LTPC 4 0 0 4

### **Course Objectives**

To study about the development of the functions of one complex variable and some important concepts such as Complex integration, Harmonic functions and Riemann Mapping Theorem etc.

### **Course Outcomes**

On successful completion of this course, students will be able to:

- Give an account of the concepts of analytic function and harmonic function and to explain the role of the Cauchy-Riemann equations.
- Evaluate complex contour integrals, and be familiar with the Cauchy integral theorem, the Cauchy integral formula and some of their consequences.
- Describe the convergence properties of a power series and to determine the Taylor series or the Laurent series of an analytic function in a given region.
- Know the basic properties of singularities of analytic functions, how to determine the order of zeros and poles, how to compute residues and how to evaluate integrals using residue techniques.

#### UNIT I

Conformal mapping-Linear transformations- cross ratio- symmetry- Oriented circles-families of circles-level curves.

### **UNIT II**

Complex integration-rectifiable Arcs- Cauchy's theorem for Rectangle and disc-Cauchy's integral formula-higher derivatives.

Harmonic functions-mean value property-Poisson's formula-Schwarz theorem, Reflection principle-Weierstrass theorem- Taylor series and Laurent series.

#### **UNIT IV**

Partial Fractions- Infinite products – Canonical products-The gamma function – Stirling's Formula – Entire functions – Jensen's formula.

### **UNIT V**

Riemann Mapping Theorem – Boundary behaviour – Use of Reflection Principle – Analytical

- Conformal mapping of polygons- The Schwartz - Christoffel formula.

### SUGGESTED READINGS

### **TEXT BOOK**

1. Lars V. Ahlfors., (1979). Complex Analysis, Third edition, Mc-Graw Hill Book Company, New Delhi.

### **REFERENCES**

- 1. Ponnusamy, S., (2005). Foundation of Complex Analysis, Second edition, Narosa publishing house, New Delhi.
- 2. Choudhary, B., (2005). The Elements of Complex Analysis, New Age International Pvt. Ltd., New Delhi.
- 3. Vasishtha, A. R.,(2005). Complex Analysis, Krishna Prakashan Media Pvt. Ltd., Meerut. 4. Walter Rudin., (2017) .Real and Complex Analysis,3<sup>rd</sup> edition, Mc Graw Hill Book Company, New york.



KARPAGAM
(Deemed to be University Established Under Section 3 of UGC Act 1956)

ACADEMY OF HIGHER EDUCATION
(Deemed to be University)

Coimbatore – 641 021.

# LESSON PLAN DEPARTMENT OF MATHEMATICS

Class : I-M.Sc Mathematics

Subject Code : 18MMP201

**Subject Name** : Complex Analysis

Name of the Faculty: Y.Sangeetha

|          | Lecture                                             |                                                            |                                   |  |  |  |  |
|----------|-----------------------------------------------------|------------------------------------------------------------|-----------------------------------|--|--|--|--|
| S.No.    | Duration                                            | Topics to be covered                                       | Support Materials                 |  |  |  |  |
|          | (Hr)                                                |                                                            |                                   |  |  |  |  |
| UNIT - I |                                                     |                                                            |                                   |  |  |  |  |
| 1        | 1                                                   | Conformal Mapping- Definition and theorems                 | R1:Chapter-3 Pg.No:-73-76         |  |  |  |  |
| 2        | 1                                                   | Linear Transformation - Definition and theorems            | R1:Chapter-3 Pg.No:-76-78         |  |  |  |  |
| 3        | 1                                                   | Cross ratio- theorems                                      | R1:Chapter-3 Pg.No:-78-80         |  |  |  |  |
| 4        | 1                                                   | Symmetry                                                   | R1:Chapter-3 Pg.No:-80-83         |  |  |  |  |
| 5        | 1                                                   | Oriented Circles- theorems, Families of Circles-theorems   | R1:Chapter-3 Pg.No:-83-84, 84-85  |  |  |  |  |
| 6        | 1 Continuation on Families of circles- theorems     |                                                            | R1:Chapter-3 Pg.No:-86-87         |  |  |  |  |
| 7        | 1                                                   | Level Curves, Use of Level Curves                          | R1:Chapter-3 Pg.No:-89-91, 91 -93 |  |  |  |  |
| 8        | 1                                                   | Use of Level Curves                                        | R1:Chapter-3 Pg.No:91 -93         |  |  |  |  |
| 9        | Recapitulation and Discussion of possible questions |                                                            |                                   |  |  |  |  |
| Total    | 9 Hours                                             |                                                            |                                   |  |  |  |  |
| UNIT-II  |                                                     |                                                            |                                   |  |  |  |  |
| 1        | 1                                                   | Introduction to Complex Integration and Definite integrals | R1:Chapter-4 Pg.No:-101-<br>103   |  |  |  |  |

| 2 1 Rectifiable Arcs-Problems R1:Chapter-4 Pg.No: 109  3 1 Cauchy theorem for Rectangle and Disc R1:Chapter-4 Pg.No: 110  4 1 Cauchy theorem for Disc R1:Chapter-4 Pg.No: 114 | :-109-                      |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|--|--|
| 4 1 Cauchy theorem for Disc R1:Chapter-4 Pg.No:                                                                                                                               |                             |  |  |  |  |  |
| 4 1 Cauchy theorem for Disc R1:Chapter-4 Pg.No:                                                                                                                               | -112-                       |  |  |  |  |  |
|                                                                                                                                                                               | -112-                       |  |  |  |  |  |
| 114                                                                                                                                                                           |                             |  |  |  |  |  |
|                                                                                                                                                                               |                             |  |  |  |  |  |
| 5 1 Cauchy's integral formula R1:Chapter-4 Pg.No:                                                                                                                             | -114-                       |  |  |  |  |  |
|                                                                                                                                                                               |                             |  |  |  |  |  |
| 6 1 Theorems for higher Derivatives R1:Chapter-4 Pg.No:                                                                                                                       | -120-                       |  |  |  |  |  |
| 122                                                                                                                                                                           |                             |  |  |  |  |  |
| 7 1 Continuation of theorems on higher Derivatives R1:Chapter-4 Pg.No:                                                                                                        | -122-                       |  |  |  |  |  |
| 125                                                                                                                                                                           |                             |  |  |  |  |  |
| 8 1 Recapitulation and Discussion of possible                                                                                                                                 |                             |  |  |  |  |  |
| questions                                                                                                                                                                     |                             |  |  |  |  |  |
| Total 8 Hours                                                                                                                                                                 |                             |  |  |  |  |  |
| UNIT-III  1 Introduction to Harmonic function R1:Chapter-4 Pg.No:-                                                                                                            | 162 165                     |  |  |  |  |  |
| 1 Introduction to Harmonic function R1:Chapter-4 Pg.No:-                                                                                                                      | 102-103                     |  |  |  |  |  |
| 2 1 Geometric Interpretation and Mean value R1:Chapter-4 Pg.No:-                                                                                                              | 165-166                     |  |  |  |  |  |
| property                                                                                                                                                                      |                             |  |  |  |  |  |
| 3 1 Poisson Formula R1:Chapter-4 Pg.No:-                                                                                                                                      | 166-168                     |  |  |  |  |  |
| 4 1 Schwarz theorem and Problems R1:Chapter-4 Pg.No:-                                                                                                                         | 168-171                     |  |  |  |  |  |
| 5 1 Geometric Interpretation of Poisson Formula and R1:Chapter-4 Pg.No:-                                                                                                      | 172-174                     |  |  |  |  |  |
| Reflection Principle                                                                                                                                                          |                             |  |  |  |  |  |
| 6 1 Problems based on Weierstrass theorem R1:Chapter-4 Pg.No:-                                                                                                                | 174-179                     |  |  |  |  |  |
| 7 1 Problems based on Tayler Series and Laurent's R1:Chapter-4 Pg.No:-                                                                                                        | 170 186                     |  |  |  |  |  |
| 7 1 Problems based on Tayler Series and Laurent's R1:Chapter-4 Pg.No:- Series- introduction                                                                                   | 179-160                     |  |  |  |  |  |
|                                                                                                                                                                               |                             |  |  |  |  |  |
| 8 1 Problems based on Laurent's Series R1:Chapter-4 Pg.No:-                                                                                                                   | 184-186                     |  |  |  |  |  |
| 8 1 Recapitulation and Discussion of possible                                                                                                                                 |                             |  |  |  |  |  |
| questions                                                                                                                                                                     |                             |  |  |  |  |  |
| Total 9 Hours UNIT-IV                                                                                                                                                         |                             |  |  |  |  |  |
| 1 Theorems on Partial Fraction R1:Chapter-5 Pg.No:-1                                                                                                                          | 87-190                      |  |  |  |  |  |
| 2 1 Infinite Product R1:Chapter-5 Pg.No:-1                                                                                                                                    | 91-193                      |  |  |  |  |  |
| 3 1 Problems on Canonical Product R1:Chapter-5 Pg.No:-1                                                                                                                       | R1:Chapter-5 Pg.No:-193-197 |  |  |  |  |  |
| 4 1 Gamma Functions and their products R4: chapter -9 Pg.No                                                                                                                   | R4: chapter -9 Pg.No:603-   |  |  |  |  |  |

|       |          |                                                     | 606                               |  |  |
|-------|----------|-----------------------------------------------------|-----------------------------------|--|--|
| 5 1   |          | Properties of Gamma Functions                       | R4: chapter -9 Pg.No:607-610      |  |  |
| 6     | 1        | Stirling's Formula                                  | R1:Chapter-5 Pg.No:-201-206       |  |  |
| 7     | 1        | Entire Function and Jensen's Formula                | R4: chapter -9 Pg.No:582-<br>589  |  |  |
| 8     | 1        | Recapitulation and Discussion of possible questions |                                   |  |  |
| Total | 8 Hours  |                                                     |                                   |  |  |
|       |          | UNIT-V                                              | ·                                 |  |  |
| 1     | 1        | Riemann Mapping theorem                             | R5: chapter -14 Pg.No:282-<br>288 |  |  |
| 2     | 1        | Boundary behaviour, Use of Reflection<br>Principle  | R1:Chapter-6 Pg.No:232-234        |  |  |
| 3     | 1        | Analytical Arcs and Conformal Mapping of Polygon    | R1:Chapter-6 Pg.No:234-235        |  |  |
| 4     | 1        | The Schwarz-Christoffel Formula                     | R3: chapter -9 Pg.No:143-<br>146  |  |  |
| 5     | 1        | Mapping on rectangle                                | R2: chapter -12 Pg.No:429-432     |  |  |
| 6     | 1        | The triangle function of Schwarz                    | R1:Chapter-6 Pg.No:240-241        |  |  |
| 7     | 1        | Recapitulation and Discussion of possible questions |                                   |  |  |
| 8     | 1        | Discuss on Previous ESE Question Papers             |                                   |  |  |
| 9     | 1        | Discuss on Previous ESE Question Papers             |                                   |  |  |
| 19    | 1        | Discuss on Previous ESE Question Papers             |                                   |  |  |
| Total | 10 Hours |                                                     |                                   |  |  |

### **REFERENCES**

- 1. Lars V .Ahlfors., (1979). Complex Analysis, Third edition, Mc-Graw Hill Book Company, New Delhi.
- 2. Ponnusamy, S., (2005). Foundation of Complex Analysis, second edition, Narosa publishing House, New Delhi
- 3. Choudhary, B., (2003). The Elements of Complex Analysis, New age International Pvt. Ltd, New Delhi.
- 4. Vasistha, A.R., (2005). Complex Analysis, Krishna Prakashan media, Pvt, Ltd., Meerut.
- 5. Walter Rudin., (2012). Ral and Complex Analysis,  $3^{\rm rd}$  edition, Mc-Graw Hill Book Company, Newyark.

CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE:18MMP201 UNIT – I BATCH:2018-2020

### **UNIT I**

### **SYLLABUS**

Conformal mapping-Linear transformations- cross ratio- symmetry- Oriented circles-families of circles-level curves.

### **Introduction:**

A **complex number** is a <u>number</u> that can be expressed in the form a + bi, where a and b are real numbers, and i is a solution of the equation  $x^2 = -1$ , which is called an <u>imaginary number</u> because there is no <u>real number</u> that satisfies this equation. For the complex number a + bi, a is called the *real part*, and b is called the *imaginary part*. Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers, and are fundamental in many aspects of the scientific description of the natural world

### **PROPERTIES:**

- 1. Commutative law for addition:  $z_1 + z_2 = z_2 + z_1$ .
- 2. Associative law for addition:  $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$ .
- 3. Additive identity: There is a complex number z' such that  $z + z_0 = z$  for all complex number z. The number  $z_0$  is an ordered pair (0,0).
- 4. Additive inverse: For any complex number z there is a complex number -z such that z + (-z) = (0,0). The number -z is (-x,-y).
- 5. Commutative law for multiplication:  $z_1 z_2 = z_2 z_1$ .
- 6. Associative law for multiplication:  $z_1(z_2z_3) = (z_1z_2)z_3$ .
- 7. Multiplicative identity: There is a complex number z' such that zz'=z for all complex number z. The number z' is an ordered pair (1,0).
- 8. **Multiplicative inverse**: For any non-zero complex number z there is a complex number  $z^{-1}$  such that  $zz^{-1} = (1,0)$ . The number  $z^{-1}$  is  $\left(\frac{x}{x^2 + v^2}, \frac{-y}{x^2 + v^2}\right)$ .

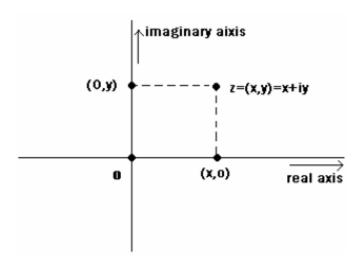
COURSE CODE:18MMP201 UNIT - I BATCH:2018-2020

### 9. The distributive law: $z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3$ .

If we write x for the complex number (x,0). This mapping  $x \to (x,0)$  defines a field isomorphism of  $\square$  into  $\square$  so we may consider  $\square$  as a subset of  $\square$ .

If we put 
$$i = (0,1)$$
, then  $z = (x,y) = (x,0) + (0,y) = (x,0) + (0,1)(y,0) = x + iy$ .

Let z = x + iy,  $x, y \in \square$ , then x and y are called the real and imaginary parts of z and denote this by x = Re z, y = Im z. If x = 0, the complex number z is called purely imaginary and if y = 0, then z is real. Note that zero is the only number which is at once real and purely imaginary. Two complex numbers are equal iff they have the same real part and the same imaginary part.



**Definition 2** Let z = x + iy,  $x, y \in \square$  then the complex number x - iy is called the conjugate of z and is denoted by z.

**COURSE CODE:18MMP201** 

CLASS: I M.SC(MATHEMATICS) COURSE NAME: COMPLEX ANALYSIS UNIT - I BATCH:2018-2020

Following are the basic properties of conjugates.

1. Re 
$$z = \frac{z + \overline{z}}{2}$$
 and Im  $z = \frac{z - \overline{z}}{2i}$ .

2. z is real iff  $z = \overline{z}$ .

3. 
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

4. 
$$\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$$
.

5. 
$$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$$
 if  $z_2 \neq 0$ .

$$z = 0$$

**Definition 3** Let z = x + iy,  $x, y \in \square$  then modulus or absolute value of z is a non-negative real number denoted by |z| and is given by  $|z| = (x^2 + y^2)^{\frac{1}{2}}$ . The number |z| is the distance between the origin and the point (x, y).

Following are the basic properties of Modulus.

$$1. \quad \left| z \right|^2 = z\overline{z}$$

2. 
$$|z_1z_2| = |z_1||z_2|$$

3. 
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$
 if  $z_2 \neq 0$ .

4. 
$$\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$$
.

5. 
$$|\overline{z}| = |z|$$
.

6. 
$$|x| = |\text{Re}(z)| \le |z| \text{ and } |y| = |\text{Im}(z)| \le |z|$$
.

CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE:18MMP201 UNIT – I BATCH:2018-2020

7. 
$$|z_1 + z_2| \le |z_1| + |z_2|$$
.

8. 
$$|z_1-z_2| \ge |z_1|-|z_2|$$
.

9. Let 
$$z_1 = x_1 + iy_1$$
,  $z_2 = x_2 + iy_2$  then

 $|z_1 - z_2| = |(x_1 - x_2) + i(y_1 - y_2)| = [(x_1 - x_2)^2 + (y_1 - y_2)^2]^{\frac{1}{2}}$  which is the distance between the points  $(x_1, y_1), (x_2, y_2)$ . Hence distance between the points  $z_1$  and  $z_2$  is given by  $|z_1 - z_2|$ .

### Polar representation of complex numbers

Consider the point z = x + iy in the complex plane  $\square$ . This point has polar coordinates  $(r, \theta)$  where  $x = r \cos \theta$  and  $y = r \sin \theta$ . Thus  $z = x + iy = r(\cos \theta + i \sin \theta)$ .

Clearly  $r = |z| = (x^2 + y^2)^{\frac{1}{2}}$  which is **magnitude** of the complex number and  $\theta$  (undefined if z = 0) is the angle between the positive real axis and the line segment from 0 to z and is called the **argument** of z, denoted by  $\theta = \arg z$ .

We note that the value of argument of z is not unique. If  $\theta = \arg z$ , then  $\theta + 2\pi n$ , where n is an integer is also  $\arg z$ . The value of  $\arg z$  that lies in the range  $-\pi < \theta \le \pi$  is called the **principal value** of  $\arg z$ .

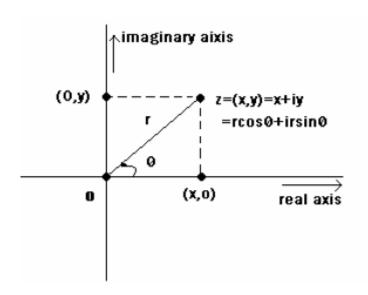
If  $z_1, z_2$  are any two non-zero complex numbers then

1. 
$$\arg z_1 = -\arg \overline{z_1}$$

2. 
$$\arg z_1 z_2 = \arg z_1 + \arg z_2$$
.

3. 
$$\operatorname{arg}\left[\frac{z_1}{z_2}\right] = \operatorname{arg} z_1 - \operatorname{arg} z_2$$
.

CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE:18MMP201 UNIT – I BATCH:2018-2020



### Conformal mapping

Let S be a domain in a plane in which x and y are taken as rectangular Cartesian co-ordinates. Let us suppose that the functions u(x, y) and v(x, y) are continuous and possess continuous partial derivatives of the first order at each point of the domain S. The equations

$$u = u(x, y), \quad v = v(x, y)$$

set up a correspondence between the points of S and the points of a set T in the (u, v) plane. The set T is evidently a domain and is called a map of S. Moreover, since the first order partial derivatives of u and v are continuous, a curve in S which has a continuously turning tangent is mapped on a curve with the same property in T. The correspondence between the two domains is not, however, necessarily a one-one correspondence.

For example, if we take  $u = x^2$ ,  $v = y^2$ , then the domain  $x^2 + y^2 < 1$  is mapped on the triangle bounded by u = 0, v = 0, v = 0, v = 0, but there are four points of the circle corresponding to each point of the triangle.

2.1 Definition: A mapping from S to T is said to be isogonal if it has a one-one transformation which maps any two intersecting curves of S into two curves of T which cut at the same angle. Thus in an isogonal mapping, only the magnitude of angle is preserved.

An isogonal transformation which also conserves the sense of rotation is called conformal mapping. Thus in a conformal transformation, the sense of rotation as well as the magnitude of the angle is preserved.

The following theorem provides the necessary condition of conformality which briefly states that if f(z) is analytic, mapping is conformal.

## CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS COURSE CODE:18MMP201 UNIT – I BATCH:2018-2020

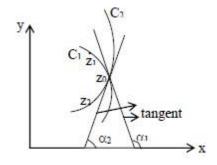
2.2. Theorem: Prove that at each point z of a domain D where f(z) is analytic and  $f'(z) \neq 0$ , the mapping w = f(z) is conformal.

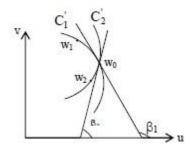
**Proof.** Let w = f(z) be an analytic function of z, regular and one valued in a region D of the z-plane. Let  $z_0$  be an interior point of D and let  $C_1$  and  $C_2$  be two continuous curves passing through  $z_0$  and having definite tangents at this point, making angles  $\alpha_1$ ,  $\alpha_2$ , say, with the real axis.

We have to discover what is the representation of this figure in the w-plane. Let  $z_1$  and  $z_2$  be points on the curves  $C_1$  and  $C_2$  near to  $z_0$ . We shall suppose that they are at the same distance r from  $z_0$ , so we can write

$$z_1 - z_0 = re^{i\theta 1}, z_2 - z_0 = re^{i\theta 2}.$$

Then as  $r \to 0$ ,  $\theta_1 \to \alpha_1$ ,  $\theta_2 \to \alpha_2$ . The point  $z_0$  corresponds to a point  $w_0$  in the w-plane and  $z_1$  and  $z_2$  correspond to point  $w_1$  and  $w_2$  which describe curves  $C'_1$  and  $C'_2$ , making angles  $\beta_1$  and  $\beta_2$  with the real axis.





Let 
$$w_1-w_0=\rho_1\ e^{i\phi_1}$$
,  $w_2-w_0=\rho_2\ e^{i\phi_2}$ , where  $\rho_1,\ \rho_2\to 0\ \Rightarrow \phi_1,\ \phi_2\to \beta_1,\ \beta_2$  respectively.

Now, by the definition of an analytic function,

$$\lim_{z \to z_0} \frac{W_1 - W_0}{z_1 - z_0} = f'(z_0)$$

Since  $f'(z_0) \neq 0$ , we may write it in the form  $Re^{i\lambda}$  and thus

$$\lim \frac{\rho_1 e^{i\phi_1}}{r e^{i\theta_1}} = R e^{i\lambda} \text{ i.e. } \lim \frac{\rho_1}{r} e^{i(\phi_1 - \theta_1)} = R e^{i\lambda}$$

$$\Rightarrow \lim \frac{\rho_1}{r} = R = |f'(z_0)|$$

$$\begin{array}{ll} \text{and} & \lim \left( \varphi_1 - \theta_1 \right) = \lambda \\ \text{i.e.} & \lim \varphi_1 - \lim \theta_1 = \lambda \\ \text{i.e.} & \beta_1 - \alpha_1 = \lambda \\ & \text{Similarly, } \beta_2 = \alpha_2 + \lambda \end{array} \Rightarrow \qquad \beta_1 = \alpha_1 + \lambda$$

#### CLASS: I M.SC(MATHEMATICS) COURSE NAME: COMPLEX ANALYSIS **COURSE CODE:18MMP201** UNIT - I BATCH:2018-2020

Hence the curves  $C'_1$  and  $C'_2$  have definite tangents at  $w_0$  making angles  $\alpha_1 + \lambda$  and  $\alpha_2 + \lambda$ respectively with the real axis. The angle between C'1 and C'2 is

$$\beta_1 - \beta_2 = (\alpha_1 + \lambda) - (\alpha_2 - \lambda) = \alpha_1 - \alpha_2$$

which is the same as the angle between C1 and C2. Hence the curve C1' and C2' intersect at the same angle as the curves C1 and C2. Also the angle between the curves has the same sense in the two figures. So the mapping is conformal.

Special Case: When  $f'(z_0) = 0$ , we suppose that f'(z) has a zero of order n at the point  $z_0$ . Then in the neighbourhood of this point (by Taylor's theorem)

$$f(z) = f(z_0) + a(z - z_0)^{n+1} + ..., \text{ where } a \neq 0$$

Hence i.e.

$$w_1 - w_0 = a(z - z_0)^{n+1} + \dots$$
  
 $\rho_1 e^{i\phi_1} = |a| r^{n+1} e^{i[\delta + (n+1)\theta_1]} + \dots$ 

where  $\delta = \arg a$ 

Hence

$$\lim \phi_1 = \lim \left[\delta + (n+1) \theta_1\right] = \delta + (n+1) \alpha_1$$
 |  $\delta$  is constant

Similarly

$$\lim \phi_2 = \delta + (n+1) \alpha_2$$

Thus the curves C'1 and C'2 still have definite tangent at w0, but the angel between the tangents is  $\lim(\phi_2 - \phi_1) = (n+1)(\alpha_2 - \alpha_1)$ 

Thus, the angle is magnified by (n + 1).

Also the linear magnification,  $R = \lim_{r \to \infty} \frac{\rho_1}{r} = 0$   $| : \lim_{r \to \infty} \frac{\rho_1}{r} = R = |f'(z_0)| = 0$ 

$$| :: \lim \frac{\rho_1}{r} = R = |f'(z_0)| = 0$$

### Therefore, the conformal property does not hold at such points where f'(z) = 0

A point  $z_0$  at which  $f'(z_0) = 0$  is called a critical point of the mapping. The following theorem is the converse of the above theorem and is sufficient condition for the mapping to be conformal.

2.3. Theorem: If the mapping w = f(z) is conformal then show that f(z) is an analytic function

**Proof.** Let w = f(z) = u(x, y) + iv(x, y)

Here, u = u(x, y) and v = v(x, y) are continuously differentiable equations defining conformal transformation from z-plane to w-plane. Let ds and do be the length elements in z-plane and w-plane respectively so that

$$ds^2 = dx^2 + dy^2$$
,  $d\sigma^2 = du^2 + dv^2$ 

Since u, v are functions of x and y, therefore

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy, \qquad dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

## CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS COURSE CODE:18MMP201 UNIT – I BATCH:2018-2020

$$+2\left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}}\frac{\partial \mathbf{u}}{\partial \mathbf{y}} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}}\frac{\partial \mathbf{v}}{\partial \mathbf{y}}\right) d\mathbf{x}d\mathbf{y}$$
 ...(2)

Since the mapping is given to be conformal, therefore the ratio  $d\sigma^2$ :  $ds^2$  is independent of direction, so that from (1) and (2), comparing the coefficients, we get

$$\frac{\left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}}\right)^{2} + \left(\frac{\partial \mathbf{v}}{\partial \mathbf{x}}\right)^{2}}{1} = \frac{\left(\frac{\partial \mathbf{u}}{\partial \mathbf{y}}\right)^{2} + \left(\frac{\partial \mathbf{v}}{\partial \mathbf{y}}\right)^{2}}{1} = \frac{\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \frac{\partial \mathbf{u}}{\partial \mathbf{y}} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \frac{\partial \mathbf{v}}{\partial \mathbf{y}}}{0}$$

$$\Rightarrow \qquad \left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}}\right)^{2} + \left(\frac{\partial \mathbf{v}}{\partial \mathbf{x}}\right)^{2} = \left(\frac{\partial \mathbf{u}}{\partial \mathbf{y}}\right)^{2} + \left(\frac{\partial \mathbf{v}}{\partial \mathbf{y}}\right)^{2} \qquad \dots (3)$$

and 
$$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \frac{\partial \mathbf{u}}{\partial \mathbf{y}} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \frac{\partial \mathbf{v}}{\partial \mathbf{y}} = 0 \qquad ...(4)$$

Equations (3) and (4) are satisfied if

$$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = \frac{\partial \mathbf{v}}{\partial \mathbf{y}}, \qquad \frac{\partial \mathbf{v}}{\partial \mathbf{x}} = -\frac{\partial \mathbf{u}}{\partial \mathbf{y}} \qquad \dots (5)$$

or 
$$\frac{\partial u}{\partial x} = -\frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x} = \frac{\partial u}{\partial y}$$
 ...(6)

Equation (6) reduces to (5) if we replace v by -v i.e. by taking as image figure obtained by the reflection in the real axis of the w-plane.

Thus the four partial derivatives  $u_x$ ,  $u_y$ ,  $v_x$ ,  $v_y$  exist, are continuous and they satisfy C-R equations (5). Hence f(z) is analytic.

#### 2.4. Remarks

- The mapping w = f(z) is conformal in a domain D if it is conformal at each point of the domain
- (ii) The conformal mappings play an important role in the study of various physical phenomena defined on domains and curves of arbitrary shapes. Smaller portions of these domains and curves are conformally mapped by analytic function to well-known domains and curves.

### 2.5. Example: Discuss the mapping $w = \overline{z}$ .

Solution. We observe that the given mapping replaces every point by its reflection in the real axis. Hence angles are conserved but their signs are changed and thus the mapping is isogonal but not conformal. If the mapping  $w = \overline{z}$  is followed by a conformal transformation, then resulting transformation of the form  $w = f(\overline{z})$  is also isogonal but not conformal, where f(z) is analytic function of z.

#### CLASS: I M.SC(MATHEMATICS) COURSE NAME: COMPLEX ANALYSIS **COURSE CODE:18MMP201** UNIT - I BATCH:2018-2020

2.6. Example: Discuss the nature of the mapping  $w = z^2$  at the point z = 1 + i and examine its effect on the lines  $\operatorname{Im} z = \operatorname{Re} z$  and  $\operatorname{Re} z = 1$  passing through that point.

Solution. We note that the argument of the derivative of  $f(z) = z^2$  at z = 1 + i is  $[\arg 2z]_{z=1+i} = \arg(2+2i) = \pi/4$ 

Hence the tangent to each curve through z = 1 + i will be turned by the angle  $\pi/4$ . The co-efficient of linear magnification is |f'(z)| at z=1+i, i..e  $|2+2i|=2\sqrt{2}$ . The mapping is  $w=z^2=x^2-y^2+2ixy=u(x,y)+iv(x,y)$ 

We observe that mapping is conformal at the point z = 1 + i, where the half lines  $y = x(y \ge 0)$ and  $x = 1 (y \ge 0)$  intersect. We denote these half lines by  $C_1$  and  $C_2$ , with positive sense upwards and observe that the angle from  $C_1$  to  $C_2$  is  $\pi/4$  at their point of intersection. We have

$$u = x^2 - y^2, \qquad v = 2xy$$

 $u=x^2-y^2, \qquad v=2xy$  The half line  $C_1$  is transformed into the curve  $C^\prime{}_1$  given by

$$u = 0$$
,  $v = 2y^2 (y \ge 0)$ 

Thus  $C'_1$  is the upper half  $v \ge 0$  of the v-axis.

The half line C2 is transformed into the curve C'2 represented by

$$u = 1 - y^2$$
,  $v = 2y \ (y \ge 0)$ 

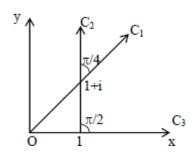
Hence C'<sub>2</sub> is the upper half of the parabola  $v^2 = -4(u - 1)$ . We note that, in each case, the positive sense of the image curve is upward.

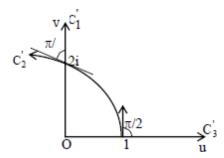
For the image curve C'2.

$$\frac{dv}{du} = \frac{dv/dy}{du/dy} = \frac{2}{-2y} = -\frac{2}{v}$$

In particular  $\frac{dv}{dv} = -1$  when v = 2. Consequently, the angle from the image curve  $C'_1$  to the

image curve  $C'_2$  at the point w = f(1 + i) = 2i is  $\frac{\pi}{4}$ , as required by the conformality of the mapping there.





Note. The angle of rotation and the scalar factor (linear magnification) can change from point to point. We note that they are 0 and 2 respectively, at the point z = 1, since f'(1) = 2, where the curves C2 and C'2 are the same as above and the non-negative x-axis (C3) is transformed into the non-negative u-axis (C'3).

CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE:18MMP201 UNIT – I BATCH:2018-2020

2.7. Example. Discuss the mapping  $w = z^a$ , where a is a positive real number.

Solution. Denoting z and w in polar as

$$z = re^{i\theta}$$
,  $w = \rho e^{i\phi}$ , the mapping gives  $\rho = r^a$ ,  $\phi = a\theta$ .

Thus the radii vectors are raised to the power a and the angles with vertices at the origin are multiplied by the factor a. If a > 1, distinct lines through the origin in the z-plane are not mapped onto distinct lines through the origin in the w-plane, since, e.g. the straight line through the origin

at an angle  $\frac{2\pi}{a}$  to the real axis of the z-plane is mapped onto a line through the origin in the

w-plane at an angle  $2\pi$  to the real axis i.e. the positive real axis itself. Further  $\frac{dw}{dz} = az^{a-1}$ ,

which vanishes at the origin if a > 1 and has a singularity at the origin if a < 1. Hence the mapping is conformal and the angles are therefore preserved, excepting at the origin. Similarly the mapping  $w = e^z$  is conformal.

2.8. Example. Prove that the quadrant  $|z| < 1, 0 < arg z < \frac{\pi}{2}$  is mapped conformally onto a

domain in the w-plane by the transformation  $w = \frac{4}{(z+1)^2}$ .

Solution. If  $w = f(z) = \frac{4}{(z+1)^2}$ , then f'(z) is finite and does not vanish in the given quadrant.

Hence the mapping w = f(z) is conformal and the quadrant is mapped onto a domain in the wplane provided w does not assume any value twice i.e. distinct points of the quadrant are mapped to distinct points of the w-plane. We show that this indeed is true. If possible, let

$$\frac{4}{(z_1+1)^2} = \frac{4}{(z_2+1)^2}$$
, where  $z_1 \neq z_2$  and both  $z_1$  and  $z_2$  belong to the quadrant in the z-plane.

Then, since  $z_1 \neq z_2$ , we have  $(z_1 - z_2)(z_1 + z_2 + 2) = 0$ 

 $\Rightarrow$   $z_1 + z_2 + 2 = 0$  i.e.  $z_1 = -z_2 - 2$ . But since  $z_2$  belongs to the quadrant,  $-z_2 - 2$  does not, which contradicts the assumption that  $z_1$  belongs to the quadrant. Hence w does not assume any value twice.

### LINEAR TRANSFORMATION:

Bilinear Transformation. The transformation

$$w = \frac{az + b}{cz + d}$$
,  $ad - bc \neq 0$ 

CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE:18MMP201 UNIT – I BATCH:2018-2020

where a, b, c, d are complex constants, is called bilinear transformation or a linear fractional transformation or Möbius transformation. We observe that the condition  $ad - bc \neq 0$  is necessary for (1) to be a bilinear transformation, since if

ad -bc = 0, then 
$$\frac{b}{a} = \frac{d}{c}$$
 and we get

$$w = \frac{a(z+b/a)}{c(z+d/c)} = \frac{a}{c}$$
 i.e. we get a constant function which is not

...(2)

linear.

Equation (1) can be written in the form

$$cwz + dw - az - b = 0$$

Since (2) is linear in z and linear in w or bilinear in z and w, therefore (1) is termed as bilinear transformation.

When c = 0, the condition  $ad - bc \neq 0$  becomes  $ad \neq 0$  and we see that the transformation reduces to general linear transformation. When  $c \neq 0$ , equation (1) can be written as

$$W = \frac{a}{c} \frac{(z+b/a)}{(z+d/c)} = \frac{a}{c} \left[ 1 + \frac{b/a - d/c}{z+d/c} \right]$$
$$= \frac{a}{c} + \frac{bc - ad}{c^2} = \frac{1}{z+d/c} \qquad ...(3)$$

We note that (3) is a composition of the mappings

$$z_1 = z + \frac{d}{c}$$
,  $z_2 = \frac{1}{z_1}$ ,  $z_3 = \frac{bc - ad}{c^2} z_2$ 

and thus we get

$$w = \frac{a}{c} + z_3.$$

The above three auxiliary transformations are of the form

$$w = z + \alpha$$
,  $w = \frac{1}{z}$ ,  $w = \beta z$  ...(4)

Hence every bilinear transformation is the resultant of the transformations in (4).

But we have already discussed these transformations and thus we conclude that a bilinear transformation always transforms circles and lines into circles and lines because the transformations in (4) do so.

#### CLASS: I M.SC(MATHEMATICS) COURSE NAME: COMPLEX ANALYSIS **COURSE CODE:18MMP201** UNIT - I BATCH:2018-2020

From (1), we observe that if c = 0, a,  $d \neq 0$ , each point in the w plane is the image of one and only one point in the z-plane. The same is true if  $c \neq 0$ , except when  $z = -\frac{d}{c}$  which makes the denominator zero. Since we work in extended complex plane, so in case  $z = -\frac{d}{c}$ ,  $w = \infty$  and thus we may regard the point at infinity in the w-plane as corresponding to the point  $z = -\frac{d}{c}$  in the z-plane.

Thus if we write

$$T(z) = w = \frac{az + b}{cz + d}, \qquad ad - bc \neq 0 \qquad \dots (5)$$

Then

$$T(\infty) = \infty$$
, if  $c = 0$ 

and

$$T(\infty) = \frac{a}{c}$$
,  $T\left(-\frac{d}{c}\right) = \infty$ , if  $c \neq 0$ 

Thus T is continuou on the extended z-plane. When the domain of definition is enlarged in this way, the bilinear transformation (5) is one-one mapping of the extended z-plane onto the extended w-plane.

Hence, associated with the transformation T, there is an inverse transformation T-1 which is defined on the extended w-plane as

$$T^{-1}(w) = z$$
 if and only if  $T(z) = w$ .

Thus, when we solve equation (1) for z, then

$$z = \frac{-dw + b}{cw - a}, ad - bc \neq 0 \qquad ...(6)$$

and thus

$$T^{-1}(w) = z = \frac{-dw + b}{cw - a}$$
, ad  $-bc \neq 0$ 

Evidently T-1 is itself a bilinear transformation, where

$$T^{-1}(\infty) = \infty$$
 if  $c = 0$ 

and

$$T^{-1}\left(\frac{a}{c}\right) = \infty$$
,  $T^{-1}(\infty) = -\frac{d}{c}$ , if  $c \neq 0$ 

From the above discussion, we conclude that inverse of a bilinear transformation is bilinear. The points  $z = -\frac{d}{c}(w = \infty)$  and  $z = \infty(w = \frac{a}{c})$  are called critical points.

#### CLASS: I M.SC(MATHEMATICS) COURSE NAME: COMPLEX ANALYSIS COURSE CODE:18MMP201 UNIT - I BATCH:2018-2020

$$w_{l} = \frac{a_{l} \left(\frac{az+b}{cz+d}\right) + b_{l}}{c_{l} \left(\frac{az+b}{cz+d}\right) + d_{l}} = \frac{(a_{l}a+b_{l}c)z + (b_{l}d+a_{l}b)}{(c_{l}a+d_{l}c)z + (d_{l}d+c_{l}b)}$$
 Taking 
$$A = a_{l}a + b_{l}c, \quad B = b_{l}d + a_{l}b, \quad C = c_{l}a + d_{l}c, \quad D = d_{l}d + c_{l}b, \text{ we get}}$$
 
$$w_{l} = \frac{Az+B}{Cz+D}$$
 Also 
$$AD - BC = (a_{l}a+b_{l}c) \left(d_{l}d+c_{l}b\right) - \left(b_{l}d+a_{l}b\right) \left(c_{l}a+d_{l}c\right) = (a_{l}ad_{l}d+a_{l}ac_{l}b+b_{l}cd_{l}d+b_{l}cc_{l}b) - (b_{l}dc_{l}a+a_{l}bd_{l}c) = a_{l}ad_{l}d+b_{l}bc_{l}c-b_{l}dc_{l}a-a_{l}bd_{l}c$$
 
$$= a_{l}ad_{l}d+b_{l}bc_{l}c-b_{l}dc_{l}a-a_{l}bd_{l}c$$
 
$$= a_{l}ad_{l}d-b_{l}c_{l}-b_{l}c_{l}-b_{l}c_{l} = a_{l}dc_{l}c$$
 Thus 
$$w_{l} = \frac{Az+B}{Cz+D}, \quad AD - BC \neq 0$$

Is a bilinear transformation.

This bilinear transformation is called the resultant (or product or composition) of the bilinear transformations (1) and (2).

The above property is also expressed by saying that bilinear transformations form a group.

1.2. Theorem. Composition (or resultant or product) of two bilinear transformations is a bilinear transformation.

**Proof.** We consider the bilinear transformations

$$w = \frac{az + b}{cz + d}, \quad ad - bc \neq 0 \qquad \dots (1)$$

and

$$w = \frac{az + b}{cz + d}, \quad ad - bc \neq 0 \qquad ...(1)$$

$$w_1 = \frac{a_1 w + b_1}{c_1 w + d_1}, \quad a_1 d_1 - b_1 c_1 \neq 0 \qquad ...(2)$$

Putting the value of w from (1) in (2), we get

1.3. Definitions. (i) The points which coincide with their transforms under bilinear transformation are called its fixed points. For the bilinear transformation  $w = \frac{az + b}{cz + d}$ , fixed

points are given by 
$$w = z$$
 i.e.  $z = \frac{az + b}{cz + d}$  ...(1)

## CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS COURSE CODE:18MMP201 UNIT – I BATCH:2018-2020

$$\Rightarrow (1 - K^2) z \overline{z} - (p - qK^2) \overline{z} - (\overline{p} - \overline{q} K^2) z = K^2 q \overline{q} - p\overline{p}$$

$$\Rightarrow z \overline{z} - \left(\frac{p - qK^2}{1 - K^2}\right) \overline{z} - \left(\frac{\overline{p} - \overline{q}K^2}{1 - K^2}\right) z + \frac{|p|^2 - K^2 |q|^2}{1 - K^2} = 0 \qquad \dots (2)$$

Equation (2) is of the form

$$z\overline{z} + b\overline{z} + \overline{b}z + c = 0$$

(c is being a real constant)

which always represents a circle.

Thus equation (2) represents a circle if  $K \neq 1$ .

If K = 1, then it represents a straight line

$$|z-p|=|z-q|$$

Further, we observe that in the form (1), p and q are inverse points w.r.t. the circle. For this, if the circle is  $|z - z_0| = \rho$  and p and q are inverse points w.r.t. it, then

$$z - z_0 = \rho e^{i\theta}, \ p - z_0 = q e^{i\lambda},$$
  
$$q - z_0 = \frac{\rho^2}{2} e^{i\lambda}$$

Therefore,

$$\left|\frac{z-p}{z-q}\right| = \frac{\left|\frac{\rho e^{i\theta} - a e^{i\lambda}}{\rho e^{i\theta} - \frac{\rho^2}{a} e^{i\lambda}}\right|}{\left|\frac{\rho e^{i\theta} - a e^{i\lambda}}{\rho e^{i\theta} - \rho e^{i\lambda}}\right|} = \frac{a}{\rho} \frac{\left|\frac{\rho e^{i\theta} - a e^{i\lambda}}{a e^{i\theta} - \rho e^{i\lambda}}\right|}{\left|\frac{\rho e^{i\theta} - a e^{i\lambda}}{a e^{i\theta} - \rho e^{i\lambda}}\right|}$$

Since (1) is a quadratic in z and has in general two different roots, therefore there are generally two invariant points for a bilinear transformation.

(ii) If z<sub>1</sub>, z<sub>2</sub>, z<sub>3</sub>, z<sub>4</sub> are any distinct points in the z-plane, then the ratio

$$(z_1, z_2, z_3, z_4) = \frac{(z_1 - z_2)(z_3 - z_4)}{(z_2 - z_3)(z_4 - z_1)}$$

is called cross ratio of the four points  $z_1$ ,  $z_2$ ,  $z_3$ ,  $z_4$ . This ratio is invariant under a bilinear transformation i.e.

$$(w_1, w_2, w_3, w_4) = (z_1, z_2, z_3, z_4)$$

1.4. Transformation of a Circle. First we show that if p and q are two given points and K is a constant, then the equation

$$\left| \frac{z - p}{z - q} \right| = K, \tag{1}$$

represents a circle. For this, we have

$$|z - p|^2 = K^2|z - q|^2$$

$$\Rightarrow (z - p) (\overline{z - p}) = K^2(z - q) (\overline{z - q})$$

$$\Rightarrow (z-p)(\overline{z}-\overline{p}) = K^2(z-q)(\overline{z}-\overline{q})$$

$$\Rightarrow z\overline{z} - \overline{p}z - p\overline{z} + p\overline{p} = K^{2}(z\overline{z} - \overline{q}z - q\overline{z} + q\overline{q})$$

## CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS COURSE CODE:18MMP201 UNIT – I BATCH:2018-2020

$$= K \frac{\left| \rho(\cos\theta + i\sin\theta) - a(\cos\lambda + i\sin\lambda) \right|}{\left| a(\cos\theta + i\sin\theta) - \rho(\cos\lambda + i\sin\lambda) \right|}, K = \frac{a}{\rho}$$

$$= K \frac{\left| (\rho\cos\theta - a\cos\lambda) + i(\rho\sin\theta - a\sin\lambda) \right|}{\left| a\cos\theta - \rho\cos\lambda \right| + i(a\sin\theta - \rho\sin\lambda)}$$

$$= K \left[ \frac{\left( \rho\cos\theta - a\cos\lambda \right)^2 + (\rho\sin\theta - a\sin\lambda)^2}{\left| a\cos\theta - \rho\cos\lambda \right|^2 + (a\sin\theta - \rho\sin\lambda)^2} \right]^{1/2}$$

$$= K \text{ where } K \neq 1, \text{ since } a \neq \rho$$

Thus, if p and q are inverse points w.r.t. a circle, then its equation can be written as

$$\left| \frac{z-p}{z-q} \right| = K$$
,  $K \neq 1$ , K being a real constant.

1.5 **Theorem.** In a bilinear transformation, a circle transforms into a circle and inverse points transform into inverse points. In the particular case in which the circle becomes a straight line, inverse points become points symmetric about the line.

**Proof**: We know that  $\left| \frac{z-p}{z-q} \right| = K$  represents a circle in the z-plane with p and q as inverse

points, where  $K \neq 1$ . Let the bilinear transformation be

$$w = \frac{az + b}{cz + d}$$
 so that  $z = \frac{dw - b}{-cw + a}$ 

Then under this bilinear transformation, the circle transforms into

$$\begin{vmatrix} \frac{dw - b}{-cw + a} - p \\ \frac{dw - b}{-cw + a} - q \end{vmatrix} = K \implies \begin{vmatrix} \frac{dw - b - p(q - cw)}{dw - b - q(a - cw)} \end{vmatrix} = K$$

$$\Rightarrow \begin{vmatrix} \frac{w(d + cp) - (ap + b)}{w(d + cq) - (aq + b)} \end{vmatrix} = K \implies \begin{vmatrix} \frac{w - \frac{ap + b}{cp + d}}{w - \frac{aq + b}{cq + d}} \end{vmatrix} = K \begin{vmatrix} \frac{cq + d}{cp + d} \end{vmatrix} \dots (1)$$

The form of equation (1) shows that it represents a circle in the w-plane whose inverse points are  $\frac{ap+b}{cp+d}$  and  $\frac{aq+b}{cq+d}$ . Thus, a circle in the z-plane transforms into a circle in the w-plane and the inverse points transform into the inverse points.

Also if  $K \left| \frac{cq+d}{cp+d} \right| = 1$ , then equation (1) represents a straight line bisecting at right angle the join

of the points  $\frac{ap+b}{cp+d}$  and  $\frac{aq+b}{cq+d}$  so that these points are symmetric about this line. Thus in a

particular case, a circle in the z-plane transforms into a straight line in the w-plane and the inverse points transform into points symmetrical about the line.

## CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS COURSE CODE:18MMP201 UNIT – I BATCH:2018-2020

1.6. Example. Find all bilinear transformations of the half plane Im  $z \ge 0$  into the unit circle  $|w| \le 1$ .

Solution. We know that two points z,  $\overline{z}$ , symmetrical about the real z-axis(Im z=0) correspond to points w,  $\frac{1}{\overline{w}}$ , inverse w.r.t. the unit w-circle. ( $|w| \frac{1}{|\overline{w}|} = 1$ ). In particular, the origin and the point at infinity in the w-plane correspond to conjugate values of z.

Comment [a1]:

Let

$$w = \frac{az + b}{cz + d} = \frac{a(z + b/a)}{c(z + d/c)}$$
...(1)

be the required transformation.

### Clearly $c \neq 0$ , otherwise points at $\infty$ in the two planes would correspond.

Also, w=0 and  $w=\infty$  are the inverse points w.r.t. |w|=1. Since in (1), w=0,  $w=\infty$  correspond respectively to  $z=-\frac{b}{a}$ ,  $z=-\frac{d}{c}$ , therefore these two values of z-plane must be conjugate to each other. Hence we may write

$$-\frac{b}{a} = \alpha, -\frac{d}{c} = \overline{\alpha} \text{ so that}$$

$$w = \frac{a}{c} \frac{z - \alpha}{z - \overline{\alpha}}$$
(2)

The point z=0 on the boundary of the half plane Im  $z\geq 0$  must correspond to a point on the boundary of the circle |w|=1, so that

$$1 = |\mathbf{w}| = \frac{\mathbf{a}}{\mathbf{c}} \frac{\mathbf{0} - \alpha}{\mathbf{0} - \alpha} = \frac{\mathbf{a}}{\mathbf{c}}$$

$$\frac{a}{c} = e^{i\lambda}$$
  $\Rightarrow$   $a = ce^{i\lambda}$ , where  $\lambda$  is real.

Thus, we get

$$w = e^{i\lambda} \left( \frac{z - \alpha}{z - \overline{\alpha}} \right) \qquad ...(3)$$

Since  $z=\alpha$  gives w=0,  $\alpha$  must be a point of the upper half plane i.e. Im  $\alpha>0$ . With this condition, (3) gives the required transformation. In (3), if z is real, obviously |w|=1 and if Im z>0, then z is nearer to  $\alpha$  than to  $\overline{\alpha}$  and so |w|<1. Hence the general linear transformation of the half plane Im  $z\geq0$  on the circle  $|w|\leq1$  is

$$w = e^{i\lambda} \left( \frac{z - \alpha}{z - \overline{\alpha}} \right)$$
, Im  $\alpha > 0$ .

1.7. Example. Find all bilinear transformations of the unit  $\mid z \mid \leq 1$  into the unit circle  $\mid w \mid \leq 1$ . OR

Find the general homographic transformations which leaves the unit circle invariant.

Solution. Let the required transformation be

$$w = \frac{az + b}{cz + d} = \frac{a}{c} \frac{(z + b/a)}{(z + d/c)}$$
...(1)

## CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS COURSE CODE:18MMP201 UNIT – I BATCH:2018-2020

Here, w = 0 and  $w = \infty$ , correspond to inverse points

$$z = -\frac{b}{a}$$
,  $z = -\frac{d}{c}$ , so we may write  
 $-\frac{b}{a} = \alpha$ ,  $-\frac{d}{c} = \frac{1}{\overline{\alpha}}$  such that  $|\alpha| < 1$ .  
 $w = \frac{a}{c} \left( \frac{z - \alpha}{z - 1/\alpha} \right) = \frac{a\overline{\alpha}}{c} \left( \frac{z - \alpha}{\overline{\alpha}z - 1} \right)$  ...(2)

So.

The point z = 1 on the boundary of the unit circle in z-plane must correspond to a point on the boundary of the unit circle in w-plane so that

$$1 = |w| = \left| \frac{a\overline{\alpha}}{c} \frac{1 - \alpha}{\overline{\alpha} - 1} \right| = \left| \frac{a\overline{\alpha}}{c} \right|$$

or a  $\overline{\alpha} = c e^{i\lambda}$ , where  $\lambda$  is real.

Hence (2) becomes,

$$w = e^{i\lambda} \left( \frac{z - \alpha}{\overline{\alpha}z - 1} \right), \quad |\alpha| \le 1 \quad ...(3)$$

This is the required transformation, for if  $z = e^{i\theta}$ ,  $\alpha = be^{i\beta}$ , then

$$|w| = \left| \frac{e^{i\theta} - be^{i\beta}}{be^{i(\theta-\beta)} - 1} \right| = 1.$$

If 
$$z = re^{i\theta}$$
, where  $r < 1$ , then  $|z - \alpha|^2 - |\overline{\alpha} z - 1|^2$ 

$$= r^2 - 2rb\cos(\theta - \beta) + b^2 - \{b^2r^2 - 2br\cos(\theta - \beta) + 1\}$$
  
=  $(r^2 - 1)(1 - b^2) < 0$ 

and so

$$\begin{aligned} |z-\alpha|^2 &< |\,\overline{\alpha}\,z-1|^2 \quad \Rightarrow \quad \frac{|\,z-\alpha\,|^2}{|\,\overline{\alpha}z-1\,|^2} &< 1 \\ |\,w\,| &< 1 \end{aligned}$$

i.e.

Hence the result.

1.8. Example. Show that the general transformation of the circle  $|z| \le \rho$  into the circle  $|w| \le \rho'$  is

$$w = \rho \rho' \; e^{i\lambda} \bigg( \frac{z - \alpha}{\overline{\alpha} z - \rho^2} \bigg), \qquad \quad \mid \alpha \mid < \rho.$$

Solution. Let the transformation be

$$W = \frac{az+b}{cz+d} = \frac{a}{c} \left( \frac{z+b/a}{z+d/c} \right) \qquad ...(1)$$

The points w = 0 and  $w = \infty$ , inverse points of  $|w| = \rho'$  correspond to inverse point z = -b/a, z = -d/c respectively of  $|z| = \rho$ , so we may write

$$-\frac{b}{a} = \alpha$$
,  $-\frac{d}{c} = \frac{\rho^2}{\alpha}$ ,  $|\alpha| < \rho$ 

Thus, from (1), we get

## CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS COURSE CODE:18MMP201 UNIT – I BATCH:2018-2020

$$w = \frac{a}{c} \left( \frac{z - \alpha}{z - \frac{\rho^2}{\overline{\alpha}}} \right) = \frac{a\overline{\alpha}}{c} \left( \frac{z - \alpha}{\overline{\alpha}z - \rho^2} \right) \qquad \dots (2)$$

Equation (2) satisfied the condition  $|z| \le \rho$  and  $|w| \le \rho'$ . Hence for  $|z| = \rho$ , we must have  $|w| = \rho'$  so that (2) becomes

$$\rho' = |\mathbf{w}| = \frac{|\mathbf{a}\overline{\alpha}|}{|\mathbf{c}|} \frac{\mathbf{z} - \alpha}{|\overline{\alpha}\mathbf{z} - \mathbf{z}\overline{\mathbf{z}}|}, \qquad \mathbf{z}\overline{\mathbf{z}} = \rho^2$$

$$= \frac{|\mathbf{a}\overline{\alpha}|}{|\mathbf{c}|} \frac{1}{|\mathbf{z}|} \frac{|\mathbf{z} - \alpha|}{|\overline{\mathbf{z}} - \overline{\alpha}|} = \frac{|\mathbf{a}\overline{\alpha}|}{|\mathbf{c}|} \frac{1}{|\mathbf{z}|} \frac{|\mathbf{z} - \alpha|}{|\mathbf{z} - \alpha|}$$

$$= \frac{|\mathbf{a}\overline{\alpha}|}{|\mathbf{c}|} \frac{1}{|\rho|}, \qquad |\mathbf{z} - \alpha| = |\mathbf{z} - \alpha|$$

$$\rho\rho' = \frac{|\mathbf{a}\overline{\alpha}|}{|\mathbf{c}|} \qquad \Rightarrow \qquad \frac{\mathbf{a}\overline{\alpha}}{|\mathbf{c}|} = \rho\rho' e^{i\lambda}, \lambda \text{ being real.}$$

Thus, the required transformation becomes

 $\Rightarrow$ 

$$w = \rho \rho' \; e^{i\lambda} \! \left( \frac{z - \alpha}{\overline{\alpha}z - \rho^2} \right) \! , \quad \mid \alpha \mid < \rho.$$

1.9. Example. Find the bilinear transformation which maps the point 2, i, -2 onto the points 1, i, -1.

Solution. Under the concept of cross-ratio, the required transformation is given by

$$\frac{(w-w_1)(w_2-w_3)}{(w_1-w_2)(w_3-w)} = \frac{(z-z_1)(z_2-z_3)}{(z_1-z_2)(z_3-z)}$$

Using the values of zi and wi, we get

or 
$$\frac{(w-1)(i+1)}{(1-i)(-1-w)} = \frac{(z-2)(i+2)}{(2-i)(-2-z)}$$
or 
$$\frac{w-1}{w+1} = \left(\frac{z-2}{z+2}\right)\left(\frac{2+i}{2-i}\right)\left(\frac{1-i}{1+i}\right)$$
or 
$$\frac{w-1}{w+1} = \frac{4-3i}{5}\frac{z-2}{z+2}$$

or 
$$\frac{w-1+w+1}{w-1-(w+1)} = \frac{(4-3i)(z-2)+5(z+2)}{(4-3i)(z-2)-5(z+2)}$$
 or 
$$-w = \frac{3z(3-i)+2i(3-i)}{-iz(z-i)-6(3-i)} = \frac{3z+2i}{-(iz+6)}$$
 or 
$$w = \frac{3z+2i}{iz+6}$$

which is the required transformation.

CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE:18MMP201 UNIT – I BATCH:2018-2020

### **Cross-ratio**

In geometry, the **cross-ratio**, also called double **ratio** and anharmonic **ratio**, is a number associated with a list of four collinear points, particularly points on a projective line. Given four points A, B, C and D on a line, their **cross ratio** is defined as.

$$(A,B;C,D) = \frac{AC.BD}{BC.AD}$$

where an orientation of the line determines the sign of each distance and the distance is measured as projected into <u>Euclidean space</u>. (If one of the four points is the line's point at infinity, then the two distances involving that point are dropped from the formula.)

### **DEFINITION:**

The cross-ratio of a 4-tuple of distinct points on the <u>real line</u> with coordinates  $z_1$ ,  $z_2$ ,  $z_3$ ,  $z_4$  is given by

$$(Z_1,Z_2;Z_3,Z_4) = \frac{(Z_3-Z_1)(Z_4-Z_2)}{(Z_3-Z_2)(Z_4-Z_1)}$$

A mapping of the form  $S(z) = \frac{az+b}{cz+d}$  is called bilinear or linear fractional

Transformation a,b,c,d∈ z

A bilinear transformation  $S(z) = \frac{az+b}{cz+d}$  with  $ad-bc \neq 0$  is called Möbius map or Möbius transformation.

1) Möbius transformation is one-one and onto.

CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE:18MMP201 UNIT – I BATCH:2018-2020

2) If 
$$S(z) = \frac{az + b}{cz + d}$$
, then  $S^{-1}(w) = \frac{-dw + b}{cw - a}$ .

- 3) If S and T are Möbius transformations then  $S \circ T$  is also Möbius transformation.
- 4) S(z) = z + a (Translation)
  - S(z) = az (Dilation/Magnification)
  - $S(z) = e^{i\theta}z$  (Rotation)
  - $S(z) = \frac{1}{z}$  (Inversion).

**Theorem 22** If S is a Möbius transformation then S is composition of translation, dilation and inversion.

**Proof.** Let  $S(z) = \frac{az+b}{cz+d}$  with  $ad-bc \neq 0$  be Möbius transformation.

Case 1. When 
$$c = 0$$
 then  $S(z) = \left(\frac{a}{d}\right)z + \left(\frac{b}{d}\right)$ 

Let 
$$S_1(z) = \left(\frac{a}{d}\right)z$$
,  $S_2(z) = z + \left(\frac{b}{d}\right)$ 

Then 
$$S_2 \circ S_1(z) = S_2(S_1(z)) = S_2\left(\left(\frac{a}{d}\right)z\right) = \left(\frac{a}{d}\right)z + \left(\frac{b}{d}\right) = S(z)$$

Thus 
$$S = S_2 \circ S_1$$
.

## CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS COURSE CODE:18MMP201 UNIT – I BATCH:2018-2020

Case 2. When  $c \neq 0$ 

Let 
$$S_1(z) = z + \frac{d}{c}$$
,  $S_2(z) = \frac{1}{z}$ ,  $S_3(z) = \frac{bc - ad}{c^2}z$ ,  $S_4(z) = z + \frac{a}{c}$ .

Then 
$$S_4 \circ S_3 \circ S_2 \circ S_1(z) = S_4 \circ S_3 \circ S_2(S_1(z))$$

$$= S_4 \circ S_3 \circ S_2 \left( z + \frac{d}{c} \right)$$

$$= S_4 \circ S_3 \left( S_2 \left( z + \frac{d}{c} \right) \right)$$

$$= S_4 \circ S_3 \left( \frac{1}{z + \frac{d}{c}} \right)$$

$$= S_4 \left( S_3 \left( \frac{1}{z + \frac{d}{c}} \right) \right)$$

$$= S_4 \left( \frac{bc - ad}{c^2} \left( \frac{1}{z + \frac{d}{c}} \right) \right)$$

$$=\left(\frac{bc-ad}{c(cz+d)}\right)+\frac{a}{c}$$

$$=\frac{az+b}{cz+d}=S(z).$$

CLASS: I M.SC(MATHEMATICS) COURSE NAME: COMPLEX ANALYSIS **COURSE CODE:18MMP201** 

UNIT - I BATCH:2018-2020

Thus  $S = S_4 \circ S_3 \circ S_2 \circ S_1$ .

Theorem 23 Every Möbius transformation can have at most two fixed points.

**Proof.** Let  $S(z) = \frac{az+b}{cz+d}$  with  $ad-bc \neq 0$  be Möbius transformation.

Let z be fixed point of S(z) then S(z) = z

$$\frac{az+b}{cz+d} = z$$

$$cz^2 + (d-a)z - b = 0$$

which is quadratic in z. Hence it can have at most two roots. Therefore every Möbius transformation can have at most two fixed points otherwise S(z) = z for all z (Identity map).

### THEOREM:

The cross ratio  $(Z_1, Z_2, Z_3, Z_4)$  is real ,iff four points lies on a circle or a straight line.

Suppose S(w) = real, then  $S(w) = \overline{S(w)}$ .

Let 
$$S(w) = \frac{aw + b}{cw + d}$$
 with  $ad - bc \neq 0$ .

Thus, 
$$\frac{aw+b}{cw+d} = \frac{\overline{aw}+\overline{b}}{\overline{cw}+\overline{d}}$$

Therefore, 
$$(a\overline{c} - \overline{ac})|w|^2 + (a\overline{d} - \overline{bc})w + (b\overline{c} - \overline{ad})\overline{w} + (b\overline{d} - \overline{bd}) = 0$$
 ...(1)

Case 1. When  $a\bar{c}$  is real.

Therefore, ac = ac, then from (1) we have.

$$(\overline{ad} - \overline{bc})w + (\overline{bc} - \overline{ad})\overline{w} + (\overline{bd} - \overline{bd}) = 0 \qquad \dots (2)$$

Let  $\alpha = 2(a\overline{d} - b\overline{c})$ ,  $\beta = i(b\overline{d} - b\overline{d})$  then (2) becomes,

CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE:18MMP201 UNIT – I BATCH:2018-2020

$$\frac{\alpha}{2}w + \frac{\overline{\alpha}}{2}w + \frac{\beta}{i} = 0$$
$$i(\alpha w + \overline{\alpha w}) + 2\beta = 0$$

$$i.2i.\operatorname{Im}(\alpha w) + 2\beta = 0$$

$$Im(\alpha w) - \beta = 0 \qquad ...(3)$$

Let  $\alpha = p + iq$ , w = x + iy then  $\alpha w = px - qy + i(qx + py)$ .

Therefore,  $\operatorname{Im}(\alpha w) - \beta = (qx + py) - \beta = 0$ . Thus (3) represents a line  $y = \left(\frac{-q}{p}\right)x + \beta$ .

That is, w lies on the line determined by (3) for fixed  $\alpha$  and  $\beta$ . We know that straight line may be regarded as circle with infinite radius. Therefore, w lies on the circle.

### Case 2. When $a\bar{c}$ is not real.

Therefore,  $a\overline{c} \neq \overline{ac}$ , then from (1) we have,

$$\left|w\right|^{2} + \frac{(a\overline{d} - \overline{b}c)}{(a\overline{c} - \overline{a}c)}w + \frac{(b\overline{c} - \overline{a}d)}{(a\overline{c} - \overline{a}c)}w + \frac{(b\overline{d} - \overline{b}d)}{(a\overline{c} - \overline{a}c)} = 0$$

Let 
$$\overline{\gamma} = \left(\frac{a\overline{d} - \overline{b}c}{a\overline{c} - \overline{a}c}\right)$$
,  $\delta = -\left(\frac{b\overline{d} - \overline{b}d}{a\overline{c} - \overline{a}c}\right)$ .

Therefore, 
$$|w|^2 + \overline{\gamma}w + \gamma \overline{w} - \delta = 0$$

$$w\overline{w} + \overline{\gamma}w + \gamma\overline{w} + \gamma\overline{\gamma} = \delta + \gamma\overline{\gamma}$$
$$(w + \gamma)(\overline{w} + \overline{\gamma}) = \delta + \gamma\overline{\gamma}$$
$$|w + \gamma|^2 = \delta + \gamma\overline{\gamma}$$
$$|w + \gamma|^2 = \delta + \gamma\overline{\gamma}$$

Therefore, 
$$|w+\gamma|=\lambda$$

COURSE CODE:18MMP201

CLASS: I M.SC(MATHEMATICS) COURSE NAME: COMPLEX ANALYSIS UNIT - I

BATCH:2018-2020

where 
$$\lambda = \left(\delta + \gamma \overline{\gamma}\right)^{1/2} = \left|\frac{ad - bc}{a\overline{c} - \overline{ac}}\right| > 0$$

Since  $\gamma$  and  $\lambda$  are independent of w, (4) represents a circle on which w lies.

### Symmetry:

If a linear transformation T carries a real axis into a circle c we shall say that the points w=Tz,  $w^*$ =T $\bar{z}$  are symmetric between w and  $w^*$  and c which does not depends for if s is another transformation which carries the real axis in c then s<sup>-1</sup>(T) is a linear transformation and hence  $s^{-1}(w) = s^{-1}(Tz)$  and  $s^{-1}(w^*) = s^{-1}(T\bar{z})$  are also conjugate, symmetric with respect with respect to circle centre o(z,z\*) lie on same line and multiple of oz→oz\* in R.(where R is radius).

Theorem: Symmetric principle

If a liner transformation carries a circle c into a circle c' then it transforms any pair of symmetric points with respect to c in to a pair of symmetric points with respect to c

#### Proof:

We can determine the transformation by requiring that 3 points  $Z_1, Z_2, Z_3$  and c, go over into 3 points  $w_1, w_2, w_3$  on c. The transformation is  $(w_1, w_2, w_3) = (Z_1, Z_2, Z_3)$ .

But the transformation is also determined that a point z on C shall correspond to a point w on c' and that a point Z<sub>2</sub> not c shall be carried into a point w<sub>2</sub> not on c' we know that Z<sub>2</sub>\* the symmetric point of z with respect to c must correspond to w<sub>2</sub>\* the symmetric of w<sub>2</sub> with respect to c'. Hence the transformation will be obtained from the relation ( $w, w_1, w_2, w_2^*$ ) = ( $Z, Z_1, Z_2, Z_2^*$ ).

### Oriented circle:

An orientation of circle c is determined by an ordered tripule of points  $(Z_1, Z_2, Z_3)$  on c with respect to this orientation a point z not on c is said to be lie to the right side of c.lf  $Im(Z,Z_1,Z_2,Z_3)=0$  and to the left of c if  $Im(Z,Z_1,Z_2,Z_3)<0$ 

Note:

It is essential to show that there are only two different orientation.

#### Level curves:

CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE:18MMP201 UNIT – I BATCH:2018-2020

when a conformal mapping is defined by an analytic w=f(z). In more general cases the image of curves in the line x=x0 and y=y0 .we write the transformation f(z)=u(x,y)+iV(x,y), the image of x=x0 is given the parametric equation u=u(x0,y) and v=v(x0,y). Also the image of y=y0 is determined in the image of y=y0 is determinant in the same way the above curves form a orthogonal net in w plane.similarly we may consider the curves u(x,y)=u0 and v(x,y)=v0 is the z plane, They are also orthogonal and are called the level curves of u and v.

### **FAMILY OF CIRCLE**:

Consider the linear transformation of the form  $w = k \frac{z-}{z-b}$  Here z=a corresponds to w=0 and z=b to  $w=\infty$  the straight line through the origin of w plane are image of circles through a and b.

The concentric circles when arg(k) varies the point to move along the circle c.The corresponding flow circle depends a and b in different direction.

On the otherhand the concentric circles about the origin  $|w| = \rho$  corresponding to the circles with equation  $|\frac{z-a}{z-b}| = -\rho |k|$  these all the circles with anypoint A and B by there equation loci of points whose distances from A and B have a constant ratio.

Denote by c1 the circles through A ,B and by c2 the circles in these the limit points A,B.These circles c1 & c2 wii be refer to as the circles net the steiner circles alternate by A and B.There are many interesting properties given below.

- There is exactly one c1 and c2 through each points in the plane with the exception of on limit point.
- Every c1 meets every c2 under right angles.
- Reflection in c1 transforms every c2 into itself and every c1 into another c1.Reflextion in a c2 transforms every c1 into itself and every c2 into another c2.
- The limit points of symmetric with respect to each c2 but not with respect to any other circles.
- These properties are all trivial with limit points are 0 and ∞. That is when the c1 are lines through the origin and the c2 concentric circles. since with properties are invariant under linear transformation in given general case. It can be written in the form w-a = kz-a / w-b z-b
  It is clear that T transformation the circles c1 and c2 into circles c1¹ and c2¹ with limit points A'.
  B'

Case (i):

We have  $c1^1=c1$  for all c,if k>0(if k<0 these circles are orientation in this transforms is said to be hyperbolic).

Case (ii):

In this case c2=c2 when  $|\mathbf{k}|=1$ . This transformation with property are called elliptic.

CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE:18MMP201 UNIT – I BATCH:2018-2020

### SIX MARKS QUESTIONS:

- 1. Show that any linear transformation which transforms a real axis into itself can be written with real coefficient.
- 2. Show that the cross ratio  $(z_1, z_2, z_{3z}z_4)$  is real if and only if the four points lie on a circle or on a straight line.
- 3. Show that a function f(z) be an analytic in the region  $\Omega$  of the z-plane. If  $f'(z) \neq 0$  in  $\Omega$  then the mapping w = f(z) conformal at all points of  $\Omega$ .
- 4. Show that the set of all linear transformation forms a group under the product of transformation
- 5. Show that an analytic function in a region  $\Omega$  whose derivative vanishes identically must reduce to a constant. The same is true if either the part, the imaginary part, the modulus the argument is constant.
- 6. Find the linear transformation which carries 0, i, -i into 1, -1, 0.
- 7. Show that If c=0 then inverse doesn't exist the reflextion  $Z \rightarrow Z$  is not a linear transformation.
- 8. Show that the set of all linear transformation forms a group under the product of transformation
- 9. State and prove the symmetry principle

### **TEN MARKS:**

1. Discuss about the Family of circles.

| Questions                                                                                | Choice 1                               | Choice 2                                        | Choice 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Choice 4                             | Answer                                                 |
|------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------|
|                                                                                          | <del>,</del>                           | UNIT I                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                                                        |
| The additive identity of complex number is                                               | (1,1)                                  | (1,0)                                           | (0,0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0,1)                                | (0,0)                                                  |
| The multiplicative identity of complex number is                                         | (0,1)                                  | (1,0)                                           | (0,0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0,1)                                | (1,0)                                                  |
| The inverse of $(\alpha,\beta)$ under addition is                                        | (-α,β)                                 | (-α,-β)                                         | (α,β)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (α,-β)                               | (-α,-β)                                                |
| $ Z_1Z_2 =\dots$                                                                         | $ \! \!  z_1  \! \!   \!  z_2  \! \! $ | $ z_1    z_2  $                                 | $  z_1   z_2  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ z_1  +  z_2 $                      | $  \mathbf{z}_1   \mathbf{z}_2  $                      |
| The value of i <sup>2</sup> is                                                           | 1                                      | -1                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | i                                    | -1                                                     |
| If $Z_1$ and $Z_2$ are any two complex numbers ,then                                     | $arg(Z_1Z_2) = arg(Z_1) + arg(Z_2)$    | $arg(Z_1Z_2) = arg(Z_1)-arg(Z_2)$               | $arg(Z_1Z_2) = arg(Z_1)/arg(Z_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $arg(Z_1Z_2) = arg(Z_1)*arg(Z_2)$    | $arg(Z_1Z_2) = arg(Z_1)/arg(Z$                         |
| The Equation of the unit sphere is                                                       | $x^2+y^2+z^2=1$                        | $x^2+y^2+z^2=2$                                 | $x^2-y^2+z^2=1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $x^2-y^2-z^2=1$                      | $x^2+y^2+z^2=1$                                        |
| The element (1,0) is the                                                                 | Additive                               | Multiplicative                                  | identity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | unique                               | Multiplicativ                                          |
| The element (0,0) is the                                                                 | Additive                               | Multiplicative                                  | identity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | unique                               | Additive                                               |
| If $ Z_1  =  Z_2 $ and $arg(Z_1) = arg(Z_2)$ then                                        | $Z_1 \neq Z_2$                         | $Z_{l} < Z_2$                                   | $Z_{1>}Z_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $Z_{1=}Z_2$                          | $Z_{1=}Z_2$                                            |
| The Equation of the unit circle whose centre is the origin is                            | Z  =1                                  | Z-a  =1                                         | Z  =0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Z ≠1                                 | Z  =1                                                  |
| The complex plane containing all the finite complex numbers and infinity is called the   | infinite<br>complex plane              | extended<br>complex plane                       | complex plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | finite complex plane                 | extended<br>complex                                    |
| The inversion $w = 1/z$ maps the region $ z  < 1$ into the region                        | w   <1                                 | w   >1                                          | w   =1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | w   ≤1                               | w   >1                                                 |
| The square of real number is                                                             | Non negative                           | Non positive                                    | Negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | absolute value                       | absolute                                               |
| The absolute value of $z = x+iy$ is                                                      | $\sqrt{x}$                             | √y                                              | $\sqrt{x^2-y^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\sqrt{x^2+y^2}$                     | $\sqrt{x^2+y^2}$                                       |
| If $Z_1$ and $Z_2$ are any two complex numbers ,then                                     | $ Z_1 + Z_2  \le  Z_1 $ $ + Z_2 $      | $ Z_1 + Z_2  =  Z_1 $<br>$ + Z_2 $              | $ Z_1 + Z_2  \ge  Z_1 $ $ + Z_2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ Z_1 + Z_2  \neq  Z_1$<br>$ + Z_2 $ | $ Z_1 + Z_2  \le  Z_1 $ $ + Z_2 $                      |
| The mapping W=1/Z is called an                                                           | Linear transformation                  | Translation                                     | Inversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rotation                             | Inversion                                              |
| The polar form of x+iy is                                                                | $r(\cos\theta + i\sin\theta)$          | $r(\cos\theta - i\sin\theta)$                   | cos θ +isinθ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $r(\cos\theta - \sin\theta)$         | r(cos θ                                                |
| If $Z_1$ and $Z_2$ are any two complex                                                   | $ Z_1 - Z_2  \le  Z_1 $                | $ Z_1 - Z_2  =  Z_1 $                           | $ Z_1 - Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  \ge  Z_1  -  Z_2  -  Z_1  -  Z_1  -  Z_2  -  Z_2  -  Z_1  $ |                                      | $\mid \mathbf{Z}_1 - \mathbf{Z}_2 \mid \geq \mid \mid$ |
| numbers ,then  The complex plane containing all the finite complex numbers is called the | $ + Z_2 $ infinite complex plane       | + Z <sub>2</sub>  <br>extended<br>complex plane | $ Z_2 $ complex plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ + Z_2 $ finite complex plane       | Z,  - Z <sub>0</sub>     finite complex                |
| The conjugation of 5+i3 is                                                               | 5                                      | 3                                               | 5+i3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5-i3                                 | 5-i3                                                   |
| If Z <sub>1</sub> and Z <sub>2</sub> are any two complex numbers ,then                   | arg(Z1/Z2) =  arg(Z1) + arg(Z2)        | $arg(Z_1/Z_2) = arg(Z_1)-arg(Z_2)$              | $arg(Z_1/Z_2) = arg(Z_1)/arg(Z_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $arg(Z_1/Z_2) = arg(Z_1)*arg(Z_2)$   | $arg(Z_1/Z_2) = arg(Z_1)-$                             |
| The mapping W=Z+b ,b is a complex number, is called the                                  | Linear<br>transformation               | Translation                                     | Inversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rotation                             | Translation                                            |
| All the complex numbers except infinity are called                                       | Complex numbers                        | Complex plane                                   | finite complex numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | infinite<br>complex                  | finite complex                                         |
| If $x = r\cos\theta$ , $y = r\sin\theta$ then for z we get                               | $z = r\cos\theta + r\sin\theta$        | z= rsinθ +<br>ircosθ                            | z= rcosθ+irsinθ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | z= rcosθ-irsinθ                      | z=<br>rcosθ+irsinθ                                     |
| The angle made by the vector (x,y)measured in the anticlockwise direction is             | mod of z                               | norm of z                                       | argument of z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                    | argument of z                                          |
| The argument $\theta$ is as it can take infinite values                                  | unique                                 | not unique                                      | finite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | infinite                             | not unique                                             |
| From $x = r\cos\theta$ and $y = r\sin\theta$ we get $\theta =$                           | sin <sup>-1</sup> y/x                  | cos <sup>-1</sup> y/x                           | tan <sup>-1</sup> y/x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cot <sup>-1</sup> y/x                | tan <sup>-1</sup> y/x                                  |
| arg z                                                                                    | arg z                                  | - arg z                                         | arg(-z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | arg 1/z                              | - arg z                                                |

| The argument of the product of two complex numbers is of the complex number                           | The sum of the arguments                | the argument of the sum                 | the argument of the division                | the product of the arguments   | the argument of the sum         |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------------|--------------------------------|---------------------------------|
| arg (z1 . z2)=                                                                                        | $arg z_1 + arg z_2$                     | arg z <sub>1.</sub> argz <sub>2</sub>   | argz <sub>1</sub> /argz <sub>2</sub>        | $arg(z_1+z_2)$                 | $arg z_{1.}arg z_{2}$           |
| The cross ratio of the form                                                                           | $(z_1-z_2)(z_2-z_4)/(z_1-z_4)(z_2-z_3)$ | $(z_1-z_3)(z_2-z_4)/(z_1-z_4)(z_2-z_4)$ | $(z_1-z_2)(z_2-z_4)/(z_1-z_4)$              | $(z_1-z_2)/(z_1-z_4)(z_2-z_3)$ | $(z_1-z_3)(z_2-z_4)/(z_1-z_4)$  |
| If $z = -1 + i$ , then $z-1 =$                                                                        | -1+i                                    | -1-i                                    | (-1)/2 + i 1/2                              | (-1)/2 - i 1/2                 | -1-i                            |
| The stereographic projection of the complex point $z = (\sqrt{2}, 1)$ is                              | $(1/\sqrt{2}, 1/\sqrt{2}, 0)$           | $(0, \sqrt{2}, 1)$                      | $(1/\sqrt{2}, 1/2, 1/2)$                    | (0, 0,1)                       | $(1/\sqrt{2}, 1/2, 1/2)$        |
| The inversion $w = 1/z$ maps the region $ z  > 1$ into the region                                     | w   <1                                  | w   >1                                  | w   =1                                      | w   \le 1                      | w   <1                          |
| Under the transformation w = az there are fixed points                                                | one                                     | two                                     | zero                                        | 8                              | two                             |
| According to De Moivre's theorem (cos $\theta + i\sin \theta$ ) <sup>n</sup> =                        | $\cos^n \theta + i\sin^n \theta$        | cosn θ+isinn θ                          | ncos θ+insin θ                              | 1                              | cosn θ+isinn<br>θ               |
| The transformation w = az=b, where a, b are complex constants, is a composition of tranformations     | Rotation and<br>Homothetic              | Translation and Rotation                | Rotation ,<br>Homothetic<br>and Translation | Homothetic and Translation     | Rotation ,<br>Homothetic<br>and |
| The equation $z\overline{z} + az + az + c = 0$ , where c is real and a is complex, is a equation of a | Line                                    | Ray                                     | Ellipse                                     | circle                         | circle                          |

CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE:18MMP201 UNIT II BATCH 2018-2020

#### **UNIT II**

Complex integration-rectifiable Arcs- Cauchy's theorem for Rectangle and disc-Cauchy's integral formula-higher derivatives.

### **INTRODUCTION:**

In this section we shall study complex integration of complex functions and established fundamental theorem of calculus for line integral.we show that an analytic function has a power series expansion as a Taylor theorem .Form then we established cauchy's estimate to prove Cauchy theorem.

### 2. Complex Integration

Let [a, b] be a closed interval, where a, b are real numbers. Divide [a, b] into subintervals

 $[a = t_0, t_1], [t_1, t_2], \dots, [t_{n-1}, t_n = b]$ (1)

by inserting n-1 points  $t_1, t_2, ..., t_{n-1}$  satisfying the inequalities

$$a = t_0 < t_1 < t_2 < \ldots < t_{n-1} < t_n = b$$

Then the set  $P = \{t_0, t_1, ..., t_n\}$  is called the partition of the interval [a, b] and the greatest of the numbers  $t_1$   $t_0$ ,  $t_2 - t_1, ..., t_n - t_{n-1}$  is called the norm of the partition P. Thus the norm of the partition P is the maximum length of the subintervals in (1).

We say that an arc is simple or Jordan arc if  $z(t_1) = z(t_2)$  only when  $t_1 = t_2$  i.e. the arc does not intersect itself. If the points corresponding to the values a and b coincide, the arc is said to be a closed arc (closed curve). An arc is said to be piecewise continuous in [a,b] if it is continuous in every subinterval of [a,b].

**2.1.** Arcs and Curves in the Complex Plane. An arc (path) L in a region  $G \subset \forall$  is a continuous function  $z(t) : [a, b] \to G$  for  $t \in [a, b]$  in R. The arc L, given by z(t) = x(t) + iy(t),  $t \in [a, b]$ , where x(t) and y(t) are continuous functions of t, is therefore a set of all image points of a closed interval under a continuous mapping. The arc L is said to be differentiable if z'(t) exists for all t in [a, b]. In addition to the existence of z'(t), if  $z'(t) : [a, b] \to \forall$  is continuous, then z(t) is a smooth arc. In such case, we may say that L is regular and smooth. Thus a regular arc is characterized by the property that  $\dot{x}(t)$  and  $\dot{y}(t)$  exist and are continuous over the whole range of values of t.

### RECTIFIABLE ARCS

2.2. Rectifiable Arcs. Let z = x(t) + iy(t) be the equation of the Jordan arc L, the range for the parameter t being  $t_0 \le t \le T$ .

Let  $z_0, z_1, ..., z_n$  be the points of this arc corresponding to the values  $t_0, t_1, ..., t_n$  of t, where  $t_0 < t_1 < t_2 < ... < t_n = T$ . Evidently, the length of the polygonal arc obtained by joining successively  $z_0$  and  $z_1, z_1$  and  $z_2$  etc by st. line segments is given by

### CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS COURSE CODE:18MMP201 UNIT II BATCH 2018-2020

$$\begin{split} & \sum_{n} = \sum_{r=1}^{n} |z_{r} - z_{r-1}| \\ & = \sum_{r=1}^{n} |(x_{r} + iy_{r}) - (x_{r-1} + iy_{r-1})| \\ & = \sum_{r=1}^{n} |(x_{r} - x_{r-1}) + i (y_{r} - y_{r-1})| \\ & = \sum_{r=1}^{n} [(x_{r} - x_{r-1})^{2} + (y_{r} - y_{r-1})^{2}]^{1/2} \end{split}$$



If this sum  $\Sigma_n$  tends to a unique limit  $l < \infty$ , as  $n \to \infty$  and the maximum of the differences  $t_r - t_{r-1}$  tends to zero, we say that the arc L defined by z = x(t) + iy(t) is rectifiable and that its length is l. In this connection, we have the following result.

"A regular arc z = x(t) + iy(t),  $t_0 \le t \le T$  is rectifiable and its length is

$$\int_{t_0}^{T} [(\dot{x}(t))^2 + (\dot{y}(t))^2]^{1/2} dt''.$$

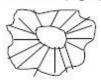
2.3. Contours. Let PQ and QR to be two rectifiable arcs with only Q as common point, then the arc PR is evidently rectifiable and its length is the sum of lengths of PQ and QR. Thus it follows that Jordan arc which consists of a finite number of regular arcs is rectifiable, its length being the sum of lengths of regular arcs of which it is composed. Such an arc is called contour. Thus a contour C is continuous chain of finite number of regular arcs. i.e. a contour is a piecewise smooth arc.

By a closed contour we shall mean a simple closed Jordan arc consisting of a finite number of regular arcs. Clearly, every closed contour is rectifiable. Circle rectangle, ellipse etc. are examples of closed contour.

2.4. Simply Connected Region A region D is said to be simply connected if every simple closed contour within it encloses only points of D. In such a region every closed curve can be shrunk (contracted) to a point without passing out of the region(Fig.1). If the region is not simply connected, then it is called multiply connected(Fig. 2).



Simply connected region Fig. 1



Multiply connected regions Fig. 2

## CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS COURSE CODE:18MMP201 UNIT II BATCH 2018-2020

### 2.5. Riemann's Definition of Complex Integration

First, we define the integral as the limit of a sum and later on, deduce it as the operation inverse to that of differentiation.

Let us consider a function f(z) of the complex variable z. We assume that f(z) has a definite value at each point of a rectifiable arc L having equation

$$z(t) = x(t) + iy(t), t_0 \le t \le T.$$

We divide this arc into n smaller arcs by points  $z_0, z_1, z_2, ..., z_{n-1}, z_n$  (= Z, say) which correspond to the values

$$t_0 < t_1 < t_2, \ldots, < t_{n-1} < t_n \ (=T) \ \text{of the parameter t and then form the sum}$$
 
$$\Sigma = \sum_{r=1}^n \ \textit{f}(\xi_r) \ (z_r - z_{r-1})$$

where  $\xi_r$  is a point of L between  $z_{r-1}$  and  $z_r$ . If this sum  $\Sigma$  tends to a unique limit I as  $n\to\infty$  and the maximum of the differences  $t_r-t_{r-1}$  tends to zero, we say that f(z) is integrable from  $z_0$  to Z along the arc L, and we write

$$I = \int_{T} f(z) dz$$

The direction of integration is from  $z_0$  to Z, since the points on x(t) + iy(t) describe the arc L in this sense when t increases.

2.6. Remarks.(i) Some of the most obvious properties of real integrals extend at once to complex integrals, for example,

Is, for example,
$$\int_{L} [f(z) + g(z)] dz = \int_{L} f(z) dz + \int_{L} g(z) dz,$$

$$\int_{L} Kf(z) dz = K \int_{L} f(z) dz, K \text{ being constant}$$

$$\int_{L'} f(z) dz = -\int_{L} f(z) dz,$$

and

where L' denotes the arc L described in opposite direction.

(ii) In the above definition of the complex integral, although z<sub>0</sub>, Z play much the same parts as the lower and upper limits in the definite integral of a function of a real variable, we do not write

$$I = \int_{z_0}^{z} f(z) dz$$

## CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS COURSE CODE:18MMP201 UNIT II BATCH 2018-2020

This is dictated essentially by the fact that the value of I depends, in general, not only on the initial and final points of the arc L but also on its actual form.

In special circumstances, the integral may be independent of path from  $z_0$  to Z as shown in the following example.

2.7. Example. Using the definition of an integral as the limit of a sum, evaluate the integrals

where L is a rectifiable arc joining the points  $z = \alpha$  and  $z = \beta$ .

Solution. We first observe that the integrals exist since the integrand is continuous on L in each case

(i) By definition we have.

(ii) 
$$\int_{L} |dz| = \lim_{n \to \infty} \sum_{r=1}^{n} |z_{r} - z_{r-1}|$$

$$= \lim_{n \to \infty} [|z_{1} - z_{0}| + |z_{2} - z_{1}| + ... + |z_{n} - z_{n-1}|]$$

$$= \text{Arc length of L}$$

$$= l \text{ (say)}$$

(iii) Let 
$$I = \int_{t_{-}}^{t_{-}} z \, dz = \lim_{n \to \infty} \sum_{r=1}^{n} (z_r - z_{r-1}) \, \xi_r$$
 (1)

where  $\xi_r$  is any point on the sub arc joining  $z_{r-1}$  and  $z_r$ .

Since  $\xi_r$  is arbitrary, we set  $\xi_r = z_r$  and  $\xi_{r-1} = z_{r-1}$  successively in (1) to find

$$\begin{split} I &= \lim_{n \to \infty} \sum_{r=1}^{n} & z_r \left( z_r - z_{r-1} \right) \\ I &= \lim_{n \to \infty} \sum_{r=1}^{n} & z_{r-1} \left( z_r - z_{r-1} \right) \end{split}$$

Adding these two results, we get

$$\begin{split} 2I &= \lim_{n \to \infty} \sum_{r=1}^{n} \ (z_r + z_{r-1}) \ (z_r - z_{r-1}) \\ &= \lim_{n \to \infty} \sum_{r=1}^{n} \ (z_r^2 - z_{r-1}^2) = \lim_{n \to \infty} \ (z_n^2 - z_0^2) = \beta^2 - \alpha^2 \\ I &= \frac{1}{2} (\beta^2 - \alpha^2) \end{split}$$

In particular, if L is closed, then  $\beta = \alpha$  and thus

$$\int_{T} dz = 0, \int_{T} z dz = 0.$$

# CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS COURSE CODE:18MMP201 UNIT II BATCH 2018-2020

2.8. Theorem (Integration along a regular arc). Let f(z) be continuous on the regular arc L whose equation is z(t) = x(t) + iy(t),  $t_0 \le t \le T$ . Prove that f(z) is integrable along L and that

$$\int_{L} f(z) dz = \int_{t_0}^{T} F(t) [\dot{x}(t) + i \dot{y}(t)] dt,$$

where F(t) denotes the value of f(z) at the point of L corresponding to the parametric value t.

Proof. Let us consider the sum

$$\Sigma = \sum_{r=1}^{n} f(\xi_r) (z_r - z_{r-1})$$

where  $\xi_r$  is a point of L between  $z_{r-1}$  and  $z_r$ . If  $\tau_r$  is the value of the parameter t corresponding to  $\xi_r$ , then  $\tau_r$  lies between  $t_{r-1}$  and  $t_r$ . Writing  $F(t) = \phi(t) + i\psi(t)$ , where  $\phi$  and  $\psi$  are real, we find that

$$\begin{split} \Sigma &= \sum_{r=1}^{n} \ \left[ \phi \left( \tau_{r} \right) + i \psi(\tau_{r}) \right] \left[ x_{r} - x_{r-1} \right) + i (y_{r} - y_{r-1}) \right] \\ &= \sum_{r=1}^{n} \ \phi(\tau_{r}) \left( x_{r} - x_{r-1} \right) + i \sum_{r=1}^{n} \ \phi(\tau_{r}) \left( y_{r} - y_{r-1} \right) \end{split}$$

$$\begin{split} &+i \sum_{r=1}^{n} \ \psi \left( \tau_{r} \right) \left( x_{r} - x_{r-1} \right) - \sum_{r=1}^{n} \ \psi (\tau_{r}) \left( y_{r} - y_{r-1} \right) \\ &= \Sigma_{1} + i \ \Sigma_{2} + i \ \Sigma_{3} - \Sigma_{4} \left( say \right) \\ &= \Sigma_{1} - \Sigma_{4} + i \ \left( \Sigma_{2} + \Sigma_{3} \right) \end{split}$$

We consider these four sums separately.

By the mean value theorem of differential calculus, the first sum is

$$\begin{split} \Sigma_1 &= \sum_{r=1}^n \ \, \varphi(\tau_r) \left( x_r - x_{r-1} \right) \\ &= \sum_{r=1}^n \ \, \varphi(\tau_r) \ \, \dot{x} \left( \tau_r' \right) \left( t_r - t_{r-1} \right) \\ & (f(a+h) - f(a) = hf'(a+\theta h), \ \, 0 \leq \theta \leq 1 \\ & x_r - x_{r-1} = x(t_r) \ \, - x(t_{r-1}) \\ &= (t_r - t_{r-1}) \ \, \dot{x} \left( \tau_{r'} \right) ) \end{split}$$

# CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS COURSE CODE:18MMP201 UNIT II BATCH 2018-2020

where  $\tau_r'$  his between  $t_{r-1}$  and  $t_r$ .

We first show that  $\Sigma_1$  can be made to differ by less than an arbitrary positive number, however small, from the sum

$$\sum_{1'} = \sum_{r=1}^{n} \phi(t_r) \dot{x}(t_r) (t_r - t_{r-1})$$

by making the maximum of the differences tr - tr-1 sufficiently small.

Now, by hypothesis, the functions  $\phi(t)$  and  $\dot{x}(t)$  are continuous. As continuous functions are necessarily bounded, there exist a positive number K such that the inequalities

$$|\phi(t)| \le K$$
,  $|\dot{x}(t)| \le K$ 

hold for  $t_0 \le t \le T$ .

Moreover, the functions are also uniformly continuous, we can, therefore, preassign an arbitrary positive number  $\epsilon$ , as small as we please, and then choose a positive number  $\delta$ , depending on  $\epsilon$ , such that

$$|\phi(t) - \phi(t')| < \in$$
,  $|\dot{x}(t) - \dot{x}(t')| < \in$ ,

whenever  $|t - t'| < \delta$ 

Hence if the maximum of the differences  $t_r - t_{r-1}$  is less than  $\delta$ , we have

$$\begin{aligned} |\phi(\tau_r) \,\dot{x} \, (\tau_r') - \phi(t_r) \,\dot{x} \, (t_r)| \\ &= |\phi(\tau_r) \,\{ \,\dot{x} \, (\tau_r') - \dot{x} \, (t_r)\} + \dot{x} \, (t_r) \,\{ \phi(\tau_r) - \phi(t_r)\} | \\ &\leq |\phi(\tau_r)|.| \,\,\dot{x} \, (\tau_r') - \dot{x} \, (t_r) \,| + |\,\dot{x} \, (t_r)|.|\phi(\tau_r) - \phi(t_r)| \\ &< 2K \,\varepsilon \end{aligned}$$

and therefore

$$|\Sigma_1 - \Sigma_1'| \le 2K \in (T - t_0)$$

By the definition of the integral of a continuous function of a real variable,  $\Sigma_1$  tends to the limit

$$\int_{t_0}^T \phi(t) \dot{x}(t)dt$$

$$\int_a^b f(x)dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \delta x_i$$

as  $n\to\infty$  and the maximum of the differences  $t_r-t_{r-1}$  tends to zero. Since  $|\Sigma_1-\Sigma_1'|$  can be made as small as we please by taking  $\delta$  small enough,  $\Sigma_1$  must also tend to the same limit.

Similarly the other terms of  $\Sigma$  tend to limits. Combining these results we find that  $\Sigma$  tends to the limit

$$\begin{split} &\int_{t_0}^T \left[ \varphi(t) \ \dot{x}\left(t\right) - \psi(t) \ \dot{y}\left(t\right) \right] dt \\ &+ i \ \int_{t_0}^T \left[ \psi(t) \ \dot{x}\left(t\right) + \varphi(t) \ \dot{y}\left(t\right) \right] dt \\ &= \int_{t_0}^T \left. F(t) [ \dot{x}\left(t\right) + i \ \dot{y}\left(t\right) \right] dt \end{split}$$

and so f(z) is integrable along the regular arc L.

# CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS COURSE CODE:18MMP201 UNIT II BATCH 2018-2020

**2.12.** Cauchy Theorem (Elementary Form). First we consider the elementary form of Cauchy theorem which requires the additional assumption that the derivative of f(z) is continuous. This form of Cauchy theorem is also known as Cauchy fundamental theorem, which has the following statement

If f(z) is analytic function whose derivative f'(z) exists and is continuous at each point within and on a closed contour C, then

$$\int f(z) dz = 0$$

**Proof.** Let D denotes the closed region which consists of all points within and on C. If we write z = x + iy, f(z) = u + iy, then we have

$$\int_{C} f(z)dz = \int_{C} (u + iv) (dx + idy)$$

$$= \int_{C} (u dx - vdy) + i \int_{C} (v dx + udy)$$
(1)

Now, we use the Green's theorem for a plane which states that if P(x, y), Q(x, y),  $\frac{\partial P}{\partial y}$ ,  $\frac{\partial Q}{\partial x}$  are

continuous functions within a domain D and if C is any closed contour in D, then

$$\int_{C} (P dx + Q dy) = \iint_{D} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$
 (2)

By hypothesis f'(z) exists and is continuous in D, so u and v and their partial derivatives  $u_x$ ,  $v_x$ ,  $u_y$ ,  $v_y$  are continuous functions of x and y in D. Thus the conditions of Green's theorem are satisfied. Hence applying this theorem in (1), we obtain

$$\int_{C} f(z)dz = \iint_{D} \left( -\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dx \, dy + i \iint_{D} \left( \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) dx \, dy$$

$$= \iint_{D} \left( \frac{\partial u}{\partial y} - \frac{\partial u}{\partial y} \right) dx \, dy + i \iint_{D} \left( \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} \right) dx \, dy$$

$$= 0 + i \, 0 = 0$$
(using C-R equations)

Hence the result

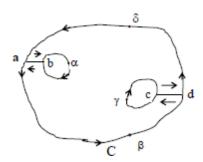
# Extension of Cauchy's Theorem to Contours Defining Multiply Connected Regions.

By adopting a suitable convention as to the sense of integration, Cauchy's theorem can be extended to the case of contours which are made up of several distinct closed contours. Consider, for example, a function f(z) which is analytic in the multiply connected region R bounded by the closed contour C and the two interior contours  $C_1$ ,  $C_2$  as well as on these contours themselves. The complete contour  $C^*$  which is the boundary of the region R is made up of the three contours C,  $C_1$  and  $C_2$  and we adopt the convention that  $C^*$  is described in the positive sense if the region R is on the L.H.S. w.r.t. this sense of describing it. Then by Cauchy's theorem

$$\int_{C^*} f(z) dz = 0$$

where the integral is taken round the complete contour C\* in the positive sense.

CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE:18MMP201 UNIT II BATCH 2018-2020



Practically, we deal with this case by drawing transversals like ab, cd and by applying Cauchy's theorem for a simple closed contour  $ab\alpha ba\beta dc\gamma cd\delta a$ . It is found convenient in applications to express the same result in the form

$$\int_{\mathbb{C}} f(z)dz = \int_{\mathbb{C}_1} f(z)dz + \int_{\mathbb{C}_2} f(z)dz$$

where all the three integrals are now taken in the same (positive) sense.

An exactly similar result holds in case there are any finite number of closed contours  $C_1, C_2,..., C_m$  inside a closed contour C and f(z) is analytic in the multiply connected region bounded by them as well as on them. We then have

$$\int_{C} f(z)dz = \int_{C_1} f(z)dz + \int_{C_2} f(z)dz + ... + \int_{C_m} f(z)dz.$$

where all the contours are described in positive sense.

Theorem. (Cauchy's Integral Formula). Let f(z) be analytic inside and on a closed

# CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS COURSE CODE:18MMP201 UNIT II BATCH 2018-2020

contour C and let zo be any point inside C. Then

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz$$

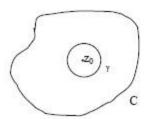
**Proof.** We consider the function  $\frac{f(z)}{z-z_0}$  This function is analytic throughout the region bounded

by C except at  $z = z_0$ .

Then, by 2.15, we have

$$\int_{C} \frac{f(z)}{z - z_0} dz = \int_{\gamma} \frac{f(z)}{z - z_0} dz$$

where γ is any closed contour inside C including the point z<sub>0</sub> as an interior point.



Let us choose  $\gamma$  to be the circle with centre  $z_0$  and radius  $\rho$ . Since f(z) is continuous, we can take  $\rho$  so small that on  $\gamma$ ,

$$|f(z)-f(z_0)| \le \epsilon$$

where  $\in$  is any preassigned positive number.

$$\int_{\gamma} \frac{f(z)}{z - z_0} dz = \int_{\gamma} \frac{[f(z) - f(z_0)] + f(z_0)}{z - z_0} dz$$

$$= f(z_0) \int_{\gamma} \frac{dz}{z - z_0} dz + \int_{\gamma} \frac{f(z) - f(z_0)}{z - z_0} dz$$
 (1)

For any point z on  $\gamma$ ,

$$z - z_0 = \rho e^{i\theta} \implies dz = \rho i e^{i\theta} d\theta$$

$$\int_{\gamma} \frac{dz}{z - z_0} = \int_0^{2\pi} \frac{\rho e^{i\theta} d\theta}{\rho e^{i\theta}} = \int_0^{2\pi} i d\theta = 2\pi i$$

and

$$\left| \int_{\gamma} \frac{f(z) - f(z_0)}{z - z_0} dz \right| = \left| \int_{0}^{2\pi} \frac{[f(z) - f(z_0)]}{\rho e^{i\theta}} \rho e^{i\theta} id\theta \right|$$
$$= \left| \int_{0}^{2\pi} [f(z) - f(z_0)] id\theta \right|$$
$$< \in \int_{0}^{2\pi} d\theta = 2\pi \in$$

Hence from (1), we get

$$\left| \int_{\mathcal{C}} \frac{f(z)}{z - z_0} dz - 2\pi i f(z_0) \right| < 2\pi \epsilon$$

# CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS COURSE CODE:18MMP201 UNIT II BATCH 2018-2020

Since  $\in$  is arbitrarily small and L.H.S. is independent of  $\in$ , it follows that

$$\int_{C} \frac{f(z)}{z - z_{0}} dz - 2\pi i f(z_{0}) = 0$$

i.e.

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz.$$

which proves the result.

# Cor. (Extension of Cauchy's Integral Formula to Multiply Connected Regions): If f(z)

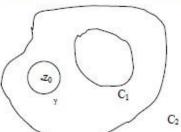
is analytic in a ring shaped region bounded by two closed contours  $C_1$  and  $C_2$  and  $z_0$  is a point in the region between  $C_1$  and  $C_2$ , then

$$f(z_0) = \frac{1}{2\pi i} \int_{C_2} \frac{f(z)}{z - z_0} dz - \frac{1}{2\pi i} \int_{C_1} \frac{f(z)}{z - z_0} dz.$$

where C2 is the outer contour.

**Proof.** Describe a circle  $\gamma$  of radius  $\rho$  about the point  $z_0$  such that the circle lies in the ring shaped region. The function  $\frac{f(z)}{z-z_0}$  is analytic in the region bounded by three close contours  $C_1$ ,  $C_2$ 

and y.



Thus by 2.15, we have.

$$\int_{C_{2}} \frac{f(z)}{z - z_{0}} dz = \int_{C_{1}} \frac{f(z)}{z - z_{0}} dz + \int_{\gamma} \frac{f(z)}{z - z_{0}} dz$$

where the integral along each contour is taken in positive sense. Now, using Cauchy's integral formula, we find.

$$\int_{C_2} \frac{f(z)}{z - z_0} dz = \int_{C_1} \frac{f(z)}{z - z_0} dz + 2\pi i f(z_0)$$

or

$$f(z_0) = \frac{1}{2\pi i} \int_{C_2} \frac{f(z)}{z - z_0} dz - \frac{1}{2\pi i} \int_{C_1} \frac{f(z)}{z - z_0} dz$$

Theorem (The derivative of an analytic function). Let f(z) be analytic within and on a

closed contour C and let z0 be any point inside C, then

$$f'(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-z_0)^2} dz$$

**Proof.** Let  $z_0 + h$  be a point in the nighbourhood of  $z_0$  and inside C,  $(\Delta z = h)$ . Then Cauchy's Integral formula at these two points, gives

# CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS COURSE CODE:18MMP201 UNIT II BATCH 2018-2020

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz.$$
  
$$f(z_0 + h) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0 - h} dz$$

and

Subtracting the first result from second, we get

$$\frac{f(z_0 + h) - f(z_0)}{h} = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0)(z - z_0 - h)} dz$$
 (1)

We observe in (1) that as  $h\rightarrow 0$ , the required result follows. We have thus only to show that we can proceed to the limit under the integral sign. We consider the difference

$$\frac{f(z_0 + h) - f(z_0)}{h} = \frac{1}{2\pi i} \int_{C} \frac{f(z)}{(z - z_0)^2} dz$$

$$= \frac{1}{2\pi i} \int_{C} \frac{f(z)}{(z - z_0)(z - z_0 - h)} - \frac{1}{2\pi i} \int_{C} \frac{f(z)}{(z - z_0)^2} dz$$

$$= \frac{h}{2\pi i} \int_{C} \frac{f(z)dz}{(z - z_0)^2 (z - z_0 - h)} \tag{2}$$

Since f(z) is analytic on C so f(z) is bounded on C. Thus  $|f(z)| \le M$  on C, M being an absolute positive constant. Let us denote the distance of  $z_0$  from the points nearest to it on C by  $\delta$  and the length of C by l. Then if  $|h| < \delta$ ,

$$\left| h \right|_{\mathbb{C}} \frac{f(z)dz}{(z-z_0)^2 (z-z_0-h)} \le \frac{Ml |h|}{\delta^2 (\delta - |h|)}$$
 (3)

which is bounded and tends to zero as  $|h|\rightarrow 0$ . Thus, taking limit as  $|h|\rightarrow 0$ , it follows from (2) that

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^2} dz$$

Hence f(z) is differentiable at  $z_0$  and

$$f'(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^2} dz$$

which is Cauchy's integral formula for f'(z) at points within C.

Cauchy's Inequality (Cauchy's Estimate). If f(z) is analytic within and on a circle C

# CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS COURSE CODE:18MMP201 UNIT II BATCH 2018-2020

given by  $|z - z_0| = R$  and if  $|f(z)| \le M$  for every z on C, then

$$|f^n(z_0)| \le \frac{M \lfloor n \rfloor}{R^n}$$

**Proof.** Since f(z) is analytic inside C, we have by Cauchy's integral formula for nth derivative of an analytic function

$$f^{n}(z_{0}) = \frac{\lfloor n \rfloor}{2\pi i} \int_{C} \frac{f(z)}{(z-z_{0})^{n+1}} dz.$$

Since on the circle  $|z - z_0| = R$ ,

$$z - z_0 = Re^{i\theta}$$
,  $dz = Re^{i\theta} id\theta$ 

and the length of the circle is  $2\pi R$ , therefore

$$\begin{split} |f^{n}(z_{0})| &= \frac{\lfloor \underline{n}}{2\pi} \left| \int_{C} \frac{f(z)dz}{(z - z_{0})^{n+1}} \right| \\ &\leq \frac{\lfloor \underline{n}}{2\pi} \int_{C} \frac{|f(z)||dz|}{|z - z_{0}|^{n+1}} \\ &\leq \frac{\lfloor \underline{n}}{2\pi} \int_{0}^{2\pi} \frac{M |Re^{i\theta} id\theta|}{|Re^{i\theta}|^{n+1}} = \frac{\lfloor \underline{n}}{2\pi} \int_{0}^{2\pi} \frac{M}{R^{n}} d\theta \\ &= \frac{\lfloor \underline{n}}{2\pi} \frac{M}{R^{n}} 2\pi = \frac{M \lfloor \underline{n}}{R^{n}} \end{split}$$

$$|f^{n}(z_{0})| \leq \frac{M \lfloor \underline{n}}{R^{n}}$$

Hence

Liouville's Theorem. A function which is analytic in all finite regions of the complex

plane, and is bounded, is identically equal to a constant.

01

If an integral function f(z) is bounded for all values of z, then it is constant

01

The only bounded entire functions are the constant functions.

**Proof.** Let  $z_1$ ,  $z_2$  be arbitrary distinct points in z-plane and let C be a large circle with centre at origin and radius R such that C encloses  $z_1$  and  $z_2$  i.e.  $|z_1| \le R$ ,  $|z_2| \le R$ .

Since f(z) is bounded, there exists a positive number M such that  $|f(z)| \le M \ \forall \ z$ . By Cauchy's integral formula,

$$f(z_1) = \frac{1}{2\pi i} \int_{C} \frac{f(z)dz}{z - z_1}$$

$$f(z_2) = \frac{1}{2\pi i} \int_{C} \frac{f(z)dz}{z - z_2}$$

$$f(z_2) - f(z_1) = \frac{1}{2\pi i} \int_{C} \frac{f(z)(z_2 - z_1)}{(z - z_2)(z - z_1)} dz$$

CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE:18MMP201 UNIT II BATCH 2018-2020

Thus

$$|f(z_{2}) - f(z_{1})| \leq \frac{|z_{2} - z_{1}|}{2\pi} \int_{C} \frac{|f(z)| |dz|}{|z - z_{1}| |z - z_{2}|}$$

$$\leq \frac{M|z_{2} - z_{1}|}{2\pi} \int_{C} \frac{|dz|}{|z - z_{1}| |z - z_{2}|}$$

$$\leq \frac{M\,|\,z_{2}-z_{1}\,|\,}{2\pi}\int\limits_{C}\,\frac{|\,dz\,|\,}{(|\,z\,|-|\,z_{1}\,|)(|\,z\,|-|\,z_{2}\,|)}\,\left|\because\,|\,z-z_{1}\,|\,\geq\,|\,z\,|-|\,z_{1}\,|\,\right|$$

Now, on the circle C,  $z = R e^{i\theta}$ , |z| = R,  $dz = Re^{i\theta} id\theta$ 

Therefore,

$$\begin{split} |f(z_2) - f(z_1)| & \leq \frac{M \, |\, z_2 - z_1 \, |\, \int_0^{2\pi} \, \frac{|\, Re^{i\theta} \, id\theta \, |\,}{(R - |\, z_1 \, |)(R - |\, z_2 \, |)} \\ & = \frac{M \, |\, z_2 - z_1 \, |\,}{2\pi} \frac{R}{(R - |\, z_1 \, |\, (R - |\, z_2 \, |)} 2\pi \\ & = \frac{M \, |\, z_2 - z_1 \, |\,}{\left(1 - \frac{|\, z_1 \, |\,}{R}\right) \left(1 - \frac{|\, z_2 \, |\,}{R}\right)} \cdot \frac{1}{R} \end{split}$$

which tends to zero as  $R \rightarrow \infty$ .

Hence  $f(z_2) - f(z_1) = 0$  i.e.  $f(z_1) = f(z_2)$ 

But  $z_1$ ,  $z_2$  are arbitrary, this holds for all couples of points  $z_1$ ,  $z_2$  in the z-plane, therefore f(z) = constant.

## The Fundamental Theorem of Algebra. Any polynomial

 $P(z) = a_0 + a_1 z + ... + z_n z^n$ ,  $a_n \ne 0$ ,  $n \ge 1$  has at least one point  $z = z_0$  such that  $P(z_0) = 0$  i.e. P(z) has at least one zero.

**Proof.** We establish the proof by contradiction.

If P(z) does not vanish, then the function  $f(z) = \frac{1}{P(z)}$  is analytic in the finite z-plane. Also when

 $|z| \rightarrow \infty$ ,  $P(z) \rightarrow \infty$  and hence f(z) is bounded in entire complex plane, including infinity. Liouville's theorem then implies that f(z) and hence P(z) is a constant which violates  $n \ge 1$  and thus contradicts the assumption that P(z) does not vanish. Hence it is concluded that P(z) vanishes at some point  $z = z_0$ 

2.32. Remark. The above form of fundamental theorem of algebra does not tell about the number of zeros of P(z). Another form which tells that P(z) has exactly n zeros, will be discussed later on. Of course, here we can prove this result by using the process of algebra as follows:

# CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS COURSE CODE:18MMP201 UNIT II BATCH 2018-2020

By the fundamental theorem of algebra, proved above, P(z) has at least one zero say  $z=z_0$  such that  $P(z_0)=0$ Then,

$$\begin{split} P(z) - P(z_0) &= a_0 + a_1 z + a_2 \ z^2 + \ldots + a_n \ z^n \\ &- (a_0 + a_1 \ z_0 + a_2 \ z_0^2 + \ldots \ a_n \ z_0^n) \\ &= a_1 \ (z - z_0) + a_2 (z^2 - z_0^2) + \ldots + a_n \ (z^n - z_0^n) \\ &= (z - z_0) \ Q(z) \end{split}$$

where Q(z) is a polynomial of degree (n-1). Applying the fundamental theorem of algebra again, we note that Q(z) has at least one zero, say  $z_1$  (which may be equal to  $z_0$ ) and so  $P(z) = (z-z_0) (z-z_1) R(z)$ , where R(z) is a polynomial of degree (n-2). Continuing in this manner, we see that P(z) has exactly n zeros.

2.1. Cauchy's theorem for a rectangle. We now see the simplest version of Cauchy's Theorem, in the case of a rectangle  $R=\{z=x+iy: a\leq x\leq b,\ c\leq y\leq d\}$ . We denote by  $\partial R$  the boundary of R, oriented counter-clockwise.

Theorem 2.5. Let  $\Omega$  be a domain containing R. For any f holomorphic on  $\Omega$  we have

$$\int_{\partial R} f \, dz = 0 \, .$$

*Proof.* For a rectangle  $R' \subseteq \Omega$  we write

$$\eta(R') = \int_{\partial R'} f \, dz \, .$$

We divide the rectangle R into 4 rectangles  $R^{(1)}, \ldots, R^{(4)}$  by bisecting each side into two equal segments.

Since the line integrals over the common sides cancel out, we obtain that

$$\eta(R) = \eta(R^{(1)}) + \dots + \eta(R^{(4)}).$$

At least one rectangle  $R^{(k)}$ , k = 1, ..., 4 must satisfy

$$|\eta(R^{(k)})| \ge |\frac{1}{4}\eta(R)|$$
.

We call this rectangle  $R_1$ . By repeating this construction we obtain a sequence of rectangles  $R_1, R_2, \ldots$  such that:

- (i)  $R \supset R_1 \supset R_2 \supset \cdots$ ;
- (ii)  $|\eta(R_n)| \ge \frac{1}{4} |\eta(R_{n-1})|$ , so that  $|\eta(R_n)| \ge 4^{-n} |\eta(R)|$ ;
- (iii) if  $p_n$  and  $d_n$  denote the perimeter and the diameter of  $R_n$ , respectively, and p, d the ones of R, then  $p_n = 2^{-n}p$  and  $d_n = 2^{-n}d$ .

# CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS COURSE CODE:18MMP201 UNIT II BATCH 2018-2020

By the Bolzano-Weierstrass theorem,  $\cap_n R_n$  is non-empty, and since  $d_n \to 0$ ,  $\cap_n R_n$  cannot contain two distinct points. Therefore, there exists  $\zeta \in R$  such that  $\cap_n R_n = \{\zeta\}$ .

Given  $\varepsilon > 0$ , there exists  $\delta > 0$  such that  $D(\zeta, \delta) \subseteq \Omega$  and, since the function f is holomorphic in  $\Omega$ , such that

$$|f(z) - f(\zeta) - (z - \zeta)f'(\zeta)| < \varepsilon|z - \zeta|$$

for  $z \in D(\zeta, \delta)$ .

Recall that, from Cor. 2.4 we know that

$$\int_{\partial R_n} dz = \int_{\partial R_n} (z - \zeta) \, dz = 0 \, .$$

Now, there exists  $n_0$  such that for  $n \ge n_0$   $R_n$  is contained in  $D(\zeta, \delta)$ , and then, if  $z \in \partial R_n$ ,  $|z - \zeta| \le d_n$ . Therefore, by (ii) and (iii) above,

$$|\eta(R_n)| = \left| \int_{\partial R_n} \left( f(z) - f(\zeta) - (z - \zeta) f'(\zeta) \right) dz \right|$$

$$\leq \varepsilon \int_{\partial R_n} |z - \zeta| |dz|$$

$$\leq \varepsilon d_n p_n$$

$$\leq \varepsilon 4^{-n} dp.$$

It then follows that

$$|\eta(R)| \le 4^n |\eta(R_n)| \le \varepsilon dp$$
.

Since  $\varepsilon > 0$  was arbitary, the theorem is proven.

**Theorem 2.6.** Let  $\Omega$  and R be as in Thm. 2.5. Let f be holomorphic in the domain  $\Omega'$  obtained removing from  $\Omega$  a finite number of points  $\zeta_j$ , j = 1, ..., n, lying in the interior of R, and assume that

$$\lim_{z \to \zeta_j} (z - \zeta_j) f(z) = 0$$

for j = 1, ..., n. Then

$$\int_{\partial R} f \, dz = 0.$$

*Proof.* We first argue that it suffices to consider the case of a single exceptional point  $\zeta$ . In fact, we can divide the rectangle R as finite union of rectangles  $R_j$ , each containing a single exceptional point  $\zeta_j$ ,  $j = 1, \ldots, n$ , and observe again that

$$\int_{\partial R} f \, dz = \sum_{j=1}^n \int_{\partial R_j} f \, dz \, .$$

#### CLASS: I M.SC(MATHEMATICS) **COURSE NAME: COMPLEX ANALYSIS COURSE CODE:18MMP201 UNIT II BATCH 2018-2020**

So, let us assume that we have a single exceptional point  $\zeta$  inside R. We divide R as union of nine rectangles, in such a way that the central one is a square  $R_0$  centered at  $\zeta$  and has side lengths to be fixed. Then,

$$\int_{\partial R} f \, dz = \int_{\partial R_0} f \, dz + \sum_{j=1}^{8} \int_{\partial R_j} f \, dz$$
$$= \int_{\partial R_0} f \, dz$$

by applying Thm. 2.5 to the integrals  $\int_{\partial R_j} f \, dz$ ,  $j = 1, \dots, 8$ . Given  $\varepsilon > 0$  we fix the side lengths of  $R_0$  to be small enough so that

$$|z - \zeta| |f(z)| \le \varepsilon$$

for  $z \in \partial R_0$ . We then have

$$\left| \int_{\partial R} f \, dz \right| = \left| \int_{\partial R_0} f \, dz \right| \le \int_{\partial R_0} |f(z)| \, |dz|$$

$$\le \varepsilon \int_{\partial R_0} \frac{1}{|z - \zeta|} \, |dz|$$

$$< 8\varepsilon.$$

since  $R_0$  is a square, as an elementary argument shows. This proves the theorem.

2.2. Cauchy's theorem in a disk. We denote by  $D = D(z_0, r)$  the open disk having center  $z_0$  and radius r > 0; that is,

$$D(z_0, r) = \{ z \in \mathbf{C} : |z - z_0| < r \}.$$

Theorem 2.7. Let f be holomorphic in an open disk D. Then

$$\int_{\gamma} f(z) dz = 0$$

for all closed curves  $\gamma$  contained in D.

# CLASS:I M.SC(MATHEMATICS) C COURSE CODE:18MMP201

COURSE NAME:COMPLEX ANALYSIS
UNIT II BATCH 2018-2020

*Proof.* We are going to use Thm. 2.5. For any  $z = x + iy \in D$ , let  $\sigma = \sigma_z$  be the curve in D consisting of the horizontal segment from  $(x_0, y_0)$  to  $(x, y_0)$  followed by the vertical segment from  $(x, y_0)$  to (x, y). Define

$$F(z) = \int_{\sigma_z} f \, dz \, .$$

Then F is well defined and we can easily compute that

$$\partial_y F(z) = i f(z)$$
.

By Thm. 2.5, since f is holomorphic on D, we have that

$$F(z) = \int_{\sigma_z} f \, dz = \int_{\tau_z} f \, dz$$

where  $\tau_z$  is the curve consisting of the vertical segment from  $(x_0, y_0)$  to  $(x_0, y)$  followed by the horizontal segment from  $(x_0, y)$  to (x, y). Computing the partial derivatives in x of F we obtain that  $\partial_x F(z) = f(z)$ . Since the partial derivatives of F are continuous and satisfy the CR-equation, F is holomorphic in D, and its derivative is f.

Therefore, f(z)dz is an exact differential and

$$\int_{\gamma} f(z) \, dz = 0$$

**Theorem 2.9.** Let f be holomorphic in D' obtained removing from an open disk D a finite number of points  $\zeta_j$ , j = 1, ..., n, and assume that

$$\lim_{z \to \zeta_j} (z - \zeta_j) f(z) = 0$$

for  $j = 1, \ldots, n$ . Then

$$\int_{\gamma} f \, dz = 0$$

for every closed curve  $\gamma$  contained in D'.

*Proof.* This proof now follows from the previous arguments. First we can reduce to the case of a single ecceptional point  $\zeta$ . Then we only need to make sure that the curve  $\gamma$  does not pass through  $\zeta$ . Having fixed  $z_0 \in D'$ , given  $z \in D'$ , if the the rectangle with oppositive vertices in  $z_0$  and z passes through  $\zeta$ , we can still easily define the indefinite integral F of f on D'. We leave

the simple detail to the reader

Cauchy's formula. We begin with the notion of index of a point with respect to a curve.

Let  $\gamma$  be a closed curve and let  $z_0$  be a point not lying on  $\gamma$ . Then the integral

$$\int_{\gamma} \frac{dz}{z - z_0}$$

CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE:18MMP201 UNIT II BATCH 2018-2020

is an integral multiple of  $2\pi i$ .

*Proof.* Let  $\gamma:[a,b]\to \mathbb{C}$  and define

$$h(t) = \int_a^t \frac{\gamma'(\tau)}{\gamma(\tau) - z_0} d\tau.$$

We wish to show that there exists an integer k such that

$$\int_{\gamma} \frac{dz}{z - z_0} = h(b) = 2\pi i k.$$

The function h is defined and continuous on [a, b], h(a) = 0 and

$$h'(t) = \frac{\gamma'(t)}{\gamma(t) - z_0}$$

on the interval [a, b] taken away a finite number of points where  $\gamma(t)$  is not differentiable. It follows that

$$\frac{d}{dt} (e^{-h(t)} (\gamma(t) - z_0)) = e^{-h(t)} (-h'(t) (\gamma(t) - z_0) + \gamma'(t))$$
= 0

except at those points  $t_1, \ldots, t_n$  where  $\gamma(t)$  is not differentiable. Therefore,  $e^{-h(t)}(\gamma(t) - z_0)$  is constant on each connected component of  $[a, b] \setminus \{t_1, \ldots, t_n\}$ . Since  $e^{-h(t)}(\gamma(t) - z_0)$  is also continuous, it follows that it is constant on [a, b]; that is,

$$e^{-h(t)}(\gamma(t) - z_0) = c.$$

Since h(a) = 0,  $c = \gamma(a) - z_0$ , so that

$$e^{h(t)} = \frac{\gamma(t) - z_0}{\gamma(a) - z_0}.$$

Now, using the fact that  $\gamma(b) = \gamma(a)$  we have  $e^{h(b)} = 1$ , so that

$$h(b) = 2\pi i k$$

(Morera) Let f be continuous on a domain  $\Omega$ . Suppose that

$$\int_{\gamma} f(\zeta) \, d\zeta = 0$$

for all closed curves  $\gamma$  in  $\Omega$ . Then, f is holomorphic in  $\Omega$ .

CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE:18MMP201 UNIT II BATCH 2018-2020

Recall that for a power series expansion  $f(z) = \sum_{n=0}^{+\infty} a_n (z-z_0)^n$  we have that  $f^{(n)}(z_0) = n!a_n$ . Then, we just have obtained the formula

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta$$
,

valid when  $\gamma = \partial D(z_0, r) \subseteq \Omega$ . More generally we have

# **Definition:**

If f = u + iv is a continuous complex-valued function defined on an interval [a, b] on the real line, we set

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} u(t) dt + i \int_{a}^{b} v(t) dt.$$

Then the mapping  $f \mapsto \int_a^b f(t)dt$  is complex linear.

## Theorem:

Let  $f \in C([a,b])$ . Then

$$\left| \int_{a}^{b} f(t) dt \right| \leq \int_{a}^{b} |f(t)| dt.$$

*Proof.* The proof is simple. If  $\int_a^b f(t)dt = 0$  we have nothing to prove. Otherwise, let  $\alpha \in \mathbb{C}$ ,  $|\alpha| = 1$ . Then

$$\operatorname{Re}\left(\alpha \int_{a}^{b} f(t) dt\right) = \int_{a}^{b} \operatorname{Re}\left(\alpha f(t)\right) dt \le \int_{a}^{b} \left|\operatorname{Re}\left(\alpha f(t)\right)\right| dt$$
$$\le \int_{a}^{b} \left|\alpha f(t)\right| dt = \int_{a}^{b} \left|f(t)\right| dt.$$

CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS
COURSE CODE:18MMP201 UNIT II BATCH 2018-2020

## **SIX MARKS**

- 1. Prove that If f(z) is analytic in an open disk  $\Delta$ , then  $\int_{\gamma} f(z)dz = 0$  for every closed curve  $\gamma$  in  $\Delta$ .
- 2. State and prove fundamental theorem of algebra.
- 3. Prove that f(z) be analytic on the set R' obtained from the rectangle R by omitting a finite number of interior points  $\zeta_j$ . If it is true that  $\lim_{z \to \zeta_j} (z \zeta_j) f(z) = 0$  for all j, then  $\int_{\partial R} f(z) dz = 0$ .
- 4. Show that an analytic function f(z) has derivative of all ordered which are analytic can be represented by these formula  $\frac{n!}{2\pi i} \int_{C(\zeta-z)^{+1}} d\zeta$  where c is a circle about a point 'z' and z belongs to an arbitrary region in  $\Omega$ .
- 5. State and Prove Cauchy's theorem for rectangle.
- 6.State and prove Morera's theorem.
- 7. State and prove Fundamental theorem of algebra.
- 8. Show that the line  $\int_{\gamma} p \ dx + q dy$ , defined in  $\Omega$  depends only on the end points of  $\gamma$  iff there exist a function u(x, y) in  $\Omega$  with the partial derivative  $\frac{\partial U}{\partial x} = p$ ,  $\frac{\partial U}{\partial y} = q$ .
- 9. State and prove Cauchy's estimate theorem.
- 10.State and prove Liouville's theorem.
- 11. State and Prove Cauchy's theorem for disk.

### **TEN MARKS**

- 1. State and Prove Cauchy theorem for Rectangle.
- 2. Write about Properties of complex integral.

| Questions                                                                | Choice 1                     | Choice 2                  | Choice 3                  | Choice 4              | Answer                    |  |
|--------------------------------------------------------------------------|------------------------------|---------------------------|---------------------------|-----------------------|---------------------------|--|
| The functions of the form, $P_n(Z)$ =                                    |                              |                           |                           |                       | 1 .1 .                    |  |
| $a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$ , $a_n \neq 0$ is              | polynomial of                | polynomial of             | polynomial of             | polynomial of         | polynomial of             |  |
| called a                                                                 | degree n                     | degree 5                  | degree 2n                 | degree n-1            | degree n                  |  |
| If f (z) and g(z) are continuous at $z_0$                                |                              | differentiable at         |                           | differentiable at     | Continuous at             |  |
| then $f(z).g(z)$ is                                                      | Continuous at z <sub>0</sub> | $z_0$                     | Continuous at z           | z                     |                           |  |
| $f(z) = z^2$ is a valued                                                 |                              | 0                         |                           |                       | Z <sub>0</sub>            |  |
| f(z) = z is a                                                            | single                       | multi                     | double                    | many                  | double                    |  |
| If $f(z)$ of f has only one value it is                                  |                              |                           |                           |                       |                           |  |
| called valued function.                                                  | single                       | multi                     | double                    | many                  | single                    |  |
| If $ f(z)  < M$ for all z in s, then                                     |                              |                           |                           |                       |                           |  |
| f(z) is said toin S.                                                     | multi valued                 | continuous                | bounded                   | analytic              | bounded                   |  |
| The limit of a function is                                               | unique                       | does not exist            | different                 | multivalued           | unique                    |  |
| If $ f(z) - f(z_0)  < \epsilon$ for all z in S with $ z $                |                              |                           |                           |                       |                           |  |
| $ -z_0  < \delta$ then f(z) is                                           | bounded                      | continuous                | unique                    | does not exist        | continuous                |  |
| If f (z) and g(z) are continuous at $z_0$                                |                              | differentiable at         |                           | differentiable at     | Continuous at             |  |
| then $f(z) \pm g(z)$ is                                                  | Continuous at z <sub>0</sub> | Zo                        | Continuous at z           | z                     |                           |  |
| If f (z) and g(z) are continuous at $z_0$                                |                              | differentiable at         |                           | differentiable at     | Continuous at             |  |
| then $f(z) / g(z)$ is                                                    | Continuous at z <sub>0</sub> | $z_0$                     | Continuous at z           | z                     |                           |  |
| In a compact set every continuous                                        |                              | uniformly                 |                           | L                     | Z <sub>0</sub>            |  |
| function is                                                              | bounded in s                 | continuous in s           | unique                    | does not exist        | bounded in s              |  |
| If $ f(z_1) - f(z_2)  < \epsilon$ for all $z_1, z_2$ S with              |                              | uniformly                 |                           |                       | uniformly                 |  |
| $ z_1 - z_2  < \delta$ then f(z) is                                      | bounded in s                 | continuous in s           | unique                    | does not exist        | continuous in             |  |
| If a function is differentiable at all                                   |                              | continuous in s           |                           |                       | Continuous III            |  |
|                                                                          |                              |                           |                           |                       |                           |  |
| points in some neighbourhood of a point, then the function is said to be | bounded                      | analytic                  | differentiable            | compact               | analytic                  |  |
| at that point.                                                           |                              |                           |                           |                       |                           |  |
| A function which is analytic                                             |                              |                           |                           |                       |                           |  |
| everywhere in the finite plane is                                        | single                       | multi                     | entire                    | continuous            | entire                    |  |
| called an function.                                                      |                              |                           |                           |                       |                           |  |
| f(z) is a function differentiable at z0,                                 | Continuous et z              | compact at z              | Continuous at z           | differentiable at     | Continuous at             |  |
| then f(z) is                                                             | Continuous at z <sub>0</sub> | compact at z              | Continuous at z           | z                     | 7.                        |  |
| A point of a function is a point at                                      |                              |                           |                           |                       |                           |  |
| which the function ceases to be                                          | non singular                 | Singular                  | entire                    | continuous            | Singular                  |  |
| analytic                                                                 |                              |                           |                           |                       |                           |  |
| f(z) =  z  <sup>2</sup> is                                               | analytic                     | not analytic              | continuous                | exist                 | not analytic              |  |
| everywhere                                                               | •                            | •                         | _                         |                       | •                         |  |
| d/dz{cf(z)}                                                              | cf <sup>1</sup> (z)          | f <sup>1</sup> (z)        | f <sup>1</sup> (z)+c      | f <sup>1</sup> (z) /c | cf <sup>1</sup> (z)       |  |
| The quotient of two polynomials is                                       | Exponential                  | logarithmic               | Continuous                | rational function     | rational                  |  |
| called a                                                                 | function                     | function                  | function                  |                       | function                  |  |
| If $f(z)$ and $g(z)$ are continuous at $z_0$                             | Continuous at z <sub>0</sub> | differentiable at         | Continuous at z           | differentiable at     | Continuous at             |  |
| then $f(z)/g(z)$ , $g(z)\neq 0$ is                                       |                              | $z_0$                     |                           | Z                     | $z_0$                     |  |
| If $f(1/z)$ is analytic at 0 then $f(z)$ is                              | -                            | Continuous at ∞           | Differentiable at         | Differentiable at     | Analytic at ∞             |  |
| The cartesian coordinates of C-R                                         | $u_x = v_y$ and $u_y = -$    | $u_x = v_y$ and $u_y = -$ | $u_x = v_y$ and $u_x = -$ | $u_x=1$ and $u_y=-$   | $u_x = v_y$ and $u_y = 0$ |  |
| equations are                                                            | V <sub>x</sub>               | V <sub>x</sub>            | V <sub>x</sub>            | V <sub>x</sub>        | -v                        |  |
| A function of complex variable is                                        | complex                      | variable                  | complex                   | constant              | complex                   |  |
| sometimes called a  If the product of the slopes is -1, then             | variable                     |                           | function                  |                       | function                  |  |
| the curves cut each other                                                | diagonally                   | orthogonally              | at the origin             | at the point 1        | orthogonally              |  |
| The function that is multiple valued                                     | c( ) 2                       | C( ) Z                    | f(a) 1/-                  | c/ \ 1/2              | 6( ) 1/2                  |  |
|                                                                          | $f(z) = z^2$                 | $f(z) = e^z$              | f(z) = 1/z                | $f(z) = z^{1/2}$      | $f(z) = z^{1/2}$          |  |
| logz is a valued function                                                | single                       | multi                     | double                    | three                 | multi                     |  |
| If $f(z) = 1/z^2$ then                                                   | 0                            | 2                         | 1                         | -1                    | 0                         |  |
| If $f(z_0) = \infty$ , the function $f(z)$ is                            | continuous                   | not continuous            | difforentiable            | hounded               | not                       |  |
| $at z = z_0^{\lim_{z \to \infty} f(z)} =$                                | continuous                   | not continuous            | differentiable            | bounded               | continuous                |  |
| <u> </u>                                                                 | ļ.                           | ļ.                        | Į                         | !                     |                           |  |

| The function $f(z) = \text{Re } z /  z $ , when $z \neq 0$ ; $f(z) = 0$ when $f(z) = 0$ is | continuous               | not continuous | differentiable | bounded | not<br>continuous |
|--------------------------------------------------------------------------------------------|--------------------------|----------------|----------------|---------|-------------------|
| The function $ z ^2$ is                                                                    | continuous               | analytic       | not analytic   | bounded | not analytic      |
| If $f(z) = u + iv$ is analytic , then $u(x,y)$ and $v(x,y)$ are                            | harmonic                 | analytic       | continuous     | bounded | harmonic          |
| The function $f(z) = \log z$ , then $u(r,\theta)$<br>= $v(r,\theta)$ =                     | $\log \theta$ , $\log r$ | r, log θ       | log r , θ      | r,θ     | log r , θ         |
| If $f(z) = 1/z$ then                                                                       | ∞                        | -1             | 0              | 1       | 0                 |

CLASS: I M.SC (MATHEMATICS)
COURSE CODE:18MMP201

COURSE NAME: COMPLEX ANALYSIS
UNIT – III BATCH -:

BATCH -2018-2020

#### **UNIT III**

#### **SYLLABUS**

Harmonic functions-mean value property-Poisson's formula-Schwarz theorem, Reflection principle-Weierstrass theorem- Taylor series and Laurent series.

#### Harmonic functions

In this section we return to one aspect of the theory that concerns the analysis of harmonic functions, subject often called *potential theory*.

Recall that a  $C^2$  function u on an open set  $A \subseteq \mathbb{R}^2$  is said to be harmonic on A if  $\Delta u = 0$  on A, where  $\Delta = \partial_x^2 + \partial_y^2$  is the *Laplacian*. The next lemma collects the first elementary but fundamental facts about the relation between harmonic and holomorphic functions.

#### Theorem:

If f = u + iv is holomorphic on an open set  $A \subseteq \mathbb{C}$  then its real and imaginary

parts u and v are harmonic on A.

If u is a real harmonic function on a simply connected open set  $\mathcal{D}$ , then there exists a real harmonic function v on  $\mathcal{D}$  such that u+iv is holomorphic on  $\mathcal{D}$ . In this case, we will say that v is the harmonic conjugate of u on  $\mathcal{D}$ .

*Proof.* The first part follows from Subsection 1.2.

Suppose now u is a real harmonic function on a simply connected open set  $\mathcal{D}$ . We wish to  $v \in C^2(\mathcal{D})$  satisfying the CR-equations on  $\mathcal{D}$ , that is, such that

$$dv = (-\partial_y u)dx + (\partial_x u)dy.$$

The one on the right hand side is a closed differential since u is harmonic. Since  $\mathcal{D}$  is simply connected, it is an exact differential, so such a v exists. It immediately follows that u + iv is

# holomorphic.

We remark that the hypothesis of  $\mathcal{D}$  being simply connected cannot be relaxed. As an example, consider  $A = \mathbb{C} \setminus \{0\}$  and  $u(x,y) = \frac{1}{2}\log(x^2 + y^2)$ . Then u is real and harmonic. On  $A \cap \{x + iy : x > 0\}$  is the real part of  $\log z$ , that cannot be extended to all of A. Hence, there exists no function holomorphic on A whose real part is u.

Maximum principle. We now prove the maximum principle for (real) harmonic functions.

#### Theorem:

Let  $\Omega \subseteq \mathbb{C} \equiv \mathbb{R}^2$  be a domain (connected open set),  $u : \Omega \to \mathbb{R}$  be harmonic. If

CLASS: I M.SC (MATHEMATICS)
COURSE CODE:18MMP201

COURSE NAME: COMPLEX ANALYSIS
UNIT – III BATCH

BATCH -2018-2020

there exists  $z_0 \in \Omega$  and  $r_0 > 0$  such that  $D(z_0, r_0) \subseteq \Omega$  and  $u(z_0) = \sup\{u(z) : z \in D(z_0, r_0)\}$ , then u is constant on  $\Omega$ .

Proof. Let

$$\Omega' = \{z \in \Omega : \text{ there exists } r_z > 0 \text{ such that for } w \in D(z, r_z), u(w) = u(z_0)\}.$$

We wish to show that  $\Omega'$  is open, closed in  $\Omega$  and non-empty, thus showing that  $\Omega' = \Omega$ .

On  $D(z_0, r_0)$  we can find h holomorphic such that  $\operatorname{Re} h = u$ . Take  $f = e^h$ . Since  $|f| = e^{\operatorname{Re} h} = e^u$ , |f| attains its maximum at  $z_0$ . Hence f is constant on  $D(z_0, r_0)$ , so is u. Thus,  $\Omega' \neq \emptyset$ . Moreover,  $\Omega'$  is open by construction.

Finally, let  $z \in \overline{\Omega'}$ . Let  $D(z, r_z) \subseteq \Omega$ . Since  $z \in \overline{\Omega'}$ , there exists some open disk on which u is constant. Let  $h_z$  be the holomorphic function on  $D(z, r_z)$  whose real part is u. Then,  $h_z$  is constant on an open disk, hence on all of  $D(z, r_z)$ , so is u. Thus,  $z \in \Omega'$ ,  $\Omega'$  is closed, that is,

 $\Omega' = \Omega$ .

#### Theorem:

(The Poisson formula for the disk) Let  $A \subseteq \mathbb{C}$  be open,  $\overline{D(0,R)} \subseteq A$ , u be

harmonic on A. Then for every  $z \in D(0, R)$  we have

$$u(z) = \frac{1}{2\pi} \int_0^{2\pi} u(Re^{i\theta}) \cdot \frac{R^2 - |z|^2}{|Re^{i\theta} - z|^2} d\theta.$$

(i) The function

$$P_z(\zeta) = \frac{1}{2\pi} \cdot \frac{|\zeta|^2 - |z|^2}{|\zeta - z|^2},$$

defined for  $z \in D(0,R)$  and  $\zeta \in \partial D(0,R)$  is called the *Poisson kernel* for the disk D(0,R) polar coordinates it has the expression

$$\begin{split} P_{re^{i\eta}}(Re^{i\theta}) &= \frac{1}{2\pi} \cdot \frac{R^2 - r^2}{|Re^{i\theta} - re^{i\eta}|^2} \\ &= \frac{1}{2\pi} \cdot \frac{R^2 - r^2}{R^2 - 2Rr\cos(\theta - \eta) + r^2} \,. \end{split}$$

CLASS: I M.SC (MATHEMATICS)
COURSE CODE:18MMP201

COURSE NAME: COMPLEX ANALYSIS

UNIT – III

BATCH -2018-2020

(ii) The Poisson kernel  $P_{re^{i\eta}}(Re^{i\theta})$  is a positive kernel, that is,

$$P_{re^{i\eta}}(Re^{i\theta}) > 0$$

for all 0 < r < R,  $\eta, \theta \in [0, 2\pi]$ .

(iii) If  $\zeta = Re^{i\theta}$  and  $z = re^{i\eta}$ , then

$$P_{re^{i\eta}}(Re^{i\theta}) = \frac{1}{2\pi} \operatorname{Re} \frac{\zeta + z}{\zeta - z} = \frac{1}{2\pi} \operatorname{Re} \frac{Re^{i\theta} + re^{i\eta}}{Re^{i\theta} - re^{i\eta}}.$$

This follows at once from (7.1), since

$$\frac{\zeta+z}{\zeta-z} = \frac{\zeta+z}{\zeta-z} \cdot \frac{\bar{\zeta}-\bar{z}}{\bar{\zeta}-\bar{z}} = \frac{|\zeta|^2 - |z|^2 + (\bar{\zeta}z - \zeta\bar{z})}{|\zeta-z|^2}.$$

(iv) Finally, since the constant function u(z) = 1 is harmonic, from the reproducing property in Thm. 7.6 we see that

$$\frac{1}{2\pi} \int_0^{2\pi} P_z(Re^{i\theta}) d\theta = \frac{1}{2\pi} \int_0^{2\pi} \frac{R^2 - |z|^2}{|Re^{i\theta} - z|^2} d\theta = 1.$$

Proof of Thm. 7.6. Let s > R and h be the holomorphic function on D(0, s) such that  $u = \operatorname{Re} h$ . For  $z \in D(0, R)$ , by Cauchy's formula, letting  $\gamma(\theta) = Re^{i\theta}$ , with  $\theta \in [0, 2\pi]$ , we have

$$h(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{h(\zeta)}{\zeta - z} d\zeta$$

$$= \frac{1}{2\pi} \int_0^{2\pi} h(Re^{i\theta}) \frac{Re^{i\theta}}{Re^{i\theta} - z} d\theta.$$

Moreover, if we set  $w=R^2/\bar{z}$ , we observe that  $w=\frac{R^2}{r^2}z$ , where  $z=re^{i\eta}$ , and that the function

$$\zeta \mapsto \frac{h(\zeta)}{\zeta - w}$$

is holomorphic on  $\overline{D(0,R)}$ , since  $|w|=\frac{R^2}{r}>R$ . Therefore,

$$\begin{split} 0 &= \frac{1}{2\pi i} \int_{\gamma} \frac{h(\zeta)}{\zeta - w} \, d\zeta \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} h(Re^{i\theta}) \frac{Re^{i\theta}}{Re^{i\theta} - \frac{R^{2}}{\tilde{\pi}}} \, d\theta \end{split}$$

$$= \frac{1}{2\pi} \int_0^{2\pi} h(Re^{i\theta}) \frac{\bar{z}}{\bar{z} - Re^{-i\theta}} d\theta.$$

CLASS: I M.SC (MATHEMATICS)
COURSE CODE:18MMP201

COURSE NAME: COMPLEX ANALYSIS
UNIT – III BATCH -2

BATCH -2018-2020

$$h(z) = \frac{1}{2\pi} \int_0^{2\pi} h(Re^{i\theta}) \left( \frac{Re^{i\theta}}{Re^{i\theta} - z} - \frac{\bar{z}}{\bar{z} - Re^{-i\theta}} \right) d\theta$$
$$= \frac{1}{2\pi} \int_0^{2\pi} h(Re^{i\theta}) \frac{R^2 - |z|^2}{|Re^{i\theta} - z|^2} d\theta.$$

By passing to real and imaginary parts we obtain

$$u(z) = \frac{1}{2\pi} \int_0^{2\pi} u(Re^{i\theta}) \cdot \frac{R^2 - |z|^2}{|Re^{i\theta} - z|^2} d\theta$$

The Weierstrass factorization theorem.

### Definition

We define the Weierstrass elementary factors as E(z,0) = 1 - z and for

$$n = 1, 2, \dots, \quad E(z, n) = (1 - z)e^{z + \frac{z^2}{2} + \dots + \frac{z^n}{n}}$$
.

# Theorem

Let  $\{z_j\} \subseteq \mathbb{C}$ ,  $\{p_j\} \subseteq \mathbb{N}$  be chosen as above. Then the Weierstrass product

$$\prod_{j=1}^{+\infty} E(z/z_j, p_j)$$

converges uniformly on every set  $\{|z| \le r\}$ , r > 0, to a holomorphic entire function F. The zeros of F are precisely the points  $\{z_j\}$  counted with the corresponding multiplicity.

*Proof.* Let r > 0 be fixed. Let  $j_0$  be such that  $|z_j| > r$  for  $j \ge j_0$ . Thus,

$$\left| E\left(z/z_j, p_j\right) - 1 \right| \le \left| \frac{z}{z_j} \right|^{p_j + 1} \le \left( \frac{r}{|z_j|} \right)^{p_j + 1}.$$

By the hypothesis on the  $p_i$ 's,

$$\sum_{j=j_0}^{+\infty} \left| E\left(z/z_j, p_j\right) - 1 \right| \leq \sum_{j=j_0}^{+\infty} \left(\frac{r}{|z_j|}\right)^{p_j + 1} < +\infty.$$

Weierstrass's M-test implies that  $\sum_{j=j_0}^{+\infty} |E(z/z_j, p_j) - 1|$  converges uniformly on  $\{|z| \le r\}$ , for any r > 0. Thm. 8.6 now implies that

$$\prod_{j=1}^{+\infty} E\left(z/z_j, p_j\right) = \prod_{j=1}^{j_0-1} E\left(z/z_j, p_j\right) \prod_{j=j_0}^{+\infty} E\left(z/z_j, p_j\right)$$

CLASS: I M.SC (MATHEMATICS)
COURSE CODE:18MMP201

COURSE NAME:COMPLEX ANALYSIS
UNIT – III BATCH -

BATCH -2018-2020

converges uniformly on compact subsets of C to an entire function F whose zeros are precisely the zeros of the  $E(z/z_j, p_j)$ 's.  $\square$ 

# Corollary

Let  $\{z_j\}$  be a sequence such that  $|z_j| \to +\infty$ . Then there exists an entire

function F whose zeros are precisely the  $\{z_i\}$ , counting multiplicity.

*Proof.* We may assume that  $z_1 = \cdots = z_k = 0$ , and  $z_j \neq 0$  for j > k. Let  $p_j = j - 1$ . Let r > 0 be fixed. Let N = N(r) be such that  $|z_j| > 2r$  for  $j \geq N$ . Then

$$\sum_{j=N}^{+\infty} \left(\frac{r}{|z_j|}\right)^j \le \sum_{j=N}^{+\infty} \frac{1}{2^j} < +\infty.$$

Thus, by Thm. 8.9, the function

$$F(z) = z^k \prod_{j=k+1}^{+\infty} E(z/z_j, j-1)$$

(Weierstrass' Factorization Theorem) Let f be an entire function. Sup-

pose that f vanishes of order k at the origin. Let  $\{z_j\}$  be the other zeros of f, counting multiplicity. Then there exists an entire function g such that

$$f(z) = z^k e^{g(z)} \prod_{j=1}^{+\infty} E(z/z_j, j-1).$$

*Proof.* By the Cor. 8.10, the function  $h(z) = z^k \prod_{j=1}^{+\infty} E(z/z_j, j-1)$  is entire and has the same zeros as f. Hence, the function f/h can be extended to an entire function, with no zero. Since C is simply connected,  $\log(f/h) = g$  is well defined and entire.

Hence,  $e^g = f/h$ , that is,

$$f(z) = h(z)e^{g(z)} = z^k e^{g(z)} \prod_{j=1}^{+\infty} E(z/z_j, j-1)$$
.

We now apply this result to describe an identity that describes the factorization of  $\sin z$ .

CLASS: I M.SC (MATHEMATICS)
COURSE CODE:18MMP201

COURSE NAME: COMPLEX ANALYSIS

UNIT – III

BATCH -2018-2020

We have

$$\sin \pi z = \pi z \prod_{n \neq 0} E(z/n, 1)$$

$$= \pi z \prod_{n \neq 0} \left(1 - \frac{z}{n}\right) e^{z/n} = \pi z \prod_{n=1}^{+\infty} \left(1 - \frac{z^2}{n^2}\right).$$

In order to prove the above identity we need a preliminary result.

### Lemma

(i) 
$$\pi \cot \pi z = \pi \frac{\cos \pi z}{\sin \pi z} = \frac{1}{z} + \sum_{n \neq 0} \left( \frac{1}{z - n} + \frac{1}{n} \right);$$

(ii) 
$$\frac{\pi^2}{\sin^2 \pi z} = \sum_{r \in \mathbb{Z}} \frac{1}{(z-n)^2}$$
.

Proof. (i) The function

$$f_1(z) = \frac{1}{z} + \sum_{n \neq 0} \left( \frac{1}{z - n} + \frac{1}{n} \right)$$

is meromorphic in C and having simple poles at the integers, with residues all equal to 1. The function

$$f_2(z) = \pi \frac{\cos \pi z}{\sin \pi z}$$

is also meromorphic in C and having simple poles at the integers, with residues all equal to 1. Hence,  $h(z) = f_1(z) - f_2(z)$  is entire. It is immediate to check that

$$h'(z) = -\sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^2} + \frac{\pi^2}{\sin^2 \pi z}$$

is periodic of period 1 (and it would not be so obvious that h is periodic of period 1).

We wish to prove that  $h(z) \equiv 0$ . We begin by showing that h' is constant, and equal to 0. In order to show that h' is constant, we show that h' is bounded and then invoke Liouville's theorem. Being periodic of period 1, h' is bounded if and only if it is bounded in the strip  $\{z = x + iy : 0 \le x \le 1\}$ . But, on the compact set  $\{z = x + iy : 0 \le x \le 1, |y| \le 1\}$  h' is certainly bounded. For |y| > 1 and  $0 \le x \le 1$ , the sum

$$\sum_{n \in \mathbf{Z}} \frac{1}{|x + iy - n|^2}$$

is finite. Moreover, since  $\frac{1}{|x+iy-n|^2} \le \frac{1}{y^2+n^2} \le \frac{1}{1+n^2}$ , for n < 0, while  $\frac{1}{|x+iy-n|^2} \le \frac{1}{1+(n-1)^2}$  for  $n \ge 2$ , we can apply Lebegue's dominated convergence theorem to obtain that

$$\sum_{n \in \mathbb{Z}} \frac{1}{|x + iy - n|^2} \to 0 \quad \text{as } |y| \to +\infty.$$

The same is true for the function  $\frac{\pi^2}{\sin^2 \pi z}$ . Recall that

$$|\sin\pi z| = \frac{|e^{i\pi z} - e^{-i\pi z}|}{2} \geq \frac{e^{\pi|y|} - e^{-\pi|y|}}{2} = \sinh\pi|y| \to +\infty$$

as  $|y| \to +\infty$ . Then,  $\left|\frac{\pi^2}{\sin^2 \pi z}\right| \to 0$  as  $|y| \to +\infty$  in the set  $\{z = x + iy : 0 \le x \le 1, |y| > 1\}$ .

This proves that h' is bounded, hence constant. But, since h' tends to 0 as  $|y| \to +\infty$ , the constant must be 0. This proves (ii).

Thus, h is constant, and it is 0, since h vanishes at the integers. This proves (i), and we are done.  $\Box$ 

*Proof of Prop. 8.12.* Notice that the last equality in (8.4) follows at once.

For  $n \in \mathbb{Z}$ , let  $z_n = n$ . By Thm. 8.9 the function

$$f(z) = \pi z \prod_{n \neq 0} \left(1 - \frac{z}{n}\right) e^{z/n}$$

is entire, having simple zeros at the integers. Let  $z_0 \in \mathbb{C} \setminus \mathbb{Z} = \Omega$ . Since  $f(z_0) \neq 0$ , there exists a disk  $\overline{D(z_0, r_0)} \subseteq \Omega$  on which  $\log f(z)$  is well defined and holomorphic. On such disk,

$$\frac{f'(z)}{f(z)} = \frac{d}{dz} \log f(z) = \frac{d}{dz} \left[ \log \pi z + \sum_{n \neq 0} \left( \log(1 - z/n) + \frac{z}{n} \right) \right]$$
$$= \frac{1}{z} + \sum_{n \neq 0} \left( \frac{1}{z - n} + \frac{1}{n} \right)$$
$$= \pi \cot \pi z$$

by the previous lemma. On the same disk  $\overline{D(z_0, r_0)}$  log  $\sin \pi z$  is well defined and its derivative equals  $\pi \cot \pi z$ . Then, there exists a constant C such that  $\log f(z) = \log \sin \pi z + C$ , that is,  $f(z) = C_1 \sin \pi z$  on  $\overline{D(z_0, r_0)}$ ; hence on  $\Omega$  and therefore on all of C. Since  $\lim_{z\to 0} \frac{f(z)}{\sin \pi z} = 1$ ,

 $C_1 = 1$  and we are done.

CLASS: I M.SC (MATHEMATICS)
COURSE CODE:18MMP201

COURSE NAME: COMPLEX ANALYSIS
UNIT – III BATCH

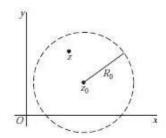
BATCH -2018-2020

# 3.2 Taylor Series

We begin with the Taylor's theorem.

### Theorem 3.2.1.

Suppose that a function f is analytic throughout a disk  $|z-z_0| < R_0$ , centered at  $z_0$  and with radius  $R_0$ . Then f(z) has the power series representation  $f(z) = \sum_{n=1}^{\infty} a_n (z-z_0)^n \qquad (|z-z_0| < R_0), \text{ where } a_n = \frac{f^{(n)}(z_0)}{n!} \quad (n=0,1,2,\ldots).$ 



i.e.,  $\sum_{n=1}^{\infty} a_n(z-z_0)^n$  converges to f(z) when z lies in the open disk  $|z-z_0| < R_0$ . (This expansion of f(z) is called the **Taylor series** of f(z) about the point  $z_0$ .)

Since  $f^{(0)}(z_0) = f(z_0)$  and 0! = 1, the Taylor series of f(z) about the point  $z_0$  can be written as  $f(z) = f(z_0) + \frac{f'(z_0)}{1!}(z-z_0) + \frac{f''(z_0)}{2!}(z-z_0)^2 + \dots$ ,  $(|z-z_0| < R_0)$ .

## Remark.

A Taylor's series about the point  $z_0 = 0$ ,  $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n$  ( $|z| < R_0$ ) is called a *Maclaurin series*.

Any function which is analytic at a point  $z_0$  must have a Taylor series about  $z_0$ . For, if f is analytic at  $z_0$ , it is analytic throughout some neighborhood  $|z-z_0|<\varepsilon$  of  $z_0$ . Therefore by Taylor's theorem, f(z) have a Taylor series about  $z_0$  valid in  $|z-z_0|<\varepsilon$ . Also, if f is entire,  $R_0$  can be chosen arbitrarily large, and the condition of validity becomes  $|z-z_0|<\infty$  and the Taylor series then

CLASS: I M.SC (MATHEMATICS)
COURSE CODE:18MMP201

COURSE NAME: COMPLEX ANALYSIS

UNIT – III

BATCH -2018-2020

converges to f(z) at each point z in the finite plane. If f is analytic everywhere inside a circle centered at  $z_0$ , then the Taylor series of f(z) about  $z_0$  converges to f(z) for each point z within that circle and in fact, according to Taylor's theorem, the series converges to f(z) within the circle about  $z_0$  whose radius is the distance from  $z_0$  to the nearest point  $z_1$  at which f fails to be analytic.

# Example 7.

Consider the function  $f(z)=e^z$ . Since  $f(z)=e^z$  is an entire function, it has a Maclaurin series representation which is valid for all z. Here,  $f^{(n)}(z)=e^z$   $(n=0,1,2,...)\Rightarrow f^{(n)}(0)=1,\,(n=0,1,2,...)$  Therefore,  $e^z=\sum_{n=0}^{\infty}\frac{z^n}{n!},\,\,\,(|z|<\infty).$ 

# Example 8.

Let  $f(z) = \frac{1}{1-z}$ . Then, the derivatives of the function  $f(z) = \frac{1}{1-z}$ , which fails to be analytic at z = 1, are  $f^{(n)}(z) = \frac{n!}{(1-z)^{n+1}}$  (n = 0, 1, 2, ...).  $\Rightarrow f^{(n)}(0) = n!$  (n = 0, 1, 2, ...). Therefore,  $f(z) = \frac{1}{1-z} = 1 + z + z^2 + z^3 + ...$  (|z| < 1).

# 3.3 Laurent Series

If a function f fails to be analytic at a point  $z_0$ , but it is analytic throughout an annular domain  $R_1 < |z - z_0| < R_2$ , centered at  $z_0$ , then the power series representation for f(z) involves both positive and negative powers of  $z - z_0$ . Such a series representation for f(z) is called a *Laurent's series*.

CLASS: I M.SC (MATHEMATICS)
COURSE CODE:18MMP201

COURSE NAME:COMPLEX ANALYSIS
UNIT – III BATCH -2018-2020

# **THEOREM ON LAURENT SERIES**

Suppose that a function f is analytic throughout an annular domain  $R_1 < |z-z_0| < R_2$ , centered at  $z_0$ , and let C denote any positively oriented simple closed contour around  $z_0$  and lying in that domain. Then, at each point in the domain, f(z) has the series representation

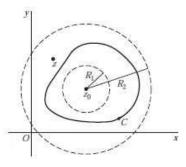
$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n} \quad (R_1 < |z - z_0| < R_2),$$

where

$$a_n = \frac{1}{2\pi i} \int_C \frac{f(z)dz}{(z-z_0)^{n+1}} \quad (n=0,1,2,...)$$

and

$$b_n = \frac{1}{2\pi i} \int_C \frac{f(z)dz}{(z-z_0)^{n+1}} \quad (n=1,2,\ldots).$$



## Remark.

Replacing n by -n in the second series in the above Laurent's series enables us to write that series as

$$\sum_{n=-\infty}^{-1} \frac{b_{-n}}{(z-z_0)^{-n}},$$

where

$$b_{-n} = \frac{1}{2\pi i} \int_C \frac{f(z)dz}{(z-z_0)^{n+1}} \quad (n = -1, -2, \dots).$$

Thus, we have

$$f(z) = \sum_{n=-\infty}^{-1} b_{-n}(z-z_0)^n + \sum_{n=1}^{\infty} a_n(z-z_0)^n \quad (R_1 < |z-z_0| < R_2).$$

CLASS: I M.SC (MATHEMATICS)
COURSE CODE:18MMP201

COURSE NAME:COMPLEX ANALYSIS
UNIT – III BATCH -2018-2020

Or, we can write

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n \ (R_1 < |z - z_0| < R_2),$$

where

$$c_n = \frac{1}{2\pi i} \int_C \frac{f(z)dz}{(z-z_0)^{n+1}} \quad (n=0,\pm 1,\pm 2,...).$$

When the annular domain is specified, it can be proved that a Laurent's series for a given function is unique. This fact helps us to found the coefficients in a Laurent's series by means other than appealing directly to their integral representations. We illustrate this through the following examples.

# Absolute and Uniform Convergence of Power Series

We will now discuss basic properties of power series.

A natural question is to determine the set of complex numbers z for which a given power series converges. We have the following theorem.

CLASS: I M.SC (MATHEMATICS)
COURSE CODE:18MMP201

COURSE NAME: COMPLEX ANALYSIS
UNIT – III BATCH

BATCH -2018-2020

#### THEOREM:

If a power series  $\sum_{n=0}^{\infty} a_n (z-z_0)^n$  converges when  $z=z_1$   $(z_1 \neq z_0)$ , then it is absolutely convergent at each point z in the open disk  $|z-z_0| < R_1$  where

$$R_1 = |z_1 - z_0|.$$



Analogous to the concept of an interval of convergence in real calculus, a complex power series  $\sum_{n=0}^{\infty} a_n (z-z_0)^n$  has a circle of convergence defined by  $|z-z_0|=R$  for some  $R\geq 0$ .

The above theorem implies that the set of all points inside some circle centered at  $z_0$  is a region of convergence for the above power series  $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ , provided it converges at some point other than  $z_0$ .

The greatest circle centered at  $z_0$  such that series  $\sum_{n=0}^{\infty} a_n (z-z_0)^n$  converges at each point inside is called the *circle of convergence* of the series.

The series cannot converge at any point  $z_2$  outside that circle, according to the theorem; for if it did, it would converge everywhere inside the circle centered at  $z_0$  and passing through  $z_2$ . The first circle could not, then, be the circle of convergence.

The power series converges absolutely for all z satisfying  $|z - z_0| < R$  and diverges for  $|z - z_0| > R$ . Here R is called the radius of convergence of the power

CLASS: I M.SC (MATHEMATICS)
COURSE CODE:18MMP201

COURSE NAME: COMPLEX ANALYSIS
UNIT – III BATCH

BATCH -2018-2020

series. The radius R of convergence can be (a) zero (in which case  $\sum_{n=0}^{\infty} a_n (z-z_0)^n$  converges only at  $z=z_0$ ), (b) a finite number (in which case the given power series converges at all interior points of the circle  $|z-z_0|=R$ ), (c)  $\infty$  (in which case the given power series converges for all z).

A power series may converge at some, all, or none of the points on the actual circle of convergence.

Suppose that the power series  $\sum_{n=0}^{\infty} a_n (z-z_0)^n$  has circle of convergence  $|z-z_0| = R$ , and let S(z) and  $S_N(z)$  represent the sum and partial sums, respectively, of that series:

$$S(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
,  $S_N(z) = \sum_{n=0}^{N-1} a_n (z - z_0)^n$   $(|z - z_0| < R)$ .

Then, the **remainder function**  $\rho_N(z)$  is given by  $\rho_N(z) = S(z) - S_N(z)$   $(|z - z_0| < R)$ . Since the power series converges for any fixed value of z when  $|z - z_0| < R$ , we know that the remainder  $\rho_N(z)$  approaches zero for any such z as N tends to infinity.

This means that corresponding to each positive number  $\varepsilon$ , there is a positive integer  $N_{\varepsilon}$  such that  $|\rho_N(z)| < \varepsilon$  whenever  $N > N_{\varepsilon}$ .

When the choice of  $N_{\varepsilon}$  depends only on the value of  $\varepsilon$  and is independent of the point z taken in a specified region within the circle of convergence, the convergence is said to be *uniform* in that region.

It can be shown that if  $z_1$  is a point inside the circle of convergence  $|z-z_0| = R$  of a power series  $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ , then that series must be uniformly convergent in the closed disk  $|z-z_0| < R_1$ , where  $R_1 = |z_1-z_0|$ .

Note that a power series  $\sum_{n=0}^{\infty} a_n (z-z_0)^n$  represents a continuous function

CLASS: I M.SC (MATHEMATICS)
COURSE CODE:18MMP201

COURSE NAME: COMPLEX ANALYSIS
UNIT – III BATCH

BATCH -2018-2020

S(z) at each point inside its circle of convergence  $|z-z_0|=R$ . Furthermore, the sum S(z) of the power series  $\sum_{n=0}^{\infty} a_n (z-z_0)^n$  is actually analytic within the circle of convergence.

# Theorem

Let C denote any contour interior to the circle of convergence of the power series  $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ , and let g(z) be any function that is continuous on C. The series formed by multiplying each term of the power series by g(z) can be integrated term by term over C; i.e.,  $\int_C g(z)S(z)dz = \sum_{n=0}^{\infty} a_n \int_C g(z)(z-z_0)^n dz$ .

If a series  $\sum_{n=0}^{\infty} a_n (z-z_0)^n$  converges to f(z) at all points interior to some circle  $|z-z_0|=R$ , then it is the Taylor series expansion for f in powers of  $z-z_0$ .

If a series  $\sum_{n=-\infty}^{\infty} c_n(z-z_0)^n = \sum_{n=0}^{\infty} a_n(z-z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n}$  converges to f(z) at all points in some annular domain about  $z_0$ , then it is the Laurent series expansion for f in powers of  $z-z_0$  for that domain.

An important result in real calculus states that, within a power series's radius of convergence, a power series is differentiable, and its derivative can be obtained by differentiating the individual terms of the power series term—by—term. The same holds true for complex power series:

# Schwarz's Theorem:

Suppose f is holomorphic in the open unit disc  $D := \{z \in \mathbb{C} : |z| < 1\}$  such that

CLASS: I M.SC (MATHEMATICS)
COURSE CODE:18MMP201

COURSE NAME: COMPLEX ANALYSIS
UNIT – III BATCH -20

BATCH -2018-2020

$$f(0) = 0$$
 and  $f(z) \in D$   $\forall z \in D$ .

Then  $|f(z)| \le |z|$  for all  $z \in D$ . Strict inequality follows unless f is of the form  $f(z) = \lambda z$  for some  $\lambda \in \mathbb{C}$ .

*Proof.* By the assumptions on f, we have

$$f(z) = zg(z), \qquad z \in D,$$

where g is holomorphic on D and g(0) = f'(0). Since  $f(z) \le 1$ , we have

$$|g(z)| \le \frac{1}{|z|} = \frac{1}{r}$$
 whenever  $|z| = r < 1$ .

By maximum modulus principle,

$$|g(z)| \le \frac{1}{r}$$
 whenever  $|z| \le r < 1$ .

Now, let  $z \in D$ , and 0 < r < 1 such that  $|z| \le r$ . By the above arguments,

$$|g(z)| \le \frac{1}{r}.$$

Letting  $r \to 1$ , we obtain  $|g(z)| \le 1$ . Thus,  $|f(z)| \le |z|$  for all  $z \in D$ .

#### **SIX MARKS:**

- 1. Show the function  $P_U(z) = U(\theta_0)$  provided that U is continuous at  $\theta_0$ .
- 2. State and prove Weierstrass theorem.
- 3. Show that the real part and imaginary part of an analytic function are harmonic.
- 4. State and prove Schwartz' theorem.
- 5. Show that u(z) is harmonic for |z| < R and continuous for  $|z| \le R$ , then u(a) =  $\frac{1}{2\pi} \int_{|z|=r} \frac{R^2 |a^2|}{|z-a^2|} u(z) d\theta, \forall |a| < R$ .
- 6. State and prove poisson's formula.

CLASS: I M.SC (MATHEMATICS) COURSE NAME: COMPLEX ANALYSIS

COURSE CODE:18MMP201 UNIT – III BATCH -2018-2020

7. State and prove Harwitz's theorem.

- 8. State and prove Laurent's theorem.
- 9. If  $u_1$  and  $u_2$  are harmonic I a region  $\Omega$  then  $\int u_1^* du_2 u_2^* du_1 = 0$ , for every cycle  $\vartheta$  which homologous to zero in  $\Omega$ .

## **TEN MARKS:**

1.State and prove Weierstrass theorem.

| Questions                                                                                                | Choice 1                       | Choice 2                                       | Choice 3                            | Choice 4                  | Answer                              |
|----------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------|-------------------------------------|---------------------------|-------------------------------------|
| The power series with Coefficients are                                                                   | two                            | unit                                           | zero                                | three                     | unit                                |
| called geometric series.                                                                                 | two                            | umt                                            | ZCIO                                | unce                      | unit                                |
| The power series of the form $a0 + a1(z - a) + a2(z - a)2 + \dots$ converges absolutely in the open disc | z-a =R                         | z-a  > R                                       | z -a   < R                          | z-a =0                    | z -a   < R                          |
| The power series of the form $a_0 + a_1(z - a) +$                                                        |                                |                                                |                                     |                           |                                     |
| $a_2(z-a)^2+$ is said to be a series about                                                               | z = 0                          | z = -a                                         | z = a                               | Z = ∞                     | z = a                               |
|                                                                                                          |                                |                                                |                                     |                           |                                     |
| The power series $a_0 + a_1z + a_2z^2 +$ converges absolutely in the open disc                           | z  = R                         | z  > R                                         | z  < R                              | z   = 0                   | z  < R                              |
| The circle of the convergence of the series $a_0 + a_1z + a_2z^2 + \dots$                                | z   > R                        | z  < R                                         | z   = 0                             | z   = R                   | z   = R                             |
| The circle of the convergence of the series $a_0 + a_1(z-a) + a_2(z-a)^2 + \dots$                        | z-a   > R                      | z-a  < R                                       | z-a =0                              | z-a =R                    | z-a   = R                           |
| A power series in the exterior of its circle of convergence                                              | absolutely conver              | converges                                      | diverges                            | uniformly<br>convergent   | diverges                            |
| If R = 0 the series is divergent in the extended plane except at                                         | z = 0                          | z =1                                           | $z = \infty$                        | z = -1                    | z = 0                               |
| The sequence $\{z_n\}$ is bounded if there exists a constant M such that for all n.                      | $ z_n  = M$                    | $ z_n  \le M$                                  | $ zn  \ge M$                        | $ z_n  > M$               | $ z_n  \leq M$                      |
| For all finite $z=h+ik$ , $ e^z =$                                                                       | $e^{h+k}$                      | e <sup>h + ik</sup>                            | e <sup>h</sup>                      | e <sup>k</sup>            | e <sup>h</sup>                      |
| Euler's relation $e^{x+iy}$ =                                                                            | $e^{x}(\cos y + i\sin y)$      | e <sup>x</sup> ( sin y + icosy)                | e <sup>y</sup> (cosx + isinx)       | $e^{y}(\sin x + i\cos x)$ | e <sup>x</sup> (cos y + isin<br>y)  |
| The polar form $r(\cos\theta+i\sin\theta)$ of a complex numbers in exponential form as                   | $re^{\theta}$                  | $e^{i\theta}$                                  | $re^{i\theta}$                      | 1/re <sup>iθ</sup>        | $re^{i\theta}$                      |
| e <sup>z</sup> is not defined at                                                                         | $z = \infty$                   | z =0                                           | z = 1                               | z= -1                     | $z = \infty$                        |
| The inverse function of the exponential function is the                                                  | Trignometric fun               | hyberbolic<br>functions                        | harmonic functions                  | Logarithmic functions     | Logarithmic functions               |
| Logarithamic function log $z =$                                                                          | $\log r + i\theta + n(2\pi i)$ | $\frac{\log 1/r + ie^{i\theta} + n}{(2\pi i)}$ | $\log r + ie^{i\theta} + n(2\pi i)$ | $logr + i\theta + n2\pi$  | $ \log r + i\theta + \\ n(2\pi i) $ |
| siniz=                                                                                                   | sinz                           | sinhz                                          | isinz                               | isinhz                    | isinhz                              |
| cosiz=                                                                                                   | cosz                           | icosz                                          | icoshz                              | coshz                     | coshz                               |
| tanz and secz are analytic in a bounded region in which                                                  | tanz ≠ 0                       | sec z ≠ 0                                      | sinz ≠ 0                            | cos z ≠ 0                 | sinz ≠ 0                            |
| cot z and cosecz are analytic in a bounded region in which                                               | cot z ≠ 0                      | cosecz ≠ 0                                     | sinz ≠ 0                            | cosz ≠0                   | cosz ≠0                             |
| $\cosh^2 z - \sinh^2 z =$                                                                                | 0                              | 1                                              | -1                                  | ∞                         | 1                                   |
| singular points of logz are                                                                              | $z = 0$ and $z = \infty$       | z = 1 and $z = 0$                              | z = 0 and $z = -1$                  | $z = 1$ and $z = \infty$  | $z = 0$ and $z = \infty$            |
| Principle value of logz is obtained when n =                                                             | 0                              | -1                                             | 1                                   | 2                         | 0                                   |
| The logarithmic function is a valued function                                                            | single                         | multiple                                       | two                                 | zero                      | multiple                            |
| In a complex field $z = x + iy$ then $\theta = \dots$                                                    | sin <sup>-1</sup> (y/x)        | $\cos^{-1}(y/x)$                               | tan <sup>-1</sup> (y/x)             | cot <sup>-1</sup> (y/x)   | tan <sup>-1</sup> (y/x)             |
| The sum f(z) of a powerseries is analytic in                                                             | z   > R                        | z   < R                                        | z   ≤ R                             | z   = R                   | z   < R                             |
| A power series is the interior of the circle of convergence                                              | converges                      | diverges                                       | uniformly converges                 | converges<br>absolutely   | converges<br>absolutely             |

| The radius of convergence of the series $\sum (2+in)/2^n \cdot z^n \dots$ | 2                              | 0                                       | ∞                                       | 1                                 | 2                                         |
|---------------------------------------------------------------------------|--------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------|-------------------------------------------|
| If u+iv is analytic then v+iu is                                          | analytic                       | not analytic                            | continuous                              | conjugate                         | not analytic                              |
| a <sup>z</sup> is a valued function                                       | single                         | double                                  | multiple                                | triple                            | multiple                                  |
| The function $a^z =$                                                      | e <sup>zloga</sup>             | e <sup>loga</sup>                       | e <sup>alogz</sup>                      | e <sup>-zloga</sup>               | e <sup>zloga</sup>                        |
| The radius of convergence of the series $\sum n^2$<br>$z^n$               | 1                              | 0                                       | 2                                       | n                                 | 1                                         |
| $Cos (z_1 + z_2) =$                                                       | $\cos z_1 \cos z_2 - \sin z_1$ | $\cos z_1 \sin z_2 - \sin z_1 \cos z_2$ | $\cos z_1 \cos z_2 + \sin z_1 \sin z_2$ | $sinz_1 cosz_2$ - $cosz_1 sinz_2$ | $\cos z_1 \cos z_2$ - $\sin z_1 \sin z_2$ |
| The radius of convergence of the series $\sum n^n z^n$                    | 1                              | 0                                       | 2                                       | n                                 | 0                                         |

CLASS: I M.SC(MATHEMATICS) COURSE NAME: COMPLEX ANALYSIS
COURSE CODE: 18MMP201 UNIT: IV BATCH-2018-2020

#### **UNIT-IV**

#### **SYLLABUS**

Partial fraction- Infinite products – Canonical products--The gamma function – Stirling's Formula – Entire functions – Jensen's formula.

#### **PARTIAL FRACTION:**

The method for computing partial fraction decompositions applies to all rational functions with one qualification:

The degree of the numerator must be less than the degree of the denominator.

One can always arrange this by using polynomial long division, as we shall see in the examples.

Looking at the example above (in Equation 1), the denominator of the right side is  $x^3 - 3x^2 + x - 3 = (x - 3)(x^2 + 1)$ . Factoring the denominator of a rational function is the first step in computing its partial fraction decomposition. Note, the factoring must be complete (over the real numbers). In particular this means that each individual factor must either be linear (of the form ax + b) or irreducible quadratic (of the form  $ax^2 + bx + c$ ).

When is a quadratic polynomial irreducible? If a quadratic polynomial factors, such as  $x^2 - x - 6 = (x - 3)(x + 2)$ , then it has at least one root. Similarly, if it has a root r, then it must have a factor of x - r. Thus, a quadratic polynomial is irreducible iff it has no real roots. This is easy to determine using the quadratic formula: the roots of  $ax^2 + bx + c$  are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

and these are real numbers iff  $b^2 - 4ac \ge 0$ . Thus, this quadratic polynomial is irreducible iff its discriminant  $b^2 - 4ac < 0$ .

# Computing the coefficients

Once we have determined the right form for the partial fraction decomposition of a rational function, we need to compute the unknown coefficients  $A, B, C, \ldots$ . There are basically two methods to choose from for this purpose. We will now look at both methods for the decomposition of

$$\frac{2x-1}{(x+2)^2(x-3)}.$$

By the rules above, its partial fraction decomposition takes the form

# CLASS: I M.SC(MATHEMATICS) COURSE CODE: 18MMP201

COURSE NAME: COMPLEX ANALYSIS
UNIT: IV BATCH-20

BATCH-2018-2020

$$\frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{C}{x-3}$$
.

Setting these equal and multiplying by the common denominator gives

$$2x - 1 = A(x+2)(x-3) + B(x-3) + C(x+2)^{2}.$$
 (2)

Our first method is to substitute different values for x into Equation 2 and deduce the values of A, B, and C. It helps to start with values of x which are roots of the original denominator since they will make some of the terms on the right side vanish.

- Using x = 3 gives  $2(3) 1 = 0 + 0 + C \cdot 5^2$ . Thus, C = 1/5.
- From x = -2, we learn that -5 = 0 + B(-5) + 0, and so B = 1.
- We have run out of roots of the denominator, and so we pick a simple value of x to finish off. From x = 0 we find -1 = -6A 3B + 4C. Using our values for B and C, this becomes -1 = -6A 3(1) + 4(1/5) and so A = -1/5.

Therefore,

$$\frac{2x-1}{(x+2)^2(x-3)} = \frac{-1/5}{x+2} + \frac{1}{(x+2)^2} + \frac{1/5}{x-3}.$$

**PROBLEMS: 1.Evaluate** 

$$\int \frac{x+3}{(x^2-1)(x+5)} \, dx$$

Solution: Factoring the denominator completely yields (x-1)(x+1)(x+5), and so

$$\frac{x+3}{(x^2-1)(x+5)} = \frac{x+3}{(x-1)(x+1)(x+5)} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{x+5}$$

Clearing denominators gives the equation:

$$x+3 = A(x+1)(x+5) + B(x-1)(x+5) + C(x-1)(x+1)$$

Since the denominator has distinct roots, the quickest way to find A, B, and C will be to plug in the roots of the original denominator:

• 
$$x = 1$$
 gives  $4 = 12A \implies A = 1/3$ 

CLASS: I M.SC(MATHEMATICS) COURSE NAME: COMPLEX ANALYSIS
COURSE CODE: 18MMP201 UNIT: IV BATCH-2018-2020

• 
$$x = -1$$
 gives  $2 = -8B \implies B = -1/4$ 

• 
$$x = -5$$
 gives  $-2 = -24C \implies C = 1/12$ 

Putting it all together, we find

$$\int \frac{x+3}{(x^2-1)(x+5)} dx = \int \frac{1/3}{x-1} + \frac{-1/4}{x+1} + \frac{1/12}{x+5} dx$$

$$= \frac{1}{3} \int \frac{dx}{x-1} - \frac{1}{4} \int \frac{dx}{x+1} + \frac{1}{12} \int \frac{dx}{x+5}$$

$$= \frac{1}{3} \ln|x-1| - \frac{1}{4} \ln|x+1| + \frac{1}{12} \ln|x+5| + C$$

Note, we use C here for the constant of integration even though C has occured earlier in the problem as a coefficient. However, it is unlikely that confusion will arise by re-using C in this way.

#### **Problems:Evaluate**

$$\int \frac{3x^4 + 31x^3 + 122x^2 + 219x + 159}{x^3 + 9x^2 + 27x + 27} dx$$

Solution: The first thing we should notice is that the degree of the numerator is **not** less than the degree of the denominator. Applying polynomial long division, we learn that the quotient is 3x + 4 and that remainder is  $5x^2 + 30x + 51$ . Thus,

$$\frac{3x^4 + 31x^3 + 122x^2 + 219x + 159}{x^3 + 9x^2 + 27x + 27} = 3x + 4 + \frac{5x^2 + 30x + 51}{x^3 + 9x^2 + 27x + 27}$$

We now find the partial fraction decomposition of the last term. The denominator factors as  $(x+3)^3$ , and so

$$\frac{5x^2 + 30x + 51}{x^3 + 9x^2 + 27x + 27} = \frac{A}{x+3} + \frac{B}{(x+3)^2} + \frac{C}{(x+3)^3}$$

Clearing denominators leads to

$$5x^2 + 30x + 51 = A(x+3)^2 + B(x+3) + C$$
(4)

We can quickly determine C by evaluating at x = -3, which leads to  $5(-3)^2 + 30(-3) + 51 = C$ , and so C = 6. We now pick two simple values of x to obtain relations between A and B. From x = -2, we find

$$11 = A(1)^2 + B(1) + 6 \implies 5 = A + B$$

and from x = -4, we find

$$11 = A(-1)^2 + B(-1) + 6 \implies 5 = A - B$$

CLASS: I M.SC(MATHEMATICS) COURSE NAME: COMPLEX ANALYSIS
COURSE CODE: 18MMP201 UNIT: IV BATCH-2018-2020

Adding these equations together, we find that 10 = 2A and so A = 5. Substituting this back into 11 = A + B yields B = 0. Thus

$$\int \frac{3x^4 + 31x^3 + 122x^2 + 219x + 159}{x^3 + 9x^2 + 27x + 27} dx$$

$$= \int 3x + 4 + \frac{5x^2 + 30x + 51}{x^3 + 9x^2 + 27x + 27} dx$$

$$= \int 3x + 4 dx + \int \frac{5}{x + 3} + \frac{6}{(x + 3)^3} dx$$

$$= \frac{3}{2}x^2 + 4x + 5\ln|x + 3| + \frac{6}{-2}\frac{1}{(x + 3)^2} + C$$

$$= \frac{3}{2}x^2 + 4x + 5\ln|x + 3| - \frac{3}{(x + 3)^2} + C$$

# Infinite products.

Let  $\alpha_j$  be complex numbers,  $j = 1, 2, \ldots$  We want to give a meaning to the convergence of the infinite product  $\prod_{j=1}^{+\infty} \alpha_j$ .

# Definition

We say that the infinite product  $\prod_{j=1}^{+\infty} \alpha_j$  converges if

- (i) there exist at most finitely many  $\alpha_j = 0$ , say  $\alpha_j \neq 0$  for  $j \geq j_N$ ;
- (ii) for any  $N_0 \geq j_N$ , the limit

$$\lim_{N \to +\infty} \prod_{j=N_0}^{N} \alpha_j = \beta_{N_0}$$

exists finite and  $\neq 0$ .

Notice that, if condition (ii) is verified, we may compute the logarithm of  $\beta_{N_0}$ . Let  $\beta = \beta_{N_0}$ ,  $\alpha_N = \prod_{j=N_0}^N \alpha_j$ , and let  $D(\beta, \varepsilon)$  not contain the origing and let  $N_{\varepsilon}$  be such that  $\alpha_N \in D(\beta, \varepsilon)$  for  $N \geq N_{\varepsilon}$ .

We may assume that  $\beta$  is not on the negative real axis and let log denote the principal branch of the logarithm (otherwise, chose a different branch cut for the determination of the logarithm.) Then, we have

CLASS: I M.SC(MATHEMATICS) **COURSE CODE: 18MMP201** 

**COURSE NAME: COMPLEX ANALYSIS UNIT: IV** BATCH-2018-2020

$$\log \beta_{N_0} = \log \left( \lim_{N \to +\infty} \prod_{j=N_0}^{N} \alpha_j \right) = \lim_{N \to +\infty} \log \prod_{j=N_0}^{N} \alpha_j$$
$$= \lim_{N \to +\infty} \sum_{j=N_0}^{N} \log_{(j)} \alpha_j,$$

where  $log_{(j)}$  denotes some branch of the logarithm. Since the limit on the right hand side exists finite,  $\log_{(j)} \alpha_j \to 0$  as  $j \to +\infty$ . Hence, in particular the branch of the logarithm must be the principal one, and  $\alpha_j \rightarrow 1$ . This is a necessary condition for the convergence of the infinite

Although the next result is not strictly necessary for what that follows, we state it for the sake of clarity.

#### Lemma

Let  $\alpha_j$  be non-zero complex numbers. Then  $\prod_{j=1}^{+\infty} \alpha_j$  converges if and only if

 $\sum_{j=1}^{+\infty} \log \alpha_j$  converges, where log denotes the principal branch.

*Proof.* The previous argument shows that if  $\prod_{j=1}^{+\infty} \alpha_j$  converges then also  $\sum_{j=1}^{+\infty} \log \alpha_j$  converges. Conversely, if  $\sum_{j=1}^{+\infty} \log \alpha_j$  converges, then, since  $e^{\sum_{j=1}^{N} \log \alpha_j} = \prod_{j=1}^{N} \alpha_j$  also  $\prod_{j=1}^{+\infty} \alpha_j$  converges.

For simplicity of notation, we are going to write  $\alpha_j = 1 + a_j$ .

## Lemma

Let  $a_j \in \mathbb{C}$  be such that  $|a_j| < 1$ . Let  $Q_N = \prod_{j=1}^N (1 + |a_j|)$ . Then  $e^{\frac{1}{2}\sum_{j=1}^{N}|a_j|} < Q_N < e^{\sum_{j=1}^{N}|a_j|}$ .

Proof. Since  $1 + |a_i| \le e^{|a_j|}$ ,

$$(1+|a_1)\cdots(1+|a_N|) \leq e^{\sum_{j=1}^N |a_j|}$$
.

On the other hand, since  $e^x \le 1 + 2x$  for  $0 \le x \le 1$ ,

$$e^{\frac{1}{2}\sum_{j=1}^{N}|a_{j}|} \le (1 + 2(|a_{1}|/2)) \cdots (1 + 2(|a_{N}|/2))$$

$$= \prod_{j=1}^{N} (1 + |a_{j}|). \quad \Box$$

**COURSE NAME: COMPLEX ANALYSIS** CLASS: I M.SC(MATHEMATICS)

**COURSE CODE: 18MMP201** BATCH-2018-2020 **UNIT: IV** 

# Proposition

If the infinite product  $\prod_{j=1}^{+\infty} (1+|a_j|)$  converges, then also  $\prod_{j=1}^{+\infty} (1+a_j)$ 

converges. Hence, if the series  $\sum_{j=1}^{+\infty} |a_j|$  converges, also  $\prod_{j=1}^{+\infty} (1+a_j)$  converges.

*Proof.* Since the product  $\prod_{j=1}^{+\infty} (1+|a_j|)$  converges, then  $|a_j| \to 0$ , so that  $1+a_j \neq 0$ We may assume  $j_0 = 1$ . Let

$$P_N = \prod_{j=1}^{N} (1 + a_j), \text{ and } Q_N = \prod_{j=1}^{N} (1 + |a_j|).$$

Notice that, for a suitable choice of indices  $j_k$ ,

$$P_N = 1 + \sum_{n=1}^{N} \prod_{k=1}^{n} a_{j_k}$$
.

Then,

$$|P_N - 1| = \left| \sum_{n=1}^N \prod_{k=1}^n a_{j_k} \right|$$
  
 $\leq \sum_{n=1}^N \prod_{k=1}^n |a_{j_k}| = Q_N - 1.$ 

Then, for N, M > 1, N > M,

$$|P_N - P_M| = \left| \prod_{j=1}^N (1 + a_j) - \prod_{j=1}^M (1 + a_j) \right|$$

$$= \left| \prod_{j=1}^M (1 + a_j) \right| \cdot \left| 1 - \prod_{j=M+1}^N (1 + a_j) \right|$$

$$\leq Q_M \left( \prod_{j=M+1}^N (1 + |a_j|) - 1 \right)$$

$$= Q_N - Q_M.$$

CLASS: I M.SC(MATHEMATICS) COURSE NAME: COMPLEX ANALYSIS
COURSE CODE: 18MMP201 UNIT: IV BATCH-2018-2020

$$\prod_{j=M}^{N} (1 + |a_j|) \le e^{\sum_{j=M}^{N} |a_j|} \le \frac{3}{2}$$

for  $M \geq j_0$ , and N > M. Then, arguing as in (8.1) we see that

$$\left|1 - \prod_{j=M}^{N} (1+a_j)\right| \le \prod_{j=M}^{N} (1+|a_j|) - 1 \le \frac{1}{2},$$

for  $M \ge j_0$ , and N > M. Hence,

$$\Big|\prod_{j=M}^N (1+a_j)\Big| \geq \frac{1}{2}$$

so that

$$\lim_{N \to +\infty} |P_N| = \lim_{N \to +\infty} \left| \prod_{j=1}^M (1 + a_j) \right| \cdot \left| \prod_{j=M}^N (1 + a_j) \right|$$
$$\ge \frac{1}{2} \left| \prod_{j=1}^{j_0} (1 + a_j) \right|. \quad \Box$$

We apply these results to the infinite product of functions.

#### 7. Canonical Product

We recall the Weierstrass factorization theorem for entire functions. Let f(z) be an entire function with a zero of multiplicity  $m \ge 0$  at z = 0. Let  $\{z_n\}$  be the non-zero zeros of f(z), arranged so that a zero of multiplicity K is repeated in this sequence K times. Also suppose that  $|z_1| \le |z_2| \le \dots$  If  $\{p_n\}$  is a sequence of integers such that

$$\sum_{n=1}^{\infty} \left( \frac{R}{|z_n|} \right)^{p_n+1} < \infty, \text{ for every } R > 0, \text{ then}$$

$$P(z) = \prod_{n=1}^{\infty} E_{p_n}(z/z_n)$$
 (1)

converges uniformly on compact subsets of the plane, where by definition of primary factors, we have

$$E_p(z) = (1-z)\exp\left(z + \frac{z^2}{2} + ... + \frac{z^p}{p}\right)$$
 (2)

for  $p \ge 1$  and  $E_0(z) = 1-z$ 

Then the Weierstrass theorem says that

$$f(z) = z^{m} e^{g(z)} P(z)$$
(3)

where g(z) is an entire function.

CLASS: I M.SC(MATHEMATICS) **COURSE NAME: COMPLEX ANALYSIS COURSE CODE: 18MMP201 UNIT: IV** 

BATCH-2018-2020

We are interested in the case in which g(z) and P(z) have certain characteristics which result in properties of f(z) and conversely. A convenient assumption for P(z) is that all the integers  $p_n$  are equal. Then we see that this is to assume that there is an integer  $p \ge 1$  such that

$$\sum_{n=1}^{\infty} |z_n|^{-(p+1)} < \infty \tag{4}$$

i.e. it is an assumption on the growth rate of the zeros of f(z). Further, if we assume that p is the smallest integer for which the series (4) converges, then the product

$$P(z) = \prod_{n=1}^{\infty} E_p(z/z_n)$$
 (5)

is called the canonical product associated with the sequence  $\{z_n\}$  of zeros of f(z) and the integer p is called the genus of the canonical product. The restriction on g(z), we impose, is that it is a polynomial. Such an assumption must impose a growth condition on eg(z). When g(z) is a polynomial, then we say that f(z) is of finite genus and we define the genus of f(z) to be the degree of this polynomial or to be the genus of the canonical product whichever is greater.

Now we drive Jensen's formula which says that there is a relation between the growth rate of the zeros of f(z) and the growth of  $M(r) = \sup \{|f(re^{i\theta})| : 0 \le \theta \le 2\pi\}$  as r increases. For this, we shall use Gauss-Mean Value Theorem which states that if f(z) is analytic in a domain D which contains the disc  $|z - z_0| \le \rho$ , then

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + \rho e^{i\theta}) d\theta$$

If u is the real part of f(z), the above result gives Gauss-mean value theorem for harmonic function, as

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + \rho e^{i\theta}) d\theta$$

7.1. Jensen's Formula. Let f(z) be analytic in the closed disc  $|z| \le R$  and let  $f(0) \ne 0$ ,  $f(z) \ne 0$  on |z| = R. If  $z_1, z_2, \ldots, z_n$  are zeros of f(z) in the open disc |z| < R repeated according to their multiplicity, then

$$\log |\mathit{f}(0)| = -\textstyle\sum_{i=1}^n \log \left(\frac{R}{\mid z_i\mid}\right) + \frac{1}{2\pi} \textstyle\int_0^{2\pi} \ \log |\mathit{f}(Re^{i\varphi}) d\varphi.$$

Proof. Consider the function

$$F(z) = f(z) \prod_{i=1}^{n} \frac{R^2 - \overline{z}_i z}{R(z - z_i)}$$
(1)

We observe that F(z) is analytic in any domain in which f(z) is analytic and further  $F(z) \neq 0$  for  $|z| \le R$ . Hence F(z) is analytic and never vanish on an open disc  $|z| < \rho$  for some  $\rho > R$ . Also  $|\mathbf{F}(\mathbf{z})| = |f(\mathbf{z})|$ (2)

on |z| = R, since

$$\left| \prod_{i=1}^{n} \frac{R^2 - \overline{z}_i z}{R(z - z_i)} \right| = \prod_{i=1}^{n} \left| \frac{R^2 - \overline{z}_i Re^{i\phi}}{R^2 e^{i\phi} - Rz_i} \right|, z = Re^{i\phi}$$

$$= \prod_{i=1}^{n} \left| \frac{R(R - \overline{z}_i e^{i\phi})}{Re^{i\phi}(R - z_i e^{-i\phi})} \right|$$

CLASS: I M.SC(MATHEMATICS)
COURSE CODE: 18MMP201

COURSE NAME:COMPLEX ANALYSIS
UNIT: IV BATCH-2018-2020

$$= \prod_{i=1}^{n} \left| \frac{R - \overline{z}_i e^{i\phi}}{R - z_i e^{-i\phi}} \right|, |e^{i\phi}| = 1$$

$$= 1$$

Since F(z) is analytic and non-zero in  $|z| < \rho$ , log F(z) is analytic in  $z| < \rho$  and consequently its real part log |F(z)| is harmonic there. Hence using Gauss-Mean value theorem for log |F(z)|, we get

$$\log |F(0)| = \frac{1}{2\pi} \int_0^{2\pi} \log |F(Re^{i\phi})| d\phi$$
 (3)

Now, from (1),

$$F(0) = f(0) \prod_{i=1}^{n} \left( \frac{-R}{z_i} \right)$$

so that

$$|F(0)| = |f(0)| \prod_{i=1}^{n} \frac{R}{|z_i|}$$

and thus

$$\log |F(0)| = \log |f(0)| + \sum_{i=1}^{n} \log \frac{R}{|z_i|}$$

Also by (2),  $|F(Re^{i\phi})| = |f(Re^{i\phi})|$  on |z| = R.

Therefore (3) becomes

$$\log |f(0)| + \sum_{i=1}^{n} \log \frac{R}{|z_i|} = \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(Re^{i\phi})| d\phi$$

Of

$$\log |f(0)| = -\sum_{i=1}^{n} \log \frac{R}{|z_{i}|} + \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(Re^{i\phi})| d\phi$$

7.2. Poisson-Jensen Formula. Let f(z) be analytic in the closed disc  $|z| \le R$  and let  $f(z) \ne 0$  on |z| = R. If  $z_1, z_2, \ldots, z_n$  are the zeros of f(z) in the open disc  $|z| \le R$  repeated according to their multiplicity and  $z = re^{i\theta}$ ,  $0 \le r \le R$ , then

$$\log |f(z)| = -\sum_{i=1}^{n} \log \left| \frac{R^2 - \overline{z}_i z}{R(z - z_i)} \right| + \frac{1}{2\pi} \int_0^{2\pi} \frac{(R^2 - r^2) \log |f(Re^{i\phi})|}{R^2 - 2Rr\cos(\theta - \phi) + r^2} d\phi.$$

Proof. Consider the function

$$F(z) = f(z) \prod_{i=1}^{n} \frac{R^2 - \overline{z}_i z}{R(z - z_i)}$$
 (1)

Clearly F(z) is analytic in any domain in which f(z) is analytic and  $F(z) \neq 0$  for  $|z| \leq R$ . Hence F(z) is analytic and never vanish on an open disc  $|z| < \rho$  for some  $\rho > R$ . Also

$$|F(z)| = |f(z)| \text{ on } |z| = R$$

Since F(z) is analytic and non-zero in  $|z| < \rho$ ,  $\log F(z)$  is analytic in  $|z| < \rho$  and consequently its real part  $\log |F(z)|$  is harmonic there. Hence using Poisson integral formula (unit-I) for  $\log |F(z)|$ , we get

# CLASS: I M.SC(MATHEMATICS)

# COURSE NAME: COMPLEX ANALYSIS

COURSE CODE: 18MMP201 UNIT: IV BATCH-2018-2020

$$\log |F(z)| = \frac{1}{2\pi} \int_0^{2\pi} \frac{(R^2 - r^2) \log |F(Re^{i\phi})|}{R^2 - 2Rr\cos(\theta - \phi) + r^2} d\phi$$
 (2)

Now,  $\log |F(Re^{i\phi})| = \log |f(Re^{i\phi})|$  on |z| = R.

A1so

$$\log |F(z)| = \log |f(z)| \prod_{i=1}^{n} \left| \frac{R^2 - \overline{z}_i z}{R(z - z_i)} \right|$$

$$= \log |f(z)| + \sum_{i=1}^{n} \log \left| \frac{R^2 - \overline{z}_i z}{R(z - z_i)} \right|$$

Therefore (2) becomes

$$\begin{aligned} \log |f(z)| &= -\sum_{i=1}^{n} \log \left| \frac{R^2 - \overline{z}_i z}{R(z - z_i)} \right| \\ &+ \frac{1}{2\pi} \int_0^{2\pi} \frac{(R^2 - r^2) \log |f(Re^{i\phi})|}{R^2 - 2Rr\cos(\theta - \phi) + r^2} d\phi \end{aligned}$$

# Entire functions

To begin our study of holomorphic functions in the entire plane, we diskuss the notion of convergence for infinite products.

The gamma function. The subject of this and of the next section is to introduce probably the two most famous and studied non-elementary functions: the Euler gamma function  $\Gamma(z)$  and the Riemann zeta function  $\zeta(s)$ .

#### **DEFINITION:**

For Re z > 0 we set

$$\Gamma(z) = \int_0^{+\infty} t^{z-1} e^{-t} dt.$$

We first state a general result about the holomorphicity of functions defined by integrals. For its proof we refer to [L].

#### THEOREM:

The function  $\Gamma(z)$  is holomorphic for Rez > 0. Moreover, it can be analytically

continued in the domain  $\Omega = \mathbb{C} \setminus \{0, -1, -2, ...\}$ . At the non-positive integers z = -n, with n = 0, 1, 2, ..., the function  $\Gamma(z)$  has simple poles with residues  $(-1)^n/n!$ .

*Proof.* It follows from the previous proposition that  $\Gamma(z)$  is holomorphic for Re z > 0, since for t > 0,  $|t^z| = t^x$  so that the integral defining  $\Gamma(z)$  converges absolutely.

Next we notice that, integrating by parts we have

**COURSE NAME: COMPLEX ANALYSIS** CLASS: I M.SC(MATHEMATICS) **COURSE CODE: 18MMU201 UNIT: IV** 

BATCH-2018-2020

$$\begin{split} \int_0^{+\infty} t^{z-1} e^{-t} \, dt &= \lim_{a \to 0^+, \, b \to +\infty} \int_a^b t^{z-1} e^{-t} \, dt \\ &= \lim_{a \to 0^+, \, b \to +\infty} \frac{1}{z} t^z e^{-t} \Big|_a^b + \frac{1}{z} \int_a^b t^z e^{-t} \, dt \\ &= \frac{1}{z} \int_0^{+\infty} t^z e^{-t} \, dt \, . \end{split}$$

Notice that we have obtained the identity

$$z\Gamma(z) = \Gamma(z+1)$$

valid when Re z > 0.

The expression  $\frac{1}{z} \int_0^{+\infty} t^z e^{-t} dt$  on the right hand side above defines a function holomorphic on  $\{\text{Re } z > -1\} \setminus \{z=0\}$  that coincides with  $\Gamma(z)$  on the set  $\{\text{Re } z > 0\}$ . Hence, the function  $\Gamma$  can be analytically continued on the set  $\{\operatorname{Re} z > -1\} \setminus \{z = 0\}$ .

Assume by induction that, for  $n \geq 2$ ,

$$\Gamma(z) = \frac{1}{z(z+1)\cdots(z+n-1)} \int_0^{+\infty} t^{z+n-1} e^{-t} \, dt \,,$$

for  $z \in \{\text{Re } z > -n\} \setminus \{0, -1, \dots, -n+1\}.$ 

Arguing as before, integrating by parts again we obtain

$$\Gamma(z) = \frac{1}{z(z+1)\cdots(z+n-1)(z+n)} \int_0^{+\infty} t^{z+n} e^{-t} dt$$
$$= \left(\prod_{i=0}^n \frac{1}{z+j}\right) \Gamma(z+n+1) ,$$

for Re z > -n - 1 and  $z \neq 0, -1, ..., -n$ .

This shows that,  $\Gamma(z)$  is holomorphic for  $z \in \mathbb{C} \setminus \{0, -1, -2, \dots\}$ . Moreover, in the non-positive integers  $\Gamma$  has simple poles with residues given by

$$\begin{split} \lim_{z \to -n} (z+n) \Gamma(z) &= \lim_{z \to -n} (z+n) \prod_{j=0,\dots,n} \frac{1}{z+j} \int_0^{+\infty} t^{z+n} e^{-t} \, dt \\ &= \prod_{j=0,\dots,n} \frac{1}{j-n} \int_0^{+\infty} e^{-t} \, dt \\ &= \frac{(-1)^n}{n!} \, . \quad \Box \end{split}$$

In the next proposition we collect a few facts that emerged from the previous proof.

COURSE NAME: COMPLEX ANALYSIS CLASS: I M.SC(MATHEMATICS)

**COURSE CODE: 18MMP201 UNIT: IV** BATCH-2018-2020

# Proposition

Let  $\Omega = \mathbb{C} \setminus \{0, -1, -2, ...\}$ . The gamma function  $\Gamma(z)$  satisfies the following

properties:

(i) 
$$z\Gamma(z) = \Gamma(z+1)$$
 for all  $z \in \Omega$ ;

(ii) 
$$\Gamma(n+1) = n!$$
;

(iii) 
$$\Gamma(1/2) = \sqrt{\pi}$$
.

Proof.

Since  $\Gamma(1) = 1$ , (ii) follows from (i) inductively.

Condition (iii) follows from the well-known identity  $\int_{-\infty}^{+\infty} e^{-t^2/2} dt = \sqrt{\pi}$  and the change of variables  $x = \sqrt{t}$ .  $\square$ 

# Corollary

For all  $z \in \Omega$  we have

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}$$
.

Proof. It follows from the Thm. that

$$\begin{split} \Gamma(z)\Gamma(-z) &= \frac{e^{-\gamma z}}{z} \prod_{n=1}^{+\infty} \left(1 + \frac{z}{n}\right)^{-1} e^{z/n} \cdot \frac{e^{\gamma z}}{-z} \prod_{n=1}^{+\infty} \left(1 - \frac{z}{n}\right)^{-1} e^{-z/n} \\ &= -\frac{1}{z^2} \prod_{n=1}^{+\infty} \left(1 - \frac{z^2}{n^2}\right)^{-1} \\ &= -\frac{\pi}{z \sin \pi z} \,. \end{split}$$

CLASS: I M.SC(MATHEMATICS) COURSE NAME: COMPLEX ANALYSIS
COURSE CODE: 18MMP201 UNIT: IV BATCH-2018-2020

# **Possible Questions:**

#### Part-B:

- 1. A necessary and sufficient condition for the absolutely convergence of the product  $\prod_{1}^{\infty}(1 + a_n)$  is the convergence of the series  $\sum_{n=1}^{\infty}|a_n|$ . Find the product representation for  $\sin \pi z$ .
- 2. State and prove Legendre's duplication formula
- 3. Find the power series for the function  $\frac{\pi^2}{\sin^2 \pi z}$
- 4. Prove that  $\pi \cot \pi z = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 n^2}$
- 5. Show that  $\{b_{\vartheta}\}$  be a sequence of complex numbers with  $\lim_{\vartheta\to\infty}b_{\vartheta}=\infty$  and let  $p_{\vartheta}(J)$  be polynomials without constant term then there are functions which are meromorphic in the whole plane with poles at the points  $b_{\vartheta}$ , and the corresponding singular parts  $p_{\vartheta}\left(\frac{1}{z-b_{\vartheta}}\right)$ . Moreover, the most general meromorphic function of this kind can be written in the form,  $f(z) = \left[\sum_{\vartheta} p_{\vartheta}\left(\frac{1}{z-b_{\vartheta}} + p_{\vartheta}(z)\right)\right] + g(z)$  where  $p_{\vartheta}(z)$  are suitably chosen polynomials and g(z) is analytic in the whole plane.

6 Prove that  $\Gamma z = 1/z \ e^{-\gamma z} \prod (1 + z/n)^{-1} \ e^{z/n}$  using the relations  $\Gamma(z) = 1/zH(z)$  and  $H(z) = e^{\gamma(z)}$  G(z) where G(z) is the simplest function with negative integers for zero is given by the (a) Find the product representation for  $\sin \pi z$ .

7. If f(z) is analytic in  $|z| < \rho$  and has zeros at  $a_1, a_2, \ldots, a_n$  in  $|z| < \rho$ . Then prove that  $(\frac{\rho e^{i\theta} + z}{\rho e^{i\theta} - z}) \log(\rho e^{i\theta}) d\theta + \sum_{j=1}^n \log(\frac{\rho z - a_j z}{\rho(z - a_j)})$  corresponding canonical product.

Part-C:

1. State and prove Poisson-jensen's formula.

| Questions                                                                                                     | Choice 1                   | Choice 2                              | Choice 3                    | Choice 4                               | Answer                      |
|---------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------|-----------------------------|----------------------------------------|-----------------------------|
| The polar coordinates of C-R                                                                                  | $u_r=1/r \ v_{\theta}$ and | $u_r = v_{\theta}$ and $u_{\theta} =$ | $u_r=1/r \ v_{\theta}$ and  | 11 = -r v                              | $u_r=1/r \ v_{\theta}$ and  |
| equations are                                                                                                 | $u_{\theta} = -r v_r$      | $\mathbf{v}_{\mathbf{r}}$             | $u_{\theta} = r v_{r}$      | $u_{\theta} = -r v_{r}$                | $u_{\theta} = -r v_{r}$     |
| Two harmonic functions are said to be Functions if they satisfies the C-R equations.                          | Conjugate<br>harmonic      | harmonic                              | functions                   | analytic                               | analytic                    |
| The Laplace equation of the form                                                                              | $U_{xx}+U_{yy}=0$          | $U_{xx}$ - $U_{yy}$ =0                | $V_{xx}+U_{yy}=0$           | $V_{xx}+V_{xy}=0$                      | $U_{xx}+U_{yy}=0$           |
| If $U=x^2-y^2$ then $Uyy=?$                                                                                   | 3                          | 1                                     | 0                           | 2                                      | 2                           |
| If $u(x,y)=e^x \cos y$ then find $u_x=?$                                                                      | e <sup>x</sup> cosx        | e <sup>x</sup> cosy                   | cosy                        | e <sup>x</sup>                         | e <sup>x</sup> cosy         |
| If $u(x,y)=c$ cosy then find $u_x=c$                                                                          | C COSX                     | c cosy                                | cosy                        | C                                      | c cosy                      |
| The second order partial derivatives exist, continuous and satisfies the laplace equation is called functions | Analytic                   | Continuous                            | differentiable              | harmonic                               | harmonic                    |
| If $U=x^2-y^2$ then $U_{xx}=?$                                                                                | 3                          | 2                                     | 0                           | 1                                      | 2                           |
| The fixed point's transformation is also known as points transformation                                       | mobius                     | invariant                             | constant                    | bilinear                               | constant                    |
| The bilinear transformation of the form W=                                                                    | az+b/cz+d                  | az+b/c+d                              | az+b                        | az+b/c                                 | az+b/cz+d                   |
| A function which is in region which is not close may or may not be bounded in it.                             | Analytic                   | differentiable                        | continuous                  | bounded                                | Analytic                    |
| The function $1/(1+z)$ is analytic at infinity because the function $1/(1+1/z)$ is                            | Analytic at 0              | continuous at 0                       | differentiable at 0         | analytic at 1                          | Analytic at 0               |
| If a function is differentiable at a points then the function is said to be                                   | analytic at that point     | continuous at that point              | differentiabe at that point | not<br>differentiable at<br>that point | differentiabe at that point |
| The Laplace equation of the format                                                                            | $U_{xx}+U_{yy}=0$          | $U_{xx}$ - $U_{yy}$ =0                | $V_{xx}+U_{yy}=0$           | $V_{xx}+V_{yy}=0$                      | $U_{xx}+U_{yy}=0$           |
| The bilinear transformation is also known as transformation                                                   | non mobius                 | linear                                | mobius                      | non linear                             | mobius                      |
| The equations $u_x=v_y$ and $u_y=-v_x$ are                                                                    | Polar equation             | Euler equation                        | C - R equation              | coordinates                            | C - R equation              |
| If u or v is not harmonic , then u+iv is                                                                      | analytic                   | not analytic                          | conjugate<br>harmonic       | diffrentiable                          | not analytic                |
| If $f(z) = u(x,y) + iv(x,y)$ is analytic in domain d iff $u(x,y)$ and $v(x,y)$ are                            | harmonic                   | conjugate<br>harmonic                 | differentiable              | continuous                             | conjugate<br>harmonic       |
| In a two dimensional flow the stream function is $tan^{-1}y/x$ then the velocity potential is                 | $1/2\log(x^2+y^2)$         | Sin <sup>-1</sup> y/x                 | $\log(x^2 + y^2)$           | cos <sup>-1</sup> y/x                  | $1/2\log(x^2+y^2)$          |
| By Milne – Thomson method if $u$<br>$(x,y) = x^2 - y^2$ then $f(z) =$                                         | $\mathbb{Z}^2$             | 2x+2y                                 | х+у                         | z                                      | $\mathbb{Z}^2$              |
| The function $f(z) = z^{1/2}$ is                                                                              | single                     | multi                                 | double                      | triple                                 | double                      |
| The transformation $w = z^2$ maps the onto the straight lines                                                 | parabola                   | hyperbola                             | ellipse                     | rectangular<br>hyperbola               | rectangular<br>hyperbola    |
| If $f(z) = u+iv$ is an analytic function<br>then $-if(z) =$                                                   | u-iv                       | v+iu                                  | u+v                         | v+i(-u)                                | v+i(-u)                     |
| The value of m such that $2x - x^2 + my$ <sup>2</sup> may be harmonic is                                      | 1                          | 2                                     | 0                           | 3                                      | 1                           |
| If $f(z) = u+iv$ is an analytic function<br>then(1 -i) $f(z) =$                                               | (u+v)+i(v-u)               | (u+v)-i(v-u)                          | (u-v)+i(v-u)                | (u+v)+i(v+u)                           | (u+v)+i(v-u)                |

| If $f(z) = u+iv$ is an analytic function then $(1+i)f(z) =$                                                  | (u+v)+i(v-u)                                                                      | (u+v)-i(v-u)                                | (u-v)+i(u+v)                          | (u+v)+i(v+u)                                                              | (u-v)+i(u+v)                                                                      |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Harmonic functions in polar coordinates are                                                                  | $\begin{array}{l} U_{rr} + 1/r \; u_r \\ + 1/r^2 \; u_{\theta\theta} \end{array}$ | $U_{rr} + r u_r + 1/r^2$ $u_{\theta\theta}$ | $U_{rr} \ + 1/r^2 \ u_{\theta\theta}$ | $\begin{array}{l} U_{rr}+1/r\;u_r\\ +1/r^2\;u_{\theta\theta} \end{array}$ | $\begin{array}{l} U_{rr} + 1/r \; u_r \\ + 1/r^2 \; u_{\theta\theta} \end{array}$ |
| The function is called zhukosky's function                                                                   | 1/z                                                                               | z+1/z                                       | Z                                     | sinz                                                                      | z+1/z                                                                             |
| If $w = u+iv$ under $w = z+1/z$ then $u = \dots$                                                             | $u = (r + 1/r)\cos\theta$                                                         | $u = (r - 1/r)\cos\theta$                   | $u = (r + 1/r)\sin\theta$             | $u = r \cos\theta$                                                        | $u = (r + 1/r)\cos\theta$                                                         |
| If $w = u+iv$ under $w = z+1/z$ then $v = \dots$                                                             | $v = (r + 1/r)\cos\theta$                                                         | $v = rsin\theta$                            | $v = (r - 1/r)\sin\theta$             | $v = r \cos\theta$                                                        | $v = (r - 1/r)\sin\theta$                                                         |
| A circle whose centre is origin goes onto an whose centre is the origin under the zhukosky's transformation. | parabola                                                                          | hyperbola                                   | ellipse                               | rectangular<br>hyperbola                                                  | ellipse                                                                           |
| A ray emanating from the origin goes onto a Whose centre is the origin under the zhukosky's transformation   | parabola                                                                          | hyperbola                                   | ellipse                               | rectangular<br>hyperbola                                                  | hyperbola                                                                         |
| The principle value of log z are                                                                             | logr                                                                              | logr+iθ                                     | log1/r                                | logr-iθ                                                                   | logr+iθ                                                                           |
| . The partial derivatives are all in domain D                                                                | analytic                                                                          | not analytic                                | does not exists                       | continuous                                                                | analytic                                                                          |
| $w = \cos z$ is a function.                                                                                  | analytic                                                                          | continuous                                  | not analytic                          | limit                                                                     | analytic                                                                          |
| f(z) = xy + iy  is                                                                                           | analytic                                                                          | continuous                                  | analytic<br>anywhere                  | limit                                                                     | continuous                                                                        |
| . The function $f(z) =  z $ is differentiable                                                                | on real part                                                                      | on imaginary part                           | at the origin                         | at the point 2                                                            | at the origin                                                                     |
| If f(z) has the derivative only at the origin, it is                                                         | analytic<br>everywhere                                                            | not analytic nowhere                        | analytic<br>nowhere                   | continuous<br>nowhere                                                     | not analytic nowhere                                                              |
| f(z) = 1/z is a function.                                                                                    | differentiable                                                                    | continuous                                  | analytic                              | not analytic                                                              | analytic                                                                          |
| An analytic function with constant real part is                                                              | constant                                                                          | real                                        | imaginary                             | not analytic                                                              | constant                                                                          |
| An analytic function with constant imaginary part is                                                         | constant                                                                          | real                                        | imaginary                             | not analytic                                                              | constant                                                                          |
| An analytic function with constant modulus part is                                                           | constant                                                                          | real                                        | imaginary                             | not analytic                                                              | constant                                                                          |
| Both real part and imaginary part of any analytic function satisfies                                         | wave equation                                                                     | polynomial<br>equation                      | del operator                          | laplace's equation                                                        | laplace's equation                                                                |

CLASS: I M.SC(MATHEMATICS)

**COURSE NAME: COMPLEX ANALYSIS** 

COURSE CODE :18MMP201 UNIT-V BATCH:2018 -2020

#### UNIT-V

#### **SYLLABUS**

Riemann Mapping Theorem – Boundary behaviour – Use of Reflection Principle – Analytical arcs– Conformal mapping of polygons- The Schwartz - Christoffel formula.

Definition. A metric space is a pair (X, d) where X is a set and d is a function from X ×

X into R, called the distance function or metric, which satisfy the following conditions for x,

- $y, z \in X$
- (i)  $d(x, y) \ge 0$
- (ii) d(x, y) = 0 if x = y
- (iii) d(x, y) = d(y, x)
- (iv)  $d(x, z) \le d(x, y) + d(y, z)$

Conditions (iii) and (iv) are called 'symmetry' and 'triangle inequality' respectively. A metric space (X, d) is said to be bounded if there exists a positive number K such that

 $d(x, y) \le K$  for all  $x, y \in X$ .

The metric space (X, d), in short, is also denoted by X, the metric being understood. If x and x > 0 are fixed then let us define

$$B(x; r) = \{x \in X : d(x, y) < r\}$$
  
 $B(x; r) = \{y \in X : d(x, y) \le r\}$ 

B(x; r) and  $\overline{B}(x; r)$  are called open and closed balls (spheres) respectively, with centre x and radius r.  $B(x; \in)$  is also referred to as the  $\in$ -neighbourhood of x.

Let X = R or  $\forall$  and define d(z, w) = |z-w|. This makes both (R,d) and  $(\forall, d)$  metric spaces.  $(\forall, d)$  is the case of principal interest for us. In  $(\forall, d)$ , open and closed balls are termed as open and closed discs respectively.

A metric space (X, d) is said to be complete if every sequence in X converges to a point of X, R and  $\forall$  are examples of complete metric spaces.

If G is an open set in  $\forall$  and (X, d) is complete metric space then the set of all continuous functions from G to X is denoted by C(G, X).

The set C(G, X) is always non empty as it contains the constant functions. However it is possible that C(G, X) contains only the constant functions. For example, suppose that G is connected and  $X = N = \{1, 2, 3, 4,..\}$ . If  $f \in C(G, X)$  then f(G) must be connected in X and hence, must be singleton as the only connected subsets of N are singleton sets.

CLASS: I M.SC(MATHEMATICS) COURSE NAME: COMPLEX ANALYSIS

COURSE CODE :18MMP201 UNIT-V BATCH:2018 -2020

CLASS: I M.SC(MATHEMATICS) COURSE NAME: COMPLEX ANALYSIS

COURSE CODE :17MMP201 UNIT-V BATCH:2017 -2019

```
3.12. Riemann mapping theorem. Let G be a simply connected region which is not the whole plane and let a \in G. Then there is a unique analytic function f : G \to \forall having the properties :
```

- (a) f(a) = 0 and f'(a) > 0
- (b) f is one one
- (c)  $f(G) = \{z : |z| < 1\}$

Proof: First we show f is unique.

Let g be another analytic function on  $\forall$  such that g(a) = 0, g'(a) > 0 g is one one and  $g(G) = \{z : |z| < 1\} = D$ .

Then  $f_0g^{-1}: D \to D$  is analytic, one one and onto

Also  $f_0g^{-1}(0) = f(a) = 0$ . So there is a constant c with |c| = 1

and  $f_0g^{-1}(z) = cz$  for all z. [Applying theorem (2) with a = 0]

But then f(z) = c g(z) gives that 0 < f'(a) = cg'(a).

Since g'(a) > 0, it follows that c = 1. Hence f = g and so f is unique.

Now let 
$$\Phi = \{f \in H(G) : f \text{ is one one, } f(a) = 0, f'(a) > 0, f(G) \subset D\}$$

We first show  $\Phi \neq \phi$ .

Since  $G \neq \forall$  so there exists  $b \in \forall$  such that  $b \notin G$ 

Also G is simply connected so there exists an analytic function g on G such that  $[g(z)]^2 = z - b$ .

Then g is one-one

For this let  $z_1$ ,  $z_2 \in G$  such that  $g(z_1) = g(z_2)$ 

Then  $[g(z_1)]^2 = [g(z_2)]^2$ 

 $\Rightarrow z_1 - b = z_2 - b$ 

 $\Rightarrow$   $z_1 = z_2$ 

⇒ g is one-one.

So by open mapping theorem, there is a positive number r such that

$$B(g(a); r) \subset g(G)$$
 ...(1)

Let z be a point in G such that  $g(z) \in B(-g(a); r)$ 

Then |g(z) + g(a)| < r

 $\Rightarrow$   $|-g(z)-g(a)| \le r$ 

 $\Rightarrow -g(z) \in B(g(a); r)$ 

 $\Rightarrow$   $-g(z) \in g(G)$  [using (1)]

So  $\exists$  some w  $\epsilon$  G such that

$$-g(z) = g(w)$$

$$\Rightarrow [g(z)]^2 = [g(w)]^2$$

$$\Rightarrow \qquad [g(z)]^2 = [g(w)]$$

$$\Rightarrow \qquad z - b = w - b$$

⇒ z = w

Thus, we get,

$$-g(z) = g(z)$$

CLASS: I M.SC(MATHEMATICS) COURSE NAME: COMPLEX ANALYSIS

COURSE CODE: 18MMP201 UNIT-V BATCH: 2018 -2020

**CLASS: I M.SC(MATHEMATICS)** 

**COURSE NAME: COMPLEX ANALYSIS** 

COURSE CODE :17MMP201 UNIT-V BATCH:2017 -2019

But then  $z - b = [g(z)]^2 = 0$  implies  $b = z \in G$ , a contradiction.

Hence  $g(G) \cap B(-g(a); r) = \phi$ 

Let U = B(-g(a); r). There is a Mobius transformation T such that

 $T(C_{\infty} - \overline{U}) = D$ 

Let  $g_1 = T_0g$  then  $g_1$  is analytic and  $g_1(G) \subset D$ .

Consider  $g_2(z) = \frac{g_1(z) - \alpha}{1 - \overline{\alpha}g_1(z)}$  where  $\alpha = g_1(a)$ .

Then  $g_2$  is analytic,  $g_2(G) \subset D$  and  $g_2(a) = 0$ Choose a complex number c, |c| = 1, such that

 $g_3(z) = c g_2(z)$  and  $g_3'(a) > 0$ 

Now  $g_3 \in \Phi$  hence  $\Phi \neq \phi$ .

Next we assume that  $\bar{\Phi} = \Phi \cup \{0\}$  ...(2)

Since  $f(G) \subset D$ ,  $\sup \{ | f(z) : z \in G \} \le 1$  for f in  $\Phi$ . So by Montel's theorem,  $\Phi$  is normal.

This gives  $\overline{\Phi}$  is compact.

Consider the function  $\varphi: H(G) \to C$ 

as  $\phi(\mathbf{f}) = \mathbf{f}'(\mathbf{a})$ 

Then  $\phi$  is continuous function. Since  $\overline{\Phi}$  is compact, there is an f in  $\overline{\Phi}$  such that  $f'(a) \ge g'(a)$  for all  $g \in \Phi$ .

As  $\Phi \neq \emptyset$ , (2) implies that  $f \in \Phi$ . We show that f(G) = D. Suppose  $w \in D$  such that  $w \notin f(G)$ . Then the function

$$\frac{f(z) - w}{1 - \overline{w}f(z)}$$

is analytic in G and never vanishes. Since G is simply connected, there is an analytic function  $h: G \to \forall$  such that

$$[h(z)]^2 = \frac{f(z) - w}{1 - \overline{w}f(z)}$$
 ...(3)

Since the Mobius transformation  $T_{\xi} = \frac{\xi - w}{1 - \overline{w}\xi}$  maps D onto D,

we have

$$\subset D$$
.

Define

$$g: G \rightarrow \forall$$
 as

$$g(z) = \frac{|h'(a)|}{h'(a)} \cdot \frac{h(z) - h(a)}{1 - h(a)h(z)}$$

Then  $g(G) \subset D$ , g(a) = 0 and g is one-one.

Also  $g'(a) = \frac{|h'(a)|}{h'(a)} \cdot \frac{h'(a)[1-|h(a)|^2]}{[1-|h(a)|^2]^2} = \frac{|h'(a)|}{1-|h(a)|^2}$ 

But  $|h(a)|^2 = \left| \frac{f(a) - w}{1 - \overline{w}f(a)} \right| = |-w| = |w|$  [:: f(a) = 0

Differentiating (3), we get

$$2 h(a) h'(a) = f'(a) [1 - |w|^2]$$

 $\Rightarrow h'(a) = \frac{f'(a)(1-|w|^2)}{2h(a)} = \frac{f'(a)(1-|w|^2)}{2\sqrt{|w|}}$ 

# CLASS: I M.SC(MATHEMATICS)

# **COURSE NAME: COMPLEX ANALYSIS**

COURSE CODE :18MMP201 UNIT-V BATCH:2018 -2020

$$g'(a) = \frac{f'(a)(1-|w|^2)}{2\sqrt{|w|}} \cdot \frac{1}{(1-|w|)} = \frac{f'(a)(1+|w|)}{2\sqrt{|w|}} > f'(a)$$

Thus g ε Φ. A contradiction to the choice of f.

Hence we must have f(G) = D.

Next we prove  $\overline{\Phi} = \Phi \cup \{0\}$ .

Suppose  $\{f_n\}$  is a sequence in  $\Phi$  and  $f_n \to f$  in H(G).

Then  $f(a) = \lim_{n \to \infty} f_n(a) = 0 \qquad \text{Also } f_n'(a) \to f'(a) \text{ so } f'(a) \ge 0$ 

Let  $z_1$  be an arbitrary element of G and let  $w = f(z_1)$ . Let  $w_n = f_n(z_1)$ . Let  $z_2 \in G$ ,  $z_2 \neq z_1$  and K be a closed disk centred at  $z_2$  such that  $z_1 \equiv K$ .

Then  $f_n(z) - w_n$  never vanishes on K since f is one one But  $f_n(z) - w_n$  converges uniformly to f(z) - w on K as K is compact. So Hurwitz's theorem gives that f(z) - w never vanishes on K or f(z) = w.

If  $f(z) \equiv w$  on K then f is constant function throughout G and since f(a) = 0, we have  $f(z) \equiv 0$ . Otherwise we have f is one. So f' can never vanish. This gives

f'(a) > 0  $[\because f'(a) \ge 0]$  $f \in \Phi$ .

3.6. Hurwitz's Theorem. Let G be a region and suppose the sequence  $\{f_n\}$  in H(G) converges to f. If  $f \neq 0$ ,  $\overline{B}$  (a; R)  $\subset$  G and  $f(z) \neq 0$  for |z - a| = R then there is an integer N such that for  $n \geq N$ , f and  $f_n$  have the same number of zeros in B(a; R).

Proof: Let  $\delta = \inf \{ |f(z)| : |z - a| = R \}$ Since  $f(z) \neq 0$  for |z - a| = R, we have  $\delta > 0$ .

Now  $f_n \to f$  uniformly on  $\{z: |z-a|=R\}$  so there is an integer N such that if  $n \ge N$  and |z-a|=R then

$$|f(z)=f_n(z)|<\frac{\delta}{2}\,<|f(z)|$$

Hence by Rouche's theorem, f and fn have the same number of zeros in B(a; R).

Cor: If  $\{f_n\} \subset H(G)$  converges to f in H(G) and each  $f_n$  never vanishes on G then either  $f \equiv 0$  or f never vanishes.

- 3.2. Theorem: If G is open in  $\forall$  then there is a sequence  $\{K_n\}$  of compact subsets of G such that  $G = \bigcup_{n=1}^{\infty} K_n$ . Moreover, the sets  $K_n$  can be chosen to satisfy the following conditions:
- (a) K<sub>n</sub> ⊂ int K<sub>n+1</sub>;

and so

(b) K ⊂ G and K compact implied K ⊂ K<sub>n</sub> for some n. Now we define a metric on C(G, X).

Since G is open set in  $\forall$ , we have  $G = \bigcup_{n=1}^{\infty} K_n$  where each  $K_n$  is compact and  $K_n \subset \text{ int } K_{n+1}$ . For

CLASS: I M.SC(MATHEMATICS)

#### **COURSE NAME: COMPLEX ANALYSIS**

COURSE CODE :18MMP201 UNIT-V BATCH:2018 -2020

 $n \in N$ , we define

$$\rho_n(f, g) = \sup \{d(f(z), g(z)) : z \in K_n\}$$

for all functions f and g in C(G, X).

Also if we define

$$\rho(f,\,g) = \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n \frac{\rho_n(f,g)}{1 + \rho_n(f,g)} \qquad \quad \text{for all } f,\,g \in C(G,\,X)$$

then  $(C(G, X), \rho)$  is a metric space. In fact  $(C(G, X), \rho)$  is a complete metric space.

**3.3. Definitions**: A set  $\Phi \subset C(G, X)$  is normal if each sequence in  $\Phi$  has a subsequence which converges to a function f in C(G, X).

A set  $\Phi \subset C(G, X)$  is normal iff its closure is compact.

A set  $\Phi \subset C(G, X)$  is called **equicontinuous** at a point  $z_0$  in G iff for every  $\epsilon > 0$  there is a  $\delta > 0$  such that for  $|z - z_0| < \delta$ ,

$$d(f(z), f(z_0)) \le \epsilon$$

# Schwarz's Reflection Principle

We observe that some elementary functions f(z) possess the property that  $f(\overline{z}) = \overline{f(z)}$  for all points z in some domain. In other words, if w = f(z), then it may happen that  $\overline{w} = f(\overline{z})$  i.e. the reflection of z in the real axis corresponds to one reflection of w in the real axis. For example, the functions

$$z, z^2 + 1, e^z, \sin z$$
 etc

have the above said property, since, when z is replaced by its conjugate, the value of each function changes to the conjugate of its original value. On the other hand, the functions

$$iz, z^{2} + i, e^{iz}, (1 + i) \sin z$$
 etc

do not have the said property.

Theorem (Schwarz's Reflection Principle). Let G be a region such that G = G\* if

 $f: G_+ \cup G_0 \to \forall$  is a continuous function which is analytic on  $G_+$  and f(x) is real for x in  $G_0$  then there is an analytic function  $g: G_+ \forall s.t. g(z) = f(z)$  for all z in  $G_+ \cup G_0$ .

**Proof.** For z in  $G_-$ , define  $g(z) = \overline{f(\overline{z})}$  and for z in  $G_+ \cup G_0$ , define g(z) = f(z).

Then  $g: G \to \forall$  is continuous. We will show that g is analytic. Clearly g is analytic on  $G_+ \cup G_-$ . To show g is analytic on  $G_0$ , let  $x_0$  be a fixed point in  $G_0$  and let R > 0 be such that

$$B(x_0; R) \subset G$$
.

It is sufficient to show that g is analytic on  $B(x_0; R)$  We shall apply Morera's theorem.

Let T=[a,b,c,a] be a triangle in  $B(x_0\,;R)$ . Assume that  $T\subset G_+\cup G_0$  and  $[a,b]\subset G_0$  Let  $\Delta$  represent T together with its inside. Then g(z)=f(z) for all z in  $\Delta$ .  $[\because T\subset G_+\cup G_0]$  By hypothesis f is continuous on  $G_+\cup G_0$ , so f is uniformly continuous on  $\Delta$ . So given  $\epsilon>0$ , there is a  $\delta>0$  s.t.  $z,z'\in\Delta$  implies

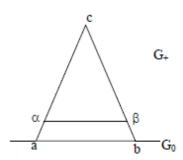
$$|f(z) - f(z')| \le \text{whenever } |z - z'| \le \delta.$$

Choose  $\alpha$  and  $\beta$  on the line segments [c, a] and [b, c] respectively so that  $|\alpha - a| < \delta$  and  $|\beta - b| < \delta$ . Let  $T_1 = [\alpha, \beta, c, \alpha]$  and  $Q = [a, b, \beta, \alpha, a]$ . Then  $\int_T f = \int_T f + \int_C f$ 

# CLASS: I M.SC(MATHEMATICS)

# **COURSE NAME: COMPLEX ANALYSIS**

COURSE CODE :18MMP201 UNIT-V BATCH:2018 -2020



But T<sub>1</sub> and its inside are contained in G<sub>+</sub> and f is analytic there.

By if  $0 \le t \le 1$ , then

$$|[t \beta + (1-t) \alpha] - [tb + (1-t) a]| < \delta$$

so that

$$|f(t \beta + (1 - t) \alpha) - f(t b + (1 - t) a)| \le \epsilon$$
.

Let  $M = \max \{1 f(z) \mid z \in \Delta\}$  and l be the perimeter of T then

$$|\int_{[a,b]} f + \int_{[\beta,\alpha]} f| = |(b-a)|_0^1 f(tb + (1-t)a)dt - (\beta-\alpha)|_0^1 f(t\beta + (1-t)\alpha) dt |$$

$$\leq |b-a|_0^1 [f(tb + (1-t)a) - f(t\beta + (1-t)\alpha)] dt |$$

$$+ |b-a| - (\beta-\alpha)| |\int_0^1 f(t\beta + (1-t)\alpha) dt |$$

$$\leq \epsilon |b-a| + M |(b-\beta) + (\alpha-a)|$$

$$\leq \epsilon l + 2M\delta.$$

Also  $\left| \int_{[\alpha,a]} f \right| \le M |a - \alpha| \le M \delta$ 

and  $\left| \int_{[b,\beta]} f \right| \le M\delta$ .

Choosing  $\delta > 0$  s. t.  $\delta < \in$ . Then

$$|\int_{T} f| < \epsilon (l + 4M)$$
. Since  $\epsilon$  is arbitrary it follows that  $\int_{T} f = 0$ . Hence  $f$ 

must be analytic.

**CLASS: I M.SC(MATHEMATICS)** 

# COURSE NAME: COMPLEX ANALYSIS

COURSE CODE :18MMP201 UNIT-V BATCH:2018 -2020

#### Schwarz-Christoffel Transformation

We've seen that the transformation w = f(z) with

$$\frac{df}{dz} = A \prod_{j=1}^{n-1} (z - x_j)^{-p_j} \quad \text{with} \quad p_n = 2 - \sum_{j=1}^{n-1} p_j, \quad 0 < p_j < 1$$

maps the real axis onto a convex polygon of the positive sense.

Thus, 
$$\frac{df}{dz} \neq 0$$
 for finite z.

If all the branch cuts are oriented toward the lower plane, the mapping will be analytic & hence conformal in the finite upper half plane  $y \ge 0$  except for the branch points  $z = x_i$ .

Let us denote the region of analyticity for f by R.

$$\rightarrow f(z) = f(z_0) + \int_{z_0}^{z} ds \frac{df(s)}{ds} \qquad \forall z, z_0 \in \mathbb{R}$$

$$= B + A \int_{z_0}^{z} ds \prod_{j=1}^{n-1} (s - x_j)^{-p_j} \qquad B = f(z_0)$$

w = f(z) is known as the Schwarz-Christoffel Transformation (SCT).

Some properties of the SCT will be studied in some detail in the following:

#### Existence

An implicit assumption is that the integral in the SCT exist.

Since 
$$\left| \frac{df}{dz} \right| \xrightarrow[z \to \infty]{} |A| |z|^{-\sum p_j}$$

a necessary condition is therefore:

$$\sum_{j=1}^{n-1} p_j = 2 - p_n > 1$$

which is automatically satisfied since all  $p_j$ , including  $p_n$ , obeys criterion  $p_j < 1$ .

## • f is continuous at $z = x_i$

Near each  $x_k$ , we can write

$$\frac{df}{dz} = (z - x_k)^{-p_k} \phi(z)$$

where

$$\phi(z) = A \prod_{j \neq k} (z - x_j)^{-p_j}$$

is analytic at  $x_k$ .

# CLASS: I M.SC(MATHEMATICS)

# COURSE NAME: COMPLEX ANALYSIS

COURSE CODE :18MMP201

UNIT-V

BATCH:2018 -2020

$$\phi(z) = \sum_{m=0}^{\infty} \frac{\phi^{(m)}(x_k)}{m!} (z - x_k)^m$$

$$= \phi(x_k) + (z - x_k) \psi(z)$$
where  $\psi(z) = \sum_{m=1}^{\infty} \frac{\phi^{(m)}(x_k)}{m!} (z - x_k)^{m-1}$ 

is analytic at  $x_k$ .

Hence

$$\frac{df}{dz} = (z - x_k)^{-p_k} \phi(x_k) + (z - x_k)^{1-p_k} \psi(z)$$

$$f(z) = f(z_0) + \int\limits_{z_0}^z ds \left\{ (s-x_k)^{-p_k} \phi(x_k) + (s-x_k)^{1-p_k} \psi(z) \right\}$$

where for our purpose here, z,  $z_0 \approx x_k$ .

Now: 
$$|p_k| < 1 \longrightarrow 1 - p_k > 0$$

$$\therefore \int_{z_0}^z ds (s - x_k)^{1 - p_k} \psi(z)$$

is analytic & therefore continuous at  $x_k$  as a function of z.

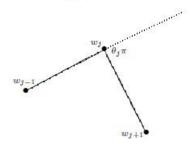
Next 
$$\int_{z_0}^{z} ds \ (s - x_k)^{-p_k} = -\frac{1}{p_k} \left\{ (z - x_k)^{1 - p_k} - (z_0 - x_k)^{1 - p_k} \right\}$$

is analytic & therefore continuous at  $x_k$  as a function of z.

Thus, f(z) is the sum of 2 continuous functions so that it's continuous at  $x_k$  too.

#### Polygons:

Suppose that the vertices of the polygon P are given by  $w_1, \ldots, w_k$  in the anticlockwise direction. Let us follow the edges of the polygon P. At vertex  $w_j$ , suppose that we make a right turn of angle  $\theta_j \pi$ , where  $-1 < \theta_j < 1$ , with the convention that  $\theta_j < 0$  denotes a left turn.



UNIT-V

BATCH:2018 -2020

strong Markov property and reflection principle. These are

concepts that you can use to compute probabilities for Brownian motion.

#### Theorem:

Suppose that  $X_t$  is Brownian motion. If t > T, T a

reflection principle. Suppose  $X_t$  is Brownian motion with zero stopping time, then  $X_t - X_T$  is independent of  $\mathcal{F}_T$ .

An example of a stopping time is the first time that  $X_t$  reaches 1.

drift ( $\mu = 0$ ). Then we want to calculate the probability that, starting at  $X_0 = 0$ , it will reach  $X_s = 1$  at some time 0 < s < t.

$$\mathbb{P}(X_s = 1 \text{ for some } 0 < s < t \mid X_0 = 0) = ?$$

Let T =first time that  $X_T = 1$ . Then  $X_s$  reaches 1 for s < t if T < t. So, this is the same as

$$\mathbb{P}(T < t)$$

The strong Markov property implies that  $X_t - X_T$  is independent of  $\mathcal{F}_T$ . We also know that  $X_t - X_T$  is normal:

$$X_t - X_T \sim N(0, \sigma^2(t-T))$$

(assuming that t > T). Since the mean is zero, it is positive half the time and negative half the time (and the probability of being exactly zero is 0):

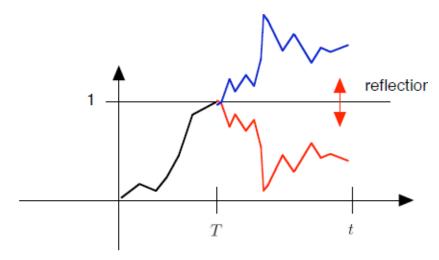
$$\mathbb{P}(X_t - X_T > 0) = \frac{1}{2}$$

$$\mathbb{P}(X_t - X_T \le 0) = \frac{1}{2}$$

CLASS: I M.SC(MATHEMATICS)

COURSE NAME: COMPLEX ANALYSIS

COURSE CODE :18MMP201 UNIT-V BATCH:2018 -2020



Half the time X will reach 1 and go up, half the time it will reach 1 and go down. So,

$$\mathbb{P}(T < t) = 2\mathbb{P}(T < t \text{ and } X_t > X_T = 1)$$

But  $X_t$  is continuous. So, the intermediate value theorem (IMT) tells us that the second condition implies the first: If  $X_t > 1$  and  $X_0 = 0$  then  $0 < \exists s < 1$  so that  $X_s = 1$ . So,

$$\mathbb{P}(T < t \mid X_0 = 0) = 2\mathbb{P}(X_t > 1 \mid X_0 = 0)$$

This is given by an integral

$$=2\int_{1}^{\infty}f_{t}(x)\,dx$$

where  $f_t$  is the density function for  $X_t - X_0$ .

# Schwarz-Christoffel Transformations

Given a polygonal curve  $\Gamma$ , its interior P is a simply connected domain. Thus, by the Riemann Mapping Theorem, there exists a function S that conformally maps the upper half plane onto P. The Schwarz-Christoffel theorem provides a concrete description of such maps.

Here is a typical textbook statement of the theorem:

CLASS: I M.SC(MATHEMATICS) CO

COURSE NAME: COMPLEX ANALYSIS

COURSE CODE :18MMP201 UNIT-V

BATCH:2018 -2020

Theorem: Let P be the interior of a polygon  $\Gamma$  having vertices  $w_1, \ldots w_n$  and interior angles  $\alpha_1 \pi \ldots \alpha_n \pi$  in counterclockwise order. Let S be any conformal, one-to-one map from the upper half plane  $\mathbb H$  onto P satisfying  $S(\infty) = w_n$ . Then S can be written in the form:

$$S(z) = A + C \int_{z_0}^{z} \prod_{k=1}^{n-1} (\zeta - z_k)^{\alpha_k - 1} d\zeta$$
 (1)

where A and C are complex constants, and  $z_0 < z_1 < \cdots < z_{n-1}$  are real numbers satisfying  $S(z_k) = w_k$  for  $k = 1, \ldots, n-1$ .

Functions of the form in Equation (1) are called Schwarz-Christoffel candidates<sup>1</sup>. Furthermore, a Schwarz-Christoffel candidate is a Schwarz-Christoffel Transformation if it does indeed conformally map the upper half plane  $\mathbb{H}$  onto the interior of a polygon.

To make total sense of this theorem, several issues have to be addressed. First, and most fundamentally, the map S from Equation (1) refers to values of S on the extended real axis, but this set is not part of the upper half plane. Therefore, to be able to discuss  $S(z_1), \ldots, S(\infty)$ , it is important to extend the definition of S to the closure of  $\mathbb{H}$ .

Secondly, notice that Equation (1) involves improper contour integrals. We need to specify which contours joining  $z_0$  to z, are admissible, show that the resulting integrals converge, and are in fact independent of the particular contour is chosen.

Also, the theorem mandates that  $S(\infty) = w_n$ . We shall discuss the seriousness of this stipulation, as well as how much freedom we are allowed with the parameters  $A, C, z_0, \ldots z_{n-1}$  in the map S.

CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS

COURSE CODE :18MMP201 UNIT-V BATCH:2018 -2020

After these issues have been addressed, we can then formally prove the theorem.

We start the paper with a careful setup of notations and terms in chapter 2. We begin

chapter 3 by proving the theorem for prototypical cases when P is a half or quarter plane.

This will then motivate us to construct a Schwarz-Christoffel candidate f for the general

case. In Chapter 4, we show that f is indeed a Schwarz-Christoffel Transformation if and

only if its image curve does not cross itself.

Schwarz's Reflection Principle: Let  $\Omega$  be a symmetric region, and set  $\Omega^+$ :

 $\Omega \cap \mathbb{H}$  and  $\sigma := \Omega \cap \mathbb{R}$ . Suppose that v is continuous on  $\Omega^+ \cup \sigma$ , harmonic in

 $\Omega^+$ , and zero on  $\sigma$ . Then v has a harmonic extension to  $\Omega$  which satisfies the

symmetry relation  $v(\overline{z}) = -v(z)$ . In the same situation, if v is the imaginary

part of an analytic function f in  $\Omega^+$ , then f can be extended to an analytic

function on all of  $\Omega$  by the formula  $f(\overline{z}) = \overline{f(z)}$ .

Boundary Properties of Polygons

Notice that the interior of any polygon P is an open set. Thus, we are guaranteed a conformal

S from the upper half plane  $\mathbb{H}$  onto P.

Furthermore, as we will discuss later, this function S has a continuous extension that

maps the real axis to the boundary of the polygon. Thus, for each of the vertices  $w_k$ , there

exists a unique prevertex  $z_k$  so that  $f(z_k) = w_k$ .

CLASS:I M.SC(MATHEMATICS) COURSE NAME:COMPLEX ANALYSIS

COURSE CODE :18MMP201 UNIT-V BATCH:2018 -2020

#### **SIX MARK QUESTIONS:**

- 1. Show that  $\Omega$  be a bounded simply connected region whose boundary is a closed polygonal line with self-intersection. Let the consecutive vertices be  $z_1, z_2, z_3, \ldots, z_n$  in the positive cyclic order. The angle  $z_k$  is given by  $\alpha_k \pi \, a_n$ .
- 2. If any simply connected region  $\Omega$  which is not the whole plane and the point  $\mathbf{z_0} \in \Omega$  then there exist a unique analytic function f(z) in  $\Omega$  normalized by the conditions,  $f(\mathbf{z_0}) = \mathbf{0}$ ,  $f'(\mathbf{z_0}) = 0$ , such that f(z) defines a one-one mapping of  $\Omega$ , onto the disk  $|\omega| < 1$ .
- 3. Show that any simply connected region  $\Omega$  which is not the whole plane and the point  $\mathbf{z_0} \in \Omega$  then there exist a unique analytic function f(z) in  $\Omega$  normalized by the conditions,  $f(\mathbf{z_0}) = \mathbf{0}$ ,  $f'(\mathbf{z_0}) = 0$ , such that f(z) defines a one-one mapping of  $\Omega$ , onto the disk  $|\omega| < 1$ .
- 4. Show that the boundary of a simply connected region  $\Omega$  contains a line segment  $\gamma$  as a one sided free boundary arc. Then the function f(z) which maps  $\Omega$  onto the unit disk can be extended to a function which is analytic and one to one on  $\Omega \cup \gamma$ . The image of  $\gamma$  is an arc  $\gamma$ ' on the unit circleShow that the function z = F(w) which map |w| < 1 conformally onto polygons with angles  $\alpha_k \pi$   $(k = 1, 2, 3, \ldots, n)$  are of the form  $F(w) = c \int_0^w \prod_{k=1}^n (w w_k)^{-\beta k} dw + c$ ' where  $\beta_k = 1 \alpha_k$ , the  $w_k$  are points on the unit circle and c, c' are complex constants.
- 5. Suppose that the boundary of a simply connected region  $\Omega$  contains a line segment  $\gamma$  as a one sided free boundary arc. Then the function f(z) which maps  $\Omega$  onto the unit disk can be extended to a function which is analytic and one to one on  $\Omega \cup \gamma$ . The image of  $\gamma$  is an arc  $\gamma$  on the unit circle.
- 6. Show that an analytic function in a region  $\Omega$  whose derivative vanishes identically must reduce to a constant . The same is true if either the part, the imaginary part , the modulus the argument is constant.
- 7. Show that f be a topological mapping of a region  $\Omega$  onto a region  $\Omega$ '. If  $\{z_n\}$  or z(t) tends to the boundary of  $\Omega$  then the sequence of  $\{f(Z_n)\}$  or f(Z(t)) tends to the boundary of  $\Omega$ '.
- 8. Show that f be a topological mapping of a region  $\Omega$  onto a region  $\Omega$ '. If  $\{z_n\}$  or z(t) tends to the boundary of  $\Omega$  then the sequence of  $\{z_n\}$  or z(t) tends to the boundary of  $\Omega$ '.

.

CLASS: I M.SC(MATHEMATICS) COURSE NAME: COMPLEX ANALYSIS

COURSE CODE :18MMP201 UNIT-V BATCH:2018 -2020

| TE | V | $\mathbf{M}$ | A | R | K | S |
|----|---|--------------|---|---|---|---|
|    |   |              |   |   |   |   |

1.State and prove Schwarz's christoffel formula

| Questions                                                           | Choice 1                       | Choice 2                       | Choice 3               | Choice 4                       | Answer                         |
|---------------------------------------------------------------------|--------------------------------|--------------------------------|------------------------|--------------------------------|--------------------------------|
| The set of complex points is called                                 | arc                            | simple arc                     | closed arc             | open arc                       | simple arc                     |
| If a curve intersects itself at a point then the point              |                                | 1.1.1                          |                        |                                |                                |
| is said to be a                                                     | single                         | multiple points                | double valued          | trile                          | multiple points                |
| The equation $z = cost + i sint$ , $0 \le t \le \pi$ represents a   | arc                            | simple arc                     | closed arc             | curve                          | simple arc                     |
| The unit circle z=cost+isint, 0≤t≤2Π are                            | positively                     | negatively                     | circle                 | unit circle                    | positively                     |
| The unit circle $z = \cos(-t) + i\sin(-t)$ , $0 \le t \le 2\pi$ are | positively                     | negatively                     | -:1-                   |                                | negatively                     |
|                                                                     | oriented circle                | oriented circle                | circle                 | unit circle                    | oriented circle                |
| It the region lies to the left of a person when he                  | postively oriented             | negatively                     |                        | simple closed                  | postively oriented             |
| travels along C, then the curve C is called a                       | simple closed                  | oriented simple                | open curve             | curve                          | simple closed                  |
|                                                                     | curve                          | closed curve                   |                        | curve                          | curve                          |
| The simple closed rectifible curve is abbreviated as                | curve                          | scr curve                      | scro curve             | arc                            | scr curve                      |
| In cauchy's fundamental theorem, $\int f(z) dz =$                   | 1                              | 2                              | 0                      | 4                              | 0                              |
| The simple closed rectifiable positively oriented                   |                                |                                |                        |                                |                                |
| curve is abbreviated as                                             | curve                          | scr curve                      | scro curve             | arc                            | scro curve                     |
| The simple arc is also known as                                     | multiple                       | Jordan                         | double                 | multiple                       | Jordan                         |
| The derivative of an analytic function is also                      | analytic                       | continuous                     | derivative             | bounded                        | continuous                     |
| The integral $\int f(z) dz = F(b) - F(a)$ is called a               | integral                       | indefinite                     | definite               | derivative                     | derivative                     |
| The poles of an analytic function are                               | essential                      | removable                      | pole                   | isolated                       | isolated                       |
| If C is a positively oriented circle then $\int 1/(z-a)$            | 2П                             | 2Пі                            | 0                      | П                              | 2Пі                            |
| dz=                                                                 | 211                            | 2111                           | 0                      | 11                             | 2111                           |
| When the order of the pole is 2,the pole is said to                 | double                         | simple                         | multiple               | triple                         | multiple                       |
| bepole.                                                             | double                         | Simple                         | multiple               | пріс                           | Пипріє                         |
| The limit point of zero's of an analytic function is                | singular                       | nonsingular                    | poles                  | zeros                          | singular                       |
| apoint of the function                                              | Singular                       | nonsingular                    | poles                  | 20103                          | Singulai                       |
| A region which has only one hole is anregion                        | origin                         | set                            | annular                | moment                         | annular                        |
| A region which is not simply connected is called                    | connected                      | compact                        | multiply-<br>connected | region.                        | compact                        |
| The integrals along scr curves are called                           | complex integrals              | integrals                      | contour integrals      | partial integrals              | contour integrals              |
| If f(z) is a continuous function defined on a                       | ∫ (u dx- vdy) +                | ∫ (u dx- vdy) -                | ∫ (u dx- vdy)          | ∫ (u dx+ vdy) +                | ∫ (u dx- vdy) +                |
|                                                                     | i∫(u dx- vdy) +<br>i∫(udy-vdx) | j (u dx- vdy) -<br>i∫(udy-vdx) | $+\int (u dx - v dy)$  | j (u dx+ vdy) +<br>i∫(udy+vdx) | j (u dx- vdy) +<br>i∫(udy-vdx) |
| simple rectifiable curve then $\int f(z) dz = \dots$                | ij(uuy-vux)                    | ij(udy-vdx)                    | +J(uuy-vux)            | ij(udy+vdx)                    | ij(udy-vdx)                    |
| $\int [f_1(z) + f_2(z)]dz \text{ on C is}$                          | $\int f_1(z)dz +$              | $\int f_1(z)dz$ -              | $\int f_1(z)dz$ .      | $\int f_1(z)dz$ /              | $\int f_1(z)dz +$              |
| If f(z) is analytic in a simply connected domain,                   |                                |                                |                        |                                |                                |
| then the values of the integrals of f(z) along all                  | ono                            | +1440                          | throo                  | multiple                       | +1440                          |
| paths in the region joining fixed points are                        | one                            | two                            | three                  | multiple                       | two                            |
| the same.                                                           |                                |                                |                        |                                |                                |
| The bounded region of C is called                                   | interior                       | exterior                       | interior nor           | interior and                   | interior                       |
| A region D is said to be for every                                  | connected                      | simply -                       | disconnected           | disjoint                       | simply -                       |
| closed curve in D , Ci is contained in D                            | connected                      | connected                      | disconnected           | disjonit                       | connected                      |
| When A is fixed and B(z) moves in D, the                            | single - valued                | double -valued                 | multi - valued         | zero                           | single valued                  |
| integral                                                            | Single valued                  |                                | maiti valueu           | 2010                           | Single valued                  |
| of an analytic function are isolated                                | zeros                          | poles                          | residues               | points                         | zeros                          |
| If $f(z) = (z - a)^m [a_{0+} a_1(z-a), a_0 \neq 0$ ,                | m                              | 1                              | 2                      | n                              | m                              |
| then z =a is a zero of order                                        |                                |                                |                        | 0                              |                                |
| If C is an arc in D, joining a fixed point z <sub>0</sub> and       | 0                              | 4                              | f(z)                   | 6                              | f(-)                           |
| the arbitrary point z then d/dz                                     |                                |                                | f(z)                   | С                              | f(z)                           |
| A function analytic in D has of all orders in D                     | derivatives                    | points                         | curves                 | zeros                          | derivatives                    |
| A curve is said to be piece-wise smooth if C is                     |                                |                                |                        |                                |                                |
| not smooth at a number of points in it.                             | finite                         | infinite                       | zero                   | one                            | finite                         |
|                                                                     |                                |                                |                        |                                |                                |

| Reg No |                                                                                                                                                                                          | <ul><li>(c) continuous at z</li><li>(d) difference</li><li>7. In a compact set every continuous funct</li></ul>                                    | entiable at $z_0$ entiable at $z$ ion is mly differentiable |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 1.     | PART – A (20 × 1 = 20 Marks)  Answer all the questions  The element (1,0) is the  (a) additive identity (b) multiplicative identity (c) identity (d) unique                              | 8. The Cartesian coordinates of $C - R$ equate $(a)u_x = v_y$ and $u_y = -v_x$ (b) $u_x = v_y$ (c) $u_x = v_y$ and $u_x = -v_x$ (d) $u_x = v_y$    | $v_y$ and $u_y = -v_x$                                      |
|        | If $ Z_1  =  Z_2 $ and $arg(Z_1) = arg(Z_2)$ then                                                                                                                                        | 9. A function of complex variable is someton (a) complex variable (b) variable (c) complex function (d) constant                                   | le                                                          |
|        | is                                                                                                                                                                                       | 10. If $u(x,y) = e^x cosy$ then find $u_x = $                                                                                                      | $(d) e^x$                                                   |
| 4.     | The complex plane containing all the finite complex numbers and infinity is called the  (a) Infinite complex plane (b) extended complex plane (c) complex plane (d) finite complex plane | 11. The second order partial derivatives exists satisfies the laplace equation is called(a) analytic (b) continuous (c) differentiable (d)harmonic |                                                             |
| 5.     | If a function is continuous at all points in some neighborhood of a point then the function is said to be                                                                                | 12. If $U = x^2 - y^2$ then $U_{xx} = \frac{1}{(c)0}$                                                                                              | (d)1                                                        |
|        | (a) analytic (b) continuous (c) differentiable (d) continuity                                                                                                                            | 13. The mapping $W = Z + b$ , b is a compared the                                                                                                  | plex number, is                                             |

|     | (c)inversion                                                                                                                             | (d)rotation                                                                                  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|--|
| 14. | 4. All the complex numbers except infinity are called                                                                                    |                                                                                              |  |  |  |  |
|     | (a) complex numbers<br>(c) finite complex numbers                                                                                        | <ul><li>(b) complex plane</li><li>(d) Infinite complex numbers</li></ul>                     |  |  |  |  |
| 15. | The cross ratio is of the form $(a) \frac{(z_1-z_2)(z_2-z_4)}{(z_1-z_4)(z_2-z_3)}$ $(c) \frac{(z_1-z_2)(z_2-z_4)}{z_1-z_4}$              | (b) $\frac{(z_1-z_3)(z_2-z_4)}{(z_1-z_4)(z_2-z_3)}$ (d) $\frac{z_1-z_2}{(z_1-z_4)(z_2-z_3)}$ |  |  |  |  |
| 16. | The mapping $w = f(z)$ is safe preserves the magnitude of the curves.  (a) conformal (b) isogon (c) translation (d) not                  | ne angle between every two                                                                   |  |  |  |  |
| 17. | The fixed point of the transfo                                                                                                           | ormation $W = Z + b$ is                                                                      |  |  |  |  |
|     | $\overline{(a)Z = 0} \qquad (b)Z = 1$                                                                                                    | $(c)Z = \infty$ $(d)Z \neq \infty$                                                           |  |  |  |  |
| 18. | The polar form of $x + iy$ is _ (a) $r(\cos \theta + i\sin \theta)$ (c) $(\cos \theta + i\sin \theta)$                                   | (b) $r(\cos \theta - i \sin \theta)$<br>(d) $r(\cos \theta - \sin \theta)$                   |  |  |  |  |
| 19. | If $Z_1$ and $Z_2$ are any two con                                                                                                       | nplex numbers then                                                                           |  |  |  |  |
|     | $ \overline{(a) \mid Z_1 - Z_2 \mid} \le \mid Z_1 \mid + \mid Z_2 \mid  (c) \mid Z_1 - Z_2 \mid \ge \mid Z_1 \mid - \mid Z_2 \mid \mid $ |                                                                                              |  |  |  |  |
| 20. | The value of $i^2$ is                                                                                                                    |                                                                                              |  |  |  |  |

(b)translation

(a)linear transformation

(a) 1 (b) -1 (c) 0 (d) i

# PART –B (3×2=6 Marks) Answer all the questions

- 21. Define length of arc.
- 22. Define complex line integral.
- 23. Define Harmonic function.

# PART-C (3x 8=24 Marks) Answer all the questions

24. (a) Show that an analytic function in a region  $\Omega$  whose derivative vanishes identically must reduce to a constant . The same is true if either the part, the imaginary part , the modulus the argument is constant.

(OR)

- (b) Show that the set of all linear transformation forms a group under the product of transformation.
- 25. (a) State and prove Liouville'stheorem.

# (OR)

- (b) i) State and prove Morera's theorem.
  - ii) State and prove Fundamental theorem of algebra.
- 26. (a) Show that the real part and imaginary part of an analytic function are harmonic.

# (OR)

(b) If  $u_1$  and  $u_2$  are harmonic in a region  $\Omega$  then  $\int_{\gamma} u_1 * du_2 - u_2 * du_1 = 0, \text{ for every cycle } \gamma \text{ which homologous to zero in } \Omega.$ 

| KARPAGAM ACADEMY OF HIGHER EDUCATION Coimbatore - 21 DEPARTMENT OF MATHEMATICS Second Semester II Internal Test COMPLEX ANALYSIS |                                         |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|
| 11.03.2019(FN) Time: 2 Hours I M.Sc Mathematics Maximum: 50 Marks                                                                |                                         |  |  |  |
| PART – A (20 × 1 = 20 Marks)  Answer all the questions  The Laplace equation is of the form                                      |                                         |  |  |  |
| $(a)U_{xx} + U_{yy} = 0$                                                                                                         | $(b)U_{xx} - U_{yy} = 0$                |  |  |  |
| $(c)V_{xx} + U_{yy} = 0$                                                                                                         | $(\mathrm{d})V_{xx} + V_{yy} = 0$       |  |  |  |
| The equation $z = cost + isint$ , $0 \le t \le \pi$ represents a                                                                 |                                         |  |  |  |
| (a) positively oriented                                                                                                          | d circle (b) negatively oriented circle |  |  |  |
| (c)simple arc                                                                                                                    | (d)closed simple curve.                 |  |  |  |
| The simple closed rectifiable curve is abbreviated as                                                                            |                                         |  |  |  |
| (a) curve                                                                                                                        | (b)scr curve                            |  |  |  |
| (b) (c)scro curve (d) normal curve                                                                                               |                                         |  |  |  |
| If C is a positively oriented circle then                                                                                        |                                         |  |  |  |
| $\int_{c} \frac{1}{(z-a)} dz = \underline{\hspace{1cm}}$                                                                         |                                         |  |  |  |

(c)0

 $(d)\pi$ 

Date : Class:

1.

2.

3.

4.

(a) $2\pi$ 

(b)2  $\pi i$ 

| 5.  | If C is the unit    | z  = 1            | , then $\int_C$ | $ze^z dz = \underline{\hspace{1cm}}$ |
|-----|---------------------|-------------------|-----------------|--------------------------------------|
|     | (a)1                | (b) 2             | (c)0            | (d) -1                               |
| 6.  | The Taylor's s      | series is a serie | s of            | powers.                              |
|     | (a) positive        | (b) negative      | (c)             | exponential                          |
|     | (d) logarithmi      | c.                |                 |                                      |
| 7.  | The simple are      | c is also known   | n as            |                                      |
|     | (a) multiple        | (b)Jordan         | (c)double       | (d)none.                             |
| 8.  | The unit circle     | z = cos(-t)       | + i sin(-t)     | ), $0 \le t \le 2\pi$ are            |
|     |                     | _                 |                 |                                      |
|     | (a) positively      | oriented circle   |                 |                                      |
|     | (b) negatively      | oriented circle   |                 |                                      |
|     | (c) circle          |                   |                 |                                      |
|     | (d) unit circle     |                   |                 |                                      |
| 9.  | The derivative      | of an analytic    | function is     | also                                 |
|     | (a) analytic        | (b)con            | tinuous         |                                      |
|     | (c)derivative       | (d) con           | nstant          |                                      |
| 10. | The integral $\int$ | f(z) dz = F(z)    | b) - F(a) i     | s called a                           |
|     |                     | _                 |                 |                                      |
|     | (a)integral         | (b)indefinite     | (c)definite     | (d)derivative                        |
| 11. | The Laurent's       | series is a serie | es of           | powers.                              |
|     | (a) positive        | (b) neg           | gative          |                                      |
|     | (c) exponentia      | d (d) bot         | th positive a   | nd negative                          |

| 12. The poles of $\frac{2Z+1}{z^2-z-2}$ are                                                                           |                               |                      | curves and also it preserves the sense of orientation of the |                                                                                                                                    |  |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|
| (a) 2,1 (b) 2                                                                                                         |                               | (d)2,-1              | angle.                                                       |                                                                                                                                    |  |
| 13. If $z = a$ is an isolated singular                                                                                | larities of a fur             | action $f(z)$ then   | (a) conformal                                                | (b) isogonal                                                                                                                       |  |
| the singularity is called                                                                                             |                               |                      | (c) translation                                              | (d) not a conformal                                                                                                                |  |
| (a) essential                                                                                                         | (b) removable                 |                      | 20. The bilinear transf                                      | ormation is also known as                                                                                                          |  |
| (c) pole                                                                                                              | (d) isolated                  |                      | transformation                                               |                                                                                                                                    |  |
| 14. If $U = x^2 + y^2$ then $U_{yy} = \frac{1}{2}$                                                                    | ` /                           |                      | (a) nonmobius                                                | (b) linear                                                                                                                         |  |
| (a) 3 (b) 2                                                                                                           |                               | (d)1                 | (c) mobius                                                   | (d) non linear                                                                                                                     |  |
| 15. When the order of the pole ipole (a) Simple (b)double                                                             | s 1, the pole is  (c)multiple | said to be (d)triple |                                                              | (3×2=6 Marks) I the questions Series.                                                                                              |  |
| . , , , , , , , , , , , , , , , , , , ,                                                                               | •                             | . , .                | 22. Write about partial                                      |                                                                                                                                    |  |
| 16. The poles of an analytic fund                                                                                     |                               |                      | 23. Give two example                                         | s of simple pole and double pole.                                                                                                  |  |
| (a) essential (b) removable (c) pole (d) isolated  17. When the order of the pole is 2,the pole is said to be pole    |                               |                      | 3 × 8=24 Marks)  I the questions  Weierstrass theorem.  (OR) |                                                                                                                                    |  |
| (a) simple (b)double                                                                                                  | (c)multiple                   | (d)zero              | b)State and prove                                            | ` '                                                                                                                                |  |
| <ul><li>18. Two harmonic functions are they satisfies the C-R equation (a) conjugate harmonic (c) functions</li></ul> |                               |                      |                                                              | series for the function $\frac{\pi^2}{\sin^2 \pi z}$<br>(OR)<br>$t \pi z = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2}$ |  |
| 19. The mapping $w = f(z)$ is sa preserves the magnitude of t                                                         |                               |                      | 26. a)State and prove b)State and prove                      | Jensen's formula. (OR) Schwartz' theorem.                                                                                          |  |