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UNIT-I

1 1 Introduction to topological spaces R1:Ch 2,75

2 1 Definitions and Examples on topology R1: Ch 2, 76-77

3 1 Theorems on basis R1:Ch2,78

4 1 Continuation of theorems on basis R1: Ch 2, 79-80

5 1 Theorems on the order topology R1: Ch 2, 84-86

6 1 Theorems on product topology R1: Ch 2,86

7 1 Continuation of theorems on product topology R1: Ch 2,87-88

8 1 Theorems on the subspace topology R2: Ch 3,101

9 1 Recapitulation and Discussion of possible questions

Total 9 Hours
UNIT-I1I

1 1 Introduction to closed set R1:Ch 2,92

2 1 Theorems on closed set R1:Ch2,93

3 1 Continuation of theorems on closed set R1: Ch 2, 94-95

4 1 Theorems on limit points R3: Ch 3,110

S 1 Theorems on continuous functions R1: Ch 2, 101-102

6 1 Continuation of theorems on continuous functions R1: Ch 2, 103-104

7 1 Theorems on product topologies R1: Ch 2, 114-116

8 1 Theorems on metric topologies R1: Ch2,117-118

9 1 Recapitulation and Discussion of possible questions
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1 1 Introduction to connected spaces R1: Ch 3,147

2 1 Theorems on connected spaces R4: Ch 5,107

3 1 Continuation of theorems on connected spaces R1: Ch 3,150-151

4 1 Theorems on connected subspaces of R R1: Ch 3,152-158

5 1 Theorems on components R1: Ch 3, 160-162

6 1 Theorems on local connectedness R1: Ch 3, 163-164

7 1 Continuation of theorems on local connectedness R1: Ch 3, 164-165

8 1 Recapitulation and Discussion of possible questions
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1 1 Introduction to compact spaces R1: Ch 3,164-166
2 1 Theorems on compact spaces R1: Ch 3,166-168
3 1 Theorems on compact subspaces of R R1: Ch 3,169-172
4 1 Theorems on limit point compactness R1: Ch 3,173-174
5 1 Continuation of theorems on limit point R1: Ch 3,175-181
compactness
6 1 Theorems on local compactness R5: Ch 3, 183
7 1 Continuation of theorems on local compactness R1: Ch 3,184-185
8 1 Recapitulation and discussion of possible questions
Total 8 Hours
UNIT-V
1 1 Theorems on countability axioms R1: Ch 4, 190-191
2 1 Some examples of the separation axioms R1: Ch 4, 192-194
3 1 Theorems on normal spaces R1: Ch 4, 198-202
4 1 The Urysohn lemma R1: Ch 4, 203-206
5 1 The Urysohn metrization theorem R1: Ch 4, 208-210
6 1 The Tietze Extension theorem R1: Ch 4, 210-212
7 1 Recapitulation and discussion of possible questions
8 1 Discussion on Previous ESE Question Papers
9 1 Discussion on Previous ESE Question Papers
10 1 Discussion on Previous ESE Question Papers

Total 9 Hours
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UNIT-I

SYLLABUS

Topological spaces, Basis for a topologies, the order topology, the product topology X x Y, the
subspace topology.
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§1 Definition and Examples:

Definition 1.1: Let X be any non-empty set. A family 5 of subsets of X is called a topology on
X if it satisfies the following conditions:

(i) peEJandX e

(i) ABEJ3 = ANBESJ

(iit) A; €3, VA € A (where / is any indexing set) = U A ES
AEA

If5 is a topology on X, then the ordered pair (X, ) is called a topological space (or T-

space)

Examples 1.2: Throughout X denotes a non-empty set.

1) 5 ={0,X} is a topology on X. This topology is called indiscrete topology on X and the T-

space (X, ) is called indiscrete topological space.

2) 3 = (X), ((X) = power set of X is a topology on X and is called discrete topology on X
and the T-space (X, ) is called discrete topological space.
Remark: If |X| = 1, then discrete and indiscrete topologies on X coincide, otherwise they are

different.

3) LetX = {a,b,c} then; = {0, {a},{b,c}, X} and 3, = {0, {a},{b},{a, b}, X} are topologies
on X whereas 55 = {0, {a}, {b}, X} is a not a topology on X.

4) Let X be an infinite set. Define § = {0} U {4 € X | X — A is finite} then § is topology on X.
moesy ... (by definition of )
AsX-X=0, afiniteset, X € J
(i) Let A,B € § . Ifeither A=0 orB = @, then AN B € . Assume that A = D and B = 0 .
Then X — A is finite and X — B is finite. Hence X — (AN B) = (X —A)U (X —B) is
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finite set. Therefore ANB € 5. Thus 4, B e = AnB €.
(iii) Let A; € §, for each 4 € A (where A is any indexing set). Ifeach 4; = @, then

UAlzges.

AEA

If 34, € Asuchthat Ay + @.then 4; < UA)‘ =X -4 2K - UAJI.
AEA AEA

As X — A 1s a finite set and subset of finite set being finite we get X — U Aj; 1s finite
AEA

and hence U A; € 5. Thus in either case.
AEA

A ES, VIEA — UA,IES.
AEA

From (1), (11) and (iii) 1s a topology on X. This topology is called co-finite topology on X and t/

topological space is called co-finite topological space.

Remark: If X is finite set, then co-finite topology on X coincides with the discrete topology «

X.

5) Let X be any uncountable set. Define § = {@#} U {4 € X | X — A is countable} Then T is
topology on X.
L @€ (bydefinition).
As X — X =@ and @ is countable (Since @ is finite) we get X € .
i. letA, B € J. IfeitherA=0QorB=0wegetANB €.
letA # 0 and B = 0.
Then by definition of §, X — A and X — B both are countable sets and hence
X—(AnB)=(X—A)U (X — B) is countable. This shows that An B € . Thus
A,B € FimpliesdnB € 5.

. Let A3 €3 v A €A, where A is any indexing set. [f foreachA €A, A =0
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then U A; = 0 will imply U Ay eJ. Letd; + Oforsomed, €.
AEA AEA

Then 4;, < UAl =X -4, 2X - UA;
AEA AEA

= X — U Ay is a subset of a countable set X — A, (Since 4; € Jand 4; = 0)
AEA

—= X — U Aj is a countable set. (since subset of countable set is countable )

AEA
— UAth 3
AEA

Thus in either case, 43 EJ,VAEA = U AE S
AEA

From (i), (ii) and (iii) we get 3 is a topology on X. This topology on X is called co-countable

topology on X and the T-space (X, ) is called co-countable topological space.

Remark: If X is a countable set, the co-countable topology on X coincides with the discrete

topology on X.

6) Let A S X. Define 5 = {0} U{B = X | A € B}. Then 5 is a topology on X.

(1) @ € 5 by definition. As A€ X, X€EZ.

(i) Let B,CEJ. IfB=0orC =0, thenBNC =0 willgive BNC € J.LetB =0 or
C+0.ThenA S BnCwillimply BNnC €.

(iii) Let B € 5 ¥ A € A. where A is any indexing set. If for each 4 € A, B; = ¢ then

U B; = @ and in this case U B,eS.

AEA AEA

Assume that By, # 0 for some Ay € A. Then A € B; and By, & U Byimply A < U B;.
AEA AEA

Therefore U B, €.
AEA
From (i), (ii) and (iii) J is a topology on X.
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Remarks: (1) If 4 = @ then 3 is discrete topology on X.
(2) If A = X then 3 is indiscrete topology on X.
(3)IfA = {p).then 5= {0} u{B < X | p € B} is called p-inclusive topology on X.

7) Letp € X. Define § = {X}U{4A S X |p & A}. Then 5 is topology on X.

(i) p € @ implies @ € 5. By definition X € 5.

(i)letA,BEF. IfA=XorB=X,then AnB = X. Inthiscase A N B € 5. Assume that
either A =X orB = X. Thenp € Aorp € B and hence p € A N B which proves
ANBES.

Thus A,B € 3 impliess AnB € .
(iii) Let A; € 5 v A €A, where i\ is any indexing set. If for some A € A, A; = X then

UAA =X will give UAA €73.

AEA AEA
Assume that 4; = X foreach € A. Thenp & 4, foreach 4 € A will imply,

péE UAR and hence UAA €F.

AEA AEA

Thus in eithercase. A; EJ VieEA = U A ET.
AEA

From (i), (i1) and (iii) % is a topology on X.

This topology on X is called p-exclusive topology on X.

8) Let (X, ) be topological space and A € X. Define 3* ={GU (ANH) |G H € F}. Then F*
is a topology on X.
(i) Take G =0 and H=0.ThenGU(ANH)=0U(AN@) =0 = @ € §*. Take G = X.
Then for any H € § we get X U (AN H) = X. Hence X € §".
(i) Let G,U(ANH;)) €F and G, U(ANH,) € 5" for G, Hy,G5,H, €.
Then [Gy U (AN H)]N[G,U (AN H,)]
=(G,NGHU(GLNANH,)U(ANH, NGy)U(ANH, NH,)
=(6,NnG,)U[ANn[(G,nH,)U(H, NnG,) U (H, NnH,)I]
As (Gy N Gy) € Fand [(G; N Hy) U (Hy N Gy) U (H, N Hy)] €5 we get,
[GiU(ANH)]N[G,U(ANH,)]ES.
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(iii) Let G U (AN Hy) € 3" for A € A, where & is any indexing set. Then G; € 5§ and
H,eJF.VAEA.

U[GAU(AHHR)]—[UGA]UlAﬁ UHA

AEA AEA AEA
As UGA €5 and UHA E 5. we get U[GAU (AnH)] e .
AEA AEA AEA

From (i), (ii) and (iii) we get J* is a topology on X.

Remark: This example shows that every topology on X induces another topology on X.

9) Let X and Y be any two non-empty sets and let f : X — Y be any function. Let J be
topology on Y. Define §* = {f 1(G) | G € T} ,where f 2(G) ={x € X | f(x) € G}. Then F* is
topology on X.

MHfo)=0 = 0eJFand f YY) =X = XeF*

(i Let fFfYG)ES and fH(H) € for, HES . Then fX(GNnH)=fG)n f1(H)
and G,H € Swillimply f~*(G) n f~*(H) € .

(iii) Let f71(G3) € 3"V A € A, where A any indexing set is. Then

f_l(U G,q) = Uf_l(:(}l) . As UGA € 5, we get Uf‘l{:(},{) R

AEA AeA AEA AEA

[a$ 3

Thus from (i), (i) and (iii) we get J* is a topology on X.

10) Let X be any uncountable set and let co be a fixed point of X . Let

F={GSX|og&G} U{GESX| o €GandX — G is finite} . Then F is a topology on X.
Define 5, ={G S X | € G} andJ, = {G S X | o € G and X — G is finite} then

J=31U 32

(i) o€0=>P€eF . o€Xand X—X=0isafiniteset =X€EFT, >X €.

(ii) Let A,B €.

Casel: A,B€S, . Thenoo € Aand o € B. Hence o € AN B.

Therefore ANBEJ, = ANBES.
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Case2: A, BEF,. Thende ([, = owecdandX —Aisfinite. BETF, = wweBand X — B
is finite. Thenmw € AnBand X — (AnNB) = (X —A)U (X — B) is finite. Thus ANB € 3,
which gives ANB € 3.

Case3: A€ J,and B€ 3, . Then oo € A will imply o« € An B.

Hence ANBET, 2AnBEST.

Cased: A€ J,and B€F,.Thenoo € B willimply e € AN B.

Hence ANBET, >ANBEST.

Thus in all the cases 4, BEJF = ANBET.

(iii) Ay €5 v A € A, where Ais any indexing set . If 4; €3, VA €A then

o & Ay VA€ Awill imply UAA € 5§, . Hence Uf—l& €7.
AEA AEA

If 3 A € A such that A3 & J; then A; € 3, . In this case o € A3 and X — A, is a finite
set

Az, QUAA implies oo EUAA and X_UAA CX—A4,,.

AEA AEA AEA

As X — A, 1s finite we get X — U A; ais finite set. Thus in this case U A €T,
AEA AEA

and hence U A;E .
AEA

Thus in either case, 4; EJF,VAEA = U A; €.
€A

From (i), (ii) and (iii) § is a topology on X .
This topology 5 is called Fort’s topology on X and the T-space (X, ) is called Fort’s space.

Some Special Topologies on Special sets .

Apart from the topologies given in the above examples there exist some special
topologies on R or Z or N . (R = the set of all real numbers . Z = the set of all integers and

N = the set of all natural numbers ). We list some of them in the following examples.
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(1) Let 5, ={P}U{ASR |VYa€eAd 3 r>0suchthat(a—r,a+r) S A}.Then T, isa
topology on K.
(i) © €3, (bydefinition)and R€J, asforanya € R,(a—1,a+ 1) S R.
(i) letA,BET, f A=0orB=0.then ANBES, .letd= @ and B = 0.
Thenx € ANB = x€Aandx€B = 3 r;, >0suchthat(x —r,, x+1r,)E 4
and 3 r, > 0suchthat(x —r,, x +1,) EB.
Define r = min(ry,13). Thenr = 0 and (x — 7 ,x +7) & AN B . But this shows that
ANnB eSS, . Thusineithercase A, BET, = ANBET,.
(iii) Ay €5, VA E A, where Aisany indexing set .

If U Ay = 0 . then obviously, U A ET,.
AEA AEA

Hence. assume that U Ay 0. Letx € U Ay . Then x € A, for some Ag € 4.
AEA AEA

As 4;,€5, 3 r>0suchthat(x—7r, x+71) S 4, .

Butthen (x —7r,x+71) S U A; . But this shows that U A, €T, .
AEA AEA

Thus in eithercase 4, €3, , VAEA = U A; €T,
AEA

From (1), (ii) and (iii) 5, is a topologyon R.

This topology is called usual topology on K.

Remarks: (1) The usual topology on E is also called standard topology or Euclidean topology .
(2) Any open interval in B is a member of J,,. Consider the open interval (a,b) and x €
(a,b). Take r = min(x —a,b —x). Then (x —r,x4+71) S (a,b). This shows that (a,b) €

~

Su -

(12) Let3, ={0}U{ACSR |[vp€EAJab€R suchthatp €[a, b) E A} . Then J, isa
topology on K .
(i) @ € 5, (by definition). R € 5, as foranyp € R 3 a,b € R such that
PE[, P+ ER.
(i) Let ABEeS,. f AnB=0.,thenANnB €T, . If AnB = @ then for

x € AN B there exist half open intervals H; and H, in K such that x € H; € A and

Prepared by Dr. K. Kalidass , Assistant Professor, Department of Mathematics, KAHE Page 8/ 8




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: 1 M.Sc MATHEMATICS COURSE NAME: Topology
RSE CODE: 1 P202 UNIT: II(Closed sets) BATCH-2018-
2020
UNIT-11
SYLLABUS

Closed set and limit points, continuous functions, the product topologies, the metric topologies.
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(1.1) Definition: Let (X, %) be a topological space. Then a subset 4 of X
is said to be closed in X if its complement X — A is open in X.

The definition is fairly straightforward and one can cite as many examples
of closed sets as of open sets. It is fortunate that all closed intervals (bound-
ed or not) of real numbers are indeed closed in the usual topology on the
real line. If (X, d) is a metric space, x € X and r > 0, then the closed ball
with centre x and radius r is defined as the set {y € X : d(x, y) <r}. We
leave it to the reader to verify that each such closed ball is a ciosed subset
in the topology induced by the metric.

A word of warning is perhaps in order. In analogy with everyday usage, a
biginner is likely to think that ‘closed’ is the negation of ‘open’, that is to say,
a set is closed if and only if it is not open. But this is not so. The reason for
the misleading terminology is probably that complements of sets are defined
in terms of negation. The fact is that the possibilities of a set being open and
its being closed are neither mutually exclusive nor exhaustive. Note for
example that the empty set and the whole set are always open as well as
closed in every space. On the other hand, the set of rationals is neithcr open
nor closed in the usual topology on the real line. A set which is both open
and closed is sometimes called a clopen set.

It is immediate that a set is open iff its complement is closed. As a result,
any statement about open sets can be immediately translated into a corres-
ponding statement about closed sets and vice-versa, as we do in the following
theorem.

(1.2) Theorem: Let ( be the family of all closed sets in a topological
space (X, ). Then C has the following properties:
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sl Xecl.
(i) C is closed under arbitrary intersections.

(iii) C is closed under finite unions.

Conversely, given any set X and a family C of its subsets which satisfies these
three properties, there exists a unique topology ° on X such that C coincides
with the family of closed subsets of (X, ).

Proof: The first part follows trivially from the definition of a tepology
and De Morgan’s laws. The converse part is equally trivial once it is clearly
understood what it says. Here we are given a set X (just a bare set with no
topology on it) and some collection C of its subsets. We are given that pro-
perties (i) to (iii) hold for C. We do not know how ( originated, nor do we
know whether its members are closed subsets of X. Actually it is meaning-
less to talk about closed subsets of X unless a topology on X is specified.
The theorem says that given such a family C C P(X) we can define a suit-
able topology % on X such that members of C are precisely- the closed sub-
sets of X (w.r.t. the topology ), and that such a topology is unique.

Having understood what the theorem says, the proof itself is trivial as
we have no choice but to let ¢J consist of complements (in X) of members of
C,ie. J={BCc X:X—Be(} That J is a topology on X follows by
applying De Morgan’s laws. The open subsets of X are precisely the comple-
ments of members of C, and hence the closed subsets of X are precisely the
members of C as asserted. Also this condition determines J uniquely. |

Trivial as the theorem is, its significance is noteworthy. In the definition
of a topological space we took ‘open set’ as a primitive term, that is to say,
open sets are not defined (except as members of the topology on the set in
question) and nothing is known about their nature save what is implied by
the definition of a topology. Everything we do with topological spaces is in
terms of open sets. For example, we defined convergence of sequences in a
topological space in terms of open sets, and we defined closed sets as comple-
ments of open sets. The preceding theorem asserts that this procedure could
be reversed. That is, we could as well take ‘closed sets” as a primitive con-
cept and then define open sets as complements of closed sets. With this
approach our definition of a topological space would be that it is a pair
(X, C) where X is a set, C C P(X) and conditions (i), (ii), (iii) above are
satisfied. Although nothing is to be gained and nothing is to be lost by
adopting this new approach over the usual one, in particular examples of
topological spaces it may be more natural to specify the closed sets rather
than the open sets., For instance, in the cofinite topology on a set X, it is so

. easy to tell what the closed subsets are, they are precisely all finite subsets
of X and the set X itself.

Any subset of a topological space generates a closed subset called its

closure. The definition is as follows:
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N {C c X: Cclosed in X, C D 4). It is denoted by A. Obviously it depends
on the topology ¢ and when it is important to stress this, it is customary to
write A7 or (d)g instead of mere A. Note further that if Y C X and AC Y
then the closure of 4 in the space (X, %) is in general different from its
closure in the subspace (Y, /Y). We leave it to the reader to verify that the
latter is the intersection of the former with Y. When confusion is likely to
arise otherwise, it is usual to write AY or (d)y to indicate the subspace w.r.t.
which the closure is intended. The notations C/(A4) or C(4) or ¢(A4) are also
used sometimes to denote the closure. In the next proposition we list down
a few properties of closures.

(1.4) Proposition: Let 4, B be subsets of a topological space (X, ).
(i) 4 is a closed subset of X. Moreover it is the smallest closed subset

of X containing 4 i.e. if C is closed in X'and 4 — C then 4 C C.

(i) g =¢

(iii) A is closed in X if 4 = 4

(iv) 4 = A or in other words, c(c(4)) = c(4)

(v AUuB=4UB

Proof: (i) and (ii) are immediate consequences of the definition and
properties of closed sets. For (iii) we note that if 4 is closed then it is clearly
the smallest closed set containing 4 and consequently 4 = 4. Conversely if
A = A then A is closed since 4 is always a closed set, being the intersection
of closed sets. Property (iv) follows by applying (iii) to A which is known to
be closed. Finally, for (v), note that A U Bis first of all a closed set contzin-
ing AU B;as A c A and BC B, and hence A U B C A |J B. For the other
way inclusion, we first observe that whenever 4y C 4,, A; C A, (prove ).
Now A U B contains 4 as well as B and so A, B are both subsets of 4 {J B.
Hence 4 U B € AU B. This completes the proof. [
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(1.5) Theorem: Let X be a set, § : P(X)— P(X) a function such that

(1) for every A € P(X), A C 6(A) (this condition is sometimes expressed

by saying that 6 is an expansive operator),

(2) ¢ is a fixed point of 8,

(3) 8 is idempotent, and

(4) 6 commutes with finite unions.

Then there exists a unique topology ¢ on X such that 8 coincides with the
closure operator associated with <. Conversely, any closure operator satis-
fies these properties.

Proof: The converse part is already established. For the direct implica-
tion, suppose 6 : P(X)— P(X) satisfies (1) to (4). We want to find a topo-
logy 9 on X such that for every 4 C X, 8(4) = AZ. If at all such a topology
exists then its closed subsets must be precisely the fixed points of 6 as we
saw above. This gives us a clue to the construction of 4. We let =
{AC X :6(4) = A} and contend that (C has properties (i) to (iii) of
Theorem (1.2). Condition (2) shows that ¢ & C while condition (4) implies
that C is closed under finite unions. To prove that X € C, we merely note
that by (1), X C 8(X) and hence X = 6(X) since 6(X) C X anyway. It only
remains to verify that C is closed under arbitrary intersections. For this we
first note that § is monotonic, i.e., whenever 4 C B, 8(A4) C 6(B), which

- follows by writing B as 4 U (B — 4) and applying (4). Now let 4 = N 4;

iel
where I is an index set and 4; € C for each i & I. We want to show that
Ae(,ie. 6(4) = A. By (1) we already know 4 C 6(4). Also 6(A4) C 6(4;)
for each i & I since # is monotonic, and so 8(4) C N 6(4;). But 8(4;)) = 4;
iel

since 4; € ( for all i € I. Consequently, 8(4) C 4 and hence 8(A4) = A as
desired. So by theorem (1.2), the family ¢ of complements of members of
C is a topology on X.

It remains to be verified that the closure operator associated with < coin-
cides with 8. Let A — X. Then A9 (i.e. 4 w.r.t. ) is the intersection of all
closed subsets of X céntaim’ng A. But by very construction, closed subsets
of X are precisely the fixed points of §. Hence 4 = N {BC X : 4 C B;
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8(B) = B}. Now, whenever B D 4, 8(B) D 6(4) by monotonicity of 8. So if
B D A and 6(B) = B then B D 6(A4). But A is the intersection of such B’s

and so A O 6(A). For the other way inclusion we note that by condition (3),
0(A) € C while by (1) 4 c 8(4) whence 4 C 68(4), A being the smallest
member of C containing 4. Hence for all 4 C X, 8(4) = A completing the
proof. §

(3.1) Definition: Let f: X — Y be a function; x € X and ¢, U be topo-
logies on X, Y respectively. Then f is said to be continuous (or more
precisely Y-V continuous) at x, if for every V' & qJ such that f(xo) eV,
there exists U € ¢ such that xo € U and f(U) C V.

W * bm e fima da Lbaia cramae milbham Pocmasslmdi . ol Ccaa? Pl a4 o L%
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(3.2) Proposition: With the notation above, the following statements are
equivalent.
f is continuous at x,.
2. The inverse image (under f) of every neighbourhood of f(xg) in Y is
a neighbourhood of xq in X.

3. For every subset A C X, x, € A4 implies f(x,) € f(A).

4. For every subset 4 C X, x, 8 4 implies f(xg) 8 f(A).

Proof (1) = (2). Let N be a neighbourhood of f(xg) in Y. Then there is
an open set ¥ in Y such that f(x,) € ¥V and ¥V C N. Since fis continuous at
xo, there is an open set U in X such that xo € U and f(U) C V. This means
xo € U Cf~Y(V) cf~Y(N) thus showing that f~1(N) is a neighbourhood
of x,. :

(2) = (3). Suppose xo & A where A C X. If f(xo) ¢ f(4) then by Theorem
(2.10) in the last section, there is a neighbourhood N of f(xo) such that
f(4) N N = @. This means f~( (D) NfY(N)= @ and hence that 4 N
SY(N) = @ since 4 C f~1(f(4)). But by (2), f~!(N) is a neighbourhood of x,
and so 4 N SUN) # @, since xy € A. This is a contradiction.

(3) <> (4). This is immediate since the nearness relation corresponding
to a topology is defined by saying that a point is near a set iff it is in the
closure of that set.

(3) = (1). Let ¥ be an open set containing f(xo). Let 4 = X — f~i(¥)

" =f"(Y— V). Thenf(d) C Y — Vand sof(d) C Y — Vas Y — Visclosed.

So f{xo) ¢ f(4) whence x, ¢ A by (3). Hence there is a neighbourhood N of
xp such that N N 4 = @. Clearly then f(N) C V¥ and the proof is completcd
if welet U =int (N). |}
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Connected spaces, connected subspaces of the real line, components and local connectedness.

(2.1) Definition: A space X is said to be connected if it is impossible to
find non-empty subsets 4 and B of itsuchthat X =4 U Band 4 N B= Q.
A space which is not connected is called disconnected.

(2.2) Proposition: Let X be a space and 4, B subsets of X. Then the
following statements are equivalent:

. AUB=Xand4 N B= 0.

2. AlUB=X,AN B= @ and A4, B are both closed in X.

3. B= X — A and A4 isclopen (i.e. closed as well as open) in X.

4, B = X — A and d4 (that is, the boundary of A) is empty.

5. AUB=X,AN B= @ and 4, B are both open in X,

Proof: (1) = (2). Clearly AN B= @ implies that A N B= @ since
AcAand BC B.Also ACX— BC X— B=Aandso 4 = A showing
that A is closed. Similarly B is closed.

(2) = (3) is immediate since the coinplement of a closed set is open.

(3) = (4). This follows from the fact that the boundary of a clopen set is
empty (see Exercise (5.2.7).)

(4) = (5). This requires the converse, viz., that a set with empty bound-
ary is clopen. Also if 4 is closed, then its complement B is open.

(5) = (1). Assume X = A U B where AN B= @ and 4, B are open.
Then A= X — B and B =X — 4 whence A, B are closed as well and so
A=A, B= B, showing AN B= Q. ¥
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(2.3) Proposition: Let X be a space. Then the following are equivalent:

1. X is connected.

2. X cannot be written as the disjoint union of two nonempty closed
subsets.

3. The only clopen subsets of X are ( and X.

4. Every nonempty proper subset of X has a nonempty boundary.

5. X cannot be written as the disjoint union of two nonempty open sub-
sets.

Proof: The result is immediate from the definition and the last pro-
position. |}

From the definitions we see immediately that every indiscrete space is
connected and that the only connected discrete spaces are those which
consist of at most one point. The space of rational numbers is disconnected;
given any irrational number « thesets {x € Q:x < «}and{x € Q: x > «}
are both open in the relative topology on Q and Q is clearly their disjoint
union. Similarly the set of irrational numbers is disconnected. The Sierpinsky
space defined in Chapter 4, Section 2 is connected, although it is not in-
discrete. It is clear that if a set is connected w.r.t. a topology < on it, then
it is connected w.r.t. every topology weaker than . The following proposi-
tion shows that connectedness is preserved under continuous functions.
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(2.5) Theorem: A subset of R is connected iff it is an interval.

Proof. First note that a subset X C R is an interval iff it has the property
that for any a, b € X, (a, b) C X. (Prove.) Now if X is not an interval then
there exist real numbers a, b, ¢ such that a < ¢ < b;a, b & X and c ¢ X.
et A={x&€X:x<c} and B={x& X: x > c}. Clearly 4, B are dis-
joint, open subsets of X (in the relative topology) since 4 =X N (—o0, ¢}
and B=(c, <) M X and 4 U B = X. Furthera € 4, » & B and hence 4,
B are nonempty. This shows that X is not connected.

Conversely suppose X is an interval and that X = 4 U B where 4 N B
=@, A # @, B+ @ where the closure is relative to X. Letay € A4, by € B.
Without loss of generality we may suppose that a; < by, Now let x be the
a°_2|- % Then x € X and
so x is exactly 1n one of the sets 4 and B. If x € 4 we rename it as g
and rename by as b,. If x € B, we rename a, as a; and x as b;. In any case
[a1, £1] is an interval with its Ieft end-point in 4 and the right end-point in
B. We can now take the mid-point of [ay, b;] and get an interval [a,, b,] of
half the length with a; € A4, b, & B. Repeating this process ad infinitum, we
get a nested sequence of intervals {{a,, b,] : n =0,1,2,3,...} such that
a, € A and b, € B for all n. Note that {a,} is a bounded monotonically
increasing sequence while {4,} is a bounded monotonically decreasing
sequence and that (b, — a,) = 0 as n — . By the order completeness of R,
both sequences converge to a common limit, say c. Note that ¢ € X since
ay < ¢ < bo. Also every neighbourhood of ¢ intersects 4 as well as B, So
ce 4 N B, acontradiction. Hence X is connected. ]

-y L 1 .

mid-point of ‘the interval from a, to by, i.e. x =
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(2.7) Definition: Two subsets 4 and B of a space X are said to be
(mutually) separated if AN B=@and 4 N B= 0.

(2.8) Proposition: Let X be a space and C be a connected subset of X
(that is, C with the relative topology is a connected space). Suppose C C 4
U B where 4, B are mutually separated subsets of X, Then either C C 4
orCCB.
Proof: LetG=C ) Aand H=C N B. Then G, H are closed subsets of
C since, 4, B are closed in 4 U B. Also G N H = @. But Cis connected. So
either G=@ or H = Q. In the first case C < B while in the second, C C 4.
|

(2.9) Theorem: Let (C be a collection of connected subsets of a space X

such that no two members of C are mutually separated. Then |y Cis also
cecl

connected,

Proof: Let M = Uc C. If M is not connected then we could write M as
ce

a AU B where A, B are nonempty and mutually separated subsets of X. By
the proposition above, for each C & C either C C 4 or C C B. We contend
that the same possibility holds for all C € C, i.e. either CC A forall Cel
or C < Bfor all C & C. If this is not the case, then there exist C, De
such that C C 4 and D C B. But, 4, B are mutually separated and hence
their subsets C, D are also mutually separated contradicting the hypothesis.
Thus all members of C are contained in 4 or all are contained in B. Accor-
dingly M = A4 or.M = B, contradicting that 4, B are both non-empty. [
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(2.10) Corollary: Let C be a collection of connected subsets of a space X
and suppose K is a connected subset of X (not necessarily a member of ()
such that C N K # @ for all C € C. Then ( Uc C) U K is connected.
ce
Proof: Let M = ( UcC} UK Let 9={KUC:Ce&(}. Clearly
ce
M= UQ D. By the theorem above, each member of g) is connected since
DE '

it is a union of two connected sets which intersect (and which are therefore
not separated). Now any two members of 4) have at least points of K in

common and so are not mutually separated. So again by the theorem above,
M is connected. [}

Corollary: The topological product of any finite number of connec-

ted spaces is connected.
Proof: If X\, X2, ..., Xa—y, X, are spaces (with n = 2) then X; X X
X ... X X, is homeomorphic to (X} X ... X X,_;) X X, (see Exercise (5.3.6)).

The res

(2.13)

ult follows by induction on n and the last proposition. [

Proposition: The closure of a connected subset is connected. More

generally if C is a connected subset of a space X then any set D such that

ccbhD

c C is connected.

Proof: Suppose C is connected and C = D < C. If D is not connected

then we can write D = 4 U B where 4, B are nonempty, disjoint and closed
relative to D. Then C N 4, C N B are disjoint closed subsets of C whose
union is C. But C is connected. So one of them, say, C | B is empty, This
means C C 4, and hence C? C A4 where the closure is w.r.t. D. But CP
= CX | D = D since D c CX. Hence A = D contradicting that B is non-
empty. So D is connected. [}

F S EN L] -“Le 1 ar ~
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Compact spaces, compact subspaces of the Real line, limit point compactness, local compactness.

Definition. A collection A of subsets of a space X is said to cover X, or to be a
covering of X, if the union of the elements of A is equal to X. It is called an open
covering of X if its elements are open subsets of X.

Definition. A space X is said to be compact if every open covering 4 of X contains
a finite subcollection that also covers X.

EXAMPLE 1. The real line R is not compact, for the covering of R by open intervals
A={n,n+2)|neZ}
contains no finite subcollection that covers R.

Lemma 26.1. Let Y be a subspace of X. Then Y is compact if and only if every
covering of Y by sets open in X contains a finite subcollection covering Y .

Proof. Suppose that Y is compact and A = {Aq}ecs 1S a covering of Y by sets open
in X. Then the collection

{Ag NY |a e J}
is a covering of Y by sets open in Y; hence a finite subcollection
{Ag, NY, ..., A, NY}

covers Y. Then {Ag,, ..., Aq,} is a subcollection of »4 that covers Y.

Conversely, suppose the given condition holds; we wish to prove ¥ compact. Let
A’ = {Al} be a covering of Y by sets open in Y. For each «, choose a set A, open
in X such that

A=A NY.
The collection A = {A,} is a covering of Y by sets open in X. By hypothesis, some
finite subcollection {Ay,, ..., Aq,} covers Y. Then {A], e A(’,n} is a subcollection
of A’ that covers Y. |
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Theorem 26.2. Every closed subspace of a compact space is compact.

Proof. LetY be aclosed subspace of the compact space X. Given a covering 4 of Y
by sets open in X, let us form an open covering B of X by adjoining to » the single
open set X — Y, that is,

B=AU[X-Y).

Some finite subcollection of B covers X. If this subcollection contains the set X — Y,
discard X — Y; otherwise, leave the subcollection alone. The resulting collection is a
finite subcollection of A that covers Y. [ |

Theorem 26.3. Every compact subspace of a Hausdorff space is closed.

Proof. Let Y be a compact subspace of the Hausdorff space X. We shall prove that
X — Y is open, so that Y is closed.

Let xp be a point of X — Y. We show there is a neighborhood of xg that is disjoint
from Y. For each point y of Y, let us choose disjoint neighborhoods Uy, and V), of the
points xo and y, respectively (using the Hausdorff condition). The collection {Vy | y €
Y} is a covering of Y by sets open in X; therefore, finitely many of them Vy,, ..., V),
cover Y. The open set

V= vyl U“.U‘/yn
contains Y, and it is disjoint from the open set
U=Uy N:--NUy,

formed by taking the intersection of the corresponding neighborhoods of xg. For if z
is a point of V, then z € Vy, for some i, hence z ¢ U,, and so z ¢ U. See Figure 26.1.
Then U is a neighborhood of xg disjoint from Y, as desired. [

Lemma 26.4. IfY is a compact subspace of the Hausdorff space X and xp isnotinY,
then there exist disjoint open sets U and V of X containing xg and Y, respectively.
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Theorem 26.5. The image of a compact space under a continuous map is compact.

Proof. Let f : X — Y be continuous; let X be compact. Let 4 be a covering of the
set f(X) by sets open in Y. The collection

A | A e A)

is a collection of sets covering X; these sets are open in X because f is continuous.
Hence finitely many of them, say

A, ... A,

cover X. Then the sets Ay, ..., A, cover f(X). [ |

Theorem 26.6. Let f : X — Y be a bijective continuous function. If X is compact
and Y is Hausdorff, then f is a homeomorphism.

Proof. We shall prove that images of closed sets of X under f are closed in Y; this
will prove continuity of the map f~!. If A is closed in X, then A is compact, by
Theorem 26.2. Therefore, by the theorem just proved, f(A) is compact. Since Y is
Hausdorff, f(A) is closed in Y, by Theorem 26.3. [ |

Lemma 26.8 (The tube lemma). Consider the product space X x Y, where Y is
compact. If N is an open set of X x Y containing the slice xo x Y of X x Y, then N
contains some tube W x Y about xq x Y, where W is a neighborhood of xq in X.

Definition. A collection C of subsets of X is said to have the finite intersection
property if for every finite subcollection

{Cl g o ey Cn}
of C, the intersection C1 N - -- N C, is nonempty.
Theorem 26.9. Let X be a topological space. Then X is compact if and only if

for every collection C of closed sets in X having the finite intersection property, the
intersection { ¢ C of all the elements of C is nonempty.
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Proof. Given a collection » of subsets of X, let
C={(X—-A]|AecA)

be the collection of their complements. Then the following statements hold:
(1) A is acollection of open sets if and only if € is a collection of closed sets.

(2) The collection A covers X if and only if the intersection [, C of all the
elements of C is empty.

(3) The finite subcollection {Ay, ..., A,} of A covers X if and only if the intersec-
tion of the corresponding elements C; = X — A; of C is empty.
The first statement is trivial, while the second and third follow from DeMorgan’s law:

X - (J A =X - 4.

ael aclt

The proof of the theorem now proceeds in two easy steps: taking the contrapositive
(of the theorem), and then the complement (of the sets)!

The statement that X is compact is equivalent to saying: “Given any collection A
of open subsets of X, if A covers X, then some finite subcollection of A covers X.”
This statement is equivalent to its contrapositive, which is the following: “Given any
collection A of open sets, if no finite subcollection of A covers X, then A does not
cover X.” Letting C be, as earlier, the collection {X — A | A € A} and applying
(1)-(3), we see that this statement is in turn equivalent to the following: “Given any
collection C of closed sets, if every finite intersection of elements of C is nonempty,
then the intersection of all the elements of € is nonempty.” This is just the condition
of our theorem, [
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Theorem 27.1. Let X be a simply ordered set having the least upper bound property.
In the order topology, each closed interval in X is compact.

Proof. Step 1. Given a < b, let A be a covering of [a, b] by sets open in [a, b] in the
subspace topology (which is the same as the order topology). We wish to prove the
existence of a finite subcollection of A covering [a, b]. First we prove the following:
If x is a point of [a, b] different from b, then there is a point y > x of [a, b] such that
the interval [x, y] can be covered by at most two elements of .

If x has an immediate successor in X, let y be this immediate successor. Then
[x, y] consists of the two points x and y, so that it can be covered by at most two
elements of A. If x has no immediate successor in X, choose an element A of A
containing x. Because x # b and A is open, A contains an interval of the form [x, ¢),
for some c in [a, b]. Choose a point y in (x, ¢); then the interval [x, y] is covered by
the single element A of A.

Step 2. Let C be the set of all points y > a of [a, b] such that the interval [a, y]
can be covered by finitely many elements of 4. Applying Step 1 to the case x = a,
we see that there exists at least one such y, so C is not empty. Let ¢ be the least upper
bound of the set C;thena < c¢ <b.

Step 3. We show that ¢ belongs to C; that is, we show that the interval [a, ¢] can
be covered by finitely many elements of A. Choose an element A of A containing c;
since A is open, it contains an interval of the form (d, c] for some d in [a, b]. If c is
not in C, there must be a point z of C lying in the interval (d, c¢), because otherwise d
would be a smaller upper bound on C than c. See Figure 27.1. Since z 1s in C, the
interval [a, z] can be covered by finitely many, say n, elements of A. Now [z, c] lies
in the single element A of A, hence [a, c] = [a, z] U [z, ¢] can be covered by n + 1
elements of A. Thus c is in C, contrary to assumption.

Prepared by Dr. K. Kalidass, Asst Prof, Department of Mathematics, KAHE Page 5/6




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSE NAME: Topology
RSE CODE:1 P202 IT:1 m BATCH-2018-202

Step 4. Finally, we show that c- = b, and our theorem is proved. Suppose that
c < b. Applying Step 1 to the case x = c, we conclude that there exists a point y > ¢
of [a, b] such that the interval [c, y] can be covered by finitely many elements of 4.
See Figure 27.2. We proved in Step 3 that c isin C, so [a, c] can be covered by finitely
many elements of . Therefore, the interval

la,y]l =[a,c]U]c, y]

can also be covered by finitely many elements of »A. This means that y is in C, con-
tradicting the fact that c is an upper bound on C. [ |

Corollary 27.2. Every closed interval in R is compact.

Now we characterize the compact subspaces of R":
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The countability axioms, the separation axioms, normal spaces, The Urysohn lemma, The
Urysohn metrization theorem, the Tietze Extension theorem

Definition. A space X is said to have a countable basis at x if there is a countable
collection B of neighborhoods of x such that each neighborhood of x contains at least
one of the elements of B. A space that has a countable basis at each of its points is
said to satisfy the first countability axiom, or to be first-countable.

Definition. If a space X has a countable basis for its topology, then X is said to
satisfy the second countability axiom, or to be second-countable.

Theorem 30.2. A subspace of a first-countable space is first-countable, and a count-
able product of first-countable spaces is first-countable. A subspace of a second-
countable space is second-countable, and a countable product of second-countable
spaces is second-countable.

Proof. Consider the second countability axiom. If 8B is a countable basis for X, then
{BN A | B € B} is a countable basis for the subspace A of X. If B; is a countable
basis for the space X;, then the collection of all products [| U;, where U; € B; for
finitely many values of i and U; = X; for all other values of i, is a countable basis for
[1X:.

The proof for the first countability axiom is similar. [
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Definition. A subset A of a space X is said to be dense in X if A = X.

Theorem 30.3. Suppose that X has a countable basis. Then:
(a) Every open covering of X contains a countable subcollection covering X .
(b) There exists a countable subset of X that is dense in X.

Proof. Let { B,} be a countable basis for X.

(a) Let A be an open covering of X. For each positive integer n for which it is pos-
sible, choose an element A, of A containing the basis element B,,. The collection A’
of the sets A, is countable, since it is indexed with a subset J of the positive integers.
Furthermore, it covers X: Given a point x € X, we can choose an element A of A
containing x. Since A is open, there is a basis element B, such that x € B, C A.
Because B, lies in an element of A, the index n belongs to the set J, so A, is defined;
since A, contains B, it contains x. Thus .4’ is a countable subcollection of .4 that
covers X.

(b) From each nonempty basis element B,, choose a point x,. Let D be the set
consisting of the points x,,. Then D is dense in X: Given any point x of X, every basis
element containing x intersects D, so x belongs to D. |

Definition. Suppose that one-point sets are closed in X. Then X is said to be reg-
ular if for each pair consisting of a point x and a closed set B disjoint from x, there
exist disjoint open sets containing x and B, respectively. The space X is said to be
normal if for each pair A, B of disjoint closed sets of X, there exist disjoint open sets
containing A and B, respectively.

Prepared by Dr. K. Kalidass, Asst Prof, Department of Mathematics, KAHE Page 2/4




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc MATHEMATICS COURSE NAME: Topology
RSE CODE:1 P202 IT: ntabili iom BATCH-2018-202

Lemma 31.1. Let X be a topological space. Let one-point sets in X be closed.

(a) X is regular if and only if given a point x of X and a neighborhood U of x,
there is a neighborhood V of x such that V C U.

(b) X is normal if and only if given a closed set A and an open set U containing A,
there is an open set V containing A suchthat V C U.

Proof. (a) Suppose that X is regular, and suppose that the point x and the neighbor-
hood U of x are given. Let B = X — U; then B is a closed set. By hypothesis, there
exist disjoint open sets V and W containing x and B, respectively. The set V is disjoint
from B, since if y € B, the set W is a neighborhood of y disjoint from V. Therefore,
V C U, as desired.

To prove the converse, suppose the point x and the closed set B not containing x
are given. Let U = X — B. By hypothesis, there is a neighborhood V of x such
that V C U. The open sets V and X — V are disjoint open sets containing x and B,
respectively. Thus X is regular.

(b) This proof uses exactly the same argument; one just replaces the point x by the
set A throughout. |

Theorem 32.1. Every regular space with a countable basis is normal.

Proof. Let X be a regular space with a countable basis 8. Let A and B be disjoint
closed subsets of X. Each point x of A has a neighborhood U not intersecting B. Using
regularity, choose a neighborhood V of x whose closure lies in U; finally, choose an
element of B containing x and contained in V. By choosing such a basis element for
each x in A, we construct a countable covering of A by open sets whose closures do
not intersect B. Since this covering of A is countable, we can index it with the positive
integers; let us denote it by {U,}.

Similarly, choose a countable collection {V,} of open sets covering B, such that
each set V,, is disjoint from A. The sets U = | JU, and V = | V,, are open sets con-
taining A and B, respectively, but they need not be disjoint. We perform the following
simple trick to construct two open sets that are disjoint. Given n, define

n n
U;:UH—U‘Z and v,::v,,—UU,-.
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Theorem 32.2. Every metrizable space is normal.

Proof. Let X be a metrizable space with metric d. Let A and B be disjoint closed
subsets of X. For each a € A, choose ¢, so that the ball B(a, ¢;) does not intersect B,
Similarly, for each b in B, choose ¢, so that the ball B(b, €;) does not intersect A.
Define

U=|JB@e€/2) and V=|]B® e/

acA beB

Then U and V are open sets containing A and B, respectively; we assert they are
disjoint. Forif z € U NV, then

z € B(a, €2/2) N B(b, €5/2)

for some a € A and some b € B. The triangle inequality applies to show that
d(a,b) < (€5 + €p)/2. If €, < €p, then d(a, b) < €p, so that the ball B(b, €p)

contains the point a. If €, < ¢4, then d(a, b) < ¢,, so that the ball B(a, €;) contains
the point b. Neither situation is possible. n

Theorem 32.3. Every compact Hausdorff space is normal.

Proof. Let X be a compact Hausdorff space. We have already essentially proved
that X is regular. For if x is a point of X and B is a closed set in X not containing x,
then B is compact, so that Lemma 26.4 applies to show there exist disjoint open sets
about x and B, respectively.

Essentially the same argument as given in that lemma can be used to show that X
is normal: Given disjoint closed sets A and B in X, choose, for each point a of A,
disjoint open sets U, and V, containing a and B, respectively. (Here we use regularity
of X.) The collection {U,} covers A; because A is compact, A may be covered by
finitely many sets Uy, ..., Uy, . Then

U=Ua1U"‘UUam and V=Valn“‘nvdm

are disjoint open sets containing A and B, respectively. [ |
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Answer ALL questions
PART - A (20 X 1 = 20 marks)

. Which of the following isatopology onX = {a,b,c}
A {X, (a}0) B. {X, {a, b}, {b, c}, 0}
C.{X, {a}, {b}, 0} D. (X, {al, (b}, c}, 0}

. The maximum number of topology exists on X =
{a, b} is
B

A.2 1
C.16 D. 13
. Total number of topology exists on X = {a, b, c} is
A.20 B. 30
C.39 D. 29
. If X =1{a,b,c} and B = {{a, b}, {b.c}, X} then B satis-

fies basis condition
A. (i) B. (ii)
C. neither (i) nor (ii) D. both (i) and (ii)

. If Xis any set, the collection of all one point subsets
of X is a basis for the —— topology

A. cofinite
C. indiscrete

B. discrete
D. cocountable

10.

11.

12.

13.

Which of the following is true?

AT C8B B.BCT
CB8=T D.BLT
Let X be a set; let 8 be a basis for a topology 7~
on X. Then 7 equals the collection of all — of
elements of 8

A. union B. intersection

C.both A and B D. neither A nor B

If T and 7¢ are two topologies on non-empty set

X, then — is topology

A TeuNTe B. T UTe

CTw—Tc D. 7o XTe

If 7~ is topology on non-empty set X, then arbitrary
of member of 7 belong to 7.

A. union B. intersection

C.both A and B D. neither A nor B

If 7 is topology on non-empty set X, then finite .
of member of 7 belong to 7.
A. union B. intersection

C.both A and B D. neither A nor B

Let 7 be a topology on non-empty set X. Which
of the following is true?

ADgT B.XeT
C.X¢T D.PX)eT
If X = {a,b,c} and 7 be the discrete topology. Then

number of elements in basis for 7 is

Al B.2
C.3 D.4
If X = {a,b,c} and 7 be the indiscrete topology.

Then number of open sets related to 7™ is
Al
C.3

B.2
D.4



14.

15.

16.

17.

18.

19.

20.

Let X be a set, and let 8 is a basis for a topology

on X. For each x € X, there is atleast Be B
such that x € B

Al B.2
C.3 D. 4

Let X be a set, and let B is a basis for a topology on
X. If x € By N B, for By, B, € B, then there is atlaest
—— B3 € Bsuch thatx € B3 € B N B,.
Al
C.3

B.2
D. 4

If B is the collection of all open intervals in the real
line, then B satisfies basis condition

A. (i) B. (i)
C. neither (i) nor (ii) D. both (i) and (ii)

If B is the collection of all half open intervals in the
real line, then B satisfies basis condition

A. (i) B. (ii)
C. neither (i) nor (ii) D. both (i) and (ii)

Let X be a set. 7 be the collection of all subsets U
of X such that X — U is either or X. Then 7 is
a topology.

A. finite
C.both A and B

B. countable
D. neither A nor B

Arbitrary union of open sets is set
A. open

C.both A and B

B. closed
D. neither A nor B

Suppsoe T and 7 are discrete and indiscrete
topologies on non-empty set X. Which of the fol-
lowing is true?
A TewCTe
C. Too = Te

B. 762 7<
D.Tw 27

21
22
23

24.

25.

26.

Part B-(3 X 2 = 6 marks)

. Define K topology
. Define continuous function.
. Define subbasis
Part C-(3 x 8 = 24 marks)
a) Prove that intersection of topologies is a
topology on X.

OR
b) Let X be a set; let
T = {U|X — U is infinite or ¢ or X}.
Is this a topology on X?
a) Find the all the topologies for (i) X = {a, b} (ii)
X=1{ab,c)
OR

b) Let 7 be the collection of subsets U of X if
for each x € U there is a basis element B € 8
such that x € B C U. Then prove that 7" is the

topology

a) Show that the set X = {a,b,c,d} with the
topology © = {0,{a}, {a,b},{a,c}, {a,b,c}, X} is
not a Hausdorff space

OR

b) Prove that every finite set in a Hausdorff
space is closed.
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. Let X = {a,b,c} be a topological space with
T = {0,X,{a}, {a,b},{a,c}}. Then limit points of
A=1{b,c}is———

a. 0 b. A
c X d. {a}

. Which of the following is true?

a AcA b.ACA
c A=A dA+A

. Every finite set point in Hausdorff space is — — —

a. open b. closed

c. bothaandb d. neither anor b

. In a disconnected space X, every nonemepty
proper subset of X is — — —

b. closed

a. open
d. neither anor b

c. bothaandb

10.

11.

Let X = {a, b, c} be a topological space with discrete
topology. Then X is — — —

b. disconnected
d. both b and c.

a. connected
c. Hausdroff

If X is a finite Hausdorff space, then 7 is
topology

a. indiscrete
c. finite complement

b. discrete
d. co countable

A space is totally connected space if every —
sets are connected

a. one point
c. three points

b. two points
d. four points.

A space X is said to be compact if every open cover
has a —— subscover
a. infinite

c. countable

b. finite
d. uncountable.

If every infinite subset of X has a limit point then
Xis———

a. connected
c. Hausdroff

b. limit point compact
d. compact.

Every

- space is totally connected

b. discrete
d. co countable

a. indiscrete
c. finite complement

Every compact subset of a Hausdorff space is

b. closed

a. open
d. neither a norb

c. bothaandb



12.

13.

14.

15.

16.

17.

18.

Let X = {a,b,c} be a topological space with 7
=10, X, {a}, {a,b}}. Then X is — — —

b. disconnected
d. both a and c.

a. compact
c. Hausdroff

Let X be a infinite set with discrete topology. Then
Xis——~—

a. compact
c. Hausdroff

b. non compact
d. both aand c.

Let X be a Hausdorff space. Then X is locally
compact at x if nbd U of x there is a nbd V of

x such that V is compactand V c U

b. all
d. finite

a. no
C. some

A subset A of a space X is said to be dense in X if

|
[

b. 0
d. bothaand ¢

o
SES

Every compact Hausdorff space is

b. normal
d. both a and c.

a. compact
c. Hausdroff

Every regular space with basis is normal

b. finite
d. uncountable.

a. infinite
c. countable

A topological space X is said to satisfy count-
ability axioms if X has a countable basis for its

topology

19.

20.

21.
22.
23.

24,

25.

b. second
d. neither anorb

a. first
c. bothaandb

Let X be a compact metrizable space. Then X is

a. limit point compact
c. bothaand b

If —— sequence has a convergent subsequence in
X, then X sequentially compact

b. sequentially compact
d. neither anor b

b. all
d. finite

a. no
C. some

Answer ALL questions
Part B-(3 X 2 = 6 marks)

Define path connected space
Define components of a topological space X
Define compact space

Answer ALL questions
Part C-(3 X 8 = 24 marks)

a) Let Y be a subspace of X. Prove that two
disjoint nonempty sets A and B whose union
is Y form a separation of Y if and only if A
contains no limit points of B and B contains
not limit points of A.

OR

b) Prove that the closure of a connected set is
connected.

a) Prove that every compact subset of a Haus-
dorff space is closed



OR

b) Prove that the continuous image of a con-
nected space is connected

26. a) Prove that the union of a collection of con-
nected subspaces of X that have a point in
common is connected.

OR

b) Prove that a space is connected if and only if
the only subsets of X that are both open and
closed in X are X and 0
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PART B (5 x 6 = 30 Marks)
Answer ALL the Questions

21.a.Is the collection T, ={U/X —is infinite or empty or all of X} a topology on X?
Or
b. Prove that the collection s = { z;'(U)/U is open in X}U{ #;'(V)/V is open in Y}
is a subbasis for the product topology X x Y

22.a. Let A’ be the set of all limit points of A. Then prove that A =AUA!
Or
b. State and prove pasting lemma

23.a, Prove that the Cartesian product of connected spaces is connected.
Or
b. State and prove intermediate value theorem

24.a. Prove that every compact subspace of a Hausdorff space is closed

. Or
b. State and prove tube lemma.

25. a. State and prove Tietze extension theorem
Or

b. Prove that every well-ordered set X is normal in the order topology.

PART C (1 x 10 = 10 Marks)
(Compulsory)

26. Let A, B and 4, denote subsets of a space X. Prove the following
i. 40B=4UB ii. UA. o> U A.; give an example where equality fai

"~
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