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Scope: On successful completion of this course the learner gains knowledge about the solution
of non linear partial differential equations , solution of linear hyperbolic equations , method of
integral transforms, wave equations and diffusion equations which plays an essential role in the
applications of Mathematics.

Objectives: To be familiar with formulation and solutions of partial differential equations and
get exposed with physical problems.

UNIT I

First Order Partial Differential Equations:
Non linear partial differential equation of first order -Compatible systems of first order
equations — Special type of first order equations- Partial differential equations of second order —

The origin of second order equations — Linear partial differential equations with constant
coefficient equations with variable coefficients.

UNIT II
Method of separation of variables —The method of integral transforms.
UNIT III

Laplace Equation:
Elementary solutions of Laplace equations- Families of Equi - potential surfaces - Boundary
Value problems-separation of variables-problems with axial symmetry.

UNIT IV
Wave Equation:

Elementary solutions of one dimensional wave equation-Vibrating membranes - Applications of
calculus of variations- Green’s functions for the wave equation.

UNITV
Diffusion Equation:

The resolution of Boundary value problems for the Diffusion equation- Elementary solutions of
diffusion equation - Separation of variables- use of Green’s functions- Diffusion with Sources.
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UNIT -1

FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS

Non linear partial differential equation of first order -Compatible systems of first order equations —
Special type of first order equations- Partial differential equations of second order — The origin of

second order equations — Linear partial differential equations with constant coefficient equations

with variable coefficients.
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FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS:

METHODS TO SOLVE THE FIRST ORDER PDE:
TYPE I:
Given f{p,q)=0.

Let z = ax+by+c which is the solution of the given equation fip,q)=0.
Thenp = == 4

and q= Fr b.

This implies p=a,q=b.

Hence the complete solution is z = ax+by+c, where f{a,b)=0.

EXAMPLE 1:

Solve \/5+ JE:L

Solution:
Given:
F(p,q)=0.
Therefore the complete integral is,
z = ax+tby+c.

Therefore the given equation becomes

Va +Vb=L.
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Therefore Vb = 1-\a
Taking square on both sides we get,
b=(1-+a)?
Substitute b=+ (1 — va)? in z = ax+by+c.
z=ax+(1 —va)?y+c.
Differentiating partially with respect to a we get,
—Va) _
a

U=X+[1T}-’

Therefore there is no singular integral.

To find the general integral:
Let ¢ =f{a) in z = ax+ (£ (1 — Va)?) y+c.

z=ax+ (£ (1 — Va)?) ytf{a).
Differentiating partially with respect to a we get,

0 =x+{1_—u,;ﬁ}y + f'(a).

By eliminating a in between above two equation we get the general solution.

EXAMPLE 2:
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Solve: p* + g% = n®

Solution:
Given: p* + g* = n?
It is of the form F(p,q) =0
Therefore the complete integral is,
a* + b* = n*
The value of b is given by,

b=vnZ —a?

Substituting the value of b in the equation z = ax + by + ¢ we get,

z=ax++n?—a’y+c

Differentiating partially with respect to a we get,

1 r
nZ—aZ (_Zﬂy} + P (ﬂ.}

0=x+

0=x—- ==+ ¢'(a)

VnZ—aZ

Eliminating a in between above two equation we get the general integral.
TYPE I1:
It 1s of the form,
z = px+qy+fip.q).
Now z=ax+by+f(a,b) ....(1)

Which is the complete integral.
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Differentiate (1) partially with respect to a and b, we get

0=x+ L ceel2)

da
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—y+ = .
O=y+ (3)

Eliminating a and b from equations (1),(2) and (3) we get the singular integral,
Let b =¢(a).

Therefore equation (1) becomes,

z=ax+ @(a) y+f(a, @(a)) ....(4)

Differentiate partially with respect to a,

0=x+@'(@y+ f'(a,@@)) ...(5)

Eliminating a between (4) and (5) we will get the general integral.

EXAMPLE 1:

Solve px +qy+ m
Solution:

Given:

Z=px +qy+ m

Therefore the complete integral,

z=ax +by+ V1 + a? + b,

Differentiate partially with respect to a and b we get,

]
0=X+ —m
Vi+aZ+b?
This implies,

it

VitaZ+bZ
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b
Vit+a?+hb?

D=y+

This implies,
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b
Y= VitaZ+bZ

Eliminating a and b from the above equation we get the singular integral,

2 _ a*

14a2+b?’

2
7 b

Y T Tratep?
Therefore,

aZ 4+ p?

2 zZ _
Xty =——7s
y 1+a2+b?’

a? + b?
1+a2+b?

1-(x2+ y?) =1 -

This implies,

1

(¥2+ vy =
I-(x"+ y%) 1+a2+b?
1+a? +b? =——
1=x<=¥
J Z Z 1
1+a*+b e
Substituting we get,
= &
Ji-x2-y2
] -y
Ji-x2-y?

By substituting we get,

z=/1—x2 —y?
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By substituting we get,

z=\/1 —x2 — y2
taking square on both sides, we get
z2=1 — x? — y?

xZ _+_ yz + ZZ=1

Which is a required solution.

EXAMPLE 2:

Solve: z = px + qy + pq

Solution:

Given: z = px + qy + pq

Now z = ax + by + ab

Which is the complete integral.

Differentiate partially with respect to a and b we get,
0=x+b...(1)
D=y+a...(2)

Therefore the values of a and b are as follows,

a= —xandb = —y
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Substituting the values of a and b in the given equation we get,
Z= —xy—xy+Xxy
zZ= —xy
Eliminating a and b from the equation (1) & (2) we get the singular integral,
Letb = @(a)

Therefore the equation becomes,

z=ax+ @(a)y + ae(a)
Differentiating partially with respect to a we get,

z=ax+ @(a)y + ¢'(a)a+ ¢(a)

Eliminating a and b we get the general integral.

TYPE 111
This is of the form F(z,p,q)=0 does not contain x and y explicitly.
Let us take z=f{U)

Where U=x+ay

_ oz
dx

P

dz
q By

therefore, p and q becomes,

Therefore, p=-::—z and
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Therefore.

dz dz
FI:L..E.. a E] = [:',

Which is of the form ordinary differential equations,

dz

o~ ¢ (za)

This implies,

dz _
@ (za)

Integrating on both sides we get,

[——= [au

9 (za)

This implies,
flz,a)=U+c¢
Case 1:

If the equation is of the type,

F(x,p.q) =0
Let q=a and
p = fix,a)

By applying total derivative we get,

Therefore, z = pdx+qdy
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Integrating we get,
z=[pdx + [ pdy
= [ f(x,a)dx + [ ady
z =F(x,a)+ay+c
Case 2:

If the equation is of the type,

F(y.p.q) =0
Let p=aand
q = f{y.a)

By applying total derivative we get,

Therefore, z = pdx+qdy
Integrating we get,
z= [ pdx + [ pdy
= [adx + [ f(y,a)dy

z =ax + F(v,a) +¢

Prepared by:P.Rajakumari, Asst Prof, Department of Mathematics KAHE. Page 12/32




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.SC MATHEMATICS COURSE NAME:PARTIAL DIFFERENTIAL EQUATIONS
COURSE CODE: 18MMP204 UNIT: I BATCH-2018-2020

EXAMPLE 1:

Find the complete integral of z=pq
Solution:

This is of the form f{z,p,q) = 0.

Let z = f{X) = f{x+ay)

where X = (x+ay)

putp= :—; and

—a dz
4 dXx

By substituting the values of p and q we get the given equation as,

2= () (&)

,—a (dz)z
dx

Taking square roots on both sides we get,

dx=iJ§dz
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Integrating we get,

X+c=x2Vaz
X+c=+2+az

Substituting the value of X in the above equation we get,
(x+ay) +c=+2+az

Taking square on both sides we get,

(x+ay+c) =4az

EXAMPLE 2:

Find the complete integral of p*+ q* = 3pqz

Solution:

This is of the form f{z,p.q) = 0.

Let z=1(X) = f{x+ay)

where X = (x+ay)

putp=j—;and
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Substituting the values of p and q we get,

dz3+ dz3_3 dz dz
ax tax T % axax

2

dz3 3y dz’
= (1+a’)= 32{1”

dz
E(l + a*) = 3za
Therefore the equations becomes,

1
_— dz =37 —
(1+a?) z zdz

1
[1+a3); dz =3adz

Then by integrating on both sides we get,

fld -3 2 farx
Pa (1+ a3)
a

logz = +c

STra
Substituting the value of X we get,

logz = 3 (x+ay)+c

a
(1+a®)
Therefore we get,

(1+a®)logz =3a(x+ay) +c.
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NON LINEAR PARTIAL DIFFERENTIAL EQUATION OF FIRST ORDER:
CASE 1:
Equations of the form F (x™p, y™ q) = 0.
Letus X=x™and Y = y'=", where m,n# 1.
Therefore,
p=P(1—m)xt-m1
p=P(l-m)x™
q=Q(1—-n)y ™"
q=Q(1—-n)y™
Therefore,
FIP(1-m)lQl(1-n)]=0
This is of the form F[P, Q] = 0.
CASE 2:
Equations of the form F (x™p, y™ q) =0.
Where, m=n=1
Therefore px = P ;qy = Q
Therefore F (x™ 1P, y™1 Q) =0.
Therefore F[px,qy] = 0.

CASE 3:
Equations of the form F (z¥p, z¥ q) =0.

Where k= constant
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CASE 3.1:
Ifk# —1put Z = zK*1, differentiate partially with respect to x and y we get,
Hence the equation reduces to the form,
FIP,Q] =0.
Hence the equation reduces to the form,

F[P,Q] = 0.

oz dz
Where=—, Q@ = —.
dx dy

CASE 3.2:

If k=1 put z = log z, differentiate partially with respect to x and vy,

[ =3

Therefore P = = and Q = %.

This also reduces to the form of F[P, Q] = 0.
CASE 4:
Equations of the form F (x™z¥p , y"zkq) =0.
Ifm#landk# —1,n # 1.

We cantakeitas X =x1"™ ;Y =y
Z=zk+1,

Then the equation reduces to F[P, Q] = 0.
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EXAMPLE 1:

Solve x*p? + y*p® = z°
Solution:
The given equation,
2

x*p* + y*p* = 7%

By dividing z? on both sides of given equation we get,

xXp\? (ypy?
2) (Z) =t

Herem=n=1.

Let X=logx ,Y =logy.

0z 0zdX P
P=5x~ dxdx x
_E:?z_ﬂde_Q
1= %y " ayay ™ ¥

_P.__Q
Therefore p = - q .
This implies, px = P ; qy = Q.

Substituting in given equation,
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Therefore ,
P? + Q% =2°

P?+Q*=1Z2% =0.
COMPATIBLE SYSTEM:
Definition:

If every solution of the 1% order partial differential equation is of the form f(x, y,z,p,q) =
0, is a solution of the partial differential equation g(x,y,z,p,q) = 0.

Then the equation is said to be compatible.
Statement:

The necessary condition that the two equations are compatible is

_ae) L 3U9) , 3Ug) , . 3UE) _
lf.9] = 560 TP 3en * 30m T Y3c0
EXAMPLE 1:

Show that the system of equationsxp = yq, z(xp + yq) = 2xy are compatible and solve them.
Solution:
Given:

f=xp—yqand g = z(xp + yq) — 2xy.

_ dif.g) a(f.g) , alf.g) a(f.g)
gl = + + = 0.
If.91 = 3eo TP sem t 30w T Toca
af of
a(f.g) _ |ox dp| _ p X
axp) |29 g lzp—2y 2x =2xy.
ar an
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or or

a(f.g) _ |9z ap| _ 0 x|_ 5

8 =fon a6 ~lpxtay 2e| =P
dz dp
or of

3¢.9) _ |9 ﬂq=| —q Y| __

a(v.q) dg dg zq — 2x zy 2xy.
dy dg
or of

a(f.g) _ |9z adq| _ 0 -y|_ )

d(z.q) dg dg |px+qy zy (pxy + qy~).
dz dg

[f. 9] =2xy + p(=px* — qxy) — 2xy + q (pxy + qy?).
[f.g]=0.

Therefore the given equations are compatible.

Now.xp = yq,

z(xp + xp) = 2xy

2xpz = 2xy

pz =y

:Z
P Z

Then, z(yqg + yq) = 2xy

2zyq = 2xy
Zq = x

X
=7
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Therefore, p = % and q = E
We know that,

pdx+%¥Ydy—dz=0

dz = pdx + qdy
X

dz = 2 dx + = dy
Z Z

By integrating,

jdz= J-zdx+ ji dy
z z

szz=fyd:r+fxdy

Therefore,

2

i"'?=:vc3,,r + xy
z? =2 (2xy)
Therefore, zZ2 = 4 xy + c.

EXAMPLE 2:

Solve the system of equations g—i = 6x + 3y, g—; = 3x — 4y are compatible and solve them.

Solution:
Given: p = 6x + 3y,q = 3x — 4y

Therefore, f =p—6x—3y and f = q —3x + 4y
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Since,
afg) , . Afg) , ) , 3fg)
gl = 49 4 + ~ 0.
If.9] = 565 TP 3em T 300 T Toca
or or
afe) _|ox o :I—E 1| _,
axp) |og 29l " l-3 ol T
dx dp
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or or

at.g) _ oz ap| _|0 1|={}

a(z,p) dg dg 0 0 ’
dz dp
or of

209 _ |9y 3q :|—3 '-’-‘*|:_3

a(va) |22 24 4 1 '
dy dg
ar af

af.g) dz dq =|{} {}|={}
dzq) |29 29 10 1 '
dz dg

[f,gl=3+0-3+0=0.
[f.g]=0

Since,
p==6x+3y,q=3x—4y.

By integrating,

j dz = [(ﬁx + 3y)dxj(3x — 4y)dy

Therefore,

z = 3x% — 2y* + 6xy.

SPECIAL TYPES OF FIRST ORDER EQUATIONS:

Equations involving ‘p’ and ‘q’ only:

Let (f,p) = 0 be the partial differential equation, then the charpit’s equations are,

dx dy dz dp dq dg

—_—— = = :F

f,  f. of, +af, - +ph) -y +af)

Since, fr = f = fz = 0,we have
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dp dg
0 0

This implies,p =0and g = 0
Therefore, f(p,q) =0

= f(a,b) =0

=b = ¢(a)

Therefore,p = a and q = ¢(a)
Thus dz = pdx + qdy

=dz = adx + bdy

=z=ax+ @(a)y+b
EXAMPLE 1:

Consider the equation, p+q = pq.
Solution:

The given equation can be writtenas f =p+qg—pg =0
This equation contains p and q only,
From the charpit’sequationwe get,
p=aandq =b.

Substitute these values in above equation we get,
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a+b—-—ab=10
a+b(l—a)=0

b(l—a)= —a

—a

(1—a)

therefore,

b =

i

(a-1)’

From the charpit’s method we have,
dz = pdx + qdy

Therefore, z = ax + @(a)y + b

= ax + y+b

a
(a—1)

1
=z =(ala—1)x+ay+ b}({a_l})
Therefore,

(ax — z)(a — c) + ay = b, which is the required solution.

Equations not involving independent variable:
Let (z,f,p) = 0 .... (1), be the partial differential equation, then the charpit’s equations are,

dx dy dz dp dg _dg

% T, ph taf, —(a+ph) -y +af,) O
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This implies,

dp dq
p q

Where, f, = f, = 0.

That is,
d d
L_Y_,
P q

=p = aq ....(2)where 'a’is constant.

Solving equations (1) and (2) for substituting the values of p and g in the charpit’s equation,
dz = pdx + qdy

We get the solution of the equation (1).

EXAMPLE 1:

Consider the partial differential equation z = p? — g?(not involving independent variable x an
¥)-

Solution:
Given equations (z,p,q) =p* —q* —z...(1)
From the charpit’s equation we get,

dp d
Y
P q

=2p=aq....(2)

Where “a’ is constant.

Substitute p = aq in (1) we get,
p’—q*—z=0
a‘qg*—q*—z=0

qg*(a*—1) =z

z
2=
q az—1
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Taking square roots we get,

oz
LR y
=p = aq
vz
=p= VaZ-1
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Therefore from the charpit’s equation,

dz = pdx + qdy
avz , Vz
Az = e X s @Y

Jaz —1dz = aVzdx +zdy

a?—1

Vz

Integrating we get,

Zva2—1\/§=ax+}'+c

Which is the required solution.

dz =adx +dy

EXAMPLE 2:

Solve the following partial differential equation (p + q)(px + qy) =1
Solution:

Let the equation is of the formf(x,y,z,p,q) = 0

Therefore f = (p+ q@)(px +qy) —1...(1)

The charpit’s equation,

dp dgq
— — ]
p q
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dx dy dz : dp _ dq _dg
h fa phtafy —(kt+prf) -(h+af) O
That 1s,
dp dgq
—_— T — [':1
p q
=p =64

Substituting in given equation,

(19 + q)(c19x + qy) = 0.

g (c; +D(egx+y) =0

Taking square roots on both sides we get,

1
1 G+ DGx+y)

Therefore the charpit’s equation,
dz = pdx + qdy
dz = q(c,dx + dy)

1
T Gt DExty)

(c,dx + dy)

Integrating we get,

_ (flx + 3’)
- S+ Dlax +y)

z+ b
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J(eix+
z+ b= Yoty
JiCci+1)

ORIGIN OF SECOND ORDER EQUATION:

Equations that can be integrated by inspection.

Since _dz Eiz_S_ gz _t_ﬂzz_r_ﬂzx
’p_ax’q_ay' T axay' Ay’ dx?
EXAMPLE 1:

Solve: s = 2x + 2y.
Solution:
Given: s = 2x + 2y.
Substituting the values of *s” we get,

3%z
dxdy

=2x + 2y

Integrating with respect to ‘X’ and keeping “y’ as constant we get,

0z _ 2+ 2xy +
ay  ~ xy + @)

Integrating with respect “y’ and keeping “x’ as constant we get,
},2
z= x’y+2x 5+ f @()dy + f(x)

z= x*y+xy*+ f e(y)dy + f(x)
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z=x*y+xy*+F(x)+ f(x).
EXAMPLE 2:

Solve: r = 6x.

Solution:

Given: r = 6x

Substituting the values of ‘r* we get,

d%z
ﬁ= bx

Integrating with respect to ‘x” and keeping “y’ as constant,

62_3 )
3z X te0)

Integrating with respect to ‘x” and keeping ‘y’ as constant,

_1.3
z=3—+xoy)+ ¥
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POSSIBLE QUESTION
SIX MARKS

1.Describe the non-linear partial differential equation of the first order.
2.State and prove compatible systems of first order equations.
3. Find the complete integral of the following.

(1) Equations involving only p and q

(i1) Equations not involving the independent variables
4.Solve z = p% + q* + /1 + p? + ¢2
5. Explain about the special types of first order equation.

(1) Equations of separable

(i1) Claurat’s equations
6.Solve p + q = sinx + siny
7.Discuss in detail about the linear partial differential equation with constant

coefficients.
8.Write briefly about the origin of second order partial differential equations.
9.Prove that u is the complementary function and z; a particular integral of a linear
partial differential equation, then u + z; is a general solution of the equation.

10. Reduce the equation

2 2
(1) 0°z _ xz 0°z
0x2 dy?
.., 0%z 0%z 0%z
1n)—++2 — =0
( ) d0x2 + dxdy  0y?

TEN MARKS
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Question

A partial differential equation is one which involves derivatives
The three variables involves in Pdx+Qdy+Rdz=0 is called
The general solution of PDE is of the form

The Equation is of the form Z=px+qy+f(p,q) is called
f(x,p)=g(y,q) is called equation

Reducible equation is defined as te product of factors.

If the operator F(D,D") is reducible te order in which the linear factors occuris
Ifu is the C.F and z, is particular P.I then the general solution is

L(z)+(x,y,z,p,q)=0 where L is the operator
If S>-4RT>0 then it is
If S?-4RT<0 then it is

If S>-4RT=0 then it is
The order of PDE to be the order of the derivative of order occurring in it.
In Rr+Ss+Tt+Pp+Qq=W, W is the function of

In F(D,D,)=0the term D’ denotes about the variable

The solution of the PDE consists main parts

The Fourier transform is defined in the interval

The Integral transform reduce the PDE to

TheLaplace transform is defined in the interval

If f and g are said to be compatible then it have solution
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UNIT -1l

SEPARATION OF VARIABLES
Method of separation of variables —The method of integral transforms.
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Second Order Linear Partial Differential Equations

One-dimensional undamped wave equation; D Alembert solution of the
wave equation; damped wave equation and the general wave equation; t
dimensional Laplace equation

The second type of second order linear partial differential equations in 2
independent variables is the one-dimensional wave equation. Together w
the heat conduction equation, they are sometimes referred to as the
“evolution equations” because their solutions “evolve”, or change, with
passing time. The simplest instance of the one-dimensional wave equatic
problem can be illustrated by the equation that describes the standing wa
exhibited by the motion of a piece of undamped vibrating elastic string.

Undamped One-Dimensional Wave Equation:
Vibrations of an Elastic String

Consider a piece of thin flexible string of length L, of negligible weight.
Suppose the two ends of the string are firmly secured (“clamped”) at some
supports so they will not move. Assume the set-up has no damping. Then,
the vertical displacement of the string, 0 < x < L, and at any time > 0, 1s
given by the displacement function u(x, ¢). It satisfies the homogeneous one-
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dimensional undamped wave equation:

a~ Uxx = Uy

Where the constant coefficient a* is given by the formula a> = T/ p, such that
a = horizontal propagation speed (also known as phase velocity) of the wave
motion, 7' = force of tension exerted on the string, p = mass density (mass
per unit length). It is subjected to the homogeneous boundary conditions

u(0,)=0, and  wu(L,£)=0, t>0.

The two boundary conditions reflect that the two ends of the string are
clamped in fixed positions. Therefore, they are held motionless at alltime.

The equation comes with 2 initial conditions, due to the fact that it contains
the second partial derivative of time, u. The two initial conditions are the
initial (vertical) displacement u(x, 0), and the initial (vertical) velocity

u(x, 0)", both are arbitrary functions of x alone. (Note that the string is
merely the medium for the wave, it does not itself move horizontally, it only
vibrates, vertically, in place. The resulting undulation, or the wave-like
“shape” of the string, is what moves horizontally.)

“Velocity = rate of change of displacement with respect to time. The other first partial derivative u,

represents the slope of the string at a point x and time ¢.
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One - dimensional
Homogeneous undamped wave equation

ctgﬂtzz=a$::r

JAALANAASARY STHERRRRRNANANAY

B S S——

Displacement
«(z.7)

s
<€
L

Hence, what we have is the following initial-boundary value problem:

(Wave equation) & = Uy, O=<x<L =0,
(Boundary conditions) u(0,7)=0,and u(L,7)=0,
(Initial conditions) u(x, 0) = f(x),and udx, 0) =g(x).

We first let u(x, 1) = X(x)7(¢) and separate the wave equation into two
ordinary differential equations. Substituting u#,, = X" T"and u, = X T" into
the wave equation, it becomes

aEX"T=XT",
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Dividing both sides by a? X T

X! I”
2

X T

As for the heat conduction equation, it is customary to consider the constant
a’ as a function of ¢ and group it with the rest of -terms. Insert the constant
of separation and break apart the equation:

i_((ij_;rz_/1

a

X!

_:_2

Y - X"'=-X —» X"+1X=0,
T!‘

oA W T"=—@)T — T"+2lT=0.

The boundary conditions also separate:

u(0, £) = 0 — X(0)T(¢) = 0 — X(0) =0 oo T(t)=
w(L, 1) =0 — X(L)T(1)=0 — X(L) =0 or  T(f)=

As usual, in order to obtain nontrivial solutions, we need to choose
X(0) =0 and X(L) = 0 as the new boundary conditions. The result,
after separation of variables, is the following simultaneous system of
ordinary differential equations, with a set of boundary conditions:

X"+)X=0, X(0)=0 and X(L)=0,

T"+a*).T=0.
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The next step is to solve the eigenvalue problem
X"+ 1X=0, X(0)=0, XZ)=0.

We have already solved this eigenvalue problem, recall. The solutions are

Eigenvalues: A=

, n
X =fntx ,

*

-

Eigenfunctions: p L

Next, substitute the eigenvalues found above into the second equation to find
11(t). After putting eigenvalues 4 into it, the equation of 7 becomes
2,2
nrmw
. =0

LZ

T +a

It 1s a second order homogeneous linear equation with constant coefficients.
It’s characteristic have a pair of purely imaginary complex conjugate roots:

Thus, the solutions are simple harmonic:

T,(t)=A cos anrxt QHM, n=1,2,3, ...
L

n L
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Multiplying each pair of X, and 7, together and sum them up, we find the
general solution of the one-dimensional wave equation, with both ends fixed,
to be

There are two sets of (infinitely many) arbitrary coefficients. We can solve
for them using the two initial conditions.

Set ¢t = 0 and apply the first initial condition, the initial (vertical)
displacement of the string u(x, 0) = f(x), we have

oo

. . X
u(x,0)= ¥ (4, cos(0) +B, sin(0)) sin )

Therefore, we see that the initial displacement f{x) needs to be a Fourier sine
series. Since f(x) can be an arbitrary function, this usually means that we
need to expand it into its odd periodic extension (of period 2L). The
coefficients A4, are then found by the relation 4, = b,, where b, are the
corresponding Fourier sine coefficients of f/ (x). That 1s
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nzwx
An=bn=ﬁj‘f(x)sin L dx

Notice that the entire sequence of the coefficients 4, are determined exactly
by the initial displacement. They are completely independent of the other
sequence of coefficients B,, which are determined solely by the second
initial condition, the initial (vertical) velocity of the string. To find B,, we
differentiate u(x, ¢) with respect to ¢ and apply the initial velocity,

udx, 0) = g(x).

. anwt B .
(v, f)== —A anzxsin +B anxt cosanzt) sinnzmx

> n L L
t n L L L
n=1 \ )

Set £ = 0 and equate it with g(x):

. h7TXxX _
u, (x,0) = anyt gin = g(x) .
I( ) ; B L
n L
We see that g(x) needs also be a Fourier sine series. Expand it into its odd

periodic extension (period 2L), if necessary. Once g(x) is written into a sine
series, the previous equation becomes

nxwx

u,(0)= Y pant sinnix =gx)=y bsin
n=1 " T L n=1 1" L
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Compare the coefficients of the like sine terms, we see
anm 2.t nmwx

B,—=b,

L | stosin T

Therefore,

L L niwx
B = b.= l glx)sin [ dx
anwt " anzw

As we have seen, half of the particular solution is determined by the initial
displacement, the other half by the initial velocity. The two halves are
determined independent of each other. Hence, if the initial displacement
f(x) =0, then all 4, = 0 and u(x, f) contains no sine-terms of ¢. If the initial
velocity g(x) = 0, then all B, = 0 and u(x, ?) contains no cosine-terms of 7.

Let us take a closer look and summarize the result for these 2 easy special
cases, when either f(x) or g(x) is zero.

Special case I: Nonzero initial displacement, zero initial velocity: f'(x) # 0,
g(x)=0.

Since g(x) = 0, then B, = 0 for all n.
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2" nwx
i x)sin dx _
AH‘L‘V() 79X, n=1,2,3, ...
Therefore,
u(x, t) = o Anrnc anf{ cin n_f?

The D’Alembert Solution

In 1746, Jean D’ Alembert’ produced an alternate form of solution to the

wave equation. His solution takes on an especially simple form in the above
case of zero initial velocity.

Use the product formula sin(4) cos(B) = [sin(4 — B) + sin(4 + B)]/2, the
solution above can be rewritten as

o0

(. nt(x—at) . nm(x+af))
=4 Afoin"EEZ . g MEC D)

n=1

Therefore, the solution of the undamped one-dimensional wave equation
with zero initial velocity can be alternatively expressed as

u(x, )=[F(x—at)+ F(x+ at)]/ 2.
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In which F{(x) is the odd periodic extension (period 2L) of the initial
displacement f'(x).

An interesting aspect of the D’ Alembert solution is that it readily shows that
the starting waveform given by the initial displacement would keep its
general shape, but it would also split exactly into two halves. The two
halves of the wave form travel in the opposite directions at the same finite
speed of propagation a. This can be seen by the fact that the two halves of
the wave form, in terms of x, are being translated/moved in the opposite
direction, to the right and left, in the form of phase shifts, at the rate of
distance @ units per unit time. Hence the value a 1s also known as the
wave’s phase velocity.

" Jean le Rond d”Alembert (1717 — 1783) was a French mathematician and physicist. He is perhaps best

known to calculus students as the inventor of the Ratio Test for convergence.

Furthermore, once the “wave front” has passed over a point on the string, the
displacement at that point will be restored to its previous state before the
arrival of the wave. In physics, this aspect of a clearly-defined, echo-less,
wave motion of a one-dimensional wave is called the Huygens’ Principle.
(The principle also holds for solutions of a three-dimensional wave equation.
But it is not true for two-dimensional waves.)

Special case II: Zero initial displacement, nonzero initial velocity: f(x) =0,
gx) #0.

Since f'(x) =0, then 4, = 0 for all n.
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2 L
B = . nNITX
] Igﬁf)sm dx n=1,2.3, ...
anir, ' T

Therefore,

v o]

.. anmwt . nmxx
u(x, f) = Rucin — = ¢in
n=I L L

Example: Solve the one-dimensional wave problem

QuUn=uy 0<x<5, >0,
u(0, 1) =0, and u(s, 1) =0,

u(x, 0) = 4sin(zx) — sin(27zx) — 3sin(57x),
udx, 0)=0.

First note that a>= 9 (so @ = 3), and L = 5.

The general sotution is. ore,
u(x, )= « ?{A cosﬁﬁiﬁ' M_frgp

n n

|
=\ ) 3
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Since g(x) = 0, it must be that all B, = 0. We just need to find 4,. We
also see that u(x, 0) = f(x) is already in the form of a Fourier sine
series. Therefore, we just need to extract the corresponding Fourier
sine coefficients:

As = bs = 4,
Ao =b1o= —1,
Aas =bys = -3,

A, = b, =0, for all other n, n # 5, 10, or 25.
Hence, the particular solution is

u(x, t) = 4cos(3x t) sin(x x) — cos(6x ¢) sin(27 x)
— 3cos(15x t) sin(5x x).

We can also solve the previous example using D’ Alembert’s solution. The
problem has zero initial velocity and its initial displacement has already been
expanded into the required Fourier sine series, u(x,0) = 4sin(mx) — sin(27x) —
3sin(57x) = F(x). Therefore, the solution can also be found by using the
formula u(x, ) = [F(x — at) + F(x + at)] / 2, where a = 3. Thus

u(x, 1) =[ [ 4sin(z(x + 3¢)) + 4sin(z(x — 3¢)) ] — [sin(Qz(x+
37)) + sin(2a(x + 3¢)) ] — [3sin(5z(x + 3¢)) + 3sin(Sz(x +
30)]11/2

Indeed, you could easily verify (do this as an exercise) that the solution
obtained this way is identical to our previous answer. Just apply the addition
formula of sine function ( sin(a = f) = sin(a)cos(f) + cos(a)sin(f) ) to each
term in the above solution and simplify.

Prepared by:P.Rajakumari, Asst Prof, Department of Mathematics KAHE. Page 13/47




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.SC MATHEMATICS COURSE NAME:PARTIAL DIFFERENTIAL EQUATIONS
COURSE CODE: 18MMP204 UNIT: 11 BATCH-2018-2020

Example: Solve the one-dimensional wave problem

Qun=uy |, 0<x<5, >0,
u(0, t) =0, and u(s, r) =0,

u(x, 0)=0,

ux, 0) =4,

As in the previous example, a*>=9 (so a = 3), and L = 5.
Therefore, the general sjol%j?n remains

' n
u(x, )= (gA cos=™—-+B  3nrt |\ nrx

nS iﬂ S ill
2 . s 5 5
\ )

n=l

Now, f'(x) = 0, consequently all 4, = 0. We just need to find B,. The
initial velocity g(x) = 4 is a constant function. It is not an odd periodic
function. Therefore, we need to expand it into its odd periodic
extension (period 7' = 10), then equate it with u,(x, 0). In short:

2 L 0 i niXx 7
— | g(x) sin = (1
an;;z- ) L dx = 3”7{ r[4SlIl

B =

n

nix
5

dx
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(80
=< 3’

n =even
[0,

n = odd

Therefore,

u(x, )=y 80 . 3Qn-Dxt . (n-17x
. 32n-1) 7’ 5 5

The Structure of the Solutions of the Wave Equation

In addition to the fact that the constant a is the standing wave’s propagation
speed, several other observations can be readily made from the solution of
the wave equation that give insights to the nature of the solution.

To reduce the clutter, let us look at the form of the solution when there is no
initial velocity (when g(x) = 0). The solution is

u(x, t) = Z A cos ANl gin N7AX

n=1 " L L
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The sine terms are functions of x. They described the spatial wave patterns
(the wavy “shape” of the string that we could visually observe), called the
normal modes, or natural modes. The frequencies of those sine waves that
we could see, nz / L, are called the spatial frequencies of the wave. They are
also known as the wave numbers. It measures the angular motion, inradians,
per unit distance that the wave travels. The “period” of each spatial (sine)
function, 2/( nw/ L) =2L/n, is the wave length of each term. Meanwhile, the
cosine terms are functions of #, they give the vertical displacement of the
string relative to its equilibrium position (which is just the horizontal, or the
x-axis). They describe the up-and-down vibrating motion of the string at
each point of the string. These temporal frequencies (the frequencies of
functions of #; in this case, the cosines’) are the actual frequencies of
oscillating motion of vertical displacement. Since this is the undamped
wave equation, the motion of the string is simple harmonic. The frequencies
of the cosine terms, anz / L (measured in radians per second), are called the
natural frequencies of the string. In a string instrument, they are the
frequencies of the sound that we could hear. The corresponding natural
periods (= 2r/natural frequency) are, therefore, 7= 2L /an.

For n = 1, the observable spatial wave pattern is that of sin(zx / L). The wave
length 1s 2L, meaning the length L string carries only a half period of the
sinusoidal motion. It is the string’s first natural mode. The first natural

frequency of oscillation, ar / L, is called the fundamental frequency of the
string. It 1s, given the set-up, the lowest frequency note the vibrating string
can produce. It 1s also called, in acoustics, as the first harmonic of the string.

For n = 2, the spatial wave pattern is sin(2zx / L) is the second natural mode.
Its wavelength 1s L, which is the length of the string itself. The second
natural frequency of oscillation, 2ax / L, 1s also called the second harmonic,
or the first overtone, of the string. It is exactly twice of the string’s
fundamental frequency; hence its wavelength (= L) is only half as long.
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Acoustically, it produces a tone that is exactly one octave higher than the
first harmonic. For n = 3, the third natural frequency, 3az / L, is also called
the third harmonic, or the second overtone. It is 3 times larger than the
fundamental frequency and, at a 3:2 ratio over the second harmonic, is
situated exactly halfway between the adjacent octaves (at the second and the
fourth harmonics). The fourth natural frequency (fourth harmonic/ third
overtone), 4ar / L, 1s four times larger than the fundamental frequency and
twice of that the second natural frequency. The tone it produces is, therefore,
exactly 2 octaves and 1 octave higher than those generated by the first and
second harmonics, respectively. Together, the sequence of all positive
integer multiples of the fundamental frequency is called a harmonic series
(not to be confused with that other harmonic series that you have studied in
calculus).

The motion of the string is the combination of all its natural modes, as
indicated by the terms of the infinite series of the general solution. The
presence, and magnitude, of the nature modes are solely determined by the
(Fourier sine series expansion of) initial conditions.

Lastly, notice that the “wavelike” behavior of the solution of the undamped
wave equation, quite unlike the solution of the heat conduction equation
discussed earlier, does not decrease in amplitude/intensity with time. It
never reaches a steady state (unless the solution is trivial, u(x, ¢) = 0, which
occurs when f(x) = g(x) = 0). This 1s a consequence of the fact that the
undamped wave motion is a thermodynamically reversible process that
needs not obey the second law of Thermodynamics.
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First natural mode (oscillates at the fundamental frequency / 1st harmonic):
1

-0.5

Second natural mode (oscillates at the 2nd natural frequency / 2nd harmonic):
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Summary of Wave Equation: Vibrating String Problems

The vertical displacement of a vibrating string of length L, securely clamped
at both ends, of negligible weight and without damping, is described by the
homogeneous undamped wave equation initial-boundary value problem:

@ Ue =Usn 0<x<L, >0,
w0, )=0,and  u(L, f) =0,
u(x, 0) = f(x), and u(x,0) = g(x).

The general solution is

* .. anmwt) . nITXx
u(x, t)=z [ 4 cos @7t 1 B sin \sm

‘ n
n=I k L ! L J L

The particular solution can be found by the formulas:

2k niTx
AH:Z‘!‘ S (x) Sianx, and
2 L
anfj g(x)sin 7% gy
anr s, L '
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The solution waveform has a constant (horizontal) propagation speed,
in both directions of the x-axis, of a. The vibrating motion has a
(vertical) velocity given by u(x, ¢) at any location 0 < x < L along the
string.
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Exercises E-4.1:

1. Solve the vibrating string problem of the given initial conditions.

(b)

(c)

4duc=u, O0<x<m >0,
u(0, 1) =0, u(m, t) =0,

u(x, 0) = 12sin(2x) — 16sin(5x) + 24sin(6x),
ux, 0)=0.

u(x, 0)=0,
ulx, 0) = 6.
u(x, 0)=0,

ulx, 0) = 12sin(2x) — 16sin(5x) + 24sin(6x).

2. Solve the vibrating string problem.

100 vy = uy 0<x<2, >0,
u(0,1)=0, and u(2,1) =0,

u(x, 0) = 32sin(mx) + €* sin(37x) + 25sin(6mx),
u(x, 0) = 6sin(2zx) — 16sin(5zx / 2).

3. Solve the vibrating string problem.

25 u=uy 0<x<lI1, >0,
w(0,6)=0, and u(2,7) =0,

u(x, 0) = x —x2,

ux, 0) =m.
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4. Verify that the D’ Alembert solution, u(x, ) = [F(x — at) + F(x + at)] / 2,
where F(x) is an odd periodic function of period 2L such that F(x) = f(x) on
the interval 0 <x < L, indeed satisfies the given initial-boundary value
problem by checking that it satisfies the wave equation, boundary conditions,
and initial conditions.

a U =Uy | 0<x<L, t>0,
w0, £)=0, (L, 1) =0,
u(x, 0) =£(x), ulx, 0) =0.

5. Use the method of separation of variables to solve the following wave
equation problem where the string is rigid, but not fixed in place, at both
ends (i.e., it is inflexible at the endpoints such that the slope of displacement
curve is always zero at both ends, but the two ends of the string are allowed
to freely slide in the vertical direction).

a U =Uy | 0<x<L, t>0,
(0, 1)=0, w(L, ) =0,
u(x, 0) =£(x), ulx, 0) = g(x).

6. What is the steady-state displacement of the string in #5? What 1s
lim u(x, ) 7 Are they the same?

t o

Answers E-4.1:

1. (a) u(x, ) = 12cos(47) sin(2x) — 16cos(107) sin(5x) + 24cos(12¢) sin(6x).
(¢) u(x, t) = 3sin(4¢) sin(2x) — 1.6sin(10¢) sin(5x) + 2sin(12¢) sin(6x).
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5. The general solution 1s
u(e,)=A+Bt+ = ,  anwt o anxl) o NIX

an sm

n=1

L " L|) L

0 0

The particular solution can be found by the formulgs

1" f@)dx, 27 f(@)cos T ar, ,and
A= j 4,= £ L Bu=L£g(X)dx
[2 L L
niwrx
Canmw Tg(x)cos L d

6. The steady-state displacement is the constant term of the solution, A..
The limit does not exist unless u(x, 1) = C is a constant function, which
happens when f (x) = C and g(x) = 0, in which case the limit is C. They are
not the same otherwise.

The General Wave Equation

The most general form of the one-dimensional wave equation is:

ACux+Fx,)=up+yu+ku.

Where a = the propagation speed of the wave,
y = the damping constant
k = (external) restoration factor, such as when vibrations occur
in an elastic medium.
F(x, t) = arbitrary external forcing function (If /' = 0 then the
equation is homogeneous, else it is nonhomogeneous.)
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Example: The One-Dimensional Damped Wave Equation

a* Ur = Uy + Yy y #0.

Suppose boundary conditions remain as the same (both ends fixed): (0, #) =0,
and u(L, ) = 0.

The equation can be separated as follow. First rewrite it as:
a’X"T=XT"+yXT',
Divide both sides by a’X T , and insert a constant of separation:

X: M__;L
X = a7 ‘

Rewrite it into 2 equations:
=) X — X"+1X=0,

T"+yT'=—aAT — T"+yT'+a*AT=0.
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The boundary conditions also are separated, as usual:

w(0,)=0 — XO)T(H=0 — X0)=0 or T(H=0
u(l,)=0— X (DT =0 — XL)=0 or T()=0

As before, setting 7(¢) = 0 would result in the constant zero solution
only. Therefore, we must choose the two (nontrivial) conditions in
terms of x: X(0)=0, and X(L)=0.

After separation of variables, we have the system
X"+1X=0, X(0)=0 and X(L)=0,

T"+yT'+a®AT=0.

The Telegraph Equation

The most well-known example of (a homogeneous version of) the general
wave equation is the telegraph equation. It describes the voltage u(x, ?)
inside a piece of telegraph / transmission wire, whose electrical properties
per unit length are: resistance R, inductance L, capacitance C, and
conductance of leakage current G:

a% U = tn +y us + k .

Where >=1/LC,y=G/C+R/L,and k= GR/ CL.
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The next step is to find the eigenvalues and their corresponding
eigenfunctions of the boundary value problem

X"+)X=0,  X(0)=0 and X(L)=0.

T"+yT'+a*AT=0.

The next step is to find the eigenvalues and their corresponding
eigenfunctions of the boundary value problem

X"+ 1X=0, X(0)=0 and X(L)=0.
This 1s a familiar problem that we have encountered more than once

previously. The eigenvalues and eigenfunctions are, recall,

Eigenvalues: 21— niszrz , n=1.2.3, ..

Eigenfunctions: , n=1,23, ...

The equation of ¢, however, has different kind of solutions depending on the
roots of its characteristic equation.
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(Optional topic) Nonhomogeneous Undamped Wave Equation

Problems of partial differential equation that contains a nonzero forcing
function (which would make the equation itself a nonhomogeneous partial
differential equation) can sometimes be solved using the same idea that we
have used to handle nonhomogeneous boundary conditions — by considering
the solution in 2 parts, a steady-state part and a transient part. This is
possible when the forcing function is independent of time ¢, which then
could be used to determine the steady-state solution. The transient solution
would then satisfy a certain homogeneous equation. The 2 parts are thus
solved separately and their solutions are added together to give the final
result. Let us illustrate this idea with a simple example: when the string’s
weight is no longer “negligible”.

Example: A flexible string of length L has its two ends firmly secured.
Assume there 1s no damping. Suppose the string has a weight density of 1
Newton per meter. That is, it is subject to, uniformly across its length, a
constant force of F(x, £) = 1 unit per unit length due to its own weight.
Let u(x,f) be the vertical displacement of the string, 0 < x < L, and at any
time ¢ > 0. It satisfies the nonhomogeneous one-dimensional undamped
wave equation:

atue + 1 =u.

The usual boundary conditions u(0, ¢) = 0, and u(L, t) = 0, apply. Plus the
initial conditions u(x, 0) = f(x) and u/x, 0) = g(x).

Since the forcing function is independent of time ¢, its effect is to
impart, permanently, a displacement on the string that depends only
on the location (the effect is subject to the boundary conditions, thus
might change with x). That 1s, the effect is to introduce a nonzero

Prepared by:P.Rajakumari, Asst Prof, Department of Mathematics KAHE. Page 27/47




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.SC MATHEMATICS COURSE NAME:PARTIAL DIFFERENTIAL EQUATIONS
COURSE CODE: 18MMP204 UNIT: 11 BATCH-2018-2020

steady-state displacement, v(x). Hence, we can rewrite the solution
u(x, t) as:
u(x, 1) = v(x) + w(x, ).

By setting 7 to be a constant and rewrite the equation and the boundary
conditions to be dependent of x only, the steady-state solution v(x)
must satisfy:

av'+1=0,

w0)=0, wL)=0.

Rewrite the equation as v =— 1 / ¢°, and integrate twice, we get
-1

V(x) = x*+C x+C,,
2a?

Apply the boundary conditions to find C; = L / 2a* and C; = 0:

vix)y= =1 - _L
2

X+— x
2a 2a* -

Comment: Thus, the sag of a wire or cable due to its own weight can be
seen as a manifestation of the steady-solution of the wave equation. The sag
1s also parabolic, rather than sinusoidal, as one might have reasonably
assumed, in nature.
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We can then subtract out v(x) from the equation, boundary conditions,
and the initial conditions (try this as an exercise), the transient
solution w(x, ) must satisfy:

a* Wo= Wy : 0<x<lL, t>0,
w(0,=0,  w(L, )=0,
w(x, 0) =1 (x)— v(x), wdx, 0) =g(x).

The problem i1s now transformed to the homogeneous problem we
have already solxed. Theasr?}?tzion 1s just
wx, )= « ]fVA COS “+B anﬂ'{h nix

Z| ) I n SIN 7 sin I
n=1 k )
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Combining the steady-state and transient solutions, the general
solution is found to be

u(x, 1) —v(x)+w(x o s UL p )
—1 in 2 iy in
—2a2x+2a2 Z| n L "S L "ML

net \ )

The coefficients can be calculated and the particular solution
determined by using the formulas:

2
4= 2 () v bin 2ZX d¥.
- L

2 L
axX SlIl—dX’

and

B

anit,

Note: Since the velocity u/(x, £) = vi(x) + wdx, 1) = 0 + wi(x, 1) = wix, 7). The

initial velocity does not need any adjustment, as u,(x, 0) = wi(x, 0) = g(x).

Comment: We can clearly see that, even though a nonzero steady-state

solution exists, the displacement of the string still will not converge to it as
t — o0,
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The Laplace Equation / Potential Equation

The last type of the second order linear partial differential equation in 2
independent variables is the two-dimensional Laplace equation, also called
the potential equation. Unlike the other equations we have seen, a solution
of the Laplace equation is always a steady-state (i.e. time-independent)
solution. Indeed, the variable 7 is not even present in the Laplace equation.
The Laplace equation describes systems that are in a state of equilibrium
whose behavior does not change with time. Some applications of the
Laplace equation are finding the potential function of an object acted upon
by a gravitational / electric / magnetic field, finding the steady-state
temperature distribution of the (2- or 3-dimensional) heat conduction
equation, and the steady-state flow of an ideal fluid (where the flow velocity
forms a vector field that has zero curl and zero divergence).

Since the time variable is not present in the Laplace equation, any problem
of the Laplace equation will not, therefore, have any initial condition. A
Laplace equation problem has only boundary conditions.

Let u(x,y) be the potential function at a point (x, y), then it is governed by
the two-dimensional Laplace equation

Wix + %= 0.

Any real-valued function having continuous first and second partial
derivatives that satisfies the two-dimensional Laplace equation is called a
harmonic function.
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Similarly, suppose u(x, y, z) i1s the potential function at a point (x, y, z), then it
1s governed by the three-dimensional Laplace equation

Uxe T Uy T U= 0.

Comment: The one-dimensional Laplace equation is rather dull. It is merely
uy = 0, where u is a function of x alone. It is not a partial differential
equation, but rather a simple integration problem of u” = 0. (What 1s its
solution? Where have we seen it just very recently?)

The boundary conditions that accompany a 2-dimensional Laplace equation
describe the conditions on the boundary curve that encloses the 2-
dimensional region in question. While those accompany a 3-dimensional
Laplace equation describe the conditions on the boundary surface that
encloses the 3-dimensional spatial region in question.

The Relationships among Laplace, Heat, and Wave Equations
(Optional topic)

Now let us take a step back and see the bigger picture: how the
homogeneous heat conduction and wave equations are structured, and how
they are related to the Laplace equation of the same spatial dimension.

Suppose u(x, y) is a function of two variables, the expression u. + u,, 1S
called the Laplacian of u. 1t is often denoted by

V2 u = iy + uyy.
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Similarly, for a three-variable function u(x, y, z), the 3-dimensional Laplaci:
1s then

VZiu=up + uyy + Uz,

(As we have just noted, in the one-variable case, the Laplaian of u(x),
degenerates into VZu = u".

The homogeneous heat conduction equations of 1-, 2-, and 3- spatial
dimension can then be expressed in terms of the Laplacians as:

a’Viu=u,

where « is the thermo diffusivity constant of the conducting material.
Thus, the homogeneous heat conduction equations of 1-, 2-, and 3-
dimension are, respectively,

&% Uy = Uy
o (uxx + Uyy) = Uy

0(2 (uxx + u—py + sz) = u,f

As well, the homogeneous wave equations of 1-, 2-, and 3- spatial dimension
can then be similarly expressed in terms of the Laplacians as:

CI2 V2 U =uy,
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where the constant a is the propagation velocity of the wave motion. Thus,
the homogeneous wave equations of 1-, 2-, and 3-dimension are,
respectively,

U = Uy
2 n _
a” (thex + Uyy) = Un

2 . +
a (uxx + Uy, + uzz) = Uy

Now let us consider the steady-state solutions of these heat conduction and
wave equations. In each case, the steady-state solution, being independent
of time, must have all zero as its partial derivatives with respect to 7.
Therefore, in every instance, the steady-state solution can be found by

setting, respectively, U, or Uy to zero in the heat conduction or the wave
equations and solve the resulting equation. That is, the steady-state solution
of a heat conduction equation satisfies

> V? u =0,

and the steady-state solution of a wave equation satisfies

a*Viu=0.

* Even the electromagnetic waves are described by this equation. It can be easily shown by vector calculus
that any electric field E and magnetic field B satisfying the Maxwell’s Equations will also satisfy the 3-

dimensional wave equation, with propagation speed a = ¢ =299792 km/s, the speed of light in vacuum.

In all cases, we can divide out the (always positive) coefficient o or a* from
the equations, and obtain a “universal” equation:

Veu=10.
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This universal equation that all the steady-state solutions of heat conduction
and wave equations have to satisfy is the Laplace / potential equation!

Consequently, the 1-, 2-, and 3-dimensional Laplace equations are,
respectively,

U =0,

U T Uy =0,

Urx T Uyy + U= = 0.

Therefore, the Laplace equation, among other applications, is used to solve
the steady-state solution of the other two types of equations. And all
solutions of a Laplace equation are steady-state solutions. To answer the
earlier question, we have had seen and used the one-dimensional Laplace
equation (which, with only one independent variable, x, is a very simple
ordinary differential equation, u” = 0, and 1s not a PDE) when we were
trying to find the steady-state solution of the one-dimensional homogeneous
heat conduction equation earlier.

Laplace Equation for a rectangular region

Consider a rectangular region of length @ and width 5. Suppose the top,
bottom, and left sides border free-space; while beyond the right side there
lies a source of heat/gravity/magnetic flux, whose strength is given by A(y).
The potential function at any point (x, y) within this rectangular region,
u(x, y), is then described by the boundary value problem:
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(2-dim. Laplace eq.) Ure + 1)y =0, O<x=a 0=y<b,
(Boundary conditions) u(x,0)=0,and  u(x, b) =0,

w(0,y)=0,and u(a,y)=1(©).

The separation of variables proceeds similarly. A slight difference here 1s
that ¥(y) is used 1in the place of 7(#). Let u(x,y) = X(x)¥(y) and substituting
Uy =X" Yand u,, = X'Y" into the wave equation, it becomes

X'Y+XY'=0,

X'Y=-XY".

Dividing both sides by X Y-

Yl‘

X Y

Now that the independent variables are separated to the two sides, we can
insert the constant of separation. Unlike the previous instances, it is more
convenient to denote the constant as positive 4 instead.

X! Y

X' =

X Y
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X r
Y - X"=l1X - X"—-1X=0,
Y!
% — Y"=—1Y — Y"+1Y=0.
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The boundary conditions also separate:

u(x,0)=0 — Xx)¥0)=0 — X(x)=0 or Y(0)=0
u(x, b)=0 — Xx)¥(b)=0 — X(x)=0 or Y(b)=0
u(0,y)=0 — XO0O)Yy)=0 — X(0)=20 or Y(»)=0
u(a, y)=f() — X(@)Y(y)=f() [cannot be simplified furthe:

As usual, in order to obtain nontrivial solutions, we need to ignore
constant zero function in the solution sets above, and instead choos
Y(0)= 0, ¥(b) =0, and X(0) = 0 as the new boundary conditions. T
fourth boundary condition, however, cannot be simplified this way
So we shall leave it as-is. (Don’t worry. It will play a useful role
later.) The result, after separation of variables, is the following
simultaneous system of ordinary differential equations, with a set ¢
boundary conditions:

X"-)X=0, X(0)=0,
Y"+.Y=0, Y0)=0 and Y(b)=0.

Plus the fourth boundary condition, u(a, y) = f(y).

The next step is to solve the eigenvalue problem. Notice that there is
another slight difference. Namely that this time it is the equation of Y that
gives rise to the two-point boundary value problem which we need to solve.
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Y"+1Y=0, Y(0)=0, Y(b)=0.

However, except for the fact that the variable is y and the function is Y,
rather than x and X, respectively, we have already seen this problem before
(more than once, as a matter of fact; here the constant L = b). The
eigenvalues of this problem are

Jeoe n’
RN n=1,2,3, ...
Their corresponding eigenfunctions are
. T
Y=sin" =¥
, n=1,2,3, ...

n b

Once we have found the eigenvalues, substitute 4 into the equation of x. We
have the equation, together with one boundary condition:

2,2
, NI .
X _TX_O’ X(0)=0.
2 n* 71'2 nmw
Its characteristic equation, " =0, has real roots ==
b’ b

Hence, the general solution for the equation of x 1s

nix =nT
LYY =i

X=Cet | Cb
2 €

X
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The single boundary condition gives

X0)=0=Ci1+C, — C;=—-Ci.

Therefore, forn=1,2,3. ....

X = C(eq""r-‘f — e%ﬂ-")

ST

Because of the identity for the hyperbolic sine function

sinh &

the previous expression is often rewritten in terms of hyperbolic sine:

. nox
sinh , n=1273 ..

b
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The coefficients satisfy the relation: K, =2C,.

Combining the solutions of the two equations, we get the set of solutions
that satisfies the two-dimensional Laplace equation, given the specified
boundary conditions:

. niwzx .
u (x,y)=X (x)Y (y)=K sinh 2 sin

n n n n b b
>

n=1,2,3,...

The general solution, as usual, is just the linear combination of all the above,
linearly independent, functions u,(x, ). That 1s,

8

s TITK. .. HUTTY
K sinh sin

u(x, y) = .

n=1
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This solution, of course, is specific to the set of boundary conditions
u(x,0)=0,and  u(x, b) =0,
u(0,y)=0,and  u(a,y)=f(y).

To find the particular solution, we will use the fourth boundary condition,
namely, u(a, y) =1 ().

© . . anm . BEY_
@)=Y, K sinh = sin ;T IO)

) b

We have seen this story before. There i1s nothing really new here. The
summation above is a sine series whose Fourier sine coefficients are

b, = K, sinh(ann / b). Therefore, the above relation says that the last
boundary condition, f()), must either be an odd periodic function (period =
2b), or it needs to be expanded into one. Once we have f(y) as a Fourier sine
series, the coefficients K, of the particular solution can then be computed:

b

anw 2 nwy
K,sinh ——_ 7 _—[ £(y)si
sinh — _bn_b[j(y)s1n . dy
Therefore,
0 b 3 " b nwy
s simh *_ bsinhon% If(y) sin p dy-
b b
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(Optional topic) Laplace Equation in Polar Coordinates

The steady-state solution of the two-dimensional heat conduction or wave
equation within a circular region (the interior of a circular disc of radius £,
that 1s, on the region » < k) in polar coordinates, u(r, 6), 1s described by the
polar version of the two-dimensional Laplace equation

The boundary condition, in this set-up, specifying the condition on the
circular boundary of the disc, 1.e., on the curve r = £, is given in the form
u(k, 0) = f(0), where f1s a function defined on the interval [0, 2x). Note that
there is only one set of boundary condition, prescribed on a circle. This will
cause a slight complication. Furthermore, the nature of the coordinate
system implies that # and f must be periodic functions of &, of period 2x.
Namely, u(r, 6) = u(r, @ + 2x), and 1 (0) = £ (0 + 2x).
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By letting u(r, 0) = R(r)®(6), the equation becomes

| 1
RO+ RO+ RO =0
r r?

Which can then be separated to obtain

FZR'+}’R’= O’ 2
R Q) '

This equation above can be rewritten into two ordinary differential equations:
P»R"+rR'— IR =0,

e"+10=0.

The eigenvalues are not found by straight forward computation. Rather,
they are found by a little deductive reasoning. Based solely on the fact that
® must be a periodic function of period 27, we can conclude that 2 = 0 and 4
=n?, n=1,2,3..., are the eigenvalues. The corresponding eigenfunctions
are ®9 =1 and ©, = 4, cos nf + B, sin nf. The equation of » is an Euler
equation (the solution of which 1s outside of the scope of this course).
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The general solution of the Laplace equation in polar coordinates is

u(r,9)=42m+ ZI(A cosn 0+Bsinn@)r"

Applying the boundary condition u(k, ) = f (€), we see that
0
uk0)= '+ (4 6+ 6)=1(6)
4 - k"cosn B k"sinn )
2 | n n

n=

Since f(6) is a periodic function of period 27, it would already have a
suitable Fourier series representation. Namely,

f@O=" - o+ 0

2 + Z a,cosn bn Sil] n

n=1
Hence, Ao=ao, A,=a,/k", and B,=b,/k", n=1,23...
For a problem on the unit circle, whose radius & = 1, the coefficients 4, and

B, are exactly identical to, respectively, the Fourier coefficients a, and b, of
the boundary condition f'(6).
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(Optional topic) Undamped Wave Equation in Polar Coordinates

The vibrating motion of an elastic membrane that is circular in shape can be
described by the two-dimensional wave equation in polar coordinates:

u+ (/) ur+ (1 /7)) ugg=a 2 ug.

The solution is u(r, 6, t), a function of 3 independent variables that describes
the vertical displacement of each point (7, ) of the membrane at any time 7.
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POSSIBLE QUESTION
SIX MARKS
TEN MARKS
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Question Opt 1 Opt 2 Opt 3 Opt 4 Answers
A powertul method of 1inding solutions ot second
order linear differential equations is applicable
in certain circumstances. partial ordinary Hankel Kennal partial
Z=X(x)Y(y) is called of variables integratione separation differentiation |induction |separation
The separation principle can readily be extended to
number of variables. smaller unique larger contrary larger

The separation principle can readily be extended to
larger number of Constants variables coefficients sequences [variables
In Separation of variables cn denotes variables coefficients  |sequences Constants  |Constants
The solution of PDE satisfies for all values of n n
The of PDE satisfies for all values of n unity existance solution formal solution
If Z tends to zero then t tends to infinity is the
property of the solution of Ode Pde Cl P.I Pde
If Z tends to then t tends to infinity is the
property of the solution of PDE
If Z tends to zero then t tends to is the
property of the solution of PDE infinity infinity
If Z tends to zero then t tends to infinity is the

of the solution of PDE definition result property note property




Z=X(x)Y(y) is separable in the variables x&y x&z y&z Xty x&y
7Z=X(x)Y(y)T(z) is the extension of
variables integratione separation differentiation |induction [separation
7=X(x)Y(y)T(z) is separable in the
variables x&y x&z y&z X,y&z y&z
The use of the theory of integral transforms is the
solution of Ode Pde C.l P.I Pde
The use of the theory of integral transforms is the

of PDE unity existance solution formal solution
The use of the theory of transforms is the
solution of PDE Constants variables coefficients integral integral
In the method of integral transforms L denotes

operator. non linear Constants linear variables linear
In the method of integral transforms denotes
linear operator. A B L U L
In the method of integral transforms lamda
denotes Constants variables coefficients sequences [Constants
In the method of integral transforms the variable x lies
between alpha and Lamda Gamma epsilon Beta Beta
In the method of integral transforms the variable x lies
between and beta epsilon alpha Gamma Lamda alpha




In the method of integral transforms the variable

lies between alpha and beta X y z mew X
In the method of integral transforms K is the
of the function kennal k(x,y) kernal k(z) kernal
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UNIT -1

LAPLACE EQUATION
Elementary solutions of Laplace equations- Families of Equi-potential surfaces - Boundary Value
problems-separation of variables-problems with axial symmetry.
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Definition :
Laplace’s Equation

Laplace’s equation
Au= 0
anditsinhomogeneous version, Poisson’s equation,

—Au = f.
We say a function u satisfying Laplace’s equation is 2 harmonic function.

3.1 The Fundamental Solution
Consider Laplace’s equation in R",

Au=10 x € R".

Clearly, there are a lot of functions u which satisfy this equation. In particular, any
constant function is harmonic. In addition, any function of the form u(x) = aixi+. ..+ anxn
for constants @; is also a solution. Of course, we can list a number of others. Here, however, we
are interested in finding a particular solution of Laplace’s equation which will allow us to
solve Poisson’s equation.

Given the symmetric nature of Laplace’s equation, we look for a radial solution. That
is, we look for a harmonic function © on R™ such that u(x) = v( ¥|)- In addition, to being
a natural choice due to the symmetry of Laplace’s equation, radial solutions are natural to
look for because they reduce a PDE to an ODE, which is generally easier to solve. Therefore,
we look for a radial solution.

If u(x) = v(| x|), then
x'I. .
Us; =—|J;|v’(|x|) |x| f=0,
which implies

1 2. x
uy x = U(lxl) — V(| x]) +_L(|x]) |x| f=o0.
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| x| |x[? | x|2

Therefore,
n—1 . .
Au = o U(lx|) + V(] x)).

Letting 7 =| X, we see that u(x) = v([x|) is a radial solution of Laplace’s equation impl

U satisfies

ﬂfAWn+ﬂm=a

Therefore,

which implies
cilnr+c n=2

ur) =

(2-n)rm 2
[}
2-n)rm-2 + Q@ n=3.

From these calculations, we see that for any constants €1, €2, the function

Talnlx+o n=2 (3.1
n=3

u(JC) = (2—n)|x|” -2+

for x € R, | x| f= 0 is a solution of Laplace’s equation in R™ — {0}. We notice that Kunction
u defined in (3.1) satisfies Au(x) = 0 for x f= 0, but at x =0, Au(0) is wldWe claim that we

can choose constants €1 and €2 appropriately so that
_Axu. B 60

in the sense of distributions. Recall that & is the distribution which is defined as follows.

Forall @ €D,
(60, @) = @(0).

Prepared by:P.Rajakumari, Asst Prof, Department of Mathematics KAHE.

Page 3/47




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.SC MATHEMATICS COURSE NAME:PARTIAL DIFFERENTIAL EQUATIONS
COURSE CODE: 18MMP204 UNIT: 111 BATCH-2018-2020

Below, we will prove this claim. For now, though, assume we can prove this. That is, assume
we can find constants ¢1, ¢2 such that u defined in (3.1) satisfies

—Axu= bo. (3.2)
Let @ denote the solution of (3.2). Then, define

vx) = J P yflydy.

R

Formally, we compute the Laplacian of v as follows,

TAVE T A - y)f (4Y) dy

R

=th AO(x - Yf (Y dy

= Oxf(y) dy = f(x).

R
That is, Vs a solution of Poisson’s equation! Of course, this set of equalities above is entirely
formal. We have not proven anything yet. However, we have motivated a solution formula
for Poisson’s equation from a solution to (3.2). We now return to using the radial solution

(3.1) to find a solution of (3.2).
Define the function @ as follows. For | x| f= 0, let

D(x) =

—kln | x| . n=2
1
n(n-2)a(n) |2 n=3, (33)

where a(n) is the volume of the unit ball in R™ We see that @ satisfies Laplace’s equation
on R”_q } As we will show in the following claim, @ satisfies —AxD = 6o. For this reason,

we call ® the fundamental solution of Laplace’s equation.

Claim 1. For @ defined in (3.3), ® satisfies
—AxD = 6o

in the sense of distributions. That is, for all g € D,

[ ©9Ag() dx = g(0).

Prepared by:P.Rajakumari, Asst Prof, Department of Mathematics KAHE. Page 4/47




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.SC MATHEMATICS COURSE NAME:PARTIAL DIFFERENTIAL EQUATIONS
COURSE CODE: 18MMP204 UNIT: 111 BATCH-2018-2020

Proof. Let Fo be the distribution asgociated with the fundamental solution @. That is, let
Fo : D — R be defined such that
I
(Fo,g) =  ®(xg(x) dx

=4

for all g € D. Recall that the derivative of a distribution F is defined as the distribution G
such that

(G’ 9) = —(F, g‘)
for all g D . Therefore, the distributional Laplacian of ® is defined as the distribution Fao
such that
(Fno, g) = (Fo, Ag)

for all g € D. We will show that

(F‘D’ Ag) = _(60’9) =—90),

and, therefore,

(Fﬂm’ 9’) = _Q(O),

which means _Ay® = &p in the sense of distributions.
By definition, I
(Fo, Ag) = ®(9Ag() dx.
Rn
Now, we would like to apply the divergence theorem, but @ has a singularity at x = 0. We
get around this, by breaking up the integral into two pieces: one piece consisting of the ball
of radius & about the origin, B(0, 6) and the other piece consisting of the complement of this
ball in R™ Therefore, we have
I
(Fo, AQ) = D(0AGR) dx
J= I
= D(x)Ag(x) dx+ D (x)Ag(x) dx
B(0,6) 0,6)

rN=

=I+d
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We look first at term I For n = 2, term [ is bounded as follows,

. [ Tinldage de-< Clagl, -5 in|xldc"
" _ B0, 2T : " B0,5) '
‘. ..r 2nd & ",
<C" In|rlrdrdb -
=0 0
C{] ®In|rlrdr-
2

IA

0

<Cln|6|6.
For n = 3, term I is bounded as follows,
1 1 . 1
ol Agx) dx-< Clagl dx
* B(0,6) Lo B(0,6)
-9 n-2 n-
n(n—2)a(n) x| [o.f 21xdm2 5
<C dSy) d
_ Yy dr
0 spwo.n lyln?
f 5 1 ‘ﬁ( 2
= — dS(y) dr
o 8B(0,7)
I s i}
= —na(mrtdr
07" F
6 na(rr
=na(n) rdr=
0
Therefore, as 6 — 0%, |I| — 0.
Fext, we look at term J . Aﬁplying the divergence theorem, we have
fale))
w05 DOALI) dx = Ax® () g(x) dx .99 dS(x)
’ Rn—?(u,a) - &(rN-B(0,8)) OV
cg
+ Do dSE)
I a=-B0,6) ov il 5
a(r"-50,6)) OV A(==5(0,5)) v
=J1+J2
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using the fact that Ax®(x) = 0 for x € R" — B(0, 0).
We first look at term J 1. Now, by assumption, g € D, and, therefore, g vanishes at
00, Consequently, we only need to calculate the integral over 6B(0, S) where the normal

derivative v is the outer normal to R™ — B(0, 8). By a straightforward calculation, we see
that

X
\% = — .
PO = namy)xln
WhelgsteriraisnRmal PR =BQe ) 79 Blar@eip SR bEs,
X
v=— .
| ]
Therefore, the normal derivative of @ on B(0, &) is given by
- 2 . 2
6o _ __ x X 1
ov na(n)|x|n | x| na(n)|x|»t
Therefore, J 1 can be written as
geere e o I
- - gdSx=-" 9(x) dS(x) = — — g% dS(x).
aB(0,6) na(m)| x|t na(mé"!  :po,s) 2B(0,5)

Now if g is a continuous function, then

il
— = g0 dS(9 — —g(0) as § — 0.

Lastly, we look at term J 2. Now using the fact that g vanishes ps|X. +og we only need
to integrate over 0B(0, ). Using the fact that g D) and, therefore, infinitely differentiable,

we have

X S f
% - -%-
LI o dsg < 4 0| dSeo
' aB0.6) ov T OV eR0,8) B0,

C
o | 9001 S0,
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Now first, for n = 2,

1] J
D) dS(x) = C | In | x|| dS(x)
aB(0,5) I oB(0,6)
< Cldé dS(x)
aB(0,6)
=C| In |6||@2md) < Cb| In |b|]|.
Next, for n = 3, f I
| @) dS(x) = C —, dS(x)
&B(0,8) 88(0,8) | x|
ol asw
&2 0,6

= o2 na(n)6"! < C6.

Therefore, we conclude that term J 2 is bounded in absolute value by

C6|1n 6| n=>2
Cé n= 3.

Therefore, |J 2| — 0as § — 0.

Combining these estimates, we see that

S
PX)Axg(x¥) dx =lim [+ J1 + J2 = —g(0).

=

Therefore, our claim is proved.
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Solving Poisson’s Equation. We now return to solving Poisson’s equation

—Au=f xeR".

From our discussion before the above claim, we expect the function

J
= e yfydy

to give us a solution of Poisson’s equation. We now prove that this is in fact true. First, we
make a remark.

Remark. If we hope that the function v defined above solves Poisson’s equation, we must

first verify that this integral actually converges. If we assume f has compact support on
some bounded set K in R™, then we see that

] I
L P ufydy < |fl= |2(x—yldy.

If we additionally assume that f is bounded, thef [f Lo<C. It is left as an exercise to
verify that I

|O(x— y)l dy <+
K

on any compact set K.

Theorem 2. Assume f € C*(R"™) and has compact support. Let

ux) S - yfly) dy

R

where © is the fundamental solution of Laplace’s equation (3.3). Then

1. ue C}R"Y
2. —Au=fin R~
Ref: Evans, p. 23.

Proof. 1. By a change of variables, we write

J ]
u(9 = O(x- Yy dy = i O(y) f(x— y) dy.

R R

Prepared by:P.Rajakumari, Asst Prof, Department of Mathematics KAHE. Page 9/47




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.SC MATHEMATICS COURSE NAME:PARTIAL DIFFERENTIAL EQUATIONS
COURSE CODE: 18MMP204 UNIT: 111 BATCH-2018-2020

Let
ei=(..,0,1,0,...

be the unit vector in R™® with a 1 in the t" slot. Then

i 3 3
fix+ hei — uy) — flx—u)
i D(y) S

u(x+ he) — u(x)
. =

dy.

Now f € C? implies

fx+hei—y) — fix—y) 0
n vaTf(x—y)ash—'U

Properties of Harmonic Functions
Mean Value Property

In this section, we prove a mean value property which all harmonic functions satisfy. First,
we give some definitions. Let

B(x, r) = ball of radius r about x in R"

O0B(x, r) = boundary of ball of radius r about x in R"
a(n) = volume of unit ball in R"

na(n) = surface area of unit ball in R™.

For a function u defined on B(x, r), the average of u on B(x, ) is given by

1
- dy =
o u(y) ay ()" u(y) dy.

B(x,r) B(x,r)
Let

For a function u defined on 0B(x, 1), the average of u on 0B(x, r) is given by
s S
— = u(y) dS(y).
sy " PO Ty e
OB(x,r) oB(x,1)
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Theorem 3. (Mean-Value Formulas) Let Q C R™ If u € C*Q) is harmonic, then

ux) =  uydSy =  wydy
_8B(x,1) _B(x,7)

for every ball B(x, ) C Q.

Proof. Assume u € C?*(Q) is harmonic. For 7 > 0, define
o =1 )u(y) dS(y)-

For r = 0, define @(r) = u(x). Notice that if w is a smooth function, then limr-0+ @(1) =
U(x), and, therefore, @ is a continuous function. Therefore, if we can show that ¢/(r) = 0, then
we can conclude that @ is a constant function, and, therefore,

u) =J u(y) ds(y).

_0B(x,1)

We prove @/(r) = 0 as follows. First, making a change of variables, we have
o =J L)

=J u(x + rz) dS(z).
_oB(0,1)

Therefore,

¢dn=J Vux +rz) - zdS(2)

_0B(0,1)

= Vuy) - dswy

_0B(x,1) 5
) u
= - ~ dS
dB(x,1) ov (y) (y)
u
=T dS
- na(nr oB(x,r) OV @) &)
1
B na(n) r"'lj_ Blx.r) V- (Vudy (by the Divergence Theorem)
1

== . Au(y) dy =0,
na(mr! B W ay
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using the fact that u is harmonic. Therefore, we have proven the first part of the theorem.
It remains to prove that

u(o =J u(y) dy.

We do so as follows, using the first result,

1] JJ )
uly) dy= . uly) dSy) ds
B(x,1) J- . 8B(x,s) .l. 2
- wy dsS(y) ds
= na(n)snt

J- Dr 0B(x,s)

= na(n)s" lu(x) ds
0 I,

=na(n)u(x) on-1 e
0

=na(nu(x) <" lde
0

= a(n)u(x) s"leqg

= a(nu(xr-.
Therefore, I
e u(y) dy = a(mru(x),
which implies I I
u =" u@dy= - wydy,
a(mr* B B(x,7)

as claimed.
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Converse to Mean Value Property

In this section, we prove that if a smooth function u satisfies the mean value property

described above, then © must be harmonic.

Theorem 4. If u € CXQ) satisfies

ueo =J  uly) dSw

B(x,r)

for all B(x, r) C Q, then u is harmonic.

Proof. Let
@ =J

11,1£s;ing the fact that u is harmonic. Therefore, we h%@%rdo'?gij‘? the first part of the theorem.
wx =g
dB(x,r)

u(y) dS(y)

for all B(x, 1) C Q, then ¢/(r) = 0. As described in the previous theorem,

dn="~-  Auy dy.
N Bxn

Suppose U is not harmonic. Then there exists some ball B(x,7) ¢ Q such that Au >0 or

Au <0. Without loss of generality, we assume there is some ball B(X, 7) such that Au > 0.

Therefore, f
- r
din="-  Augdy>o,

B(x,r)

which contradicts the fact that @/(r) = 0. Therefore,  must be harmonic.

Maximum Principle

In this section, we prove that if u is a harmonic function on a bounded domain Q in R",

then u attains its maximum value on the boundary of Q.
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Theorem 5. Suppose Q - R"™ is open and bounded. Suppose u e C*(Q) n C(Q) is harmonic.
Then

1. (Maximum principle)
max uU(xX) = max u(x).

Q oQ

2. (Strong maximum principle) If € is connected and there exists apoint xo e Q such

that
u(xp) = max u(x),
Q

then w is constant within Q.

Proof. We prove the second assertion. The first follows from the second. Suppose there
exists a point Xp in € such that

u(xg) = M = max u(x).
Q
Then for 0 < r < dist(xp, 6€0), the mean value property says

M=uxo)=J , )u(y) dy < M.
_ B(xuo,r
But, therefore, I

B, YY) Ay = M,

and M = maxgu(x). Therefore, w(y) = M for y € B(xo, ). To prove u = M throughout
), you continue with this argument, filling Q with balls.

Remark. By replacing u by —u above, we can prove the Minimum Principle.
Next, we use the maximum principle to prove uniqueness of solutions to Poisson’s equa-

tion on bounded domains Q in R™

Theorem 6. (Uniqueness) There exists at most one solution u e C*(Q) n C(Q) of the

boundary-value problem, )
-Au=f x€Q
u=g x € 0Q.

Pmof. Suppose there are two solutions w and v. Let w = u — vand let w = v — w. Then w

and W satisfy
TAw=0 xe€Q

w=0 x € 0Q.
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Therefore, using the maximum principle, we conclude

m%lu—u|=%%x|u—v|=0.

Smoothness of Harmonic Functions

In this section, we prove that harmonic functions are cC”.

Theorem 7. Let Q be an open, bounded subset of R". If u ¢ C(Q) and w satisfies the mean
value property,

uq =J uy) dS(y)

oB(x,1)

for every ball B(x, 1) C Q, then u € C*(Q).
Remarks.
1. As proven eatlier, if u € C3(Q) N C(Q_) and u is harmonic, then w satisfies the mean
value property, and, therefore, u € C"(Q).

2. In fact, if u satisfies the hypothesis of the above theorem, then u is analytic, but we
will not prove that here. (See Evans.)

Proof. First, we introduce the function 77 such that

_ gemw e
) = 0 x| =1

where the constant C is chosen such that ~_, 7(x) dx = 1. Notice that n € C* (R 2 and 7

has compact support. Now define the function 1s(x) such that

)2

_ 1 x
00 =" 1 %

Therefore, s € C~(R™) and supp(ns) C {x: |x| <s}. Further,

I ns(x) dx = 1.
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Now choose s such that s < dist(x, 0Q)rDefine
il
Us) = Ms(x — yu(y) dy.
Q

Now we claim

1. useC”
2. us(0) = u(x).

First, for (1), us € C because s € C". We prove (2) as follows. Using the fact that suppns(x
—4) € {y:|x— yl <s}. Therefore,

]
Uus(x) = B ) Ns(x — YY) u(y)zdy

1 x—y
— Bixs) T s u(y) dy

S Is S ) > I
- lx—ul wuy) dswy) dr

st 0 (?B(x,;'-)rl1 s
LIS . 2

= n T u@y)dSy) dr

sn J.o -ch) S
= S gy YW dSEAr
g . 3 J

= n na(mrt u(y) dS(y)dr

s g S dB(x,1)

= s -

_ n 2 ammiuy dr
C .3 S

LS om0 dS(y) dr

S L=
u(X)jﬂ RS

= u(x )f?s(y) dy

B(0,s

ux)

dy

= u(x).
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Liouville’s Theorem

In this section, we show that the only functions which are bounded and harmonic on R™are
constant functions.

Theorem 8. Suppose u : R" —R is harmonic and bounded. Then u is constant.

P?‘[)Of. Let xp € R™ By the mean value property,

u(xo) = J u(y) dy
_ B(x0,7)

for all B(xo, ). Now by the previous theorem, we know thatif © ¢ C?(Q) n C(ﬁ) and U is
harmonic, then u is C”. Therefore,

we see that |ux,(x0)| = 0. Therefore, ux;()) = 0. This is true for { = 1,...,n and for all

xp € R™ Therefore, we conclude that 4 = constant.
]

As a corollary of Liouville’s Theorem, we have the following representation formula for
all bounded solutions of Poisson’s equation on R", n = 3.

Theorem 9. (Representation Formula) Let f € C*(R"™) with compact support. Let n > 3.
Then every bounded solution of

—Au=f xeR" (3.4
has the form I
Un = ox-yfydy+C

R

for some constant C, where ®(x) is the fundamental solution of Laplace’s equation in R™

Proof. Recall that the fundamental solution of Laplace’s equation in R", n = 3 is given by

K

©x) = | x| n-2

where K = 1/n(n — 2)a(n). As shown earlier,
il
U = o - yYfiy) dy

R

is a solution of (3.4). Here we show this is a bounded solution for n > 3. Fix s > 0. Then,
we have
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.‘I -t
lu@l = [Py dy
. * R 1 * .
= K —f(y) ay
frolx— yl’ll‘2 I
="K _Zf(y)dy + K _Zf(y)dy
' B(x,s) |x y|” : R7-B(x,s) ‘x y|"
L J J
< |fl= . dy+C \f(y)| dy.
L n-2
B(xs) |x—yl R"-B(x, )

It is easy to see that the first term on the right-hand side is bounded. The second term
on the right-hand side is bounded, using the assumption that £ C*(R™ with compact
support. Therefore, we conclude that

ux) =J ox yflydy

is a bounded solution of (3.4). Now suppose there is another bounded solution of (3.4). Let

u be such a solution. Tet
w(x) = u(x) — u(x).

Then w is a bounded, harmonic function on R™. Then, by Liouville’s Theorem, w must be

constant. Therefore, we conclude that

u(x) = T(x) + C
Dx-yflydy+C

rN

as claimed.

Solving Laplace’s Equation on Bounded Domains

Laplace’s Equation on a Rectangle

In this section, we will solve Laplace’s equation on a rectangle in RZ. First, we consider the
case of Dirichlet boundary conditions. That is, we consider the following boundary value
problem. Let Q = . v 82 0<x<a 0<y=< b}. We want to look for a solution of

the following,
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5 Woe + Uyy =0 (xy eQ
u0,y) =g1(y), wWa,y) =g2y) 0<y<b (3.5)

ux, 0) = g3, u(x,b) =ga(y)y O<x<a

In order to do so, we consider the following simpler example. From this, we will show how
to solve the more general problem above.

Example 10. et Q ={(x,y) €R?: 0 <x <a,0 <y < b}. Consider

D Ut Uy =0 (xy e
; w0,y =91y), wa,y =0 0<y<b (3.6)
ulx, 0) =0, u(x,b)=0 0<x<a

We use separation of variables. We look for a solution of the form

ux, yY) = XY (Y-

Plugging this into our equation, we get

XYy + XYV = 0.

Now dividing by XY, we arrive at

g -+ Lﬂ = 0,
X Y
which implies
yr X

for some constant A. By our boundary conditions, we want Y (0) = 0 = Y (b). Therefore, we
begin by solving the eigenvalue problem,

-YJ'J':—AY 0<y<b
Y (©0) =0=Y(b).

As we know, the solutions of this eigenvalue problem are given by

. 2 22
Y@ =sin My A= TS

We now turn to solving

X
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with the boundary condition X(a) = 0. The solutions of this ODE are given by

. )2 . )2
X,{x) = A gosh &;x + B,, sinh n_;rx

Now the boundary condition X(a) =0 im&lies
‘nm ‘nr

Acosh 7 a + Bsinh — a =0.
" b " b

Therefore,

z . z . 2z . Z
Un(x, Y) = X0 Y (y) = Apcosh %Ix + B, sinh %rx sin Ty

where Ap, Bp satisfy the condition

Z z

A,cosh ﬁbﬂa + Bsinh ﬁ;a =0.

is a solution of Laplace’s equation on Q which satisfies the boundary conditions u(x, 0) = 0,
u(x, b) = 0, and u(a, y) = 0. As we know, Laplace’s equation is linear. Therefore, we

can take any combination of solutions fiin }and get a solution of Laplace’s equation which
satisfies these three boundary conditions. Therefore, we look for a solution of the form

> > R 2  am 22 . ‘nm X
ux,y)= u@xy = Acosh = x + Bsinh = x sin = Yy
n " b n b b
n=1 n=1
where An, Bhn satisfy o 3 o 3
A, cosh _b a + B sinh _ba =0. (3.7

To solve our boundary-value problem (3.6), it remains to find coefficients An, Bn which not
only satisfy (3.7), but also satisfy the condition wu(0, y) = gi1(y). That is, we need

Z  nn?
wo, y=" Avsin By =aw.

n=1

That is, we want to be able to express g1 in terms of its Fourier sine series on the interval
[0, b]. Assuming g1 is a “nice” function, we can do this. From our earlier discussion of Fourier
series, we know that the Fourier sine series of a function g1 is given by

il . 2
- . ‘nm
gi(y) ~ A,sin i Yy

n=1
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where the coefficients Ap, are given by

. 2
(gl_. sin BEy )
b

b b

A, 3

(sin 22y ,sin 2y

where the L2-inner product is taken over the interval [0, b].
Therefore, to summarize, we have found a solution of (3.6) given by

= > 1 “nr 2 - 22 o 2
uxy) = - Un(%, Y) = o An cosh :x + Bjsinh _I-.x sin _hy
where £z
A, =g\ Si?‘%g)._ﬁ by
(sin %y ,sin b Y
and _ >
Br= — coth %GA n

Example 11. Let Q = {(x, Y) < RL0<x<L 0< Yy < H . Cpnsider the following

boundary value problem,

O Uex+ Uy =0 (x,y €Q
u©,y) =0, ulL,y) =0 O<y<H (3.8)
w(x, 0) — uy(x,0) =0, wu(x, H) = f(x) 0 < x <L.

Using separation of variables, we have

That is, we want to be able to expresii in teymias of its Fourier sine series on the interval

x~ "y~ 4

We first look to solve

X = AX 0<x<L
X(0) =0 =X(L).

As we know, the solutions of this eigenvalue problem are given by

. z 22
nit nr
Xx) =sin — _ s A= T
AX) = sin Lx I

Now we need to solve

o2
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u(x, y) an i '_nr.rxz zﬂ h on : + sinh on =
- - sin COS s5in
= L L LY LY

Substituting in the condition u(x, H) = f(x), we have

p-2 . z2 . 2 . 22
u(x, H) = Bisin ﬂ;x ?cosh TJ;_?I H + sinh jrj_n H =flx.

n=1

Recall the Fourier sine series of fon [0, L] is given by

oo
- . ‘nm 2
f~ Apsin x
_ L
n=1

where

J> sif BEX
PRSI 2yl
M ni M nrm
(sin 2Ex ,'sin 2Ex )
where the L?-inner product is taken over (0, L). Therefore, in order for our boundary con-
dition u(x, H) = f(X) to be satisfied, we need Bhn to satisfy

inm - z . 2z £ sih nzx
— ni WJr s
B cosh MH +sinh — H = —— f}L — >
nor L L (sin Hx ,sin Hx )
Using the fact that
. 2 - r S . 2 L
nr . R ni Ls
(sin Zx , §in ?}J—Ex ) = sin? Zx dx= 5 R
the solution of (3.8) is given by
7;‘°°B '.E}:Z@ h.ﬂz+_h.@zz
ulx, y) = . n SIN I X I3 cos L y sin L y
where ]
2%nm  cpm * “nr " foosin My ax
Bn = cosh r H + sinh H 0 '
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Laplace’s Equation on a Disk

In this section, we consider Laplace’s Equation on a disk in R?. That is, let Q = {x, y €
R2. x2 + y? < a?}. Consider

-

Uee + Uyy = 0 (x, y €Q

(3.9)
u= h(6) (x, y) € 0.

To solve, we write this equation in polar coordinates as follows. To transform our equation

in to polar coordinates, we will write the operators Ox and Oy in polar coordinates. We will
use the fact that

CHryt=r
Y-tan 6
x

Consider a function 1 such that u = u(r, 6), where r = r(x, y) and 0 = 8(x, y). That is,

u = urx, y), 0(x, y))-
Then

0
2x WTC6 Y)s 006 Y)) = Wrtc + Uobe

y
a ur(x'z + y3/2 a ugxz sec? O
sin 6
= UrcosB — ue.
r

Therefore, the operator?,  can be written in polar coordinates as

5} sin 6 0

0
oy = 08 9;— r 06

Similarly, the nperator_::;q can be written in polar coordinates as

o ) 0 cos 80
— =smn 86— + .
dy or r 06
Now squaring these operators we have
) z
? 0 sinB3°
ox2 cosggr* r 08
r o0
_ 0? sin Bcos @ © sin @cos 8 72 sin? 00 sin26 A
= o 49 + + .
o2 or P 9”2 r 0r0 r or 2 0
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Similarly,
X )2
2 "8, coshd?
——= sinf— +
oy or r 08
r 06
a2 o2 _ZSin OcosO O N 251'1‘19(:059 2 + cos? 60 N cos?O 72 .
or 7 06 r 0ro8 r or r 06
Combining the above terms, we can write the operator &% + &% in polar coordinates as
x y

follows,
o2 o2 02 10 102
L + 4 =_ 4 + .
oxt Jdy* ort ror roe?
Therefore, in polar coordinates, Laplace’s equation is written as
1 1

Urr + ;ur + ;uge = 0. (3.10)

Now we will solve it using separation of varables. In particular, we look for a solution of
the form u(r, 6) = R(r)®(6). Then letting u(x, Y) = w(r(x, y), 8(x, y)), we will arrive at a
solution of Laplace’s equation on the disk.

Substitutinga function of the form u(r, 8) = R(r)®(6), into (3.10), ourequation is written
as

" 1 . 1 .
Re+ Re+ Re/=0.

r r
Dividing by R®, ) ' )
R R o
R "R " re~"
Multiplying by 72, we are led to the equations
o PR TR
= — - —A

e R R

for some scalar A. The boundary condition for this problem is u = h(0) for (x, y) ¢ 0.
Therefore, we are led to the following eigenvalue problem with periodic boundary conditions,

eol= A 0<8<2m
e = e2n, &) = @2n).

Recall from our earlier work that periodic boundary conditions imply our eigenfunctions and
eigenvalues are

On(0) = Ancos(nb) + Bnsin(no), An=n? n=0,1,2,...
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For each Apn, we need to solve
IZHJH + an = Aan-

That is, we need to solve the second-order ODE,

PRI+TR, - AR, =0

form =0, 1, 2, . . .. Recall that a second-order ODE will have two linearly independent
solutions. We look for a solution of the form R(r) = 72 for some a. Doing so, our ODE
becomes

(@ —n?ra=0.
Therefore, for n>l, we have found two linearly independent solutions, Rn(r) = 7" and
Rnp(r) = r™. Now for n = 0, we have only found one linearly independent solution so far,

Ro(r) = 1. Welook for another linearly independent solution. If n = 0, our equation can be
written as

PR+ rR = 0.

Dividing by r, our equation becomes
rRi+ R = 0.

A linearly independent solution of this equation is Ro(r) = In . Thercfore, for cach n > 0,
we have found a solution of (3.10) of the form

D,
 m+— [A cos(nB) + B, sin(no)]
un(r, 0) = Rn(n@n(0)=12 m "

Ap[Co+DglnA.

But, we don’t want a solution which blows up as ¥ — 0*. Therefore, we reject the solutions

i and ln 7. Therefore, we consider a solution of (3.10) of the form

=
u(r, ©) = 1" [Ancos(nB) + Bysin(nb)].

n=0

Now in order to solve (3.9), we need u(a, 6) = h(6). That is, we need
=
a [An COS(HQ) + B, Siﬂ(ng)] = h(e)
n=0
Using the fact that our eigenfunctions are orthogonal on [0, 27, we can solve for our coef-

ficients An and Bn as follows. Multiplying the above equation by cos(nf) and integrating
over [0, 2m], we have

A = 1 (h(6), cos(nb) :_1].2“
" a”(cos(ng), cos(ne)) ta”

h(6) cos(nb) db forn=1,2,...

21
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I o
Ao = (B _ L e ae.

(1,1)  2m o

Similarly, multiplying by sin(n16) and integrating over [0, 21|, we have

1 (h(6).sin(nb) JIZ”

Bn= a" (sin(nd), sin(n@) ma" h(B)sin(nb) db.

To summarize, we have found a solution of Laplace’s equation on the disk in polar

coordinates, given by

=
" [Ancos(n@) + Bnsin(nf)]

wr, 6) =
n=0
where
J. 2n
Ao = o h(6)dé
1 j. 2
A= h(6) cos(nb) dB
n Ean J-Oz
- (B) sin(nb) de.
Bn - n 0
na

Now we will rewrite this solution in terms of a single integral by substituting An and Bn

into the series solution above. Doing so, we have

-r 2m
ur, §=1"" ng)d
>, 1T h@eosn@)dp coxney+ L " h@sinng)de) sin(n)
N man g
1 2 ] ern ZZ
B 2_7[ hg 1+2 = ;[cos(nq)) cos(nB) +sin(ng)sin(ng)) dp
0 n=1 Zz
il - s
_ 1 2n ol
== hi@) 1+2 — de.
2 @) et qns (n(6 — @) ¢
Now
. s = - ‘% rnz in{B—QD)+ —in( 6-¢) Zz
1+2= = 1+2= L € €
- 7 cos(n(0— @) an 2
Page 26/47
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n=1
<= re-’IH_fP)zn = T re—!IQ—{'O)zn'

a
n=1 n=1 a

re"-( 9_';0) re_i( 9_(:'3)

- a— reio® ' q_ reio-o

B a-r
Ca?— 2arcos(0— @)+ R

Therefore, I ,

ur, =1 " @ do
21 g at—2arcos(8—q@)+r2 "
We can write this in rectangular coordinates as follows. Let X be a point in the disk Q with
polar coordinates (r, 6). Let ¥ be a point on the boundary of the disk Q with polar coordinates
(a, @). Therefore, x ¥ 2 = a® + |r‘2 _2aj=|cos(9 @) by the law of cosines. Therefore,
ulx) = 1 u@)gaz - |J€F|2) @)

2T j=a  |x— |2 a

using the fact that ds = a d is the arc length of the curve. Rewriting this, we have

This is known as Poisson’s formula for the solution of Laplace’s equation on the disk.
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POSSIBLE QUESTION
SIX MARKS
TEN MARKS
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Question Opt 1 Opt 2 Opt 3 Opt 4 Answers

Both inside and outside the attracting matter the force of attraction
expressed in potential actual gravitation [increasing [decreasing gravitation
In Physics the field equations reduced to equation Fourier Kennal Kernal Laplace Laplace
At any point at which the density of gravitation matter satisfies

equation Fourier Kennal Kernal Poisson Poisson
In the field equations reduced to Laplace equation Maths Physics Chemistry |Biology Physics
At any point at which the of gravitation matter satisfies
Poisson equation velocity acceleration |density potential density
In occurrence of laplace equation there is no singularity Constants |variable sequences singularity
The velocity of a perfect fluid in irrotational motionexpressed in terms
of potential. velocity acceleration |density kennal velocity
The velocity of a fluid in irrotational motionexpressed in terms
of velocitypotential. proportional passive perfect sink perfect
The velocity of a perfect fluid in motion expressed in terms of
velocitypotential. rotational moving non moving |irrotational irrotational
The function Shi has no singularities except proportional passive perfect sink irrotational
The function Shi has no singularities except Source velocity acceleration [density Source
The function shi is Constants variables [coefficients [sequences Constants
The function shi is variables conductor |coefficients [sequences conductor
At each point of the conductor n is the outward drawn to the
conductor proportional normal perpendiculajseries normal
At the surface of an at which a battery is providing charge at a
definite potential of the function. node electrode |grad potential electrode
In the presence of dilectrics the potential is defined grad potential  |electrostatic [node electrostatic
The magnetic vector is defined in terms of potential grad magnetostatielectrostatic [node magnetostatic
Steady currents are defined through current induction conduction |node potential conduction
The determination of the potential due to uniform circular wire

diameter radius node potential radius




The boundary S of a simply connected region satisfies

equation

Fourier

Kennal

Kernal

Laplace

Laplace
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UNIT -1V

WAVE EQUATION
Elementary solutions of one dimensional wave equation-Vibrating membrane - Applications of
calculus of variations- Green’s functions for the wave equation.
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Wave equation examples

The wave equation is discussed in detail in the Dawkins online text,
http://tutorial. math.lamar.edu/Classes/DE/IntroPDE.aspx, starting on page 13.

The function u(x, ) is a solution to the classical one-
dimensional wave equation if it satisfies the PDE

Qll)d

u
!

"l

o u
- =
ox

- ._ & ; = ; j‘
w The wave function u is the amplitude of the wave as a
W == (1 ction of time and position. The constant v is the

wave’s velocity in the x direction.

':Iu |'_'
=}
=]

For a derivation of the wave equation, see http:/hyperphysics.phy-
astr.gsu.edu/hbase/waves/waveg.html -- Physics!

Since the wave equation is a linear second order PDE, given any two twice-differentiable
functions of a single variable (call them f; and f>), the most general solution is

u(x, t) = fi(x + vi) + f>(x — vt). That’s almost all there is to it! (except for the
details — ah, the details).

This was first noted by Jean D'Alembert, 18" century French
mathematician and bon vivant. The plus/minus signs in

x + vt and x — vt indicate the direction of wave travel:

f>(x —vt) is traveling to the right and f;(x+ vt) is traveling to the
left. How can you remember that? Think of surfing a wave:
you want to stay in the same relative position, riding the wave
crest. As time goes on (t increases, you and the wave both
move to the right (your x position increases). In order to keep
the same relative point on the wave function, you’d better be
surfing f{x — vt). Was D’ Alembert a surfer? With that hair?
Not likely.

A leprechaun caught surfin’

the cosine wave off Malibu. As t and x
increase, he rides x — vt, staying at the same
wave height.
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Acosicreof - d) 5,

Example  Let fi(x + vt) = cos(x + vt) and fo(x - vi) = 1 - (x - v1)°.

Then u(x, 1) =1 - (x - vt)?> + cos(x + vt) is shown to be a wave function if it
satisfies the wave equation. Show that it fits the PDE. Graph the function in x
and 1 (especially using Animate to plot the function of x and animate it in time).

The form of the solution to the wave equation is determined by both the initial
conditions (what is the value of u when t = 07?) and the boundary conditions (what
must the wave function do at end points of the domain?).

No boundaries: traveling waves on a very long string
D’ Alembert’s analysis of wave functions leads to several important results.

First, we analyze the wave equation with ICs only. Let’s write the wave equation as

2
20U

cu u=ve and the wave function u(x, 8) = fi(x + vt) + fo(x — vi).
ot v _ Lor " =

ox’

(¥}
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a. We are given an initial displacement u(x,#) = f{x) and
initial velocity uqx,0) = 0. This is a guitar string plucked
with finger or pick (although D’ Alembert would have
studied the harpsichord).

Applying the second (velocity) IC first, take the required
derivatives of u:

u(x,0)=0=vf'(x)=vf,'(x) or f'=f,'
We integrate this directly to obtain f,= f,+ C and therefore
uix, t) = filx +vi) + fi(x—vt) - C

Applying the first IC u(x,0) = fix),
f@=f0)+f ®)=2f-Cor f _[(x)+C
| 2 1 | 2
C
2

Combine:

+1__f(x—vr)+£—C”
2 2

u(x, 1) = l_f(.\‘ + Vi) +
2

= ]Ef(x + vt) +%_)"{x —vt)

The solution function is therefore always a sum (superposition) of %5 of the
function that describes the shape of the string pluck; the constant cancels.

b. An initial velocity udx,0) = g(x) is given and the initial displacement u(0,2) = 0. This
is a piano string struck by pressing a key or the very cool instrument known as a
hammered dulcimer.

Use the method above to eliminate f>:

ulx, )= filx=v)+filx+vt)1 . .
and then show that _,f] X)=— g(s)ds , where s isa

! 2vjn

dummy variable that disappears upon integration.

Combine to obtain u(x,f) = lj“w g(s)ds
2y x=at
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¢. Combination of conditions: u(0,t) = f{x) and ud{x,0) =g(x)

Combined ICs yield combined solutions known as D’Alembert’s Formula:

u(x,t)= L f(x=vt)+ L f(x+vr) +ijlmig(sjds
2 2 2y =

Example: Apply D’ Alembert’s Formula to form the wave function given by the initial
condition (pluck) u(x,0) = e withv = 4.

2
. . 1 - x+2i 1 - =2 P . . e s
We see immediately that u(x, 1) =_e™ ™"+ _e™ ™" as illustrated below. The initial

2 2
pulse starts at x = 0 and splits in two, one traveling left, the other traveling right. Since
there are no boundaries, the pulses continue moving away from each other ... forever.

{0} E = F {“-lél

o ;I‘-h.w,-, el vty

r'y
v
F 3
4

\ [{]
% 14 e ¢ il alt ¢
03 | }I‘I Lo o | iR 0w | 5l

/ A\ ~, usE

L g
{
azf
4
LAY

—— e e, 3
ry o 3

Example

. . 1 _. ,

Suppose the ICs are u(x, 0) = _e™" and u (x,0)=—¢" forv=4.
2 i

Use the D’ Alembert Formula to find the wave function ufx,1).

Once the functions f and g are defined, this statement will find values of u|x,t]|
using the D’ Alembert Formula:

ufc ,f g ,t ,x ]:= .5(f[x + c t] + f[x = c t])+ (1F/{2 c)) Imntegrate[g[x1], {x1,x - c t, x + c t}]
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Woddya know? A stamp!

http://jeff560.tripod.com/images/dalemb.jpg

Now that we know the form of the solutions, we can look at some BVPs

We’ll start with a one-sided boundary: Suppose a horizontal string is tied at one end (say
x = 0), where it cannot move and thus u(0,t) = 0 and u,(0,2) = 0

In order to prevent any displacement at the bound end, a “reflection™ will be generated —
a wave of opposite polarity will originate at the boundary. When the incoming wave and
the reflected wave are superimposed, they cancel.

. | IR
Example: The pulse begins at x = 3 so that u(x, 0) = ¢ .
2
We must form a function that extends a negative of our wave function into x < 0 so that
the sum of the wave displacement is 0.

In general, this can be done by turning the wave function into an odd functions by an

‘odd flip:* y(x) is redefined as —y(-x) for x<(). The most compact way to do this (but
certainly not the only way) is as follows:

u(x, )= l [Sign[x + ve] f(Abs[x + v¢]) + Sign[x — ve] £ (Abs[x — vf])]
2
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, This really creates two wave functions — the one
: we see from the starting point of the pulse and a
/\ mirror image (in reversed polarity) starting from

szl II| '| x<0.
L3 -]:D 5\ j SL 1‘0I = IlIS

III II
| s

(|

l

|I I|

Voan

075
z 4 . ufx]
Each pulse splits, with one half moving left L
and the other right.
w_ l:'.l
15 -10 N5 / 5 i 15
A

14

i)

pr o
sl When the ‘real’ wave and the mirror image pass
— [ through each other at the boundary, they cancel out.

L™, 'J'l .'\\

13 —lll} x'\ '-% | 5 15 : IlIS ¥
«— /| 5
V -0.5

But we are only interested in what happens with x > 0, so it looks like the original pulse

is reflected at x = 0; then both pulses
165 move to the right.
ufx]
10
[ —
.-"- .\‘.
. - 1 1.\- 1 P
\ ] 4 -] g 10 12 14
.‘_——_
D3 F g %
Verify that the wave function u(x,1)

= () at a reflecting boundary for all
-0t values of t.

= It is also possible to reflect at the right hand boundary.
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]
101

05k
) Pulse moving right, striking boundary

L, atx=15.
4

=05

-0k

Reflected pulse (reverse polarity)
now moving to the left.
64

ux]
10¢

1oL

Reflections at both boundaries are also possible — but require additional trickery
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ulzt)
10p

Pulse begins at x=35,t=0

o5l /

335

=05

ol Pulse splits, parts
I — . move left and right,

A A about to strike

i — boundaries at x =0
: ’ . : " and x = 10.

=05

Reflected pulses now moving back towards 61
x=5 s

e

This required conditional function definition using /3 Mathematica's conditional
definition operator.
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2
pulse2[z , 50 , left , right 1 :=e """ r: Josft 5 < right
Tz 2 - . 1
pulze2[z_, 30, left , right 1:=-e*" i £ Jeft (+ left is presumed to be zero n)

; 2
pulse?[z_, s0_, left_, right ] := _gleEtEead-a® g o pight

Plot[.5 pulse2[x+t, 5, left, right] +.5pulsed[x-t, 5, Left, right], {x, left, right},
PlotRamge — {-1, 1}, IxesLabel — {x, "u[x,t]"}, PlotLabel - t]

Values for left and right (the x position of the boundaries) can be explicitly
assigned prior to the Plot| ] or set with a list replacement within the Plot] |.

We have defined the velocity of the wave as the value v in the wave equation. What
is the derivative u«x,?) represent in physical terms?

What happens if we use a continuous cosine u(x, t) =% cos(x —vi) + ¥ cos(x + vi)
instead of a discrete pulse? Try it!

A more general means of finding a wave function when there are boundary conditions
involves the technique of Separation of Variables. Work that lab before continuing
below.

See http://www.math.duke.edw/education/ccp/materials/engin/wave/index. html.

Work through all parts of this webpage and answer the questions in the summary. We
will get to Fourier Series solutions after a while; for the moment, just think of them as an
approximation to the given function formed by adding sines and cosines.

We will use Separation of Variables to consider each of the following cases, each
specified by a different set of boundary conditions.

See notes in wave equationBVP.pdf
1. String of length L tied at both ends (standing waves)

Boundary conditions u(0,t) = u(L,t) = 0. An initial amplitude u(x,0) or particle
velocity ug(x,0) or some combination of these ICs may be specified.

For an excellent animation of a standing wave on a string, see
http://ealileo.phys.vireinia.edu/classes/152. mf1 1.spring02/forces%20on%20wave.swf
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2. Tube of length L open at one end (standing waves)

Boundary conditions u(0,t) = 0 u(L,t) = A, for an amplitude value A.

3. String of length L tied at one end and shaken with amplitude A from the other end
(traveling waves)

Boundary conditions u(0,t)=0 wu(L,t) =A. An initial position or velocity
must be specified.

The vibrating drumhead (circular case)

The two-dimensional wave equation can be expressed in polar coordinates.

&u _ L(G_u +5ng ) becomes E-*’U_ _I(F'U + laU_’_]_@EU . Here, ufx, y, t) is a
ot 2o 8 o’ Sor ror r oo’
amplitude displacement function in rectangular coordinates and Ufr, € 1) is the

displacement function transposed into polar coordinates. Good news: It is still variables
separable!

Suitable boundary conditions might be fixed edges at r=1 and
an initial displacement or velocity at the center.
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POSSIBLE QUESTIONS
UNIT 1V
PART B
(5X6=30 Marks)
1. Derive the solution of the boundary value problem of the vibrating membrane.
2. Describe the motion of a string using elementary solutions of the one dimensional
wave equation.
3. Describe the motion of a string using elementary solutions of the one dimensional
wave equation.
4. Derive the solution of the boundary value problem of the vibrating membrane

PART-C (1X10=10)
1. Derive the solution of the boundary value problem of the vibrating membrane.

2. Discuss in detail about Green’s function for the wave equation.
3. Solve the one dimensional wave equation r =t by Monge’s Method.
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where
if nc
A = j; s“l’f \Lx <

nT o - Tnm S tnm L
(sin ALx ,sin BFx )

where the L?-inner product is taken over (0, L). Therefore, in order for our boundary con-

dition w(x, H) = f (%) to be satisfied, we need Bhn to satisfy

inm . 2z . 27 £, sin nz

== ni Je sl 22X

B cosh "ML G My PG 5
nor L L (sin #x ,sin Hfx )

Using the fact that
D S T I 3 L

(sin ?x ,8in ri_ﬂ:x): . sin? ?x dx = 5’
the solution of (3.8) is given by
_:“C'B .-szﬂ h.EZJF'h.MZZ
ux Yy = . ' sin I X T cos I y sin I3 y
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where 3 5 55 J'
2 °nn ‘nm ‘nm -17 E . ‘nm
= — — — s — dx.
Bn=, ,cosh [ H +sinh | H 0 f9 sin L x

Laplace’s Equation on a Disk

In this section, we consider Laplace’s Equation on a disk in R?. That is, let Q = {x, y e
R?: x? + y? < a?}. Consider

-

e + Uyy = 0 xy e

(3.9)
u = h(0) (x, y) € 0Q.

To solve, we write this equation in polar coordinates as follows. To transform our equation

in to polar coordinates, we will write the operators Ox and Oy in polar coordinates. We will
use the fact that

P+yt=r
Y-—tan 6
x

Consider a function w such that u = u(r, 6), where r = r(x, y) and 8 = 6(x, y). That is,

u = ur(x y), 0% y)).
Then

0
ox W06 U), 8% Y)) = Wtc + uob

Yy
- ur(xz + yH2 - u9x2 sec?
sin 6
= UrcosB — ug.
r

Therefore, the operator?, can be written in polar coordinates as
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Similarly, the operator_::;q can be written in polar coordinates as

0 ) 0 cos 80
— =sin 60—+ .
dy or r 06
Now squaring these operators we have
X )2
2 d sinB3 2
ox2  cos 9,\’_ — r 060
r 00
_ 0? sin Bcos @ © sin @cos 8 72 " sin? 00 sin26 A
- 6 + 2 o P Y *
cos? or2 r2 26 -2 r orco r or r 062
Similarly,
X )2
* 0 cosBd
—= sinf— +
oy or r 00
r 06
in2 o2 _ZSin BcosO 0 N 251'1‘19(:059 ﬂaZ + cos2 08 cos@ 7] .
or 7 06 r 0ro8 r or R o0&
Combining the above terms, we can write the operator &% + &% in polar coordinates as
y
follows,
o2 o2 02 10 102
L+ Y = 4 + .
oxt Jdy* ort ror roe?
Therefore, in polar coordinates, Laplace’s equation is written as
1 1
Urr + ;ur + ;u,ge = 0. (3.10)
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Now we will solve it using separation of varables. In particular, we look for a solution of

the form u(r, 6) = R(r)®(6). Then letting u(x, Y) = w(r(x, y), 8(x, y)), we will arrive at a

solution of Laplace’s equation on the disk.

Substitutinga function of the form u(r, 8) = R(r)®(6), into (3.10), ourequation is written
as

. 1 1 -
Re+ RO+ RO/ =.0.

r r
Dividing by R®, ) ' )
R R o
R "R " re~"
Multiplying by 72, we are led to the equations
o PR TR
- __ = _a

for some scalar A. The boundary condition for this problem is u = h(0) for (x, y) ¢ 0.
Therefore, we are led to the following eigenvalue problem with periodic boundary conditions,

o= A0 0<0<2r
O0) = O2n), &) = d2n.

Recall from our earlier work that periodic boundary conditions imply our eigenfunctions and
eigenvalues are

On(0) = Ancos(nb) + Bnsin(no), An=n? n=0,1,2,...

For each Apn, we need to solve
IZHJH + an = Aan-

That is, we need to solve the second-order ODE,
PRIATR, - AR.=0

form =0, 1, 2, . . .. Recall that a second-order ODE will have two linearly independent
solutions. We look for a solution of the form R(r) = 72 for some a. Doing so, our ODE
becomes

(@ —n?ra=0.
Therefore, for n>l, we have found two linearly independent solutions, Rn(r) = 7" and
Rnp(r) = r™. Now for n = 0, we have only found one linearly independent solution so far,

Ro(r) = 1. Welook for another linearly independent solution. If n = 0, our equation can be
written as

PR+ rR = 0.
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Dividing by r, our equation becomes
rRi+ R =0.

A linearly independent solution of this equation is Ro(f) = In r. Therefore, for each n > 0,
we have found a solution of (3.10) of the form

Dy,
I m+— |A cos(n@) + B, sin(nB)]
un(?’, 9) = Rn(’j@n(e) = E]I C - n

Ao [Co+DyplnA.

But, we don’t want a solution which blows up as r — 0*. Therefore, we reject the solutions

i and In r. Therefore, we consider a solution of (3.10) of the form

=
u(r, 6 = 1 [Ancos(n@) + Bpsin(n6)].
n=0

Now in order to solve (3.9), we need w(a, 6) = h(6). That is, we need
=
a" [An cos(ne) + B, Siﬂ(ﬂ.g)] = h(e)
n=0
Using the fact that our eigenfunctions are orthogonal on [0, 21}, we can solve for our coef-

ficients An and Bn as follows. Multiplying the above equation by cos(n6) and integrating
over [0, 2], we have

A = 1 (h(B),cos(nB) _1J.2n

" oan (cos(nB), cos(nb)) T nma

21

h(6) cos(nB) dO forn=1,2,...
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I o
Ao = (B _ L e ae.

(1,1)  2m o

Similarly, multiplying by sin(n16) and integrating over [0, 21|, we have

1 (h(6).sin(nb) JIZ”

Bn= a" (sin(nd), sin(n@) ma" h(B)sin(nb) db.

To summarize, we have found a solution of Laplace’s equation on the disk in polar

coordinates, given by

=
" [Ancos(n@) + Bnsin(nf)]

wr, 6) =
n=0
where
J. 2n
Ao = o h(6)dé
1 j. 2
A= h(6) cos(nb) dB
n Ean J-Oz
- (B) sin(nb) de.
Bn - n 0
na

Now we will rewrite this solution in terms of a single integral by substituting An and Bn

into the series solution above. Doing so, we have

-r 2m
ur, §=1"" ng)d
>, 1T h@eosn@)dp coxney+ L " h@sinng)de) sin(n)
N man g
1 2 ] ern ZZ
B 2_7[ hg 1+2 = ;[cos(nq)) cos(nB) +sin(ng)sin(ng)) dp
0 n=1 Zz
il - s
_ 1 2n ol
== hi@) 1+2 — de.
2 @) et qns (n(6 — @) ¢
Now
. s = - ‘% rnz in{B—QD)+ —in( 6-¢) Zz
1+2= = 1+2= L € €
- 7 cos(n(0— @) an 2
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n=1
<= re-’IH_fP)zn = T re—!IQ—{'O)zn'

a
n=1 n=1 a

re"-( 9_';0) re_i( 9_(:'3)

- a— reio® ' q_ reio-o

B a-r
Ca?— 2arcos(0— @)+ R

Therefore, I ,

ur, =1 " @ do
21 g at—2arcos(8—q@)+r2 "
We can write this in rectangular coordinates as follows. Let X be a point in the disk Q with
polar coordinates (r, 6). Let ¥ be a point on the boundary of the disk Q with polar coordinates
(a, @). Therefore, x ¥ 2 = a® + |r‘2 _2aj=|cos(9 @) by the law of cosines. Therefore,
ulx) = 1 u@)gaz - |J€F|2) @)

2T j=a  |x— |2 a

using the fact that ds = a d is the arc length of the curve. Rewriting this, we have

This is known as Poisson’s formula for the solution of Laplace’s equation on the disk.
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POSSIBLE QUESTION
SIX MARKS
TEN MARKS
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Question Opt 1 Opt 2 Opt 3 Opt 4 Answers
The solution elementary solution of one dimentional wave
equation is D Alembert's Kennal Kernal Laplace D Alemberts
The motion of semi infinite string is diameter radius positive potential positive
The one dimensional wave equation solution follows Riemann conduction [node potential Riemann
Vibrating membrane is the application of of variation.  |grad calculus electrostatic [potential calculus
In vibrating membrane roots are positive n 2 3|n
In vibrating membrane n roots are negative positive linear non linear positive
The variational approachto  value problem is useful in the
derivation of approximating solution Euclid Kernal eigen node eigen
The Bessel function of the first kind with argument is X y z none z
In wave equation all singularities lie the boundary inside outside in on outside
In Greens theorem the concept of theorem is applied [weber route null kennel weber
In the Riemann-Volterra solution of the one dimensional wave
equation the variable x transformed to epsilon eta geta gamma geta
In the Riemann-Volterra solution of the one dimensional wave
equation the variable y transformed to epsilon eta geta gamma eta
The curve gamma is the projection of ¢ with
equation u(x,y)=0 u(x,y)=1 u(x,y)=2 u(x,y)=n u(x,y)=0
The Greens function w must satisfy the condition Lw=1 Lw=0 L/w=0 L-w=0 Lw=0
In the Riemann-Volterra solution the sector is called the
domain of influence(x0,y0) cononical unique initial long initial
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UNIT -V

Diffusion Equation:

The resolution of Boundary value problems for the Diffusion equation- Elementary
solutions of diffusion equation - Separation of variables- use of Green’s functions-
Diffusion with Sources.
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1. Concepts, Definitions, and the Diffusion
Equation

Environmental fluid mechanics is the study of fluid mechanical processes that affect the
fate and transport of substances through thehydrosphere and atmosphere at the local or
regionalscale' (up to1ookm).In general, the substances ofinterestare mass, momentum
andheat.Morespecifically,masscan represent anyofawidevarietyofpassiveandreactive
tracers, such as dissolvedoxygen,salinity,heavy metals,nutrients,andmany others.Part]
of this textbook, “Mass Transfer and Diffusion,” discusses the passive process affecting the
fate and transport of species in ahomogeneous natural environment. Part IT, “Stratified
Flow and BuoyantMixing,” incorporates the effects of buoyaney and stratification to deal
with active mixing problems.

This chapter introduces the concept of mass transfer (transport) and focuses on the
physics of diffusion. Because the concept of diffusion is fundamental to this part of the
course, wesingle it out here and derive its mathematical representation from first princi-
ples to the solution of the governing partial differential equation. The mathematical rigor
of this section is deemed appropriate so that the student gains a fundamental and com-
plete understanding of diffusion and the diffusion equation. This foundation will make the
complicated processes discussed in the remaining chapters tractable and will start to build
the engineeringintuition needed tosolve problems in environmental fluid mechanics.

Concepts and definitions

Stated simply, Environmental Fluid Mechanics is the study of natural processes that
change concentrations.

These processes can be categorized into two broad groups: transport and transforma-
tion. Transport refers to those processes which move substances through the hydrosphere

1.1 Concepts and definitions
and atmosphere by physical means. As an analogy to the postal service, transport is Lhe

process by which a letter goes from one location to another. The postal truck is the anal-
ogy for our fluid, and the letter itself is the analogy for our chemical species. The two
primary modes of transport in environmental fluid mechanics are advection (transport
associated with the flow of a fluid) and diffusion (transport associated with random mo-
tions within a fluid). Transformation refers to those processes that change asubstance
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of interest into another substance. Keeping with our analogy, transformation is the pa-
per recycling factory that turns our letter into a shoe box. The two primary modes of
transformation are physical (transformations caused by physical laws, such as radioactive
decay) and chemical (transformations caused bychemical orbiological reactions, such as
dissolution).

The glossary at the end of this text provides a list of important terms and their
definitions in environmental fluid mechanics (with the associated German term).

Expressing Concentration

The fundamental quantity of interest inenvironmental fluid mechanics is concentration. In
commonusage, the term concentration expresses a measure of the amountofa substance
within a mixture.
Mathematically, the concentration C is the ratio of the mass of a substance M;to the

total volume of a mixture V expressed

C= &‘ (1.1)

v

The units of concentration are [M/L’], commonly reported in mg/l, kg/m’, lb/gal, etc.

Forone- and two-dimensional problems, concentration can alsobe expressed asthe mass
per unit segment length [M/L] or per unit area, [M/L"].

A related quantity, the mass fraction x is the ratio of the mass of a substance M;to
the total mass of a mixture M , written

xr=—. (1.2)
M
Mass fraction is unitless, but is often expressed using mixed units, such as mg/kg, parts

per million (ppm), or parts per billion (ppb).

A popular concentration measure used by chemists is the molar concentration 6. Molar
concentration is defined as the ratio of the number of moles of a substance N;to the total
volume of the mixture

=" (1.3)

v
The units of molar concentration are [number of molecules/L’]; typical examples are mol/l
and pmol/l. To work with molar concentration, recall that the atomic weight of an atom

is reported in the Periodic Table in units of g/mol and that a mole is 6.022-10" molecules.
The measure chosen to express concentration is essentially a matter of taste. Always

use caution and confirm that the units chosen for concentration are consistent with the
equations used to predict fate and transport. A common source of confusion arises from
the fact that mass fraction and concentration are often used interchangeably in dilute
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aqueous systems. This comes about because the density of pure water at 4°C is 1 g/cm’,
making values for concentration in mg/l and mass fraction in ppm identical. Extreme
caution should be used in other solutions, as in seawater or the atmosphere, where ppm
and mg/] are not identical. The conclusion to be drawn is: always check yourunits!
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Dimensional analysis

Avery powerful analytical technique that we will use throughout this course is dimensional
analysis. The concept behind dimensional analysis is that if we can define the parameters
that a process depends on, then weshould be able to use these parameters, usually in the
form of dimensionless variables, to describe that process at all scales (not just the scales
we measure in the laboratory or the field).

Dimensional analysis as a method is based on the Buckingham n-theorem (see e.g.
Fischeretal. 1979). Consider a process that can be described by mdimensional variables.
This full set of variables contains ndifferent physical dimensions (length, time, mass, tem-

perature,etc.). TheBuckingham n-theoremstates thatthere are, then, m—nindependent
non-dimensional groups thatcan be formed from these governing variables (Fischeretal.
1979). When formingthedimensionless groups,wetrytokeep thedependentvariable(the

one wewant to predict) in only one of the dimensionless groups (i.e. try not to repeat the
use of the dependent variable).

Once we hﬁve the m — ndime io‘gess vaai,ables, the Buckingham n-theorem further
tells us that the variables can be related according to

m= flm, m,..., Tm-n) (1.4)

where m; is the ith dimensionless variable. As we will see, this method is a powerful way
to find engineering solutions to very complex physical problems.

As an example, consider how we might predict when a fluid flow becomes turbulent.
Here, our dependent variable is a quality (turbulent or laminar) and does not have a
dimension. The variables it depends on are the velocity u, the flow disturbances, charac-
terized by a typical length scale L, and the fluid properties, as described by its density p,
temperature T, and viscosity . First, wemust recognize that p and u are functions of T;
thus, all three of these variables cannot be treated as independent. The most compact and
traditional approach is to retain p and u in the form of the kinematic viscosity v= u/p.
Thus, we have m = 3 dimensional variables (1, L, and v) in n = 2 physical dimensions
(length and time).

The next step is to form the dimensionless group m= flu, L, v). This can be done by
assuming each variable has a different exponent and writing separate equations foreach
dimension. Thatis

m = utLbie, (15)
and wewanteach dimension to cancel out, giving us twoequations

Tgives:o=—-a—c
Lgives:o=a+ b + 2c.

Syotem o hrdbideRA e, wsre Froe To thoose the valua DY o b gt the most mpliked”

form, choose ¢ = 1, leaving us with a = b = —1. Thus, we have
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L1

m= . (1.6)
This non-dffhensional combination is just the inverse of the well-known Reynolds number

Re; thus, we have shown through dimensional analysis, that the turbulent state of the

fluid should depend on the Reynolds number
ul
Re= __, (1.7)

v
which is a classical result in fluid mechanics.

Diffusion

A fundamental transport process in environmental fluid mechanies is diffusion. Diffusion
differs from advection in that it is random in nature (does not necessarily follow a fluid
particle). A well-known example is the diffusion of perfume in an empty room. If a bottle
of perfume is opened and allowed to evaporate into the air, soon the whole room will be
scented. We know also from experience that the scent will be stronger near the source
and weakeras we move away,but fragrance molecules will have wondered throughout the
room due to random molecular and turbulent motions. Thus, diffusion has two primary
properties: itis random in nature, and transport is from regions of high concentration to
low concentration, with an equilibrium state of uniform concentration.

Fickian diffusion

We just observed in our perfume example that regions of high concentration tend to spread
into regions of low concentration under the action of diffusion. Here, we want to derive a
mathematical expression that predicts this spreading-out process, and we will follow an
argument presented in Fischer et al. (1979).

To derive a diffusive flux equation, consider two rows of molecules side-by-side and
centered at x = 0, as shown in Figure 1.1(a.). Each of these molecules moves about
randomly in response tothe temperature (in arandom process called Brownian motion).
Here, for didactic purposes, we willconsider only one component of their three-dimensional
motion: motion right or left along the x-axis. We further define the mass of particles on
the left as Mj, the mass of particles on the right as M,, and the probability (transfer rate
per time) that a particles moves across x = 0 as k, with units [T™'].

After some time &t an average of half of the particles have taken steps to the right and
half have taken steps to the left, as depicted through Figure 1.1(b.) and (¢.). Looking at
the particle histograms also in Figure 1.1, we see that in this random process, maximum
concentrations decrease, while the total region containing particles increases (the cloud
spreads out).

Mathematically, the average flux of particles from the left-hand column to the right is

kM;, and the average flux of particles from the right-hand column to the left is — kM,
where the minus sign is used to distinguish direction. Thus, the net flux of particles g. is
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Fig. 1.1. Schematic of the one-dimensional molecular (Brownian) motion of a group of molecules illustrating the

Fickian diffusion model. The upper part of the figure shows the particles themselves; the lower part of the figure
gives the comesponding histogram of particle location, which is analogous to concentration.

g = K(Mi— M;). (1.8)
Forthe one-dimensional case, concentration is mass per unit line segment, and we can

write (1.8) in terms of concentrationsusing
Ci =M,/ (6xbydz) (1.9)
Cr= M,/(6x6ybz) (1.10)
where 8x is the width, §y is the breadth, and &zis the height of each column. Physically,
&x is the average step along the x-axis taken by a molecule in the time &t. For the one-
dimensional case, we want g. to represent the flux in the x-direction per unit area

perpendicular to x; hence, we will take y6z = 1. Next, we note that a finite difference
approximation for dC/dx is

dc_c-q
dx M Xy
_ ) (1.11)
G2 — x)
which gives us a second expression for (M — M), namely,
ciC
(Mi — M;) = — 6 x — x1) (1.12)
Subshmtmg (1.12) H‘éﬂ (1.8) y1ef§§
g = k&x) . (1.13)
o dlx

ey lo b oot
L

Tt i W . cheretal Lyl.ay_i argue-thatsm
depend on an I:utra x, we must assume that k{8x) is a constant, which we will
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G 1. Concepts, Definitions, and the Diffusion Equation

Example Box 1.1:

inar sub-layer at the surface of a lake is

Z=
Q=) = Caar —(Caar — Cherf _‘1
e

rate of mass flux of oxygen into the lake.

flux

dac
g=—D dz -
The denivative of the concentration gradient 1s

Diffusive flux at the air-water interface.
The time-average oxveen profile C(2) in the lam-

- z

where Ceseis the saturation oxygen concentration
in the water, G 1s the oxygen concentration in the
body of the lake, & is the concentration boundary
layer thickness, and 2 is defined positive downward.
Turbulence in the body of the lake is responsible for
keeping & constant. Find an expression for the total

Fick' s law tells us that the concentration  gradient
in the oxygen profile will result in a diffusive flux
of oxygen mto the lake. Since the concentraton 1s
uniform in X and &, we have from (1.14) the diffusive

At the surface of the lake, £ is zero and the diffusive
flux is

\.-"._
DY
Ge=(GCoat — G g/ -

".[']'lv.l:_J units of g are in [['v'li’{!..’l-Tj]. To get the total
It Tl it o {iply R, Surface, A
rate of mass flux of oxygen into t].m.' lake 15

DY-

me A Ceat — ) o
For G = Csar the mass flux 15 positive, indicating
flux down, into the lake. More sophisticated models

for gas transfer that develop predictive  expressions
for & are discussed later in Chapter 5.

callthe diffusion coefficient, D.Substituting, we obtain the one-dimensional diffusive flux

equation
dC

--D .
Itis impc-rtant(t% note that diffusive flux is a vector quantity and, since concentration is
expressed in units of [M/L’], it has units of [M,J’[L""I‘?].

(1.14)

To compute the total mass flux

rate m in units [M/T], the diffusive flux must be integrated over a surface area. For the one-

dimensional case we would have m= Agx.

Generalizing to three dimensions, we can write the diffusive flux vector at a point by
adding the other two dimensions, yielding (in various types of notation)
=

g=-D 6CaC oC
dx dy oz
ac

= _.D i
Diffusion pmgexsses that obey this relationship are called Fickian diffusion, and (1.15)

(1.15)

is called Fick's law. To obtain the total mass flux rate we must integrate the normal

component of ¢ over a surface area, as in

Prepared by:P.Rajakumari, Asst Prof, Department of Mathematics KAHE.

Page 8/47




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.SC MATHEMATICS COURSE NAME:PARTIAL DIFFERENTIAL EQUATIONS
COURSE CODE: 18MMP204 UNIT: V BATCH-2018-2020

If
= ., q.ndA (1.16)
where n is the unit vector normal to the surface A.

Table 1.1. Molecular diffusion cocfficients for typical solutes n water at standard pressure and at two tempera -
tures (20°C and 10°C).*

Solute name Chemical symbal Diffusion cocfficient” Diffusion coefficient’
(10~ cm/fs) (107" cm’fs)
hydrogen 1on H (.85 0.70
hydroxide ion OH~™ 0.48 0.37
OXYECT O 0.20 0.15
carbon dioxide Cr 0.17 0.12
hicarbonate HCO? 0.11 0.08
carbonate cot- 008 0.06
mthane CHa_ 016 012
EMMOonIum NH4 018 0.4
Ammonia MNHs» 0.20 0.15
nitrate ND; 017 0.13
phosphoric acid HaPCu 008 0.06
dihydrogen phosphate H’PD?. 008 0.06
hydrogen phosphate HPO ™ 0.07 0.05
phosphate _ 005 0.04
hydrogen sulfide E? 0.17 0.13
hydrogen sulfide ion HS5~ 0.l6 0.13
sulfate SOt 010 0.07
silica H:Si0u 010 0.07
calcium ion ca 007 0.05
Magnesium ion Mg®™ 006 0.05
iron ion R 0.06 0.05
manganese ion Mn* 0.06 0.05

*Taken from http:ffwww talknet.def ~alke.spreckelsenfroger/thermo/difeoef.html
¥ for water at 20°C with salinity of 0.5 ppt.
“ for water at 10°C with salinity of 0.5 ppt.
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Diffusion coefficients

From the definition D = k{&x)*, we see that D has units LI’/ T . Since we derived Fick's
law for molecules moving in Brownian motion, Dis a molecular diffusion coefficient, which
we will sometimes call D to be specific. The intensity (energy and freedom of motion)
of these Brownian motions controls the value of D. Thus, D depends on the phase (solid,
liquid or gas), temperature, and molecule size. Fordilute solutes in water, D is generally
of order 210~ m'/s; whereas, for dispersed gases in air, Dis of order 2 10~ m'/s, a
difference of 10"
Table 1.1 gives a detailed accounting of D for a range of solutes in water with low

salinity (0.5 ppt). We see from the table that for a given temperature, D can range over

about +10' in response to molecular size (large molecules havesmaller D). The table also
shows the sensitivity of D to temperature; for a 10°C change in water temperature, D

g 1. Concepts, Defimitions, and the Diffusion Equation

Ty ——t—- - I ——— Ycou
: 6z
H'#f"- o T -x
.a"’”
- Y
| - oy
[ ax -

4

Fig. 1.2, Differential control volume for derivation of the diffusion equation.

gﬁn changniby a factor of =2, These o e,nfgtj ns ca he,summaé;lzgd by the insight that
ter and less confined motions result in higher diffusion coefficients.
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To continue we must find a method to evaluate 8C/éx at point 2. For this, we use

linear Taylor series expansion, an important tool for linearly approximating functions.
The general form of T&El_ﬂr series expansion is
fGI=f(x)+ - &x+HOTs, (1.21)

-

ox
Xa

To continue we must find a method to evaluate §C/&x at point 2. For this, we use
linear Taylor series expansion, an important tool for linearly approximating functions.

Diffusion equation

Although Fick’s law gives us an expression for the flux of mass due to the process of
diffusion, we still require an equation that predicts the change in concentration of the
diffusing mass overtime at a point. In this section we will see that such an equation can
be derived using the law of conservation of mass.

To derive the diffusion equation, consider the control volume (CV) depicted in Fig-
ure 1.2. The change in mass M of dissolved tracer in this CV over time is given by the
mass conservation law

M = . = . (1.17)
="
- Trput
To mnﬂiute the diffusive mass fluxes in and out of the CV, we use Fick’s law, which for
the x-direction gives

oc: (1.18)
. : 1.1
Orin= —D ﬁé]
g =-D - (1.19)
xout E]x 2

where the locations 1and 2 are the inflow and outflow faces in the figure. Toobtain total

mass flux swe multiply g by the CV surface area A = §ybz. Thus, we can write the net
fluxin the x-directionas .

éc.  ac
_Dé&ybz - : (1.20)
OX -y

Sile .
ox ‘1
which is the x-direction contribution to the right-hand-side of (1.17).
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To continue we must find a method to evaluate 6C/&x at point 2. For this, we use

linear Taylor series expansion, an important tool for linearly approximating functions.
The general form of Tﬂel_ﬂr series expansion is
f= f[:g )+ - &x+HOTs, (1.21)

-

e o

Ta

where HOTs stands for “hlgher order terms.” Substituting ¢C/éx for f{x) in the Taylor

seriesexpansionyields .
P yields. oz
ac- _dC- + © 8x +HOTs. (1.22)

ForlinearTaylorseries expansion, weignore the HOTs. Substituting this expression into
the net flux equation (1.20) and dropping the subscript 1, gives

E’C
6mx = Déybz . (1.23)
Similarly, in the y- %ﬁd z-dlrectlnns the net fluxes through the control volume are
ac
by = Dbxbz -,_, by (1.24)
6mz = Dbxby - (1.25)

Before substltutmgcﬁ]ese results into (1.17), we also convert M to concentration by rec-
ognizing M = Céxbybz. After substitution of the concentration C and net fluxes éminto (1.17),

we obtain the three-dimensional d)lfﬁlsmn equation (in various types of notation)

ac &c dc éc
., =D + +
ot o Ay az
=D ‘C
ile

=D. ., (1.26)
which is a fun@mental equation in environmental fluid mechanics. For the last line in

(1.26), we have used the Einsteinian notation of repeated indices as a short-hand for the

V? operator.
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One-dimensional diffusion equation

In the one-dimensional case, concentration gradients in the y- and z-direction are zero,
and we have the one-dimensional diffusionequation
oC &acC

~ = Daxt - (1.27)
We pau@é here to consider (1.27) and to point out a few key observations. First, (1.27) is

first-order in time. Thus, wemust supply and impose one initial condition forits solution,
and its solutions will be unsteady, or transient, meaning they will vary with time. To

| l. Concepts, Defimitions, and the Diffusion Equation

A f—
O

Fig. 1.3, Definitions sketch for one-dimensional pure diffusion in an infinite pipe.

solve for the steady, invariant solution of (1.27), we must set #C/8t = 0 and we no longer
require aninitial condition; the steady form of (1.27) is the well-known Laplace equation.
Second, (1.27) is second-order in space. Thus, we can impose two boundary conditions,
and its solution will vary in space. Third, the form of (1.27) is exactly the same as the heat
equation, where Dis replaced by the heat transfer coefficient x. This observation agrees
well with ourintuition since weknow that heat conducts (diffuses) away from hot sources
toward cold regions (just as concentration diffuses from high concentration toward low
concentration). This observation is also useful since many solutions to the heatequation
are already known.

Similarity solution to the one-dimensional diffusion equation

Because (1.26) is of such fundamental importance in environmental fluid mechanics, we
demonstrate here one of its solutions for the one-dimensional case in detail. There are
multiple methods that can be used to solve (1.26), but we will follow the methodology of
Fischer et al. (1979) and choose the so-called similarity method in order to demonstrate
the usefulness of dimensional analysis as presented in Section 1.1.2.
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Consider theone-dimensional problem of anarrow, infinite pipe (radius a) asdepicted
in Figure 1.3. A mass of tracer M is injected uniformly across the cross-section of area
A = nd’ at the point x = 0 at time t= 0. The initial width of the tracer is infinitesimally
small. Weseek asolution forthe spread oftracer intime dueto moleculardiffusion alone.

Asthisis aone-dimensional (¢C/éy = 0 and £ C/éz = 0) unsteady diffusion problem,
(1.27) is the governing equation, and we require two boundary conditions and an initial

condition. As boundary conditions, we impose that the conecentration at +oo remain zero

C(+o0, f)=0. (1.28)
The initial condition is that the dye tracer is injected uniformly across the cross-section
overan infinitesimally small width in the x-direction. Tospecify such an initial condition,
we use the Dirac delta function

Clx, 0)= (M/A)6(x) (1.29)
where &(x) is zero everywhere accept at x = 0, where it is infinite, but the integral of the

delta function from — oo to oo is 1. Thus, the total injected mass is given by

1 1. Concepts, Definitions, and the DifdsidiEkilicsplution to the onc-dimensional diffusion equation 1

Table 1.2, Dhmensional varables for one-dimensional pipe diffusion,

Variable Dimensions
dependent vanable c M/
independent variables M/A M/L?
D LYT
X L
t T
I
M= QxtdV (1.30)
[¥]a
= (M/A)O(x)2nrdrdx. (1.31)
—= 0

To use dimensional analysis, we must consider all the parameters that control the
solution. Table 1.2 summarizes the dependent and independent variables for our problem.
There are m= 5 parameters and n = 3 dimensions; thus, we can form two dimensionless
groups
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_ — (1.32)
m =
7 A
m= vfa (1.33)
From dimensional analysis we have that m = f (i), which implies for the solution of C
M ~ x =
— (1.34)
c= vp Lf Dt

where fisayet-unknown function with argument m. (1.34) is called asimilarity solution
because C has the same shape in x at all times ¢ (see also Example Box 1.3). Now we
need to find fin order to know what that shape is. Before we find the solution formally,
compare (1.34) with theactual solution given by(1.53). Through thiscomparison, wesee
that dimensional analysis can go along waytoward finding solutionstophysical problems.
The function fean be found in twoprimary ways.First, experiments can beconducted
and then a smooth curve can be fit to the data using the coordinates m and m. Second,
(1.34) can be used as the solution to a differential equation and f solved for analytically.
This is what we will do here. The power of a similarity solution is that it turnsa partial
differential equation (PDE) into an ordinary differential equation (ODE), which is the

goal of any solution method for PDEs.
The similarity solution (1.34) is really just a coordinate transformation. We will call
our new similarity variable n = x/V Dt To substitute (1.34) into the diffusion equation,

we will need the two derivatives

on n

ot~ at (1.35)
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12 1. Concepts, Definihons, and the Diffusion Equation

an 1
; =V, (1.36)
We first use the chain rule to compute éC/ét as follows
oc_ot
ot ot r;r]
o sA fﬁ M of &
.\rln'.l |'
rt A Dt‘&[n}-"ﬂ Dtiné s
M 1 = —'f 1
= B Y
A Dt —2 fim+s / on
M of
=— — f+n_ . (1.37)
2At Dt o
Similarly, we usg the chain rule h:";: %nmpute &' C/dx as follows
FC 8 & M
aod ax @8 v/ )
o M on o
= . \,-'Ill_
0x A Dtéxeén
M, &f
= (1.38)
ADt peom

Upon substituting these two results into the diffusion equation, we obtain the ordinary
dlfferentlal equation in ?:

Jr_l‘L +n =0. (1.39)
dn
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Tosolve (1.39), we should also convert the boundary and initial conditions to two new
constraints on f. As we will see shortly, both boundary conditions and theinitial condition
can be satisfied through a single condition on f. The other constraint (remember that
second order equations require two ci)/nstrains) is taken from the conservation of mass,
givenjb}; (1.30). Substituting dx = dn Dt into (1.30) and simplifying, we obtain

f(mdn=1. (1.40)

Solving (1.39) requires a couple ofintegrations. First, werearrange the equation using
the identity
d(fn) daf
— = = f+n—;, (1.41)
dn J+n dn 4
which gi\ées us
1
d df 1 —o. (1.42)
dn dn 2
Integrating once leaves us with
df 1
dn + 2fn = C. (1‘43)

It can be shown that choosing G = 0 satisfies both boundary conditions and the initial
condition (see Appendix A for more details).

With G, = 0 we have a homogeneous ordinary differential equation whose solution can
readily be found. Moving the second term to the right hand side we have

daf 1
_t? =— (1.44)
The solution is found by collecting the f- and n-terms on separate sides of the equation

df 1

R LU (1.45)
Integrating both sides gives
11
_ .ln(f):‘—.22‘+c1 o (1.46)
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which after taking the ezxponential of both sides gives

-
F=Cexp-— 4’?_ _ (1.47)
To find C: we must use the remaining constraint given in (1.40)
J oo = 22
__Cexp ,”I dn=1. (1.48)

Tosolve thisintegral, we should use integral tables; therefore, we have to make one more

change of variables to remove the 1/4 from the exponential. Thus, we introduce {such
that

¢= f (1.49)
2d=dn. (1.50)
Substituting this coordinate transformation and solving for C leaves
1
C= +—= . (1.51)
] Cexp(-9dg J
After looking up the integral in a table, we obtain C = 1/(2 m). Thus,
1 >
_ B . 1.52
f(??)=2\/nexp 3 (1.52)
Replacing fin our similarity solutim% (1.34) gives
7M— . (1.53)
L) = I 4Dt '
Clx, 1) A 4EDteXp 4Dt

which is a classic result in environmental fluid mechanics, and an equation that will be
used thoroughly throughout this text. Generalizing to three dimensions, Fischer et al.
(1979) give the the solution

- ) , Z
M X y z
Aeyzb)= P “ip7 iDi 4Dt 8223
4mt 4nD.D,D;t . y 2 '

which they derive using the separation of variables method.
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14 1. Concepts, Definitions, and the Diffusion Equation

Example Box 1.2:
Maximum concentrations.

For the three-dimensional instantaneous point-
source solution given in (1.54), find an expression
for the maximum concentration. Where is the max-
imum concentration located?

The classical approach for finding maximaof func-
tions is to look for zero-points in the derivative of
the function. For many concentration distributions,
it is easier to take a qualitative look at the functional
form of the equation. The instantaneous point-source
solution has the form

Ax, © = Ci(H exp(—|f(x, HI).

Cy(?) is an amplification factor independent of space.
The exponential function has a negative arsument,
which means it 18 maximum when the argument 1s
zero. Hence, the maximum concenfration is

Cmax(t) = Cl(t).
Applying this result to (1.54) gives

M
ax =#J:.
Crax(D =2 AnD:D, D ¢

The maximum concentration occurs at the point
where the exponential 18 zero. In this case
X(Cmax) = (0, 0, 0).

We can apply this same analysis to other concen-
tration distributions as well. For example, consider
the error function concentration distribution

1 —erf V,A_ZZ

Q9= %0 4Dt

The error function ranges over [—1, 1] as its argu-
ment ranges from [— oo, o], The maximum concen-
tration occurs when erf() = -1, and gives,

Cmax(t) = Co.
Cmax occurs when the argument of the error function

18 —oo, At t=0, the maximum concentration occurs
for all points x < (0, and for t = 0, the maximum

concentration occurs only at x = — oo,

Point source solution

CA(4nD )2/ M
o o o
E-Y (o)} oo

o
[N

0 2 4

n=x/ (4Dt)"?

Fig. 1.4. Self-similarity solution for one-dimensional diffusion of an instantancous point source in an infinite

domain.
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1.3.1 Interpretation of the similarity solution

Figure 1.4 shows the one-dimensional solution (1.53) in non-dimensional space. Comparing
(1.53) with the Gaussian probability distribution reveals that (1.53) is the normal bell-
shaped curve with a standard deviation o, of width

o = 2Dt. (1.55)

Theconceptofselfsimilarityis nowalso evident: the concentration profile shapeisalways
Gaussian. By plotting in non-dimensional space, the profiles also collapse into a single
profile; thus, profiles for all times t > 0 are given by the result in the figure.

The Gaussian distribution can also be used to predict how much tracer is within a
certain region. Looking at Figure 1.4 it appears that most of the tracer is between -2
and 2. Gaussian probability tables, available in any statistics book, can help make this
observation more quantitative. Within + g, 64.2% of the traceris found and between +2¢,
95.4% ofthe traceris found. As an engineering rule-of-thumb, we will say that a diffusing
tracer is distributed over a region of width 4g, that is, +20.

Example Box 1.3:

Profile shape and self similarity.
p ty Here, a is a parameter that specifies the point to

calculate C based on the number of standard devia-

For the one-dimensional, instantaneous point-
source solution, show that the ratio C/ Cmax can be
written as a function of the single parameter a de-
fined such that x = ao. How might this be used to
estimate the diffusion coefficient from concentration
profile data?

From the previous example, we know that Grax =
M/ AnDt, and we can re-write g.53) as

dx. 0 X
Cmax(t) = €XP — 4Dt

vV
We now substitute o= 2Dtand x = ao to obtain
C I

Conax :exp-—a%Z_

tions the point 1s away from the center of mass. This
illustrates very clearly the notion of self similarity:
regardless of the time ¢, the amount of mass M , or
the value of D, the ratio C/ Cmax is always the same
value at the same position ax.

This relationship is very helpful for calculating
diffusion coefficients. Often, we do not know the
value of M . We can, however, always normalize a
concentration profile measured at a given time tby
Cmax(t). Then wepick avalueof a, say 1.0. Weknow
from the relationship above that C/ Cmax = 0.61 at
x = o. Next, find the locations where C/Cmax =
0.61 in theexperimental profile and use them to mea-

sure o. We then use the relationship o= * 2Dt and
the value of ¢ to estimate D.
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Application: Diffusion in a lake

With a solid background now in diffusion, consider the following example adapted from
Nepf (1995).

Asshownin Figures 1.5 and 1.6, a small alpine lake is mildly stratified, with a thermo-
cline (region of steepest density gradient) at 3 m depth, and is contaminated by arsenic.
Determine the magnitude and direction of the diffusive flux of arsenic through the ther-
mocline (cross-sectional area at the thermoclineis A=2 - 10' m’) and discuss the nature
of the arsenic source. The molecular diffusion coefficient is D, =1 - 107" m’/s.

Molecular diffusion. Tocompute the molecular diffusive flux through the thermocline, we
use the one-dimensional version of Fick’s law, given above in (1.14)
oC
gz = _Dm_z- (156)
We calculate the concentration gradient at z = 3 from the concentration profile using a
finite difference approximation. Substituting the appropriate values, we have

oC

%= —Dm,,

16 1. Concepts, Definitions, and the Diffusion Equation

— e ™

Thermocline —/

Fig. 1.5. Schematic of a stratified alpine lake.
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(a.) Temperature profile (b.) Arsenic profile

Depth [m]
Depth [m]

10

14 14.5 15 15.5 16 0 2 4 6 8 10
Temperature [deg C] Arsenic concentration [pg/l]

Fig. 1.6. Profiles of temperature and arsenic concentration in an alpine lake. The dotted line at 3 m indicates
the location of the thermocline (region of highest density gradient).

e 10_10)119 —6.1) M}&l
(2—4) 1m
=+1.95-10~" ug/(m’s) (1.57)

where the plus sign indicates that the flux is downward. The total mass flux is obtained
by multiplying over the area: m = Ag, = 0.0039 ug/s.

Turbulent diffusion. As we pointed out in the discussion on diffusion coefficients, faster
random motions lead to larger diffusion coefficients. As we will see in Chapter 3, tur-
bulence also causes a kind of random motion that behaves asymptotically like Fickian
diffusion. Becausetheturbulent motions are muchlargerthan molecularmotions, turbu-
lent diffusion coefficients are much larger than molecular diffusion coefficients.

Sources of turbulence at the thermocline of a small lake can include surface inflows,
wind stirring, boundary mixing, convection currents, and others. Based on studies in
this lake, a turbulent diffusion coefficient can be taken as Dy = 1.5 - 10~ m’/s. Since
turbulent diffusion obeys the same Fickian flux law, then the turbulent diffusive flux g,
can be related to the molecular diffusive flux g. = g by the equation

D,
et = Gem py (1.58)

1
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= +2.93 10~ ug/(m"s). (1.59)

Hence, weseethat turbulent diffusive transportis much greater than moleculardiffusion.
As awarning, however, if the concentration gradients are very high and the turbulence is
low, molecular diffusion can become surprisingly significant!

Implications. Here,wehaveshown thattheconcentration gradientresultsinanetdiffusive
flux of arsenic into the hypolimnion (region below the thermocline). Assuming no other
transport processes are at work, we can conclude that the arsenic source is at the surface.
If the diffusive transport continues, the hypolimnion concentrations will increase. The next
chapter considers howthesituation might change ifweinclude anothertype oftransport:
advection.

Summary

This chapterintroduced the subject of environmental fluid mechanics and focused on the
important transport process of diffusion. Fick’s law was derived to represent the mass
flux (transport) due to diffusion, and Fick’s law was used to derive the diffusion equation,
whichisusedtopredictthetime-evolution ofaconcentration fieldinspaceduetodiffusive
transport. A similarity method was used through the aid of dimensional analysis to find a
one-dimensional solution to the diffusion equation foran instantaneous pointsource. As
illustrated through an example, diffusive transport results when concentration gradients
existand plays animportantrolein predictingthe concentrations of contaminantsas they
move through the environment.

Exercises

Definitions. Write a short, qualitative definition of the following terms:

Concentration. Partial differential equation.
Mass fraction. Standard deviation.
Density. Chemical fate.
Diffusion. Chemical transport.
Brownian motion. Transport equation.
Instantaneous pointsource. Fick’s law.
Similarity method.
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Concentrations in water. A student adds 1.00 mg of pure Rhodamine WT (a common
fluorescent tracer used in field experiments) to 1.000 | of water at 20°C. Assuming the
solution is dilute so that we can neglect the equation of state of the solution, compute
the concentration of the Rhodamine WT mixture in the units of mg/l, mg/kg, ppm, and

ppb.

Concentration in air. Air consists of 21% oxygen. For air with a density of 1.4 kg/m’,
compute the concentration of oxygen in the units of mg/1, mg/kg, mol/l, and ppm.

Instantaneous point source. Consider the pipe section depicted in Figure 1.3. A stu-
dent injects 5 ml of 20% Rhodamine-WT solution (specific gravity 1.15) instantaneously
and uniformly over the pipe cross-section (A = 0.8 cm’) at the point x = 0 and the time
t= 0. The pipe is filled with stagnant water. Assume the molecular diffusion coefficient

is Dm = 0.13 - 10~ cm’/s.

» What is the concentration at x = 0 at the time ¢t = 0?

» What is the standard deviation of the concentration distribution 1 s after injection?

+ Plot the maximum concentration in the pipe, Cna(t), as a function of time over the
interval ¢t = [0, 24 h].

 How long does it take until the concentration over the region x = +1 m can be treated
as uniform? Define a uniform concentration distribution as one where the minimum
concentration within aregionisnoless than 95% ofthe maximum concentration within
that same region.

Advection versus diffusion. Rivers can often be approximated as advection dominated
(downstream transport due to currents is much faster than diffusive transport) or diffusion
dominated (diffusive transport is much faster than downstream transport due to currents).
This property is described by a non-dimensional parameter (called the Peclet number)
Pe=f(u, D, x), where wis the stream velocity, Dis the diffusion coefficient, and xis the
distance downstream to the point of interest. Using dimensional analysis, find the form
of P e such that P e 1is advection dominated and P e 1 is diffusion dominated. For
astream with u= 0.3 m/s and D= 0.05 m’/s, where are diffusion and advection equally
important?

Maximum concentrations. Referring to Figure 1.4, we note that the maximum con-
centration in space is always found at the center of the distribution (x= 0). For a point
at x = r, however, the maximum concentration over time occurs at one specific time tnax.
Using (1.53) find an equation for the time tnax at which the maximum concentration
occurs at the point x = r.
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Diffusion in a river. The Rhein river can be approximated as having a uniform depth (h
= 5 m), width (B = 300 m) and mean flow velocity (u = 0.7 m/s). Under these
conditions,100kgoftracerisinjected asapoint source (theinjectionisevenlydistributed
transversely over the cross-section). The cloud is expected to diffuse laterally as a one-
dimensional point source in a moving coordinate system, moving at the mean stream
velocity. The river has an enhanced mixing coefficient of D = 10 m’/s. How long does
it take the cloud to reach a point x = 15000 m downstream? What is the maximum
concentration that passes the point x? How wide is the cloud (take the cloud width as
40) when it passes this point?
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Table 1.3. Measured concentration and time for a point source diffusing in three-dimensions for problem num- ber
18.

Time Concentration
(days) (uglem’ £0.03)
0.5 0.02
1.0 0.50
1.5 2.08
2.0 3.66
2.5 4.81
3.0 5.50
35 5.80
4.0 591
4.5 5.81
5.0 5.70
5.5 5.54
6.0 5.28
6.5 5.05
7.0 4.87
7.5 4.65
8.0 4.40
8.5 4.24
9.0 4.00
9.5 3.84
10.0 3.66

Measuring diffusion coefficients 1. A chemist is trying to calculate the diffusion coeffi-
cientforanew chemical. In his experiments, he measured the concentration as a function
of time at a point 5 cm away from a virtual point source diffusing in three dimensions.
Select a set of coordinates such that, when plotting the data in Table 1.3, D is the slope
of abest-fitline through the data. Based on this coordinate transformation, what is more
important to measure precisely, concentration or time? What recommendation would you
give to this scientist to improve the accuracy of his estimate for the diffusion coefficient?

Measuring diffusion coefficients 2. As part of a water quality study, you have been
asked to assess the diffusion of a new fluorescent dye. To accomplish this, you do a dye
study in a laboratory tank (depth h = 40 cm). You release the dye at a depth of 20 cm
(spread evenly over the area of the tank) and monitor its development over time. Vertical
profiles of dye concentration in the tank are shown in Figure 1.7; the x-axis represents
the reading on your fluorometer and the y-axis represents the depth.

- Estimate the molecular diffusion coefficient of the dye, D, based on the evolution of
the dye cloud.
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Fig. 1.7. Concentration profiles of fluorescent dye for two different measurement times. Refer to problem num-
ber 1.9.

+ Predict at what time the vertical distribution of the dye will be affected by the bound-
aries of the tank.

Radiative heaters. A student heats his apartment (surface area A, = 32 m’ and ceiling
height h = 3 m) with a radiative heater. The heater has a total surface area of A, =0.8
m’; the thickness of the heater wall separating the heater fluid from the outside air is 6x
= 3 mm (refer to Figure 1.8). The conduction of heat through the heater wall is given
by the diffusion equation

oT

=Ko T (1.60)
ot v
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where Tis the temperature in °C and x = 1.1 - 10~ keal/(s°Cm) is the thermal conduc-
tivity of the metal for the heater wall. The heat flux g through the heater wall is given
by

g=-xVT. (1.61)
Recall that 1 kcal = 4184 J and 1 Watt = 1 J/s.

- The conduction of heat normal to the heater wall can be treated as one-dimensional.
Write (1.60) and (1.61) for the steady-state, one-dimensional case.

Steel heater wall

Heater / Room
fluid air
/
T, / T
h a
v
—| Ox |e—

Fig. 1.8. Definitions sketch for one-dimensional thermal conduction for the heater wall in problem number 1.10.

- Solve (1.60) for the steady-state, one-dimensional temperature profile through the heater
wall with boundary conditions T (0) = T and T (6x) = T, (refer to Figure 1.8).

+ The water in the heater and the air in the room move past the heater wall such that
Th = 85°C and T, = 35°C. Compute the heat flux from (1.61) using the steady-state,
one-dimensional solution just obtained.

- Howmany 300 Wattlamps arerequired to equal the heat output of the heater assuming
100% efficiency?

+ Assume the specific heat capacity of the air is ¢, = 0.172 keal/(kg:K) and the density is
pa = 1.4 kg/m’. How much heat is required to raise the temperature of the apartment
by 5°C?

+ Given the heat output of the heater and the heat needed to heat the room, how might
you explain that the student is able to keep the heater turned on all the time?
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POSSIBLE QUESTION
SIX MARKS
TEN MARKS
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Question Opt 1 Opt 2 Opt 3 Opt 4 Answers
The generalisation of the typical parabolic equation is
equation wave laplace fourier diffusion diffusion
The generalisation of the typical equation is
diffusion equation hyperbolic parabolic |elliptic cubic parabolic
The conduction of heat in solids the temperature is denoted
as alpha beta theta gamma theta
The flow of heat through a element of volume
shows the variation of theta large small unique linear small
The conduction of heat in solids the thermal conductivity is
denoted as k h a b h
The conduction of heat in solids the density is denoted
as row h a b row
The conduction of heat in solids the specific heat of the
solid is denoted as k h C b Cc
The conduction of heat in solids the temperature of every
point is denoted as r h c b r
Diffusion in isotropic substances the current vector is
denoted as r h C J J
Solvation of Diffusion in isotropic substances
concept is used grad integration [addition subtraction grad
concept is used to solve the diffusion in
isotropic substances. div integration [addition subtraction div
law is used to solve the diffusion in isotropic
substances. Finks Kirchoffs [Ficks Newton Finks
equation is used in conducting media Finks Maxwell  [Ficks Newton Maxwell
concept is used to solve in conducting media curl div grad addition curl
The method of separation of variablesapplied to diffusion
equation is similar to theory potential grad calculus electrostatic potential
The method of separation of variablesapplied to diffusion
equation is similar to motion wave laplace fourier kennel wave




equation is used to solve in separation of variables |Finks Kirchoffs |Ficks helmholtz helmholtz
The first region bounded in the use of integral transform is
S1 Al Bl Cl S1
The second region bounded in the use of integral transform
is S1 S2 Bl Cl S2
In the use of Integral transforms  number of regions
are bounded one two three four two
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