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CHAPTER 1

SETS AND FUNCTIONS

1.1 Introduction

1 Set theory is a branch of mathematical logic that studies sets, which informally
are collections of objects. Although any type of object can be collected into a set,
set theory is applied most often to objects that are relevant to mathematics. The
language of set theory can be used in the definitions of nearly all mathematical
objects.

The modern study of set theory was initiated by Georg Cantor and Richard
Dedekind in the 1870s. After the discovery of paradoxes in naive set theory,
such as the Russell’s paradox, numerous axiom systems were proposed in the
early twentieth century, of which the ZermeloFraenkel axioms, with the axiom of
choice, are the best-known.

Set theory is commonly employed as a foundational system for mathematics,
particularly in the form of ZermeloFraenkel set theory with the axiom of choice.
Beyond its foundational role, set theory is a branch of mathematics in its own
right, with an active research community. Contemporary research into set theory
includes a diverse collection of topics, ranging from the structure of the real number
line to the study of the consistency of large cardinals.

1source from wikipedia
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1.2 Basics of sets

Definition 1.2.1 A collection of well defined objects is called a set.

Definition 1.2.2 Objects of a set are called elements or members.

Remark 1.2.1 If x is an element of A, we say that x ∈ A.

If x is not an element of A, we say that x < A.

Example 1.2.1 A = {x : x is an integer}

N = {1, 2, 3, 4, · · · }, set of all natural numbers.

Z = {. . . ,−2,−1, 0, 1, 2, . . . }, set of all integers.2

Q =
{ p

q : p, q ∈ Z and q , 0
}
, set of rational numbers3

Definition 1.2.3 A set that contains no elements is called the null set. It is denoted by ∅.

Definition 1.2.4 A set consisting of only one element is called a singleton set.

Definition 1.2.5 If every element of a set A also belongs to a set B, we say that A ⊆ B (or)
B ⊇ A.

Definition 1.2.6 A set A is a proper subset of B if A ⊆ B and there is atleast one element
of B which is not in A.

Definition 1.2.7 Two sets A and B are said to be equal if A ⊆ B and B ⊆ A.

Definition 1.2.8 The union of sets A and B is the set A ∪ B = {x : x ∈ A or x ∈ B}.

Example 1.2.2 SinceN is the set of all natural numbers and Z is the set of all integers,
we haveN = {1, 2, 3, · · · } and Z = {· · · ,−2,−1, 0, 1, 2, · · · }.
ThenN ∪Z = {· · · ,−2,−1, 0, 1, 2, · · · }.
andN ∪Z = Z

Remark 1.2.2 (i) If A ⊂ B, then A ∪ B = B
(ii) Since ∅ ⊂ A, then ∅ ∪ A = A.
(iii) Union of two sets is commutative.

Definition 1.2.9 The intersection of the sets A and B is the set A∩B = {x : x ∈ A and x ∈
B}.

Example 1.2.3 Suppose A = {1, 2, 3} and B = {−2,−1, 0, 1}. Then A ∩ B = {1}.

Definition 1.2.10 The complement of B relative to A is the set A−B = {x : x ∈ A and x <
B}.

2Z is for Zahlen - the German word for integers.
3Q is for quotient - which is how rational numbers are identified.
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Example 1.2.4 Suppose A = {1, 2, 3, 4}. and B = {−2,−1, 0, 1}. Then A − B = {2, 3, 4}.

Theorem 1.2.1 For any three sets A,B and C, we have
(i) A ∪ A = A
(ii) A ∪ ∅ = ∅ ∪ A = A
(iii) A ∪ B = B ∪ A
(iv) A ∪ (B ∪ C) = (A ∪ B) ∪ C
(v) A ∪ B = B if and only if A ⊆ B

Proof
(iv) Let x ∈ A ∪ (B ∪ C) be arbitrary

⇒ x ∈ A (or) x ∈ (B ∪ C)
⇒ x ∈ A (or) x ∈ B (or) x ∈ C
⇒ (x ∈ A (or) x ∈ B) (or) x ∈ C
⇒ x ∈ (A ∪ B) (or) x ∈ C
⇒ x ∈ (A ∪ B) ∪ C
⇒ A ∈ (B ∪ C) ⊆ (A ∪ B) ∪ C (1.1)

⇒ (x ∈ A ∪ x ∈ B) (or) x ∈ C
⇒ x ∈ A (or) x ∈ B (or) x ∈ C
⇒ x ∈ A (or) (x ∈ B (or) x ∈ C)
⇒ x ∈ A (or) x ∈ (B ∪ C)
⇒ x ∈ A ∪ (B ∪ C)
⇒ (A ∪ B) ∪ C ⊆ A ∪ (B ∪ C) (1.2)

From (1.1) and (1.2), we have
A ∈ (B ∪ C) = (A ∪ B) ∪ C

Theorem 1.2.2 For any three sets A,B and C, we have
(i) A ∩ A = A.
(ii) A ∩ ∅ = ∅ ∩ A = A.
(iii) A ∩ B = B ∩ A.
(iv) A ∩ (B ∩ C) = (A ∩ B) ∩ C
(v) A ∩ B = B if and only if A ⊆ B

Definition 1.2.11 Two sets A and B are said to be disjoint if A ∩ B = φ

Example 1.2.5 Let A = {1, 3, 4} and B = {5, 8, 9} then A ∩ B = φ

Remark 1.2.3 1. x < A ∪ B⇔ x < A and x < B
2. x < A ∩ B⇔ x < A (or) x < B

Theorem 1.2.3 If A,B and C are sets then
(i) A − (B ∪ C) = (A − B) ∩ (A − C)
(ii) A − (B ∩ C) = (A − B) ∪ (A − C)

3
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Proof
(i) Let x ∈ A − (B ∪ C) be arbitrary

⇒ x ∈ A and x < (B ∪ C)
⇒ x ∈ A and x < B and x < C
⇒ x ∈ A and x < B and x ∈ A and x < C
⇒ x ∈ (A − B) and x ∈ (A − C)
⇒ x ∈ (A − B) ∩ (A − C)

Therefore, A − (B ∪ C) ⊆ (A − B) ∩ (A − C)
similarly, we can prove
(A − B) ∩ (A − C) ⊆ A − (B ∪ C)
From the above, we have
A − (B ∪ C) = (A − B) ∩ (A − C)
(ii) Let x ∈ A − (B ∩ C) be arbitrary

⇒ x ∈ A and x < (B ∩ C)
⇒ x ∈ A and x < B or x < C
⇒ x ∈ A and x < B or x ∈ Aandx < C
⇒ x ∈ (A − B) or x ∈ (A − C)
⇒ x ∈ (A − B) ∪ (A − C)

Therefore, A − (B ∩ C) ⊆ (A − B) ∪ (A − C)
similarly, we can prove
(A − B) ∪ (A − C) ⊆ A − (B ∩ C)
From the above, we have
A − (B ∩ C) = (A − B) ∪ (A − C)
Hence proved.

Definition 1.2.12 If A and B are nonempty sets, then the cartesian product of A and B is
denoted by AXB and is defined by AXB = {(a, b) : a ∈ Aandb ∈ B}

Definition 1.2.13 A set S is said to be finite if it is either empty set (or) it has n elements
for some n ∈ N.

1.3 Functions

Definition 1.3.1 Let A and B be nonempty sets. A function f : A→ B which assigns to
each element a ∈ A, a unique element b ∈ B.

Remark 1.3.1 The element b is called the image of a under f .

Remark 1.3.2 The element a is called preimage of b under f .

Remark 1.3.3 The set A is called domain of f and the set B is called co domain of f .

4
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Remark 1.3.4 The set { f (a) : a ∈ A} is called range of f , and is denoted by R( f ).

Definition 1.3.2 A function f : A → A is given by f (x) = x ∀x, is called identity
function.

Definition 1.3.3 A function f : A→ B is given by f (x) = c, a constant is called constant
function.

Remark 1.3.5 The range of constant function is always singleton set.

Suppose f : A→ B is an identity function, then A = B or A ⊆ B.

Definition 1.3.4 A function f : A → B is one-one (injective) if distinct elements of A
have distinct image in B.

Remark 1.3.6 f is one-one if f (x) = f (y)⇒ x = y.

Remark 1.3.7 f is one-one if x , y⇒ f (x) , f (y).

Definition 1.3.5 A function f : A→ B is onto(surjective) if range of f is equal to B.

Definition 1.3.6 A function f : A → B is called bijection if f is both one-one and onto
function.

Example 1.3.1 Let f : Z→ Z such that f (x) = |x| ∀x ∈ Z.
Here f (−2) = f (2) but −2 , 2
Therefore, f is not one-one.

Example 1.3.2 Consider f : Z→ Z given by f (x) = x + 3 ∀ x ∈ Z.
Suppose

f (x) = f (y)
x + 3 = y + 3

x = y

Therefore, f is one-one. Also R f = Z
Therefore, f is onto. Hence, f is bijection.

Definition 1.3.7 Let f : A→ B be a bijection. Then for each b ∈ B, there exists a unique
element a ∈ A such that f (a) = b.
Define f−1 : B→ A by f−1(b) = a Therefore, f−1 is called the inverse function of f .

Remark 1.3.8 Suppose f : A→ B is a bijection. Then A and B are said to be equivalent.

1.4 Countable sets

Definition 1.4.1 A set S is said to be countably infinite if there is a bijection betweenN
and S,

5
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Example 1.4.1 Let E = {2n : n ∈N} is a even function.
Let f : N→ E such that f (x) = 2x.
suppose

f (x) = f (y)
2x = 2y

x = y

Therefore, f is one-one.
Also, R f = {2, 4, 6, · · · } = E
Therefore, f is onto.
∴ f is bijection.
∴ E is countably finite.

Example 1.4.2 Let A = { 12 ,
2
3 , · · · }

Solution
Let f be a function fromN→ A, such that
f (n) = n

n+1 .
Suppose

f (n) = f (m)
n

n + 1
=

m
m + 1

n(m + 1) = m(n + 1)
nm + n = mn + m

clearly f is one-one and onto function.
Therefore f is bijection.
Hence A is countably infinite.

Remark 1.4.1 A subset of a countable set is countable.

Theorem 1.4.1 N ×N is countable

Proof
N ×N = {(a, b) : a, b ∈ N}
Take all orederd pairs (a, b) such that a + b = 2
There is only one element namely (1, 1)
Take all ordered pairs (a, b) such that a + b = 3
we have (1, 2) and (2, 1).
Next take all the ordered pairs (a, b) such that a + b = 4
we have (1, 3), (2, 2) and (3, 1)
Proceeding like this and listing all the ordered pairs together from the begining,
we get
{(1, 1), (1, 2), (2, 1), (1, 3), · · · }
The set contains every ordered pair belonging toN ×N exactly once
∴N ×N is countable (or) countably infinite.

Remark 1.4.2 If A and B are countable sets then A × B is also countable.

Remark 1.4.3 The set of all natural numbers is countable.
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Definition 1.4.2 A set which is not countable is called uncountable.

Theorem 1.4.2 (0, 1] is uncountable.

Proof
Suppose (0, 1] is countable.
The elements of (0, 1] can be listed.
i.e., (0, 1] = {x1, x2, . . . } , where

x1 = 0.a11a12a13 . . .

x2 = 0.a21a22a23 . . .
...

with 0 ≤ ai j ≤ 9
Let y = 0.b1b2b3 . . . , clearly y ∈ (0, 1]
Now for each positive integer n select bn such that 0 ≤ bn ≤ 9 and bn , ann
Here y is different from each xi atleast in the ith place.
Which is contradiction to every elements of (0, 1]listed.
Hence, (0, 1] is uncountable.

Remark 1.4.4 The set of all real numbers R is uncountable.

Remark 1.4.5 The set of all irrational numbers is uncountable.

1.5 The absolute value of a real number

Definition 1.5.1 The absolute value of a real number a is denoted by |a| is defined by

|a| =

a if a > 0
−a if a < 0

Remark 1.5.1 Suppose a is a real number |a| ≥ 0

Remark 1.5.2 |a| = | − a|

Theorem 1.5.1 (a) |ab| = |a||b| f oralla, b ∈ R
(b) |a|2 = a2 f oralla ∈ R
(c) If c ≥ 0 , then |a| ≤ c⇔ −c ≤ a ≤ c
(d) −|a| ≤ a ≤ |a| for all a ∈ R.

Proof
(a) Case (i): Suppose

a = 0
|a| = 0

|a| · |b| = 0 · |b|
= 0

7
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|a · b| = |0 · b|
= |0|
= 0

Hence|ab| = |a||b|

Case (ii): Suppose b = 0
|b| = 0
|a|.|b| = |a|.0 = 0
|a.b| = |a.0| = |0| = 0
|ab| = 0 = |a|.|b|
|ab| = |a||b|
Case (i): Suppose a > 0 and b > 0
|a| = a and |b| = b
|ab| = ab , (ab > 0)
= |a||b|
|ab| = |a||b|
Case(iv): Suppose a > 0 and b < 0
Therefore, |a| = a and |b| = −b
we have ab < 0
|ab| = −(ab)
= a.(−b)
= |a||b|
|ab| = |a||b| case(v): Suppose a < 0 and b < 0
Therefore, |a| = −a and |b| = −b
we have ab > 0
|ab| = (ab)
= (−a).(−b)
= |a||b|
|ab| = |a||b| Hence |ab| = |a.b| for all a, b ∈ R (b) Let a ∈ R be arbitrary
Then a2

≥ 0
Now |a2

| = a2

= a.a
= |a||a|
= |a|2|
Hence, |a|2 = a2 for all a ∈ R
(c) Let us assume c ≥ 0
Suppose a ≤ 0
Then we have both a ≤ c and −a ≤ c
since, a ≤ c and −a ≤ c
−c ≤ a ≤ −a ≤ c
−c ≤ a ≤ c
conversely, suppose −c ≤ a ≤ c
since −c ≤ a, c ≥ −a
∴we have a ≤ c and −a ≤ c , Then |a| ≤ c
(d) Let a ∈ R be arbitrary , Then |a| ≥ 0
Let c = |a|we know that, |a| ≤ |a|
∴ −|a| ≤ a ≤ |a|

8
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1.6 Triangle inequality

Theorem 1.6.1 If a, b ∈ R, then |a + b| ≤ |a| + |b|

Proof By (d) −|a| ≤ a ≤ |a| and −|b| ≤ b ≤ |b|
By adding above inequalities
−|a| − |b| ≤ a + b ≤ |a| + |b|
−(|a| + |b|) ≤ a + b ≤ |a| + |b|
|a + b| ≤ |a| + |b|(by (c))

Remark 1.6.1 |a + b| = |a| + |b| iff ab > 0

Theorem 1.6.2 If a, b ∈ R be arbitrary (a) ||a| − |b|| ≤ |a − b| (b) |a − b| ≤ |a| + |b|.

Proof (a) Let a, b ∈ R be arbitrary
Now

a = a − b + b
|a| = |a − b + b|
|a| = |(a − b) + b|

|a| ≤ |a − b| + |b|(Bytriangleinequality)
|a| − |b| ≤ |a − b| (1.3)

Now

b = b − a + a
|b| = |b − a + a|
|b| = |(b − a) + a|

|b| ≤ |b − a| + |a|(Bytriangleinequality)
|b| − |a| ≤ |b − a|

−|b| + |a| ≥ −|b − a| (1.4)

From (1.3) and (1.4)
−|a − b| ≤ |a| − |b| ≤ |a − b|
∴ ||a| − |b|| ≤ |a − b|
Hence proved.
(b) Let a and b be any real numbers
since b ∈ R , −b ∈ R (by triangle inequality)
∴ |a + (−b)| ≤ |a| + | − b|
|a − b| ≤ |a| + |b|
Hence proved.
Let S be a non-empty subset of R.

1.7 Bounded sets

Definition 1.7.1 Let S is said to be bounded above if there exists a number u ∈ R such
that s ≤ u∀s ≤ S. Each such number u is called an upper bound of S.

9
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Definition 1.7.2 The set S is said to be bounded below if there exists a number u ∈ R such
that u ≤ s∀s ∈ S. Each such number u is called as lower bound of S.

Definition 1.7.3 A set S is said to be bounded if it is both bounded above and bounded
below.

Definition 1.7.4 A set S is said to be unbounded if it is not bounded.

Example
Let A = {x ∈ R : 0 < x < 1} = (0, 1)
since all the elements of A ≥ 0.
Therefore, A is bounded below.
since all the elements of A ≤ 1
Therefore A is bounded above
Hence A is bounded.
Note
1. Every interval of the form (a, b),[a, b),(a, b] and [a, b] are bounded subsets of R.
2. Any finite subset of R is a bounded set.

Definition 1.7.5 Let S be a nonempty subset of R. If S is bounded above, then a number
u is said to be supremum (or) a least upper bound of S if (i) u is an upperbound of S. (ii) if
v is an upperbound of S, then u ≤ v

Definition 1.7.6 Let S be a nonempty subset of R. If S is bounded below, then a number
w is said to be infimum (or) a greatest lower bound of S if (i) w is an lowerbound of S. (ii)
if v is an lowerbound of S, then v ≤ w

Note
1. There can be only one supremum (infimum) of a given subset of R.
2. If the supremum (or) the infimum of a set S exists, we will denote them by supS
or in f S.
Lemma
A number u is the supremum of a nonempty set S of R iff u satisfies the condition
(i) s ≤ u for all s ∈ S
The completeness property of R
(i) Every nonempty set of real numbers that has an upper bound and also has an
supremum in R.
(ii) Every nonempty subset or real numbers that has a lower bound also has an
infimum in R.
Example
1. Let S = {d f rac1n : n ∈ N}
S = {1, d f rac12, d f rac13, . . . }
in f S = 0 and SupS = 1.

Definition 1.7.7 Let S be a nonempty subset of R that is bounded above and let a be any
number in R. Define s = {a + s : s ∈ S}.

Theorem 1.7.1 S be a nonempty subset of R. Suppose S is bounded above and a ∈ R.
Then prove that sup(a + S) = a + supS.

10
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Proof
Let S be a nonempty bounded above subset of R. Therefore S has an upper bound.
By completeness property of R, we have supremum of S exists.
Let u ∈ supS , Then x ∈ u for all x ∈ S
Therefore, a + x ≤ u + a∀x ∈ S
∴ u + a is an upperbound of a + S.
Let

m = sup(a + S)
∴ m ≤ u + a (1.5)

suppose v is an upperbound of a + S
∴ a + x ≤ v for all x ∈ S
∴ x ≤ v − a for all x ∈ S
Therefore v − a is an upperbound of S
u ≤ v − a
a + u ≤ v
since v is an upperbound of a + S

a + u ≤ m (1.6)

From (1.4) and (1.5), we get
a + u = m
a + supS = sup(a + S).

Theorem 1.7.2 Suppose that A and B are nonempty subset of R, such that a ≤ b∀a ∈ A
and b ∈ B
Then supA ≤ in f B.

Proof
Let B be arbitrary .
Then a ≤ b for all a ∈ A
b is an upper bound of A
supA ≤ b
Therefore sup A is a lower bound of B
∴ supA ≤ in f B
Archimedian property
If x ∈ R then there exist nx ∈ N such that x < nx
Proof
Let x ∈ R be an arbitrary
To prove : There is atleast one nx ∈ N such that x < nx
Suppose n ≤ x for all n ∈ N
∴ x is an upper bound of N.
By completeness property of R
supN exists.
Let u = supN
Then u − 1 is not an upper bound of N
∴ m ∈ N such that

11
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u − 1 < m , u < m + 1
since m + 1 ∈ N, we must have m + 1 ≤ u
∴ there exist nx ∈ N such that x < nx
Example 1
f(x) = 0, if x is even ,
f(x) =1, if x is odd . ∴ Range of f = R f ={0, 1} ⊆ R. Example 2
f (x) = |x|
Range of f = R f = {0, 1, 2, . . . } ⊆ R

Definition 1.7.8 Given a function f : D → R, we say that f is bounded if the set f (D)
= range of f = { f (x) : x ∈ D} is bounded above in R. similarly, the function f is bounded
below if f (D) is bounded below in R. we say that, f is bounded if f (D) is bounded below
and bounded above (or) | f (x)| ≤ B,B ∈ RR

Example 1.7.1 Let f : N→ Q be a function defined by f (n) = n
n+1

The range of f = R f = {d f rac12, d f rac23, d f rac34, . . . } ⊆ Q
SupR f = sup f (N) = 1
in f R f = in f f (N) = 1

2
∴ The given function is bounded.

12



Question Opt 1 Opt 2 Opt 3 Opt 4 Answer

The set of all points between a and b is called ----

-------- integer interval elements set interval

The set {x: a < x < b} is -------------- (a, b) [a, b] (a, b] [a, b) (a, b)

A real number is called a positive integer if it 

belongs to ----------- interval open interval closed interval inductive set inductive set

Rational numbers is of the form ----------------- pq p + q p/q p - q p/q

e is --------------- rational irrational prime composite irrational

An integer n is called ----------- if the only 

possible divisors of n are 1 and n rational irrational prime composite prime

A set with no upper bound is called ------------ bounded above bounded below prime function bounded above

A set with no lower bound is called ------------ bounded above bounded below prime function bounded below

The least upper bound is called ----------- bounded above bounded below supremum infimum supremum

The greatest lower bound is called ----------- bounded above bounded below supremum infimum infimum

The supremum of {3, 4} is ---------- 3 4 (3, 4) [3, 4] 4

Every finite set of numbers is ---------- bounded unbounded prime bounded above bounded 

A set S of real numbers which is bounded above 

and bounded below is called -------- bounded set inductive set super set subset bounded set

The set N of natural numbers is ---------- bounded not bounded irrational rational not bounded 

The infimum of {3, 4} is ------------ 3 4 (3, 4) [3, 4] 3

Sup C = Sup A + Sup B is called -------------- 

property approximation additive archimedean comparison additive 

For any real x, there is a positive integer n such 

that ----------- n > x n < x n = x n = 0 n > x

If x > 0 and if y is an arbitrary real number, 

there is a positive number n such that nx > y is --

------------ property approximation additive archimedean comparison archimedean

The set of positive integers is ------------- bounded above bounded below

unbounded 

above unbounded below unbounded above

The absolute value of x is denoted by -------------

-- |x| ||x|| x < 0 x > 0 |x|

If x < 0 then --------------- |x| = x ||x|| = |x| ||x|| = -x |x| = -x |x| = -x

If S = [0, 1) then sup S = ---------------- 0 1 (0, 1) [0,1] 1

Triangle inequality is -------------------

|a| + |b| greater 

than equal to |a 

+ b| |a| > |a + b| |b| > |a + b|

|a + b| less than 

equal to |a | + |b|

|a + b| less than equal 

to |a | + |b|

|x + y| greater than equal to ----------------- |x| + |y| |x| |y| |x| - |y| | |x| - |y| | | |x| - |y| |

If (x, y) belongs to F and (x, z) belongs to F, 

then ------------- x = z x = y xy = z y = z y = z

A mapping S into itself is called ------------ function relation domain transformation transformation

If F(x) = F(y) implies x =y is a --------------- 

function one-one onto into inverse one-one

One-one function is also called ----------- injective bijective transformation codomain injective

S = {(a,b) : (b,a) is in S} is called --------------- inverse domain codomain converse converse

If A and B are two sets andif there exists a one-

one correspondence between them,then it is 

called ------------- set denumerable uncountable finite equinumerous equinumerous

A set which is equinumerous with the set of all 

positive integers is called ---------------- set finite infinite

countably 

infinite countably finite countably infinite

A set which is either finite or countably infinite 

is called ------------ set countable uncountable similar equal countable

Uncountable sets are also called ------------- set denumerable

non-

denumerable similar equal non-denumerable

Countable sets are also called --------------- set denumerable

non-

denumerable similar equal denumerable



Every subset of a countable set is ------------ countable uncountable rational irrational countable

The set of all real numbers is ---------------- countable uncountable rational irrational uncountable

The cartesian product of the set of all positive 

integers is ---------- countable uncountable rational irrational countable

The set of those elements which belong either to 

A or to B or to both is called --------- complement intersection union disjoint union

The set of those elements which belong to both 

A and B is called ------------ complement intersection union disjoint intersection
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CHAPTER 2

REAL SEQUENCES

2.1 sequences and their limits

Definition 2.1.1 A sequence in R is a function from N into R.

Remark 2.1.1 (i) The sequence is denoted by the symbol {Sn}.
(ii) The image of of n, Sn is called the nth term of the sequence.

Example 2.1.1 Let f be function from N→ R such that f (n) = 0
Range of f ={0} = {0,0,0,. . . }

Definition 2.1.2 If b ∈ R, the sequence B = {b, b, b, . . . } is called constant sequence.

Definition 2.1.3 The Fibnacci sequence F = ( fn) is given by
f1 = 1, f2 = 2
fn+1 = fn + fn−1,n ≥ 2

Definition 2.1.4 A sequence (xn) in R is said to coverage to x ∈ R or x is said to be a
limit of (xn) if for every ∈> 0 there exists a positive integers N such that |xn − x| <∈ for all
n ≥ N.
If a sequence has a limit , we say that the sequence is convergent, if it has no limit, we say
that the sequence is divergent.

Remark 2.1.2 Suppose a sequence (xn) has limit x, Then we can write

limxn = x or xn → x as n→∞

13
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Theorem 2.1.1 Let (xn) be a sequence of real numbers and let x ∈ R. If (an) be a sequence
of positive real numbers with
liman = 0 and if for some constant

c > 0 and some m ∈ N we have
|xn − x| ≤ can∀n ≥ m, then lim xn = x
suppose let ∈> 0 be given, then ∈

c > 0
Given that lim an = 0
Therefore for ∈c > 0 , There exist a positive integer N.
so that |an − 0| < ∈

c∀n ≥ N, that is |an|
∈

c ∀n ≥ N
an < ∈

c∀n ≥ N
Suppose for some m ∈ N such that
|xn − x| ≤ c.an∀n ≥ N
≤ c. ∈c = ∈
∴ xn →∞

Example 2.1.2 If a > 0, then
lim( 1

1+na ) = 0
Solution
since a > 0, na > 0, Then 0 < na < 1 + na
Hence 1

na >
1

1+na
Now | 1

1+na − 0| = | 1
1+na |

= 1
1+na <

1
na

∴ | 1
1+na − 0| < 1

a ( 1
n )

since
lim( 1

n ) = 0

lim( 1
1+na ) = 0

Remark 2.1.3 Convergence of (|xn|) need not imply the convergence of (xn).
consider a sequence ((−1)n)
Then (|(−1)n

|) = (1, 1, . . . )
clearly, lim |xn| = 1
Now ((−1)n) = (−1, 1,−1, 1, . . . )
This is not a convergent sequence.

2.2 limit theorems

Theorem 2.2.1 If 0 < b < 1, then lim(bn) = 0

Proof
suppose 0 < b < 1
Then b = 1

1+a if a > 0
Now |bn

− 0| = |bn
| = bn = [ 1

1+a ]n]
= 1n

(1+a)n

= 1
(1+a)n

≤ 11 + na

14
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≤ 1na
= c 1

n = 0
By previous theorem, lim xn = ∞
i.e., lim(bn) = 0
Example
lim 1

3n = lim 1n

3n

=
lim( 1

3 )n = 0

Theorem 2.2.2 If c > 0, then
lim(c

1
n )=1

Proof
case(i)
suppose c = 1 then (c

1
n ) is a constant sequene and lim(c

1
n = 1

case(ii)
suppose 0 < c < 1
Then c

1
n = 1

1+hn
where hn > 0

(c
1
n )n = (c

1
1+hn )n

c = 1
(1+hn)n

< 1
n.hn

Now |c
1
n−1
| = |1 − c

1
n |

= |1 − 1
1+hn
|

= | 1+hn−1
1+hn

=| hn
1+hn
|

< hn
since c < 1

nhn
, hn < 1

nc

∴ |c
1
n − 1| < 1

nc
since 1

c > 0 and
liman = 0 if an = 1

n
Then
lim(c

1
n ) = 1

case(iii)
suppose c > 1
Then c

1
n = 1 + dn where dn > 0

Now c = (1 + dn)n

= 1 + n.dn + · · · + dn
n

≥ 1 + ndn
∴ c − 1 ≥ ndn
c−1

n ≥ dn

Now |c
1
n−1
| = |dn|

= dn
c−1

n
= (c − 1). 1n
Hence

15
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lim(c
1
n ) = 1

2.3 Bounded sequences

Definition 2.3.1 A (xn) of real numbers is said to bounded if there exists a real number
M > 0 such that
|xn| ≤M for all n ∈ N, −M ≤ xn ≤M

Theorem 2.3.1 A convergent sequence of real numbers is bounded.

Proof
suppose that
lim(xn) = x
Let ∈= 1 > 0
Then there exists a positive integer N such that |xn − x| < 1 if n ≥ N
Now |xn| = |xn − x + x|
≤ |xn − x| + |x|
≤ 1 + |x| if n ≥ N
Then |xn| ≤M for all n ≥ 1
Therefore (xn) is bounded.

Definition 2.3.2 If x = (xn) and y = (yn) are sequences of real number, we define their
sum to be the sequene x+ y = (xn + yn), their difference to be the sequence x− y = (xn− yn)
and their product to be the sequence xy = (xnyn) .
If c ∈ R, we define the sequence cx = (cxn)
If z = (zn) is a sequence of non-zero real numbers, then we define the quotient of x and Z
to be the sequence
x
Z =

(
xn

zn).

Theorem 2.3.2 Let X = (xn) and Y = (yn) converge to x and y respectively and c ∈ R.
Then the sequence x + y x − y, xy and cx converge to x + y, x − y, xy and cx respectively.

Proof
Let ∈> 0 be given. suppose xn → x and yn → y
∈

2 > 0 and xn → x
There exist a positive integer N1 such that
|xn − x| < ∈

2
since ∈2 > 0 and yn → y
Thereexist a positive integer N2 such that
|yn − y| < ∈

2 ∀n ≥ N2
Now |(xn + yn) − (x + y)| = |(xn − x) + (yn − y)|
≤ |xn − x| + |yn − y|
let N = max{N1,N2}

|(xn + yn) − (x + y)| < ∈

2 + ∈

2
=∈
Therefore, (xn + yn)→ x + y

16
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By using similar arguments, we have
The sequence (xn − yn) converges to x − y
consider |xnyn − xy| = |xnyn − xny + xny − xy|
= |xn(yn − Y) + y(xn − x)|
≤ |xn(yn − y)| + |y(xn − x)|
= |xn||yn − y| + |y||xn − x|
since (xn)→ x, Thereexist a positive real number M1 such that
|xn| ≤M,∀n ≥ 1
Hence |xnyn − xy| ≤M , |yn − y| + |y||xn − x|
let M = sup{M1, |y|}
|xnyn − xy| ≤ yM|yn − y| + M|xn − x|
let ∈> 0 be given
since (xn)→ x, there exist a positive integer N1 such that
|xn − x| < ∈

2M ∀n ≥ N1
since (yn)→ y, there exist a positive integer N2 such that
|yn − y| < ∈

2M ∀n ≥ N2
N = sup{N1,N2}

Therefore |xnyn − xy| < M (
∈

2M) + M (
∈

2M) if n ≥ N
Therefore |xnyn − xy| <∈ if n ≥ N
i.e., (xnyn)→ xy
Let (yn) be a constant sequence(c)
Then (yn)→ c
By the above argument, (xnyn)→ xc
i.e.,(xnc)→ xc
i.e.,(cxn)→ cx

Theorem 2.3.3 If X = (xn) converges to x and z = (zn) is a sequence of non-zero real
numbers that converge to z and if z , 0, then the quotient sequence ( xn

zn
)→ x

z

Proof
Let α = 1

z > 0
since (zn)→ z, there exist a positive integer N1 such that |zn − z| < α if n ≥ N1
−|zn − z| > −α if n ≥ N1 Therefore, −α < −|zn − z| ≤ |zn| − |z| if n ≥ N1
−α < |zn| − |z| if n ≥ N1
1
2 |z| = |z| −

1
2 |z|

= |z| − α
< |zn| if n ≥ N1
1
2 |z| ≤ zn if n ≥ N1
2
|z| ≥

1
|zn |

if n ≥ N1

Now | 1
zn
−

1
z |

= |z−zn |

|znz|

= |z−zn |

|zn ||z|
≤
|zn−z
|z| .

2
|z|

= 2|zn−2|
|z|2

let ∈> 0 be given
since (zn)→ z1 there exist a positive integer N2 such that
|zn − z| < ∈

2 |z|
2 if n ≥ N2

Hence | 1
zn
−

1
z | ≤

2
|z|2 ∈|z|

22 if n ≥ N = sup{N1,N2}
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Therefore, ( 1
zn

)→ ( 1
z )

Theorem 2.3.4 If (xn) is a convergent sequence of real number and if xn ≥ 0 for all n ∈ N,
then x = lim(xn) ≥ 0.

Proof
suppose (xn)→ x
To prove
x ≥ 0
suppose x < 0
Then −x > 0
Let ∈= −x > 0
since (xn)→ x, There esixt a positive integer N such that
|xn − x| < −x if n ≥ N
Then x < xn − x < −x if n ≥ N
Therefore, xn − x < −x if n ≥ N
xn < −x + x if n ≥ N
xn < 0 if n ≥ N
i.e., xN < 0, xN+1 < 0, . . .
⇒ xn ≥ 0 ∀n
Hence xn ≥ 0
Note
(i) suppose sequence (xn) is convergent to x and xn > 0. Then lim(xn) = x need not
be greater than zero.

Theorem 2.3.5 If (xn) and (yn) are convergent sequence of real numbers and if xn ≤ yn
forall n ∈ N, then lim(xn) ≤ lim(yn).

Proof
Let zn = yn − xn
Then (zn) is a sequence of real numbers and zn ≥ 0.
By previous theorem,
lim(zn) ≥ 0
lim(yn − xn) ≥ 0
lim(yn) − lim(xn) ≥ 0
lim(yn) ≥ lim(xn)

Theorem 2.3.6 If (xn) is a convergent sequence and if a ≤ xn ≤ b for all n ∈ N, then
a ≤ lim(xn) ≤ b.

Proof
Let (yn) be q sequence such that yn = b∀n ∈ N
since a ≤ xn ≤ b, we have n ≤ yn ∀n ∈ N
By previous theorem, lim(a) ≤ lim(yn) ≤ lim(b)
a ≤ lim(yn) ≤ b
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2.4 Squeeze theorem

Theorem 2.4.1 suppose that (xn), (yn) and (zn) are sequences of real numbers such that
xn ≤ yn ≤ zn ∀n ∈ N
and lim(xn) = lim(zn)
lim(xn) = lim(yn) = lim(zn)

Proof
Given that lim(xn) = lim(zn)
Then lim(xn) = lim(zn) = w
Let ∈> 0 be given.
Then there exist positive integer N such that
|xn − w| <∈ if n ≥ N
and |zn − w| <∈ if n ≥ N
Also given that xn ≤ yn ≤ zn, Then xn − w ≤ yn − w ≤ zn − w
∈< xn − w < yn − w < zn − w <∈
− ∈< yn − w <∈
|yn − w| <∈ if n ≥ N
Therefore, lim(yn) = w

Theorem 2.4.2 Let the sequence (xn) converges to x. Then the sequence (|xn|) of absolute
values converges to |x|.

Proof
Let ∈> 0 be given
There exist a positive integer N such that
|xn − x| <∈ for all n ≥ N
Now, ||xn| − |x|| ≤ |xn − x| <∈
∴ lim(xn) = |x|

2.5 Monotone sequence

Definition 2.5.1 Let (xn) be a sequence of real numbers. we say that sequence (xn) is
increasing if x1 ≤ x2 ≤ · · · ≤ xn ≤ xn+1 ≤ . . .
we say that sequence (xn) is decreasing if x1 ≤ x2 ≤ · · · ≤ xn ≤ xn+1 ≤ . . . , we say that
(xn) is monotone if it is either increasing or decreasing.

Problem
Give an example of two divergent sequences X and Y such that (i) sum x + y con-
verges (ii) Product X.Y converges.
Solution
Let X = (−1)n = (−1, 1,−1, 1, . . . ) Y = (−1)n+1 = (−1, 1,−1, 1, . . . )
clearly X and Y are divergent
Now X + Y = (0, 0, 0, . . . ) converges
X.Y = (−1,−1,−1, . . . ) converges
Problem
Show that if X and Y are sequences such that X and Y X + Y are convergent then
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Y is convergent.
Solution
Given X and X + Y are convergent. Then X + Y − X is also convergent. i.e., Y is
convergent.
Monotone convergence theorem
A monotone sequene of real numbers is convergent if and only if it is bounded.
Moreover (i) If X = (xn) is a bounded increasing sequene, then lim(xn) = sup{xn : n ∈
N} (ii) If Y = (yn) is a bounded decreasing sequence, then lim(yn) = in f {yn : n ∈ N}
Proof
Suppose a monotone sequence is convergent then the sequence is bounded. con-
versely, suppose a monotone sequence is bounded. since given sequence is mono-
tone, we have either increasing or decreasing.
(i) Let X be a increasing sequence and bounded.
since, X is bounded, there is a real number M such that xn ≤M ∀n ∈ N
Therefore, {xn : n ∈ N} is bounded above.
By completeness property of R, there exist the sup{xn : n ∈ N}
∈> 0 be given
Then x∗− ∈ is not an upper bound.
Therefore there exist a member of set xn such that x∗− ∈ ¡ xk
Then x∗− ∈< xn ∀n ≥ k
Hence x∗− ∈< xk ≤ xn ≤ x∗ < x∗+ ∈
− ∈< xn − x∗ <∈ if n ≥ k
|xn − x∗| <∈ if n ≥ k
lim(xn) = x∗

(ii) Let Y = (yn) be a bounded decreasing sequence
Then X = −Y = (−yn) is an increasing sequence
By (i) lim(−yn) = sup{−yn : n ∈ N}
= −in f {yn : n ∈ N}
lim X = −in f {yn : n ∈ N}
lim(−y) = −in f {yn : n ∈ N}
− lim(y) = −in f {yn : n ∈ N}
lim(y) = in f {yn : n ∈ N}
problem
show that lim( 1

√
n

) = 0
Solution
lim( 1

√
n

) = x and x = ( 1
√

n
)

Now X.X = ( 1
√

n
)( 1
√

n
)

= ( 1
√

n
→ 0)

Therefore x2 = 0 and x = 0
Problem
consider a (xn) with x1 = 2 and xn+1 = 2 + 1

xn
,n ∈ N. Find the limit of the sequence

(xn).
Solution
Let lim(xn) = x
since xn ≥ 0 ∀n, we have x ≥ 0
Moreover xn ≥ 2 and x , 0
Now x = lim(xn)
= lim(xn+1)
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= lim(2 + 1
xn

)
Let yn = 2 and zn = 1
Then lim(yn) = 2 and lim(zn) = 1
x = lim(yn + zn

xn
)

= lim(yn) + lim( zn
xn

)

= lim(yn) +
lim(zn)
lim(xn)

x = 2 + 1
x

x2 = 2x + 1
x2
− 2x − 1 = 0

Therefore, x = 1 +
√

2 (or) x = 1 −
√

2 < 0
Show that (−1)n is divergent
Solution
Suppose sequence (−1)n is convergent and lim(−1)n = a
Let ∈= 1 > 0
There exists a positive integer N such that
|(−1)n

− a| < 1 if n ≥ N
suppose n is even
|1 − a| ¡ 1 if n ≥ N
−1 < 1 − a < 1 if n ≥ N
−2 < −a < 0 if n ≥ N
2 > a > 0 if n ≥ N suppose n is odd
| − 1 − a| ¡ 1 if n ≥ N
−1 < −1 − a < 1 if n ≥ N
−1 + 1 < −a < 1 + 1 if n ≥ N
0 > a > −2 if n ≥ N
Therefore we have a > 0 and a < 0
Hence (−1)n is diverges.

Theorem 2.5.1 Let (xn) be a sequence of positive real numbers such that lim( xn+1
xn

) = L
exists. If L < 1, then (xn) converges and lim(xn) = 0

Proof
since (xn) is a sequence of positive real numbers. we have ( xn+1

xn
) is also a sequence

of positive real numbers.
By previous theorem, L ≥ 0
suppose L < 1, then 0 ≤ L < 1
let r ∈ R such that L < r < 1
let ∈= r − L > 0
since ( xn+1

xn
) converges, there exist a positive integer N, such that

|
xn+1
xn
− L| <∈ if n ≥ N

Then xn+1
xn
<∈ +L if n ≥ N

xn+1
xn
< (r − L) + L if n ≥ N

xn+1
xn
< r if n ≥ N

Therefore xn+1 < rxn if n ≥ N
∴ 0 ≤ xn+1 < r.xn < r2xn−1 < · · · < rn−N+1xN
Let C = xN

rN

∴ 0 ≤ xn+1 < c.rn+1

since 0 < r < 1
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∴ lim(xn) = c
consider a(xn) with xn = n

2n .
Discuss about the convergent of (xn) and find the limit xn = n

2n , xn+1 = n+1
2n+1

By previous theorem xn+1
xn

= n+1
2n+1 .

2n

n

= 2n.n+1
2n.2n

= n+1
2n

lim( xn+1
xn

) = 1
2 < 1

By previous theorem, we have
xn converges and lim(xn) = 0
2. Let a > 0 construct a sequence (sn) of real numbers such that lim(sn) =

√
a

Solution
Let s1 > 0 be arbitrary and define sn+1 = 1

2 (sn + a
sn

) for n ∈ N

Now sn+1 = 1
2 ( s2

n+a
sn

)

2sn+1 =
s2

n+a
sn

2sn+1sn = s2
n + a

s2
n − 2sn+1.sn + a = 0

since the quadratic has real roots, we must have
4.s2

n+1 − 4a ≥ 0
4s2

n+1 ≥ 4a
s2

n+1 ≥ a, n ∈ N
Now sn − sn+1
= sn −

1
2 (sn + a

2n )

= 1
2 ( s2

n−a
sn

)
Therefore sn − sn+1 ≥ 0
sn ≥ sn+1, n ∈ N
clearly (sn) is a monotone decreasing sequence.
∴ (sn) is convergent.
lim(sn) = s
lim(sn) = lim(sn+1)
= lim[ 1

2 (sn + a
sn

)]
= lim[ 1

2 (sn + a
2

1
sn

)]
=[ 1

2 lim(sn) + a
2 .

1
lim(sn) ]

= 1
2 s + a

2 .
1
s

= 1
2 (s + a

s )
2s2 = s2 + a
s2 = a
s =
√

a and s = −
√

a
∴ s > 0
∴ lim(sn) =

√
a

Theorem 2.5.2 Let en = (1 + 1
n )n, n ∈ N then, lim(en) = e

Proof
Given en = (1 + 1

n )n

since, the expression for en contains n + 1 terms, and the expression for en+1 con-
tains n + 2 terms and each term appearing in en ≤ en+1. Therefore (en) is monotone
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increasing sequence
since 2p−1

≤ p! , (p = 1, 2, . . . ,n)
1

2p−1 ≥
1
p!

Hence 2 ≤ en = 3
∴ (en) is bounded.
Hence (en) is convergent and lim(en) lies between 2 and 3. We define the number e
to be the limit of this sequence.
∴ lim(en) = e
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Questions Opt 1 Opt 2 Opt 3 Opt 4 Answers

If A is the set of even prime numbers and B is the set of 

odd prime numbers. Then  

A is a subset 

of B

B is a subset 

of A

A and B are 

disjoint

A and B are 

not disjoint

A and B are 

disjoint

which relation is not a function?

{(2,5),(3,6).(4

,7)}

{(2,1),(3,2).(4

,7)}

{(2,1),(2,3).(3

,4),(4,1))}

{(2,1),(3,3),(4

,1)}

{(2,1),(2,3).(3

,4),(4,1))}

Given the relation A={(5,2),(7,4),(9,10),(x,5)}. Which 

of the following value for x will make relation on A as 

a function? 7 9 4 5 4

Let A be the set of letters in the word  " trivial" and let 

B  be the set of letters in the word difficult. Then A-B= {a,r,v} {d,f,c,u} {I,l.t} {a,I,l,r,t,v} {a,r,v}

Let S be the set of of all 26 letters in the alphabet and 

let A be the set of letters in the word "trivial". Then the 

number of elements in                    is 19 20 21 22 21

Let A={1,2}. Then A X A = {(1,1),(2,2)} {(1,2),(2,1)}

{(1,1)(1,2),(2,

1),(2,2)}

{(1,1),(2,2),(2

,1)}

{(1,1)(1,2),(2,

1),(2,2)}

Let A={1,2} and B={a,b,c}. Then number of elements 

in A X B = 2 3 2*2*2 2*3 2*3

Suppose n(A)=a and n(B)=b. Then number of elements 

in A X B is a b ab a+b ab

Let A={1,2} and B={a,b,c}. Then which of the 

following element does not belongs to  A X B = (1,a) (3,c) (c,2) (1,c) (c,2)

Let F be a function and  (x,y) in F and (x,z) in F. Then 

we must have x=y y=z z=x x=x y=z

If the number of elements in a set S are %. Then the 

number of elements  of the power set P(S)= 5 6 16 32 32

If range of f is equal to codain set, then f is into onto one-one many to one onto

Converse of function is a function only if f is into onto one-one bijection bijection

Inverse function is always into onto one-one bijection bijection

If A and B contains n elements then number bijection 

between A and B is n! n n+1 n-1 n!

Let f be  a function from A to B. Then we call f as a 

sequence only if  A is a

set of positive 

integers

set of all real 

numbers

set of all 

rationals

set of 

irrationals

set of positive 

integers

Two sets A and B are said to be similar iff there is a 

function f exists such that f is into one-one onto bijection bijection

If two sets A={1,2,…,m} and B={1,2,..,n} are smilar 

then m<n n<m n=m n>0 n=m

Which of the following is an example for countable?

set of real 

numbers

set of all 

irrationals

set of all 

rationals (0,1)

set of all 

rationals

Number of elements in the set of all real numbers is finite

countably 

infinite 10000000000 uncountable uncountable

The union of elements A and B is the set of elements 

belongs to either A or B

neither A not 

B both A and B

A and not in 

B either A or B

The set of elements belongs A and not in B is B A B-A A-B A-B

The set of elements belongs B and not in A is B A B-A A-B B-A

Countable union of countable set is uncountable countable finite

countably 

infinite countable

N X N is uncountable countable finite

countably 

infinite countable

 Z X R is uncountable countable finite

countably 

infinite uncountable

R x R is uncountable countable finite

countably 

infinite uncountable

The set of sequences consists of only 1 and 0 is uncountable countbale finite

countably 

infinite uncountable



Every subset of a countable set is uncountable countable finite

countably 

infinite countable

Every subset of a finite set is uncountable countable finite

countably 

infinite finite

Fibonnaci numbers is  an example for 

uncountable 

set countable set finite set infinte set countable

Suppose A  and  B is countable then A X B is uncountable countable finite infinite countable

A X B is  similar to A B A XA A X B A X B

The set of all even integers is uncountable countable finite infinite countable

(0,1] is uncountable countable finite

countably 

infinite uncountable

{1,2,…..,100000} uncountable countable infinite

countably 

infinite countable

Suppose f is a  one to one function. Then x not eqaul y 

implies

f(x)  is not 

equal to f(y) f(x)=f(y) f(x)<f(y) f(x)>f(y)

f(x) is not 

equal to f(y)

Suppose f is  a one to one function. Then f(x)=f(y) 

implies x=-y y=x+10 x=y

x is not eqaul 

y x=y

Let f be a bijection  between A and B and A is 

counatble then B is uncountable countable finite similar to R countable

Let f be a function defined on A and itself such that 

f(x)=x. Then f is onto one to one bijection

neither one to 

one nor onto bijection

Constant function is an example for onto one to one many to one bijection many to one

Stricly increasing function is 

an onto 

function one to one many to one bijection one  to one

Strictly decreasing function is

an onto 

function one to one many to one bijection one to one

If g(x)  = 3x + x + 5, evaluate g (2) 8 9 13 17 13

A = {x: x ≠ x }represents {1} {} {0} {2} {}

If a set A has n elements, then the total number of 

subsets of A is n! 2n 2
n

n 2
n
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CHAPTER 3

INFINITE SERIES

3.1 Introduction

If x = (xn) is a sequence in R then the infinite series or series generated by x is the
squence s = sn defined by
s1 = x1
s2 = x1 + x2
s3 = x1 + x2 + x3

Remark 3.1.1 1. clearly sn = x1 + x2 + · · · + xn
sn = x1 + x2 + · · · + xn−1 + xn
= sn−1 + xn
2. The numbers xn are called the terms of the series and the numbers sn is called the partial
sum of this series.
3. If lim S exists, we say that the series is convergent and this limit is the sum or the value
of this series.
4. If this limit does not exists, we say that the series is divergent.
5. It is convergent to use symbols such as

∑
(xn) to denote the infinite series.

Example 3.1.1 consider the series
∑ 1

n(n+1)

Solution
∑ 1

n(n+1)

Now 1
n(n+1) = 1

n −
1

n+1
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Then sn = 1
1.2 + 1

2.3 + . . .
= (1 − 1

2 ) + ( 1
2 −

1
3 ) + . . .

= 1 − 1
n+1

lim sn = lim(1 − 1
n+1 )

= lim(1) − lim( 1
n+1 )

= 1 − 0
= 1
∴

∑ 1
n(n+1) is converges.

3.2 Geometric series

Example 3.2.1 Consider the series
limrn = 1 + r + r2 + . . .
Solution

limrn = 1 + r + r2 + . . .
Now Sn = 1 + r + r2 + · · · + rn−1

sn(1 − r) = sn − snr
= 1 + r + r2 + · · · + rn−1

− (1 + r + r2 + · · · + rn−1).r
= 1 − rn

Sn(1 − r) = 1 − rn

sn = 1
1−r −

rn

1−r
sn −

1
1−r = − rn

1−r
sn −

1
1−r = − rn

1−r
lim(sn −

1
1−r ) = lim(− rn

1−r )
lim(sn(1 − r)) = lim(1 − rn)
= lim(1) − lim(rn) = 1
∴

∑
rn coverges if |r| < 1

3.3 The nth term test

Theorem 3.3.1 If the series
∑

xn converges then
lim(xn) = 0

Proof
Suppose

∑
xn converges

Let Sn be the partial sum of αn
By definition of convergence of

∑
xn, we have

lim(sn) = x
Now sn = sn−1
(x1 + x2 + · · · + xn) − (x1 + x2 + . . . xn−1)
i.e., xn = sn − sn−1

lim(xn) =
lim(sn − sn−1)
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=
lim(sn) −
lim(sn−1)
x − x = 0
Therefore
lim(xn) = 0

Example 3.3.1 Consider
∑ 1

r(r+1)∑ 1
r(r+1) = 1

1.2 + 1
2.3 + · · · + 1

r(r+1)

lim( 1
r(r+1) ) = lim( 1

r −
1

r+1 )
= lim( 1

r ) − lim( 1
r+1 )

= 0

Example 3.3.2 consider the series
∑

rn, |r| < 1∑
rn = r0 + r1 + · · · + rn + . . .

lim(rn) = 0

Example 3.3.3 Consider
∑

(−1)n∑
(−1)n = (1)0 + (−1)1 + . . .

= 1 − 1 + 1 − 1 + 1 − 1 + . . .

lim(sn) does not exist.

Theorem 3.3.2 Let (xn) be a sequence of nonnegative real numbers. Then the series
∑

xn
converges if and only if the sequence S = (Sk) of partial sums is bounded. In this case∑

xn = lim(Sk) = sup{Sk : k ∈ N}

Proof
since xn > 0, we have
S1 = x1
S2 = x1 + x2
= S1 + x2
S2 > s!
S3 = x1 + x2 + x3
= S2 + x3
S3 > s2
∴, the sequence of partial sums satisfies
S1 < s2 < S3 < . . .
∴ (Sk) is monotone sequence.
Suppose

∑
xn converges

By convergence definition
(Sk) converges , ∴ (Sk) is bounded.
Conversely (sk) is bounded
i.e., (Sk) is monotone and bounded.
By monotone convergence theorem, (Sk) converges∑

xk converges.
Moreover, lim(sk) = sup{Sk : k ∈ N}
∴

∑
xk = sup{Sk : k ∈ N}

Example
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Consider the series
∑

( 1
n )

Solution
S1 = 1
S2 = 1 + 1

2 = 3
2

S3 = 1 + 1
2 + 1

3 = 11
6

. . .
S1 < S2 < . . .
clearly (Sk) is not bounded. ∴

∑
( 1

n ) is divergent.
2. Show that

∑ 1
(n+1)(n+2) = 1

Solution
Sn = 1

1.2 + 1
2.3 + · · · + 1

(n+1)(n+2)
we know that

1
(n+1)(n+2) = 1

(n+1) −
1

(n+2)

Sn = 1 − 1
n+2

lim(Sn) = lim(1 − 1
n+2 )

lim(1) = lim( 1
n+2 )

= 1 − lim( 1
n )

= 1 − 0
= 1∑ 1

(n+1)(n+2) converges and
∑ 1

(n+1)(n+2) = 1

Theorem 3.3.3 The p-series
∑ 1

np diverges when 0 < p ≤ 1

Proof
We know that np

≤ n if 0 < p ≤ 1
Then 1

np ≥
1
n

1
n ≤

1
np

since the harmonic series,
∑ 1

n diverges, we have∑ 1
np diverges.

Cauchy criterion series
The series

∑
xn converges if and only if for every ∈> 0 there exist M(∈) ∈ N such

that if m > ≥M(∈) then |Sm − Sn| = |xn+1 + xn+2 + · · · + xm| <∈

3.4 Comparison test

Let X = (xn) and Y = (yn) be real sequences and suppose that for some k ∈ N we
have 0 ≤ xn ≤ yn for n ≥ k
(a) Then the convergence of

∑
yn implies the convergence of

∑
xn. (b) The diver-

gence of
∑

xn implies the divergence of
∑

yn.
Proof
(a) suppose that

∑
yn converges. By cauchy criterion, given ∈> 0 There exist

M(∈) ∈ N such that |yn+1 + yn+2 + · · · + ym| <∈ if m > n ≥ M(∈). Therefore
yn+1 + yn+2 + · · · + ym <∈
xn+1 + xn+2 + · · · + xm < yn+1 + yn+2 + · · · + ym <∈
xn+1 + xn+2 + · · · + xm <∈
|xn+1 + xn+2 + · · · + xm| <∈ if m > n ≥M(∈)
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By cauchy criterion,
∑

xn converges.
(b) Suppose

∑
xn diverges

To prove
∑

yn diverges
suppose

∑
yn converges

by(a)
∑

xn converges
⇔

∑
xn diverges.

∴
∑

yn diverges.

3.5 limit comparison test

Theorem 3.5.1 suppose that X = (xn) and Y = (yn) are strictly positive sequences and
suppose that the following limit exists in R. r =
lim( xn

yn
)

(a) If r , 0 then
∑

xn is convergent if and only if
∑

yn converges.
(b) If r = 0 and if

∑
yn is convergent the

∑
xn converges.

Proof
(a) Suppose r = lim( xn

yn
) and r , 0 then, clearly r > 0.

By convergence of sequence ( xn
yn

), we have r
2 > 0 there exist a N such that

|
xn
yn
− r| < r

2 if n ≥ N
Therefore, −r

2 < xn
yn
− r < r

2 if n ≥ N
−r
2 + r < xn

yn
− r + r < r

2 + r
r
2 <

xn
yn
< 3r

2

Therefore r
2 <

xn
yn
< 3r

2 < 2r
r
2 <

xn
yn
< 2r if n ≥ N

r
2 yn ≤ xn < 2r.yn if n ≥ N
suppose

∑
yn convergent.∑

(2r)yn converges.
By comparison test,

∑
xn converges.

By comparison test,
∑

( r
2 )yn converges.

Therefore
∑

yn converges.
(b) suppose r = lim( xn

yn
) and r = 0

for given ∈> 0 ∈= 1 > 0, there exist N such that
|
xn
yn
− r| < 1 if n ≥ N

|
xn
yn
| < 1 if n ≥ N

xn < yn if n ≥ N
Therefore, 0 < xn < yn if n ≥ N
suppose

∑
yn converges, by comparison test,

∑
xn converges.

Theorem 3.5.2
∑ 1

n2 is convergent.

Proof
Let k1 = 21

− 1 = 2 − 1 = 1

Sk1 = S1 = 1(sum of first term)
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Let k2 = 22
− 1 = 4 − 1 = 3

Sk2 = S3 = 1 +
1
22 +

1
32

< Sk2 = S3 = 1 +
1
22 +

1
22

= 1 +
2
2x

= 1 +
1
2

Therefore Sk2 < 1 + ( 1
2 )1

Sk3 = 7 sum of first 7 terms

= Sk2 + (
1
42 +

1
52 +

1
62 +

1
72 )

< 1 +
1
2

+ (
1
42 +

1
42 +

1
42 +

1
42 )

< 1 +
1
2

+
1
4

= 1 +
1
2

+
1
22

Therefore Sk3 < 1 + ( 1
2 )1 + ( 1

2 )2

By mathematical induction , Sk j < 1 + 1
2 + ( 1

2 )2 + · · · + ( 1
2 ) j−1

since the terms in the ( R.H.S) is a partial sum of a geometric series
∑

rn with
r = 1

2 < 1
Also

∞∑
n=0

(1
2

)n

=
1

1 − ( 1
2 )

= 2

∴ The partial sum of
∑ 1

n2 is bounded also s1 ≤ s2 ≤ . . .
∴ The sequence of partial sum is monotone.
By previous theorem,

∑
1n2 converges.

Problem 3.5.1 Prove that
∑ 1

n2+n converges.

Solution clearly 0 < 1
n2+n <

1
n2 , n ∈ N

since the series
∑ 1

n2 converges, by comparison test,
∑ 1

n2+n converges.

Problem 3.5.2 Prove that the series
∑

1n2
− n + 1 is convergent.

Solution Let xn = 1
n2−n+1 and yn = 1

n2

Then xn
yn

=
1

n2−n+1
1

n2

= n2

n2−n+1
By limit comparison test, since

∑ 1
n2 converges, we have∑ 1

n2−n+1 converges.
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Problem 3.5.3 Prove that the series
∑ 1
√

n+1
is divergent.

Solution Let xn = 1
√

n+1
and yn = 1

√
n

Then xn
yn

=
√

1
√

n+1
1
√

n

=
√

n
√

n+1

=
√

1
1+ 1

n
= 1 , 0

By limit comparison test, since
∑ 1
√

n
diverges then

∑ 1
√

n+1
is also divergent.

3.6 Root Test

Theorem 3.6.1 Given a series
∑

an of non-negative terms, Let ρ = lim
√

an
(a) The series

∑
an converges if ρ < 1

(b) The series
∑

an diverges if ρ > 1
(c) The test is inconclusive if ρ = 1

Proof
(a) suppose ρ < 1
Let x be a real number such that e < x < 1 given that ρ = lim

√
an

Therefore there exist a positive integer N such that
√

an < ρ for all n ≥ N
√

an < x < 1 for all n ≥ N
an < xn < 1 for all n ≥ N
since

∑
xn converges, we have

∑
an converges.

(b) suppose ρ > 1
Then (an)

1
n > 1 for infintely many.

∴ (an) > 1 for infintely many.
lim(an) > 1 , 0
∴

∑
an diverges.

(c) consider the series
∑ 1

n and
∑ 1

n2 for both series ρ = 1
clearly,

∑ 1
n diverges and

∑ 1
n2 converges

Therefore, the test is inconclusive.

Problem 3.6.1 Discuss about the convergence of
∑

[ n
n+1 ]n2

Solution Let an =
∑

[ n
n+1 ]n2

Therefore,
√

an = (an)
1
n

= [[ n
n+1 ]n2

]
1
n

= ( n
n+1 )n

∴ lim
√

an = lim[ 1
(1+ 1

n )n ]

=
lim(1)

lim(1+ 1
n )n

= 1
ρ ¡ 1

Therefore, ρ < 1
By root test,

∑
[ n

n+1 ]n2
converges.

Problem 3.6.2 Discuss about the convergence of
∑

(logn)−n
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Solution Let an = (logn)−n
√

an = (an)
1
n

since an = (logn)−n

= (logn)−1 = 1
logn

lim
√

(an) = lim( 1
logn ) < 1

ρ < 1, by root test,
∑

(logn)−n converges.

3.7 Ratio test

Theorem 3.7.1 Let
∑

an be a series of positive terms such that lim an+1
an

= L
(a) The series

∑
an converges if L < 1. (b) The series

∑
an diverges if L > 1. (c) The test is

inconclusive if L = 1

Proof
(a) suppose L < 1 Let x be a real number such that L < x < 1
Then there exist a positive integer N such that

an+1an
< x for all n ≥ N an+1xn+1

<
an
xn for all n ≥ N

an+1xn+1

<
an
xn ≤ aNxN for all n ≥ N

an+1xn+1

<
aN
xN

if n ≥ N
an+1xn+1

< c
an+1 < c.xn+1 if n ≥ N
since x < 1 and

∑
xn converges for |x| < 1, we have

∑
an converges.

(b) suppose L > 1
an+1
an
> 1 for infinitely many

Therefore an+1 > an for infintely many
∴

∑
an diverges.

(c) consider the series
∑ 1

n and 1
n2

for both series L = 1
clearly,

∑ 1
n diverges and

∑ 1
n2 converges.

∴ The test is inconclusive.

Remark 3.7.1 Let
∑

an be a series of positive terms such that
lim an

an+1
= L

(a) The series
∑

an converges if L > 1 (b) The series
∑

an diverges if L < 1
(c) The test is inconclusive if L = 1

Problem 3.7.1 Test the convergence of the series
∑ 5n−1

n!

Solution Here an = nthterm = 5n−1

n!
an+1 = nthterm = 5n

(n+1)!

= 5n

n!(n+1)
an

an+1
= 5n−1

n!
n!(n+1)

5n

= n+1
5
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lim( an
an+1

) =

lim( n+1
5 )

Therefore, by ratio test,
∑ 5n−1

n! converges

Problem 3.7.2 Test the convergence of the series
∑ 2n

n3+1

Solution Here an = nthterm = 2n

n3+1

an+1 = nthterm = 2n+1

(n+1)3+1
an

an+1
= ( an

n3+1 ). (n+1)3+1
2n.2

= 1
2 < 1

lim an
an+1

= 1
2

By ratio test
∑ 2n

n3+1 is divergent.

Problem 3.7.3 Test the convergence of the series
∑ (n+1)n

n!

Solution an =
∑ (n+1)n

n!

an+1 =
∑ (n+2)n+1

(n+1)!
an

an+1
=

(n+1)n

n!
n!(n+1)
(n+2)n+1

=
(n+1)n+1

(n+2)n+1

=
(n+1)n+1

[(n+1)+1]n+1

= 1
[1+ 1

n+1 ]n+1

an
an+1

= 1
e ¡ 1

∴ By ratio test
∑ (n+1)n

n! is diverges.

Problem 3.7.4 Test the convergence of the series 2!
3 + 3!

32 + . . .

Solution Here an =
(n+1)!

3n

an+1 =
(n+2)!
3n+1

an
an+1

= 3
n+2

lim( an
an+1

) = lim( 3
n+2 ) = 0 < 1

(n+1)!
3n is diverges.

Problem 3.7.5 Test the convergene of the series 1
1+2 + 2

1+22 + . . .

Solution Here an = n
1+2n

an+1 = n+1
1+2n+1

an
an+1

=
n(1+2n+1)
1+2n(n+1)

lim an
an+1

=

lim n(1+2n+1)
1+2n(n+1)

= 2 > 1
∴ The above series is convergent.
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3.8 Alternating series

The series
∑

(−1)n−1an = a1− a2 + a3− a4 + . . . is alternating series where each a0 > 0.

3.9 Leibniz’s rule

Theorem 3.9.1 If {an} is an monotone decreasing sequence with limit 0, the alternating
series

∑
(−1)n−1an converges. If S denotes its sum and Sn its nth partial sum, we also have

0 < (−1)n(S − Sn) < an+1 for all n ≥ 1

Proof
The partial sums S2n form an increasing sequence.
S2n+2−S2n = (a1− a2 + a3− a4 + · · · − a2n + a2n+1− a2n+2)− (a1− a2 + a3− · · ·+ a2n−1− a2n
= a2n+1 − a2n+2 > 0
= S2n+2 − S2n > 0
∴ S2n+2 > S2n
Also the partial sums S2n−1 form a decreasing sequence.
Both sequenes are bounded below by S2 and bounded above by S1.
∴ Each sequence (S2n) and (S2n−1) are monotone and bounded.
∴ By monotone convergence theorem (S2n) and (S2n−1) converges
∴ lim S2n = S′ and lim S2n−1 = S′′

Now, S′ − S′′ = lim S2n − lim S2n−1
= lim(S2n − S2n−1)
= lim(−a2n) = − lim a2n = 0
Therefore S′ = S′′ = S Therefore sequence of partial sums converges.
∴

∑
(−1)n−1an converges.

since (S2n) is a monotonicallly increasing sequence, we have
S2n < S2n+2 ≤ S
since (S2n−1) is a monotonically decreasing sequence, we have
S2n < S2n+2 < S2n−1
∴we have
0 < S2n−1 − S ≤ S2n−1 − S2n = a2n+1
and 0 < S2n−1 − S ≤ S2n−1 − S2n = a2n
Hence we have. 0 < (−1)n(S − Sn) < an+1

3.10 Absolute convergence

Let X = (xn) be a sequence in R. we say that the series
∑

xn is absolutely convergent
if |xn| is convergent in R.
Conditional convergent
A series is said to be conditionally convergent but not absolutely convergent.

Example 3.10.1 Consider a series
∑ (−1)n

n

By Leibnitz’s test,
∑ (−1)n

n converges.
Now

∑
|
(−1)n

n | =
∑ |(−1)n

|

|n| =
∑ 1

n diverges is conditionally convergent.
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Remark 3.10.1 A series of positive terms is absolutely convergent if and only if it is
convergent.
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Question Opt 1 Opt 2 Opt 3 Opt 4 Answer

If an increasing sequence is bounded above then

seqeunce 

converges to inf of 

sequence 

converges to sup 

sequence 

converges to 1

sequence 

converges to 0

sequence 

converges to sup 

If an  decreasing sequence is bounded below  then

seqeunce 

converges to inf of 

sequence 

converges to sup 

sequence 

converges to 2

sequence 

converges to 1

sequence 

converges to inf of 

Fibonacci sequence is 

an increasing 

sequence

a decresing 

sequence constant sequence bounded sequence

an incresing 

sequence

If an increasing sequence is bounded above then

seqeunce 

converges to inf of 

sequence 

converges to sup 

sequence 

converges to 3

sequence 

converges to 2

sequence 

converges to sup 

Suppose a sequence in a metric space (S,d) converges to 

both a  and b. Then we must have a<b a>b a-b=1 a=b a=b

In a metric space (S,d), a sequence converges to p. Then 

range of the sequence is bounded unbounded finite infinite bounded

The range of a constant sequence is infinite countably infinite uncountable singlton set singleton set

Suppose in  a metric space (S,d), a sequence converges to p. 

Then   the point p is 

an adherent point 

of S

an accumulation 

point of S

an isolated point 

of S

not an adherent 

point of S

an adherent point 

of S

Suppose in  a metric space (S,d) , a sequence converges to p 

and the rnage of the sequence is infinite. Then p is 

an adherent point 

of S

an accumulation 

point of S

an isolated point 

of S

not an 

accumulation  

an accumulation 

point of S

Suppose in  a metric space, a sequence converges.  Then 

every sequence in 

a metric space 

converges

every subsequence 

of convergent 

sequence 

converges

some subsequence 

of convergent 

sequence 

converges

some sequence in 

a metric space 

converges

every subsequence 

of convergent 

sequence 

converges

A sequence is said to be bounded if if its range is unbounded bounded countable uncountable bounded

The range of the sequence {1/n} is finite {1} {} infinite infinite

The range of the sequence {1/n} is unbounded bounded {} {1,0} bounded

The esequence {1/n} converges diverges oscilates converges to 1 converges

In Euclidean metric space every cauchy sequence is convergent divergent oscilates convergent to 0 converges

Every convergent sequence is a constant seqeunce cauchy sequence increasing decreasing cauchy sequence

The sequence {n^2} converges diverges oscilates converges to 2 diverges

The range of the sequence {n^2} is unbounded bounded {} {0.1} unbounded

The range of the sequence {n^2} is finite {1} {} infinite infinite

The sequence {i^n} converges diverges oscilates converges to 0 diverges

The range of the sequence {i^n} is unbounded bounded {} {0,1} bounded

The range of the sequence {i^n} is finite infinite {} {0,1} finite

The sequence {1} converges diverges oscilates converges to 0 converges

The range of the sequence {1} is {} {1} {1,0} {1,2,3} {1}

The range of the sequence {1} is bounded unbounded {1,0} {0} bounded
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CHAPTER 4

SUBSEQUENCES

4.1 Subsequences

Definition 4.1.1 Let X = (xn) be a sequence of real numbers and let n1 < n2 < n3 < . . .
be a strictly increasing sequence of natural numbers. Then the sequence X′

= (xnk) given
by (xn1 , xn2 , . . . ) is called a subsequence of X

Example 4.1.1 Consider a sequence X = (1, 1
2 ,

1
3 , . . . )

Let X′

= ( 1
2 ,

1
4 , . . . )

clearly, x′ is a subsequence of X. note that n1 = 2,n2 = 4, . . .

Definition 4.1.2 If X(x1, x2, . . . ) is a sequence of real numbers and if m is a given natural
numbers, then the m-tail of X is the sequence. Xm = (xm+1, xm+2, . . . )

Remark 4.1.1 A tail of a sequence is a special type of subsequence. (ii) Not every subse-
quence of a given sequence need be a tail of the sequence.

Theorem 4.1.1 If a sequence X = (xn), of real numbers converges to a real number x, then
any subsequencece x′ = (xnk ) of x, also converges to x.

Proof
Given that,
limxn = x
∴ for given ∈> 0, there exist a positive integer N such that |xn − x| <∈ if n ≥ N
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Let X′

= (xnk ) be a subsequence of X. The n1 < n2 < n3 < . . . clealy nk ≥ k
suppose k ≥ N, then nk ≥ N
|xnk − x| <∈
Therefore (xnk ) converges to x

Definition 4.1.3 For a sequence (xn), we say that the mth term xm of (xn) if xm ≥ xn for
all n ≥M.

Remark 4.1.2 In a decreasing sequence, every term is peak and in an increasing sequence
no term is peak.

4.2 The cauchy sequences

Definition 4.2.1 A sequence X = (xn) of real number is said to be a cauchy sequence if
for every ∈> 0, there exist a natural number N such that |xn − xm| ∈ if n,m ≥ N

Theorem 4.2.1 If X = (xn) is a convergent sequence of real numbers then X is a cauchy
sequence.

Proof
Let X = (xn) be a convergent sequence. Let lim xn = x
Let ∈> 0 be arbitrary, then for ∈2 > 0, there exist a positive integer N such that
|xn − x| < ∈

2 if n ≥ N
Let n,m ≥ N
Now |xn − xm| = |xn − x + x − xm|

≤ |xn − x| + |x − xm| ¡ ∈2 + ∈

2 = ∈
|xn − xm| <∈ if n,m ≥ N
Therefore (xn) is a cauchy sequence.

Theorem 4.2.2 A caushy sequence of real number is bounded

Proof
Let X = (xn) be a cauchy sequence
Let ∈= 1, then there exist a positive integer N such that
|xn − xm| < 1 if n,m ≥ N
In particular, |xn − xm| < 1 if n,m ≥ N
Now |xn| − |xN | ≤ |xn − xN | < 1 if n ≥ N
∴ |xn| − |xN | < 1 if n ≥ N
|xn| < 1 + |xN | if n ≥ N
Let M = sup{|x1|, |x2|, . . . , |xN+1|, 1 + |xN |}

Then |xn| < M for all n
Therefore −M < xn < m for all n
Therefore (xn) is bounded.

4.3 Cauchy convergence criterion

Theorem 4.3.1 A sequence of real number is convergent if and only if it is cauchy sequence.
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Proof
Suppose X = (xn) is a convergent sequence
by previous theorem, X is a cauchy sequence.
Conversely suppose X = (xn) is a cauchy sequence. by previous theorem, X is
bounded
By Bolzono theorem, X has a convergent subsequence.
Let xnk → x
claim xn → x
since X is cauchy sequence, for given ∈

2 > 0, there exist a positive integer N such
that
|xn − xm| < ∈

2 if n,m ≥ N
since (xnk ) converges to x, for ∈2 > 0, there exist a positive integer k ≥ N such that
|xk − x| < ∈

2 if n ≥ N
Now |xn − x| = |xn − xk + xk − x|
≤ |xn − xk| + |xk − x|= ∈
i,e., |xn − x| <∈ if n ≥ N, therefore xn → x
i.e., X is a convergent sequence.

Problem 4.3.1 Discuss the convergence of the series 1 − 1
√

2
+ 1
√

3
− . . .

Solution
Given series is an alternating series.
Let an = 1

√
n

an+1 = 1
√

n+1
an+1 − an = 1

√
n+1
−

1
√

n

=
√

n−
√

n+1
√

n
√

n+1
< 0

an+1 − an < 0
An+1 < an
∴ {an} is monotonically decreasing also lim an = 1

√
n

= 0
∴ The given Solution satisfies all the conditions of Leibnitz rule. The given series
converges.

Problem 4.3.2 Discuss the convergence of 5
2 −

7
4 + 9

6 − . . .

Solution
Given series is an alternating series
LEt an = 2n+3

2n

an+1 =
2(n+1)+3

2(n+1)

= 2n+5
2n+2

an+1 − an = −6
2n(2n+2) < 0

an+1 < an
∴ {an} is monotonically decreasing. Also
liman = 2n+3

2n
2+0

2 = 1 , 0
∴ the given series does not satisfies one of the condition of Leibnitz test.
∴ the given series diverges.

Problem 4.3.3 Discuss the convergence of the series 1
log2 −

1
log3 + 1

log4 − . . .
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Solution
Given series is alternating series
Let an = 1

log(n+1)

an+1 = 1
log(n+2)

an+1 − an = 1
log(n+2) −

1
log(n+1) ¡ 0

an+1 − an < 0
an+1 < an
∴ {an} is a monotonically decreasing.

liman = 1
log(n+1)

= 1
∞

= 0
Therefore the given series satisfies all the condition of leibnitz test.
The given series is convergent.
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Question Opt 1 Opt 2 Opt 3 Opt 4 Answer

Constant sequence converges oscillates diverges converges to 1 Converges

The sequence {1,1,1,1,1,…..} converges oscillates diverges converges to 1 converges to 1

The sequence {1,0,1,0,1,0,…} converges oscillates diverges converges to 1 Oscillates

The harmonic series converges if P=1 p>1 P<1 P=0 p>1

In limit comparison test both the series converges absolutely 

if 
r=1 r=0

r is not equal to 

zero
R=2

r is not equal to 

zero

For the absolute  convergence of the series, the ratio 

between n+1th term and nth term must be 
Less than r Greater than r

Less than or 

equal to r

Greater than 

equal to r 

Less than or 

equal to r

For the absolute  convergence of the series, the   nth root of 

nth  term must be 
Less than r Greater than r

Less than or 

equal to r

Greater than 

equal to r 

Less than or 

equal to r

The alternating harmonic series converges oscillates diverges converges to 1 Converges

If a series converges absolutely, the series converges oscillates diverges converges to 1 Converges

A series converges iff converges absolutely if the series 

consists of ----terms
positive negative Non zero Either a or b Positive

The series 1-1+1-1+1-1+… converges oscillates diverges converges to 1 Diverges

{1,2,…..,100000} uncountable countable infinite

countably 

infinite countable

Suppose f is a  one to one function. Then x not eqaul y 

implies

f(x)  is not equal 

to f(y) f(x)=f(y) f(x)<f(y) f(x)>f(y)

f(x) is not equal 

to f(y)

Suppose f is  a one to one function. Then f(x)=f(y) implies x=-y y=x+10 x=y x is not eqaul y x=y

Let f be a bijection  between A and B and A is counatble then 

B is uncountable countable finite similar to R countable

Let f be a function defined on A and itself such that f(x)=x. 

Then f is onto one to one bijection

neither one to 

one nor onto bijection

Constant function is an example for onto one to one many to one bijection many to one

Stricly increasing function is an onto function one to one many to one bijection one  to one

Strictly decreasing function is an onto function one to one many to one bijection one to one

If g(x)  = 3x + x + 5, evaluate g (2) 8 9 13 17 13

A = {x: x ≠ x }represents {1} {} {0} {2} {}
If a set A has n elements, then the total number of subsets of 

A is n! 2n 2
n

n 2
n
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CHAPTER 5

SEQUENCES AND SERIES OF
FUNCTIONS

5.1 Sequences of functions

Definition 5.1.1 Let A ⊆ R be given and suppose that for each n ∈ N there is a function
fn : A→ R, we say that ( fn) is a sequence of functions A to B→ R.

Definition 5.1.2 A sequence ( fn) of functions on A ⊆ R to R, converges to a function
f : A→ B if for every ∈> 0 there exist a positive integer N(∈, x) such that | fn(x)− f (x)| <∈
if x ∈ A and n ≥ N

Remark 5.1.1 (i) The positive integer N will depend on both ∈ and x ∈ A.
(ii) The sequence ( fn) converges on A to f , we have fn → f (or) f (x) = lim fn(x)

Example 5.1.1 Let f (x) = x
n , x ∈ R

Now f (x) = lim fn(x) =
lim( x

n )
= lim x

lim n = x
∞

= 0
Therefore, fn → f for all x ∈ R.

Example 5.1.2 Let fn(x) = xn, x ∈ R
f (x) = lim fn(x) = lim xn

fn → f (x) = 0,−1 < x < 1 (or) fn → f (x) = 1, x = 1
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Example 5.1.3 fn(x) =
sin(nx+n)

n , x ∈ R
f (x) = lim fn(x) = lim sin(nx+n)

n = 0

5.2 Uniform convergence

A sequence ( fn) of functions on A ⊆ R to R converges uniformly on A to a function
f : A→ R if for every ∈> 0 there exist a positive integer N such that | fn(x)− f (x)| <∈
if n ≥ N
Uniform norm
If A ⊆ R and f : A→ B is a function an f is bounded we define the uniform norm
of f on A by ‖ f ‖A = sup{| f (x)| : x ∈ A}
Example
Let f (x) = f rac1x
Then ‖ f ‖ = 1
Note
Suppose ∈> 0, and ‖ f ‖A ≤∈
By definiton of norm of f ,
‖ f ‖ = sup{| f (x)| : x ∈ A} ≤ ∈
| f (x)| ≤ ∈
suppose | f (x)| ≤ ∈
for all x ∈ A
‖ f ‖ ≤ ∈
Hence, ‖ f ‖A ≤ ∈ ⇔ | f (x)| ≤ ∈ for all x ∈ A

Theorem 5.2.1 A sequence ( fn) of bounded function on A ⊆ R converges uniformly on A
to f ⇔ ‖ fn − f ‖ → 0.

Proof
Suppose fn → f uniformly on A. Then for ∈> 0, there exist a positive integer N
such that | fn(x) − f (x)| <∈ if n ≥ N
by previous theorem, ‖ fn − f ‖ <∈ if n ≥ N
‖ fn − f ‖ → 0
conversely suppose ‖ fn − f ‖ → 0
on A
Then for given ∈> 0, thereexistapositiveintegerN such that
|(‖ fn − f ‖) − 0| <∈ if n ≥ N
‖ fn − f ‖ <∈ if n ≥ N
i.e., ‖ fn − f ‖ <∈ if n ≥ N
i.e., | fn(x) − f (x)| <∈ if n ≥ N
∴ fn → f uniformly on A.
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5.3 Series of functions

Definition 5.3.1 If ( fn) is a sequence of functions defined on a subset D of R with values
in R, the sequence of partial sums (Sn) of the infinite series

∑
fn is efined for x in D by

S1(x) = f1(x)
S2(x) = f1(x) + f2(x)
S3(x) = f1(x) + f2(x) + f3(x)

...

In case, the sequence (Sn) of functions converges on D to a function f , we say that the
infinte series of functions

∑
fn converges to f on D.

Definition 5.3.2 If the series
∑
| fn(x)| converges for each α in D, we say that

∑
fn is

absolutely convergent on D.

Definition 5.3.3 If the sequence (Sn) of partial sums is uniformly convergent on D to a
function f , we say that

∑
fn is uniformly convergent on D to f .

5.4 Weierstross M - test

Theorem 5.4.1 Let (Mn) be a sequence of positive real numbers such that | fn(x)| ≤ Mn
for x ∈ D,n ∈ N
If the series

∑
Mn is convergent, then

∑
fn is uniformly convergent on D.

Proof
Suppose m > n
| fn+1(x) + fn+2(x) + · · · + fm(x)|
≤ | fn+1(x)| + | fn+2(x)| + · · · + | fm(x)|
≤Mn+1 + Mn+2 + · · · + Mm
By cauchy criterion for series, The series

∑
xn converges if and only if for every

∈> 0 there exist a positive integer M that if m > n ≥M(∈) then
|Sm − Sn| = |xn+1 + xn+2 + · · · + xm| <∈
since ∈Mn converges, |Mn+1 + Mn+2 + · · · + Mm| <∈
Mn+1 + Mn+2 + · · · + Mm <∈
Therefore | fn+1(x) + fn+2(x) + · · · + fm(x)| <∈
By cauchy criterion for sequence of functions | fn+1(x) + fn+2(x) + · · · + fm(x)| <∈
∴

∑
fn uniformly convergent on D.

5.5 Power series

Definition 5.5.1 A series of real functions
∑

fn is said to be a power series around x = c
if the function fn is of the form fn(x) = an(x − c)n where an and c belong to R and where
n = 0, 1, 2, 3, . . .

Definition 5.5.2 Let
∑

anXn be a power series. If the sequence (|an|
1
n ) is bounded, we get

ρ = lim sup(|an|
1
n
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If this sequence is not bounded, we get ρ = +∞. we define the radius of convergence of∑
anxn to be given by

R = 0 if ρ = +∞
= 1

ρ i f 0 < ρ < ∞
= ∞ if ρ = 0

Remark 5.5.1 The radius of convergence of the series
∑

anxn is also given by
lim(| an

an+1
) provided the limits exists.

Problem 5.5.1 Find the radius of convergence of the series
∑

anxn there an = 1
n!

Solution
an = 1

n!
an+1 = 1

(n+1!)

|
an

an+1
| = | 1n! x

(n+1)!
1 |

= |n + 1| = n + 1
lim |

an
an+1| = lim(n + 1) = ∞

Therefore, The radius of convergence is +∞

5.6 Cauchy-Hadmard Theorem

Theorem 5.6.1 If R is the radius of convergence of the power series
∑

anxn, then the series∑
anxn is absolutely convergent if |x| < R an is divergent if |x| > R

Proof
Suppose 0 < R < +∞ suppose |x| < R
i.e., 0 < |x| < R , then there is a positive real number c < 1 such that |x| < c.R
Therefore |x| < c. 1

ρ

⇒ ρ < c
|x|

⇒ lim sup
√
|an| < c

|x|

Therefore |an| < cn

|x|n
⇒ |an||x|n < cn

⇒ |anxn
| < cn

since c < 1, the geometric series
∑

cn converges.
By comparison test,

∑
|anxn

| converges.
Therefore

∑
anxn converges absolutely.

Suppose |x| > R
|x| > 1

ρ

∴ lim sup
√

an > 1
|x|

⇒ |an| ≥
1
|x|n

⇒ |anxn
| ≥ 1 for infintely many n

By comparison test,
∑

anxn diverges.

Problem 5.6.1 Discuss the uniform convergence of
∑ sinnx

n2

Solution
Given fn(x) = sinnx

n2
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| fn(x)| = | sinnx
n2 |

= |sinnx|
n2

≤
1
n2

since
∑ 1

n2 converges, we have
∑

sinnxn2 converges uniformly.

5.7 Cluster Point

Definition 5.7.1 Let A ⊆ R. A point C ∈ R is a cluster point of A if for every ∈> 0 there
exist atleast one point x ∈ A, x , C, such that
|x − c| <∈

Example 5.7.1 Let A = {1, 2} 1 and 2 are not cluster point of A. Moreover A has no
cluster points of A.

Remark 5.7.1 Finite set has no cluster points. Cluster point is also called limit point.
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Question Opt 1 Opt 2 Opt 3 Opt 4 Answer

If R is the radius of convergence of the series, the series 

converges absolutely if |x|
>R =R <R

Less than or 

equal to R
<R

If rho=infinity, the radius of convergence R is 0 1 2 3 0

If rho=0, the radius of convergence R is 0 1 2 infinity Infinity

If rho is finite, the radius of convergence R is 0 Rho
Reciprocal of 

rho
infinity

Reciprocal of 

rho

If R is the radius of convergence of the series, the series  

diverges  if |x|
>R =R <R

Less than or 

equal to R
>R

If R is the radius of convergence then the interval of 

convergence is
(-R,R] [-R,R] (-R,R) [-R,R) (-R,R)

The sequence of functions (x/n) converges to a function 

x=
0 1 2 3 0

The sequence of functions x power n converges to a 

function x=0 if  x lies between 
1 and 2 -1 and 1 0 and 1 -1 and 0 -1 and 1

A series of positive terms converges then the series
converges 

only

converges 

absolutely
both A and B

neither A nor 

B
both A and B

A convergent series contains only finite number of 

negative terms then it is 

converges 

only

converges 

absolutely
both A and B

neither A nor 

B

converges 

absolutely

A convergent series contains only -------- number of 

negative terms then it is converges absolutely
infinite

10
finite countable finite 

A convergent series contains only  finite number of -------

-- terms then it is converges absolutely
negative positive zero

1
negative

The power series  converges to a continuous function on -

------------

(-R,R) [-R,R] (1,2) [1,2] (-R,R)

If the series converges at x = R, then f is continuous

at ------------------

x=R x<R x>R x≠R x=R

If the series converges at x = −R, then f is continuous

at ---------------

x= -R x=R x<R x≠R x= -R

Union of sets is -------------- commutative

not 

commutative

not 

associative disjoint commutative

The complement of A relative to B is denoted by ----------

---- B - A B A A - B B - A

If  A intersection B is the empty set, then A and B are 

called -------- commutative

not 

commutative

not 

associative disjoint disjoint

B - (union A) = ----------------- union (B -A)

B - 

(intersection 

A)

intersection 

(B - A) {}

intersection 

(B - A)

B - (intersection A) = ----------------------- union (B -A) B - (union A)

intersection 

(B - A) {} union (B -A)

Union of countable sets is ----------------- uncountable infinite countable disjoint countable

The set of all rational numbers is --------------- uncountable infinite countable disjoint countable

The set S of intervals with rational end points is ---------- 

set uncountable infinite countable disjoint countable

The product of two prime numbers will always be 

even number odd number 

neither 

prime nor 

composite composite composite  

Let A be the set of all  prime numbers. Then number of 

elements in A is countable uncountable finite empty countable
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Answer ALL questions
PART - A (20 × 1 = 20 marks)

1. Let f : R → R be a function defined by f (x) = x.
Then f is ——
a.one-one b. onto
c. bijection d. neither onto nor one-one

2. The set of all positive integers {1, 2, · · · } is ——
a. finite b. infinite
c. countable d. uncountable

3. Greatest lower bound of set of all positive even
integers is ——
a. 2 b. 0
c. 1 d. 4

4. Let S be a bounded above set of real numbers and
sup S = u. Then for x ∈ S, we have ——
a. x > u b. x < u
c. x ≤ u d. x ≥ u

5. Let f : Z → Z be a function defined by f (x) = x2

whereZ is a set of all real numbers. Then the range
of f is ——
a. Z b. N
c. W d. {0, 1, 4, 9, · · · }

6. Which equation does not represent a function?
a. y = 2x b. y = x2 + 10
c. y = 10

x d. x2 + y2 = 95

7. B − (B − A) = A if ——
a. B ⊂ A b. A ⊂ B
c. A ∪ B = A d. A ∪ B = A

8. Let A = {a, b} and B = {1, 2, 3}. Then the number of
distinct functions from A into B is ——
a. 8 b. 9
c. 6 d. 5

9. Which of the following sets is countable?
a. (0,∞)
b. R
c. set of all irrational numbers
d. set of all Fibonacci numbers

10. sup {1 − 1
n : n ∈N}= ——

a. -1 b. 1
c. 0 d. 1

2

11. Suppose lim(xn) = x and lim(−xn) = x. Then x =
——
a. 1 b. 1

2
c. 0 d. −1

12. Suppose lim(xn) = x. For every ε > 0, there is a
+ve integer N such that we have ——
a. x − ε < xn b. x + ε > xn
c. both A and B d. neither A nor B

13. The sequence ((−1)n) is ——
a. convergent b. bounded
c. both A and B d. neither A nor B

1



14. Constant sequence is ——
a. increasing b. decreasing
c. both A and B d. neither A nor B

15. If X = ((−1)n)) and Y =
(
(−1)n+1)

)
then X+Y is ——

a. coverges b. diverges
c. both A and B d. neither A nor B

16. If X and X + Y are convergent, then Y ——
a. coverges b. diverges
c. both A and B d. neither A nor B

17. If x1 = 8 and xn+1 = xn
2 + 2, (xn) is ——

a.monotone b.bounded
c. both A and B d. neither A nor B

18. The sequence
(

1
n

)
is ——

a. convergent b. bounded
c. both A and B d. neither A nor B

19. If zn = (an + bn)n and 0 < a < b, then lim(zn) = ——
a. 0 b. 1
c. a d. b

20. If X converges to x and XY converges then Y con-
verges if —— a. x , 0 b. xn , 0
c. both A and B d. neither A nor B

Part B-(3 × 2 = 6 marks)

21. If a, b ∈ R, prove that |a + b| = |a| + |b| iff ab ≥ 0

22. Define Upper bound.

23. State the completness property of R .

Part C-(3 × 8 = 24 marks)

24. a) (i) State and prove triangle inequality.
(ii) State and prove Archimedean property.

OR

b) Prove that R is uncountable

25. a) (i) State an prove uniqueness of limits.

(ii) Prove that if c > 0 then lim(c
1
n ) = 1

OR

b) Prove that a convergent sequence of real
numbers is bounded.

26. a) State and prove monotone convergence the-
orem

OR

b) State and prove squeeze theorem.

2
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PART-A(20×1=20 Marks) 

1. A convergent sequence is always------sequence 

a) constant   b) unbounded                                     

c) Cauchy   d) non constant 

2. Which of the following is not a Cauchy sequence? 

a) (
1

𝑛
)  b) (𝑛)  c) (

1

2√𝑛
) d) (

1

√𝑛
) 

3. The series ∑ 𝑛2 ⋅ 𝑒−𝑛∞
𝑛  

a) converges  b) diverges                             

c) oscillates  d) converges to 0 

4. The series ∑
1

𝑛(log 𝑛)𝑝
∞
𝑛  , p>1 

a) converges  b) diverges                                            

c) oscillates  d) converges to 0 

5. The series 1 +
1

22 +
22

33 +
33

44 + ⋯ 

a) converges  b) diverges                                      

c) oscillates  d) converges to 1 

6. The series ∑
1

𝑛⋅(𝑛+1)⋅(𝑛+2)
∞
𝑛  

a) converges  b) diverges                                   

c) oscillates  d) converges to 1 

 

 

 

7. If ∑(√𝑛2 + 1  − 𝑛 )is  _________ 

a) diverges  b) uniformly converges                                        

c) absolutely converges d) all the above. 

8. A convergent sequence is _______ sequence                                        

a) unbounded  b) constant                                        

c) bounded  d) non constant 

9. The series 1 −
1

√2
+

1

√3
−

1

√4
+ ⋯ is                                                                                                     

a) diverges   b) converges                                  

c) converges to 1  d) converges to 2 

10. The series 
5

2
−

7

4
+

9

6
−

11

8
+ ⋯                                                                        

a) diverges  b) converges                                        

c) oscillates  d) converges to 0 

11. The series 
1

2
−

1

log 2
−

1

2
+

1

log 3
+

1

2
−

1

log 4
+ ⋯                                                

a) converges  b) diverges                                 

c) oscillates  d) converges to 0 

12. The series 1 +
1

22 −
1

32 −
1

42 +
1

52 +
1

62 −
1

72 −
1

82 + ⋯                            

a) converges  b) diverges                                        

c) oscillates  d) converges to 1 

13. ∑𝑥𝑛 is absolutely convergent if ∃ ------- and   𝑛 ≥ 𝑁 such that 

|
𝑥𝑛+1

𝑥𝑛
| ≤ 1 −

𝑎

𝑛
                                                                                         

a) 𝑎 > 1  b) 𝑎 ≤ 1 c) 𝑎 > 1 d) 𝑎 ≥ 1 

14. If 𝑎 = lim (𝑛 (1 − |
𝑥𝑛+1

𝑥𝑛
|)) exists the ∑𝑥𝑛 converges absolutely 

when ______                                                                                  

a) 𝑎 > 1  b) 𝑎 ≤ 1 c) 𝑎 > 1 d) 𝑎 ≥ 1 



15. If ∑𝑐𝑛 sin 𝑛𝑥 converges uniformly and (𝑐𝑛) is a decreasing 

sequence then lim 𝑛𝑐𝑛 = ____                                                                     

a) 1  b) 2  c) 3  d) 0 

16. Which of the following is a subsequence of (
1

𝑛
) ?                                     

a) (
1

√𝑛
)  b) (

𝑛

𝑛+1
) c) (

1

𝑛2)  d) (
√𝑛

𝑛
) 

17. The series ∑
1

𝑛(log 𝑛)𝑝
∞
𝑛  , 𝑝 ≤ 1 is ________                                             

a) converges  b) diverges                                     

c) oscillates  d) converges to 0 

18. The series ∑
1

𝑛 log 𝑛
∞
𝑛  is _________                                                                 

a) converges  b) diverges                                       

c) oscillates  d) converges to 0 

19. The series ∑ (√𝑛4 + 3 − 𝑛2∞
𝑛 ) is ____________                                      

a) converges  b) diverges                                     

c) oscillates  d) converges to 0 

20. If 𝑛 is odd, ∑ (−1)𝑛 =∞
𝑛  __________                                                          

a) 𝑛  b) −
𝑛

2
  c) 

1

2
(𝑛 + 1) d) 0 

 

PART-B(3×2=6 Marks) 

 

21. Give an example for Cauchy sequence. 

22. Define power series. 

23. Define uniformly convergent of a series. 

 

PART-C(3×8=24 Marks) 

 

24. a) State and prove monotone subsequence theorem. 

(OR) 

b) Prove that a bounded sequence converges to x if every     

subsequence converges to x. 

25. a) State and prove Bolzano- Weirstrass theorem. 

(OR) 

b) Prove that a Cauchy sequence of real numbers is bounded. 

26. a) State and prove 𝑀 test 

(OR) 

b) State and prove Cauchy criterion for series of functions. 
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CHAPTER 4

SUBSEQUENCES

4.1 Subsequences

Definition 4.1.1 Let X = (xn) be a sequence of real numbers and let n1 < n2 < n3 < . . .
be a strictly increasing sequence of natural numbers. Then the sequence X′

= (xnk) given
by (xn1 , xn2 , . . . ) is called a subsequence of X

Example 4.1.1 Consider a sequence X = (1, 1
2 ,

1
3 , . . . )

Let X′

= ( 1
2 ,

1
4 , . . . )

clearly, x′ is a subsequence of X. note that n1 = 2,n2 = 4, . . .

Definition 4.1.2 If X(x1, x2, . . . ) is a sequence of real numbers and if m is a given natural
numbers, then the m-tail of X is the sequence. Xm = (xm+1, xm+2, . . . )

Remark 4.1.1 A tail of a sequence is a special type of subsequence. (ii) Not every subse-
quence of a given sequence need be a tail of the sequence.

Theorem 4.1.1 If a sequence X = (xn), of real numbers converges to a real number x, then
any subsequencece x′ = (xnk ) of x, also converges to x.

Proof
Given that,
limxn = x
∴ for given ∈> 0, there exist a positive integer N such that |xn − x| <∈ if n ≥ N

37
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Let X′

= (xnk ) be a subsequence of X. The n1 < n2 < n3 < . . . clealy nk ≥ k
suppose k ≥ N, then nk ≥ N
|xnk − x| <∈
Therefore (xnk ) converges to x

Definition 4.1.3 For a sequence (xn), we say that the mth term xm of (xn) if xm ≥ xn for
all n ≥M.

Remark 4.1.2 In a decreasing sequence, every term is peak and in an increasing sequence
no term is peak.

4.2 The cauchy sequences

Definition 4.2.1 A sequence X = (xn) of real number is said to be a cauchy sequence if
for every ∈> 0, there exist a natural number N such that |xn − xm| ∈ if n,m ≥ N

Theorem 4.2.1 If X = (xn) is a convergent sequence of real numbers then X is a cauchy
sequence.

Proof
Let X = (xn) be a convergent sequence. Let lim xn = x
Let ∈> 0 be arbitrary, then for ∈2 > 0, there exist a positive integer N such that
|xn − x| < ∈

2 if n ≥ N
Let n,m ≥ N
Now |xn − xm| = |xn − x + x − xm|

≤ |xn − x| + |x − xm| ¡ ∈2 + ∈

2 = ∈
|xn − xm| <∈ if n,m ≥ N
Therefore (xn) is a cauchy sequence.

Theorem 4.2.2 A caushy sequence of real number is bounded

Proof
Let X = (xn) be a cauchy sequence
Let ∈= 1, then there exist a positive integer N such that
|xn − xm| < 1 if n,m ≥ N
In particular, |xn − xm| < 1 if n,m ≥ N
Now |xn| − |xN | ≤ |xn − xN | < 1 if n ≥ N
∴ |xn| − |xN | < 1 if n ≥ N
|xn| < 1 + |xN | if n ≥ N
Let M = sup{|x1|, |x2|, . . . , |xN+1|, 1 + |xN |}

Then |xn| < M for all n
Therefore −M < xn < m for all n
Therefore (xn) is bounded.

4.3 Cauchy convergence criterion

Theorem 4.3.1 A sequence of real number is convergent if and only if it is cauchy sequence.

38
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Proof
Suppose X = (xn) is a convergent sequence
by previous theorem, X is a cauchy sequence.
Conversely suppose X = (xn) is a cauchy sequence. by previous theorem, X is
bounded
By Bolzono theorem, X has a convergent subsequence.
Let xnk → x
claim xn → x
since X is cauchy sequence, for given ∈

2 > 0, there exist a positive integer N such
that
|xn − xm| < ∈

2 if n,m ≥ N
since (xnk ) converges to x, for ∈2 > 0, there exist a positive integer k ≥ N such that
|xk − x| < ∈

2 if n ≥ N
Now |xn − x| = |xn − xk + xk − x|
≤ |xn − xk| + |xk − x|= ∈
i,e., |xn − x| <∈ if n ≥ N, therefore xn → x
i.e., X is a convergent sequence.

Problem 4.3.1 Discuss the convergence of the series 1 − 1
√

2
+ 1
√

3
− . . .

Solution
Given series is an alternating series.
Let an = 1

√
n

an+1 = 1
√

n+1
an+1 − an = 1

√
n+1
−

1
√

n

=
√

n−
√

n+1
√

n
√

n+1
< 0

an+1 − an < 0
An+1 < an
∴ {an} is monotonically decreasing also lim an = 1

√
n

= 0
∴ The given Solution satisfies all the conditions of Leibnitz rule. The given series
converges.

Problem 4.3.2 Discuss the convergence of 5
2 −

7
4 + 9

6 − . . .

Solution
Given series is an alternating series
LEt an = 2n+3

2n

an+1 =
2(n+1)+3

2(n+1)

= 2n+5
2n+2

an+1 − an = −6
2n(2n+2) < 0

an+1 < an
∴ {an} is monotonically decreasing. Also
liman = 2n+3

2n
2+0

2 = 1 , 0
∴ the given series does not satisfies one of the condition of Leibnitz test.
∴ the given series diverges.

Problem 4.3.3 Discuss the convergence of the series 1
log2 −

1
log3 + 1

log4 − . . .
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Solution
Given series is alternating series
Let an = 1

log(n+1)

an+1 = 1
log(n+2)

an+1 − an = 1
log(n+2) −

1
log(n+1) ¡ 0

an+1 − an < 0
an+1 < an
∴ {an} is a monotonically decreasing.

liman = 1
log(n+1)

= 1
∞

= 0
Therefore the given series satisfies all the condition of leibnitz test.
The given series is convergent.

40
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PART-A(20×1=20 Marks) 

ANSWER ALL THE QUESTIONS 

1. Geometric series ∑ 𝑟∞
𝑛=1

𝑛
diverges if  ______ 

a) 𝑟 ≥ 1 b) 𝑟 < 1 c) 𝑟 = 1 d) 𝑟 ≤ 1 

2. If lim |𝑥𝑛| = 0 then lim 𝑥𝑛 =________ 

a) -1  b) 0  c) 1  d) 2 

3. For the series ∑ 𝑟𝑛∞
𝑛   , 𝑠𝑛 = __________ 

a) 
1

1−𝑟
  b) 

1−𝑟𝑛+1

1−𝑟
 c) 

1−𝑟𝑛

1+𝑟
  d)  

1−𝑟𝑛+1

1+𝑟
 

4. The series ∑
1

√(𝑛+1)
∞
𝑛   is ___________ 

a) diverges   b) oscillates               

c) converges   d) converges to 0 

5. The nth (𝑛 ≥ 3) term of the Fibonacci sequence is 

__________ 

a) 𝑓𝑛 = 𝑓𝑛−2 + 𝑓𝑛−1  b) 𝑓𝑛 = 𝑓𝑛−2 − 𝑓𝑛−1 

c) 𝑓𝑛 = 𝑓𝑛−2 × 𝑓𝑛−1  d) n 

6. If  1 +
1

√2
+

1

√3
+ ⋯=______ 

a) diverges   b) converges                                        

c) oscillates   d) converges to 1 

7. A sequence in 𝑅 has ------- one limit 

a) at most   b) at least                                  

c) no    d) all the above 

8. For any 𝑏 ∈ 𝑅, lim (
𝑏

𝑛
) = 

a) -1  b) 1  c) 2  d) 0 

9. If {𝑥𝑛} is a constant sequence with 𝑥𝑛 = 𝑐,  a constant, 

{𝑥𝑛} _____ 

a) diverges  b)  converges                                         

c) oscillates  d) converges to 1 

10. lim
3𝑛+2

𝑛+1
 = ________ 

a) 1  b) 2  c) 3  d) 0 

11. lim (
2𝑛

𝑛+2
) = __________ 

a) -1  b) 1  c) 2  d) 0 

12. For every real 𝑥 there is an integer 𝑛 such that  

___________ 

a) 𝑛 < 𝑥 b) 𝑥 < 𝑛 c) 𝑛 = 𝑥 d) 𝑥 ≤ 𝑛 

13. A real number 
𝑝

𝑞
,  (𝑝, 𝑞 ∈ 𝑍) is a rational number if ______ 

a) 𝑞 > 0 b) 𝑞 ≠ 0 c) 𝑞 < 0 d) 𝑞 = 0 

14. Which of the following is not true? 

a) |𝑎| + |𝑏| ≤ |𝑎 + 𝑏|  b)|𝑎| − |𝑏| ≤ |𝑎 + 𝑏|                       

c) |𝑎 + 𝑏| ≤ |𝑎| + |𝑏|  d) |𝑎𝑏| = |𝑎| ⋅ |𝑏| 

15. Let 𝑓: 𝑅 → 𝑅 be a function defined by𝑓(𝑥) = 𝑥2.  Then 

range of 𝑓 is ________ 

a) [0, ∞) b) (−∞, 0) c) (0, ∞) d) 𝑅 

16. {𝑥𝑛} is a constant sequence if 𝑥𝑛 = 𝑐,  a constant for ____ 

a) some 𝑛 ∈ 𝑁    b)  all 𝑛 ∈ 𝑁                          

c) no 𝑛 ∈ 𝑁   d) only one 𝑛 ∈ 𝑁 

17. For any 𝑏 ∈ 𝑅, lim (
𝑏

𝑛
) =________ as n tends to ∞. 

a) -1  b) 1  c) 2  d) 0 

18. For the series  ∑ (−1)𝑛∞
𝑛 , 𝑠𝑛 = 1  if n is  _______ 

a) odd  b) even  c) prime d) composite 

19. If the series ∑ 𝑥𝑛
∞
𝑛   converges, lim 𝑥𝑛 = 

a) 0  b) -1  c) 1  d) 2 

20. The series ∑
1

𝑛𝑝
∞
𝑛  converges if   _____ 

 a) p <1  b) p=1  c) p > 1 d) 𝑝 ≥ 1  

 



PART-B(3×2=6 Marks) 

ANSWER ALL THE QUESTIONS 

 

21. Define a convergent sequence. 

22. State the nth term test. 

23. Give two examples for uncountable sets. 

 

PART-C(3×8=24 Marks) 

ANSWER ALL THE QUESTIONS 

 

24. a)  State and prove the comparison test for the series. 

(OR) 

b) State and prove Root test for series. 

25. a) Test the convergence of series∑
𝑛!(2𝑛)

𝑛𝑛
∞
1  

(OR) 

b) Prove the 𝑝 − 𝑠𝑒𝑟𝑖𝑒𝑠 converges if 𝑝 > 1. 

26. a) Let (xn) be a sequence of non-negative real numbers. 

Then show that the series ∑ xn converges iff the sequence  

S= (sk) of partial sums is bounded. In  this case,  

∑(xn) = lim(sk) =sup {sk: kϵN} 

(OR) 

b) State and prove Cauchy criterion for series. 
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