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Scope:On successful completion of course the learners gain about the groups, Fundamental
Theorem and its properties.

Objectives: To enable the students to learn and gain knowledge about group homomorphism,
isomorphism, automorphismand its related properties.

UNIT I

Group homomorphisms, properties of homomorphisms, Cayley’s theorem, properties of

isomorphisms, First, Second and Third isomorphism theorems.

UNIT Il
Automorphism, inner automorphism, automorphism groups, automorphism groups of finite and
infinite cyclic groups, applications of factor groups to automorphism groups, Characteristic

subgroups, Commutator subgroup and its properties.

UNIT I
Properties of external direct products, the group of units modulo n as an external direct product,

internal direct products, Fundamental Theorem of finite abelian groups.

UNIT IV

Group actions, stabilizers and kernels, permutation representation associated with a given
groupaction, Applications of group actions: Generalized Cayley’s theorem, Index theorem.
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UNIT V
Groups acting on themselves by conjugation, class equation and consequences, conjugacy in Sn,
p-groups, Sylow’s theorems and consequences, Cauchy’s theorem, Simplicity of An for n > 5,

non-simplicity tests.

SUGGESTED READINGS

TEXT BOOK

1. Fraleigh.J.B., (2004). A First Course in Abstract Algebra , Seventh edition, Pearson

Education Ltd, Singapore.

REFERENCES

1. David S. Dummit and Richard M. Foote,(2004).,Abstract Algebra,. ThirdEdition., John

Wiley and Sons(Asia) Pvt. Ltd., Singapore.

2. Herstein.l.N.,(2010). Topics in Algebra ,Second Edition, Willey and sons Pvt Ltd, Singapore.

3. Joseph A. Gallian., (2001).Contemporary Abstract Algebra, FourthEdition.,Narosa

Publishing House, New Delhi.

4. Artin.M., (2008).Algebra, Prentice-Hall of India, New Delhi.
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(Established Under Section 3 of UGC Act, 1956

LECTURE PLAN
DEPARTMENT OF MATHEMATICS

STAFF NAME: Dr. K. KALIDASS

SUBJECT NAME: GROUP THEORY Il SUB.CODE: 17MMU403
SEMESTER: IV CLASS: Il B.SC MATHEMATICS
S.No | Lecture Topics to be Covered Support
Duration Material/Page Nos
Period
UNIT-I
1 1 Introduction to group homomorphism/ Tutorial — I | T1: Ch 3, 125-126
2 1 Restriction of homomorphism to a subgroups T1: Ch 3, 126-127
3 1 Tutorial — 11
4 1 Properties of homomorphism T1: Ch 3, 128-130
5 1 Continuation of properties of homomorphism T1: Ch 3,131-135
6 1 Cayley’s theorem R2: Ch 2, 60-61
7 1 Properties of isomorphism R3: Ch 6, 133-134
8 1 First isomorphism theorem R3: Ch 10, 214
9 1 Tutorial — 111
10 1 Examples for First isomorphism theorem R3: Ch 10, 215-216
11 1 Tutorial-111
12 1 Second isomorphism theorem R3: Ch 10, 222
13 1 Third isomorphism theorem R3: Ch 10, 222
14 1 Recapitulation and discussion of possible questions
Total No of Hours Planned For Unit 1=14
UNIT-II
1 1 Introduction to automorphism R3: Ch 6, 134-135




Lesson Plan

2016 -2019
Batch

2 1 Theorems on automorphism R3:Ch6, 135

3 1 Tutorial-1

4 1 Inner automorphism R3: Ch 6, 136

5 1 Tutorial-Il

6 1 Theorem on inner automorphism R3: Ch 6, 137

7 1 Continuation of theorem on inner automorphism |R3: Ch 6, 138

8 1 Theorems on automorphism groups of finite R3: Ch 11, 226-229
and infinite cyclic groups

9 1 Continuation of theorems on automorphism groups| R3: Ch 6, 229-233
of finite and infinite cyclic groups

10 1 Applications of factor groups T1: Ch 3, 135-136

11 1 Tutorial — 11

12 1 Characteristics subgroup T1: Ch 3, 137-140

13 Tutorial — IV

14 1 Commutator subgroup T1: Ch 3, 150

15 1 Properties of commutator subgroup T1: Ch 3, 151-152

16 Recapitulation and discussion of possible questions

Total No of Hours Planned For Unit 11=16
UNIT-111

1 1 Introduction to direct product R3: Ch 8, 162

2 1 Theorems on direct problem R3: Ch 8, 162-163

3 1 Tutorial-I

4 1 Continuation of theorem on direct product R3: Ch 8, 163

5 1 Tutorial-II

6 1 Continuation of theorem on direct product R3: Ch 8, 163

7 1 Properties of external direct product R3: Ch 8, 163-164

8 1 Continuation of properties of external direct R3: Ch 8, 164-166
product

9 1 The group of units modulo n as an external direct | R3: Ch 8, 166
product

10 1 Continuation of the group of units modulo nas an | R3: Ch 8, 167-168
external direct product

11 1 Tutorial 111

12 1 Internal direct product R3:Ch9, 195

13 1 Tutorial IV

14 1 Examples of internal directproduct R3:Ch 9, 197




Lesson Plan

2016 -2019
Batch

15 1 Fundamental theorem of finite abelian group R3: Ch 11,226
16 1 Recapitulation and discussion of possible questions
Total No of Hours Planned For Unit 111 — 16
UNIT-IV
1 1 Introduction to Group action T1: Ch 3, 168-170
2 1 Theorems on group action T1: Ch 3, 168-170
3 1 Tutorial — 1
4 1 Theorems on stabilizer R1: Ch4, 112-114
5 1 Tutorial Il
6 1 Continuation of theorems on stabilizer R1: Ch4, 115
7 1 Theorems on kernels R1: Ch 4, 116-117
8 1 Theorems on permutation representations R1: Ch4, 117
9 1 Continuation of permutation representations R1: Ch 4, 117
10 1 Generalized Cayley’s theorem R1:Ch4, 118
11 1 Tutorial-111
12 Index theorem R1: Ch 4, 119-120
13 1 Tutorial IV
14 1 Problems on index theorem R1:Ch4, 121
15 1 Recapitulation and discussion of possible questions
Total No of Hours Planned For Unit 1V=15
UNIT-V
1 1 Groups acting on themselves by conjugacy R1: Ch 4, 122
2 1 Class equation R4: Ch 6, 198
3 1 Conjugacy in S, R1: Ch 4, 142
4 1 Tutorial |
5 1 p-groups R1: Ch 4, 143-144
6 1 Tutorial — |1
7 1 Probability that two elements commute R1:Ch 4, 144
8 1 Sylow’s first theorem R1: Ch 4, 145-146
9 1 Cauchy’s Theorem
10 1 Sylow’s second theorem R1: Ch 4, 146
11 1 Sylow’s third theorem R1: Ch 4, 147-148




Lesson Plan

2016 -2019
Batch

12 1 Tutorial-111

13 1 Applications of Sylow theorem R1: Ch 4, 148

14 1 Tutorial 1V

15 1 Simplicity of 4, R1: Ch 4, 149-152
16 1 Recapitulation and discussion of possible questions

17 1 Discussion of previous ESE question papers.

18 1 Discussion of previous ESE question papers.

19 1 Discussion of previous ESE question papers.

Total No of Hours Planned for unit V -19

Total planned hours — 80

TEXT BOOK

1. Fraleigh.J.B., (2004). A First Course in Abstract Algebra , Seventh edition,
Pearson Education Ltd, Singapore.

REFERENCES

1. David S. Dummit and Richard M. Foote, (2004)., Abstract Algebra,. Third
Edition., John Wiley and Sons (Asia) Pvt. Ltd., Singapore.

2. Herstein.l.N.,(2010). Topics in Algebra ,Second Edition, Willey and sons
Pvt Ltd, Singapore.

3. Joseph A. Gallian., (2001). Contemporary Abstract Algebra, Fourth Edition.,
Narosa Publishing House, New Delhi.
4. Artin.M., (2008). Algebra, Prentice - Hall of India, New Delhi.
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CLASS: 1 M.Sc MATHEMATICS COURSE NAME: Group theory II
RSE CODE: 17 402 IT: I(Group homomorphism BATCH-2017-202

Cefinition Groap Homomorphsm

A homomorphism & from a groap & to a group G is a mapping
from & into 7 that preserves the proup operation; that is, ¢ afk) —
gapde(ib) for all o, b m 7.

Definition Kernel of a Homomorphism

The kernel of a homomorphism ¢ from a group G to a group with
identity e is the set {x € G | ¢(x) = e}. The kernel of ¢ is denoted by
Ker ¢.

B EXAMPLE 1 Any isomorphism is a homomorphism that is also onto
and one-to-one. The kernel of an isomorphism is the trivial subgroup. §

B EXAMPLE 2 Let R* be the group of nonzero real numbers under
multiplication. Then the determinant mapping A — det A is a
homomorphism from GL(2, R) to R*. The kernel of the determinant
mapping is SL(2, R). |

B EXAMPLE 3 The mapping ¢ from R* to R*, defined by ¢(x) = x|,
is a homomorphism with Ker ¢ = {1, —1}. |

B EXAMPLE 4 Let R[x] denote the group of all polynomials with real
coefficients under addition. For any fin R[x], let f* denote the deriva-
tive of f. Then the mapping f— " is a homomorphism from R[x] to it-
self. The kernel of the derivative mapping is the set of all constant poly-
nomials. |

B EXAMPLE 5 The mapping ¢ from Z to Z . defined by ¢(m) = m
mod 7, is a homomorphism (see Exercise 11 in Chapter 0). The kernel
of this mapping is (n). |
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: 1 M.Sc MATHEMATICS COURSE NAME: Group theory II
RSE CODE: 17 402 IT: I(Group homomorphism BATCH-2017-202

B EXAMPLE 6 The mapping ¢(x) = x* from R*, the nonzero real
numbers under multiplication, to itself is a homomorphism, since
d(ab) = (ab)* = a*b* = db(a)p(b) for all a and b in R*. (See Exercise 5.)
The kernelis {1,-1}. |

B EXAMPLE 7 The mapping ¢(x) = x2 from R, the real numbers
under addition, to itself is not a homomorphism, since ¢b(a + b) =
(a + b)® = a*> + 2ab + b?, whereas ¢(a) + b(b) = a® + b i

Let & be a homomorphism from a group G to a group G and let g be
an element of G. Then

1. ¢ carries the identity of G to the identity of G.

b(g") = (Pp(g)" forall n in Z.

If gl is finite, then |p(g)| divides |g|.

Ker o is a subgroup of G.

d(a) = ¢(b) if and only if aKer ¢ = bKer ¢.

Ifp(g) =g, then ¢~'(g") = {x E G| p(x) = g'} = gKer ¢.

el b

)

PROOF The proofs of properties 1 and 2 are identical to the proofs of
properties 1 and 2 of isomorphisms in Theorem 6.2. To prove property 3,
notice that properties 1 and 2 together with g" = ¢ imply that ¢ =
Pple) = h(g") = (db(g))". So, by Corollary 2 to Theorem 4.1, we have
\p(g)l divides n.

By property 1 we know that Ker ¢ is not empty. So. to prove prop-
erty 4. we assume that a, b € Ker ¢ and show that ab~! € Ker ¢.
Since d(a) = e and ¢(b) = e. we have d(ab™') = d(a)p(b™1) =
d(a)(p(b)) ! =ee ! = e. So,ab™! € Ker ¢.

To prove property 5, first assume that &(a) = ¢&(b). Then
e = (p(b)) dp(a) = (b~ Hp(a) = ¢(b~la), so that b~1aE€ Ker ¢.
It now follows from property 5 of the lemma in Chapter 7 that
bKer ¢ = aKer ¢. Reversing this argument completes the proof.
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To prove property 6. we must show that ¢~ !(g") C gKer ¢ and that
gKer ¢ C q’)“(g’]. For the first inclusion, let x € ¢ (g’). so that
d(x) = g'. Then ¢(g) = ¢(x) and by property 5 we have gKer ¢ =
xKer ¢ and therefore x € gKer ¢. This completes the proof that
b~ 1(g") C gKer . To prove that gKer b C ¢~ !(g"), suppose that k €
Ker ¢». Then ¢(gk) = ¢p(g)db(k) = ¢’e = ¢g'. Thus, by definition, gk €

d1(g").

Let ¢ be a homomorphism from a group G to a group G and let H be

a subgroup of G. Then

&(H) = {¢(h) | h € H} is a subgroup of G.

If H is cyclic, then ¢(H) is cyclic.

f H is Abelian, then &(H) is Abelian.

If H is normal in G, then ¢(H) is normal in ¢(G).

If \H| = n, then |p(H)| divides n.

If K is a subgroup of G, then ¢~ '(K) = {(k € G | ¢(k) E K}

is a subgroup of G.

8. IfK is a normal subgroup of G, then ¢ '(K) = {k € G |
(k) € K} is a normal subgroup of G.

9. If ¢ is onto and Ker ¢ = {e}, then ¢ is an isomorphism

from GitoG.

N AU RN

If |\Ker ¢| = n, then ¢ is an n-to-1 mapping from G onto ¢(G).

PROOF First note that the proofs of properties 1, 2, and 3 are identi-
cal to the proofs of properties 4, 3, and 2, respectively, of Theorem
6.3, since those proofs use only the fact that an isomorphism is an

operation-preserving mapping.
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To prove property 4, let d(h) € d(H) and d(g) € &(G). Then
d(2)D(Md(g) ' = d(ghg ") € b(H). since H is normal in G.

Property 5 follows directly from property 6 of Theorem 10.1 and the
fact that all cosets of Ker ¢» = ¢~ !(e) have the same number of elements.

To prove property 6, let ¢, denote the restriction of ¢ to the
elements of H. Then ¢, is a homomorphism from H onto ¢&(H).
Suppose [Ker ¢,| = 1. Then, by property 3, ¢, is a 7-to-1 mapping. So,
\b(H)It = |HI.

To prove property 7. we use the One-Step Subgroup Test. Clearly,
¢ € ¢~ 1K), so that ¢~1(K) is not empty. Let k. k, € &~ 1(K). Then,
by the definition of q’)“(f). we know that ¢(k)), ¢(k)) € K. Thus,
b(k,) ™" € K as well and d(k,k; ") = ¢(k,)b(k,) "' € K. So, by definition
of ¢~ 1(K), we have klkz_l € b (K).

To prove property 8, we use the normality test given in Theorem 9.1.
Note that every element in x¢~ ‘(K)x I has the form xkx ™1, where ¢ (k) €
K. Thus. since K 15 normal in G, d(xkx™ hy = O(x)D(k)(b(x))~ l e K.
and, therefore, xkx ! € ¢ 1(K).

Finally. property 9 follows directly from property 3. |

B Corollary Kernels Are Normal

Let & be a group homomorphism from G to G. Then Ker & is a nor-
mal subgroup of G.

B EXAMPLE 8 Consider the mapping ¢ from C* to C* given by
d(x) = x* Since (xy)* = x4 ¢ is a homomorphlsm Clearly,
Ker ¢ = {x|x* =1} = {1. —1.i. —i}. So. by property 5 of Theorem
10.2, we know that ¢ is a 4-to-1 mapping. Now let’s find all elements
that map to, say, 2. Certainly, cb(%] = 2. Then, by property 6 of
Theorem 10.1, the set of all elements that map to 2 is V2 Ker b =

(V2. V2 V20, —V2i}.
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B EXAMPLE 9 Define ¢:Z,, — Z, by ¢(x) = 3x. To verify that ¢ is a
homomorphism, we observe that in er 3(a + b) = 3a + 3b (since the
group operation is addition modulo 12). Direct calculations show that
Ker ¢ = {0, 4, 8}. Thus, we know from property 5 of Theorem 10.2 that
¢ 1s a 3-to-1 mapping. Since ¢(2) = 6, we have by property 6 of
Theorem 10.1 that ¢~ '(6) = 2 + Ker ¢ = {2.6. 10}. Notice also that (2)
is cyclic and ¢((2)) = {0, 6} is cyclic. Moreover, |2| = 6 and [(2)| =
6l = 2. s0 |d(2)] divides [2] in agreement with property 3 of Theorem
10.1. Letting K= {0. 6}. we see that the subgroup ¢ 1K) = {0, 2. 4, 6,
8, 10}. This verifies property 7 of Theorem 10.2 in this particular case. B

B EXAMPLE 10 We determine all homomorphisms from Z,, to Z,,.
By property 2 of Theorem 10.1, such a homomorphism is completely
specified by the image of 1. That is, if 1 maps to a, then x maps to xa.
Lagrange’s Theorem and property 3 of Theorem 10.1 require that |a| di-
vide both 12 and 30. So, |al = 1, 2, 3, or 6. Thus, a = 0, 15, 10, 20,
5, or 25. This gives us a list of candidates for the homomorphisms. That
each of these six possibilities yields an operation-preserving, well-
defined function can now be verified by direct calculations. [Note that
gcd(12, 30) = 6. This is not a coincidence!] |

B EXAMPLE 11 The mapping from § to Z, that takes an even permu-
tation to 0 and an odd permutation to 1 is a homomorphism. Figure 10.2
illustrates the telescoping nature of the mapping. |
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Figure 10.2 Homomorphism from S, to Z,.

The First Isomorphism Theorem

Let ¢ be a group homomorphism from G to G. Then the mapping
from GI/Ker ¢ to ¢(G). given by gKer ¢ — &(g). is an isomorphism,
In symbols, G/IKer ¢ ~= d(G).
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PROOF Let us use ¢ to denote the correspondence gKerd — d(g).
That v is well defined (that is, the correspondence is independent of
the particular coset representative chosen) and one-to-one follows
directly from property 5 of Theorem 10.1. To show that ¢ is operation-
preserving, observe that Js(xKer ¢ vKer ¢) = (xyKer ¢) = &b(xy) =
H(x) b(y) = (xKer d)f(yKer ¢). 0

i Corollary

If & is a homomorphism from a finite group G to G, then |d(G)|
divides |G| and |G .

Normal Subgroups Are Kernels

Every normal subgroup of a group G is the kernel of a homomor-
phism of G. In particular, a normal subgroup N is the kernel
of the mapping g — gN from G to G/N.

PROOF Define y:G — G/N by y(g) = gN. (This mapping is called the
natural homomorphism from G to G/N.) Then, y(xy) = (xy)N = xNyN =
Y(x)y(v). Moreover, g € Ker vy if and only if gN = y(g) = N. which is
true if and only if ¢ € N (see property 2 of the lemma in Chapter 7). &

(Second Isomorphism Theorem) If K is a subgroup of G and N is
a normal subgroup of G, prove that K/(K M N) is isomorphic
to KN/N.

(Third Isomorphism Theorem) If M and N are normal subgroups of
G and N = M., prove that (G/N)/(M/N) = G/M.
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Definition Automorphism
An isomorphism from a group G onto itself is called an automorphism

of G.

Definition Inner Automorphism Induced by a
Let G be a group, and let a € G. The function ¢, defined by ¢ (x) =
axa~! for all x in G is called the inner automorphism of G induced by a.

Aut(G) and Inn(G) Are Groups

The set of automorphisms of a group and the set of inner
automorphisms of a group are both groups under the operation
of function composition.

B EXAMPLE

To determine Inn(D,), we first observe that the complete list of inner
automorphisms 1S quﬂ? _('b_R-;n" @ngtl. g.le“-_ﬂ' d)H? &y &y, and ¢y, Our job is
to derermme the repetltmm in this list. Since ngﬂ e Z{D ), we have
xR -l = R oR 50 XR "R -l = Rgﬂngﬂ‘l = d)R (x) Slmllarl\

Rwu 270 180" 1180
since H = RISOV zmd D — RISDD we hme b, = by and by = by

B EXAMPLE

1o compute Aut(Z£,,), we try to discover enough information about an
element « of Aut(Zm) to determine how a must be defined. Because Zm
is so simple, this is not difficult to do. To begin with, observe that once
we know a(1), we know a/(k) for any Kk, because
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ak)=a(l +1+---+1)

— e ———

k terms
=a(l) +a(l) + - +a(l) = ka(l).

k terms

So, we need only determine the choices for a(1) that make «a an
automorphism of Z,,. Since property 5 of Theorem 6.2 tells us that
la(1)l = 10, there are four candidates for a(1):

all)=1; all) = 3; all)y="17. a(l) = 9.

To distinguish among the four possibilities, we refine our notation by
denoting the mapping that sends 1 to | by a, 1 to 3 by a5, 1 to 7 by .,
and 1 to 9 by a,. So the only possibilities for Aut(Z, ) are &, a5, &5, and
@y But are all these automorphisms? Clearly. a, is the identity. Let us
check ;. Since x mod 10 = ymod 10 implies 3x mod 10 = 3y mod 10,
a5 18 well defined. Moreover, because a5(1) = 3 1s a generator of Z, it
follows that a4 is onto (and. by Exercise 10 in Chapter 5, it is also one-
to-one). Finally, since ay(a + b) = 3(a + b) = 3a + 3D = a4(a) + a,(D),
we see that a, is operation-preserving as well. Thus. a; € Aut(Z,,). The
same argument shows that ae; and «g are also automorphisms.

This gives us the elements of Aut(Z,,) but not the structure. For in-
stance, what is aya,? Well. (a;0;)(1) = a5(3) =3 -3 =9 = (1), so
a,0; = (g Similar calculations show that 0,33 = a; and af34 = @y, 80
that |a;| = 4. Thus, Aut(Z,,) is cyclic. Actually. the following Cayley
tables reveal that Aut(Z,,) is isomorphic to U(10).

U(10) 1 3 7 9 Aut(Z,)) | a a; a, a,
1 1 3 7 9 a, @, a a N
3 3 0 1 7 a, oy @, a, a;
7 7 1 9 3 a, 0ty @, a, 0y
9 9 7 3 1 a, g a y X,
1 Il
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Aut(Z,) = U(n)
For every positive integer n, Aut(Z ) is isomorphic to U(n).

PROOF As in Example 13, any automorphism « is determined by the
value of a(1), and a(l) € U(n). Now consider the correspondence
from Aut(Z)) to U(n) given by T: @ — «(1). The fact that a(k) = ka(1)
(see Example 13) implies that 7" is a one-to-one mapping. For if a and
B belong to Aut(Z) and a(1) = B(1), then a(k) = ka(l) = kB(1) =
B(k) for all kin Z , and therefore a = f3.

To prove that T is onto, let r € U(n) and consider the mapping «
from Z to Z defined by a(s) = sr (mod n) for all s in Z . We leave it as
an exercise to verify that a is an automorphism of Z (see Exercise 17).
Then, since T(a) = «@(1) = r, T'1s onto U(n).

Finally, we establish the fact that T is operation-preserving. Let a,
B € Aut(Z ). We then have

Tap) = (aB)) =aB(l) =a(l + 1 +---+1)

,B(l}ytenns
=a(l)+a(l)+---+a(l)=a(l)B(1)

B(1) terms
= Ha)T(P).

This completes the proof. |

Fundamental Theorem of Finite Abelian Groups

Every finite Abelian group is a direct product of cyclic groups of
prime-power order. Moreover, the number of terms in the product
and the orders of the cyclic groups are uniquely determined by the

group.
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Since a cyclic group of order n is isomorphic to Z . Theorem 11.1
shows that every finite Abelian group G is isomorphic to a group of
the form

Zplﬂl > sznz DD Zpk”k”
where the p’s are not necessarily distinct primes and the prime-
powers p "l p,™, ..., p/t* are uniquely determined by G. Writing a
group in this form is called determining the isomorphism class of G.

Greedy Algorithm for an Abelian Group of Order p”

1. Compute the orders of the elements of the group G.

2. Select an element a; of maximum order and define G, = <£.'J'1>+

Seti = 1.

If 1G] = 1G |, stop. Otherwise, replace i by i + 1.

4. Select an element @, of maximum order p* such that pk =
|GI/|G,_,! and none of a,, a,?, a. P .., af.pk_' is in G,_,. and define
G, = G,_ | X (a,).

5. Return to step 3.

Y]

B EXAMPLE
LetG=1{1,8,12,14,18,21,27,31, 34, 38,44, 47,51,

53, 57, 64} under multiplication modulo 65. Since G has order 16, we
know it is isomorphic to one of

Zie
7,87,
7,87,

AV AYA
2,82,92,87,
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To decide which one. we dirty our hands to calculate the orders of the
elements of G.

Element|]|8‘]2‘]4|]8|21‘2?‘31‘34

38|44|4?|51

53| 57| 64

Order|]|4‘4‘2|4|4‘4‘4‘4‘4|4|4|2‘4|4|2

From the table of orders, we can instantly rule out all but Z, © Z, and
Z,® Z, D Z, as possibilities. Finally, we observe that since this latter
group has a subgroup isomorphic to Z, @ Z, @ Z,. it has more than
three elements of order 2, and therefore we must have G~ Z, © Z,.
Expressing G as an internal direct product is even easier. Pick an el-
ement of maximum order, say the element 8. Then (8) is a factor in the
product. Next, choose a second element. say «a. so that a has order 4 and
a and a® are not in (8) = [1, 8, 64, 57}. Since 12 has this property. we
have G = (8) X (12). |

B EXAMPLE

Let G = {1, 8, 17, 19, 26, 28, 37, 44, 46, 53, 62,

64,71, 73,82,89,91,98, 107, 109, 116, 118, 127, 134} under multi-
plication modulo 135. Since G has order 24, it is isomorphic to
one of

2, DL~ 7,
2, DL, DZL=Z,DZ,
2,82,0L0L~1, 0107,

Consider the element 8. Direct calculations show that 8% = 109 and 8'* =
I. (Be sure to mod as you go. For example, 8* mod 135 = 512 mod
135 = 107, so compute 8* as 8 - 107 rather than 8 - 512.) But now we
know G. Why? Clearly, |8] = 12 rules out the third group in the list. At

the same time, [109] = 2 = [134| (remember, 134 = —1 mod 135) im-
plies that G is not Z,, (see Theorem 4.4). Thus, G = Z,, 3%} Z,and G =
(8) X (134). |
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Existence of Subgroups of Abelian Groups

If m divides the order of a finite Abelian group G, then G has a
subgroup of order m.

Lemmal

Let G be a finite Abelian group of order p"m, where p is a prime that
does not divide m. Then G = H X K, where H = {x € G | xP = ¢}
and K = {x € G | x™ = e}. Moreover, |H| = p".

PROOF Itis an easy exercise to prove that H and K are subgroups of G
(see Exercise 29 in Chapter 3). Because G is Abelian, to prove that G =
H X K we need only prove that G = HK and H N K = {e}. Since we
have gcd(m, p*) = 1, there are integers s and 7 such that 1 = sm + 1p”".
For any x in G, we have x = x! = xm*?" = ysmy#" and, by Corollary 4
of Lagrange’s Theorem (Theorem 7.1), x*" € H and x7 € K. Thus,
G = HK. Now suppose that some x € H N K. Then xP" = ¢ = x™ and.,
by Corollary 2 to Theorem 4.1, |x| divides both p* and m. Since p does
not divide m, we have |x| = [ and, therefore, x = e.

To prove the second assertion of the lemma. note that p"m =
|HK| = |HIIKI/IH N K| = |HIIK| (see Exercise 7 in the Supplementary
Exercises for Chapters 5-8). It follows from Theorem 9.5 and
Corollary 2 to Theorem 4.1 that p does not divide |K| and therefore
|H| = p". |

Lemma 2
Let G be an Abelian group of prime-power order and let a be an

element of maximal order in G. Then G can be written in the form
(a) X K.
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PROOF We denote |G| by p" and induct on n. If n = 1, then G =
{a) X {(e). Now assume that the statement is true for all Abelian
groups of order p*, where k << n. Among all the elements of G, choose
a of maximal order p™. Then xP" = ¢ for all x in G. We may assume
that G # (a), for otherwise there is nothing to prove. Now, among all
the elements of G, choose b of smallest order such that b & (a). We
claim that (@) N (b) = {e}. Since |bP| = |bl/p, we know that b? € {(a)
by the manner in which b was chosen. Say b? = a'. Notice that ¢ =
br" = (bPyP" ' = (a')P" ', so |a'l = p™~!. Thus, @' is not a generator of
(a) and, therefore, by Corollary 3 to Theorem 4.2, gcd(p™. i) # 1.
This proves that p divides i, so that we can write i = pj. Then bP =
a' = a?/. Consider the element ¢ = a J/b. Certainly, ¢ is not in {a), for
if it were, b would be, too. Also, ¢? = a PbP = a~'b? = b™PbP = e.
Thus, we have found an element ¢ of order p such that ¢ & {(a). Since
b was chosen to have smallest order such that b & {(a), we conclude
that b also has order p. It now follows that (a) N (b) = {e} because
any nonidentity element of the intersection would generate (b) and
thus contradict b & {(a).

Now consider the factor group G = G/b). To simplify the notation,
we let X denote the coset x{(b) in G. If [al < lal = p™, thena@”" ' = e. This
means that (a(b)?"" = a?" (b) = (b), so that a?" ' € (a) N (b) = {e},
contradicting the fact that lal = p™. Thus, |al = lal = p™, and therefore
a is an element of maximal order in G. By induction, we know that G
can be written in the form {a) X K for some subgroup K of G. Let K be
the pullback of K under the natural homomorphism from G to G (that
is, K= {x EG|X E K}). We claim that (@) N K = {e}. Forif x € {a)
N K,thenXx € @ N K = {e} = (b) and x € (a) N (b) = {e}. It now
follows from an order argument (see Exercise 33) that G = (@)K, and
therefore G = {(a) X K. |
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Lemma3

A finite Abelian group of prime-power order is an internal direct
product of cyclic groups.

Lemmad

Suppose that G is a finite Abelian group of prime-power order. If
GZHIXHZX---XHmandGZKI><K2><--°><Kn,whererhe
H’s and K’s are nontrivial cyclic subgroups with |H| = |H,| = - - - =
IHmI and IKII = |K2| == IKHI, then m = n and IHI.I = IKI.I

for all i.

PROOF We proceed by induction on |Gl. Clearly, the case where |G| =
p 1s true. Now suppose that the statement 1s true for all Abelian groups
of order less than |Gl. For any Abelian group L, the set L = {xP | x €
L} is a subgroup of L (see Exercise 15 in the Supplementary Exercises
for Chapters 1-4) and, by Theorem 9.5, is a proper subgroup if p
divides |LI. It follows that G = HP X H,? X - -+ X H P and GP =
K.7 X K, X -+ X K Pwhere m’ is the largest integer i such that
|H| = p, and n' is the largest integer j such that IKJ-I = p. (This ensures
that our two direct products for G? do not have trivial factors.) Since |GP|
< |GI, we have, by induction, m" = n" and |H.”l = [K.?| fori =1, ...,
m'. Since |H.| = plH. "I, this proves that |H.| = |K/| foralli = 1.....m".
All that remains to be proved is that the number of H; of order p equals
the number of K, of order p; that is, we must prove thatm —m' =n — n’
(since n” = m’). This follows directly from the facts that |H |IH,| - - -
H [p™ ™ = |Gl = KK, - -~ K, I[p" ", |H| = IK).andm' =n'. 1

Factor Groups

Factor Groups from Homomorphisms
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Theorem

Let ¢ : G — " be a group homomorphism with kernel H. Then the cosets of H form
a factor group, G/H, where (aH)YbH) = (ab)H. Also, the map p : G/H — ¢[G]
defined by puia H) = ¢a) is an isomorphism. Both coset multiplication and g are well
defined, independent of the choices @ and b from the cosets.

Example

Consider the factor group Z /57 with the cosets shown above. We can add (2 + 57Z) +
(4 + 5Z) by choosing 2 and 4, finding 2 + 4 = 6, and noticing that 6 is in the coset
1 4+ 5Z. We could equally well add these two cosets by choosing 27 in 2 4+ 5Z and —16
in 4 + 5Z; the sum 27 + (—16) = 11 1s also 1n the coset 1 + 5Z. A

The factor groups Z/nZ in the preceding example are classics. Recall that we refer
to the cosets of nZ as residue classes modulo n. Two integers in the same coset are
congruent modulo n. This terminology is carried over to other factor groups. A factor
group G/ H is often called the factor group of G modulo H. Elements in the same
coset of H are often said to be congruent modulo H. By abuse of notation, we may
sometimes write Z/nZ = Z, and think of Z, as the additive group of residue classes of
Z modulo (n), or abusing notation further, modulo n.

Factor Groups from Normal Subgroups

Theorem

Let H be a subgroup of a group G. Then left coset multiplication is well defined by the
equation

(aHYbH) = (ab)H
if and only if H is a normal subgroup of G.

Proof

Suppose first that (a H )(bH) = (ab)H does give a well-defined binary operation on left
cosets. Let a € G. We want to show that aH and Ha are the same set. We use the
standard technique of showing that each is a subset of the other.
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Let x € aH. Choosing representatives x € aH and a—'ea 'H, we have
(xH)@ 'H) = (xa—')H. On the other hand, choosing representatives a € aH and
a'ca'H, weseethat(@aH)a 'H)=e¢H = H. Using our assumption that left coset
multiplication by representatives is well defined, we must have xa~' = h € H. Then
x =ha, sox € Ha and aH < Ha. We leave the symmetric proof that Ha € aH to
Exercise 25.

We turn now to the converse: If H is a normal subgroup, then left coset multiplication
by representatives is well-defined. Due to our hypothesis, we can simply say cosets,
omitting left and right. Suppose we wish to compute (a H)(bH ). Choosing @ € aH and
b € bH, we obtain the coset (ab)H . Choosing different representatives ah; € aH and

bh>» € bH, we obtain the coset ahbh> H. We must show that these are the same cosets.
Now hibe Hb = bH, so h|b = bh; for some h; € H. Thus

(ahy)(bh2) = a(hyb)hy = a(bh3)hy = (ab)(h3h»)
and (ab)(h3hy) € (ab)H. Therefore, ahbhy 1s in (ab)H. *

Corollary

Let H be a normal subgroup of ;. Then the cosets of H form a group G/H under the
binary operation (a H)(bH) = (ab)H. A

Proof

Computing, (aH)[(bH)cH)] = (aH)[(bc)H] = la(bc)]H, and similarly, we have
[(aH)bH)|(cH) = [(ab)c]H, so associativity in (G/H follows from associativity in
G. Because (aH)(eH) = (ae)H =aH = (ea)H = (eH)(aH), we see that e H = H 1s
the identity element in G/H. Finally, (e 'H)aH) = (a 'a)H = ¢eH = (aa ")H =
(aH)a "H) shows thata™'H = (aH)™". *

Example

Since 7 1s an abelian group, nZ is a normal subgroup. Corollary 14.5 allows us to
construct the factor group Z/nZ with no reference to a homomorphism. As we observed
in Example 14.2, Z/nZ 1s 1somorphic to Z,. A

Example
Consider the abelian group R under addition, and let ¢ € R™. The cyclic subgroup {c)

of E contains as elements

- =3¢, —2¢,—c,0,¢,2¢,3c,---.
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Every coset of {c¢) contains just one element x such that 0 < x < ¢. If we choose these
elements as representatives of the cosets when computing in 2/ {c}), we find that we are
computing their sum modulo ¢ as discussed for the computation in E, in Section 1.
For example, if ¢ = 5.37, then the sum of the cosets 4.65 + (5.37) and 3.42 + (5.37)
1s the coset 8.07 + (5.37), which contains 8.07 — 5.37 = 2.7, which 1s 4.65 4537 3.42.
Working with these coset elements x where 0 < x < ¢, we thus see that the group [, of
Example 4.2 is isomorphic to [/ (c) under an isomorphism 1 where ¥/(x) = x 4+ (c) for
all x € R.. Of course, R/ {(c) is then also isomorphic to the circle group U of complex
numbers of magnitude 1 under multiplication. A

The Center and Commutator Subgroups

Example

The center of a group & always contains the identity element e. It may be that Z(() = {e},
in which case we say that the center of G is trivial. Forexample, examination of Table 8.8
for the group 53 shows us that Z(S53) = {pg}. so the center of S5 is trivial. (This is a special
case of Exercise 38, which shows that the center of every nonabelian group of order pg
for primes p and g i1s trivial.) Consequently. the center of §3 x Zs must be {pg} x Zs,
which 1s 1somorphic to Zs. A

Theorem

Let G be a group. The set of all commutators aba='b~! fora, b € G generates a subgroup
C (the commutator subgroup) of G. This subgroup C is a normal subgroup of G.
Furthermore, if N is a normal subgroup of &, then G/N is abelianif and only if C < N.

Proof

The commutators certainly generate a subgroup C; we must show that it is normal in
G. Note that the inverse (aba—'h~")~! of a commutator is again a commutator, namely,
bab~'a~'. Also e = eece 'e~! is a commutator. Theorem 7.6 then shows that C consists
precisely of all finite products of commutators. For x € C, we must show thatg~'xg € C
for all ¢ € G, or that if x is a product of commutators, so is g~ 'xg for all g € G. By
inserting e = gg~' between each product of commutators occurring in x, we see that it
is sufficient to show for each commutator ede¢™'d " that g~ '(ede—'d")g is in C. But
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g (ede'd g = (g7 ede™ ) (e)d ' g)
= (g 'ede N gd 'dg ")d'g)
= [(g'o)d(g o) ' d " Ndg~'d " g],
which is in C. Thus C is normal in .

The rest of the theorem is obvious if we have acquired the proper feeling for factor
groups. One doesn’t visualize in this way, but writing out that G / C is abelian follows from

(aC)(bC) = abC = ab(b~'a 'ba)C
= (abb~'a " "YbaC = baC = (bC)(aC).
Furthermore, if N is a normal subgroup of G and G /N is abelian, then (@ 'N)b~'N) =
(b~'N)(@a 'N); that is, aba='b~'N = N, so aba='b~"' € N, and C < N. Finally, if
C <= N, then
(aN)bN) = abN = ab(b~'a'ba)N
= (abb 'a " "YbaN = baN = (bN)aN).
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Definition External Direct Product

Let G, G, ..., G, be afinite collection of groups. The external direct
product of G, G, ...,G ,writtenas G, & G, D - - - © G, is the set of
all n-tuples for which the ith component is an element of G, and the
operation is componentwise.

1 EXAMPLE

UR) @ U(10) = {(1, 1), (1,3).(1,7),(1,9), (3, 1), (3. 3),
(3,7),(3,9), (5, 1),(5,3),(5,7), (5,9),
(7, ),(7, 3), (7, 7), (7, 9)}.

The product (3, 7)(7.9) = (5, 3), since the first components are com-
bined by multiplication modulo 8, whereas the second components are
combined by multiplication modulo 10. |

1 EXAMPLE

Z,®Z, = {(0,0). (0. 1), (0.2). (1.0). (1. 1), (1. 2)}.

Clearly, this is an Abelian group of order 6. Is this group related to an-
other Abelian group of order 6 that we know, namely, Z_? Consider the
subgroup of Z, © Z, generated by (1, 1). Since the operation in each com-
ponent is addition, we have (1, 1) = (1, 1), 2(1, 1) = (0, 2), 3(1, 1) =
(1,0),4(1, 1) = (0, 1). 5(1, 1) = (1, 2), and 6(1, 1) = (0, 0). Hence
Z, D Z, is cyclic. It follows that Z, @ Z, is isomorphic to Z. |

1 EXAMPLE

Classification of Groups of Order 4
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A group of order 4 is isomorphic to Z, or Z, @ Z,. To verify this, let G =
le,a, b, ab}. If G is not cyclic, then it follows from Lagrange’s Theorem
that |a| = |b| = |ab| = 2. Then the mapping ¢ — (0, 0), a — (1, 0),
b — (0, 1), and ab — (1, 1) is an isomorphism from G onto Z, D Z,. [

Properties of External Direct Products

B Theorem

The order of an element in a direct product of a finite number of

finite groups is the least common multiple of the orders of the
components of the element. In symbols,

gl e ey el 2Tl 2 e 28 )

PROOF Denote the identity of G, by e. Let s = lem(lg,l. Ig,l. . ... |g.])

and 7 =1(g,. &, - - .. &,)|. Because s is a multiple of each |g;| implies that
(8.8 ---.8) =(gL 8 ....8) =(e.e,....e) weknow thatr = 5. On
the other hand, from (g{. g%.....g) = (g,. 8. . ... 8,) =(e,.e,....e) we
see that 7 1s a common multiple of Ig |, Ig,l, ..., g |. Thus, s = 1. i
B EXAMPLE

We determine the number of elements of order 5 in

Z,s © Z,. By Theorem 8.1, we may count the number of elements
(a, b) in Z,, D Z, with the property that 5 = I(a, b)l = lem(lal, 1bl).
Clearly this requires that either lal = 5 and |6l = 1 or 5, or |bl = 5 and
lal = 1 or 5. We consider two mutually exclusive cases.

Prepared by Dr. K. Kalidass , Assistant Professor, Department of Mathematics, KAHE Page 2/ 5




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: 1 M.Sc MATHEMATICS COURSE NAME: Group theory II
RSE CODE: 17 402 IT: III(External direct product BATCH-2017-202
Case 1 |lal = 5 and |b| = 1 or 5. Here there are tour choices for a

(namely, 5, 10, 15, and 20) and five choices for b. This gives 20 ele-
ments of order 5.

Case 2 |lal = 1 and |b| = 5. This time there 1s one choice for a and four
choices for b. so we obtain four more elements of order 5.

Thus, 225 %) Z5 has 24 elements of order 5. |

B EXAMPLE

We determine the number of cyclic subgroups of order

10inZ

100

order 10.

Case 1 |al = 10 and |bl = I or 5. Since Z, , has a unique cyclic sub-
group of order 10 and any cyclic group of order 10 has four generators
(Theorem 4.4). there are four choices for a. Similarly, there are five

choices for b. This gives 20 possibilities for (a, b).

@ Z,. We begin by counting the number of elements (a, b) of

Case 2 |al = 2 and |b| = 5. Since any finite cyclic group of even order
has a unique subgroup of order 2 (Theorem 4.4), there is only one
choice for a. Obviously, there are four choices for b. So. this case
yields four more possibilities for (a, b).

Thus. Z,,, © Z,; has 24 elements of order 10. Because each cyclic
subgroup of order 10 has four elements of order 10 and no two of the
cyclic subgroups can have an element of order 10 in common, there
must be 24/4 = 6 cyclic subgroups of order 10. (This method is analo-
gous to determining the number of sheep in a flock by counting legs
and dividing by 4.) |

B EXAMPLE
For each divisor r of m and s of n the group Z,,®Z,
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has a subgroup isomorphic to Z, b Z; (see Exercise 17). To find a sub-
group of say Z;, D Z,, isomorphic to Z, P Z, we observe that (5) is a
subgroup of Z;, of order 6 and (3) is a subgroup of Z,, of order 4, so
(5) @B (3) is the desired subgroup. |

B Theorem

Let G and H be finite cyclic groups. Then G © H is cyclic if and only
if |G| and |H| are relatively prime.

PROOF Let |Gl = m and |HI = n, so that |G © H| = mn. To prove the
first half of the theorem, we assume G © H is cyclic and show that
m and n are relatively prime. Suppose that gcd(m, n) = dand (g, 1) is a
generator of G @ H. Since (g, h)™" = ((g™)y"d (h"y"d) = (e, e), we
have mn = (g, h)| = mn/d. Thus, d = 1.

To prove the other half of the theorem, let G = {g) and H = (1) and
suppose gcd(m, n) = 1. Then, I(g, h)| = lem(m, n) = mn = |G D H,
so that (g, /) is a generator of G @ H. |

1 Corollary
Criterion for G, © G,® - - - © G, to Be Cyclic

An external direct product G, G, - - - © G, of a finite number

of finite cyclic groups is cyclic if and only if |G, and IGJ.I are relatively
prime when i # j.

B Corollary
Criterion for Z ~Z, DL DD

NNy -« - My,
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Letm = nn, - - - n,. Then Z_is isomorphic to Zn] &b an$ R @Zﬂk
if and only if n, and n;are relatively prime when i # j.

B Theorem U(n) as an External Direct Product

Suppose s and t are relatively prime. Then U(st) is isomorphic to the
external direct product of U(s) and U(t). In short,

U(st) = U(s) @ U(1).

Moreover, U (st) is isomorphic to U(t) and U (st) is isomorphic to U(s).

PROOF An isomorphism from U(st) to U(s) & U(r) is x — (x mod s.
x mod 7); an isomorphism from US(SF) to U(t) 1s x — x mod t; an 1somor-
phism from U(st) to U(s) is x — x mod s. We leave the verification that
these mappings are operation-preserving, one-to-one, and onto to the
reader. (See Exercises 11, 17, and 19 in Chapter 0O; see also [1].) |

Corollary

Letm = npn, - - - n,, where gcd(n,, n;) = 1 fori # j. Then,

U(m) = U(n) ® U(n,) © - - - © U(n)).
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GROUP ACTION ON A SET

The Notion of a Group Action

Definition

Let X be aset and G a group. An action of G on X is amap * : G x X — X such that
|

I. ex=xforallx € X,

2. (gig)x)=gi(gax)forallx € X and all g1, g2 € G.

Under these conditions, X is a G-set.

Example

Let X be any set, and let H be a subgroup of the group Sx of all permutations of X.
Then X is an H-set, where the action of ¢ € H on X is its action as an element of
Sx,sothat ox = o(x) for all x € X. Condition 2 is a consequence of the definition of
permutation multiplication as function composition, and Condition 1 is immediate from
the definition of the identity permutation as the identity function. Note that, in particular,
{1,2,3,---,n} isan §,-set. A

Theorem

Let X be a G-set. For each g € G. the function o, : X — X defined by o,(x) = gx
for x € X is a permutation of X. Also, the map ¢ : G — Sy defined by ¢(g) =0, isa
homomorphism with the property that ¢(g)(x) = gx.

Proof

To show that o, is a permutation of X, we must show that it is a one-to-one map
of X onto itself. Suppose that o, (x;) = o,(x) for x;,x; € X. Then gx; = gx,. Con-
sequently, g7'(gx,) = g7 '(gx»). Using Condition 2 in Definition 16.1, we see that
(g7 'g)x; = (g7 'g)x,, so ex; = ex,. Condition 1 of the definition then yields x; = x»,
80 o, is one to one. The two conditions of the definition show that for x € X, we have
oe(g7'x) = g(g~"x = (gg~")x = ex = x. 50 0, maps X onto X. Thus o, is indeed a
permutation.
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To show that ¢ : G — Sy defined by ¢(g) = o, is a homomorphism, we must
show that ¢(g,2:) = d(g))d(g>) for all g,, g» € G. We show the equality of these two
permutations in Sy by showing they both carry an x € X into the same element. Us-
ing the two conditions in Definition 16.1 and the rule for function composition, we
obtain

B(2122)(X) = 0g,6,(X) = (£122)X = g1(€2X) = 2104, (X) = 0, (04, (X))
= (Um o ggz)(x) = (Uglggz)(x) = (p(g1)¢(g2))(x).

Thus ¢ is a homomorphism. The stated property of ¢ follows at once since by our
definitions, we have ¢(g)(x) = o, (x) = gx. ¢

Example

Every group G is itself a G-set, where the action on g2 € G by g1 € G is given by left
multiplication. That is, =(gy, g2) = g1 2. If H is a subgroup of G, we can also regard G

as an H-set, where x(h, g) = hg. A

Example

Let H be a subgroup of G. Then G isan H -set under conjugation where #(h, g) = hgh™'
for g € G and h € H. Condition 1 is obvious, and for Condition 2 note that

x(hyha, g) = (hha)g(hihy) ™" = hy(haghy Hhy' = x(hy, *(ha, ).

We always write this action of H on G by conjugation as hgh~'. The abbreviation hg
described before the definition would cause terrible confusion with the group operation
of G. A

Example

For students who have studied vector spaces with real (or complex) scalars, we mention
that the axioms (rs)v = r(sv) and 1v = v for scalars r and s and a vector v show that
the set of vectors is an R*-set (or a C*-set) for the multiplicative group of nonzero

scalars. A
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Example

Let H be a subgroup of G, and let L be the set of all left cosets of H. Then Ly is
a G-set, where the action of g € & on the left coset xH is given by g(xH) = (gx)H.
Observe that this action is well defined: if yH = xH, then y = xh for some h € H,
and g(vH) = (gv)H = (gxh)H = (gx)(hH) = (gx)H = g(x H). A series of exercises
shows that every G-set is isomorphic to one that may be formed using these left coset
G -sets as building blocks. (See Exercises 14 through 17.) A

Example

Let G be the group Dy = {po, p1, P2, P3, i1, 12, 81, 82} of symmetries of the square,
described in Example 8.10. In Fig. 16.9 we show the square with vertices 1, 2, 3, 4 as
in Fig. 8.11. We also label the sides sy, 5, 53, 54, the diagonals d, and d-, vertical and
horizontal axes m, and m-, the center point C, and midpoints P; of the sides s;. Recall
that p; corresponds to rotating the square counterclockwise through mi /2 radians, pu;

P_'J, 53
4 . 3
St d, d,
P_1_ - C i 4 PE
FLg] 52
| * 2
.'IT[ Pl

16.9 Figure
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1 2 3 4 5 5 s s m my d d& C P P Py P
2o | 2 3 4 LY 52 53 54 my ] ff| f.lig C P| P Pj P4
M 2 3 4 | 83 83 54 §1 My 1y ffg dl C P, P_‘| P4 P|
Fek) 3 4 1 2 53 54 AN §2 my M2 f.l’| f.lig C P:] P4 .P| Py
k! 4 | 2 3 54 5 ") 53 My 1 r_’.lig f.lil C P4 P| P P'q
Ly 2 | 4 3 1 84 53 &2 iy Mz ffg dl C P| P4 P3 P
(5] 4 3 2 1 53 52 AN §q my M2 f.l’g f.lil C P:] P .P| P4
5| 3 2 1 4 52 5 54 53 My 1 r_’.li| f.lig C P P| .P_1_ P'q
8, | 4 3 2 84 83 82 §1 My 1y ff' ﬂag C P4 P_‘| P, P|

corresponds to flipping on the axis m;. and §; to flipping on the diagonal d;. We let
X = {1.2.3.4.51,53,53,54,m|,m2,dl,d3, C, Pj-. PE: PR, P4}

Then X canbe regarded as a Dy-set in a natural way. Table 16.10 describes completely the
action of D4 on X and is given to provide geometric illustrations of ideas to be introduced.
We should be sure that we understand how this table is formed before continuing. A

Isotropy Subgroups

Let X be a G-set. Let x € X and g € G. It will be important to know when gx = x. We
let

X, ={x e X|gx =x] and G,={geCG|gx =x}

Example
For the D4-set X in Example 16.8., we have
X, =X, Xp =1{C}, Xy, = {s1,53,mi,ma2, C, P, P3}
Also, with G = Dy,
G = {po, b2}, G, = {po, 11, Ga, = {po, p2, 1, 62}
We leave the computation of the other X, and G, to Exercises 1 and 2. A

Theorem

Let X be a G-set. Then G, is a subgroup of G for each x € X.
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Proof

Let x € X and let gy, g» € G,. Then g,x = x and g.x = x. Consequently, (g,g;)x =
gi1(gxx) = g1x = x,50¢g122 € G, and G, is closed under the induced operation of G. Of
courseex = x,80e € G,. If g € G, thengx = x,s0x = ex = (g"g,lx = g_l(ng =
¢~ 'x, and consequently g~! € G,. Thus G, is a subgroup of G. *

Definition

Let X be a G-set and let x € X. The subgroup Gy is the isotropy subgroup of x. 1

Orbits

For the Dys-set X of Example 16.8 with action table in Table 16.10, the elements in the
subset {1, 2, 3, 4} are carried into elements of this same subset under action by Ds.
Furthermore, each of the elements 1, 2, 3, and 4 is carried into all the other elements of
the subset by the various elements of Dy. We proceed to show that every G-set X can

be partitioned into subsets of this type.

Theorem

Let X be a G-set. For x|, x» € X, let x; ~ x, if and only if there exists g € G such that
gx; = x. Then ~ is an equivalence relation on X.

Proof

For each x € X, we have ex = x, so x ~ x and ~ is reflexive.
Suppose x| ~ X3, s0 gx; = x, for some ge< G. Then g~
(g7 'g)x; = ex; = x1.50 x> ~ x1, and ~ is symmetric.
Finally, if x; ~ x2 and x2 ~ x3, then g1x; = x2 and g2x; = x3 forsome g1, g2 € G.
Then (g.21)x; = g2(g1x1) = g2X2 = X3, 850 x; ~ x3 and ~~ is ransitive. *

Xy =g (gx) =

Definition
Let X be a G-set. Each cell in the partition of the equivalence relation described in
Theorem 16.14 is an orbit in X under G. If x € X, the cell containing x is the orbit

of x. We let this cell be Gx. [ |

Theorem
Let X bea G-setand let x € X. Then |Gx| = (G : G,). If || is finite, then |Gx|is a

divisor of |G].
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Proof

We define a one-to-one map yr from Gx onto the collection of left cosets of G, in G.
Let x; € Gx. Then there exists g, € G such that g, x = x;. We define ¥ (x,) to be the
left coset g, G, of G,. We must show that this map v is well defined. independent of the
choice of g, € G such that g,x = x,. Suppose also that g,'x = x,. Then. g,x = g,'x, s0
grj{gl_r) = grj(gfx]. from which we deduce x = (grlgl’}x. Therefore gl_lgl’ e G,
so g’ € g1G,, and g1G, = g1'G,. Thus the map v is well defined.

To show the map v is one to one, suppose x|, x» € Gx, and Y¥(x;) = Y¥(x;). Then
there exist g, g» € G suchthatx; = gyx, x» = gox.and g, € g/G,. Then g, = g, g for
some g € G,,50x; = g2x = gy(gx) = g1x = x;. Thus \/ is one to one.

Finally, we show that each left coset of G, in G is of the form ¥(x;) for some
x; € Gx. Let g,G, be a left coset. Then if g;x = x|, we have g,G, = ¥(x;). Thus
maps Gx one to one onto the collection of left cosets so |Gx| = (G : Gy).

If |G] is finite, then the equation |G| = |G, |(G : G,) shows that |Gx| = (G : G,)
is a divisor of |G|. ¢

Example

Let X be the Dj-set in Example 16.8, with action table given by Table 16.10. With
G =Dy, wehave G1 = |1, 2, 3, 4}and G| = {pg. 8,}. Since |G| = 8, we have |G1| =
(G:Gy))=4. A
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GROUPS ACTING ON THEMSELVES BY CONJUGATION
—THE CLASS EQUATION

Definition. Two elements a and b of G are said to be conjugate in G if there is some
g € G suchthat b = gag™! (i.e., if and only if they are in the same orbit of G acting

on itself by conjugation). The orbits of G acting on itself by conjugation are called the
conjugacy classes of G.

Examples

(1) If G is an abelian group then the action of G on itself by conjugation is the trivial
action: g-a = g, forall g, a € G, and foreacha € G the conjugacy class of a is {a}.

(2) If |G| > 1 then, unlike the action by left multiplication, G does not act transitively
on itself by conjugation because {1} is always a conjugacy class (i.e., an orbit for this
action). More generally, the one element subset {a} is a conjugacy class if and only if
gag—! = aforall g € G if and only if a is in the center of G.

(3) In S3 one can compute directly that the conjugacy classes are {1}, {(1 2), (1 3), (2 3)}
and {(1 2 3), (1 3 2)}. We shall shortly develop techniques for computing conjugacy
classes more easily, particularly in symmetric groups.

Definition. Two subsets S and T of G are said to be conjugate in G if there is some

g € G suchthat T = gSg~! (i.e., if and only if they are in the same orbit of G acting
on its subsets by conjugation).

Proposition 6. The number of conjugates of a subset .S in a group G is the index of the

normalizer of S, |G : Ng(S)|. In particular, the number of conjugates of an element s
of G is the index of the centralizer of s, |G : Cg(s)).

Proof: The second assertion of the proposition follows from the observation that
Nc({s}) = Ci(s).
Theorem
(The Class Equation) Let G be a finite group and let gy, g2, ..., g be

representatives of the distinct conjugacy classes of G not contained in the center Z(G)
of G. Then

IGl = 1Z(G)| + ) _IG : Cs(g).
i=1
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Proof: As notedin Example 2 above the element {x} is a conjugacy class of size 1 if
and only if x € Z(G), since then gxg'l = xforallg € G. Let Z(G) = {1, z2, ---s Zm}s
letCy, Ko, ..., K, be the conjugacy classes of G not contained inthe center, and let g;
be a representative of K; foreach i. Then the full set of conjugacy classes of G is given
by

{1}! {22}9 L | {ZH’I}? K:]I }C21 LR | K?"

Since these partition G we have

IGl =) 1+ ) IKil

i=1 i=1

=1Z(G)| + Y _IG : Cg(g)l,

i=1
where |K;| is given by Proposition 6. This proves the class equation.
Examples

(1) The class equation gives no information in an abelian group since conjugation is the
trivial action and all conjugacy classes have size 1.

(2) In any group G we have (g) < Cg(g); this observation helps to minimize com-
putations of conjugacy classes. For example, in the quaternion group Jg we see
that (i) < Cp,(i) < Qs. Since i ¢ Z(Qg) and |Qg : (i)| = 2, we must have
Cg, (i) = (i). Thus i has precisely 2 conjugates in Qg, namely i and — = kik™1.
The other conjugacy classes in Qg are determined similarly and are

(1), (=1}, (i}, {xj) (k)
The first two classes form Z(Qg) and the class equation for this group is
Qsl=2+4+2+2+2.

(3) In Dg we may also use the fact-that the three subgroups of index 2 are abelian to
quickly see thatif x ¢ Z(Dg), then |Cp,(x)| = 4. The conjugacy classes of Dg are

(1, 2, (nr), (s o7, fsr, sr).
The first two classes form Z(Dg) and the class equation for this group is
[Dg|l =24+24+2+2
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Theorem

If pis aprimeand P is a group of prime power order p“ for some o > 1,
then P has a nontrivial center: Z(P) # 1.

Proof: By the class equation

|P|=Z(P)|+ ) _IP : Cp(g)l

i=1
where g1, ..., g- are representatives of the distinct non-central conjugacy classes. By
definition, Cp(g;) # Pfori = 1,2,...,r so p divides |P : Cp(g;)|. Since p also
divides | P| it follows that p divides | Z( P)|, hence the center must be nontrivial

Corollary '

If|P| = pg for some prime p, then P is abelian. More precisely, P is
isomorphic to either Z,2 or Z, x Z,,.

Proof: Since Z(P) # 1 by the theorem, it follows that P/Z(P) is cyclic. By
Exercise 36, Section 3.1, P is abelian. If P has an element of order p?, then P is
cyclic. Assume therefore that every nonidentity element of P has order p. Let x be
any nonidentity elementof P and let y € P — (x ). Since |[{x, y)| > [(x)]| = p, we
must have that P = (x, y). Both x and y haveorder pso (x) x(y)=Z, x Z,. It
now follows directly that the map (x?, ¥*) > x®)” is anisomorphism from {x ) x (y)
onto P. This completes the proof.

Conjugacy in S,
Proposition

Let o, T be elements of the symmetric group S, and suppose o has

cycle decomposition
(ﬂ]ﬂz ak;) (b] bz bkz)-*- .

Then To 1! has cycle decomposition
(tlay) (az) ... tlay)) (t(by) ©(b2) ... T(by)) ...,

thatis, to7 ! is obtained from o by replacing each entry i in the cycle decomposition
for o by the entry 7 (i).
Proof: Observe that if o (i) = j, then

tot N (T (i) = 1(j).

Thus, if the ordered pair i, j appears in the cycle decomposition of o, then the ordered
pair 7(i), T(j) appears in the cycle decomposition of 7ot ~!. This completes the proof.
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Example

Leto = (12)(345)(6789) and let r = (1357)(2468). Then
ror~ ! =(34)(567)(8129).

Definition.
M) If o € &, is the product of disjoint cycles of lengths ny, ny, ..., n, with
ny < ny < --- < n, (including its 1-cycles) then the integers n, n,, ..., n, are
called the cycle typeof o.
(2) Ifn € Z*, a partition of n is any nondecreasing sequence of positive integers
whose sum 1is n.

Proposition
Two elements of S, are conjugate in S, if and only if they have the

same cycle type. The number of conjugacy classes of §,, equals the number of partitions
of n.

Proof: By Proposition 10, conjugate permutations have the same cycle type. Con-
versely, suppose the permutations o; and o; have the same cycle type. Orderthe cycles
in nondecreasing length, including 1-cycles (if several cycles of o; and o, have the
same length then there are several ways of doing this). Ignoring parentheses, each
cycle decomposition is a list in which all the integers from 1 to n appear exactly once.
Define 7 to be the function which maps the i integer in the list for oy to the i integer
in the list for ;. Thus 7 is a permutation and since the parentheses which delineate the
cycle decompositions appear at the same positions in each list, Proposition 10 ensures
that o171~} = 03, so that oy and o, are conjugate.

Since there is a bijection between the conjugacy classes of S,, and the permissible
cycle types and each cycle type for a permutation in S,, is a partition of n, the second
assertion of the proposition follows, completing the proof.

Examples

(1) Leto; = (1)(35(89)(2476) and letor; = (3)(4 7)(81)(52 69). Then define t by
(1) =3,t(3) =4, t(5)=7,1(8) =8, etc. Then

T=(13425769)8)

and ro177! = 07.

(2) If in the previous example we had reordered o2 as o2 = (3X(8 1)(4 7)(5 26 9) by
interchanging thetwo cycles of length 2, then the corresponding t described abowe is
defined by (1) = 3, (3) = &, t(5) = 1, t(8) = 4, etc., which gives the permutation

T=(138425)(697

—1 — &7, which shows that there are many elements conjugating o

again with ro1t
into os.
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(3) Ifn = 5, the partitions of 5 and corresponding re presentatives of the conjugacy classes
(with 1-cycles not written) are as given in the following table:

Partition of 5 Representative of Conjugacy Class
1,1, 1, 1,1 1

1,1,1,2 (12)

1,1,3 123)

1,4 1234)

5 (12345)

1,2,2 (12)34)

2,3 (12X345)

Theorem As is a simple group.

Proof: We first work out the conjugacy classes of As and their orders. Proposition
11 does not apply directly since two elements of the same cycle type (which are conjugate
in Ss5) need not be conjugate in As. Exercises 19 to 22 analyze the relation of classes
in S, to classes in A, in detail.

We have already seen that representatives of the cycle types of even permutations
can be taken to be

1, (123), (12345 and (12)(34).

The centralizers of 3-cycles and 5cycles in S5 were determined above, and checking
which of these elements are contained in As we see that

Cas((123))=((123)) and C4((12345))=((12345)).

These groups have orders 3 and 5 (index 20 and 12), respectively, so thereare 20 distinct
conjugates of (1 2 3) and 12 distinct conjugates of (123 4 5) in As. Since there are a
total of twenty 3-cycles in S5 (Exercise 16, Section 1.3) and all of these lie in As, we
see that

all twenty 3-cycles are conjugate in As.

There are a total of twenty-four 5-cycles in A5 but only 12 distinct conjugates of the
S<cycle (123 45). Thus some 5-cycle, o, is not conjugate to (123 4 5) in As (in fact,
(13 52 4)isnot conjugatein As to (1 23 4 5) since the method of proof in Proposition
11 shows that any element of S5 conjugating (1 23 4 5) into (1 3 52 4) must be an odd
permutation). As above we see that o also has 12 distinct conjugates in As, hence
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the 5-cycles lie in two conjugacy classes in As, each of which has 12 elements.

Since the 3-cycles and 5<ycles account for all the nonidentity elements of odd order,
the 15 remaining nonidentity elements of As must have order 2 and therefore have
cycle type (2,2). It is easy to see that (1 2)(3 4) commutes with (1 3)(2 4) but does not
commute with any element of odd order in As. It follows that |C4, ((12)(34))| = 4.
Thus (1 2)(3 4) has 15 distinct conjugates in As, hence

all 15 elements of order 2 in As are conjugate to (1 2)(3 4).

In summary, the conjugacy classes of As have orders 1, 15, 20, 12 and 12.

Now, suppose H were a normal subgroup of As. Then as we observed above, H
would be the union of conjugacy classes of As. Then the order of H would be both
a divisor of 60 (the order of As) and be the sum of some collection of the integers
{1, 12, 12, 15, 20} (the sizes of the conjugacy classes in As). A quick check shows the
only possibilities are [H| = 1 or |H| = 60, so that A5 has no proper, nontrivial normal
subgroups.
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Answer ALL questions
PART - A (20 X 1 = 20 marks)

. Inner Automorphism Induced by a, ¢,(x) = — — -

a. xax~!
c. bothaandb

b. axa!
d. neither anor b

- NAut(Zy)l = - - -
a. 1 b. 2
c.3 d. 4
. Aut(Z09) is isomorphic to
a. U(10) b. U(5)
c. U(100) d. U(2)

. Suppose ¢ : GtoG is an isomorphism with G and
G are group under + and -, respectively. Then

a. p(a+b)=a¢@)+¢l) b. Ppa-b)=d@a)+ o)
¢ pa+b) =@ o)  d. éa-b) =@ -b)

. Any infinite cyclic group is isomorphic to — — —
a. R b. C
c. Z d. Q

10.

11.

12.

Number of isomorphism from Q, the group of ra-
tional numbers under addition, to Q°, the group of
nonzero rational numbers under multiplication is

a. one to one b. 2 to one
c. 3 to one d. 4 to one
Suppose that ¢ is an isomorphism from a group G
onto a group G. Then |a| — — — ¢(a)

a. < b. >
c. = d. #
The equation x* = 1 has — — — solutions in C*

a. 0 b. 1
c. 4 d. 6
An — — — from a group G onto itself is called an

automorphism of G.
a. homomorphism
c. one to one homomorphism

b. isomorphism
d. all the above

The function ¢ from C to C given by ¢(a+bi) = a—bi
is ——- of the group of complex numbers under
addition.

a. an automorphism
c. an isomorphism

b. a homomorphism
d. all the above

U(8) is — — — to U(10).
a. not isomorphic
c. bothaandb

b. isomorphic
d. neither anor b

Let G be a group. Prove that the mapping ¢(g) =
———for all gin G is an automorphism if and only
if G is Abelian

a. g b. ¢!
c. bothaandb d. neither a nor b



13.

14.

15.

16.

17.

18.

19.

20.

[Aut(Z)| = — - -
a. 0 b. 1
c. 2 d. 3

Which of the following is an element of Aut(Z)?

a. P(x) =x b. Pp(x) = —x
c. bothaandb d. neither anorb
The identity inner automorphism is a — — — of a
group G.

a. normal subgroup
c. bothaandb

b. subgroup
d. neither anorb

If G is an infinite cyclic group, then Aut(G) is a
— — — group of order 2.
a. cyclic

c. bothaandb

b. abelian
d. neither anorb

An element — — — in a group is a commutator of
the group.
a. aba™ b. aba~1b™!

c. bothaandb d. neither a nor b

The equation x* = 1 has — — — solutions in R*

a. 0 b. 1
c. 4 d. 6
If G is — — —, then G and have exactly the same

number of elements of every order.

b. finite
d. neither anorb

a. infinite
c. bothaand b

The number of elements in the left regular repre-
sentation of U(12) is — — —

a. 1 b. 2
c. 3 d. 4

21.
22.
23.

24.

25.

26.

Part B-(3 X 2 = 6 marks)

Write any two properties of isomorphism
Define an automorphism

Find an isomorphism from the group of integers
under addition to the group of even integers under
addition

Part C-(3 x 8 = 24 marks)

a) State and prove Cayley’s theorem
OR
b) Show that U(8) is isomorphic to U(12).

a) Suppose that ¢ : Zry — Zy is an automor-
phism and ¢(5) = 5. What are the possibili-
ties for ¢(x)?

OR

b) Find Zm

a) Find Z

OR

b) Let ¢ be an isomorphism from a group G to

a group G and let a belong to G. Prove that
P(C(a)) = C(¢(a))-
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