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To enable the students to learn and gain knowledge about extreme points, Root test, Ratio test,
alternating series, and series of functions.

Course Outcomes
On successful completion of this course, the student will be able to
e Understand about the categories of sets.

e Acquire the knowledge on limits and convergence of sequences.
e Know the types of test of convergence for series.
e Familiarize about the basic theorems on monotone sequences.
e Know about the radius of convergence.
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Bolzano -Weierstrass theorem.
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CHAPTER 1

SETS AND FUNCTIONS

1.1 Introduction

! Set theory is a branch of mathematical logic that studies sets, which informally
are collections of objects. Although any type of object can be collected into a set,
set theory is applied most often to objects that are relevant to mathematics. The
language of set theory can be used in the definitions of nearly all mathematical
objects.

The modern study of set theory was initiated by Georg Cantor and Richard
Dedekind in the 1870s. After the discovery of paradoxes in naive set theory,
such as the Russell’s paradox, numerous axiom systems were proposed in the
early twentieth century, of which the ZermeloFraenkel axioms, with the axiom of
choice, are the best-known.

Set theory is commonly employed as a foundational system for mathematics,
particularly in the form of ZermeloFraenkel set theory with the axiom of choice.
Beyond its foundational role, set theory is a branch of mathematics in its own
right, with an active research community. Contemporary research into set theory
includes a diverse collection of topics, ranging from the structure of the real number
line to the study of the consistency of large cardinals.

Isource from wikipedia
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1.2 Basics of sets

Definition 1.2.1 A collection of well defined objects is called a set.
Definition 1.2.2 Objects of a set are called elements or members.

Remark 1.2.1 = Ifx is an element of A, we say that x € A.

= If x is not an element of A, we say that x ¢ A.
Example 1.2.1 = A = {x: x is an integer}

» N={1,2,3,4, -}, set of all natural numbers.

»Z={..,-2,-1,0,1,2,...}, set of all integers.?

Q= {g: p,qEZand q # 0}, set of rational numbers®
Definition 1.2.3 A set that contains no elements is called the null set. It is denoted by (.
Definition 1.2.4 A set consisting of only one element is called a singleton set.

Definition 1.2.5 If every element of a set A also belongs to a set B, we say that A C B (or)
B2 A.

Definition 1.2.6 A set A is a proper subset of B if A C B and there is atleast one element
of B which is not in A.

Definition 1.2.7 Two sets A and B are said to be equal if A C Band B C A.

Definition 1.2.8 The union of sets A and B is the set AUB = {x: x € Aorx € B}.
Example 1.2.2 Since IN is the set of all natural numbers and Z. is the set of all integers,
we have N =1{1,2,3,---}and Z =1{--- ,-2,-1,0,1,2,---}.

ThenNUZ ={---,-2,-1,0,1,2,---}.

amdNUZ =7

Remark 1.2.2 (i) fACB,then AUB =B

(ii) Since 0 C A, then QU A = A.
(iii) Union of two sets is commutative.

Definition 1.2.9 The intersection of the sets A and B is the set ANB = {x: x € Aand x €
B}.

Example 1.2.3 Suppose A ={1,2,3}and B = {-2,-1,0,1}. Then AN B = {1}.

Definition 1.2.10 The complement of B relative to A is theset A—B = {x: x € Aand x ¢
B}.

27 is for Zahlen - the German word for integers.
3Q is for quotient - which is how rational numbers are identified.
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Example 1.2.4 Suppose A ={1,2,3,4}. and B ={-2,-1,0,1}. Then A— B = {2,3,4}.

Theorem 1.2.1 For any three sets A, B and C, we have
iJ)AUA=A

() AUD=QUA=A

(iii) AUB=BUA

(iv) AU(BUC)=(AUB)UC
(v)AUB=Bifandonlyif ACB

Proof
(iv) Letx € AU (B U C) be arbitrary

xeA(r)xe(BUC)
xeA(or)xeB(or)xeC
(xeA(or)xeB)(or)xeC
x€(AUB)(or)xeC
xe(AUB)UC
Ae(BUC)C(AUB)UC

L

(xeAUxeB)(or)xeC
xeA(or)xeB(or)xeC
xe€A(or)(xeB(or)x € ()
xeA(r)xe(BUC)
x€eAU(BUC)
(AUBJUCCAU(BUCQC)

L

U

From (1.1) and (1.2), we have
Ae(BUC)=(AUB)UC

Theorem 1.2.2 For any three sets A, B and C, we have
(i()ANA=A.

{H)ANP=0NA=A.

(iii) AN B =BNA.

(i) ANBNC)=(ANB)NC

(v)ANB=Bifand onlyif ACB

Definition 1.2.11 Two sets A and B are said to be disjoint if AN B = ¢

Example 1.2.5 Let A ={1,3,4} and B =1{5,8,9} then ANB = ¢

Remark 123 1. x¢ AUBo x¢ Aandx ¢ B
2.x¢ANBox¢A(r)xé¢B

Theorem 1.2.3 If A,B and C are sets then
(i)A-BUC)=A-B)NA-C)
(i) A-(BNC)=(A-B)u(A-0C)

(1.1)

1.2)
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Proof
(i) Letx € A — (B U C) be arbitrary

xeAandx ¢ (BUC)
xeAandx ¢ Bandx ¢ C
xeAandx¢Bandxe Aand x ¢ C
xe(A-B)andxe (A-C)

= x€(A-B)NA-0)

L

Therefore, A—(BUC)S(A-B)Nn(A-C)
similarly, we can prove
(A-B)Nn(A-C)cA-(BUQ

From the above, we have
A-BUQC=A-B)NA-0)

(ii) Let x € A — (B N C) be arbitrary

xeAandx ¢ (BNC)
xeAandx¢Borx¢C
x€eAandx ¢ Borx € Aandx ¢ C
xe(A-B)orxe(A-C)

= x€(A-B)UA-0)

L

Therefore, A—(BNC)C(A-B)U(A-C)
similarly, we can prove
(A-B)U(A-C)CA-(BNCQC)

From the above, we have
A-BNC)=A-B)UA-0)

Hence proved.

Definition 1.2.12 If A and B are nonempty sets, then the cartesian product of A and B is
denoted by AXB and is defined by AXB = {(a,b): a € Aandb € B)

Definition 1.2.13 A set S is said to be finite if it is either empty set (or) it has n elements
for somen € N.

1.3 Functions

Definition 1.3.1 Let A and B be nonempty sets. A function f: A — B which assigns to
each element a € A, a unique element b € B.

Remark 1.3.1 The element b is called the image of a under f.
Remark 1.3.2 The element a is called preimage of b under f.

Remark 1.3.3 The set A is called domain of f and the set B is called co domain of f.
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Remark 1.3.4 The set {f(a): a € A} is called range of f, and is denoted by R(f).

Definition 1.3.2 A function f: A — A is given by f(x) = x Vx, is called identity
function.

Definition 1.3.3 A function f: A — B is given by f(x) = ¢, a constant is called constant
function.

Remark 1.3.5 = The range of constant function is always singleton set.
= Suppose f: A — B is an identity function, then A = Bor A C B.

Definition 1.3.4 A function f: A — B is one-one (injective) if distinct elements of A
have distinct image in B.

Remark 1.3.6 f isone-oneif f(x) = f(y) = x=y.
Remark 1.3.7 f is one-one if x # y = f(x) # f(y).
Definition 1.3.5 A function f: A — B is onto(surjective) if range of f is equal to B.

Definition 1.3.6 A function f: A — B is called bijection if f is both one-one and onto
function.

Example 1.3.1 Let f: Z — Z such that f(x) = |x| Vx € Z.
Here f(-2) = f(2) but =2 # 2
Therefore, f is not one-one.

Example 1.3.2 Consider f: Z — Z given by f(x) =x+3V x € Z.
Suppose

f = fy)
x+3 = y+3
x =y

Therefore, f is one-one. Also Ry = Z.
Therefore, f is onto. Hence, f is bijection.

Definition 1.3.7 Let f: A — B be a bijection. Then for each b € B, there exists a unique
element a € A such that f(a) = b.
Define f1: B — A by f~1(b) = a Therefore, f~! is called the inverse function of f.

Remark 1.3.8 Suppose f : A — B is a bijection. Then A and B are said to be equivalent.

1.4 Countable sets

Definition 1.4.1 A set S is said to be countably infinite if there is a bijection between IN
and S,
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Example 1.4.1 Let E = {2n : n € IN} is a even function.

Let f: N — E such that f(x) = 2x.
suppose

f(x)
2x
X

Therefore, f is one-one.
Also, Rf =1{2,4,6,---} =E
Therefore, f is onto.

.. f is bijection.

.. E is countably finite.

Example 1.4.2 Let A={},2,--}
Solution

Let f be a function from IN — A, such that

fm) =32
Suppose
f(n)
n
n+1
n(m+1)
nm+n

clearly f is one-one and onto function.
Therefore f is bijection.
Hence A is countably infinite.

fy)
2y
y

f(m)

m+1
m(n+1)

mn + m

Remark 1.4.1 A subset of a countable set is countable.

Theorem 1.4.1 N X N is countable

Proof
N XN ={(@a,b): a,be N}

Take all orederd pairs (4, b) such thata + b = 2

There is only one element namely (1, 1)

Take all ordered pairs (4, b) such thata +b =3

we have (1,2) and (2, 1).

Next take all the ordered pairs (4, b) such thata + b = 4

we have (1,3),(2,2) and (3,1)

Proceeding like this and listing all the ordered pairs together from the begining,

we get
{(1/ 1)/ (1r 2)/ (21 1)/ (11 3)/ e }

The set contains every ordered pair belonging to IN X IN exactly once
. IN X IN is countable (or) countably infinite.

Remark 1.4.2 If A and B are countable sets then A X B is also countable.

Remark 1.4.3 The set of all natural numbers is countable.
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Definition 1.4.2 A set which is not countable is called uncountable.
Theorem 1.4.2 (0, 1] is uncountable.

Proof

Suppose (0, 1] is countable.

The elements of (0, 1] can be listed.
ie, (0,1] = {x1,x2,...}, where

X1 = O.a11a121113 N

X2 0.5121&226123 .

with 0 < aij < 9

Let y = 0.b1bybs ..., clearly y € (0,1]

Now for each positive integer n select b, such that 0 < b, <9 and b, # a,,
Here y is different from each x; atleast in the i place.

Which is contradiction to every elements of (0, 1]listed.

Hence, (0, 1] is uncountable.

Remark 1.4.4 The set of all real numbers R is uncountable.

Remark 1.4.5 The set of all irrational numbers is uncountable.

1.5 The absolute value of a real number

Definition 1.5.1 The absolute value of a real number a is denoted by |a| is defined by

| = a if a>0
l-a if a<o0

Remark 1.5.1 Suppose a is a real number |a| > 0

Remark 1.5.2 |a| = | — 4]

Theorem 1.5.1 (a) |ab| = a||b|foralla,b € R
(b) lal* = a*foralla € R
(c)Ifc>0,thenla|<ce —c<a<c

(d) —lal <a < |a| foralla € R.

Proof
(a) Case (i): Suppose

a = 0

lal = 0
lal-1b] = 0-1b]

=0
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la - bl 00l

10l

Il
o

Hence|ab| |a||b|

Case (ii): Suppose b =0
bl =0
|al.|b] = ]a.0 =0
la.b| = 1a.0l =10 =0
labl = 0 = |al.|b]
lab| = |al[b]
Case (i): Supposea > 0and b > 0
lal =aand |b] = b
lab| = ab , (ab > 0)
= |allbl
lab| = |al|b]
Case(iv): Supposea > 0and b < 0
Therefore, |a| = a and |b| = —b
we haveab < 0
labl = —(ab)

lab| = |a||b| case(v): Supposea < 0and b <0
Therefore, |a| = —a and |b| = —b

we have ab > 0

labl = (ab)

= (-a).(-D)

= lal|b]

|ab| = |a||b| Hence |ab| = |a.b| for all a,b € R (b) Let a € R be arbitrary
Then a?> > 0

Now |a?| = 4>

=aa

= |allal

= |al?|

Hence, |a> = a® for alla e R

(c) Let us assume ¢ > 0

Supposea <0

Then we have botha < cand —-a < ¢
since,a <cand —a <c¢

—c<a<f-a<sc

—c<ac<c

conversely, suppose —c <a < ¢

since —c <a,c > —a

s.wehavea <cand —a<c,Then|a| <c
(d) Let a € R be arbitrary , Then |a| > 0
Let ¢ = |a| we know that, |a| < |a]

So—lal <a <a
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1.6 Triangle inequality

Theorem 1.6.1 Ifa,b € R, then |a + b| < |a| + |b|

Proof By (d) —|a| < a < |a| and —|b] < b < [b]
By adding above inequalities

—lal—1bl <a+b<|al +|b|

—(lal +1bl) < a + b < |a| + |b|

la + bl < lal + [bI(by (c))

Remark 1.6.1 |a + b| = |a| + |b] iff ab > 0
Theorem 1.6.2 Ifa, b € R be arbitrary (a) ||la| — |bl| < |a — b] (b) |a — b| < |a| + |bl.
Proof (a) Let a,b € R be arbitrary

Now
a=a-b+b
la| = la — b + b
lal = |(a — b) + bl
la| < |a — bl + |bl(Bytriangleinequality)
jal — bl < la— b (13)
Now
b=b-a+a
bl =|b—a+al
bl = |(b - a) +al

|bl < |b — al| + |a|(Bytriangleinequality)
|b| — lal < |b— 4l
—|b| + |a] = —|b — a (1.4)

From (1.3) and (1.4)

—la — bl < |a| = [b] < |a — ]

- Nlal = 1bll < la — bl

Hence proved.

(b) Let a and b be any real numbers

since b € R, —=b € R (by triangle inequality)
Sla+ (=b)| < lal+| - b

la = bl < lal + [b]

Hence proved.

Let S be a non-empty subset of R.

1.7 Bounded sets

Definition 1.7.1 Let S is said to be bounded above if there exists a number u € R such
that s < uV¥s < S. Each such number u is called an upper bound of S.
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Definition 1.7.2 The set S is said to be bounded below if there exists a number u € R such
that u < sVs € S. Each such number u is called as lower bound of S.

Definition 1.7.3 A set S is said to be bounded if it is both bounded above and bounded
below.

Definition 1.7.4 A set S is said to be unbounded if it is not bounded.

Example

LetA={xeR:0<x<1}=(0,1)

since all the elements of A > 0.

Therefore, A is bounded below.

since all the elementsof A <1

Therefore A is bounded above

Hence A is bounded.

Note

1. Every interval of the form (a, b),[a, b),(a, b] and [a, b] are bounded subsets of R.
2. Any finite subset of R is a bounded set.

Definition 1.7.5 Let S be a nonempty subset of R. If S is bounded above, then a number
u is said to be supremum (or) a least upper bound of S if (i) u is an upperbound of S. (ii) if
v is an upperbound of S, then u < v

Definition 1.7.6 Let S be a nonempty subset of R. If S is bounded below, then a number
w is said to be infimum (or) a greatest lower bound of S if (i) w is an lowerbound of S. (ii)
if v is an lowerbound of S, then v < w

Note

1. There can be only one supremum (infimum) of a given subset of R.

2. If the supremum (or) the infimum of a set S exists, we will denote them by supS
orinfS.

Lemma

A number u is the supremum of a nonempty set S of R iff u satisfies the condition
(i)s<uforallseS

The completeness property of R

(i) Every nonempty set of real numbers that has an upper bound and also has an
supremum in R.

(ii) Every nonempty subset or real numbers that has a lower bound also has an
infimum in R.

Example

1. Let S = {dfracln: n € N}

S={1,dfrac12,dfracl3,...}

infS =0and SupS = 1.

Definition 1.7.7 Let S be a nonempty subset of R that is bounded above and let a be any
number in R. Defines ={a+s:s e S}.

Theorem 1.7.1 S be a nonempty subset of R. Suppose S is bounded above and a € R.
Then prove that sup(a + S) = a + supS.

10
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Proof

Let S be a nonempty bounded above subset of R. Therefore S has an upper bound.
By completeness property of R, we have supremum of S exists.

Letu € supS, Thenx € uforallx € S

Therefore,a + x <u+aV¥x €S

.1 +ais an upperbound of a + S.

Let

m = sup(a +S)
m<Lu+a (1.5)

suppose v is an upperbound of a + S
sna+x<vforallxe$
~x<v-aforallxe§

Therefore v — a is an upperbound of S
usv-—a

a+u<v

since v is an upperbound of a2 + S

a+u<m (1.6)

From (1.4) and (1.5), we get
a+u=m
a + supS = sup(a + S).

Theorem 1.7.2 Suppose that A and B are nonempty subset of R, such that a < b¥a € A
and b € B
Then supA < infB.

Proof

Let B be arbitrary .

Thena <bforallae A

b is an upper bound of A

supA <b

Therefore sup A is a lower bound of B

SsupA <infB

Archimedian property

If x € R then there exist nn, € N such that x < n,
Proof

Let x € R be an arbitrary

To prove : There is atleast one n, € N such that x < n,
Supposen < x foralln e N

.. x is an upper bound of N.

By completeness property of R

supN exists.

Let u = supN

Then u — 1 is not an upper bound of N

.. m € N such that

11
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u—-l<m,u<m+1
sincem+1e€N,wemusthavem+1<u

.. there exist n, € N such that x < n,

Example 1

f(x) =0, if xiseven,

f(x) =1, if xisodd . .. Range of f = Ry ={0,1} C R. Example 2
£(x) =

Rangeof f =R;=1{0,1,2,...} SR

Definition 1.7.8 Given a function f : D — R, we say that f is bounded if the set f(D)
=range of f = {f(x): x € D} is bounded above in R. similarly, the function f is bounded
below if f(D) is bounded below in R. we say that, f is bounded if f(D) is bounded below
and bounded above (or) |f(x)| < B,B € RR

Example 1.7.1 Let f : N — Q be a function defined by f(n) = 15
The range of f = Ry = {dfrac12,dfrac23,dfrac34,...} C Q
SupRf =supf(N) =1

infRy = inf f(N) = §

.. The given function is bounded.

12



Question Opt 1 Opt 2 Opt 3 Opt 4 Answer
The set of all points between a and b is called ---1
———————— integer interval elements set interval
The set {x: a <X < b} i§ -------------- (a, b) [a, b] (a, b] [a, b) (a, b)
A real number is called a positive integer if it
belongs to ----------- interval open interval closed interval  |inductive set inductive set
Rational numbers is of the form ---------------—- pq p+q p/q p-q p/q
e —— rational irrational prime composite irrational
An integer n is called ----------- if the only
possible divisors of nare 1 and n rational irrational prime composite prime
A set with no upper bound is called ------------ bounded above |bounded below |prime function bounded above
A set with no lower bound is called ------------ bounded above [bounded below |prime function bounded below
The least upper bound is called ----------- bounded above |bounded below |supremum infimum supremum
The greatest lower bound is called ----------- bounded above |bounded below |supremum infimum infimum
The supremum of {3, 4} is ---------- 3 4 (3, 4) [3, 4] 4
Every finite set of numbers is ---------- bounded unbounded prime bounded above bounded
A set S of real numbers which is bounded above
and bounded below is called -------- bounded set inductive set super set subset bounded set
The set N of natural numbers is ---------- bounded not bounded irrational rational not bounded
The infimum of {3, 4} is ------------ 3 4 (3,4) [3, 4] 3
Sup C =Sup A + Sup B is called --------------
property approximation |additive archimedean comparison additive
For any real x, there is a positive integer n such
that ----------- n>x n<x n=x n=0 n>x
If x>0 and if y is an arbitrary real number,
there is a positive number n such that nx >y is --
------------ property approximation |additive archimedean comparison archimedean
unbounded
The set of positive integers is ------------- bounded above |bounded below |above unbounded below  [unbounded above
The absolute value of x is denoted by -------------
- X ] x<0 x>0 X
If x <0 then --------------- x| = x [IX]l = x| [Ix]| = -x x| = -x x| = -x
If S=[0, 1) thensup S = ---------------- 0 1 0, 1) [0,1] 1
[a] + |b| greater
than equal to Ja [a + bj less than |a + b] less than equal
Triangle inequality is ------------------- +b| la] > la + b |b] > ]a + b equal tofa |+ |b| tola|+|b|
[x + y] greater than equal to X + 11 x| Iyl x| - Iyl x| - vl [Ix] - Iyl
If (x, y) belongs to F and (x, z) belongs to F,
then ------------- X=2 X=y Xy =2 y=z y=z
A mapping S into itself is called function relation domain transformation transformation
If F(x) = F(y) implies x =y is a --
function one-one onto into inverse one-one
One-one function is also called ----------- injective bijective transformation  |codomain injective
S = {(a,b) : (b,a) isin S} is called --------------- inverse domain codomain converse converse
If A and B are two sets andif there exists a one-
one correspondence between them,then it is
called ------------- set denumerable  |uncountable finite equinumerous equinumerous
A set which is equinumerous with the set of all countably
positive integers is called ---------------- set finite infinite infinite countably finite countably infinite
A set which is either finite or countably infinite
is called ------------ set countable uncountable similar equal countable
non-
Uncountable sets are also called ------------- set |denumerable  |denumerable similar equal non-denumerable
non-
Countable sets are also called --------------- set |denumerable |denumerable similar equal denumerable




Every subset of a countable set is ------------ countable uncountable rational irrational countable
The set of all real numbers is ---------------- countable uncountable rational irrational uncountable
The cartesian product of the set of all positive

integers is ---------- countable uncountable rational irrational countable
The set of those elements which belong either to

A or to B or to both is called --------- complement intersection union disjoint union

The set of those elements which belong to both

Aand B is called ------------ complement intersection union disjoint intersection
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CHAPTER 2

REAL SEQUENCES

2.1 sequences and their limits

Definition 2.1.1 A sequence in R is a function from N into R.

Remark 2.1.1 (i) The sequence is denoted by the symbol {S,}.
(ii) The image of of n, Sy, is called the n'h term of the sequence.

Example 2.1.1 Let f be function from N — R such that f(n) =0
Range of f ={0} ={0,0,0,.. .}

Definition 2.1.2 Ifb € R, the sequence B = {b,b,b, ...} is called constant sequence.

Definition 2.1.3 The Fibnacci sequence F = (f,) is given by
fh=1f=2
fn+1 = fn +fn—1rn >2

Definition 2.1.4 A sequence (x,) in R is said to coverage to x € R or x is said to be a
limit of (x,) if for every €> O there exists a positive integers N such that |x, — x| <€ for all
n=N.

If a sequence has a limit , we say that the sequence is convergent, if it has no limit, we say
that the sequence is divergent.

Remark 2.1.2 Suppose a sequence (x,,) has limit x, Then we can write

limx, = xorx, > xasn — oo

13
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Theorem 2.1.1 Let (x,,) be a sequence of real numbers and let x € R. If (a,) be a sequence

of positive real numbers with
lima, = 0 and if for some constant

¢ > 0 and some m € N we have

|x, — x| < ca,¥n > m, then limx, = x
suppose let €> 0 be given, then £ > 0
Given that lima, =0

Therefore for % > 0, There exist a positive integer N.

so that |a, — 0] < £Vn > N, that s [a,|$ Vn > N
a, <<Vn>N

Suppose for some m € N such that

lx, — x| <ca,¥n>N

<ct=¢€

S Xy = 00

Example 2.1.2 Ifa > 0, then

lim(z-) =0

Solution
sincea>0,na>0,Then0<na<1+na

1 1
Hence na > 1+na

Now |1+1na - Ol = |1+1nu|
__1

- 1+¥a na 11
|1+na -0/ < E(;)
since

lim(1) =0

lim(==)=0

1+na

Remark 2.1.3 Convergence of (|x,|) need not imply the convergence of (x,).

consider a sequence ((—1)")

Then (I((-1)")) = (1,1,...)
clearly, lim |x,| = 1

Now ((-1)") =(-1,1,-1,1,...)
This is not a convergent sequence.

2.2 limit theorems

Theorem 2.2.1 If0 < b < 1, then lim(b") = 0

Proof

suppose 0 <b <1

Thenb = ﬁifa>0

Now [b" = 0] = [b"] = b" = [=]"]
- (11—11)”

14
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< 1lna

=cl=0

By previous theorem, lim x,, = co
ie., lim(®") =0

Example

. . n
lim & =lim &

31

lim(Ly" = 0

Theorem 2.2.2 Ifc > 0, then
lim(cn)=1

Proof

case(i)

suppose ¢ = 1 then (c#) is a constant sequene and lim(ci =1
case(ii)

suppose 0 <c <1

Then cr = #1,, where 1, > 0

(ch)" = ()"

€= Ty

n.hy
1 1
Now |ci 71| = |1 = c#]
=1- -
1+h,
_ 1 1+h,-1
— 1 1+h,
Ty |
1+h,
<hy

. 1
since ¢ < W.,'hn<

sl =1 <L
since % > (0 and
lima, =0ifa, = %
Then
lim(cw) = 1
case(iii)
suppose ¢ > 1
Thencr =1+ d, whered,, >0
Now ¢ = (1 +4d,)"
=l+nd,+---+d,”
>1+nd,
sc—=1>nd,
x4,
Now |en71] = |d,|
=d,

-1

n
=(-1).1
Hence

1
nc

15
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lim(cv) = 1

2.3 Bounded sequences

Definition 2.3.1 A (x,) of real numbers is said to bounded if there exists a real number
M > 0 such that
Ix,| <Mforallne N, -M <x, <M

Theorem 2.3.1 A convergent sequence of real numbers is bounded.

Proof

suppose that

lim(x,) = x

Lete=1>0

Then there exists a positive integer N such that |x, — x| <1ifn > N
Now |x,,| = |x, — x + x|

< l|xp, — x| + x|

<1+x|lifn>=N

Then |x,| < M foralln > 1

Therefore (x,) is bounded.

Definition 2.3.2 If x = (x,,) and y = (y,) are sequences of real number, we define their
sum to be the sequene x +y = (x,, + y,), their difference to be the sequence x —y = (X, — )
and their product to be the sequence xy = (XnYn) .

If c € R, we define the sequence cx = (cx,)

If z = (z,) is a sequence of non-zero real numbers, then we define the quotient of x and Z

to be the sequence
x — ( )

7 x_,,Z” .

Theorem 2.3.2 Let X = (x,) and Y = (y,) converge to x and y respectively and c € R.
Then the sequence x + y x — Yy, xy and cx converge to x + y, x — y, xy and cx respectively.

Proof

Let €> 0 be given. suppose x, = xand y, = y
$>0andx, - x

There exist a positive integer N; such that

[x, —xl < 5

since § >0and y, = y

Thereexist a positive integer N such that

[y =yl <5 Vn >N

Now |(xy + yn) — (x + Y)l = [(xn — %) + (Yn — V)|
< = xl+ yn — Yl

let N = max{Ny, N}

(0 +yn) = (x+ I <5+ 5

=€

Therefore, (x, + y,) = x+y

16
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By using similar arguments, we have

The sequence (x, — y,) converges to x — y

consider |x, Y, — Xyl = Xy Y — XnY + Xny — XYl

=[x (yn = Y) + y(xn — x)|

< (W — )1 + lyCen — )]

= Xullyn — yl + lyllx, — x|

since (x,) — x, Thereexist a positive real number M; such that
lx,| < M,Vn > 1

Hence |x,y, —xyl < M, [y, — yl + |yllx, — x|

let M = sup{M;, [yl}

[uyn — xyl < yMly, — yl + Mlx,, — x|

let €> 0 be given

since (x,) — x, there exist a positive integer N; such that
X, — x| < 55 Y1 > Ny

since (y,) — y, there exist a positive integer N, such that
[Yn — Yl < 53 Y1 2 N

N = sup{N1, N>}

Therefore |x,y, — xy| < MéZM) + MéZM) ifn>N
Therefore |x,y, —xy| <€ifn > N

ie., (Xpyn) — xy

Let (y,) be a constant sequence(c)

Then (y,) — ¢

By the above argument, (x,,) — xc

i.e.,(x,c) = xc

ie.,(cx;) — cx

Theorem 2.3.3 If X = (x,) converges to x and z = (z,) is a sequence of non-zero real

numbers that converge to z and if z # 0, then the quotient sequence (JZ‘—Z) -
Proof

Leta = % >0

since (z,) — z, there exist a positive integer N; such that |z, —z| < aif n > Ny
—|z,, — z| > —a if n > N7 Therefore, —a < —|z, — z| < |z, — |z if n > N,

—a < |z, — |zl if n > Ny

Lzl = Izl - 3led

=zl -«

<|znlif n > Ny

Hel <z ifn > Ny

2 1
= 2> = >
f 2 2N

1 1
Now |Z—” -z
_ lz=zal
T |zazl
_ lz=z4l lzn—z 2
T Rl =L
— 2|ZV1_2|
ETS

let €> 0 be given

since (z,) — z1 there exist a positive integer N, such that
|zw —z| < §lzPPif n > N,

Hence |+ — 1| < Zr€lzP2if n > N = sup{Ny, Na}

zy ozl = R

17
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Therefore, (1) — (£)

Theorem 2.3.4 If (x,) is a convergent sequence of real number and if x, > 0 for alln € N,
then x = lim(x,) > 0.

Proof

suppose (x,) = x

To prove

x>0

suppose x < 0

Then —x > 0

Lete=-x>0

since (x,) — x, There esixt a positive integer N such that
lx, —x| < —xifn >N

Thenx <x,—x<—-xifn >N

Therefore, x, —x < —xifn >N

Xp<—-x+xifn>N

X, <0ifn>N

ie,xy <0,xnv41 <0,...

=>x,2>20VYn

Hence x, >0

Note

(i) suppose sequence (x,) is convergent to x and x,, > 0. Then lim(x,) = x need not
be greater than zero.

Theorem 2.3.5 If (x,,) and (y,) are convergent sequence of real numbers and if x,, < yy
forall n € N, then lim(x,,) < lim(y,).

Proof

Letz, =y, — x,

Then (z,) is a sequence of real numbers and z, > 0.
By previous theorem,

lim(z,) >0

lim(y, —x,) >0

lim(y,) — lim(x,) > 0

lim(y,) > lim(x,,)

Theorem 2.3.6 If (x,) is a convergent sequence and if a < x, < b for all n € N, then
a < lim(x,) <b.

Proof

Let (y,) be q sequence such that y, = b¥n € N
sincea < x, <b,wehaven <y, VneN

By previous theorem, lim(a) < lim(y,) < lim(b)
a <lim(y,) <b

18
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2.4 Squeeze theorem

Theorem 2.4.1 suppose that (x,), (y.) and (z,) are sequences of real numbers such that
Xn S Yn <z, Vn €N

and lim(x,,) = lim(z,,)

lim(x,) = lim(y,) = lim(z,)

Proof

Given that lim(x,,) = lim(z,)

Then lim(x,) = lim(z,) = w

Let €> 0 be given.

Then there exist positive integer N such that
|x, —w| <€eifn>N

and |z, —w| <€ifn > N

Also given that x, <y, < z,, Thenx, —w <y, —w <z, —w
E<Xy —W< Yy —W < 2y —W <E

—Ee<y, —w<€e

ly, —w| <€ifn >N

Therefore, lim(y,) = w

Theorem 2.4.2 Let the sequence (x,) converges to x. Then the sequence (|x,|) of absolute
values converges to |x|.

Proof

Let €> 0 be given

There exist a positive integer N such that
|x, — x| <€ foralln > N

Now, [|x,| = Ixl| < |x, — x| <€

s lim(xy,) = |«

2.5 Monotone sequence

Definition 2.5.1 Let (x,) be a sequence of real numbers. we say that sequence (x,) is
increasing if x; < xp <+ <Xy S Xy <.

we say that sequence (x,) is decreasing if x1 < xp < -+ < Xy < Xy < ..., we say that
() is monotone if it is either increasing or decreasing.

Problem

Give an example of two divergent sequences X and Y such that (i) sum x + y con-
verges (ii) Product X.Y converges.

Solution

LetX = (-1)"=(-1,1,-1,1,...) Y = (-1)"*! = (-1,1,-1,1,...)

clearly X and Y are divergent

Now X +Y =(0,0,0,...) converges

XY =(-1,-1,-1,...) converges

Problem

Show that if X and Y are sequences such that X and Y X + Y are convergent then

19



M. Indhumathi

Y is convergent.

Solution

Given X and X + Y are convergent. Then X +Y — X is also convergent. i.e., Y is
convergent.

Monotone convergence theorem

A monotone sequene of real numbers is convergent if and only if it is bounded.
Moreover (i) If X = (x,) is abounded increasing sequene, then lim(x,,) = sup{x,: n €
N} (ii) If Y = (y,) is a bounded decreasing sequence, then lim(y,) = inf{y,: n € N}
Proof

Suppose a monotone sequence is convergent then the sequence is bounded. con-
versely, suppose a monotone sequence is bounded. since given sequence is mono-
tone, we have either increasing or decreasing.

(i) Let X be a increasing sequence and bounded.

since, X is bounded, there is a real number M such that x, < MVn e N

Therefore, {x,,: n € N} is bounded above.

By completeness property of R, there exist the sup{x,: n € N}

€> 0 be given

Then x*— € is not an upper bound.

Therefore there exist a member of set x,, such that x'— €| xx

Then x*— e< x, Vn >k

Hence x'— e<xy <x, <X <x"+ €

—e<x,—x*<eifn>k

lx, —x*| <€eifn >k

lim(x,) = x*

(ii) Let Y = (y,) be a bounded decreasing sequence

Then X = —Y = (-y,) is an increasing sequence

By (i) im(—y,) = sup{—y,: n € N}

= —infl{y,: n € N}

lim X = —inf{y,: n € N}

lim(-y) = —inf{y,: n € N}

—lim(y) = —inf{y,: n € N}

lim(y) = inf{y,: n € N}

problem

. 1y
show that hm(Tﬁ) =0
Solution
im(-L) = — (L
hm(\m) —xarldxl— (\/ﬁ)
=(& -0
Therefore x2 =0and x =0
Problem

consider a (x,,) withx; =2 and x,,11 =2 + %, n € N. Find the limit of the sequence
(xn)-

Solution

Let lim(x,) = x

since x,, > 0 Vn, we have x > 0

Moreover x,, > 2 and x # 0

Now x = lim(x;,)

= lim(xm—l)

20
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=lim2 + 1)

Let y, =25ndzn =1

Then lim(y,) = 2 and lim(z,) = 1
x = lim(y, + )

= lim(y,) + lim(%)

= lim(y) + g
x:2+%
x2=2x+1
2-2x-1=0

Therefore, x =1+ V2 (or)x=1—- V2 <0
Show that (—1)" is divergent

Solution

Suppose sequence (—1)" is convergent and lim(-1)" = a
Lete=1>0

There exists a positive integer N such that
(-1)" —al <1lifn >N

suppose 7 is even

[1—aljlifn>=N

-1<1l-a<lifn>N
-2<-a<0ifn>N

2>a>0if n > N suppose n is odd
|-1—-al;lifn>N
-1<-1-a<1lifn>N
-1+1<-a<1+1ifn>N
0>a>-2ifn>N

Therefore we havea > 0anda <0

Hence (-1)" is diverges.

Theorem 2.5.1 Let (x,) be a sequence of positive real numbers such that lim(";—:l) =L
exists. If L < 1, then (x,) converges and lim(x,,) = 0

Proof

since (x,) is a sequence of positive real numbers. we have (
of positive real numbers.

By previous theorem, L > 0

suppose L < 1,then0 <L <1

letr e RsuchthatL <r<1

lete=r—-L>0

since (*£1) converges, there exist a positive integer N, such that

Xn
|";—’*’1—L| <€ifn>N
Thenxj'c’—:1 <€ +Lifn>N
2 <(r—-L)+Lifn>N
*x—” <rifn>N
Therefore x,,1 <rx,ifn >N
S0 X1 <TXy < PPNy < o- < T
LetC =%
0L x <cr
since0<r<1

Xntl ) 3
1) is also a sequence

n—N+1xN

n+1
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slim(x,) = ¢
consider a(x,) with x, = 3.
Discuss about the convergent of (x,) and find the limit x, = 57 , X,11 = ;’:j

: Xps1 _ n+l 2"
By previous theorem = e
_ 2"n+l
- 2n2pn
_ n+l

~ 2n

lim(";—;l) =1<1

By previous theorem, we have

x, converges and lim(x,) =0

2. Let a > 0 construct a sequence (s,) of real numbers such that lim(s,) =
Solution

Let s; > 0 be arbitrary and define s,,,1 = %(s,1 + 5”7) forne N

=

2+
Now st = 3(22%)

si+a
Sn
28,418, = 82 +a
§2 — 28,418, +a =0
since the quadratic has real roots, we must have
452 —4a>0
4s2 | >4a
s, >aneN
Now s, — 5,41
= Sn : %(Sn + %
= 3(55)
Therefore Sy —Spue1 =0
Sn 2 8n41, M EN
clearly (s,) is a monotone decreasing sequence.
.. (s4) is convergent.
lim(s,) = s
lim(s,) = lim(s,+1)
= lim[§(s, + )
= lim[4(s, + 4 1)]
=[5 lim(s,) +

28,41 =

a _1 ]
2 TimGy)
_1 al
—%S-i'i.g

— a

—2§(S+;)

22 =52 +aq

s2=a
s=+aands=—+a
5.s>0

- lim(s,) = Va

Theorem 2.5.2 Let e, = (1 + 1)", n € N then, lim(e,) = e

Proof

Givene, = (1+ 1)

since, the expression for ¢, contains n + 1 terms, and the expression for e,,1 con-
tains n + 2 terms and each term appearing in e, < e,+1. Therefore (e,) is monotone

22



M. Indhumathi

increasing sequence

since 2’ <p!,(p=1,2,...,n)
1 1

77 2 i
Hence2 <e¢, =3
.. (e,) is bounded.

Hence (e,) is convergent and lim(e,) lies between 2 and 3. We define the number ¢
to be the limit of this sequence.
s lim(e,) =e

23



Questions

Opt1l

If A is the set of even prime numbers and B is the set of A is a subset

odd prime numbers. Then

which relation is not a function?

Given the relation A={(5,2),(7,4),(9,10),(x,5)}. Which
of the following value for x will make relation on A as
a function?

Let A be the set of letters in the word " trivial” and let
B be the set of letters in the word difficult. Then A-B=
Let S be the set of of all 26 letters in the alphabet and
let A be the set of letters in the word "trivial”. Then the
number of elements in is

Let A={1,2}. Then AX A=

Let A={1,2} and B={a,b,c}. Then number of elements
inAXB=

Suppose n(A)=a and n(B)=b. Then number of elements
inAXBis

Let A={1,2} and B={a,b,c}. Then which of the
following element does not belongsto A X B =

Let F be a function and (x,y) in F and (x,z) in F. Then
we must have

If the number of elements in a set S are %. Then the
number of elements of the power set P(S)=

If range of f is equal to codain set, then f is

Converse of function is a function only if fis

Inverse function is always

If A and B contains n elements then number bijection
between A and B is

Let f be a function from A to B. Then we call fas a
sequence only if Alisa

Two sets A and B are said to be similar iff there is a
function f exists such that f is

If two sets A={1,2,...,m} and B={1,2,..,n} are smilar
then

Which of the following is an example for countable?
Number of elements in the set of all real numbers is
The union of elements A and B is the set of elements
belongs to

The set of elements belongs A and not in B is

The set of elements belongs B and not in A is
Countable union of countable set is

N X N is

ZXRis

RxRis

The set of sequences consists of only 1 and 0 is

of B

{(2,5),(3,6).(4

N}

{arVv}

19

{®.1).@2.2)}

2

(1,9)

X=y

into

into

into

n!

set of positive
integers

into

m<n

set of real
numbers
finite

either Aor B
B

B
uncountable
uncountable
uncountable

uncountable

uncountable

Opt 2
B is a subset
of A

{2.1),32).(4
N}

{d.f.c,u}

20

{12,210}

3

3.0

y=z

onto
onto
onto

n
set of all real
numbers

one-one

n<m

set of all
irrationals
countably
infinite
neither A not
B

A

A

countable
countable
countable
countable

countbale

Opt3

Aand B are
disjoint
{21),(23).(3
4),(4.1))}

{13

21
{(1,1)(1,2),(2,
1),2.2)}
2%2*2

ab

(c2)

Z=X

16

one-one
one-one
one-one

n+1

set of all
rationals
onto

n=m

set of all
rationals
10000000000
both A and B
B-A

B-A

finite

finite

finite

finite

finite

Opt 4

Aand B are
not disjoint
{(2,1),33),(4
1)}

{a,l,l,rt v}

22
{1.1).22).2
1)}

2*3
atb
(1.c)
X=X

32

many to one
bijection
bijection

n-1
set of
irrationals

bijection
n>0
0,1)

uncountable
A and not in
B

A-B

A-B
countably
infinite
countably
infinite
countably
infinite
countably
infinite
countably
infinite

Answers
Aand B are
disjoint
{2,1),23).(3
4),4,1))}

{a,rv}

21
{1.1)(1.2).2,
1).,2.2)}
2*3

ab

(c2)

y=z

32

onto
bijection
bijection

n!

set of positive
integers
bijection
n=m

set of all
rationals
uncountable
either A or B
A-B

B-A
countable
countable
uncountable

uncountable

uncountable



Every subset of a countable set is

Every subset of a finite set is

Fibonnaci numbers is an example for
Suppose A and B is countable then A X B is
A X B is similar to

The set of all even integers is

0,1] is

{1,2,.....,100000}

Suppose fisa one to one function. Then x not eqaul y

implies

Suppose fis a one to one function. Then f(x)=f(y)
implies

Let f be a bijection between A and B and A is
counatble then B is

Let f be a function defined on A and itself such that
f(x)=x. Then fis

Constant function is an example for

Stricly increasing function is

Strictly decreasing function is

If g(x) =3x +x + 5, evaluate g (2)

A = {X: X # X }represents

If a set A has n elements, then the total number of
subsets of A is

uncountable

uncountable
uncountable
set
uncountable
A
uncountable

uncountable

uncountable
f(x) is not
equal to f(y)

X=-y
uncountable

onto
onto

an onto
function
an onto
function
8

{1}

n!

countable
countable
countable set
countable

B

countable
countable
countable
fO)=f(y)
y=x+10

countable

one to one
one to one

one to one

one to one
9

{

2n

finite
finite
finite set
finite

A XA
finite
finite
infinite
fO)<f(y)
X=y
finite

bijection
many to one
many to one
many to one
13

{0}

2ﬂ

countably
infinite
countably
infinite

infinte set
infinite
AXB
infinite
countably
infinite
countably
infinite

f()>f(y)
X is not eqaul

y

similar to R
neither one to
one nor onto
bijection

bijection
bijection
17

{2}

countable
finite
countable
countable
AXB
countable
uncountable
countable

f(x) is not
equal to f(y)

X=y
countable

bijection
many to one

one to one

one to one
13

¢
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CHAPTER 3

INFINITE SERIES

3.1 Introduction

If x = (x,,) is a sequence in R then the infinite series or series generated by x is the
squence s = s, defined by

S1=Xq

S) =X1+ X2

S3 =X1+ X2+ X3

Remark 3.1.1 1. clearly s, =x1 +xp + -+ + Xy

Sn=X1+ X2+ + X1 + Xy

=Sp-1+ Xy

2. The numbers x,, are called the terms of the series and the numbers s, is called the partial
sum of this series.

3. Iflim S exists, we say that the series is convergent and this limit is the sum or the value
of this series.

4. If this limit does not exists, we say that the series is divergent.

5. It is convergent to use symbols such as Y (x,) to denote the infinite series.

1

Example 3.1.1 consider the series ), D

Solution Z ﬁ
1 _ 1 1
Now seiy = 3 — 7
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Then sy = 15 + 35 + ...
=1-H+G-D+..
_ i

=1--L

lims, = lim(1 - -5

= lim(1) - lim(-1+
=1-0

=1

< L sy 18 converges.

3.2 Geometric series

Example 3.2.1 Consider the series
lim™ =1+r+7r>+...
Solution

limM =1+r+r+...
NowS,=14+r+r2+..-+"1
sp(l=71) =5, —sur

=l4+r+2 4+ (A +r+2+-+7" )y
=1-7"

=1 _
Sn 11—r 1-r,
—_r
Sn 1;1’ 1-r
- = I
Sn T 15 T T

lim(s, — % = lim(—lr—_”r)
lim(s,(1 = 7)) = lim(1 - ")
=lim(1) — lim(") =1

S, 1" coverges if | < 1

3.3 The n'” term test

Theorem 3.3.1 If the series }, x, converges then
lim(x,) =0

Proof

Suppose ) x, converges

Let S, be the partial sum of a,

By definition of convergence of }’, x,,, we have

lim(s,) = x

Now s,, = 8,1

(1 +x2+ - +x,)— (X1 +x2+...X,-1)
i.e., X, =S, —Sy-1

lim(x,) =
lim(sn - Sn—l)
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lim(s,) —
lim(sn_l)
x—x=0
Therefore
lim(x,) =0

Example 3.3.1 Consider ¥ 75

1 _ 1,14 .4 _1
Z r(r+1) — 1.2 + 2.3 + + r(r+1)

lim(—r(ﬁrl)) =lim(: - L
= lim(%) - lim(%
=0

Example 3.3.2 consider the series ), 1", |r| <1
Y= e+

lim(r) =0
Example 3.3.3 Consider }(—1)"

YD =)+ (=) + .
=1-1+1-14+1-1+...

lim(s,,) does not exist.

Theorem 3.3.2 Let (x,) be a sequence of nonnegative real numbers. Then the series ), x,,
converges if and only if the sequence S = (Sx) of partial sums is bounded. In this case

Y x, = im(Sk) = sup{Si: k € N}

Proof

since x,, > 0, we have

Sl =X1

So=x1+x

=S1+x

Sz > Sy

S3=x1+x+x3

=5+ x3

S3> 5

.., the sequence of partial sums satisfies
51<Sz<53<...

.". (S¢) is monotone sequence.
Suppose ) x, converges

By convergence definition

(Sk) converges, ... (Sx) is bounded.
Conversely (s¢) is bounded

i.e., (S¢) is monotone and bounded.
By monotone convergence theorem, (Si) converges
Y. X, converges.

Moreover, lim(s) = sup{Si: k € N}
52 X = sup{Sk: k € N}

Example
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Consider the series ¥'(2)

Solution

S1=1
Sz=1+%:%
S3=1+1+1=14
Sl<52<...

clearly (Sk) is not bounded. .. Z(%) is divergent.

1 _
2. ShOW that Z m =1
Solution
S, = 1 + 1 + e 4 1

n=127 23 m+D)(n+2)
we know that

1 _ 1 1

m+D)(m+2) — (m+1) ~ (n+2)
S,=1- 75

lim(S,) = lim(1 - 5
lim(1) = lim(=

2
=1-lim(2)
=1-0

=1

1 1 _
Y Gy converges and Y, DD = 1

Theorem 3.3.3 The p-series Y, & diverges when 0 < p <1

Proof
We know thatn” <nif 0 <p <1
11
Then ; > -
11
n — nf
since the harmonic series, Y, % diverges, we have
Y. L diverges.
Cauchy criterion series
The series ) x,, converges if and only if for every €> 0 there exist M(€) € N such

that if m > > M(€) then |S,, — S;;| = |Xp41 + Xpio + -+ + x| <€

3.4 Comparison test

Let X = (x,) and Y = (y,) be real sequences and suppose that for some k € N we
have0 <x, <y, forn >k

(a) Then the convergence of ). y, implies the convergence of }’ x,. (b) The diver-
gence of ) x, implies the divergence of } y,.

Proof

(a) suppose that )y, converges. By cauchy criterion, given €> 0 There exist
M(€) € N such that |y+1 + Yus2 + -+ + Yl <€ if m > n > M(€). Therefore
Yni1 T Yni2 + -+ Ym <€

Xp41l t Xpe2 + 0+ Xy < Yps1 + Yp2 + 000 + Yy <€

Xp41 + Xpyo + 00 - + Xy <E

[Xp41 + Xpao + o + x| <€if m > n > M(€)
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By cauchy criterion, )’ x, converges.
(b) Suppose Y x, diverges

To prove ). y, diverges

suppose ), y, converges

by(a) Y. x, converges

& ) x, diverges.

. 2. Yy diverges.

3.5 limit comparison test

Theorem 3.5.1 suppose that X = (x,) and Y = (y,) are strictly positive sequences and
suppose that the following limit exists in R. r =

lim(%)

(a) If r # 0 then }, x,, is convergent if and only if ¥, y,, converges.

(b) If r = 0 and if ¥, y, is convergent the }, x,, converges.

Proof
(a) Suppose r = lim(

Xn
Yn
By convergence of sequence (;—Z), we have 7 > 0 there exist a N such that
? -rl<fifn>N

Therefore, 5 < ;—" —-r<tifn>N

— Xy

F A< gEortr<g+r

r Xn 3r

2<% <72

Therefore 5 < 3+ < ¥ <2r

5<ip<2rifn>N

SYn <Xy <2rynifn>N

suppose ). i, convergent.

2.(2r)y, converges.

By comparison test, ) x, converges.

By comparison test, }.(5)y, converges.

Therefore }’ i, converges.

(b) suppose r = lim(3*) and r = 0

for given €> 0 €= 1 > 0, there exist N such that
|?—r|<1ifn2N

|?| <lifn>N

Xy <Ypifn =N

Therefore, 0 < x, < y,ifn >N

suppose ), yn converges, by comparison test, ) x,, converges.

) and r # 0 then, clearly r > 0.

Theorem 3.5.2 Y. - is convergent.

Proof
Letk; =2'-1=2-1=1
Sy, = S1 = 1(sum of first term)

1
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Letkp=2>-1=4-1=3

1 1
Sk2 = 53=1+§+3—2
1 1
< Sk2—33—1+§+2—2
2
= 1+§
1
= 1+ =
T2
Therefore Sk, < 1+ (3)!
Sks = 7sum of first 7 terms
1 1 1 1
= Sk2+(4?+§+6—2+ﬁ)
< 1+1+(1+1+1+1)
2 42 42 42 42
< 1+1+1
2 4
1 1
= 1+=-+—
T2t

Therefore Sky < 1+ (3)! + (2)?

By mathematical induction , Sk <1+ 3 + (3)* +--- + (3)/

since the terms in the ( R.H.S) is a partial sum of a geometric series }, " with
r=1<1

Also

;;(%)” - 1;i%)
=2

.. The partial sum of ), nl—z isbounded alsos; <s, < ...
.. The sequence of partial sum is monotone.
By previous theorem, ), 1n? converges.

Problem 3.5.1 Prove that Y, -~ converges.

n2+n

1 1
i </ MEN

since the series }, nl—z converges, by comparison test, },

Solution clearly 0 <

nz_%l—n converges.

Problem 3.5.2 Prove that the series Y, 1n* — n + 1 is convergent.

i —_1 _ 1
Solution Letlxn = g andy, =z

Then & =zl
Yn

“2
_ _n?

T n?-n+l
By limit comparison test, since ), n% converges, we have

1
Y. =57 converges.
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Problem 3.5.3 Prove that the series Y, —— is divergent.

Vn+l

Solution Let x,, = \/7% and y, = %

Then & = 11
€ Yn VH—l\M
_ _\n
Vn+1

= [ =10

1
1+,

By limit comparison test, since ) # diverges then ), \/n#? is also divergent.

3.6 Root Test

Theorem 3.6.1 Given a series ), a, of non-negative terms, Let p = lim +/a,
(a) The series Y, a, converges if p < 1

(b) The series ), a, diverges if p > 1

(c) The test is inconclusive if p = 1

Proof

(a) suppose p < 1

Let x be a real number such that e < x < 1 given that p = lim +/a,
Therefore there exist a positive integer N such that

\a, <pforalln >N

\a, <x<1lforalln >N

a, <x"<1lforalln >N

since }, x" converges, we have }_ a, converges.

(b) suppose p > 1

Then (a,)# > 1 for infintely many.

.. (ay) > 1 for infintely many.

lim(a,) >1#0

. ), a, diverges.

(c) consider the series ), % and ), % for both series p =1
clearly, Y, 1 diverges and }, - converges

Therefore, the test is inconclusive.

Problem 3.6.1 Discuss about the convergence of Z[n”j]”2

Solution Let g, = ):[#]"2
Therefore, v, = (a,)"
1
= [l51"1
—_ n
= (m) . )
s lim a, = hm[(H%)n]
lim(1)
- mnﬂ+%ﬁ

=1
pl

Therefore, p < 1
By root test, z[n’ﬁ]”2 converges.

Problem 3.6.2 Discuss about the convergence of y,(logn)™"
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Solution Let a,, = (logn)™

Van = (@)
since a, = (logn)™
= (logn)™* = 7L

lim /(a,) = lim () < 1
p <1, by root test, ) (logn)™ converges.

3.7 Ratio test

Theorem 3.7.1 Let Y’ a,, be a series of positive terms such that lim == = L
(a) The series ), a, converges if L < 1. (b) The series }, a, diverges sz > 1. (c) The test is
inconclusive if L = 1

Proof
(a) suppose L < 1 Let x be a real number such that L < x <1
Then there exist a positive integer N such that

iy foralln > N ”"*1" ”" foralln >N
n+1
L% < gyxN for all n 2 N

le
n+1

Ay X ay
o ifn>N

u”+1xrx+1

Ayp1 <cx™lifn >N
since x < 1 and ) " converges for |x| < 1, we have ), a, converges.
(b) suppose L > 1
”"” > 1 for infinitely many
Therefore Ap1 > ay for infintely many
. Y, a, diverges.
(c) consider the series Y, % and %
for both series L = 1
clearly, Y, 1 diverges and Y, & converges.
.. The test is inconclusive.

Remark 3.7.1 Let }, a, be a series of positive terms such that

lim== =L

(a) The series Y. a, converges if L > 1 (b) The series Y an diverges if L < 1
(c) The test is inconclusive if L = 1

Problem 3.7.1 Test the convergence of the series ), 5:,—_,1

5n—l

Solution Here a,, = n''term =
n!

— pth _ _5
Ayl = n''term = )]
— 5"

— nl(n+1)
ay _ 5"l nl(n+l)
An+1 - o 5"

— h+

5
32



M. Indhumathi

lim () =

lim(2£l)

Therefore, by ratio test, ) 2 Converges

Problem 3.7.2 Test the convergence of the series Y, %

n3+1
i th 2"
Solution Here a, = n"'term = -5
— tht —_ on+l
ﬂyH_l =n erm = m
Ay _( a" )(n+1)3+1
R VSRS | 2n2
=1<1
i A — 1
llmam-l -2
By ratio test }, = is divergent.

Problem 3.7.3 Test the convergence of the series ), (;1;_{1)"

. 1)"
Solutiona, = Y %
(n+2)n+1
Any1 =Y D

ay _ (n+1)" nl(n+l)

an1  onl (n+2)nHt

_ (n+1)n+l

- (n+2)n+1

_ (1’l+1)n+1

T [(n+1)+1]1

— 1

- [1+ 11]n+1

an

et e ) 1

. By ratio test Y,

Cis diverges.

2

Problem 3.7.4 Test the convergence of the series 5 + Lt

(n+1)!
3n

Solution Here a,, =
_ (n+2)!

Ap+1 = 3+l

ﬂ” — 3

Ans1 n+2

lim(;-) = lim(-35)=0<1

(n+1)!
3"

is diverges.

Problem 3.7.5 Test the convergene of the series 1 + 755 + ...
Solution Here a,, =

— _n+l
aﬂ+1 T 14n+l

a, _ n(1+2"1)
anyr  1427(n+1)

_n_
T+27

g A —

llman+1

li n(1+271)
1+27(n+1)

=2>1

". The above series is convergent.
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3.8 Alternating series

The series Y. (—1)""la, = a1 —ay +a; —as +. .. is alternating series where each 4 > 0.

3.9 Leibniz’s rule

Theorem 3.9.1 If {a,} is an monotone decreasing sequence with limit 0, the alternating
series Y(=1)""'a, converges. If S denotes its sum and S, its n'" partial sum, we also have
0<(=1)(S—=5,) <apiforalln>1

Proof
The partial sums S,, form an increasing sequence.
Sons2 = Son = (01 —d2 + a3 —ag+ -+ = Aoy + A2ps1 — Aps2) — (@1 — A2+ a3 — -+ - + 21 — A2n

= op41 — Aope2 > 0

= Sops2 — Son >0

" Sons2 > Sop

Also the partial sums Sj,—1 form a decreasing sequence.

Both sequenes are bounded below by S, and bounded above by S;.
.. Each sequence (Sz,) and (Sz,-1) are monotone and bounded.

.. By monotone convergence theorem (S,,) and (52,-1) converges
~.1lim Sy, =S and lim Sy, = S~

Now, S’ —S” =1im Sy, — lim Sp,_1

= hm(SZH = Son-1)

= lim(—ay,) = —limay, =0

Therefore S = S” = S Therefore sequence of partial sums converges.
- Y.(=1)""'a, converges.

since (S2,) is a monotonicallly increasing sequence, we have

Son < Sy £

since (52,-1) is a monotonically decreasing sequence, we have
Son < Son+2 < San-1

.. we have

0 < Spp-1 =5 < Sop1 — Son = A2n1

and 0 < SZn—l -5< SZn—l - SZn = dyy

Hence we have. 0 < (=1)"(S - S,,) < 41

3.10 Absolute convergence

Let X = (x,) be asequence in R. we say that the series } x,, is absolutely convergent
if |x,| is convergent in R.

Conditional convergent

A series is said to be conditionally convergent but not absolutely convergent.

Example 3.10.1 Consider a series ), (_%

By Leibnitz’s test, ), % converges.

Now Y, |¥| =), % =), % diverges is conditionally convergent.
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Remark 3.10.1 A series of positive terms is absolutely convergent if and only if it is
convergent.
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Question
If an increasing sequence is bounded above then
If an decreasing sequence is bounded below then
Fibonacci sequence is

If an increasing sequence is bounded above then

Suppose a sequence in a metric space (S,d) converges to
both a and b. Then we must have

In a metric space (S,d), a sequence converges to p. Then
range of the sequence is

The range of a constant sequence is

Suppose in a metric space (S,d), a sequence converges to p.
Then the point pis

Suppose in a metric space (S,d) , a sequence converges to p
and the rnage of the sequence is infinite. Then p is

Suppose in a metric space, a sequence converges. Then
A sequence is said to be bounded if if its range is
The range of the sequence {1/n} is

The range of the sequence {1/n} is

The esequence {1/n}

In Euclidean metric space every cauchy sequence is
Every convergent sequence is a

The sequence {n"2}

The range of the sequence {n"2} is

The range of the sequence {n"2} is

The sequence {i*n}

The range of the sequence {i*n}is

The range of the sequence {i*n}is

The sequence {1}

The range of the sequence {1} is

The range of the sequence {1} is

Opt1

segeunce
converges to inf of
segeunce
converges to inf of
an increasing
sequence
segeunce
converges to inf of

a<b

bounded

infinite

an adherent point
of S

an adherent point
of S

every sequence in
a metric space
converges
unbounded

finite

unbounded
converges
convergent
constant seqeunce
converges
unbounded

finite

converges
unbounded

finite

converges

{

bounded

Opt 2

sequence
converges to sup
sequence
converges to sup
a decresing
sequence
sequence
converges to sup

a>b

unbounded
countably infinite
an accumulation
point of S

an accumulation

point of S
every sunsequence

of convergent
sequence
converges
bounded

{1}

bounded
diverges
divergent
cauchy sequence
diverges
bounded

{1}

diverges
bounded
infinite
diverges

{1}

unbounded

Opt3
sequence
converges to 1
sequence
converges to 2

constant sequence
sequence
converges to 3

a-b=1

finite
uncountable

an isolated point
of S

an isolated point

of S
some supsequence

of convergent
sequence
converges
countable
{}

{}
oscilates
oscilates
increasing
oscilates
{t

{}
oscilates
{}

{t
oscilates
{1,0}

{1,0}

Opt4
sequence
converges to 0
sequence
converges to 1

bounded sequence

sequence
converges to 2

a=b

infinite

singlton set

not an adherent
point of S

not an
accumulation

some sequence in

a metric space
converges
uncountable
infinite

{1,0}
converges to 1
convergent to 0
decreasing
converges to 2
{0.1}

infinite
converges to 0
{o,1}

{o,1}
converges to 0
{1,2,3}

{o}

Answer

sequence
converges to sup
sequence
converges to inf of
an incresing
sequence
sequence
converges to sup

a=b

bounded
singleton set

an adherent point
of S

an accumulation

point of S
every subsequence

of convergent
sequence
converges
bounded
infinite
bounded
converges
converges
cauchy sequence
diverges
unbounded
infinite
diverges
bounded
finite
converges

{1}

bounded
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CHAPTER 4

SUBSEQUENCES

4.1 Subsequences

Definition 4.1.1 Let X = (x,) be a sequence of real numbers and let ny < ny <nz < ...
be a strictly increasing sequence of natural numbers. Then the sequence X = (x,k) given
by (X4, Xn,, - . .) is called a subsequence of X

11 )

Example 4.1.1 Consider a sequence X = (1,3, 3,..-

LetX =(L,1,..)
clearly, X isa subsequence of X. note that ny = 2,1, =4, ...

Definition 4.1.2 If X(x1, X2, ... ) is a sequence of real numbers and if m is a given natural
numbers, then the m-tail of X is the sequence. Xy = (Xps1, Xma2, - - .)

Remark 4.1.1 A tail of a sequence is a special type of subsequence. (ii) Not every subse-
quence of a given sequence need be a tail of the sequence.

Theorem 4.1.1 Ifa sequence X = (x,), of real numbers converges to a real number x, then
any subsequencece x = (x,,) of x, also converges to x.

Proof

Given that,

limx, = x

.. for given €> 0, there exist a positive integer N such that |x, — x| <€ifn > N
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LetX = (xn,) be a subsequence of X. Then; <ny; <mnz <... clealy nx > k
suppose k > N, then nj > N

lxp, — x| <€

Therefore (x,,) converges to x

Definition 4.1.3 For a sequence (x,,), we say that the m" term x,, of (xy) if X = xy for
alln > M.

Remark 4.1.2 In a decreasing sequence, every term is peak and in an increasing sequernce
no term is peak.

4.2 The cauchy sequences

Definition 4.2.1 A sequence X = (x,) of real number is said to be a cauchy sequence if
for every €> 0, there exist a natural number N such that |x, — x| € if n,m > N

Theorem 4.2.1 If X = (x,) is a convergent sequence of real numbers then X is a cauchy
sequence.

Proof

Let X = (x,) be a convergent sequence. Let limx, = x

Let €> 0 be arbitrary, then for 5 > 0, there exist a positive integer N such that
[, —x| < 5ifn>N

Letn,m>N

Now |x, — Xl =[x, — x + x — x|

Sl =+ lx—xuli5+5=€

lx, — x| <€ifn,m>N

Therefore (x,) is a cauchy sequence.

Theorem 4.2.2 A caushy sequence of real number is bounded

Proof

Let X = (x,) be a cauchy sequence

Let €= 1, then there exist a positive integer N such that
|y — x| <1ifn,m>N

In particular, |x, — x| <1ifn,m > N
Now |x,| — [xn| < |x, —axn| < 1ifn >N
Slxal = xnl<1ifn >N

lx,] <1+ |xnlifn >N

Let M = sup{|xi1l, Ixal, . . ., lxn4al, 1+ Jxnl}
Then |x,| < M for all n

Therefore —-M < x,, < m for all n
Therefore (x,) is bounded.

4.3 Cauchy convergence criterion

Theorem 4.3.1 A sequence of real number is convergent if and only if it is cauchy sequence.
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Proof

Suppose X = (x,) is a convergent sequence

by previous theorem, X is a cauchy sequence.

Conversely suppose X = (x,) is a cauchy sequence. by previous theorem, X is
bounded

By Bolzono theorem, X has a convergent subsequence.

Letx, — x

claim x,, —» x

since X is cauchy sequence, for given 5 > 0, there exist a positive integer N such
that

Xy — x| < §ifn,m>N

since (x,,) converges to x, for % > 0, there exist a positive integer k > N such that
I —x|<5ifn>N

Now |x, — x| = |x;, — x¢ + xx — x|

<l|xp— x| + | —x|= €

ie., |x, — x| <€ if n > N, therefore x, — x

i.e., X is a convergent sequence.

Problem 4.3.1 Discuss the convergence of the series 1 — % + \L@ -

Solution

Given series is an alternating series.

Leta, = \/LE

- 1

In+l = 705
- 1

Ap+1 —p = N Tﬁ
_ NVl
T VnVntl
Ayl —a, <0
Ans1 <ay
.. {a,} is monotonically decreasing also lima, = \/LE =
.. The given Solution satisfies all the conditions of Leibnitz rule. The given series
converges.

Problem 4.3.2 Discuss the convergence of 2 — 5 + 2 — ...

Solution
Given series is an alternating series

LEta, = #2
_ 2(m+1)+3
A+l = 551
— 2n+5
T 2n+2 P
Ansl = On = 50 <0
Aps1 <y
.. {a,} is monotonically decreasing. Also
lima,, = 2;;3
240 _
2 B 1-¢ 0 . . . LR . .
.. the given series does not satisfies one of the condition of Leibnitz test.
.. the given series diverges.

1 1

. . 1
Problem 4.3.3 Discuss the convergence of the series o2 " Tog3 T ogd ~
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Solution
Given series is alternating series

— 1
Let a, = log(Tl)

- 1

Ant1 = log(n+2)
-1 __1 .
On+1 = n = log(n+2) ~ log(n+1) | 0
Ayl —a, <0
An+1 < Ay
.. {a,} is a monotonically decreasing.
1

lzma,, = log(n+1)

=1l_-9

Therefore the given series satisfies all the condition of leibnitz test.

The given series is convergent.
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Question Opt 1 Opt 2 Opt 3 Opt 4 Answer
Constant sequence converges oscillates diverges convergesto 1l [Converges
The sequence {1,1,1,1,1,.....} converges oscillates diverges convergestol [convergestol
The sequence {1,0,1,0,1,0,...} converges oscillates diverges convergesto 1 |Oscillates
The harmonic series converges if P=1 p>1 P<1 P=0 p>1
In limit comparison test both the series converges absolutely =1 =0 ris not equal to R=2 ris not equal to
if zero zero
For the absolute convergence of the series, the ratio Less than or Greater than Less than or

Less thanr Greater thanr
between n+1th term and nth term must be equaltor equaltor equaltor
For the absolute convergence of the series, the nth root of Less than or Greater than Less than or
Less thanr Greater thanr
nth term must be equaltor equaltor equaltor
The alternating harmonic series converges oscillates diverges convergesto 1l [Converges
If a series converges absolutely, the series converges oscillates diverges convergesto 1l [Converges
A ser.les converges iff converges absolutely if the series positive negative Non zero Either a or b Positive
consists of ----terms
The series 1-1+1-1+1-1+... converges oscillates diverges converges to 1 |Diverges
countably

{1,2,.....,100000} uncountable countable infinite infinite countable
Suppose fis a one to one function. Then x not eqaul y f(x) is not equal f(x) is not equal
implies to f(y) f(x)=f(y) f(x)<f(y) f(x)>f(y) to f(y)
Suppose fis a one to one function. Then f(x)=f(y) implies X=-y y=x+10 X=y xis not eqauly [x=y
Let f be a bijection between A and B and A is counatble then
Bis uncountable countable finite similar to R countable
Let f be a function defined on A and itself such that f(x)=x. neither one to
Then fis onto one to one bijection one nor onto bijection
Constant function is an example for onto one to one many to one bijection many to one
Stricly increasing function is an onto function |one to one many to one bijection one to one
Strictly decreasing function is an onto function |one to one many to one bijection one to one
If g(x) =3x+x+5, evaluate g (2) 8 9 13 17 13
A = {x: x # X Jrepresents {1} {} {0} {2} {}
If a set A has n elements, then the total number of subsets of
Ais n! 2n 2" n 2"
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CHAPTER 5

SEQUENCES AND SERIES OF
FUNCTIONS

5.1 Sequences of functions

Definition 5.1.1 Let A C R be given and suppose that for each n € N there is a function
fn: A = R, we say that (f,) is a sequence of functions A to B — R.

Definition 5.1.2 A sequence (f,) of functions on A C R to R, converges to a function
f+ A — Biffor every €> 0 there exist a positive integer N(€, x) such that | f,(x) — f(x)| <€
ifxeAandn >N

Remark 5.1.1 (i) The positive integer N will depend on both € and x € A.
(ii) The sequence (f,) converges on A to f, we have f, — f (or) f(x) = lim f,(x)

Example 5.1.1 Let f(x) = 2, x € R
Now f(x) = lim f,(x) =
lim(3)

Therefore,o},, — fforallx e R

Example 5.1.2 Let f,(x) =x",x € R
f(x) = im f,,(x) = lim x"
fo—= fx)=0,-1<x<1(or) f = fx)=1,x=1
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Example 5.1.3 f,(x) = sinetn) 'y e R

n 7

f(@) = lim f,(x) = lim 24240 = o

5.2 Uniform convergence

A sequence (f,) of functions on A C R to R converges uniformly on A to a function
f A — Riffor every €> 0 there exist a positive integer N such that |f,(x) — f(x)| <€
ifn>N

Uniform norm

If ACRand f: A — Bisafunction an f is bounded we define the uniform norm
of fon Aby ||flla = supf{|f(x)| : x € A}

Example

Let f(x) = fraclx
Then fl| = 1
Note

Suppose €> 0, and ||f|l4 <€
By definiton of norm of f,
IFll = supllf()): x € A} < €
f@)l < e

suppose |f(x)| < €

forallx € A

Ifll < e

Hence, ||flla <€ & |f(x)| < eforallx € A

Theorem 5.2.1 A sequence (f,) of bounded function on A C R converges uniformly on A
to f & |lfu— fll = 0.

Proof

Suppose f, — f uniformly on A. Then for €> 0, there exist a positive integer N
such that [f,(x) — f(x)| <€ifn > N

by previous theorem, ||f, — f|l <€ if n > N

Ifu = fll =0

conversely suppose ||f, — fll = 0

on A

Then for given €> 0, thereexistapositiveintegerN such that
I(f = £I) =0l <€if n >N

lfu — fll<€ifn =N

ie,llfu — fll<cifn >N

ie, |fu(x) = f(x)| <€ifn >N

. fa = f uniformly on A.
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5.3 Series of functions

Definition 5.3.1 If (f,) is a sequence of functions defined on a subset D of R with values
in R, the sequence of partial sums (S,,) of the infinite series }, f, is efined for x in D by

Si(x) = fix)
S2(x) = fi(x) + fo(x)
S3(x) = fi(x) + foa(x) + f3(x)

In case, the sequence (S,) of functions converges on D to a function f, we say that the
infinte series of functions Y f, converges to f on D.

Definition 5.3.2 If the series Y. |f,(x)| converges for each o in D, we say that Y, f, is
absolutely convergent on D.

Definition 5.3.3 If the sequence (S,) of partial sums is uniformly convergent on D to a
function f, we say that Y, f, is uniformly convergent on D to f.

5.4 Weierstross M - test

Theorem 5.4.1 Let (M,) be a sequence of positive real numbers such that |f,(x)] < M,
forxeD,neN
If the series Y, M, is convergent, then Y, f, is uniformly convergent on D.

Proof

Suppose m > n

[fre1(x) + fri2(x) + - + fru(x)]

< fur1 (O + [frr2(] + -+ + | fn (2]

SMn+1 +Mn+2 +"'+Mm

By cauchy criterion for series, The series ) x,, converges if and only if for every
€> 0 there exist a positive integer M that if m > n > M(€) then

IS = Sul = [Xns1 + Xpg2 + -+ + x| <€

since € M,, converges, [M41 + Myyo + -+ + M,,| <€

Mn+1 +Mn+2 +- +Mm <€

Therefore |f.+1(x) + fus2(X) + -+ + fin(x)] <€

By cauchy criterion for sequence of functions |f,+1(x) + fr2(x) + - + fi(x)| <€
.. ), fu uniformly convergent on D.

5.5 Power series

Definition 5.5.1 A series of real functions ), f, is said to be a power series around x = ¢
if the function f, is of the form f,(x) = a,(x — ¢)" where a, and c belong to R and where
n=0,1,23,...

Definition 5.5.2 Let ) a,X" be a power series. If the sequence (la,|") is bounded, we get
p =lim sup(lanﬁ
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If this sequence is not bounded, we get p = +oo. we define the radius of convergence of
Y. a,x" to be given by

R=0ifp=+c0
=%if0<p<oo

Remark 5.5.1 The radius of convergence of the series }_ a,x" is also given by
lim(laﬂ—’ll) provided the limits exists.

Problem 5.5.1 Find the radius of convergence of the series Y, a,x" there a, =

Solution

_ 1
ﬂn—m

_ _1
In+l = Gy
ay | _ 1.t
|m|_|n!x 1 |
=n+1l=n+1
lim aLa,,HI =limn+1) =00

n
Therefore, The radius of convergence is +oco

5.6 Cauchy-Hadmard Theorem

Theorem 5.6.1 If R is the radius of convergence of the power series ), a,x", then the series
Y. a,x" is absolutely convergent if |x| < R an is divergent if |x| > R

Proof

Suppose 0 < R < 400 suppose |x| < R

ie, 0 < |x| < R, then there is a positive real number c < 1 such that [x| < c.R
Therefore |x| < C.%

c
=>‘D<m

: C
= lim sup Via,| <@
C
I

Therefore |a,| <
= |ay||x|" < "
= |a,x"| < c"
since ¢ < 1, the geometric series Y, c" converges.
By comparison test, ) |2,x"| converges.
Therefore }’ a,x" converges absolutely.
Supp;)se x| > R

x| > )
- limsup a, > o
= | =
= |a,x"| > 1 for infintely many n

By comparison test, ) a,x" diverges.

Problem 5.6.1 Discuss the uniform convergence of ¥, S‘Z?'Y

Solution

Given f,(x) = —SiZ?"
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fol)] = | s

_ |sinnx|
==z
1

Sz

since ) % converges, we have }, sinnxn? converges uniformly.

5.7 Cluster Point

Definition 5.7.1 Let A C R. A point C € R is a cluster point of A if for every €> 0 there
exist atleast one point x € A, x # C, such that
|x —c| <€

Example 5.7.1 Let A = (1,2} 1 and 2 are not cluster point of A. Moreover A has no
cluster points of A.

Remark 5.7.1 Finite set has no cluster points. Cluster point is also called limit point.
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Question Opt 1 Opt 2 Opt 3 Opt 4 Answer
If R is the radius of convergence of the series, the series SR R <R Less than or <R
converges absolutely if x| equal toR
If rho=infinity, the radius of convergence R is 0 1 2 3 0
If rho=0, the radius of convergence R is 0 1 2[infinity Infinity
If rho is finite, the radius of convergence R is 0[Rho Reciprocal of infinity Reciprocal of
rho rho
If R is the radius of convergence of the series, the series Less than or
. . >R =R <R >R
diverges if |x| equal toR
If Ris the rad|'us of convergence then the interval of (-RR] [RR] (-RR) [RR) (-RR)
convergence is
The sequence of functions (x/n) converges to a function 0 1 5 3 0
X=
The s'equencc? of f.unctlons X power n converges to a 1and 2 dand1 0and 1 1and0 dand1
function x=0 if x lies between
A series of positive terms converges then the series converges converges both Aand B neither A nor both Aand B
only absolutely B
A convergent series contains only finite number of converges  |converges both A and B neither A nor|converges
negative terms then it is only absolutely B absolutely
A convergent series contains only -------- number of e . .
. . infinite finite countable finite
negative terms then it is converges absolutely 10
A convergent series contains only finite number of ------- . . .
. negative positive zero negative
-- terms then it is converges absolutely 1
The power series converges to a continuous function on {(-R,R) [-R,R] 1,2) [1,2] (-R,R)
If the series converges at x = R, then f is continuous x=R X<R x>R xzR x=R
L
If the series converges at x = —R, then fis continuous x=-R x=R x<R x#R X= -
at ---------------
not not
Union of sets is -------------- commutative |commutative |associative |disjoint commutative
The complement of A relative to B is denoted by ----------
- B-A B A A-B B-A
If Aintersection B is the empty set, then A and B are not not
called -------- commutative |commutative [associative  [disjoint disjoint
B-
(intersection |intersection intersection
B - (union A) = —------=-mm-m-m-- union (B -A) |A) (B-A) {} (B-A)
intersection
B - (intersection A) = -------=-mmmmmemmemee union (B -A) |B-(union A) |(B-A) {} union (B -A)
Union of countable sets is ----------------- uncountable |infinite countable disjoint countable
The set of all rational numbers is --------------- uncountable |infinite countable disjoint countable
The set S of intervals with rational end points is ----------
set uncountable |infinite countable disjoint countable
neither
The product of two prime numbers will always be prime nor
even number|odd number [composite |composite |composite
Let A be the set of all prime numbers. Then number of
elementsin Ais countable uncountable [finite empty countable




Reg. No......cccoeueee. 6. Which equation does not represent a function?

a.y=2x b. y=x*+10
18MMU203 cy= % d 2 +12=95
Karpagam Academy of Higher Education
Coimbatore-21 _(R_A)— A
Department of Mathematics 7 f B(g AA) Alf b. ACB
Second Semester- I Internal test c AUB=A d AUB=A
Real Analysis ' ’
Date:18.12.18(FN) Time: 2 hours 8. Let A = {a,b} and B = {1, 2, 3}. Then the number of
Class: I B.Sc Mathematics Max Marks: 50 distinct functions from A into B is
a. 8 b. 9
c. 6 d. 5

Answer ALL questions

PART - A (201 =20 marks) 9. Which of the following sets is countable?

1. Let f : R — R be a function defined by f(x) = x. a. (0, )
Then f is b. R o
a.one-one b. onto c. set of all irrational numbers
c. bijection d. neither onto nor one-one d. set of all Fibonacci numbers

2. The set of all positive integers {1,2, -} is 10. sup{l-L1:neN)=—
a. finite b. infinite a. -1 b.
c. countable d. uncountable c. 0 d.

N[ =

3. Greatest lower bound of set of all positive even
integers is

11. Suppose lim(x,) = x and lim(-x,) = x. Then x

a. 2 b. 0
c1 d. 4 a. 1 b. 5
c. 0 d. -1

4. Let S be a bounded above set of real numbers and

sup S = u. Then for x € 5, we have — 12. Suppose lim(x,) = x. For every € > 0, there is a

a.x>u b.x<u +ve integer N such that we have

cxsu dxzu a.x—€<xy, b. x +e > x,
5. Let f : Z — Z be a function defined by f(x) = x c. both A'and B d. neither A nor B

where Z is a set of all real numbers. Then the range

of fis 13. The sequence ((-1)") is

a. Z b. N a. convergent b. bounded

c W d. {0,1,4,9,---} c. both A and B d. neither A nor B



14.

15.

16.

17.

18.

19.

20.

21.
22.
23.

Constant sequence is
a. increasing
c. both A and B

b. decreasing
d. neither A nor B

If X = ((-1)"))and Y = ((~1)"*1)) then X+Yis
b. diverges
d. neither A nor B

a. coverges
c. both A and B

If X and X + Y are convergent, then Y ——
a. coverges b. diverges
c. both A and B d. neither A nor B

If x1 = 8 and x4 = F +2, (x,) is

a.monotone
c. both A and B

b.bounded
d. neither A nor B

The sequence (%) is
a. convergent
c. both A and B

b. bounded
d. neither A nor B

Ifz,=(@" +b")" and 0 < a < b, then lim(z,) = ——
a. 0 b. 1
c.a d. b

If X converges to x and XY converges then Y con-
verges if a.x#0 b.x, #0
c. both A and B d. neither A nor B

Part B-(3 X 2 = 6 marks)

Ifa,b € R, prove that |a + b| = |a| + |b] iffab > 0
Define Upper bound.

State the completness property of R .

Part C-(3 X 8 = 24 marks)

24.

25.

26.

a) (i) State and prove triangle inequality.
(ii) State and prove Archimedean property.

OR
b) Prove that R is uncountable
a) (i) State an prove uniqueness of limits.
(ii) Prove thatif ¢ > 0 then lim(c%) =1
OR

b) Prove that a convergent sequence of real
numbers is bounded.

a) State and prove monotone convergence the-
orem

OR

b) State and prove squeeze theorem.



(18MMU203)
KARPAGAM ACADEMY OF HIGHER EDUCATION
Coimbatore-21

7. EYWnZ+1 —n)is

DEPARTMENT OF MATHEMATICS a) diverges b) uniformly converges
Second Semester c) absolutely converges d) all the above.
11 Internal Test - Mar'2019 8. A convergent sequence is sequence
Real Analysis a) unbounded b) constant
Date: 12 -03-2019 (AN) _Time: 2 Hours ¢) bounded d) non constant
Class: 1-B.Sc Mathematics Maximum Marks:50 . 101 1 .
9. Theseriesl——=+—=——=+-1s
V2 V3 V4
PART-A(20x1=20 Marks) a) diverges b) converges
1. A convergent sequence is always------ sequence ¢) converges to 1 d) converges to 2
a) constant b) unbounded 10. The series 2 =2+ 2 -1 4 ...
¢) Cauchy d) non constant d' 2 a g 8
2. Which of the following is not a Cauchy sequence? a) IVErges ) converges
YO b) (n) 0 (-5 d) (L) c) oscillates d) converges to 0
a) (— n — il
n 2Vn vn 11. The series - — — — 2 4 — 41—
3. Theseries Yo n?-e™™ 2 log2z 2 log3 2 log4
a) converges b) diverges a) converges b) diverges
c) oscillates d) converges to 0 c) oscillates d) converges to 0
. 1 1 1 1 1 1 1
4. The series Y7 el p>1 12. Theseries 1+ — 7 — 5 + = e
a) converges b) diverges a) converges b) diverges
c) oscillates d) converges to 0 c) oscillates d) converges to 1
) 1 92 33 13. Yx,, is absolutely convergent if 3 ------- and n = N such that
5. Theserles1+2—2+3—3+4—4+~- fuaa| g _ 4
a) converges b) diverges *n ) n <1 . a1
c) oscillates d) converges to 1 a)a > ) a < c)a> )a>=
6. The series ¥® 1 14. 1f a = lim(n (1 — x}’:—“ )) exists the Y.x,, converges absolutely
. s "

n-(n+1)-(n+2)
a) converges b) diverges
c) oscillates d) converges to 1

when
a)a>1 b)a<1 C)a>1 da=>1



15.

16.

17.

18.

19.

20.

21.
22.
23.

24,

If ¥ c,, sin nx converges uniformly and (c,,) is a decreasing
sequence then lim nc,, =

a) 1 B2 03 d) 0
Which of the following is a subsequence of (i) ?

a) (52) D ) d) ()
The series Y. dogny? ' P <1is

a) converges b) diverges

c) oscillates d) convergesto 0

The series Y. nl;gn

a) converges b) diverges
c) oscillates d) convergesto 0
The series Y2 (vVn* + 3 —n?) is

a) converges b) diverges

c) oscillates d) convergesto 0
If nisodd, Y2(—1)" =
a) n b) -2 );(n+1) d)o

PART-B(3x2=6 Marks)

Give an example for Cauchy sequence.
Define power series.
Define uniformly convergent of a series.

PART-C(3x8=24 Marks)

a) State and prove monotone subsequence theorem.
(OR)

b) Prove that a bounded sequence converges to x if every
subsequence converges to X.

25. a) State and prove Bolzano- Weirstrass theorem.

(OR)

b) Prove that a Cauchy sequence of real numbers is bounded.

26. a) State and prove M test

(OR)

b) State and prove Cauchy criterion for series of functions.
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KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956)
Pollachi Main Road, Eachanari Post, Coimbatore — 641 021
(For the candidates admitted from 2018 onwards)

B.Sc., DEGREE EXAMINATION, APRIL 2019

Second Semester
MATHEMATICS
REAL ANALYSIS
Time: 3 hours Maximum : 60 marks

PART - A (20 x 1 =20 Marks) (30 Minutes)
(Question Nos. 1 to 20 Online Examinations)

PART B (5 x 2 =10 Marks) (2 ¥: Hours)
Answer ALL the Questions

21. Determine the set A of all real numbers x such that 2x + 3 < 6.
22. Define Bounded sequence.
23. If a series in R is absolutely convergent then prove that it is convergent.
24. Define Divergent.
25. Define Uniform convergent of a function.

PART C (5 x 6 = 30 Marks)
Answer ALL the Questions

26. a. Prove that the following statements are equivalent:
i. § is a countable set. ii. There exist a surjection of ¥ onto $.
iii. There exist an injection of 5 onto V.
Or
b. Prove that an upper bound u of a non empty set S in R is the supremum of § if
and only if for zvery ¢ > 0 there exisis an s,eS such that 2 — € < 5.

27.a. If X = (x,) is a convergent sequence of real numbers and if X,, > 0 for all neN
then prove that x = lim (x,,) = 0.
Or

b. Prove that {{1+ WVJHH» is convergent.

N

e

28.8.1f0 < x < 1then prove that M..Hno " wnverges 1o 2

i-s’
Or
b.If X7, a, converges absolutely to A, then prove that any
aonas:mnSn:.Muﬂu- &- of Mh..nn a, also converges absolutely 1o 4

29. a. State and prove monotone convergence theorem

Or
b. prove that a Cauchy scquence of real numbers s bounded

30. a. State and prove Cauchy criterion for uniform convergence
o A
b. If the power series 2= Gz X converges for X = Xgthen prove that

Zie=0 @y x* converges uniforml —x =
y on [~x,x,] where X
that 0 < x; < lxl. vil 11s 2ny number such
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CHAPTER 4

SUBSEQUENCES

4.1 Subsequences

Definition 4.1.1 Let X = (x,) be a sequence of real numbers and let ny < ny <nz < ...
be a strictly increasing sequence of natural numbers. Then the sequence X = (x,k) given
by (X4, Xn,, - . .) is called a subsequence of X

11 )

Example 4.1.1 Consider a sequence X = (1,3, 3,..-

LetX =(L,1,..)
clearly, X isa subsequence of X. note that ny = 2,1, =4, ...

Definition 4.1.2 If X(x1, X2, ... ) is a sequence of real numbers and if m is a given natural
numbers, then the m-tail of X is the sequence. Xy = (Xps1, Xma2, - - .)

Remark 4.1.1 A tail of a sequence is a special type of subsequence. (ii) Not every subse-
quence of a given sequence need be a tail of the sequence.

Theorem 4.1.1 Ifa sequence X = (x,), of real numbers converges to a real number x, then
any subsequencece x = (x,,) of x, also converges to x.

Proof

Given that,

limx, = x

.. for given €> 0, there exist a positive integer N such that |x, — x| <€ifn > N
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LetX = (xn,) be a subsequence of X. Then; <ny; <mnz <... clealy nx > k
suppose k > N, then nj > N

lxp, — x| <€

Therefore (x,,) converges to x

Definition 4.1.3 For a sequence (x,,), we say that the m" term x,, of (xy) if X = xy for
alln > M.

Remark 4.1.2 In a decreasing sequence, every term is peak and in an increasing sequernce
no term is peak.

4.2 The cauchy sequences

Definition 4.2.1 A sequence X = (x,) of real number is said to be a cauchy sequence if
for every €> 0, there exist a natural number N such that |x, — x| € if n,m > N

Theorem 4.2.1 If X = (x,) is a convergent sequence of real numbers then X is a cauchy
sequence.

Proof

Let X = (x,) be a convergent sequence. Let limx, = x

Let €> 0 be arbitrary, then for 5 > 0, there exist a positive integer N such that
[, —x| < 5ifn>N

Letn,m>N

Now |x, — Xl =[x, — x + x — x|

Sl =+ lx—xuli5+5=€

lx, — x| <€ifn,m>N

Therefore (x,) is a cauchy sequence.

Theorem 4.2.2 A caushy sequence of real number is bounded

Proof

Let X = (x,) be a cauchy sequence

Let €= 1, then there exist a positive integer N such that
|y — x| <1ifn,m>N

In particular, |x, — x| <1ifn,m > N
Now |x,| — [xn| < |x, —axn| < 1ifn >N
Slxal = xnl<1ifn >N

lx,] <1+ |xnlifn >N

Let M = sup{|xi1l, Ixal, . . ., lxn4al, 1+ Jxnl}
Then |x,| < M for all n

Therefore —-M < x,, < m for all n
Therefore (x,) is bounded.

4.3 Cauchy convergence criterion

Theorem 4.3.1 A sequence of real number is convergent if and only if it is cauchy sequence.
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Proof

Suppose X = (x,) is a convergent sequence

by previous theorem, X is a cauchy sequence.

Conversely suppose X = (x,) is a cauchy sequence. by previous theorem, X is
bounded

By Bolzono theorem, X has a convergent subsequence.

Letx, — x

claim x,, —» x

since X is cauchy sequence, for given 5 > 0, there exist a positive integer N such
that

Xy — x| < §ifn,m>N

since (x,,) converges to x, for % > 0, there exist a positive integer k > N such that
I —x|<5ifn>N

Now |x, — x| = |x;, — x¢ + xx — x|

<l|xp— x| + | —x|= €

ie., |x, — x| <€ if n > N, therefore x, — x

i.e., X is a convergent sequence.

Problem 4.3.1 Discuss the convergence of the series 1 — % + \L@ -

Solution

Given series is an alternating series.

Leta, = \/LE

- 1

In+l = 705
- 1

Ap+1 —p = N Tﬁ
_ NVl
T VnVntl
Ayl —a, <0
Ans1 <ay
.. {a,} is monotonically decreasing also lima, = \/LE =
.. The given Solution satisfies all the conditions of Leibnitz rule. The given series
converges.

Problem 4.3.2 Discuss the convergence of 2 — 5 + 2 — ...

Solution
Given series is an alternating series

LEta, = #2
_ 2(m+1)+3
A+l = 551
— 2n+5
T 2n+2 P
Ansl = On = 50 <0
Aps1 <y
.. {a,} is monotonically decreasing. Also
lima,, = 2;;3
240 _
2 B 1-¢ 0 . . . LR . .
.. the given series does not satisfies one of the condition of Leibnitz test.
.. the given series diverges.

1 1

. . 1
Problem 4.3.3 Discuss the convergence of the series o2 " Tog3 T ogd ~
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Solution
Given series is alternating series

— 1
Let a, = log(Tl)

- 1

Ant1 = log(n+2)
-1 __1 .
On+1 = n = log(n+2) ~ log(n+1) | 0
Ayl —a, <0
An+1 < Ay
.. {a,} is a monotonically decreasing.
1

lzma,, = log(n+1)

=1l_-9

Therefore the given series satisfies all the condition of leibnitz test.

The given series is convergent.
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PART-A(20x1=20 Marks)
ANSWER ALL THE QUESTIONS
Geometric series Y&, " diverges if

ar=>1 byr<1 c)r=1 dr<1
If lim |x,| = 0 then limx,, =
a) -1 b) 0 c)1l d)2
For the series Y5> r™ , s, =
1 1-rntl 1-r" 1-rntl
a) : b) 1-r C) 1+7r d) 1+r
. w 1 .
The series Y. ey is
a) diverges b) oscillates

C) converges d) convergesto 0
The nth (n = 3) term of the Fibonacci sequence is

a) fao=Jfo2t faa b) fao=fa2 = faaa

c) fa = fo-2 X fa1 d)n
1 1 _
If 1 +E+E+'“—
a) diverges b) converges

c) oscillates d) convergesto 1
A sequence in R has ------- one limit

a) at most b) at least

C) no d) all the above

Forany b € R, lim (5) =
a) -1 b) 1 c) 2 d)o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

If {x,} is a constant sequence with x,, = ¢, a constant,
{xn}

a) diverges b) converges

c) oscillates d) converges to 1

lim 3n+2 _

! n+1 T

a)l b) 2 c)3 d) 0

. 2n

lim (55) =

a) -1 b) 1 c) 2 d) 0

For every real x there is an integer n such that
an<x byx<n c)n=x dx<n
A real number g, (p, q € Z) is a rational number if
a)g>0 b)g+#0 c)g<o0 d)g=0
Which of the following is not true?

a) lal + |bl < |a + b]
¢) la + bl < lal + |b]

b)lal — [b| < |a + b|
d) labl = |al - |b|

Let f: R — R be a function defined byf (x) = x2. Then
range of f is

a) [0, ) b) (=,0)  ¢) (0,) d) R

{x,} is a constant sequence if x,, = ¢, aconstant for

a)somen € N b) allneN

cnon €N d)onlyonen € N

Forany b € R, lim (s) = as n tends to oo.

a) -1 b) 1 C) 2 d) 0

For the series Y. (—1)", s, =1 ifnis

a) odd b) even C) prime d) composite
If the series ). x,, converges, limx,, =

a)0 b) -1 c)l d) 2

The series Y.° nl—p converges if

a)p<1 b) p=1 c)p>1 dp=>1



21.
22.
23.

24,

25.

26.

PART-B(3x2=6 Marks)
ANSWER ALL THE QUESTIONS

Define a convergent sequence.
State the n™ term test.
Give two examples for uncountable sets.

PART-C(3x8=24 Marks)
ANSWER ALL THE QUESTIONS

a) State and prove the comparison test for the series.
(OR)
b) State and prove Root test for series.

oo n!(2n)

a) Test the convergence of series);
(OR)
b) Prove the p — series converges if p > 1.
a) Let (xn) be a sequence of non-negative real numbers.
Then show that the series Y xn converges iff the sequence
S= (s«) of partial sums is bounded. In this case,
Y(xn) = lim(sk) =sup {sk: keN}
(OR)
b) State and prove Cauchy criterion for series.

1 n
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