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UNIT I
Partial Differential Equations
SYLLABUS

Partial Differential Equations — Basic concepts and Definitions -Mathematical
Problems. First Order Equations: Classification - Construction and Geometrical
Interpretation- Method of characteristics for obtaining General Solution of Quasi
Linear Equations- Canonical Forms of First-order Linear Equations.

Basic Concepts and Definitions

A differential equation that contains, in addition to the dependent variable
and the independent variables, one or more partial derivatives of the de-
pendent variable is called a partial differential equation. In general, it may
be written in the form

Flzy, o U Uy Uy, o U Uy . .) = 0, (1.2.1)
involving several independent variables =, g, ..., an unknown function u of
these variables, and the partial derivatives u,, u,, ..., Uys, Ugy, ..., of the

function. Subseripts on dependent variables denote differentiations, e.g.,
U, = du/dr, Uy = 32;’53,.' dr.

Here equation (1.2.1) is considered in a suitable domain D) of the n-
dimensional space R™ in the independent variables z, v, .... We seek func-
tions w = u (x,y,...) which satisfy equation (1.2.1) identically in D. Such
functions, if they exist, are called solutions of equation (1.2.1). From these
many possible solutions we attempt to select a particular one by introducing
suitable additional conditions.

For instance,

UTh g4y + U =,
Ugpy + 2YUyy + 32Uy, = 4sin, (1.2
2 2
(uz)” + (uy)” =1,
Ugpy — Uyy = 0,

it
| S]
Lo
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are partial differential equations. The functions
: 3
u(z,y) =(z+y)",
u(zr,y) =sin(z—1y),
are solutions of the last equation of (1.2.2), as can easily be verified.

The order of a partial differential equation is the order of the highest-
ordered partial derivative appearing in the equation. For example

Uzg + 2T Uzy + Uy = €Y
is a second-order partial differential equation, and
Upzy + Tllyy + 8u = Ty

is a third-order partial differential equation.

A partial differential equation is said to be linear if it is linear in the
unknown function and all its derivatives with coefficients depending only
on the independent variables; it is said to be quasi-linear if it is linear in
the highest-ordered derivative of the unknown funetion. For example, the
equation

Ylhgr + 2TYUyy +u =1
is a second-order linear partial differential equation, whereas
Ugpllzy + LU, = SIDY

is a second-order quasi-linear partial differential equation. The equation
which is not linear is called a nonlinear equation.

We shall be primarily concerned with linear second-order partial dif-
ferential equations, which frequently arise in problems of mathematical
physics. The most general second-order linear partial differential equation
in n independent variables has the form

Z AijUz,z, + Z Biu,, + Fu=0G, (1.2.3)
i=1

ij=1
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where we assume without loss of generality that A;; = A;;. We also assume
that B;, F, and G are functions of the n independent variables ;.

If (7 is identically zero, the equation is said to be homogeneous; otherwise
it is nonhomogeneous.

The general solution of a linear ordinary differential equation of nth or-
der is a family of functions depending on n independent arbitrary constants.
In the case of partial differential equations, the general solution depends on
arbitrary functions rather than on arbitrary constants. To illustrate this,
consider the equation

Uzgy = 0.
If we integrate this equation with respect to y, we obtain
Uz (2,y) = f(z).
A second integration with respect to z yields

u(z,y) =g(z)+h(y),

where g (z) and h (y) are arbitrary functions.
Suppose u is a function of three variables, x, y, and 2. Then, for the
equation

Uyy = 2,
one finds the general solution
u(z,y.2) =y" +yf(z.2) +g(z.2).

where f and g are arbitrary functions of two variables x and z.

Mathematical Problems

A problem consists of finding an unknown function of a partial differential
equation satisfying appropriate supplementary conditions. These conditions
may be initial conditions (1.C.) and /or boundary conditions (B.C.). For ex-
ample, the partial differential equation (PDE)
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Up — Uzr = 0, D<x<lI, t>0,
with ILC. wu(z,0)=sinz, 0<z<I, t>0,
B.C. wu(0,t)=0, t>0,
B.C. wu(lt)=0, t >0,

constitutes a problem which consists of a partial differential equation and
three supplementary conditions. The equation describes the heat conduc-
tion in a rod of length [. The last two conditions are called the boundary
conditions which describe the function at two prescribed boundary points.
The first condition is known as the initial condition which prescribes the
unknown function u (z,t) throughout the given region at some initial time
t, in this case ¢t = 0. This problem is known as the initial boundary-value
problem. Mathematically speaking, the time and the space coordinates are
regarded as independent variables. In this respect, the initial condition is
merely a point preseribed on the f-axis and the boundary conditions are
prescribed, in this case, as two points on the z-axis. Initial conditions are
usually prescribed at a certain time t = t; or t = 0, but it is not customary
to consider the other end point of a given time interval.

In considering the problem of unbounded domain, the solution can be
determined uniquely by prescribing initial conditions only. The correspond-
ing problem is called the initial-value problem or the Cauchy problem. The

A mathematical problem is said to be well-posed if it satisfies the fol-
lowing requirements:

1. Existence: There is at least one solution.
2. Uniqueness: There is at most one solution.
3. Continuity: The solution depends continuously on the data.

Classification of First-Order Equations

The most general, first-order, partial differential equation in two indepen-
dent variables x and y is of the form
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F(z,y.u,ug, u,) =0, (z,y) € D C R?, (2.2.1)

where F' is a given function of its arguments, and u = u (2, y) is an unknown
function of the independent variables » and y which lie in some given do-

main D in R?, u, = g—; and u, = g—;. Equation (2.2.1) is often written in
terms of standard notation p = u, and ¢ = u, so that (2.2.1) takes the

form
Fl(z,y,u,p,q) =0. (2.2.2)

Similarly, the most general, first-order, partial differential equation in
three independent variables x, y. 2 can be written as

Flz,y 2z,u sz, uy,u) =0. (2.2.3)

Equation (2.2.1) or (2.2.2) is called a quasi-linear partial differential
equation if it is linear in first-partial derivatives of the unknown function
u (x,y). So, the most general quasi-linear equation must be of the form

a(z,y,u)u, +b(x,y,u)u, =c(z,y,u), (2.2.4)

where its coefficients a, b, and ¢ are functions of z, y, and u.
The following are examples of quasi-linear equations:

(Y +u)u, —y (2* +u)u, = (2* —y?) u, (2.2.5)
ut, + g +nu® = 0, (2.2.6)
(y* — u?) uy — 2y uy, = 2u. (2.2.7)

Equation (2.2.4) is called a semilinear partial differential equation if its
coefficients a and b are independent of u, and hence, the semilinear equation
can be expressed in the form

a(z,y)us +b(z,y)u, =c(z,y,u). (2.2.8)
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Examples of semilinear equations are

TUL + YUy = u’ + 27, (2.2.9)
(z+1)u, + (y—1)°u, = (z +y)u?, (2.2.10)
uy + au, +u? =0, (2.2.11)

where a is a constant.

Equation (2.2.1) is said to be linear if F' is linear in each of the variables
u, U, and u,, and the coefficients of these variables are functions only of the
independent variables = and y. The most general, first-order, linear partial
differential equation has the form

a(z, y)u, +b(z,y)uy +c(z,y)u=d(z,y), (2.2.12)

where the coefficients a, b, and ¢, in general, are functions of x and y and
d(z,y) is a given function. Unless stated otherwise, these functions are
assumed to be continuously differentiable. Equations of the form (2.2.12)
are called homogeneous if d (x,y) = 0 or nonhomogeneous if d(x,y) # 0.

Obviously, linear equations are a special kind of the quasi-linear equa-
tion (2.2.4) if a, b are independent of u and ¢ is a linear function in wu.
Similarly, semilinear equation (2.2.8) reduces to a linear equation if ¢ is
linear in wu.

Examples of linear equations are

Ty + yu, —nu = 0, (2.2.13)

nu; + (r+y)u, —u=e", (2.2.14)

Yu, + TU, = Y, (2.2.15)

(y—2)uz + (2 —z)uy + (z—y)u, =0. (2.2.16)

An equation which is not linear is often called a nonlinear equation. So,
first-order equations are often classified as linear and nonlinear.
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Construction of a First-Order Equation
We consider a system of geometrical surfaces described by the equation
flz,y,z,a,b) =0, (2.3.1)

where a and b are arbitrary parameters. We differentiate (2.3.1) with respect
to  and y to obtain

foetpfo=0, fy+qf:=0, (2.3.2)

where p = g—i and q = g_z_

The set of three equations (2.3.1) and (2.3.2) involves two arbitrary
parameters a and b. In general, these two parameters can be eliminated
from this set to obtain a first-order equation of the form

Fz,y,2z,p.q) =0. (2.3.3)

Thus the system of surfaces (2.3.1) gives rise to a first-order partial dif-
ferential equation (2.3.3). In other words, an equation of the form (2.3.1)
containing two arbitrary parameters is called a complete solution or a com-
plete integral of equation (2.3.3). Its role is somewhat similar to that of a
general solution for the case of an ordinary differential equation.

On the other hand, any relationship of the form

f(9,4) =0, (2.3.4)
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First, we preseribe the second parameter b as an arbitrary function of
the first parameter a in the complete solution (2.3.1) of (2.3.3), that is,
b = b(a). We then consider the envelope of the one-parameter family of
solutions so defined. This envelope is represented by the two simultaneous
equations

flz,y,2,a,b(a)) =0, (2.3.5)
falz,y,2,a,b(a)) + fo (2,y,2,b(a)) b (a) =0, (2.3.6)

where the second equation (2.3.6) is obtained from the first equation (2.3.5)
by partial differentiation with respect to a. In prineiple, equation (2.3.5) can
be solved for a = a(z,y, z) as a function of z, y, and 2. We substitute this
result back in (2.3.5) to obtain

flz,y,z,a(x,y,2), bla(z,y,2))} =0, (2.3.7)

where b is an arbitrary function. Indeed, the two equations (2.3.5) and
(2.3.6) together define the general solution of (2.3.3). When a definite b (a)
is prescribed, we obtain a particular solution from the general solution.
Since the general solution depends on an arbitrary function, there are in-
finitely many solutions. In practice, only one solution satisfying preseribed
conditions is required for a physical problem. Such a solution may be called
a particular solution.

Geometrical Interpretation

To investigate the geometrical content of a first-order, partial differential
equation, we begin with a general, quasi-linear equation

a(x,y,u)ues +b(z,y,u)uy —e(z,y,u) =0. (2.4.1)

We assume that the possible solution of (2.4.1) in the form u = u (z, y)
or in an implicit form

flz,yu)=u(z,y) —u=20 (2.4.2)
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represents a possible solution surface in (z,y,u) space. This is often called
an integral surface of the equation (2.4.1). At any point (z,y,u) on the
solution surface, the gradient vector Vf = (fz, fy. fu) = (Uz,uy, —1) is
normal to the solution surface. Clearly, equation (2.4.1) can be written as
the dot product of two vectors

auy +buy, —c=(a,b,c)- (ug,uy, —1)=0. (2.4.3)

This clearly shows that the vector (a,b, ¢) must be a tangent vector of
the integral surface (2.4.2) at the point (2, y,u), and hence, it determines
a direction field called the the characteristic direction or Monge aris. This
direction is of fundamental importance in determining a solution of equation
(2.4.1). To summarize, we have shown that f(z,y,u) = u(2,y) —u = 0,
as a surface in the (x,y,u)-space, is a solution of (2.4.1) if and only if the
direction vector field (a, b, ¢) lies in the tangent plane of the integral surface
f(z,y,u) = 0 at each point (z,y,u), where V f # 0, as shown in Figure
24.1.

A curve in (z,y, u)-space, whose tangent at every point coincides with
the characteristic direction field (a, b, ¢), is called a characteristic curve. If
the parametric equations of this characteristic curve are

r==z(t), y=y(t), u=u(t), (2.4.4)

then the tangent vector to this curve is (%, %, ‘fi—?) which must be equal

to (a,b, ¢). Therefore, the system of ordinary differential equations of the
characteristic curve is given by

b(z,y,u), {;—Z =ec(z,y,u). (2.4.5)

=a(z,y,u

s b %=

These are called the characteristic equations of the quasi-linear equation
(2.4.1).
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Method of Characteristics and General Solutions

Theorem 2.5.1. The general solution of a first-order, quasi-linear partial
differential equation

a(z,yu)u, +b(z,y,u)uy, =c(z,y,u) (2.5.1)
1s
f($w) =0, (25.2)

where f is an arbitrary function of ¢ (z,y,u) and ¢ (z,y,u), and ¢ =
constant = ¢; and 1 = constant = ¢, are solution curves of the charac-
teristic equations

dr dy du _
— =5 = (2.5.3)

The solution curves defined by ¢ (z,y,u) = ¢; and ¢ (z,y,u) = 3 are
called the families of characteristic curves of equation (2.5.1).

Proof. Since ¢ (z,y, u) = ¢; and ¢ (z, y, u) = ¢ satisfy equations (2.5.3),
these equations must be compatible with the equation

do = ¢dr + ¢ydy + ¢udu = 0. (2.5.4)
This is equivalent to the equation
ag, +boy, +eco, =0. (2.5.5)
Similarly, equation (2.5.3) is also compatible with
a1y + bty + i, = 0. (2.5.6)
We now solve (2.5.5), (2.5.6) for a, b, and ¢ to obtain

(i b o
3(6.0) ~ (i) | 064 (2:5.7)
d(y,u) dlu,x) a(x.y)
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It has been shown earlier that f (¢, ') = 0 satisfies an equation similar to
(2.3.14), that is,

(¢, ¢) | 0(¢.¢) _ 8(o,0)

Pou) "1 0(ue) ~ d(y)

(2.5.8)

Substituting, (2.5.7) in (2.5.8), we find that f(¢,1) = 0 is a solution of
(2.5.1). This completes the proof.

Theorem 2.5.2. (The Cauchy Problem for a First-Ovrder Partial Differen-
tial Equation). Suppose that C' is a given curve in the (z,y)-plane with its
parametric equations

Ir =TIy {f) , =1in [fj . {25{3)

where t belongs to an interval I R, and the derivatives z{, (t) and y; (f) are
piecewise continuous functions, such that (.’1‘-5)2 + {yﬁ)z # 0. Also, suppose
that u = ug (t) is a given function on the curve C'. Then, there exists a
solution w = u (z,y) of the equation

Flz,yuuz,uy) =0 (2.5.10)

in a domain D of R? containing the curve C for all t € I, and the solution
u (x,y) satisfies the given initial data, that is,

u(zo (t) 5o (t)) = uo (t) (2.5.11)

for all values of t € I.

Theorem 2.5.3. (The Cauchy Problem for a Quasi-linear Equation). Sup-
pose that xo (), yo (t), and uo (t) are continnously differentiable functions
of t in a closed interval, 0 < ¢ < 1, and that a, b, and ¢ are functions of
x, y, and u with continuous first-order partial derivatives with respect to
their arguments in some domain D of (z,y, u)-space containing the initial
curve

I': z=x0(t), y=wo(t), u=1uglt), (2.5.12)
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where 0 <t < 1, and satisfving the condition

Yo (t)a(zo(t), 90 (t),uo (t)) — 2 (£) b(zo (t), 30 (1), uo () # 0. (2.5.13)

Then there exists a unique solution u = u (z, y) of the quasi-linear equation
(2.5.1) in the neighborhood of C' : = = =4 (t), y = yy (t), and the solution
satisfies the initial condition

up (t) =u(xo(t), v (t)), for 0<t<1. (2.5.14)

Canonical Forms of First-Order Linear Equations

It is often convenient to transform the more general first-order linear partial
differential equation (2.2.12)

a(r,y) uz +b(z,y) uy +c(z,y) u=d(z,y), (2.6.1)

into a canonical (or standard) form which can be easily integrated to find
the general solution of (2.6.1). We use the characteristics of this equation
(2.6.1) to introduce the new transformation by equations

£=E¢(zy), n=n(zy), (2.6.2)

where £ and 7 are once continuously differentiable and their Jacobian
J(r.y) = &y — - is nonzero in a domain of interest so that = and
y can be determined uniquely from the system of equations (2.6.2). Thus,
by chain rule,

Uy = Uy + Up Tz, Uy = Uy + UyT)y, (2.6.3)
we substitute these partial derivatives (2.6.3) into (2.6.1) to obtain the
equation

Aug+Buy, +cu=d, (2.6.4)
where
A =uf, + by, B = an, + bn,. (2.6.5)

From (2.6.5) we see that B = 0 if 77 is a solution of the first-order equation

This equation has infinitely many solutions.
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Inu(é&n)=-n+In f(&,

where f (£) is an arbitrary function of £ only.
Equivalently,

u(&m) =f(&e.

In terms of the original variables  and y, the general solution of equa-
tion (2.6.8) is

u(z,y)=flr+y)e ¥, (2.6.10)

where f is an arbitrary function.

Erample 2.6.1. Reduce each of the following equations

Uy — Uy = U, (2.6.8)
Yz + Uy = T, (2.6.9)

to canonical form, and obtain the general solution.

In(2.6.8),a=1,b=—1,¢= —1and d = 0. The characteristic equations
are
de dy  du
1 -1 u

The characteristic curves are £ = » + y = ¢y, and we choose 1 =y = ¢
where ¢; and ¢, are constants. Consequently, u, = u; and u, = ug + u,,
and hence, equation (2.6.8) becomes

Uy = U.

Integrating this equation gives
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UNIT 11
SYLLABUS

Method of Separation of Variables for solving first order partial differential
equations.Derivation of Heat equation -Wave equation and Laplace equation. -
Classification of second order - linear equations as hyperbolic, parabolic or
elliptic.

Method of Separation of Variables

Erample 2.7.1. Solve the initial-value problem
Uy + 2u,y = 0, u(0,y) =4e %, (2.7.1ab)

We seek a separable solution u (z,y) = X (z)Y (y) # 0 and substitute
into the equation to obtain

X'(2)Y (y) +2X ()Y (y) = 0.
This can also be expressed in the form

X'(z) _ Y'(y
2X ()  Y(y)

(2.7.2)

Since the left-hand side of this equation is a function of x only and the
right-hand is a funetion of y only, it follows that (2.7.2) can be true if both
sides are equal to the same constant value A which is called an arbitrary
separation constant. Consequently, (2.7.2) gives two ordinary differential
equations

X' (z) —2XX (z) =0, Y'(y)+ AY (y) = 0. (2.7.3)
These equations have solutions given. respectively, by
X(z)=Ae*® and Y (y)=Be ™, (2.7.4)

where A and B are arbitrary integrating constants.
Consequently, the general solution is given by
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u(r,y) = ABexp (2Ax — Ay) = Cexp (2Az — Ay), (2.7.5)

where C' = ARB is an arbitrary constant.
Using the condition (2.7.1b), we find

de” W = u(0,y) = Ce ™,

and hence, we deduce that C' = 4 and A = 2. Therefore, the final solution
is

u(z,y) = 4exp (4z — 2y). (2.7.6)

Classical Equations

The three basic types of second-order partial differential equations are:
(a) The wave equation

Uty — € (Upy + Uyy + Uz ) = 0. (3.1.1)
(b) The heat equation

Up — K (Upe + Uyy + 1.2 ) = 0. (3.1.2)
(¢) The Laplace equation

Upg + Uyy + Uy, = 0. (3.1.3)

Classification of Second-Order Linear
Equations
(A) Hyperbolic Type

If B> — 4AC = 0, then integration of equations (4.2.5) and (4.2.6) yield
two real and distinet families of characteristics. Equation (4.1.11) reduces
to

Ugy = Hi. Ir-l-??]
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where Hy = H*/B”. It can be easily shown that B® # 0. This form is called
the first canonical form of the hyperbolic eguafion.
Now if new independent variables

a=£+ 7, G=&—mn, (4.2.8)
are introduced, then equation (4.2.7) 1s transformed nto
Uge — Ugg = Ha (o, B, u,u,, ug) . (4.2.9)

This form is called the second canonical form of the hyperbolic equation.
(B) Parabolic Type

In this case, we have B® — 4AC = 0, and equations (4.2.5) and (4.2.6)
coincide. Thus, there exists one real family of characteristics, and we obtain
only a single integral £ = constant (or § = constant).

Since B? = 4AC and A* = 0. we find that

3

A* = -"1{3 + B':::r{'y + C{,g - (\-"'IIE{:- + ":.-'IE{:L.)_ = (.
From this it follows that

A* = 246, + B (& + &y ) + 2CE,m,
=2 (v’zlﬁg + *..-'“E.E_]y) (\fﬁf}r + x—-’ff}y) =,
for arbitrary values of i (z,y) which is functionally independent of £ (z, y);
for instance, if n = y. the Jacobian does not vanish in the domain of parabol-
1city.
Division of equatipn (4.1.11) by C™* yields

Uy = Ha (&1, 0, ue,uy) C* #10. (4.2.10)

This 1s called the canonical form of the parabolic equation.
Equation (4.1.11) may also assume the form

uge = Hy (7, u,ug, up) (4.2.11)

if we choose i = constant as the integral of equation (4.2.5).
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(C) Elliptic Type

For an equation of elliptic type, we have B2 — 4AC < 0. Consequently,
the quadratic equation (4.2.4) has no real solutions, but it has two complex
conjugate solutions which are continuous complex-valued functions of the
real variables x and y. Thus, in this case, there are no real characteristic
curves. However, if the coefficients A, B, and C are analytic functions of
x and y, then one can consider equation (4.2.4) for complex = and y. A
function of two real variables x and y is said to be analytic in a certain
domain if in some neighborhood of every point (zp. 1) of this domain, the

funetion can be represented as a Taylor series in the variables (r — xp) and

(¥ — wo).
Since £ and 1 are complex, we introduce new real variables
Ll gl 1212
0_2{54']'?;'- '_Qi{{'_?ﬂ? '; J
so that
£ =+, n=a—ifJ. (4.2.13)

First, we transform equations (4.1.10). We then have
A" (o, B) tge + B* (@, B) uag + C** (o, B)ugs = Hy (a, B, 1, uq, ug) ,
(4.2.14)

in which the coefficients assume the same form as the coefficients in equation
(4.1.11). With the use of (4.2.13), the equations A* = C* = 0 become

(Ao? + Baray + Caj) — (A2 + BBxfy + C55)
+i 240, 0: + B a8y + ayf:) + 2Ca, 3, =0,
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(AaZ + Bayay, + Cal) — (A + BB,B, + CB5)
—1 240z 5: + B (0x8y + ayf:) + 2Ca, 3, =0,

or,
(A™ — C*) +iB™ =10, (A™ —C™) —1B*™ =10,
These equations are satisfied if and only if
A =C* and B™ =0.
Hence, equation (4.2.14) transforms into the form
A g + A% ugs = Hy (o, 5,1, uq,ug) .
Dhividing through by A**, we obtain
Uge + ugs = Hs (o, B, u,uq,ug), (4.2.15)

where H; = (Hy/A**). This is called the canonical form of the elliptic
equation.
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FEzxample 4.2.1. Consider the equation
yzuﬂ — .rgu_uy = .

Here

Thus.
B? — 4AC = 42%y” = 0.

The equation 1s hyperbolic everywhere except on the coordinate axes © = (0
and y = . From the characteristic equations (4.2.5) and (4.2.6), we have

ﬂ_r

dy
d.r_y" dr y

After integration of these equations, we obtain

1

12 1.1'2—(' 1*:'3+ > =e¢
?y Q - '1.‘ Q-JI 2 - "2"
The first of these curves is a family of hyperbolas
15 1,45
Q-.T.l‘I _ E;T = £,

and the second is a family of circles

1o 14
23;a—|— T~ = 0.

2

To transform the given equation to canonical form, we consider

15 2 2 1 2
= —y® — =x~, n=—-y + ="
From the relations (4.1.6), we have
Uy = Ugly + Uplfy = —TUg + Ty,

Uy = Uy + UnTly = YU + YUy,
_ 2 2
Upy = Ugel + 2ugnbatie + UnyTlz + Uglrr + UpTjzr

2 2 2
= T g — 207Uy + T Uy — U + Uy
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2 2
Uyy = uﬁ{y + 2ugpbymy + Uy + Ueyy + UpThyy

2 2 2
= Y uge + 2y ugy + Y gy + Ug + Uy,
Thus, the given equation assumes the canonical form

U §
ey = ————— — u..
R TrERr R T R
Ezample 4.2.2. Consider the partial differential equation

T2 Upy 4 2TY Uy + Yty = 0.

In this case, the discriminant 1s
3 L |
B* —4AC = 42*y* —dat® =0,
The equation is therefore parabolic everywhere. The characteristic equation
15

dy y

dr =
and hence, the characteristics are

- =r,

T
which 1s the equation of a family of straight lines.

Consider the transformation

=1y,

(Y
e=Y
b

where 1 15 chosen arbitrarilv. The given equation is then reduced to the
canonical form
yzuw = (.
Thus,
gy =0 for y# 0.
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Ezxample 4.2.53. The equation
Uzr + x?uyy = 0.
is elliptic everywhere except on the coordinate axis x = () because
B? —4AC = 42 <0, z#0.

The characteristic equations are

dy dy .
I = T T =
Integration yields
Yy —iz® = ey, 2y + ix’ = 5.

Thus, if we write
£ =2y — ir?, n=2y+ i.rz_.

and hence,

1 i 1
= 3 (£ +m) =2y, g= 5 (£ —n) = —z2,
we obtain the canonical form
1
Una + UGE = —ﬂ ug.

[t should be remarked here that a given partial differential equation may
he of a different type in a different domain. Thus, for example, Tricomi’s

equation
Upy + Tlhyy, =0, (4.2.16)

is elliptic for = > 0 and hyperbolic for = < 0, since B2 — 4AC = —4z. For
a detailed treatment, see Hellwig (1964).
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QUESTION

A differential equation involving of one or more variables

with respect to a single independent variable is called ODE
An equaton which is is called non linear
Initial value prolem is also called

Simply boundary value problem is also called

An equaton involving derivatives of one or more dependent

variables with respect to one or more independent variable is called

Non-linear ODE is an ODE thatis

___ODE of order n is the dependent variable y and the
independent variable x is an equation

An equation involving ____ of one or more dependent variables
with respect to one or more independent variables is called

A differential equation involving partial equation of one or more
variables with respect to
The order of the highest ordered derivatives involves in a
differential equation is called

Mathematical problem is said to be well posed if it satisfies the
uniqueness then there is one solution

Initial value prolem is also called

A partial differential equation is the equation involving partial

derivatives of one or more dependent variables with respect to -----

------------ independent variable.

A differential equation involving ordinary derivatives of one or
more dependent variables with respect to a ------------------
independent variable is called an ordinary differential equation.

The equation Uyl + XUUy = SiN Y i§ -=-=---c=--cz-=-
The order of the equation Uy, — uyy = 0 i§ =---------=--=--

The partial differential equation u; — u,, = 0 with u(x, 0) = sin x.
The given condition is called ------------------

F(X, ¥, U, U, Upy) = 0§ =mmrmmmmemmeeeee order PDE

The equation F(x, y, U, Uy, U,) = 0 is said to be -----------------
Which one of the following is the homogeneous equation?

The existence of the mathematical problem have ------------------
solution.

L+M=M+L&LM =ML are called ------------------ property.

independent variable is called PDE

OPT 1
Ordinary
derivatives

not linear
one point
boundary
value prolem
initial value
prolem

homogeneous

linear
linear

equation

one or more

order of
differential
equation
atleast

boundary
value problem
one most one

quasi linear
1
initial

first

linear
Xy+Xx=e
one most one

associative

L(cu) = c L(u)

(L+M)+N=L+ (M +N)is called ------------------ property. associative
A non linear ordinary differential equation is an ordinary linear
differential equation that is not -----------

Linear ordinary differential equations are further classified single
according to the nature of the coefficients of the ------------------
variables and its derivatives
The order oOf ------------------ derivatives involved in the differential zero

equations is called order of the differential equation

OPT 2
ordinary
variales

dependent
two point
boundary
value problem
one point
boundary
value prolem
non-
homogeneous

non-linear
non-linear

derivative

two or more

degree of
differential
equation
almost

cauchy
problem
atleast one

non linear
2
boundary

second

non linear
ax+by=0
more than two
commutative
L(up +up) =
L(uy) + L(up)
distriutive

non linear

dependent

lowest

OPT 3
partial
derivatives

linear

simply
boundary
value problem
two point
boundary
value problem
quasi-linear

homogeneous
homogeneous

euler

more than one

product of
differential
equation
more than

all the above

more than two

Cauchy
3
Cauchy

third
quasi-linear
nx + my =
atleast one
distributive
L(cyuy + Couy)
=cl(uy) +
commutative

differential

independent

highest

OPT 4
partial variales

independent
wave equation

transport
equation
linear
non-
non-

homogeneous
linear

more than two

all the above

all the above
none of these

more than one

boundary
4
linear

fourth

non quasi

yxX =y +3X
more than one

closed

L(clul +
c2u2) #

closed

integral

constant

infinite

ANSWER
Ordinary
derivatives

not linear

one point
boundary
value prolem
two point
boundary
value problem
homogeneous

non-linear
linear

derivatives

more than one

order of
differential
equation
almost

cauchy
problem
more than one

quasi linear
2
Cauchy

second
linear
ax+by=0
atleast one

commutative

L(clul +
c2u2) #

associative

linear

dependent

highest



The equation f(x, y, z, a, b) = 0 containing two arbitrary
parameters is called --------------- of an equation.

A solution which is not everywhere differentiable is called a --------

--------- solution.
A curve in (X, y, u)-space, whose tangent at every point coincides

with the characteristic direction field (a, b, c), is called a ------------

The equation f(x, y, z, a, b) = containing two arbitrary
parameters is called linear of an equation.

The characteristic direction is also called as monge-----------
Linear ordinary differential equations are further classified

according to the nature of the coefficients of the dependent----------

- and its derivatives

The equation f(x, y, z, a, b) = 0 containing arbitrary
parameters is called linear of an equation.

The equation f(x, y, z, a, b) = 0 containing two arbitrary
parameters is called linear of an

_value prolem is also called cauchy problem

The order of highest derivatives involved in the differential
equations is called of the differential equation

linear

strong

tangent curve

monge axis
final data

axis
constant
one

line
boundary

value problem
order

The order of highest derivatives involved in the equations differential

is called order of the differential equation

non linear

weak

normal curve

monge curve
initial data

line
variable
two
equation
initial
variable

linear

complete
solution
low

characteristic
curve

monge line
curve value

curve value
derivatives
three

point

all the above
constant

non linear

partial solution complete

high

uniform curve

monge line
null value

curve
equations
fourth

graph

none of these
linear

quasi linear

solution
weak

characteristic
curve

monge axis
initial data

axis
variable
two
equation
initial
order

differential
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SYLLABUS

Reduction of second order Linear Equations to canonical forms- The Cauchy
problem- The Cauchy-Kowaleewskaya theorem -Cauchy problem of an infinite
string - Initial Boundary Value Problems -Semi-Infinite String with a fixed end -
Semi-Infinite String with a Free end- Equations with non-homogeneous boundary
conditions -Non- Homogeneous Wave Equation.

Reduction of second order Linear Equations to canonical forms:

The Cauchy Problem

In the theory of ordinary differential equations, by the initial-value problem
we mean the problem of finding the solutions of a given differential equation
with the appropriate number of initial conditions prescribed at an initial
point. For example, the second-order ordinary differential equation

d*u du
iz =1 (f" t E)

and the initial eonditions
du
t = ¥, —_— f = 3\
u(tg) = a, (dt)[[ﬂ' |

constitutp an initial-value problem.

An analogous problem can be defined in the cjpse of partial differential
equations. Here we shall state the problem involving second-order partial
differential equations in two independent variables.
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We consider a second-order partial differential equation for the function
1 in the independent variables = and y, and suppose that this equation can
be solved explicitly for u,,, and hence, can be represented in the from

Uyy = F (2,9, U, Uz, Uy, Uz, Usy) . (5.1.1)

For some value y = g, we prescribe the initial values of the unknown
function and of the derivative with respect to y

u(z,yo) =f(x),  uy(z,50) =9(z). (5.1.2)

The problem of determining the solution of equation (5.1.1) satisfying
the initial conditions (5.1.2) is known as the initial-value problem. For in-
stance, the initial-value problem of a vibrating string is the problem of
finding the solution of the wave equation

Ut = Cﬂumm:
satisfying the initial conditions
u(x,to) = uo(z), us (z,to) = vo (x),

where wug (x) is the initial displacement and vy (2) is the initial velocity.

In initial-value problems, the initial values usually refer to the data
assigned at y = yp. It is not essential that these values be given along
the line ¥y = yo; they may very well be prescribed along some curve Lj in
the xy plane. In such a context, the problem is called the Cauchy problem
instead of the initial-value problem, although the two names are actually
SYNONYINOUS.

We consider the Euler equation

Algy + Bugy + Cuyy = F (2, y, u, Uz, uy) (5.1.3)

where A, B, C are functions of = and y. Let (zg,yy) denote points on a
smooth ecurve Ly in the zy plane. Also let the parametric equations of this
curve Ly be
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where A, B, ' are functions of r and y. Let (zq,7) denote points on a
smooth curve Lg in the zy plane. Also let the parametric equations of this
curve Ly be

Ip = Iy (/!'t) , Yo = Yo (}l} . [51—1}

where A is a parameter.

We suppose that two functions f(A) and g(A) are prescribed along
the curve L. The Cauchy problem is now one of determining the solution
u(x,y) of equation (5.1.3) in the neighborhood of the curve L satisfying
the Cauchy conditions

u= f(A), (5.1.5a)
% —g(\), (5.1.5b)

on the curve L; where n is the direetion of the normal to Ly which lies
to the left of Ly in the counterclockwise direction of increasing are length.
The function f(A) and g (A) are called the Cauchy data.

For every point on Ly, the value of u is specified by equation (5.1.5a).
Thus, the curve Ly represented by equation (5.1.4) with the condition
(5.1.5a) yields a twisted curve L in (z,y,u) space whose projection on
the zy plane is the curve Ly. Thus, the solution of the Cauchy problem is a
surface, called an integral surface, in the (2, y, u) space passing through L
and satisfying the condition (5.1.5b), which represents a tangent plane to
the integral surface along L.

If the function f (A) is differentiable, then along the curve Ly, we have

de  Oudr Oudy df

a:anr%a_a, (5.1.6)
and
ou Oudr Ou dy
but
dr  dy dy dx
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Equation (5.1.7) may be written as

du  Odudy Oudr

Since
dz dy
D (dz)® + (dy)? 40 (5.1.10)
dy de ds dA ’ -
ds ds

it is possible to find u. and w, on Lo from the system of equations (5.1.6)
and (5.1.9). Since u, and u,, are known on L, we find the higher derivatives
by first differentiating u, and u, with respect to A. Thus, we have

Pude 0%u dy d (Ou
a7 d\ T dzoy AN (a) (51.11)
o2 . a2 .
Ou dr Sudy d (ou (5.1.12)
dx oy d\  dy? d\ dX \ Oy
From equation (5.1.3), we have
52 52 52,
A28 p 2 oM _p (5.1.13)

ar? dx dy Ay?
where F' is known since u, and u, have been found. The system of equations
can be solved for tae, Uzy, and wuy,, if

dr\? dx dy dy 2
=C (a) — B (a) (ﬁ) +A (a) # 0. (5.1.14)

0

|
n.||;:.,
Pl

sie

dz
X

A B

]

The equation

NEANT T EAE (5.1.15
Iy @ - E — Y e }
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is called the characteristic equation. It is then evident that the necessary
condition for obtaining the second derivatives is that the curve Ly must not
be a characteristic curve.

If the coefficients of equation (5.1.3) and the funetion (5.1.5) are ana-
lytie, then all the derivatives of higher orders can be computed by the above
process. The solution can then be represented in the form of a Taylor series:

uzy) =Y

0 k=0

o0

1 5”‘-1;1{} ) k . . ke
Z k' (n—k)! ok oyn—* (r—z0)" (¥—1w0) ~,(5.1.16)

which can be shown to converge in the neighborhood of the curve Lg. Thus,
we may state the famous Cauchy—Kowalewskaya theorem.

[The Cauchy—Kowalewskaya Theorem

Let the partial differential equation be given in the form

Uyy = F (Y, 21,T2,..., 00, U, Uy, Uz, Uzy - . ., Uz

T Y

be given on the noncharacteristic manifold y = .
If the function F' is analytic in some neighborhood of the point

(", 2,28, ... ,:t?t._-u“,-ug, ...) and if the functions f and g are analytic in

some neighborhood of the point (z{,23,...,2) ), then the Cauchy prob-

lem has a unique analytic solution in some neighborhood of the point
0 ,.0 .0 0

(y" 2,29, ..., oy
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For the proof, see Petrovsky (1954).

The preceding statement seems equally applicable to hyperbolic, parabolie,
or elliptic equations. However, we shall see that difficulties arise in formulat-
ing the Cauchy problem for nonhyperbolic equations. Consider, for instance,
the famous Hadamard (1952) example.

The problem consists of the elliptic (or Laplace) equation

Ury + Uyy = 0,
and the initial conditions on y =0
u(z,0) =0, uy, (z,0) = n~!sin ne.
The solution of this problem is
u(z,y) = n~?sinh ny sin nz,

which can be easily verified.

It can be seen that, when n tends to infinity, the function n=" sin nx
tends uniformly to zero. But the solution n=2sinh ny sin nz does not be-
come small, as n increases for any nonzero y. Physically, the solution rep-
resents an oscillation with unbounded amplitude (?1‘2 sinh n.y) as y — 00
for any fixed . Even if n is a fixed number, this solution is unstable in the
sense that u — oo as y — oo for any fixed = for which sinnz £ 0. It is
obvious then that the solution does not depend continuously on the data.
Thus, it is not a properly posed problem.

1

Initial Boundary-Value Problems

(A) Semi-infinite String with a Fixed End
Let us first consider a semi-infinite vibrating string with a fixed end,
that is,

Upp = CoUpy, 0 < x> < oo, t >0,

u(z,0)=f(x), 0<z< o0, (5.4.1)
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w (z,0) =g(x2), 0<2< oo,
u(0,1) =0, 0<t < .

It is evident here that the boundary eondition at * = 0 produces a wave
moving to the right with the velocity e. Thus, for = = ¢t, the solution is
the same as that of the infinite string, and the displacement is influenced
only by the initial data on the interval [z — ¢, = + ¢t], as shown in Figure
5.4.1.

When = < ct, the interval [z — ct. x + ct] extends onto the negative
z-axis where f and g are not prescribed.

But from the d’Alembert formula

u(z,t)=od(x+ct)+0(x—ct), (5.4.2)

where

x=>ct

(xg — cty, 0) (rg+cl, 0) X

Figure 5.4.1 Displacement influenced by the initial data on [z — ct, z + ct].
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dl"(}—lf[f}+1 ‘ (T]dT+K (5.4.3
P&)=3 2 o ¢ 2 5-4.3)
1 1 [" K
() — & _ 2 dr — — 5.4.4
b =58 )= 5 [Camdr-7, (5.4.4)

we see that
u(0,t) = ¢ (et) + U (—ct) = 0.

Hence,

U (—ct) = =@ (ct).
If we let @ = —¢t, then

V(a)=—¢(-a).
Replacing o by = — ef, we obtain for = < «t,

Y(z—ct)=—¢(ct —zx),

and hence,

o | >

| 1 . 1 ct—x .
w{gj_ct):—if{ct—:r)—gﬁ g(r)dr —

The solution of the initial boundary-value problem, therefore, is given by

r+4ct

u(z,t)=-[f(x+et)+ f(z—ct)] + 25 / g(t)dr forzx > et, (5.4.5)

—ct

2| =

T+t
[flr+ct)— flet —a)]+— / g(T)dr forz < ct. (5.4.6)

EC oS ot—x

bo | =

u(x,t) =

In order for this solution to exist, f must be twice continuously differ-
entiable and g must be continuously differentiable, and in addition

f(0)=f"(0)=g(0)=0.

Solution (5.4.6) has an interesting physical interpretation. If we draw
the characteristics through the point (zp,%0) in the region = > ¢f, we see,
as pointed out earlier, that the displacement at (zg,t) is determined by
the initial values on [zg — etq, 2o + cto).
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Ezxample 5.4.1. Determine the solution of the initial boundary-value prob-

lem
U = 4 Ugy. x>0, t =0,
u(xz,0) = [sinz|, r >0,
uy (,0) =0, r >0,
u(z,0) =0, t = 0.
For = > 2t,

_ 1
u(z,t) = 5 [f(z4+2t) + f(z —2t)]
1
=3 [|sin (z + 2t)| — [sin (z — 2t)|],
and for » < 2t,
. 1
u(z,t) = 3 [f(x+2t)— (2t — x)]
- % [sin (z + 2¢)| — |sin (2t — 2)]].
Notice that u (0,t) = 0 is satisfied by u (z,f) for = < 2t (that is, t > 0).
(B) Semi-infinite String with a Free End

We consider a semi-infinite string with a free end at 2 = 0. We will
determine the solution of

Uy = oy, 0 < x < oo, t >0,
u(z,0)= f(z), 0<x<oo, (5.4.7)
u (z,0)=g(z), 0 <r<oo,

u, (0,t) =0, 0<t< oc.

As in the case of the fixed end, for > ¢t the solution is the same as
that of the infinite string. For = < ¢f, from the d’Alembert solution (5.4.2)

u(z,t)=¢(x+ct)+¢(x—ct),
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we have

Uy (2,t) =" (z+ct) + ' (2 —et).
Thus,
uz (0,t) = ¢ (at) + ' (—et) = 0.

Integration yields

¢ (ct) — ¥ (—ct) = K,
where K is a constant. Now, if we let &« = —et, we obtain

b (@) = ¢(-a) - K.
Replacing o by = — ¢f, we have

v r—c)=0¢(ct—x)— K,

and hence,

_ 1 1ot K
-;b{:r—ct}:§f{ct—:u)+ﬁﬁ Q{T}d’f'—?.

The solution of the initial boundary-value problem, therefore, is given by

u(x,t) =

[f(z+ct) + f(x—ct)] + o~ [I+Ctg (t)dr for = > ct. (5.4.8)

r—ct

B2 | =

B2 | =

xr+ct ct—x
wet) =3 @ra)+fe-al+g | [ g@dr+ [ omar]
forz < ct. (54.9)

We note that for this solution to exist, f must be twice continuously
differentiable and g must be continuously differentiable, and in addition,

f1(0)=4g'(0)=0.
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Example 5./.2. Find the solution of the initial boundary-value problem

Ut = Ugpgs 0<r<oo, t =0,
T
u(x,0) = cos (—) 0<z <o,
us (z,0) =0, 0<x< 0o,

Uz (2,0) =0, t = 0.
For z > 1
u(z,t) = ! [cosw 'I—I—fj—l—cosﬂ T tj]
T2 2{ ' 2{ '

P = l;rr 1 o T-.'-t
= cos (31) cos (E ) :

and for = < ¢
u(z,t) = % [cos%{r—l—t) -I—ECIS%{?,L—I:I]

J— - l;rr a o T-.'-t
= cos (3:1.) cos (E ) :

Equations with Nonhomogeneous Boundary
Conditions

In the case of the initial boundary-value problems with nonhomogeneous
boundary conditions, such as

U = czum, x =0, t =0,
u(z,0)= f(z), x>0, (5.5.1)
ue(z,0)=g(z), =0,

u(0,t) =p(t), t >0,
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we proceed in a manner similar to the case of homogeneous boundary con-
ditions. Using equation (5.4.2), we apply the boundary condition to obtain

w(0,t) = & (ct) + b (—ct) = p(t).

If we let &« = —et, we have
. a ,
v(a)=p (_E) —o(-a).

Replacing o by = — ¢t, the preceding relation becomes

vz —ct) :p(t— %) — ¢ (ct — ).

Thus, for 0 < = < e,
T 1 . wret
u(@,t)=p(t-=)+5f (@ +et) —f{ct—a-)l+£L_m g(r)dr
=p(t—2) +9(x+et)— (et —2), (5.5.2)
C
where ¢ (z + ¢t = £) is given by (5.3.11), and ¥ () is given by
(5.5.3)

v =5+ [a@ar

The solution for z > ¢f is given by the solution (5.4.5) of the infinite string
In this case, in addition to the differentiability conditions satisfied by

f and g, as in the case of the problem with the homogeneous boundary

conditions, p must be twice continonsly differentiable in ¢ and

p(0)=f(0), p'(0)=g(0), p"(0)=cf"(0).

We next consider the initial boundary-value problem

x > 0, t >0,

U = Uy,
u(z,0)= f(z), x>0
u (z,0)=g(z), x>0,
t > 0.

Uy (Ds t} =4q {t) :

Page 12/14
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Using (5.4.2), we apply the boundary condition to obtain
ug (0,1) = ¢ (et) + 9/ (—ct) = q ().
Then, integrating yields
t
o (et) — P (—ct) = c-/ q(T)dr + K.
Jo

If we let &« = —et, then

—afe
v(a)=9¢(—a)—c [ qg(T)dr — K.
Jo
Replacing o« by = — ¢f, we obtain
t—xfec
-y&(:c—ct):gﬁ(ct—:t)—c/ q(r)dr — K.
Jo

The solution of the initial boundary-value problem for x < ct, therefore, is
given by

u(x, t) = %[f(:v+ctj—l—f(ct—:c)]+% LAI-'_HQ(T:I(ET—|—'£CE_$Q(T)G€T:|

t—x/fc
—c—[ q(t)dr. (5.5.4)
Jo

Here f and g must satisfy the differentiability conditions, as in the case of
the problem with the homogeneous boundary conditions. In addition

f[(0)=4q(0), 4'(0)=4(0).

The solution for the initial boundary-value problem involving the bound-
ary condition

u, (0,t) + hu(0,t) =0, h = constant

can also be constructed in a similar manner from the d’Alembert solution.
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Nonhomogeneous Wave Equations

We shall consider next the Cauchy problem for the nonhomogeneous wave
equation

Ut = Uy + " (2, 1), (5.7.1)
with the initial conditions
u(z,0) = f(x), u (2,0) =g" (x). (5.7.2)

By the coordinate transformation

y = ct, (5.7.3)
the problem is reduced to
Upy — Uyy = N (2,Y), (5.7.4)
u(x,0) = f(x), (5.7.5)
Uy (x,0) = g(z), (5.7.6)

where h(z,y) = —h-*fcj and g (z) = g*/c.

Let Py (zp.y0) be a point of the plane, and let (Jy be the point (xg,0)
on the initial line y = 0. Then the characteristics, x +y = constant, of
equation (5.7.4) are two straight lines drawn through the point F, with
slopes + 1. Obviously, they intersect the z-axis at the points P (zq — o, 0)
and P (rg + vy, 0), as shown in Figure 5.7.1. Let the sides of the triangle
Py Py P5; be designated by By, By, and Bs, and let D be the region repre-
senting the interior of the triangle and its boundaries B. Integrating both
sides of equation (5.7.4), we obtain

//R (Upe — Uyy) AR = //R h(z,y)dR. (5.7.7)

Now we apply Green’s theorem to obtain
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UNIT IV
SYLLABUS

Method of separation of variables - Solving the Vibrating String - Problems-
Solving the Heat Conduction problem - Systems of linear differential equations -
Types of linear systems differential operators - an operator method for linear
systems with constant coefficients.

METHOD OF SEPARATION OF VARIABLES
The Vibrating String

One of the most important problems in mathematical physics is the vi-
bration of a stretched string. Simplicity and frequent occurrence in many
branches of mathematical physics make it a classic example in the theory
of partial differential equations.

Let us consider a stretched string of length [ fixed at the end points. The
problem here is to determine the equation of motion which characterizes
the position u(z,t) of the string at time ¢ after an initial disturbance is
given.

In order to obtain a simple equation, we make the following assumptions:

1. The string is flexible and elastic, that is the string cannot resist bending
moment and thus the tension in the string is always in the direction of
the tangent to the existing profile of the string.

. There is no elongation of a single segment of the string and hence, by
Hooke's law, the tension is constant.

3. The weight of the string is small compared with the tension in the

string.

4. The deflection is small compared with the length of the string.

5. The slope of the displaced string at any point is small compared with

unity.

]
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6. There is only pure transverse vibration.

We consider a differential element of the string. Let T be the tension at the
end points as shown in Figure 3.2.1. The forces acting on the element of
the string in the vertical direction are

T sin 3 — T sin ex.
By Newton’s second law of motion, the resultant force is equal to the
mass times the acceleration. Hence,
Tsinf3—Tsina = pdsug (3.2.1)

where p is the line density and ds is the smaller arc length of the string.
Since the slope of the displaced string is small, we have

ds = o,
Since the angles o and 3 are small
sin v ~ tan a, sin 3 ~ tan 3.

Thus, equation (3.2.1) becomes

tan F — tana = ‘ﬂ;:C Uit (3.2.2)

But, from calculus we know that tan a and tan 3 are the slopes of the string
at = and » + dx:

tana = u, (2,1)
and
tan § = u, (xr + dz,1)
at time ¢{. Equation (3.2.2) may thus be written as

1 2 1 . p
E [{HI)I-l-&x o {u’w“}x] = Tuii'- E [u'x {-T + §T, t} — Uy {T,E}] = T'U,”.
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In the limit as éx approaches zero, we find
Upp = Uy (3.2.3)

where ¢? = T/p. This is called the one-dimensional wave equation.
If there is an external force f per unit length acting on the string.
Equation (3.2.3) assumes the form

2 . .
U = € Ugy + F: F = ff’,ﬂ {32—1)
where f may be pressure, gravitation, resistance, and so on.

Conduction of Heat in Solids

We consider a domain D* bounded by a closed surface B*. Let u (z,y, 2, 1)
be the temperature at a point (2,y, 2) at time ¢. If the temperature is not
constant, heat flows from places of higher temperature to places of lower
temperature. Fourier's law states that the rate of flow is proportional to
the gradient of the temperature. Thus the velocity of the heat flow in an
isotropic body is

v = —Kgradu, (3.5.1)

where K is a constant, called the thermal conductivity of the body.
Let D be an arbitrary domain bounded by a closed surface B in D*.
Then the amount of heat leaving D per unit time is

/ f v, ds,
B

where v,, = v - n is the component of v in the direction of the outer unit
normal n of B. Thus, by Gauss’ theorem (Divergence theorem)
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[ / Unds = [ / div (— Kgradu) dz dy dz
JJB JJJp

- _K f / V2udz dy dz.
L' \.D

But the amount of heat in D is given by

/[/ apudr dy dz,
Vv oy D

(3.5.2)

(3.5.3)

where p is the density of the material of the body and & is its specific heat.
Assuming that integration and differentiation are interchangeable, the rate
of decrease of heat in D is

du
—-/ffDr}pEdfdyd,@.

(3.5.4)

Since the rate of decrease of heat in ) must be equal to the amount of heat
leaving D per unit time, we have

— /f/ opuydrdydz = —K // Viudzdydz,
. D JJ S D

for an arbitrary D in D*. We assume that the integrand is continuous. If we
suppose that the integrand is not zero at a point (xq, yp, 20) in D, then, by
continuity, the integrand is not zero in a small region surrounding the point
(z0. Yo, 20). Continuing in this fashion we extend the region encompassing
D. Hence the integral must be nonzero. This contradicts (3.5.5). Thus, the
integrand is zero everywhere, that is,

w; = kVu,

where kK = K /op. This is known as the heat equation.

(3.5.6)
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SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS
DIFFERENTIAL OPERATORS AND AN OPERATOR METHOD

A, Types of Linear Systems

We start by introducing the various types of linear systems that we shall consider, The
general linear system of two first-order differential equations in two unknown

functions x and y 1s of the form

a4, (I) ‘+ ﬂsz) 'f' as(ilx + ay(t)y = Fi (1),
(7.1
fh(fl i + bz(f} + byt)x + by(t)y = K1),

We shall be concerned with systems of this type that have constant coefficients. An
example of such a system is
dx dy dx dy
2-— 43 =t? - —
d+d —2x 4 y=17 i zdz
We shall say that a solution of system (7.1) is an ordered pair of real functions (f, g)
such that x = f(t}, y = g{t) simultaneously satisfy both equations of the system (7.1} on

some real intervala <t < b,
The general linear system of three first-order differential equations in three unknown

functions x, y, and z is of the form

+3x +4y=¢e"

d
ﬂllf) + ay iy d}-’ + ﬂ:sm + altix + as()y + ag()z = F {1),
b, (t) + bz{t) + b3{r} + ba(t)x + bs(t)y + beit)z = Fi(t), (7.2)

-::I{t dx + cz(r }' + c;,(r) dz + calt)x + cs(t)y + cglt)z = F(2).

Asin the case of systems of the form(7.1). 50 also in this case we shall be concerned with
systems that have constant coefficients. An example of such a system is
dx dy dz

Efa—[—23+2x—3y+z=t,
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dx dy dz

——v~&—£—2d—+2x—3y+z—z,

dx dy dz .

ZE~E+ SEE-+x+4y- 5z =sint,
dx dy dz
s 2d£+d——3x+2y—-z—cos£

We shall say that a solution of system (7.2) 1s an ordered triple of real functions (f, g, h)
such that x = f{), y = ¢(1), z = h{z) simuitancously satisfy all three equations of the
system (7.2) on some real intervala < ¢ < b,

Systems of the form (7.1) and (7.2) contained only first derivatives, and we now
consider the basic linear system involving higher derivatives. This is the general linear
system of two second-order differential equations in two unknown fucations x and y,
and is a system of the form

d?x d? dx d
a1t F + azmﬁ’ + as(0) 3 + (i) 35 + etz + a5y = Fi(0),

(7.3)

by (f) ~+ f’z(f) + ba(f + b4(¢) + byltyx + bs(r)y = Fi(1).

di?

‘We shall be concerned with systems havmg constant coefficients in this case also, and
ﬂnff:nmple i provided by~

2 2
¢ x dy+7££+3ﬂ+2y=3t+1,

Pt ey
2z 2 d
Sitx Zmdy— d—y+4x+y=0

For given fixed positive integers mand n, we could proceed, in like manner, to exhibit
other general linear systems of » mth-order differential equations 1n n unknown
functions and give examples of each such type of system. Instead we proceed to
introduce the standard type of linear system referred to in the introductory paragraph
at the start of the chapter, and of which we shall make a more systematic study later.
We introduce this standard type as a special case of the system (7.1) of two first-order
differential equations in two unknowns functions x and y.
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We consider the special type of linear system (7.1}, which is of the form

d—: = a“{ﬂx + alZ(t)y + FI(E)’
N (7.4)
- = az; (0x + ax(t)y + F (1)

This is the so-called normal form in the case of two linear differential equations in two
unknown functions. The characteristic feature of such a system is apparent from the

manner in which the derivatives appear in it. An example of such a system with variable
coefficients is

d
—d§=r1x+(:+t)y+r3,

dy
= =te'x + t3y — ¢,
dt ¥
while one with constant coefficients 1s

dx
— =5 7 t?
i XA Jy 417

dy
E_2x-—3y+2:.

The normal form in the case of a linear system of three differential equations in three
unknown functions x, y, and z is

d
Exf- =ay,(0)x + a,, )y + ay3(t)z + Fi(t),

d—J: = ﬂzl(”x + azz{”y + a23(f)3 + Fzms

dz
i ay (1) x + az2(0)y + axa()z + Fi{e).

An example of such a system 15 the constant coefficient system

dx

" =x+2y+z+t,
dy

L -2x -4 -2,
ar 2x ¥y + 5z
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dz
— = -3 1.
i dx +y—3z+ 2t +

B. Differential Operators

In this section we shall present a symbolic operator method for solving linear systems
with constant coefficients, This method depends upon the use of so-called differential
pperators, which we now introduce.

Let x be an n-times differentiable function of the independent variable ¢. We denote
the operation of differentiation with respect to ¢ by the symbol D and call D a
differential operator. In terms of this differential operator the derivative dx/dr is
denoted by Dx. That is,

Dx = dx/dt.

In like manner, we denote the second derivative of x with respect to t by D?x. Extending
this, we denote the nth derivative of x with respect to t by D"x. That is,

d"x

Drx ==
dt"

(n=12..).

Further extending this operator notation, we write

(D + c)x  todenote % + cx
and
d"x d™x
D" + bD™ t t —_—
(aD" + )x todenote a I +b Pt

where g, b, and ¢ are constants.
In this notation the general linear differential expression with constant coeflicients

Qp, Oyy.-., 85—y, Gy,
d"x d" " tx dx
A
is written
(@gD" +a D"+ +a,_,D+a,)x
Observe carefully that the operators D", B*~*, ..., D in this expression do not represent

quantities that are to be multiplied by the function x, but rather they indicate operations
{differentiations) that are to be carried out upon this function. The expression
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aD”+aD '+ +a,_,D+a,

by itself, where ay, ay,. .., 4, - 1, 4, are constants, is called a linear differential operator
with constant coefficients.

P Example 7.1

Congider the linear differential operator

3D* 4+ 5D -2,

If x 1s a twice differentiable function of ¢, then

2
(3D% + 5D — Y)x denotes 3 x4 5%

dt2 E— 21.

For example, if x = 3, we have
2 3 - dz 3 d 3 3 2 3
(3D° + 5D - 2)¢ =JEE—2(I )+Sﬁ(t )= 2(7) = 186 + 15¢* = 2t°,

We shall now discuss certain useful properties of the linear differential operator with
constant coefficients. In order to facilitate our discussion, we shall let L denote this
operator. That is,

L=ag,D"+a, 0" '+ %+a,_,D+a,,

where ag, ay,. .., 34— 1, 4, are constants. Now supposs that f; and f, are both a-times
differentiable functions of ¢ and ¢, and ¢, are constants. Then it can be shown that

Lie i + il = L{fil + e, L{ ]
For example, if the operator L = 3D* + 5D — 2 is applied to 3t% + 2 sin t, then
L[3:% 4+ 2sinr} = 3L[#*] + 2L0sin ]
or
(3D? 4 5D — 2)(3t* + 2 sin t) = 3(3D? + 5D — 2t? + 2(3D* + 5D — sin ¢,
Now let
Ly=a,D"+a, D" '+ -+a,_,D+a,
and
Ly=byD"+bD" '+ -+ b,_,D+b,

be two linear differential oﬁcrators with constant coefficients ag, a,,..., @y-,, a,,, and
bgy byse o, by, by, respectively. Let
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Lny=agr™+ar™ '+ +a, r+a,
and
Lr)=bgr"+br" "t 4+ 4 b, _r+b,

be the two polynomials in the quantity r obtained from the operators I, and L,,
respectively, by formally replacing D by », D? by r?,..., D* by r*. Let us denote the
product of the polynomials L (r) and L,(r) by L{r}, that is,

L{r) = Ly(nL,(r).
Then, if fis a function possessing n + m derivatives, it can be shown that
LL,f =L,L,f=Lf (7.10)
where L is the operator obtained from the “product polynomial” L(r) by formally
replacing r by D, r? by D?,..., ¥"*" by D™ *". Equation (7.10) indicates two imporiant
properties of linear differential operators with constant coefficients. First, it states the

effect of first operating on f by L, and then operating on the resulting function by L, is
the same as that which results from first operating on f by L, and then operatimg on

this resulting function by L,. Second, Equation (7.10) states that the eflect of first
operating on f by either ., or L, and then operating on the resulting function by the
otheris the same as that which results from operating on f by the “produet aperator” L.

C. An Operator Method for Linear Systems with Constant Coefficients

We now proceed to explain asymbolic operator method for solving lincar systems with
constant coefficients. We shall outline the procedure of this method on a strictly formal
basis and shall make no attempt to justify it.

We consider a linear system of the form

Lix+Ly=filt)
Lyx + L,y = fy1),

where Ly, L,, L;, and L, are lincar differential operators with constant coefficients.

(7.1
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That is, L,, L,, L5, and L, are operators of the forms
LizagDh™ 4+ D" '+ +a, D+a,,
Ly =byD* + b, D" Y 44 b, D+b,
Ly=oaD"+ o077+ o, \D+a,
Lo= BoD% + B3} 4 4 5D+ B,

where the a's, b's, &'s, and f’s are constants.
A simple example of a system which may be expressed in the form (7.11) is provided

by
dx dy
2'&?—23—31‘——&_.
dx . dy '
el Bl NI | =~ 2.
2d£+2a'r,+ x4+ 8y=2

Introducing operator notation this system takes the form
(2D —3)x — 2Dy =1,
(2D + 3)x + (2D + 8}y = 2.

This is clearly of the form (7 11), where f.,, = 2D — 3, L., = —2D, Ly =2D + 3, and
L,=2D+8.

Returning now to the general system (7.11), we apply the operator L, to the first
equation of (7.11) and the operator L, to the sccond equation of (7.11), obtaining

LyLix+ L,L,y=L,f,,
LyLyx + LLay =1L, f;.

We now subtract the second of these equations from the first. Since L, L,y = LoL,y,
we obtain

Lelix — LyLax =L, f, — L, f5,
or

‘LLL“ - L2L3)I == Ld-fl - szl‘ {712]
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The expression L;L, — L,L; in the left member of this equation is itself a linear
differential operator with constant cocfficients. We assume that it is neither zero nor a
nonzero counstant and denote it by L. If we further assume that the functions f|
and f, are such that the right member L, f; — L, /; of (7.12) exists, then this member
is some function, say g,, of {. Then Equation (7.12) may be written

Lix =g, (7.13)

Equation (7.13) is a tincar differential equation with constant coefficients in the single
dependent variable x. We thus observe that our procedure has eliminated the other
dependent variable y. We now solve the differential equation (7.13) for x using the
methods developed in Chapter 4. Suppose Equation (7.13) is of order N. Then the
general solution of (7.13) is of the form

J{:'-Clul“l‘l:zug"“'“"'chru”'i'ul, {?I‘H

where u,, u,,..., uy are N linearly independent solutions of the homogeneous linear
equation L, = 0, ¢, ¢3,..., cyare arbitrary constants, and U, is a particular solution
of Lex =9,

We again return to the systern (7.11) and this time apply the operators L, and L, to
the first and second equations, respectively, of the system. We obtain

Lylyx+ LyLyy = Lify,
LiLyx + LiLyy =L, f;.
Subtracting the first of these from the second, we obtain
(LyLy = LyLy)y =L, f» — L3 f;.

Assuming that f, and f; are such that the right member L, f, ~ L, f, of this equation
exists, we may express it as some function, say g,, of ¢. Then this equation may be
written

Lsy =9, (7.15)

where Lg denoles the operator Ly L, — L;L;. Equation (7.15) 1s a linear differential
equation with constant coefficients in the single dependent variable y. This time we
have eliminated the dependent variable x. Solving the differential equation (7.15) for y,
we obtain its general solution in the form

v= ko +hau, 0+ kyuy + U, (7.16)
where u,, #,,..., uy are the N lineariy independent solutions of Lyy = 0(or Lsx = 0)

that already appear in {7.14), k,, k;,..., ky are arbitrary constants, and U is a
particular solution of Lsy = g,.
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UNIT V
SYLLABUS

Basic Theory of linear systems in normal form : Homogeneous linear systems
with constant coefficients -Two Equations in two unknown functions -The method
of successive approximations -The Euler method-The modified — Euler method -
The Runge-Kutta method.

BASIC THEORY OF LINEAR SYSTEMS IN NORMAL FORM:
TWO EQUATIONS IN TWO UNKNOWN FUNCTIONS

A. Introduction

We shall begin by considering a basic type of system of two linear differential equations
in two unknown functions. This system is of the form,

| % = a3, (0% + a5, (0y + F (),
(7.61)

dy
e ayy ()% + az;{1)y + F(t).
We shall assume that the functions a,,, a,,, Fy, 434, 2,,, and F; are all continuouson a

real interval a < 1 < b. If F (t)and F;(t) are zero for all ¢, then the system (7.61) is called
homogeneous; otherwise, the system is said to be nonhomogeneous.

P> Example 7.8

The sysiem
dx
P
(7.62)
dy
I = 3x + 6}’,

is homogeneous; the system
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dx
— = —- y — 5;1
A 2x -y

: - (7.63)
dy

hat A —4

r Ix + 6y \

is nonhomogeneous,

DEFINITION

By a solution of the system (7.61) we shall mean an ordered pair of real functions

(f 6), (1.64
each having a continuous derivative on the reai interval a < t < b, such that

af(t

_.ﬁ'l = ay, (() + a12(0gle) + Fi (1),

dg(t

W — a0 @) + 212(05) + B0,

Jor-all t such that a < t < b, In other words,

x= f(),
y = g(t), (7:63)

simuitaneously satisfy both equations of the system (7.61) identically fora <t < b,

Notation. We shall use the notation

-5 x = f{t),
’ y = g{t), (7.63)
to denote a sclution of the system (7.61) and shall speak of “the solution
x = f{1),
y=g6)"

Whenever we do this, we must remember that the solution thus referred to is really the

ordered pair of functions { £, g} such that (7.65) simultancously satisfy both equations of
the system (7.61) identically ona < t < b.
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P Example 7.9

The ordered pa?r of functions defined for all ¢ by (e*, — 3¢*), which we denote by

x = e’

y= __3851 (?'66)
isa solnti/qn-ﬁf the system (7.62), That is,

¥ = eﬂ!,

g 3¢5 (7.66)

simultaneously satisfy both equations of the system (7.62). Let us verify this by directly
substituting (7.66) into (7.62). We have

d Ny — t Sr
E(eﬁl— 2(e™) — (—3e™),

%(—325') = 3(e™) + 6(— 3%,

or
Sest — 2e5l + 3eﬁl

—15¢*" = 3¢ — 18,
Hence (7.66) is indeed a solution of the system (7.62). The reader should verify that the

ordered pair of functions defined for all ¢ by (e¥, —e¥), which we denote by

X = 83',

— 3t
y=—¢e7,

is also a solution of the system (7.62),

We shall now proceed to survey the basic theory of linear systems. We shail observe a
close analogy between this theory and that introduced in Section 4.1 for the single
linear equation of higher order. Theorem 7.1 is the basic existence theorem dealing with
the system (7.61). :
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THEOREM 7.1

Hypothesis. Let the functionsa,,, a,,, F\, a5, a5, and F, inthe system (7.6!) all be
continuous on the interval a < t < b. Let ty be any point of theinterval a <t < b; and let
c, and ¢, be two arbitrary constaniis.

Conclusion. There exists a unigue solution
x = f(1),
y = g(t),
of the system (7.61) such that
flto)=c; and g(ty) = ¢y,
and this solution is defined on the entire intervala €t < b.
B. Homogeneous Linear Systems
We shall now assume that F, (t) and F, (¢) in the system (7.61) are both zero for all ¢ and
consider the basic theory of the resulting homogeneous linear system

dx
i ag ()x + ag(0)y,

d
FJ: = a5 (}x + az,(t)y.
THEOREM 7.2

Hypothesis. Let

x = fi (1), x = f2(2),
and (7.68)
y = 41(t), y = g2(),
be two solutions of the homogeneous linear system (7.67). Let ¢, and c; be two arbiirary

constants.

Conclusion. Then

x=c;fi{1) + e, f;10),
y=cogl8) + 24402
is also a solution of the system (7.67).

(7.69)
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DEFINITION

The solution (7.69) is called a linear combination of the solutions (7.68). This definition
enables us'to express Theorem 7.2 in the following alternative form.

THEOREM 7.2 RESTATED

Any linear combination of two solutions of the homogeneous linear system(7.67)is itself a
solution of the system (7.67).

> Example 7.11

We have already observed that
x = es:’ X = esr‘
and
y = _3e51, y = _83!'

are solutions of the homogeneous linear system (7.62). Theorem 7.2 tells us that
x=c e+ e
= —3&'185' —(.'383',

where ¢, and ¢y are arbitrary constants, is also a solution of the system (7.62). For

example, if ¢, = 4 and ¢, = —2, we have the solution
x = 4e — 2e*,
y = —12¢> + 2¢¥,

DEFINITION
Let

x = fi{t), x= f0),

and
y=g,(t) ¥y = g,{1),
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be two solutions of the homogeneons linear system(7.67). These two solutions are linearly

dependent on the interval a < ¢ < bif there exist constants ¢; and ¢, not bothi zero, such
that '

e i) + e fo(t) =0,
¢ g, (t) + c29,(t) =0, (7.70)

Sorallt suchthata <t < b.

DEFINITION

Let

x = fi{1), x = fo{1),
and
y = g4(t), y = g,lt),
be two solutions of the homogeneous linear system (7.67). These two solutions are linearl y
independent on a < t < b if they are not linearly dependent on a <t < b. That is,
the solutions x = f(t), y = g,(t) and x = f,(1), y = g,(t} are linearly independent on
a<t<bif
e flt) + e fZ(t) =0,
¢ gi(t) + ¢19,5(t) = 0,
Sfor all t such that a < t < b implies that

(7.71)

&y mc;:ﬂ.

P Example 7.12

The solutions

x = ES', x = 285',
and
y= —3e%, y= —6e*,

of the system (7.62) are linearly dependent on every interval a < ¢t < b. For in this case
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the conditions {7.70) become

C‘ES' + 20185l = 0,
—36185' — 6{.‘285' - 0, (?72)
and clearly there exist constants ¢, and c,, not both zero, such that the conditions (7.72)
hold on a < t < b. For cxample, lete, =2and¢; = —1.

On the other hand, the solutions
5t

Y

x=e x =g,

and
y= _3351' y = —63!,

of system (7.62) are linearly independent on a < t < b. For in this case the conditions
(7.71) are

ce’ + e =0,
—3c,e% e =0,

If these conditions hold for all ¢ such that a < t < b, then we must havec, =¢, = 0.

We now state the following basic theorem concerning scts of linearly independent
solutions of the homogeneous linear system (7.67).

THEOREM 7.3

There exist sets of two linearly independent solutions of the homogeneous linear system
(7.67). Every solution of the system (7.67) can be written as a linear combination of any
two linearly independent solutions of (7.67).

P Example 7.13

We have seen that

x = e, x = e,
anq
y = —3e%, y= —e¥,
constitute a pair of lincarly independent solutions of the system (7.62). This illustrates
the first part of Theorem 7.3, The second part of the theorem tells us that every solution
of the system (7.62) can be written in the form
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x = ¢ e + ce”,
y=—3ce”* —cze¥%,
where ¢, and ¢, are suitably chosen constants.
Recall that in Section 4.1 in connection with the single nth-order homogencous
linear differential equation, we defined the general solution of such an equationto be a
linear combination of n linearly independent solutions. As a result of Theorems 7.2 and

7.3 we now give an analogous definition of general solution for the homogencous linear
system (7.67).

DEFINITION

Let

x = filt) x = f(1),
and

¥ =at) ¥ = galt),

be two linearly independent solutions of the homogeneous linear system (7.67). Let ¢, and
¢, be two arbitrary constants. Then the solution

x = ¢ fy(t) + e2f3(1),
¥ =c1g,(t) + €201(t),
fs cafled a general solution of the system (7.67).

P Example 7.14

Since

x = e, x =e¥,
and
y= _38515 y= __831’

are linearly independent solutions of the system (7.62), we may write the general
solution of (7.62) in the form

x=cpe” + ¢ e¥,
y= __scle.i: _ cze.?t,

where ¢, and ¢, are arbitrary constants.
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DEFINITION
Let
X = f;(t)’ x = fz(’}s
' and
¥y =4, y = g4lt)
be two soiutions of the homogeneous linear system (7.67). The determinant

ai(t) g2(0)
is called the Wronskian of these two solutions. We denote it by W (t).
THEOREM 7.4

Two sotutions

x = filt), x = fo{t),

and
¥ =gt} y = g2t

of the homogeneous linear system (7.67) are linearly independent on anintervala <t < b
if and only if their Wronskian determinant

Al ()
g,{t) ga{t)

is different from zero for all t such thata <t < b.
THEOREM 7.5

Wit) = {1.73)

Let W({t) be the Wronskian of two solutions of homogeneous linear system (7.67) on an
interval a <t < b. Then either W(t) =0 forallte[e, b) or W(t) =0 for not & [a, b].
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A partial differential equation has independent

variables

The general linear system on the interval of

The normal form of linear system of differential
equation is the function of

Which method is used for solving linear system with
constant coefficient

A linear operator with

The method which depends upon the symbolic operator

is called

A equation involving of
a one or more independent variable is called
differential equation

The canonical form is hyperolic if

The canonical form is paraolic if

The canonical form is elliptic if

The required solution for the product will be in the form

of

The function u(x,y,z,t) is used to represent the
displacement at a time of a particle whose position at

—is(xy.2)

The equation for conduction tells us that the rate of
in joules per second
The heat equation is a consequence of law

The heat equation is a consequence of fourier law of

An is a function where domain is a set of function

The equation for conduction tells us that the rate of heat

transfer in

The equation of differentiation with respect to t is
denoted by the symbol

The dependent variable
separable form u(x, y) = X(x) Y(y).
The derivative dx/dt is denoted by
D is called as -----------------
The second derivative of x with respect to t is denoted

by

The dependent variable u(x, y) is expressed in the
separable form u(x, y) = ------------- .

The method of --------------
in finding solutions of a large class of initial boundary

value problems.

The n™ derivative of x with respect to t is denoted by ----

expansion.

The string displays

nodes.

In the eigen functions y n=w n/2m=nc/2l represents the
-------------- frequencies.
The harmonic -------------

harmonic

The harmonics ------------

The A _n are called the

variables with respect to

is expressed in the

of variables is widely used

functions ®_n represents the discrete
spectrum of circular frequencies.

of variables is also known
as the Fourier method or the method of eigen function

loops separated by the

is called fundamental

are called overtones

values of the problem.

OPT1
one or more
a<=t<=hp
XY,z

symbolic
operator
constant

linear operator

one or more

a=-C

a=-C

a=-C
u(xy)=X(x)Y(
y)

rest

melting
fourier law

constant

operator

joules per
second

A
uy, 2)
Dy

differential

Dy
X(x) +Y(y)
integration
Euclid

D"y

integration

[y

angular

n=0
n<l1

euclid

OPT 2
two or more
a<t<b
X

constant
method
constant
non linear
operator
one

a=0

a=0

a=0
u(x,y)=Xx)/'Y
v)

motion

heat transfer
cauchy law

melting
method
kilowatts

B

u(x', y')

Dx

logical

D’

X(x) - Y(y)
separation
Kernal

D"x

separation

circular

kernal

OPT 3
more than one
a>t>b

y

coefficient
method
linear
differential
operator

two

a=c

a=c

a=c
u(x,y)=X(x)-
Y ()

object

heat

conduction
eulers law

heating
linear operator
meter

C

ux, y)
Dy'
relational

Dzy'

X() Y()

differentiation
eigen
Dny'

differentiatio
n

n-1
rectangular

n=2
n>1

eigen

OPT 4
none of these
none of these

z

none of these
non linear

none of these

three

a>0

a>0

a>0
u(x,y)=X(x)+
Y(y)

moving

cooling
conservation
conduction

non linear
operator

kilometer

D
u(y', z')

Dx'
boolean

D%’

X() 1Y (y)

induction

node
D"

induction

spherical
n=3
n=0

node

ANSWER
two or more
a<=t<=b
XY,z

symbolic
operator
constant
differential
operator

one or more

a=-C

a=0

a=C
uX,y)=XX)Y(
y)

rest
heat transfer

fourier law

conduction

operator

joules per
second

D

ux,y)

Dx
differential

D’

X(x) Y(y)
separation
eigen

D"x

separation

angular

n=1
n>1

eigen



constant constant

The T* represents ----------------- of a vibrating string. . eigen node kernel .
tension tension
In the method of integral transforms K is the
. kennel k(x, kernel k(z kernel
of the function ) @)
If f and g are said to be compatible then it have . . . . .
. unique different linear non linear unique
solution
The derivative of x with respect to t is denoted
- P second first third fourth second
by D°x
The second of x with respect to t is denoted by L . . . .
D’ derivative non linear linear integral derivative
The second derivative of with respect to t is
2 X,z X y z X
denoted by Dx
The second derivative of x with respect to is
) t X y z t
denoted by D“x
S fundamental . fundamental
The harmonic n=1 is called fundamental  harmonic none of these

harmonic harmonic
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KARPAGAM ACADEMY OF HIGHER EDUCATION
COIMBATORE-21
DEPARTMENT OF MATHEMATICS
Sixth Semester
PDE and Systems of ODE
I Internal Test - December'2018

Date : 17.12.2018 (AN)
Class : 11l B. Sc Mathematics

Time : 2 Hours
Maximum: 50 Marks

PART - A (20 x 1 = 20 Marks)
Answer all the questions:
1. A partial differential equation is the equation involving partial

derivatives of one or more dependent variables with respect to

independent variable.
a) one most one b) atleast one
) more than one d) more than two

2. A differential equation involving ordinary derivatives of one or
more dependent variables with respect to a ------------------
independent variable is called an ordinary differential equation.

a)l b) 2 c)3 d) 4

3. The equation UxUxx + Xuuy = Sin y is

a) quasi linear b) non linear  c) Cauchy  d) boundary

4. The order of the equation uxx — Uyy = 0 is

a)l b) 2 c)3 d) 4

5. The partial differential equation u¢ — uxx = 0 with u(x, 0) = sin x.
The given condition is called

a) initial b) boundary c¢) Cauchy d) linear

6. F(X, Y, U, Uxx, Uyy) =0 is order PDE.

a) first b) second c) third d) fourth
7. The equation F(X, v, u, ux, Uy) =0 is said to be

a) linear b) non linear
quasi linear

C) quasi linear d) non

8. Which one of the following is the homogeneous equation?

Q) Xy+x=e
d)ax+by=0

b) nx + my = sinx C) yx =y +3X

9. The existence of the mathematical problem have
solution.

a) one most one b) atleast one
d) more than two

) more than one

10.L+M=M+L & LM =ML are called
property.

a) associative
d) closed

b) distributive c) commutative

11. An operator is said to be linear if it satisfies

a) L(cu) =c L(u)
+ CzUz) = ClL(Ul) + CzL(Uz)

d) L(ciuz + couz) # cil(ug) + col(u2)

b) L(u1 + uz) = L(u1) + L(u2) c¢) L(ciug



12.(L+M)+N=L+(M+N)iscalled
property.

a) associative
d) closed

b) distributive C) commutative

13. A non linear ordinary differential equation is an ordinary
differential equation that is not ............

a) linear b) non linear c) differential d) integral

14. Linear ordinary differential equations are further classified
according to the nature of the coefficients of the
................... variables and its derivatives

a) single b) dependent c) independent d) constant

15. The order of .........derivatives involved in the differential
equations is called order of the differential equation

a) Zero b) lowest c) highest d)
infinite

16. The equation f(X, y, z, a, b) = 0 containing two arbitrary
parameters is called of an equation.

a) linear b) non linear
complete solution

c) partial solution d)

17. A solution which is not everywhere differentiable is called a
solution.

a) strong b) weak c) low d) high

18. A curve in (X, Yy, u)-space, whose tangent at every point
coincides with the characteristic direction field (a, b, ¢), is called a

a) tangent curve b) normal curve C)
characteristic curve d) uniform curve

19. The characteristic direction is also called as

a) Monge axisb) Monge cone
d) Monge line

c) Monge curve

20. In the equation u(Xo(t), yo(t)) = Uo(t), uo(t) is called the

a) final data  b) initial data c) curve value d) null value

PART - B (3 x 2 =6 Marks)

Answer all the questions:
21. Define differential equation.
22. Write the Laplace equation.
23.
PART - C (3 x 8 =24 Marks)

Answer all the questions:
24. a) Explain the classification of first order equations.
(OR)

b) Find the general solution of the first-order linear partial
differential equation xux + y uy = u.

25. a) Find a solution f of the differential equation % = 2x. Show that

x =1 is the solution f of the value.

(OR)



b) Reduce the equation ux — uy = u to canonical form and obtain the
general solution.

26. a) Show that the initial value problem & = — %y =4

(OR)
b)



QUESTION
The system of the form dx/dt= a;;(t)x + a(t)y + F4(t)
if F4(t) is non zero for all t, then the system is called

ANy ----memeeeeeen of two solutions of the homogeneous
linear system dx/dt=a;;x + a;,y and dy/dt=a,,x + a,,Yy is

itself a solution.

The general solution of the of the form x = ¢,e™ + ¢,e™

where ¢; and ¢, are -------------

The homogeneous linear system X' = a;x + b;y and Y' =
aX + byy where the coefficient a;, by a,, & b, are

The general solution of the system dx/dt=a;x; + b;X; is
written as x = A;e*' ) + A,e? Y. Then roots A1 and 22

The general solution of the system dx/dt=a;x; + b;X; is
written as X = (A;cos bt + A, sin bt). Then roots A1 and

The general solution of the system dx/dt=a;x; + b;X; is
written as X = (At + A,) €™ then roots A1 and A2 are ----

If roots of linear second order differential equation is
real double root than general solution will contain

A particular case of Runge Kutta method of second

order is --------=---m-----

Runge Kutta of first order is nothing but the

In Runge Kutta second and fourth order methods, the

values of k; and k, are ----

The ------mnmmmme- values are calculated in Runge Kutta

fourth order method.

The use of Runge kutta method gives
solutions of the differential equation than Taylor’s

series method.

In Runge — kutta method the value x is taken as

L is nothing but the modified

Euler method.

If dy/dx is a function x alone, then fourth order Runge
— Kutta method reduces to -------------- .

In Runge Kutta methods, the derivatives of
order are not require and we require only the given
function values at different points.

The formula of Dy in second order Runge Kutta method

is given by -------

OPT1

homogeneous

different
equations

constant

variable

imaginary and
unequal

imaginary and
unequal

imaginary and
unequal
linear equations

(Acos2x +
Bsin2x)

two constants &
two exponentials

Milne’s method
Euler method

always positive

kl! kZ! k31 I(4
and Dy

Slow
convergence

Taylor series
method

Euler method

lower

k1

OPT 2
non

homogeneous

non linear
combination

variable

real constant

conjugate
complex

conjugate
complex

conjugate
complex

homogeneous
equations
(Acos2x —
Bsin2x)

one constant &
two exponentials

Picard’s method

modified
Euler method

always negative
ki, k, and Dy

quick
convergence
xX0=x+h

Runge kutta
method of fourth
order

Taylor series

higher

k2

OPT 3

linear

linear
combination

dependent

dependent

real and equal

real and equal

real and equal

simultaneous
equations
(Acosh2x +
Bsinh2x)

two constants &
one exponential

Modified Euler
method

Taylor series

differ
kq, Ky, ks and
Dy

oscillation

x=x0+h

Runge kutta
method of third
order

Simpson
method

middle

k3

OPT 4

non linear

same equations

independent

independent

real and distinct

real and distinct

real and distinct

non
homogeneous

(Acosh2x —
Bsinh2x)

d) one constant
& one
exponential

Runge’s method
none of these
same

k, and Dy
divergence
h=x0+x
Runge kutta
method of
second order
Trapezoidal rule

Z€ero

k4

ANSWER
non

homogeneous

linear
combination

constant

real constant

real and distinct

conjugate
complex

real and equal

simultaneous
equations
(Acos2x +
Bsin2x)

two constants &
one exponential

Modified Euler
method

Euler method

same

kl’ kz, k3, k4
and Dy

quick
convergence
x=x0+h

Runge kutta
method of
second order

Simpson
method

higher

k2
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(16MMUG602B/17MMU402)

KARPAGAM ACADEMY OF HIGHER EDUCATION
COIMBATORE-21
DEPARTMENT OF MATHEMATICS
PDE and Systems of ODE
Il Internal Test — Feb’ 2018
Date : 04.02.2019 (AN) Time : 2 Hours
Class: 111 B. Sc./ 11 B.Sc. Maximum: 50 Marks

PART - A (20 x 1 = 20 Marks)

Answer all the questions:

1. Asolution to the partial differential equation u _ 982—u is
) dx2 doy?

a) cos(3x —Y) b) X* + y?

c) sin(3x —y) d) e 3™*sin(mry)
. . . . 82z 9%z _ . g
2. The partial differential equation 5 =t 6@ = xy is classified
as .
a) elliptic b) parabolic
c) hyperbolic d) sphere

3. A partial differential equation is one which involves
derivatives.
a) Single b) ordinary  c) partial d) linear

4. The order of PDE to be the order of the derivative of
order occurring in it.
a) lowest b) highest c) first d) second

5. The variational approachto ___ value problem is useful in the
derivation of approximating solution

a) Euclid b) Kernal C) eigen d) node

10.

11.

12.

13.

14.

Z=X(x)Y(y) is called of variables

a)integration b)separation

c) differentiation d)induction

The separation principle can readily be extended to __ number of
variables.
a)smaller b)unique

c)larger d)contrary

2
The partial differential equation xyZ—i =5 g—yi is classified

as :
a) elliptic b) parabolic

c) hyperbolic d) sphere

If f(x,p) =9(y,q) is called equation

a) Clairaut  b) Charpit c) Crout d) Separable
L(z)+f(x,y,z,p,q)=0 where L is the operator

a) Laplace b) Differential

c) Lagrange d) Longdivision

The infinite sector is called the range of influence of the
point.

a)P b) Q c)R d)S

The theorem can be applied with continuous data by

using polynomial approximations only if a small variation in the
initial data leads to a small change in the solution.

a)Cauchy Kowalewskaya b) Cauchy

c) Existence d) Uniqueness

The necessary condition for obtaining the second derivatives is
that the curve ------ must not be a characteristic curve.

a)Ll b) Ro C) Po d) Lo

. dy 2 dy _ .
The equation A (E) -B (E) + C = 0 is called the

a)characteristic curve
¢) finite equation

b) characteristic equation
d) finite curve



15.

16.

17.

18.

19.

20.

The solution of the is a surface called an integral
surface in the (X, y, u) space passing through L.
a)Cauchy Kowalewskaya  b) Cauchy problem

c) Existence d) Uniqueness

The function f(4) and g(4) inu =f(1) and Z—Z = g(A) are called
data.

a)initial b) final c) cauchy d) complete

The Cauchy problem involves second order partial differential

equations in------ independent variables.

a)Two b) one c) three d) zero

The Cauchy Kowalewskaya theorem can be applied with
data by using polynomial approximations only if a small variation
in the initial data leads to a small change in the solution.

a)discontinuous b) continuous
c) infinite d) finite
The necessary condition for obtaining the derivatives is
that the curve Lo must not be a characteristic curve.
a)fourth b) third c) second d) first
The equation is called the characteristic equation.
dy d _
DA () —B(G)+c=
dy\? d
b)A(2) +B(2)+Cc=0
dy\ 2 dy _
A () —B(G)-c=o
dy 2 dy\ _
DA (Z) -B(2)=

PART - B (3 x 2 = 6 Marks)

Answer all the questions:

21.
22.

Define initial value problem.
Write the heat equation.

23. Write the general solution of initial boundary value problem using
a semi-infinite string with a fixed end.

PART - C (3 x 8 =24 Marks)
Answer all the questions:
24. a) Solve Z—z =2 ‘3—’; + u by method of separation of variables
where u(x, 0) = 66,
(OR)

b) Derive wave equation.

25. a)Use the separation of variables u(x, y) = f(x) + g(y) to solve the
equation uy® + uy? =1.
(OR)
b) Transform the equation y2uxx — X?Uyy = 0 into canonical form.

26. a) Derive the canonical form of the elliptic equation.
(OR)
b) Transform the equation 4uxx + Suxy + Uyy + Ux + Uy = 2 int0
canonical form.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

COIMBATORE-21
DEPARTMENT OF MATHEMATICS
PDE and Systems of ODE
11 Internal Test — March 2019
11.03.2019 (AN) Time : 2 Hours
Maximum: 50 Marks

PART - A (20 x 1 = 20 Marks)

Answer all the questions:

1.

The equation of differentiation with respect to t is denoted by the

a)A b) B c)C dD

The dependent variable ------------- is expressed in the separable form
u(x, y) = X(x) Y(y).

au(y, z) b) u(x', y') c) u(x, y) d)u(y', )

The derivative dx/dt is denoted by -------------- .

a)Dy b) Dx ¢) Dy' d) Dx'

D is called as ----------------- operator.

a)differential b) logical

c) relational d) Boolean

The system of the form % = an(t)x + an(t)y + Fi(t) if F1(t) is non zero
for all t, then the system is called --------------

a)homogeneous b) non homogeneous

c) linear d) nonlinear

ANy —---ememee e of two solutions of the homogeneous linear system
dx

d . .
—, =anX + ayy and d—’; =axnX + ayy is itself a solution.
a)different equations

c) linear combination

b) non linear combination
d) same equations

10.

11.

12.

13.

14.

15.

16.

The general solution of the of the form x = c1e™ + c.e* where ¢; and ¢,

a)constant b) variable

c) dependent d) independent

The homogeneous linear system X' = a;x + biy and Y' = a»x + by where
the coefficient as, by, a2, & b2 are --------------- .

a)variable b) real constant

c) imaginary constant d) zero

The second derivative of x with respect to t is denoted by ---------- :
a)D% b) D c) D% d) D'

The dependent variable u(x, y) is expressed in the separable form
u(x,y) = ------------- .

a)X(x) + Y(y) b)X(x)-Y(y) ¢)X(x)Y(y) d)X(Xx)/Y(y)
The method of -------------- of variables is widely used in finding
solutions of a large class of initial boundary value problems.
a)integration b) separation

c) differentiation d) induction

In the ------------- functions w,, represents the discrete spectrum of
circular frequencies.

a)Euclid b) Kernal C) eigen d) node

The n™ derivative of x with respect to t is denoted by ----------------- .
a)D"y b) D"x c) Dy d) D"x'

The method of ---------------- of variables is also known as the Fourier

method or the method of eigen function expansion.
a)integration b) separation

c) differentiation d) induction

The string displays --------------- loops separated by the nodes.

a)l b) 2 c)n-1 d) n

In the eigen functions Yo = ? = % represents the------- frequencies.
T

a)angular b) circular c) rectangular d) spherical



17.

18.

19.

20.

The harmonics ------------ are called overtones.

an<1 byn=1 c)n>1 dn=0

The 4,, are called the ----------- values of the problem.

a)euclid b) kernal C) eigen d) node

The T” represents ----------------- of a vibrating string.

a)constant tension b) eigen

C) node d) kernel

In the method of integral transforms K is the------- of the function.
a)kennal b) k(x,y) c) kernel d) k(z)

PART - B (3x 2 = 6 Marks)

Answer all the questions:

21. Write the normal form of three linear differential equations in two

unknown functions.

22. Write the linear differential operators with constant coefficients.

23.

Define linearly independent solutions.

PART - C (3 x 8 =24 Marks)

Answer all the questions:

24.

25.

a) Reduce the second order homogeneous partial differential equation to
two ordinary differential using method of separation of variables.
(OR)
b) Write a note on types of linear systems.

a) Explain the eigen value problem for wave equation.
(OR)
b) Solve thesystem =+ _ x = —2tand B+ ¥ _ 33 —y = ¢2
dt ' dt dt ' dt y

26. a) Apply the Euler method to the initial value problem Z—z =X -2y,

y(0)=1. Employ the method to approximate the value of the solution y at
x=0.1, 0.2,0.3 and 0.4 using h = 0.1. Obtain results to three figures
after the decimal point.

(OR)

b) Find the general solution of the system of equations

Yy Y=
dt—4x o X+ 2y.
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KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956)
Pollachi Main Road, Eachanari Post, Coimbatore — 641 021
(For the candidates admitted from 2016 onwards)

B.Sc., DEGREE EXAMINATION, APRIL 2019
Sixth Semester

MATHEMATICS
PDE AND SYSTEMS OF ODE
Time: 3 hours Maximum : 60 marks

PART — A (20 x 1 =20 Marks) (30 Minutes)
(Question Nos. 1 to 20 Online Examinations)

PART B (5 x 2 = 10 Marks) (2 % Hours)
Answer ALL the Questions

21. Write the Laplace equation and Poisson equation.

22, Define initial value problem.

23. Write the general solution of initial boundary value problem using a semi-infinite
string with a fixed end.

24. Define fundamental harmonic.

25. Define linearly independent solutions.

PART C (5 x 6 = 30 Marks)
Answer ALL the Questions

26. a. Show that the family of the spheres (x-a)’ + (y-b)* + z* =1’ satisfies the first

order, non liner partial

differential equation 2%(p* + ¢* + 1) =r".

Or
b. If ¢ = ¢(x, y, z)andy = w(x,y,z) are two given functions of x, y, and z and if

f(¢,w) = 0, then prove that z = z(x, y) satisfies a first-order , partial differential
og.y) , 0@y) _0ov)
Ay2) " Azx) O(xy)

equation p q

27. a. Solve the IVP u, + 2u, =0, using u(0, y) = 4e™.
Or
b. Derive wave equation.

28. a. Transform the equation 4u,, + Suy, + u,, + u, + u, = 2 into canonical form.
Or
b. Find the solution of the initial boundary value problem using a semi-infinite
string with a free end at x = 0.

29. a. Derive struck string problem.

Or
2 o Dz & Y 3eiBy=2
b. Solve the system NM‘im = 3x=¢and 2 5 +2 = +3x+8y=2.
. . . dy
30. a. Find the general solution of the system of equations e 4x— = x+2y.
Or
b. Apply the Euler method to the initial value problem Nu =2x+y,y(0)=1.Use

the method to approximate the value of the solution y at x = 0.2, 0.4 and 0.6
using h = 0.1. Obtain results to three figures after the decimal point.
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