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16MMUG601A MATHEMATICAL MODELLING 6 2 0 o6

Scope: On successful completion of course the learners gain about the differential equations,
Queuing models and its applications.

Objectives: To enable the students to learn and gain knowledge about Bessel’s equation,
Legendre’s equation , Simulation Modeling and applications to Traffic Flow.
UNIT 1

Power series solution of a differential equation about an ordinary point, solution about a regular
singular point, Bessel’s equation and Legendre’s equation, Laplace transform and inverse
transform, application to initial value problem up to second order.

UNIT 11

Monte Carlo Simulation Modeling: simulating deterministic behavior (area under a curve,
volume under a surface), Generating Random Numbers: middle square method, linear
congruence.

UNIT I1I

Queuing Models: harbor system, morning rush hour, Overview of optimization modeling, Linear
Programming Model: geometric solution algebraic solution, simplex method, sensitivity analysis.

UNIT IV

Applications of differential equations: the vibrations of a mass on a spring, mixture problem, free
damped motion, forced motion, resonance phenomena, electric circuit problem, mechanics of
simultaneous differential equations.

UNIT V

Applications to Traffic Flow. Vibrating string, vibrating membrane, conduction of heat in solids,
gravitational potential, conservation laws.

SUGGESTED READINGS
TEXT BOOKS

1. Shepley L. Ross, (1984). Differential Equations, Fourth Edition, John Wiley and Sons , New
York.(For Unit-LII & III)



2. Sneddon L., (2006). Elements of Partial Differential Equations, McGraw-Hill, International
Edition, New York. .(For Unit-IV & V)

REFERENCES

1. Tyn Myint-U and Lokenath Debnath, (2006). Linear Partial Differential Equation for Scientists
and
Engineers, Springer.

2. Frank R. Giordano, Maurice D. Weir and William P. Fox, (2003). A First Course in
Mathematical
Modeling, Thomson Learning, London and New York.



KA

=y

RPAGA

—

ACADEMY OF HIGHER EDUCATI!

{Deemed to be University)
{Establishet Under Section 3 of UGC Act, 1956 |

Lesson Plan|2016 - 2019 Batch
KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed to be Universitv)

-641 021.
Department of Mathematics

LECTURE PLAN

Subject: Mathematical Modeling

M‘Established Under Section 3 of UGC Act 1956)achi Main Road, Eachanari (Po), Coimbatore

Subject Code: 16 MMU601A

Lecture
S. No. Topic to be covered Support Material
Duration
Unit - I

1 1 Eg;/;:(ter series solution of a differential equation about an ordinary T1: chap-6 Pg.No:221 - 229
2 1 ggonﬁltngitgorr;iﬁl;rl\?/o[\)/\:jr:tssl;loe;esr?ql:tlon of a differential equation T1: chap-6 Pg.No:230 - 232
3 1 Tutorial
4 1 Solution about a regular singular point T1: chap-6 Pg.No:233 - 239
5 1 Continuation on Solution about a regular singular point problems T1: chap-6 Pg.No:240 - 249
6 1 Tutorial
7 1 Bessel’s equation Derivation T1: chap-6 Pg.No:252 - 254
8 1 Continuation on Bessel’s equation problems T1: chap-6 Pg.No:255 - 257
9 1 Tutorial
10 1 Legendre’s equation Derivation T1: chap-6 Pg.No:258 - 260
11 1 Continuation on Legendre’s equation problems T1: chap-6 Pg.No:261 - 263
12 1 Tutorial
13 1 Laplace transform and inverse transform T1: chap-7 Pg.No:411-412
14 1 Continuation on Laplace transform and inverse transform problems |T1: chap-7 Pg.No:441-449
15 1 Application to initial value problem up to second order
16 1 Recapitulation and discussion of possible questions on unit I

Total No. of Lecture hours planned - 16 Hours

T1:Shepley L. Ross, (1984). Differential Equations, Fourth Edition, John Wiley and Sons , New York

Unit - II
1 1 Monte Carlo Simulation Modeling R2: chap-5 Pg.No:187
2 1 simulating deterministic behavior area under a curve R2: chap-5 Pg.No:188
3 1 Tutorial
4 1 Continuation on simulating deterministic behavior area under a R2: chap-5 Pg.No:188
curve exambples
5 1 simulating deterministic behavior Volume under a surface R2: chap-5 Pg.No:189
6 1 Tutorial
7 1 Continuation on simulating deterministic behavior Continuation R2: chap-5 Pg.No:1890
volume under a surface examples
8 1 Generating Random Numbers R2: chap-5 Pg.No:191
9 1 Tutorial
10 1 Middle square method R2: chap-5 Pg.No:192
11 1 Continuation on middle square method examples R2: chap-5 Pg.No:192
12 1 Tutorial
13 1 Linear congruence R2: chap-5 Pg.No:193




Lecture
S. No. Topic to be covered Support Material
Duration
14 1 Continuation on Linear congruence R2: chap-5 Pg.N0:194-195
15 1 Continuation on Linear congruence R2: chap-5 Pg.N0:196-197
16 1 Recapitulation and discussion of possible questions on unit II

Total No. of Lecture hours planned - 16 Hours

R2:Frank R. Giordano, Maurice D. Weir and William P. Fox, (2003). A First Course in Mathematical Modeling,Thomson Learning,

London and, New York

Unit - III
1 1 Queuing Models R2: chap-5 Pg.No:213
2 1 Harbor system R2: chap-5 Pg.No:214 - 215
3 1 Continuation on Harbor system R2: chap-5 Pg.No:216 - 219
4 1 Tutorial
5 1 morning rush hour R2: chap-5 Pg.No:219 - 220
6 1 Continuation on morning rush hour R2: chap-5 Pg.No:221
7 1 Tutorial
8 1 Overview of optimization modeling R2: chap-7 Pg.No:255
9 1 Linear Programming Model Geometric solution R2: chap-7 Pg.No:256 - 262
10 1 Tutorial
11 1 Linear Programming algebraic solution R2: chap-7 Pg.No:265 - 269
12 1 simplex method R2: chap-7 Pg.No:269 - 272
13 1 Tutorial
14 1 Continuation on simplex method R2: chap-7 Pg.No:273 - 278
15 1 sensitivity analysis R2: chap-7 Pg.No:279 - 284
16 1 Recapitulation and discussion of possible questions on unit III

Total No. of Lecture hours planned - 16 Hours

R2:Frank R. Giordano, Maurice D. Weir and William P. Fox, (2003). A First Course in Mathematical Modeling, Thomson Learning,

London and. New York

Unit - IV

1 1 Applications of differential equations T1: chap-5 Pg.No:179

2 1 The vibrations of a mass on a spring T1: chap-5 Pg.No:179 - 180
3 1 Tutorial

4 1 mixture problem T1: chap-5 Pg.No:181 - 182
5 1 force damped motion T1: chap-5 Pg.No:199 - 202
6 1 Tutorial

7 1 forced motion T1: chap-5 Pg.No: 202 - 205
8 1 resonance phenomena T1: chap-5 Pg.No: 206 - 208
9 1 Tutorial

10 1 Continuation on resonance phenomena T1: chap-5 Pg.No: 209 - 210
11 1 Electric circuit problem T1: chap-5 Pg.No: 211 - 212
12 1 Tutorial

13 1 Continuation on electric circuit problem T1: chap-5 Pg.No: 213 - 215




Lecture
S. No. Topic to be covered Support Material
Duration
14 1 mechanics of simultaneous differential equations. T1: chap-5 Pg.No: 216 - 217
15 1 Continuation on mechanics of simultaneous differential equations. T1: chap-5 Pg.No: 218 - 220
16 1 Recapitulation and discussion of possible questions on unit IV

Total No. of Lecture hours planned - 16 Hours

T1:Shepley L. Ross, (1984). Differential Equations, Fourth Edition, John Wiley and Sons , New York

Unit -V
1 1 Applications to Traffic Flow R1: chap-3 Pg.No: 65
2 1 Vibrating string R1: chap-3 Pg.No: 65
3 1 Tutorial
4 1 vibrating membrane R1: chap-3 Pg.No: 67 - 69
5 1 conduction of heat in solids R1: chap-3 Pg.No: 70 - 72
6 1 Tutorial
7 1 Continuation on heat in solids R1: chap-3 Pg.No: 73 - 75
8 1 gravitational potential R1: chap-3 Pg.No: 76 - 77
9 1 Tutorial
10 1 Continuation on gravitational potential R1: chap-3 Pg.No: 77 - 78
11 1 conservation laws R1: chap-3 Pg.No: 79 - 80
12 1 Tutorial
13 1 Recapitulation and discussion of possible questions on unit V
14 1 Discussion of previous ESE question papers
15 1 Discussion of previous ESE question papers
16 1 Discussion of previous ESE question papers

Total No. of Lecture hours planned - 16 Hours

R1: Tyn Myint and Lokenath Debnath,(2006). Linear Partial Differential Equation for Scientists and Engineers, Springer.

SUGGESTED READINGS

TEXT BOOKS
1. Shepley L. Ross, (1984). Differential Equations, Fourth Edition, John Wiley and Sons , New York.(For Unit-LII & IIT)

2. Sneddon 1., (2006). Elements of Partial Differential Equations, McGraw-Hill, International Edition,New York. .(For Unit-IV & V)

REFERENCES
1. Tyn Myint-U and Lokenath Debnath, (2006). Linear Partial Differential Equation for Scientists and Engineers, Springer.

2. Frank R. Giordano, Maurice D. Weir and William P. Fox, (2003). A First Course in Mathematical = Modeling, Thomson Learning,
London and New York.
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KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc. Mathematics COURSE NAME: Mathematical Modelling
COURSE CODE: 16MMU601A UNIT: 1 BATCH-2016-2019

6.1 POWER SERIES SOLUTIONS ABOUT AN ORDINARY POINT
A. Basic Concepts and Results

Consider the second-order homogeneous linear differential equation

d*y dy
ag(x) —= + a,(x) == + a,{x)y =0, 6.1
o¥) 7 + a1 (x) 3 + a0y (6.1)
and suppose that this equation has no solution that is expressible as a finite linear
combination of known elementary functions. Let us assume, however, that it does have
a solution that can be expressed in the form of an infinite series. Specifically, we assume
that it has a solution expressible in the form

co + €1 {x — x¢) + c3(x — xo)2 += Z cnlx = xo)", (6.2)

n=0
where ¢y, ¢;, ¢;, ... are constants. An expression of the form (6.2) is called a power
series in x — x,. We have thus assumed that the differential equation (6.1) has a so-
called power series solution of the form (6.2). Assuming that this assumption is valid, we
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SERIES SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS

can proceed to determine the coefficients g, ¢4, €5, ... In(6.2) in such a manner that the
expression (6.2) does indeed satisfy the Equation (6.1).

But under what conditions is this assumption actually valid? That is, under what
conditions can we be certain that the differential equation (6.1) actually does have a
solution of the form (6.2)? This is a question of considerable importance; for it would be
quite absurd to actually try to find a “solution” of the form (6.2) if there were really no
such solution to be found! In order to answer this important question concerning the
existence of a solution of the form (6.2), we shall first introduce certain basic definitions.
For this purpose let us write the differential equatlon {6.1)in the equivalent normalized

form
dz
EL 4 PS4 Py =0, (6.)
where
_alx) _ aylx)
Pi(x) = P and  Pyfx) = Py
DEFINITION

A function f is said to be analytic at x, if its Taylor series about x,,

f ""(xo)

{x = xp)",
exists and converges to {(x) for all x in some open interval inclqding Xg-

We note that all polynomal functions are analytic everywhere; so also are the
functions with values e*, sin x, and cos x. A rational function is analytic except at those
values of x at which its denominator is zero. For example, the rational function defined
by 1/(x? — 3x + 2) is analytic except at x = 1 and x = 2.

DEFINITION

The point x, is called an ordinary point of the differential equation (6.1) if both of the
Junctions Py and P, in the equivalent normalized equation (6.3) are analytic at x,. If either
(or both) of these functions is not anaytic at x,, then X4 is called a singular point of the
differential equation (6.1).
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THEOREM 6.1

Hypothesis. The point x, is an ordinary point of the differential equation (6.1).

Conclusion. The differential equation (6.1) has two nontrivial linearly independent
power series solutions of the form

Y ealx — xo), (6.2)
a=0"
and these power series converge in some interval | x — xy| < R (where R > 0) about x,.

This thcorcm gives us a sufficient condition for the existence of power series
solutions of the differential equation (6.1). It states that if x, is an ocdinary point of
¢quation (6.1), then this equation has two power scries solutions in powers of x — x, -
and that these two power series solutions are linearly independent. Thus if x, is an
ordinary peint of (6.1), we may obtain the general solution of (6.1) as a linear
combination of these two linearly independent power series. We shall omit the proof of
this important theorem.

6.2 SOLUTIONS ABOUT SINGULAR POINTS; THE METHOD OF FROBENIUS

A. Regular Singular Points

We again consider the homogeneous linear differential equation

d? d
60(9) 75 + @ () - + 209y = 0, 6.1

and we assume that x, is a singular point of (6.1). Then Theorem 6.1 does not apply at
the point x,, and we are not assured of a power series solution

y= 3 alx = xo) (62)

of (6.1) in powers of x — x,. Indeed an equation of the form (6.1) with a singular point
at x, does not, in general, have a solution of the form (6.2). Clearly we must seek a
different type of solution in such a case, but what type of solution can we expect? It
happens that under certain conditions we are justified in assuming a solution of the
form

s}
y=Ix—= x| ZO calx — Xo)", (6.49)
where r is a certain (real or complex) constant. Such a solution is clearly a power series

in x — x, muitiplied by a certain power of | x — x¢|. In order to state conditions under
which a solution of this form is assured, we proceed to classify singular points.
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We again write the differential equation (6.1} in the equivalent normalized form

d?y dy _
‘d'x"z +Pl(x)a+ Pz(x)y——o, (6.3}
where
a,{x) a,(x)
P, = and PBi(x)= "
P R P XE
DEFINITION

Consider the differential equation (6.1), and assume that at least one of the functions P,
and P, in the equivalent normalized equation (6.3) is not analytic at x,, so that x, is a
singular point of (6.1). If the functions defined by the products

(x = x)P(x) and (x — x5)* P, (x) (6.50)

are both analytic at x,, then x4 is called a regular singular point of the differential
equation (6.1). If either (or both) of the functions defined by the products (6.50) is not
analytic at x;, then x, is called an irregular singular point of (6.1).

THEOREM 6.2
Hypothesis. The point x, is a regular singular point of the differential equation (6.1).

Conclusion.  The differential equation (6.1) has at least one nontrivial solution of the
Jform

|x — Xol" ZO Calx — Xo)'s (6.49)

where r is a definite (real or complex) constant which may be determined, and this solution
is valid in some deleted interval 0 < |x — x| < R (where R > 0) about x,.
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B. The Method of Frobenius

Now that we are assured of at least one solution of the form (6.49) about a regular
singular point x, of the differential equation (6.1), how do we proceed to determine the
coefficients ¢, and the number » in this solution? The procedure is similar to that
introduced in Section 6.1 and is commonly called the method of Frobenius. We shall
briefly outline the method and then illustrate it by applying it to the differential
equation (6.51). In this outline and the illustrative example that follows we shall seek
solutions valid in some interval 0 < x — x4 < R. Note that for all such x, |x — x] is
simply x — xg. To ebtain solutions valid for — R < x — x5 < 0, simply replacc x — x,
by —(x — x¢) > 0 and proceed as inthe outline.

THEOREM 6.3
Hypothesis, Let the point xy be a regular singular point of the differential equation

(6.1). Let v, and ry [where Re(r,) = Re(r,)] be the roots of the indicial equation
associated with x,.

Cm

Conclusion 1. Suppose r, — r, # N, where N is a nonnegative integer (that is,

r,—r; #0,1,2,3,...). Then the differential equation (6.1) has two nontrivial linearly
independent solutions y, and y, of the form (6.49) given respectively by

n=Ix =gl 3 e,lx = xol, (6:65)

where ¢y # O, and

B

ya2lx) =[x = xol™* 2 &i(x — Xol', (6.66)

n

where ¢ # 0.

Conclusion 2. Suppose r, — r, = N, where N is & positive integer. Then the
differential equation(6.1) has two nontrivial linearly independent solutions y, and y, given
respectively by

yilx) =1x — xo|™" Y e{x.— Xg), (6.63)
n=0
where ¢q # 0, and
y2(x) = |x — x¢/" Zo c¥(x — x¢)" + Cy (x)In [x ~ X, (6.67)

where ¢ # 0 and C is a constant which may or may not be zero.
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Conclusion 3. Suppose r; — r, = 0. Then the differential equation (6.1) has two
nontrivial linearly independent solutions y, and y, given respectively by

i) =Ix —xol™ 3, ealx = o (6.65)
where ¢y # 0, and

y2(x) =]x — x| ! ZO cr(x — Xo)" + ¥ (¥)n fx — Xof. (6.68)
=
The solutions in Conclusions 1, 2, and 3 are valid in some deleted interval 0 <
|x — xol < R about x,.

In the illustrative examples and exercises that follow, we shall again seek solutions
valid in some interval 0 < x — x, < R. We shall therefore discuss the conclusions
of Theorem 6.3 for such an interval. Before doing so, we again note that if 0 <
X — %o < R, then | x — x,] is simply x — x,.

From the three conclusions of Theorem 6.3 we see that if x, is a regular singuiar
point of (6.1), and 0 < x — xo < R, then there is always a solution

700 == xof" T eale = o)

of the form (6.49) for 0 < x — x, < R corresponding to the root r, of the indicial
equation associated with x,. Note again that the root r, is the larger rootif r, and r, are
real and unequal. From Conclusion 1 we see that if 0 < x — xo < R and the difference
r, — r, between the roots of the indicial equation is not zero or a positive integer,
then there is always a linearly independent solution

@O

72 = (x = %o 3 eble = xo)"
of the form (6.49) for 0 < x — x, < R corresponding to the root r,. Note that the root
r, is the smaller root if r, and r, are real and unequal. In particular, observe that if r,
and r, are conjugate complex, then r, — r, is pure imaginary, and there will always bea
linearly independent solution of the form (6.49) corresponding to r,. However, from
Conclusion 2 we see that if 0 < x — xo, < R and the difference r| — r, is a positive
integer, then a solution that is linearly independent of the “basic” solution of the form
(6.49) for 0 < x — xq < R is of the generally more complicated form

720 = (x = 50" 3, c3lx = xo)" + Cri(ln|x — xo

for 0 < x — x4 < R. Of course, if the constant Cin this solution is zero, then it reduces
to the simpler type of the form (6.49) for 0 < x — xo < R. Finally, from Conclusion 3,
we see that if r, —r, is zero, then the linearly independent solution y,(x) always
involves the logarithmic term y, (x)In | x — xo| and is never of the simple form (6.49) for
0<x—x3 <R

We shall now consider several examples that will (1) give further practice in the
method of Frobenius, (2) illustrate the conclusions of Theorem 6.3, and (3) indicate
how a linearly independent solution of the more complicated form involving the
logarithmic term may be found in cases in which it exists. In each example we shall take
xo = 0 and seek solutions valid in some interval 0 < x < R. Thus note that in each
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6.3 BESSEL'S EQUATION AND BESSEL FUNCTIONS
A. Bessel’s Fquation of Order Zero

The differential equation

d? d
xZEx—Z+xE§"+{xz~pz)y=0, (6.101}

where p is a parameter, is called Bessel's equation of order p. Any solution of Bessel’s
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equation of order p is called a Besse! function of order p. Bessel’s equation and Bessel
functions occur in connection with many problems of physics and engineering, and
there is an cxtensive literature dealing with the theory and application of this equation
and its solutions.
If p =0, Equation (6.101) is equivalen( to the equation
d’y  dy

Ix? +E,;+xy=0, (6.102)

which is called Bessel's equation of order zero. We shall seek solutions of this equation
that are valid in an interval 0 < x < R. We observe at once that x = 0 1s a regular
singular point of (6.102); and hernice, since we seek solutions for 0 < x < R, we assumea
solution '

y= Z E X" (6.103)

where ¢g # 0. Upon differentiating (6.103) twice and substituting into {6.102), we obtain

s o
L +r—Dex T 4 ¥ (e, x"TT 4 T cpxn T =0,
0 n=0 n=0

Simplifying, we write this in the form
i

H

o} 23]
Z (ﬂ + r)ZC”xn-H-—I i z Cn_zxn-br—l =0
n=90 =2

or

ricgx" P+ {1 + r}zc;x’ + Y [in4+1n%c,+ e ]x"" 1 =0, (6104
n=2

Equating to zero the coefficient of the lowest power of x in (6.104), we obtain the
indicial equation r? = 0, which has equal roots r, = r, = 0. Equating to zero the
cocfficients of the higher powers of x in (6.104) we obtain

(I +r?c, =0 (6.108)
and the recurrence formula
(n+rc,+¢-2=0, n22 (6.106}

Letting r = Q i (6.103), we find at once that ¢, = 0. Letting r = 0 in (6.106) we obtain
the recurrence formula in the form

e, & epug=0, w22

or
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From this we obtain successively

Co

¢y :
€2= ~335 3= 7327 0 (since ¢; = 0), Y]
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We note that all odd coefficients are zero and that the general even coeflicient may be
written
=W _(=1re
G ST gr @ "L

Letting r = 0 in (6.103) and using these values of c,,, we obtain the solution y = y,(x),

where
o — 1) 2Zn
yilx) = ¢g “ZO ((n!)l (g)

If we set the arbitrary constant ¢, = 1, we obtain an important particular solution of
Fquation (6.102). This particular solution defines a function denoted by J, and called
the Bessel function of the first kind of order zero. That is, the function J, is the particular
solution of Equation (6.102) defined by -

o0 \\ i n 2n
VCED) ((n!)} G) . (6.107)

Writing out the first few terms of this series solutian, we see that

1 [x\? 1 x\* 1 /x\¢
s =1~ (3) + o )~ () +

&

2o (6.108)

T e nHet

g P

Since the roots of the indicial equation are equal, we know from Theorem 6.3 that a
solution of Equation (6.102) which is linearly independent of J, must be of the form

y=x 3 ¢fx"+ Jo(x)In x,
n=0

for0 < x < R. Also, we know that such a linearly independent solution can be found by
the method of reduction of order {Section 4.1). Indeed from Theorem 4.7 we know that
this linearly independent solution y, is given by

( e"jd.x,"x d
x)=Jy(x) 1 —— dx
val ) 0 )J[Jo(x)]z
and hence by

dx
ya(x) = Jo(xj J.m
From (6.108) we find that

x?  3x*  s5x¢

2 —_ g o S PR L PRPTI
LI =1 =34 55— 35 +
and hence
1 __]+x2+5x4+23x6
[7a1r " 2 732 T 5%
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Thus

1 x  S5x¥ 23x°
yz(x)=Jo(x)J.(;+5+3§-+-—5—7—6—+ )dx

—J x?  5x* 23x®
= °(x)(l“+T+Tﬁ+3456+ )

x? x* xS x2  5x* 23x®
=*’°"‘"“"+‘(‘—7+az“z—3‘“o4+”‘)(“4"+rz‘s‘+34se+“')

I S AR LAY
= Joln x + 7 — oo+ 13534 '

We thus obtain the first few terms of the “second” solution y, by the method of
reduction of order. However, our computations give no information concerning the
general coefficient ¢, in the above series. Indeed, it seems unlikely that an expression
for the general coefficient can be found. However, let us observe that
1 1
| L |
(=1 23(11)° M 22 4

1 ! 3 3
—-— 3_.-—._ -— _ e ———— D e
1) e (”2) 7222 128

1 11 11 11
-] —11 ~4 =] = = .
(1) 26(31)2( T2t 3) 2°67-6 13824
Having observed these relations, we may express the solution y, in the following more
systematic form:

x? x* 1 x$ 11
y2(x) = Jo(x)lnx+5;‘*24—wj'f(1+5)+2—6(§f)—z(l +5+§)+

Further, we would certainly suspect that the general coefficient c%, is given by

(—1)"*? 1 1 1
* _— T ———— - — Y -t
e = T 1+2+3+ +-), n> 1

It may be shown (though not without some difficulty) that this is indeed the case. This
being true, we may express y, in the form
g
o (—1)rtixn | 1 '
x) = Jo(x)In ———— 14+ x+z+ -+ 6.109

2= h@inxt ) T \tatroory) €109
Since the solution y, defined by (6.109) is linearly independent of* J, we could write the
general solution of the differential equation (6.102) as a general linear combination of
Joand y,. However, this is not usually done; instead, it has been customary to choose a
certain special linear combination of J, and y, and take this special combination
as the “second” solution of Equation (6.102). This special combination is defined by
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where y is a number called Euler’s constart and is defined by

1 1 I
y=im{l+-+-+--+-—Inn}x05772
no 23 B

It is called the Bessel function of the second kind of order zero (Weber’s form) and is
commonly denoted by ¥;. Thus the second solution of {6.102) is commonly taken as the
function ¥;, where

2 0 1)n+.1 2a i 1 1 )
YO{X):;E.I: ; 22”( (1+“2“+§+"'+;)+(?—lﬂ2].f0(.f]}

ar
I)n+1x2n

2 o (. 1
Yg(x):;[(ln%-i-)’).lo(x)f ;%W(1+2+§+---+:—1)]. (6.110)

Therefore if we choose Y, as the second solution of the differential equation (6.102), the
general solution of (6.102) for 0 < x < R is given by

v=e,J4(x) + ¢, Yo(x), (6.111)

where ¢, and ¢, are arhitrary constants, and J, and Y are defined by (6.107)and (6.110),

respectively.
The functions J, and Y, have been studied extensively and tabulated. Many of the
interesting properties of these functions are indicated by their graphs, which are shown

in Figure 4.1,
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9.1 DEFINITION, EXISTENCE, AND BASIC PROPERTIES OF THE
LAPLACE TRANSFORM

A. Definition and Existence
DEFINITION

Let [ be areal-valued function of the real variablet, defined fort > 0. Let s be a variable
that we shall assume to be real, and consider the function F defined by

F(s)= '[w e % f(1) dt, 9.1)

0

Jfor all values of s for which this integral exists. The function F defined by the integral
9.1} is called the Laplace transform of the function f. We shall denote the Laplace
transform F of f by & {f} and shall denote F{s) by Z{f(t)}.

In order to be certain that the integral (9.1) does exist for some range of values of s, we
must impose suitable restrictions upon the function f under consideration. Weshall do
this shortly; however, first we shall directly determine the Laplace transforms of a few
simple functions.

Prepared by : Dr, Santhosh Kumar Asst Prof, Department of Mathematics, KAHE Page 13



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc. Mathematics COURSE NAME: Mathematical Modelling
COURSE CODE: 16MMU601A UNIT: 1 BATCH-2016-2019

9.3 LAPLACE TRANSFORM SOLUTION OF LINEAR DIFFERENTIAL
EQUATIONS WITH CONSTANT COEFFICIENTS

A. The Method

We now consider how the Laplace transform may be applied to solve the initial-value
problem consisting of the nth-order linear differential equation with constant

coefficients
dny dr 1y dy
B gpn T O G ¥ By H Ay = bis), (9.48)
plus the initial conditions
y(0)=C0!y’(0)=cla--'sy(ﬂ_”{0]=cn—l' (949)

Theorem 4.1 (Chapter 4) assures us that this problem has a unique solution.
We now take the Laplace transform of both members of Equation {9.48). By
Theorem 9.2, we have

n

n—1
e var i v o e o g ) = 200) 0

We now apply Theorem 9.4 to

dlly dn—ly a'y
“tart la) 4

in the left member of Equatioin (9.50). Using the initial conditions (9.49), we have

g{i:f} = s"P{y(1)} — 5" 1p(0) — " 2Y(0) — -+ — YD)
=LY} s m S R,
y{‘%;;} =s"Lp0] - 8"TIH0) = S0 — e — 5T I(0)

=S"_lff{y(€)}—CBS"‘Z—clsmﬁ..._cn__z’

{ yl = sL{ ¥} — y(0) = sL{y)} - ¢o.

Thus, letting Y(s) denote .Z#{ y(t)} and B(s) denote ¥ {b(t)}, Equation {$.50) becomes

[ags™ +ais" ' + -+ a,.,5+ a,]¥(s)
—cofags" ' +as" T+ +a, ]
— ¢ fags" " ? 4 a,8"" 3+ +a,_,]
— =ty afdes + @] — ¢, 180 = Bls). (9.5])
Since b is a known function of t, then B, assuming it exists and can be determined, is a

known function of s. Thus Equation (9.51) is an algebraic equation in the “unknown™
¥(s). We now solve the algebraic equation (9.51) to determine ¥ (s). Once ¥(s) has been
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found, we then find the unique solution

yt) = £7HY ()]

of the given initial-value problem using the table of transforms.
We summarize this procedure as follows:

1. Take the Laplace transform of both sides of the differential equation (9.48),
applying Theorem 9.4 and using the initial conditions (9.49) in the process, and
equate the results to obtain the algebraic equation (9.51) in the “unknown” Y(s).

2. Solve the algebraic equation (9.51) thus obtained to determine Y({s).

3. Having found Y(s), employ the table of transforms to determine the solution
y(t) = £~ '{Y(s)} of the given initial-value problem.
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Questions optl opt2 opt3 opt4 5|6 Answer
Consider the equation c,(t)x"+c4(t)x=0 then a point a is an
. . . t=0 t=a t=1 t=a? t=a
ordinary point if d,(t) and d,(t) are analytic at
An hermite equation has an ordinary point at t=0 t=a t=1 t=a? t=0
An analytic function for an hermite equation at t=0 is —tand 1 tand 2 -2t and 2 2t and 1 -2tand 2
(1-t) x"- (1-t) x"- t2 x"- (1-t2) x"- (1-t2) x"-

The legendre equation of order p is

2tx"+p(p+1)x=0

2tx"+(p+1)x=0

2tx"+p(p+1)x=0

2tx"+p(p+1)x=0

2tx"+p(p+1)x=0

When p,(t) is called an legendre polynomial? Pn(1)=0 Pn(0)=1 Pn(1)=1 Pn(t)=1 Pn(1)=1
Ifpa(t)isal d 1 ial th !
P(t) is & legendre polynomial then ] 1/(2n+1)! 2/(2n+1)! 2/(n+1)! 1/(n+2)! 2/(2n+1)!
pn(t)dt=
If p,,(t) and p,(t) are legendre polynomials then _; ['pn(t) | | ) 0 0
pm(t)dt= if m#n
If p,(t) is a legendre polynomial then p,(-1)=1 if n is Negative odd Even positive odd
X HxHx (- "(1-)x'+H(1- | tx"+(1- X HxHxH(E-
The Bessel equation of order p is t2x (e tx"+(1-t)x"+px=0 2x El Ox+(1 * (2 t2X TxHH(E
p)x=0 p2)x=0 t)x+p x=0 p’)x=0
The Bessel function of the first kind d/dt (tpJp(t))= tPI,(t) t1,1(t) P51 (1) 1) °1,41()
If p,(t) is the generating function then p,(-1)= -1 (Dn (-1)m (-1
The hermite equation is t2x"-2tx"+x=0 x"+tx'-2x=0 x"-2tx"+2x=0 tx"-tx"+x=0 x"-2tx"+2x=0
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optl

opt2

opt3

opt4

opt

opt

Answer

The legendre polynomial p,(t) can be express as

1/2"n! D"(£*-1)"

1/2"n! D"(£-1)""'

1/n! D(*-1)"

1/2"n! D"(£-1)

1/2"n! D"(£-1)"

The order of equation is (D*+2D-8)y=0 is 210 8 2
The solution of ordinary differential equation of n order contains

. Y 4 More than n no n Atleast n n

arbitrary constants

The n™ order ordinary linear homogeneous differential equation|(n-1) singular one singular n-singular no singular no singular
have solution solution solution solution solution
The linearity principle for ordinary differential equation holds| Non-homogeneous |linear differential |Homogeneous |non-linear linear differential
for equation equation equation equation equation

A singular point which in is called an irregular singular

point Regular ordinary point analytic point  [analytic function Regular
] 1

If pn(t) and Pn(t) are legendre polynomials then _; ['pn(t) Untl 2/(2n+1) | 2/(2n+1)
pm(t)dt= if m=n
On Bessel’s function, where n is any integer then J- n n n n n
n(x)= (-1) Ta(x) (1) Tu(x) (1) Ty (x) 1) Jh(x) -1 Ju(x)
When the hermite equation has an ordinary point? t=0 t=-2 t=0 t=0 t=0

. . . "y an — "y —
The second order linear homogeneous equation is of the X"l (fx+a2(t)x x"+al(t)x+a2(t)x X"l ()x=0 x"+al(x)x'=cons x"+al (X +a2(b)x
form constant tant
: : : "1t +nx=

The regular singular point of the equation tx"+(1-t)x"+nx=0 =1 =1 =0 t=n =0

1S

The equation tx"+(1-t)x"+nx=0 where n is a constant, is called
the

aagrange equation

legendre equation

Bessel equation

hermite equation

lagrange equation
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. . . 2 " 2 1 2 =
The singular point of the equation t(t-1)" (t+3)x"+t~ x'-(t " +t-1)x =0 and =1 =0, =1 and =-3 |t=1 qnd t=-3 =0 and =-3 =0, t=1 and t=-3
is
. 2 - . . .
Tthe equation t'x"-(1+t)x=0 having a regular singular point _q =1 t=-1 =0 =0
a
If Jp(t) is a Bessel function then d/dx[t-pJp(t)]= 7T, (1) t-PT () —t-PT (1) t°7,.4(t) —t-PT (1)
5 1 1 2 ” ! .
The regular singular point of the equation t° x"+2tx’-n(n+1)x4 0linfinity 1 2 infinity
is
The Bessel equation is of the second order then it possesses two|linearly  dependent independent|dependent .llzearlyd ¥1r§arlyd
solution solutions solutions fndepen ent fndepen ent
solutions solutions

A point to is defined to be a singular point for the equations

not an ordinary

ordinary point

not an irregular

irregular point

not an ordinary

a0(t)x"+al(t)x+a2(t)x=0 if it is point point point
The regular singular points of the equations (t-t*)x"+[y- 0and 1 0 and o 0.1 and o | and o 0.1 and o
(ot+p+1)]tx-Pax=0 is ’ ’
The Bessel function of (1/m)Jn(t) ), (t) wIn (t) Jn(t) ) (1)
The consider non-linear differential equation x'= t*-x’, x=1/2 2 2 L4 14 L4
when t=0 then the value of X,(O):
: VA ’ — : 1
The equation (1-£)x"-2tx"p(p*1)x=0 where p is a real number legendre equation laguerse equation |Bessel equation Herrrpte legendre equation
is called the of order p equation

The Bessel equation possesses a at t=0

ordinary point

analytic function

regular singular
point

singular point

regular singular
point

The equation t(t-l)2(t+3)x"+t2x’-(t2+t-l)=0 is not analytic at

t=0

=1

t=1

t=1
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\Tvlllli:n nis Bessel function even or odd odd costant even odd
A regular singular point of the equation 2tx"+(2t+1)x’-x=0 is =0 =2 =1 —1 =0
An equation has an ordinary point at t = 0. Legendre Bessel Hermite Lagrange Hermite
The order linear homogeneous equation is of the first second third fourth second

form x" + al(t)x'+a2(t)x= 0
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Simulation Modeling

Introduction

In many situations o modeler is uaable to constract an analytic (symbodic ) model adequately
explainiag the behavior being observed becanse of its commplexity or the infractability of the
proposed explicadve model. Yea IF it ls necessary 0 make predicuoas abowt the behevior, the
modeder may conduct experiments (or gither data) to invastigate the relationship batween
the dependent variableds) and selected values of the independent variablels) witkin some
mnge. We consimicted empircal models based on colleded data in Chapber 4. Lo ooll2ci
the data the modeler may observe the behavior directly. In othe instances, the behavior
maght be duplicated (possibly in 2 scaled-down version) under cortrolled conditioas, as we
will do when predicting the size of craters in Saclion 14.4.

In some circumstances, it may not be feasible either to obseve the behavior directly
or o conduct evperimens. For instance. consider the service provided by a system of
glevator: during morning rush hour. Afier identifping an appropriste problem and defining
what is meant by good sarvice, we might sugges! some allermabive delivery schemes, such
as assigaing ebevators to even and odd floors or uzing expess elevators. Theoretically. each
alternative could be testad for some period of time to determine which one provided the
best service for particular arrival and desination patterns of the cestomer:. However, such
r proceders would probubly be very dismuptive bacause it would be peccccory i horoass
the custemers constantly as the raquired satistics were collected. Moreover, the customers
would bacome very comused becanse the elevator delivery systen would keep changing.
Another problem concoms testing altemetive schemes for control ing aotemobile roffic in
i large city. It would be ‘mpractizal to constantly change directions of the one-way streets
and the distribation of traffic signals to conduct t2sts.

Taw =4l wilee sitsativns, e sysbenn Gmowhich alvecsaive pnosesdures seed oo b iesbed
may mof even exist vel. An example is the situation of several proposed commuaications
metwaorks, with e problem of datermining which is besi for a given office building. Still
another example 1s the problem ol determuning ocations of MAcunes 10 a new industrial
plant. The cost of condecting expenimeats may be prolebitive. This is the case when an
agency ines to predict the effects of various aliematives “or proteciing and evacusting the
paspalation in case of faiure of a nuclear power plant.

In cases where the behavior cannot be explainved analytically or data collected directly,
the modeler might similale the behavior indirectly in some manner and then test the various
altemnatives under consideration to estimate how each affects the behavicr. Data an then
be collected to determine which allernative is best. An example is to detlermine the drg
force on a proposed submarine. Jecause it is infeasibbe to build 2 prototyoe, we can build
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£ scaled mode] o simuate the behavier of the actual submasne. Another ezample of this
type of smalatisn is usng a scaled meodel of & jet airplane ina wind tunnel o estimate the
ffects of very bigh speeds for variowns designs of the sircraft There is yet another type of
simulation, which we will study in this chapier. This Monic Carlo simolotion is pypically
sccomplished with the aid of acompuler.

Suppose we are imestigating the service provided by a system o elevators af morming
msh hour. In Moate Carlo simalation, the arrval of customers at the elevators during the
bouar and the destination floors they select need to be replicated. That is. the distribation
of arrival times and the distribation of flfees desired on the simulated trinl nest portmy a
poasible rush howr. Moreover, after w2 have simulated many trials, the daily distribution
of arrivals and destinations thet cocwr must miméc the real-sorld distributons in proper
jroportions. When we are satishied fuat the behavior is adequately duplicated, we can
investigete varicus altemative strategies for operating the clevators. Using a larpe mambser
wl bvicls, w2 v gollwn arpuoquiale sdisics, soch ae Qe avoaee lolal Jelivem y mme of o
custome or the length of the kagest quese. These satistics can help determine the best
strateey for operating the elevalor systam.

Thiz chapter provides a bnef introduction i Monte Carlo amulation. Adcitional studses
in probability ard statisics are required to delve into the intncacies of competer simulation
ad wenderstonmd its agmmopriabe wses Bevereebess, yoo will oo samee appuocistion ol dais
powerfu component of mathematical modeling. Keep in mind that there s a danger in
placing oo muach confidence in the predictioss resuliing from a simuelation, especally if
the assumptions inherent in the simulaton are oot clearly stated. Momrover, the appaarance
of using large amounts of data and huge amoents of compuder time, coupled with twe fact
e lay people can understand @ stmuliclon mode] and compues catput Witk relatve ease,
often beads to overconfidence in the resalis.

When any Monte Carko simnlation is performed . mndinm snmbar are nsed W disss
bow to generate random nombers in Section 52. Loossly spezking, a “saguesce of random
rumbers uniformly distribwted in an interval m to 0™ is a setof numbers with no apparent
panern, where 2ich nuwber berveen m and 1 can appesr with equal kelihsod For example,
if vou toss a six-sidied die 100 times andwrite down the number showing on the die each time,
youa willl have written down o sequence of 100 randcm intepers approximakely wniformly
distributed over the inferval 1 o 6. Now, supoose thit random aumbers coasisting of six
digits can be generated The tossing of a coia can be duplicated by generaing a random
rumber and assizning it a head f the rasdom aember is even and a tail if the rzndom number
is ok 17 this trial is replicated a large number of tmes, you would axpect beads tc occur
ghout 5% of the tima. Howevar, there is an elemend of chance involved. It is poseible that a
nen of 100 trials could produce 51 heads and that the next 10 falks could prodace all heads
{although this is not very likelvi. Thas, the estimate with | [0 wials would actially be worse
than the estimatz with ‘00 trias. Processes with an elemeat of chance invodved are called
probabifistic. as opposed to deterministic, processes. Monte Carlo smulation is therefore
2 probahilistic model.

The modeled behavior may be either detrminisic or piobabilistic. Fo- instanca, the
zrea under a curve is determinstic (even thowgh it may be impossible fo find it predsely).
On the other hard, the time batween arivals of customers & the elevaor on aparticular day
is prohabilistic behavior, Referming to Figare 5.1, we e that a deterministic model can be
veed Bo approximote cither o detcomindsbio or o probohdistic bohovios, and likewise. aMoate
Carlo simulatioa can be used ic approsimate 3 deterministic behavior {as you will see with
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1 higura 5.1 g
he behavior and the model Behaviur Model =
:an be either deterministic I S + Dieinrmimictic ¥
ir probabifistic. Probabilistic ————"" & Probahilistic g

8 Monte Carlo approximation to an area under a curvel or a probabilistic ope. However, as
;ﬂhwquld expect, the real power of Monte Carlo simulation lies in modaling a probahilistic

Vi

A principal advantage of Monte Cardo simulation is the relative ease with which it can
sometimes be wsed to approximate very complax probabilistic systems. Additionally, Monte
Carlo simulation provides performance estimation over o wide range of condilions rather
than & very restricted range s often reqeired by an analyic model. Farhermone, Beciuse
g particular submodel can be changed rther easily in & Moote Carlo simalation (such as
the arrival and destination patterns of customers at the elevators), there is the potential of
conducting a sensitivity analysis. 54l anether advantage is that the modeler has coatrol over
the leval of detail in & simulaticn. For example, a very long time frame can be compressed or
a small time frame expanded, giving a great advantage over experimantal models. Finally,
there are very powerful, high-level simulation languages (such as GPS5, GASP. PROLDG,
SIMAN, SLAM, and DYMAMO) that eEminate mach of the tedioas labor in constructing
a simulation model.

O the niegative side. simulation models are typically expensive to develop and operate.
They may require mamy hours io construct end large imowents of compuoter ime and memory
b run. Another disadvantage is that the probabilistic nature of the simulation modal Bimits

the conclusions that can be drawn from a panticolar man unless a sensitivity analysis is
wuthec ], Sucl am asal ysis olen vaguives iany onne e jost o considen @ saoall b

of combinations of conditions that can occor in the vanous submodels. This limitation
then forces the maodeler 1o estimate which combination might ecear for o particelar set of
conditions.

Prepared by : Dr, Santhosh Kumar Asst Prof, Department of Mathematics, KAHE Page 3



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc. Mathematics COURSE NAME: Mathematical Modelling
COURSE CODE: 16MMU601A UNIT: II BATCH-2016-2019

Simulating Deterministic Behavior:
Area Under a Curve

Ini this section we illustrate the use of Monte Carlo simulation to model o determdnistic
behavior, the area under a cerve. 'We begin by finding an approximate value to the area
ender a noanegative curve. Specifically. suppose ¥ = F(x) is some given contimsous
fumction satisfying 0 < fix) = M overthe closed interval g < x =< b Here, the namber 4
is simply some constant that bowedy the funciion. This siteation is depicted in Figure 5.7
Motice that the area we seck s wholly coatained within the rectangular region of beighl M
and leagth b — a (the length of the interval over which § is defiped).

Mow we select a point Pix. v} ai random from within the rectangular region. We will
do 50 by penerating two random nombers, x and ¥, satisfyving g < x < fand 0 < ¥y = M,
and imterpreting them as a point P with coordinates x and y. Once Pix, y) is selacted, we
ask whether it lies within the region below the curve. That is, does the y-coordinate satisfy
0=y =< Fix)? If ihe answer is yes, then count the point P by adding 1 to some coanter.
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The area under the
nonnegative curve y =fi(x)
over a < x < b is contained
within the rectangle of
height M and base length

b—a.

Points below the curve
are counted

@ Cangage Lsaming

Two counters will be necessary: one to count the total points generated and a second to count
those points that lie below the curve (Figure 5.2). You can then calculate an approximate
vaiue for ihe area under the curve by the foiliowing formuia:
area under curve  number of points counted below curve
~ -
area of rectangle total number of random points

As discussed in the Introduction, the Monte Carlo technique is probabilistic and typically
requires a large number of trials before the deviation between the predicted and true values
becomes small. A discussion of the number of trials needed to ensure a predetermined level
of confidence in the final estimate requires a background in statistics. However, as a general
rule, to double the accuracy of the result (i.e.. to cut the expected error in hall), about four
times as many experiments are necessary.

The following algorithm gives the sequence of calculations needed for a general com-
puter simulation of this Monte Carlo technique for finding the area under a curve.

Monte Carlo Area Algorithm

Input
Output

Step 1
Step 2
Step 3
Step 4
Step 5
Step 6
Step 7

Total number n of random points to be generated in the simulation.

AREA = approximate area under the specified curve y = f(x) over the given interval
a<x<h where0 < f(x) < M.

Initialize; COUNTER = 0.

Fori =1,2,...,n,do Steps 3-5.

Calculate random coordinates x; and y; thatsatisfy ¢ < x; < band 0 < y; < M.
Calculate f(x;) for the random x; coordinate.

If y; = f(x7), then increment the COUNTER by 1. Otherwise, leave COUNTER as is.
Calculate AREA = M(h — a) COUNTER/n.

OUTPUT (AREA)

STOP

Table 5.1 gives the results of several different simulations to obtain the area beneath
the curve y = cos x over the interval —z /2 < x < /2, where 0 < cosx < 2.

The actual area under the curve y = cosx over the given interval is 2 square units.
Note that even with the relatively large number of points generated, the error is significant.
For functions of one variable, the Monte Carlo technique is generally not competitive with
quadrature techniques that you will learn in numerical analysis. The lack of an error bound
and the difficulty in finding an upper bound M are disadvantages as well. Nevertheless, the
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Table 5.1 Monte Carlo approximation to the area under
the curve y = cos x over the interval -7 /2 <= x < /2

Number Approximation Number Approximation
of points to area of points to area
100 2.07345 2000 1.94465
200 2.13628 3000 1.97711
300 2.01064 4000 1.99962
400 2.12058 5000 2.01429
500 2.04832 6000 2.02319
600 2.09440 8000 2.00669
700 2.02857 10000 2.00873
800 1.99491 15000 2.00978
900 1.99666 20000 2.01093
1000 1.96664 30000 2.01186

© Cengage Leaming

Monte Carlo technique can be extended to functions of several variables and becomes more
practical in that situation.

Volume Under a Surface

Let’s consider finding part of the volume of the sphere
2 +yr+z2 <1

that lies in the first octant, x > 0, y > 0, z > 0 (Figure 5.3).

The methodology to approximate the volume is very similar to that of finding the area
under a curve. However, now we will use an approximation for the volume under the surface
by the following rule:

volume under surface  number of points counted below surface in 1st octant

volume of box - total number of points

The following algorithm gives the sequence of calculations required to employ Monte Carlo
techniques to find the approximate volume of the region.

Prepared by : Dr, Santhosh Kumar Asst Prof, Department of Mathematics, KAHE Page 6
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Figure 5.3 z

Volume of a sphere

X2+ y2+ 7% <1 thatliesin
the first octant, x > 0, y = 0,
z>0

i Cengage Leaming
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Monte Carlo Volume Algorithm
Input Total number n of random points to be generated in the simulation.

Output VOLUMEL — approximate volume enclosed by the specified function, z = f(x.y) in the
first uctant, x > 0, y > 0,z > 0.
Step 1 Initialize: COUNTER = 0.
Step 2 Fori =1.2,... n, do Steps 3-5.
Step 3 Calculate random coordinates x;, y;, z; that satisfy0 = x; = 1,0 <y; =1,0=z; = L.
(Ingeneral, a < x; =< b,c=y;=d, 0=z, = M)
Step 4 Calculate f(x;. y;) for the random coordinate (x;, y;).

Step 5 Ifrandomz; < f(x;.y;).thenincrement the COUNTER by 1. Otherwise, leave COUNTER
as is.

Step 6 Calculate VOLUME = M(d — ¢)(b — u)COUNTER/ n.
Step 7 OUTPUT (VOLUME)
STOP

Table 5.2 gives the results of several Monte Carlo runs to obtain the approximate volume of
x>+ y*+z2 <1
that lies in the first octant, x = 0, y = 0,z = 0.

Table 52 Monte Carlo approximation
to the volume in the first octant under
the surface x2 4 y2 _ 72 <1

Number of points Approximate volume

100 0.4700

200 0.5950

300 0.5030

500 0.5140

1,000 0.5180

2,000 0.5120

5.000 0.5180
10,000 0.5234
20,000 0.5242

(@ Cengage Leaming

The actual volume in the first octant is found to be approximately 0.5236 cubic units
(m/6). Generally, though not uniformly, the error hecomes smaller as the number of points
generated increases.

Generating Random Numbers

In the previous section, we developed algorithms for Monte Carlo simulations to find areas
and volumes. A key ingredient common to these algorithms is the need for random numbers.
Random numbers have a variety of applications, including gambling problems, finding an
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area or volume, and modeling larger complex systems such as large-scale combat operations
or air traffic control situations.

In some sense a computer does not really generate random numbers, because computers
employ deterministic algorithms. However, we can generate sequences of pseudorandom
numbers that, for all practical purposes, may be considered random. There is no single best
random number generator or best test o ensure randormness.

There are complete courses of study for random numbers and simulations that cover
in depth the methods and tests for psendorandom number generators. Our purpose here is
to introduce a few random number methods that can be utilized to generate sequences of
numbers that are nearly random.

Many programming languagcs, such as Pascal and Basic, and othcr softwarc (c.gz.,
Minitab, MATI.AB, and EXCEIL) have huilt-in randam number generators for user
convenience.

Middle-Square Method

The middle-square method was developed in 1946 by John Von Neuman, S. Ulm, and

N. Metropolis at Los Alamos Laboratories to simulate neutron collisions as part of the
Manhattan Project. Their middle-square method works as follows:

1. Start with a four-digit number xq. called the seed.
2. Square it to obtain an eight-digit number (add a leading zero if necessary).

f

. Take the middle four digits as the next random number.

Continuing in this manner, we obtain a sequence that appears to be random over the
integers from 0 to 9999, These integers can then be scaled to any interval a to b. For example,
if we wanted numbers from 0 to 1, we would divide the four-digit numbers by 10,000. Let’s
illustrate the middle-square method.

Pick a seed. sav xn = 2041, and square it (adding a leading zero) to get 04165681, The
middle four digits give the next random number, 1656. Generating 13 random numbers in
this way yields

H‘G l 2 3 4 5 6 AN " i S b

2041 1656 7423 1009 0180 0324 1049 1004 80 64 40 16 2

Xn

We can use more than 4 digits if we wish, but we always take the middle number of
digits equal to the number of digits in the seed. For example. if xo = 653217 (6 digits), its
square 426,692.449,089 has 12 digits. Thus, take the middle 6 digits as the random number,
namely, 692449,

The middle-square method is reasonable, but it has @ major drawback in ils tendency
to degenerate to zero (where it will stay forever). With the seed 2041, the random sequence
does seem to be approaching zero. How many numbers can be genarated until we are almost

*at zero?
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Linear Congruence

The linear congruence method was introduced by D. H. Lehmer in 1951, and a majority
of pseudorandom numbers used today are based on this method. One advantage it has over
other methods is that seeds can be selected that generate patterns that eventually cycle (we
illustrate this concept with an example). However, the length of the cycle is so large that the
pattern does not repeat itself on large computers for most applications. The method requires
the choice of three integers: a, b, and ¢. Given some initial seed, say x,, we generate a
sequence by the rule

Xny1 = (@ x x, + b)mod(c)

where ¢ is the modulus, ¢ is the multiplier, and b is the increment. The qualifier mod(c) in
the equation means to obtain the remainder after dividing the quantity (¢ x x, + b) by c.
For example, witha =1, =7, and ¢ = 10,

Xny1 = (1 x x,, + 7)mod(10)

means X, 4 is the integer remainder upon dividing x,, + 7 by 10. Thus, if x, = 115, then
Xp41 = remainder (113—02) =7

Before investigating the linear congruence methodology, we need to discuss cycling,
which is a major problem that occurs with random numbers. Cycling means the sequence
repeats itself, and, although undesirable, it is unavoidable. At some point, all pseudorandom
number generators begin to cycle. Let’s illustrate cycling with an example.

If we set our seed at xp = 7, we find x; = (1 x7 4+ 7) mod(10) or 14 mod(10), which
is 4. Repeating this same procedure, we obtain the sequence

54 1,8,5.2.9:6,3,0,7.4,...

and the original sequence repeats again and again. Note that there is cycling after 10 numbers.
The methodology produces a sequence of integers between 0 and ¢ — 1 inclusively before
cycling (which includes the possible remainders after dividing the integers by ¢). Cycling
is guaranteed with at most ¢ numbers in the random number sequence. Nevertheless, ¢ can
be chosen to be very large, and a and b can be chosen in such a way as to obtain a full set of
¢ numbers before cyeling begins to occur. Many computers use ¢ = 2°! for the large value
of c. Again, we can scale the random numbers to obtain a sequence between any limits a
and b, as required.

A second problem that can occur with the linear congruence method is lack of statistical
independence among the members in the list of random numbers. Any correlations between
the nearest neighbors, the next-nearest neighbors, the third-nearest neighbors, and so forth
are generally unacceptable. (Because we live in a three-dimensional world, third-nearest
neighbor correlations can be particularly damaging in physical applications.) Pseudoran-
dom number sequences can never be completely statistically independent because they are
generated by a mathematical formula or algorithm. Nevertheless, the sequence will appear
(for practical purposes) independent when it is subjected to certain statistical tests. These
concerns are best addressed in a course in statistics.
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Questions optl opt2 opt3 opt4 optS | opté Answer
When we finding an approximate value to the area under a curve will be . .\ .\ . . . -
non negative non positive positive neither negative nor positive non positive
. . . ... negative random .
In Monte Carlo method functions are created by using a series of positive numbers & digital numbers random numbers
B numbers numbers
The simulation model can be classified into categories 4 3 5 2 4
. . .. . . . Monte Carlo robabilit C .
Which models do not take variable time into consideration static model P Y deterministic model static model
model model

The area under a curve functions must be continuous modular finite infinite continuous
Processes with an elt of chance involved are called finite chance deterministic  |probabilistic  |infinite chance finite chance
Probabilistic as opposed to deterministic event outcomes event or outcome deterministic
Monte Carlo simulation is therefore a model random deterministic  |probabilistic uniform probabilistic
The area under a curve is model deterministic probabilistic random uniform deterministic
Monte Carlo simulation can be used a behaviour select approximate |predefined choose approximate
The real power of Monte Carlo simulation lies in modelling a e . e S e

P . £ probabilistic deterministic random probabilistic or deterministic probabilistic

behaviour
. . . . SLAM ,
Example for higher level simulation languages is Java Pascal Fortron77 SLAM , DYNAMO
- DYNAMO
Simulation models are typically to develop and operate low cost very low cost  |expansive high cost expansive
If y=f(x) is given continuous function satisfying 0 < f(x) < m over the
yHx)is g fying 0 < fx) < <x<b a<x<b a<x<b a<x<b a<x<b

closed interval




random

neither simulation nor random

technique is used to finding the area under curve Monte Carlo simulation . . Monte Carlo
BE— selection selection
?f y=f(x) is given continuous function satisfying over the closed 0<f(x)<m 0 < f(x)<m 0<f(x) <m 0<f(x)< m 0<f(x)<m
interval a<x<b
technique is used to find the volume under a surface Monte Carlo simulation randqm nelthe'r simulation nor random Monte Carlo
B— selection selection
. m(d-c)(b-a) m(d-c)(b-a)
Volume under surface is COUNTER/n m(d-c) m(a-b)/n m(d-c)(b-a)/n COUNTER/n
. m(b-a) m(d- m(b-a)
Area under curveis __ COUNTER/n ¢)COUNTER/n | ™(4©) m(b-a)/n COUNTER/n
Middle square method starts with digit number four two eight three four
The middle square method was developed in 1947 1956 1946 1966 1946
Finding an air traffic control situation is one of the application of selection pseudo random middle square pseudo
numbers
Pseudo random numbers based on methods middle square random number linear deterministic random number
— congruence
Middle square method starts with four digit number is called leading seed added seed random seed  [seed seed
. . . random pseudo random pseudo random
Depth of random number and simulation is techniques pseudo numbers
E— number numbers numbers
. pseudo random . neither cycling nor random .
Linear congruence depends on random number cycling cycling
numbers numbers
models are typically expansive to develop and operate Simulation very low cost | low cost high cost Simulation
. . . Linear s . .
method starts with four digit number Middle square Probabilistic  |deterministic Middle square

congruence
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Queuing Models

A Harbor System

Consider a small harbor with unloading facilities for ships. Only one ship can be unloaded
at any onc time. Ships arrive for unloading of cargo at the harbor, and the time between
the arrival of successive ships varies from 15 to 145 min. The unloading time required for
a ship depends on the type and amount of cargo and varies from 45 to 90 min. We seek
answers to the following questions:

1. What are the average and maximum times per ship in the harbor?

2. If the waiting time for a ship is the time between its arrival and the start of unloading,
what are the average and maximum waiting times per ship?

3. What percentage of the time are the unloading facilities idle?
4. What is the length of the longest queue?

To obtain some reasonable answers, we can simulate the activity in the harbor using
a computer or programmable calculator. We assume the arrival times between successive
ships and the unloading time per ship are uniformly distributed over their respective time
intervals. For instance, the arrival time between ships can be any integer between 15 and
145, and any intcger within that interval can appcar with cqual likelihood. Before giving a
general algorithm to simulate the harbor system, let’s consider a hypothetical situation with
five ships.

‘We have the following data for each ship:

Ship 1 Ship 2 Ship 3 Ship 4 Ship 5

Time between successive ships 20 30 15 120 25
Unloading time 35 45 60 75 80
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Because Ship 1 arrives 20 min after the clock commences at ¢ = 0 min, the harbor
facilities are idle for 20 min at the start. Ship 1 immediately begins to unload. The unloading
takes 55 min; meanwhile, Ship 2 arrives on the scene at = 20 | 30 = 50 min after the
clock begins. Ship 2 cannot start to unload until Ship 1 finishes unloading at# — 20+ 55 —
75 min. This means that Ship 2 must wait 75 — 50 = 25 min before unloading begins. The
situation is depicted in the following timeline diagram:

Ship1  Ship 2 arrives

arrives Ship ! finishes unloading:
Tl Y ‘L start unloading Ship 2
|lu|.t,' | o =
0 20 50 75 Clock time (min)
Timeline 1

Now before Ship 2 starts to unload, Ship 3 arrives at time ¢ = 50 + 15 = 65 min. Beca
the unloading of Ship 2 starts at t+ = 75 min and it takes 45 min to unload, unloading S|
3 cannot start until + = 75 + 45 = 120 min, when Ship 2 is finished. Thus, Ship 3 m
wait 120 — 65 = 55 min. The situation is depicted in the next timeline diagram:

Ship 2 finishes unloading:
Ship3  start unloading Ship 3

arrives l
Jdle, | * | |
0 20 50 6575 120 Clock time (min)
Timeline 2

Ship 4 does not arrive in the harbor until t = 65 + 120 = 185 min. Therefore, Sl
3 has already finished unloading at t = 120 4 60 = 180 min, and the harbor facilities .
idle for 185 — 180 = 5 min. Moreover, the unloading of Ship 4 commences immediat
upon its arrival, as depicted in the next diagram:

Ship 3 finishes unloading ﬁirShip 4 arrives
Jdle, [ | L
0 20 50 6575 120 180 185 Clock time (min)
Timeline 3
Finally, Ship 5 arrives at t = 185 + 25 = 210 min, before Ship 4 finishes unloading
t = 185 + 75 = 260 min. Thus, Ship 5 must wait 260 — 210 = 50 min before it stz

to unload. The simulation is complete when Ship 5 finishes unloading at + = 260 + 80
340 min. The final situation is shown in the next diagram:

Ship 5
Ship 4 finishes unloading  finishes
it Ship 5 arrives ¢ unloading
e
Jdle, L1 | | _|+| *I' | *
0 20 50 6575 120 180 185 210 260 340

Timeline 4
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™ Figure 5.9
Idle and unleading times for the ships and docking facilities

InTigure 5.9, we summarize the waiting and unloading times for each of the five hypothetical
ship arrivals. In Table 5.14, we summarize the results of the entire simulation of the five
hypothetical ships. Note that the total waiting time spent by all five ships belfore unloading
is 130 min. This waiting time represents a cost to the shipowners and is a source of customer
dissatisfaction with the docking [acilities. On the other hand, the docking lacility has only
25 min of total idle tme. Tt is in use 315 out of the toral 340 min in the simulation, or
approximately 93% of the time.

Suppose the owners of the docking facilities are concerned with the quality of service
they are providing and want variolls management alternatives (o be evaluated to determine
whether improvement in service justifies the added cost. Several statistics can help in
evaluating the quality of the service. For example, the maximum time a ship spends in the
harbor is 130 min by Ship 5. whereas the average is 89 min (Table 5.14). Generally. customers
are very sensitive to the amount of time spent waiting. In this example, the maximum time
spent waiting for a facility is 55 min. whereas the average time spent waiting is 26 min.
Some customers are apt to take their business elsewhere if queues are toc long. In this case,
the longest queue is two. The following Monte Carlo simulation algorithm computes such
statistics to assess various management alternatives.
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Ship Random time Arrival Start Queue length Wait Random Time Dock
no. between ship arrivals time service at arrival time  unload time  inharbor  idle time

1 20 20 20 0 0 55 55 20

2 30 50 75 1 25 45 70 0

3 5 65 120 2 55 60 115 0

4 120 185 185 0 0 75 75 5

5 25 210 260 1 50 80 130 0
Total (if appropriate): 130 25
Average (if appropriate): 26 63 89

Summary of Harbor System Algorithm Terms

between;
15 and 145 min)
arrive;

Time between successive arrivals of Ships i and i — 1 (a random integer varying between

Time from start of clock at + = 0 when Ship i arrives at the harbor for unloading

unload; Time required to unload Ship i at the dock (a random integer varying between 45 and
90 min)
start; Time from start of clock at which Ship / commences its unloading
idle; Time for which dock facilities are idle immediately before commencement of unloading
Ship i
wait; Time Ship i waits in the harbor after arrival before unloading commences
finish; Time from start of clock at which service for Ship i is completed at the unloading facilities
harbor; Total time Ship i spends in the harbor
HARTIME Average time per ship in the harbor
MAXHAR Maximum time of a ship in the harbor
WAITIME Average waiting time per ship before unloading
MAXWAIT Maximum waiting time of a ship
IDLETIME Percentage of total simulation time unloading facilities are idle
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Harbor System Simulation Algorithm

Input

Output
Step 1
Step 2

Step 3

Step 4
Step 5

Step 6

Step 7

Step 8

Step 9
Step 10
Step 11

Step 12

‘Iotal number n of ships for the simulation.
HARTIME. MAXHAR. WAITIME. MAXWAIT, and IDLETIME.
Randomly generate between; and unload;. Then set arrive; — between;.
Initialize all output values:
HARTIME = unload, , MAXHAR = unload,,
WAITIME = 0, MAXWAIT =0, IDI.ETIME = arrive,
Calculate finish time for unloading of Ship; :
finish; = arrive; + unload,
POt =23 e i, do Steps 5-16.
Generate the random pair of integers between; and unload; over their respective time
intervals.
Assuming the time clock begins at 1 = 0 min, calculate the time of arrival for Ship;:
arrive; = arrive;_, + between;
Calculate the time difference between the arrival of Ship, and the finish time for unloading
the previous Ship;_,:
timediff = arrive; — finish;_,
For nonnegative timediff, the unloading facilities are idle:
idlc, = timediff and wait; =0
For negative timediff, Ship; must wait before it can unload:
wail; = —timediff and idle; =0
Calculate the start time for unloading Ship;:
start; = arrive; + wait;
Calculate the finish time for unloading Ship;:
finish; = start; + unload;
Calculate the time in harbor for Ship;:
harbor; = wail; 4+ unload;
Sum harbor; into total harbor time HARTIME for averaging.
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Step 13 If harbor; > MAXHAR, then set MAXHAR = harbor;. Otherwise leave
MAXHAR as is.
Step 14 Sum wait; into total waiting time WAITIME for averaging.
Step 15 Sum idle; into total idle time IDLETIME.
Step 16 If wait; > MAXWAIT, then set MAXWAIT = wait;. Otherwise leave MAXWAIT as is.
Step 17 Set HARTIME = HARTIME/n, WAITIME = WAITIME/n, and IDLETIME =
IDLETIME/finish,,.
Step 18 OUTPUT (HARTIME, MAXHAR, WAITIME, MAXWALIT, IDLETIME)
STOP

Table 5.15 gives the results, according to the preceding algorithm, of six independent
simulation runs of 100 ships each.

Now suppose vou are a consultant for the owners of the docking facilities. What would
be the effect of hiring additional labor or acquiring better equipment for unloading cargo so
that the unloading time interval is reduced to between 35 and 75 min per ship? Table 5.16
gives the results based on our simulation algorithm.

You can see from Table 5.16 that a reduction of the unloading time per ship by 10 to
15 min decreases the time ships spend in the harbor, especially the waiting times. However,
the percentage of the total time during which the dock facilities are idle nearly doubles. The
situation is favorable for shipowners because it increases the availability of each ship for
hauling cargo over the long run. Thus, the traffic coming into the harbor is likely to increase.
If the traffic increases to the extent that the time between successive ships is reduced to
between 10 and 120 min. the simulated results are as shown in Table 5.17. We can see from
this table that the ships again spend more time in the harbor with the increased traffic, but
now harbor facilities are idle much less of the time. Moreover. both the shipowners and the
dock owners are benefiting from the increased business.

Table 5.15 Harbor system simulation results for 100 ships

Average time of a ship in the harbor 106 85 101 116 112 94

Maximum time of a ship in the harbor 287 180 233 280 234 264
Average waiting time of a ship 39 20 35 50 44 27
Maximum waiting time of a ship 213 118 172 203 167 184

Percentage of time dock facilities are idle 0.18 0.17 0.15 0.20 0.14 0.21

© Cengage Leaming

Note: All times are given in minutes. Time between successive ships is 15-145 min. Unloading time per ship
varies from 45 to 90 min.

Table 5.16 Harbor system simulation results for 100 ships

Average time of a ship in the harbor 74 62 64 67 67 13
Maximum time of a ship in the harbor 161 116 167 178 173 190
Average waiting time of a ship 19 6 10 12 12 16
Maximum waiting time of a ship 102 58 102 110 104 131

Percentage of time dock facilities are idle 0.25 0.33 0.32 0.30 0.31 0.27
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Suppose now that we are not satisfied with the assumption that the arrival time between
ships (i.e., their interarrival times) and the unloading time per ship are uniformly distributed
over the time intervals 15 < between; < 145 and 45 < unload; < 90, respectively. We decide
to collect experimental data for the harbor system and incorporate the results into our model,
as discussed for the demand submodel in the previous section. We observe (hypothetically)
1200 ships using the harbor to unload their cargoes, and we collect the data displayed in
Table 5.18.

Following the procedures outlined in Section 5.4, we consecutively add together the
probabilities of each individual time interval between arrivals as well as probabilities of each
individual unloading time interval. These computations result in the cumulative histograms
depicted in Figure 5.10.

Next we use random numbers uniformly distributed over the interval 0 < x < 1
to duplicate the various interarrival times and unloading times based on the cumulative
histograms. We then use the midpoints of each interval and construct linear splines through
adjacent data points. (We ask you to complete this construction in Problem 1.) Because
it is easy to calculate the inverse splines directly, we do so and summarize the results in
Tables 5.19 and 5.20.
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Table 517 Harbor system simulation results for 100 ships

Average time of a ship in the harhor
Maximum time of a ship in the harbor

Average waiting time of a ship

Maximum waiting timc of a ship

Percentage of time dock facilities are idle

114 79 06 88 126
248 224 205 171 371

57 24 41 35 71
175 152 155 122 309

0.15 0.19 0.12 0.14 0.17

115
213

61
173

0.0¢e

& Cengage Learning

Note: All times are given in minntes. Time hatween successive ships is 10-12( min. Uinloading tima per ship
varies from 35 o0 75 min.

Table 5.18 Data collected for 1200 ships using the harbor facilities

Time Number Probability Number Probability
between of of Unloading of of
arrivals occurrences OCCIITEnce time OCCUrTEnces OCCUIence

15 24 11 0.009

2534 35 0.029

3544 2 0.035 4549 20 0.017
45-54 51 0.051 50-54 54 0.045

55-64 108 0.000 55-50 114 0.005
65-74 193 0.161 6064 103 0.086
7584 240 0.200 03—09 1560 0.130

25-04 207 0.172 T0-74 223 0.185
05-104 150 0.125 73-79 2350 0.208
105-114 83 0.071 8084 171 0.143
115-124 44 0.037 85-90 109 0.091
125-134 21 0.017 1200 1.000
135-145 3 0.003

1200 1.000
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Finally, we incorporate our linear spline submodels into the simulation model [or the
harbor system by generating between; and unload; for i = 1,2
5 of our algorithm, according to the rules displayed in Tables 5.19 and 5.20. Employ-
ing these submodels, Table 5.21 gives the results of six independent simulation runs of

100 ships each.

,....n in Steps 1 and
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Morning Rush Hour

In the previous example, we initially considered a harbor system with a single facility for
unloading ships. Such problems are often called single-server queues. In this example, we
consider a system with four elevators, illustrating multiple-server queues. We discuss the
problem and present the algorithm in Appendix B.

Table 5.19 Linear segment submodels provide for the time
between arrivals of successive ships as a function of a
random number in the interval [0, 1].

Random number Corresponding
interval arrival time Inverse linear spline
0<x < 0.009 15<b <20 b = 555.6x 4+ 15.0000
0.009 = x < 0.038 20 = b < 30 b = 344 8x + 16.8966
0.038 < x < 0.073 30<b <40 b = 285.7x + 19.1429
0.073 <x <0.124 40 < b < 50 b = 196.1x + 25.6863
0.124 < x < 0.214 50 =b < 60 b= 111.1x+436.2223
0.214 < x < 0.375 60 <b <70 b = 62.1x + 46.7080
0.375 < x < 0.575 70 < b < 80 b = 50.0x + 51.2500
0.575 < x < 0.747 80 <b <90 b = 58.1x + 46.5698
0.747 < x < 0872 90 < h < 100 b = 80.0x + 30.2400
0.872 < x < 0.943 100 <bh < 110 b = 140.8x — 22.8169
0.943 < x < 0.980 110 = b < 120 b — 270.3x — 144.8649
0.980 = x < 0.997 120 < b < 130 b = 588.2x — 456.4706

0.997 < x < 1.000 130 < b < 145 b = 5000.0x — 4855
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Table 520 Linear segment submodels provide for the
unloading time of a ship as a function of a random number in

the interval [0. 1].

Random number Corresponding
interval unloading time Inverse linear spline
0<x<0.017 45 < u < 475 w = 147x + 45.000
0.017 <= x < 0.062 475 <u <525 u—=111x + 45.611
0.062 < x < 0.157 .5=u <575 U = 53x + 49.237
0.157 < x < 0.243 57.5<u<625 u = 58x + 48.372
0.243 < x < 0.373 625<u <675 u = 38.46x + 53.154
0.373 = x = 0.558 675<u<i25s = 27x 4+ 57.419
0.558 = x < 0.766 T25=<=u<775 U = 24x + 59.087
0.766 < x = 0.909 77.5=u < 82.5 = 35x + 50.717
0.909 < x = 1.000 825=u <90 u— 82.41x } 7.582

Consider an office building with 12 floors in a metropolitan area of some city. During
¢ morning rush hour, from 7:50 to 9:10 a.m., workers enter the lobby of the building
1d take an elevator to their floor. There are four elevators servicing the building. The time
:tween arrivals of the customers at the building varies in a probabilistic manner every
-30 sec, and upon arrival each customer selects the first available elevator (numbered
-1). When a person enters an elevator and selects the floor of destination, the elevator
aits 15 sec before closing its doors. If another person arrives within the 15-sec interval,
¢ waiting cycle is repeated. If no person arrives within the 15-sec interval, the elevator
:parts to deliver all of its passengers. We assume no other passengers are picked up along
e way. After delivering its last passenger, the elevator returns to the main floor, picking up
) passengers on the way down. The maximum occupancy of an elevator is 12 passengers.
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Table 521 Harbor system simulation results for 100 ships

Average time of a ship in the harbor 108 95 125 78 123 101
Maximum time of a ship in the harbor 237 188 218 133 250 191
Average waiting time of a ship 38 25 54 9 54 31
Maximum waiting time of a ship 156 118 137 65 167 124

Percentage of time dock facilities are idle 0.09 0.09 0.08 0.12 0.06 0.10
© Cengage Learming
Note: Based on the data exhibited in Table 5.18. All times are given in minutes.

When a person arrives in the lobby and no elevator is available (because all four elevators
are transporting their load of passengers). a queue begins to form in the lobby.

The management of the building wants to provide good elevator service to its customers
and is interested in exactly what service it is now giving. Some customers claim that they
have to wait too long in the lobby before an elevator returns. Others complain that they spend
too much time riding the elevator, and still others say that there is considerable congestion
in the lobby during the morning rush hour. What is the real situation? Can the management
resolve these complaints by a more effective means of scheduling or utilizing the elevators?

We wish to simulate the elevator system using an algorithm for computer implemen-
tation that will give answers to the following questions:

1. How many customers are actually being serviced in a typical morning rush hour?

2. If the waiting fime of a person is the time the person stands in a queue—the time from
arrival at the lobby until entry into an available elevator—what are the average and
maximum times a person waits in a queue?

3. What is the length of the longest queue? (The answer to this question will provide the
management with information about congestion in the lobby.)

4. If the delivery time is the time it takes a customer to reach his or her floor after arrival
in the lobby, including any waiting time for an available elevator, what are the average
and maximum delivery times?

N

What are the average and maximum times a customer actually spends in the elevator?

6. How many stops are made by each elevator? What percentage of the total morning rush
hour time is each elevator actually in use?
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Linear Programming 1: Geomelric Solutions

Consider using the Chebyshev criterion to fit the model y = ¢x to the following data ¢

A 203

[

¥ 58

The optimization problem that determines the parameter ¢ to minimize the largest abso

deviation r; = |v; — v(x;)| (residual or error) is the linear program
Minimize r
subject to
r—2—c)=20 (constraint 1)

r+2-c)=0 (constraint 2)
r—(5=2c)=10 (constraint 3)
r+(5—2c)=0 (constraint 4)
r—(8—-3)=40 (constraint 5)
r+(R—-3c)=0 (constraint 6)

In this scction we solve this problem gcometrically.
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Interpreting a Linear Program Geometrically

Linear programs can include a set of constraints that are linear equations or linear inequali-
ties. Of course, in the case of two decision variables, an equality requires that solutions to the
linear program lie precisely on the line representing the equality. What about inequalities?
To gain some insight, consider the constraints

X1 +2x <4 (7.3)

X1,Xo =0

The nonnegativity constraints x;,x, > 0 mean that possible solutions lie in the first
quadrant. The inequality x; + 2x, < 4 divides the first quadrant into two regions. The
feasible region is the half-space in which the constraint is satisfied. The feasible region
can be found by graphing the equation x; 4+ 2x, = 4 and determining which half-plane is
feasible, as shown in Figure 7.2.

If the feasible half-plane fails to be obvious, choose a convenient point (such as the
origin) and substitute it into the constraint to determine whether it is satisfied. If it is, then
all points on the same side of the line as this point will also satisfy the constraint.

A linear program has the important property that the points satisfying the constraints
form a convex set. A set is convex if for every pair of points in the set, the line segment
joining them lies wholly in the set. The set depicted in Figure 7.3a fails to be convex.
whereas the set in Figure 7.3b is convex.

An extreme point (corner point) of a convex set is any boundary point in the convex
set that 1s the unique intersection point of two of the (straight-line) boundary segments.



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc. Mathematics COURSE NAME: Mathematical Modelling
COURSE CODE: 16MMU601A UNIT: II1 BATCH-2016-2019
¥ Figure 74 Xa
The set of points satistying
the constraints of the
carpenter’s problem form a \ 0,30}

convex set.

Objective [unction value:
(12,13 25x; + 305, =750

20x + 30w, £ 690

~Constraint 1
o

x
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A(0,0) B(24, o)'x (345,00 N
# ¥

If an optimal solution to a linear program exists, it must occur among the extreme p
of the convex set formed hy the set of constraints. The values of the objective function (]
for the carpenter’s problem) at the extreme points are

Exltreme point Objective [unction value
A 0.0 f0
B (24.0) 600
C{12.15) 750
D (0,23) 690

Thus, the carpenter should make 12 tables and 15 hookcases each week to earn a
imum weekly profit of $750. We provide further geometric evidence later in this se
that extreme point C is optimal.

Before considering a second example, let’s summarize the ideas presented thu
The constraint set to a linear program is a convex set, which generally contains an in
number of feasible points to the linear program. If an optimal solution to the linear pro
exists, it must he taken on at one or more of the extreme points. Thus, to find an ap
solution, we choose from among all the extreme points the one with the best value fc
objective function.

EXAMPLE 2 A Data-Fitting Problem

Let’s now solve the linear program represented by Equation (7.2). Given the model y -
and the data set



KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc. Mathematics COURSE NAME: Mathematical Modelling
COURSE CODE: 16MMU601A UNIT: III BATCH-2016-2019

Figure 7.4 X

The set of points satisfying
the constraints of the

carpenter’s problem form a \
convex set.
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N

Do,

Objective function value:
C(12,15) 253, + 301, =750

-

20x, + 30x, £ 690
_ Constraint 1

- X|
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A(0, ) 0240y 345, C';\
B0, e

If an optimal solution to a lincar program cxists, it must occur among the extreme points
of the convex sct formed by the sct of constraints. The values of the objective function (profit
for the carpenter’s problem) at the extreme points are

Extreme point Objective function value
A(0.0) $0
B (24,0) 600
C (12,15) 750
D (0.23) 690

Thus, the carpenter should make 12 tables and 15 bookcases each week to earn a max-
imum weekly profit of $750. We provide further geometric evidence later in this section
that extreme point C is optimal.

Before considering a second example, let’s summarize the ideas presented thus far.
The constraint set to a linear program is a convex set, which generally contains an infinite
number of feasible points to the linear program. If an optimal solution to the linear program
exists, it must be taken on at one or more of the extreme points. Thus, to find an optimal
solution, we choose from among all the extreme points the one with the best value for the
objective function.
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we wish to find a value for ¢ such that the resulting largest absolute deviation r is as small
as possible. In Figure 7.5 we graph the set of six constraints

r—=2-cy=0 (constraint 1)
r+2—c)=0 (constraint 2)
r—(5—2c)=10 (constraint 3)
r+(G—-2c)=0 (constraint 4)
r—(8—=3c)=0 (constraint 5)
r+(8—-3c)=0 (constraint 6)

by first graphing the equations

r—(2—c)=190 (constraint 1 boundary)
r+(2—c)y=10 (constraint 2 boundary)
r—(&—2¢c)=1"0 (constraint 3 boundary)
r+((5-2c)=0 (constraint 4 boundary)
r—(8—-3c)=20 (constraint 5 boundary)
r+(8—-3c)=0 (constraint 6 boundary)

‘We note that constraints 1, 3, and 5 are satisfied above and to the right of the graph of their
boundary equations. Similarly, constraints 2, 4, and 6 are satisfied above and to the left of
their boundary equations.

The intersection of all the feasible regions for constraints 1-6 forms a convex set in the
¢, r plane, with extreme points labeled A-C in Figure 7.5. The point A is the intersection
of constraint 5 and the r-axis:r — (8 —3¢) = 0and ¢ = 0, or A = (0, 8). Similarly, B is
the intersection of constraints 5 and 2:

r—(8—3c)=0 or r+3c=28
r+2—-¢)=0 or r—e=-2
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yieldingc = Zandr = 1, 0rB = (2.1

5. 7). Finally, C is the intersection of constraints 2 and
4 yielding ¢’ = (3, 1). Note that the set is unbounded. (We discuss unbounded convex sets
later.) If an optimal solution to the problem exists, at least one extreme point must take on
the optimal solution. We now evaluate the objective function f(r) = r at each of the three

extreme points.

Extreme point Objective function value
(c.r) flry=r

.l‘;i 8

B =+

C 1

The extreme point with the smallest value of r is the extreme point B with coordinates

(g %}. Thus, ¢ — % is the optimal value of ¢. No other value of ¢ will result in a larzest
absolute deviation as small as |F.| = %

Model Interpretation

Let's interpret the optimal solution for the data-fitting problem in Example 2. Resolving

the linear program, we obtained a value of ¢ = J corresponding to the model y = Jx.

Furthermore, the objective function value r = % should correspond to the largest deviation
resulting from the fit. I et’s check to see if that is e,

The data points and the model y — 2x are plotted in Figure 7.6. Note that a largest

deviation of r; = L occurs for both the first and third data points. Fix onc cnd of a ruler at

2
the origin. Now rotate the ruler to convince yourself geometrically that no other line passing
through the origin can yield a smaller largest absolute deviation. Thus, the model y = 3 x

is optimal by the Chebyshev criterion.

= Figure 7.6 v

The line y = (5/2)x results )

in a largest absolute (3. 8) 5§
deviation rmax = % the 8¢ (3_ E) %/ \Residual = |8 S l=5
smallest possible rmax- 2

s,
¥=3

2 .}ResiduaI:E,ﬂ:
1.2) 2
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)
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Empty and Unbounded Feasible Regions

We have been careful to say that if an optimal solution to the linear program exists, at least
one of the extreme points must take on the optimal value for the objective function. When
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does an optimal solution fail to exist? Moreover, when does more than one optimal solution
exist?

If the feasible region is empty, no feasible solution can exist. For example, given the
constraints

X1 <3
and

X1 =5

there is no value of x; that satisfies both of them. We say that such constraint sets are
inconsistent.

There is another reason an optimal solution may fail to exist. Consider Figure 7.5 and
the constraint set for the data-fitting problem in which we noted that the feasible region is
unbounded (in the sense that either x; or x, can become arbitrarily large). Then it would
be impossible to

Maximize x| + x>

over the feasible region because x1 and x> can take on arbitrarily large values. Note, however,
that even though the feasible region is unbounded, an optimal solution dees exist for the
objective function we considered in Example 2, so it is not necessary for the feasible region
to be bounded for an optimal solution to exist.

EXAMPLE2 A Data-Fitting Problem

Let's now solve the linear program represenied by Equation (7.2). Given the model y = cx
and the data set
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Level Curves of the Objective Function

Consider again the carpenter’s problem. The objective function is 25x; + 30x, and in
Figure 7.7 we plot the lines

25x; + 30x, = 650
25x1 + 30x, = 750
25x; + 30x, = 850

in the first quadrant.

Figure 7.7 X

The level curves of the
objective function f are
parallel line segments in the
first quadrant; the objective
function either increases or
decreases as we move in a
direction perpendicular to
the level curves.

25x, — 30x, = 850
3 2
50+ 30ny = 750

25x, + 301, =650

© Cangage Learring
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Note that the objective function has constant values along these line segments. The
line segments are called level curves of the objective function. As we move in a direction
perpendicular to these line segments, the objective function either increases or decreases.
Now superimpose the constraint set from the carpenter’s problem

20x; + 30x, < 690 (lumber)
5x; + 4x, < 120 (labor)

X1,X2 =0 (nonnegativity)

onto these level curves (Figure 7.8). Notice that the level curve with value 750 is the one
that intersects the feasible region exactly once at the extreme point C(12, 15).

-
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(0, 25)
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Feasible region 4 } =
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A(0,0) f (0.0 4 N3ys0 5
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Can there be more than one optimal sclution? Consider the following slight variatior
of the carpenter’s problem in which the labor constraint has been changed:

Maximize 25x; + 30x-

subject to

20x; + 30x; < 690  (lumber)
S5xy + 6x, < 150 (labor)

| A

X1.X, >0 (nonnegativity)

The constraint set and the level curve 25x1 +30x, = 750 are graphed in [Figure 7.9. Notice
that the level curve and boundary line for the labor constraint coincide. Thus, both extrems
points B and C have the same objective function value of 750, which is optimal. In fact
the entire line segment BC coincides with the level curve 25x1 + 30x; = 750. Thus, thert
are infinitely many optimal solutions to the linear program, all along line segment BC.

In Figure 7.10 we summarize the general two-dimensional case for optimizing a linea
funiction on a convex sel. The [igure shows a lypical convex set logether with the level curve:
of a linear objective function. Figure 7.10 provides geometric intuition for the following
fundamental theorem of linear programming.

pyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned. or duplicaied, ‘o whole or in pan. Due to eledronic rights, some third party content may be suppressed from the eBook andfor eChapier(s).
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™ Figure 7.9 X

The line segment BC
coincides with the level

curve 25x; + 30X, = 750; 25x; + 301, = 750 } Obijective function and labor
every pOInt_DETween (0.25) ¢ 5x, + 6x, = 150 constraint coincide
extreme points C and B, as D(0. 23) ¢

well as extreme points C
and B, is an optimal
solution.

(12, 15)

20, + 30, < 690

© Camgage Laarnimg

A(0,0) B(30,0) (34.5,0)

™ Figure 7.10 x
A linear function assumes
its maximum and minimum
values on a nonempty and
bounded convex set at an ~
extreme point. \\\&\\

Level curves
%)

= Objective functicn ax; + bx, maximized

\\\
Objective function

~ R
\FTE(.IEA%\I\‘T[Q\‘(;\? t \f SN
>\\ JEC 1ve I.lIlCT.tOI'J\

LY o R SR
™\, ncreasing

Objective function ax; + bx, minimized

© Cengage Learning

= X




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: III B.Sc. Mathematics COURSE NAME: Mathematical Modelling
COURSE CODE: 16MMU601A UNIT: III BATCH-2016-2019

Linear Programming 11: Algebraic Solutions

The graphical solution to the carpenter’s problem suggests a rudimentary procedure for
finding an optimal solution to a linear program with a nonempty and bounded feasible
region:

1. Find all intersection points of the constraints.

2. Determine which intersection points, if any, are feasible to obtain the extreme points.
3. Evaluate the objective function at each extreme point.

4. Choose the extreme point(s) with the largest (or smallest) value for the objective function.

To implement this procedure algebraically. we must characterize the intersection points
and the extreme points.

The convex set depicted in Figure 7.11 consists of three linear constraints (plus the two
nonnegativity constraints). The nonnegative variables y,, y», and y3 indicated in the figure
measure the degree by which a point satisfies the constraints 1, 2. and 3, respectively. The
variable y; is added to the left side of inequality constraint / to convert it to an equality.
Thus, y» = 0 characterizes those points that lie precisely on constraint 2, and a negative
value for y, indicates the violation of constraint 2. Likewise, the decision variables x; and
X, are constrained to nonnegative values. Thus, the values of the decision variables x| and x>
measure the degree of satisfaction of the nonnegativity constraints, x; > O and x> > 0. Note
that along the x| -axis, the decision variable x, is 0. Now consider the values for the entire set
of variables {x;. X5, ¥1, V2, y3}. If two of the variables simultaneously have the value 0, then
we have characterized an intersection point in the x;x--plane. All (possible) intersection
points can be determined systematically by setting all possible distinguishable pairs of the
five variables to zero and solving for the remaining three dependent variables. If a solution
to the resulting system of equations exists, then it must be an intersection point, which may
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™ Figure 7.11

The variables x1, x5, y1, 2, and y3 measure the satisfaction of each of the
constraints; intersection point A is characterized by y4 = x1 = 0; intersection point B
is not feasible because y; is negative; the intersection points surrounding the shaded
region are all feasible because none of the five variables is negative there.

or may not be a feasible solution. A negative value for any of the five variables indicates that
a constraint is not satisfied. Such an intersection point would be infeasible. For example,
the intersection point B, where y, = Oand x; = 0, gives a negative value for y| and hence
is not feasible. Other pairs of variables such as x; and ys, cannot simultaneously be zero
because they represent constraints that are parallel lines. Let’s illustrate the procedure by
solving the carpenter’s problem algebraically.

IE1 Solving the Carpenter’s Problem Algebraically

The carpenter’s model is

Maximize 25x; + 30x,

subject to

20x1 + 30x; < 690 (lumber)
5x; + 4x, < 120 (labor)
X1.X2>0 (nonnegativity)
We convert each of the first two inequalities to equations by adding new nonnegative
“slack” variables y and y». Ifeither y; or y> is negative, the constraint is not satisfied. Thus,

the problem becomes

Maximize 25x; + 30x,
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A(D,0) B(24, 0) (34.5, 0)
subject
20x; 4+ 30x; 4y = 690
3x1 +4x2 + y2 = 120
X1, X2, ¥,y =0

We now consider the entire set of four variables {xX, X». ¥1. y2}. which are interpreted
geometrically in Figare 7.12. To determine a possihle intersection point in the x;x,-plane,
assign two of the four variables the value zero. There are -2 = 6 possible intersection

points to consider in this way (four variables taken two at a time). Let’s begin by assigning
the variables x; and x> the value zero, resulting in the following set of equations:

y1 =090
¥, = 120

which is a feasible intersection point A(C, 0) because all four variables are nonnegative.
For the second intersection point we choaose the variables x; and y; and set them to

Zero, resulting in the system

30x; = 690
4."(3 + V2= 120

that has solution x5 = 23 and y, = 28, which is also a feasible intersection point D(0, 23).
For the third intersection puint we choose xp and y» and sel them Lo zero, yielding the

syslem
30x2 + y; = 690
4x, = 120
with solution x; = 30 and y, = —210. Thus, the first constraint is violatcd by 210 units,
indicating that the intersection point (0, 30) is infeasible.
In a similar manncr, choosing y; and y» and sciting them to zcro gives x; = 12 and

x> = 15, corresponding to the intersection point C(12, 15), which is feasible. Our fifth
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choice is to choose the variables x-; and y,; and set them to zero, giving values of x| = 34.5
and vy, = —352.5, so the second constraint is nol salisfied. Thus. the intersection point
(34.5, 0} is infeasible.

Finally we determine the sixth intersection point by setting the variables x> and y»
to zero to determine x; = 24 and y; = 210: therefore, the intersection point B(24,0) is
feasible.

In summary, of the six possible intersection points in the x| x;-plana, four were found
to be feasible. For the four we find the value of the objective function by substitution:

[xtreme point Value of objective function
A(0,0) 50
D(0.23) GO0
C(12.15) 750
R(?4 1) (S1)]

Our procedure determines that the optimal solution to maximize the profitis x; — 12

and x> = 15. That is, the carpenter should make 12 tables and 15 bookcases for a maximum
profit of $750.
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Linear Programming 111: The Simplex Method

So far we have learned to find an optimal extreme point by searching among all possible
intersection points associated with the decision and slack variables. Can we reduce the
number of intersection points we actually consider in our search? Certainly, once we find
an initial feasible intersection point, we need not consider a potential intersection point that
fails to improve the value of the objective function. Can we test the optimality of our current
solution against other possible intersection points? Even if an intersection point promises
to be more optimal than the current extreme point, it is of no interest if it violates one or
more of the constraints. Is there a test to determine whether a proposed intersection point is
feasible? The Simplex Method, developed by George Dantzig, incorporates both optimality
and feasibility tests to find the optimal solution(s) to a linear program (if one exists).

An optimality test shows whether or not an intersection point corresponds to a value
of the objective function better than the best value found so far.

A feasibility test determines whether the proposed intersection point is feasible.

To implement the Simplex Method we first separate the decision and slack variables
into two nonoverlapping sets that we call the independent and dependent sets. For the
particular linear programs we consider, the original independent set will consist of the
decision variables, and the slack variables will belong to the dependent set.

Steps of the Simplex Method
1. Tableau Format: Place the linear program in Tableau Format, as explained later.

2. Initial Extreme Point: The Simplex Method begins with a known extreme point, usually
the origin (0, 0).

3. Optimality Test: Determine whether an adjacent intersection point improves the value
of the objective function. If not, the current extreme point is optimal. If an improvement
is possible, the optimality test determines which variable currently in the independent
set (having value zero) should enfer the dependent set and become nonzero.

4, Feasibility Test: To find a new intersection point, one of the variables in the dependent
set must exif to allow the entering variable from Step 3 to become dependent. The fea-
sibility test determines which current dependent variable to choose for exiting, ensuring
feasibility.

m

Pivot: Form a new, equivalent system of equations by eliminating the new dependent
variable from the equations do not contain the variable that exited in Step 4. Then set
the new independent variables to zero in the new system to find the values of the new
dependent variables, thereby determining an intersection point.

6. Repeat Steps 3=5 until an optimal extreme point is found.
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Before detailing each of the preceding steps, let’s examine the carpenter’s problem
(Figure 7.13). The origin is an extreme point, sa we choose il as our starting point. Thus,
x; and x, are the current arbitrary independent variables and are assigned the value zerc,
whareas vy and y» are the current dependent variahles with values of 690 and 120. respec-
tively. The optimality test determines whether a current independent variable assigned the
value zero could improve the value of the objective function if it is made dependent and
positive. For example, either xq or xz. if made positive, would improve the objective function
value. (They have positive coefficients in the objective function we are trying to maximize.)
Thus, the optimality test determines a promising variable to enter the dependent set. Later,
we give a rule of thumh for chonsing which independent variahle to enter when more than
one candidate exists. In the carpenter’s problem at hand. we select x- as the new dependent
variable.

The variable chosen for entry into the dependent set by the optimality condition re-
places ane of the current dependent variables. The feasihility condition determines which
cxiting variablc this cntering variable replaccs. Basically, the enicring variable replaccs
whichever current dependent variable can assume a zero value while maintaining nonneg-
ative values for all the remaining dependent variables. That is, the feasibility condition en-
sures that the new intersection point will be feasible and hence an extreme point. In Figure
7.13, the feasibility test would lead us to the intersection point (0, 23), which is feasible, and
not ta (0, 30), which is infeasihle. Thus, x, replaces y, as a dependent or nonzero variable.
Thercfore, x> cnters and y) exits the sct of dependent variables.

Computational Efficiency

The feasibility tcst docs not require actual computation of the valucs of the dependent
variahles when selecting an exiting variable for replacement. Instead, we will see that
an appropriatc cxiting variable is sclected by quickly determining whether any variable
becomes negative if the dependent variable being considered for replacement is assigned
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the value zero (a ratio test that will be explained later). If any variable would become
negative, then the dependent variable under consideration cannot be replaced by the entering
variable if feasibility is to be maintained. Once a set of dependent variables corresponding
to a more optimal extreme point is found from the optimality and feasibility tests, the values
of the new dependent variables are determined by pivoting. The pivoting process essentially
solves an equivalent system of equations for the new dependent variables after the exchange
of the entering and exiting variables in the dependent set. The values of the new dependent
variables are obtained by assigning the independent variables the value zero. Note that
only one dependent variable is replaced at each stage. Geomefrically, the Simplex Method
proceeds from an initial extreme point to an adjacent extreme point until no adjacent extreme
point is more optimal. At that time, the current extreme point is an optimal solution. We
now detail the steps of the Simplex Method.

STEP1 TABLEAU FORMAT Many formats exist for implementing the Simplex Method. The format
we use assumes that the objective function is to be maximized and that the constraints are
less than or equal to inequalities. (If the problem is not expressed initially in this format, it
can easily be changed to this format.) For the carpenter’s example, the problem is

Maximize 25x; + 30x»

subject to
20x; + 30x, < 690
5x; +4x, <120
X1.X2 =0

Next we adjoin a new constraint to ensure that any solution improves the best value of
the objective function found so far. Take the initial extreme point as the origin, where the
value of the objective function is zero. We want to constrain the objective function to be
better than its current value, so we require

25x1 +30x2, = 0

Because all the constraints must be < inequalities, multiply the new constraint by —1
and adjoin it to the original constraint set:

20x; + 30x, = 690 (constraint 1, lumber)
5x, + 4x, < 120 (constraint 2, labor)
—25x1—30x, <0 (objective function constraint)

The Simplex Method implicitly assumes that all variables are nonnegative, so we do
not repeat the nonnegativity constraints in the remainder of the presentation.

Next, we convert each inequality to an equality by adding a nonnegative new variable
v; (or z), called a slack variable because it measures the slack or degree of satisfaction of
the constraint. A negative value for y; indicates the constraint is not satisfied. (We use the
variable z for the objective function constraint to avoid confusion with the other constraints.)
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This process gives the augmented constraint set

20x; + 30x2 + y; = 690
SX] + 4.1'3 + ¥z 120
—25x; —30x, +2z=0

where the variables x, x», y1, y» are nonnegative. The value of the variable z represents
the value of the objective function, as we shall see later. (Note from the last equation that
z = 25x1 + 30x, is the value of the objective function.)

STEP 2 INITIAL EXTREME POINT Because there are two decision variables, all possible intersection
points lie in the x;x,-plane and can be determined by setting two of the variables
{X1.Xx2, y1, y2} to zero. (The variable z is always a dependent variable and represents the
value of the objective function at the extreme point in question.) The origin is feasible and
corresponds to the extreme point characterized by x; = x> = 0, y; = 690, and y, = 120.
Thus, x; and x, are independent variables assigned the value O; y,. y,, and z are dependent
variables whose values are then determined. As we will see, z conveniently records the cur-
rent value of the objective function at the extreme points of the convex set in the x x,-plane
as we compute them by elimination.

STEP 3 THE OPTIMALITY TEST FOR CHOOSING AN ENTERING VARIABLE In the preceding format, a neg-
ative coefficient in the last (or objective function) equation indicates that the corresponding
variable could improve the current objective function value. Thus, the coefficients —25 and
—30 indicate that either x; or x, could enter and improve the current objective function
value of z = 0. (The current constraint corresponds to z = 25x; + 30x, = 0, with x;
and x, currently independent and 0.) When more than one candidate exists for the entering
variable, a rule of thumb for selecting the variable to enter the dependent set is to select that
variable with the largest (in absolute value) negative coefficient in the objective function
row. If no negative coefficients exist, the current solution is optimal. In the case at hand,
we choose x, as the new entering variable. That is, x, will increase from its current value
of zero. The next step determines how great an increase is possible.

STEP 4 THE FEASIBILITY CONDITION FOR CHOOSING AN EXITING VARIABLE The entering variable x»
(in our example) must replace either y; or y, as a dependent variable (because z always
remains the third dependent variable). To determine which of these variables is to exit
the dependent set, first divide the right-hand-side values 690 and 120 (associated with
the original constraint inequalities) by the components for the entering variable in each
inequality (30 and 4, respectively, in our example) to obtain the ratios % =23 and % =30.
From the subset of ratios that are positive (both in this case), the variable corresponding
to the minimum ratio is chosen for replacement ( y;, which corresponds to 23 in this case).
The ratios represent the value the entering variable would obtain if the corresponding
exiting variable were assigned the value 0. Thus, only positive values are considered and
the smallest positive value is chosen so as not to drive any variable negative. For instance,
if y, were chosen as the exiting variable and assigned the value 0, then x, would assume a
value 30 as the new dependent variable. However, then y; would be negative, indicating that
the intersection point (0, 30) does not satisfy the first constraint. Note that the intersection
point (0, 30) is not feasible in Figure 7.13. The minimum positive ratio rule illustrated
previously obviates enumeration of any infeasible intersection points. In the case at hand,
the dependent variable corresponding to the smallest ratio 23 is y, so it becomes the exiting
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variable. Thus, x,, y,, and z form the new set of dependent variables, and x; and y, form
the new set of independent variables.

STEP5 PIVOTING TO SOLVE FOR THE NEW DEPENDENT VARIABLE VALUES Next we derive a new
(equivalent) system of equations by eliminating the entering variable x, in all the equa-
tions of the previous system that do not contain the exiting variable y,. There are numerous
ways to execute this step, such as the method of elimination used in Section 7.3. Then
we find the values of the dependent variables x5, y,, and z when the independent vari-
ables x; and y; are assigned the value O in the new system of equations. This is called the
pivoting procedure. The values of x| and x, give the new extreme point (xy, x5), and z is
the (improved) value of the objective function at that point.

After performing the pivot, apply the optimality test again to determine whether another
candidate entering variable exists. If so, choose an appropriate one and apply the feasibility
test to choose an exiting variable. Then the pivoting procedure is performed again. The
process is repeated until no variable has a negative coefficient in the objective function row.
We now summarize the procedure and use it to solve the carpenter’s problem.

Summary of the Simplex Method

STEP1 PLACE THE PROBLEM IN TABLEAU FORMAT. Adjoin slack variables as needed to convert in-
equality constraints to equalities. Remember that all variables are nonnegative. Include the
objective function constraint as the last constraint, including its slack variable z.

STEP 2 FIND ONE INITIALEXTREME POINT. (For the problems we consider, the origin will be an extreme
point.)

STEP 3 APPLY THE OPTIMALITY TEST. Examine the last equation (which corresponds to the objective
function). If all its coefficients are nonnegative, then stop: The current extreme point is
optimal. Otherwise, some variables have negative coefficients, so choose the variable with
the largest (in absolute value) negative coefficient as the new entering variable.

STEP 4 APPLY THE FEASIBILITY TEST. Divide the current right-hand-side values by the corresponding
coefficient values of the entering variable in each equation. Choose the exiting variable to
be the one corresponding to the smallest positive ratio after this division.

STEP 5 PIVOT. Eliminate the entering variable from all the equations that do not contain the exiting
variable. (For example, you can use the elimination procedure presented in Section 7.2.)
Then assign the value 0 to the variables in the new independent set (consisting of the
exited variable and the variables remaining after the entering variable has left to become
dependent). The resulting values give the new extreme point (x,x,) and the objective
function value z for that point.

STEP 6 REPEAT STEPS 3-5 until an optimal extreme point is found.
EXAMPLE 1 The Carpenter’s Problem Revisited
STEP1 The Tableau Format gives

20x; + 30x2 + y1 = 690
5I| +4J.’3+_V3 =120
—25x1 —30x, +z =0
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STEP 2

STEP 3

STEP 4

STEP 5

The origin (0,0) is an initial extreme point for which the independent variables are x; :
x, = 0 and the dependent variables are y; = 690, y» = 120, and z = 0.

We apply the optimality test to choose x, as the variable entering the dependent set becau
it corresponds to the negative coefficient with the largest absolute value.

Applying the feasibility test, we divide the right-hand-side values 690 and 120 by tt
components for the entering variable x, in each equation (30 and 4, respectively), yieldir
the ratios %? = 23 and % = 30. The smallest positive ratio is 23, corresponding to t}
first equation that has the slack variable vi1. Thus, we choose y; as the exiting depende
variable.

We pivot to find the values of the new dependent variables x5, y2, and Z when the independe
variables x| and y1 are set to the value 0. After eliminating the new dependent variable 2
from each previous equation that does not contain the exiting variable y;, we obtain tl
equivalent system

2 1

— 3 e = 23
31’1 X0 sk 30}1

7 2 o o _ 98
g-‘-’l = E}-I y2 =<
—5x 0y | +z =69

Setting x; = y; = 0, we determine x, = 23, y, = 28, and z = 690. These results give ti
extreme point (0, 23) where the value of the objective function is z = 690.

Applying the optimality test again, we see that the current extreme point (0, 23) is n
optimal (because there is a negative coefficient —5 in the last equation corresponding to tl
variable x1). Before continuing, observe that we really do not need to write out the enti
symbolism of the equations in each step. We merely need to know the coefficient values a
sociated with the variables in each of the equations together with the right-hand side. A tab
format, or tableau, is commonly used to record these numbers. We illustrate the completic
of the carpenter’s problem using this format, where the headers of each column designate tl
variables; the abbreviation RHS heads the column where the values of the right-hand sic
appear. We begin with Tableau 0, corresponding to the initial extreme point at the origin.

Tableau 0 (Original Tableau)

X1 X2 ¥1 Va z RHS
20 30 1 0 0 690 (= y1)
5 4 0 | 0 120(= y2)
95 300 o 0 1 0(= 2)

Dependent variables: {v1, y2,2}
Independent variables: x| = x>, =0
Extreme point: (x1,x2) = (0,0)
Value of objective function: z =

Optimality Test The entering variable is x, (corresponding to —30 in the last row).

Feasibility Test Compute the ratios for the RHS divided by the coefficients in the colun
labeled x> to determine the minimum positive ratio.
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FEmen’ ng variable

X1 X2 V1 Y2 z RHS Ratio
20 30 1 0 0 690 @3)(= 690/30) < Exiting variable
5 4 0 1 0 120 30 (= 120/4)
25 (&30 0 0 1 0 *

Choose y; corresponding to the minimum positive ratio 23 as the exiting variable.

Pivot Divide the row containing the exiting variable (the first row in this case) by the
coefficient of the entering variable in that row (the coefficient of x- in this case). giving a
coefficient of 1 for the entering variable in this row. Then eliminate the entering variable
X» from the remaining rows (which do not contain the cxiting variable y, and have a zcro
coellicient for it). The results are summarized in the next tableau, where we use [ive-place
decimal approximations for the numerical values.

Tableau 1
X1 X2 1 y2 z RHS
0.66667 1 0.03333 0 0 23 (=x2)
2.33333 0 —0.13333 1 0 28 (= ¥2)
&5.00000> 0 1.00000 0 1 690 (= z)
Dependent variables: {x2,¥y2,2)
Independent variables: x| = y1 =0
Extreme point: (x1,x2) = (0,23)
Walue of objective function: z = 620

The pivot determines that the new dependent variables have the values x, = 23, y, = 28,
and z = 690.

Optimality Test The entering variable is x; (corresponding to the coefficient —5 in the
last row).

Feasibility Test Compute the ratios for the RHS.

K— Entering variable

X1 X2 Y1 Y2 oz RHS Ratio

0.66667 1 003333 0 O 23 | 34
733333 0 =033 1 0 )R | A2

&5.00000> 0 100000 0 1 | 690

Choose y» as the exiting variable because it corresponds to the minimum positive ratio 12.
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Pivot Divide the row containing the exiting variable (the second row in this case) by the
coefficient of the entering variable in that row (the coefficient of x; in this case), giving a
coefficient of 1 for the entering variable in this row. Then eliminate the entering variable
x1 from the remaining rows (which do not contain the exiting variable y, and have a zero
coefficient for it). The results are summarized in the next tableau.

Tableau 2

x1 X2 1 Y2 z RHS

0 1 0.071429 —0.28571 0 15 (= x2)
1 0 —0.057143 0.42857 0 12 (=x1)
0 0 0.714286 2.14286 1 750 (= z)

Dependent variables: {x2,x1, 2}

Independent variables: y; = y2 = 0
Extreme point: (x].,x2) = (12.15)
Walue of objective function: z = 750

Optimality Test Because there are no negative coefficients in the bottom row, x; = 12
and x, = 15 gives the optimal solution z = $750 for the objective function. Note that
starting with an initial extreme point, we had to enumerate only two of the possible six
intersection points. The power of the Simplex Method is its reduction of the computations

required to find an optimal extreme point.
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Questions optl opt2 opt3 opt4 opt5 opté Answer
The model simulates the performance of the
oy . . 2 3 4 6 2
harbor with time using main models
First model of the harbor system is track of the N T o position and position and
. stable situation waiting time [position . . . .
ships waiting time waiting time
Second model of the Harbor system is calculate . climatic o
area volume action climatic agents
the value of the agents
Time series simulation is also connected with . o neither N
random unique climatic climatic or climatic
agents
random
The use of exponential distribution for modelin _ cryptograph . - _
. . P . . & bibliography YPTOBIAPN 146 cision verification bibliography
inter arrival time and widely used in y
Morning rush hour model results are divided on | verification and | verification verification | decision verification and
. o .. |and and oL
and of the design optimisation and decision ] o optimisation
observation |optimisation
In basic model various components of the vector x . . non . .
. negative negligible . decision negative
are called variable negligible
. . .. . .. non .
In basic model fi(x) are called function objective negative decision . decision
- negative
In basic model side condition are typically called . decision non negative .
constrains . negative i constrains
variables o restrictions
restrictions
Optimisation problem is said to be linear program more than .
. . S . many unique no no
if there is objective function one
. linear unconstrain |either .
N . . unconstrained ) - ) unconstrained
Optimisation problem is also said to be . programmin |ed or linear |unconstrain .
programming ) i programming
g programmin |ed nor linear
In a linear programming problem has the
coefficient of the decision variable in the unique un uniform |[standard constant constant
objective function and each constrains are
In linear program optimisation problem satisfies
the decision variable are permitted to assume constant complex real integer integer

fraction as well as values




Questions optl opt2 opt3 opt4 opt5 opté Answer
Problems with more than one objective function C L either goal  imulti Y
multi objective or multi objective goal multi objective
are called programs
obiective and goal
Any optimisation problems that fails to satisfies
either one of the multi objective is said to be ordered un ordered | linear non linear non linear
Time dependent problem in a certain classes are . . . . .
stochastic linear integer dynamic linear
called  programmes
The resulting problem is called an . . . .
E— integer stochastic linear real integer
programme
If the coefficient are not constant but instead of
probabilistic in nature , the problem is classified | stochastic integer dynamic linear stochastic
asa program
Multi objective programs are also called as . . .
— |goal linear integer mixed goal
programs
Integer optimisation programs may restrict less than )
.. ) ; one or more one multiple one or more

- of decision variable to integer values one

method does not solve integer or mixed . . . . .
VI . simplex binomial integer complex simplex
integer problem directly

program is called as an integer . . . . .

) resulting linear non linear [integer resulting
programming
dependent problems in a certain class . . . - .
— . time climate weight positions time
are called dynamic programs
. neither
Integer programming are also called as S . . S
— mixed integer integer mixed non linear mixed integer

program

integer or
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Hooke’s Law

The magnitude of the force needed to produce a certain elongation of a spring is
directly proportional to the amount of this elongation, provided this elongation is not
too great. In mathematical form,

|F} = ks,

where F is the magnitude of the force, sis the amount of elongation, and & is a constant
of proportionality which we shall call the spring constant.

The spring constant k depends upon the spring under consideration and is a measure
of its stiffness, For example, if a 30-1b weight stretches a spring 2 ft, then Hooke’s law
gives 30 = {k)(2); thus for this spring k = 15 Ib/ft.

When a mass is hung upon a spring of spring constant &k and thus produces an
elongation of amount s, the force F of the mass upon the spring therefore has magni-
tude ks. The spring at the same time exerts a force upon the mass ealled the restoring
Jorce of the spring. This force is equal in magnitude but opposite in sign to F and
hence has magnitude —ks.

Let us formulate the problem systematically. Let the coil spring have .natural
(unstretched) length L. The mass m is attached to its lower end and comes to rest in its
equilibrium position, thereby stretching the spring an amount { so that its stretched
length is L + [. We choose the axis along the line of the spring, with the origin O at the
equilibrium position and the positive direction downward. Thus, letting x denote the
displacement of the mass from O along this line, we see that x is positive, zero, or
negative according to whether the mass is below, at, or above its equilibrium position.
(See Figure 5.1.)

Forces Acting Upon the Mass

We now enumerate the various forces that act upon the mass. Forces tending to pull the
mass downward are positive, while those tending to pull it upward are negative. The
forces are:

1. F,, the force of gravity, of magnitude mg, where ¢ 15 the acceleration due to
gravity. Since this acts in the downward direction, it is positive, and so

Fi = mg. (5.1)

2. F,, therestoring force of the spring. Since x + 1is the total amount of elongation,
by Hooke’s law the magnitude of this force is k(x + 1). When the mass s below the end
of thec unstretched spring, this force acts in the upward direction and s0 is negative. Also,
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L+1

{c) mass distance x
below equilibrium
position; spring
stretched to length
L+{+4+x

(a) natural length L

(b) mass in equilibrium
position; spring has
stretched length

L+

Figure 5.1

for thé mass in such a position, x + {is positive. Thus, when the mass is below the end of
the unstretched spring, the restoring force is given by

Fy= —k(x + 1), R

This also gives the restoring force when the mass is aboue the end of the unstretched
spring, as one can see by replacing each italicized word in the three preceding sentences
byits oppesite. When the mass is at rest in its equilibrium position the restoring force F,
is equal in magnitude but opposite in direction to the force of gravity and sais given by
—myg. Since in this posttion x = 0, Equation (5.2) gives

—hig = —k(0+1)
or
mg = kl.
Replacing k! by mg in Equation (5.2) we see that the restoring force can thus be writien
_as
F,= —kx —mg. (5.3)

3. F,, the resisting force of the medium, called the damping force. Although the
magnitude of this force is not known exactly, it 1s known that for small velocities it is
approximately proportional to the magnitude of the velocity:

dx

F:
Ly | adl

. (5.4)

where a > 0is called the damping constant. When the mass is moving downward, Fy acts
i1 the vpward direction (opposite to that of the motion) and so F; < 0. Also, since mis
moving dowaward, x @ increasing and dx/di s positive. Thus, assuming Equation (5.4)
to hold. when the mass is moving downward, the damping force is given by

Av
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This also gives the damping force when the mass 1s moving upward, as one may see by
replacing each italicized word in the three preceding sentences by its opposite.

4. F,, any external impressed forces that act upon the mass.”Let us denote the
resultant of all such external forces at time 1 simply by F{t) and write

F, = F(1). (5.6)

We now apply Newton’s second law, F = ma, where F = Fi + F, + I + F,. Using
(5.1}, (5.3), (5.5), and (5.6), we find

m;j_f. z,vng—kx—-mg—-a%-"}+f‘(l)
or
d?x dax
mox + ¥y + kx = F{1). ()

This we take as the differential equation for the motion of the mass on the spring.
Observe thal # is a nonhomoegeneous second-order linear differential equation with
constant coefficients. 17 « = O the motion s called undamped; otherwise it is called
dumped. If there are no external impressed forces, F(7) = 0 for all f and the motion is
called free; otherwise it is called forced. In the following sections we consider the
solution of (5 71in each of these cases.
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5.2 FREE, UNDAMPED MOTION

We now consider the special case of free, undamped motion, that is, the case in which
both a = 0 and F{t) = 0 for all 1. The differential equation (5.7) then reduces to

2

m%l—if +kx =0, (5.8)

where m( >0} is the mass and £(>0) is the spring constant. Dividing through by m
and letting k/m = A% we write (5.8) in the form .

S 4+ itx =0 (5.9)

The auxiliary equation
rP+it=0
has roots r = + i and hence the general sobution of (5.8) can be written
X = ¢, 8in At + ¢, Cos Af, (5.10)

where ¢, and ¢, are arbitrary constants.

Let us now assume that the mass was initially displaced a distance x, from its
equilibrium position and released from that point with initial velocity vy. Then, in
addition to the differential cquation (3.8) [or (5.9}], we have the initial conditions

x(0) = xq. (5.11)
X0} = vy (5.12)
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Differentiating (5.10) with respect to t, we have

‘:: = ¢, ACOS AL — ¢y 4 8in At (5.13)

Applying conditions (5.11)and (5.12) to Equations (5.10} and (5.13}, respectively, we sec
at once that

€y = Xp
Clj. =1y.

Substituting the values of ¢, and ¢, so determined into Equation (5.10) gives the
partlcular solution of the dlﬁ"erenuai equation (5.8) satisfying the conditions {5.11} and
(5.12) in the form

Po . . p
X = ',,T Sth AL + Xx, COS AL,

We put this in an aiternative form by first writing 1t as

x=c¢ [( o/ % )51 nAir+ — p coszt:, (5.14)
where
v z
= (f) + x>0 (5.13)
Then, letting
Wo/H _ _sing,
¢
(5.16)
x—cq = cos ¢,

Equation (5.14) reduces at once to
x = ¢ cos(it + @), (517

where ¢ is given by Equation (5.15) and ¢ is determined by Equations (5.16). Since
A = [k/m, we now write the solution (5.17) in the form

x=ccos(\/gt+¢). (5.18)
m

This, then, gives the displacement x of the mass from the equilibrium position O as a

function of the time ¢ (¢ > 0). We see at once that the free, undamped motion of the mass

is a simple harmonic motion. The constant ¢ is called the amplitude of the motion and

gives the maximum (positive) displacement of the mass from its equilibrium position.

The motion is a periodic motion, and the mass oscillates back and forth between x = ¢
i and x = —c. We have x = ¢ if and only if

[E.I.&_l"n..._
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n=0,1,23,...;t > 0 Thus the maximum (positive) displacement occurs if and only if
m
t=ﬁ(i?nn«-—¢>]>ﬂ, (5.19)

wheren=0,1,2,3,....
The time interval between two successive maxima. is called the period of the motion.
Using (5.19), we see that it is given by

aw (5.20)

Jeim ™7

The reciprocal of the period, which gives the number of oscillations per second, is
called the natural frequency (or simply frequency) of the motion, The number ¢ is called
the phase constant {or phase angle). The graph of this motion is shown in Figure 5.2.

Amplitude
i
Period
) .

Figure 5.2

x;r
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5.3 FREE, DAMPED MOTION

We now consider the effect of the resistance of the medium upon the mass on the
spring. Still assuming that no external forces are present, this is then the case of free,
damped motion. Hence with the damping coefficient a> 0 and F(r) = Ofor all ¢, the basic
differential equation (5.7) reduces to

m%+a%+kx=0. (5.27)
Dividing through by m and putting k/m = 4% and a/m = 2b (for convenience) we have
the differential equation (5.27) in the form
% +2b % + i2x = 0. (5.28)
Observe that since a is positive, & is also positive. The auxiliary equation is
r? 4 2br+ 22 =0. (5.29)
Using the quadratic formula we find that the roots of (5.29) are

—2b + J4b* — 42
b1 JabT — 4 = b+ /B2 (5.30)

2

Three distinct cases occur, depending upon the nature of these roots, which in turn
depends upon the sign of b2 — A2

Case 1. Damped, Oscillatory Motion. Here we consider the case in which b < 4,
which implies that b> — > < 0. Then the roots (5.30) are the conjugate complex
numbers —b + /A% — b? i and the general solution of Equation (5.28} is thus

x=e "c siny/i? —b?t +c,cos /A —b?), {5.31}
where ¢, and ¢, are arbitrary constants. We may write this in the alternative form
x =ce Mcos{/i? ~ b? 1 + @), (5.32)

where ¢ = /c? + ¢ > 0 and ¢ is determined by the equations

=== = —sSin @,
VO e
¢
—:::2*_2 \2 = €08 ¢
Jd+ e
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The right member of Equation,(5.32) consists of two factors,

ce™™ and cos(,/A* — bt + &)

The factor ce™™ is called the damping factor, or time-varying amplitude. Since ¢ > 0, it
is positive; and since b > 0, it tends to zero monotonically as ¢ — co. In other words, as
time goes on this positive factor becomes smaller and smaller and eventually becomes
negligible. The remaining factor, cos(,/4%> — b> t + ¢), is, of course, of a periodic,
oscillatory character; indeed it represents a simple harmonic motion. The product of
these two factors, which is precisely the right member of Equation (5.32), therefore
represents an oscillatory motion in which the oscillations become successively smaller
and smaller. The oscillations are said to be “damped out,” and the motion is described
as damped, oscillatory motion. Of course, the motion is no longer periodic, but the time
interval between two successive (positive) maximum dlsplacemcnts is still referred to as
the period. This is given by

2n
N

The graph of such a motion is shown in Figure 5.5, in which the damping factor ce
and its negative are indicated by dashed curves.
The ratio of the amplitude at any time 7" to that at time

n
12 _ K2

- bt

T_

one period before T is the constant
2nh

)

Thus the quantity an/\/ A? — b2is the decrease in the logarithm of the amplitude ce ™™
over a time interval of one period. [t is called the logarithmic decrement.

o |

Figure 5.5
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If we now return to the original notation of the differential equation (5.27), we see
from Equation (5.32) that in terms of the original constants m, a, and k&, the general

solution of (5.27) 1s
2
x = e~ @zmn cos( /E S ¢)‘ (5.33)
m 4m

Since b < A is equivalent to a/2m < . /k/m, we can say that the general solution of
(5.27) 1s given by (5.33) and that damped, oscillatory motion occurs when a < 2.,/km.
The frequency of the oscillations

k a* :
e T 5.34
cos( e U ¢0) (5.34)
is
1 /k a?
2nnm  4m?

If damping were not present, a would equal zero and the natural frequency of an
undamped system would be (1/2x)./k/m. Thus the frequency of the oscillations (5.34)
in the damped oscillatory motion (5.33) is less than the natural frequency of the
corresponding undamped system.

Case 2. Critical Damping. This is the case in which b = 4, which implies that
b2 — 4% = 0. The roots (5.30) are thus both equal to the real negative number — b, and
the general solution of Equation (5.28) is thus

‘x=(c, + ¢y et (5.35)

The motion is no longer oscillatory; the damping is just great enough to prevent
oscillations. Any slight decrease in the amount of damping, however, will change the
situation back to that of Case 1 and damped oscillatory motion will then occur, Case 2
then is a borderline case; the motion is said to be critically damped.

From Equation (5.35) we sce that

c;+eat
bt

lim x = lim =0

[ Aad= <] t— o e
Hence the mass tends to its equilibrium position as t — oc. Depending upon the initial
conditions present, the following possibilities can occur in this motion:

1. The mass neither passes through its equilibrium position nor attains an extremum
(maximum or minimum) displacement from equilibriom for ¢ > 0. It simply
approaches its cquilibrivm position monotonically as t — co. (See Figure 5.6a.)

2. The mass does not pass through its eguilibrium position for ¢ > {, but its
displacement from equhbrium attains a single extremum for 1 = T, > 0. After this
extreme displacement occurs, the mass tends to its equilibrium position monotonically
as t — oo. (See Figure 5.6b.)

' 3. The mass passes through its equilibrium position once at ¢ = T; > 0 and then
attains an extreme displacement at ¢ = T; > T;, following which it tends to its
equilibrium position monotoenically as 1 — co. (See Figure 3.6¢.)
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'
x4
I
|
|
i
(b) >
T ’

X‘}

T T.
© \ 2 3

\/

Figure 5.6

Case 3. Overcritical Damping. Finally, we consider here the case in which b > 4,
which implies that b*> — 22 > 0. Here the roots (5.30) are the distinct, real negative
numbers a

ry=—b+ /bt - 2%

and
r,=—b=./b*—i%
The general solution of (5.28) in this case is
X =c.et 4 ce. (5.36)

The damping is now so great that no oscillations can occur. Further, we can no longer
say that every decrease in the amount of damping will result in oscillations, as we could
in Case 2. The motion here is said to be overcritically damped (or simply overdamped).

Equation (5.36) shows us at once that the displacement x approaches zero as t — «c.
Asin Case 2 this approach to zero is monotonic for ¢ sufficiently large. Indeed, the three
possible motions in Cases 2 and 3 are qualitatively the same. Thus the three motions
illustrated in Figure 5.6 can also serve to illustrate the three types of motion possible in
Case 3.
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5.4 FORCED MOTION

We now consider an important special case of forced motion. That is, we not only
consider the effect of damping upon the mass on the spring but also the effect upon it of
a periodic external impressed force F defined by F(t) = F, cos wt forall t = 0, where F,
and ¢ are constants. Then the basic differential equation (5.7) becomes

i dx

_+g__+kx=_picncmr

TaE T A T R

Dividing through by m and letting

r—
h
Lh
]

-

k F
2o, <, and 2=E,
m m m

this takes the more convenient form

d2x dx

dz_2+2bﬁ+'l x = E, cos wt. (5.51)
We shall assume that the positive damping constant ¢ is small enough so that the
damping is less than critical. In other words we assume that & < 1. Hence by Equation
(5.32) the complementary function of Equation {5.51) can be written

x. = ce " cos(,/1* = b%t + ). ' (5.52)
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We shall now find a particular integral of (5.51) by the method of undetermined
coefficients. We let

/ X, = A cos wt + Bsin wt. (5.53)
Then
dx .
—d—r—"~ = —wA sin wt + 0B cos wt,
4* .
d;” = —w?A cos wt — w?*Bsin wr.

Substituting into Equation (5.51), we have

[—2bwA + (A2 — w?)B]sin wt + [(A? — w?)4 + 2bwB]cos wt = E, cos wt.
Thus, we have the following two equations from which. to determine 4 and B:

~2bwA + (A2 — w?)B =0,
(A2 —whHA4 + 2bwB = E,.

Solving these, we obtain

E\(# - o?)
(42 — 0?)? + 4bw®’

2bwE,

(22 — wh)? + 4b2w?

(5.54)
B =

Substituting these values into Equation (5.53), we obtain a particular integral in the
form
E,

X, = T T a5 [(A* — w?)cos wt + 2bw sin wt].

We now put this in the alternative “phase angle” form; we write

(42 — w?)cos wt + 2bw sin wt

2 2
= J(2} — w?)? + 4b*w? . cos wt
(A2 — w?)? + 4b’w?

2bw .
+ sinwt
JU — 0?) + 4brew?

= ﬂ/lz — w?)* + 4b%w? [cos wt cos § + sin wt sin ]
= /(2% — 0?)? + 4b*w? cos{wt — ),

where
)2 _ wz
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Thus the particular integral appears in the form
E,
xp =
JOE — 0?)? + 4b2?

cos(wt — 8), (5.56)

where 8 is determined from Equations (5.55). Thus, using (5.52) and (5.56) the general
solution of Equation (5.51) is

E
x=xc+xp=ce""cos(,/22—b2t+¢)+ !

V2 = 0?)? + 4b2a?

cos(wt — B).

(5.57)

Observe that this solution is the sum of two terms. The first term,
ce * cos(,/A% — b%t + ¢), represents the damped oscillation that would be the entire
motion of the system if the external force F, cos wt were not present. The second term,

E,
VU — @) + 4b0w?

which results from the presence of the external force, represents a simple harmonic
motion of period 2m/w. Because of the damping factor ce™™ the contribution of the
first term will become smaller and smaller as time goes on and will eventually become
negligible. The first term is thus called the transient term. The second term, however,
being a cosine term of constant amplitude, continues to contribute to the motion in a
periodic, oscillatory manner. Eventually, the transient ferm having become relatively
small, the entire motion will consist essentially of that given by this second term. This
second term is thus called the steady-state term.

cos{wt — ),
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5.5 RESONANCE PHENOMENA

We now consider the amplitude of the steady-state vibration that results from the
periodic external force defined for all + by F(t) = F; cos «wt, where we assume that
F, > 0. For fixed b, 4, and E, we see from Equation {5.56) that this is the function f
of w defincd by .

E,
\/(AZ _ wz)"- T 4b2w2-
H w =0, the force F(r) is the constant F; and the amplitude f(mw) has the value
E, /72 = 0. Also, as w — oo, we see frem (5.67) that f{w) — 0. Let us consider the

function [ for 0 < @ < oo. Calculating the derivative f(w) we find that this deriva-
_tlive equals zero only if

flw) = {5.67)

do[2b% — (A2 —wH] =0

and hence only if @ =0 or w = /4% —2b% If 22 < 2b2, /A* — 2b? is a complex
number. Hence in this case f has no extremum for ) < w < o0, but rather f decreases
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monotonically for 0 < w < oo from the value E,/4% at @ = 0 and approaches zero as
w — oo. Let us assume that A7 > 2b%. Then the function f has a relative maximum at
w, = /4% - 2b%, and-this maximum value is given by

E, * E,
S + 40237 - 2b7) 261 — b

Sflwy) =

When the frequency of the forcing function F, cos et is such-that w = ¢, then the
forcing function is said to be in resonance with the system. In other words, the forcing
function defined by F, cos wiis in resonance with the system when « assumes the value
ey at which f{w) 15 a maximum. The value w, /2% is called the resonance frequency of
the system. Note carefully that resonance can occur only if. i% > 2b2. Since then
A% > b? the damping must be less than critical in such a case.

We now return to the original notation of Equation (5.50). In terms of the quantities
m, a, k, and F; of that equation, the function f is given by

F,

m

J@)=—= = (5.68)
(EREE
m m
In this original notation the resonance frequency is
|

Since the frequency of the corresponding free, damped oscillation 1s

1 jk  a?
s e m  dm?
we see that the resonance {requency is less than that of the corresponding free, damped
oscillation,
The graph of f(w)1s called the resonance curve of the system. For a given system with
fixed m, &, and F,, there is a resonance curve corresponding to each value of the

damping coefficient @ = 0. Let us choose m = k = F, = 1, for example, and graph the
resgnance curves corresponding to certain selected values of a. In this case we have

1

= \/{l —w?)? + d*w?

and the resonance frequency is given by (1/27)./1 — a?/2, The graphs appear in
Figure 5.10. _

Observe that resonance eccursin thiscase only if a < ﬁ As adecreases from /2 to
0, the value w, at which resonance occurs increases from 0 to 1 and the corresponding
maximum value of f(w) becomes larger and larger. In the limiting case a = 0, the
maximum has disappeared and an infinite discontinuity occurs at @ = 1, In this case
our sofution actually breaks down, for then
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Figure 5,10

and f(1) is undefined. This {imiting case is an example of undamped resonance, a
phenomenon that we shall now investigate.

Undamped resonance occurs when there is no damping and the frequency of the
impressed force is equal to the natural frequency of the system, Since in thiscasea = 0
and the frequency w/2x equals the natural frequency {1/2x),/k/m, the differential

equation (5.50) reduces to
d?x k
m-d[—z+kx=F] cos\/%t

2
dx K —E cos ﬁ : (5.70)
dt m m

or

where E; = F,/m. Since the complementary function of Equation (5.70) is

[k [k
xrsclsm\/;tﬁ-cz cos\/;t, (5.71)

we cannot assume-a particular integral of the form

! . k k
Asm [—t+ Bcos [— L.
m m
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Rather we must assume

X —AtSIan+Btcosf

Differentiating this twice and substituting into Equation (5.70), we find that

E, |m
A—T E and B=0.

Thus the particular integral of Equation (5.70) resulting from the forcing function

E, cos./k/mt is given by
= 5 A t sin E t
T2k m

Expressing the complementary function (5.71) in the equivalent “phase-angle” form, we
see that the general solution of Equation (5.70) is given by

k E m . Ik
x—ccos(\/;t+¢)+7\/-k:rsm‘/%r. (5.72)

The motion defined by (5.72) is thus the sum of a periodic term and an oscillatory term
whose amplitude (E, /2), /m/kt increases with t. The graph of the function defined by
|

this latter term,
E, \/r? X \/E
— [—tsin j— I,
m

appears in Figure 5.11. As ¢ increases, this term clearly dominates the entire motion.
One might argue that Equallon (5.72) informs us that as ¢t - co the oscillations will
become infinite. However, comnmon sense intervenes and convinces us that before this
exciting phenomenon can occur the system will break down and then Equation (5.72)

will no longer apply!

*pk

Figure 5.11
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5.6 ELECTRIC CIRCUIT PROBLEMS

in this section we consider the application of differential equations to series circuits
containing (1) an electromotive force, and (2) resistors, inductors, and capacitors. We
assume that the reader is somewhat familiar with these items and so we shall avoid an
extensive discussion. Let us simply recall that the electromotive force (for example, a
battery or generator) produces a flow of current in a closed circuit and that this current
produces a so-called voltage drop across each resistor, inductor, and capacitor. Further,
the following three laws concerning the voltage drops across these various elements are
known to hold:

1. The voltage drop across a resistor i1s given by
Ep = Ri, (5.75)
where R is a constant of proportionality called the resistance, and i is the curremt.
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2. The voltage drop across an inductor is given by

di

E =L—, 5.76
where L is a constant of proportionality called the inductance, and i again denotes the
current.

3. The voltage drop across a capacitor is given by
1
E.=—g, 5.77
c=C q ( )

where C is a constant of proportionality called the capacitance and g is the
instantaneous charge on the capacitor. Since i = dg/dt, this is often written as

The units in common use are listed in Table 5.1.

TABLE 5.1

Quantity and symbol Unit
emf or voltage E volt (V)
current i ampere
charge g coulomb
resistance R ohm ()
inductance L henry (H)
capacitance C farad

The fundamental law in the study of electric circuits is the following:

Kirchhoff’s Voltage Law (Form 1). The algebraic sum of the instantaneous voltage
drops around a close circuit in a specific direction is zero.

Since voltage drops across resistors, inductors, and capacitors have the opposite sign
from voltages arising from electromotive forces, we may state this law in the following
alternative form:

Kirchhoff’s Voltage Law (Form 2). The sum of the voltage drops across resistors,
inductors, and capacitors is equal to the total electromotive force in a closed circuit.

We now consider the circuit shown in Figure 5.12.

R

A%

E —___cC
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Here and in later diagrams the following conventional symbols are cmployed:

—O- E  Electromotive force (battery or generator)

—MA— R Resistor

—pogee ~ £ Inductor
——-I I— ¢ Capacitor

Let us apply Kirchhoff’s law to the circuit of Figure 5.12. Letting E denote the
electromotive force, and using the laws 1, 2, and 3 for voltage drops that were given
above, we are led at once 1o the eguation

di 1
Lo +Ri+zq=E (5.78)

This equation contains twe dependent variables i and g. However, we recall that these
two variables are related to each other by the equation

dg
=y 57
= (5.79)
Using this we may eliminate i from Equation (5.78) and write it in the form
d*q dg 1 .

Equation (5.80) is a second-order linear differential equation in the single dependent
variable 4. On the other hand, if we differentiate Equation (5.78) with respect to t and
make use of (5.79), we may eliminate g from Equation (5.78) and write
d* di 1 dE
S+ R—+—i=—, :
TR TR R 281}
This 1s a second-order linear differential equation in the single dependent vanable i

Thus we have the two second-order linear differential equations (5.80) and (5.81) for
the charge g and current i, respectively. Further observe that in two very simple cases
the problem reduces to a first-order linear differential equation. If the circuit contains
no capacitor, Equation {5.78) itself reduces directly to

di

ok = E:
Ldr+RI :

L

while if no inductor is present, Equation (5.80) reduces to

Before considering examples, we observe an interesting and useful analogy. The
differential cquation (5.80) for the charge is exactly the same as the differential equation
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TABLE 5.2
Mechanical system Electrical system
mass m inductance L
damping constant @ resistance R
spring constant & reciprocal of capacitance 1/C
impressed force F(t)  impressed voltage or emf E
displacement x charge g
velocity v = dx/dt current 1 = dg/dt
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Questions optl opt2 opt3 opt4 opts opté Answer
The magnitude of the force receded to produce a certain elongation of the spring indirectly
is to the amount of this dlognation, provided this dlognation is not too directly proportional proportional eqaul to greater than directly proportional
great
. .. f not It
Which of the following is Hooke's law moduls of (f)=ks |f=ks f=ma ksno quatto moduls of (f) = ks
The auxiliary equation of d*2 x / dt"2 + A "2 x=0is M2+ A2 =0 M2+ A"2=0 |2+ A=0 r+ A=0 M2+ A"2=0
either
In Hooke's Law the constant of proportionality can be called as __ constant Spring damped undamped damped or Spring
undamoed
The Spring at the same time exerts a force upon the mass called the of the . . . . .
. acceleration weight restoring force |velocity restoring force
spring
Either
Forces tending to pull the mass downwards are negative positive zero positive or positive
negative
Either
Forces tending to pull the mass upwards are negative positive zero positive or negative
negative
.. . . . . restoring .
The resisting force of the medium is called undamped Spring damping force force damping force
. Newton's Newton's third either
If F=mais Newton's first law second or Newton's second law
second law law
third law
. d d tori
If a = 0 then the motion is called undamped damped undampedor restoring undamped
damped force
. . d d tori
If a is not eqaul to zero then the motion is called undamped damped undampedor restoring damped
damped force
The differential equation for the motion of the mass on the spring is mD"2/dt"2 +a mD"2/dt”2 -a|mD"2/dt"2 -a |a dx/dt - kx = mD"2/dt”2 +a
4 PN 15 _ de/dt+kx=F(t)  |dx/dt +kx = F(t)|dx/dt - kx = B(t) |F(t) dx/dt + kx = E(t)
The number Q is called constant angle angle & constant|frequency angle & constant




= 1 + = 1 - = - = = i +
The general solution of the differential equation d"2x/dt*2 +64=0is x=Cl sin8t+¢2 cos |x=Cl sin8t - ¢2 X. Clcos 8t-c2x CI.COS 8t x=Cl sin8t+ ¢2 cos
8t cos 8t sin 8t +c2 sin 8t 8t
A 4 + WA A _ _

The auxiliary equation of d*2 x / dt*2 + 2b dx/ dt +A°2 x = 0 is M2-2br+ A°2=0 M2+ A=0  [_ 02 2br+ A72 122: Ozbr & 2+ 2br + A2 =0
The auxiliary equation of d*2 x / dt"2 + 64 x =0 is "2 -64 =0 r"2 + 64 =0 -2 -64 =0 -2+ 64 =0 r"2 + 64 =0

either
In damped oscillatory motion Ce”- bt is called damping factor amplitude time varying varying nor damping factor

ampoplitude

1/2
The natural frequency of an undamped system would be 1/2 (k/m) 1/2m (k/m) 1/2m sqrt.(k/m) S(/lrtn (n/k) 1/2m sqrt.(k/m)

In an undamped motion ais

not eqaul to zero

eqaul to zero

less than zero

greater than
zero

eqaul to zero

. L . . b is not I
which of the following is damped oscillator motion is b=A b>A b< A zeI:ono equa b< A
Which of the following is critial damping b <A b>A b< A b=A b>A
IFbA2 - A2 < 0 is damped oscillatory critical Damping over c.rltlcal damping damped oscillatory
E— motion damping motion
Ifb2-12 =0is damped oscillatory critical Damping over c.rltlcal damping critical Damping
E— motion damping
IFbA2 - 422 > 0'is dam.ped oscillatory critical Damping over c.rltlcal damping over c.rltlcal
E— motion damping damping
. . . N A+ A (el
The.general solution of the differential equation d"2x / dt ~ 2 +26dx / dt + A*2 x x=ceMrlt+ c2er2t  |e=(cl+catjen-bt |c=(cl- c2tjen-bt c=(c = cerrl 4 cdert
=0is c2t)e™bt
The auxillary equation of d"2x/dt"2 + 4dx/dt +16x =0 rf3+4rh2+16r=0 2+4r+16 =0  [r+4r"2+16=0 r-4r"2+16=0 " 2+4r+16 =0
The roots of r"2+10r+16 =0 are r=-2,-8 r=2,8 r=-2,8 r=2,-8 r=-2,-8




The damping is the weight returns to its equilibrium postiom at slower rate [decreased eqaul not equal increased increased
The roots of r*2+4r+20=0is __ 2+or-4i -2+or-4i -2-4 -2-4i -2+or-4i
undamped resonance occurs when thereis damping factor oscillating no damping vibration no damping




Questions optl opt2 opt3 opt4 opt5 optod Answer
L . flexible and . N . .
The string is flexible . elastic vibration flexible and elastic
elastic
. . o . bending .
The sring cannot resist vibration momentum  |flexible bending moment
moment
The tension in the is always in the direction of the tangent to the | | . . either string nor .
. : string membrance |vibration string
existing profile of the string membrance
There is elongation of a single segement of the string greater small no very small no
By Hookel's law, the tension is constant not constant |varible values constant
The weight of the stringis  compared with the tension in the string equal small large Zero small
The deflection is _ compared with the length of the string large equal Zero small small
The slope of the displaced string at any point is___ compared with unity [equal small Zero very small small
The resultant force is __ to the mass times the acceleration equal large Zero small equal
. . flexible and . N . .
The membrance is flexible elastic elastic vibration flexible and elastic
. bending . . .
The membrance cannot resist momentum [vibration  |flexible bending moment
E— moment
There is elongation of a single segement of the
large no small verylarge no
membrane
Irrotational motion is u=1 u=>5 u=0 u=-1 u=0




Questions optl opt2 opt3 opt4 opt5 optod Answer
The slope of the displaced string at point is small compared with unity (one two all low two
The Transverse wave velocity is CT CL TC Ccv CT
. ) conservation |Potential . .
The Laplace equation is also known as Fourier Law law law Burger's law Potential law
can be viewed the special case of heat and wave equation when the |Laplace . conservation , .
T . . . . . fouier law Burger's law Laplace equation
dependent variables involved are independent of time equation law
. . . . . o Laplace . conservation
The is a balance between time evolution non-linearity and diffusion pa fouier law Burger's law Burger's law
equation law
. Helmholtz  |Burger's Lamel's otential .
Reduced wave equation are also known as . £e . POTCH Helmholtz equation
equation equation equation equation
If the temperature is heat flows the place of higher temperature to the .
- constant Zero negative not constant not constant
lower temperature
The rate of flow is proportional to the gradient of the temperature is . . . .
law prop & P conservation |fourier Potential burger's fourier
A force proportional to the product of their masses and inversely . . . newtons law of newtons law of
. . . conservation |fourier potential . o
proportional to the square of the distance between them is called gravitation gravitation
three one only . .
Laplace operator may be constant Zero . . . . three dimensional
dimensional |dimensional
If the temperature is not constant flow from place of higher .
energy heat cold potential heat
temperature to the lower temperature
The burgers equation is a between time evoluation non linearity and
on s balance unbalance constant not constant balance
diffusion
. transverse avitational |longitudinal longitudinal wave
CL represents potential |® = . &
wave velocity [constant wave velocity velocity




Questions optl opt2 opt3 opt4 opt5 opt6 Answer
Potential equation is also known as fourier conservation |laplace burgers laplace
laplace equation is also known as fourier conservation |potential burgers potential
IfF=GmM/1"2,G is called equlibrium |gravitational |lame's conservation gravitational
If F=GmM/"2,F is called mass accelaration |force frequency force
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