End Semester Exam: 3 Hours

### Instruction Hours / week: L: 4 T: 0 P: 0 Marks: Internal: 40 External: 60 Total: 100

#### UNIT – I

Genetics – historical introduction – Mendelian principles – nucleic acid as genetic material Experimental evidence. The duplex DNA – chemical and physical structure of DNA – circular and super helical DNA - different forms of DNA. DNA replication – enzymology of DNA replication – different modes, models and types of DNA replication – Eukaryotic DNA replication.

#### UNIT – II

Mutagen, mutagenesis and mutation. Luria Delbruck experiment and its significance. Molecular basis of mutation. Spontaneous and induced mutations. Different types of mutation, mutant detection, mutant selection and carcinogenicity testing. DNA damage – types of damage (deamination, oxidative damage, alkylation, Pyrimidine dimers) – DNA repair mechanism (base excision, nucleotide excision, recombination repair, SOS repair).

#### UNIT – III

Genetic code: DNA transcription in prokaryotes and eukaryotes. Trancriptional control and modification system – RNA translation in prokaryotes and eukaryotes. Polypeptide synthesis (maturation and processing of RNA) – Translational modification. Regulation of gene expression – Operon model (Lac, Trp, Ara) – Regulation of gene expression in eukaryotes.

#### UNIT – IV

Genetic recombination in bacteria – conjugation, transformation, transduction. Linkage and genetic mapping. Phage genetics (Replication cycle) – Phage T4 mutants (detection and isolation) — Genetic map of T4 phage.

#### $\mathbf{UNIT} - \mathbf{V}$

Yeast genetics – Life cycle, metabolism, genome and extra chromosomal element. Genetic nomenclature in yeast. Tetrad analysis, Petite mutants (mutant isolation and complementation). Genetic mapping in yeast, *Neurospora* and *Drosophila*.

#### SUGGESTED READINGS

#### **TEXT BOOKS**

- 1. Malacinski, G.M. (2008). *Freifelder's Essentials of Molecular Biology*. Narosa Publishing House, New Delhi.
- 2. Verma, P.S., and Agarwal, V.K., (2008). *Cell Biology, Genetics, Molecular Biology and Evolution*. S. Chand & Company Ltd, New Delhi
- 3. Gardner, E.J., Simmons, M.J., and Snustad, D.P., (2008). *Principles of Genetics*. (8<sup>th</sup> ed.). John Wiley and Sons, NY.
- 4. Guthrie, C., and Fink, G., (2002). *Guide to Yeast Genetics and Molecular Cell Biology*. Elsevier Publication, USA.
- 5. Klug, W.S., Cummings, M.R. Spencer, C.A., and Palladino, M.A., (2009). *Essentials of Genetics*. (7<sup>th</sup> ed.). Prentice Hall, New Jersey.

- 6. Maloy, S.R., Cronan Jr, J.E., and Freifelder, D., (2001). *Microbial Genetics*. Narosa Publishing House. New Delhi.
- 7. Weaver, R.F. (2002). *Molecular Biology*. (2<sup>nd</sup> ed.). McGraw-Hill, New York.
- 8. Peter J. Russell, i Genetics A molecular approach, 7th edition, 2010. Pearson Benjamin Cummings Publishers, Boston, USA.

#### REFERENCES

- 1. Alberts. (2008). *Molecular Biology of The Cell*, (5<sup>th</sup> ed.). Garland Science, Taylor and Francis group, LIC, an Informa Science.
- 2. Griffiths et al., (2002). Modern genetic analysis, (2<sup>nd</sup> ed.). Freeman.
- 3. Hartl and Jones, (1998). Genetics-Principles and Analysis, (4th ed.). Jones & Bartlett.
- 4. Krebs, E,J., S.T.Kilpatrick and E.S.Goldstein, (2008). *Lewin's Genes X*, (10<sup>th</sup> ed.). Jones and Bartlett publishers, Canada.
- 5. Nelson, D., and Cox, M.M., (2008). Lehninger's Principles of Biochemistry, (5<sup>th</sup> ed.). McMillan.
- 6. Tamarin, R.H. (2001). *Principles of Genetics*. (7<sup>th</sup> ed.). Wm. C. Brown Publishers. England
- 7. Turner, P., McLennan, A., Bates, A., and White, M., (2005). *Molecular Biology*. (3<sup>rd</sup> ed.). Taylor and Francis group.
- 8. Watson, J.D., Baker, T., Bell, S., Gann, A., Levine, M., and Losick, R., (2008). *Molecular Biology of Genes*. (6<sup>th</sup> ed.). Pearson Education.



# DEPARTMENT OF MICROBIOLOGY

KARPAGAM UNIVERSITY

(Deemed University Established Under Section 3 of UGC Act, 1956) Eachanari PO, Coimbatore -641 021, India.

### I - M.Sc Microbiology (Batch 2017-2019)

### Lecture Plan

| Unit - | I |
|--------|---|
|--------|---|

| S. No | Duration | Торіс                                                     | Reference      |
|-------|----------|-----------------------------------------------------------|----------------|
| 1.    | 2        | History of Genetics – Types and Mendelian principles      | T1:1 to 10     |
|       |          |                                                           | R1: 3 to 4/24- |
|       |          |                                                           | 27             |
| 2.    | 2        | Experimental evidence on nucleic acid as genetic material | T1: 13 to 15 / |
|       |          |                                                           | 17 to 28       |
|       |          |                                                           | R1: 245 to 247 |
| 3.    | 2        | Structure of DNA – Physical and Chemical Nature           | T1:20 to 44    |
|       |          |                                                           | R1: 29 to 49   |
| 4.    | 2        | Different forms of DNA                                    | T1: 25 to 26   |
| 5.    | 2        | DNA replication – Types, models and modes of replication. | T1: 170 to 172 |
|       |          |                                                           | R1: 47 to 48   |
| 6.    | 2        | Enzymology of DNA replication                             | T1: 185 to 187 |
| 7.    | 1        | Video presentation on DNA structure and DNA replication   | W1             |
| 8.    | 1        | Class Test I                                              | -              |
|       |          | Total Hours                                               | 14             |

R1: David Freifelder, Microbial Genetics. Narosa Publishing House, 10<sup>th</sup> edition, 2004. New Delhi, India.

T1: Peter J. Russell, i Genetics – A molecular approach, 7<sup>th</sup> edition, 2010. Pearson Benjamin Cummings Publishers, Boston, USA.

W1: www.coldspringharborlabs.edu/Mol.Biol.html.

# Unit - I

# **Historical Development**

# People have known about inheritance for a long time

Example - children resemble their parents

- domestication of animals and plants, selective breeding for good characteristics

- Despite knowing about inheritance in general, a number of incorrect ideas had to be generated and overcome before modern genetics could arise.
- 1. All life comes from other life. Living organisms are not spontaneouslygenerated from non-living material. Big exception: origin of life.
- 2. Species concept: offspring arise only when two members of the same species mate. Monstrous hybrids don't exist.
- 3. Organisms develop by expressing information carried in their hereditary material. As opposed to "preformation", the idea that in each sperm (or egg) is a tiny, fully-formed human that merely grows in size.
- 4. The environment can't alter the hereditary material in a directed fashion. There is no "inheritance of acquired characteristics". Mutations are random events.
- 5. Male and female parents contribute equally to the offspring.

# Three major events in the mid-1800's led directly to the development of modern genetics.

| Year | Scientist(s)                                        | Discovery                                                                                                                                                                  |
|------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1858 | Charles Darwin, Alfred Russel<br>Wallace            | Joint announcement of the theory of<br>natural selection-that members of a<br>population who are better adapted to<br>the environment survive and pass on<br>their traits. |
| 1859 | Charles Darwin                                      | Published The Origin of Species.                                                                                                                                           |
| 1866 | Gregor Mendel                                       | Published the results of his investigations of the inheritance of "factors" in pea plants.                                                                                 |
| 1900 | Carl Correns, Hugo de Vries,<br>Erich von Tschermak | Mendel's principles were<br>independently discovered and verified,<br>marking the beginning of modern<br>genetics.                                                         |
| 1902 | Walter Sutton                                       | Pointed out the interrelationships<br>between cytology and Mendelism,<br>closing the gap between cell<br>morphology and heredity.                                          |
| 1905 | Nettie Stevens, Edmund Wilson                       | Independently described the behavior<br>of sex chromosomes-XX determines<br>female; XY determines male.                                                                    |
| 1908 | Archibald Garrod                                    | Proposed that some human diseases<br>are due to "inborn errors of<br>metabolism" that result from the lack                                                                 |

|       |                               | of a specific enzyme.                      |
|-------|-------------------------------|--------------------------------------------|
|       |                               | Proposed a theory of sex-linked            |
|       |                               | inheritance for the first mutation         |
| 1010  |                               | discovered in the fruit fly, Drosophila,   |
| 1910  | Thomas Hunt Morgan            | white eye. This was followed by the        |
|       |                               | gene theory, including the principle of    |
|       |                               |                                            |
|       |                               | linkage.                                   |
| 1927  | Hermann J. Muller             | Used x-rays to cause artificial gene       |
|       |                               | mutations in Drosophila.                   |
|       |                               | Proposed that some unknown                 |
| 1029  | Encl Cuiffith                 | "principle" had transformed the            |
| 1928  | Fred Griffith                 | harmless R strain of <i>Diplococcus</i> to |
|       |                               | the virulent S strain.                     |
|       | Harriet B. Creighton ,Barbara | Demonstrated the cytological proof         |
| 1931  | McClintock                    | for crossing-over in maize.                |
|       | MCCIIIIIOCK                   |                                            |
|       |                               | Irradiated the red bread mold,             |
| 1941  | George Beadle ,Edward Tatum   | Neurospora, and proved that the gene       |
| 1711  | George Beaule, Laward Tatam   | produces its effect by regulating          |
|       |                               | particular enzymes.                        |
|       |                               | Reported that they had purified the        |
| 1944  | Oswald Avery ,Colin MacLeod,  | transforming principle in Griffith's       |
| -,    | Maclyn McCarty                | experiment and that it was DNA.            |
|       |                               | Organized a phage course at Cold           |
|       |                               | Spring Harbor Laboratory which was         |
|       |                               |                                            |
| 1945  | Max Delbruck                  | taught for 26 consecutive years. This      |
|       |                               | course was the training ground of the      |
|       |                               | first two generations of molecular         |
|       |                               | biologists                                 |
| late  |                               | Developed the hypothesis of                |
|       | Barbara McClintock            | transposable elements to explain color     |
| 1940s |                               | variations in corn.                        |
|       |                               | Discovered a one-to-one ratio of           |
|       |                               | adenine to thymine and guanine to          |
| 1950  | Erwin Chargaff                | cytosine in DNA samples from a             |
|       |                               | variety of organisms.                      |
|       |                               |                                            |
| 1951  | Rosalind Franklin             | Obtained sharp X-ray diffraction           |
|       |                               | photographs of DNA.                        |
|       |                               | Used phages in which the protein was       |
| 1052  | Martha Chasa Alfred Harshar   | labeled with 35S and the DNA with          |
| 1952  | Martha Chase ,Alfred Hershey  | 32P for the final proof that DNA is the    |
|       |                               | molecule of heredity.                      |
|       |                               | Solved the three-dimensional structure     |
| 1953  | Francis Crick ,James Watson   | of the DNA molecule.                       |
|       |                               |                                            |
| 1958  | Matthew Meselson ,Frank Stahl | Used isotopes of nitrogen to prove the     |
|       | ,                             | semiconservative replication of DNA.       |

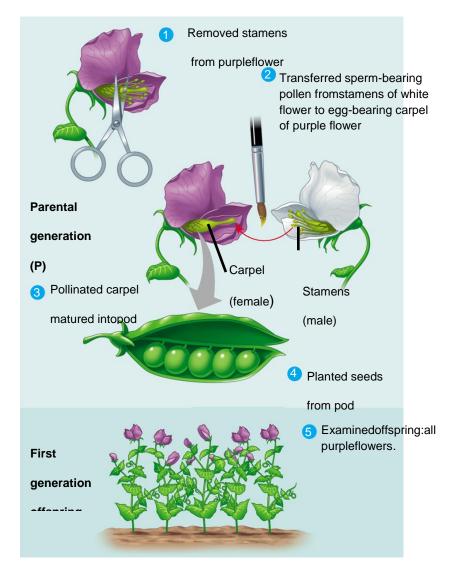
| 1958 | Arthur Kornberg                          | Purified DNA polymerase I from E. coli, the first enzyme that made DNA in a test tube.                                                           |
|------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1966 | Marshall Nirenberg ,H. Gobind<br>Khorana | Led teams that cracked the genetic code- that triplet mRNA codons specify each of the twenty amino acids.                                        |
| 1970 | Hamilton Smith ,Kent Wilcox              | Isolated the first restriction enzyme,<br>HindII, that could cut DNA molecules<br>within specific recognition sites.                             |
| 1972 | Paul Berg ,Herb Boyer                    | Produced the first recombinant DNA molecules.(First cloning)                                                                                     |
| 1973 | Joseph Sambrook                          | Led the team at Cold Spring Harbor<br>Laboratory that refined DNA<br>electrophoresis by using agarose gel<br>and staining with ethidium bromide. |
| 1973 | Annie Chang<br>Stanley Cohen             | Showed that a recombinant DNA molecule can be maintained and replicated in E. coli.                                                              |
| 1975 |                                          | International meeting at Asilomar,<br>California urged the adoption of<br>guidelines regulating recombinant<br>DNA experimentation.              |
| 1977 | Fred Sanger                              | Developed the chain termination<br>(dideoxy) method for sequencing<br>DNA.                                                                       |
| 1977 |                                          | The first genetic engineering company<br>(Genentech) is founded, using<br>recombinant DNA methods to make<br>medically important drugs.          |
| 1978 |                                          | Somatostatin became the first human<br>hormone produced using recombinant<br>DNA technology.                                                     |
| 1981 |                                          | Three independent research teams<br>announced the discovery of human<br>oncogenes (cancer genes).                                                |
| 1983 | James Gusella                            | Used blood samples collected by<br>Nancy Wexler and her co-workers to<br>demonstrate that the Huntington's<br>disease gene is on chromosome 4.   |
| 1985 | Kary B. Mullis                           | Published a paper describing the<br>polymerase chain reaction (PCR), the<br>most sensitive assay for DNA yet<br>devised.                         |
| 1988 |                                          | The Human Genome Project began with the goal of determining the entire                                                                           |

| r    |                                 |                                                                                                                                                                                                                                  |
|------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                 | sequence of DNA composing human                                                                                                                                                                                                  |
|      |                                 | chromosomes.                                                                                                                                                                                                                     |
| 1989 | Alec Jeffreys                   | Coined the term DNA fingerprinting<br>and was the first to use DNA<br>polymorphisms in paternity,<br>immigration, and murder cases.                                                                                              |
| 1989 | Francis Collins<br>Lap-CheeTsui | Identified the gene coding for the cystic fibrosis transmembrane conductance regulator protein (CFTR) on chromosome 7 that, when mutant, causes cystic fibrosis.                                                                 |
| 1990 |                                 | First gene replacement therapy-T cells<br>of a four-year old girl were exposed<br>outside of her body to retroviruses<br>containing an RNA copy of a normal<br>ADA gene. This allowed her immune<br>system to begin functioning. |
| 1994 |                                 | FlavrSavr tomatoes, genetically<br>engineered for longer shelf life, were<br>marketed.                                                                                                                                           |
| 1995 |                                 | ThefirstgenomeofHeamophilusinfluenzaea free livingorganism to be sequenced                                                                                                                                                       |
| 1996 |                                 | The genome of <i>Saccharomyces cerevisiae</i> is sequenced                                                                                                                                                                       |
| 1997 | Ian Wilmut and Colleagues       | The first cloning of a mammal –Dolly the sheep is performed.                                                                                                                                                                     |
| 2001 |                                 | First draft sequences of the human<br>genome are released simultaneously<br>by human genome project.                                                                                                                             |
| 2003 |                                 | SuccessfulcompletionofhumanGenomeProjectwith99.99%accuracy.                                                                                                                                                                      |
| 2007 |                                 | Controversies continue over human<br>and animal cloning, research on stem<br>cells and genetic modifications of<br>crops.                                                                                                        |

### **Gregor Mendel**

• Documented a particulate mechanism of inheritance through his experiments with garden peas

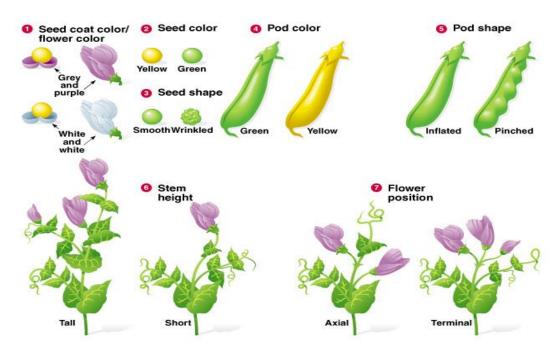
### **Mendelian Genetics**


- Gregor Johann Mendel (1822-1884)
  - Augustinian monk, Czech Republic
  - Foundation of modern genetics

- Studied segregation of traits in the garden pea (*Pisum sativum*) beginning in 1854
- Published his theory of inheritance in 1865. "Experiments in Plant Hybridization"
- Mendel was "rediscovered" in 1902
- One general idea was that traits from parents came together and blended in offspring.

### Mendel's Experimental, Quantitative Approach

- Mendel used the scientific approach to identify two laws of inheritance
- Mendel discovered the basic principles of heredity by breeding garden peas in carefully planned experiments
- Mendel chose to work with the garden pea (*Pisum sativum*)
- Because they are available in many varieties, easy to grow, easy to get large numbers
  - Because he could strictly control mating.


### **Crossing Pea Plants**



5

# Mendel's experimental design

- Statistical analyses:
  - Worked with large numbers of plants
  - counted all offspring
  - made predictions and tested them
- Excellent experimentalist
  - controlled growth conditions
  - focused on traits that were easy to score
  - chose to track only those characters that varied in an "either-or" manner



# Fig: Mendel's Studied Discrete Traits

# **Terms in Genetics**

- *Character* a heritable feature, such as flower color
- *Trait* a variant of a character, such as purple or white flowers
- *Hybrid* Each trait carries two copies of a unit of inheritance, one inherited from the mother and the other from the father
- Alternative forms of traits are called *alleles*
- *Phenotype* observable characteristic of an organism(morphology, development, biochemical or physiological properties, or behavior)
- *Genotype* actual gene constitution of a cell, an organism, or an individual (usually with reference to a specific character under consideration)
- *Homozygous* two alleles of trait are the same (YY or yy)
- *Heterozygous* two alleles of trait are different (Yy)
- Capitalized traits dominant phenotypes(YY)
- Lowercase traits- recessive phenotypes(yy)
- Generations:

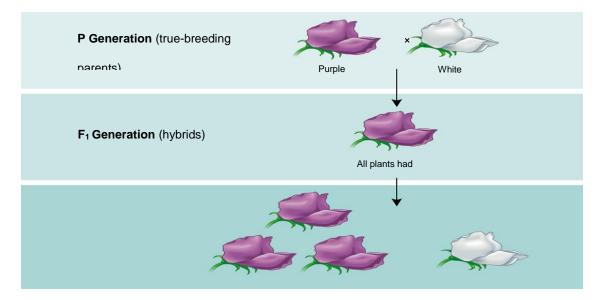
- P = parental generation
- F1 = 1st filial generation, hybrid progeny of the P generation
- F2 = 2nd filial generation, hybrid progeny of the F1 generation (F3 and so on)

#### **Mendel's Experiments**

- In a typical breeding experiment Mendel mated two contrasting, true-breeding varieties, a process called hybridization
- The true-breeding parents are called the P generation
- The hybrid offspring of the P generation are called the F1 generation
- When F1 individuals self-pollinate the F2 generation is produced

#### **Mendel's Observations**

- When Mendel crossed contrasting, true-breeding white and purple flowered pea plants all of the offspring were purple
- When Mendel crossed the F1 plants, many of the plants had purple flowers, but some had white flowers
- A ratio of about three to one, purple to white flowers, in the F2 generation


### **Mendel's Principles**

*Mendel's Law of Segregation:* Two members of a gene pair segregate (separate) from each other during the formation of gametes.

#### Example: Monohybrid Cross

*Mendel's Law of Independent Assortment*: Genes on different chromosomes behave independently in gamete production.

Example: Dihybrid Cross



### **Punnett Squares**

• A Punnett square is a grid that enables one to predict the outcome of simple geneti crosses

Proposed by the English geneticist, Reginald Punnett

# Mendel's Law Of Segregation

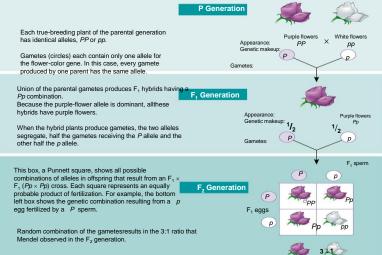
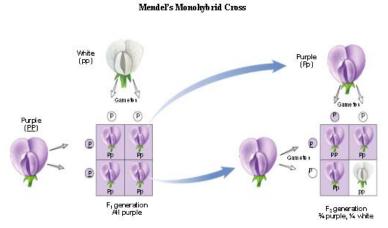
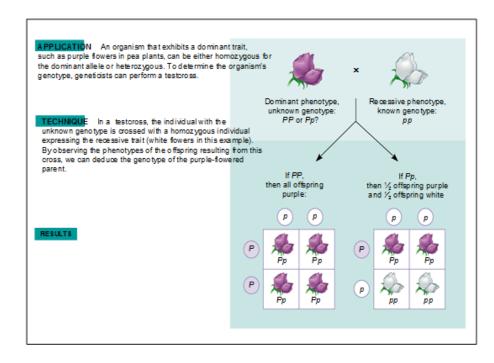




Fig: Mendel's Law Of Segregation

# Mendel's Monohybrid Cross

Across of two different true-breeding strains (homozygotes) that differ in a single trait.




### **Test Cross**

Mendel devised a system of conducting verification for the results obtained by him. It is known as test cross. It is a cross between F1 plant and the recessive parent. A test cross-conducted for the monohybrid inheritance results in the two opposite characters expressing in a ratio of 1:1. Similarly, a test cross-conducted for the dihybrid inheritance results in the expression of the two parental combinations and the two recombinations appear in the ratio 1:1:1:1.

### **Significance of Test Cross**

- Test cross can be used to determine the genotype of the F1 plant.
- The test cross can be used to support the idea that the reappearance of the recessive character in the F2 generation is due to the heterozygous condition of the F1 plant.
- The test can be used to verify whether any given pair of characters can be alleles (contrasting characters)





# **Back Cross**

If an  $F_1$  individual or an individual of  $F_2$  or  $F_3$  generations is crossed with any one of the parents it is called a back cross.

# Mendel's Law of Independent Assortment

- Mendel identified his second law of inheritance by following two characters at the same time
  - Mendel was interested in determining whether alleles at 2 different gene loci segregate dependently or independently
  - Crossing two, true-breeding parents differing in two characters produces dihybrids in the F1 generation, heterozygous for both characters

# **Dihybrid cross**

A cross of two different true-breeding strains (homozygotes) that differ in two traits.

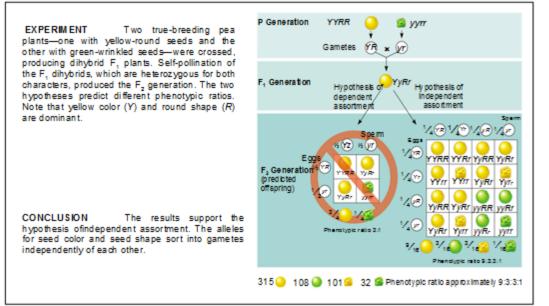



Fig: A Dihybrid Cross

#### Mendel's conclusions

- Genes are distinct entities that remain unchanged during crosses
- Each plant has two alleles of a gene
- Alleles segregated into gametes in equal proportions, each gamete got only one allele
- During gamete fusion, the number of alleles was restored to two

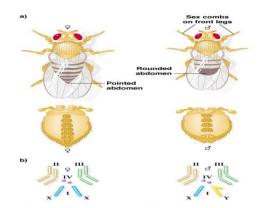
#### **Summary of Mendel's Principles**

- Mendel's Principle of Uniformity in F1:
  - F1 offspring of a monohybrid cross of true-breeding strains resemble only one of the parents.
  - Smooth seeds (allele S) are completely dominant to wrinkled seeds (alleles).
- Mendel's Law of Segregation:
  - Recessive characters masked in the F1 progeny of two true-breeding strains, reappear in a specific proportion of the F2 progeny.
  - Two members of a gene pair segregate (separate) from each other during the formation of gametes.
- Mendel's Law of Independent Assortment:
  - Alleles for different traits assort independently of one another.
  - Genes on different chromosomes behave independently in gamete production.

### **Morgans Hypothesis**

- Thomas Hunt Morgan in The Fly Room! (Columbia University 1910)
- Fruit Flies (*Drosophila melanogaster*)
- Thomas Hunt Morgan provided convincing evidence that chromosomes are the location of Mendel's heritable factors
- Morgan worked with fruit flies
  - Because they breed at a high rate
  - A new generation can be bred every two weeks
  - They have only four pairs of chromosomes

#### Sex Determination in Drosophila


- An X-chromosome-autosome balance system is used.
- Drosophila has three pairs of autosomes, and one pair of sex chromosomes. Like humans, XX is female and XY is male. Unlike humans, Y does not determine sex.
- An XXY fly is female, and an XO fly is male. The sex of the fly results from the ratio of the number of X chromosomes (X) to the number of sets of autosomes (A):
- Dosage compensation in *Drosophila* results in more expression of X-linked genes in males, so the level of transcription equals that from a female's two chromosomes.
- In both humans and fruit flies (*Drosophila melanogaster*) females have two X chromosomes, while males have X and Y

a. Males produce two kinds of gametes with respect to sex chromosomes (X or Y), and are called the heterogametic sex.

b. Females produce gametes with only one kind of sex chromosome (X) and are called the homogametic sex.

c. In some species the situation is reversed, with heterogametic females and homogametic males.

Drosophila melanogaster (fruit fly), an organism used extensively in genetics experiments



2017

# Sex Linkage

Morgan (1910) found a mutant white-eyed male fly, and used it in a series of experiments that showed a gene for eye color located on the X chromosome.

- First, he crossed the white-eyed male with a wild-type (red-eyed) female. All F1 flies had red eyes. Therefore, the white-eyed trait is recessive.
- Next, F1 were interbred. They produced an F2 with:3,470 red-eyed flies and 782 white-eyed flies.
- The recessive number is too small to fit Mendelian ratios (explanation discovered later is that white-eyed flies have lower viability).
- All of the F2 white-eyed flies were male.

Character - Traits Eye colour - Red eye (wild type) White eye (mutant)

P Phenotypes Wild type (red-eyed) female x White-eyed male

F1 Phenotypes All red-eyed

Red eye is dominant to white eye

Hypothesis : A cross between the F1 flies should give us: 3 red eye : 1 white eye

| F2 | Phenotypes | Red eye | White eye |
|----|------------|---------|-----------|
|    | Numbers    | 3470    | 782       |
|    |            | 82%     | 18%       |

# A test cross

**Phenotypes** F1 Red-eyed female x White-eyed male

**Expected result** 50% red-eyed offspring: 50% white-eyed offspring Regardless of the sex

# **Observed Results**

| Red-eyed | Red-eyed | White-eyed | White-eyed |
|----------|----------|------------|------------|
| Males    | Females  | Males      | Females    |
| 132      | 129      | 86         | 88         |

Genetic diagrams for sex linked genes

| Character  | Trait     | Alleles |
|------------|-----------|---------|
| Eye colour | Red eye   | R       |
|            | White eye | r       |

| Genotypes | Phenotypes      |
|-----------|-----------------|
| XRXR      | Red-eyed female |

| XRXr<br>XrXr | Red-eyed female<br>White-eyed female |
|--------------|--------------------------------------|
| XRY          | Red-eyed male                        |
| XrY          | White-eyed male                      |

 $\begin{array}{c|cccc} \textbf{P} & \textbf{Phenotype} & Wild type (red-eyed) female & x & White-eyed male \\ \hline \textbf{Genotypes} & X^R X^R & X^r Y \\ \hline \textbf{Gametes} & X^R & X^R & X^r & Y \end{array}$ 

| Fertilisation | Xr   | Y   |  |
|---------------|------|-----|--|
| XR            | XRXr | XRY |  |
| XR            | XRXr | XRY |  |

| F1 | Phenotype | Red-eyed female               | X                | Red-eyed male |
|----|-----------|-------------------------------|------------------|---------------|
|    | Genotypes | $X^{R}X^{r}$                  | X <sup>R</sup> Y |               |
|    | Gametes   | X <sup>R</sup> X <sup>r</sup> | X <sup>R</sup>   | Y             |

| Fertilisation | XR   | Y   |
|---------------|------|-----|
| XR            | XRXR | XRY |
| Xr            | XRXr | XrY |

| F1 | Phenotypes | (Red-eyed) | Females<br>(White-eyed) | x<br>(Red-eyed) | Males<br>(White-eyed) |
|----|------------|------------|-------------------------|-----------------|-----------------------|
|    | Expected   | All        | <b>None</b> 50%         | 50%             |                       |
|    | Observed   | 2459       | 0                       | 1011            | 782                   |

This gene has its LOCUS on the X-chromosome. It is said to be SEX-LINKED

### X-linked genes

- In sex linked characteristics the reciprocal crosses do not give the same results
- For X-linked genes fathers do not pass the mutant allele onto their sons
- For X-linked genes fathers pass the mutant allele onto their daughters who are carriers
- Carrier mothers may pass the allele onto their sons (50% chance)
- Females showing the trait for an X-linked mutant allele can exist but they are rare

• Female carriers may show patches of cells with either trait due to X chromosome inactivation.

#### The Chromosomal basis of Inheritance

#### **Chromosomal Behavior**

- Mendelian inheritance has its physical basis in the behavior of chromosomes
- The behavior of chromosomes during meiosis was said to account for Mendel's laws of segregation and independent assortment
- Several researchers proposed in the early 1900s that genes are located on chromosomes

#### **Chromosome Theory of Inheritance**

- By the beginning of the 20th century, cytologists had observed that chromosome number is constant in all cells of a species, but varies widely between species.
- Sutton and Boveri (1902) independently realized the parallel between Mendelian inheritance and chromosome transmission, and proposed the chromosome theory of inheritance, which states that Mendelian factors (genes) are located on chromosomes.
- Mendelian genes have specific loci on chromosomes
- Chromosomes undergo segregation and independent assortment

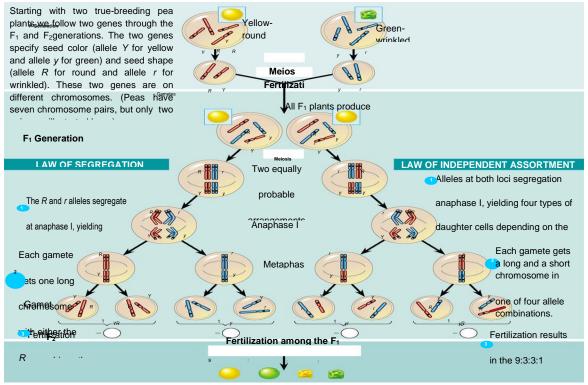



Fig:Chromosome Theory of Inheritance

### KARPAGAM ACADEMY OF HIGHER EDUCATION (KARPAGAM UNIVERSITY) DEPARTMENT OF MICROBIOLOGY MOLECULAR GENETICS - 17MBP103

| Unit I Question                                                                                              |
|--------------------------------------------------------------------------------------------------------------|
| million base pairs of nucleotides are seen in <i>E.coli</i>                                                  |
| degrades DNA                                                                                                 |
| Adenine always pair with                                                                                     |
| Bacteria contains                                                                                            |
| Basically, flow of genetic material is accompolished by                                                      |
| Bonding between two bases                                                                                    |
| Chargaff's rule                                                                                              |
| Chromosomal theory of inheritance was formulated by                                                          |
| Dihybrid ratio                                                                                               |
| Distance between the two base pairs is                                                                       |
| DNA absorbs UV light at wavelength                                                                           |
| Enzyme that adds methyl group to the newly formed DNA                                                        |
| Eukaryotic DNA damage or replication errors are corrected during                                             |
|                                                                                                              |
| Eukaryotic DNA replication is a conserved mechanism that restricts DNA replication to                        |
| Experiments of Hershey and Chase was based on                                                                |
| Father of genetics                                                                                           |
| Formation of pre-replicating complex is seen in replication mechanism of                                     |
| Heat Killed S cells + Live R cells produced                                                                  |
| If a free phosphate is found at the 5' end of a DNA strand, what is found at the other end of the same stran |
| In eukaryotes, the vast majority of DNA synthesis occurs during of the cell cycle                            |
| Initiation of replication is carried out by                                                                  |
| Initiation of replication occurs                                                                             |
| Joining of DNA fragments                                                                                     |
| Key enzyme in rolling circle replication                                                                     |
| Left handed DNA                                                                                              |
| Length of primer during replication is                                                                       |
| Longest DNA is seen in                                                                                       |
| Mendels pioneer work was with                                                                                |
| Nucleoside is                                                                                                |
| Number of base pairs per helical turn of B form DNA                                                          |
| Okazaki fragments are                                                                                        |
| Proof reading activity of DNA polymerase is in the direction                                                 |
| Purines are                                                                                                  |
| Repair and insertion of DNA is carried out by                                                                |
| RNA primer is removed by                                                                                     |
| Semiconservative DNA replication model                                                                       |
| Semiconservative mechanism of DNA replication was demonstrated by                                            |
| Sequencing and molecular characterization of genome                                                          |

SSB protein helps in

Synthesis of DNA always moves from

The ability to remove incorrectly matched nucleotides or Proof-reading

The contribution of Rosalind Franklin towards structure of DNA was

The DNA of E.coli is \_\_\_\_\_\_ times longer than the cell

The enzyme that copies RNA from DNA template

The enzyme that unwinds DNA

The experiments of Avery, McLeod and McCarty was based on

The most common form of DNA is

The most widely studied origin recognition complex of eukaryotes is that of

The negative charge of DNA is due to

The Pioneer work on nucleic acid discovery was carried out by

The replication origin of *E.coli* is approximately

The replication origins of higher eukaryotes are made up of

The size of a major groove is

Thymine in DNA is replaced by \_\_\_\_\_ in RNA

Transfer of genes from one generation to the next is

Transformation in Pneumococci was discovered by

Triple bonding is seen in

Which is involved in synthesis of primer

Which of the following is not associated with DNA replication?

Who proposed the molecular struccture of DNA

| Opt 1                                                    |
|----------------------------------------------------------|
| 64 million base pairs                                    |
| Polymerase                                               |
| Guanine                                                  |
| Single circular DNA                                      |
| Replication                                              |
| Hydrogen bond                                            |
| No complementarity                                       |
| Mendel                                                   |
| 3:3:9:1                                                  |
| 3.4Å                                                     |
| 220 nm                                                   |
| Gyrase                                                   |
| G <sub>1</sub> phase                                     |
| Never                                                    |
| Virus                                                    |
| Mendel                                                   |
| Prokaryotes                                              |
| Death in mice + S cells                                  |
| A hydroxyl group on the 5' carbon of a deoxyribose sugar |
| G phase                                                  |
| DnaA                                                     |
| Bidirectionally                                          |
| DNA ligase                                               |
| DNA Polymerase-IV                                        |
| B-DNA                                                    |
| 2-10 nucleotides                                         |
| Human                                                    |
| Monkey                                                   |
| Base + Sugar                                             |
| 13                                                       |
| RNA strands                                              |
| 5' to 3'                                                 |
| Α, Τ                                                     |
| Endonucleases                                            |
| DNA pol                                                  |
| Daughter molecule contains both from parent              |
| Meselson & Stahl                                         |
| Genetics                                                 |

| Degradation of protein    |
|---------------------------|
| 3' to 5'                  |
| RNA polymerase            |
| X-ray crystallography     |
| 1                         |
| Dnase                     |
| Polymerase                |
| Protein coupling          |
| B-DNA                     |
| Bacillus                  |
| Deoxyribose Sugar         |
| Friedrick Miescher        |
| 245 bp                    |
| Different AT-rich regions |
| 34Å                       |
| Adenine                   |
| Inheritance               |
| Friedrick Griffith        |
| G-T                       |
| Ligase                    |
| Polymerase                |
| Hershey & Chase           |

| Opt 2                                                      |
|------------------------------------------------------------|
| 46 million base pairs                                      |
| Primase                                                    |
| Cytosine                                                   |
| Single linear DNA                                          |
| Transformation                                             |
| Hydrophobic bond                                           |
| Partial complementarity                                    |
| Miescher                                                   |
| 9:3:3:1                                                    |
| 34Å                                                        |
| 240 nm                                                     |
| Topoisomerase                                              |
| S phase                                                    |
| Only once per cell cycle                                   |
| Bacteriophage                                              |
| Morgan                                                     |
| Plants                                                     |
| Live mice + S cells                                        |
| A phosphate group on the 3' carbon of a deoxyribose sugar. |
| H phase                                                    |
| DnaC                                                       |
| Cross sectionally                                          |
| Gyrase                                                     |
| DNA Polymerase-III                                         |
| C-DNA                                                      |
| 10-20 nucleotides                                          |
| Lung fish                                                  |
| Human                                                      |
| Sugar + Phosphate                                          |
| 12                                                         |
| Enzymes                                                    |
| 3' to 5'                                                   |
| G, C                                                       |
| Ribozyme                                                   |
| RNA pol                                                    |
| Daughter molecule entirely new                             |
| Beedle & Tatum                                             |
| Molecular biology                                          |

| Keep the two strands separated after unwinding |
|------------------------------------------------|
| 5' to 3'                                       |
| DNA ligase                                     |
| Electron microscopy                            |
| 10                                             |
| Rnase                                          |
| Ligase                                         |
| Enzymatic reactions                            |
| Z-DNA                                          |
| Staphylococcus                                 |
| Phosphate bond                                 |
| Watson & Crick                                 |
| 425 bp                                         |
| Similar AT-rich regions                        |
| 3.4Å                                           |
| Cytosine                                       |
| Carrying over                                  |
| Erwin Chargaff                                 |
| G-C                                            |
| Primase                                        |
| Promoter                                       |
| Erwin Chargaff                                 |

| Opt 3                                                          |
|----------------------------------------------------------------|
| 4.6 million base pairs                                         |
| RNase                                                          |
| Thymine                                                        |
| Double Linear DNA                                              |
| Transduction                                                   |
| Nitrogen bond                                                  |
| No such rule                                                   |
| Metchinikoff                                                   |
| 9:3:1:3                                                        |
| 10Å                                                            |
| 260 nm                                                         |
| Helicase                                                       |
| G <sub>2</sub> phase                                           |
| Only twice per cell cycle                                      |
| Bacteria                                                       |
| Watson                                                         |
| Virus                                                          |
| Death in mice + R cells                                        |
| A base attached to the 3' carbon of a deoxyribose sugar        |
| R phase                                                        |
| DnaB                                                           |
| Unidirectionally                                               |
| RNA polymerase                                                 |
| DNA Polymerase-II                                              |
| Y-DNA                                                          |
| 5-15 nucleotides                                               |
| Yeast                                                          |
| Garden pea                                                     |
| Base + Phosphate                                               |
| 11                                                             |
| Leading strands                                                |
| Parallel                                                       |
| С, Т                                                           |
| Primase                                                        |
| Terminase                                                      |
| Daughter molecule contains one from parent and one newly synth |
| Hershy & Chase                                                 |
| Proteomics                                                     |

| Elongation of DNA         |
|---------------------------|
| Ffrom the centre          |
| DNA polymerase            |
| NMRspectroscopy           |
| 1000                      |
| DNA polymerase            |
| Gyrase                    |
| Synthetic reaction        |
| Y-DNA                     |
| Escherichia coli          |
| Hydrogen bond             |
| Griffith                  |
| 254 bp                    |
| Different GC-rich regions |
| 43Å                       |
| Guanine                   |
| Subheritance              |
| Hershey & Chase           |
| A-T                       |
| DNA pol                   |
| Primer                    |
| Jim Latham                |

| Opt 4                                                    | Opt 5 | Opt 6 |
|----------------------------------------------------------|-------|-------|
| 6.4 million base pairs                                   |       |       |
| DNase                                                    |       |       |
| Uracil                                                   |       |       |
| Double circular DNA                                      |       |       |
| Conjugation                                              |       |       |
| Van Der waals                                            |       |       |
| Complementarity of one strand with the other             |       |       |
| Morgan                                                   |       |       |
| 1:3:3:9                                                  |       |       |
| 20Å                                                      |       |       |
| 280 nm                                                   |       |       |
| Methylase                                                |       |       |
| R phase                                                  |       |       |
| Only thrice per cell cycle                               |       |       |
| Fungi                                                    |       |       |
| McLeod                                                   |       |       |
| Eukaryotes                                               |       |       |
| Live mice + R cells                                      |       |       |
| A hydroxyl group on the 3' carbon of a deoxyribose sugar |       |       |
| S phase                                                  |       |       |
| DnaE                                                     |       |       |
| Parallely                                                |       |       |
| DNA polymerase                                           |       |       |
| DNA Polymerase-I                                         |       |       |
| Z-DNA                                                    |       |       |
| 10-25 nucleotides                                        |       |       |
| Bacteria                                                 |       |       |
| Mice                                                     |       |       |
| A+T & G+C                                                |       |       |
| 10                                                       |       |       |
| Lagging strands                                          |       |       |
| Centre                                                   |       |       |
| A, G                                                     |       |       |
| Exonucleases                                             |       |       |
| Caspase                                                  |       |       |
| Some sections from parent and some newly synthesized     |       |       |
| Avery & McLeod                                           |       |       |
| Genomics                                                 |       |       |

| Uncoiling of RNA                                                                    |          |  |
|-------------------------------------------------------------------------------------|----------|--|
| Anywhere                                                                            |          |  |
| DNA helicase                                                                        |          |  |
| Gas chromatography                                                                  |          |  |
| 100                                                                                 |          |  |
| RNA polymerase                                                                      |          |  |
| Helicase                                                                            |          |  |
| DNA binding                                                                         |          |  |
| SS-DNA                                                                              |          |  |
| Saccharomyces cerevisiae                                                            |          |  |
| Nitrogenous base                                                                    |          |  |
| Milstein                                                                            | Kornberg |  |
| 5241                                                                                |          |  |
| 524 bp                                                                              |          |  |
| Similar GC-rich regions                                                             |          |  |
| *                                                                                   |          |  |
| Similar GC-rich regions                                                             |          |  |
| Similar GC-rich regions<br>20Å                                                      |          |  |
| Similar GC-rich regions<br>20Å<br>Uracil                                            |          |  |
| Similar GC-rich regions<br>20Å<br>Uracil<br>Gene transport                          |          |  |
| Similar GC-rich regions<br>20Å<br>Uracil<br>Gene transport<br>Watson & Crick        |          |  |
| Similar GC-rich regions<br>20Å<br>Uracil<br>Gene transport<br>Watson & Crick<br>A-C |          |  |

| Answer                                                          |        |
|-----------------------------------------------------------------|--------|
| 4.6 million base pairs                                          |        |
| DNase                                                           |        |
| Thymine                                                         |        |
| Single circular DNA                                             |        |
| Replication                                                     |        |
| Hydrogen bond                                                   |        |
| Complementarity of one strand with the other                    |        |
| Morgan                                                          |        |
| 9:3:3:1                                                         |        |
| 3.4Å                                                            |        |
| 260 nm                                                          |        |
| Methylase                                                       |        |
| G <sub>2</sub> phase                                            |        |
| Only once per cell cycle                                        |        |
| Bacteriophage                                                   |        |
| Mendel                                                          |        |
| Eukaryotes                                                      |        |
| Death in mice + S cells                                         |        |
| A hydroxyl group on the 3' carbon of a deoxyribose sugar        |        |
| S phase                                                         |        |
| DnaA                                                            |        |
| Bidirectionally                                                 |        |
| DNA ligase                                                      |        |
| DNA Polymerase-III                                              |        |
| Z-DNA                                                           |        |
| 2-10 nucleotides                                                |        |
| Lung fish                                                       |        |
| Garden pea                                                      |        |
| Base + Sugar                                                    |        |
| 10                                                              |        |
| Lagging strands                                                 |        |
| 3' to 5'                                                        |        |
| A, G                                                            |        |
| Endonucleases                                                   |        |
| DNA pol                                                         |        |
| Daughter molecule contains one from parent and one newly synthe | esized |
| Meselson & Stahl                                                |        |
| Genomics                                                        |        |
|                                                                 |        |

| Keep the two strands separated after unwinding |  |  |  |  |
|------------------------------------------------|--|--|--|--|
| 5' to 3'                                       |  |  |  |  |
| DNA polymerase                                 |  |  |  |  |
| X-ray crystallography                          |  |  |  |  |
| 1000                                           |  |  |  |  |
| RNA polymerase                                 |  |  |  |  |
| Helicase                                       |  |  |  |  |
| Enzymatic reactions                            |  |  |  |  |
| B-DNA                                          |  |  |  |  |
| Saccharomyces cerevisiae                       |  |  |  |  |
| Phosphate bond                                 |  |  |  |  |
| Friedrick Miescher                             |  |  |  |  |
| 245 bp                                         |  |  |  |  |
| Similar AT-rich regions                        |  |  |  |  |
| 34Å                                            |  |  |  |  |
| Uracil                                         |  |  |  |  |
| Inheritance                                    |  |  |  |  |
| Friedrick Griffith                             |  |  |  |  |
| G-C                                            |  |  |  |  |
| Primase                                        |  |  |  |  |
| Promoter                                       |  |  |  |  |
| Watson & Crick                                 |  |  |  |  |



# **DEPARTMENT OF MICROBIOLOGY KARPAGAM ACADEMY OF HIGHER EDUCATION** KARPAGAM UNIVERSITY

(Deemed University Established Under Section 3 of UGC Act, 1956) Eachanari PO, Coimbatore -641 021, India.

### I - M.Sc Microbiology (Batch 2017-2019)

### Lecture Plan

#### Unit - II

| S. No | Duration | Торіс                                                        | Reference      |
|-------|----------|--------------------------------------------------------------|----------------|
| 1.    | 2        | Genetic code and Transcription of DNA and its regulation     | T1:115 to 119  |
|       |          |                                                              | R1:124 to 128  |
| 2.    | 2        | Regulation of Transcription and its control                  | T1:87 to 106   |
| 3.    | 2        | Translation of RNA and steps involved                        | T1:111 to 123  |
|       |          |                                                              | R1:122 to 124  |
| 4.    | 2        | Post Translational modification                              | T1:123 to 126  |
|       |          |                                                              | R1:130 to 131  |
| 5.    | 2        | Operon concept Lac/Ara operon                                | T1:516 to 529  |
|       |          |                                                              | R1:143 to 152  |
| 6.    | 1        | Trp operon and eukaryotic gene regulation                    | T1: 516 to 529 |
|       |          |                                                              | R1: 528 ti 529 |
| 7.    | 1        | Video presentation of Transcription, Translation and operons | W1             |
| 8.    | 1        | Class Test II                                                |                |
| 0.    | 1        | Total Hours                                                  | 13             |

R1: David Freifelder, Microbial Genetics. Narosa Publishing House, 10<sup>th</sup> edition, 2004. New Delhi, India.

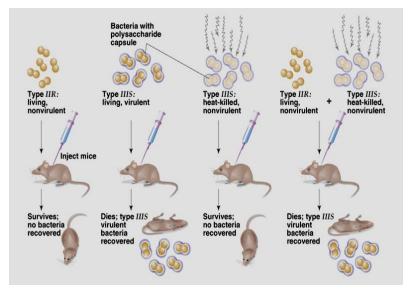
T1: Peter J. Russell, i Genetics – A molecular approach, 7<sup>th</sup> edition, 2010. Pearson Benjamin Cummings Publishers, Boston, USA.

W1: www.shomusbiology.com/DNAtranscription.index.php

#### Unit – II

#### **DNA & RNA : The Genetic Material**

#### The Search for the Genetic Material


- 1. Some substance must be responsible for passage of traits from parents to offspring. For a substance to do this it must be:
  - a. Stable enough to store information for long periods.
  - b. Able to replicate accurately.
  - c. Capable of change to allow evolution.
- 2. In the early 1900s, chromosomes were shown to be the carriers of hereditary information. In eukaryotes they are composed of both DNA and protein, and most scientists initially believed that protein must be the genetic material.

#### **Genetic Materials**

- Chromosome consists of protein and nucleic acid
- Candidate: Protein v.s. nucleic acid
  - Protein: 20 kinds of amino acid
  - Nucleic acid: 4 kinds of nucleotides
- Complexity of life  $\diamond$  very complicated  $\diamond$  protein or nucleic acid to account for the level of complexity?

#### **Griffith's Transformation Experiment**

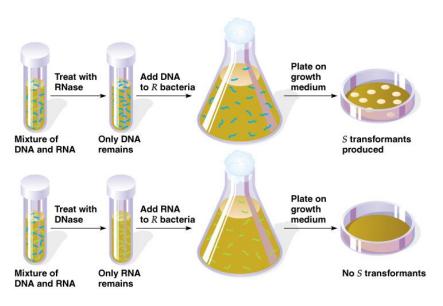
- Frederick Griffith's 1928 experiment with *Streptococcus pneumoniae* bacteria in mice showed that something passed from dead bacteria into nearby living ones, allowing them to change their cell surface.
- There are 2 strains of *Streptococcus*:
  - S strain is virulent
  - R strain is nonvirulent
- Griffith infected mice with these strains hoping to understand the difference between the strains
- He called this agent the transforming principle, but did not know what it was or how it worked.



### Fig. Griffith's transformation experiment

### Griffith's results:

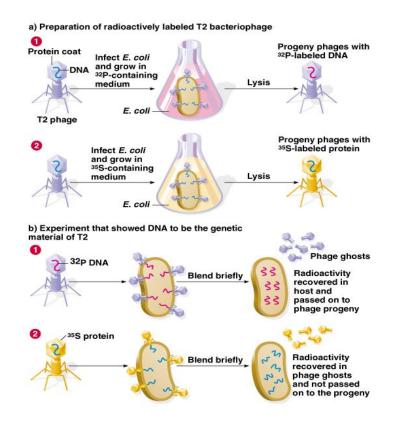
- live S strain cells killed the mice
- live R strain cells did not kill the mice
- heat-killed S strain cells did not kill the mice
- heat-killed S strain + live R strain cells killed the mice


### Griffith's conclusion:

- information specifying virulence passed from the dead S strain cells into the live R strain cells

- Griffith called the transfer of this information transformation

### **Avery's Transformation Experiment**


- In 1944, Avery, MacLeod and McCarty published results of a study that identified the transforming principle from *S. pneumoniae*. Their approach was to break open dead cells, chemically separate the components (e.g., protein, nucleic acids) and determine which was capable of transforming live *S. pneumoniae* cells.
- Only the nucleic acid fraction was capable of transforming the bacteria.
- Critics noted that the nucleic acid fraction was contaminated with proteins. The researchers treated this fraction with either RNase or protease and still found transforming activity, but when it was treated with DNase, no transformation occurred, indicating that the transforming principle was DNA.



#### Fig. Experiment that showed that DNA, not RNA, was the transforming principle

#### The Hershey-Chase Bacteriophage Experiment

- More evidence for DNA as the genetic material came in 1953 with Alfred Hershey and Martha Chase's work on *E. coli* infected with bacteriophage T2.
- The bacteriophage was composed of only DNA and protein
- They wanted to determine which of these molecules is the genetic material that is injected into the bacteria
- In one part of the experiment, T2 proteins were labeled with <sup>35</sup>S, and in the other part, T2 DNA was labeled with <sup>32</sup>P. Then each group of labeled viruses was mixed separately with the *E. coli* host. After a short time, phage attachment was disrupted with a kitchen blender, and the location of the label determined.
- The <sup>35</sup>S -labeled protein was found outside the infected cells, while the <sup>32</sup>P -labeled DNA was inside the *E. coli*, indicating that DNA carried the information needed for viral infection. This provided additional support for the idea that genetic inheritance occurs via DNA.



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

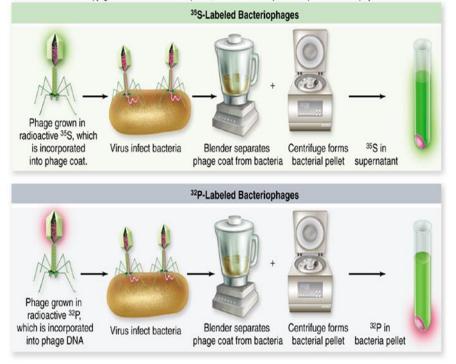
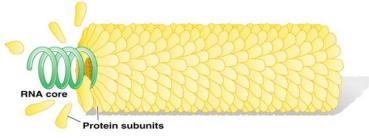




Fig. Hershey-Chase experiment demonstrating DNA is genetic material

### The Discovery of RNA as Viral Genetic Material

- TMV ( tobacco mosaic virus)
- 1956, A. Gierer and G. Schramm
  - Infected tobacco plant with purified RNA  $\Diamond$  typical virus-infected lesion
  - RNA treated with RNA se then injected into tobacco  $\Diamond$  not lesion
- 1957 Heinz Fraenkel-Conrat and B. Singer reconstitue the RNA of one type with the protein of the other type and vice versa and injected to two tobacco plants  $\diamond$  the progeny viruses isolated from the resulting lesion were the type specified by the RNA, not by the protein.



### Fig. Typical tobacco mosaic virus (TMV) particle

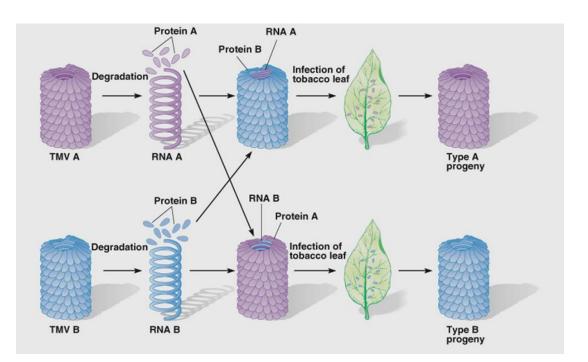



Fig. Demonstration that RNA is the genetic material in tobacco mosaic virus (TMV)

# The Composition and Structure of DNA & RNA

DNA and RNA are polymers composed of monomers called nucleotides.

- Each nucleotide has three parts:
  - a. A pentose (5-carbon) sugar.
  - b. A nitrogenous base.
  - c. A phosphate group.
- The pentose sugar in RNA is ribose, and in DNA it's deoxyribose. The only difference is at the 29 position, where RNA has a hydroxyl (OH) group, while DNA has only a hydrogen.

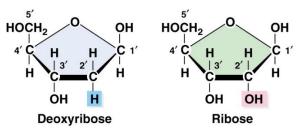



Fig:Structures of deoxyribose and ribose in DNA and RNA

- There are two classes of nitrogenous bases:
  - a. Purines (double-ring, nine-membered structures) include adenine (A) and guanine (G).
  - b. Pyrimidines (one-ring, six-membered structures) include cytosine (C), thymine (T) in DNA and uracil (U) in RNA.

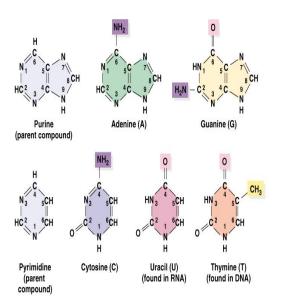
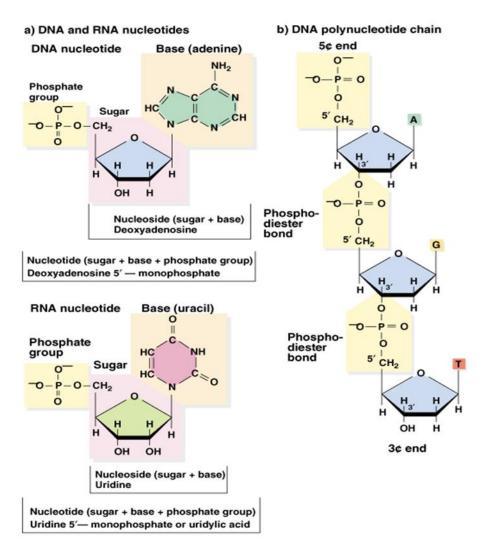




Fig: 2.1 Structures of the nitrogenous bases in DNA and RNA

- The structure of nucleotides has these features:
  - a. The base is always attached by a covalent bond between the 1' carbon of the pentose sugar and a nitrogen in the base (specifically, the nine nitrogen in purines and the one nitrogen in pyrimidines).
  - b. The sugar-base combination is a nucleoside. When a phosphate is added (always to the 5' carbon of the pentose sugar), it becomes a nucleoside phosphate, or simply nucleotide.
  - c. Nucleotide examples are shown in Figure 2.2.
- Polynucleotides of both DNA and RNA are formed by stable covalent bonds (phosphodiester linkages) between the phosphate group on the 5' carbon of one nucleotide, and the 3' hydroxyl on another nucleotide. This creates the "backbone" of a nucleic acid molecule.
- The asymmetry of phosphodiester bonds creates 3'-5' polarity within the nucleic acid chain.





Prepared by – Mr. P. Srinivasan, Assistant Professor, Dept. of Microbiology, KAHE.

### Structure and Functions of DNA

- Determining the 3-dimmensional structure of DNA involved the work of a few scientists:
  - Erwin Chargaff determined that
    - amount of adenine = amount of thymine
    - amount of cytosine = amount of guanine
    - This is known as Chargaff's Rules
- Rosalind Franklin and Maurice Wilkins
  - Franklin performed X-ray diffraction studies to identify the 3-D structure
  - discovered that DNA is helical
  - discovered that the molecule has a diameter of 2nm and makes a complete turn of the helix every 3.4 nm
- James Watson and Francis Crick, 1953
  - deduced the structure of DNA using evidence from Chargaff, Franklin, and others
  - proposed a **double helix** structure
- Watson and Crick's three-dimensional model has the following main features:
  - It is two polynucleotide chains wound around each other in a right-handed helix.
  - The two chains are antiparallel.
  - The sugar-phosphate backbones are on the outside of the helix, and the bases are on the inside, stacked perpendicularly to the long axis like the steps of a spiral staircase.
  - The bases of the two strands are held together by hydrogen bonds with **complementary bases** on the opposite sugar-phosphate backbone(two for A-T pairs and three for G-C pairs). Individual H-bonds are relatively weak and so the strands can be separated (by heating, for example). Complementary base pairing means that the sequence of one strand dictates the sequence of the other strand.

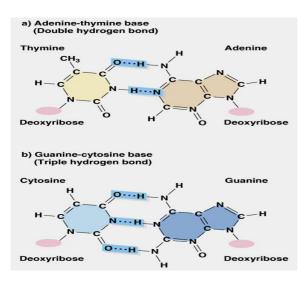



Fig: Complementary Base Pairing

- The base pairs are 0.34 nm apart, and one full turn of the DNA helix takes 3.4 nm, so there are 10 bp in a complete turn. The diameter of a dsDNA helix is 2 nm.
- Because of the way the bases H-bond with each other, the opposite sugar-phosphate backbones are not equally spaced, resulting in a major and minor groove. This feature of DNA structure is important for protein binding.

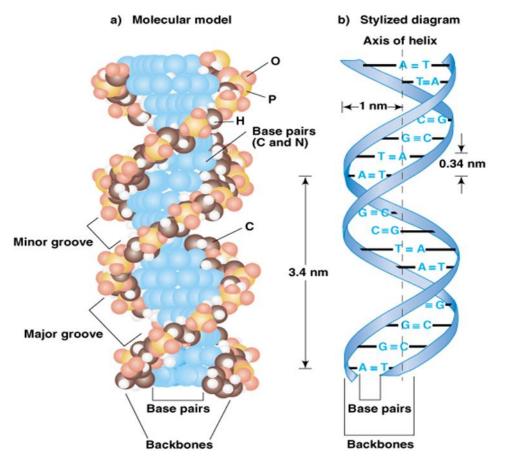



Fig: Physical structure of DNA Double Helix

### **Different DNA Structures**

- X ray diffraction studies show that DNA can exist in different forms.
  - **A-DNA** is the dehydrated form, and so it is not usually found in cells. It is a righthanded helix with 10.9 bp/turn, with the bases inclined 13° from the helix axis. A-DNA has a deep and narrow major groove, and a wide and shallow minor groove.
  - **B-DNA** is the hydrated form of DNA, the kind normally found in cells. It is also a right-handed helix, with only 10.0 bp/turn, and the bases inclined only 2° from the helix axis. B-DNA has a wide major groove and a narrow minor groove, and its major and minor grooves are of about the same depth.
  - **Z-DNA** is a left-handed helix with a zigzag sugar-phosphate backbone that gives it its name. It has 12.0 bp/turn, with the bases inclined 8.8° from the helix axis. Z-DNA has a deep minor groove, and a very shallow major groove. Its existence in living cells has not been proven.

Prepared by - Mr. P. Srinivasan, Assistant Professor, Dept. of Microbiology, KAHE.

### DNA in the Cell

- All known cellular DNA is in the B form.
- A-DNA would not be expected because it is dehydrated and cells are aqueous.
- Z-DNA has never been found in living cells, although many organisms have been shown to contain proteins that will bind to Z-DNA.

### **Structure and Functions of RNA**

- **RNA** is a biologically important type of molecule that consists of a long chain of <u>nucleotide</u> units.
- Each nucleotide consists of a <u>nitrogenous base</u>, a <u>ribose</u> sugar, and a <u>phosphate</u>

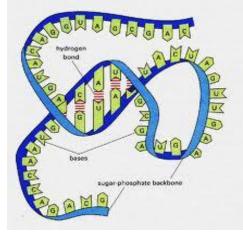



Fig :Structure of RNA

### **Types of RNA**

Based on the functions of RNA it is classified into two which include,

- *Genetic RNA* If the RNA is involved in genetic mechanism it is known as Genetic RNA. Such a RNA contains information which is normally found in DNA in higher organisms. In other words, RNA has replaced DNA in such cases.
- *Non Genetic RNA-* In some organisms where genetic information is contained in, and transmitted through DNA, RNA though present in good quantity but it cannot serve as genetic material.So it is known as non geneticRNA.This type of RNA depends upon the information getting from DNA for its function.

### Non GeneticRNAs

### Messenger RNA

- mRNA carries information about a protein sequence to the ribosomes, the protein synthesis factories in the cell.
- It is coded so that every three nucleotides (a codon) correspond to one amino acid.

- In eukaryotic cells, once precursor mRNA (pre-mRNA) has been transcribed from DNA, it is processed to mature mRNA. This removes its introns—non-coding sections of the pre-mRNA.
- The mRNA is then exported from the nucleus to the cytoplasm, where it is bound to ribosomes and translated into its corresponding protein form with the help of tRNA.
- In prokaryotic cells, which do not have nucleus and cytoplasm compartments, mRNA can bind to ribosomes while it is being transcribed from DNA.

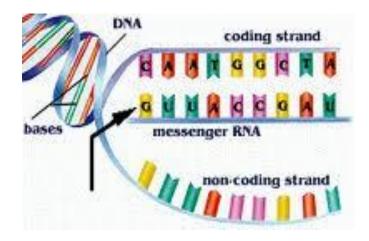



Fig: Messenger RNA

### Transfer RNA

- Transfer RNA (tRNA) is a small RNA chain of about 80 nucleotides that transfers a specific amino acid to a growing polypeptide chain at the ribosomal site of protein synthesis during translation.
- It has sites for amino acid attachment and an <u>anticodon</u> region for <u>codon</u> recognition that site binds to a specific sequence on the messenger RNA chain through hydrogen bonding.

Prepared by – Mr. P. Srinivasan, Assistant Professor, Dept. of Microbiology, KAHE.

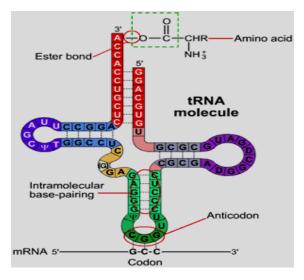



Fig: Structure of tRNA

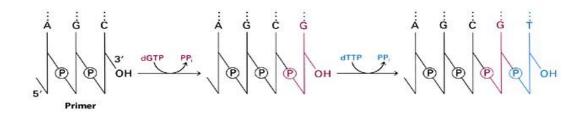
### Ribosomal RNA

- Ribosomal RNA (rRNA) is the catalytic component of the ribosomes.
- Eukaryotic ribosomes contain four different rRNA molecules: 18S, 5.8S, 28S and 5S rRNA.
- rRNA molecules are synthesized in the nucleolus.
- In the cytoplasm, ribosomal RNA and protein combine to form a nucleoprotein called a ribosome.
- The ribosome binds mRNA and carries out protein synthesis. Several ribosomes may be attached to a single mRNA at any time.
- rRNA is extremely abundant and makes up 80% of the 10 mg/ml RNA found in a typical eukaryotic cytoplasm.



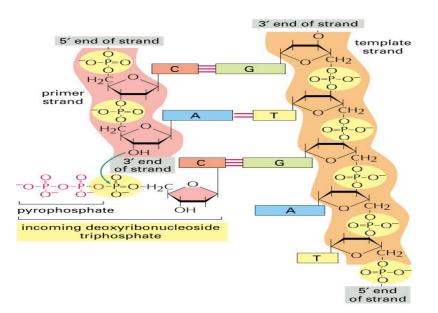
Fig: Prokaryotic and Eukaryotic ribosomes

### Difference between RNA & DNA


| RNA                                                                  | DNA                                                               |
|----------------------------------------------------------------------|-------------------------------------------------------------------|
| RNA nucleotides contain ribose sugar                                 | DNA contains deoxyribose                                          |
| RNA has the base uracil                                              | DNA has the base thymine                                          |
| presence of a hydroxyl group at the 2' position of the ribose sugar. | Lacks of a hydroxyl group at the 2' position of the ribose sugar. |
| RNA is usually single-stranded                                       | DNA is usually double-stranded                                    |

### **DNA Replication**

Genetic information is transferred from parent to progeny organisms by the process of replication of the parent DNA molecules.


### **Basic rule of DNA replication**

• Nucleotide monomers are added one by one to the end of a growing strand by an enzyme called a *DNA polymerase*.

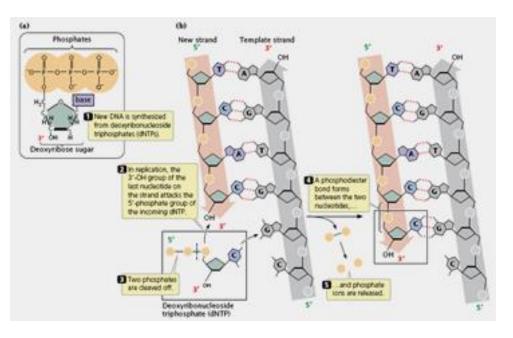


### Fig: Addition of Nucleotides to a Growing Daughter Strand

• The sequence of base in each new or *daughter strand* is complementary to the base sequence in the old or *parent strand* being copied – that is, if there is an adenine in the parent strand, a thymine will be added to the end of the growing daughter strand when the adenine is being copied.



• **Polymerisation:** It is the process of addition of polymers (nucleotides- 4dNTPs) to the end of the growing strand with the help of polymerizing enzyme.


#### Four components are required:

- 1. *dNTPs*: dATP, dTTP, dGTP, dCTP (deoxyribonucleoside 5'-triphosphates) (sugar-base + 3 phosphates)
- 2. *DNA template*: It is a strand of DNA,that is used as a guide in making a complementary strand of DNA and is base paired with a newly made DNA but is not covalently linked to it.
- *3. RNA Primer*: It is a synthetic oligonucleotide RNA hydrogen bonded to the template strand and whose terminal 3'OH is available for the reaction and are covalently linked to the 5'P ends of the newly made DNA.
- 4. *DNA polymerase I* (formerly the *Kornberg enzyme*) (DNA polymerase II & III discovered soon after)

#### 5. *Mg* 2+ (optimizes DNA polymeraseactivity)

Thus polymerization consists of a reaction between a 3'OH group at the end of the growing strand and the 5'triphosphate group of an incoming nucleotide. When the nucleotide is added it supplies a free 3'OH group to the growing strand, since each DNA has a 5'P terminus and 3'PH terminus, strand growth is said to be proceeding in  $5' \rightarrow 3'$  direction.

Prepared by – Mr. P. Srinivasan, Assistant Professor, Dept. of Microbiology, KAHE.



### Fig: Polymerization - new DNA is synthesized from deoxyribonucleoside triphosphates (dNTPs).

### **Enzymology of DNA replication**

As replication of the two daughter strands proceeds along the helix there are various types of enzymes involved to carry out replication. They include:

### Helicases:

- Unwind double strand DNA at the expense of ATP
- Bacterial DnaB protein
- Activity can be stimulated by DnaG and SSBs
- separates complementary strands of DNA, producing a replication fork

### Single-strand DNA binding proteins (SSBs):

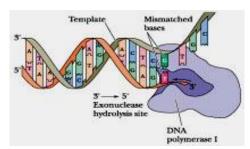
- Participate in DNA strand separation but do notcatalyze the strand separation process.
- They bind to single strand DNA as soon as it forms and coat it so that it cannot anneal to reform a double helix.

### Topoisomerases:

• Introduce transient single or double stranded breaks into DNA and thereby allow it to change its form, or topology.\

### DNA gyrase:

• This is otherwise known as Eco-topoisomerase II which is able to produce negative


superhelicity generated during replication.

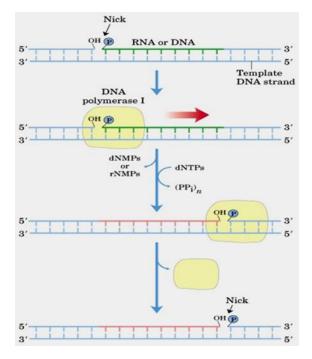
### DNA polymerases:

Total of 5 different DNAPs have been reported in E. coli

- DNApolymerase I: functions in repair and replication
- DNA polymerase II: functions in DNA repair (proven in 1999)
- DNA polymerase III: principal DNA replication enzyme
- DNA polymerase IV: functions in DNA repair (discovered in 1999)
- DNA polymerase V: functions in DNA repair (discovered in 1999)

<u>**DNA polymerase** I</u> (102 KD): In 1957, Arthurkornberg showed that the extracts of E.coli has five different enzymatic activities,




### Fig: Proofreading and Editing of DNA polymerase I

- 5'-3' exonulcease activity (remove RNA primers or damage DNA on its path)
- 3'-5' exonuclease activity (proof reading to increase fidelity)
- *Endonuclease activity*(involved in excision repair)
- *Nick Translation* (nick or gap moves along moves along the direction of synthesis)It requires 5'-3' activity of DNA pol I

### <u>Steps</u>

- 1. At a nick (free 3' OH) in the DNA the DNA pol I binds and digest nucleotides in a 5'-3' direction
- 2. The DNA polymerase activity synthesizes a new DNA strand
- 3. A nick remains as the DNA pol I dissociates from the ds DNA.
- 4. The nick is closed via DNA ligase

Prepared by – Mr. P. Srinivasan , Assistant Professor, Dept. of Microbiology, KAHE.



### **Fig: Nick translation**

• *Strand Displacement*( play a vital role in genetic recombination).

<u>DNA Polymerase II</u>: primary function is repair, but it also can serve as an alternative replicationenzyme if the template is damaged. (DNA p'ase II is essentially a proofreading and repair enzyme)

### DNA Polymerase III

- At least 10 different subunits
- "Core" enzyme has three subunits  $\alpha$ ,  $\epsilon$ , and  $\theta$
- Alpha subunit is polymerase
- Epsilon subunit is 3'-5' exonuclease activity
- Theta function is unknown
- The beta subunit dimer forms a ring around DNA
- Enormous processivity 5 million bases!
- DNA polymerase III can only add *deoxyribonucleoside triphosphates* to a free 3' end of an existing nucleotide strand

### RNA Primase:

- It is otherwise known as RNA polymerase(Dna G protein)
- This enzyme synthesize a single stranded synthetic oligonucleotide RNA primer of 3-5 bases long.
- DNA polymerase III is only able to add DNA nucleotides to a free 3' end on an existing DNA strand

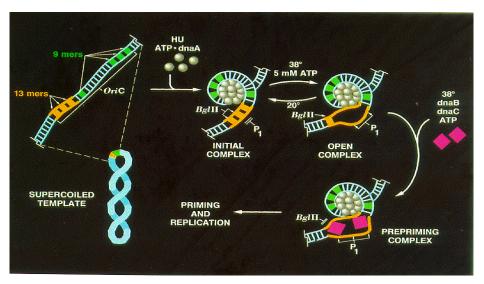
Prepared by – Mr. P. Srinivasan, Assistant Professor, Dept. of Microbiology, KAHE.

### DNA ligase:

- Joins the 5' phosphate of one DNA molecule to the 3' OH of another, using energy in the form of NAD (prokaryotes) or ATP (eukaryotes).
- It prefers substrates that are double-stranded, with only one strand needing ligation, and lacking gaps.
- forms covalent bonds linking together Okazaki fragments
- completing DNA synthesis along the lagging strand

### **Initiation of Replication**

- Replication initiated at specific sites: Origin of Replication (ori)
- Two Types of initiation:
  - De novo:Synthesis initiated with RNA primers. Most common.


- *Covalent extension*: synthesis of new strand as an extension of an old strand ("Rolling Circle")

The steps and components involved in the initiation reaction include:

- Binding of dnaA to the four highly conserved 9-mer sequences. About 20-40 molecules of dnaA (52Kdalton monomer) bind to the right end of the 245 bp ori sequence forming a large "nucleosome-like" complex. Nearly 200 base pairs are protected from DNAse I in this complex.
- ATP is bound in two forms to the dnaA complex, both a high and a low affinity bound form.
- In a second step, an open complex is formed in which dnaA now associates with the remaining 60 base pairs of AT rich DNA including the three 13 base pair repeats.
- Conditions required for the open complex are the presence of superhelical density >-0.04, HU protein (or possibly the related IHF - integrative host factor protein),temperature above 21° C.
- This second reaction can be inhibited by the presence of another origin specific DNA binding protein IciA which is a helix-turn-helix protein that binds to the 13mers inhibiting their melting.
- The third step is the formation of the prepriming complex. A complex of dnaB and dnaC protein interacts with the open complex (much like it does with the PriA, B, C complex in □X SS—>RF).
- dnaB helicase then continues to open the region begun by dnaA using its helicase activity. This opening requires SSB, DNA gyrase activity as well as ATP for the dnaB helicase. Two dnaB complexes are bound at each end of the opening on what will become the lagging strand of synthesis.
- dnaG (primase) then binds dnaB and primes DNA synthesis by DNA polymerase III holoenzyme at each fork. Although initiated by dnaB-dnaGprimase on the "lagging" strand, the first DNA polymerase II holoenzyme quickly proceeds to the opposite fork, becoming the leading strand enzyme for this opposite fork.

### Prepared by – Mr. P. Srinivasan , Assistant Professor, Dept. of Microbiology, KAHE.

Other factors that influence the rate and specificity of the oriC replication include HU protein, RNA polymerase transcription of nearby regions, ribonuclease H degradation of short non specific RNA synthesis



**Fig: Initiation of replication** 

### **Different modes of DNA replication**

### Meselson and Stahl Experiment

- *E. coli* are grown in heavy nitrogen  $(^{15}N)$  for many generations.
- This caused the nitrogen in the DNA molecule of each cell to contain <sup>15</sup>N, a heavier than typical isotope.
- The *E. coli* were then grown for one or two cell divisions in <sup>14</sup>N, the lighter and typical isotope.
- DNA was spun in a cesium chloride gradient. *Meselson and Stahl actually invented this technique, called density centrifugation, which now has many other applications, just for the purposes of this experiment.*
- The cesium chloride gradient and centrifugation separates molecules based on their density.
  - $\circ~$  The DNA molecules with  $^{15}N$  are more dense than those with  $^{14}N,$  and band below DNA with  $^{14}N.$
  - If two bands were observed after one division in <sup>14</sup>N, there would have been wholly old strands and wholly new strands. This would have been consistent with and meant the replication was conservative.
  - If there was just one band after one division, replication could be either dispersive or semiconservative.

Prepared by – Mr. P. Srinivasan, Assistant Professor, Dept. of Microbiology, KAHE.

- The result was just one band after one division.
  - If one or a long smear was observed after two divisions in <sup>14</sup>N containing medium, dispersive replication would have been the mode.
  - If intermediate weight and light weight molecules were found, semiconcervative would be the mode.
  - This is what was found; the replication was *semiconservative*. This *was* the predicted outcome of Watson and Crick.

### **Types of Replication**

Various types of replication include

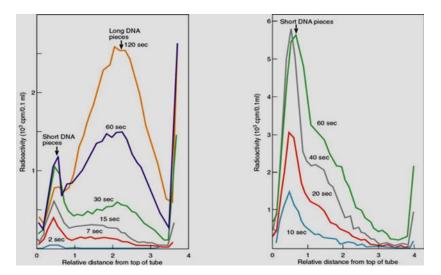
- Semi discontinuous replication
- Unidirectional replication
- Bidirectional replication

#### Semi discontinuous replication

If DNA replicates continuously on both strands in the same direction as the moving fork (ie., both in 5'- 3' and 3'- 5' direction) because of the ant parallel nature of two strands of DNA, one of the strand have free 3'oh group and the other strand would have free 5'p group but Pol-I and Pol-III add nucleotides only to a 3'oh group. Thus the replication takes place by means of one of the following reason which include:

- 1. There would be another polymerase that add nucleotides to the 5'end that is it would catalyze stand growth in 3-'5' direction, however no such polymerase exist.
- 2. If the 2 strands both grow in 5'-3' direction but from opposite strands of parent molecule, a significant fraction of the uneplicated molecule could have to be single stranded.

If the 2 strands both grow in 5'-3' direction but not in the same direction as parent molecule. thus this shows that some newly made DNA consist of fragments and this is determined by Okazaki.


#### **Detection of fragments**

In 1968, Reijiokazaki demonstrated in *E. Coli*that newly synthesized DNA is in the form of fragments which latter gets attached to one another to generate continuous strands. There are two predictions in this experiment include,

- 1.As a result of replication half of the newly synthesized DNA appears first as short pieces, these pieces are detected before they get stitched together. This is done by labeling the short pieces of DNA with radioactive DNA precursor fragments and the labeled fragment is referred as *pulses*.
- 2. DNA *ligase* which is responsible for stitching the short pieces of DNA synthesized should be eliminated. This is done to detect long pulses of DNA precursors.

#### **Pulse-labeling technique**

In this case, a culture of bacterial cells infected with a bacterial virus is given radioactively labeled DNA precursor(Tritiated thymidine <sup>3</sup>H-dT). In this case, using sucrose, the DNA molecules never find their equilibrium position because sucrose solutions are much less dense than CsCl solutions and so the molecules are always in motion. only DNA synthesis that has taken place during the time of the pulse will produce radiolabeled molecules that can be located in the gradient.



### Fig: Demonstration of semidiscontinuous replication <sup>3</sup>H labeledokazaki fragments in sucrose density gradients

The resultsshowedvery short times of labeling (short pulses) very short pieces of DNA are found (2 sec, 7 sec, 15 sec). However, with longer and longer times, the pieces of DNA get increasing longer (120 sec). He then tried the same experiment with a mutant virus that was defective in a gene called DNA ligase. We will see that this is the enzyme that joins pieces of DNA together into larger structures. In this case (on the right) the labeled pieces of DNA remained short, even after long times of radiolabeling. The data suggested to Okazaki that DNA replication occurred by the synthesis of small pieces that were later linked together by DNA ligase into larger pieces.

#### **Pulse-chase experiment**

In this experiment ,Uninfected bacterial culture was radiolabelled only for a short time, and then followed this by adding a large excess of unlabeled precursor. This resulted in a great decrease in the amount of radiolabel incorporated. The 's' value (sedimentation rate) of radioactive material increases with the time of growth. This is due to the attachment of newly formed DNA with preformed DNA before labeling, the small initial products formed is referred as **Okazaki fragments**.

Prepared by - Mr. P. Srinivasan, Assistant Professor, Dept. of Microbiology, KAHE.

### Okazaki's conclusion

Both the strands replicates with the help of DNA polymerase and this enzyme would make one strand (leading strand) continuously in the 5'-3' direction and the other strand (lagging strand) in order to synthesis in 5'-3' direction is made discontinuously, this discontinuity is due to the synthesis opposite to the direction of the replication fork.

### Unidirectional replication

Replication occurs by the separation of DNA strand forming a bubble at the middle of the strand and the new stand synthesis is made. In this replication only  $1/4^{\text{th}}$  is active and the DNA replicates from the stationary fork with a defined origin.

### **Bidirectional replication**

In bidirectional replication both fork will be active and the replication proceeds in both the direction with the origin in the middle of each branch point.

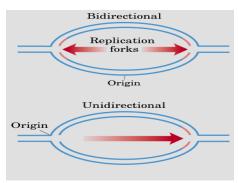
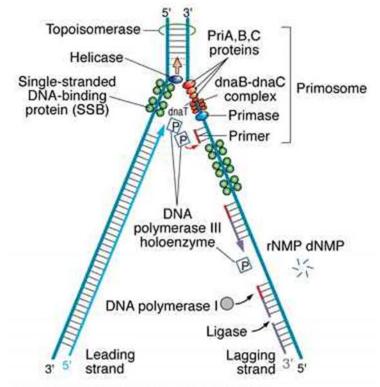



Fig: Bidirectional replication

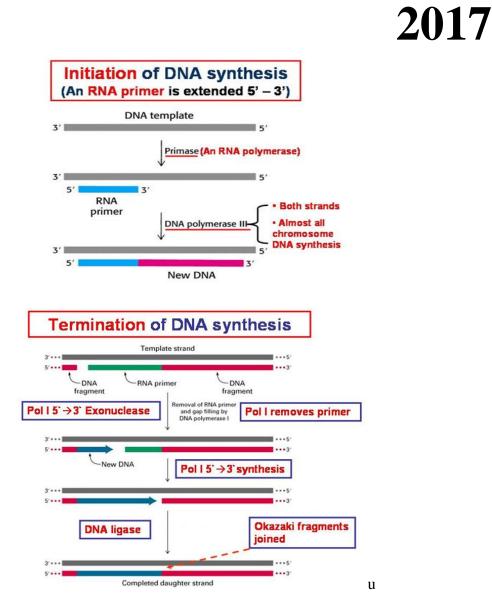

### Events in the replication fork:

- Segments of single-stranded DNA are called template strands.
- Gyrase (a type of topoisomerase) relaxes the supercoiled DNA.
- Initiator proteins and DNA helicase binds to the DNA at the replication fork and untwist the DNA using energy derived from ATP (adenosine triphosphate).(Hydrolysis of ATP causes a shape change in DNA helicase)
- The helicase and SSB moves along the parental strand prepriming it, so that DNA primase (primase is required for synthesis) synthesizes a short RNA primer of 10-12 nucleotides, to which DNA polymerase III adds nucleotides.
- The first step in primer synthesis is the formation of the complex known as preprimosome containing I,n,n',n'',DnaB,DnaC.
- This preprimosome then joins with primase to form primosome.
- The n' protein moves the primosome along the parental strand until the priming site is found with its bound ATP.

• At that time leading strand synthsis starts and advances along the parental strand by nucleotides addition in 5'-3' direction.

• Polymerase III adds nucleotides 5' to 3' on both strands beginning at the RNA primer.

- The RNA primer is removed and replaced with DNA by polymerase I, and the gap is sealed with DNA ligase.
- Single-stranded DNA-binding (SSB) proteins (>200) stabilize the single-stranded template DNA during the process.




Copyright @ 1997, by John Wiley & Sons, Inc. All rights reserved.

**Fig: Events in the replication fork** 

#### **Mechanism of DNA replication**

Prepared by - Mr. P. Srinivasan, Assistant Professor, Dept. of Microbiology, KAHE.

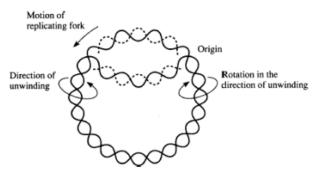


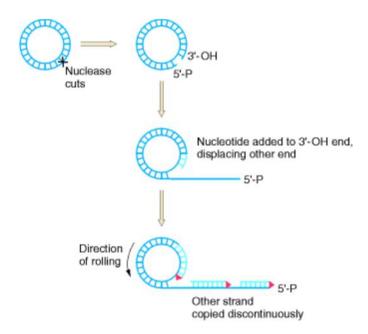
#### **Different models of Replication**

#### Theta model

Pol I also has 5' to 3' exonuclease activity by which it normally removes primers and replaces them with complementary DNA sequences after polymerization has begun. About halfway through the above replication process, the replicative intermediate molecule looks like the Greek letter theta ( $\theta$ ), so is referred to as theta replication.

Prepared by – Mr. P. Srinivasan, Assistant Professor, Dept. of Microbiology, KAHE.





Fig. 10-3. Theta ( $\theta$ ) replication. Newly synthesized DNA is indicated by broken lines. Overwinding of the unreplicated segment (caused by unwinding of the daughter branches) is removed by the nicking action of DNA gyrase.

#### **D** loop model

Initially only one of the parental strands is used as template for synthesis of a new strand. This single new strand displaces the non-template parental strand, forming a displacement loop, or **Dloop**. After replication of the first strand has proceeded about half way round the mitochondrial genome, synthesis of the other strand begins at a second origin and proceeds aroDuisnpdlatcheemgeennot more D. -loops

#### **Rolling Circle model**

A rolling circle is a replicative structure in which one strand of a circular duplex is used as atemplate for multiple rounds of replication, generating many copies of that template. When replication proceeds by a rolling circle, replication of one strand of the duplex begins at a nick atthe origin. The newly synthesized strand displaces the original nicked strand, which does not serve as a template for new synthesis. Thus the rolling circle mechanism copies only one strand of the DNA. Elongation proceeds by the replication machinery going around the template multiple times, in a pattern resembling a rolling circle. The large number of copies of a single strand of a phage genome made by the rolling circle are **concatenated**, or connected end-to-end. The single-stranded DNA can be cleaved and ligated to generate unit length genomes, which are packaged into phage particles. This occurs in replication of single-stranded DNA phages such as  $\varphi$ X174 or M13.



### **Fig: Rolling circle replication**

*Looped rolling circle model* : The steps in the formation of the ØX primosome involve:

- Coating of the single-stranded ØX174 DNA with *Escherichia coli* SSB DNA binding protein
- Binding of three proteins (PriA, priB and priC) to the primer assembly sequence.
- Formation of a complex of six subunits of dnaB protein coupled with six subunits of dnaC protein.
- Transfer of the complex of dnaB·dnaC to the priA-B-C complex at the primer assembly site via the dnaT gene product. dnaC dissociates at this step and the resulting complex is known as the preprimosome.
- Binding of primase (dnaG) to the preprimosome complex to form the primosome.
- The mature primosome can then proceed in an ATP dependent fashion to traverse the DNA. The primosome can apparently be driven by either the dnaB protein in a 3'-5' direction or by the priA protein in the 5'-> 3' direction.
- Both the dnaB protein and the priA protein in the primosome can serve as a DNA helicase activities.
- The priA protein can also displace SSB from in front of the moving primosome. whilednaB cannot and can only move on naked DNA template.
- During either of these motions, the primase activity can synthesize primers  $11 \pm 1$  nucleotides in length at various sites along the template in a reaction requiring the four rNTPs.
- Once these primers are extended by DNA polymerase III, the SSB protein is permanently displaced from the single-stranded DNA template. Removal of the RNA primers and ultimate sealing of the nicks in the DNA require the combined action of 5' exonuclease of DNA polymerase I and DNA ligase.

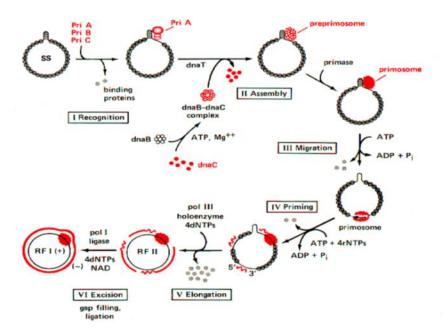



Fig: Looped rolling circle replication

### **Eukaryotic DNA replication**

- **Five DNA polymerases:** Eukaryotic DNA replication is not as well understood as prokaryotic. However, there are at least five separate DNA polymerases, as described below.
- Separate enzymes for leading and lagging strands: Leading and lagging strands appear to be synthesized simultaneously in eukaryotic cells, but two separate enzymes are involved, rather than a dimer of a single enzyme. Polymerase alpha is currently believed to be responsible for synthesis of the lagging strand and polymerase delta for the leading strand.
- **DNA repair:** Polymerases beta and eta are also nuclear and are generally thought to be involved in repair.
- **Mitochondrial DNA synthesis:** As we will see in lecture 35, mitochondria contain an independent DNA genome. Polymerase gamma is believed to be involved in mitochondrial DNA synthesis.
- **Replicons:** Because of the great length of the DNA molecules in eukaryotic chromosomes, they have multiple origins of replication. Each unit of DNA replication is referred to as a replicon.

**Histone synthesis:** Histones are basic proteins that interact with eukaryotic DNA to form stuctural units known as nucleosomes .The synthesis of new histones is tightly linked to DNA synthesis with immediate formation of new nucleosomes.

### KARPAGAM ACADEMY OF HIGHER EDUCATION (KARPAGAM UNIVERSITY) DEPARTMENT OF MICROBIOLOGY MOLECULAR GENETICS - 17MBP103

| Unit II Question                                                                          |
|-------------------------------------------------------------------------------------------|
| is a non-ionizing radiation                                                               |
| Alkylation is                                                                             |
| Alkylation of guanine causes its removal from DNA in a reaction called                    |
| An intercalating dye                                                                      |
| Bacterium used in Ames test                                                               |
| Biological agents of mutagenesis are                                                      |
| Cancer that results from deletion of a portion of chrosome 13 is                          |
| Change of purine to pyrimidine base in an mutation                                        |
| Chemical agent that resembles thiamine                                                    |
| Chemical mutagens leading to addition of nucleotides to the DNA are                       |
| Chromosomal mutation is                                                                   |
| Common chemical events that produce spontaneous mutation                                  |
| Converts amino groups to keto groups by oxidative deamination                             |
| Daughter strand repair is also called as                                                  |
| Deficiency in phenylalanine hydroxidase results in                                        |
| Detection of silent mutations require                                                     |
| Duplication mutation is                                                                   |
| Frameshift mutation is caused by                                                          |
| Herman J.Mueller reported results of induced mutations on                                 |
| Human bladder cancer is brought about by a change in single point mutation of             |
| In bacteria, a small circle of DNA found outside the main chromosome is called            |
| In <i>E.coli</i> , parental DNA is methylated at an adenine residue found in the sequence |
| Mismatch repair cannot take place if there is a mutation in                               |
| Most common proto-oncogene implicated in human cancers                                    |
| Most common repair system is                                                              |
| Most frequently employed technique in the study of mutations                              |
| Mutation generating new stop codon are called                                             |
| Mutation in which a purine base is substituted with another purine base is                |
| Mutation in which there is an amino acid substitution is called                           |
| Mutation involving single-base changes are                                                |
| Mutation resulting from deamination of 5-methylcytosine produces Thymine which pairs with |
| Mutation that has no detectable effect on the phenotype of a cell                         |
| Mutations that result from treatment with mutagens are called                             |
| Natural phenomena of changes in chemical structure of nitrogenous bases is called         |
| Naturally occurring mutations are                                                         |
| Nonsense mutation leads to                                                                |
| Nutritional mutans of neurospora are known as                                             |
| Oncogenes are found in certain                                                            |
| Potent oxidizing agent that can alter structure of purine and pyrimidine                  |

Radiation that causes cross chromosomal mutations in humans

Rapid screening technique for mutagens and carcinogens

Recombinational repair is often due to

Repairing mechanism of \_\_\_\_\_\_ depends on absorption of visible light by the enzyme.

Reverse mutation is

Sickle cell anaemia is caused by change in amino acid from

Site that mutates at a rate significantly greater thag statistical probability is referred to as

The function of DNA glycosylase in base excision repair is

The most common error prone repair mechanism is

The result of addition or deletion of one or more base pair in a gene is

Transposition is

Transposons was first reported by

UV induced dimers are separated using light energy by

UV radiation at 260 nm cross-links adjacent thiamine that produces

UV radiation causes

Virus capable of causing mutations is

When a part of chrosome is moved to another chromosome, it is called as

Which of the following biomolecule has self-repair mechanisms?

Which of the following chemicals induce depurination

Which of the following dimer formation is most common

Xeroderma pigmentosum is a genetic disorder of

| Opt 1                                          |
|------------------------------------------------|
| Alpha                                          |
| Addition of methyl or ethyl group              |
| Deamination                                    |
| Sunset yellow                                  |
| Salmonella                                     |
| Transposable elements                          |
| Eye cancer                                     |
| Transition mutation                            |
| 5-bromothiamine                                |
| Thimers                                        |
| Abberation                                     |
| Deamination                                    |
| Hydrochloric acid                              |
| Recombination repair                           |
| Cancer                                         |
| Aminoacid analysis                             |
| Segments of nucleotides sequences are repeated |
| Proflavin                                      |
| Yeast                                          |
| Valine to glycine                              |
| Cosmid                                         |
| 5' TAGC 3'                                     |
| Helicase                                       |
| s-rac                                          |
| SOS                                            |
| Analysis of phenotypes                         |
| Nonsense mutation                              |
| Transverse mutation                            |
| Missense                                       |
| Induced mutations                              |
| Uracil                                         |
| Point                                          |
| Induced mutation                               |
| Complementary                                  |
| Induced                                        |
| Termination of DNA synthesis                   |
| Phototrophs                                    |
| Bacteria                                       |
| Free radicals                                  |

| UV                                                        |
|-----------------------------------------------------------|
| Aims test                                                 |
| many cytidine dimer and associated large gaps in a strand |
| DNA helicase                                              |
| Wild type to mutant                                       |
| Glutamic acid                                             |
| Hotspots                                                  |
| Addition of correct base                                  |
| Mismatch                                                  |
| Frameshift                                                |
| Movement of a phage                                       |
| Louise pasteur                                            |
| Primase                                                   |
| Butane ring                                               |
| Adenine dimers                                            |
| Bacteriophage Ru                                          |
| Point mutation                                            |
| DNA,RNA and protein                                       |
| Methyl ethane sulphonate                                  |
| Cytidine dimer                                            |
| Skin                                                      |

| Opt 2                                          |
|------------------------------------------------|
| UV                                             |
| Deletion of ethyl and addition of methyl group |
| Depyrimidation                                 |
| Safranin                                       |
| Shigella                                       |
| Lipids                                         |
| Bone cancer                                    |
| Transverse mutation                            |
| 5-bromoadenine                                 |
| Base analogs                                   |
| Change over                                    |
| Depurination                                   |
| Nitrous acid                                   |
| SOS repair                                     |
| Phenylketonuroa                                |
| Peptide analysis                               |
| Segments of nucleotides sequences are deleted  |
| Nitrous acid                                   |
| Drosophila                                     |
| Isoleucine to leucine                          |
| Bacmid                                         |
| 5' ATGC 3'                                     |
| Polymerase                                     |
| a-src                                          |
| Photoreactive                                  |
| Analysis of genotypes                          |
| Misense mutation                               |
| General mutation                               |
| Nonsense                                       |
| Point mutations                                |
| Adenine                                        |
| Induced                                        |
| Uninduced                                      |
| Conservative                                   |
| Spontaneous                                    |
| Termination of protein synthesis               |
| Auxotrophs                                     |
| Fungi                                          |
| Water                                          |

| Visible                                                       |
|---------------------------------------------------------------|
| Sima test                                                     |
| incorporation of many incorrect nucleotides by DNA polymerase |
| DNA ligase                                                    |
| Mutant to wild type                                           |
| Alanine to Leucine                                            |
| Blackspots                                                    |
| Addition of correct nucleotide                                |
| Excision                                                      |
| Base pair substitution                                        |
| Movement of a virus                                           |
| Koch                                                          |
| Photolyase                                                    |
| Cyclane ring                                                  |
| Cytosine dimers                                               |
| Bacteriophage Mu                                              |
| Induced mutation                                              |
| DNA and RNA                                                   |
| Guanidine                                                     |
| Uracil dimer                                                  |
| Hair                                                          |

| Opt 3                                          |
|------------------------------------------------|
| Gamma                                          |
| Deletion of methyl and addition of ethyl group |
| Degradation                                    |
| India ink                                      |
| Streptococcus                                  |
| Bacteria                                       |
| Skin cancer                                    |
| General mutation                               |
| 5-bromoguanine                                 |
| Alkylating agents                              |
| Variation                                      |
| Dimerization                                   |
| Sulphuric acid                                 |
| Photo repair                                   |
| Melanoma                                       |
| RNA analysis                                   |
| Segments of nucleotides sequences are inserted |
| UV                                             |
| Fish                                           |
| Leucine to isoleucine                          |
| Transposon                                     |
| 5' CATG 3'                                     |
| Ligase                                         |
| r-cas                                          |
| Mismatch                                       |
| Analysis of proteins                           |
| Point mutation                                 |
| Transition mutation                            |
| Silent                                         |
| Silent mutations                               |
| Cytosine                                       |
| Silent                                         |
| Spontaneous                                    |
| Tautomeric                                     |
| Nonsense                                       |
| Termination of cell wall synthesis             |
| Heterotrophs                                   |
| Viruses                                        |
| Dyes                                           |

| Ionozing                                                         |
|------------------------------------------------------------------|
| Ames test                                                        |
| many thymidine dimer formation and associated large gaps in a st |
| DNA gyrase                                                       |
| A new gene introduced                                            |
| Valine to Glutamic acid                                          |
| Dotspots                                                         |
| Removal of incorrect base                                        |
| SOS                                                              |
| Misense mutation                                                 |
| Movement of a transposon                                         |
| Barbara McClintock                                               |
| Dnase                                                            |
| Butocyclane ring                                                 |
| Guanine dimers                                                   |
| Bacteriophage Nu                                                 |
| Spontaneous mutation                                             |
| DNA and proteins                                                 |
| Ethyl sulphonate                                                 |
| Thymidine dimer                                                  |
| Nail                                                             |

| Opt 4                                                      | Opt 5  | Opt 6 |
|------------------------------------------------------------|--------|-------|
| Beta                                                       | - F. C |       |
| Deletion of methyl or ethyl group                          |        |       |
| Depurination                                               |        |       |
| Acridine orange                                            |        |       |
| Staphylococcus                                             |        |       |
| Carbohydrates                                              |        |       |
| Lung cancer                                                |        |       |
| Transformation                                             |        |       |
| 5-bromouracil                                              |        |       |
| Interchelating agents                                      |        |       |
| Genetic change                                             |        |       |
| Isomerization                                              |        |       |
| Oxalic acid                                                |        |       |
| Excision repair                                            |        |       |
| Asthma                                                     |        |       |
| Nucleotide analysis                                        |        |       |
| Segments of nucleotide sequences are inserted & deleted ev | venly  |       |
| X-rays                                                     |        |       |
| Pea plant                                                  |        |       |
| Glycine to valine                                          |        |       |
| Plasmid                                                    |        |       |
| 5' GATC 3'                                                 |        |       |
| Methylase enzyme                                           |        |       |
| c-ras                                                      |        |       |
| Excision                                                   |        |       |
| Analysis of both phenotypes and genotypes                  |        |       |
| Silent mutation                                            |        |       |
| Transduction                                               |        |       |
| Point                                                      |        |       |
| Inverse mutations                                          |        |       |
| Guanine                                                    |        |       |
| Leaky                                                      |        |       |
| Frameshift                                                 |        |       |
| Telomeric                                                  |        |       |
| Frameshift                                                 |        |       |
| Termination of RNA synthesis                               |        |       |
| Isotrophs                                                  |        |       |
| Algae                                                      |        |       |
| Acids                                                      |        |       |

| X-rays                         |
|--------------------------------|
| Sema test                      |
| DNA breaking                   |
| DNA photolyase                 |
| A gene deleted                 |
| Leucine to alanine             |
| DNA spots                      |
| Removal of phosphodiester bond |
| Recombination                  |
| Nonsense mutation              |
| Movement of a plasmid          |
| Lister                         |
| Rnase                          |
| Phenyl alanine                 |
| Thiamine dimers                |
| Bacteriophage Ly               |
| Translocation mutation         |
| DNA only                       |
| Dichlor                        |
| Adenosine dimer                |
| Tongue                         |

| Answer                                         |
|------------------------------------------------|
| UV                                             |
| Addition of methyl or ethyl group              |
| Depurination                                   |
| Acridine orange                                |
| Salmonella                                     |
| Transposable elements                          |
| Eye cancer                                     |
| Transverse mutation                            |
| 5-bromouracil                                  |
| Interchelating agents                          |
| Abberation                                     |
| Depurination                                   |
| Nitrous acid                                   |
| Recombination repair                           |
| Phenylketonuroa                                |
| Nucleotide analysis                            |
| Segments of nucleotides sequences are repeated |
| Proflavin                                      |
| Drosophila                                     |
| Glycine to valine                              |
| Plasmid                                        |
| 5' GATC 3'                                     |
| Methylase enzyme                               |
| c-ras                                          |
| Excision                                       |
| Analysis of phenotypes                         |
| Nonsense mutation                              |
| Transition mutation                            |
| Missense                                       |
| Point mutations                                |
| Adenine                                        |
| Silent                                         |
| Induced mutation                               |
| Tautomeric                                     |
| Spontaneous                                    |
| Termination of protein synthesis               |
| Auxotrophs                                     |
| Viruses                                        |
| Free radicals                                  |

| Ionozing                                                     |
|--------------------------------------------------------------|
| Ames test                                                    |
| incorporation of many incorrect nucleotides by DNA polymera: |
| DNA photolyase                                               |
| Mutant to wild type                                          |
| Valine to Glutamic acid                                      |
| Hotspots                                                     |
| Removal of phosphodiester bond                               |
| SOS                                                          |
| Frameshift                                                   |
| Movement of transposon                                       |
| Barbara McClintock                                           |
| Photolyase                                                   |
| Cyclobutane ring                                             |
| Thiamine dimers                                              |
| Bacteriophage Mu                                             |
| Translocation mutation                                       |
| DNA only                                                     |
| Methyl ethane sulphonate                                     |
| Thymidine dimer                                              |
| Skin                                                         |



### **DEPARTMENT OF MICROBIOLOGY KARPAGAM ACADEMY OF HIGHER EDUCATION** KARPAGAM UNIVERSITY

(Deemed University Established Under Section 3 of UGC Act, 1956) Eachanari PO, Coimbatore -641 021, India.

### I - M.Sc Microbiology (Batch 2017-2019)

### Lecture Plan

Unit - III

| S. No | Duration | Торіс                                                   | Reference     |  |
|-------|----------|---------------------------------------------------------|---------------|--|
| 1.    | 2        | Genetic recombination – conjugation, transformation and | T1:481 to 506 |  |
|       |          | transduction                                            | R1:281 to 317 |  |
| 2.    | 2        | Linkage and Genetic mapping                             | T1:312 to 314 |  |
| 3.    | 2        | Phage genetics – Lytic and Lysogenic cycle              | R1:447 to 450 |  |
| 4.    | 2        | Detection and isolation of phage T4 mutant              | T1:456 to 462 |  |
| 5.    | 1        | Gene map of T4 phage                                    | R1:314 to 327 |  |
| 6.    | 1        | Class Test III                                          | -             |  |
|       |          | Total Hours                                             | 10            |  |

R1: David Freifelder, Microbial Genetics. Narosa Publishing House, 10<sup>th</sup> edition, 2004. New Delhi, India.

T1: Peter J. Russell, i Genetics – A molecular approach, 7<sup>th</sup> edition, 2010. Pearson Benjamin Cummings Publishers, Boston, USA.

W1: www.slideshare.com/MolecularBiology-Geneticrecombation.html

### Unit – III Genetic code

Genetic code is the nucleotide base sequence on DNA ( and subsequently on mRNA by transcription) which will be translated into a sequence of amino acids of the protein to be synthesized.

The code is composed of codons. Codon is composed of 3 bases (e.g. ACG or UAG). Each codon is translated into one amino acid. The 4 nucleotide bases (A,G,C and U) in mRNA are used to produce the three base codons. There are therefore, 64 codons code for the 20 amino acids, and since each codon code for only one amino acids this means that, there are more than one cone for the same amino acid.

Each triplet is read from  $5' \rightarrow 3'$  direction so the first base is 5' base, followed by the middle base then the last base which is 3' base.

*Examples:* 5'- A UG- 3' codes for methionine

5'- UCU- 3' codes for serine

5' - CCA- 3' codes for proline

### Termination (stop or nonsense) codons:

Three of the 64 codons; UAA, UAG, UGA do not code for any amino acid. They are termination codes which when one of them appear in mRNA sequence, it indicates finishing of protein synthesis.

### Characters of the genetic code:

- *Specificity*: the genetic code is specific, that is a specific codon always code for the same amino acid.
- *Universalit*y: the genetic code is universal, that is, the same codon is used in all living organisms, procaryotics and eucaryotics.
- **Degeneracy:** the genetic code is degenerate i.e. although each codon corresponds to a single amino acid, one amino acid may have more than one codons. e.g arginine has 6 different codons.

### **Properties**

- The genetic code is composed of nucleotide triplets. In other words, three nucleotides in mRNA (a codon) specify one amino acid in a protein.
- The code is non-overlapping. This means that successive triplets are read in order. Each nucleotide is part of only one triplet codon.

- The genetic code is unambiguous. Each codon specifies a particular amino acid, and only one amino acid. In other words, the codon ACG codes for the amino acid threonine, and <u>only</u> threonine.
- The genetic code is degenerate. In contrast, each amino acid can be specified by more than one codon.
- The code is nearly universal. Almost all organisms in nature (from bacteria to humans) use exactly the same genetic code. The rare exceptions include some changes in the code

in

|                     |   |                                            | Secon                    | d base                                 |                                   |                       |
|---------------------|---|--------------------------------------------|--------------------------|----------------------------------------|-----------------------------------|-----------------------|
|                     |   | U                                          | С                        | Α                                      | G                                 |                       |
| First base (5' end) | υ | UUU<br>UUC<br>UUA<br>UUG                   | UCU<br>UCC<br>UCA<br>UCG | UAU<br>UAC Tyr<br>UAA Stop<br>UAG Stop | UGU<br>UGC<br>UGA Stop<br>UGG Trp | U<br>C<br>A<br>G      |
|                     | с | CUU<br>CUC<br>CUA<br>CUG                   | CCU<br>CCC<br>CCA<br>CCG | CAU<br>CAC<br>CAA<br>CAA<br>GIn        | CGU<br>CGC<br>CGA<br>CGG          | D                     |
|                     | • | AUU<br>AUC<br>AUA<br>AUG <sup>Met or</sup> | ACU<br>ACC<br>ACA<br>ACG | AAU<br>AAC<br>AAA<br>AAA<br>AAG        | AGU<br>AGC<br>AGA<br>AGA<br>AGG   | D D C C<br>Third base |
|                     | G | GUU<br>GUC<br>GUA<br>GUG                   | GCU<br>GCC<br>GCA<br>GCG | GAU<br>GAC<br>GAA<br>GAG<br>GIu        | GGU<br>GGC<br>GGA<br>GGG          | U<br>C<br>A<br>G      |
|                     |   |                                            |                          |                                        |                                   |                       |

mitochondria, and in a few protozoan species.

### Fig: Table showing characters of Genetic code

### Gene organization in chromosomes

### The coding potential of human DNA

- human DNA contains  $6 \times 10^9$  base pairs/cell = 6,000,000 kb pairs
- compare to 4700 kb pairs/*E. coli*, a very sophisticated bacterium. Human DNA is more than 1000x bigger!
- If all human DNA coded for proteins, would have enough for roughly 5 million different proteins
- But currently only know ~ 3000 human proteins, and estimates as to how many we truly have range from 10,000 to 100,000

Prepared by - Mr. P. Srinivasan, Assistant Professor, Dept. of Microbiology, KAHE.

- In fact, less than 5% of human DNA codes for protein!
- What does the rest of the DNA do?

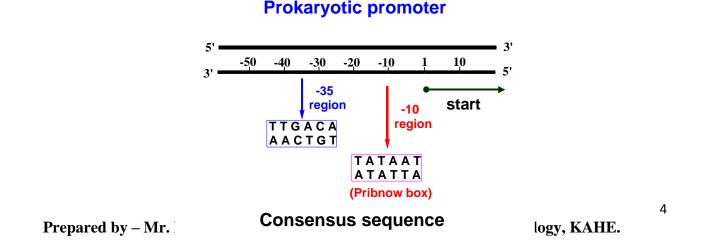
### **Functions of human DNA**

- Coding for proteins. Eukaryotic genes are organized in peculiar fashion:
  - 1. **Exons**: (short for "expressed") -- regions of DNA that code for amino acids.
  - 2. **Introns**: (short for "intervening" or "interrupting") -- regions of DNA inside a gene, located in between exon regions, but not coding amino acids
  - 3. When RNA is transcribed from a gene, it initially contains both introns and exons, and cannot be called "messenger RNA" yet because the message is interrupted. Introns must be removed by "cut-and-paste", called **RNA splicing**.
  - 4. **snRNPs** ("snurps") = **small ribonucleoprotein particles**, found in nucleus. Composed of RNA and a few proteins. snRNPs associate to form a **Spliceosome**, which locates the junction of intron and exon, specifically cuts at this junction, and joins the cut ends of exons to form messenger RNA.
  - 5. **Ribozymes**: the enzymatic activity of spliceosomes was initially thought to be in the protein. However, now known to be on RNA; first example of catalytic RNA (called **ribozyme** for as opposed to enzyme, which is protein).
  - 6. Note: almost all genes in eukaryotes contain intron/exon organization. In some cases, amount of intron can be much larger than amount of exon DNA.
  - 7. Evolutionary importance of introns: since many proteins consist of several domains with different functions,
- **Multigene Families**: some genes are represented by more than one copy, typically for products needed in large quantity by cell.
  - 1. Example 1: **ribosomal genes** (for ribosomal RNA). Copies of the same gene are clustered together in enormous number (hundreds of thousands of identical gene copies).
  - 2. Example 2: **histone genes** (for proteins that bind to DNA to make chromatin). Family of histone proteins is represented many times.
- **Pseudogenes**: examples of multigene families where some copies of the gene have mutated to the point where they no longer function at all in the cell.
  - 1. Example: globin gene family. In humans, find several slightly different globin genes that produce the hemoglobin molecules needed by fetus, embryo, and adult. But also find a cluster of genes nearly identical in base sequence, but never expressed in the life of a human.
  - 2. Explanation: at some time in evolutionary past, globin genes were duplicated (by gene transposition). One cluster retained the job of making functional hemoglobin. The other cluster mutated so that promoter site no longer could be recognized by RNA polymerase. Result = this gene cluster now serves no purpose, cannot make any RNA or protein, but provides evidence of an evolutionary past. Called a **pseudogene** because it looks like a gene, but doesn't function.
- **Repetitive sequence DNA**. Some regions of DNA contain short sequences repeated many thousands of times = "tandem repeats". No coding function at all.

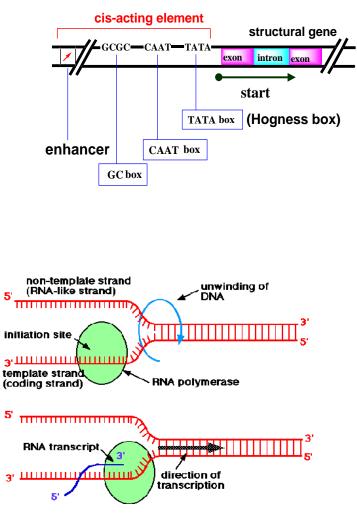
1. Example 1: "satellite" DNA. Sequence such as ACAAACT repeated again and again (producing

...ACAAACTACAAACTACAAACTACAAACTACAAACTACAAACT...). These regions appear to be located where the centromere forms, so this sequence must have mechanical properties that allow recognition by kinetochore and mitotic spindle.

2. Example 2: "**telomeric**" **DNA**. Sequences such as TTAGGG repeated over and over, 250-1500 times. Found at the ends of linear chromosomes (telomeres) where RNA primase (needed to prime the synthesis of new DNA) cannot work on lagging strand. Telomeric DNA acts like a "cap" on the end of the chromosome. If didn't have this, then DNA would lose a bit every replication, chromosome would gradually get shorter


### Transcription

The synthesis of RNA molecules using DNA strands as the templates so that the genetic information can be transferred from DNA to RNA.


- First step in making proteins
- Process of taking one gene (DNA) and converting into a mRNA strand
- DNA -> RNA
- *Location*:Nucleus of the cell

#### **Steps to Transcription**

- An enzyme attaches to the promoter (start signal region) of a gene and unwinds the DNA.
  - The -35 region of TTGACA sequence is the recognition site and the binding site of RNA-pol.
  - The -10 region of TATAAT is the region at which a stable complex of DNA and RNA-pol is formed.



### **Cis-acting element**



- One strand acts as a template
- A mRNA copy is made from the DNA template strand by <u>RNA polymerase</u>
- A mRNA copy is made until it reaches the <u>termination</u> (stop signal) sequence
- The two strands of DNA rejoin.

Prepared by - Mr. P. Srinivasan, Assistant Professor, Dept. of Microbiology, KAHE.

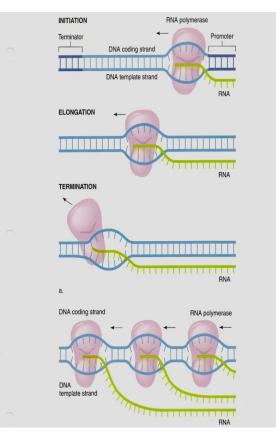
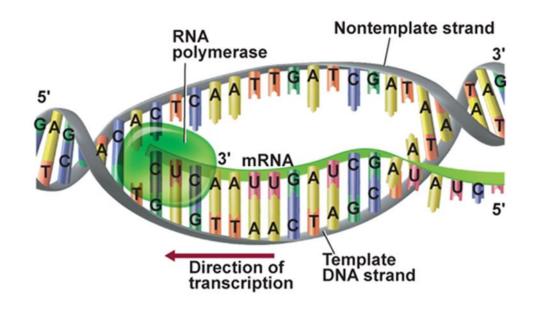
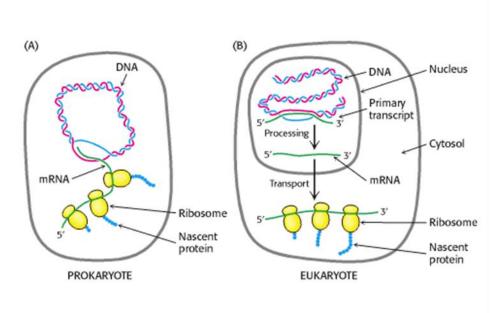





Fig: Mechanism of Transcription

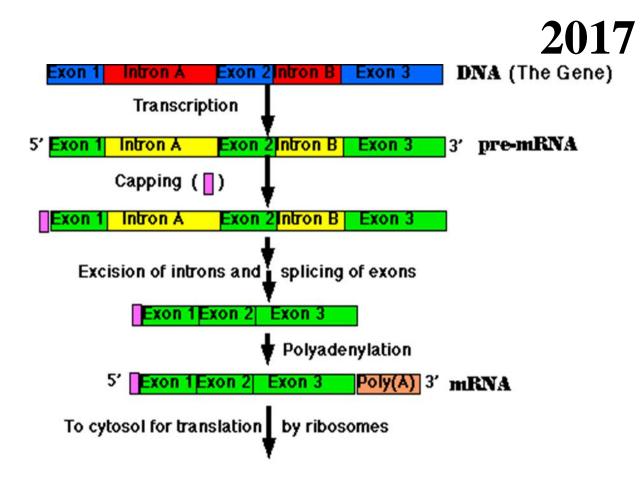


### Fig: Initiation of transcription

### Post transcriptional modification



### Fig: Post transcriptional modification both in prokaryotes and Eukaryotes


### mRNA Processing

- Pre-mRNA the original sequence of RNA created during transcription
- mRNA reaches the ribosomes
- After transcription the pre-mRNA molecule undergoes processing
  - 5' cap is added
  - Poly A tail is added to the 3' end
  - Introns are removed.

### **RNA Processing**

- Takes place in Eukaryotes only
- Introns- non-coded sections
- *Exons* codes for a protein
- Before RNA leaves the nucleus, introns are removed and exons are spliced together
- A cap and poly A tail are added to ends of the sequence
- mRNA leaves the nucleus through the nuclear pores

Prepared by – Mr. P. Srinivasan, Assistant Professor, Dept. of Microbiology, KAHE.



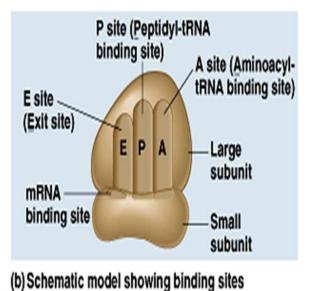
### Translation

- Production of proteins from mRNA
- mRNA goes to the ribosomes in the cytoplasm

### Components required for protein synthesis:

*Amino acids*: all amino acids involved in the finished protein must be present at the time of protein synthesis.

*Ribosomes*: the site of protein synthesis. They are large complexes of protein and rRNA. In human, they consist of two subunits, one large (60S) and one small (40S).

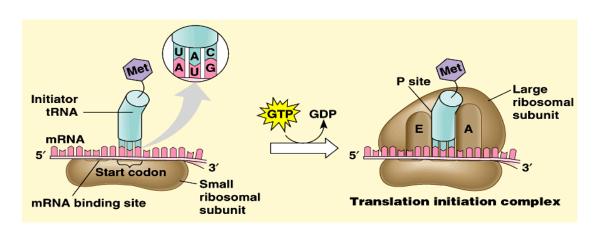

tRNA: at least one specific type of tRNA is required to transfer one amino acid. There about 50 tRNA in human for the 20 amino acids, this means some amino acids have more than one specific tRNA. The role of tRNA in protein synthesis is discussed before. (amino acid attachment and anticodon loop).

*aminoacyl-tRNAsynthetase*: This is the enzyme that catalyzes the attachment of amino acid with its corresponding tRNA forming aminoacyltRNA

mRNA: that carry code for the protein to be synthesized

*protein factors*: Initiation, elongation and termination (or release) factors are required for peptide synthesis

ATP and GTP : are required as source of energy.




### Steps:

### Initiation:

Initiation (start) codon is usually AUG which is the codon of methionine, so the initiator tRNA is methionnyltRNA (Met. tRNA).

• The initiation factors (IF-1, IF-2 and IF-3) binds the Met. tRNA with small ribosomal subunit then to mRNA containing the code of the protein to be synthesized. IFs recognizes mRNA from its 5' cap



#### **Fig: Initiation of translation**

Prepared by – Mr. P. Srinivasan, Assistant Professor, Dept. of Microbiology, KAHE.

- This complex binds to large ribosomal subunit forming initiation complex in which Met. tRNA is present in P- site of 60 ribosomal subunit. tRNA bind with mRNA by base pairing between codon on mRNA and anticodon on tRNA.
- mRNA is read from  $5' \rightarrow 3'$  direction
- P-site: is the peptidyl site of the ribosome to which methionyltRNA is placed (enter).

### Elongation:

Elongation factors (EFs) stimulate the stepwise elongation of polypeptide chain as follow:

- The next aminoacyltRNA (tRNA which carry the next amino acid specified by recognition of the next codon on mRNA) will enter A site of ribosome A site or acceptor site or aminoacyltRNAsite :Is the site of ribosome to which each new incoming aminoacyltRNA will enter.
- *Ribosomal peptidyltransferase*, enzyme will transfer methionine from methionyltRNA into A site to form a peptide bond between methionine and the new incoming amino acid to form dipeptidyltRNA.
- Elongation factor-2 (EF-2), (called also, translocase): moves mRNA and dipeptidyltRNA from A site to P site leaving A site free to allow entrance of another new aminoacyltRNA.
- Elongation process continous resulting in the formation of of poly peptide chain.

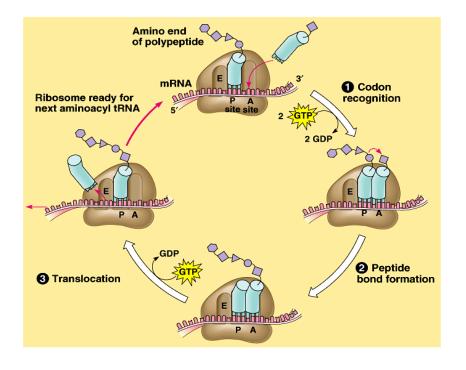
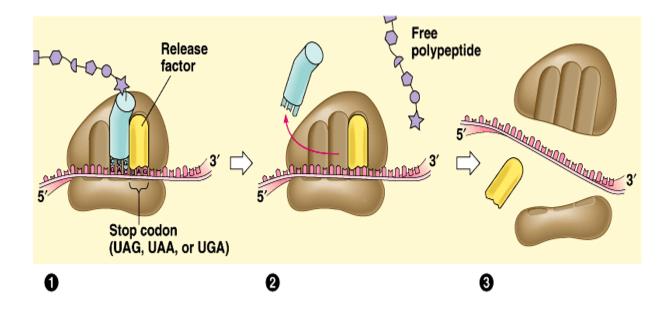




Fig: Repetitive cycle of elongation

Prepared by – Mr. P. Srinivasan, Assistant Professor, Dept. of Microbiology, KAHE.

### Termination:

This process occurs when one of the three stop codons (UAA, UAG or UGA) enters A site of the ribosome. These codons are recognized by release factors (RFs) which are RF-1, RF-2, RF-3. RFs cause the newly synthesized protein to be released from the ribosomal complex and dissociation of ribosomes from mRNA (i.e. cause dissolution of the complex)



### Fig: Termination of transcription

### **Regulating Gene Expression**

- Microbes respond to changing environment
  - Alter growth rate
  - Alter proteins produced
  - Must sense their environment
    - Receptors on cell surface
  - Must transmit information to chromosome
- Alter gene expression
  - Change transcription rate
  - Change translation rate

### **Operonic regulation**

- Coding vs regulatory sequences
- Regulatory sequences: promoters, operator and activator sequences
- Regulatory proteins: repressors, activators
  - Repressors bind operator sequences, block transcription
    - Induction vsDerepression

 Activator proteins bind sequences near by promoters, facilitate RNA Pol binding, upregulate transcription

### Operon

- Multiple genes transcribed from one promoter

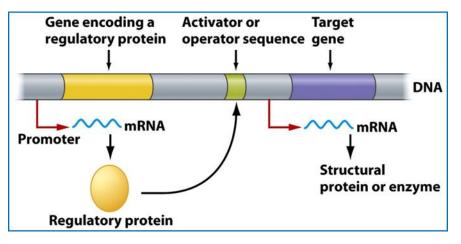
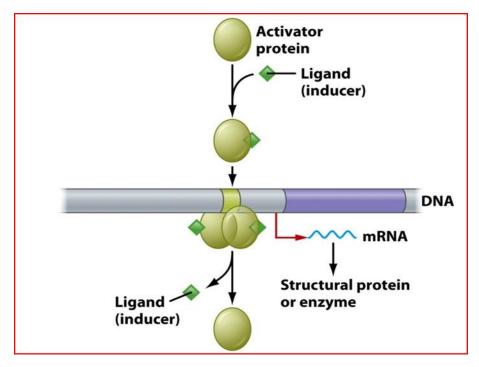




Fig: Structural and regulatory genes of an operon



**Fig: Operonic regulation** 

### The E. colilac Operon

\_

- Lactose (milk sugar) is used for food
  - Cannot pass through plasma membrane
    - Lactose permease allows entry
    - PMF used to bring lactose inside cell
  - Must be converted to glucose to be digested

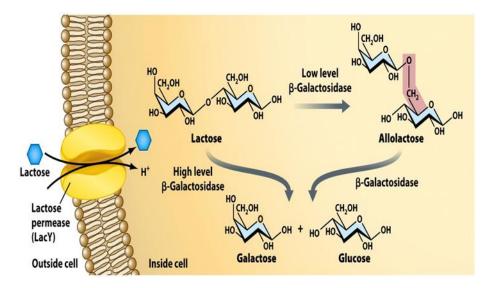



Fig: Lac operon regulation

- β-galactosidase converts lactose to glucose and galactose
- People also make β -galactosidase
- If not, person is lactose-intolerant

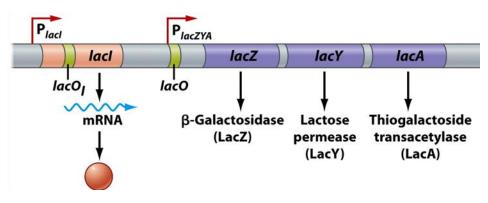



Fig: Structural and regulatory gene of Lac Operon

- The *lacZ* gene encodes b-galactosidase
- The *lacY* gene encodes lactose permease

- Need both proteins to digest lactose
- Repressor protein LacI blocks transcription
  - Repressor binds to operator
  - Blocks s factor from binding promoter
- Repressor responds to presence of lactose
  - Binds inducer (allolactose) or DNA, not both
  - Add lactose  $\rightarrow$  repressor falls off operator

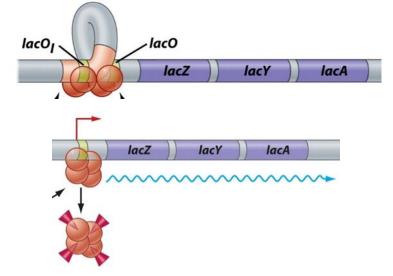
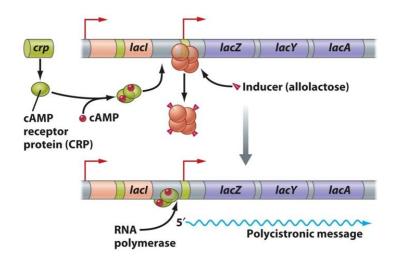




Fig: Allolactose cause operon induction

### Activation of the lac Operon by cAMP-CRP

- Maximum expression requires cAMP and cAMP receptor protein (CRP)

   The cAMP-CRP complex binds to the promoter at -60 bp
  - Interacts with RNA pol, increase rate of transcription initiation
- CRP acts as activator only when bound to cAMP

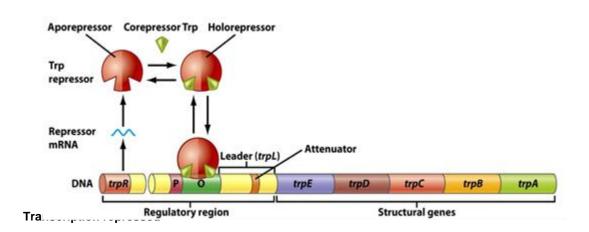


Prepared by – Mr. P. Srinivasan, Assistant Professor, Dept. of Microbiology, KAHE.

14

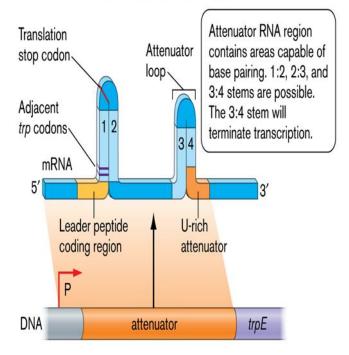
### Fig: Catabolite repression

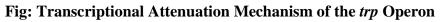
#### **Catabolite Repression**

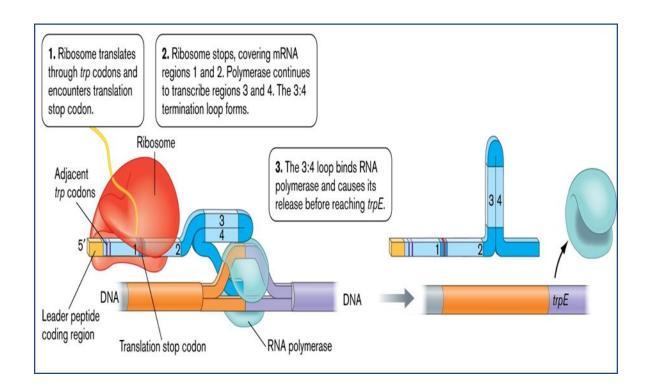

• Two mechanisms involved

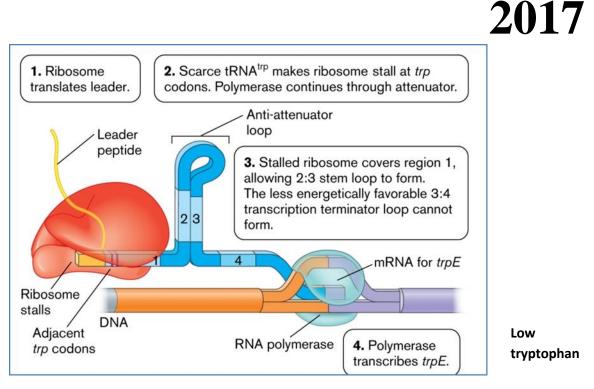
1.

- High glucose  $\rightarrow$  low cAMP levels  $\rightarrow$  CRP inactive
  - Can't bind operon  $\rightarrow$  low level of *lac* transcription


### **Trp operon: Repression and Attenuation**


- *trp* operon
  - Cell must make the amino acid tryptophan
    - Trp operon codes and regulates biosythetic enzymes
    - When tryptophan is plentiful, cell stops synthesis
- Regulation by two mechanisms *Repression*: Trp repressor must bind tryptophan to bind DNA
  - Opposite of *lac* repressor

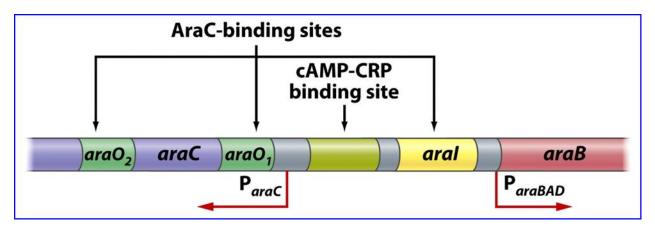




*Attenuation*: a regulatory mechanism in which translation of a leader peptide affects transcription of a downstream structural gene. The attenuator region of the *trp* operon has 2 trp codons and is capable of forming stem-loop structures.

A. Stem loop structures in attenuator region





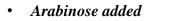




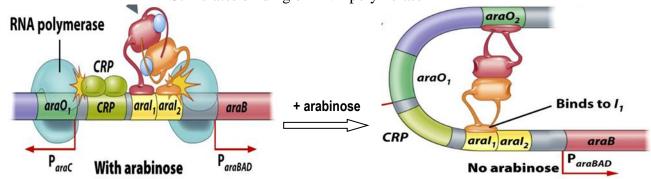

### Fig: Attenuation control in Trp Operon

#### Arabinose operon

- Regulation by dual role regulatory protein AraC
- "AraC" acts as repressor to block transcription (no arabinose)
- Acts also as activator when bound to "arabinose" (the inducer)
  - Operators O1, O2 and araI control AraC and AraBAD proteins expression




### Fig:Structural and regulatory genes of Ara operon


### **Ara Operon Controls**

- No arabinose present
  - "AraC" forms long dimeric conformation, blocks transcription (binding O2, araI1)

Prepared by – Mr. P. Srinivasan, Assistant Professor, Dept. of Microbiology, KAHE.



- changes AraCdimeric conformation
  - acts as activator
  - Stimulates binding of RNA polymerase



### KARPAGAM ACADEMY OF HIGHER EDUCATION (KARPAGAM UNIVERSITY) DEPARTMENT OF MICROBIOLOGY MOLECULAR GENETICS - 17MBP103

| Unit III Question                                                                                    |  |  |  |
|------------------------------------------------------------------------------------------------------|--|--|--|
| is the first amino acid during translation of proteins                                               |  |  |  |
| 2006 Nobel Prize in Physiology & Medicine for studies on molecular basis of eukaryotic transcription |  |  |  |
| 7-methylguanosine cap is an important site                                                           |  |  |  |
| Action of repressor protein in <i>Lac</i> operon is called as                                        |  |  |  |
| Addition of poly A tail to 3' end of mRNA is mediated by the enzyme                                  |  |  |  |
| All aminoacids have more than one codon except                                                       |  |  |  |
| Allosteric enzymes that are controlled by a molecule other than it's substrate                       |  |  |  |
| Amino acid that have largest number of codons                                                        |  |  |  |
| A-site is the ribosomal site most frequently occupied by the                                         |  |  |  |
| Capping in mRNA is addition of the group                                                             |  |  |  |
| Codon/Anticodon consists of nucleotides                                                              |  |  |  |
| Common method of covalent modification of enzyme in regulation of gene expression is                 |  |  |  |
| Confirmational changes in protein is brought about by                                                |  |  |  |
| Control of gene expression was proposed by                                                           |  |  |  |
| Enzyme activity is regulated by changes in the confirmation of enzymes except                        |  |  |  |
| Enzyme that lactose in to glucose and galactose                                                      |  |  |  |
| Genes are located in specialized structures called                                                   |  |  |  |
| In post translational modification of RNAs, trimming is                                              |  |  |  |
| In prokaryotes, AUG is translated in to                                                              |  |  |  |
| In Rho-independent transcription termination, the termination sequence is usually                    |  |  |  |
| In RNA, thiamine is replaced by                                                                      |  |  |  |
| In the absence of effector molecule, the enzyme is said to be in                                     |  |  |  |
| In trp operon, the genes <i>trp</i> E & <i>trp</i> D codes for                                       |  |  |  |
| <i>lac</i> operon is an example for                                                                  |  |  |  |
| Mammalian mitochondrion not only uses AUG as initiation codon but also                               |  |  |  |
| Model example for gene regulation by repression                                                      |  |  |  |
| Molecular weight of egg lysozyme is                                                                  |  |  |  |
| Monad & Cohen-Bazire first reported the evidence for the repression of the enzyme                    |  |  |  |
| Non codon specifies more than amino acid                                                             |  |  |  |
| Non-coding regions are called as                                                                     |  |  |  |
| Operon model that demonstrates both positive and negative control of gene regulation                 |  |  |  |
| Other than methionine is the amino acid that appear rarely in proteins                               |  |  |  |
| Polyadenylation is                                                                                   |  |  |  |
| Region that comprise the core prokaryotic promoter                                                   |  |  |  |
| Repressor molecule in lac operon is a                                                                |  |  |  |
| Ribosomal site most frequently occupied by the tRNA carrying the growing peptide chain               |  |  |  |
| rRNA is also called                                                                                  |  |  |  |
| Sequence of codons in mRNA between a start and a stop sequence is called as                          |  |  |  |
| Short sequence of aminoacids are called                                                              |  |  |  |

Site to which substrate molecules are attached

Stop codon UAA is also called

Stop codons in mammalian mitochodria are

Structure of proteins may be classified into types

The ability of the cell to choose between glucose and other sugars is termed as

The first and best example of control of gene expression was proposed by

The first codon during translation is

The main function of nonsense codons is to

The number of nitrogenous bases codes by 9 amino acids would be

The promoter sequence in eukaryotes is

The stop codons are called as

The termination of transcription is signaled by rich

Transcription initiation site starts from

Transcription is

Translation is

tRNA is responsible for the transfering

tRNA's are matched with their aminoacids by a group of enzymes collectively called as

What are the possible number of codons that can be generated using possible nucleotide combinations

Which is astop codon

Which transports lactose across the cell membrane

Who deciphered the genetic code

| Opt 1                                          |
|------------------------------------------------|
| Threonine                                      |
| Arthur Nirenberg                               |
| For eukaryotic transcription initiation factor |
| Positive control                               |
| RNA polymerase                                 |
| Methionine & Tryptophan                        |
| Cohesive molecules                             |
| Proline                                        |
| Aminoacyl-rRNA                                 |
| 7-ethylguanosine                               |
| 4                                              |
| to methylate the enzyme at a proline residue   |
| Systematic molecules                           |
| Beedle & Tatum                                 |
| Polymerase                                     |
| Lactosidase                                    |
| Histone                                        |
| Removal of excess nucleotides                  |
| Methionine                                     |
| Palindromic sequence                           |
| Uracil                                         |
| Relaxed state                                  |
| Arginase                                       |
| Repressible operon                             |
| AUA, AUU, AUC                                  |
| trp operon                                     |
| 19300 daltons                                  |
| Tryptophan synthase                            |
| 1                                              |
| Exons                                          |
| lac operon                                     |
| Arginine                                       |
| Addition of adenosines to 3' end of mRNA       |
| Klenow box                                     |
| Dimer                                          |
| A-site                                         |
| Rnase                                          |
| Close reading frame                            |
| Peptides                                       |

| Catalytic site                |
|-------------------------------|
| Amber                         |
| GAA & GAG                     |
| 2                             |
| Catabolic repression          |
| Khorana & Nirenberg           |
| AGU                           |
| Initiate protein synthesis    |
| 27                            |
| ТАТААА                        |
| Missense                      |
| AT containing inverted repeat |
| -1                            |
| DNA to rRNA                   |
| rRNA to protein               |
| Protein                       |
| Aminoacyl DNA synthatases     |
| 46                            |
| UAA                           |
| Galactosidase permease        |
| Hershey & Chase               |

| Opt 2                                            |
|--------------------------------------------------|
| Leucine                                          |
| Roger D. Kornberg                                |
| For prokaryotic translation initiation factor    |
| Negative control                                 |
| DNA polymerase                                   |
| Valine & Leucine                                 |
| Systematic molecules                             |
| Cysteine                                         |
| Aminoacyl-mRNA                                   |
| 7-methylguanosine                                |
| 6                                                |
| to phosphorylate the enzyme at a proline residue |
| Cohesive molecules                               |
| Avery & McLeod                                   |
| Ribozymes                                        |
| Glucanse                                         |
| RNA                                              |
| Removal of excess proteins                       |
| N-acetyl-methionine                              |
| Paliomic sequence                                |
| Adenine                                          |
| Tense state                                      |
| Tryptophan synthase                              |
| Inducible operon                                 |
| UAA, UAU, UAC                                    |
| lac operon                                       |
| 13900 daltons                                    |
| Gluconase synthetase                             |
| 2                                                |
| Introns                                          |
| ara operon                                       |
| Tryptophan                                       |
| Addition of adenosines to 5' end of mRNA         |
| Pribnow box                                      |
| Trimer                                           |
| P-site                                           |
| Ribase                                           |
| Open reading frame                               |
| Proteins                                         |

| Effector site                 |
|-------------------------------|
| Opal                          |
| AGA & AGG                     |
| 3                             |
| Catabolic expression          |
| Hershey & Chase               |
| AUG                           |
| Elongate protein synthesis    |
| 36                            |
| ТААТАА                        |
| Nonsense codons               |
| AC containing inverted repeat |
| Plus 1                        |
| DNA to tRNA                   |
| tRNA to protein               |
| Aminoacid                     |
| Aminoacyl synthatases         |
| 64                            |
| AAU                           |
| β-galactosidase               |
| Avery & McLeod                |

| Opt 3                                           |
|-------------------------------------------------|
| Methionine                                      |
| David Osborne                                   |
| For eukaryotic translation initiation factor    |
| Neutral control                                 |
| Rnase                                           |
| Threonine & Alanine                             |
| Effector molecules                              |
| Serine                                          |
| Iminoacyl-tRNA                                  |
| 7-methylcytosine                                |
| 3                                               |
| to phosphorylate the enzyme at a serine residue |
| Affector molecules                              |
| Jacob & Monad                                   |
| Chimozymes                                      |
| α-galactosidase                                 |
| Chrosomes                                       |
| Removal of excess lipids                        |
| N-formamyl-aspargine                            |
| Panoramic sequence                              |
| Cytosine                                        |
| Free state                                      |
| Anthranilate isomerase                          |
| Mutated operon                                  |
| AAU, UAU, CAU                                   |
| ara operon                                      |
| 31900 daltons                                   |
| Arabinase trimutase                             |
| 3                                               |
| Cistrons                                        |
| gal operon                                      |
| Glutamic acid                                   |
| Deletion of adenosines to 3' end of mRNA        |
| TAGTAG box                                      |
| Tetramer                                        |
| E-site                                          |
| Ribulase                                        |
| Central reading frame                           |
| Polypeptides                                    |

| Alleosteric site              |
|-------------------------------|
| Acre                          |
| CGA & AGC                     |
| 4                             |
| Metabolic repression          |
| Avery & McLeod                |
| GUA                           |
| Terminate protein synthesis   |
| 18                            |
| TTGACA                        |
| Central codons                |
| GC containing inverted repeat |
| -10                           |
| DNA to mRNA                   |
| DNA to protein                |
| Codon                         |
| Amino synthatases             |
| 20                            |
| AUA                           |
| Glucanse                      |
| Beedle & Tatum                |

| Opt 4                                         | Opt 5 | Opt 6 |
|-----------------------------------------------|-------|-------|
| Valine                                        |       |       |
| Michael Whitney                               |       |       |
| For prokaryotic translation initiation factor |       |       |
| No control                                    |       |       |
| poly A polymerase                             |       |       |
| Lysine & Arginine                             |       |       |
| Affector molecules                            |       |       |
| Valine                                        |       |       |
| Aminoacyl-tRNA                                |       |       |
| 7-ethylcytosine                               |       |       |
| 9                                             |       |       |
| to methylate the enzyme at a serine residue   |       |       |
| Effector molecules                            |       |       |
| Hershey & Chase                               |       |       |
| Nuclease                                      |       |       |
| β-galactosidase                               |       |       |
| Genomes                                       |       |       |
| Removal of excess carbohydrates               |       |       |
| N-formamyl-methionine                         |       |       |
| Pandemic sequence                             |       |       |
| Guanine                                       |       |       |
| Degrading state                               |       |       |
| Anthranilate synthase                         |       |       |
| Neutral operon                                |       |       |
| GUA, GUU, GUC                                 |       |       |
| gal operon                                    |       |       |
| 91300 daltons                                 |       |       |
| Tryptophanase                                 |       |       |
| 4                                             |       |       |
| Positrons                                     |       |       |
| <i>trp</i> operon                             |       |       |
| Threonine                                     |       |       |
| Deletion of adenosines to 5' end of mRNA      |       |       |
| Polypeptide box                               |       |       |
| Pentamer                                      |       |       |
| G-site                                        |       |       |
| Ribozyme                                      |       |       |
| Last reading frame                            |       |       |
| Palindromes                                   |       |       |

| Binding site                  |  |  |  |  |
|-------------------------------|--|--|--|--|
| Ochre                         |  |  |  |  |
| CGG & GCG                     |  |  |  |  |
| 5                             |  |  |  |  |
| Metabolic expression          |  |  |  |  |
| Jacob and Monad               |  |  |  |  |
| UGA                           |  |  |  |  |
| Regulate protein synthesis    |  |  |  |  |
| 9                             |  |  |  |  |
| GTTAAA                        |  |  |  |  |
| Last codons                   |  |  |  |  |
| CT containing inverted repeat |  |  |  |  |
| Plus 10                       |  |  |  |  |
| DNA to protein                |  |  |  |  |
| mRNA to protein               |  |  |  |  |
| Anticodon                     |  |  |  |  |
| Aminoacyl tRNA synthatases    |  |  |  |  |
| 30                            |  |  |  |  |
| AAA                           |  |  |  |  |
| Glucose permease              |  |  |  |  |
| Nirenberg & Khorana           |  |  |  |  |

| Answer                                          |
|-------------------------------------------------|
| Methionine                                      |
| Roger D. Kornberg                               |
| For eukaryotic translation initiation factor    |
| Negative control                                |
| poly A polymerase                               |
| Methionine & Tryptophan                         |
| Effector molecules                              |
| Serine                                          |
| Aminoacyl-tRNA                                  |
| 7-methylguanosine                               |
| 3                                               |
| to phosphorylate the enzyme at a serine residue |
| Effector molecules                              |
| Jacob & Monad                                   |
| Ribozymes                                       |
| β-galactosidase                                 |
| Chrosomes                                       |
| Removal of excess nucleotides                   |
| N-formamyl-methionine                           |
| Palindromic sequence                            |
| Uracil                                          |
| Tense state                                     |
| Anthranilate synthase                           |
| Inducible operon                                |
| AUA, AUU, AUC                                   |
| trp operon                                      |
| 13900 daltons                                   |
| Tryptophan synthase                             |
| 1                                               |
| Exons                                           |
| ara operon                                      |
| Tryptophan                                      |
| Addition of adenosines to 3' end of mRNA        |
| Pribnow box                                     |
| Tetramer                                        |
| P-site                                          |
| Ribozyme                                        |
| Open reading frame                              |
| Peptides                                        |

| Catalytic site                |
|-------------------------------|
| Ochre                         |
| AGA & AGG                     |
| 4                             |
| Catabolic repression          |
| Jacob and Monad               |
| AUG                           |
| Terminate protein synthesis   |
| 27                            |
| ТАТААА                        |
| Nonsense codons               |
| GC containing inverted repeat |
| Plus 1                        |
| DNA to mRNA                   |
| mRNA to protein               |
| Anticodon                     |
| aminoacyl tRNA synthatases    |
| 64                            |
| UAA                           |
| Galactosidase permease        |
| Nirenberg & Khorana           |



### **DEPARTMENT OF MICROBIOLOGY KARPAGAM ACADEMY OF HIGHER EDUCATION** KARPAGAM UNIVERSITY

(Deemed University Established Under Section 3 of UGC Act, 1956) Eachanari PO, Coimbatore -641 021, India.

### I - M.Sc Microbiology (Batch 2017-2019)

### **Lecture Plan**

### Unit - IV

| S. No | Duration | Торіс                                             | Reference      |
|-------|----------|---------------------------------------------------|----------------|
| 1.    | 2        | Mutagen, Mutagenesis and mutation- Luria Delbruck | T1:133 to 134  |
|       |          | experiment                                        | R1:212 to 214  |
| 2.    | 2        | Spontaneous and induced mutation –Types           | T1:136 to 146  |
|       |          |                                                   | R1:214 to 224  |
| 3.    | 2        | Mutant detection and test of carcinogenicity      | R1:214 to 224  |
|       |          |                                                   | T1: 147 to 148 |
| 4.    | 2        | DNA damage and type                               | R1: 232 to 236 |
| 5.    | 2        | DNA repair mechanism and types                    | T1: 149 to 157 |
| 6.    | 1        | Video presentation on enzymology of DNA repair    | W1             |
| 7.    | 1        | Power point presentation on DNA                   | W1             |
| 8.    | 1        | Class Test IV                                     | -              |
|       |          | Total Hours                                       | 13             |

R1: David Freifelder, Microbial Genetics. Narosa Publishing House, 10<sup>th</sup> edition, 2004. New Delhi, India.

T1: Peter J. Russell, i Genetics – A molecular approach, 7<sup>th</sup> edition, 2010. Pearson Benjamin Cummings Publishers, Boston, USA.

W1: www.slideshare.com/MolecularBiology-Geneticrecombination.html

### Unit –IV

#### Molecular basis of spontaneous and induced mutations

#### Major concepts

- Classification of mutations
- Types of point mutations:
  - Missense mutations: transitions, transversions.
  - Missense mutations may be temperature-sensitive.
  - Nonsense mutations: amber, ochre, opal.
  - Frameshift mutations: deletion, insertion. .
- Spontaneous mutation
  - Tautomers: keto-enoltautomers; amino-iminotautomers.
  - Mispairing due to tautomerization: TG pairs, AC pairs.
  - Mispairing of repeated bases to cause frameshift.
  - Mispairing caused by deamination of cytosine or adenine.
  - Deamination of 5-methylcytosine yields thymine.
- Spontaneous mutation rate: .
  - Bacteria, cultured cells: measured for a specific gene per cell division.
  - Higher animals: measured for a specific gene per gamete per generation.
- Chemical mutagenesis:
  - Mutations caused by base analogues.
  - Mutations caused by alkylation of bases.
  - Intercalation and frameshift mutations.
- Reversion
  - True reversion of missense mutations
  - Second-site reversion: intragenic suppression, intergenic suppression.
  - Frameshift reversion
  - Deletions and other large-scale changes usually exhibit no reversion.
- Molecular interpretation of recessive and dominant phenotypes
  - Recessiveness due to loss of function, amorphicaleles, hypomorphic alleles.
  - Dominance due to gain of function: hypermorphicalleses, antimorphic alleles, neomorphic alleles.
  - Dominance due to haplo-insufficiency, dominant lethals.

**Introduction:** These notes are unusually long, at least in part because they bring together into one place many aspects of mutation and mutagenesis that have already been introduced at least briefly in previous lectures. As you read through the familiar parts, please do not overlook the substantial amount of new material that has been blended in to provide a more thorough understanding of the overall concepts.

**Mutation:** A mutation is any change in genetic information relative to a reference "wild-type" genome, including changes that affect expression of genes without altering their coding sequences and changes that do not cause any detectable phenotypic difference (silent mutations).

In a complex organism, mutation can occur at many different structural levels and can be classified in many different ways:

- 1. Magnitude of genetic change: point, gene, chromosomal, genomic mutations.
- 2. Pattern of inheritance: somatic vs. germ-line; autosomal, sex-linked, dominant, codominant, partially dominant, recessive.
- 3. Phenotypic properties: morphological (shape, size, quantity, coloration), nutritional (auxotrophic), biochemical, lethal (conditional lethal, dominant lethal), behavioral, silent.
- 4. Changes in DNA: missense (transitions, transversions), nonsense (amber, ochre, opal), deletion, insertion, frameshift, inversion, duplication, translocation.
- 5. Conditional: temperature-sensitive, suppresible.
- 6. Regulatory: increased or decreased expression, altered message processing, stability, or rate of translation.

**Point mutations** were originally defined as those involving a chromosomal region that was too small for the change to be detected cytologically (particularly in the giant polytene chromosomes of *Drosophila* larval salivary glands). In current usage, point mutations are usually understood to involve only one base pair, but to include both substitutions (transitions and transversions), and the addition or deletion of a single base pair. A point mutation can result in missense (amino acid substitution), nonsense (insertion of a stop codon), or frameshift (either positive or negative).

**Gene mutations** are defined as those that occur entirely within one gene (and its upstream regulatory sequences) and may be either point mutations or other small disruptions of normal chromosomal structure that occur entirely within one gene.

**Chromosomal mutations** are defined as those that involve deletion, inversion, duplication, or other changes of a chromosomal region that is large enough so the change can be detected cytologically. By definition, chromosomal mutations are limited entirely to a single chromosome, although there could be more than one chromosomal mutation within a genome.

**Genomic mutations** are defined as those that involve loss or gain of whole chromosomes, translocation from one chromosome to another or other gross chromosomal rearrangements. Note that both chromosomal and genomic mutations can cause **aneuploidy**.

**The importance of mutation:** Genes are stable repositories of the information needed for synthesis of all of the RNA and proteins in a living organism. Survival and stability of each species is dependent on faithful replication of genetic information for use by each new generation. However, a low level of mutational change is highly desirable. Over an extended period of time, mutational changes provide the ability for species to adapt to changing conditions and challenges, and thus serve as the raw material for selective survival and the evolution of more advanced and efficient species, as well as the development of biological diversity.

**Somatic and germ-line mutations:** The mutations that we normally deal with in genetics are those that occur in the germ-line and are thus passed on to subsequent generations. However, mutations can also occur in somatic cells. Those mutations affect only the immediate progeny of the cells they occur in and are not inherited. Colored spots in Indian corn are caused by back

mutation of a relatively unstable mutation that is responsible for loss of pigmentation. Cancer is caused by somatic mutations that alter normal cellular growth regulatory mechanisms in a single cell and its direct progeny.

**Morphological mutations:** Classical genetics was based almost exclusively on the study of mutations that caused affected progeny to be visibly altered. Mendel's original work was done with inbred strains of peas that were true-breeding for particular traits. However, in the years following the rediscovery of Mendel's laws, mutations were generated in wild type stocks by exposure to X-rays or other mutagenic treatments. In order to be detected and studied, the mutations had to be visibly different from the wild-type parental strains. Although the term "morphological" normally refers to structural properties, the term "morphological mutation" is often used more broadly to refer to any visible change, including changes in coloration.

**Naming of mutations:** When working with classical morphological mutations, it is important to remember that the names given to induced mutations usually describe the recessive phenotype. Thus, a gene named for *white* eyes codes for a gene product needed for normal synthesis of pigments in wild-type eyes. Similarly, a gene called *brown* codes for a step in the synthesis of vermillion pigment, which, when absent, leaves the eyes with a brown color. This nomenclature can be thoroughly confusing when one begins to analyze the molecular and biochemical mechanisms responsible for classical mutations. It is important to remember that for most classical recessive mutations, the *wild-type allele* codes for the protein that must be present and functional to prevent expression of the mutant phenotype.

**Nutritional and biochemical mutations:** For microorganisms that can be grown on defined (or semi-defined) culture media, it is possible to select for *auxotrophic* mutations that require nutrients that the wild type organisms can make for themselves. Wild type organisms that are able to multiply in a medium lacking such a nutrient are called prototrophs. There are also many *biochemical* mutations that affect proteins other than those involved in synthesis of nutrients.

**Lethal mutations:** Any mutation that disrupts an essential function needed for survival will be lethal when homozygous. In many cases, heterozygotes can function reasonably normally, and they may be virtually indistinguishable from wild type. In other cases, the heterozygote may have a distinctive phenotype, as in the tailless Manx cat. In such cases, the gene is described as a **dominant lethal**, as discussed in earlier lectures. (Note that a more precise description would refer to the phenotype of the heterozygote as dominant and the lethality as recessive )

**Molecular nature of point mutations:** Point mutations can occur in a variety of ways (including frameshift mutations, which are discussed separately below). A change in a single base pair that alters a codon and causes an amino acid substitution in the coded protein is called a *missense* mutation. If one purine is replaced by another purine or if one pryimidine is replaced by another pyrimidine in the sense strand base sequence (with complementary changes in the antisense strand), the substitution is called a *transition*. If the substitution involves replacement of a purine with a pyrimidine or a pyrimidine with a purine, it is called a *transversion*.

**Missense mutations:** Most base pair substitutions change the amino acid specified by the codon in which they occur. Such mutations are described as *missense* mutations because they cause an

amino acid substitution in the coded protein. Depending on the nature of the amino acid substitution and its location within the protein, missense mutations may have a variety of effects, ranging from complete loss of biological activity to reduced activity or temperature-sensitive activity or no functional effect at all.

**Nonsense mutations:** Base pair mutations that generate a translation stop codon (TAA, TAG or TGA in the DNA sense strand, transcribed as UAA, UAG or UGA in the mRNA) cause premature termination of translation of the coded protein and are referred to as *nonsense* mutations. In some cases, the effects of nonsense mutations can be suppressed by modified tRNA molecules that insert an amino acid with a low efficiency when a stop codon is encountered. Bacterial strains that contain such tRNAs are referred to as *suppressor* strains.

**Silent mutations:** In some cases, base pair substitutions generate a different codon for the same amino acid, with no biological effect whatsoever. This is most likely to happen in the third position (wobble base) of redundant codons for the same amino acid. Such changes are considered to be mutations because they alter the genetic code. However, because they have no phenotypic effect, even at the level of protein amino acid sequence, they are called *silent* mutations.

**Frameshift mutations:** The genetic code is translated three nucleotide bases (one codon) at a time, with no punctuation between the codons. Addition or deletion of a single base pair in the middle of a coding sequence will result in out-of-frame translation of all of the downstream codons, and thus result in a completely different amino acid sequence, which is often prematurely truncated by stop codons (UAG,UAA,UGA) generated by reading the coding sequence out-of-frame. Such mutations, which are a special subclass of point mutations, are referred to as *frameshift*mutations. Deletion of a single base pair results in moving ahead one base in all of the codons, and is often referred to as a *positive frameshift*. Addition of one base pair (or loss of two base pairs) shifts the reading frame behind by one base, and is often referred to as a *negative frameshift*. Note that deletion or addition of three base pairs (or multiples of threes) does not cause a frameshift, but instead results in deletion or addition of one or more amino acids in the coded protein.

**Conditional mutations:** Some types of mutations exert their phenotypic effects only under certain environmental conditions. Such mutations are called *conditional mutations*.

**Temperature-sensitive** *(ts)* mutations are missense mutations that do not seriously affect the biological activity of the coded proteins, but cause them to have a reduced thermal stability. Such proteins become denatured at temperatures that do not affect the corresponding wild-type proteins. However, when the mutant strains are maintained at a lower temperature, the proteins are still able to function reasonably well, and no mutant phenotype is observed. Temperature-sensitive mutations are particularly useful for studying vital functions, such as progression through the cell division cycle. In order to maintain stock cultures of organisms carrying such mutations, it is necessary to be able to expand populations under conditions where the mutations are not expressed phenotypically. Growth at low temperature and analysis of the mutant phenotype at a higher temperature provides such a system.

**Nonsense suppression:** Another approach to conditional mutation that is used extensively in studies on bacterial viruses is to generate *nonsense* mutations involving the *amber* codon (UAG). Viruses bearing such mutations can often be maintained in *amber suppressor* strains of bacteria and then transferred to regular strains to study the phenotypic effects of the mutations. The amber suppressor strains contain an altered transfer RNA that inefficiently reads the UAG codon as coding for an amino acid. If the protein is able to function with that particular amino acid inserted at the location of the amber mutation, the virus is able to replicate, although often with reduced efficiency, in the amber suppressor strain (see page 333 of the textbook).

**Permissive and nonpermissive conditions:** The conditions that allow growth or function without phenotypic expression of conditional mutations are referred to as *permissive*. The conditions that cause phenotypic expression to occur are referred to as *nonpermissive*. This nomenclature refers primarily to conditions that permit growth or do not permit growth, but can also be used for other types of conditional mutations, such as loss of pigmentation at higher temperatures in Siamese cats and Himalayan rabbits (Figure 7.3 in the textbook). Permissive conditions allow the non-mutant phenotype to be expressed.

**Conditional lethal mutations:** Conditional mutations that do not allow survival of the organism under nonpermissive conditions are referred to as *conditional lethal mutations*. Note that many other conditional mutations cause expression of mutant phenotypes at non-permissive temperatures without being lethal. Bleaching of coat color on warmer parts of the bodies of Siamese cats is an example of this.

**Historical considerations:** The textbook devotes several pages (pp. 390-392) to early studies that pointed the way toward modern genetic concepts of mutation prior to the availability of DNA sequence analysis as a method for determining the exact structure of genes. Some of the key points are summarized briefly below.

**Delbruck and Luriafluctuation test:** This test was designed to determine whether bacterial mutations were induced by stress conditions, such as bacteriophage infection, or whether they occurred spontaneously and were present prior to exposure to the stress conditions. Delbruck and Luria argued that if mutation was spontaneous, cultures started from small populations and grown up to large numbers in the absence of bacteriophage T1 should exhibit major variability in numbers of phage-resistant cells that they contain, depending on when during the culture history the mutations to phage resistance occurred, This was in fact what they found when the cultures were inoculated onto plates that contained large numbers of phage (Table 14.1). This was one of the final steps in disproving the Lamarkian view that genetic change was induced in response to environmental conditions.

**Mechanisms of mutation:** This portion of the lecture deals primarily with the mechanisms responsible for point mutations and their reversion or suppression. Strictly speaking, the term reversion should be used only to describe an exact reversal of the original mutational change. Many other secondary changes, either within the same gene, or in other genes can suppress the effects of a mutation. Such changes are called *intragenicsuppression* and *intergenic suppression*, respectively.

**Tautomerization:** Spontaneous mutations that involve base pair substitutions are caused primarily by configurational changes within the individual bases that result in mispairing. These changes, which are called tautomeric shifts, involve momentary expression of rare alternative molecular configurations that exist in equilibrium with the more common forms. Specifically, proton shifts can convert the amino groups in adenine and cytosine to imino groups, and the keto groups in guanine and thymine to enol groups (Figures 14.7, 14.8)

**Transitions:** A tautomeric shift in any of the four DNA bases can lead to mispairing of A to C or G to T. The tautomeric state can occur either in the template base or the incoming base. During the next round of DNA synthesis, the mispaired base pairs with its normal partner, resulting in a transition, in which an AT base pair replaces a GC or a GC replaces an AT, with no change in the purine:pyrimidine polarity of the base pair (Figure 14.9). Transitions are the most common type of mutation resulting from spontaneous mispairing due to tautomerization.

**Transversions:** To achieve a transversion, in which the positions of purine and pyrimidine are reversed in the DNA double helix, two events are thought to be involved, tautomerization of one of the bases and rotation of the other to yield a purine:purine pairing. Based on information from the previous textbook for this course, the frequency of spontaneous transversions, which is lower than that of transitions, appears to be consistent with this interpretation. However, that book also warns that recent studies suggest that the overall picture may be more complex. Our current text does not discuss transversions in much detail. A second possible mechanism for transversions is the formation of an apurinic site (described below), which can result in replacement of the original purine with any of the four bases.

**Frameshifts:** Spontaneous frameshift mutations are believed to arise primarily from mispairing within long runs of the same base in a coding sequence. Such regions are believed to be one of the causes of mutational "hot spots" that have been observed during fine-structure genetic mapping.

**Deamination:** Our current textbook discusses deamination of cytosine primarily in terms of mutagenesis by nitric oxide (page 405), but spontaneous deamination also has an important role, particularly in methylated regions of DNA. If a cytosine undergoes oxidative deamination, it becomes uracil, which is capable of pairing with adenine (as in RNA synthesis), but is detected as an anomoly in DNA and may trigger repair mechanisms. However, if 5-methylcytosine is deaminated, it forms thymine, which is a normal DNA base that is not detected by repair systems (other than proofreading of GT mispairing during DNA synthesis). Because of selective methylation of CG sequences in many DNAs, there is a tendancy for all non-essential CG sequences to be converted to TG sequences over time. Methylated CG sequences are thus hot spots for mutation, such that in DNA in general, CG sequences tend to be far less frequent that TG sequences. (Remember that a sequence is always described in 5' to 3' terms, such that CG means 5'-CG-3').

**Spontaneous mutation rate:** For single-celled organisms ranging from bacteria to cultured mammalian cells, mutation rate is usually measured as the probability of mutation within a specific gene per cell division. For higher animals, the rate is measured in terms of the probability per gamete per generation (remember that each new individual contains the

contributions from two separate gametes). Bacterial rates are typically in the range of  $10^{-8}$  to  $10^{-6}$  per generation. Mammalian (including human) rates for individual easily observed mutations tend to be on the order of  $10^{-5}$  per generation (See Table 14.2).

**Chemical mutagenesis:** A variety of chemical mutagens have been discovered that act in several distinctly different ways. Many chemicals that are used in modern industry and technology are potentially mutagenic, which includes their ability to cause cancer as a result of somatic mutation. Page 409 of the textbook contains a description of the **Ames test** for carcinogens, which is based on mutagenicity in specially engineered strains of bacterial cells that have been stripped of most of their repair mechanisms, and that must undergo back mutation in a gene for histidine synthesis to be able to form colonies on a selective medium. In some cases, a liver extract is added to simulate metabolic conversion of potential carcinogens into active carcinogens in the human body. The test has been further refined through the use of strains that respond to different types of mutagenic activity (base substitution vs. frameshift).

**Base analogues:** One of the more popular approaches to experimental mutagenesis is the use of base analogues. These are substances that are sufficiently similar to naturally occurring DNA bases so that their deoxyribonucleotide triphosphates will incorporate into DNA in place of the normal bases. However, they also have anomolous base-pairing properties, leading to an increased rate of mutagenesis. For example, 5-bromouracil (Fig. 14.10) pairs like thymine (5-methyluracil), but undergoes more enoltautomerization, leading to more frequent mispairing with guanine. Similarly, 2-aminopurine normally pairs with thymine, but can also pair with cytosine (see Insights and Solutions #2, page 423). These mispairings lead to an increase in the frequency of transition mutagenesis.

**Nitrous acid:** Treatment of DNA with nitrous acid leads to deamination of cytosine and adenine, again resulting in transitions, as described above for spontaneous deamination (Figure 14.13).

**Alkylating agents:** Certain alkylating agents, such as ethyl methane sulfonate (EMS) and ethyl ethane sulfonate (EES) add alkyl groups to purines, which can cause mispairing (Fig.14.11), and also destabilize the bond between the purine and deoxyribose, leaving *apurinic* sites. The absence of a base-pairing partner allows any base to be inserted during the next round of DNA synthesis. This frequently leads to transversions (as well as transitions).

**Intercalation:** Certain flat aromatic molecules, such as acridine orange and proflavin become inserted between base pairs in DNA, which can lead to misalignment during replication and the occurence of frameshift mutation (fig 14.12).

**Reversion:** As indicated earlier, the term reversion should only be used to describe an exact reversal of a mutation. For a base-substitution mutation (missense or nonsense), this would mean replacement of the substituted base with the original base. For a frameshift, this would mean removal of the inserted base pair or replacement of the deleted base pair. The net result of reversion is to restore the original genetic sequence exactly. Note that complete failure to revert usually indicates that a mutation is the result of a major change, such as a deletion that is incapable of being reversed.

**Intragenic suppression:** Intragenic suppression refers to a second mutation within the same coding unit that reverses the effect of the first mutation without actually correcting it. For example, if correct protein folding depended on interaction of a positive charge with a negative charge and the positive was mutated to negative, function could be restored by mutating the original negative to positive so that there was once again a positive-negative pair to guide the folding. Similarly, a frameshift might be reversed by a nearby second frameshift in the opposite direction, such that only a few non-essential amino acids were altered.

**Intergenic suppression:** In some cases, a second mutation in another gene can reverse the effects of a mutation. For example, if heterodimer formation is required for function, a complementary change in the second protein could allow proper pairing to occur once again. This is also the presumed mechanism for the intracistronic complementation that is sometimes observed, although in this case, the two changes are are in the same protein, making it intragenic suppression. Another example is suppression of a nonsense mutation by an altered tRNA that reads the stop codon as an amino acid specifying codon (Page 333).

**Sickle-cell anemia as an example of a missense mutation:** Sickle-cell anemia was identified in 1957 as being caused by a missense mutation resulting in a single amino acid substitution in the beta-globulin subunit of the hemoglobin tetramer (2 alpha + 2 beta subunits). A transversion causes the codon GAG to be changed to GUG (GTG in the DNA). This replaces a glutamic acid with a valine as the sixth amino acid (counting from the N-terminus) in the mature beta-globulin molecule. That substitution causes the hemoglobin to precipitate into fibrous aggregates that distort the shapes of red blood cells under low-oxygen conditions, resulting both in blockage of capillary circulation and breakage of the red blood cells. (Described on pages 371-373 of our textbook)

**Heterozygote advantage:** One obvious question is why a genetic disease as severe as sickle-cell anemia is present at such a high level in African-American populations. The reason is that in regions of Africa with a high incidence of malaria, individuals who are heterozygous for the altered beta-globulin have a better survival rate due to malaria resistance than individuals who are homozygous for unaltered beta-globulin. Thus, the heterozygotes had enough selective advantage so that the sickle-cell gene became well established in the population even though homozygotes were severely unhealthy and usually experienced early death. Unfortunately, this genetic legacy will persist for many generations, even in the absence of the selective effect of malaria.

**Molecular basis for dominance and recessiveness:** As we have gained a better understanding of the molecular nature of different types of mutaitons, we have also begun to understand what makes a particular mutation recessive or dominant.

**Recessive mutations** usually result from partial or complete loss of a wild type function. *Amorphic* alleles are those that have completely lost the function. An example would be a mutation in which production of pigment is completely lost in the homozygous state, causing albinism. *Hypomorphic* alleles are those in which function is reduced, but not completely lost. An example would be a mutation that causes a partial loss of pigmentation, giving a lighter color when homozygous.

**Dominance** can be caused in a wider variety of ways. There are three classes of so called gainof-function alleles. *Hypermorphic* alleles are those that cause excess product to be produced. *Antimorphic* alleles are those that produce an altered gene product that "poisons" or disrupts the function of the normal gene product. *Neomorphic* alleles cause the gene product to be expressed in the wrong types of cells, and can have drastic effects, such as that of the antennapedia gene that coverts the antennae of flies into legs.

Another type of dominance is **haplo-insufficiency**. In this case, loss of a gene product causes a recognizably different phenotype in the heterozygote. This is considered to be a dominant mutation because the presence of one copy of the mutant allele in combination with one copy of the wild-type allele causes an altered phenotype. In many cases, the homozygote is lethal, as in the case of the Manx cat. In cases where the mutation is not lethal when homozygous, haplo-insufficiency is more likely to be called partial dominance, as in the formation of a pink flower by a heterozygote containing one red allele and one white allele.

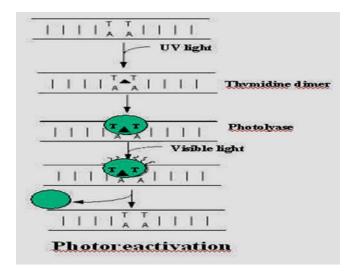
### **DNA repair mechanism**

This is only a summary and you will need to add details from Chapter 10 o f Madigan, Martino and Parker, Brock, Biology of Microorganisms, 10th editon. P rentice Hall, publishes.

### Ionizing radiation causes three types of damage to DNA:

- **Single-strand breaks** mostly sealed by DNA ligase so don't contribute to lethality
- **Double-strand breaks** often lethal because can't be resealed by ligase so degraded by nucleases
- Alteration of bases this type of oxidative damage is usually lethal because it forms a replication barrier at that site.

A UV radiation - 260 nm is wavelength at which maximum absorption occurs for DNA


UV - major photoproduct is intrastrand linkage of adjacent pyrimidines, usually thymines, called thymine dimers. Creates distortion in helix and affects replication and transcription.

Pol III can't replicate past T-dimer because if puts in A across from dimer, recognizes the weak H-bonding as a mismatch and proofreads. Tries to put in another A, fails. Causes stuttering of Pol III at this site.

There are four ways to repair of T dimers in E. coli:

## Photoreactivation (aka Light Repair)

phr gene - codes for deoxyribodipyrimidinephotolyase that, with cofactor folic acid, binds in dark to T dimer. When light shines on cell, folic acid absorbs the light and uses the energy to break bond of T dimer; photolyase then falls off DNA.



## Excision Repair

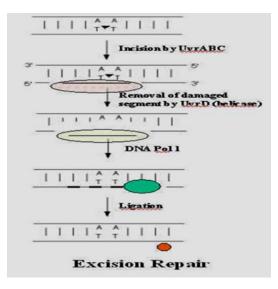
There are 3 different types of repair mechanisms which use different enzymes but nonethe-less follow the same basic principle as outlined in the figure below.

## AP Repair (Base Excision Repair, BER):

Repair of apurinic and apyrimidinic sites on DNA in which base has been removed. Base removed by radiation or DNA glycosylases which sense and remove damaged bases. *ung* gene codes for uracil-DNA glycosylase which recognizes and removes U in DNA by cleaving the sugar-nitrogen bond to remove the base. AP endonucleases: class I nick at 3' side of AP site and class II nick at 5' side of AP site. Exonuclease removes short region of DNA and DNA Pol I and ligase fill in gap.

## UV Damage Repair (also called NER - nucleotide excision repair): NER differs from BER in several ways.

1.It uses different enzymes.


2.Even though there may be only a single "bad" base to correct, its nucleotide is removed along with many other adjacent nucleotides; that is, NER removes a large "patch" around the damage.

3.Excinuclease (an endonuclease; also called correndonuclease [correction endo.]) that can detect T dimer, nicks DNA strand on 5' end of dimer (composed of subunits coded by *uvrA*, *uvrB* and *uvrC* genes). UvrA protein and ATP bind to DNA at the distortion.

4.UvrB binds to the UvrA-DNA complex and increases specificity of UvrA-ATP complex for irradiated DNA. UvrC nicks DNA 8 bases upstream and 4 or 5 bases downstream of dimer.

5.UvrD (DNA helicase II; same as DnaB used during replication initiation) separates strands to release 12-bp segment.

6.DNA polymerase I now fills in gap in 5'>3' direction and ligase seals. *polA* - encodes DNA pol I; mutant was viable (retained normal 5'>3' exo. activity and only 2% of polymerase activity) so Pol I not major replication enzyme, but mutant also had somewhat increased sensitivity to UV so first suggested that played a role in DNA repair.



Mismatch Repair (MMR): Accounts for 99% of all repairs

Follows behind replication fork. Two ways to correct mistakes made during replication:

- 3'>5' exonuclease proofreading
- Mismatch repair

Because of methylation. DNA methylase (coded for by *dam* [DNA adenine methylase] locus) methylates 5'-GATC-3' sequence in DNA at A residue. Mismatch from replication recognized by *mutL* and *mutS* gene products. *mutH* gene product nicks DNA strand (progeny strand) on either side of mismatch. DNA helicase II from *mutU* gene (also called *uvrD* gene) unwinds DNA duplex and releases nicked region. Gap filled in by DNA Pol I and ligase.

Postreplicative (Recombinational) Translesion Bypass Repair

If T dimer is not repaired, DNA Pol III can't make complementary strand during replication. Postdimer initiation - skips over lesion and leaves large gap (800 bases). Gap may be repaired by enzymes in recombination system - lesion remains but get intact double helix. RecA - coats ssDNA and causes it to invade dsDNA. When stimulated by presence of ssDNA, it also acts as protease to cleave lambda repressor and acts to cause autocatalysis of LexA repressor. *recA* mutants - very UV-sensitive Now have sister-strand exchange - a type of recombination Translesion bypass. Postreplicative repair is part of SOS response.

## SOS Repair

- occurs when cells are overwhelmed by UV damage this allows the cell to survive but at the cost of mutagenesis.
- response is only triggered when other repair systems fail as they are overwhelmed by the increased amount of damage so that unrepaired DNA accumulates in the cell.
- The accumulation of DNA damage leads to repair induction or W-reactivation (Weigle-reactivation).
- Irradiated lambda phage are more likely to survive in an irradiated rather than. anunirradiated host because SOS system has already been turned on in irradiated host.

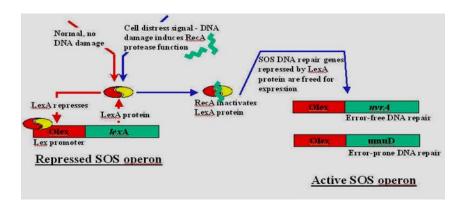



Fig: SOS repair mechanism

## KARPAGAM ACADEMY OF HIGHER EDUCATION (KARPAGAM UNIVERSITY) DEPARTMENT OF MICROBIOLOGY MOLECULAR GENETICS - 17MBP103

| involves finding a contiguous series of cloned DNA fragments which contain overlapping portion           |
|----------------------------------------------------------------------------------------------------------|
| refers to a genetic changes in different genomes of same cell.                                           |
| is a DNA associated protein                                                                              |
| A bacterium harboring a prophage is called                                                               |
| A cell carrying an integrated F factor is called an                                                      |
| An example for specialized transducing particle                                                          |
| Avery, MacLeod & McCarty used enzymes and solvents to destroy molecules such as                          |
| Bacteriophages were jointly discovered by                                                                |
| Capsule of Streptococcus pneumoniae are made up of                                                       |
| Capsules help bacteria in escaping                                                                       |
| Cells carrying non-integrated transducing fragments are called                                           |
| Complete linkage has been reported in                                                                    |
| Conditions that favor the termination of the lysogenic state                                             |
| Conjugation can only occur between cells of                                                              |
| Conjugation involves the use of for mapping                                                              |
| Conjugation involves the use of for mapping                                                              |
| Conjugation is predominant in                                                                            |
| Conjugational genetic exchange has been frequently encountered among gram positive than gr               |
| Crossing over occurs during                                                                              |
| Direct way of observing the physical arrangement of markers along the chromosomes                        |
| During insertion of lambda DNA in to host, a viral protein called is required along with integra         |
| Experiment on transformation                                                                             |
| Genes responsible for antibiotic resistance are mainly transferred across bacterial population by        |
| Genes that cause suppression of mutations in other genes are called genes                                |
| Genetic fine structure mapping of T4 was studied by                                                      |
| Genetic recombination in phages was discovered by                                                        |
| Genome of T4 phage is                                                                                    |
| Genome of different bacteria suggest that genes have in the past moved from one species to another. This |
| Give the full form for Hfr                                                                               |
| In conjugation, the donor always carries on                                                              |
| In genetic mapping, the measurement of distance between the genes is expressed as                        |
| Integeration of viral nucleic acid in to host chrosome is termed as                                      |
| Linkage prevents                                                                                         |
| Map distance is equal to the percentage of                                                               |
| Metalloproteins found in all eukaryotes                                                                  |
| Methods used to identify the locus of a gene and the distances between genes                             |
| Non sex chrosomes are called                                                                             |
| Occurs when new DNA does not integrate into the chromosome, not replicated and is eventually lost        |
| Pneumococcal 'S' cells produce colonies during growth on agar plates                                     |

Results from inaccurate excision of an integrated prophage with addition of some bacterial genes

Size of T4 phage genome

Specialised transduction is effected by \_ T4 bacteriophages generally parasitizes

T4 is capable of undergoing only a

Tendency of alleles located close together on a chromosome to be inherited together during the meiosis

The Competence of a cell in the process of transformation is aided by

The complex of DNA, RNA and protein is

The first demonstration of bacterial transformation was done with

The frequency at which two genes are - - - - - - by population of phages can be used to estimate their re

The gene linkage minimize the chances of

The non specific transduction is also called as ----

The phenomenon in which genes are present on the same chromosomes is

The phenomenon of linkage was first observed in the plant

The process to identify a genetic element that is responsible for a disease is also referred as

The viral genome integrated to the bacterial genome is called

Transfer of a portion of chromosome to a recipient with direct contact is termed

Transfer of DNA from one bacterium to another through the action of viruses

Uptake of DNA molecules from environmental surrounding

Virulence in Streptococcus pneumoniae is attributed to

Who coined the term linkage

| Opt 1                                  |
|----------------------------------------|
|                                        |
| Physical mapping                       |
| Trans type Protone                     |
|                                        |
| Lytic phage                            |
| F                                      |
| No infection                           |
| Anything except DNA                    |
| Frederick Twort and by Felix d'Herelle |
| Protein                                |
| Inflammation                           |
| Specialized                            |
| Male Drosophila                        |
| Desiccation                            |
| F positive types                       |
| Interrupted mating                     |
| Interrupted mating                     |
| Spirochaetes                           |
| More                                   |
| Pachytene                              |
| Fluorescence in situ hybridization     |
| Integrase                              |
| Monad                                  |
| Conjugation                            |
| Reverse genes                          |
| Benzon                                 |
| Hershey and Rotma                      |
| ds DNA                                 |
| DNA transfer                           |
| High fertility recombination           |
| (F-)                                   |
| Centimorgan                            |
| Microphage                             |
| Segregation of alleles                 |
| Recombinant meiotic product            |
| Zinc fingers                           |
| Gene mapping                           |
| Rhizomes                               |
| Abortive transduction                  |
| Smooth                                 |
|                                        |

| Specialized Transduction |
|--------------------------|
| 169 kbp                  |
| $T_2$                    |
| Bacillus                 |
| Lytic cycle              |
| Linkage                  |
| CaCl <sub>2</sub>        |
| Chromatin                |
| Streptococcus pyogenes   |
| Transduced               |
| Cross over               |
| Restricted transduction  |
| Cross over               |
| Lathyrus odoratus        |
| Mapping                  |
| Plasmid                  |
| Gene expression          |
| Transduction             |
| Transduction             |
| Flagella                 |
| Mendel                   |

| Opt 2                                  |
|----------------------------------------|
| Chemical mapping                       |
| Cis type                               |
| Histone                                |
| Helper phage                           |
| Hfr                                    |
| T2 phage infects <i>Staphylococcus</i> |
| RNA                                    |
| Hershey and Chase                      |
| Lipid                                  |
| RBC's                                  |
| Abortive transductants                 |
| Human female                           |
| Decomposition                          |
| F negative types                       |
| Direct mapping                         |
| Direct mapping                         |
| G+ bacteria                            |
| Less                                   |
| Diplotene                              |
| Fluorescence invitro hybridization     |
| Caspase                                |
| Griffith                               |
| Transformation                         |
| Control genes                          |
| Mendel                                 |
| Hershey and Chase                      |
| ss DNA                                 |
| RNA transfer                           |
| High fundamental recombination         |
| (F+)                                   |
| Centimeter                             |
| Prophage                               |
| Homozygous condition                   |
| Reproducible meiotic product           |
| Iron fingers                           |
| Chromosomal linkage                    |
| Lysosomes                              |
| Specialized Transduction               |
| Rough                                  |

| Generalized Transduction |
|--------------------------|
| 196 kbp                  |
| Mu                       |
| E.coli                   |
| Lysogenic cycle          |
| Crossing over            |
| MgCl <sub>2</sub>        |
| Somatin                  |
| Staphylococcus aureus    |
| Co transduced            |
| Segregation              |
| Generalized transduction |
| Segregation              |
| Pisum sativum            |
| Linkage                  |
| Capsid                   |
| Transformation           |
| Conjugation              |
| Conjugation              |
| Capsules                 |
| Morgan                   |

| Opt 3                                    |
|------------------------------------------|
| Marker mapping                           |
|                                          |
| Same type                                |
| Chromotome                               |
| Transducing phage                        |
| Hfr 1+                                   |
| Phage P22 infects Salmonella typhimurium |
| Lipids & proteins                        |
| Luria and Delbruck                       |
| Glycoprotein                             |
| Phagocytosis                             |
| Generalized                              |
| Female Drosophila                        |
| Nutrient Media                           |
| Same mating types                        |
| Contact mapping                          |
| Contact mapping                          |
| G-bacteria                               |
| Very High                                |
| Diakinesis                               |
| Fluorescence invivo hybridization        |
| Helicase                                 |
| Morgan                                   |
| Transduction                             |
| Suppressor genes                         |
| Colins                                   |
| Hershey and Wollmer                      |
| ds RNA                                   |
| Gene transfer                            |
| High frequency recombination             |
| F neutral                                |
| Millimorgan                              |
| Prephage                                 |
| Hybrid formation                         |
| Recombinant mitotic product              |
| Lead fingers                             |
| Gene walking                             |
| Mesosomes                                |
| Generalized Transduction                 |
| Elongated                                |
|                                          |

| Abortive transduction        |
|------------------------------|
| 619 kbp                      |
| P <sub>1</sub>               |
| Psuedomonas                  |
| Both Lytic & Lysogenic cycle |
| Gene overlapping             |
| KCl                          |
| Pigmentin                    |
| Streptococcus pneumoniae     |
| Co repressor                 |
| Recombination                |
| Non specific transduction    |
| Linkage                      |
| Datura                       |
| Sequencing                   |
| Prophage                     |
| Transduction                 |
| Transformation               |
| Transformation               |
| Pili                         |
| de Vries                     |

| Opt 4                              | Opt 5 Or |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Loci mapping                       |          | - <b>F</b> |  |  |  |
| Different type                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Cistron                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Lysogency                          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| trans                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Phage lambda infects <i>E.coli</i> |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Polysaccharide                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| McKay and McCartney                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Polysaccharide                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Antibodies                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Conjugation                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Maize                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Macronutrient                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Opposite mating types              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Linkage                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Linkage                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Cyanobacteria                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Very low                           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Haplotene                          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Fluorescence in cell hybridization |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Polymerase                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Hersehy                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Gene expression                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Inducer genes                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Bennazir                           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Hershey and Singer                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| ss RNA                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Protein transfer                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Heavy frequency recombination      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| No F                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Millimeter                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Macrophage                         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Heterozygous condition             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Reproducible mitotic product       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Copper fingers                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Chromosomal walking                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Autosomes                          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Transfusion                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Flat                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |

| Transfusion              |  |  |  |  |
|--------------------------|--|--|--|--|
| 916 kbp                  |  |  |  |  |
| T <sub>7</sub>           |  |  |  |  |
| Agrobacterium            |  |  |  |  |
| Other cycle              |  |  |  |  |
| Recessive genes          |  |  |  |  |
| AgCl <sub>2</sub>        |  |  |  |  |
| Fromatin                 |  |  |  |  |
| Klebsiella pneumoniae    |  |  |  |  |
| Co operator              |  |  |  |  |
| Assortment               |  |  |  |  |
| Specialised transduction |  |  |  |  |
| Assortment               |  |  |  |  |
| Mirabilus jalapa         |  |  |  |  |
| Genome data mining       |  |  |  |  |
| Virion                   |  |  |  |  |
| Conjugation              |  |  |  |  |
| Gene expression          |  |  |  |  |
| Gene expression          |  |  |  |  |
| Fimbriae                 |  |  |  |  |
| Correns                  |  |  |  |  |

| Physical mapping<br>Cis type<br>Histone<br>Lysogency<br>Hfr<br>Phage lambda infects <i>E.coli</i><br>Anything except DNA<br>Frederick Twort and by Felix d'Herelle<br>Polysaccharide<br>Phagocytosis<br>Abortive transductants<br>Male Drosophila<br>Desiccation<br>Opposite mating types<br>Interrupted mating<br>Interrupted mating<br>G-bacteria<br>Less<br>Pachytene<br>Fluorescence in situ hybridization<br>Integrase<br>Griffith<br>Conjugation<br>Suppressor genes<br>Benzon<br>Hershey and Rotma<br>ds DNA<br>Gene transfer<br>High frequency recombination<br>(F+)<br>Centimorgan<br>Prophage<br>Segregation of alleles<br>Recombinant meiotic product<br>Zinc fingers<br>Gene mapping<br>Autosomes<br>Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Answer                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Cis type Histone Lysogency Hfr Phage lambda infects <i>E.coli</i> Anything except DNA Frederick Twort and by Felix d'Herelle Polysaccharide Phagocytosis Abortive transductants Male Drosophila Desiccation Opposite mating types Interrupted mating Interrupted mating G-bacteria Less Pachytene Fluorescence in situ hybridization Integrase Griffith Conjugation Suppressor genes Benzon Hershey and Rotma ds DNA Gene transfer High frequency recombination (F+) Centimorgan Prophage Segregation of alleles Recombinant meiotic product Zinc fingers Gaustant Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Histone<br>Lysogency<br>Hfr<br>Phage lambda infects <i>E.coli</i><br>Anything except DNA<br>Frederick Twort and by Felix d'Herelle<br>Polysaccharide<br>Phagocytosis<br>Abortive transductants<br>Male Drosophila<br>Desiccation<br>Opposite mating types<br>Interrupted mating<br>Interrupted mating<br>G-bacteria<br>Less<br>Pachytene<br>Fluorescence in situ hybridization<br>Integrase<br>Griffith<br>Conjugation<br>Suppressor genes<br>Benzon<br>Hershey and Rotma<br>ds DNA<br>Gene transfer<br>High frequency recombination<br>(F+)<br>Centimorgan<br>Prophage<br>Segregation of alleles<br>Recombinant meiotic product<br>Zinc fingers<br>Gane transfer<br>High frequency and the set of the |                                       |
| LysogencyHfrPhage lambda infects <i>E.coli</i> Anything except DNAFrederick Twort and by Felix d'HerellePolysaccharidePhagocytosisAbortive transductantsMale DrosophilaDesiccationOpposite mating typesInterrupted matingInterrupted matingG-bacteriaLessPachyteneFluorescence in situ hybridizationIntegraseGriffithConjugationSuppressor genesBenzonHershey and Rotmads DNAGene transferHigh frequency recombination(F+)CentimorganProphageSegregation of allelesRecombinant meiotic productZinc fingersGene mappingAutosomesAbortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| HfrPhage lambda infects E.coliAnything except DNAFrederick Twort and by Felix d'HerellePolysaccharidePhagocytosisAbortive transductantsMale DrosophilaDesiccationOpposite mating typesInterrupted matingInterrupted matingG-bacteriaLessPachyteneFluorescence in situ hybridizationIntegraseGriffithConjugationSuppressor genesBenzonHershey and Rotmads DNAGene transferHigh frequency recombination(F+)CentimorganProphageSegregation of allelesRecombinant meiotic productZinc fingersGene mappingAutosomesAbortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
| Phage lambda infects <i>E.coli</i> Anything except DNAFrederick Twort and by Felix d'HerellePolysaccharidePhagocytosisAbortive transductantsMale DrosophilaDesiccationOpposite mating typesInterrupted matingInterrupted matingG-bacteriaLessPachyteneFluorescence in situ hybridizationIntegraseGriffithConjugationSuppressor genesBenzonHershey and Rotmads DNAGene transferHigh frequency recombination(F+)CentimorganProphageSegregation of allelesRecombinant meiotic productZinc fingersGene mappingAutosomesAbortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Anything except DNAFrederick Twort and by Felix d'HerellePolysaccharidePhagocytosisAbortive transductantsMale DrosophilaDesiccationOpposite mating typesInterrupted matingInterrupted matingG-bacteriaLessPachyteneFluorescence in situ hybridizationIntegraseGriffithConjugationSuppressor genesBenzonHershey and Rotmads DNAGene transferHigh frequency recombination(F+)CentimorganProphageSegregation of allelesRecombinant meiotic productZinc fingersGene mappingAutosomesAbortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| Frederick Twort and by Felix d'HerellePolysaccharidePhagocytosisAbortive transductantsMale DrosophilaDesiccationOpposite mating typesInterrupted matingInterrupted matingG-bacteriaLessPachyteneFluorescence in situ hybridizationIntegraseGriffithConjugationSuppressor genesBenzonHershey and Rotmads DNAGene transferHigh frequency recombination(F+)CentimorganProphageSegregation of allelesRecombinant meiotic productZinc fingersGene mappingAutosomesAbortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |
| PolysaccharidePhagocytosisAbortive transductantsMale DrosophilaDesiccationOpposite mating typesInterrupted matingInterrupted matingG-bacteriaLessPachyteneFluorescence in situ hybridizationIntegraseGriffithConjugationSuppressor genesBenzonHershey and Rotmads DNAGene transferHigh frequency recombination(F+)CentimorganProphageSegregation of allelesRecombinant meiotic productZinc fingersGene mappingAutosomesAbortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| PhagocytosisAbortive transductantsMale DrosophilaDesiccationOpposite mating typesInterrupted matingInterrupted matingG-bacteriaLessPachyteneFluorescence in situ hybridizationIntegraseGriffithConjugationSuppressor genesBenzonHershey and Rotmads DNAGene transferHigh frequency recombination(F+)CentimorganProphageSegregation of allelesRecombinant meiotic productZinc fingersGene mappingAutosomesAbortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · · |
| Abortive transductantsMale DrosophilaDesiccationOpposite mating typesInterrupted matingInterrupted matingG-bacteriaLessPachyteneFluorescence in situ hybridizationIntegraseGriffithConjugationSuppressor genesBenzonHershey and Rotmads DNAGene transferHigh frequency recombination(F+)CentimorganProphageSegregation of allelesRecombinant meiotic productZinc fingersGene mappingAutosomesAbortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |
| Male DrosophilaDesiccationOpposite mating typesInterrupted matingInterrupted matingG-bacteriaLessPachyteneFluorescence in situ hybridizationIntegraseGriffithConjugationSuppressor genesBenzonHershey and Rotmads DNAGene transferHigh frequency recombination(F+)CentimorganProphageSegregation of allelesRecombinant meiotic productZinc fingersGene mappingAutosomesAbortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| DesiccationOpposite mating typesInterrupted matingInterrupted matingG-bacteriaLessPachyteneFluorescence in situ hybridizationIntegraseGriffithConjugationSuppressor genesBenzonHershey and Rotmads DNAGene transferHigh frequency recombination(F+)CentimorganProphageSegregation of allelesRecombinant meiotic productZinc fingersGene mappingAutosomesAbortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| Opposite mating typesInterrupted matingInterrupted matingG-bacteriaLessPachyteneFluorescence in situ hybridizationIntegraseGriffithConjugationSuppressor genesBenzonHershey and Rotmads DNAGene transferHigh frequency recombination(F+)CentimorganProphageSegregation of allelesRecombinant meiotic productZinc fingersGene mappingAutosomesAbortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |
| Interrupted mating<br>Interrupted mating<br>G-bacteria<br>Less<br>Pachytene<br>Fluorescence in situ hybridization<br>Integrase<br>Griffith<br>Conjugation<br>Suppressor genes<br>Benzon<br>Hershey and Rotma<br>ds DNA<br>Gene transfer<br>High frequency recombination<br>(F+)<br>Centimorgan<br>Prophage<br>Segregation of alleles<br>Recombinant meiotic product<br>Zinc fingers<br>Gene mapping<br>Autosomes<br>Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Opposite mating types                 |
| Interrupted mating<br>G-bacteria<br>Less<br>Pachytene<br>Fluorescence in situ hybridization<br>Integrase<br>Griffith<br>Conjugation<br>Suppressor genes<br>Benzon<br>Hershey and Rotma<br>ds DNA<br>Gene transfer<br>High frequency recombination<br>(F+)<br>Centimorgan<br>Prophage<br>Segregation of alleles<br>Recombinant meiotic product<br>Zinc fingers<br>Gene mapping<br>Autosomes<br>Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
| G-bacteria<br>Less<br>Pachytene<br>Fluorescence in situ hybridization<br>Integrase<br>Griffith<br>Conjugation<br>Suppressor genes<br>Benzon<br>Hershey and Rotma<br>ds DNA<br>Gene transfer<br>High frequency recombination<br>(F+)<br>Centimorgan<br>Prophage<br>Segregation of alleles<br>Recombinant meiotic product<br>Zinc fingers<br>Gene mapping<br>Autosomes<br>Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| PachyteneFluorescence in situ hybridizationIntegraseGriffithConjugationSuppressor genesBenzonHershey and Rotmads DNAGene transferHigh frequency recombination(F+)CentimorganProphageSegregation of allelesRecombinant meiotic productZinc fingersGene mappingAutosomesAbortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| Fluorescence in situ hybridization<br>Integrase<br>Griffith<br>Conjugation<br>Suppressor genes<br>Benzon<br>Hershey and Rotma<br>ds DNA<br>Gene transfer<br>High frequency recombination<br>(F+)<br>Centimorgan<br>Prophage<br>Segregation of alleles<br>Recombinant meiotic product<br>Zinc fingers<br>Gene mapping<br>Autosomes<br>Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Less                                  |
| Fluorescence in situ hybridization<br>Integrase<br>Griffith<br>Conjugation<br>Suppressor genes<br>Benzon<br>Hershey and Rotma<br>ds DNA<br>Gene transfer<br>High frequency recombination<br>(F+)<br>Centimorgan<br>Prophage<br>Segregation of alleles<br>Recombinant meiotic product<br>Zinc fingers<br>Gene mapping<br>Autosomes<br>Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pachytene                             |
| Integrase<br>Griffith<br>Conjugation<br>Suppressor genes<br>Benzon<br>Hershey and Rotma<br>ds DNA<br>Gene transfer<br>High frequency recombination<br>(F+)<br>Centimorgan<br>Prophage<br>Segregation of alleles<br>Recombinant meiotic product<br>Zinc fingers<br>Gene mapping<br>Autosomes<br>Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| Griffith<br>Conjugation<br>Suppressor genes<br>Benzon<br>Hershey and Rotma<br>ds DNA<br>Gene transfer<br>High frequency recombination<br>(F+)<br>Centimorgan<br>Prophage<br>Segregation of alleles<br>Recombinant meiotic product<br>Zinc fingers<br>Gene mapping<br>Autosomes<br>Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
| Suppressor genes<br>Benzon<br>Hershey and Rotma<br>ds DNA<br>Gene transfer<br>High frequency recombination<br>(F+)<br>Centimorgan<br>Prophage<br>Segregation of alleles<br>Recombinant meiotic product<br>Zinc fingers<br>Gene mapping<br>Autosomes<br>Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · ·                                 |
| Suppressor genes<br>Benzon<br>Hershey and Rotma<br>ds DNA<br>Gene transfer<br>High frequency recombination<br>(F+)<br>Centimorgan<br>Prophage<br>Segregation of alleles<br>Recombinant meiotic product<br>Zinc fingers<br>Gene mapping<br>Autosomes<br>Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conjugation                           |
| Benzon<br>Hershey and Rotma<br>ds DNA<br>Gene transfer<br>High frequency recombination<br>(F+)<br>Centimorgan<br>Prophage<br>Segregation of alleles<br>Recombinant meiotic product<br>Zinc fingers<br>Gene mapping<br>Autosomes<br>Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| ds DNA<br>Gene transfer<br>High frequency recombination<br>(F+)<br>Centimorgan<br>Prophage<br>Segregation of alleles<br>Recombinant meiotic product<br>Zinc fingers<br>Gene mapping<br>Autosomes<br>Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| ds DNA<br>Gene transfer<br>High frequency recombination<br>(F+)<br>Centimorgan<br>Prophage<br>Segregation of alleles<br>Recombinant meiotic product<br>Zinc fingers<br>Gene mapping<br>Autosomes<br>Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hershey and Rotma                     |
| High frequency recombination<br>(F+)<br>Centimorgan<br>Prophage<br>Segregation of alleles<br>Recombinant meiotic product<br>Zinc fingers<br>Gene mapping<br>Autosomes<br>Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · · |
| (F+)<br>Centimorgan<br>Prophage<br>Segregation of alleles<br>Recombinant meiotic product<br>Zinc fingers<br>Gene mapping<br>Autosomes<br>Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gene transfer                         |
| (F+)<br>Centimorgan<br>Prophage<br>Segregation of alleles<br>Recombinant meiotic product<br>Zinc fingers<br>Gene mapping<br>Autosomes<br>Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | High frequency recombination          |
| Prophage<br>Segregation of alleles<br>Recombinant meiotic product<br>Zinc fingers<br>Gene mapping<br>Autosomes<br>Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
| Prophage<br>Segregation of alleles<br>Recombinant meiotic product<br>Zinc fingers<br>Gene mapping<br>Autosomes<br>Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Centimorgan                           |
| Segregation of alleles<br>Recombinant meiotic product<br>Zinc fingers<br>Gene mapping<br>Autosomes<br>Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                     |
| Recombinant meiotic product<br>Zinc fingers<br>Gene mapping<br>Autosomes<br>Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |
| Zinc fingers<br>Gene mapping<br>Autosomes<br>Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |
| Autosomes Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| Autosomes<br>Abortive transduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gene mapping                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| Smooth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Abortive transduction                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Smooth                                |

| Specialized Transduction |
|--------------------------|
| 169 kbp                  |
| T <sub>2</sub>           |
| E.coli                   |
| Lytic cycle              |
| Linkage                  |
| CaCl <sub>2</sub>        |
| Chromatin                |
| Streptococcus pneumoniae |
| Co transduced            |
| Recombination            |
| Generalized transduction |
| Linkage                  |
| Lathyrus odoratus        |
| Mapping                  |
| Prophage                 |
| Conjugation              |
| Transduction             |
| Transformation           |
| Capsules                 |
| Morgan                   |



## **DEPARTMENT OF MICROBIOLOGY KARPAGAM ACADEMY OF HIGHER EDUCATION** KARPAGAM UNIVERSITY

(Deemed University Established Under Section 3 of UGC Act, 1956) Eachanari PO, Coimbatore -641 021, India.

## I - M.Sc Microbiology (Batch 2017-2019)

## Lecture Plan

### Unit - V

| S. No | Duration | Торіс                                             | Reference      |
|-------|----------|---------------------------------------------------|----------------|
| 1.    | 1        | Introduction to yeast Genetics                    | R1: 120 to 123 |
| 2.    | 1        | Metabolism: genome and extra chromosomal elements | T1:130 to 131  |
|       |          |                                                   | R1: 143 to 152 |
| 3.    | 1        | Genetic nomenclature in yeast                     | R1: 153 to 157 |
| 4.    | 1        | Tetrad Analysis                                   | R1:528 to 529  |
| 5.    | 1        | Petit mutant -yeast                               | T1: 122 to     |
|       |          |                                                   | 129/W1         |
| 6.    | 1        | Petit mutant - Neurospora                         | T1:122 to      |
|       |          |                                                   | 129/W1         |
| 7.    | 1        | Petit mutant – Drosophila                         | T1:122 to      |
|       |          |                                                   | 129/W1         |
| 8.    | 1        | Class Test V                                      | -              |
| 9.    | 2        | Revision of Previous year ESE question paper      | -              |
|       |          | Total Hours                                       | 10             |

R1: David Freifelder, Microbial Genetics. Narosa Publishing House, 10<sup>th</sup> edition, 2004. New Delhi, India.

T1: Peter J. Russell, i Genetics – A molecular approach, 7<sup>th</sup> edition, 2010. Pearson Benjamin Cummings Publishers, Boston, USA.

W1: <u>www.Molecularbiologyfordummies.com/Genetics/index.php</u>

1

## Unit- V

### **General Features of Gene Transfer in Bacteria**

- Unidirectional
  - Donor to recipient
  - Donor does not give an entire chromosome
    - Merozygotes
- Gene transfer can occur between species

### **Bacterial genome alteration**

*Transformation*- alteration of bacterialDNA by uptake of naked, foreign,DNA from the surrounding environment.

Transduction-DNA transfer via phages

Generalized-random pieces of host DNA gets transfered

Specialized-prophage exits chromosome and carried pieces of host DNA with it

*Conjugation* -Gene transfer from a donor to a recipient by direct physical contact between cell

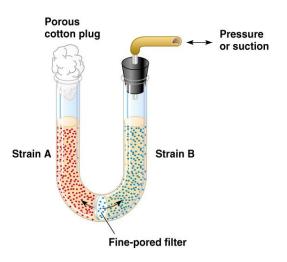



Fig: Davis's U-tube experiment

### Transformation

*Definition*: Gene transfer resulting from the uptake of DNA from a donor.

Factors affecting transformation

- DNA size and state
  - Sensitive to nucleases
- Competence of the recipient (*Bacillus, Haemophilus, Neisseria, Streptococcus*)
  - Competence factor
  - Induced competence

Steps

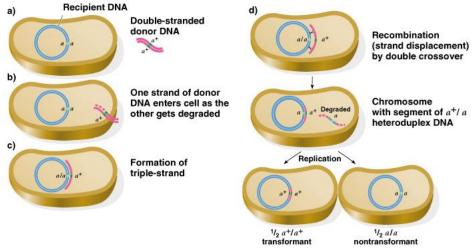
– Uptake of DNA

- Gram +
- Gram -
- Recombination
  - Legitimate, homologous or general
  - recA, recB and recC genes

Significance

- Phase variation in *Neiseseria*
- Recombinant DNA technology

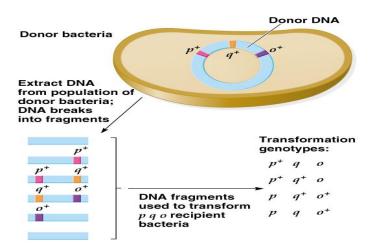
### Genetic Mapping in Bacteria by Transformation


Transformation is used to map genes in situations where mapping by conjugation or transduction is not possible.

- Donor DNA is extracted and purified, broken into fragments, and added to a recipient strain of bacteria. Donor and recipient will have detectable differences in phenotype, and therefore genotype.
- If the DNA fragment undergoes homologous recombination with the recipient's chromosome, a new phenotype may be produced. Transformants are detected by testing for phenotypic changes.

# Some bacterial cells take up DNA naturally (e.g., Bacillus subtilis), while others require engineered transformation for efficient transfer (e.g., E. coli).

# Completed transformation occurs in a small proportion of the cells exposed to new DNA. Bacillus subtilis is an example


- Donor is wild-type (a+). Recipient is mutant (a).
- One of donor DNA strands is degraded, leaving ssDNA with the a+ allele.
- The donor ssDNA pairs with homologous DNA in recipient's chromosome, forming a triple-stranded region.
- A double crossover event occurs, replacing one recipient DNA strand with the donor strand.
- The recipient now has a region of heteroduplex DNA. One strand has the recipient's original a allele and the other strand has the new a+ allele.
- DNA replication will produce one chromosome with the original (a) genotype, and one with the recombinant (a+) genotype.
- The cell with the recombinant genotype is then selected by its phenotypic change.



**Fig: Process of Transformation** 

Transformation experiments are used to determine:

- Whether genes are linked (physically close on the bacterial chromosome).
  - $\circ~$  Transformation works best with small DNA fragments that hold only a few genes.
  - Cotransformation is an indication that two genes are near each other. It is analyzed mathematically.
    - Experimentally, if cotransformation is more frequent than would be expected randomly (the product of the transformation rates for each gene), the genes must be close together.
    - If the cotransformation rate is close to the transformation rate for each gene alone, the genes are linked.
- The order of genes on the genetic map.
  - Suppose two genes (e.g., p and q) cotransform and are thus linked. One of them (e.g., often cotransformations with another gene (e.g., o).
  - Determining the distance between p and *o* involves analyzing their cotransformation frequency.
    - If p and o rarely cotransform, the gene order is p-q-o.
    - If p and o frequently cotransform, the gene order is p-o-q.
- The map distance between genes. Recombination frequencies are used to infer map distances



## **Fig: Mapping by Transformation**

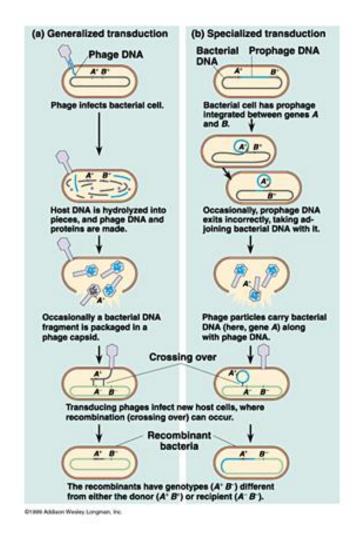
### Transduction

٠

## Definition: Gene transfer from a donor to a recipient by way of a bacteriophage

- Significance
  - Common in Gram+ bacteria
  - Lysogenic (phage) conversion
  - Resistant to environmental nucleases
- Types of transduction
  - Generalized Transduction in which potentially any dornor bacterial gene can be transferred.
  - Specialized Transduction in which only certain donor genes can be transferred

—


## **Generalized Transduction**

- Infection of Donor
- Phage replication and degradation of host DNA
- Assembly of phages particles
- Release of phage
- Infection of recipient
- Legitimate recombination

## **Specialized Transduction**

- Lysogenic Phage
- Excision of the prophage
- Replication and release of phage
- Infection of the recipient
- Lysogenization of the recipient
  - Legitimate recombination also possible

5



**Fig: Process of Transduction** 

## **Mapping by Transduction**

### **Generalized Transduction**

Generalized transduction was discovered by Lederberg and Zinder (1952), in an experiment with Salmonella typhimurium bacteria

- Experiment was similar to the *E. coli* conjugation experiment, in which bacterial strains are separated by a ifiter to prevent physical contact.
- *S. typhimurium*, unlike *E. coli*, produced recombinants in this experiment. The filterable agent moving genes was the temperate phage P22.

Another example of a generalized transducing phage is P1 in E. coli

- P1 enters and integrates as a prophage.
- If the lysogenic state is not maintained, P1 enters a lytic cycle and produces progeny phages.

- The bacterial chromosome is degraded during lytic infection, and rarely, bacterial DNA is packaged as if it were a P1 chromosome, producing a transducing phage.
- The transducing phage DNA enters the host cell in the normal P1 way, and may be incorporated into the host's chromosome by homologous recombination. The resulting bacteria are transductants.

Transduction experiments use genetic markers to follow gene movement.

- Selectable markers allow detection of low frequency events. For example, auxotrophic recipients can easily be detected if they convert to the donor';s prototrophic phenotype, because they alone can grow on minimal media.
- Other markers in the experiment are called unselected markers.

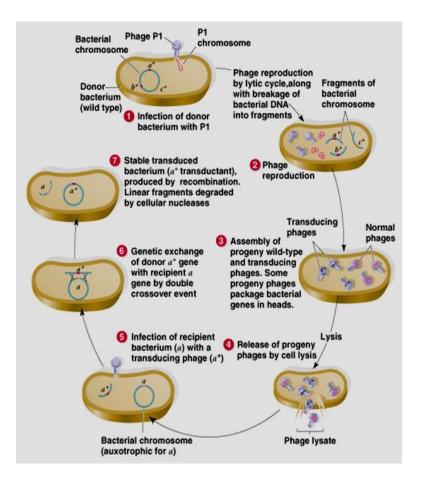
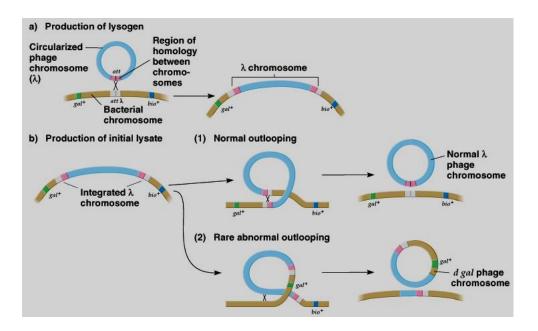



Fig: Generalized transduction between strains of E. coli

*Closely linked genes are cotransduced at high frequency, allowing a detailed genetic map to be generated.* For example:

- P1 was used to map *E. coli* genes.
  - Donor strain is able to grow on minimal medium, and is also resistant to the metabolic poison sodium azide (leu + thr + aziR).

- Recipient strain can't make leucine or threonine, and is poisoned by sodium azide (*ieu thr aziS*).
- P1 lysate grown on donor cells is used to infect recipient cells.
- Transductants can be selected for any of these traits (e.g., leu+, and then checked for the unselected markers (e.g., thr+aziR)
- $\circ$  For example:
  - Of the *leu*+ selected transductants, 50% have *aziR* and 2% have *thr*+.
  - Of the *thr*+ selected transductants, 3% have *leu*+, and 0% have *aziR*.
  - This gives the map order: *thr—leu--azi*.


Map distances are calculated from the cotransduction frequency of gene pairs. It is effective only with genes located near each other on the chromosome.

### **Specialized Transduction**

Some phages transduce only certain regions of the chromosome, corresponding with their integration site(s). An example is  $\lambda$  in *E*. coli

- Phage $\lambda$  integrates by a single crossover into the *att* $\lambda$  site on the *E. coil K12* chromosome. The *att* $\lambda$  site is located between the *gal* and *bio* genes. The prophage is maintained by a phage repressor protein.
- In this example, the *E. coil K12* strain that integrates the  $\lambda$  prophage is *gal*+ (a phenotype easily detected with specific culture medium).
- If this *E. coli*  $K12(\lambda)$  is induced to the lytic cycle, the  $\lambda$  prophage DNA is excised by a single cross-over event.
- Excision is usually precise.
- Rarely excision results in genetic exchange, with a fragment of  $\lambda$ DNA remaining in the *E. coli* chromosome, and some bacterial DNA (e.g., *gal*+) added to the  $\lambda$  chromosome.
- The resulting transducing phage is designated  $\lambda d gal + (d \text{ for defective, since not all phage genes are present).}$
- $\lambda d gal + can replicate and lyse the host cell, since all <math>\lambda genes are present either on the phage or bacterial chromosome.$
- Because transducing phage are only rarely produced, a low- frequency transducing (LFT) lysate results. Infection of *gal* bacterial cells results in two types of transductants
- Unstable transductants result when wild-typeλintegrates first at its normal attλsite. λd gal+ then integrates into the wild-typeλ, producing a double lysogen with both types ofλ integrated.
- The host bacterium is now heterozygous (gal + / gal), and can ferment galactose.
- The transductant is unstable because the wild-type $\lambda$ can be induced into the lytic cycle. Both wild-type $\lambda$ and  $\lambda d$  *gal*+ are replicated, producing a high-frequency transducing (HFT) lysate.
- Stable transductants are produced when a cell is infected only by a  $\lambda d$  gal+ phage, and the gal+ allele is recombined into the host chromosome by double cross-over with gal.

Specialized transduction is useful for moving specific genes between bacteria, but not for general genetic mapping.



c) Transduction of gal bacteria by initial lysate, consisting of  $\lambda$  and  $\lambda d$  gal phage

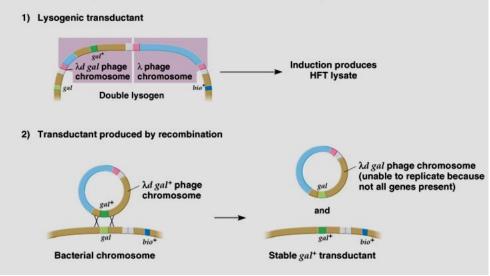



Fig: Specialized transduction by bacteriophage  $\lambda$ 

### Discovery of Conjugation in E. coli

Lederberg and Tatum discovered conjugation (1946) using two E. coli auxotrophic mutant strains:

- Strain A's genotype was met bio thr+ leu+ thi+. It grows on minimal medium supplemented with methionine and biotin.
- Strain B's genotype was met+ bio+ thr leu thi. It grows on minimal medium supplemented with threonine, leucine and thiamine.

- Strains A and B were mixed, and plated onto minimal medium. About 1/106 cells produced colonies with the phenotype met+ bio+ thr+ leu+ thi+ (Figure 14.2).
- Neither strain produced colonies when plated alone onto minimal medium, so the new phenotype resulted from recombination.

Davis tested whether cell-to-cell contact was required:

- Strain A cells were placed on one side of a filter, and strain B on the other. Cells could not move through the filter but molecules moved freely, encouraged by alternating suction and pressure.
- No prototrophic colonies appeared when the cells were plated on minimal medium. This indicates that cell-to-cell contact is required, and the genetic recombination results from conjugation.

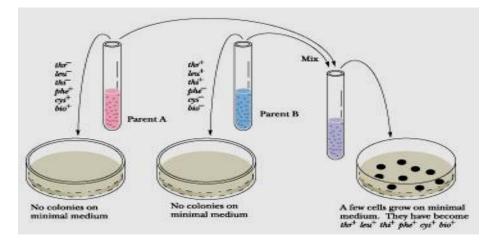



Fig: Cell to cell contact by conjugation a medium of gene transfer

### Sexual Conjugation in Bacteria

The transfer of DNA between bacteria takes place via a process known as **sexual conjugation**, a phenomenon unsuspected prior to the Lederberg-Tatum experiment. Bacterial cells sometimes contain, in addition to their chromosome, extrachromosomal DNA molecules called **plasmids**. Plasmids represent "extra" or auxiliary genetic information. Bacterial cells are capable of conjugation if they possess a particular plasmid called the **F factor** (F for fertility). Such F<sup>+</sup>, or *donor*, *cells* have thin, hollow tubes projecting from their surface known as **sex pili** or **F pili** (singular = *pilus*). One or more pili can bind to specific receptors on the surface of cells that lack an F factor ( $F^-$ , or *recipient*, *cells*)The pilus provides a connection between the two cells. Upon conjugation, a single strand of the F factor is passed to the F<sup>-</sup> cell, where its complementary strand is synthesized .The recipient F<sup>-</sup> cell thus becomes F<sup>+</sup> by virtue of now having a double-stranded F factor plasmid. The F factor plasmid consists of about 94,000 base pairs; about one-third of this DNA is devoted to about 25 genes that function specifically in the transfer of genetic material from F<sup>+</sup> to F<sup>-</sup> cells. Among these genes are those necessary for the formation of pili. In reality, the F factor is an infectious agent.

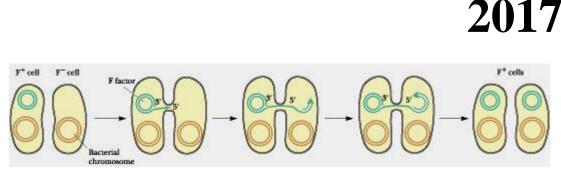



Fig: Physical factors in Bacterial conjugation

### Mapping by Conjugation

Chromosomes In 1946, Joshua Lederberg and Edward Tatum discovered that genetic information could be transferred between bacteria. They used two strains of E. coli that differed in their growth requirements due to mutations each carried .One strain (thr, leu, thi) required threonine, leucine, and thiamine to grow; the other (phe, cys, bio) required phenylalanine, cystine, and biotin. These two strains were mixed together and spread on the surface of a petri plate of minimal medium lacking any of the required supplements. After a day, a very small number of bacterial colonies were observed to be growing. Somehow, these growing bacteria had acquired functional (wild-type) copies of each of the mutant genes. This remarkable result suggested strongly that the chromosomes of the two different cell types were brought together in a process akin to sexual exchange. In order for the progeny cells (which contain but one chromosome) to have acquired genetic information from the parental strains, genetic recombination must have occurred. This represents, in the words of Lederberg and Tatum, "the assortment of genes in new combinations." Apparently, at some point in time, parental DNA molecules must have aligned along regions of homology (sequence similarity), and segments from one of these molecules must have been interchanged with similar segments from the other parents so that some DNA molecules (chromosomes) now carried wildtype  $thr^+ leu^+ thi^+ phe^+ cys^+ bio^+$  gene

### **Interrupted-mating experiment**

Conjugation experiments to map genes begin with appropriate Hfr strains selected from the progeny of F+X F- crosses.Jacob and Wollman (1950s) used Hfr donor strains with allelic differences from the F- recipient strains, in interrupted-mating experiments.

- Donor: HfrH thr+ leu+ aziR tonR lac+ gal+ strR.
- Recipient: F- thr leu aziS tonS lac gal strS.
- The 2 cell types are mixed in liquid medium at 37°C. Samples are removed at time points and agitated to separate conjugating pairs.
- Selective media are used to analyze the transconjugants. Results in this experiment:
  - The 1st donor genes to be transferred to the F- recipient are thr+ and leu+, and their entry time is set as 0 minutes.
  - At 8 minutes, aziR is transferred, and tonR follows at 10 minutes.
  - At about 17 minutes lac+ transfers, followed by gal+ at about 25 minutes.
- Recombination frequency becomes less at later time points, because more pairs have already broken apart before the sample was taken.

The transfer time for each gene is reproducible, indicating its chromosomal position. A map may be constructed with the distance between genes measured in minutes. (The *E. coli* chromosome map spans about 100 minutes)

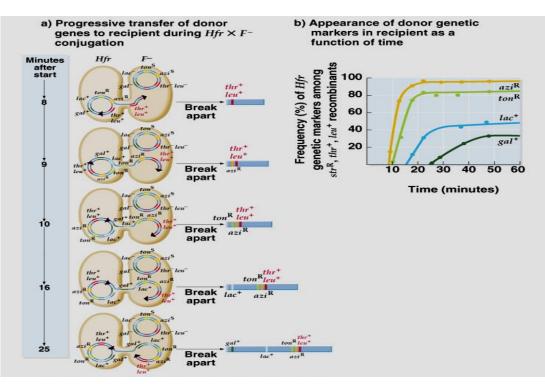



Fig: Interrupted-mating experiment

## KARPAGAM ACADEMY OF HIGHER EDUCATION (KARPAGAM UNIVERSITY) DEPARTMENT OF MICROBIOLOGY MOLECULAR GENETICS - 17MBP103

| Unit V Question                                                                                       |
|-------------------------------------------------------------------------------------------------------|
| test is used to determine which gene(s) are defective in petite yeast mutants                         |
| contains two types of spores of same parental genotype                                                |
| initial products of meiosis forms two identical spore                                                 |
| refers to a genetic changes in different genomes of same cell                                         |
| determines the number of crossover events and give correct map distance                               |
| developed an algebriac method to determine the consequence of various number of exchanging            |
| distance in map unit is only half the percentage of second division segregated tetrads                |
| A feature of petite is the occurrence of from the circular mitochondrial genome                       |
| A new genetic nomenclature for S. cerevisiae transposon                                               |
| Among haploid and diploid vegetative cells of yeast ,which is mainly used for genetic mapping         |
| An estimation of map between a- & b- can be obtained from number of recombinant ascospore detected by |
| Arg <sup>+</sup> is                                                                                   |
| Cells which contains single copy of chromosome is called                                              |
| Common model organism in studying unicellular eukaryotes/budding yeast                                |
| Gene conversion can be either allelic or                                                              |
|                                                                                                       |
|                                                                                                       |
| Gene conversion is the                                                                                |
| Generation time of yeast takes place at                                                               |
| Genetic maps of chromosome are based on the frequencies of                                            |
| Give full form for NPD                                                                                |
| Haploid to diploid phase in yeast is brought about by                                                 |
| HFT is                                                                                                |
| His 3 is an protein.                                                                                  |
| If single crossover occurs between a- & b- then tetra type results                                    |
| In <i>Drosophila</i> , the meiotic recombination occurs only in                                       |
| In Transcription of yeast genome, makes all RNA to serve as mRNA                                      |
| In yeast, 22% of the genome is made up of DNA                                                         |
| Intermediate compound responsible for red color of adenine-requiring yeast petite mutants             |
| Map distance is equal to the percentage of                                                            |
| Meiosis in yeast life cycle leads in forming                                                          |
| Method available for locating mutation in Neurospora crassa is                                        |
| Petite phenotypes caused by the absence of, or mutations in, mitochondrial DNA are termed as          |
| Petite yeast mutants are unable to grow on media containing                                           |
| Pleiotrophy is common in                                                                              |
| Process by which one DNA sequence replaces a homologous sequence                                      |
| Random spore analysis gives values                                                                    |
| Recombination does not only occur during meiosis, but also as a mechanism for                         |
| Sample of ascospores is spread on to the agar medium without leucine and survival was tested using    |
| Sex linkage was explained by                                                                          |

| Significant feature of sex determination in Drosophila is the presence of abnormal flies called          |
|----------------------------------------------------------------------------------------------------------|
| Small pieces of DNA that can insert themselves into chromosomes are known                                |
| Tetrad showing second division segregation has products                                                  |
| The ascus burst releasing the ascospores, each of which germinates and divides by mitosis to produce new |
| The binding of two DNA helices through X-shaped junction called                                          |
| The developing haploid spores are enclosed in a membranous structure called                              |
| The general mapping function of Haldane is based on                                                      |
| The leu2- strain carries a mutation that inactivates leu2 gene which codes for                           |
| The percentage of recombinant meiotic product is one half of the percentage of                           |
| The repair of double-strand gaps is an efficient process in yeast known to be                            |
| The term genetic linkage was given by                                                                    |
| The to a particular chromosome is the first step in genetic mapping                                      |
| Well characterized Baker's yeast has cell                                                                |
| When mutation in single gene affect more than one trait is called                                        |
| Which contains four different ascospores, one of each genotypes                                          |
| Which of the following is used in density gradient centrifugation?                                       |
| Yeast are                                                                                                |
| Yeast genome has introns                                                                                 |
| Yeast genome is                                                                                          |
| Yeast has two mating types,, which show primitive aspects of sex differentiation                         |
| Yeasts fail to grow on                                                                                   |
|                                                                                                          |

| Opt 1                                   |
|-----------------------------------------|
| Complementation test                    |
| Parental haploid                        |
| 4                                       |
| Trans type                              |
| Genetic analysis                        |
| Klebs & Loeffler                        |
| Tetromere                               |
| Insertion                               |
| jumping element                         |
|                                         |
| Haploid and diploid<br>Genetic analysis |
| · · · · ·                               |
| A strain not requiring aspargine        |
| Triploid                                |
| Saccharomyces cerevisiae                |
| Allergic                                |
| Sequence homogeneity                    |
| Reciprocal                              |
| 2hrs 30 min                             |
| Reproducible mitotic product            |
| Non-parental dikaryon                   |
| Fusion of opposite mating types         |
| High frequency transducing              |
| Transducer                              |
| A                                       |
| Both Female and Male                    |
| DNA polymerase                          |
| Polygenic                               |
| Aminoimidazole                          |
| Reproducible mitotic product            |
| Sporangium                              |
| Co-segregation                          |
| Cytoplasmic petites                     |
| Only nitrogen sources                   |
| No organism                             |
| Gene mutation                           |
| Approximate                             |
| Repair of single-strand breaks          |
| ELISA                                   |
| Morgan                                  |

| Gyno variants               |
|-----------------------------|
| Plasmid                     |
| Four meiotic                |
| Vegetative cells            |
| Polytron                    |
| Spores                      |
| Haldane distribution        |
| Endonuclease                |
| Second division             |
| Seggregation                |
| Morgan                      |
| Elemination of mutated type |
| Irregular                   |
| Parental genes              |
| Tetratype                   |
| Glucose                     |
| Multicellular fungi         |
| 233                         |
| 12,520 kb                   |
| a & b                       |
| Glucose                     |

| Opt 2         Complement fixation test         Parental diploid         8         Same type         Physical analysis         Pastuer & Winogradsky         Telomere         Excertion         Ty elements         Diploid         Physical analysis         A strain requiring aspargine         Haploid and diploid         Cryptococcus Neoformans         Ectopic         Sequence heterogenecity         Non-reciprocal         3 hrs         Reproducible meiotic product |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parental diploid<br>8<br>Same type<br>Physical analysis<br>Pastuer & Winogradsky<br>Telomere<br>Excertion<br>Ty elements<br>Diploid<br>Physical analysis<br>A strain requiring aspargine<br>Haploid and diploid<br><i>Cryptococcus Neoformans</i><br>Ectopic<br>Sequence heterogenecity<br>Non-reciprocal<br>3 hrs                                                                                                                                                              |
| 8<br>Same type<br>Physical analysis<br>Pastuer & Winogradsky<br>Telomere<br>Excertion<br>Ty elements<br>Diploid<br>Physical analysis<br>A strain requiring aspargine<br>Haploid and diploid<br><i>Cryptococcus Neoformans</i><br>Ectopic<br>Sequence heterogenecity<br>Non-reciprocal<br>3 hrs                                                                                                                                                                                  |
| Same type<br>Physical analysis<br>Pastuer & Winogradsky<br>Telomere<br>Excertion<br>Ty elements<br>Diploid<br>Physical analysis<br>A strain requiring aspargine<br>Haploid and diploid<br><i>Cryptococcus Neoformans</i><br>Ectopic<br>Sequence heterogenecity<br>Non-reciprocal<br>3 hrs                                                                                                                                                                                       |
| Physical analysis<br>Pastuer & Winogradsky<br>Telomere<br>Excertion<br>Ty elements<br>Diploid<br>Physical analysis<br>A strain requiring aspargine<br>Haploid and diploid<br><i>Cryptococcus Neoformans</i><br>Ectopic<br>Sequence heterogenecity<br>Non-reciprocal<br>3 hrs                                                                                                                                                                                                    |
| Pastuer & Winogradsky         Telomere         Excertion         Ty elements         Diploid         Physical analysis         A strain requiring aspargine         Haploid and diploid         Cryptococcus Neoformans         Ectopic         Sequence heterogenecity         Non-reciprocal         3 hrs                                                                                                                                                                    |
| Telomere<br>Excertion<br>Ty elements<br>Diploid<br>Physical analysis<br>A strain requiring aspargine<br>Haploid and diploid<br><i>Cryptococcus Neoformans</i><br>Ectopic<br>Sequence heterogenecity<br>Non-reciprocal<br>3 hrs                                                                                                                                                                                                                                                  |
| Excertion<br>Ty elements<br>Diploid<br>Physical analysis<br>A strain requiring aspargine<br>Haploid and diploid<br><i>Cryptococcus Neoformans</i><br>Ectopic<br>Sequence heterogenecity<br>Non-reciprocal<br>3 hrs                                                                                                                                                                                                                                                              |
| Ty elements<br>Diploid<br>Physical analysis<br>A strain requiring aspargine<br>Haploid and diploid<br><i>Cryptococcus Neoformans</i><br>Ectopic<br>Sequence heterogenecity<br>Non-reciprocal<br>3 hrs                                                                                                                                                                                                                                                                           |
| Diploid<br>Physical analysis<br>A strain requiring aspargine<br>Haploid and diploid<br><i>Cryptococcus Neoformans</i><br>Ectopic<br>Sequence heterogenecity<br>Non-reciprocal<br>3 hrs                                                                                                                                                                                                                                                                                          |
| Physical analysis         A strain requiring aspargine         Haploid and diploid         Cryptococcus Neoformans         Ectopic         Sequence heterogenecity         Non-reciprocal         3 hrs                                                                                                                                                                                                                                                                         |
| A strain requiring aspargine<br>Haploid and diploid<br><i>Cryptococcus Neoformans</i><br>Ectopic<br>Sequence heterogenecity<br>Non-reciprocal<br>3 hrs                                                                                                                                                                                                                                                                                                                          |
| Haploid and diploid<br>Cryptococcus Neoformans<br>Ectopic<br>Sequence heterogenecity<br>Non-reciprocal<br>3 hrs                                                                                                                                                                                                                                                                                                                                                                 |
| Cryptococcus Neoformans<br>Ectopic<br>Sequence heterogenecity<br>Non-reciprocal<br>3 hrs                                                                                                                                                                                                                                                                                                                                                                                        |
| Ectopic<br>Sequence heterogenecity<br>Non-reciprocal<br>3 hrs                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sequence heterogenecity<br>Non-reciprocal<br>3 hrs                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Non-reciprocal<br>3 hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3 hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Reproducible meiotic product                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Non-performing data                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Fusion of positive mating types                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| High frequency transcribing                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Indicator                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| В                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Female                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| RNA polymerase                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Monogenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Aminoimidazole ribonucleotide                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Recombinant mitotic product                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Fragmented mycelium                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Co-opression                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Energy deficient petites                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Only Mineral sources                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| All organism                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Gene repulsion                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Accurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Repair of double-strand breaks                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Mendel                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Gynocoid                            |
|-------------------------------------|
| Transposon                          |
| Two Meiotic                         |
| Spores                              |
| Cholistron                          |
| Pycus                               |
| Poisson distribution                |
| Beta isoprophylmalate dehydrogenase |
| Fourth division                     |
| Assortment                          |
| Meischer                            |
| Localization of wild type           |
| Round                               |
| Pleiomorphic genes                  |
| Parental type                       |
| Sucrose                             |
| Dicellular                          |
| 236                                 |
| 1,252 kb                            |
| a & α                               |
| Lactose                             |

| Opt 3                           |
|---------------------------------|
| Completed test                  |
| Non-parental ditype             |
| 16                              |
| Cis type                        |
| Random spore analysis           |
| Shult & Lindegrin               |
| Centromer                       |
| Addition                        |
| Tx elements                     |
| Haploid                         |
| Random spore analysis           |
| A strain not requiring arginine |
| Diploid                         |
| Candida albicans                |
| Endemic                         |
| Sequence array                  |
| Direct                          |
| 60 min                          |
| Recombinant mitotic product     |
| Non-parental data               |
| Fusion of negative mating types |
| Height frequency transducing    |
| Selector                        |
| Τ                               |
| Male                            |
| RNA pol I                       |
| Intragenic                      |
| Aminoimidazoleribotide          |
| Reproducible meiotic product    |
| Ascus spores                    |
| Independent assortment          |
| Mitochondrial petites           |
| Only Lipid Source               |
| Higher organism                 |
| Gene transtition                |
| Null                            |
| Repair of proteins              |
| Random spore analysis           |
| Primrose                        |

| Gyrates                  |
|--------------------------|
| Cosmid                   |
| Four mitotic             |
| Ascus                    |
| Diptron                  |
| Zygote                   |
| Twart                    |
| Helicase                 |
| Primary division         |
| SOS repair               |
| Wilkins                  |
| Localization of mutation |
| Spheroid                 |
| Priogenic genes          |
| Parental ditype          |
| Fructose                 |
| Acellular                |
| 323                      |
| 1,02,520 kb              |
| b & β                    |
| Maltose                  |

| Opt 4                           | Opt 5 | Opt 6 |
|---------------------------------|-------|-------|
| Conjugation test                |       |       |
| Parental ditype                 |       |       |
| 32                              |       |       |
| Different type                  |       |       |
| Tetrad analysis                 |       |       |
| Klug & Cumming                  |       |       |
| Primer                          |       |       |
| Deletion                        |       |       |
| Ta element                      |       |       |
| Triploid                        |       |       |
| Tetrad analysis                 |       |       |
| A strain requiring arginine     |       |       |
| Haploid                         |       |       |
| Pitchia pastoris                |       |       |
| Endopic                         |       |       |
| Sequence hologenecity           |       |       |
| Indirect                        |       |       |
| 30 min                          |       |       |
| Recombinant meiotic product     |       |       |
| Non-parental ditype             |       |       |
| Fusion of opposite genes        |       |       |
| Heavy frequency transducing     |       |       |
| Repressor                       |       |       |
| U                               |       |       |
| None                            |       |       |
| RNA pol II                      |       |       |
| Intergenic                      |       |       |
| Aminoimmunoribotide             |       |       |
| Recombinant meiotic product     |       |       |
| Endospores                      |       |       |
| Tetrad analysis                 |       |       |
| Chrosomal petites               |       |       |
| Only fermentable carbon sources |       |       |
| Lower organism                  |       |       |
| Gene conversion                 |       |       |
| Partial                         |       |       |
| Repair of RNA                   |       |       |
| RPR                             |       |       |
| Pastuer                         |       |       |

| Gynondromorphs           |  |
|--------------------------|--|
| Artificial chrosome      |  |
| Two mitotic              |  |
| Zygote                   |  |
| Cistron                  |  |
| Ascus                    |  |
| Switz                    |  |
| Ligase                   |  |
| Tetrad                   |  |
| Crossing over            |  |
| Mendel                   |  |
| Elimination of wild type |  |
| Disc shaped              |  |
| Pleiotrophic genes       |  |
| Non-parental ditype      |  |
| Agarose                  |  |
| Unicellular fungi        |  |
| 326                      |  |
| 15,052 kb                |  |
| α&β                      |  |
| Trehalose                |  |

| Answer                              |
|-------------------------------------|
| Complementation test                |
| Parental diploid                    |
| 4                                   |
| Cis type                            |
| Tetrad analysis                     |
| Shult & Lindegrin                   |
| Telomere                            |
| Deletion                            |
| Ty elements                         |
| Haploid                             |
| Random spore analysis               |
| A strain not requiring arginine     |
| Haploid                             |
| Saccharomyces cerevisiae            |
| Ectopic                             |
| Sequence homogeneity                |
| Non-reciprocal                      |
| 2hrs 30 min                         |
| Recombinant meiotic product         |
| Non-parental ditype                 |
| Fusion of opposite mating types     |
| High frequency transducing          |
| Indicator                           |
| Т                                   |
| Female                              |
| RNA pol II                          |
| Intergenic                          |
| Aminoimidazoleribotide              |
| Recombinant meiotic product         |
| Ascus spores                        |
| Co-segregation                      |
| Cytoplasmic petites                 |
| Only non-fermentable carbon sources |
| Higher organism                     |
| Gene conversion                     |
| Approximate                         |
| Repair of double-strand breaks      |
| Random spore analysis               |
| Morgan                              |

| Gynondromorphs                      |
|-------------------------------------|
| Transposon                          |
| four meiotic                        |
| Vegetative cells                    |
| Cistron                             |
| Ascus                               |
| Poisson distribution                |
| Beta isoprophylmalate dehydrogenase |
| Tetrad                              |
| Crossing over                       |
| Morgan                              |
| Localization of mutation            |
| Spheroid                            |
| Pleiotrophic genes                  |
| Tetratype                           |
| Sucrose                             |
| Unicellular fungi                   |
| 233                                 |
| 12,520 kb                           |
| a & α                               |
| Lactose                             |

**Reg. No. :** -----[17MBP10 3]

### **KARPAGAM UNIVERSITY**

(Deemed University Established Under Section 3 of UGC Act 1956) Eachanari Post, Coimbatore, Tamil Nadu, India - 641 021 DEPARTMET OF MICROBIOLOGY M.Sc., DEGREE FIRST CIA EXAM, (AUGUST - 2017)

# **MOLECULAR GENETICS**

## Time: 2 hours

1. \_\_\_\_\_ enzyme degrades DNA

Maximum: 50 marks

PART-A

(20 x 1 = 20 marks)

# (Answer all questions)

| a. Polymerase                                                      | b. Primase                            |  |
|--------------------------------------------------------------------|---------------------------------------|--|
| c. RNase                                                           | d. DNase                              |  |
| 2. In a DNA molecule the Nitrogenous base Adenine always pair with |                                       |  |
| a. Guanine                                                         | b. Cytosine                           |  |
| c. Thymine                                                         | d. Uracil                             |  |
| 3. Bacteria contains                                               |                                       |  |
| a. Chromosome                                                      | b. Nucleolus                          |  |
| c. Plasmid                                                         | d. Plastids                           |  |
| 4. Basically, flow of genetic material between two                 | bacteria is accomplished by           |  |
| a. Replication                                                     | b. Transformation                     |  |
| c. Transduction                                                    | d. Conjugation.                       |  |
| 5. 7-methylguanosine cap is added at                               | site of RNA.                          |  |
| a. 5`                                                              | b. 3`                                 |  |
| c. 5`- 3`                                                          | d. 3`- 5`                             |  |
| 6 is a DNA associated supercoiling protein.                        |                                       |  |
| a. Protone                                                         | b. Histone                            |  |
| c. Kinetin                                                         | d. Complement                         |  |
| 7. Nucleotide refers to combination of                             | _                                     |  |
| a. Sugar and Phosphate                                             | b. Sugar and dNTPs                    |  |
| c. dNTPs and Phosphate                                             | d. Sugar, dNTPs and Phosphate         |  |
| 8. Bonding between two nitrogenous base is                         | ·                                     |  |
| a. Hydrogen bond                                                   | b. Hydrophobic bond                   |  |
| c. Nitrogen bond                                                   | d. Van Der waals                      |  |
| 9. Chargaff's rule states                                          |                                       |  |
| a. No complementarity                                              | b. Partial complementarity.           |  |
| c. No such rule                                                    | d. Complementarity of one strand with |  |
| the other                                                          |                                       |  |
| 10. Chromosomal theory of inheritance was formu                    | lated by                              |  |
| a. Mendel                                                          | b. Miescher                           |  |
| c. Metchinikoff                                                    | d. Morgan                             |  |
| 11. Dihybrid ratio is                                              | -                                     |  |
|                                                                    |                                       |  |

| a. 3 : 3 : 9 : 1.                          | b. 9 : 3 : 3 : 1 |
|--------------------------------------------|------------------|
| c. 9 : 3 : 1 : 3                           | d. 1 : 3 : 3 : 9 |
| 12. Distance between the two base pairs is | ·                |
| a. 3.4Å                                    | b. 34Å           |
| c. 10Å                                     | d. 20Å           |
| 13. Codon/Anticodon consists of            | _nucleotides     |
| a. 4                                       | b. 6             |
| c. 3                                       | d. 9             |

| 14 enzyme plays a key role in the prokaryotic DNA replication. |                        |  |  |
|----------------------------------------------------------------|------------------------|--|--|
| a. Polymerase I                                                | b. Polymerase II       |  |  |
| c. Polymerase III                                              | d. Polymerase IV       |  |  |
| 15. Heat Killed S cells + Live R cells produced                | l                      |  |  |
| a. Death in mice $+$ S cells                                   | b. Live mice + S cells |  |  |
| c. Death in mice $+ R$ cells                                   | d. Live mice + R cells |  |  |
| 16. Capping in mRNA is addition of the group                   | •                      |  |  |
| a. 7-ethylguanosine                                            | b. 7-methylguanosine   |  |  |
| c. 7-methylcytosine                                            | d. 7-ethylcytosine     |  |  |
| 17. DNA absorbs UV light at way                                | elength.               |  |  |
| a. 220 nm                                                      | b. 240 nm.             |  |  |
| c. 260 nm                                                      | d. 280 nm              |  |  |
| 18. Enzyme that super coils DNA is                             |                        |  |  |
| a. Gyrase                                                      | b. Topoisomerase       |  |  |
| c. Helicase                                                    | d. Methylase           |  |  |
| 19. Capsule of <i>Streptococcus pneumoniae</i> are made up of  |                        |  |  |
| a. Protein                                                     | b. Lipid               |  |  |
| c. Glycoprotein                                                | d. Polysaccharide      |  |  |
| 20. Amino acid that has AUG as codon is                        | ·                      |  |  |
| a. Proline                                                     | b. Cysteine            |  |  |
| c. Serine                                                      | d. Methionine          |  |  |
|                                                                |                        |  |  |

## PART-B (3 x (Answer all questions)

(3 x 2 = 6 marks)

- 21. Write an account on Okazaki fragments. Okazaki fragments - lagging template strand- 1000 and 2000nucleotides long in prokaryotes-100 to 200 nucleotides long in eukaryotes
- 22. Write short notes on purines and pyrimidines.Purine heterocyclic aromatic organic compound imidazole ring.Pyrimidine heterocyclic aromatic organic compound two nitrogen atoms at positions 1 and 3 of the six-member ring- isomeric diazine.
- 23. Comment of Chargaff's law of base complementarity. Chargaff's rules - DNA - 1:1 ratio (base Pair Rule) of pyrimidine andpurine bases -the amount of guanine is equal to cytosine and the amount of adenine is equal tothymine. -Austrian born chemist Erwin Chargaff in 1940s.

## PART- C (Answer all questions)

24. a) Explain the structure and functions of DNA double helix.

The double-helix model of DNA structure - Chargaff's rules- Rosalind Franklin and Maurice Wilkins - James Watson and Francis Crick in 1953 - three-dimensional model - complementary bases - A-DNA, B-DNA, Z-DNA.

(**O**r)

b) Give an account on mono hybrid and di hybrid cross.

Mendelian inheritance- Gregor Mendel in 1865 and 1866 - re-discovered in 1900hybridisation experiments with pea plants (*Pisum sativum*) - Mendel's Principles of Heredity- crossed purebred white flower and purple flower pea plants-  $F_1$  &  $F_2$  generation - alleles - homozygous gene - heterozygous gene - Law of Segregation - Law of Independent Assortment - Law of Dominance - Mendelian trait - Non-Mendelian inheritance - incomplete dominance - codominance - multiple alleles polygenic traits - Punnett square.

25. a) What is replication? Write about bacterial DNA replication process.

DNA Replication - Genetic information - parent to progeny – Polymerisation – dNTPs -DNA template - RNA Primer - DNA polymerase I - Mg 2+- leading strand - lagging strand – enzymology of replication - Initiation of Replication – helicases – topoisomerase – Elongation - Okazaki fragments – Termination - nucleases "proofread"

### (**Or**)

b) Give an account on prokaryotic transcription?

Genetic information - DNA to RNA - synthesis of messenger, transfer, and ribosomal RNAs Promoter recognition - RNA polymerase - Elongation - Termination- Rho-independent Terminator- Rho-Dependent Terminator

26. a) Describe the process of initiation and elongation in prokaryotic translation.

Production of proteins from mRNA – Ribosomes – tRNA - aminoacyl-tRNAsynthetase – mRNA- protein factors- ATP and GTP – Initiation - initiation factors – A site – Elongation - Ribosomal peptidyltransferase - P site translocase – Termination - stop codons - release factors - E site

### (**O**r)

b) Comment on Lac operon concept.

Activation of the *lac* Operon by cAMP-CRP - Catabolite Repression - polycistronic – repressor - inducer – operator- lacZ -  $\beta$ -galactosidase – lac Y- lactose permease – lac A- lactose transacetylase

### Reg. No. : ------[17MBP103]

## **KARPAGAM UNIVERSITY**

(Deemed University Established Under Section 3 of UGC Act 1956) Eachanari Post, Coimbatore, Tamil Nadu, India – 641 021 DEPARTMET OF MICROBIOLOGY

## M.Sc., DEGREE SECOND CIA EXAM, (OCTOBER - 2017)

### **MOLECULAR GENETICS**

PART-A

# Time: 2 hours

## Maximum: 50 marks

(20 x 1 = 20 marks)

|                                              | rani-a                               | (20  X I = 20  ma) |
|----------------------------------------------|--------------------------------------|--------------------|
| (Ansv                                        | ver all questions)                   |                    |
| 1. Experiments of Hershey and Chase was      | s based on                           |                    |
| a. Virus                                     | b. Bacteriophage.                    |                    |
| c. Bacteria                                  | d. Fungi                             |                    |
| 2. Father of genetics                        | -                                    |                    |
| a. Mendel                                    | b. Morgan                            |                    |
| c. Watson                                    | d. McLeod                            |                    |
| 3. Formation of pre-replicating complex is   | s seen in replication mechanism of   | f                  |
| a. Prokaryotes.                              | b. Plants                            |                    |
| c. Virus                                     | d. Eukaryotes.                       |                    |
| 4 converts amino groups to 1                 | keto groups by oxidative deamination | tion.              |
| a. Hydrochloric acid                         | b. Nitrous acid<br>d. Oxalic acid    |                    |
| c. Sulphuric acid                            | d. Oxalic acid                       |                    |
| 5. Daughter strand repair is also called as_ | ·                                    |                    |
| a. Recombination repair                      | b. SOS repair                        |                    |
| c. Photo repair                              | d. Excision repair                   |                    |
| 6. Conjugation can only occur between ce     | lls of                               |                    |
| a. F positive types                          | b. F negative types                  |                    |
| c. Same mating types                         | d. Opposite mating types             |                    |
| 7. Conjugation involves the use of           | for mapping.                         |                    |
| a. Interrupted mating                        | b. Direct mapping                    |                    |
| c. Contact mapping                           | d. Linkage                           |                    |
| 8gene is involved in SOS re                  | pair of DNA.                         |                    |
| a. <i>recA</i>                               | b. <i>lexA</i>                       |                    |
| c. <i>lexA</i> and <i>recA</i>               | d. <i>Ph1</i>                        |                    |
| 9. Duplication mutation is when the segme    | ents of nucleotide sequences are     | •                  |
| a. repeated                                  | b. deleted                           |                    |
| c. inserted                                  | d. inserted and deleted even         | nly                |
| 10. Frameshift mutation is caused by         | ·                                    |                    |
| a. Proflavin                                 | b. Nitrous acid                      |                    |
| c. UV                                        | d. X-rays                            |                    |
| 11. Herman J. Mueller reported results of    | induced mutations on                 | <u>.</u> .         |
| a. Yeast                                     | b. Drosophila                        |                    |
| c. Fish                                      | d. Pea plant                         |                    |
| 12. Genes are located in specialized struct  | ures called                          |                    |
| a. Histone                                   | b. RNA                               |                    |
| c. Chromosomes                               | d. Genomes                           |                    |
| 13. Generation time of yeast takes place a   | t                                    |                    |
| a. 2hrs 30 min                               | b. 3 hrs                             |                    |
| c. 60 min                                    | d. 30 min                            |                    |
| 14. Genetic maps of chromosome are base      | ed on the frequencies of             | <u> </u> .         |
| a. Reproducible mitotic product              | b. Reproducible meiotic pr           | oduct              |
| c. Recombinant mitotic product               | d. Recombinant meiotic pro           | oduct              |
|                                              |                                      |                    |
|                                              |                                      |                    |

| <ul><li>15. RAPD stands for Random Amplified</li><li>a. Polymeric</li><li>c. Polymorphic</li></ul> | DNA.<br>b. Parental<br>d. Phage    |
|----------------------------------------------------------------------------------------------------|------------------------------------|
| 16. Change in a single base pair of DNA is cal                                                     | led mutation.                      |
| a. Point                                                                                           | b. Addition                        |
| c. Deletion                                                                                        | d. Inversion                       |
| 17 among the following is a cher                                                                   | nical mutagen.                     |
| a. Ethyl benzoate                                                                                  | b. Ethidium Bromide                |
| c. Caesium fluoride                                                                                | d. 2-mercapto ethanol              |
| 18. The distance between two point on a loci of a gene is measured in units                        |                                    |
| a. Centi Morgan                                                                                    | b. Branch                          |
| c. Map                                                                                             | d. Node                            |
| 19 score is used to assess the qua                                                                 | lity of the gene sequence process. |
| a. UGMP                                                                                            | b. Phred                           |
| c. Tm                                                                                              | d. Phy and Psi                     |
| 20. In a DNA is required for translocation of genes.                                               |                                    |
| a. Transposases                                                                                    | b. STRs                            |
| c. VNTRs                                                                                           | d. INS                             |
|                                                                                                    |                                    |

## PART– B (Answer all questions)

 $(3 \times 2 = 6 \text{ marks})$ 

21. Write an account on Intercalators. Insertion of molecules - deoxyribonucleic acid - analyzing DNA - Ligands interact with DNA ethidium bromide

22. Write short notes on Frame shift mutation. Addition or deletion - out-of-frame translation - special subclass of point mutations - *positive frameshift - negative frameshift* 

23. Comment on oxidative deamination. Deamination -  $\alpha$ -keto acids - catabolism of amino acids - glutamate dehydrogenase - monoamine oxidase

### PART- C (Answer all questions)

 $(3 \times 8 = 24 \text{ marks})$ 

## 1

24. a) Explain the process of conjugation.

Conjugation - *Lederberg and Tatum* - Sexual Conjugation in Bacteria - F factor - sex pili - relaxase enzyme - high frequency of recombination - Mapping by Conjugation - genetic recombination - Interrupted-mating experiment

(or)

b) Give an account on Transduction and its types.

Gene transfer - donor to a recipient – bacteriophage - Common in Gram+ bacteria - Lysogenic (phage) conversion - Generalized Transduction - Specialized Transduction

25. a) Define Mutation. Write about spontaneous mutation.

permanent alteration - nucleotide sequence - Spontaneous mutation – Tautomers - Mispairing due to tautomerization - Mispairing of repeated bases - Mispairing caused by deamination-Deamination of 5-methylcytosine - Spontaneous mutation rate

(**O**r)

b) Elaborately discuss on the chemical mutagens and types

Chemical mutagens - potentially mutagenic - Ames test - Base analogues - deoxyribonucleotide triphosphates - Nitrous acid - deamination - Alkylating agents - ethyl methane sulfonate - alkyl groups to purines – Intercalation - aromatic molecules – acridine

26. a) Describe the process of DNA repair mechanism.

Single-strand breaks- Double-strand breaks - Alteration of bases - DNA repair systems - fix different type of DNA alterations- Direct Repair- Photolyase- O6-alkylguanine alkylguanine alkyltransferase -Excision Repair- Nucleotide Excision Repair System - UV Damage Repair - Mismatch Base Repair-Postreplicative (Recombinational) Translesion Bypass Repair - SOS Repair Mechanism

(or)

b) Comment on genetic map of Drosophila.

Gene mapping - Thomas Hunt Morgan - crossing-over

## **KARPAGAM UNIVERSITY**

(Deemed University Established Under Section 3 of UGC Act 1956) Eachanari Post, Coimbatore, Tamil Nadu, India – 641 021 DEPARTMET OF MICROBIOLOGY M.Sc., DEGREE FIRST CIA EXAM, (AUGUST– 2017)

### **MOLECULAR GENETICS**

## Time: 2 hours

Maximum: 50marks

# (Answer all questions)

**PART-A** (20 x 1 = 20 marks)

| 1 enzyme degrades DNA                              |                                                 |
|----------------------------------------------------|-------------------------------------------------|
| a. Polymerase                                      | b. Primase                                      |
| c. RNase                                           | d. DNase                                        |
| 2. In a DNA molecule the Nitrogenous base Aden     |                                                 |
| a. Guanine                                         | b. Cytosine                                     |
| c. Thymine                                         | d. Uracil                                       |
| 3. Bacteria contains                               |                                                 |
| a. Chromosome                                      | b. Nucleolus                                    |
| c. Plasmid                                         | d. Plastids                                     |
| 4. Basically, flow of genetic material between two |                                                 |
|                                                    | b. Transformation                               |
| c. Transduction                                    | d. Conjugation.                                 |
| 5. 7-methylguanosine cap is added at               |                                                 |
| a.5`                                               | b. 3`                                           |
| c. 5`- 3`                                          | d.3`- 5`                                        |
| 6 is a DNA associated supercoiling                 |                                                 |
| a. Protone                                         | b. Histone                                      |
| c. Kinetin                                         | d. Complement                                   |
| 7. Nucleotide refers to combination of             |                                                 |
| a. Sugar and Phosphate                             | b. Sugar and dNTPs                              |
| c. dNTPs and Phosphate                             | d. Sugar, dNTPs and Phosphate                   |
| 8. Bonding between two nitrogenous base is         |                                                 |
| a. Hydrogen bond                                   | b. Hydrophobic bond                             |
| c. Nitrogen bond                                   | d. Van Der waals                                |
| 9. Chargaff's rule states                          |                                                 |
| a. No complementarity                              | b. Partial complementarity.                     |
| c. No such rule                                    | d. Complementarity of one strand with the other |
| 10. Chromosomal theory of inheritance was formu    |                                                 |
| a. Mendel                                          | b. Miescher                                     |
| c. Metchinikoff                                    | d. Morgan                                       |
| 11. Dihybrid ratio is                              | C C C C C C C C C C C C C C C C C C C           |
| a. 3 : 3 : 9 : 1. b. 9 : 3 : 3 : 1                 | 1                                               |
| c. 9 : 3 : 1 : 3                                   | d. 1 : 3 : 3 : 9                                |
| 12. Distance between the two base pairs is         | ·                                               |
| a. 3.4Å                                            | b. 34Å                                          |
| c. 10Å                                             | d. 20Å                                          |
| 13. Codon/Anticodon consists ofnucl                | leotides                                        |
| a.4                                                | b. 6                                            |
| c. 3                                               | d.9                                             |
|                                                    |                                                 |

| 14 enzyme plays a key role in the prokaryotic DNA replication. |                        |  |
|----------------------------------------------------------------|------------------------|--|
| a.Polymerase I                                                 | b. Polymerase II       |  |
| c. Polymerase III                                              | d.Polymerase IV        |  |
| 15. Heat Killed S cells + Live R cells produced                |                        |  |
| a. Death in mice $+$ S cells                                   | b. Live mice + S cells |  |
| c. Death in mice $+ R$ cells                                   | d. Live mice + R cells |  |
| 16. Capping in mRNA is addition of the group                   | ·                      |  |
| a. 7-ethylguanosine                                            | b. 7-methylguanosine   |  |
| c. 7-methylcytosine                                            | d. 7-ethylcytosine     |  |
| 17. DNA absorbs UV light at wavelength.                        |                        |  |
| a. 220 nm                                                      | b. 240 nm.             |  |
| c. 260 nm                                                      | d. 280 nm              |  |
| 18. Enzyme that super coils DNA is                             |                        |  |
| a. Gyrase                                                      | b. Topoisomerase       |  |
| c. Helicase                                                    | d. Methylase           |  |
| 19. Capsule of Streptococcus pneumoniae are mad                | e up of                |  |
| a. Protein                                                     | b. Lipid               |  |
| c. Glycoprotein                                                | d. Polysaccharide      |  |
| 20.Amino acid that has AUG as codon is                         |                        |  |
| a. Proline                                                     | b. Cysteine            |  |
| c. Serine                                                      | d. Methionine          |  |

## (Answer all questions)

**PART-B**  $(3 \times 2 = 6 \text{ marks})$ 

- 21. Write an account on Okazaki fragments.
- 22. Write short notes on purines and pyrimidines.
- 23. Comment of Chargaff's law of base complementarity.

## **PART-**C $(3 \times 8 = 24 \text{ marks})$

### (Answer all questions)

24. a) Explain the structure and functions of DNA double helix.

(or)

b) Give an account on mono hybrid and di hybrid cross.

25. a) What is replication? Write about bacterial DNA replication process.

## (or)

b) Give an account on prokaryotic transcription?

26. a) Describe the process of initiation and elongation in prokaryotic translation.

(or)

b) Comment on Lac operon concept.

### Reg. No. : ------[17MBP103]

## **KARPAGAM UNIVERSITY**

(Deemed University Established Under Section 3 of UGC Act 1956) Eachanari Post, Coimbatore, Tamil Nadu, India – 641 021 DEPARTMET OF MICROBIOLOGY M.Sc., DEGREE SECOND CIA EXAM, (OCTOBER– 2017)

# MOLECULAR GENETICS

(Answer all questions)

## Time: 2 hours

Maximum: 50marks

**PART-A** (20 x 1 = 20 marks)

| 1. Experiments of Hershey and Chase was ba                                  | ased on .                       |  |
|-----------------------------------------------------------------------------|---------------------------------|--|
| a. Virus                                                                    | b. Bacteriophage.               |  |
| c. Bacteria                                                                 | d. Fungi                        |  |
| 2. Father of genetics                                                       | 6                               |  |
| a. Mendel                                                                   | b. Morgan                       |  |
| c. Watson                                                                   | d. McLeod                       |  |
| 3. Formation of pre-replicating complex is seen in replication mechanism of |                                 |  |
| a. Prokaryotes.                                                             | b. Plants                       |  |
| c. Virus                                                                    | d. Eukaryotes.                  |  |
| 4 converts amino groups to keto groups by oxidative deamination.            |                                 |  |
| a. Hydrochloric acid                                                        | b. Nitrous acid                 |  |
| c. Sulphuric acid                                                           | d. Oxalic acid                  |  |
| 5. Daughter strand repair is also called as                                 |                                 |  |
| a. Recombination repair                                                     | b. SOS repair                   |  |
| c. Photo repair                                                             | d. Excision repair              |  |
| 6. Conjugation can only occur between cells of                              |                                 |  |
| a. F positive types                                                         | b. F negative types             |  |
| c. Same mating types                                                        | d. Opposite mating types        |  |
| 7. Conjugation involves the use of                                          | for mapping.                    |  |
| a. Interrupted mating                                                       | b. Direct mapping               |  |
| c. Contact mapping                                                          | d. Linkage                      |  |
| 8gene is involved in SOS repair of DNA.                                     |                                 |  |
| a. recA                                                                     | b. <i>lexA</i>                  |  |
| c. <i>lexA</i> and <i>recA</i>                                              | d. <i>Ph1</i>                   |  |
| 9. Duplication mutation is when the segment                                 | s of nucleotide sequences are   |  |
| a. repeated                                                                 | b. deleted                      |  |
| c. inserted                                                                 | d. inserted and deleted evenly  |  |
| 10. Frameshift mutation is caused by                                        |                                 |  |
| a. Proflavin                                                                | b. Nitrous acid                 |  |
| c. UV                                                                       | d. X-rays                       |  |
| 11. Herman J. Mueller reported results of induced mutations on              |                                 |  |
| a. Yeast                                                                    | b. Drosophila                   |  |
| c. Fish                                                                     | d. Pea plant                    |  |
| 12. Genes are located in specialized structure                              | es called                       |  |
| a. Histone                                                                  | b. RNA                          |  |
| c. Chromosomes                                                              | d. Genomes                      |  |
| 13. Generation time of yeast takes place at                                 |                                 |  |
| a. 2hrs 30 min                                                              | b. 3 hrs                        |  |
| c. 60 min                                                                   | d. 30 min                       |  |
| 14. Genetic maps of chromosome are based on the frequencies of              |                                 |  |
| a. Reproducible mitotic product                                             | b. Reproducible meiotic product |  |
| c. Recombinant mitotic product                                              | d. Recombinant meiotic product  |  |
|                                                                             |                                 |  |

| <ul><li>15. RAPD stands for Random Amplified</li><li>a. Polymeric</li><li>c. Polymorphic</li></ul> | DNA.<br>b. Parental<br>d. Phage |  |
|----------------------------------------------------------------------------------------------------|---------------------------------|--|
| 16. Change in a single base pair of DNA is called mutation.                                        |                                 |  |
| a. Point                                                                                           | b. Addition                     |  |
| c. Deletion                                                                                        | d. Inversion                    |  |
| 17 among the following is a chemical mutagen.                                                      |                                 |  |
| a. Ethyl benzoate                                                                                  | b. Ethidium Bromide             |  |
| c.Caesium fluoride                                                                                 | d. 2-mercapto ethanol           |  |
| 18. The distance between two point on a loci of a gene is measured in units.                       |                                 |  |
| a.Centi Morgan                                                                                     | b. Branch                       |  |
| c. Map                                                                                             | d. Node                         |  |
| 19 score is used to assess the quality of the gene sequence process.                               |                                 |  |
| a. UGMP                                                                                            | b. Phred                        |  |
| c. Tm                                                                                              | d. Phy and Psi                  |  |
| 20. In a DNA is required for translocation of genes.                                               |                                 |  |
| a. Transposases                                                                                    | b. STRs                         |  |
| c. VNTRs                                                                                           | d. INS                          |  |
|                                                                                                    |                                 |  |

**PART-B**  $(3 \times 2 = 6 \text{ marks})$ 

### (Answer all questions)

- 21. Write an account on Intercalators.
- 22. Write short notes on Frame shift mutation.
- 23. Comment on oxidative deamination.

**PART-**C (3 x 8 = 24 marks)

### (Answer all questions)

24. a) Explain the process of conjugation.

(or)

b) Give an account on Transduction and its types.

25. a) Define Mutation. Write about spontaneous mutation.

(or)

b) Elaborately discuss on the chemical mutagens and types

26. a) Describe the process of DNA repair mechanism.

(or)

b) Comment on genetic map of Drosophila.

Reg. No. : ------[15MBP103]

# **KARPAGAM UNIVERSITY**

## (Under Section 3 of UGC Act 1956) COIMBATORE – 641 021 M.SC. DEGREE EXAMINATION, NOVEMBER 2015 FIRST SEMESTER MICROBIOLOGY MOLECULAR GENETICS

#### **Time: 3 hours**

Maximum: 60marks PART–A (20 x 1 = 20 marks)

(Answer all questions) (Multiple Choice QuestionNo.1 to 20 Online Exam) 1. Distance between the two base pairs is\_ b. 34Å a. 3.4Å d. 20Å c. 10Å 2. DNA absorbs UV light at \_\_\_\_\_\_ wavelength. b. 240 nm. a. 220 nm c. 260 nm d. 280 nm 3. Enzyme that adds methyl group to the newly formed DNA a. Gyrase b. Topoisomerase c. Helicase d. Methylase 4. Eukaryotic DNA damage or replication errors are corrected during\_\_\_\_\_. a. G1 phase. b. S phase c. G2 phase d. R phase. 5. Chemical agent that resembles thiamine\_\_\_\_\_. a. 5-bromothiamine b. 5-bromoadenine c. 5-bromoguanine d. 5-bromouracil 6. Chemical mutagens leading to addition of nucleotides to the DNA are\_\_\_\_\_ a. Thimers b. Base analogs c. Alkylating agents d. Interchelating agents 7. Chromosomal mutation is a. Abberation b. Change over d. Genetic change c. Variation 8. Common chemical events that produce spontaneous mutation\_ b. Depurination a. Deamination d. Isomerization c. Dimerization 9. A-site is the ribosomal site most frequently occupied by the\_ a. Aminoacyl-rRNA b. Aminoacyl-mRNA c. Iminoacyl-tRNA d. Aminoacyl-tRNA. 10.Capping in mRNA is addition of the group\_\_\_\_ a. 7-ethylguanosine b. 7-methylguanosine c. 7-methylcytosine d. 7-ethylcytosine 11. Codon/Anticodon consists of \_\_\_\_\_nucleotides a.4 b. 6 c. 3 d.9 12.Common method of covalent modification of enzyme in regulation of gene expression is a. to methylate at a proline residue b. to phosphorylate at a prolineresidue c. to phosphorylate at a serine residue d. to methylate at a serine residue 13. Capsule of Streptococcus pneumoniae are made up of\_ a. Protein b. Lipid c. Glycoprotein d. Polysaccharide

14. Capsules help bacteria in escaping a. Inflammation b. RBC's c. Phagocytosis d. Antibodies 15. Cells carrying non-integrated transducing fragments are called \_ a. Specialized b. Abortive transductants c. Generalized d. Conjugation 16. Complete linkage has been reported in\_\_\_\_\_ a. Male Drosophila b. Human female c. Female Drosophila d. Maize 17. A new genetic nomenclature for *S. cerevisiae* transposon a. Jumping element b. Ty elements c. Tx elements d. Ta element. 18. Among vegetative cells of yeast, \_\_\_\_\_\_ is mainly used for genetic mapping. a. Haploid and diploid b. Diploid c. Haploid d. Triploid 19. An estimation of map between a- and b- can be obtained from number of recombinant ascospore detected by using a. Genetic analysis b. Physical analysis c. Random spore analysis d. Tetrad analysis 20. Arg+ is a. A strain not requiring aspargine b. A strain requiring asparagine c. A strain not requiring arginine d. A strain requiring arginine PART-B  $(5 \times 6 = 30 \text{ marks})$ (Answer all questions) 21. a) Outline the different forms of DNA. (**or**) b) Explain two experiments that proved DNA as genetic material. 22. a) What are induced mutations? Describe frame shift mutation. (or) b) Give an account on types of DNA damage. 23. a) State about the maturation and processing of RNA in bacteria. (or) b) Elaborate polypeptide synthesis in bacteria. 24. a) Give a note on types of recombination in bacteria. (or)b) Illustrate the genetic map of T4 phage. 25. a) Write note on Tetrad analysis. (or) b) Genetic mapping in Neurospora. **PART-**C  $(1 \times 10 = 10 \text{ marks})$ (Compulsory Question) 26. Give a detailed account on DNA repair mechanisms.

Reg. No. : -----[16MBP103]

## KARPAGAM UNIVERSITY (Under Section 3 of UGC Act 1956) COIMBATORE – 641 021

### **M.SC. DEGREE EXAMINATION, NOVEMBER 2016**

FIRST SEMESTER

MICROBIOLOGY MOLECULAR GENETICS

**Time: 3 hours** 

Maximum: 60marks PART–A (20 x 1 = 20 marks)

(Answer all questions) (Multiple Choice QuestionNo.1 to 20 Online Exam) 1. Bonding between two bases is \_\_\_\_\_. a. Hydrogen bond b. Hydrophobic bond c. Nitrogen bond d. Van Der waals 2. Chargaff's rule states\_\_\_\_\_. a. No complementarity b. Partial complementarity. c. No such rule d. Complementarity of one strand with the other 3. Chromosomal theory of inheritance was formulated by\_ b. Miescher a. Mendel c. Metchinikoff d. Morgan 4. Dihybrid ratio is \_\_\_\_\_ . a. 3 : 3 : 9 : 1. b. 9 : 3 : 3 : 1 c. 9:3:1:3 d. 1 : 3 : 3 : 9. 5. Bacterium used in Ames test is \_\_\_\_\_. b. Shigella a. Salmonella d. Staphylococcus c. Streptococcus 6. Biological agents of mutagenesis are\_\_\_\_\_ a. Transposable elements b. Lipids d. Carbohydrates c. Bacteria 7. Cancer that results from deletion of a portion of chromosome 13 is\_\_\_\_\_ b. Bone cancer a. Eve cancer c. Skin cancer d. Lung cancer 8. Change of purine to pyrimidine base is a \_\_\_\_\_ a. Transition mutation b. Transverse mutation c. General mutation d. Transformation 9. Addition of poly A tail to 3' end of mRNA is mediated by the enzyme\_\_\_\_\_ a. RNA polymerase b. DNA polymerase d. poly A polymerase. c. Rnase 10.All aminoacids have more than one codon except\_ b. ValineandLeucine a. Methionine and Tryptophan c. Threonine and Alanine d. Lysine and Arginine 11. Allosteric enzymes that are controlled by a molecule other than it's substrate\_\_\_\_\_. a.Cohesive molecules b. Systematic molecules c. Effector molecules d.Affector molecules 12. Amino acid that have largest number of codons is \_\_\_\_\_ b. Cysteine a. Proline c. Serine d. Valine 13. A cell carrying an integrated F factor is called an\_ b. Hfr a. F c. Hfr 1+ d. trans

| 14. An example for specialized transducing particle                                       |                                           |  |
|-------------------------------------------------------------------------------------------|-------------------------------------------|--|
| a. No infection                                                                           | b. T2 phage infects <i>Staphylococcus</i> |  |
| c. Phage P22 infects Salmonellatyphimurium                                                | · · ·                                     |  |
| 15. Avery, MacLeod and McCarty used enzymes and solvents to destroy molecules such        |                                           |  |
| as                                                                                        | ·                                         |  |
| a. Anything except DNA                                                                    | b. RNA                                    |  |
| c. Lipids and proteins                                                                    | d. Polysaccharide                         |  |
| 16. Bacteriophages were jointly discovered by                                             |                                           |  |
| a. Frederick Twort and by Felix d'Herelle                                                 |                                           |  |
| c. Luria and Delbruck                                                                     | d. McKay and McCartney                    |  |
| 17                                                                                        |                                           |  |
| a. Genetic analysis<br>c. Random spore analysis                                           | b. Physical analysis                      |  |
| c. Random spore analysis                                                                  | d. Tetrad analysis.                       |  |
| 18developed an algebraic method to determine the consequence of various number of         |                                           |  |
| exchanging.                                                                               |                                           |  |
| a. KlebsandLoeffler                                                                       | b. PastuerandWinogradsky                  |  |
| c. ShultandLindegrin                                                                      | d. Klug and Cumming                       |  |
| 19distance in map unit is only half the percentage of second division segregated tetrads. |                                           |  |
| a. Tetromere                                                                              | b. Telomere                               |  |
| c. Centromere                                                                             | d. Primer                                 |  |
| 20. A feature of petite is the occurrence of                                              | from the circular mitochondrial genome    |  |
| a. Insertion                                                                              | b. Exertion                               |  |
| c. Addition                                                                               | d. Deletion                               |  |
|                                                                                           |                                           |  |

## PART-B (5 x 6 = 30 marks) (Answer all questions)

21. a) Write down the difference between prokaryotic and eukaryotic DNA replication.

### (or)

b) Explain i) Leading and Lagging strands ii) Single-strand DNA-binding protein.

22. a) What are mutagens? Write note on mutagenic agents.

### (or)

b) Give a brief account on SOS repair.

23. a) Explain post translational modification of proteins in eukaryotes.

### (or)

b) What are transcriptional factors?

24. a) Give an account on detection and isolation of phage T4 mutants.

(or)

- b) Describe the lytic cycle of a bacteriophage.
- 25. a) Write note on Yeast Artificial Chromosome.

(or)

b) Explain about petite mutants.

## **PART- C** (1 x 10 = 10 marks) (Compulsory Question)

26. Illustrate regulation of gene expression using Lac operon model.

Reg. No. : -----[17MBP103]

## KARPAGAM UNIVERSITY (Under Section 3 of UGC Act 1956) COIMBATORE – 641 021

# M.SC. DEGREE EXAMINATION, NOVEMBER 2017 FIRST SEMESTER MICROBIOLOGY MOLECULAR GENETICS

**Time: 3 hours** 

Maximum: 60marks PART–A (20 x 1 = 20 marks)

(Answer all questions) (Multiple Choice QuestionNo.1 to 20 Online Exam) 1. \_\_\_\_\_ degrades DNA a. Polymerase b. Primase c. RNase d. DNase 2. Adenine always pair with\_\_\_\_\_. a. Guanine b. Cytosine. c. Thymine d. Uracil 3. Bacteria contains a. Single circular DNA b. Single linear DNA c. Double Linear DNA d. Double circular DNA 4. Basically, flow of genetic material is accomplished by\_\_\_\_ b. Transformation a. Replication. c. Transduction d. Conjugation. 5. \_\_\_\_\_\_ is a non-ionizing radiation a. Alpha b. UV c. Gamma d. Beta 6. \_\_\_\_\_is a selective media for *Nesseria* a. PLET b. Blood agar c. Mannitol salt agar d. Martin Thayer 7. Alkylation is\_\_\_\_\_ a. Addition of methyl or ethyl group b. Deletion of ethyl and addition of methyl group c. Deletion of methyl and addition of ethyl groupd. Deletion of methyl or ethyl group 8. Alkylation of guanine causes its removal from DNA in a reaction called\_\_\_\_\_\_. a. Deamination b. Depyrimidation d. Depurination c. Degradation 9. \_\_\_\_\_\_ is the first amino acid during translation of proteins. a. Threonine b. Leucine d. Valine. c. Methionine 10.2006 Nobel Prize for studies on f eukaryotic transcription was conferred to\_\_\_\_\_. b. Roger D. Kornberg a. Arthur Nirenberg d. Michael Whitney c. David Osborne 11. 7-methylguanosine cap is an important site\_ a.For eukaryotic transcription initiation factor b. For prokaryotic translation initiation factor c. For eukaryotic translation initiation factor d.For prokaryotic translation initiation factor 12.Action of repressor protein in Lac operon is called as\_\_\_\_ b. Negative control a. Positive control c. Neutral control d. No control 13.\_\_\_\_\_involves finding a contiguous series of cloned DNA fragments which contain overlapping portions of the genome. a. Physical mapping b. Chemical mapping c. Marker mapping d. Loci mapping

14. \_\_\_\_\_ refers to genetic changes in different genomes of same cell.

| a. Trans type                                                                     | b. Cis type                 |  |
|-----------------------------------------------------------------------------------|-----------------------------|--|
| c. Same type                                                                      | d. Different type           |  |
| 15 is a DNA associated protein.                                                   |                             |  |
| a. Protone                                                                        | b. Histone                  |  |
| c. Chromotome                                                                     | d. Cistron                  |  |
| 16. A bacterium harboring a prophage is called                                    |                             |  |
| a. Lytic phage                                                                    | b. Helper phage             |  |
| c. Transducing phage                                                              | d. Lysogency                |  |
| 17 test is used to determine which gene(s) are defective in petite yeast mutants. |                             |  |
| a. Complementation test                                                           | b. Complement fixation test |  |
| c. Completed test                                                                 | d. Conjugation test.        |  |
| 18contains two types of spores of same parental genotype                          |                             |  |
| a. Parental haploid                                                               | b. Parental diploid         |  |
| c. Non-parental ditype                                                            | d. Parental ditype          |  |
| 19initial products of meiosis forms two identical spore.                          |                             |  |
| a. 4                                                                              | b. 8                        |  |
| c. 16                                                                             | d. 32                       |  |
| 20refers to a genetic change in different genomes of same cell                    |                             |  |
| a. Trans type                                                                     | b. Levo type                |  |
| c. Cistype                                                                        | d. Dextro type              |  |

### PART-B (5 x 6 = 30 marks) (Answer all questions)

21. a) Write an account on Okazaki fragments.

(or)

- b) Write short notes on purines and pyrimidines.
- 22. a) Explain deamination and oxidative damage of DNA.

(or)

- b) Describe mutation selection.
- 23. a) Explain the structure and functions of RNA polymerase.

### (or)

b) Give an account on post-transcriptional modification in eukaryotes.

24. a) What is genetic recombination? Write its significance in bacteria.

#### (or)

- b) Give an account on prophage?
- 25. a) Describe gene mapping in *Drosophila*.

### (or)

b) Comment on Yeast as model eukaryotic organism.

### **PART-**C $(1 \times 10 = 10 \text{ marks})$

#### (Compulsory Question)

26. Write a detailed account on Lac, Trp and Araoperon concept.