I+A) H= H

 \Rightarrow (I+A) is onto.

Hence I+A is non singular.

If T is any operator in B(H). We notice that T^*T and TT^* Are both positive operators . Then by the first part of the Theorem it follows that

I+ T*T and I+TT* are both Non singular.

Hence the proof.

Unitary operators:

An operator U on H is said to be unitary if $UU^*=U^*U=I$.

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

If T is an operator on Hilbert space H, then the following conditions are equivalent to one another.

i.
$$T*T = I$$

ii.
$$(Tx,Ty) = (x,y) \ \forall x,y \in H$$
.

iii.||
$$Tx \parallel = \parallel x \parallel \forall x$$
.

Proof:

Let T*T = I. Thus for any $x, y \in H$.

$$(Tx,Ty) = (x, T*Ty)$$

$$=(x,Iy)$$

$$=(x, y)$$

$$(ii) \Rightarrow (iii)$$

Suppose
$$(Tx, Ty) = (x,y) \quad \forall x,y \in H.$$

In particular if we take y = x.

We have (Tx,Tx) = (x,x)

$$\Rightarrow || T x ||^2 = || x ||^2$$

$$\Rightarrow || T x || = || x ||$$

$$(iii) \Rightarrow (i)$$

Let
$$||Tx|| = ||x|| \forall x$$

$$\Rightarrow || T x ||^2 = || x ||^2$$

$$\Rightarrow$$
 (Tx, Tx) = (x,x)

$$\Rightarrow$$
 (T*Tx, x) =(x,x)

$$\Rightarrow$$
 ((T* T –I) x,x) =0

$$\Rightarrow$$
 T* T –I =0

$$\Rightarrow$$
 T*T =I

Hence the proof.

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

Theorem:

An operator on Hilbert space H is unitary iff T is unitary. It is an isometric isomorphism of H onto itself.

Proof:

Let T be an unitary operator then $TT^* = T^*T = I$.

Which implies that the mapping T is onto. Since $T^*T = I$. It follows from the previous theorem that

Thus T is 1 to 1, onto and preserves norm.

∴T is an isometric isomorphism of H onto itself.

Conversely, if T is an isometric isomorphism then

 $||Tx|| = ||x|| \forall x. \Rightarrow T*T = I$ by the previous theorem and it is given that T is an isomorphism.

∴ T⁻¹ exist. Hence T*T=I

$$\Rightarrow$$
 (T*T) T⁻¹ = I T⁻¹ = T⁻¹

$$\Rightarrow$$
 T* = T⁻¹.

Using this we can easily by premultiplying and post multiplying we have

$$TT* = T*T = I.$$

Which proves that T is unitary.

Hence the proof.

Projections:

A projection on abanach space B is an idempotent operator and which is continuous. T: B \rightarrow B projection if $T^2 = T$ and T is continuous.

If P is a projection on a banach space and if M & N are the range and the null space of P then M closed linear subspaces of B such that $B = M \oplus N$.

M is the range of P. M= $\{ P(x) : x \in B \} = \{ x : p(x) = x \}$ & N is the null space of P. N= $\{ x / P(x) = 0 \}$.

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

Projections on a Hilbert space:

NOTES

A projection P on a hilbert space H is said to perpendicular projection on H. If the range M and the nullspace N of P are orthogonal.

Theorem:

If P is a projection on Hilbert space H, with range M and null space N, then $M \perp N$ \Leftrightarrow P is self adjoint and in this case $N = M^{\perp}$.

Proof:

Suppose P is a projection on a hilbert space H with range M and nullspace N.

Then $H = M \oplus N$.

First we show that if $M \perp N$ then P is self adjoint.

Let Z be any vector in H, then z can be uniquely written as Z = x+y where $x \in M$ and $y \in N$.

We have, (Pz, z) = (x,z)

$$= (x,x+y)$$

= $(x, x) + (x,y)$
= (x,x)

Also,
$$(P^* z,z) = (z, Pz) = (z,x)$$

= $(x+y, x)$
= $(x,x) + (y,x)$
= (x,x)

$$\therefore (Pz,z) = (P*z,z) \quad \forall \ z \in H.$$

$$\Rightarrow$$
 ((P-P*)z,z) =0 \Rightarrow P- P* =0 \Rightarrow P= P*

 \Rightarrow P is self adjoint.

Conversely if P is self adjoint. Let x be any vector in M and y be any vector in N.

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

Then,
$$(x,y) = (Px,y)$$

$$=(x,P*y)$$

$$=(x, Py)$$

$$=(x, 0)=0$$

 \Rightarrow M \perp N

Hence the proof.

Note:

An operator P on a Hilbert space H is a projection on H which satisfies the condition $P^2 = P \& P^* = P$.

Theorem:

If P is a projection on a closed linear subspace M of H iff I-P is the projection on M^{\perp} .

Proof:

Suppose P is the projection on H then $P^2 = P$ & $P^* = P$.

We have,

$$(I -P) * = I* -P* = I-P$$

&
$$(I-P)^2 = (I-P) (I-P)$$

= $(I-PI-PI+P^2)$
= $I-P-P+P$
= $I-P$

 \therefore (I –P) is the projection on H.

Now, we have to show that if M is the range of P then M^{\perp} is the range of I –P. Let N be the range of I-P .

Then
$$x \in N \Rightarrow (I - P) x = x \Rightarrow x - Px = x$$

$$\Rightarrow$$
 Px =0

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

 \Rightarrow x is the null space of P.

Again
$$x \in M^{\perp} \Rightarrow Px = 0 \Rightarrow x-Px = x$$

 $\Rightarrow (I-P) x = x$

 \Rightarrow x is the range of I-P.

- $\Rightarrow x \in N$
- $\Rightarrow M^{\perp} \subset N.$
- \Rightarrow Hence $M^{\perp} = N$.

Conversely, suppose I-P is the projection on M^\perp . Then by the 1 st part of the theorem , I –(I-P) .i.e., P is the projection on $(M^\perp)^\perp = M^{\perp \perp}$.

But M is closed \Rightarrow M^{\perp} =M.

.. P is the projection on M.

Hence the proof.

Definition:

Let T be an operator on H. A closed linear subspace M(H) is invariant under T, if $T(M) \subset M$.

If both M and M^{\perp} is invariant under T then T is said to be reduced by M or M reduces T.

Theorem:

A closed linear subspace M(H) is invariant under an operator T iff M^\perp is invariant under T^* .

Proof:

Let us assume that M is invariant under T. We have to show that M^{\perp} is invariant under T^* .

Let y be an arbitrary vector in M^{\perp} , $(y,x)=0 \ \forall \ x \in M.$ It is enough to show that T^* y $\in M^{\perp}$. This is clear since $(T^*y, x)=(y,Tx)=0$

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS
COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

Thus M^{\perp} is invariant under T^* .

Conversely, if M^{\perp} is invariant under T^* then $(M^{\perp})^{\perp}$ is invariant under $(T^*)^*$.

Since M is closed.

$$(M^{\perp})^{\perp} = M^{\perp \perp} = M.$$

And
$$(T^*)^* = T^{**} = T$$
.

Hence, M is invariant under T.

Hence the proof.

Theorem:

A closed linear subspace M(H) reduces an operator T iff M is invariant under both T and T*.

Proof:

If M reduces T then M and M^{\perp} are invariant under T. If M^{\perp} is invariant under T.

By the above theorem $(M^{\perp})^{\perp}$ is is invariant under T^* . i.e., M is invariant under T^* .

Conversely, If M is invariant under T^* then again by above theorem M^{\perp} is invariant under $(T^*)^* = T^{**} = T$.

It is given that M is invariant under T. Thus both M and M^{\perp} is invariant under T.

.: M reduces T.

Hence the proof.

Theorem:

If T is a projection on a closed linear subspace M of H, then M is invariant under an operator T \Leftrightarrow TP =

Proof:

If M is invariant under T and x is an arbitrary vector in Hthen to prove x is in M. So P(T Px) = TPx TP.

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

Conversely, if TP=PTP & x is a vector in M, then

Tx = T Px = PTPx is also in Mand so M is invariant under T.

Hence the proof.

Theorem:

If P is a projection on a closed linear subspace M of H , then M reduces an operator $T \Leftrightarrow TP = PT$.

Proof:

M reduces T iff M is invariant under T and T*.

Iff
$$TP = PTP \& T*P = PT*P$$

Iff
$$TP = PTP \& PT = (T*P)*$$

$$=(PT*P)*$$

$$= P* (T*)*P*$$

$$= PTP$$

iff TP =PT.

Hence the theorem.

Theorem:

If P and Q are the projections on a closed linear subspace M and N of H then $M \perp N$ iff PQ = 0 iff QP = 0.

Proof:

Since P and Q are the projections on a Hilbert space H. Therefore P*=P & Q* =Q.

First we observe that

$$PQ = 0 \Leftrightarrow (PQ)^* = 0^*$$
$$\Leftrightarrow Q^*P^* = 0^*$$
$$OP = 0$$

.. To prove the theorem it is sufficient to prove that

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

 $M \perp N \iff PQ = 0$. If $M \perp N$ so that $N \subseteq M^{\perp}$. then the fact that QZ is on N for

Every Z implies that P(QZ) = 0 so PQ=0.

Conversely, suppose that PQ=0 & $x \in M$, $y \in N$. Since M is the range of P then Px =x & N is the range of

Then Qy=y.

We've
$$(x,y) = (Px,Qy)$$

= $(x, P*Qy)$
= $(x, PQy) = (x,0y) = (x,0) = 0$

 \Rightarrow M \perp N =0.

Hence the proof.

Orthogonal:

Two projections P and Q on a hibert space H are said to be orthogonal if PQ =0.

Theorem:

If $P_1, P_2, \ldots P_n$ are the projections on a closed linear subspace $M_1, M_2, \ldots M_n$ of H then $P = P_1 + P_2 + \ldots$ projection iff the P_i 's are pairwise orthogonal (In the sense that $P_iP_j = 0$ whenever $i \neq j$) and in this case projection on $M = M_1 + M_2 + \ldots + M_n$.

Proof:

Given that P_1 P_2 P_n are the projection on H. Therefore $P_i^2 = P_i = P_i^*$ for each $i=1,2,\ldots,n$.

Suppose that $P_i P_j = 0$ whenever $i \neq j$. Then to prove that P is the projection on H.

$$\begin{split} P^* &= (P_1 + P_2 + \dots + P_n)^* \ = (P_1^* + P_2^* + \dots + P_n^*) \\ &= P_1 + P_2 \dots + P_n \\ &= P \end{split}$$

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

And
$$P^2 = P.P$$

$$= (P_1 + P_2 + \dots + P_n) (P_1 + P_2 + \dots + P_n)$$

$$= P_1^2 + P_2^2 + \dots + P_n^2$$

$$= (P_1 + P_2 + \dots + P_n) = P.$$

Thus, $P^*=P=P^2$. Therefore P is a projection on H. Suppose P is a projection on H. Then $P^2=P=P^*$. we have to prove that $P_i P_j=0$ whenever $i\neq j$.

Let x be a vector in the range of P_i so that P_i x = x.

Then
$$\| x \|^2 = \| P_i x \|^2 \le \sum_{j=1}^n \| P_j x \|^2$$

$$= \sum_{j=1}^n (P_j x, x)$$

$$= (P_1 x, x) + (P_2 x, x) + \dots + (P_n x, x)$$

$$= ((P_1 + P_2 + \dots + P_n) x, x)$$

$$= (P_1 x, x)$$

$$= (P_2 x, x)$$

$$= (P_3 x, x)$$

$$\therefore \text{ We have } \sum_{j=1}^{n} \|P_j x\|^2 = \|P_i x\|^2$$

$$\Rightarrow || P_j x ||^2 = 0$$
 whenever $j \neq i$.

$$\Rightarrow P_j \ x{=}0 \qquad \qquad \text{if } j{\neq} \ i.$$

 $\Rightarrow x \text{ is the null space of } P_j \quad \text{for} \quad j{\neq}i.$

Range space of P_i is contained in the null space of P_j for $j\neq i$.

$$M_i \subseteq M_j \, ^\perp \quad \text{for } j {\neq} i.$$

i.e., $M_i \perp M_j$ for every $j \neq i$.

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

Then by the previous theorem we have P_i $P_j = 0$. i.e., P_i 's are pair wise orthogonal.

Finally, we have to show that P is the projection on M. i.e., Range space of P is M.

Let x be a vector in the range space of P then

$$x = Px = (P_1 + P_2 + \dots + P_n) x \in (M_1 + M_2 + \dots + M_n)$$

= M

 \therefore Range of $P \subseteq M$.

Conversely, since ||Px|| = ||x|| for every x in M_i , each M_i is contained in the range of P.

 \therefore M= M₁ + M₂++M_n is also contained in the range of P.

Hence M = R(P).

Hence the proof.

POSSIBLE QUESTIONS

- i) Prove that the self adjoint operators in B(H) form a closed real linear subspace of B(H) and Therefore a real Banach space which contains the identity transformation.
 ii)Prove that if A₁& A₂ are self adjoint operator on H then their product A₁ A₂ is self adjointiff A₁ A₂= A₂A₁.
- 2. i) Prove that an operator T on a Hilbert space H is self adjoint if (Tx,x) is real $\forall x$. ii) If N_1 and N_2 are normed operators on H with the property that either with the adjoint of the other than N_1+N_2 and N_1N_2 are normal
- 3. Prove that if A is a positive operator on H then I+A is non-singular. In particular I+T*T and I+TT* are non-singular for any arbitrary operator T on H .
- 4. Prove that if $P_1, P_2, \ldots P_n$ are the projections on a closed linear subspace $M_1, M_2, \ldots M_n$ of H then $P=P_1+P_2+\ldots+P_n$ is a projection iff the P_i 's are pairwise orthogonal(in the sense that $P_iP_j=0$ whenever $i\neq j$) and in this case P is the projection on $M=M_1+M_2+\ldots+M_n$.
- 5. Prove that the real Banach space of all self adjoint operators on a Hilbert space H is a Partially ordered set whose linear structure and order structure are related by the following properties.
 - i) If $A_1 \le A_2$ then $A_1 + A \le A_2 + A$ for every $A \in B(H)$.
 - ii) If $A_1 \le A_2$ and $\alpha \ge 0$ then $\alpha A_1 \le \alpha A_2$.
- 6. i) Prove that an operator on Hilbert space H is unitary iff T is unitary. It is an isometric isomorphism of H onto itself .

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS
COURSE CODE: 17MMP301 UNIT: IV BATCH-2017-2019

- ii) Prove that P is a projection on a closed linear subspace M of H iff I-P is the projection on M^{\perp} .
- 7. If P is a projection on Hilbert space H with range M and null space N , then $M \perp N \leftrightarrow P$ is self adjoint. In this case $N = M^{\perp}$
- 8. i) If P is a projection on a closed linear subspace M of H, then M is invariant under T iff TP = PTP
 - ii) If P is a projection on a closed linear subspace M(H), then M reduces to an operator T iff TP = PT.
- 9. Prove that the set of all normal operators on H is a closed subset of B(H) which contains the set of all self adjoint operators and is closed under scalar multiplication.
- i)Prove that a closed linear subspace M(H) is invariant under T iffM[⊥] is invariant under T*.
 ii)Prove that a closed linear subspace M(H) reduces an operator T iff
 M is invariant under T and T*.

(Deemed to be University)
(Established Under Section 3 of UGC Act 1956)
Pollachi Main Road, Eachanari (Po),
Coimbatore –641 021
Subject: FUNCTIONAL ANALYSIS

Class : II - M.Sc. Mathematics

Unit IV

Part A (20x1=20 Marks) (Question Nos. 1

rait A (20x1–20 Marks)				,	Question Nos. 1
	Possible Ques				
Question	Choice 1	Choice 2	Choice 3	Choice 4	Answer
The null space of any continuous linear transformation is	closed	open	open subset	open set	closed
Let $M = \{x / f(x) = 0\}$ then M is the of f.	range	linear	nullspace	open subset	nullspace
Let the adjoint of T denoted by on H.	H	H**	H*	T*	T*
The adjoint of an operator is $(Tx,y) = \dots$	(Tx,y)	(x,T*y)	(T*x,y)	(Tx,Ty)	(x,T*y)
The adjoint of operator T to T* on B(H) is (aT)*	a(T)*	Conjugate of a	T1*+a	Т*	Conjugate of a
=	a(1)**	(T)*	11"+a	1 "	(T)*
The adjoint of operator T to T^* on $B(H)$ is $T^{**} =$	a(T)*	T1+T2*	T	T*	T
The adjoint of operator T to T* on B(H) is $\ T\ = \dots$	T *	T*	T*	T	T*
The adjoint of operator T to T* on B(H) is	T *	T*	T*	$\ T\ ^2$	$ T ^2$
If $T = T^*$ then 0 and I are operators	adjoint	commutate	self adjoint	symmetric	self adjoint
If T is an arbitrary operator on a hilbert space H then T=0 iff	(Tx,y)	(x,T*y)	(T*x,y)	(Tx,y)=0	(Tx,y)=0
If T is an arbitrary operator on a hilbert space H then (Tx,x)=0) _{T-1}	т-0	т_т*	т. т.,	т о
iff	T=1	T=0	T=T*	T=Tx	T=0
The adjoint operator 0*=	6	2	0	1	0
The adjoint operator 1*=	6	2	0	1	1
If A is a positive operator on a H then I+A is	singular	nonsingular	commutate	self adjoint	nonsingular
I+T*T are for any arbitrary oprator on T on H.	singular	nonsingular	commutate	self adjoint	nonsingular
The self adjoint operator A is said to be positive if	(Ax,x)=0	$(Ax,x) \ge 0$	(A*x,y)	(Ax,y)=0	$(Ax,x) \ge 0$
Every complete subspace of a complete space is	closed	open	open subset	open set	closed
An operator N on H is said to be if it commutes with its adjoint.	complete	closed	normal	open	normal
An operator N on H is said to be normal If it with its adjoint.	singular	nonsingular	commutes	self adjoint	commutes
The normal operator is NN*=	N*	nonsingular	N	N*N	N*N
Every operator is normal	adjoint	commutate	self adjoint	symmetric	self adjoint
An operator T on H is Iff $ T^*x = Tx $	complete	closed	normal	open	normal
If T is an operator on H then T is normal iff its real and imaginary parts	singular	nonsingular	commutes	self adjoint	commutes
An operator U on H is said to be If $UU^*=U^*U=I$	complete	closed	normal	unitary	unitary
An operator U on H is said to be unitary If	UU*= U*U= I	U*U=0	U=1	U=0	UU*= U*U= I
Every unitary opeartor is a operator	complete	closed	normal	unitary	normal
operators are precisely nonsingular operators.	complete	closed	normal	unitary	unitary
Unitary operator inverse equals theirs	adjoint	commutate	self adjoint	symmetric	adjoint
Unitary operators are precisely operators.	singular	nonsingular	commutes	self adjoint	nonsingular
A closed linear subsapce M(H) is under T if T(M) Í	0	commutate	self adjoint	idempotent	invariant
Two projectionP and Q on ahilbert space H are said to	mvariam	Commutate	sen aujonit	idempotent	mvariam
be if PQ=0	invariant	commutate	orthogonal	idempotent	orthogonal
If P is a on a closed linear subspace M of H then					
M reduces an	projection	commutate	self adjoint	idempotent	projection
operator T iff TP=PT	projection	Commutate	son aajonn	.acmpotent	Projection
operator i in ii =i i					

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: V BATCH-2017-2019

UNIT V SPECTRAL THEORY

SYLLABUS

Banach algebras: The definition and some examples of Banach algebra – Regular and singular elements – Topological divisors of zero – The spectrum – The formula for the spectral radius.

Finite dimensional spectral theory:

If T is an operator on a Hilbert space H, then the simplest thing T can do to a vector is to transform it into a scalar multiple of itself.

$$Tx = \lambda x \dots (1)$$

A non zero vector x is such that eq(1) for some scalar λ is called an eigen vector of T and for some nonzero x is called an eigen value of T. The expression (2) is called spectral resolution of T.

$$T=\lambda_1P_1+\lambda_2P_2+\ldots+\lambda mPm\ldots$$
 (2)

$$T^* = \lambda_1 P_1 + \lambda_2 P_2 + \dots + \lambda m P m.$$

$$T*T = |\lambda_1|^2 P_1 + |\lambda_2|^2 P_2 + \dots + |\lambda m|^2 Pm.$$

Matrices:

Let $B=\{e_1,e_2,\ldots,e_n\}$ be an ordered basis for H, so that each vector in H is uniquely expressed as alinear combination of the ei's. If T is an operator on H, then for each ej, we have

n
Tej=
$$\Sigma \alpha i j$$
 ej .

i=1

$$[T] = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \dots & \dots & \dots & \dots \end{bmatrix} = [\alpha ij]$$

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: V BATCH-2017-2019

$$\alpha_{n1} \quad \alpha_{n2} \quad \dots \dots \alpha_{nn}$$

The Spectral theorem:

Let T be an arbitrary operator on H.The distinct Eigen value of T forms a nonempty finite set of complex numbers. Let $\lambda_1, \lambda_2, \ldots, \lambda_m$ be the eigen values.Let M_1, M_2, \ldots, M_m be their corresponding eigen spaces. Let P_1, P_2, \ldots, P_m be the projection on these eigen spaces.

- i) The Mi's are pairwise orthogonal and span H.
- ii) The Pi's are pairwise orthogonal,

Theorem:

If T is normal then x is an eigen vector of T with eigen

value λ iff x is an eigen vector of T* with eigen value λ .

Proof:

Since T is normal, then the operator T- λ I is also normal for every scalar λ .

Then we have,

$$\parallel Tx - \lambda x \parallel = \parallel T*x - \lambda x \parallel.$$

Hence the proof.

Theorem:

If T is normal then the Mi's are pairwise orthogonal.

Proof:

Let x_i and x_j be vectors in M_i and M_j for $i \neq j$, so that $Tx_i = \lambda_i \ x_i$ and $Tx_j = \lambda_j \ x_j$. The preceding theorem shows that

$$\begin{array}{lll} \lambda_{i} \left(x_{i} \, , \, x_{j} \, \right) \; = \left(\lambda_{i} \, x_{i} \, , \, x_{j} \, \right) \; = \left(T \, x_{i} \, , \, x_{j} \, \right) \\ & = \; \left(x_{i} \, , \, T^{*} x_{j} \, \right) \; = \left(x_{i} \, , \, \lambda_{j} \, x_{j} \, \right) \\ & = \lambda_{i} \; \left(x_{i} \, , \, x_{j} \, \right). \end{array}$$

& since $\lambda_i \neq \lambda_j$, it is clear that we have $(x_i, x_j) = 0$.

Next we say that Mi's span H when T is normal. Hence the proof.

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: V BATCH-2017-2019

Theorem:

If T is normal then each Mi reduces T.

Proof:

Each Mi is invariant under T. It is enough to show that Mi is also invariant under T*.

As we know If x_i is a vector in Mi, so that

 $Tx_i = \lambda_i \ x_I$, then $T^* \ x_i = \lambda_i \ x_i$. Finally we can say that M_i reduces T.

Hence the proof.

Theorem:

If T is normal then the Mi's span H.

Proof:

The Mi's are pair wise orthogonal.

We know that $M = M_1 + M_2 + \dots + M_m$ is a closed linear subspace of H and that its associated projection is $P = P_1 + P_2 + \dots + P_m$

Since each Mi reduces T . we see that $T P_i = P_i T \quad \forall \ P_i$. It follows from the fact that TP = PT, so M reduces T.

Consequently M^{\perp} is invariant under T. If

 $M^{\perp} \neq \{0\}$ then since all the eigen vector of T are contained in M, the restriction of T to M^{\perp} is an operator on a nontrivial finite dimensional Hilbert space which has no eigen vectors and hence no eigen values.

It means that $M^{\perp} \neq \{0\}$ and so M= H and the Mi's span H.

Hence the proof.

Banach algebras:

A banach algebra is a complex banach space which is also an algebra with identity 1 and which

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: V BATCH-2017-2019

structure is related to the norm by the following condition.

i)
$$||xy|| \le ||x|| ||y||$$

Example

The set of all complex numbers is a Banach algebra.

Notation:

Let A be a banach algebra .we denote the set of all regular elements in A by G and its compliment the set of singular elements is denoted by S. Clearly, the identity element in A is invertible and so $I \in G$.

Theorem:

Every element x for which $\|x-1\| < 1$ is regular and the inverse of such an element is given by the formula

$$x^{-1} = 1 + \sum_{n=1}^{\infty} (1 - x)^n$$

Proof:

Put
$$r = ||x - 1||$$
 so that $r < 1$.

Consider,

$$\|(1-x)^n\| = \|(1-x)(1-x).....(1-x)\|$$

 $\leq \|(1-x)\| \|(1-x)\|.....\| (1-x)\|$
 $\leq \|(1-x)\|^n = r^n$

consider , next
$$\begin{array}{ccc} \infty & n \\ \Sigma \; (1-x\;)^n \; , \; then \; \; S_n = & \Sigma \; (1-x\;)^k \\ n = 1 & k = 1 \end{array}$$

Then for n>m,

Since Σ r^n is convergent then there exist an integer such that $\parallel S_n$ - $S \parallel$ < $\epsilon \forall n,m \ge N$.

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: V BATCH-2017-2019

 $\{S_n\}$ is a Cauchy sequence in A. But A is complete. This partial sum converges to an element of A. we denote this by

$$\Sigma (1-x)^{n}.$$

$$n=1$$

If we define y by
$$y = 1 + \sum_{n=1}^{\infty} (1 - x)^n$$
(1)

Then the joint continuity of multiplication in A such that,

$$y-xy = y(1-x) = (1-x)(1+ \Sigma (1-x)^n) = \Sigma (1-x)^n = (y-1)$$

Then x has an inverse in A and so x is regular. The inverse of x is given by (1)

Hence the proof.

Theorem:

G is an open set and therefore S is a closed set.

Proof:

Let x_0 be an element in G and x is any other element in A so that

$$\| \mathbf{x} - \mathbf{x}_0 \| < 1 / \| \mathbf{x}_0^{-1} \|$$

Note that $x_0 \neq 0$. Now,

$$\| x_0^{-1}x - 1 \| = \| x_0^{-1}x - x_0^{-1}x_0 \| = \| x_0^{-1} (x - x_0) \|$$

$$\leq \| x_0^{-1} \| \| (x - x_0) \|$$

$$< \| x_0^{-1} \| .1 / \| x_0^{-1} \| = 1.$$

i.e., $\parallel x_0^{-1}x-1\parallel <1$. Since $x=x_0(x_0^{-1}\ x)$. It follows that x is also in G. So G is open. Then S=A-G, where S is the set of all singular elements. Since G is open in A. Then its complement S is closed in A.

Hence the proof.

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: V BATCH-2017-2019

Theorem:

The mapping $x \rightarrow x^{-1}$ of G into G is continuous and its therefore a homeomorphism of G onto itself.

Proof:

Clearly, the maspping $x \rightarrow x^{-1}$ is 1 to 1 and onto from G into itself. Let x_0 be an element of G, and x be another element of G such that,

$$\| x - x_0 \| < 1/2 \| x_0^{-1} \|$$

Note that $x_0 \neq 0$. Now,

i.e.,
$$||x_0^{-1}x - 1|| < 1$$
.

By the theorem $x_0^{-1} x \in G$ and

$$(x_0^{-1} x)^{-1} = 1 + \sum (1 - x_0^{-1} x)^n$$

$$x^{-1} x_0 = 1 + \sum (1 - x_0^{-1} x)^n$$

Now,
$$\| x^{-1} - x_0^{-1} \| = \| x^{-1}x_0x^{-1} - x_0^{-1} \|$$

$$\leq \| x_0^{-1} \| \| (x^{-1}x_0 - 1) \|$$

$$\leq \| x_0^{-1} \| \| \Sigma (1 - x_0^{-1}x)^n \|$$

$$\leq \| x_0^{-1} \| \Sigma \| (1 - x_0^{-1}x) \|^n$$

$$= \| x_0^{-1} \| 2 \| 1 - x_0^{-1}x \|$$

$$= \| x_0^{-1} \| 2 \| x_0^{-1} \| \| x - x_0 \|$$

Hence when $x{\rightarrow}\ x_0$, $\parallel x^{\text{-}1}{-}\ x_0^{\text{-}1}\ \parallel {\rightarrow}\ 0.$

 \Rightarrow x⁻¹ \rightarrow x₀⁻¹ .i.e., The mapping is continuous . also the inverse mapping is continuous.

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: V BATCH-2017-2019

It is a homeomorphism of G onto Itself.

Hence the proof.

Topological divisors of Zero:

The element Z in abanach algebra A is called a topological divisors of zero.

If there exist a sequence $\{z_n\}$ in A such that $||z_n||=1$ and either $zz_n \to 0$ or $z_nz \to 0$.

Clearly, even divisor of zero is a topological divisor of zero. There exist $z' \rightarrow zz' = 0$.

Choose $z_n = z' / ||z'||$ such that $||z_n|| = 1$

and $zz_n=zz'/\parallel z'\parallel \to 0$. Hence z is a topological divisor of zero. We denote theset of all topological divisor of zero by z.

Theorem:

Z is a subset of S.

Proof:

Let z is in Z. Then there exist a sequence z_n such that $\parallel z_n \parallel = 1$ and $zz_n \to 0$. If z is in G then by joint continuity of multiplication we have,

$$\begin{aligned} z^{\text{-1}}(zz_n) &= (z^{\text{-1}}z)z_n \ \to 0 \\ \Rightarrow z_n &\to 0. \end{aligned}$$

Which contradicts the fact that $||z_n|| = 1$.

 $\therefore z_n \in S$.

 \therefore Z \subset S.

Hence the proof.

Theorem:

The boundary of S is a subset of Z.

Proof:

Since S is closed, its boundary consist of all points in S which are limits of convergent sequence in G.We show that if z is such a point (i.e.,) if $z \in S$ there exist $\{r_n\} \in G$ such that $r_n \to z$, then $z \in Z$.

Now,
$$(r_n^{-1} z - 1) = (r_n^{-1} z - r_n^{-1} r_n) = r_n^{-1} (z - r_n)$$

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: V BATCH-2017-2019

The sequence r_n^{-1} is unbounded. For otherwise if the sequence r_n^{-1} is bounded then there exist a number M such that $\| r_n^{-1} \| < M$. Also $r_n \to z \implies \| r_n - z \| < 1/M$.

$$\begin{array}{c} Now, \parallel r_{n}^{-1} \ z - 1 \parallel \, \leq \, \parallel r_{n}^{-1} \parallel \, \parallel \, \text{z-} \, r_{n} \ \parallel \, < M.(1/M) = 1. \\ Also, \, r_{n}^{-1} \ z \, \in \, G \ . \ thus \ z = r_{n} \ (r_{n}^{-1} \ z) \, \in \, G. \end{array}$$

This is a contradiction to the fact that $z \in S$. $\therefore \{ r_n^{-1} \}$ is unbounded. We can take $|| r_n^{-1} || \to \infty$ as $n \to \infty$.

Let
$$z_n = r_n^{\text{--}1}/ \parallel \ r_n^{\text{--}1} \parallel$$
 , then $\parallel z_n \parallel = 1$ and

$$\begin{split} zz_n &= z \; r_n^{\text{--}1} / \parallel \; r_n^{\text{--}1} \parallel = \left[1 \text{--} (1 \text{--} z \; r_n^{\text{--}1}) \; \right] / \parallel \; r_n^{\text{--}1} \parallel \\ \\ &= \left[1 + (z \text{---} r_n \;) r_n^{\text{--}1} \; \right] / \parallel \; r_n^{\text{--}1} \parallel \\ \\ &= 1 / \parallel \; r_n^{\text{--}1} \parallel + (\; z \text{---} r_n \;) \; z_n \to 0 \quad \text{as } r_n \; \to z \; \text{and} \end{split}$$

 $|| r_n^{-1} || \rightarrow \infty.$

So, $zz_n \to 0$ which means that z is a topological divisor of zero.i.e., $z \in Z$.

Hence the proof.

The Spectrum:

If H is a nontrivial Hilbert space then the spectrum of t is

 $\sigma(t) = \{\lambda \in c : T - \lambda \text{ I is singular } \}$ where T is an operator on H. If x is an element of an banach algebra A then the spectrum of x is given by

$$\sigma(x) = {\lambda : x - \lambda \text{ I is singular }}.$$
 We write $\sigma(x)$ as $\sigma_A(x)$.

Theorem:

For every element x in a banach algebra A, $\sigma(x)$ is non-empty and compact.

Proof:

Consider the function $\phi: C \to A$ defined by $\lambda \to x$ - λ I. this function is continuous. Also, S is closed in A.

- ⇒ The inverse image of closed set is closed if the function is continuous.
- $\Rightarrow \{\lambda \in \mathbb{C}: T \lambda \text{ I is singular } \} \text{ is closed.}$
- $\Rightarrow \sigma(x)$ is closed.

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: V BATCH-2017-2019

To prove $\sigma(x)$ is bounded:

Claim:

If
$$\lambda \in \sigma(x)$$
 then $\lambda \leq ||x||$.

If the claim is proved then $\sigma(x)$ is bounded .Suppose $\lambda \in C$ such that $|\lambda| > ||x||$

Then,
$$\| x / \lambda \| < 1$$
.

 \Rightarrow (1-(x/ λ)) is regular, λ (1-(x/ λ)) is regular, λ I – x is regular $\lambda \notin \sigma(x)$. Hence the claim is proved. Since $\sigma(x)$ is closed and bounded, $\sigma(x)$ is compact.

To prove $\sigma(x)$ is non-empty:

 $\sigma(x)$ is a subset of C. The compliment of $\sigma(x)$ is $c-\sigma(x)=\rho(x)$ is called the resolvement of x. Since $\sigma(x)$ is closed, $\rho(x)$ is an open subset of the complex plane and it contains the set $\{Z: |Z| > ||x||\}$.

Suppose
$$\lambda \in \rho(x) \Rightarrow \lambda \notin \sigma(x)$$
.
 $\Rightarrow x - \lambda I$ is regular
 $\Rightarrow (x - \lambda I)^{-1}$ exists.

Define the resolvement of x is the function $\rho(x) \to A$ given by $x(\lambda) = (x - \lambda I)^{-1}$.

This is a continouous function .Also,

$$x(\lambda) = \lambda^{-1}(x/\lambda - 1)^{-1}, \lambda \neq 0.$$

$$\Rightarrow$$
 x(λ) \rightarrow 0 as $\lambda \rightarrow \infty$.

If λ and μ are both in ρ (x). then, $x(\lambda) = x(\lambda)(x-\mu I)(x-\mu I)^{-1}$

$$\therefore x(\lambda) - x(\mu) = (\lambda - \mu) . x(\lambda) . x(\mu)$$

This relation is called the resolvement equation . Let f be functional on A. i.e., $f \in \text{conjugate}$ space A^* .

Define
$$f(\lambda) = f(x(\lambda))$$
, $x \in A$, $\lambda \in \rho(x)$.

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: V BATCH-2017-2019

It has a derivative at each point of ρ (x).

Also,
$$|f(\lambda)| = |f(x(\lambda))| = ||f|| ||x(\lambda)||$$
. As $\lambda \to \infty$, $|f(\lambda)| \to 0$.

Assume now $\sigma(x)$ is empty.

Then
$$\rho(x) = C - \sigma(x) = C$$
 (whole complex plane)

By Liouville's theorem, we conclude that $f(\lambda) = 0$ for all $\lambda \in \rho(x)$. Since f is an arbitrary functional on A.

$$\Rightarrow$$
 x(λ) =0 $\forall \lambda$.

This is impossible , for no inverse can equal to zero and therefore it cannot be true that $\sigma(x)$ is empty.

Hence the proof.

Regular:

A division algebra is an algebra with identity in which nonzero element is regular.

Theorem: Gelfand Mazur theorem:

If A is a division algebra then it equals the set of all scalar multiples of the identity.

Proof:

We have to prove that if x is an element of A then x equals λ I.Suppose on the contrary that $x \neq \lambda$ I for every λ , then

$$x-\lambda I \neq 0$$
 for every λ .

 \Rightarrow x- λ I is regular for every λ and therefore $\sigma(x)$ is empty.

This contradicts that $\sigma(n) \neq \phi$.

$$\therefore$$
 x = λ I for some λ .

Hence the proof.

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: V BATCH-2017-2019

Theorem:

If '0' is the only topological divisor of zero in abanach algebra A then A=C.

Proof:

Let $x \in A$, $\sigma(x)$ is non-empty and closedset it has a boundary point in λ , then x- λI is a boundary point of the set 'S' of a singular elements.

Since the boundary of S is a subset of Z. It follows that x- λ I \in Z. i.e., x- λ I is a topological divisor of zero.

Then x- λ I = 0 \Rightarrow x = λ I.

Every element $x \in A$ is of the form λI where $\lambda \in C$.

 \therefore A= C.

Hence the proof.

Theorem:

If the norm in a banach algebra A satisfies $\|x\ y\| \ge K\|x\| \|y\|$ for some positive constant, then A=C. Proof:

1001.

If Z is a topological divisor of zero then there exist a sequence z_n such that $\parallel z_n \parallel$ =1 and $zz_n \rightarrow 0$.

By hypothesis $\parallel z \mid z_n \parallel \ \geq K \parallel z \parallel \ \parallel \mid \mid z_n \parallel \ \geq K \parallel \mid z \parallel.$

Since K>0, \Rightarrow \parallel z \parallel = 0.

 \Rightarrow 0 is the only topological divisor of zero.

 \Rightarrow A=C.

Hence the proof.

CLASS: II M.Sc COURSE NAME: FUNCTIONAL ANALYIS COURSE CODE: 17MMP301 UNIT: V BATCH-2017-2019

POSSIBLE QUESTIONS

- 1. Prove that the boundary of S is a subset of Z.
- 2. Prove that $r(x) = \lim ||x^n||^{1/n}$
- 3. Prove that for every element x in a Banach algebra A, $\sigma(x)$ is non empty and compact.
- 4. Prove thatif '0' is the only topological divisor of zero in a Banachalgebra 'A' then A=C.
- 5. If T be an arbitrary operator on a finite dimension Hilbert space H and N be a normal operator on H. Show that if T commutes with N then T commutes with N*.
- 6. Prove that the mapping $x \rightarrow x^{-1}$ of G into G is continuous and its therefore a homeomorphism of G onto itself.
- 7. If T is a operator on a finite dimension Hilbert space H, then prove the following
 - i) T is singular $\leftrightarrow 0 \in \sigma(T)$
 - ii) If T is not singular, $\alpha \in \sigma(T) \leftrightarrow \alpha^{-1} \in \sigma(T^{-1})$
 - iii) If A is non-singular, then $\sigma(ATA^{-1}) = \sigma(T)$
 - iv) If $\alpha \in \sigma(T)$ and if P is any polynomial then $P(\alpha) \in \sigma(P(T))$
- 8. Prove that if G is an open set therefore S is a closed set.
- 9. Prove that every element x for which $||x 1|| \le 1$ is regular and the inverse of such an element is given by the formula, $x^{-1} = 1 + \sum (1 x)^n$.
- 10. Prove that the boundary of S is a subset of Z.

(Deemed to be University) (Established Under Section 3 of UGC Act 1956) Pollachi Main Road, Eachanari (Po), Coimbatore –641 021

Subject: FUNCTIONAL ANALYSIS

Subject

(Question Nos. 1 to

$\begin{array}{c} \textbf{Class} & : \textbf{II-M.Sc. Mathematics} \\ & \textbf{Unit } \textbf{V} \end{array}$

Part A (20x1=20 Marks)

Part A (20x1=20 Marks)				(Q	uestion Nos. 1 to
	Possible Question				
Question	Choice 1	Choice 2	Choice 3	Choice 4	Answer
A non zero vector x such that $Tx=l x$ is true for some scalar l is called an	eigen value	eigen vector	scalar	idempotent	eigen vector
A scalar I such that Tx=Ix holds for some nonzero x is called an of T.	eigen value	eigen vector	scalar	idempotent	eigen value
Each eigen vector corresponds precisely to one	eigen value eigen value	eigen vector eigen vector	scalar scalar	idempotent idempotent	eigen value eigen vector
Eigen value are otherwise called as	characterestic value	characterestic vector	eigen vector	scalar	characterestic value
Eigen vector are otherwise called as	characterestic value	characterestic vector	eigen value	scalar	characterestic vector
If T is an operator on hilbert space H, then T to a vector x is to					
transform it	Tx=lx	Tx = 0	Tx=1	1 x=1	Tx=lx
into a scalar multiple					
The image of the zero operator under the mapping T® [T] is	scalar	zaro vastor	raal valua	zoro motriv	zara matrix
the	scalai	zero vector	real value	zero matrix	zero matrix
If T has different Eigen values then each one is to one	corresponding	same	distinct	identity	distinct
The image of the identity operator is the matrix	singular	identity	nonsingular	null	identity
The Matrix is 1's down the main diagonal and zero	singular	identity	nonsingular	null	identity
Two matrices in An are iff they are the matrices of a					
single operator	similar	asimilar	vary	distinct	similar
on H relative to different bases					
The of S is a subset of Z.	boundary	resolvement	spectral	distinct	boundary
The set of all divisor of zero by z.	identical	topological	boundary	resolvement	topological
The set of all complex number is a algebra	Ring	hardy	banach	functional	banach
The regular element is the compliment of element	singular	identity	nonsingular	null	singular
A banach algebra is acomplex which is also an algebra with identity 1.	Banach space	hilbert space	Inner product space	linear space	Banach space
Let A be a algebra then the set of all reular elements in A by G.	Ring	hardy	banach	functional	banach
Let A be a algebra then the set of all reular elements in A by S.	singular	identity	nonsingular	null	singular
The set of all values in a banach algebra is number	complex	real	inverse	scalar	complex
G is an open set and therefore s is an set.	closed	open	open subset	open set	closed
The compliment of spectrum is called the of x.	resolvement	spectral	distinct	identity	resolvement
For every element x in a banach algebra A the of x is					
nonempty and	resolvement	spectrum	distinct	identity	spectrum
compact.					
A division algebra is an algebra with identity in which each non					
zero element	singular	nonsingular	commutate	regular	regular
is					
0 is the only divisor of zero in a banach algebra then	identical	topological	boundary	resolvement	topological
A=C.					
0 is the only topological divisor of zero in a banach algebra then	A=C	A=1	A=0	A=V	A=C
A banach algebra is called a banach* algebra if it has an	involution	topological	boundary	resolvement	involution
The element x^* is called the of x and so a subalgebra of A is said to be self adjoint if it contains the adjoint of each of its	adjoint	commutate	self adjoint	idempotent	adjoint
An element xÎA is if there exist an element y such that	singular	left regular	right regular	regular	regular
xy=yx=1	•	•		•	-
An element xÎA is if there exist an element y such that	singular	left regular	right regular	regular	left regular
An element xÎA is if there exist an element y such that	singular	left regular	right regular	regular	right regular
Every maximal left ideal in A is	closed	open	open subset	open set	closed

If x is not right regular then it is called	right singular	left regular	right regular	regular	right singular
If x is not left regular then it is called	left singular	left regular	right regular	regular	left singular
If x is both right and left regular then it is called	left singular	left regular	right regular	regular	regular
A is the intersection of all its left ideal	maximal	minimal	right regular	regular	maximal
A maximal left ideal in A is a proper left ideal which is not properly					
contained	maximal	minimal	proper	regular	proper
if their left ideal					