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S.No Lecture Topics to be covered Support Materials
Duration
Unit -1
1. 1 Definition of an Automation with examples T1: Ch 3:Pg: 71-72
2. 1 Description of Finite Automaton T1:Ch 3:Pg: 73
3. 1 Transition systems T1: Ch 3:Pg: 74
4. 1 Property of transition functions T1:Ch 3:Pg: 75
5. 1 Finite Automaton T1: Ch 3:Pg: 77
6. 1 Acceptability of a string by a finite Automaton T1: Ch 3:Pg: 77
7. 1 Non deterministic finite automaton R2: Ch 3: Pg: 147-148
8. 1 The equivalence of DFA T1: Ch 3:Pg: 80
9. 1 The equivalence of NDFA T1: Ch 3:Pg: 80
10. 1 Recapitulation and discussion of possible
question
Total No of Hours Planned For Unit 1- 10 hours
Unit — 11
1. 1 Introduction on Formal Languages T1: Ch 4:Pg: 107
2. 1 Basic Definitions and examples T1: Ch 4:Pg: 107
3. 1 Chomsky classification of Languages T1: Ch 4:Pg: 120-122
4. 1 Languages and their relation T1: Ch 4:Pg: 123
5. 1 Recursive and Recursively Enumerable sets T1: Ch 4:Pg: 124
6. 1 Continuation on Recursive and Recursively T1: Ch 4:Pg: 125
Enumerable sets
7. 1 Operations on Languages. T1: Ch 4:Pg: 126
8. 1 Continuation on Operations on Languages. R2:Ch 3:119-120
9. 1 Recapitulation and discussion of possible
guestion
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Total No of Hours Planned For Unit 11 — 9 hours

Unit — 111
1. 1 Definitions and examples of Regular expressions | R1: Ch3: Pg: 83
2. 1 Identities for regular expressions T1: Ch5: Pg: 126
3. 1 Finite Automata and Regular expressions. R1: Ch3: Pg: 90
4, 1 Transition system containing A - moves T1: Ch5: Pg: 140
5. 1 Conversion of Nondeterministic Systems to T1: Ch 5: Pg: 146-147
Deterministic Systems
6. 1 Algebraic method using Arden’s theorem T1: Ch 5:Pg: 148-152
7. 1 Constructions of finite automata T1: Ch 5:Pg: 153-156
8. 1 Equivalence of two finite automata T1: Ch 5: Pg: 157-159
9. 1 Equivalence of two regular expressions T1: Ch 5: Pg: 160-161
10. 1 Recapitulation and discussion of possible
question
Total No of Hours Planned For Unit 111 — 10 hours
Unit -1V
1. 1 Basic Definitions and examples of Regular sets T1: Ch 5:Pg: 161
2. 1 Pumping Lemma for Regular sets T1: Ch 5: Pg: 162
3. 1 Applications of Pumping Lemma T1: Ch 5:Pg: 163-164
4. 1 Closure Property of Regular sets T1: Ch 5:Pg: 165-166
5. 1 Basic Definitions and examples of Regular T1: Ch 5:Pg: 167
grammars
6. 1 Continuation on Regular grammars T1: Ch 5:Pg: 167
7. 1 Construction of a regular grammar T1: Ch 5:Pg: 168
8. 1 Construction of a Transition system T1: Ch 5:Pg: 169
9. 1 Examples of construction of a Transition system | T1: Ch 5:Pg: 170
10. 1 Recapitulation and discussion of possible
question
Total No of Hours Planned For Unit 1V — 10 hours
Unit-V
1. 1 Context free Languages R1: Chb: Pg: 171-172
2. 1 Derivation trees T1: Ch 6: Pg: 181-185
3. 1 Context free grammars R3: Ch 16: Pg: 427-430
4. 1 Ambiguity in Context free grammars R3: Ch 16: Pg: 457-460
5. 1 Simplification of Context free grammars T1: Ch 6: Pg: 189-192
6. 1 Recapitulation and discussion of possible
questions
7. 1 Discussion of previous ESE question papers
8. 1 Discussion of previous ESE question papers
9. 1 Discussion of previous ESE question papers

Total No of Hours Planned For Unit V -9 hours
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17MMP305A FORMAL LANGUAGES AND AUTOMATA THEORY

Scope: This course makes the students to understand various aspects of automata theory and
Grammar, relationship between them those have wide applications in the field of computers.

Objectives: To understand the formulation of DFA and NDFA, Chomsky classification of
Languages, regular expression, pumping Lemma and get familiar with context free grammars.

UNIT I

Definition of an Automation - Description of Finite Automaton — Transition systems - Property of
transition functions - Acceptability of a string by a finite Automaton - Non deterministic finite
automaton - The equivalence of DFA and NDFA.

UNIT 11

Formal Languages - Basic Definitions and examples - Chomsky classification of Languages -
Languages and their relation - Recursive and Recursively Enumerable sets- Operations on
Languages.

UNIT 111
Regular expressions - Finite Automata and Regular expressions.
UNIT IV

Pumping Lemma for Regular sets - Applications of Pumping Lemma - Closure Property of
Regular sets - Regular sets and Regular grammars.

UNIT V

Context free Languages and Derivation trees - Ambiguity in Context free grammars -
Simplification of Context free grammars (examples only).

SUGGESTED READINGS
TEXTBOOK
1. Mishra, K. L. P and Chandrasekaran, N.,(2008). Theory of Computer Science, Automata

Languages and Computation, Prentice Hall of India, New Delhi.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSE NAME: FORMAL LANGUAGES

AND AUTOMATA THEORY
COURSE CODE: 17/MMP305A UNIT: I BATCH-2017-2019

UNIT-I

Definition of an Automation - Description of Finite Automaton — Transition systems -
Property of transition functions - Acceptability of a string by a finite Automaton - Non
deterministic finite automaton - The equivalence of DFA and NDFA.

DEFINITION OF AN AUTOMATON

We shall give the most general definition of an automaton and later modify
it to computer applications. An automaton is defined as a system where
energy, materials and information are transformed. transmitted and used for
performing some functions without direct participation of man. Examples are

automatic machine tools. automatic packing machines. and awomanc photo
printing machines.

[F Automaton  ——— 0y
fg ———— e
— T
J:‘—h T, l:.l'?. -C|T.. ﬂn:r

Model of a discrete automaton
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The characteristics of automaton are now described.

fi) fnpue. At each of the discrete instants of me 1. £ .. I, the input
values I,. /.. . ... [,, each of which can take a finite number of fixed
values from the input alphabet I, are applied to the input side of the

model shown in Fig. 3.1.
(i) Qupur. Oy, O., . ... O, are the outpurs of the model, each of which
can take a finite number of fixed values from an output O

(111} Srares. At any instant of time the auomaton can be in one of the
sakes g, @ - o e B

(iv) Srare relarion.  The next state of an automaton at any instant of time
is determined by the present state and the present input.

(v) Output relarion. The output is related to either state only or to both
the input and the state. It should be noted that at any instant of time
the automaton is in some state. On ‘reading” an input symbol. the
automaton moves o a next state which is given by the state relation.

Consider the simple shift register - k
and study its operation,

o Q }D Q—

Sarial

[
' output

— D O—lﬁﬂ
Seral |
input | |
e
J

—>

| M—

|

A 4-bit seral shift register using D flip-flops.

—

DESCRIPTION OF A FINITE AUTOMATON
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Definition *  Analvricallv. a finite automaton can be represented by a
S-tuple (Q. L. 4. gq. F). where

(1) @ is a finite nonempty set of states.

{ii) £ is a finite nonempty set of inputs called the inpur alphaber.

{iii) & is a funcuon which maps @ = X into @ and is usually called the direct
transition function. This is the functiom which describes the change of
states during the transition. This mapping is usually represented by a
transition table or a transition diagram.

{ivh gy €  is the mnitial state.

{(vi F g {0 is the set of final states. It is assumed here that there mayv be
more than one final state.

(1) Impur rape, The input tape is divided into squares. each sguare
containing a single symbol from the input alphabet Z. The end squares
of the tape contain the endmarker ¢ at the left end and the end-
marker % ar the right end. The absence of endmarkers indicates that
the tape is of infinite length. The left-to-right sequence of symbols
berween the two endmarkers is the input string to be processed.

{11y Reading head. The head examines only one sguare al a time and can
move one square elther to the left or to the right, For further analvsis.
we restrict the movement of the R-head onlyv to the right side.

{111y Finfte control.  The input to the finite control will usually be the
symbol under the R-head. say «. and the present state of the machine,
say ¢, to give the following outputs: {a) A motion of R-head along
the tape to the next sguare (in some a null move, ie. the E-head
remaining to the same sguare is permitted); (b} the next state of the
finite state machine given by Mg, a).

TRANSITION SYSTEMS
A transition graph or a transition system 18 a finite directed labelled graph in

which each vertex (or node) represents a state and the directed edges indicate
the transition of a state and the edges are labelled with mput/output.

0 110 11

i

0o
A transition system.
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Definitior A rrapsition svstem is a S-tuple (0, £, 8 Oy F). where

(1) @, ¥ and F are the finite nonempty set of states. the input alphabet,
and the set of tinal states, respectively, as in the case of finite automata;
(i) @y = @ and Y is nonempiv: and
(iii) & is a finite subset of O x I% x (.

Definition A transition svstem accepts a string w i I¥ if

(i) therc exists a path which orginates from some initial state, goes
along the arrows, and termunates at some final state; and

(ii) the path value obrained by concatenation of all edge-labels of the path
is equal to .

1/0
I
fq:{k 0/1 /ﬁ AD

/\J

110
Transition system

Determine the initial stares, the final states. and the acceprability of 101011,
11110,
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Solution

The initial states are ¢, and g,. There is only one final state, namely g
The path-value of gugagags 18 101011, As g+ 15 the final state, 101011 is

accepted by the transition system. But, 111010 is not accepted by the transition

system as there is no path with path value 111010,

PROPERTIES OF TRANSITION FUNCTIONS

Property 1 &i{g, A) = ¢ is a finite automaton. This means that the state of the
svsiem can be changed only by an inpur symbol,

Property 2 For all strings w and inpur symbols a.
i, aw) = (8ig. a)n w)
g, wa) = S(8(g, w) a)

This propertv gives the state afier the automaton conswmes or reads the
first symbol of a sring aw and the state afier the automaton consumes a prefix
of the string wa.

Prove that for any transition function & and for any two inpot strings 1 and ¥,

dlg, ) = 8(dg, x), ¥) )

Progf By the method of induction on | |. ie. length of w
Basis: When |v] =1, v =a € E

L.H.S. of (3.1) = &(g, xa)
S ey, x), a) by Property 2
F.H.5. of {(3.1)

Assume the result, for all strings x and strings y with | v | = n. Let
v be a string of length n + 1. Write v = y,a where |y, | = n
L.HS. of (3.1) = d(g, xv,a) = &(g. xja), x; = Xy,
= 3dg, x)), a) by Property 2

= HOolg. xv). a)

= &S(Slg. x), v;), a) by induction hypothesis
R.H.S. of (3.1)= &dlg. x), via)

= M Hg, x), vi). a) by Propenty 2
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Hence, LH.S. = R.H.S.

ACCEPTABILITY OF A STRING BY A FINITE
AUTOMATON

Definition A string v is accepted by a finite automaton
M=(0. L & qp. F)

if &gy, x) = g for some g € F.
This s basically the acceptability of a string by the final stage.

Consider the finite state machine whose transition function & is given by Table
in the form of a transition table. Here, Q@ = {90 g1 ¢ g3}, £ = {0, 1},
F = {ga}. Give the entre seguence of states For the input swing 110001,

Transition Function

e T T T o v P H

o 1

—+ gz g
q gz ]
[t a L
% g - eE
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Solution
s L
Hge, 110101 = Big,. 10101)
|
= {-’.;I e ﬂ-lﬂ] ]
B 5[:?} 1017
= dig..01)
= dig. 1)
= Oigy A)
L ] {l||||
Hence,

1 I ] I i} ]
o =>4y =gy 24 2 i =24 = i

The symbaol 4 indicates that the current input symbol is being processed by the
machine,

NONDETERMINISTIC FINITE STATE MACHINES

0
N

Transition system representing nondeterministic automaton.
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A nondeterministic finite automaton (NDFA) is a S-tuple
(Q, . 6. qp F), where
{i) Q is a finite nonempty set of states:
(ii) X is a finite nonempty set of inputs;
(iii) & is the transition function mapping from Q x X into 2¢ which is the
power set of O, the set of all subsets of (;
(iv) gy € Q 15 the mital state; and
vy F < @ is the set of final states.

0 /ﬂﬂ)
= G } ’ ~m ! ={ 2 1
SR
1 0
hS e
Gl e @
1

Transition system for a nondeterministic automaton.
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Transition system for a nondeterministic automaton.

0

‘ qo 90 ».q0 >0
‘73
0
Q4

States reached while processing 0100.

Definition , A string w € I* is accepted by NDFA M if (g, w) contains
some final state.

Definition The set accepted by an automaton M (deterministic or
nondeterministic) is the set of all input strings accepted by M. It is denoted by
T(M).

THE EQUIVALENCE OF DFA AND NDFA

We naturally try o find the relation between DFA and NDFA. Intuitively we
now feel that:
(1) A DFA can simulate the behaviour of NDFA by increasing the number
of states. (In other words, a DFA (Q, Z, 8 ¢, F) can be viewed as an
NDFA (Q, X. &", qq F) by defining 8'(q. a) = {d(g, a)}.)
(i) Any NDFA is a more general machine without being more powerful.
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Construct a determinisiic automaton equivalent to

M= (g0, a1}. (0. 1}. & g0, {q0})

TABLE State Table
State/L 0 i
5 @ e} a1
G+ £ go. Qi
Solution

For the deterministic automaton M|,

() the states are subsets of {gy. q,}. i.e. 8. [q0) [g0. ¢1). [q1]:
(i1) [qg] 1s the initial state:
(iii) [go] and [qy, ¢;] are the final states as these are the only states
containing g: and
(iv) & 1is defined by the state table

State Table of M,

State/% 0 1
@ B )
[q0] [ae] (9]
[g] (q4] [G0, G4l

[q0. sl [qo. 4] [gn, g4l
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Possible Questions
Part B(6 marks)
1. Explain characteristic of finite automaton.
2. Prove that for any transition function 6 and for any two input strings x and y,
8(q, xy) =8(3(a, X), ).
3. Consider the finite state machine whose transition function 6 is given by table

in the form of a transition table. Here, Q = {491, 92,45}, £ = {0,1},

F ={q,}. Give the entire sequence of states for the input string 110001.

State Input
0 1
— & gz o
9 qz Go
G2 do q3
ds - 4z

4. Construct a deterministic finite automaton equivalent toM =( {gqs.91. 92,93},
{0,1}), 6,4 4,{q3})where 8 is given by table

State table
State/Z a 5]
4+ a; qs
Gz 93 o]
@) %

5. Define DFA and acceptability of a string by it with example.

6. Construct a DFA accepting all strings over {a,b} ending in ab.
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7. Write a note on deterministic and nondeterministic model with example.

8. Find a DFA equivalent to M=({g,.41,4-}{a,b},0,q5,{q-}) and & is given by
6 (q9,a)={4 . 91,9,},0 (4o, B)= {4:},0 (a1.0)= {a,},8 (a1.0)={a.}, 3 (q,.a)= O,

0 (q2.5)={q0, 41}

9. Construct a DFA equivalent to an NDFA whose transition table is given below

State a b
2 g+ Gz dz Qs
G4 e 9z
q; 3 9z
@ — —

10.Find a deterministic acceptor equivalent to M=({g;.49+.q-}.{a,b}.8,q5,{qa-}) where §
is given by the table

State/Z a b
=y Go. g Gz
a4 @ G

@ Qo. 01

Part- C (Compulsory)

1.Construct a DFA equivalent to the NDFA M whose transition diagram is given below
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Assume the R is a relation on a set A, aRb is partially ordered

such that a and b are

A regular language over an

obtained from the basic languages using the operation
Which of the following is a not a part of 5-tuple finite

automata?

If an Infinite language is passed to Machine M, the subsidiary
which gives a finite solution to the infinite input tape is

For the following change of state in FA, which of the
following codes is an incorrect option?

Given: Y= {a, b} L= {xe> *|x is a string combination} Y 4
represents which among the following?

Questions choice 1 choice 2 choice 3
UNIT -1
reflexive transitive symmetric
alphabet >’ is one that cannot be Concatenatic Kleene
Union
Input alphabe Transition fur Initial State
Compiler Interpreter  Loader
d(m,1)=n 6(0,n)=m & (m,0)=¢
{aa, ab, ba, &, abaa, {aaa, aab,
bb} aabb} aba, bbb}
in finite state machine 4 5 6

There are tuples
Transition function maps.

5*(q,ya) is equivalent to

Languages of a automata is

Language of finite automata is.

Finite automata requires mi

nimum number of stacks.

The basic limitation of finite automata is that

NFA, in its name has ’non-deterministic’ because of :

Which of the following option is correct?
What is the relation between DFA and NFA on the basis of

computational power?

The production of form non-terminal -> ¢ is called:

Which of the following is a

regular language?

If L1 and L2 are regular languages, which among the

following is an exception?

Language for which no DFA exist is a

T¥Q->T Q*Q>X I*L->Q

3((q,y)a)  8(8*(q.y).a) 8(q.ya)
Ifitis touch final
accepted by state in its
automata If it halts life time
Type O Typel Type 2

1 0 2

remember It sometimes It sometimes
arbitrary recognize  fails to

large amount grammar recognize

of that are not  regular
information. regular. grammar
The result is of path is be transited
undetermine non- next is non-
d deterministic deterministic
NFA'IS DFAIS NFA IS
slower to faster to slower to
process and process and process and
its its its
representatio representatio representatio
nuses more nusesless nuses less
memory memory memory
than DFA  than NFA  than DFA
DFA > NFA NFA > DFA Equal

Sigma

Production  Null Producti Epsilon Prodi
lengthisa  Stringwith  palindrome s
sequence of substring

prime ww' in

numbers between

L1UL2 L1-1L2 LINL2
Regular Non-Regular May be
Language  Language  Regular

choice 4 Answer
and and
transitive transitive

All the abovt All the above

Output Output
Linkers
Compiler
s: accept =
false; cin
>> char;if 8 (0, n) =m
€, abaa,
All the abovtaabb}
unlimited 5

Q*X->Q Q*X->Q
from &
notation 3(8*(q,y),a)
All language If it is
are language accepted by
of automata automata

Type 3 Type 3

3 0
remember
arbitrary

All the above large amount
of
information.
of path is
non-

All the abovt deterministic

DFA is NFA IS

slower to slower to

process and Process and

its its

representatio representatio

nuses less N uses less

memory memory

than NFA than DFA

nonequal Equal

All the Null

above Production

String with ~ String with

even number even number

of Zero’s of Zero’s

All the abovt All the above
Non-Regular

language Language
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UNIT-II

Formal Languages - Basic Definitions and examples - Chomsky classification of
Languages - Languages and their relation - Recursive and Recursively Enumerable sets-

Operations on Languages.

BASIC DEFINITIONS AND EXAMPLES

Definition A phrase-structure grammar (or simply a grammar) is
(V. . P, §). where
{1) V- 15 a finite nonempty set whose elements are called vaiiables,
(i) X 1s a finite nonempty set whose elements are called terminals,
i Ve o X = @,
{iv) S is u special variable (i.e. an element of V) called the start symbol.

and
. _ 1 . v Il - -
(v) P is a finite set whose elements are & — 3. where ¢ and fJ are strings
on V. i . o has ar least one symbol from V.. The elements of P are
called productions or production rules or rewriting rules.

G =V, L. P, 5)1s a grammar

where
Vy = {(sentence). (noun). (verb). (adverb)}
2 = [Ram. Sam. ate. sang. well]
§ = {sentence)

P consists of the following productions:

(sentence; — {noun) {(verd)
(senience; — {(noun) {verb} {adverb)
(noun; - Ram

(noun; — Sam

(verb) — ate

(verb} — sang

{adverb) — well
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Definition  If o — fis a production in a grammar G and ¥% & are any

rwo strings on Vi, U X, then we say that yud directly derives Y6 in G {we

write this as y0 = yfB0). This process is called one-step derivation. In

particular. if @ — B is a production. then a = f.

G
Definition If o and B are strings on Vy W X, then we say that ¢ derives
Bif o e B. Here ? denotes the reflexive-transitive closure of the relation =
; G
in (Vy U X)*
Definition The language generated by a grammar G (denoted by L(G)) is

defined as {w e Z¥|S f}’ w}. The elements of L{G) are called senrences.

Definition G, and G- are equivalent if L(G;) = Li{G-).

If G = ({S}. {0. 1}. {S — 0S1, § — A}. ), find L(G).

Solution
As § — A is a production. § = A. So A is in L(G). Also. for all n 2 1,

=21 081 | B Borsain | RS ULLI RS 0rsiy | =1 bf LR
[ G G G G
Therefore,

0"1" e L(G) forn 2 0

(Note that in the above derivation, § — 081 is applied at every step except
in the last step. In the last step. we apply § — A). Hence. [0"1" | n 2 0} < L(G).

To show that L(G) < {0"1"| n = 0}. we start with w in L(G). The
derivation of w starts with 8. If § — A is applied first, we get A. In this case
w = A. Otherwise the first production to be applied is § — 0S1. At any stage
if we apply § — A. we get a terminal string. Also, the terminal string is
obtained only by applyving § — A. Thus the derivation of w is of the form

S ;: 0's1” (:‘;» o1t for some n = 1
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LIGyg {0717 | n 2 0}

Therefore.

L(G)y= {0"1"|n = 0}
It Gis S — aS|hS|aib find L(G),

Solution
We show that L(G) = {a b}". As we have only two terminals a b,
LGy < {a b}* All productions are S-productions. and so A can be in I(G)
onlv when S — A is a production in the grammar G. Thus.

LG ¢ {a b}* = [A} = {a B}T

To show {q, b}™ £ L(G), consider any string @a- . . . a,. where each «;
is either ¢ or b, The first production in the derivation of aya~ ... @, 18 § —
a$ or § — bS according as ¢ = a or a; = b. The subsequent productions are
obtained in a similar wav. The last production is § — a or § — b according

as ¢, = aora, = b So ga- ... a, € LIG). Thus. we have L(G) = {a, b}™.

Construct a grammar generating L = {wew’|w € {a, b}*}.

Solution

Let G = ({S}, {a, b, ¢}, P, S), where P is defined as S — aSa | bSh|c. It
is easy to0 see the idea behind the construction. Any string in L 1s generated
by recursion as follows: (i) ¢ € L: (i) if x € L. then wxw’ € L. So, as in
the earlier example. we have the productions § — aSa | bSh | c.

Find a grammar generating L = {a"b"c'|n > 1. i = 0},

Solution
L=1L, v L,

L= {ab|n> 1

I/

L-= 1a"¥'c'|n> 1,1

1}
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We construct L, by recursion and L~ by concatenating the elements of L,
and ¢. 7 2 1. We define P as the set of the following productions:

§ —= A A — ab, A — adb, S — S
Let G =({S A}, la. b ¢}, P. §). Forn 2 1.i — 0. we have
5§53 5¢ = Ad = oAD" = @ labb™ e = @B

Thus.
{d'b’c¢' Inz21.1i20} g LG)

To prove the reverse inclusion. we note that the only S-productions
are § — Scand § — A. It we start with § — A, we have to apply

A= AP = 4B and so B € L(G)

If we start with § — Sc, we have 1o apply § — Sc repeatedly to get Sc¢'. But
to get a terminal string. we have to apply S — A. As A = d'b", the resulting
terminal string is @"b"c’. Thus, we have shown that

LG) c {d'b"¢ inz1 120}
Theretore.

L(G) = {dbc|nz 1.1

n

0}

Problem:

Let G=({S A}. {0. 1. 2}. P. §), where P consists of § — 054,2. § — 012,
24, — A2, 1A, — 11. Show that

LG) = {012 | n 2 1}
Solution

As § = 012 is a production. we have § = 012, 1e. 012 € L(G).
Also.

S = 0'8(4,2)" by applyving § — 054,2 (n — 1) umes
= 0"12(4,2)"" by applying § — 012
= 0"1A[12" by applving 24, — 4,2 several times
= 0"1"2" by applving 1A, — 11 (n - 1) times
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Therefore.
0"1"2" e LIG) for all n 2 1

Problem:

Let G = ({S, A,. A-}, {a, b}, P, §), where P consists of
S — aAA-a. A, — baA,A-b, A~ — Aab, aA; — baa, bA-b — abab

Test whether w = baabbabaaabbaba
is in L(Q).

Solution

We have to start with an S-production. At every stage we apply a suitable
production which is likely to derive w. In this example, we underline the
substring to be replaced by the use of a production.

S — at"dl'[ A:ﬂ

= baa A a

= bﬁmi aba

= baab aA; Asbaba

= baabbaa A-> baba

= baabba gﬁ abbaba

= baabbabaaabbaba = w
Theretore.
w e L(G)
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CHOMSKY CLASSIFICATION OF LANGUAGES

Definition A grammar is called type 1 or context-sensitive or context-
dependent if all its productions are type 1 productions. The production § — A
is also allowed in a type 1 grammar. but in this case § does not appear on the
right-hand side of any production.

Definition . The language generated by a type 1 grammar is called a
type I or context-sensitive language.

Definition A grammar G = (V,, X, P, §) is monotonic (or length-
increasing) if every production in P is of the form « — f with [ | < | ]
or § — A. In the second case. S does not appear on the right-hand side of any
production in P.

Definition A type 2 production is a production of the form A — «,
where A € V, and & € (Vy v )% In other words, the L.H.S. has no left
context or right context. For example. § = Aa, A — a. B = abc, A — Aare
type 2 productions.

-

Definition ~ A grammar 18 called a type 2 grammar if it contains only
type 2 productions. It is also called a context-free grammar (as A can be
replaced by o in any context). A language generated by a context-free grammar
is called a type 2 language or a context-free language.

Definition A production of the form A — a or A — aB. where
A. B € Vyand a € X. 1s called a tvpe 3 production.

Definition A grammar 1s called a tvpe 3 or regular grammar if all its
productions are type 3 productions. A production § — A is allowed in type 3
grammar. but in this case S does not appear on the right-hand side of any
production.
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Example:

Find the highest tvpe number which can be applied to the following
productions:

(a) § — Aa A — ¢ Ba. B — abc

(by § — ASB|d, A — dA

(ci § = aS|ab

Solution

(a) § — Aa. A = Ba, B — abc are type 2 and A — c is type 3. So the
highest type number is 2.

(b) § — ASBis type 2. § = d. A — aA are type 3. Therefore. the highest
type number is 2.

(c) § = al 1s type 3 and § — ab 1s type 2. Hence the highest type

number is 2.

LANGUAGES AND THEIR RELATION

Property 1 From the definition. it follows that /., © Z.. 41 © Zo
Lo S g

Pfﬂpﬂl"t‘j' 2 ""I'-.L'E'l S csl:

Property 3 7, C 4. C 4. S g This follows from properties 1 and 2.

Property 4 ., C. 4. C. foo To 4o
RECURSIVE AND RECURSIVELY ENUMERABLE SETS

Definition A set X is recursive if we have an algorithm to determine
whether a given element belongs to X or not.

Definition A recursively enumerable set is a set X for which we have
a procedure to determine whether a given element belongs to X or not.
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Example:

Consider the grammar G given by § — 0SA;2. § — 012, 24, — A2,
1A; — 11. Test whether (a) 00112 € L(G) and (b) 001122 € L(G).

Solution
(a) To test whether w = 00112 € L(G), we construct the sets W,, W, W»
etc. |w| = 5.
Wo= {5}
W, = {012, S. 0SA,2}

W-= {012, S, 0SA,2}

As W, = W, we terminate. (Although 054,2 = 00124,2. we cannot
include 0012A,2 in W, as its length is > 5.) Then 00112 ¢ W,. Hence.
00112 ¢ L(G).

(b) To test whether w = 001122 € L(G). Here, |w| = 6. We construct W,

W, W, etc.
Wo— {S}
= {012. S, 0SA,2}
= {012, §. 0SA,2, 00124,2}
W; = {012, S, 0SA,2. 00124,2, 001A,22}
= {012, S, 0SA,2, 00124,2, 001422, 001122}

= {012, S. 0SA,2. 00124,2, 001A4,22. 001122}
; Wy = W, we terminate. Then 001122 € W,. Thus. 001122 € L(G).

OPERATIONS ON LANGUAGES

Theorem Each of the classes £q, £, Leorp. £y 18 closed under union.
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Proof let L, and L, be two languages of the same type i. We can apply
Theorem 4.1 to get grammars

Gy =(Vy L. P, §)  and Gr = (Viy, Zy, P2, S2)

of type ¢ generating L, and L,. respectively. So any production in G; or G-
is either & — f3, where ¢ [ contain only variables or A — a, where A € V),
a e L.

We can further assume that V'y m V', = @, (This is achieved by renaming
the variables of V' if they occur in V7'y.)
Define a new grammar G, as follows:

G, =(VyuVyu{SLE UL, P, 95
where § is a new symbol, ie. § & Vy U Vi

P,=PLUPui{S—>S§5.85—=235)

We prove L(G,) = L, v L, as follows: If w € L; u L, then S, = w or
G

S- = w. Therefore, '
G,

§= 8§ =>w o §= 8 = w ie we LG,

GIE GH (I“ Gﬂ
Thus, L, v L, ¢ L(G,).

To prove that L(G,) € L, v L. consider a derivation of w. The first step
shouldbe § = S, or § = §-. If § = §, is the first step, in the subsequent steps
S, is changed. As Vi n V', # @, these steps should involve only the variables
of V4 and the productions we apply are in P,. So § ;b w. Similarly, if the

first step1s § = S, then § = S, = w. Thus, L(G,) = L, U L, Also, L(G,)
G. G.

is of type 0 or type 2 according as L, and L, are of type 0 or type 2. If A
is not in L; U L,, then L(G,) is of type 3 or type 1 according as L, and L,
are of type 3 or type 1.
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Suppose A € L. In this case, define
G, =(Vyu Viu{s L Z Uy P, §)

where (i) 5" is a new symbol, ie. § ¢ V', U V' U {S}, and (i) P, =
PLUuP,u{S >SS 5S—=S8.5— 8} So. LG, is of type 1 or type 3

according as L, and L. are of type 1 or type 3. When A € L., the proof 1s
similar. 1
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Possible Questions

10.

Part-B(6 mark)

If G = ({S}, {0,1},{S — 0S1,S — A}.S), find L(G).

Let G=({S, C}, {a, b}, P, S) where P consists of S —aCa, C —aCa |b. Find
L(G).

IfGis S —aS|bS |a|b, find L(G).

Let G =({S, A1}, {0, 1,2}, P, S) where P consists of S — 0SA32, S — 012, 2A;
—A12. 1A; — 11. Show that L(G) = {0”172” |n>1}.

Let G = ({S, A,Az}, {a, b}, P, S) where P consists of S — aAjAza, A
—baA;Asb, A, — A ab, aA;—baa, bA,b —abab. Test whether w =
baabbabaaabbaba isin G.

Consider the grammar G given by S — 0SA32. S — 012, 2A;— Aj2, 1A;— 11.
Test whether (a) 00112 € L(G) and (b) 001122 € L(G).

Show that there exists a recursive set which is not a context- sensitive language
over {0,1}.

Show that {a" n® | n > 1} is generated by the grammar S — a, S — AzA4, Az—
AAA,,

A3—> AA, AjAr—aAsAl, Aja—aA;, Ara—aA,, AjAs—A43, A2A5 —Asa, A5

— a.

Explain about the Chomsky classification of languages and their properties.
Show that each of the classes Lo, Lcs1, Ler1, Ly 1S closed under concatenation.

PART C(10 mark)

Show that each of the classes Ly, L¢st, Lcft, Ly is closed under union.
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Questions

Concatenation Operation refers to which of
the following set operations:

Concatenation of R with ® outputs:

RR* can be expressed in which of the forms:
If L1 and L2 are context free languages,
which of the following is context free?

A grammar G=(V, T, P, S) is if
every production taken one of the two forms:
B->aC B->a

Which of the following languages are most
suitable for implement context free languages ?

Regular sets are closed under
union,concatenation and kleene closure.

Complement of a DFA can be obtained by

Complement of regular sets are

If L1 and L2 are regular sets then intersection
of these two will be

If L1 is regular L2 is unknown but L1-L2 is
regular ,then L2 must be

Reverse of a DFA can be formed by
Reverse of (0+1)* will be

(a”5b~5)* is example of

Which of the following is type 3 language ?
a” nb ~ n where (n+m) is even .

choice 1

Union
R
R+
L1*

Ambiguous

True

making starting

state as final state.

Regular

Regular

Empty set

using PDA

Phi
Type 0 language

Strings of 0’s
whose length is
perfect square
Type 0

Complement of a * nb ~ m where n >=4 and m Type 0

Complement of (a + b)* will be
Which of the following strings do not belong
the given regular expression? (a)*(a+cba)

phi

aa

choice 2
UNIT -1l

Dot
(0]
R-

L2UL1

Regular

Perl

FALSE

no trival method.

CFG

Non Regular

CFG

making final state
as non-final

Null
Type 1 language

Palindromes
string

Type 1
Typel

null

aaa

choice 3

Kleene
R.®
R+ U R-

L1.L2

Non Regular

choice 4

Two of the options
are correct
r

R
All the above

set

Assembly Languac language

Depends on
regular set

making final states
non-final and non-
final to final.

CSG

Recursive

Decidable

making final as
starting state and
starting state as
final state
(0+1)*

Type 2 language

Strings of 0’s
having length
prime number
Type 2

Type 2

a

acha

set

make final as a
starting state.

RE

Non Recursive

Regular

final

(0+1)
Type 3 language

String of odd
number of 0’s
Type 3
Type 3

b

acbacbha

Answer

Dot

[0}
R+

All the above

Regular

True

making final states
non-final and non-
final to final.

Regular

Regular

Regular

making final as
starting state and
starting state as
final state
(0+1)*

Type 3 language

String of odd
number of 0’s
Type 3

Type 3

phi

acbacba
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UNIT-111

Regular expressions - Finite Automata and Regular expressions.

REGULAR EXPRESSIONS

The regular expressions are useful for representing certain sets of strings in an
algebraic fashion. Actually these describe the languages accepted by finite state
automata.

We give a formal recursive definition of regular expressions over X as
follows:

1. Any terminal symbol (i.e. an element of L), A and @ are regular
expressions. When we view ¢ in Z as a regular expression, we denote
it by a.

. The union of two regular expressions R; and R,. written as R, + R.,
is also a regular expression.

3. The concatenation of two regular expressions R; and R, written as

RiR,. is also a regular expression.

4. The iteration (or closure) of a regular expression R. written as R*. is
also a regular expression.

. If R is a regular expression, then (R) is also a regular expression.

6. The regular expressions over L are precisely those obtained

recursively by the application of the rules 1-5 once or several times.

)

n

L

Definition Any set represented by a regular expression is called a regular
ser.

If. for example, a, b € Z. then (i) a denotes the set {a}, (ii) a + b denotes
{a, b}, (ii1) ab denotes {ab}, (iv) a* denotes the set {A. a, «a. aaa, ...} and
(v) (a + b)* denotes {a. b}*.

The set represented by R is denoted by L(R).
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Example:

Describe the following sets by regular expressions: (a) {101}, (b) {abba},
(¢’ {01. 10}, (d) {A. ab}, (e) {abb, a, b, bba}, (f) {A, 0, 00, 000, ...}. and
(esaflanlib el b

Solution

(a) Now. {1}, {0} are represented by 1 and 0. respectively. 101 1s obtained
by concatenating 1. 0 and 1. So. {101} is represented by 101.

(b) abba represents {abba}.

(c) As {01, 10} 1s the union of {01} and {10}, we have {0l. 10}
represented by 01 + 10.

(d) The set {A. ab} is represented by A + ab.

(e) The set {abb, a. b, bba} is represented by abb + a + b + bba.

(f) As {A, 0. 00, 000, ...} is simply {0}*. it is represented by 0%,

(g) Any element in {1. 11, 111. ...} can be obtained by concatenating
1 and any element of {1}*. Hence 1(1)* represents {1, 11, 111....}.

Example:

Describe the following sets by regular expressions:
(a) L, = the set of all strings of 0's and 1's ending in 00.
(b) L, = the set of all strings of 0's and 1's beginning with 0 and ending
with 1.
(¢) Ly ={A, 11, 111L. 111111, ...}

Solution

(a) Any string in L, is obtained by concatenating any string over {0, 1}
and the string 00. {0, 1} is represented by 0 + 1. Hence L, 1s
represented by (0 + 1)* 00.

(b) As any element of L. is obtained by concatenating 0, any string over
{0, 1} and 1. L~ can be represented by 0(0 + 1)* 1.

(c) Any element of L, is either A or a string of even number of 1's, i.e.
a string of the form (11)". n 2 0. So L; can be represented by (11)*.
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IDENTITIES FOR REGULAR EXPRESSIONS

Two regular expressions P and Q are equivalent (we write P = Q) if P and
Q represent the same set of strings.
We now give the identities for regular expressions; these are useful for
simplifying regular expressions.
I, ® +R=R
I AR =R0O = ¢
I4 AR = RA =R
I, A¥ = A and 0% = A
L R+R=R
I, R*R* = R*
I; RR*=RR
I;  (R¥)* = R’
Ig A+ RR* = R* = A + R*R
Iy, (PQY*P = P(QP)*

P+ QF = (PHQH)* = (P* + Q%)
[~ P+QR=PR+QR and R(P + Q) =RP+RQ

Theorem . (Arden’s theorem) Let P and Q be two regular expressions
over X. If P does not conrain A, then the following equation in R, namely
R=Q +RP

has a unigue solution (i.e. one and only one solution) given by R = QP*,

Proof Q + (QP*)P = Q(A + P*P) = QP* by [y
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To prove uniqueness. replacing R by Q + RP on the

R.H.S.. we get the equation

Q+RP=Q + (Q + RP)P
=Q + QP + RPP
= Q + QP + RP-
=Q+ QP + QP + ... + QP + RP™!
=QA+P+P +...+P)+ RP"

R=QA +P+P +...+P)+ RP" for i 2 0

Let w be a string of length 7 in the set
R Then w belongs to the set Q(A + P + P* + ... + P) + RP™. As P does
not contain A, RP'™' has no string of length 1::55- than 7 + | and so w 1s not
in the set RP™'. This means that w belongs to the set Q(A + P + P° +
+ P. and hence to QP*.

Consider a string w in the set QP*. Then w is in the set QP* for some
k =z 0. and hence in Oi\+P+P~+---+P’r‘)

Thus R and QP* represent the
same set. This proves the uniqueness of the solution «

Example:

(a) Give an r.e. for representing the set L of strings in which uu} 0 is
immediately followed by at least two ['s.

(by Prove that the regular expression R = A + 1*(011)*(1* (011)*)* also
describes the same set of strings.
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Solution

(a) It wisin L, then either (a) w does not contain any 0, or (b) it contains
a 0 preceded by | and followed by 11. So w can be written as
Wiws ... w,, where each w; is either 1 or 011, So L is represented
by the re. (1 + 011)%

(b) R = A + P,P*. where P, = 1%(011)%

= P/ using fg

= (I¥(011)%)*

= (PIPY)* letting P, = 1. Py = 011
= (P, + Pyy* using [y

= (1 + 011)*

Prove (1 + 00%1) + (1 + 00%1)(0 + 10*1)* (0 + 10*1) = 0*1(0 + 10*1)*.

Solution
LHS. = (1 + 00*1) (A + (0 + 10%1)* (0 + 10¥DA using I;>
= (1 + 00%1) (0 + 10*1)* using /q
= (A + 00%)1 (0 + 10*1)* using [;» for 1 + 00%1
= 0%1(0 + 10*1)* using fy
= R.H.S.

FINITE AUTOMATA AND REGULAR EXPRESSIONS

TRANSITION SYSTEM CONTAINING A-MOVES

Suppose we want to replace a A-move from vertex v, to vertex v». Then
we proceed as follows:

Step 1 Find all the edges starting from v..

Step 2 Duplicate all these edges starting from v;, without changing the edge

Step 3 If v, is an initial state. make v~ also as initial state.

Step 4 If v, is a final state. make v, also as the final state.
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CONVERSION OF NONDETERMINISTIC SYSTEMS TO
DETERMINISTIC SYSTEMS

Step 1 Convert the given transition system into state transition table where
each state corresponds to a row and each input symbol corresponds to a
column.

Step 2 Construct the successor table which lists the subsets of states
reachable from the set of initial states. Denote this collection of subsets by Q.

Step 3 The transition graph given by the successor table is the required
deterministic system. The final states contain some final state of NDFA. If
possible. reduce the number of states.

Obtain the deterministic graph (system) equivalent to the transition system

Solution

We construct the transition table corresponding to the given nondeterministic
system

Prepared by Y.Sangeetha, Asst Prof, Department of Mathematics, KAHE Page 6/12




KARPAGAM ACADEMY OF HIGHER EDUCATION
CLASS: I M.Sc MATHEMATICS COURSE NAME: FORMAL LANGUAGES

AND AUTOMATA THEORY
COURSE CODE: 1/MMP305A UNIT: ITI BATCH-2017-2019
State/Z a b
—@ 1. 42
ql'., ﬁ':ﬁ
@ I:;r[:l! '31

We construct the successor table by starting with [gn. g;].
we see that [go. gy, g-] 1s reachable from [gy, ¢;] by a b-path. There are no
a-paths from [ggy, g,]. Similarly. [gy, g,] is reachable from [g, ¢, g:] by an
a-path and [qy. ¢;. g-] is reachable from itself. We proceed with the

construction for all the elements in Q.

Deterministic Transition Table )

Q a b
Ga. g4l o (g5, g1, G2)
[92. 1. G2 (G0 g1) (o, g1, G2l
@ 1y @
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Deterministic transition system

as ¢y and g~ are the fina! states of the nondeterministic system [gq. ¢,] and
{¢9. 1. g-] are the final states of the deterministic system.

ALGEBRAIC METHOD USING ARDEN’S THEOREM

The following assumptions are made regarding the transition system:

(1) The transition graph does not have A-moves.
(1) It has onlv one immnal state, say ;.
(111} Its vertices are vy ... v,
(iv) V; the r.e. represents the set of strings accepted by the system even
though v; 15 a final state.
(v) o denotes the r.e. representing the set of labels of edges from v; to
1. When there is no such edge. o; = 9. Consequently., we can get the

following set of equations in V; ... V,:
‘r; = “"i_'l:!-“ + v:aj] + - + "T”'D[-F” + ;'I\
Vo= Viogy + Vot + 00 + V0
‘_'” = ‘r‘.ﬂ']u + “I:ﬂ-]” + -0+ 1g'l?n“':’:'rrrr
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Consider the transition svsiem Prove that the strings

recognized are (a + a(b + aa)*b)* a(b + aa)* a.

Transition system

Solution

We can directly apply the above method since the graph does not contain any
A-move and there 1s only one initial state.
The three equations for ¢,. g> and g; can be written as

q; = qa + ;b + A, q: = q,a + q;b + gsa. q: = q.a

q. = q;a + q-b + ¢-aa
= qa + q-(b + aa)

= qa(b + aa)*

Substituting q- in q;. we get
q, = qa + qab + aa)*b + A

= q(a + a(b + aa)*bh) + A
Hence,

¢, = A{a + a(b + aa)*b)*
g-= (a + a(b + aa)*b)* a(b + aa)*
q-= (a + a(b + aa)*bh)* a(b + aa)*a
Since g5 1s a final state, the set of strings recognized by the graph is given by

(a + a(b + aa)*h)*a(b + aa)*a
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CONSTRUCTION OF FINITE AUTOMATA EQUIVALENT
TO A REGULAR EXPRESSION

Step 1 Construct a transition graph (transition system) equivalent to the
given regular expression using A-moves. This is done by using Theorem 5.2.

Step 2 Construct the transition table for the transition graph obtained in
step 1. Using the method given in Section 5.2.3. construct the equivalent DFA,
We reduce the number of states if possible.

EQUIVALENCE OF TWO REGULAR EXPRESSIONS

Suppose we are interested in testing the equivalence of two regular
expressions, say P and Q. The regular expressions P and Q are equivalent iff
they represent the same set. Also, P and Q are equivalent iff the corresponding
finite automata are equivalent.

Theorem (Kleene's theorem) The class of regular sets over X is the
speallest class N containing {a} for every @ € X and closed under union,
concatenation and closure.

Proof The set |a} is represented by the regular expression a. So {a} is
regular for every ¢ € L. As the class of regular sets is closed under union,
concatenation. and closure. R is contained in the class of regular sets.

Let L be a regular set. Then L = T(M) for some DFA, M = ({q,, ..
qm}: Z, 5, fiy f-) -

N
L=U Ay
=

where F = {g; ... q;} and PY; is obtained by applying union, concatenation
and closure to singletons in X. Thus, L is in R.
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Possible Questions:
Part-B(6 mark)

1. Describe the following sets by regular expressions :
i) Ly = the set of all strings of 0’s and 1’s ending in 00.
il) Ly = the set of all strings of 0’s and 1’s beginning with 0 and ending with 1.
i) Ls={ A, 11, 1111, 111111, ...}.

2. State and prove Arden’s theorem
3. State and prove Kleen’s theorem.

4. Prove that the strings recognized are (a+a(b+ aa)*b)* a(b + aa) * a.

H/'\Qf ~E0)

—(a )

5. Construct a regular expression correspondlng to the state diagram described by
given below.
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7. Determine M and M’ are equivalent. Automaton M and M’ are given below.

c o
..-r‘_‘\l '\I
' -t
Py 7 d T
—i{ % ) [ 5 }} g7
e d Py N
fh [ [
| 1 f’fd;\l-\ | I| |I !
dl g | 93 g di ef ¢
L e T L L)
'... | ) ,__.-"' f__,-" I'.I II| |I ,"I
L - N_/ F
| *‘fa\{;*’/g 7 . f’?*
\H:-/- l.\\_ : /)l c I'\_\_\_ =] I1_\.'

8.(1)Give an r.e for representing the set L of strings in which every 0 is immediately
followed by at least two 1’s.

(ii) Prove that the regular expression R = A + 1*(011)*(1* (011)*)* also describe
the same set of strings.

9. Prove (1+00*1) + (1 + 00*1)(0 + 10%1)* (0 + 10*1) = 0*1(0 + 10*1)*.

10. Find the equivalent automation without A-moves.

0 rjw e
|'E\}1|— L m £ | @:
et Ry Nt

Part-B(10 mark)

1. Construct a DFA with reduced states equivalent to the r.e10 + (0 + 11))0*1
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Questions choice 1 choice 2 choice 3 choice 4 Answer
UNIT - 111
The following denotion belongs to Context free . Context free
which type of language: G=(V., T, P, S) Regular grammar grammar Context Sensitive ( All the above grammar
;Jl':ge(;?ntext free languages are closed Intersection Complement Kleene Arden Kleene
Conte_xt free languages are not closed Intersection Intersection with Complement All the above All the above
under: Regular Language
If the start symbol is one of those
symbols which produce no terminal -
through any sequence, the CFL is said nullable empty eliminated code empty
to be
Using the pumping constant n, If there
is a string in the language of length n 2n-1 2nn n+1, 3n+6 0, n+1 n 2n-1
between and then the
language is infite else not.
A is context free grammar .
: S - linear bounded .
with atmost one non terminal in the linear grammar regular grammar  grammar linear grammar
. . - grammar
right handside of the production.
There is a linear grammar that . .
always never sometimes struck sometimes
generates a context free grammar
Regular Expression R and the language
. . R, R(L L(R), R(L R, L(R All th R, L(R
it describes can be represented as: L (R). R(L) R) the above R
. . {w | w is astring . . {w | w is astring
= = *
Let for = {0,1} R=(23)) *, the {w]wis astring of length multiple {w]wisastring All the above of length multiple
language of R would be of odd length} of length 3}
of 3} of 3}
If Y= {0,1}, then ®* will result to: € () > 1 €
The given NFA represents which of the - sk | e - . -
following NFA (ab U a) (a*b* U a*) (ab U a*) (ab)*U a (ab U a)
The finite automata accept the following Context Free Context Sensitive Regular Regular
All the above
languages: Languages Languages Languages Languages
(a + b*c) most correctly represents: (a+b) *c (@)+((b)*.c) @+ (b¥).c at+ ((b*).c) a+ ((b*).c)
Accord_mg to the pre_cedence rules, x-y- Both (x-y)-z and
z is equivalent to which of the (x-y)-z x-(y-z) X+y (x-y)-z
uiva x-(y-2)
following?
Dot operator in regular expression Expressions are  Expressions are . Expressions are
resembles which of the following? juxtaposed multiplied Cross operation . added juxtaposed
Which among the following is
equivalent to the given regular (01)*+1 0((1)*+1) O(1)*)+1 ((0*1)1*)* 0(1)*)+1
expression? 01*+1
With reference to Automaton to
Regular Expression Conversion, for
each of the n rounds, where n is the double triple uadruple single uadruple
number of states of DFA, we can P q P 9 q P
the size of the regular
expression constructed.
Zgﬁec;)njversmn of NFA to DFA can be exponential time linear time logarithmic time  all the above exponential time
Subset Warshalls Subset
NFA to DFA conversion is done via Construction - Ardens theorem  kleen’s theorem Construction
Algorithm
method method
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UNIT-IV

Pumping Lemma for Regular sets - Applications of Pumping Lemma - Closure Property
of Regular sets - Regular sets and Regular grammars.

PUMPING LEMMA FOR REGULAR SETS

Theorem (Pumping Lemma) Let M = (Q, £. & ¢y F) be a finite
automaton with n states. Let L be the regular set accepted by M. Let w € L
and | w | 2 m. If m 2 n, then there exists x, ¥, z such that w = xyz, y # A and
v’z & L for each i 2 0.

Proof - Let
W = apas ... dy,. mz2n

Oge. ayas ... a)=¢q; fori=1 2....m Oy = {qo 41 -+ Gui)

That 1s, O, 1s the sequence of states in the path with path value w = qa> . . . @,
As there are only n distinet states. at least two states in Q) must coincide.
Among the various pairs of repeated states, we take the first pair. Let us take
them as g; and ¢,{q; = ;). Then j and k satisty the condition 0 <j < k < n,

The string w can be decomposed nto three substrings ajaz . .. a;, d@j;p ...
a; and @, ... a, Let x, y, z denote these strings @@y ... @, Guy ... a
(gsy . - - dy, respectively. As k € n, |xv| £ n and w = xyz The path with the
path value w in the transition diagram of M

The string w can be decomposed into three substrings aja, ... a; a;,, ..
a; and a;., ... a, Letx y I denote these strings aja, ... a;, Gy ... a,
Gpey - .-y, respectively. As k < n, |xv| € n and w = xyz. The path with the

path value w in the transition diagram of M

The automaton M starts from the initial state ¢y On applying the string
x, it reaches g;(=g;). On applying the string ¥, it comes back to g{= q;). So
after application of y* for each i 2 0, the antomaton is in the same state g;
On applying z. it reaches g,,, a final state. Hence. xv'z € L. As every state in
(0, 1s obtained by applying an nput symbol, vy # A. |
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APPLICATION OF PUMPING LEMMA

Step 1 Assume that L is regular. Let n be the number of states in the
corresponding finite automaton.

Step 2 Choose a string w such that | w| 2 n. Use pumping lemma to write
w o= vz with [av ] € mand |v] > 0.

Step 3 Find a suitable integer / such that xy'z € L. This contradicts cur
assumption. Hence L is not regular,

Note:  The crucial part of the procedure is 1o find i such that xv'z € L. In
some cases we prove xy'z € L by considering | xy'z |. In some cases we may
have to use the “structure’ of strings in L.

Show that the set L = {a" | i2 1} is not regular.

Solution

Step 1 Suppose L is regular. Let »n be the number of states in the finite
automaron accepting L.

Step 2 Letw = a". Then [w| = »~ > n. By pumping lemma, we can write
W = xvz with |xy] < nand [y > 0

A

Step 3 Consider xvz. |xy’z] = x| + 2]y] + |z] > x| + |¥] + |z
|y > 0. This means #° = |vvz|= lx] + [v] + |z] < |07
we have |v| £ n. Therefore.

ol = fal + 2]+ ol s a7 4

ie.
e inil <4< +nsn+l
Hence, | v=z | strictly lies between n= and (n + 1)°, but is not equal to any

- ol - - ¥
one of them. Thus | vz | is not a perfect square and so vz ¢ L. But by
pumping lemma. xv-z € L. This is a contradiction.
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Show that L = {¢"|p is a prime} is not regular.

Solution

Step 1 We suppose L is regular. Let i be the number of states in the finite
autcmaton accepting L.

Step 2 Let p be a prime number greater than n. Let w = ¢, By pumping
lemma. w can be written as w = xyz, with |xy | <nand |v] > 0. x ¥, z are
simply strings of «'s. So. v = &" for some m 2 | (and £ n).

Step3 Leti=p+ L Then {x'z| =]z + ' =p+(i-bm=p+
pm. By pumping lemma, xw'z € L But | xi'z| = p + pm = p(1 + m), and p(1
+ m) is not a prime. So xy'z € L. This is a contradiction. Thus L 1s not regular.

Show that L = {0'1'li = 1} is not regular,
Solution

Step 1 Suppose L is regular. Let » be the number of states in the finite
automaton accepting L. '

Step 2 Let w = 0"1". Then |w| = 2n > n. By pumping lemma, we write
w = xvz with x| £ nand |y # 0.

Step 3 We want to find 7 so that xv'z € L for getting a contradiction. The
string v can be in any of the following forms:
Case 1 v has 0's. ie. v = 0F for some k > 1.
Case 2 v has only 1's. ie. v = 1' for some [ > 1.
Case 3 v has both 0's and I's. ie. v = 0°V for some k. j = 1.
In Case 1. we can take i = 0. As w; = 0"1", az = 01" As k2 Loa -
k#n So, x2e L
In Case 2. take i = 0. As beiore, x: is 0" and m 2 n -1 So.xz ¢ L.
In Case 3. take i = 2. As vz = OO, vz = O P VOM YL As s
is not of the form O'l, xy'z ¢ L.
Thus in all the cases we get a contradiction. Therefore. L is not reguiar.
Show that L = {ww | w € {a b}*} is not regular.

Solution

Step 1  Suppose L is regular. Let » be the number of states in the automaion
M accepuing L. '-
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Step 2 Let us consider ww = a"ba"p in L. [ww| = 2(n + 1) > n. We can

apply pumping lemma to write wiv = xyz with | v| 2 0. [ xv] < .

Step 3 We want to find i so that xv'z ¢ L for getting a contradiction. The
string v can be in only one of the following forms:

Case 1 v has no b's, ie. v = ¢* for some k > 1.
Case 2 v has only one b.

We may note that v cannot have two b's. If so, [y} 27 + 2. But |y] £
|xv| € 71 In Case 1. we can take i = 0. Then v’z = xz is of the form a"'ba"b.
where m = n — k < n (or a"ba”'b). We cannot wnite x7 in the form e with
ue {a b}* and so xz ¢ L. In Case 2 too. we can take i = 0. Then 'z = xz2
has only one b {as one & 1s removed from xyvz. b being in v). So az € L as
any element in L should have an even number of @’s and an even number of
b’s.

Thus in both the cases we get a contradiction. Therefore. L is not regular.

CLOSURE PROPERTIES OF REGULAR SETS

If L is regular then L' is also regular.

We construct a transition system M7 by starting with the state diagram of
M, and reversing the direction of the directed edges. The set of inual states
of M’ is defined as the set F, and ¢, is defined as the (enly) final state of M
Le. M" =10, X. 8. F. {q})

It w e T(M), we have a path from ¢, to some final state in F with path
value w. By ‘reversing the edges’, we get a path in M’ from some final state
in F 10 gq Its path vatue is w’. So w! e T(M’). In a similar way. we can
see that if w, € T(M"), then ! & T(M). Thus from the state diagram it is
easy 10 see that T(M’) = T(M). We can prove rigorously that w € T(M) iff
wl e T(M’) by induction on pw|. So TGM) = T(M"). By (viii) of Section
5.27. T(M7) is regular. ie. TM)T is regular. |

If L is a regular set over L. then X* — L 1s also regular over L.
We construct another DFA M = (0, X. &. gy, F') by defining £ = Q - F,
i.e. M and M’ differ only in their final states. A final state of M’ is a nonfinal
state of M and vice versa. The state diagrams of M and M’ are the same except
for the final states.
w e T{M" if and onlv if O(ge, w) € F' = Q — F, ie. iff w ¢ L. This
proves T(M = I% = X0 |
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Theorem If X and ¥ are regular sets over X, then X m Y is also regular

over .

Proof By DeMorgan's law for sets. X N V= L% — ((£* — X) w (Z¥ - 1)). By

. 2%~ Xoand ¥ - ¥ are regular. So. (2F = X) U (ZF - P) is
also regular. By applving Theorem 5.7. once again Z¥ — ((£* — X)
(Z* — ¥)) s regular. 1.e. ¥ n Y is regular. |

REGULAR SETS AND REGULAR GRAMMARS

CONSTRUCTION OF A REGULAR GRAMMAR
GENERATING T(M) rorR A GIVEN DFA M

et M= gy ... . Gg,}. % 0. gy F). If wis in T(M), then it is obtained by
concatenating the labels corresponding to several transitions. the first from g,
and the last terminating at some final state. So for the grammar G to be
constructed. productions should correspond to transitions. Also, there should
be provision for terminating the derivation once a transition terminating at
some final state is encountered. With these ideas in mind. we construct G as

G = ({AQ A], A”}, Z-_ P. .(4{_})
where P is defined by the following rules:

(1) A; — aA; is included in P if (g @) = q; € F.
(i) A, = ad; and A; = « are included in P if 8(g;. a) = q; € F.
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We can show that L{(G) = T(M) by using the construction of P. Such a
construction gives

A= a iff 6{qg;. a) € F

So.
A(‘, = f?lx‘:li = A = .0 = dy .. ak—lAR' = ity ... A
iff Oqn, a)) = @ olq,, @) = g» ... Olqu @) € F
This proves that w = a, ... a, € L(G) iff d(gy, a; ... a) € F, e, iff
woe TOM). |

Construct a regular grammar G generating the regular set represented by
P = a*b(a + b)*.

Solution

We construct the DFA corresponding to P using the construction

' WL N o W A
) x_/ O————0
=]
S o ~ ~
S O

A
&

Let G = ({A0, A;}. {a b}. P. Ay). where P is given by
z":lrl} — a_-"lﬂ, A.U — bfh. AU — b

A, — aA, A — bA,, A — a A — b

©

A

G is the required regular grammar.
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CONSTRUCTION OF A TRANSITION SYSTEM M
ACCEPTING L(G) FOR A GIVEN REGULAR
GRAMMAR G

Let G = ({Aq A o0 Ad 0 P Ag). We construct a transition system M
whose (i) states correspond to variables. (ii) initial state corresponds to Ag.
and (iii) transitions in M correspond to productions in £. As the Iast
production applied in any derivation is of the form A; — a, the corresponding
transition terminates at a new state. and this i1s the unique final state.

We define M as ({gy. .. .. g, gs}, . O g {g;}) where O is detined as
tollows: ' ‘

(1) Each production 4; — w@A; induces a transition from g; to g; with
Iabel a.

(i1) Each production A; — @ induces a transition from ¢ to gy with
label a.

From the construction it 1s easy to see that Ay = 94| = a4 = ...
= a; ... a4, = a; ... a,is a derivation of aya- ... a, Iff there is a

path in M starting from ¢, and terminating in g, with path value aya, ... a,
Therefore. L(G) = T(M).

Let G = ({An A}, {a. &} P, Ag), where P consists of A4 — ad|. A| — PA,.
Ay = a, Ay = bAg Construct a transition system M accepting L(G).

Solution

Ler M = ({4 g1 g¢}. {a. b}. 6. go {gs}). where gy and g, correspond to Ay
and A, respectivelv and ¢, is the new (final) state introduced. 4, — ad;
induces a transition from ¢ to ¢, with label 4. Similarly. A; — bA; and
Ay — bAy induce transitions from g, to ¢, with label b and from ¢, to gy with
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label b, respectively. A; — a induces a transition from g; to gy with label a.
M is given in Fig. 5.33.

b

If a regular grammar G is given by § — aS|a, find M accepting L(G).

Solution

Let ¢y correspond o S and g, be the new (final) state. M is given in
Fig. 5.34. Symbolically.

M = ({qgn. g7} {a}. & qo. {Q‘})

a

Find the regular expression representing the set of all strings of the form

(a) "B where m, n, p 2 1

(b) b where m, n, p 2 1

(¢) a*ba™'b where m 2 0, n = 1
Solution

(a) aa*bb*cc*
(b) aa*(bb)(bb)*ccc(cee)*
(¢c) aa*b(aa)*bb
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Find the sets represented by the following regular expressions.
(a) (a + b)*(aa + bb + ab + baj)*
(b) (aa)* + (aaa)*
(c) (1 +01 + 00)*A + 0 + 00)
(d) a + b(a + b)*

Solution

(a) The set of all strings having an odd number of symbols from {a, b}*
(b) {x € {a}*| | x| is divisible by 2 or 3}
(¢) The bEl’. ot all strings over {0, 1} having no substring of more than

two adjacent O’s.
(d) {a. b, ba. bb, baa, bab, bba. bbb, ...}

Show that {w & {a. b}* | w contains an equal number of a’s and b's} is not
regular.

Solution

We prove this by contradiction. Assume that L = 7(M) for some DFA M with
n states. Let w = d"b' € L and |w| = 2". Using the pumping lemma, we write
w =z with [xv] < nand |v] > 0. As xyz = @'b', xy = o where { < n and
hence v = & for some j 1 £j £ n. Consider xv'z. Now xyz has an equal number
of ¢'s and b’s. But xv"z has (n + j) @’s and n b's. As n +j # n, .1’_\;3: g L.
This contradiction proves that L is not regular.

Show that L = {a@'Fc* | k > i + j} is not regular.

Solution

We prove this by contradiction. Assume L = T(M) for some DFA with n
states. Choose w = B¢ in L. Using the pumpmg lemma, we write w = xyz
with | vf < rand [yl > 0. Asw = d'blc A1 xv = d for some { < 5. This means
that v = «’ for some j. 1 €j £ n. Then ,n‘ - = "Bt Choosing k large
enough so that n + jk > 2n, we can make »n + jk + n > 3n. So. 0"z e L.

Hence L is not regular.
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Prove that P + PQ*Q = a*bQ* where P = b + aa*b and Q is any regular

expression.

Proof L.H.S. = PA + PQ*Q bv 15
= PA + Q*Q) by 12
= PQ* by Io

(b + aa*bh)Q* by definition of P
(Ab + aa*bh)Q* by Iy

(A + aa*)bQ* by 1},

= a*bQ* bv 1

= RHS.

I

Construct 4 regular grammar accepting L = {w € {a, 5}* | w is & string over
{a. b} such that the number of b's is 3 mod 4}.

Solution

We construct a DFA M accepting L directly. The symbol ¢ can occur in any
place in w and b has to occur in 4k + 3 places, where &£ 2 0. So we can have
states ¢;, [ = 0, 1. 2. 3. for remembering that the siring processed so far has
4k 4k + 1, 4k + 2 and 4k + 3 b’s (k = 0). g3 is the only final state. Also M
does not change state on reading a’s. The state diagram vepresenting M is

a a

o~

b

G = ({Ag. A, A A3}, {a, b}, P. Ap) where P consists of Ay — ad,.
AO -7 bA], A] —> bA], A — E?A:.. f’l: — aAa, A: — bA3, Ay — b, Ay — dAs,
Axr — aAn.
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AND AUTOMATA THEORY

Possible Questions:

N akRwWDdDE

10.

Part-A(6 mark)

State and prove pumping lemma for regular sets.

Show that the set L ={a"i?}|i> 1} is not regular.

Show that L = {a” | p is prime } is not regular.

State and prove Kleen’s theorem.

Show that L = {ww | w € {a, b}*} is not regular.

Prove that If L is regular then LT is also regular.

Prove that If L is a regular set over . Then X* - L is also regular over X.
Construct a regular grammar G generating the regular set represented by P =
a*b(a + b)*.

Let G = ({Ao, A1}, {a, b}, P, Ag), where P consists of Ag—a A;, A;—b A, As
— a, A1 — b Ap Construct a transition system M accepting L(G).

Prove that P + PQ*Q = a*bQ* where P = b + aa*b and Q is any regular
expression.

Part C(10 mark)

Show that L = {0' 1' |1> 1} is not regular.
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Questions choice 1 choice 2 choice 3 choice 4
UNIT - IV

Which of the following regular
expressions represents the set of strings

rt)* tr)* rt* ter*
which do not contain a substring ‘rt”if ) = () (tr) () ()
{r.t}
Arden’s theorem is true for: More than one ini Null transitions Non_—r?ull state

transitions
1,01,11
(0+g) (1+¢) represents {0, 1,01, &} {0, 1, ¢} ‘1{8' 5;0 11,00, {0, 1}
Regular Expression denote precisely the Class Power Set Super Set set
of Regular Language.

Which of the following is not a negative .

| I |
property of Context free languages? ntersection Complement Both (a) and (b) plus
The intersection of context free language context free

regular language context sensitive | language

and regular language is language
Which of the following is regular? at0p1o0 (a+b)*-{a'®b'®} Both (a) and (b) ab
. . Power
Which of the follqwmg can be used to Ardens theorem Construction Regular Closure  kleen
prove a language is not context free?
method
. . Power
Which of the foll .
ich of the fo owing can be used to Arden’s theorem Construction Regular Closure kleen’s theorem
prove a language is not context free?
method
The most swtab_le d_ata st_ructure PSEd 0 Queue Linked List Tree Hash Tables
represent the derivations in compiler:
n which order are the children of any node From the left Fromtheright  Arbitrarily empty
ordered?
Which among the following is the root of Production P Terminal T Variable \/
the parse tree? S
For the expression E*(E) where * and
brackets are the operation, number of 6 7 5 2
nodes in the respective parse tree are:
The number of leaves in a parse tree with
expression E*(E) where * and () are 5 2 4 3
operators
_A gramr_nar with more than one parse tree Unambiguous Ambiguous Regular set
is called:
- Is the acyclic graphical Binary tree Oct tree Parse tree tree
representation of a grammar.
Grammar is checked by which component Semantic
. Scanner Parser accepter
of compiler Analyzer
both abstract
Which of the following are distinct to abstract parse . parse trees and
sentence diagram trees
parse trees? trees sentence
diagrams
¢- closure of q1 in the given transition
. {a1 {00, g2} {01, a2} {90, a1, 92}
graph:
Predict the total number of final states
after removing the e-moves from the given 1 2 3 0

NFA?

Answer

()

Non-null transitions

{0,1,01, ¢}

Class

Both (a) and (b)

context free
language

Both (a) and (b)

Regular Closure

Regular Closure

Tree

From the left

Starting Variable Starting Variable

S

Unambiguous

Parse tree

Parser

both abstract
parse trees and
sentence
diagrams

{a1, 92}
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UNIT-V

Context free Languages and Derivation trees - Ambiguity in Context free grammars -
Simplification of Context free grammars (examples only).

CONTEXT-FREE LANGUAGES AND DERIVATION
TREES

Context-free languages are applied in parser design. They are also useful for
describing block structures in programming languages. It is easy to visualize
derivations in context-free languages as we can represent derivations using tree
structures.

Construct a context-free grammar G generating all integers (with sign).

Solution

Let
G=(Vy. Z. P. S)
where
V= {85, (sign). (digit). (Integer)}

£=140,1. 2.3 ....9 + -}
P consists of § — {(sign) (integer), {sign) — + | —,
(integer) — (digit) (integer) | {digit)
(digity — 011]21...19

L(G) = the set of all integers. For example, the derivation of —17 can be
obtained as follows:

S = (sign) {integer) = — (integer)
= - {(digit) (integer) = — 1 (integery = — 1 (digit)

= = 17

DERIVATION TREES
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Definition . A derivation tree (also called a parse tree) for a CFG

G = (V.. Z. P. 8) 15 a tree satisfying the following conditions:

(1) Every vertex has a label which is a variable or terminal or A

(i1) The root has label §.

(1i1) The label of an internal vertex is a variable.

(iv) If the vertices ny. na. . ... i, written with labels X, X-. ..., X; are
the sons of vertex n with label A, then A — X3X-> ... X, is a
production 1n P.

(v) A vertex n 1s a leaf if its label is @ € Z or A, n is the only son of
its father if its label is A

For example. let & = ({S. A}. {a. b}. P. §). where P consists of § —
aAS |a|SS. A — SbA|ba.

Ordering of Leaves from the Left

Definition The vield of a derivation tree is the concatenation of the
labels of the leaves without repetition in the left-to-right ordering.

b il .7
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Definition A subtree of a derivation tree T is a tree (i) whose root is

some vertex v of 7. (ii) whose vertices are the descendants of v together with
their labels, and (iii) whose edges are those connecting the descendants of .

A subtree

(
Theorem Let G = (V. X, P, §) be a CFG. Then S = « if and only if
there is a derivation tree for & with vield o

Proof We prove that A = « if and only if there is an A-tree with vield «.
Once this is proved. the theorem follows by assuming that A = §.

Let o be the vield of an A-tree 7. We prove that A = ¢ by induction on
the number of internal vertices in 7.
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By condition (iv) of Definition A — AA- ... A, = is a production

in G, i.e. A = ¢ Thus there is basis for induction. Now assume the result
for all trees with at most & — 1 internal vertices (kK > 1).

Let 7" be an A-tree with &k internal vertices (kK = 2). Let vy, va. ..., v,
be (he sons of the root in the left-to-right ordering. Let their labels be
Xi. X-. .. .. X,,. By condition (iv) of Definition LA —= XX L 0 X, 18 in
P. and so

A = X1X3 e Xm

As k 2 2. at least one of the sons is an internal vertex. By the left-to-right
ordering of leaves, ¢ can be written as 040~ . .. ¢,,. where ¢; is obtained by
the concatenation of the labels of the leaves which are descendants of vertex
v, It v; 1s an internal vertex, consider the subtree of 7" with v; as its root. The
number of internal vertices of the subtree 1s less than k (as there are k internal
vertices in T and at least one of them. viz. its root, 15 not in the subtree). Sc
by induction hypothesis applied to the subtree. X, = ;. If v; is not an internal
vertex. i1.e. a leaf, then X; = «,

we get
A= XX X, = XXz, X, ... = 0 ... 0 = O

i.e. A = 0. By the principle of induction. A = « whenever « is the yield
of an A-tree.

To prove the ‘only if* part, let us assume that A = « We have to
construct an A-tree whose vield is &. We do this by induction on the number
of steps in A = .
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for induction. Assume the result for derivations in at most k£ steps. Let
: o k-1
A A o we can splitthisas A = X, ... X, = a Now, A = X, ... X,

implies A — X;X>... X,, is a production in P. In the derivation X;X> ... X,
“L o, cither (i) X; is not changed throughout the derivation, or (ii) X; is
changed in some subsequent step. Let ¢; be the substring of o derived from X
Then X; = o in (i) and X; = o in (i). As G is context-free, in every step of
the derivation X X- ... X,, = o. we replace a single variable by a string, As
Oy, G, ..., O, account for all the symbols in & we have o= oo ... o,

We construct the derivation tree with yield o as follows: As A - X, ... X,
1S in P. we construct a tree with m leaves whose labels are X, .. ., X}, in the
left-to-right ordering. ) '

we leave the

boow 5 . =1
vertex 1; as 1t is. In (i1). X; = o4 is less than & steps (as X; ... X, = a). By
induction hypothesis there exists an X-tree 7. with vield ¢, We attach the tree
T. at the vertex v; (i.e. v; is the root of T)). N '

_ let 7 and j be the first and the last indexes such that
X; and X; satisfy (ii). So. ¢ ... o, are the labels of leaves at level 1 in T.
o 1s the vield of the X-tree T. etc.
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Thus we get a derivation tree with yield o By the principle of induction
we can get the result for any derivation. This completes the proof of “only if”

part. 1

Remark If A derives a terminal string w and if the first step in the derivation
is A = AA, ... A, then we can write w as wp ... w, so that
A; = w; (Actually, in the derivation tree for w, the ith son of the root has
the label A, and w; is the vield of the subtree whose root is the ith son.)

Let G be the grammar § — 0B|1A. A — 0[05|14A, B — 1]|1S|0BB. For
the string 00110101, find (a) the leftmost derivation. (b) the rightmost

dertvation, and (¢) the derivation tree.
Solution
(a) S= 0B = 00BB = 001B = 0011S
= 071708 = 0°1°015 = 0°1°010B = 0°1°0101

(by S = 0B = 00BB => 00B1S = 00B10B
= 0°B101S = 0-B1010B = 0-B10101 = 0-110101.
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(¢) The derivation tree is

AMBIGUITY IN CONTEXT-FREE GRAMMARS

Definition A terminal string w € L{G) 1s ambiguous 1f there exist two

or more derivation trees for w (or there exist two or more leftmost derivations
of w.

Definition A context-free grammar G 1s ambiguous if there exists some
w e L{G), which is ambiguous.

SIMPLIFICATION OF CONTEXT-FREE GRAMMARS

In a CFG G, it may not be necessary to use all the symbols in Vy U Z, or
all the productions in P for deriving sentences. So when we study a context-
free language L(G), we try to eliminate those symbols and productions in G
which are not useful for the derivation of sentences.
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Consider, for example.
G = ({S. A. B. C. E}, {a, b, c}. P. §)

where
P={S—>AB A—>a B—-bB—C E—= c|A}

It is easy to see that L(G) = {ab}. Let G" = ({S, A. B}, {a. b}. P’, §), where
P’ consists of § — AB. A — a. B — b. L(G) = L(G"). We have eliminated
the symbols C, E and ¢ and the productions B — C. E — c¢|A. We note the

following points regarding the symbols and productions which are eliminated:

(i) C does not derive any terminal string.

(i) £ and ¢ do not appear in any sentential form.

(iii) £ — A is a null production.

(iv) B — C simply replaces B by C.

In this section, we give the construction to eliminate (i) variables not
deriving terminal strings, (ii) symbols not appearing in any sentential form,
(iit) null productions. and (iv) productions of the form A — B.

CONSTRUCTION OF REDUCED GRAMMARS

Let G = (Vy, Z. P. §) be given by the productions § — AB, A — a. B = b,
B — C. E — ¢. Find G’ such that every variable in " derives some terminal

string.

Solution

(a) Construction of V'y:
W, ={A, B. E} since A - a. B — b. E — ¢ are productions with a
terminal string on the R.H.S.

W.= W, U {A, € Vi|A, = o for some a € (E U {A, B, E})*}

=W, v {5} ={A, B, E. §}
W= W, u {4 € Vyl4, — aforsome ae (Z v {5 A, B, E})y*}

a

=W3U'EI=WJ
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Therefore.
/v = {S. A, B, F}

(b) Construction of P’:
P’ = {A — alA,. ae (Vi U %)
{S—-AB. A - a. B — b. E — ¢}

H

Theretore.
G = ({S, A, B, E}. {a. b. c}. P'. §)

Now we prove:

G

(i) Ifeach A € V). then A

then A € Vi.
(i) L(G") = L(G).

To prove (i) we note that W, = W, U W. ... U W,. We prove by

> w for some w € Z*; conversely, if A =G> W,

induction on i that for i = 1, 2. .. .. k, A € W, implies A = w for some
G

we X* If A e W, then A = w. So the production A — w is in P
G

Therefore. A = 1w. Thus there is basis for induction. Let us assume the result
e

for i. Let A € W,.,. Then either A € W,. in which case, A = w for some
Iot

w € X* by induction hypothesis. Or, there exists a production A — o with

o € (L v w)* By definiton of P\ A — o is in P. We can write

o=XX> ... X, where X; € T U W, If X; € W; by induction hypothesis,

X; = w; for some w; € I*. S0. A = wiws ... w, € L¥ (when X; is a terminal,
G ' G’ '

w; = X;). By induction the result is true for i = 1. 2. .. .. &

The converse part can be proved in a similar way by induction on the

number of steps in the derivation A = w. We see immediately that L(G")
G

L(G) as Vi c Vyand P' < P. To prove L(G) € L(G"), we need an auxiliary
result

A4 = n if A =G> w for some w & X%
Gi
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We prove by induction on the number of steps in the derivation A = w.
G

IfA = w thend 5 wisinPandA e W, Vi AsA e Vyand w e %,
G

A= wisin P. SoA = w. and there 15 basis for induction.
ot

k=]
let A = w.
(

*

we can split this as A :> X X- ... X, =G'-’ WWs ... W, such
that X; :;. w; If X; e I, then w; -X

If X; € Vy then by (1), X; € V. As X; ? w; in at most k steps,
X, ? w;. Also, Xy, Xo, X,, € (£ U Vy)* implies that A — XX, ... X, is

in P’. Thus, A =:> XiX-... X, :5 wiws ... w,. Hence by induction,

is true for all denvatlons In parucular S “—'> w implies § ::> w. This proves

that L(G) < L(G’), and (ii) is completely proved.
Find a reduced grammar equivalent to the grammar G whose productions are
S = AB|CA. B - BC|AB. A - a C - aB|b

Solution

Step 1 W, ={A, C} as A — a and C — b are productions with a terminal
string on R.H.S.

Wor= {A. C} U {A|A, — o with @ € (Z U {A, C}H*}

{A. C} w {S} as we have § — CA

Wi= (A, C, S} U {A 1A — awith e (£ U {S. A C}H¥*}
={A.C. St U 0
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V= Wh = {S. A, C}
P'={A — alA. ae (Vi Iy}
={S = CA. A = a C— b)
Thus.

G = {8 A Ch {a. b} (S — CA.A = a. C - b}, )

Step 2 We have to apply Theorem 6.4 to G,. Thus,
W, = {S}

As we have production § — CA and § € W,, W, = {§} v {A. C}
As A — a and C — b are productions with A, C € W,, W3 ={S, A, C. a. b}

As I’Vg = ‘V’:\: U X, P’ = {S —> H‘Al = W3} = P’
Therefore,
G =S A C}{a. b}, {S§S—=CA A = a C— b} 8

is the reduced grammar.
ELIMINATION OF NULL PRODUCTIONS

A context-free grammar may have productions of the form A — A. The
production A — A is just used to erase A. So a production of the form A —
A, where A is a variable, is called a null production.

Definition A variable A in a context-free grammar is nullable if A = A.

-

ELIMINATION OF UNIT PRODUCTIONS

Definition A unit production (or a chain rule) in a context-free
grammar ( 18 a production of the form A — B, where A and B are variables
n G.
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Let Gbe S > AB, A —a B— C|b,C— D.D— Eand E — a. Eliminate
unit productions and get an equivalent grammar.
Solution
Step 1 Wy(S) = {S}, Wi(S) = W(S) v B
Hence W(S) = {S}. Similarly,
W(A) = {A}.  WI(E) = {E}
Wo(B) = {B}.  WiB) = {B} v {C} = {B. C}
W2(B)= {B. C} u {D}. Wi(B) = {B, C, D} W {E}, Wy(B) = W5(B)

Therefore, |
W(B) = {B. C. D, E}
Similarly,
Wy(O) = {C}. Wi(C) = {C, D}. W-{C} = {C. D, E} = W5(C)
Therefore,
W(C) = {C, D, E}. Wo(D) = {D}
Hence,
W (D) = {D. E} = Wy(D)
Thus.

W(D) = (D, E}

Step 2 The productions in G, are
S = AB. A = a E — a
B — b|a. C — a. D = a

By construction. G; has no unit productions.
To complete the proof we have to show that L(G") = L(G)).
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Step 3 L(G") = L(G). If A —» «is in P, — P, then it is induced by 8 — ¢
in P with B e WA), e Vy. Be WA implies A 5 B. Hence, A %‘» B
:¢-a So, if A ﬁ o. then A :$ ¢. This proves L(G) c L(G).
To prove the reverse mc!usmn we start with a leftmost derivation
S =20 0. 0 =w
in G, ¢ ¢ G

Let 7 be the smallest index such that ¢ ? ¢,,, 1s obtained by a unit
production and j be the smallest index greater than 7 such that o _—(? Qe 18

obtained by a nonunit production. So, § = ;. and «; = 0, can be
s

written as
o = wAf = wAL L = .= wAD = wiy b = o
A; € WA and Ap = Yis a nonunit production. Therefore, A; — ¥y is a
production in P;. Hence. ¢; :;b .. Thus, we have § ? Oy
l :
Repeating the argument whenever some unit production occurs in the
remaining part of the derivation, we can prove that § :;> o, = w. This proves

L(G") ¢ L(G). 1
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AND AUTOMATA THEORY

Possible Questions:

10.

Part-A(6 mark)

Consider G whose productions are S — aAS |a, A— SbA | SS | ba. Show that S

aabbaa and construct a derivation tree whose yield is aabbaa.

Prove thatif A w in G, then there is leftmost derivation of w.

Let G be the grammar S — 0B | 1A, A — 0/ 0S | 1 AA, B — 1|1S |0BB. For the

string 00110101, find (a) the leftmost derivation, (b) the rightmost derivation and

(c) the derivation tree.

If G is the grammar S — SbS | a, show that G is ambiguous.

If G 1s a CFG such that L(G) # ¢. Find an equivalent grammar G’ such that each

variable in G’ derives some terminal string.

Let G = (VN,Z, P, S) be given by the productions S — AB, A —a, B— b,

B—C, E—-c. Find G such that every variable in G’ derives some terminal string.
Prove that for every CFG G there exists a reduced grammar G’ which is

equivalent to G.

Find a reduced grammar equivalent to the grammar G whose productions are S

— AB|CA,S—BC|AB, A—a,C—aB|b.

Construct a reduced grammar equivalent to the grammar S — aAa, A — Sb | bCC

| DaA, C —abb | DD, E — aC,D — aDA .

Consider the grammar G whose productions are S — aS|AB,A —-> A, B— A, D

— b. construct a grammar G; without null productions generating L(G) — {A}.

Part C(10 mark)

LetGbe S— AB,A —a,B— C|b,C — D, D — E and E — a. Eliminate unit
productions and get an equivalent grammar.
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Questions choice 1 choice 2 choice 3 choice 4 Answer
UNIT -V
WhICh among t_he following is the format A>B Asb B->Aa A A>B
of unit production?

Given Grammar G:S->aA, A->a| A,B->B
The number of productions to be removed 0 1 2 3 2
immediately as Unit productions:

Given grammar:S->aA ,A->a,A->B,B->
A,B->bb Which of the following is the
production of B after simplification by
removal of unit productions?

If grammar G is unambiguous, G’
produced after the removal of Unit ambiguous unambiguous  finite nonfinite unambiguous
production will be:

bb aA A| bb bb

S A S A
A can be A-> derivable if and only if A->Als A->B,B->A Both (a) and A>Als
actually a . B actually a
. exists (b) .
production production
Which of the following variables in the
given grammar is called live variable? S- S A B c A
>AB, A->a
CFGs are more powerful than: DFA NDFA Mealy Machine All the above All the above
L={ww|wisa
Which of the following are context free i string and r i
= = Both (a) and (b) null ={a'bli>=
language? L={abli>=0} represents (a) and (b) L={a'b'i>=0}
reverse}
e-transitions are conditional unconditional input dependent output unconditional
The of a set of states, P, of
an NFA is defined as the set of states e-closure e-pack Qinthe tuple tuple e-closure
reachable from any state in P following e- P P P
transitions.
If d is not defined on the current state and
the current tape symbol, then the machine does not halts halts goes into loop fc stuck halts
Random access Randomly Random
. Random access Random access
RASP stands for: storage accessed stored access storage
stored program - stored program
program program programming
Enumerator is a turing machine with - . .
an output printel 5 input tapes  a stack 1 tape an output printer
For the following language, an enumerator {ab, a’b? a’b®, {e, ab, a’’, {ab, a’? a’b®
i ) ; _ N a b 1 ) ) ab 7 il il
will print: L={anbn|n>=0} . a’b’, ..} .
L is aregular Language if and or_1|y_|f_the Equivalence Reflexive Myhill Nerode Equivalence
set of classes of IL is finite.
While applying Pumping lemma over a
language, we consider a string w that 9 5 3 3

belong to L and fragment it into
parts. 6
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