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Course Objectives
This course enables the students to learn

e The fundamental concepts in Graph Theory and some of its modern applications.
e The use of these methods in subsequent courses in the design and analysis of
algorithms, computability theory, software engineering, and computer systems.
Course Outcomes (COs)
1. Understanding the basic concepts of graphs, directed graphs, and weighted graphs and
able to present a graph by matrices.
2. Overview of properties of trees and a minimal spanning tree for a given weighted
graph.
3. Understand Eulerian and Hamiltonian graphs.
4. Applied the knowledge of graphs to solve the real-life problem.
UNIT I
GRAPHS
Graphs — Introduction — Isomorphism — Sub graphs — Walks, Paths, Circuits — Connectedness —
Components — Euler Graphs — Hamiltonian Paths and Circuits — Trees — Properties of trees —
Distance and Centers in Tree — Rooted and Binary Trees - Spanning trees — Fundamental
Circuits.

UNIT Il

SPANNING TREES

Spanning Trees in a Weighted Graph — Cut Sets — Properties of Cut Set — All Cut Sets —
Fundamental Circuits and Cut Sets — Connectivity and separability — Network flows — 1-
Isomorphism — 2-1somorphism — Combinational versus Geometric Graphs — Planer Graphs —
Different Representation of a Planer Graph.

UNIT 111
MATRIX REPRESENTATION OF A GRAPH
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Incidence matrix — Sub matrices — Circuit Matrix — Path Matrix — Adjacency Matrix — Chromatic
Number — Chromatic partitioning — Chromatic polynomial - Matching - Covering — Four Color
Problem.

UNIT IV

COUNTING TREE

Directed Graphs — Types of Directed Graphs - Types of enumeration, counting labeled trees,
counting unlabelled trees, Polya’s counting theorem, graph enumeration with Polya’s theorem.

UNIT V

DOMINATION IN GRAPHS

Introduction — Terminology and concepts — Applications — Dominating set and domination
number — Independent set and independence number — History of domination in graphs.
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S.No Lecture Topics to be Covered Support Material/Page
Duration Nos
Period
UNIT-I
1 1 Isomorphism of graphs and sub R1:Chap:2.1:Pg.No:14- 16
graphs
2. 1 Walks, Paths, Circuits R4:Chap:1.3:Pg.No:6-9
3. 1 Connected , connectedness of R1:Chap:2.5:Pg.N0:19- 21
graphs and components of graphs
4. 1 Euler graphs and Euler graphs R1:Chap:2.6:Pg.No:21- 23
based on theorems
5. 1 Hamiltonian paths and circuits R3:Chap:4.5:Pg.No:314-
316
6. 1 Theorems on some properties of R6:Chap:3:Pg.N0:39-41
trees
7. 1 Distance and centers in tree R1:Chap:3.4:Pg.No0:43- 45
8. 1 Rooted and binary trees and R1:Chap:3.5:Pg.No:45- 57
spanning trees, Fundamentals
Circuits
9. 1 Recapitulation and Discussion of possible questions
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R1: Deo N, (2007). Graph Theory with Applications to Engineering and Computer Science,
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R3: Jonathan L Gross, Jay Yellen, (2014). Handbook of Graph Theory, CRC Press LLC. Taylor
&Francis Group,Boca Rotan.
R4: Diestel. R Springer-Verlag, (2012). Graph Theory. Springer-Verleg,New York.
R6: Fred Buckley and Frank Harary, (1990). Distance in Graphs, Addison - Wesley Publications
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UNIT-11
1 1 Spanning trees in a Weights Grap R8:Chap:3.10:Pg.No:58- 61
2. 1 Theorems on some properties of R1:Chap:4.2:Pg.No:68- 71
Cut Sets and all Cut Sets
3. 1 Fundamental Circuits and Cut Sets | R1:Chap:4.5:Pg.No:73- 75
4. 1 Connectivity and separability R1:Chap:4.5:Pg.No:73- 75
5. 1 Network flows R3:Chap:11:Pg.N0:1377-
1380
6. 1 Theorems on some 1- Isomorphism | R1:Chap:4.7:Pg.No:80- 82
7. 1 Theorems on some 2- Isomorphism | R1:Chap:4.5:Pg.No:73- 75
8. 1 Combinational versus Geometric R1:Chap:5.1:Pg.No:88- 89
Graphs
9. 1 Different Representation of a Planar | R1:Chap:5.4:Pg.N0:90-99
Graph
10. 1 Recapitulation and Discussion of possible questions

Total No of Hours Planned For Unit 11=10

R1: Deo N, (2007). Graph Theory with Applications to Engineering and Computer Science,
Prentice Hall of India Pvt Ltd, New Delhi..
R3: Jonathan L Gross, Jay Yellen, (2014). Handbook of Graph Theory, CRC Press LLC. Taylor

&Francis Group,Boca Rotan.
R8: Arumugam. S, Ramachandran. S ,(2006). Invitation to graph theory, Scitech publications,

Chennai.
UNIT-11
1 1 Introduction and definition of a R1:Chap:7.1:Pg.No:137-
incidence matrix 139
2. 1 Sub matrix and Circuits matrix R1:Chap:7.3:Pg.No:142-
based on problems 146
3. 1 Path matrix and adjacency matrix R1:Chap:7.8:Pg.No:156-
based on problems 161
4. 1 Chromatic Number theorems R5:Chap:1.12:Pg.No:257 -
258
5. 1 Chromatic partitioning R5:Chap:16.14:Pg.No:25 8-
259
6. 1 Chromatic polynomial, Matching, | R1:Chap:8.5:Pg.No0:174-
covering 190
7. 1 Four color problem R5:Chap:2.1:Pg.No:31- 35
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Recapitulation and Discussion of possible questions

Total No of Hours Planned For Unit 111=8

R1: Deo N, (2007). Graph Theory with Applications to Engineering and Computer Science,

Prentice Hall of India Pvt Ltd, New Delhi..
R5: Jensen. TR and Toft.B., (1995). Graph Coloring Problems. Wiley-Interscience , , New York.

UNIT-IV
1. 1 Introduction and definition of R9:Chap:3.1:Pg.N0:163-
Directed Graphs 165
2. 1 Some types of Directed Graphs R1:Chap:9.2:Pg.N0:197-
198
3. 1 Types of enumeration R1:Chap:10.1:Pg.N0:238 -
240
4. 1 Counting labeled trees R1:Chap:10.2:Pg.No:240 -
241
5. 1 Counting unlabeled trees R1:Chap:10.3:Pg.No0:241 -
250
6. 1 Polya’s counting theorem R1:Chap:10.4:Pg.No:250 -
260
1. 1 Graph enumeration with Polya’s R1:Chap:10.5:Pg.N0:260 -
theorem 264
8. 1 Recapitulation and Discussion of possible questions

Total No of Hours Planned For Unit IV=8

R1: Deo N, (2007). Graph Theory with Applications to Engineering and Computer Science,

Prentice Hall of India Pvt Ltd, New Delhi..
R9: Harary F, (2001).Graph Theory, Addison- Wesley Publishing Company Inc USA

UNIT-V

1. 1 Introduction Terminology and R1:Chap:1.1:Pg.No:15- 16
concepts

2. 1 Applications of Domination in R7:Chap:5.1:Pg.N0:71-73
graphs

3. 1 Dominating set and Domination R2:Chap:1.2:Pg.No:16- 18
number

4. 1 Independent set and Independent R2:Chap:1.3:Pg.No:19- 20
number

5. 1 History of domination in graphs R2:Chap:1.13:Pg.No:36- 37

6. 1 Recapitulation and Discussion of possible questions

7. 1 Discuss on Previous ESE Question
Papers

8. 1 Discuss on Previous ESE Question

Papers
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9. 1 Discuss on Previous ESE Question
Papers

Total No of Hours Planned for unit V=9

R1: Deo N, (2007). Graph Theory with Applications to Engineering and Computer Science,
Prentice Hall of India Pvt Ltd, New Delhi..

R2: Teresa W. Haynes, Stephen T. Hedetniemi and Peter J.Slater, (1998), Fundamentals of
Domination in Graphs, Marcel Dekker, New York.

R7: Flouds C. R., (2009). Graph Theory Applications, Narosa Publishing House. New
Delhi,India.

Total Planned Hours 44
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INTRODUCTION
A lineart graph (or simply a graph) G = (V, E) consists of a set of objects
V ={v,, v,, ...} called vertices, and another set E = {e,, e,, ...}, whose

elements are called edges, such that each edge ¢, is identified with an unorder-
ed pair (v, v;) of vertices. The vertices v, v; associated with edge e, are called
the end vertices of e,. The most common representation of a graph is by means
of a diagram, in which the vertices are represented as points and each edge
as a line segment joining its end vertices. Often this diagram itself is referred to
as the graph. The object shown in Fig. 1-1, for instance, is a graph.

Observe that this definition permits an edge to be associated with a
vertex pair (v, #,). Such an edge having the same vertex as both its end ver-
tices is called a self-loop (or simply a loop. The word loop, however, has a
different meaning in electrical network theory; we shall therefore use the term
self-loop to avoid confusion). Edge e, in Fig. 1-1 is a self-loop. Also note that

Fig. 1-1 Graph with five vertices and
vy €6 Uy seven edges.

the definition allows more than one edge associated with a given pair of
vertices, for example, edges e, and e, in Fig. 1-1. Such edges are referred to as
parallel edges.

A graph that has neither self-loops nor parallel edges is called a simple
graph. In some graph-theory literature, a graph is defined to be only a simple
graph, but in most engineering applications it is necessary that parallel edges
and self-loops be allowed; this is why our definition includes graphs with self-
loops and/or parallel edges. Some authors use the term general graph to
emphasize that parallel edges and self-loops are allowed.

It should also be noted that, in drawing a graph, it is immaterial whether
the lines are drawn straight or curved, long or short: what is important is the
incidence between the edges and vertices. For example, the two graphs drawn
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incidence between the edges and vertices. For example, the two graphs drawn
in Figs. 1-2(a) and (b) are the same, because incidence between edges and
vertices is the same in both cases.

|
I
2
4 2 4
3

3

(a) (b)

Fig. 1-2 Same graph drawn differently.

In a diagram of a graph, sometimes two edges may seem to intersect at
a point that does not represent a vertex, for example, edges ¢ and f in Fig.
1-3. Such edges should be thought of as being in different planes and thus
having no common point. (Some authors break one of the two edges at such
a crossing to emphasize this fact.)

a
€
d h
f Fig.1-3 Edgeseand f have nocommon
C

point.
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A graph is also called a linear complex, a I-complex, or a one-dimensional
complex. A vertex is also referred to as a node, a junction, a point, 0-cell, or an
0-simplex. Other terms used for an edge are a branch, a line, an element, a
I-cell, an arc, and a I-simplex. In this book we shall generally use the terms
graph, vertex, and edge.

ISOMORPHISM

In geometry two figures are thought of as equivalent (and called con-
gruent) if they have identical behavior in terms of geometric properties.
Likewise, two graphs are thought of as equivalent (and called isomorphic) if
they have identical behavior in terms of graph-theoretic properties. More
precisely: Two graphs G and G’ are said to be isomorphic (to each other) if
there i1s a one-to-one correspondence between their vertices and between
their edges such that the incidence relationship is preserved. In other words,
suppose that edge e is incident on vertices v, and v, in G; then the correspond-
ing edge ¢’ in G" must be incident on the vertices ¥, and v}, that correspond to

€3
e €g
2 e
Y l Y
€g
(a) (b)

Fig. 2-1 Isomorphic graphs.

v, and v,, respectively. For example, one can verify that the two graphs in
Fig. 2-1 are isomorphic. The correspondence between the two graphs is as
follows: The vertices a, b, ¢, d, and e correspond to v,,v,, ¥;, v,, and v,
respectively. The edges I, 2, 3, 4, 5, and 6 correspond to e, e,, ¢,, e,, €,, and
eg, respectively.
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Except for the labels (i.e., names) of their vertices and edges, isomorphic
graphs are the same graph, perhaps drawn differently. As indicated in Chap-
ter 1, a given graph can be drawn in many different ways. For example, Fig.
2-2 shows two different ways of drawing the same graph.

Fig. 2-2 Isomorphic graphs.

[t is not always an easy task to determine whether or not two given graphs
are isomorphic. For instance, the three graphs shown in Fig. 2-3 are all
isomorphic, but just by looking at them you cannot tell that. It is left as an
exercise for the reader to show, by redrawing and labeling the vertices and
edges, that the three graphs in Fig. 2-3 are isomorphic (see Problem 2-3).

It 1s immediately apparent by the definition of isomorphism that two
isomorphic graphs must have

1. The same number of vertices.
2. The same number of edges.

3. An equal number of vertices with a given degree.

e e

{a) (b) (c)
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(a) (b}

However, these conditions are by no means sufficient. For instance, the two
graphs shown in Fig. 2-4 satisfy all three conditions, yet they are not isomor-
phic. That the graphs in Figs. 2-4(a) and (b) are not isomorphic can be shown
as follows: If the graph in Fig. 2-4(a) were to be isomorphic to the one in (b),
vertex x must correspond to y, because there are no other vertices of degree
three. Now in (b) there is only one pendant vertex, w, adjacent to y, while in
(a) there are two pendant vertices, ¥ and », adjacent to x.

Finding a simple and efficient criterion for detection of isomorphism is
still actively pursued and is an important unsolved problem in graph theory.
In Chapter 11 we shall discuss various proposed algorithms and their pro-
grams for automatic detection of isomorphism by means of a computer.
For now, we move to a different topic.

SUBGRAPHS

A graph g 1s said to be a subgraph of a graph G if all the vertices and all
the edges of g are in G, and each edge of g has the same end vertices in g as
in G. For instance, the graph in Fig. 2-5(b) is a subgraph of the one in Fig.
2-5(a). (Obviously, when considering a subgraph, the original graph must
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not be altered by identifying two distinct vertices, or by adding new edges or
vertices.) The concept of subgraph is akin to the concept of subset in set
theory. A subgraph can be thought of as being contained in (or a part of)
another graph. The symbol from set theory, g = G, is used in stating “g is
a subgraph of G.”

The following observations can be made immediately:

1. Every graph is its own subgraph.
2. A subgraph of a subgraph of G is a subgraph of G.
3. A single vertex in a graph G is a subgraph of G.

4. A single edge in G, together with its end vertices, is also a subgraph of
G.

Edge- Disjoint Subgraphs: Two (or more) subgraphs g, and g, of a graph G
are said to be edge disjoint if g, and g, do not have any edges in common.
For example, the two graphs in Figs. 2-7(a) and (b) are edge-disjoint sub-
graphs of the graph in Fig. 2-6. Note that although edge-disjoint graphs do
not have any edge in common, they may have vertices in common. Sub-
graphs that do not even have vertices in common are said to be vertex dis-
joint. (Obviously, graphs that have no vertices in common cannot possibly
have edges in common.)

WALKS, PATHS, AND CIRCUITS

A walk is defined as a finite alternating sequence of vertices and edges,
beginning and ending with vertices, such that each edge 1s incident with the
vertices preceding and following it. No edge appears (is covered or traversed)
more than once 1n a walk. A vertex, however, may appear more than once.
In Fig. 2-8(a), for instance, v, av, bv, cvyd v, e v, fv, is a walk shown with
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{a) An Open Walk (b) A Path of Length Three
Fig. 2-8 A walk and a path.

heavy lines. A walk is also referred to as an edge train or a chain. The set of
vertices and edges constituting a given walk in a graph G is clearly a subgraph
of G.

Vertices with which a walk begins and ends are called its terminal vertices.
Vertices v, and v, are the terminal vertices of the walk shown in Fig. 2-8(a).
It is possible for a walk to begin and end at the same vertex. Such a walk is
called a closed walk. A walk that is not closed (i.e., the terminal vertices are
distinct) is called an open walk [Fig. 2-8(a)].

An open walk in which no vertex appears more than once is called a path
(or a simple path or an elementary path). In Fig. 2-8, v, av, b v,dv, is a path,
whereas v, a v, b v; c v; d v, e v, f v 1s not a path. In other words,
a path does not intersect itself. The number of edges in a path is called the
length of a path. It immediately follows, then, that an edge which is not a self-
loop is a path of length one. It should also be noted that a self-loop can be
included in a walk but not in a path (Fig. 2-8).

The terminal vertices of a path are of degree one, and the rest of the ver-
tices (called intermediate vertices) are of degree two. This degree, of course,
is counted only with respect to the edges included in the path and not the
entire graph in which the path may be contained.

A closed walk in which no vertex (except the initial and the final vertex)
appears more than once is called a circuit. That is, a circuit is a closed, non-
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~___

Fig. 2-9 Three different circuits.

intersecting walk. In Fig. 2-8(a), v, b v; d v, e v, is, for example, a circuit.
Three different circuits are shown in Fig. 2-9. Clearly, every vertex in a circuit
is of degree two; again, if the circuit is a subgraph of another graph, one must
count degrees contributed by the edges in the circuit only.

A circuit is also called a cycle, elementary cycle, circular path, and polygon.
In electrical engineering a circuit is sometimes referred to as a loop—not to
be confused with self-loop. (Every self-loop is a circuit, but not every circuit
1s a self-loop.)

The definitions in this section are summarized in Fig. 2-10. The arrows
are in the direction of increasing restriction.

You may have observed that although the concepts of a path and a cir-
cuit are very simple, the formal definition becomes involved.

SUhg,mph Any collection of edges in (¢
of &
Walk A non-edge-retracing sequence
in & of edges of G
] 1
A non-intersecting Pﬂlh Circuit | A non-intersecting
open wulk in n G in G closed walk in ¢

Fig. 2-10 Walks, paths, and circuits as subgraphs.
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CONNECTED GRAPHS, DISCONNECTED
GRAPHS, AND COMPONENTS

Intuitively, the concept of connect. dness is obvious. A graph is connected
if we can reach any vertex from any other vertex by traveling along the edges.
More formally:

A graph G is said to be connected if there is at least one path between every
pair of vertices in G. Otherwise, G is disconnected. For instance, the graph in
Fig. 2-8(a) is connected, but the one in Fig. 2-11 is disconnected. A null
graph of more than one vertex is disconnected (Fig. 1-12).

It is easy to see that a disconnected graph consists of two or more con-
nected graphs. Each of these connected subgraphs is called a component. The
graph in Fig. 2-11 consists of two components. Another way of looking at a
component is as follows: Consider a vertex v; in a disconnected graph G. By
definition, not all vertices of G are joined by paths to »,. Vertex v, and all the
vertices of G that have paths to v, together with all the edges incident on
them, form a component. Obviously, a component itself is a graph.

Fig. 2-11 A disconnected graph with
Y, two components.

THEOREM 2-1

A graph G is disconnected if and only if its vertex set ¥ can be partitioned into
two nonempty, disjoint subsets ¥, and V; such that there exists no edge in G
whose one end vertex is in subset ¥, and the other in subset V.

Proof: Suppose that such a partitioning exists. Consider two arbitrary vertices
a and b of G, such that @« € ¥, and b € V,. No path can exist between vertices
a and b; otherwise, there would be at least one edge whose one end vertex would
be in ¥, and the other in V;. Hence, if a partition exists, G is not connected.
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Conversely, let G be a disconnected graph. Consider a vertex a in G. Let V,
be the set of all vertices that are joined by paths to a. Since G is disconnected,
J'; does not include all vertices of G. The remaining vertices will form a (nonempty)
set ;. No vertex in V, is joined to any in ¥, by an edge. Hence the partition. |}

Two interesting and useful results involving connectedness are:

THEOREM 2-2

If a graph (connected or disconnected) has exactiy two vertices of odd degree,
there must be a path joining these two vertices.

Proof: Let G be a graph with all even verticest except vertices »; and v, which
are odd. From Theorem [-1, which holds for every graph and therefore for every
component of a disconnected graph, no graph can have an odd number of odd
vertices. Therefore, in graph G, v, and v, must belong to the same component,
and hence must have a path between them. [

THEOREM 2-3

A simple graph (i.e., a graph without parallel edges or self-loops) with n vertices
and k components can have at most (n — k)n — k -1 1)/2 edges.

Proof: Let the number of vertices in each of the & components of a graph G
be ny, n,, ..., n,. Thus we have

tFor brevity, a vertex with odd degree is called an odd vertex, and a vertex with even
degree an even vertex.

The proof of the theorem depends on an algebraic inequalityT

S wt<n? — (k — )2n — k). (2-1)
=1

Now the maximum number of edges in the ith component of G (which is a simple
connected graph) is jmif(n; — 1). (See Problem 1-12.) Therefore, the maximum
number of edges in G is

TS - m = (3 ) - & (22)

f=1 i1
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< %[nz —(k —1)2n — k) — 2. from (1)
%-(n K —k+ 1. W (2-3)

It may be noted that Theorem 2-3 is a generalization of the result in Problem
1-12. The solution to Problem 1-12 is given by (2-3), where k — 1.

EULER GRAPHS

As mentioned in Chapter 1, graph theory was born in 1736 with Euler’s
famous paper in which he solved the Konigsberg bridge problem. In the same
paper, Euler posed (and then solved) a more general problem: In what type
of graph G is it possible to find a closed walk running through every edge of
G exactly once ? Such a walk is now called an Euler line, and a graph that con-
sists of an Euler line is called an Euler graph. More formally:

If some closed walk in a graph contains all the edges of the graph, then the
walk is called an Euler line and the graph an Euler graph.

By its very definition a walk is always connected. Since the Euler line
(which 1s a walk) contains all the edges of the graph, an Euler graph is always
connected, except for any isolated vertices the graph may have. Since isolated
vertices do not contribute anything to the understanding of an Euler graph,
it is hereafter assumed that Euler graphs do not have any isolated vertices
and are therefore connected.

Now we shall state and prove an important theorem, which will enable us
to tell immediately whether or not a given graph is an Euler graph.

tProof: 3% | (m — 1) = n — k. Squaring both sides,

k 2
(z(m _ 1)) —n2 4 k2 — 2nk
i- 1
or 2%, (n? — 2m;) + k + nonnegative cross terms = n? + k2 — 2nk because (m; — 1)=0,
for all i. Therefore, 3%, n2 <<n? + k® —2nk —k +2n=n> —(k— D2n — k). A
THEOREM 2-4

A given connected graph G is an Euler graph if and only if all vertices of G are
of even degree.
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Proof: Suppose that G is an Euler graph. It therefore contains an Euler line
(which is a closed walk). In tracing this walk we observe that every time the walk
meets a vertex v it goes through two “new” edges incident on v—with one we
“entered” v and with the other “exited.” This is true not only of all intermediate
vertices of the walk but also of the terminal vertex, because we “exited” and
“entered” the same vertex at the beginning and end of the walk, respectively. Thus
if G is an Euler graph, the degree of every vertex is even.

To prove the sufficiency of the condition, assume that all vertices of ¢ are of
even degree. Now we construct a walk starting at an arbitrary vertex v and going
through the edges of G such that no edge is traced more than once. We continue
tracing as far as possible. Since every vertex is of even degree, we can exit from
every vertex we enter; the tracing cannot stop at any vertex but ». And since v 1s
also of even degree, we shall eventually reach v when the tracing comes to an end.
If this closed walk /# we just traced includes all the edges of G, G is an Euler graph.
If not, we remove from G all the edges in # and obtain a subgraph #" of G formed
by the remaining edges. Since both G and /4 have all their vertices of even degree,
the degrees of the vertices of /4" are also even. Moreover, #” must touch & at least
at one vertex a, because < 1s connected. Starting from a, we can again construct
a new walk in graph /. Since all the vertices of /" are of even degree, this walk in
A" must terminate at vertex a; but this walk in #" can be combined with k to form
a new walk, which starts and ends at vertex » and has more edges than A. This
process can be repeated until we obtain a closed walk that traverses all the edges
of G. Thus G i1s an Euler graph. [

Kénigsberg Bridge Problemi: Now looking at the graph of the Konigsberg
bridges (Fig. 1-5), we find that not all its vertices are of even degree. Hence,
it is not an Euler graph. Thus it is not possible to walk over each of the seven

bridges exactly once and return to the starting point.

One often encounters Euler lines in various puzzles. The problem common
to these puzzles is to find how a given picture can be drawn in one continuous
line without retracing and without lifting the pencil from the paper. Two such
pictures are shown in Fig. 2-12. The drawing in Fig. 2-12(a) is called Moham-
med’s scimitars and is believed to have come from the Arabs. The one in Fig.
2-12(b) is, of course, the star of David. (Equal time!)
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In defining an Euler line some authors drop the requirement that the walk
beclosed. Forexample,thewalkal ¢2d3a4b5d6¢7binFig 2-13, which
includes all the edges of the graph and does not retrace any edge, is not closed.
The initial vertex i1s a and the final vertex is 5. We shall call such an open
walk that includes (or traces or covers) all edges of a graph without retracing
any edge a unicursal line or an open Euler line. A (connected) graph that has
a unicursal line will be called a unicursal graph.

e

(a) (h)

Fig. 2-12 Two Euler graphs.

5

) d

Fig. 2-13 Unicursal graph.

[t is clear that by adding an edge between the initial and final vertices of
a unicursal line we shall get an Euler line. Thus a connected graph is unicursal
if and only if it has exactly two vertices of odd degree. This observation can
be generalized as follows:
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THEOREM 2-5

In a connected graph G with exactly 2k odd vertices, there exist k edge-disjoint
subgraphs such that they together contain all edges of G and that each is a unicursal
graph.

Proof: Let the odd vertices of the given graph G be named #;, v3, ..., v4;
Wi, Wa, ..., W, In any arbitrary order. Add k edges to G between the vertex pairs
(g, wi), (2, wa), ..., (rk, wi) to form a new graph G'.

Since every vertex of G’ is of even degree, G consists of an Euler line p. Now
if we remove from p the k edges we just added (no two of these edges are incident
on the same vertex), p will be split into k walks, each of which is a unicursal line:
The first removal will leave a single unicursal line; the second removal will split
that into two unicursal lines; and each successive removal will split a unicursal
line into two unicursal lines, until there are & of them. Thus the theorem. W

THEOREM 2-6

A connected graph G is an Euler graph if and only if it can be decomposed
into circuits.

Proof: Suppose graph G can be decomposed into circuits; that is, & is a union
of edge-disjoint circuits. Since the degree of every vertex in a circuit is two, the
degree of every vertex in G is even. Hence G is an Euler graph.

Conversely, let & be an Euler graph. Consider a vertex v;. There are at least
two edges incident at »,. Let one of these edges be between », and »;,. Since vertex
v, is also of even degree, it must have at least another edge, say between v, and
v3. Proceeding in this fashion, we eventually arrive at a vertex that has previously
been traversed, thus forming a circuit I'. Let us remove I from G. All vertices in
the remaining graph (not necessarily connected) must also be of even degree. From
the remaining graph remove another circuit in exactly the same way as we removed
I" from G. Continue this process until no edges are left. Hence the theorem. W

Arbitrarily Traceable Graphs: Consider the graph in Fig. 2-17, which is
an Euler graph. Suppose that we start from vertex ¢ and trace the path a b c.
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a b

Fig. 2-17 Arbitrarily traceable graph
d €  frome.

Now at ¢ we have the choice of going to a, d, or e. If we took the first choice,
we would only trace the circuit @ b ¢ a, which is not an Euler line. Thus, start-
ing from a, we cannot trace the entire Euler line simply by moving along any
edge that has not already been traversed. This raises the following interesting
question:

HAMILTONIAN PATHS AND CIRCUITS

An Euler line of a connected graph was characterized by the property of
being a closed walk that traverses every edge of the graph (exactly once). A
Hamiltonian circuit in a connected graph is defined as a closed walk that
traverses every vertex of G exactly once, except of course the starting vertex,
at which the walk also terminates. For example, in the graph of Fig. 2-20(a)

(b)

Fig. 2-20 Hamiltonian circuits.
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starting at vertex », if one traverses along the edges shown in heavy lines—
passing through each vertex exactly once—one gets a Hamiltonian circuit.
A Hamiltonian circuit for the graph in Fig. 2-20(b) is also shown by heavy
lines. More formally:

A circuit in a connected graph G is said to be Hamiltonian if it includes
every vertex of G. Hence a Hamiltonian circuit in a graph of n vertices consists
of exactly n edges.

Obviously, not every connected graph has a Hamiltonian circuit. For
example, neither of the graphs shown in Figs. 2-17 and 2-18 has a Hamil-
tonian circuit. This raises the question: What is a necessary and sufficient
condition for a connected graph G to have a Hamiltonian circuit?

Dodecahedron

P

(a) (b)

Fig. 2-21 Dodecahedron and its graph shown with a Hamiltonian
circuit.

This problem, first posed by the famous Irish mathematician Sir William
Rowan Hamilton in 1859, is still unsolved. As was mentioned in Chapter 1,
Hamilton made a regular dodecahedron of wood [see Fig. 2-21(a)], each of
whose 20 corners was marked with the name of a city. The puzzle was to
start from any city and find a route along the edge of the dodecahedron that
passes through every city exactly once and returns to the city of origin. The
graph of the dodecahedron is given in Fig. 2-21(b), and one of many such
routes (a Hamiltonian circuit) is shown by heavy lines.

The resemblance between the problem of an Euler line and that of a
Hamiltonian circuit is deceptive. The latter is infinitely more complex. Al-
though one can find Hamiltonian circuits in many specific graphs, such as
those shown in Figs. 2-20 and 2-21, there is no known criterion we can apply
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to determine the existence of a Hamiltonian circuit in general. There are,
however, certain types of graphs that always contain Hamiltonian circuits,-
as will be presently shown.

Hamiltonian Path: 1f we remove any one edge from a Hamiltonian circuit,
we are left with a path. This path is called a Hamiltonian path. Clearly, a
Hamiltonian path in a graph G traverses every vertex of G. Since a Hamil-
tonian path is a subgraph of a Hamiltonian circuit (which in turn is a sub-
graph of another graph), every graph that has a Hamiltonian circuit also has
a Hamiltonian path. There are, however, many graphs with Hamiltonian
paths that have no Hamiltonian circuits (Problem 2-23). The length of a
Hamiltonian path (if it exists) in a connected graph of n verticesis n — 1.

In considering the existence of a Hamiltonian circuit (or path), we need
only consider simple graphs. This is because a Hamiltonian circuit (or path)
traverses every vertex exactly once. Hence it cannot include a self-loop or
a set of parallel edges. Thus a general graph may be made simple by removing
parallel edges and self-loops before looking for a Hamiltonian circuit in it.

It is left as an exercise for the reader to show that neither of the two graphs

(a) (b)
Fig. 2-22 Graphs without Hamiltonian circuits.

shown in Fig. 2-22 has a Hamiltonian circuit (or Hamiltonian path). See
Problem 2-24.
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shown in Fig. 2-22 has a Hamiltonian circuit (or Hamiltonian path). See
Problem 2-24.

What general class of graphs is guaranteed to have a Hamiltonian circuit?
Complete graphs of three or more vertices constitute one such class.

Complete Graph: A simple graph in which there exists an edge between
every pair of vertices is called a complete graph. Complete graphs of two,
three, four, and five vertices are shown in Fig. 2-23. A complete graph is

— A A KA

Fig. 2-23 Complete graphs of two, three, four, and five vertices.

sometimes also referred to as a universal graph or a clique. Since every vertex
is joined with every other vertex through one edge, the degree of every vertex
is n — 1 in a complete graph G of n vertices. Also the total number of edges
in G is n(n — 1)/2. See Problem 1-12.

It is easy to construct a Hamiltonian circuit in a complete graph of n
vertices. Let the vertices be numbered v, v,,..., v,. Since an edge exists
between any two vertices, we can start from », and traverse to v,, and v,, and
so on to v,, and finally from v, to v,. This is a Hamiltonian circuit.

Number of Hamiltonian Circuits in a Graph: A given graph may contain
more than one Hamiltonian circuit. Of interest are all the edge-disjoint
Hamiltonian circuits in a graph. The determination of the exact number of
edge-disjoint Hamiltonian circuits (or paths) in a graph in general is also an
unsolved problem. However, the number of edge-disjoint Hamiltonian cir-
cuits in a complete graph with odd number of vertices is given by Theorem
2-8.

THEOREM 2-8

In a complete graph with n vertices there are (n — 1)/2 edge-disjoint Hamil-
tonian circuits, if n is an odd number = 3.
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Proof: A complete graph G of n vertices has n(n — 1)/2 edges, and a Hamil-
tonian circuit in G consists of n edges. Therefore, the number of edge-disjoint
Hamiltonian circuits in G cannot exceed (n — 1)/2. That there are (n — 1)/2 edge-
disjoint Hamiltonian circuits, when n is odd, can be shown as follows:

The subgraph (of a complete graph of n vertices) in Fig. 2-24 is a Hamiltonian
circuit. Keeping the vertices fixed on a circle, rotate the polygonal pattern clockwise

5

|
|
|
|
|
I

t
L
=

Fig. 2-24 Hamiltonian circuit; n is
n—3 odd.
by 360/(n — 1),2-360/(n — 1),3-360/(n — 1),...,(n — 3)/2:360/(n — 1) degrees.
Observe that each rotation produces a Hamiltonian circuit that has no edge in
common with any of the previous ones. Thus we have (n — 3)/2 new Hamiltonian
circuits, all edge disjoint from the one in Fig. 2-24 and also edge disjoint among
themselves. Hence the theorem. |

This theorem enables us to solve the problem of the seating arrangement
at a round table, introduced in Chapter 1, as follows:

Representing a member x by a vertex and the possibility of his sitting next
to another member y by an edge between x and y, we construct a graph G.
Since every member is allowed to sit next to any other member, G is a com-
plete graph of nine vertices—nine being the number of people to be seated
around the table. Every seating arrangement around the table is clearly a
Hamiltonian circuit.

The first day of their meeting they can sit in any order, and it will be a
Hamiltonian circuit H,. The second days, if they are to sit such that every mem-
ber must have different neighbors, we have to find another Hamiltonian cir-
cuit H, in G, with an entirely different set of edges from those in H,; that is,
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H, and H, are edge-disjoint Hamiltonian circuits. From Theorem 2-8 the
number of edge-disjoint Hamiltonian circuits in G is four; therefore, only
four such arrangements exist among nine people.

Another interesting result on the question of existence of Hamiltonian
circuits in a graph, obtained by G. A. Dirac, is:

THEOREM 2-9

A sufficient (but by no means necessary) condition for a simple graph G to
have a Hamiltonian circuit is that the degree of every vertex in G be at least n/2,
where n is the number of vertices in G.

Proof: For proof the reader is referred to the original paper by Dirac [2-3].

TREES

A tree 1s a connected graph without any circuits. The graph in Fig. 3-1,
for instance, is a tree. Trees with one, two, three, and four vertices are shown
in Fig. 3-2. As pointed out in Chapter 1, a graph must have at least one vertex,
and therefore so must a tree. Some authors allow the null tree, a tree without
any vertices. We have excluded such an entity from being a tree. Similarly,
as we are considering only finite graphs, our trees are also finite.

It follows immediately from the definition that a tree has to be a simple
graph, that is, having neither a self-loop nor parallel edges (because they both
form circuits).

Trees appear in numerous instances. The genealogy of a family is often

Fig. 3-1 Tree.
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S RVARVAR

Fig. 3-2 Trees with one, two, three, and four vertices.

N
Fig. 3-3 Decision tree.
represented by means of a tree (in fact the term tree comes from family tree).
A river with its tributaries and subtributaries can be represented by a tree.
The sorting of mail according to zip code and the sorting of punched cards
are done according to a tree (called decision tree or sorting tree).
Figure 3-3 might represent the flow of mail. All the mail arrives at some

local office, vertex N. The most significant digit in the zip code is read at N,
and the mail is divided into 10 piles N,, N,, ..., Ng, and N,, depending on
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the most significant digit. Each pile is further divided into 10 piles according
to the second most significant digit, and so on, till the mail is subdivided into
10° possible piles, each representing a unique five-digit zip code.

In many sorting problems we have only two alternatives (instead of 10 as
in the preceding example) at each intermediate vertex, representing a dicho-
tomy, such as large or small, good or bad, 0 or 1. Such a decision tree with
two choices at each vertex occurs frequently in computer programming and
switching theory. We shall deal with such trees and their applications in Sec-
tion 3-5. Let us first obtain a few simple but important theorems on the gene-
ral properties of trees.

SOME PROPERTIES OF TREES

THEOREM 3-1

There is one and only one path between every pair of vertices in a tree, T.

Proof: Since T is a connected graph, there must exist at least one path between
every pair of vertices in T. Now suppose that between two vertices @ and b of T
there are two distinct paths. The union of these two paths will contain a circuit
and T cannot be a tree. I}

Conversely:

THEOREM 3-2

If in a graph G there is one and only one path between every pair of vertices,
G is a tree.

Proof: Existence of a path between every pair of vertices assures that G is
connected. A circuit in a graph (with two or more vertices) implies that there is
at least one pair of vertices a, b such that there are two distinct paths between a
and b. Since G has one and only one path between every pair of vertices, G can
have no circuit. Therefore, G is a tree. |

THEOREM 3-3

A tree with n vertices has n — 1 edges.

Proof: The theorem will be proved by induction on the number of vertices.
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Fig. 3-4 Tree T with n vertices.

It is easy to see that the theorem is true for n = 1, 2, and 3 (see Fig. 3-2). Assume
that the theorem holds for all trees with fewer than n vertices.

Let us now consider a tree T with n vertices. In T let ¢, be an edge with end
vertices »; and v;. According to Theorem 3-1, there is no other path between v,
and v; except e;. Therefore, deletion of e, from T will disconnect the graph, as
shown in Fig. 3-4. Furthermore, T — e, consists of exactly two components, and
since there were no circuits in 7 to begin with, each of these components is a tree.
Both these trees, 7, and #;, have fewer than n vertices each, and therefore, by the
induction hypothesis, each contains one less edge than the number of vertices in it.
Thus T — e, consists of n — 2 edges (and »n vertices). Hence T has exactly n — 1
edges.

THEOREM 3-4

Any connected graph with » vertices and n — 1 edges is a tree.

Proof: The proof of the theorem is left to the reader as an exercise (Problem
3-5).

You may have noticed another important feature of a tree: its vertices
are connected together with the minimum number of edges. A connected
graph is said to be minimally connected if removal of any one edge from it
disconnects the graph. A minimally connected graph cannot have a circuit;
otherwise, we could remove one of the edges in the circuit and still leave the
graph connected. Thus a mimimally connected graph is a tree. Conversely, if
a connected graph G is not minimally connected, there must exist an edge
e; in G such that G — e, is connected. Therefore, e, is in some circuit, which
implies that G is not a tree. Hence the following theorem:
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THEOREM 3-5

A graph is a tree if and only if it is minimally connected.

The significance of Theorem 3-5 is obvious. Intuitively, one can see that
to interconnect n distinct points, the minimum number of line segments

needed is n — 1. It requires no background in electrical engineering to realize
»
Uy ¢ Uy
g, £, Fig.3-5 EdgeeaddedtoG =g, U g2.

that to short (electrically) n pins together, one needs at least n — 1 pieces of
wire. The resulting structure, according to Theorem 3-5, is a tree.

We showed that a connected graph with n vertices and without any cir-
cuits has n — 1 edges. We can also show that a graph with n vertices which
has no circuit and has n — 1 edges is always connected (i.e., it is a tree), in
the following theorem.

THEOREM 3-6

A graph G with n vertices, n — 1 edges, and no circuits is connected.

Proof: Suppose there exists a circuitless graph G with n vertices and n — 1 edges
which is disconnected. In that case G will consist of two or more circuitless com-
ponents. Without loss of generality, let G consist of two components, g; and g;.
Add an edge e between a vertex v, in g; and v, in g, (Fig. 3-5). Since there was no
path between v; and v, in G, adding e did not create a circuit. Thus G U e is a cir-
cuitless, connected graph (i.e., a tree) of n vertices and n edges, which is not possible,
because of Theorem 3-3. |

The results of the preceding six theorems can be summarized by saying
that the following are five different but equivalent definitions of a tree. That is,
a graph G with n vertices is called a tree if

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 25/37




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: | M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY
AND ITS APPLICATIONS

COURSE CODE: 18MMP205A UNIT: | BATCH-2018-2020

[—

. G is connected and is circuitless, or
G is connected and has n — 1 edges, or

G is circuitless and has n — 1 edges, or

RN

There is exactly one path between every pair of vertices in G, or
5. G i1s a minimally connected graph.

PENDANT VERTICES IN A TREE

You must have observed that each of the trees shown in the figures has
several pendant vertices (a pendant vertex was defined as a vertex of degree
Start

(3 DERCANONON 2 QW ©

LOOOOOQAOOE®OMAEAWLE E® OB W

ONORONORONORORORONOCRORORORORD

(1) (1) D (1)

Fig. 3-6 Tree of the monotonically increasing sequences in 4, 1,

13,7,0, 2, 8, 11, 3.
one). The reason is that in a tree of n vertices we have n — 1 edges, and hence
2(n — 1) degrees to be divided among n vertices. Since no vertex can be of
zero degree, we must have at least two vertices of degree one in a tree. This
of course makes sense only if n > 2. More formally:
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THEOREM 3-7

In any tree (with two or more vertices), there are at least two pendant vertices.

An Application: The following problem is used in teaching computer
programming. Given a sequence of integers, no two of which are the same,
find the largest monotonically increasing subsequence in it. Suppose that the
sequence giventousis4, 1,13,7,0,2, 8, 11, 3; it can be represented by a tree
in which the vertices (except the start vertex) represent individual numbers
in the sequence, and the path from the start vertex to a particular vertex v
describes the monotonically increasing subsequence terminating in v. As
shown in Fig. 3-6, this sequence contains four longest monotonically increas-
ing subsequences, that is, (4, 7,8, 11), (1,7, 8, 11), (1,2, 8, 11), and (0, 2, 8,
11). Each is of length four. Such a tree used in representing data is referred
to as a data tree by computer programmers.

DISTANCE AND CENTERS IN A TREE

The tree in Fig. 3-7 has four vertices. Intuitively, it seems that vertex b is
located more “centrally” than any of the other three vertices. We shall ex-

¢ Fig. 3-7 Tree.

plore this idea further and see 1 1n a tree there exists a “center” (or centers).
Inherent in the concept of a center is the idea of “distance,” so we must define
distance before we can talk of a center.

In a connected graph G, the distance d(v,, v,) between two of its vertices
v, and v, is the length of the shortest path (i.e., the number of edges in the
shortest path) between them.

The definition of distance between any two vertices is valid for any con-
nected graph (not necessarily a tree). In a graph that is not a tree, there are
generally several paths between a pair of vertices. We have to enumerate all
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these paths and find the length of the shortest one. (There may be several
shortest paths.)

For instance, some of the paths between vertices v, and v, in Fig. 3-8 are
(a,e), (a,c,[), (b, c,e), (b, f), (b, g, h),and (b, g, i, k). There are two shortest
paths, (a, e) and (b, f), each of length two. Hence d(v,, v,) = 2.

In a tree, since there is exactly one path between any two vertices (Theorem
3-1), the determination of distance is much easier. For instance, in the tree of
Fig. 3-7, d(a, b) = 1, d(a, ¢) = 2, d(c, b) = 1, and so on.

A Metric: Before we can legitimately call a function f(x, y) of two vari-
ables a “distance” between them, this function must satisfy certain require-
ments. These are

Fig. 3-8 Distance between v, and v is two.

1. Nonnegativity: f(x, y) = 0, and f(x, y) = 0if and only if x = y.
2. Symmetry: f(x, y) = f(y, x).
3. Triangle inequality: f(x, y) < f(x, z) + f(z, y) for any z.

A function that satisfies these three conditions is called a metric. That the
distance d(v,, v;) between two vertices of a connected graph satisfies condi-
tions | and 2 is immediately evident. Since d(v,, v,) is the length of the short-
est path between vertices », and v, this path cannot be longer than another
path between v, and v;, which goes through a specified vertex »,. Hence d(v,,
v;) < d(v, v,) + d(v,, v;). Therefore,
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THEOREM 3-8

The distance between vertices of a connected graph is a metric.

Coming back to our original topic of relative location of different vertices
in a tree, let us define another term called eccentricity (also referred to as
associated number or separation) of a vertex in a graph.

The eccentricity E(v) of a vertex v in a graph G is the distance from v to
the vertex farthest from » in G; that is,

E(v) = max d(v, v,).
wEG

A vertex with minimum eccentricity in graph G is called a center of G. The
eccentricities of the four vertices in Fig. 3-7 are E(a) = 2, E(b) = 1, E(c) = 2,
and E(d) = 2. Hence vertex b is the center of that tree. On the other hand,
consider the tree in Fig. 3-9. The eccentricity of each of its six vertices is shown
next to the vertex. This tree has two vertices having the same minimum
eccentricity. Hence this tree has two centers. Some authors refer to such cen-
ters as bicenters; we shall call them just centers, because there will be no
occasion for confusion.

The reader can easily verify that a graph, in general, has many centers.
For example, in a graph that consists of just a circuit (a polygon), every vertex
is a center. In the case of a tree, however, Konig [1-7] proved the following
theorem:

THEOREM 3-9

Every tree has either one or two centers.

3

=)
b4

3 Fig 3-9 Eccentricities of the vertices of
3 atree.
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Fig. 3-10 Finding a center of a tree.

Proof: The maximum distance, max d(v, v;), from a given vertex v to any
other vertex v; occurs only when v»; is a pendant vertex. With this observation, let
us start with a tree T having more than two vertices. Tree T must have two or
more pendant vertices (Theorem 3-7). Delete all the pendant vertices from 7. The
resulting graph 7" is still a tree. What about the eccentricities of the vertices in T'?
A little deliberation will reveal that removal of all pendant vertices from T uniformly
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reduced the eccentricities of the remaining vertices (i.e., vertices in T') by one.
Therefore, all vertices that 7 had as centers will still remain centers in T’. From
T’ we can again remove all pendant vertices and get another tree T, We continue
this process (which is illustrated in Fig. 3-10) until there is left either a vertex
(which is the center of T) or an edge (whose end vertices are the two centers of T).
Thus the theorem. |}

COROLLARY

From the argument used in proving Theorem 3-9, we see that if a tree T has two
centers, the two centers must be adjacent.

A Sociological Application: Suppose that the communication among a
group of 14 persons in a society is represented by the graph in Fig. 3-10(a),
where the vertices represent the persons and an edge represents the communi-
cation link between its two end vertices. Since the graph is connected, we
know that all the members can be reached by any member, either directly
or through some other members. But it is also important to note that the
graph is a tree—minimally connected. The group cannot afford to lose any
of the communication links.

The eccentricity of each vertex, E(v), represents how close v is to the farth-
est member of the group. In Fig. 3-10(a), vertex ¢ should be the leader of the
group, if closeness of communication were the criterion for leadership.

Radius and Diameter: If a tree has a center (or two centers), does it have
a radius also? Yes. The eccentricity of a center (which is the distance from the
center of the tree to the farthest vertex) in a tree is defined as the radius of the
tree. For instance, the radius of the tree in Fig. 3-10(a) is three. The diameter
of a tree T, on the other hand, is defined as the length of the longest path in
T. It is left as an exercise for the reader (Problem 3-6) to show that a radius
in a tree is not necessarily half its diameter.

ROOTED AND BINARY TREES

A tree in which one vertex (called the roor) is distinguished from all the
others is called a rooted tree. For instance, in Fig. 3-3 vertex N, from where
all the mail goes out, is distinguished from the rest of the vertices. Hence N
can be considered the root of the tree, and so the tree is rooted. Similarly, in
Fig. 3-6 the start vertex may be considered as the root of the tree shown. In
a diagram of a rooted tree, the root 1s generally marked distinctly. We will
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show the root enclosed in a small triangle. All rooted trees with four vertices
are shown in Fig. 3-11. Generally, the term tree means trees without any root.
However, for emphasis they are sometimes called free trees (or nonrooted
trees) to differentiate them from the rooted kind.

/o\

Fig. 3-11 Rooted trees with four vertices.

Binary Trees: A special class of rooted trees, called binary rooted trees, is
of particular interest, since they are extensively used in the study of computer
search methods, binary identification problems, and variable-length binary
codes. A binary tree is defined as a tree in which there is exactly one vertex of
degree two, and each of the remaining vertices is of degree one or three (Fig.
3-12). (Obviously, we are talking about trees with three or more vertices.)
Since the vertex of degree two is distinct from all other vertices, this vertex
serves as a root. Thus every binary tree is a rooted tree. Two properties of
binary trees follow directly from the definition:

1. The number of vertices n in a binary tree is always odd. This is because
there is exactly one vertex of even degree, and the remaining n — | vertices
are of odd degrees. Since from Theorem -1 the number of vertices of odd
degrees is even, n — 1 is even. Hence n is odd.

2. Let p be the number of pendant vertices in a binary tree 7. Then
n — p — 1 is the number of vertices of degree three. Therefore, the number
of edges in T equals

L r3sm—p—nrq=n—1
hence

p="0—. (-1)
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A nonpendant vertex in a tree is called an internal vertex. It follows from
Eq. (3-1) that the number of internal vertices in a binary tree is one less than
the number of pendant vertices. In a binary tree a vertex v, is said to be at
level [, if v, is at a distance of /, from the root. Thus the root is at level 0. A
13-vertex, four-level binary tree is shown in Fig. 3-12. The number of vertices
at levels 1, 2, 3, and 4 are 2, 2, 4, and 4, respectively.

One of the most straightforward applications of binary trees is in search
procedures. Each vertex of a binary tree represents a test with two possible

Level O

Level |

Level 3

Level 4

Fig. 3-12 A 13-vertex, 4-level binary tree.

outcomes. We start at the root, and the outcome of the test at the root sends
us to one of the two vertices at the next level, where further tests are made,
and so on. Reaching a specified pendant vertex (the goal of the search) termi-
nates the search. For such a search procedure it is often important to con-
struct a binary tree in which, for a given number of vertices n, the vertex
farthest from the root is as close to the root as possible. Clearly, there can be
only one vertex (the root) at level 0, at most two vertices at level 1, at most
four vertices at level 2, and so on. Therefore, the maximum number of vertices
possible in a k-level binary tree is

20421 422 4 .ol 4 26>,

The maximum level, /,,,, of any vertex in a binary tree is called the height
of the tree. It is easy to see that the minimum possible height of an n-vertex
binary tree is
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20420 422 4 ous o 26>,

The maximum level, /_,,, of any vertex in a binary tree is called the height
of the tree. It is easy to see that the minimum possible height of an n-vertex
binary tree is

min Imax = “032 (H + 1] - 1]& (3"2)

where [n] denotes the smallest integer greater than or equal to n.

On the other hand, to construct a binary tree for a given n such that the
farthest vertex is as far as possible from the root, we must have exactly two
vertices at each level, except at the O level. Therefore,

n—1

max [_,, = 5 (3-3)
For n = 11, binary trees realizing both these extremes are shown in Fig.
3-13.
Level Level
0 0
I
|
2
3
2
4
3 5

min { =[(log, 12) = 1] max
ma x 2 il X

(a) (b)

Fig. 3-13 Two 11-vertex binary trees.
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In analysis of algorithms we are generally interested in computing the sum
of the levels of all pendant vertices. This quantity, known as the path length
(or external path length) of a free, can be defined as the sum of the path
lengths from the root to all pendant vertices. The path length of the binary
tree in Fig. 3-12, for example, is

| +3+3+44+44+44 4 =23

The path lengths of trees in Figs. 3-13(a) and (b) are 16 and 20, respectively.
The importance of the path length of a tree lies in the fact that this quantity
is often directly related to the execution time of an algorithm.

It can be shown that the type of binary tree in Fig. 3-13(a) (i.e., a tree with
2'<=1 vertices at level /,,, — 1) yields the minimum path length for a given
n.

Weighted Path Length: In some applications, every pendant vertex v, of
a binary tree has associated with it a positive real number w,. Given w,,
W,, ..., w,_ the problem is to construct a binary tree (with m pendant ver-

tices) that minimizes

2 wil,,

where [/, is the level of pendant vertex v,, and the sum is taken over all pendant
vertices. Let us illustrate the significance of this problem with a simple exam-

ple.
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A Coke machine is to identify, by a sequence of tests, the coin that is put
into the machine. Only pennies, nickels, dimes, and quarters can go through
the slot. Let us assume that the probabilities of a coin being a penny, a nickel,
a dime, and a quarter are .05, .15, .5, and .30, respectively. Each test has the
effect of partitioning the four types of coins into two complementary sets and
asserting the unknown coin to be in one of the two sets. Thus for four coins
we have 23 — 1 such tests. If the time taken for each test is the same, what
sequence of tests will minimize the expected time taken by the Coke machine
to identify the coin?

The solution requires the construction of a binary tree with four pendant
vertices (and therefore three internal vertices) v,, v,, v;, and v, and corre-
sponding weights w, = .05, w, = .15, w, = .5, and w, = .3, such that the
quantity ¥ /,w, is minimized. The solution is given in Fig. 3-14(a), for which
the expected time is 1.7¢, where ¢ is the time taken for each test. Contrast this
with Fig. 3-14(b), for which the expected time is 2¢. An algorithm for con-
structing a binary tree with minimum weighted path length can be found in
[3-6].

A Coke machine is to identify, by a sequence of tests, the coin that is put
into the machine. Only pennies, nickels, dimes, and quarters can go through
the slot. Let us assume that the probabilities of a coin being a penny, a nickel,
a dime, and a quarter are .05, .15, .5, and .30, respectively. Each test has the
effect of partitioning the four types of coins into two complementary sets and
asserting the unknown coin to be in one of the two sets. Thus for four coins
we have 2° — 1 such tests. If the time taken for each test is the same, what
sequence of tests will minimize the expected time taken by the Coke machine
to identify the coin?

The solution requires the construction of a binary tree with four pendant
vertices (and therefore three internal vertices) v,, v,, v,;, and v, and corre-
sponding weights w, = .05, w, = .15, w; = .5, and w, = .3, such that the
quantity Y /,w, is minimized. The solution is given in Fig. 3-14(a), for which
the expected time is 1.7¢, where ¢ is the time taken for each test. Contrast this
with Fig. 3-14(b), for which the expected time is 2¢. An algorithm for con-
structing a binary tree with minimum weighted path length can be found in
[3-6].
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A Coke machine is to identify, by a sequence of tests, the coin that is put
into the machine. Only pennies, nickels, dimes, and quarters can go through
the slot. Let us assume that the probabilities of a coin being a penny, a nickel,
a dime, and a quarter are .05, .15, .5, and .30, respectively. Each test has the
effect of partitioning the four types of coins into two complementary sets and
asserting the unknown coin to be in one of the two sets. Thus for four coins
we have 23 — 1 such tests. If the time taken for each test is the same, what
sequence of tests will minimize the expected time taken by the Coke machine
to identify the coin?

The solution requires the construction of a binary tree with four pendant
vertices (and therefore three internal vertices) v,, v,, v,, and v, and corre-
sponding weights w, = .05, w, = .15, w, = .5, and w, = .3, such that the
quantity Y /,w, is minimized. The solution is given in Fig. 3-14(a), for which
the expected time is 1.7¢, where ¢ is the time taken for each test. Contrast this
with Fig. 3-14(b), for which the expected time is 2¢. An algorithm for con-
structing a binary tree with minimum weighted path length can be found in
[3-6].

In this problem of a Coke machine, many interesting variations are pos-
sible. For example, not all possible tests may be available, or they may not all
consume the same time.

Binary trees with minimum weighted path length have also been used in

) Nickel
Dime Not Dime or or

dime penny quarter
0.5

Not

Quarter
quarter

Nickel

0.3 Penny Dime Quarter
Not
penny

0.05 0.15 0.05 0.5 0.15 0.3

Zw =17 Zw, ;=12
(a) (b)

Fig. 3-14 Two binary trees with weighted pendant vertices.
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constructing variable-length binary codes, where the letters of the alphabet

(A, B,C, ..., 7Z)are represented by binary digits. Since different letters have
different frequencies of occurrence (frequencies are interpreted as weights
W,, W,, ..., Wy4), @ binary tree with minimum weighted path length corre-

sponds to a binary code of minimum cost; see [3-6]. For more on minimum-
path binary trees and their applications the reader is referred to [3-5] and
[3-7].

ON COUNTING TREES

In 1857, Arthur Cayley discovered trees while he was trying to count the
number of structural isomers of the saturated hydrocarbons (or paraffin
series) C,H,, .,. He used a connected graph to represent the C,H,,,, mole-
cule. Corresponding to their chemical valencies, a carbon atom was repre-
sented by a vertex of degree four and a hydrogen atom by a vertex of degree
one (pendant vertices). The total number of vertices in such a graph is

n=3k -2,
and the total number of edges 1s

e = %(sum of degrees) = %(4!{ + 2k + 2)

= 3k + 1.
Since the graph is connected and the number of edges is one less than the
number of vertices, it is a tree. Thus the problem of counting structural

isomers of a given hydrocarbon becomes the problem of counting trees (with
certain qualifying properties, to be sure).

The first question Cayley asked was: what is the number of different trees
that one can construct with n distinct (or labeled) vertices? If n = 4, for
instance, we have 16 trees, as shown in Fig. 3-15. The reader can satisfy him-
self that there are no more trees of four vertices. (Of course, some of these
trees are isomorphic—to be discussed later.)

A graph in which each vertex is assigned a unique name or label (i.e., no
two vertices have the same label), as in Fig. 3-15, is called a labeled graph.
The distinction between a labeled and an unlabeled graph is very important
when we are counting the number of different graphs. For instance, the four
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graphs in the first row in Fig. 3-15 are counted as four different trees (even
though they are isomorphic) only because the vertices are labeled. If there
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Fig. 3-15 All 16 trees of four labeled vertices.
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were no distinction made between A, B, C, or D, these four trees would be
counted as one. A careful inspection of the graphs in Fig. 3-15 will reveal that
the number of unlabeled trees with four vertices (no distinction made between
A, B, C, and D) is only two. But first we shall continue with counting labeled
trees.

The following well-known theorem for counting trees was first stated and
proved by Cayley, and is therefore called Cayley’s theorem.

THEOREM 3-10

The number of labeled trees with n vertices (n = 2) is n"" 2.

Proof: The result was first stated and proved by Cayley. Many different proofs
with various approaches (all somewhat involved) have been published since. An
excellent summary of 10 such proofs is given by Moon [3-9]. We will give one
proof in Chapter 10.

Unlabeled Trees: In the actual counting of isomers of C,H,, ,,, Theorem
3-10 is not enough. In addition to the constraints on the degree of the vertices,
two observations should be made:

I. Since the vertices representing hydrogen are pendant, they go with
carbon atoms only one way, and hence make no contribution to isomerism.
Therefore, we need not show any hydrogen vertices.

2. Thus the tree representing C,H,, ., reduces to one with k vertices,
each representing a carbon atom. In this tree no distinction can be made
between vertices, and therefore it is unlabeled.

Thus for butane, C,H,,, there are only two distinct trees (Fig. 3-16). As
every organic chemist knows, there are indeed exactly two different types of
butanes: n-butane and isobutane. It may be noted in passing that the four
trees in the first row of Fig. 3-15 are isomorphic to the one in Fig. 3-16(a);
and the other 12 are i1somorphic to Fig. 3-16(b).
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(a) (b)

Fig. 3-16 All trees of four unlabeled vertices.

The problem of counting trees of different types will be taken up again
and discussed more thoroughly in Chapter 10.
SPANNING TREES

So far we have discussed the tree and its properties when it occurs as a
graph by itself. Now we shall study the tree as a subgraph of another graph.
A given graph has numerous subgraphs—from e edges, 2¢ distinct combina-
tions are possible. Obviously, some of these subgraphs will be trees. Out of
these trees we are particularly interested in certain types of trees, called
spanning trees—as defined next.

A tree T is said to be a spanning tree of a connected graph G if T is a
subgraph of G and T contains all vertices of G. For instance, the subgraph in
heavy lines in Fig. 3-17 is a spanning tree of the graph shown.

Since the vertices of G are barely hanging together in a spanning tree, it is
a sort of skeleton of the original graph G. This is why a spanning tree is some-
times referred to as a skeleton or scaffolding of G. Since spanning trees are the
largest (with maximum number of edges) trees among all trees in G, it is also
quite appropriate to call a spanning tree a maximal tree subgraph or maximal
free of G.

It is to be noted that a spanning tree is defined only for a connected graph,
because a tree is always connected, and in a disconnected graph of n vertices
we cannot find a connected subgraph with n vertices. Each component (which
by definition is connected) of a disconnected graph, however, does have a
spanning tree. Thus a disconnected graph with kK components has a spanning
forest consisting of k spanning trees. (A collection of trees is called a forest.)
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Finding a spanning tree of a connected graph G is simple. If G has no cir-
cuit, it is its own spanning tree. If G has a circuit, delete an edge from the
circuit. This will still leave the graph connected (Problem 2-10). If there are
more circuits, repeat the operation till an edge from the last circuit is delet-
ed—Ileaving a connected, circuit-free graph that contains all the vertices of G.
Thus we have

Fig. 3-17 Spanning tree.
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THEOREM 3-11

Every connected graph has at least one spanning tree.

Anedge in aspanning tree T'is called a branch of T. An edge of G that is not
in a given spanning tree T is called a chord. In electrical engineering a chord is
sometimes referred to as a tie or a link. For instance, edges b,, b,, b,, b,, b,
and b, are branches of the spanning tree shown in Fig. 3-17, while edges
€1y Cay Cqy C4s Cs, Cg, €7, and ¢y are chords. It must be kept in mind that bran-
ches and chords are defined only with respect to a given spanning tree. An
edge that is a branch of one spanning tree T, (in a graph G) may be a chord
with respect to another spanning tree 7.

It is sometimes convenient to consider a connected graph G as a union of
two subgraphs, T and T; that is,

TUT=aG,

where T is a spanning tree, and T is the complement of T in G. Since the sub-
graph T is the collection of chords, it is quite appropriately referred to as the
chord set (or tie set or cotree) of T. From the definition, and from Theorem
3-3, the following theorem is evident.

THEOREM 3-12

With respect to any of its spanning trees, a connected graph of n vertices and
e edges has n — 1 tree branches and e — n 4+ 1 chords.

For example, the graph in Fig. 3-17 (with n = 7, e = 14), has six tree
branches and eight chords with respect to the spanning tree {b,, b,, b, b, b,
bs}. Any other spanning tree will yield the same numbers,

If we have an electric network with e elements (edges) and » nodes (ver-
tices), what is the minimum number of elements we must remove to eliminate
all circuits in the network 7 The answer i1s e — n 4 1. Similarly, if we have a
farm consisting of six walled plots of land, as shown in Fig. 3-18, and these
plots are full of water, how many walls will have to be broken so that all the
water can be drained out? Here n = 10 and e == 15. We shall have to select

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 43/37




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: | M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY
AND ITS APPLICATIONS

COURSE CODE: 18MMP205A UNIT: | BATCH-2018-2020

Fig. 3-18 Farm with walled plots of
land.

a set of six (15 — 10 + 1 == 6) walls such that the remaining nine constitute
a spanning tree. Breaking these six walls will drain the water out.

Rank and Nullity: When someone specifies a graph G, the first thing he is
most likely to mention is n, the number of vertices in G. Immediately follow-
ing comes e, the number of edges in G. Then k, the number of components G
has. If kK = 1, G is connected. How are these three numbers of a graph relat-
ed ? Since every component of a graph must have at least one vertex, n > k.
Moreoever, the number of edges in a component can be no less than the num-
ber of vertices in that component minus one. Therefore, e == n — k. Apart
from the constraints n — k = 0 and e — n + k == 0, these three numbers
n, e, and k are independent, and they are fundamental numbers in graphs.
(Needless to mention, these numbers alone are not enough to specify a graph,
except for trivial cases.)

From these three numbers are derived two other important numbers
called rank and nullity, defined as

rank r=n—k,
nullity u=e—n-+ k.

The rank of a connected graphis n — 1, and the nullity, e — n + 1. Although
the real significance of these numbers will be clear in Chapter 7, it may be
observed here that

rank of G = number of branches in any spanning
tree (or forest) of G,

nullity of G = number of chords in G,
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rank -+ nullity = number of edges in G.

The nullity of a graph is also referred to as its cyclomatic number, or first
Betti number.
FUNDAMENTAL CIRCUITS

THEOREM 3-13

A connected graph G is a tree if and only if adding an edge between any two
vertices in G creates exactly one circuit.

Let us now consider a spanning tree 7 in a connected graph G. Adding
any one chord to T will create exactly one circuit. Such a circuit, formed by
adding a chord to a spanning tree, is called a fundamental circuit.

How many fundamental circuits does a graph have? Exactly as many as
the number of chords, 4 (= e — n 4 k). How many circuits does a graph
have in all ? We know that one circuit is created by adding any one chord to a
tree. Suppose that we add one more chord. Will it create exactly one more
circuit? What happens if we add all the chords simultaneously to the tree?

Let us look at the tree {b,, b,, b;, b,, by, bs} in Fig. 3-17. Adding c, to it,
we get a subgraph {b,, b,, b,, b,, bs, bg, ¢,}, which has one circuit (fundamen-
tal circuit), {b,, b,, b, by, ¢,}. Had we added the chord ¢, (instead of ¢,) to the
tree, we would have obtained a different fundamental circuit, {b,, b;, b, ¢,}.
Now suppose that we add both chords ¢, and ¢, to the tree. The subgraph
{b,, by, by, by, by, bs, ¢, ¢,} has not only the fundamental circuits we just
mentioned, but it has also a third circuit, {b,, ¢, ¢,}, which is not a funda-
mental circuit. Although there are 75 circuits in Fig. 3-17 (enumerated by
computer), only eight are fundamental circuits, each formed by one chord
(together with the tree branches).

Two comments may be appropriate here. First, a circuit is a fundamental
circuit only with respect to a given spanning tree. A given circuit may be fun-
damental with respect to one spanning tree, but not with respect to a different
spanning tree of the same graph. Although the number of fundamental
circuits (as well as the total number of circuits) in a graph is fixed, the cir-
cuits that become fundamental change with the spanning trees.
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Second, in most applications we are not interested in all the circuits of
a graph, but only in a set of fundamental circuits, which fortuitously are
a lot easier to track. The concept of a fundamental circuit, introduced by
Kirchhoff, is of enormous significance in electrical network analysis. What
Kirchhoff showed, which now every sophomore in electrical engineering
knows, is that no matter how many circuits a network contains we need con-
sider only fundamental circuits with respect to any spanning tree. The rest
of the circuits (as we shall prove rigorously in Chapter 7) are combinations of
some fundamental circuits.

Possible Questions
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2 Mark Questions:

1. Define divisible with example.

2. Prove that ifajpand alc thenal(bx +cy) for arbitrary integers x and y.

3. Define greatest common divisor with example.
4. What is relatively prime.

5. Discuss about Diophantine equation.

6. Prove that if pisaprimeand pjab,then pjaor p)b.

7. State Euclid theorem.
8. Define Linear congruence.

9. Prove if gcd(a,n) =1,then the linear congruence ax =b(mod n) has a unique solution modulo
n.

10. State Chinese Remainder theorem.

8 Mark Questions:

1. Prove that the linear Diophantine equation ax+by =c has a solution if and only if d|c

,where d =gcd(a,b). If x,, Yy, is any particular solution of this equation then all other
solutions are given by

X=X, +(b/d)t, y=y,—(a/d)t
for varying integers t.
2. Determine all the solutions in the integers of each of the following Diophantine equations:
a) 56x+ 72y =40;
b) 24x+138y=18;
C) 221x+91ly=117;

d) 84x-—-438y=156.
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3. Determine all the solutions in the Positive integers of each of the following Diophantine
equations:

a) 30x+17y=300;
b) 54x+ 21y =906;
c) 123x+360y =99,
4. State and prove fundamental theorem of Arithmetic.
5. State and prove Euclid Lemma.
6. Prove that if p_is the n prime number, then p, <27
7. Prove that there are infinite number of primes of the form 4n+3.

8. Prove that the linear congruence ax=b(mod n) has a solution if and only if d|b, where
d =gcd(a,n). if d|b,then it has d mutually in-congruent solutions modulo n.

9. State and Prove Chinese Remainder theorem.

10. Solve the following linear congruence:

a) 25x =15(mod 29) b)  5x=2(mod 26)
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UNIT-II
SYLLABUS

Fermat’s Little theorem, Wilson’s theorem. Number theoretic functions, sum and number of divisors,
Totally multiplicative functions , Definition and properties of the Dirichlet product.
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FINDING ALL SPANNING TREES OF A GRAPH

Usually, in a given connected graph there are a large number of spanning
trees. In many applications we require all spanning trees. One reasonable
way to generate spanning trees of a graph is to start with a given spanning
tree, say tree T, (a b ¢ d in Fig. 3-19). Add a chord, say A, to the tree T,. This
forms a fundamental circuit (b ¢ hdin Fig. 3-19). Removal of any branch,
say ¢, from the fundamental circuit b ¢ & d just formed will create a new

€ a a e
/Y e\ ' b,
c d c d g
h h h
IA T, T

1 2 3

Fig. 3-19 Graph and three of its spanning trees.

spanning tree 7. This generation of one spanning tree from another, through
addition of a chord and deletion of an appropriate branch, is called a eyelic
interchange or elementary tree transformation. (Such a transformation is a

standard operation in the iteration sequence for solving certain transporta-
tion problems.)

In the above procedure, instead of deleting branch ¢, we could have de-
leted d or b and thus would have obtained two additional spanning trees
ab c hand achd Moreover, after generating these three trees, each with
chord 4 in it, we can restart with 7, and add a different chord (e, f, or g) and
repeat the process of obtaining a different spanning tree each time a branch
is deleted from the fundamental circuit formed. Thus we have a procedure
for generating spanning trees for any given graph.
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As we shall see in Chapter 13, the topological analysis of a linear elec-
trical network essentially reduces to the generation of trees in the correspond-
ing graph. Therefore, finding an efficient procedure for generating all trees
of a graph is a very important practical problem.

The procedure outlined above raises many questions. Can we start from
any spanning tree and get a desired spanning tree by a number of cyclic
exchanges? Can we get all spanning trees of a given graph in this fashion?
How long will we have to continue exchanging edges? Out of all possible
spanning trees that we can start with, is there a preferred one for starting?
Let us try to answer some of these questions; others will have to wait until
Chapters 7, 10, and 11.

The distance between two spanning trees T, and T, of a graph G is defined
as the number of edges of G present in one tree but not in the other. This
distance may be written as d(7, T,). For instance, in Fig. 3-19 d(T;, T;) = 3.

Let T, ® T, be the ring sum of two spanning trees 7, and T, of G (as
defined in Chapter 2, T, @ T, is the subgraph of G containing all edges of

G that are either in T, or in T, but not in both). Let N(g) denote the number
of edges in a graph g. Then, from definition,

d(T, T) = 5 N(T,® T)).

It 1s not difficult to see that the number d(T, T;) is the minimum number of
cyclic interchanges involved in going from T, to T,. The reader is encouraged
to prove the following two theorems.

THEOREM 3-14

The distance between the spanning trees of a graph is a merric. That is, it satisfies
d(T,T) =0 and d(T,T;) =0ifandonlyif T, = T,

d(T;, T)) = d(T};, T)),
d(T;, T;)) = d(T;, Tye) + d(T, T)).
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THEOREM 3-15

Starting from any spanning tree of a graph G, we can obtain every spanning
tree of G by successive cyclic exchanges.

Since in a connected graph & of rank r (i.e., of r 4+ | vertices) a spanning
tree has r edges, we have the following results:
The maximum distance between any two spanning trees in G is

max d(T,, T,) = % max N(T, ® T)
<_ r, the rank of G.

Also, if g is the nullity of G, we know that no more than x edges of a span-
ning tree T, can be replaced to get another tree T,.

Hence max d(T,, T;) < pu;

combining the two,
max d(T,, T;) =< min(y, r),

where min(y, r) is the smaller of the two numbers u and r of the graph G.

Central Tree: For a spanning tree T, of a graph G, let max d(7T,, T,)
i

denote the maximal distance between T, and any other spanning tree of G.
Then T, is called a central tree of G if

max d(T,, T;) << max d(T, T) for every tree T of G.
i )

The concept of a central tree is useful in enumerating all trees of a given
graph. A central tree in a graph is, in general, not unique. For more on cen-
tral trees the reader should see [3-1] and [3-4].

Tree Graph: The tree graph of a given graph G is defined as a graph in

which each vertex corresponds to a spanning tree of G, and each edge cor-
responds to a cyclic interchange between the spanning trees of G represented
by the two end vertices of the edge. From Theorem 3-15 we know that start-
ing from any spanning tree we can obtain all other spanning trees through
cyclic interchanges (or elementary tree transformations). Therefore, the tree
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graph of any given (finite, connected) graph is connected. For additional
properties of tree graphs, the reader should see [3-3].

SPANNING TREES IN A WEIGHTED GRAPH

As discussed earlier in this chapter, a spanning tree in a graph G is a
minimal subgraph connecting all the vertices of G. If graph G is a weighted
graph (i.e., if there is a real number associated with each edge of G), then
the weight of a spanning tree T of G is defined as the sum of the weights of
all the branches in 7. In general, different spanning trees of G will have
different weights. Among all the spanning trees of G, one with the smallest
weight is of practical significance. (There may be several spanning trees with
the smallest weight; for instance, in a graph of n vertices in which every edge
has unit weight, all spanning trees have a weight of n — 1 units.) A spanning
tree with the smallest weight in a weighted graph is called a shortest spanning
tree or shortest-distance spanning tree or minimal spanning tree.

One possible application of the shortest spanning tree is as follows: Sup-
pose that we are to connect n cities v,, v, . . . , v, through a network of roads.
The cost ¢;; of building a direct road between v, and v, is given for all pairs of
cities where roads can be built. (There may be pairs of cities between which
no direct road can be built.) The problem is then to find the least expensive
network that connects all n cities together. It is immediately evident that this
connected network must be a tree: otherwise, we can always remove some
edges and get a connected graph with smaller weight. Thus the problem of
connecting » cities with a least expensive network is the problem of finding
a shortest spanning tree in a connected weighted graph of n vertices. A neces-
sary and sufficient condition for a spanning tree to be shortest is given by

THEOREM 3-16

A spanning tree T (of a given weighted connected graph G) is a shortest spanning
tree (of G) if and only if there exists no other spanning tree (of G) at a distance of
one from T whose weight is smaller than that of T.

Proof: The necessary or the “only if” condition is obvious; otherwise, we shall
get another tree shorter than T by a cyclic interchange. The fact that this condition
is also sufficient is remarkable and is not obvious. It can be proved as follows:

Let T, be a spanning tree in G satisfying the hypothesis of the theorem (i.e.,
there is no spanning tree at a distance of one from T, which is shorter than T;).
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The proof will be completed by showing that if T, is a shortest spanning tree (dif-
ferent from T,) in G, the weight of T, will also be equal to that of 7,. Let T, be
a shortest spanning tree in G. Clearly, T, must also satisfy the hypothesis of the
theorem (otherwise there will be a spanning tree shorter than T, at a distance of
one from T, violating the assumption that T, is shortest).

Consider an edge e in T, which is not in T,. Adding e to T, forms a fundamental
circuit with branches in T;. Some, but not all, of the branches in T, that form the
fundamental circuit with ¢ may also be in T,; each of these branches in T, has
a weight smaller than or equal to that of e, because of the assumption on T,.
Amongst all those edges in this circuit which are not in T', at least one, say b;, must
form some fundamental circuit (with respect to T5) containing e. Because of the
minimality assumption on T, weight of b; cannot be less than that of e. Therefore
b; must have the same weight as e. Hence the spanning tree 7; = (T, Ue — b;),
obtained from T, through one cycle exchange, has the same weight as T,. But
T, has one edge more in common with T, and it satisfies the condition of Theorem
3-16. This argument can be repeated, producing a series of trees of equal weight,

T, Ty, Ty, ..., each a unit distance closer to T, until we get T, itself.
This proves that if none of the spanning trees at a unit distance from 7" is shorter

than T, no spanning tree shorter than 7 exists in the graph. W

Algorithm for Shortest Spanning Tree: There are several methods available
for actually finding a shortest spanning tree in a given graph, both by hand
and by computer. One algorithm due to Kruskal [3-8] is as follows: List all
edges of the graph G in order of nondecreasing weight. Next, select a smallest
edge of G. Then for each successive step select (from all remaining edges of
G) another smallest edge that makes no circuit with the previously selected
edges. Continue until » — 1 edges have been selected, and these edges will
constitute the desired shortest spanning tree. The validity of the method
follows from Theorem 3-16.

Another algorithm, which does not require listing all edges in order of
nondecreasing weight or checking at each step if a newly selected edge forms
a circuit, is due to Prim [3-10). For Prim’s algorithm, draw n isolated vertices
and label them v,, v,, . .., v,. Tabulate the given weights of the edges of G
in an n by n table. (Note that the entries in the table are symmetric with re-
spect to the diagonal, and the diagonal is empty.) Set the weights of non-
existent edges (corresponding to those pairs of cities between which no direct
road can be built) as very large.
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Start from vertex v, and connect it to its nearest neighbor (i.e., to the
vertex which has the smallest entry in row 1 of the table), say v,. Now con-
sider v, and v, as one subgraph, and connect this subgraph to its closest
neighbor (i.e., to a vertex other than v, and v, that has the smallest entry
among all entries in rows 1 and k). Let this new vertex be v,. Next regard the
tree with vertices »,, v,, and v, as one subgraph, and continue the process
until all n vertices have been connected by n — 1 edges. Let us now illustrate
this method of finding a shortest spanning tree.

S 10 v, Y - 100 16 11 o 17
9
’V y, | 10 - 95 e o 195
10 _
" 4 vy 16 95 7 o0 12
u Il oo 7 - 8 7
Uy 4
Us 10 oo &0 ] - 9
Vg 17 195 12 7 9 -
19.5 - -

(a) (b)

Fig. 3-20 Shortest spanning tree in a weighted graph.

A connected weighted graph with 6 vertices and 12 edges is shown in Fig.
3-20(a). The weight of its edges is tabulated in Fig. 3-20(b). We start with v,
and pick the smallest entry in row 1, which is either (v,, v,) or (v, v,). Let us
pick (v,, v,). [Had we picked (v, v,) we would have obtained a different
shortest tree with the same weight.] The closest neighbor of subgraph (v,, v,)
1s v,, as can be seen by examining all the entries in rows 1 and 5. The three re-
maining edges selected following the above procedure turn out to be (v,, vy),
(v4, v;), and (v,, v,) in that sequence. The resulting tree—a shortest spanning
tree—is shown in Fig. 3-20(a) in heavy lines. The weight of this tree is 41.5
units.

Degree-Constrained Shortest Spanning Tree: In a shortest spanning tree
resulting from the preceding construction, a vertex v, can end up with any
degree; that is, | << d(v,) << n — 1. In some practical cases an upper limit on
the degree of every vertex (of the resulting spanning tree) has to be imposed.
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For instance, in an electrical wiring problem, one may be required to wire
together » pins (using as little wire as possible) with no more than three wires
wrapped around any individual pin. Thus, in this particular case,

d(v) <3 for every v,.

Such a spanning tree is called a degree-constrained shortest spanning tree.
In general, the problem may be stated as follows: Given a weighted con-
nected graph G, find a shortest spanning tree 7' in G such that

dv,) < k for every vertex v, in T.

If k = 2, this problem, in fact, reduces to the problem of finding the shortest
Hamiltonian path, as well as the traveling-salesman problem (without the

salesman returning to his home base), discussed at the end of Chapter 2. So
far, no efficient method of finding an arbitrarily degree-constrained shortest
spanning tree has been found.

CUT-SETS

In a connected graph G, a cur-set is a set of edgest whose removal from G
leaves G disconnected, provided removal of no proper subset of these edges
disconnects G. For instance, in Fig. 4-1 the set of edges {q, ¢, d, f}is a cut-set.
There are many other cut-sets, such as{a, b, g},{a, b, e, f},and {d, h, f}. Edge
{k} alone is also a cut-set. The set of edges {a, ¢, h, d}, on the other hand, is not
a cut-set, because one of its proper subsets, {a, ¢, A}, is a cut-set.

To emphasize the fact that no proper subset of a cut-set can be a cut-set,
some authors refer to a cut-set as a minimal cut-set, a proper cut-set, or a
simple cut-set. Sometimes a cut-set is also called a cocycle. We shall just use
the term cut-set.

A cut-set always “cuts” a graph into two. Therefore, a cut-set can also be
defined as a minimal set of edges in a connected graph whose removal reduces
the rank of the graph by one. The rank of the graph in Fig. 4.1(b), for in-

$Since a set of edges (together with their end vertices) constitutes a subgraph, a cut-
set in G is a subgraph of G.
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Fig. 4-1 Removal of a cut-set {a, ¢, d, f} from a graph “cuts” it

into two.
stance, is four, one less than that of the graph in Fig. 4.1(a). Another way of
looking at a cut-set is this: if we partition all the vertices of a connected graph
G into two mutually exclusive subsets, a cut-set is a minimal number of edges
whose removal from G destroys all paths between these two sets of vertices.
For example, in Fig. 4-1(a) cut-set {a, ¢, d, f'} connects vertex set {v,, v,, v4}
with {v,, v,, v5}. (Note that one or both of these two subsets of vertices may
consist of just one vertex.) Since removal of any edge from a tree breaks the
tree into two parts, every edge of a tree is a cut-set.

Cut-sets are of great importance in studying properties of communication
and transportation networks. Suppose, for example, that the six vertices in
Fig. 4-1(a) represent six cities connected by telephone lines (edges). We wish
to find out if there are any weak spots in the network that need strengthening
by means of additional telephone lines. We look at all cut-sets of the graph,
and the one with the smallest number of edges is the most vulnerable. In Fig.
4-1(a), the city represented by vertex », can be severed from the rest of the
network by the destruction of just one edge. After some additional study of
the properties of cut-sets, we shall return to their applications.
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SOME PROPERTIES OF A CUT-SET

Consider a spanning tree T in a connected graph G and an arbitrary cut-
set Sin G. Is it possible for S not to have any edge in common with 7?7 The
answer is no. Otherwise, removal of the cut-set S from G would not discon-

nect the graph. Therefore,
THEOREM 4-1

Every cut-set in a connected graph G must contain at least one branch of every
spanning tree of G.

Will the converse also be true? In other words, will any minimal set of
edges containing at least one branch of every spanning tree be a cut-set? The
answer is yes, by the following reasoning:

In a given connected graph G, let Q be a minimal set of edges containing
at least one branch of every spanning tree of G. Consider G — Q, the sub-
graph that remains after removing the edges in Q from G. Since the subgraph
G — Q contains no spanning tree of G, G — Q is disconnected (one compo-
nent of which may just consist of an isolated vertex). Also, since Q is a mini-
mal set of edges with this property, any edge e from Q returned to G — Q
will create at least one spanning tree. Thus the subgraph G — Q + e will be
a connected graph. Therefore, Q is a minimal set of edges whose removal
from G disconnects G. This, by definition, is a cut-set. Hence

THEOREM 4-2

In a connected graph G, any minimal set of edges containing at least one branch
of every spanning tree of G is a cut-set.

THEOREM 4-3

Every circuit has an even number of edges in common with any cut-set.

Proof: Consider a cut-set S in graph G (Fig. 4-2). Let the removal of .S partition
the vertices of G into two (mutually exclusive or disjoint) subsets ¥, and V,. Con-
sider a circuit I' in G. If all the vertices in I are entirely within vertex set V, (or V),
the number of edges common to S and I is zero; that is, N(S 1 I') = 0, an even

number.t
If, on the other hand, some vertices in I are in ¥, and some in V3, we traverse
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Circuit I' shown in heavy lines, and is
traversed along the direction of the arrows
Fig. 4-2 Circuit and a cut-set in G.

back and forth between the sets V/, and V, as we traverse the circuit (see Fig. 4-2).
Because of the closed nature of a circuit, the number of edges we traverse between
V, and V; must be even. And since very edge in § has one end in V, and the other

in ¥, and no other edge in G has this property (of separating sets V, and V;),
the number of edges common to S and I is even. |

ALL CUT-SETS IN A GRAPH

Fundamental Cut-Sets: Consider a spanning tree T of a connected graph
G. Take any branch b in T. Since {b} is a cut-set in T, {b} partitions all vertices
of T into two disjoint sets—one at each end of b. Consider the same partition
of vertices in G, and the cut set S in G that corresponds to this partition. Cut-
set S will contain only one branch b of T, and the rest (if any) of the edges in
S are chords with respect to 7. Such a cut-set S containing exactly one branch
of a tree T is called a fundamental cut-set with respect to 7. Sometimes a
fundamental cut-set is also called a basic cut-set. In Fig. 4-3, a spanning tree

Fig. 4-3 Fundamental cut-sets of a graph.
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T (in heavy lines) and all five of the fundamental cut-sets with respect to T
are shown (broken lines “cutting” through each cut-set).

Just as every chord of a spanning tree defines a unique fundamental cir-
cuit, every branch of a spanning tree defines a unigue fundamental cut-set. It
must also be kept in mind that the term fundamental cut-set (like the term
fundamental circuit) has meaning only with respect to a given spanning tree.

Now we shall show how other cut-sets of a graph can be obtained from a
given set of cut-sets.

THEOREM 4-4

The ring sum of any two cut-sets in a graph is either a third cut-set or an edge-
disjoint union of cut-sets.

Outline of Proof: Let S, and S, be two cut-sets in a given connected graph
G. Let V, and ¥V, be the (unique and disjoint) partitioning of the vertex set
V of G corresponding to S,. Let V; and ¥V, be the partitioning corresponding
to S,. Clearly [see Figs. 4-4(a) and (b)],

VIUVZ"'_—V al'ld V|ﬁV2:Qj,
V}UV,‘:V and VJHV.i:g.

Now let the subset (V, N V,) U (V> M V;) be called Vs, and this by
definition is the same as the ring sum V, @ V. Similarly, let the subset
(V, 1 V3) U (V, N V,) becalled V4, which is the same as V, & V. See Fig.
4-4(c).

The ring sum of the two cut-sets S, @ S, can be seen to consist only of
edges that join vertices in ¥ to those in V. Also, there are no edges outside
S, @ S, that join vertices in ¥ to those in V.

Thus the set of edges S, @ S, produces a partitioning of V into V5 and
V¢ such that

ViuVe=V and Vsn V, = @.

Hence S, (B §; is a cut-set if the subgraphs containing V5 and V4 each remain
connected after S, @ S, is removed from G. Otherwise, S, ® S, 1s an edge-
disjoint union of cut-sets.

Example: In Fig. 4-3 let us consider ring sums of the following three pairs
of cut-sets.
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Example: In Fig. 4-3 let us consider ring sums of the following three pairs
of cut-sets.
{dye,f1®D{f g h} ={d, e, g h}, another cut-set,
{a, b} D (b, c,e,f} = {a, c, e [}, another cut-set,
{doeg ht@{fgkl=1{delf hk}
= {d, e, f} U {h, k}, an edge-disjoint
union of cut-sets.

e ——

- S
| - ~o
! / ~
\\
’ /
Vd A ' \
/ AT \
/ A g ]
I
/
/
y

(b) (c)

Fig. 4-4 Two cut-sets and their partitionings.
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So we have a method of generating additional cut-sets from a number of
given cut-sets. Obviously, we cannot start with any two cut-sets in a given
graph and hope to obtain all its cut-sets by this method. What then is a
minimal set of cut-sets from which we can obtain every cut-set of G by taking
ring sums? The answer (to be proved in Chapter 6) is the set of all fundamen-
tal cut-sets with respect to a given spanning tree.

FUNDAMENTAL CIRCUITS AND CUT-SETS

Consider a spanning tree 7'in a given connected graph G. Let ¢, be a chord
with respect to T, and let the fundamental circuit made by ¢, be called I', con-
sisting of k branches b,, b,, . . ., b, in addition to the chord ¢,; that is,

I ={c,b,b, ...,b} isa fundamental circuit with respect to 7.

Every branch of any spanning tree has a fundamental cut-set associated with

it. Let .S, be the fundamental cut-set associated with b,, consisting of g chords
in addition to the branch b, ; that is,

Sy =1{b,,c, ¢y ..., ¢} 1isafundamental cut-set with respect to 7.

Because of Theorem 4-3, there must be an even number of edges common
toI’ and S,. Edge b, is in both I" and S,, and there is only one other edge in
I" (which is ¢;) that can possibly also be in S,. Therefore, we must have two
edges b, and ¢, common to S, and I'. Thus the chord ¢, is one of the chords

CisCayvvvy €y
Exactly the same argument holds for fundamental cut-sets associated with
b,, b, . .., and b,. Therefore, the chord c, is contained in every fundamental

cut-set associated with branches in I".

Is it possible for the chord ¢, to be in any other fundamental cut-set S’
(with respect to T, of course) besides those associated with b,, b,, ... and b, ?
The answer is no. Otherwise (since none of the branches in I are in S'), there
would be only one edge ¢, common to S" and I', a contradiction to Theorem
4-3. Thus we have an important result.

THEOREM 4-5

With respect to a given spanning tree 7, a chord ¢; that determines a fundamental
circuit I' occurs in every fundamental cut-set associated with the branches in I’
and in no other.
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As an example, consider the spanning tree {b, ¢, e, h, k}, shown in heavy
lines, in Fig. 4-3. The fundamental circuit made by chord fis

{f. e, h, k}.

The three fundamental cut-sets determined by the three branches e, A, and k
are

determined by branch e: {d, e, [},
determined by branch h: [ f, g, A},
determined by branch k: [/, g, k}.

Chord f occurs in each of these three fundamental cut-sets, and there is no
other fundamental cut-set that contains f. The converse of Theorem 4-5 is
also true.

THEOREM 4-6

With respect to a given spanning tree 7, a branch b; that determines a funda-
mental cut-set S is contained in every fundamental circuit associated with the
chords in §, and in no others.

As an example, consider the spanning tree {b, c, e, h, k}, shown in heavy
lines, in Fig. 4-3. The fundamental circuit made by chord fis

{f. e h ki

The three fundamental cut-sets determined by the three branches e, 4, and k
are

determined by branch e: {d, e, f}.
determined by branch A: {f, g, h},
determined by branch k: [/, g, k.
Chord f occurs in each of these three fundamental cut-sets, and there is no

other fundamental cut-set that contains f. The converse of Theorem 4-5 is
also true.
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THEOREM 4-6

With respect to a given spanning tree 7, a branch b; that determines a funda-
mental cut-set S is contained in every fundamental circuit associated with the
chords in §, and in no others.

Proof: The proof consists of arguments similar to those that led to Theorem
4-5. Let the fundamental cut-set .S determined by a branch b; be
S = {bf) Cry Caa v v vy Cp}3
and let I'; be the fundamental circuit determined by chord ¢, :

Iy ={c,b,ba...,b.

Since the number of edges common to § and I'; must be even, b; must be in I',.
The same is true for the fundamental circuits made by chords c,, ¢3, ..., ¢p.

On the other hand, suppose that b; occurs in a fundamental circuit I",,, made
by a chord other than ¢, ¢;, ..., ¢,. Since none of the chords ¢y, ¢3,..., ¢, is
in I',,,, there is only one edge b, common to a circuit I',., and the cut-set S,
which is not possible. Hence the theorem. W

Turning again for illustration to the graph in Fig. 4-3, consider branch
e of spanning tree {b, c, e, h, k}. The fundamental cut-set determined by e is

{e, d, [}.
The two fundamental circuits determined by chords 4 and f are

determined by chord d: {d, c, e},
determined by chord /= {f, e, h, k}.

Branch e is contained in both these fundamental circuits, and none of the
remaining three fundamental circuits contains branch e.

CONNECTIVITY AND SEPARABILITY

Edge Connectivity: Each cut-set of a connected graph G consists of a cer-
tain number of edges. The number of edges in the smallest cut-set (i.e., cut-
set with fewest number of edges) is defined as the edge connectivity of G.
Equivalently, the edge connectivity of a connected grapht can be defined as
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the minimum number of edges whose removal (i.e., deletion) reduces the
rank of the graph by one. The edge connectivity of a tree, for instance, is one.
The edge connectivities of the graphs in Figs. 4-1(a), 4-3, 4-5 are one, two,
and three, respectively.

Vertex Connectivity: On examining the graph in Fig. 4-5, we find that
although removal of no single edge (or even a pair of edges) disconnects the

Fig. 4-5 Separable graph.

graph, the removal of the single vertex v does.t Therefore, we define another
analogous term called vertex connectivity. The vertex connectivity (or simply
connectivity) of a connected graph G is defined as the minimum number of
vertices whose removal from G leaves the remaining graph disconnected.}
Again, the vertex connectivity of a tree is one. The vertex connectivities of the
graphs in Figs. 4-1(a), 4-3, and 4-5 are one, two, and one, respectively. Note
that from the way we have defined it vertex connectivity is meaningful only
for graphs that have three or more vertices and are not complete.

Separable Graph: A connected graph is said to be separable if its vertex
connectivity is one. All other connected graphs are called nonseparable. An
equivalent definition is that a connected graph G is said to be separable if
there exists a subgraph g in G such that g (the complement of g in G) and g
have only one vertex in common. That these two definitions are equivalent
can be easily seen (Problem 4-7). In a separable graph a vertex whose removal
disconnects the graph is called a cur-vertex, a cut-node, or an articulation point.
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For example, in Fig. 4-5 the vertex v is a cut-vertex, and in Fig. 4-1(a) vertex
v, 1s a cut-vertex. It can be shown (Problem 4-18) that in a tree every vertex
with degree greater than one is a cut-vertex. Moreover:

THEOREM 4-7

A vertex v in a connected graph G is a cut-vertex if and only if there exist two
vertices x and y in G such that every path between x and y passes through v.

The proof of the theorem is quite easy and is left as an exercise (Problem
4-17). The implication of the theorem is very significant. It states that v is a
crucial vertex in the sense that any communication between x and y (if G re-
presented a communication network) must “pass through” ».

Fig. 4-6 Graph with 8 vertices and 16
cdges.

An Application: Suppose we are given n stations that are to be connected
by means of e lines (telephone lines, bridges, railroads, tunnels, or highways)
where e > n — 1. What is the best way of connecting? By “best” we mean
that the network should be as invulnerable to destruction of individual sta-
tions and individual lines as possible. In other words, construct a graph with
n vertices and e edges that has the maximum possible edge connectivity and
vertex connectivity.

For example, the graph in Fig. 4-5 has n = 8, e = 16, and has vertex
connectivity of one and edge connectivity of three. Another graph with the
same number of vertices and edges (8 and 16, respectively) can be drawn as
shown in Fig. 4-6.

It can easily be seen that the edge connectivity as well as the vertex con-
nectivity of this graph is four. Consequently, even after any three stations are
bombed, or any three lines destroyed, the remaining stations can still con-
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tinue to “communicate” with each other. Thus the network of Fig. 4-6 is
better connected than that of Fig. 4-5 (although both consist of the same
number of lines—16).

THEOREM 4-8

The edge connectivity of a graph G cannot exceed the degree of the vertex with
the smallest degree in G.

Proof: Let vertex v; be the vertex with the smallest degree in G. Let d(v;) be
the degree of »;. Vertex v; can be separated from G by removing the d(v;) edges
incident on vertex v;. Hence the theorem. |}

THEOREM 4-9

The vertex connectivity of any graph G can never exceed the edge connectivity
of G.

Proof: Let o0 denote the edge connectivity of G. Therefore, there exists a cut-
set S in & with & edges. Let S partition the vertices of G into subsets ¥V, and V,.
By removing at most & vertices from ¥, (or V;) on which the edges in § are incident,

we can effect the removal of S (together with all other edges incident on these
vertices) from G. Hence the theorem. |}

COROLLARY

Every cut-set in a nonseparable graph with more than two vertices contains at
least two edges.

THEOREM 4-10

The maximum vertex connectivity one can achieve with a graph G of n vertices
and e edges (¢ = n — 1) is the integral part of the number 2e¢/n; that is, | 2¢e/n .

Proof: Every edge in G contributes two degrees. The total (2e degrees) is divided
among n vertices. Therefore, there must be at least one vertex in G whose degree
is equal to or less than the number 2¢/n. The vertex connectivity of G cannot exceed
this number, in light of Theorems 4-8 and 4-9.

To show that this value can actually be achieved, one can first construct an
n-vertex regular graph of degree | 2e/n | and then add the remaining e — (n/2)-| 2e/n |
edges arbitrarily. The completion of the proof is left as an exercise.

The results of Theorems 4-8, 4-9, and 4-10 can be summarized as follows:

Ze,

vertex connectivity << edge connectivity == —
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maximum vertex connectivity possible = {%?J-

Thus, for a graph with 8 vertices and 16 edges (Figs. 4-5 and 4-6), for example,
we can achieve a vertex connectivity (and therefore edge connectivity) as
high as four (= 2-16/8).

A graph G is said to be k-connected if the vertex connectivity of G is k;
therefore, a I-connected graph is the same as a separable graph.

THEOREM 4-11

A connected graph G is k-connected if and only if every pair of vertices in G is
joined by k or more paths that do not intersect,t and at least one pair of vertices
is joined by exactly k nonintersecting paths.

THEOREM 4-12

The edge connectivity of a graph G is k if and only if every pair of vertices in
G is joined by k or more edge-disjoint paths (i.e., paths that may intersect, but have
no edges in common), and at least one pair of vertices is joined by exactly k edge-
disjoint paths.

The reader is referred to Chapter 5 of [1-5] for the proofs of Theorems
4-11 and 4-12. Note that our definition of k-connectedness is slightly differ-
ent from the one given in [1-5]. A special result of Theorem 4-11 is that a
graph G is nonseparable if and only if any pair of vertices in G can be placed
in a circuit (Problem 4-13).

The reader is encouraged to verify these theorems by enumerating all
edge-disjoint and vertex-disjoint paths between each of the 15 pairs of ver-
tices in Fig. 4-3.

NETWORK FLOWS

In a network of telephone lines, highways, railroads, pipelines of oil (or
gas or water), and so on, it is important to know the maximum rate of flow
that i1s possible from one station to another in the network. This type of net-
work 1s represented by a weighted connected graph in which the vertices
are the stations and the edges are lines through which the given commodity
(oil, gas, water, number of messages, number of cars, etc.) flows. The weight,
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a real positive number, associated with each edge represents the capacity of
the line, that is, the maximum amount of flow possible per unit of time. The
graph in Fig. 4-7, for example, represents a flow network consisting of 12
stations and 31 lines. The capacity of each of these lines is also indicated in
the figure.

It 1s assumed that at each intermediate vertex the total rate of commodity
entering is equal to the rate leaving. In other words, there is no accumulation
or generation of the commodity at any vertex along the way. Furthermore,
the flow through a vertex is limited only by the capacities of the edges inci-
dent on it. In other words, the vertex itself can handle as much flow as allowed
through the edges. Finally, the lines are lossless.

Fig. 4-7 Graph of a flow network.

In such a flow problem the questions to be answered are

1. What is the maximum flow possible through the network between a
specified pair of vertices—say, from B to M in Fig. 4-7?

2. How do we achieve this flow (i.e., determine the actual flow through
each edge when the maximum flow exists)?

Theorem 4-13, perhaps the most important result in the theory of trans-
port networks, answers the first question. The second question is answered
implicitly by a constructive proof of the theorem. To facilitate the statement
and proof of the theorem, let us define a few terms.
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A cut-set with respect to a pair of vertices a and b 1n a connected graph G
puts @ and b into two different components (i.e., separates vertices a and b).
For instance, in Fig. 4-3 cut-set {d, e, f'} is a cut-set with respect to v, and v;.
The set {f, g, h} is also a cut-set with respect to v, and v,. But the cut-set
{/, &, h} is not a cut-set with respect to v, and v,. The capacity of cut-set S in
a weighted connected graph G (in which the weight of each edge represents
its flow capacity) is defined as the sum of the weights of all the edges in S.

THEOREM 4-13

The maximum flow possible between two vertices @ and b in a network is equal
to the minimum of the capacities of all cut-sets with respect to @ and b.

Proof: Consider any cut-set S with respect to vertices @ and b in G. In the sub-
graph G — S (the subgraph left after removing S from G) there is no path between
a and b. Therefore, every path in G between a and b must contain at least one edge
of §. Thus every flow from a to b (or from b to @) must pass through one or more
edges of S. Hence the total flow rate between these two vertices cannot exceed the
capacity of S. Since this holds for all cut-sets with respect to @ and b, the flow rate
cannot exceed the minimum of their capacities. [}

1-ISOMORPHISM

A separable graph consists of two or more nonseparable subgraphs. Each
of the largest nonseparable subgraphs is called a block. (Some authors use the
term component, but to avoid confusion with components of a disconnected
graph, we shall use the term block.) The graph in Fig. 4-5 has two blocks. The
graph in Fig. 4-8 has five blocks (and three cut-vertices a, b, and c); each block

Fig. 4-8 Separable graph with three cut-vertices and five blocks.
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Fig. 4-9 Disconnected graph 1-isomorphic to Fig. 4-8.

1s shown enclosed by a broken line. Note that a nonseparable connected
graph consists of just one block.

Visually compare the disconnected graph in Fig. 4-9 with the one in Fig.
4-8. These two graphs are certainly not isomorphic (they do not have the same
number of vertices), but they are related by the fact that the blocks of the
graph in Fig. 4-8 are isomorphic to the components of the graph in Fig. 4-9,
Such graphs are said to be [/-isomorphic. More formally:

Two graphs G, and G, are said to be I-isomorphic if they become isomor-
phic to each other under repeated application of the following operation.

Operation 1: *“Split” a cut-vertex into two vertices to produce two disjoint
subgraphs.

From this definition it is apparent that two nonseparable graphs are 1-
isomorphic if and only if they are isomorphic.

THEOREM 4-14

If ¢, and G, are two l-isomorphic graphs, the rank of G, equals the rank of
G, and the nullity of ¢/, equals the nullity of G,.

Proof: Under operation [, whenever a cut-vertex in a graph G is “split” into

two vertices, the number of components in G increases by one. Therefore, the rank
of G which is

number of vertices in G — number of components in G

remains invariant under operation 1.
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Also, since no edges are destroyed or new edges created by operation 1, two
l1-isomorphic graphs have the same number of edges. Two graphs with equal rank
and with equal numbers of edges must have the same nullity, because

nullity — number of edges — rank. |

What if we join two components of Fig. 4-9 by “gluing” together two
vertices (say vertex x to y)? We obtain the graph shown in Fig. 4-10.

Clearly, the graph in Fig. 4-10 is 1-isomorphic to the graph in Fig. 4-9.
Since the blocks of the graph in Fig. 4-10 are isomorphic to the blocks of the
graph in Fig. 4-8, these two graphs are also l-isomorphic. Thus the three
graphs in Figs. 4-8, 4-9, and 4-10 are 1-isomorphic to one another.

(‘2

Fig. 4-10 Graph 1-isomorphic to Figs. 4-8 and 4-9.

2-1SOMORPHISM

In Section 4-7 we generalized the concept of isomorphism by introducing
l1-isomorphism. A graph G, was l-isomorphic to graph G, if the blocks of G,
were isomorphic to the blocks of G,. Since a nonseparable graph is just one
block, 1-isomorphism for nonseparable graphs is the same as isomorphism.
However, for separable graphs (i.e., graphs with vertex connectivity of one),
1-isomorphism is different from isomorphism. Graphs that are isomorphic
are also 1-isomorphic, but I-isomorphic graphs may not be isomorphic. This
generalized isomorphism is very useful in the study of separable graphs.
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We can generalize this concept further to broaden its scope for 2-connect-
ed graphs (i.e., graphs with vertex connectivity of two), as follows:

In a 2-connected graph G let vertices x and y be a pair of vertices whose
removal from G will leave the remaining graph disconnected. In other words,
G consists of a subgraph g, and its complement g, such that g, and g, have
exactly two vertices, x and y, in common. Suppose that we perform the fol-
lowing operation 2 on G (after which, of course, G no longer remains the
original graph).

Operation 2: “Split” the vertex x into x, and x, and the vertex y into y,
and y, such that G is splitinto g, and g,. Let vertices x, and y, go with g, and
x, and y, with g,. Now rejoin the graphs g, and g, by merging x, with y, and
x, with y,. (Clearly, edges whose end vertices were x and y in G could have
gone with g, or g,, without affecting the final graph.)

Two graphs are said to be 2-isomorphic if they become isomorphic after
undergoing operation 1 (in Section 4-7) or operation 2, or both operations
any number of times. For example, Fig. 4-11 shows how the two graphs in
Figs. 4-11(a) and (d) are 2-isomorphic. Note that in (a) the degree of vertex
x is four, but in (d) no vertex is of degree four.

From the definition it follows immediately that isomorphic graphs are
always l-isomorphic, and l-isomorphic graphs are always 2-isomorphic.
But 2-isomorphic graphs are not necessarily 1-isomorphic, and 1-isomorphic

X x| Xy
Y
g
g
°
v oY

(a) (b)
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Fig. 4-11 2-isomorphic graphs (a) and (d).

graphs are not necessarily isomorphic. However, for graphs with connectivity
three or more, isomorphism, l-isomorphism, and 2-isomorphism are syn-
onymous.

It is clear that no edges or vertices are created or destroyed under opera-
tion 2. Therefore, the rank and nullity of a graph remain unchanged under
operation 2. And as shown in Section 4-7, the rank or nullity of a graph does
not change under operation 1. Therefore, 2-isomorphic graphs are equal in
rank and equal in nullity. The fact that the rank r and nullity # are not enough
to specify a graph within 2-isomorphism can easily be shown by constructing
a counterexample (Problem 4-23).

Circuit Correspondence: Two graphs G, and G, are said to have a circuit
correspondence if they meet the following condition: There is a one-to-one
correspondence between the edges of G, and G, and a one-to-one correspond-
ence between the circuits of G, and G,, such that a circuit in G, formed by
certain edges of G, has a corresponding circuit in G, formed by the corre-
sponding edges of G,, and vice versa. Isomorphic graphs, obviously, have
circuit correspondence.

Since in a separable graph G every circuit is confined to a particular
block (Problem 4-15), every circuit in G retains its edges as G undergoes
operation I (in Section 4-7). Hence l-isomorphic graphs have circuit corre-
pondence.
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Similarly, let us consider what happens to a circuit in a graph G when it
undergoes operation 2, as defined in this section. A circuit I' in G will fall in
one of three categories:

I. T is made of edges all in g,, or
2. T 1s made of edges all in g,, or

3. T is made of edges from both g, and g,, and in that case I" must include
both vertices x and y.

In cases | and 2, T is unaffected by operation 2. In case 3, I" still has the
original edges, except that the path between vertices x and y in g,, which
constituted a part of T, is “flipped around.” Thus every circuit in a graph
undergoing operation 2 retains its original edges. Therefore, 2-isomorphic
graphs also have circuit correspondence.

Theorem 4-15, which is considered the most important result for 2-isomor-
phic graphs, is due to H. Whitney.

THEOREM 4-15
Two graphs are 2-isomorphic if and only if they have circuit correspondence.

Proof: The *“only if” part has already been shown in the argument preceding
the theorem. The “if " part is more involved, and the reader is referred to Whitney's
original paper [4-7].

As we shall observe in subsequent chapters, the ideas of 2-isomorphism
and circuit correspondence play important roles in the theory of contact
networks, electrical networks, and in duality of graphs.

PLANAR GRAPHS

A graph G is said to be planar if there exists some geometric representation
of G which can be drawn on a plane such that no two of its edges intersect.t
A graph that cannot be drawn on a plane without a crossover between its
edges is called nonplanar.

A drawing of a geometric representation of a graph on any surface such
that no edges intersect is called embedding. Thus, to declare that a graph G is
nonplanar, we have to show that of all possible geometric representations of
G none can be embedded in a plane. Equivalently, a geometric graph G is
planar if there exists a graph 1somorphic to G that is embedded in a plane.
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Otherwise, G is nonplanar. An embedding of a planar graph G on a plane is
called a plane representation of G.

For instance, consider the graph represented by Fig. 1-3. The geometric
representation shown in Fig. I-3 clearly 1s not embedded 1n a plane, because
the edges e and f are intersecting. But if we redraw edge f outside the quadri-
lateral, leaving the other edges unchanged, we have embedded the new
geometric graph in the plane, thus showing that the graph which is being
represented by Fig. 1-3 is planar. As another example, the two isomorphic
diagrams in Fig. 2-2 are different geometric representations of one and the
same graph. One of the diagrams is a plane representation; the other one is
not. The graph, of course, is planar. On the other hand, you will not be able
to draw any of the three configurations in Fig. 2-3 on a plane without edges
intersecting. The reason is that the graph which these three different diagrams
in Fig. 2-3 represent is nonplanar.

A natural question now is: How can we tell if a graph G [which may be
given by an abstract notation G = (V, E, ¥) or by one of its geometric
representations] is planar or nonplanar? To answer this question, let us first
discuss two specific nonplanar graphs which are of fundamental importance.
These are called Kuratowski’s graphs, after the Polish mathematician Kasimir

Kuratowski, who discovered their unique property.

KURATOWSKI'S TWO GRAPHS
THEOREM 5-1

The complete graph of five vertices is nonplanar.

Proof: Let the five vertices in the complete graph be named v,, v;, v3, vy, and
vs. A complete graph, as you may recall, is a simple graph in which every vertex

is joined to every other vertex by means of an edge. This being the case, we must
Uy Uy

Us Us Us Ua

(a) (b)
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v, 3 Us
(c) (d)
U
Ui Uy
US U_4

(e)
Fig. 5-1 Building up of the five-vertex complete graph.

have a circuit going from »; to »; to v; to v, to vs to »;—that is, a pentagon.
See Fig. 5-1(a). This pentagon must divide the plane of the paper into two regions,
one inside and the other outside (Jordan curve theorem).

Since vertex v, is to be connected to v; by means of an edge, this edge may be
drawn inside or outside the pentagon (without intersecting the five edges drawn
previously). Suppose that we choose to draw a line from », to »; inside the pen-
tagon. See Fig. 5-1(b). (If we choose outside, we end up with the same argument.)

Now we have to draw an edge from v; to v, and another one from v, to v,. Since
neither of these edges can be drawn inside the pentagon without crossing over the
edge already drawn, we draw both these edges outside the pentagon. See Fig. 5-1(c).
The edge connecting v; and vs cannot be drawn outside the pentagon without
crossing the edge between v, and v»,. Therefore, v; and »s have to be connected
with an edge inside the pentagon. See Fig. 5-1(d).
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Now we have yet to draw an edge between »; and v,. This edge cannot be
placed inside or outside the pentagon without a crossover. Thus the graph cannot
be embedded in a plane. See Fig. 5-1(e).

Some readers may find this proof somewhat unsatisfactory because it
depends so heavily on visual intuition. Do not despair; we shall provide you
with an algebraic nonvisual proof in the next section.

A complete graph with five vertices is the first of the two graphs of
Kuratowski. The second graph of Kuratowski is a regulart connected graph
with six vertices and nine edges, shown in its two common geometric rep-
resentations in Figs. 5-2(a) and (b), where it is fairly easy to see that the
graphs are isomorphic.

Employing visual geometric arguments similar to those used in proving
Theorem 5-1, it can be shown that the second graph of Kuratowski is also
nonplanar. The proof of Theorem 5-2 is, therefore, left as an exercise
(Problem 5-1).

(a)
(b)
Fig. 5-2 Kuratowski's second graph.

THEOREM 5-2

Kuratowski’s second graph is also nonplanar.

You may have noticed several properties common to the two graphs of
Kuratowski. These are

1. Both are regular graphs.
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2. Both are nonplanar.
3. Removal of one edge or a vertex makes each a planar graph.

4. Kuratowski’s first graph is the nonplanar graph with the smallest
number of vertices, and Kuratowski’s second graph is the nonplanar
graph with the smallest number of edges. Thus both are the simplest
nonplanar graphs.

In the literature, Kuratowski’'s first graph is usually denoted by K and the
second graph by K, ,—Iletter K being for Kuratowski.

DIFFERENT REPRESENTATIONS OF A
PLANAR GRAPH

THEOREM 5-3

Any simple planar graph can be embedded in a plane such that every edge is
drawn as a straight line segment.

Proof: The proof is involved and does not contribute much to the understanding
of planarity. The interested reader is, therefore, referred to pages 74-77 in [1-2]
or to the original paper of Fary [5-4]. As an illustration, the graph in Fig. 5-1(d)
can be redrawn using straight line segments to look like Fig. 5-3. In this theorem,
it is necessary for the graph to be simple because a self-loop or one of two parallel
edges cannot be drawn by a straight line segment. |

Region: A plane representation of a graph divides the plane into regions
(also called windows, faces, or meshes), as shown in Fig. 5-4. A region is

b

Fig. 5-3 Straight-line representation of
Uy Us  the graph in Fig. 5-1(d).
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Fig.5-4 Plane representation (the num-
bers stand for regions).

characterized by the set of edges (or the set of vertices) forming its boundary.
Note that a region is not defined in a nonplanar graph or even in a planar
graph not embedded in a plane. For example, the geometric graph in Fig. 1-3
does not have regions. Thus a region is a property of the specific plane
representation of a graph and not of an abstract graph per se.

Infinite Region: The portion of the plane lying outside a graph embedded
in a plane, such as region 4 in Fig. 5-4, is infinite in its extent. Such a region is
called the infinite, unbounded, outer, or exterior region for that particular plane
representation. Like other regions, the infinite region is also characterized by
a set of edges (or vertices). Clearly, by changing the embedding of a given
planar graph, we can change the infinite region. For instance, Figs. 5-1(d) and
5-3 are two different embeddings of the same graph. The finite region v, v, v,
in Fig. 5-1(d) becomes the infinite region in Fig. 5-3. In fact, we shall shortly
show that any region can be made the infinite region by proper embedding.

Embedding on a Sphere: To eliminate the distinction between finite and
infinite regions, a planar graph is often embedded in the surface of a sphere.
It is accomplished by stereographic projection of a sphere on a plane. Put
the sphere on the plane and call the point of contact SP (south pole). At point
SP, draw a straight line perpendicular to the plane, and let the point where
this line intersects the surface of the sphere be called NP (north pole). See
Fig. 5-5.
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Now, corresponding to any point p on the plane, there exists a unique
point p' on the sphere and vice versa, where p’ is the point at which the
straight line from point p to point NP intersects the surface of the sphere.
Thus there is a one-to-one correspondence between the points of the sphere
and the finite points on the plane, and points at infinity in the plane corre-
spond to the point NP on the sphere.

From this construction, it is clear that any graph that can be embedded in

Fig. 5-5 Stereographic projection.

a plane (i.e., drawn on a plane such that its edges do not intersect) can also be
embedded in the surface of the sphere, and vice versa. Hence

THEOREM 5-4

A graph can be embedded in the surface of a sphere if and only if it can be
embedded in a plane.

A planar graph embedded in the surface of a sphere divides the surface
into different regions. Each region on the sphere is finite, the infinite region on
the plane having been mapped onto the region containing the point NP. Now
it is clear that by suitably rotating the sphere we can make any specified
region map onto the infinite region on the plane. From this we obtain

THEOREM 5-5

A planar graph may be embedded in a plane such that any specified region
(i.e., specified by the edges forming it) can be made the infinite region.
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Thinking in terms of the regions on the sphere, we see that there 1s no real
difference between the infinite region and the finite regions on the plane.
Therefore, when we talk of the regions in a plane regresentation of a graph,
we include the infinite region. Also, since there is no essential difference
between an embedding of a planar graph on a plane or on a sphere (a plane
may be regarded as the surface of a sphere of infinitely large radius), the term
“plane representation”™ of a graph is often used to include spherical as well as
planar embedding.

Euler’s Formula: Since a planar graph may have different plane represen-
tations, we may ask if the number of regions resulting from each embedding
is the same. The answer is yes. Theorem 5-6, known as Euler’s formula, gives
the number of regions in any planar graph.

THEOREM 5-6

A connected planar graph with n vertices and e edges has e — n + 2 regions.

Proof: 1t will suffice to prove the theorem for a simple graph, because adding
a self-loop or a parallel edge simply adds one region to the graph and simultane-
ously increases the value of e by one. We can also disregard (i.e., remove) all edges
that do not form boundaries of any region. Three such edges are shown in Fig. 5-4.
Addition (or removal) of any such edge increases (or decreases) e by one and in-
creases (or decreases) n by one, keeping the quantity e — »n unaltered.

Since any simple planar graph can have a plane representation such that each
edge is a straight line (Theorem 5-3), any planar graph can be drawn such that
each region is a polygon (a polygonal net). Let the polygonal net representing the
given graph consist of fregions or faces, and let k, be the number of p-sided regions.
Since each edge is on the boundary of exactly two regions,

3oky + 4eky + S5ks 4+ oo +rek, =2-e (5-1)

where k, is the number of polygons, with maximum edges.
Also,

ky + ko + ks + oo k= . (5-2)
The sum of all angles subtended at each vertex in the polygonal net is

2. (5-3)
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Recalling that the sum of all interior angles of a p-sided polygon is @w(p — 2), and
the sum of the exterior angles is #(p + 2), let us compute the expression in (5-3)
as the grand sum of all interior angles of f — 1 finite regions plus the sum of the
exterior angles of the polygon defining the infinite region. This sum is
3 —2)ky +md —2)ky + - Fr(r —2)k, +4n
= n(2e — 2f) + 4m. (5-4)

Equating (5-4) to (5-3), we get
2n(e — f) + 4m = 27n,
or e—f+2=n.
Therefore, the number of regions is
f=e—n+2 1

COROLLARY

In any simple, connected planar graph with f regions, n vertices, and e edges
(e = 2), the following inequalities must hold:

e> 3, (5-5)
e < 3n — 6. (5-6)

Proof: Since each region is bounded by at least three edges and each edge
belongs to exactly two regions,

2e = 3f
or e = —g—jﬁ
Substituting for f from Euler’s formula in inequality (5-5),
efﬁ-%—(e—n + 2)
or e3n—6. R

Inequality (5-6) is often useful in finding out if a graph is nonplanar. For
example, in the case of K, the complete graph of five vertices [Fig. 5-1(e)],

n =5, e = 10, 3n —6 =9 < e.
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Thus the graph violates inequality (5-6), and hence it is not planar.

Incidentally, this is an alternative and independent proof of the non-
planarity of Kuratowski’s first graph, as promised in Section 5-3.

The reader must be warned that inequality (5-6) is only a necessary, but
not a sufficient, condition for the planarity of a graph. In other words,
although every simple planar graph must satisfy (5-6), the mere satisfaction
of this inequality does not guarantee the planarity of a graph. For example,
Kuratowski’s second graph, K, ;, satisfies (5-6), because

= 9,
3n —6 =36 —6=12.

Yet the graph is nonplanar.

To prove the nonplanarity of Kuratowski’s second graph, we make use of
the additional fact that no region in this graph can be bounded with fewer
than four edges. Hence, if this graph were planar, we would have

2e = 4f,
and, substituting for / from Euler’s formula,

2e = 4(e — n + 2),
or 2:9 =49 — 6 4 2),

or 18 = 20, a contradiction.

Hence the graph cannot be planar.

Plane Representation and Connectivity. In a disconnected graph the
embedding of each component can be considered independently. Therefore,

it is clear that a disconnected graph is planar if and only if each of its com-
ponents is planar. Similarly, in a separable (or I-connected) graph the
embedding of each block (i.e., maximal nonseparable subgraph) can be
considered independently. Hence a separable graph is planar if and only if
each of its blocks is planar.

Therefore, in questions of embedding or planarity, one need consider only
nonseparable graphs.
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THEOREM 5-7

The spherical embedding of every planar 3-connected graph is unique.

This theorem plays a very important role in determining if a graph is

€7

[

6
€s
1?4 El el
&

€ f.-’g
(a) (b)

Fig. 5-6 Two distinct plane representations of the same graph.

planar or not. The theorem states that a 3-connected graph, if it can be
embedded at all, can be embedded in only one way.

DETECTION OF PLANARITY
How to tell if a given graph G is planar or nonplanar is an important
problem, and *“find out by drawing it” is obviously not a good answer. We

must have some simple and efficient criterion. Toward that goal, we take the
following simplifying steps:

Elementary Reduction

Step 1: Since a disconnected graph is planar if and only if each of its
components is planar, we need consider only one component at a time. Also,
a separable graph is planar if and only if each of its blocks is planar. There-
fore, for the given arbitrary graph G, determine the set

G:{GI,GQ,-;+,G;¢L

where each G, is a nonseparable block of G. Then we have to test each G, for
planarity.

Step 2: Since addition or removal of self-loops does not affect planarity,
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remove all self-loops.

Step 3: Since parallel edges also do not affect planarity, eliminate edges in
parallel by removing all but one edge between every pair of vertices.

Step 4: Elimination of a vertex of degree two by merging two edges in
seriest does not affect planarity. Therefore, eliminate all edges in series.

Repeated application of steps 3 and 4 will usually reduce a graph drasti-
cally. For example, Fig. 5-7 illustrates the series-parallel reduction of the
graph of Fig. 5-6(b).

Let the nonseparable connected graph G; be reduced to a new graph H,
after the repeated application of steps 3 and 4. What will graph H, look like?
Theorem 5-8 has the answer.

THEOREM 5-8
Graph H; is

1. A single edge, or
2. A complete graph of four vertices, or
3. A nonseparable, simple graph with n = 5 and e = 7.

{fs fﬁ)
€q
€4 £y
(e &)
{a) Series Reduced (b) Parallel Reduced
(ey €7)
{'3
€y

(c) Series Reduced (d) Parallel Reduced

Fig. 5-7 Series-parallel reduction of the graph in Fig. 5-6(b).
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Proof: The theorem can be proved by considering all connected nonseparable
graphs of six edges or less. The proof is left as an exercise (Problem 5-9).

In Theorem 5-8, all H, falling in categories | or 2 are planar and need not
be checked further.

From now on, therefore, we need to investigate only simple, connected,
nonseparable graphs of at least five vertices and with every vertex of degree three
or more. Next, we can check to see if e << 3n — 6. If this inequality is not
satisfied, the graph H, is nonplanar. If the inequality is satisfied, we have to
test the graph further and, with this, we come to Kuratowski’s theorem
(Theorem 5-9), perhaps the most important result of this chapter.

Homeomorphic Graphs: Two graphs are said to be homeomorphic if one
graph can be obtained from the other by the creation of edges in series (i.e.,
by insertion of vertices of degree two) or by the merger of edges in series. The
three graphs in Fig. 5-8 are homeomorphic to each other, for instance. A
graph G is planar if and only if every graph that is homeomorphic to G is
planar. (This is a restatement of series reduction, step 4 in this section.)

THEOREM 5-9

A necessary and sufficient condition for a graph G to be planar is that G does
not contain either of Kuratowski's two graphs or any graph homeomorphic to
either of them.

I A

Fig. 5-8 Three graphs homeomorphic to each other,

Proof: The necessary condition is clear, because a graph G cannot be embedded
in a plane if G has a subgraph that cannot be embedded. That this condition is
also sufficient is surprising, and its proof is involved. Several different proofs of
the theorem have appeared since Kuratowski stated and proved it in 1930. For
a complete proof of the theorem, the reader is referred to Harary [1-5], pages 108-
112, Berge [1-1], pages 211-213, or Busacker and Saaty [1-2], pages 70-73.
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Note that it is not necessary for a nonplanar graph to have either of the
Kuratowski graphs as a subgraph, as this theorem is sometimes misstated.
The nonplanar graph may have a subgraph homeomorphic to a Kuratowski
graph. For example, the graph in Fig. 5-9(a) is nonplanar, and yet it does not
have either of the Kuratowski graphs as a subgraph. However, if we remove

(a) (b)

B

(c)

Fig.5-9 Nonplanar graph with a subgraph homeomorphic to K3, 3.
edges (a, x) and (A4, C) from this graph, we get a subgraph, as shown in Fig.
5-9(b). This subgraph is homeomorphic (merge two series edges at vertex x) to
the one shown in Fig. 5-9(c). The graph of Fig. 5-9(c) clearly is isomorphic to
K, ;, Kuratowski’s second graph, and this demonstrates the nonplanarity of
the graph in Fig. 5-9(a).

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 40/ 28




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: 111 B.Sc MATHEMATICS COURSE NAME: NUMBER THEORY
COURSE CODE: 16MMU502B UNIT: 11 BATCH-2016-2019

Possible Questions
2 Mark Questions:

1. Whatis Fermat’s Factorization method.

2. Prove thatif pisaprime, thena® =a(mod p) for any integer a.
3. Verify that 18° =1(mod 7%) for k =1,2,3.

4. Find the remainder when 15! is divided by 17.

5. Write about 7(n) and o(n) with example.

6. What is multiplicative function.

7. Prove thatif f is a multiplicative function and F is defined by

Fi)=Y f(d),

djn
then F is also multiplicative.
8. Define Dirichlet Product.
9. Find the remainder when 511 is divided by 7.

10. Use Fermat’s method to factor 23449.

8 Mark Questions:

1. State and prove Fermat’s Little theorem.

2. Prove thatif p and qare distinct primes such that a’ =a(mod q) and a* = a(mod p), then
a® =a(mod pq).

3. State and prove Wilson’s theorem.

4. Prove that the quadratic congruence x*>+1=0(mod p), where p is an odd prime, has a
solution if and only if p =1(mod 4).
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5. Provethatif n= plkl pzkz prkr is the prime factorization of n>1, then the positive

10.

11.

divisors of n are precisely those integers d of the form
d=p"p, %0
where 0<a <k (i=12,..,r).
Prove that if n= plkl pzkz... prkr is the prime factorization of n >1,then

a)  z(n) = (k +1)(k, +1)...(k +1), and

K+ ko1 kel
b) O'(n) — pl 1 p2 1 pr 1
Py -1 P, -1 P, -1

Prove that the function 7 and o are both multiplicative functions.

Prove that if gcd(m,n) =1, then the set of positive divisors of mn consists of all products

d,d,, where d,|n,d,Jm and gcd(d,,d,) =1; furthermore, these products are all distinct.
Discuss about Dirichlet Product.
Find the remainder when 72'°" is divisible by 31.

Prove that the quadratic congruence x* =—1(mod p), p is a prime, has a solution if and
only if p=1(mod 4).
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SYLLABUS
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Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 1/49




KARPAGAM ACADEMY OF HIGHER EDUCATION

COURSE CODE: 18MMP205A UNIT: 111 BATCH-2018-2020

CLASS: | M.Sc MATHEMATICS COURSE NAME: GRAPH THEORYTHEORY
AND ITS APPLICATIONS

INCIDENCE MATRIX

Let G be a graph with n vertices, e edges, and no self-loops. Define an n
by e matrix A = [a,;], whose n rows correspond to the n vertices and the e
columns correspond to the e edges, as follows:

The matrix element

a; =1, if jth edge e, is incident on ith vertex v,, and
= (), otherwise.
Uy
Uy
b
(a)

a b ¢ d ¢ S g h
w [0 0o o 1 0 I 0o 0]
v 0 0 0 0 1 | 1 |
vy 0 0 0 0 0 0 0 1
" 1 I 1 0 1 0 0 0
Us 0 0 1 I 0 0 | 0
v | 1 1 0 0 0 0 0 0 |

(b)

Fig. 7-1 Graph and its incidence matrix.
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Such a matrix A is called the vertex-edge incidence matrix, or simply incidence
matrix. Matrix A for a graph G is sometimes also written as A(G). A graph
and its incidence matrix are shown in Fig. 7-1.

The incidence matrix contains only two elements, 0 and 1. Such a matrix
is called a binary matrix or a (0, I)-matrix. Let us stipulate that these two
elements are from Galois field modulo 2.1 Given any geometric representa-
tion of a graph without self-loops, we can readily write its incidence matrix.

On the other hand, if we are given an incidence matrix A(G), we can construct
its geometric graph G without ambiguity. The incidence matrix and the
geometric graph contain the same informationt—they are simply two al-
ternative ways of representing the same (abstract) graph.
The following observations about the incidence matrix A can readily be
made:
1. Since every edge 1s incident on exactly two vertices, each column of
A has exactly two 1s.

2. The number of 1’s in each row equals the degree of the corresponding
vertex.

3. A row with all 0’s, therefore, represents an isolated vertex.

4. Parallel edges in a graph produce identical columns in its incidence
matrix, for example, columns | and 2 in Fig. 7-1.

5. If a graph G is disconnected and consists of two components g, and
g,, the incidence matrix A(G) of graph G can be written in a block-

diagonal form as
————{L}——]J (?'l}

L Agy)

where A(g,) and A(g,) are the incidence matrices of components g,
and g,. This observation results from the fact that no edge in g, is
incident on vertices of g,, and vice versa. Obviously, this remark is
also true for a disconnected graph with any number of components.
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6. Permutation of any two rows or columns in an incidence matrix simply
corresponds to relabeling the vertices and edges of the same graph.
This observation leads us to Theorem 7-1.

THEOREM 7-1
Two graphs G, and G, are isomorphic if and only if their incidence matrices
A(G,) and A(G,) differ only by permutations of rows and columns.

Rank of the Incidence Matrix: Each row in an incidence matrix A(G) may
be regarded as a vector over GF(2) in the vector space of graph G. Let the

vector in the first row be called A,, in the second row A,, and so on. Thus

AG) =] " |, (7-2)

[ -

Since there are exactly two 1’s in every column of A, the sum of all these
vectors is O (this being a modulo 2 sum of the corresponding entries). Thus
vectors A, A,, ..., A, are not linearly independent. Therefore, the rank of
A is less than n; that is, rank A << n — 1.

Now consider the sum of any m of these n vectors (m << n — 1). If the
graph is connected, A(G) cannot be partitioned, as in Eq. (7-1), such that
A(g,) is with m rows and A(g,) with » — m rows. In other words, no m by m
submatrix of A(G) can be found, for m <~ n — 1, such that the modulo 2 sum
of those m rows is equal to zero.

Since there are only two constants 0 and 1 in this field, the additions of all
vectors taken m at atimeform = 1,2, ..., n — 1 exhausts all possible linear
combinations of n — 1 row vectors. Thus we have just shown that no linear
combination of m row vectors of A (for m <~ n — 1) can be equal to zero.
Therefore, the rank of A(G) must be at least n — 1.

Since the rank of A(G) is no more than n — | and is no less thann — 1, it
must be exactly equal to n — 1. Hence Theorem 7-2.
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THEOREM 7-2

If A(G) is an incidence matrix of a connected graph G with » vertices, the rank
of A(G)isn — 1.

The argument leading to Theorem 7-2 can be extended to prove that the
rank of A(G) isn — k, if G is a disconnected graph with » vertices and k com-
ponents (Problem 7-3). This is the reason why the number n — k has been
called the rank of a graph with k components.

If we remove any one row from the incidence matrix of a connected
graph, the remaining (n — 1) by e submatrix is of rank n — 1 (Theorem 7-2).
In other words, the remaining » — | row vectors are linearly independent.
Thus we need only n — | rows of an incidence matrix to specify the corre-
sponding graph completely, for n — 1 rows contain the same amount of
information as the entire matrix. (This is obvious, since given n — | rows we
can easily reconstitute the missing row, because each column in the matrix
has exactly two 1°s.)

Such an (n — 1) by e submatrix A, of A is called a reduced incidence
matrix. The vertex corresponding to the deleted row in A, is called the ref-
erence vertex. Clearly, any vertex of a connected graph can be made the
reference vertex.

Since a tree is a connected graph with n vertices and n — 1 edges, its
reduced incidence matrix is a square matrix of order and rank n — 1. In other
words,

COROLLARY

The reduced incidence matrix of a tree is nonsingular.

A graph with n vertices and n — 1 edges that is not a tree 1s disconnected.
The rank of the incidence matrix of such a graph will be less than n — 1.
Therefore, the (n — 1) by (n — 1) reduced incidence matrix of such a graph
will not be nonsingular. In other words, the reduced incidence matrix of a
graph is nonsingular if and only if the graph is a tree.
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SUBMATRICES OF A(G)

Let g be a subgraph of a graph G, and let A(g) and A(G) be the incidence
matrices of g and G, respectively. Clearly, A(g) is a submatrix of A(G) (pos-
sibly with rows or columns permuted). In fact, there i1s a one-to-one corre-
spondence between each n by k submatrix of A(G) and a subgraph of G with
k edges, k being any positive integer less than e and n being the number of
vertices in G.

Submatrices of A(G) corresponding to special types of subgraphs, such
as circuits, spanning trees, or cut-sets in G, will undoubtedly exhibit special
properties. Theorem 7-3 gives one such property.

THEOREM 7-3

Let A(G) be an incidence matrix of a connected graph G with n vertices. An
(n — 1) by (n — 1) submatrix of A(G) is nonsingular if and only if the n — 1
edges corresponding to the n — | columns of this matrix constitute a spanning tree
in G.

Proof: Every square submatrix of order n — 1 in A(G) is the reduced incidence
matrix of the same subgraph in G with n — 1 edges, and vice versa. From the
remarks following Theorem 7-2, it is clear that a square submatrix of A(G) is
nonsingular if and only if the corresponding subgraph is a tree. The tree in this
case 1s a spanning tree, because it contains n — 1 edges of the n-vertex graph.
Thus the theorem. [l

CIRCUIT MATRIX
Let the number of different circuits in a graph G be g and the number of
edges in G be e. Then a circuit matrix B = [b,]] of G is a g by e, (0, I)-matrix

defined as follows:

b,; =1, if ith circuit includes jth edge, and
= (), otherwise.

To emphasize the fact that B is a circuit matrix of graph G, the circuit matrix
may also be written as B(G).

The graph in Fig. 7-1(a) has four different circuits, {a, b}, {c, e, g}, {d, /.
g}, and {¢, d, f, e}. Therefore, its circuit matrix is a 4 by 8, (0, 1)-matrix as
shown:
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a b ¢c d e f g h
1{1 1 0 0 0 0 0 0]
2/0 01 001 01 0
B(G) = . -
(©) 310 0 01 O 1 1 O (7-3)
4(0 01 I 11 0 O

The following observations can be made about a circuit matrix B(G) of
a graph G:

1. A column of all zeros corresponds to a noncircuit edge (1.e., an edge
that does not belong to any circuit).

2. Each row of B(G) is a circuit vector.

3. Unlike the incidence matrix, a circuit matrix is capable of representing
a self-loop—the corresponding row will have a single 1.

4. The number of I's in a row is equal to the number of edges in the
corresponding circuit,

5. If graph G is separable (or disconnected) and consists of two blocks
(or components) g, and g,, the circuit matrix B(G) can be written in
a block-diagonal form as

where B(g,) and B(g,) are the circuit matrices of g, and g,. This ob-

servation results from the fact that circuits in g, have no edges belong-
ing to g,, and vice versa (Problem 4-14).

6. Permutation of any two rows or columns in a circuit matrix simply
corresponds to relabeling the circuits and edges.

7. Two graphs G, and G, will have the same circuit matrix if and only if
G, and G, are 2-isomorphic (Theorem 4-15). In other words, (unlike
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an incidence matrix) the circuit matrix does not specify a graph com-
pletely. It only specifies the graph within 2-isomorphism. For instance,
It can be easily verified that the two graphs in Figs. 4-11(a) and (d)
have the same circuit matrix, yet the graphs are not isomorphic.

Animportant theorem relating the incidence matrix and the circuit matrix
of a self-loop-free graph G is
THEOREM 7-4

Let B and A be, respectively, the circuit matrix and the incidence matrix (of a
self-loop-free graph) whose columns are arranged using the same order of edges.
Then every row of B 1s orthogonal to every row A that s,

A-BT = B.AT =0 {mod 2), (7-4)
where superscript T denotes the transposed matrix.

Proof: Consider a vertex » and a circuit I' in the graph G. Either visin I or
it is not. If v is not in I', there is no edge in the circuit I that is incident on ». On
the other hand, if » is in I', the number of those edges in the circuit I' that are
incident on v Is exactly two.

With this remark in mind, consider the ith row in A and the jth row in B.
Since the edges are arranged in the same order, the nonzero entries in the corre-
sponding positions occur only 1f the particular edge 15 incident on the ith vertex
and is also in the jth circuit.

If the ith vertex is not in the jth circuit, there is no such nonzero entry, and
the dot product of the two rows is zero. If the ith vertex is in the jth circuit, there
will be exactly two 1's in the sum of the products of individual entries. Since
I + 1 =0 (mod2), the dot product of the two arbitrary rows—one from A and
the other from B—is zero. Hence the theorem. |}

As an example, let us multiply the incidence matrix and transposed circuit
of the graph in Fig. 7-1(a), after making sure that the edges are in the same
order in both.
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0 0 0 1 01 00] |1 000
0000 1 1 1 1]{010°1
agr_ |00 00000 100 11
1 1101 000 |01 011
00110071 0| |00T1 1
(1100 0000O0] |01 10
0 0 0 0
0 0 0 0]
0000
OO0 a2,
0000
0000
- 0000

FUNDAMENTAL CIRCUIT MATRIX
AND RANK OF B

A submatrix (of a circuit matrix) in which all rows correspond to a set of
fundamental circuits is called a fundamental circuit matrix B,. A graph and
its fundamental circuit matrix with respect to a spanning tree (indicated by
heavy lines) are shown in Fig. 7-2.

As in matrices A and B, permutations of rows (and/or of columns) do not
affect B,. If n is the number of vertices and e the number of edges in a connect-
ed graph, then B, is an (e — n 4 1) by e matrix, because the number of
fundamental circuits is e — n -+ 1, each fundamental circuit being produced
by one chord.

Let us arrange the columns in B, such that all the e — n + | chords
correspond to the first e — n 4+ | columns. Furthermore, let us rearrange
the rows such that the first row corresponds to the fundamental circuit made
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(a)

€5 ey €g e 4 €5 €7
|

! 0 o I 1 I 0 I

0 ! 0 il 0 I 0 |

0 0 | i 0 0 ! 1

(b)

Fig. 7-2 Graph and its fundamental circuit matrix (with respect
to the spanning tree shown in heavy lines).

by the chord in the first column, the second row to the fundamental circuit
made by the second, and so on. This indeed is how the fundamental circuit
matrix is arranged in Fig. 7-2(b).

A matrix B, thus arranged can be written as

B, = [I,B], (7-5)

where |, is an identity matrix of order 4 = e — n + 1, and B, is the remain-
ing u by (n — 1) submatrix, corresponding to the branches of the spanning
tree.

From Eq. (7-5) it is clear that the
rank of B, = gy = e —n+ 1.
Since B, is a submatrix of the circuit matrix B, the
rank of B = e —n 4 1.

In fact, we can prove Theorem 7-5.
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THEOREM 7-5

If B is a circuit matrix of a connected graph G with e edges and n vertices,

rank of B = ¢ — n + 1.

Proof: If A is an incidence matrix of G, from Eq. (7-4) we have
A-BT = 0 (mod 2).
Therefore, according to Sylvester’s theorem (Appendix B),

rank of A - rank of B < ¢;

that 1s,

rank of B <~ ¢ — rank of A.
Since rank of A = n — 1
we have rank of B<<e¢ —n | 1.
But rank of B =e¢ — n + 1.

Therefore, we must have
rank of B =e —n + 1. B
An Alternative Proof: Theorem 7-5 can also be proved by considering the
circuit subspace Wr in the vector space W of a graph, as discussed in Chapter 6.
Every row in circuit matrix B is a vector in W, and since the rank of any

matrix is equal to the number of linearly independent rows (or columns) in the
matrix, we have.

rank of matrix B = number of linearly independent rows in B;

but the number of linearly independent rows in B =< number of linearly independent
vectors in Wp, and the number of linearly independent vectors in W = dimension
of Wr = u. Therefore, rank of B << e — n -+ 1. Since we already showed that
rank of B> e — n + 1, Theorem 7-5 follows. [

Note that in talking of spanning trees of a graph G it is necessary to as-
sume that G is connected. In the case of a disconnected graph, we would have
to consider a spanning forest and fundamental circuits with respect to this
forest. It 1s not difficult to show (considering component by component) that
if G is a disconnected graph with kK components, ¢ edges, and n vertices,
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rank of B =y = e — n + k.

PATH MATRIX

Another (0, 1)-matrix often convenient to use in communication and
transportation networks is the path matrix. A path matrix is defined for a
specific pair of vertices in a graph, say (x, y), and is written as P(x, y). The
rows in P(x, y) correspond to different paths between vertices x and y, and
the columns correspond to the edges in G. That is, the path matrix for (x, y)
vertices 1s P(x, y) = [p;;], where

Ppy=1 if jth edge lies in jth path, and
= (), otherwise.
As an illustration, consider all paths between vertices », and », in Fig. 7-1(a).

There are three different paths; {A, e}, {h, g, ¢}, and {4, f, d, ¢}. Let us number
them 1, 2, and 3, respectively. Then we get the 3 by 8 path matrix P(v;, v,):

a b c d e f g h

10 O 0 O 1 0 0 1
P(v,,v,)=210 0 I 0 0 O 1 1
300 1 1 O 1 01

Some of the observations one can make at once about a path matrix
P(x, y) of a graph G are

1. A column of all 0’s corresponds to an edge that does not lie in any
path between x and y.

2. A column of all I's corresponds to an edge that lies in every path
between x and y.

3. There is no row with all 0's.

4. The ring sum of any two rows in P(x, y) corresponds to a circuit or an
edge-disjoint union of circuits.
THEOREM 7-7
If the edges of a connected graph are arranged in the same order for the columns
of the incidence matrix A and the path matrix P(x, y), then the product (mod 2)

A'FT(X? y) = M:
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where the matrix M has 1’s in two rows x and y, and the rest of the n — 2 rows
are all 0’s.

Proof: The proof is left as an exercise for the reader (Problem 7-14).

As an example, multiply the incidence matrix in Fig. 7-1 to the transposed
P(v,, v,), just discussed.

0 0 0
0 001 01 0 0] {O O O
000 0 1T 1 1T 1 0o 1 1
l I
A-PT(v,, ,) — 0O 00 0 0 0O 0 0
1 I 1 01 0 0 0 I 0 0
0O 01 1 0 0 1 0 0 0 1
1 1 0 00 OO O |O 1O
R
1 2 3
v, [0 0 O]
v, |10 0 0O
_ b (mod 2).
v, | | 1
vs | O 0
ve |0 0 O]

Other properties of the path matrix, such as the rank, are left for the
reader to investigate on his own. It should be noted that a path matrix con-
tains less information about the graph in general than any of the matrices
A, B, or C does.

ADJACENCY MATRIX

As an alternative to the incidence matrix, it is sometimes more convenient
to represent a graph by its adjacency matrix or connection matrix. The ad-
jacency matrix of a graph G with n vertices and no parallel edges is an n by n
symmetric binary matrix X = [x,;] defined over the ring of integers such that

x; =1, if there is an edge between ith and jth vertices, and

= 0, if there is no edge between them.
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Yy Uy Uy Uy Ug Uy
y [0 I 0 0 | 1]
v | | 0 0 I ! 0

X = 0 0 0 1 0 0
v, | O l | 0 | I
vg | 1 1 0 I 0 0
v | 1 0 0 | 0 0

Fig. 7-7 Simple graph and its adjacency matrix.
A simple graph and its adjacency matrix are shown in Fig. 7-7.
Observations that can be made immediately about the adjacency matrix
X of a graph G are

1. The entries along the principal diagonal of X are all 0’s if and only if
the graph has no self-loops. A self-loop at the ith vertex corresponds to
x; = 1.

2. The definition of adjacency matrix makes no provision for parallel

edges. This is why the adjacency matrix X was defined for graphs
without parallel edges.f
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3. If the graph has no self-loops (and no parallel edges, of course), the
degree of a vertex equals the number of 1’s in the corresponding row
or column of X,

4. Permutations of rows and of the corresponding columns imply reorder-
ing the vertices. It must be noted, however, that the rows and columns
must be arranged in the same order. Thus, if two rows are interchanged
in X, the corresponding columns must also be interchanged. Hence two
graphs G, and G, with no parallel edges are isomorphic if and only if
their adjacency matrices X(G,) and X(G,) are related:

X(G,) = R7'-X(G))-R,

where R is a permutation matrix.

5. A graph G is disconnected and is in two components g, and g, if and
only if its adjacency matrix X(G) can be partitioned as

where X(g,) is the adjacency matrix of the component g, and X(g,) is
that of the component g,.

This partitioning clearly implies that there exists no edge joining
any vertex in subgraph g, to any vertex in subgraph g,.

6. Given any square, symmetric, binary matrix Q of order n, one can
always construct a graph G of n vertices (and no parallel edges) such
that Q 1s the adjacency matrix of G.

Powers of X: Let us multiply by itself the 6 by 6 adjacency matrix of the
simple graph in Fig. 7-7. The result, another 6 by 6 symmetric matrix X2, is
shown below (note that this is ordinary matrix multiplication in the ring of
integers and not mod 2 multiplication):
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31 0 3 1 0]
1 3 1 1 2 2
|01 1o 1
31041 0
1 21 1 3 2
021 0 2 2]

The value of an off-diagonal entry in X2, that is, ijth entry (i = j) in X2,
= number of 1's in the dot product of ith row and jth column (or jth
row) of X.
= number of positions in which both ith and jth rows of X have I’s.
= number of vertices that are adjacent to both ith and jth vertices.
= number of different paths of length two between ith and jth vertices.

Similarly, the ith diagonal entry in X? is the number of 1’s in the ith row
(or column) of matrix X. Thus the value of each diagonal entry in X? equals
the degree of the corresponding vertex, if the graph has no self-loops.

Since a matrix commutes with matrices that are its own power,

X X2 = X2 X = X2,

And since the product of two square symmetric matrices that commute is
also a symmetric matrix, X? is a symmetric matrix. (Again note that this is
an ordinary product and not mod 2.)

The matrix X3 for the graph of Fig. 7-7 is

27327 6
741852
wo |3 1041 0f
2 8 4 28 7
751 8 42
6 2 0 7 2 0

Let us now consider the ijth entry of X3.
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ifth entry of X* = dot product of ith row X? and jth column (or row) of
X.

= i ikth entry of X?-kjth entry of X.
k=1

=ﬁ number of all different edge sequencest of three
=1

edges from ith to jth vertex via kth vertex.

== number of different edge sequences of three edges
between ith and jth vertices.

For example, consider how the 1,5th entry on X? for the graph of Fig.
7-7 is formed. It is given by the dot product

row 1 of X2-row 5of X = (3,1,0,3, 1,0)-(1, 1,0, 1,0, 0)
—34+14+04+34+04+0=7.

These seven different edge sequences of three edges between v, and v, are

{e;, e, e}, ey, ey, e}, les eq, 0,2}, {ey, €5, 63,
{es, e5,e5), ey, eq, 65}, ey, e, €5}

Clearly this list includes all the paths of length three between v, and v, that is,
{es, e5, €5} and fe, e,, e,}.

It 1s left as an exercise for the reader to show (Problem 7-19) that the iith
entry in X? equals twice the number of different circuits of length three (i.e.,
triangles) in the graph passing through the corresponding vertex v.,.

The general result that includes the properties of X, X2, and X3 discussed
so far is expressed in Theorem 7-8.

THEOREM 7-8

Let X be the adjacency matrix of a simple graph G. Then the ijth entry in X*
is the number of different edge sequences of r edges between vertices ; and v;.

Proof: The theorem holds for r = 1, and it has been proved forr = 2 and 3 also.
It can be proved for any positive integer r, by induction.

In other words, assume that it holds for r — 1, and then evaluate the /jth entry
in X, with the help of the relation
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Xr = Xr—1.X,
as was done for X3.
COROLLARY A

In a connected graph, the distance between two vertices v; and v; (for 7 # j)
15 k, if and only if k is the smallest integer for which the i, jth entry in x* is nonzero.

This is a useful result in determining the distances between different pairs
of vertices.

CoRrRoOLLARY B

If X is the adjacency matrix of a graph G with » vertices, and
Y =X+ X2+ X34 -0 4 X1, (in the ring of integers),

then G is disconnected if and only if there exists at least one entry in matrix Y
that is zero.

Relationship Between A(G) and X(G): Recall that if a graph G has no
self-loops, its incidence matrix A(G) contains all the information about G.
Likewise, if G has no parallel edges, its adjacency matrix X(G) contains all the
information about G. Therefore, if a graph G has neither self-loops nor parallel
edges (i.e., G is a simple graph), both A(G) and X(G) contain the entire in-
formation. Thus it is natural to expect that either matrix can be obtained
directly from the other, in the case of a simple graph. This relationship is
given in Problem 7-23.

CHROMATIC NUMBER

Painting all the vertices of a graph with colors such that no two adjacent
vertices have the same color is called the proper coloring (or sometimes simply
coloring) of a graph. A graph in which every vertex has been assigned a color
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U@ Blue
Uy Ug Uy Us Uy Us
Green Yellow Green Yellow Yellow Yellow
Us ¥ Red
{a) {b) (c)

Fig. 8-1 Proper colorings of a graph.
according to a proper coloring is called a properly colored graph. Usually a
given graph can be properly colored in many different ways. Figure 8-1 shows
three different proper colorings of a graph.

The proper coloring which is of interest to us is one that requires the
minimum number of colors. A graph G that requires x different colors for its
proper coloring, and no less, is called a x-chromatic graph, and the number
Kk 1s called the chromatic number of G. You can verify that the graph in Fig.
8-1 1s 3-chromatic.

In coloring graphs there is no point in considering disconnected graphs.
How we color vertices in one component of a disconnected graph has no
effect on the coloring of the other components. Therefore, it is usual to in-
vestigate coloring of connected graphs only. All parallel edges between two
vertices can be replaced by a single edge without affecting adjacency of
vertices. Self-loops must be disregarded. Thus for coloring problems we need
to consider only simple, connected graphs.

Some observations that follow directly from the definitions just introduced
are

I. A graph consisting of only isolated vertices is I-chromatic.

2. A graph with one or more edges (not a self-loop, of course) is at least
2-chromatic (also called bichromatic).
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3. A complete graph of n vertices is n-chromatic, as all its vertices are
adjacent. Hence a graph containing a complete graph of r vertices is
at least r-chromatic. For instance, every graph having a triangle is at
least 3-chromatic.

4. A graph consisting of simply one circuit with » == 3 vertices 1s 2-

chromatic if n 1s even and 3-chromatic if n is odd. (This can be seen by
numbering vertices 1, 2, . . ., n in sequence and assigning one color to
odd vertices and another to even. If n is even, no adjacent vertices will
have the same color. If n1s odd, the nth and first vertex will be adjacent
and will have the same color, thus requiring a third color for proper
coloring.)

Proper coloring of a given graph is simple enough, but a proper coloring
with the minimum number of colors is, in general, a difficult task. In fact,
there has not yet been found a simple way of characterizing a x-chromatic
graph. (The brute-force method of using all possible combinations can, of
course, always be applied, as in any combinatorial problem. But brute force
is highly unsatisfactory, because it gets out of hand as soon as the size of the
graph increases beyond a few vertices.) Chromatic numbers of some specific
types of graphs will be discussed 'in the rest of this section.

THEOREM 8-1

Every tree with two or more vertices is 2-chromatic.

Proof: Select any vertex v in the given tree T. Consider T as a rooted tree at
vertex ». Paint » with color 1. Paint all vertices adjacent to » with color 2. Next,
paint the vertices adjacent to these (those that just have been colored with 2)
using color 1. Continue this process till every vertex in T has been painted. (See
Fig. 8-2). Now in T we find that all vertices at odd distances from v have color 2,
while » and vertices at even distances from v have color 1.

Now along any path in T the vertices are of alternating colors. Since there is
one and only one path between any two vertices in a tree, no two adjacent vertices
have the same color. Thus T has been properly colored with two colors. One color
would not have been enough (observation 2 in this section). [l

Though a tree is 2-chromatic, not every 2-chromatic graph is a tree. (The
utilities graph, for instance, is not a tree.) What then is the characterization
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Fig. 8-2 Proper coloring of a tree.

of a 2-chromatic graph? Theorem 8-2 (due to Konig) characterizes all 2-
chromatic graphs.

THEOREM 8-2

A graph with at least one edge is 2-chromatic if and only if it has no circuits
of odd length.

Proof: Let G be a connected graph with circuits of only even lengths. Consider
a spanning tree 7 in G. Using the coloring procedure and the result of Theorem
8-1, let us properly color T with two colors. Now add the chords to T one by one.
Since G had no circuits of odd length, the end vertices of every chord being replaced
are differently colored in T. Thus G is colored with two colors, with no adjacent
vertices having the same color. That is, G is 2-chromatic.

Conversely, if G has a circuit of odd length, we would need at least three colors
just for that circuit (observation 4 in this section). Thus the theorem. B

An upper limit on the chromatic number of a graph is given by Theorem
8-3, whose proof is left as an exercise (Problem 8-1).

THEOREM 8-3

If d,qx 1s the maximum degree of the vertices in a graph G,

chromatic number of G << | -+ dy,x.

Brooks [8-1] showed that this upper bound can be improved by I if G has no
complete graph of d,.., -+ 1 vertices. In that case
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chromatic number of G < d,,,,.

A graph G is called bipartite if its vertex set V can be decomposed into
two disjoint subsets V', and V, such that every edge in G joins a vertex in V/,
with a vertex in V,. Thus every tree is a bipartite graph. So are the graphs in
Figs. 8-6 and 8-8. Obviously, a bipartite graph can have no self-loop. A set of
parallel edges between a pair of vertices can all be replaced with one edge
without affecting bipartiteness of a graph.

Clearly, every 2-chromatic graph is bipartite because the coloring parti-
tions the vertex set into two subsets ¥, and V, such that no two vertices in
V, (or V,) are adjacent. Similarly, every bipartite graph is 2-chromatic, with
one trivial exception; a graph of two or more isolated vertices and with no
edges is bipartite but is I-chromatic.

In generalizing this concept, a graph G is called p-partite if its vertex set
can be decomposed into p disjoint subsets V', ¥V,, ..., V,, such that no edge
in G joins the vertices in the same subset. Clearly, a x-chromatic graph is
p-partite if and only if

K< p.

With this qualification, the results of this section on x-chromatic graphs

are applicable to x-partite graphs also.

8-2. CHROMATIC PARTITIONING

A proper coloring of a graph naturally induces a partitioning of the ver-
tices into different subsets. For example, the coloring in Fig. 8-1(c) produces
the partitioning

(0] [v), and {v,,0,).

No two vertices in any of these three subsets are adjacent. Such a subset
of vertices is called an independent set; more formally:

A set of vertices in a graph is said to be an independent set of vertices or
simply an independent set (or an internally stable set) if no two vertices in the
set are adjacent. For example, in Fig. 8-3, {a, ¢, d} is an independent set. A
single vertex in any graph constitutes an independent set.
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A maximal independent set (or maximal internally stable set) is an inde-
pendent set to which no other vertex can be added without destroying its
independence property. The set {a, ¢, d, f} in Fig. 8-3 is a maximal indepen-
dent set. The set {b, [} is another maximal independent set. The set {b, g}is a
third one. From the preceding example, it is clear that a graph, in general,
has many maximal independent sets; and they may be of different sizes.
Among all maximal independent sets, one with the largest number of vertices
is often of particular interest.

Suppose that the graph in Fig. 8-3 describes the following problem. Each
of the seven vertices of the graph is a possible code word to be used in some
communication. Some words are so close (say, in sound) to others that they
might be confused for each other. Pairs of such words that may be mistaken
for one another are joined by edges. Find a largest set of code words for a
reliable communication. This is a problem of finding a maximal independent
set with largest number of vertices. In this simple example, {a, ¢, d, f} is an
answer.

a e

d
Fig. 8-3

The number of vertices in the largest independent set of a graph G is called
the independence number (or coefficient of internal stability), B(G).

Consider a x-chromatic graph G of n vertices properly colored with x
different colors. Since the largest number of vertices in G with the same color
cannot exceed the independence number f(G), we have the inequality

B(G) =

n
K
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Finding a Maximal Independent Set: A reasonable method of finding a
maximal independent set in a graph G will be to start with any vertex v of G
in the set. Add more vertices to the set, selecting at each stage a vertex that
1s not adjacent to any of those already selected. This procedure will ultimately
produce a maximal independent set. This set, however, is not necessarily a
maximal independent set with,a largest number of vertices.

Finding All Maximal Independent Sets: A reasonable (but not very effici-
ent for large graphs) method for obtaining all maximal independent sets in
any graph can be developed using Boolean arithmetic on the vertices. Let
each vertex in the graph be treated as a Boolean variable. Let the logical (or
Boolean) sum a -+ b denote the operation of including vertex a or b or both;
let the logical multiplication ab denote the operation of including both ver-
tices @ and b, and let the Boolean complement a" denote that vertex a is not

included.
For a given graph G we must find a maximal subset of vertices that does

not include the two end vertices of any edge in G. Let us express an edge (x, y)
as a Boolean product, xy, of its end vertices x and y, and let us sum all such
products in G to get a Boolean expression

p = I xy for all (x, y) in G.

Let us further take the Boolean complement ¢ of this expression, and express
it as a sum of Boolean products:

o =fi+fit o+

A vertex set is a maximal independent set if and only if ¢ = 0 (logically false),
which is possible if and only if ¢" = 1 (true), which is possible if and only if at
least one f; = 1, which is possible if and only if each vertex appearing in f,
(in complemented form) is excluded from the vertex set of G. Thus each f,
will yield a maximal independent set, and every maximal independent set will
be produced by this method. This procedure can be best explained by an
example. For the graph G in Fig. 8-3,
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¢:ab—|—bc+bd—f—b€+f€+df+ff+ E'g—l_fgﬂ
9 = (a' + b)Y + Wb + AN+ €N+ eNd + €)
(¢ + [')e + g)Sf" +g).

Multiplying these out and employing the usual identities of Boolean arith-
metic, such as

aa = a,
a-+ a-=a,
a -+ ab = a,

we get
?’ — biei‘fl _-}_ b!ei'g.l' _Ir_ afcl'dfef.f! + a!{.l‘dl'efgf _I_ bicfdffﬁgf‘

Now if we exclude from the vertex set of G vertices appearing in any one of
these five terms, we get a maximal independent set. The five maximal inde-
pendent sets are

acdf, acdg, bg, bf, and ae.

These are all the maximal independent sets of the graph.

Finding Independence and Chromatic Numbers: Once all the maximal
independent sets of G have been obtained, we find the size of the one with
the largest number of vertices to get the independence number F(G). The
independence number of the graph in Fig. 8-3 is four.

To find the chromatic number of G, we must find the minimum number
of these (maximal independent) sets, which collectively include all the ver-
tices of G. For the graph in Fig. 8-3, sets {a, ¢,d, [}, {b, g}, and {a, e}, for
example, satisfy this condition. Thus the graph is 3-chromatic.

Chromatic Partitioning: Given a simple, connected graph G, partition all
vertices of G into the smallest possible number of disjoint, independent sets.
This problem, known as the chromatic partitioning of graphs, is perhaps the

most important problem in partitioning of graphs.
By enumerating all maximal independent sets and then selecting the

smallest number of sets that include all vertices of the graph, we just solved
this problem. The following four are some chromatic partitions of the graph
in Fig. 8-3, for example.
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{(a,c,d, f),(b,g), (e)},
{(a,c.d, ), (b,f) (e)],
{(c,d, f), (b, g), (a,e),
{(c,d, g), (b,f). (a,e)].

Uy Fig. 8-4 A 3-chromatic graph.

This method of chromatic partitioning (requiring enumeration of all
maximal independent sets) is inefficient and needs prohibitively large
amounts of computer memory. A more efficient method for computer imple-
mentation is proposed in [8-6].

Uniquely Colorable Graphs: A graph that has only one chromatic partition
is called a uniquely colorable graph. The graph in Fig. 8-3 is not a uniquely
colorable graph, but the one in Fig. 8-4 is (Problem 8-2). For some interesting
properties of uniquely colorable graphs, the reader is referred to Chapter 12
of [1-5].

A concept related to that of the independent set and chromatic partition-
ing is the dominating set, to be discussed next.

Dominating Sets: A dominating set (or an externally stable set) in a graph
G is a set of vertices that dominates every vertex v in G in the following sense:
Either v is included in the dominating set or is adjacent to one or more ver-
tices included in the dominating set. For instance, the vertex set {b, g} is a
dominating set in Fig. 8-3. So is the set {a, b,¢,d, f} a dominating set. A
dominating set need not be independent. For example, the set of all its ver-
tices is trivially a dominating set in every graph.
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In many applications one is interested in finding minimal dominating sets
defined as follows:

A minimal dominating set 1s a dominating set from which no vertex can be
removed without destroying its dominance property. For example, in Fig.
8-3, {b, e} is a minimal dominating set. And so is {a, ¢, d, f}. Observations
that follow from these definitions are

1. Any one vertex in a complete graph constitutes a minimal dominating
set.

2. Every dominating set contains at least one minimal dominating set.

3. A graph may have many minimal dominating sets, and of different

sizes. [The number of vertices in the smallest minimal dominating set
of a graph G is called the domination number, a(G).]

4. A minimal dominating set may or may not be independent.

5. Every maximal independent set 1s a dominating set. For if an inde-
pendent set does not dominate the graph, there is at least one vertex
that is neither in the set nor adjacent to any vertex in the set. Such a
vertex can be added to the independent set without destroying its in-
dependence. But then the independent set could not have been max-
imal.

6. An independent set has the dominance property only if it is a maximal
independent set. Thus an independent dominating set is the same as a
maximal independent set.

7. In any graph G,

a(G) < B(G).

Finding Minimal Dominating Sets: A method for obtaining all minimal
dominating sets in a graph will now be developed. The method, like the one
for finding all maximal independent sets, also uses Boolean arithmetic.

To dominate a vertex v, we must either include v, or any of the vertices
adjacent to v,. A minimum set satisfying this condition for every vertex v, 1s
a desired set. Therefore, for every vertex v, in G let us form a Boolean product
of sums (v, + v, + v, 4---++ v,), where v,,v,,...,v, are the vertices
adjacent to v, and d is the degree of v,:

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 27/49




KARPAGAM ACADEMY OF HIGHER EDUCATION

COURSE CODE: 18MMP205A UNIT: 111 BATCH-2018-2020

CLASS: | M.Sc MATHEMATICS COURSE NAME: GRAPH THEORYTHEORY
AND ITS APPLICATIONS

¢ =11 +v, +v,4---+w,) forallv inG.

When @ is expressed as a sum of products, each term in it will represent a
minimal dominating set. Let us illustrate this algorithm using the graph of
Fig. 8-3:

Consider the following expression @ for Fig. 8-3:

0=(@+b)b+c+t+di+e+a)et+ b+ e)d+ bt e)
(e+btctdiftgfteteNgtet))

Since in Boolean arithmetic (x + y)x = x,

0 =@+ b)b+c+elbt+d+e)e+ [+ g)
= ae - be + bf + bg + acdf + acdg.

Each of the six terms in the preceding expression represents a minimal
dominating set. Clearly, a(G) = 2, for this example.
CHROMATIC POLYNOMIAL

In general, a given graph G of n vertices can be properly colored in many
different ways using a sufficiently large number of colors. This property of a
graph is expressed elegantly by means of a polynomial. This polynomial is
called the chromatic polynomial of G and is defined as follows:

The value of the chromatic polynomial P,(4) of a graph with n vertices
gives the number of ways of properly coloring the graph, using A or fewer
colors.

Let ¢, be the different ways of properly coloring G using exactly i different
colors. Since i/ colors can be chosen out of 4 colors in

A
( ) different ways,
i
[
out of 4 colors.

Since i can be any positive integer from | to n (it is not possible to use more

than n colors on n vertices), the chromatic polynomial is a sum of these terms;
that is,

there are c;( ) different ways of properly coloring G using exactly i colors
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c = n!

As an illustration, let us find the chromatic polynomial of the graph given
in Fig. 8-4.
Py(A) = c,A + 01&“{‘12__]) + ¢

4 C‘i{l — l)fi4~!- (4 —3) le{:l — D4 — Zsl!(i — 34 =9,

Since the graph in Fig. 8-4 has a triangle, it will require at least three
different colors for proper coloring. Therefore,

AL — 1A —2)
31

¢, =¢; =0 and ¢ = S

Moreover, to evaluate c,, suppose that we have three colors x, y, and z.
These three colors can be assigned properly to vertices v,,v,, and v, in 3! = 6
different ways. Having done that, we have no more choices left, because
vertex v must have the same color as v,, and v, must have the same color as
v,. Therefore,

83:6-

Similarly, with four colors, v,, v,, and v, can be properly colored in 4.6 =
24 different ways. The fourth color can be assigned to », or v, thus providing
two choices. The fifth vertex provides no additional choice. Therefore,

c, = 24.2 = 48,
Substituting these coefficients in Ps(4), we get, for the graph in Fig. 8-4,

PA) = A — DA — 2) + 241 — 1)(4 — 2)(A — 3)
F AL — DA — 2)(4 — 3)(A — 4)
= A1 — DL —2)(A: — 354+ 7).

The presence of factors A — | and A — 2 indicates that G is at least 3-

chromatic.
Chromatic polynomials have been studied in great detail in the literature.

The interested reader is referred to [8-5] for a more thorough discussion of
their properties. Theorems 8-4, 8-5, and 8-6 should provide a glimpse into the
colorful world of chromatic polynomials.
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THEOREM 8-4

A graph of n vertices is a complete graph if and only if its chromatic polynomial
18

PA)=2A—1DA—2)...(A —n+ 1.

Proof: With A colors, there are 4 different ways of coloring any selected vertex
of a graph. A second vertex can be colored properly in exactly A — 1 ways, the
third in A — 2 ways, the fourth in A — 3 ways, ..., and the nth in A — n + 1

ways if and only if every vertex is adjacent to every other. That is, if and only if
the graph is complete. W

THEOREM 8-5

An n-vertex graph is a tree if and only if its chromatic polynomial

P(A) = A4 — 1)1,

Proof: That the theorem holds for n = 1, 2 is immediately evident. It is left
as an exercise to prove the theorem by induction (Problem 8-9).

THEOREM 8-6

Let @ and b be two nonadjacent vertices in a graph G. Let G’ be a graph obtained
by adding an edge between a and b. Let G”” be a simple graph obtained from G

by fusing the vertices @ and b together and replacing sets of parallel edges with
single edges. Then

P(A)of G = P,(4) of G’ + P,_,(A) of G".

Proof: The number of ways of properly coloring G can be grouped into two
cases, one such that vertices @ and b are of the same color and the other such that
a and b are of different colors. Since the number of ways of properly coloring G
such that @ and b have different colors = number of ways of properly coloring G’,
and

number of ways of properly coloring G such that a and b have the same color
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A DA - D (- 3 (A4 AMA-DA=-22(A - 3) AMA = IV = 2 (A - 3) AMA - 1V(A—2)

B of G=MA-1)A-2D+2MA - 1A -2)(A-3)
+ARA-DA -2 -3IHA—-4
SAA =D =2)(A2 =51 +7)
Fig. 8-5 Evaluation of a chromatic polynomial.
= number of ways of properly coloring G”,

P(A)of G =P of G+ P,_(Aof G'. R

Theorem 8-6 is often used in evaluating the chromatic polynomial of a
graph. For example, Fig. 8-5 illustrates how the chromatic polynomial of a
graph G is expressed as a sum of the chromatic polynomials of four complete
graphs. The pair of nonadjacent vertices shown enclosed in circles is the one
used for reduction at that stage.

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 31/49




KARPAGAM ACADEMY OF HIGHER EDUCATION

COURSE CODE: 18MMP205A UNIT: 111 BATCH-2018-2020

CLASS: | M.Sc MATHEMATICS COURSE NAME: GRAPH THEORYTHEORY
AND ITS APPLICATIONS

et

In the last three sections we have been concerned with proper coloring of
the vertices in a graph. Suppose that we are interested in coloring the edges
rather than the vertices. It is reasonable to call two edges adjacent if they have
one end vertex in common (but are not parallel). A proper coloring of edges
then requires that adjacent edges should be of different colors. Some results
on proper coloring of edges, similar to the results given in Sections 8-1 and
8-2, can be derived (Problem 8-19).

Moreover, a set of edges in which no two are adjacent is similar to an
independent set of vertices. Such a set of edges is called a matching, the sub-
ject of the next section.

MATCHINGS

Suppose that four applicants a,, a,, a,, and a, are available to fill six
vacant positions p,, p,, P;. P4, Ps. and p,. Applicant a, is qualified to fill posi-
tion p, or ps. Applicant a, can fill p, or p,. Applicant a, is qualified for p,, p,,
D3> Ps, OT pg. Applicant a, can fill jobs p, or p,. This situation is represented by
the graph in Fig. 8-6. The vacant positions and applicants are represented by
vertices. The edges represent the qualifications of each applicant for filling

Applicants Positions

Fig. 8-6 Bipartite graph.
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(a) (b)

Fig. 8-7 Graph and two of its maximal matchings.

different positions. The graph clearly is bipartite, the vertices falling into two
sets V', = {a,, a, a5, a,} and V, = {p,, p,, 3, P, Ps, Ps}-

The questions one is most likely to ask in this situation are: Is 1t possible
to hire all the applicants and assign each a position for which he is suitable?
If the answer is no, what is the maximum number of positions that can be
filled from the given set of applicants?

This is a problem of matching (or assignment) of one set of vertices into
another. More formally, a matching in a graph is a subset of edges in which
no two edges are adjacent. A single edge in a graph is obviously a matching,.

A maximal matching is a matching to which no edge in the graph can be
added. For example, in a complete graph of three vertices (i.e., a triangle)
any single edge is a maximal matching. The edges shown by heavy lines in
Fig. 8-7 are two maximal matchings. Clearly, a graph may have many differ-
ent maximal matchings, and of different sizes. Among these, the maximal

matchings. In Fig. 8-7(b), a largest maximal matching is shown in heavy lines.
The number of edges in a largest maximal matching is called the matching

number of the graph.

Although matching is defined for any graph, it is mostly studied in the
context of bipartite graphs, as suggested by the introduction to this section
In a bipartite graph having a vertex partition V', and V,, a complete matching
of vertices in set V, into those in V/, is a matching in which there is one edge
incident with every vertex in V. In other words, every vertex in V', is matchec
against some vertex in V,. Clearly, a complete matching (if it exists) is a larg-
est maximal matching, whereas the converse is not necessarily true.
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For the existence of a complete matching of set V, into set V,, first we
must have at least as many vertices in V/, as there are in V. In other words,
there must be at least as many vacant positions as the number of applicants if
all the applicants are to be hired. This condition, however, is not sufficient.
For example, in Fig. 8-6, although there are six positions and four applicants,
a complete matching does not exist. Of the three applicants a,, a,, and a,,
each qualifies for the same two positions p, and p,, and therefore one of the
three applicants cannot be matched.

This leads us to another necessary condition for a complete matching:
Every subset of r vertices in V', must collectively be adjacent to at least r
vertices in V,, for all values of r =1,2,...,|V,|. This condition is not

satisfied in Fig. 8-6. The subset {a,, a,, a,} of three vertices has only two ver-
tices p, and p; adjacent to them. That this condition is also sufficient for
existence of a complete matching is indeed surprising. Theorem 8-7 is a for-
mal statement and proof of this result.

THEOREM 8-7

A complete matching of V, into ¥, in a bipartite graph exists if and only if
every subset of r vertices in V, is collectively adjacent to r or more vertices in V,
for all values of r.

Proof: The “only if” part (i.e., the necessity of a subset of r applicants collec-
tively qualifying for at least r jobs) is immediate and has already been pointed out.
The sufficiency (i.e., the “if” part) can be proved by induction on r, as the theorem
trivially holds for » = 1. For a complete proof, the student is referred to Theorem
11-1 in [8-3], Theorem 5-19 in [4-5], or Chapter 4 in [1-9].

Problem of Distinct Representatives: Five senators s, s,, §,, 5,4, and s4 are
members of three committees, ¢,, ¢,, and ¢,. The membership is shown in
Fig. 8-8. One member from each committee is to be represented in a super-
committee. Is it possible to send one distinct representative from each of the
committeest ?

This problem is one of finding a complete matching of a set ¥V, into set
V', in a bipartite graph. Let us use Theorem 8-7 and check if r vertices from
V', are collectively adjacent to at least r vertices from V,, for all values of r.
The result is shown in Table 8-1 (ignore the last column for the time being).
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Thus for this example the condition for the existence of a complete match-
ing is satisfied as stated in Theorem 8-7. Hence it is possible to form the super-
committee with one distinct representative from each committee.

The problem of distinct representatives just solved was a small one. A

~ o S —8 _ﬂ's //
-

-

el — —-—

Committees Senators

Fig. 8-8 Membership of committees.

Vi Va r—q

r=1 {c1] {s1,52] —1
fez) {51,53,54] -2

{e3} {$3,54,55] -2

¥ =2 [(‘I!CZI {51,52.53:5¢] —2
{c2, c3} [51,53,54,55) —2

{e3, 1] {s1,52,53,54,55] -3

¥ =3 {C']tCz;f]} {Sl:szgj.]uf-i;sﬁl _2

Table 8-1

larger problem would have become unwieldy. If there are M vertices in V,,
Theorem 8-7 requires that we take all 2% — 1 nonempty subsets of ¥, and
find the number of vertices of V, adjacent collectively to each of these. In
most cases, however, the following simplified version of Theorem 8-7 will
suffice for detection of a complete matching in any large graph.

THEOREM 8-8

In a bipartite graph a complete matching of V, into V), exists if (but not only
if) there is a positive integer m for which the following condition is satisfied:
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degree of every vertex in V', == m = degree of every vertex in V,.

Proof: Consider a subset of r vertices in V,. These r vertices have at least
m-r edges incident on them. Each m-r edge is incident to some vertex in V,.
Since the degree of every vertex in set ¥, is no greater than m, these m-r edges
are incident on at least (m-#)/m = r vertices in V.

Thus any subset of r vertices in V; is collectively adjacent to r or more vertices
in V,. Therefore, according to Theorem 8-7, there exists a complete matching of
Viinto V;. IR

In the bipartite graph of Fig. 8-8,
degree of every vertex in V', > 2 = degree of every vertex in V.

Therefore, there exists a complete matching.

In the bipartite graph of Fig. 8-6 no such number is found, because the
degree of p, = 4 > degree of a,.

It must be emphasized that the condition of Theorem 8-8 is a sufficient
condition and not necessary for the existence of a complete matching. It will
be instructive for the reader to sketch a bipartite graph that does not satisfy
Theorem 8-8 and yet has a complete matching (Problem 8-15).

The matching problem or the problem of distinct representatives is also
called the marriage problem (whose solution, unfortunately, 1s of little use to
those with real marital problems!) See Problem §-16.

If one fails to find a complete matching, he is most likely to be interested
in finding a maximal matching, that is, to pair off as many vertices of V', with
those in V, as possible. For this purpose, let us define a new term called
deficiency, 6(G), of a bipartite graph G.

A set of r vertices in V/, is collectively incident on, say, g vertices of V.
Then the maximum value of the number r — ¢ taken over all values of r = 1,
2, ... and all subsets of V, is called the deficiency é(G) of the bipartite graph
G.

Theorem 8-7, expressed in terms of the deficiency, states that a complete
matching in a bipartite graph G exists if and only if

3(G) < 0.
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For example, the deficiency of the bipartite graph in Fig. 8-7 is —1 (the
largest number in the last column of Table 8-1). It is suggested that you
prepare a table for the graph of Fig. 8-6, similar to Table 8-1, and verify that
the deficiency i1s -1 for this graph (Problem 8-17).

Theorem 8-9 gives the size of the maximal matching for a bipartite graph
with a positive deficiency.

THEOREM 8-9

The maximal number of vertices in set V, that can be matched into V, is equal to
number of vertices in V, — d(G).

The proof of Theorem 8-9 can be found in [8-3], page 288. The size of a
maximal matching in Fig. 8-6, using Theorem 8-9, is obtained as follows:

number of vertices in V', — §(G) =4 — | = 3.

Matching and Adjacency Matrix: Consider a bipartite graph G with non-
adjacent sets of vertices V', and V,, having number of vertices n, and n,,
respectively, and let n, << n,, n, + n, = n, the number of vertices in G. The
adjacency matrix X(G) of G can be written in the form

where the submatrix X, , is the #, by n,, (0, 1)-matrix containing the informa-
tion as to which of the n, vertices of V', are connected to which of the n, ver-
tices of V,. Matrix X7, is the transpose of X,,.

Clearly, all the information about the bipartite graph G is contained in
its X,, matrix.

A matching V, into V, corresponds to a selection of the 1’s in the matrix
X,, such that no line (i.e., a row or a column) has more than one 1.

The matching is complete if the n, by #n, matrix made of selected 1’s has
exactly one | in every row. For example, the X,, matrix for Fig. 8-8 is
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S, 8§, 853 S4 S
c, [T 1.0 0 O
Xio=c¢c, |1 0 1 1 0f
c, |10 0O 1 1 1
n, =3, n,=>3, =8, and n, < n,,
V, = {¢c,, ¢ €4}

V, = {8,, 55, 835, 54, 551
A complete matching of V', into V, is given by

5, 8§, 853 8, S
¢, TO 1 0 0 0

M=c |1 00 0 0f
c, [0 0 0 01

A maximal matching corresponds to the selection of a largest possible
number of 1's from X, , such that no row in it has more than one 1. Therefore,
according to Theorem 8-9, in matrix X,, the largest number of 1’s, no two
of which are in one row, is equal to

number of vertices in V', — 8(G).

Matching problems in bipartite graphs can also be formulated in terms of
the flow problem (see Section 14-5). All edges are assumed to be of unit
capacity, and the problem of finding a maximal matching is reduced to the
problem of maximizing flow from the source to the sink (also see [8-3]).
COVERINGS

In a graph G, a set g of edges is said to cover G if every vertex in G is in-
cident on at least one edge in g. A set of edges that covers a graph G is said to
be an edge covering, a covering subgraph, or simply a covering of G. For
example, a graph G is trivially its own covering. A spanning tree in a con-
nected graph (or a spanning forest in an unconnected graph) is another
covering. A Hamiltonian circuit (if it exists) in a graph is also a covering.
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Just any covering is too general to be of much interest. We have already
dealt with some coverings with specific properties, such as spanning trees and

(a) (b)

Fig. 89 Graph and two of its minimal coverings.

Hamiltonian circuits. In this section we shall investigate the minimal cover-
ing—a covering from which no edge can be removed without destroying its
ability to cover the graph. In Fig. 8-9 a graph and two of its minimal cover-
ings are shown in heavy lines.

The following observations should be made:

1. A covering exists for a graph if and only if the graph has no isolated
vertex.

2. A covering of an n-vertex graph will have at least [n/2] edges. ([x] de-
notes the smallest integer not less than x.)
3. Every pendant edge in a graph is included in every covering of the
graph.

4. Every covering contains a minimal covering.

5. If we denote the remaining edges of a graph by (G — g), the set of
edges g is a covering if and only if, for every vertex v, the degree of
vertex in (G — g) << (degree of vertex v in G) — 1.

6. No minimal covering can contain a circuit, for we can always remove
an edge from a circuit without leaving any of the vertices in the circuit
uncovered. Therefore, a minimal covering of an n-vertex graph can
contain no more than n — 1 edges.
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7. A graph, in general, has many minimal coverings, and they may be of
different sizes (i.e., consisting of different numbers of edges). The
number of edges in a minimal covering of the smallest size is called the
covering number of the graph.

THEOREM 8-10

A covering g of a graph is minimal if and only if g contains no paths of length
three or more.

T

(a) {b)

Fig. 8-10 Star graphs of one, two, three, and four edges.
Proof: Suppose that a covering g contains a path of length three, and it is
M UaEa1 1891y,

Edge e; can be removed without leaving its end vertices v, and »; uncovered.
Therefore, g is not a minimal covering,.

Conversely, if a covering g contains no path of length three or more, all its
components must be star graphs (i.e., graphs in the shape of stars; see Fig. 8-10).
From a star graph no edge can be removed without leaving a vertex uncovered.
That is, g must be a minimal covering.

Suppose that the graph in Fig. 8-9 represents the street map of a part of a
city. Each of the vertices 1s a potential trouble spot and must be kept under
the surveillance of a patrol car. How will you assign a minimum number of
patrol cars to keep every vertex covered?

The answer is a smallest minimal covering. The covering shown in Fig.
8-9(a) 1s an answer, and it requires six patrol cars. Clearly, since there are 11
vertices and no edge can cover more than two, less than six edges cannot cover
the graph.
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Minimization of Switching Functionst: An important step in the logical
design of a digital machine is to minimize Boolean functions before imple-
menting them. Suppose we are interested in building a logical circuit that
gives the following function F of four Boolean variables w, x, y, and z.

F = WipZ + Wiy + wijz + wiyz + wxyi 4+ wxyz + wxyz,

where 4 denotes logical OR, xy denotes x AND y, and x denotes NOT x.

Let us represent each of the seven terms in F by a vertex, and join every
pair of vertices that differ only in one variable. Such a graph is shown in Fig.
8-11.

An edge between two vertices represents a term with three variables.

A minimal cover of this graph will represent a simplified form of F, per-
forming the same function as F, but with less logic hardware.

The pendant edges | and 7 must be included in every covering of the

Fig. 8-11 Graph representation of a Boolean function.
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wyz
wyz
Fig. 8-12

graph. Therefore, the terms

xpz and xyz are essential.

Two additional edges 3 and 6 (or 4 and 5 or 3 and 5) will cover the remainder.
Thus a simplified version of F is

F=Xxpz -+ xyz + wyz + wyz.

This expression can again be represented by a graph of four vertices, as shown
in Fig. 8-12.

The essential terms XyZ and xyz cannot be covered by any edge, and hence
cannot be minimized further. One edge will cover the remaining two vertices
in Fig. 8-12. Thus the minimized Boolean expression is

F = xyz + xyz + wy.

Dimer Problem: In crystal physics, a crystal is represented by a three-
dimensional lattice. Each vertex in the lattice represents an atom, and an
edge between vertices represents the bond between the two atoms. In the
study of the surface properties of crystals, one is interested in two-dimen-
sional lattices, such as the two shown in Fig. 1-10.

To obtain an analytic expression for certain surface properties of crystals
consisting of diatomic molecules (also called dimers), one is required to find
the number of ways in which all atoms on a two-dimensional lattice can be
paired off as molecules (each consisting of two atoms). The problem is equiv-
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alent to finding all different coverings of a given graph such that every vertex
in the covering is of degree one. Such a covering in which every vertex is of

degree one is called a dimer covering or a I-factor. A dimer covering is obvi-
ously a matching because no two edges in it are adjacent. Moreover, a dimer
covering is a maximal matching. This is why a dimer covering is often referred
to as a perfect matching.

Two different dimer coverings are shown in heavy lines in the graph in
Fig. 8-13.

Clearly, a graph must have an even number of vertices to have a dimer
covering. This condition, however, is not enough (Problem 8-21).

r—— >-—9

® Fig. 8-13 Two dimer coverings of a
(b) graph.

FOUR-COLOR PROBLEM
So far we have considered proper coloring of vertices and proper coloring

of edges. Let us briefly consider the proper coloring of regions in a planar
graph (embedded on a plane or sphere). Just as in coloring of vertices and
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edges, the regions of a planar graph are said to be properly colored if no two
contiguous or adjacent regions have the same color. (Two regions are said to
be adjacent if they have a common edge between them. Note that one or more
vertices in common does not make two regions adjacent.) The proper coloring
of regions is also called map coloring, referring to the fact that in an atlas
different countries are colored such that countries with common boundaries
are shown in different colors.

Once again we are not interested in just properly coloring the regions of
a given graph. We are interested in a coloring that uses the minimum number
of colors. This leads us to the most famous conjecture in graph theory. The
conjecture i1s that every map (i.e., a planar graph) can be properly colored
with four colors. The four-color conjecture, already referred to in Chapter 1,
has been worked on by many famous mathematicians for the past 100 years.
No one has yet been able to either prove the theorem or come up with a map
(in a plane) that requires more than four colors.

That at least four colors are necessary to properly color a graph is im-
mediate from Fig. 8-14, and that five colors will suffice for any planar graph
will be shown shortly.

Two remarks may be made here in passing. Paradoxically, for surfaces
more complicated than the plane (or sphere) corresponding theorems have
been proved. For example, it has been proved that seven colors are necessary
and sufficient for properly coloring maps on the surface of a torus. Second,
it has been proved that all maps containing less than 40 regions can be proper-
ly colored with four colors. Therefore, if in general the four-color conjecture
is false, the counterexample has to be a very complicated and large one.

Vertex Coloring Versus Region Coloring: From Chapter 5 we know that
a graph has a dual if and only if it is planar. Therefore, coloring the regions
of a planar graph G is equivalent to coloring the vertices of its dual G*, and

Color 1

Color 4

Fig. 8-14 Necessity of four colors.
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vice versa. Thus the four-color conjecture can be restated as follows: Every
planar graph has a chromatic number of four or less.

Five-Color Theorem: We shall now show that every planar map can be
properly colored with five colors:

THEOREM 8-11

The vertices of every planar graph can be properly colored with five colors.

Proof: The theorem will be proved by induction. Since the vertices of all graphs
(self-loop-free, of courset) with 1, 2, 3, 4, or 5 vertices can be properly colored with
five colors, let us assume that vertices of every planar graph with » — 1 vertices
can be properly colored with five colors. Then, if we prove that any planar graph G
with n vertices will require no more than five colors, we shall have proved the
theorem.

Consider the planar graph G with n vertices. Since G is planar, it must have
at least one vertex with degree five or less (Problem 5-4). Let this vertex be v.

Let G’ be a graph (of n — 1 vertices) obtained from G by deleting vertex v (i.e.,
v and all edges incident on v). Graph G’ requires no more than five colors, according
to the induction hypothesis. Suppose that the vertices in G’ have been properly
colored, and now we add to it v and all edges incident on v. If the degree of » is
1, 2, 3, or 4, we have no difficulty in assigning a proper color to ».

1, 2, 3, or 4, we have no difficulty in assigning a proper color to ».

This leaves only the case in which the degree of v is five, and all the five colors
have been used in coloring the vertices adjacent to v, as shown in Fig. 8-15(a).
(Note that Fig. 8-15 is part of a planar representation of graph G'.)

Suppose that there is a path in G" between vertices a and ¢ colored alternately
with colors 1 and 3, as shown in Fig. 8-15(b). Then a similar path between b and
d, colored alternately with colors 2 and 4, cannot exist; otherwise, these two paths

Color 1 Color 1

Color 2 Color 5

Color 4 3 1

(a) (b)

Fig. 8-15 Reassigning of colors.
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will intersect and cause G to be nonplanar. (This is a consequence of the Jordan
curve theorem, used in Section 5-3, also.)

If there is no path between b and d colored alternately with colors 2 and 4,
starting from vertex b we can interchange colors 2 and 4 of all vertices connected
to b through vertices of alternating colors 2 and 4. This interchange will paint
vertex b with color 4 and yet keep G’ properly colored. Since vertex d is still with
color 4, we have color 2 left over with which to paint vertex v.

Had we assumed that there was no path between a and ¢ of vertices painted

alternately with colors 1 and 3, we would have released color 1 or 3 instead of
color 2. And thus the theorem. |l

Regularization of a Planar Graph: Removing every vertex of degree one
(together with the pendant edge) from the graph G does not affect the regions
of a planar graph. Nor does the elimination of every vertex of degree two, by
merging the two edges in series (Fig. 5-6), have any effect on the regions of a
planar graph.

Now consider a typical vertex v of degree four or more in a planar graph.
Let us replace vertex » by a small circle with as many vertices as there were
incidences on ». This results in a number of vertices each of degree three
(see Fig. 8-16).

Performing this transformation on every vertex of degree four or more in
a planar graph G will produce another planar graph H in which every vertex
is of degree three. When the regions of H have been properly colored, a proper
coloring of the regions of G can be obtained simply by shrinking each of the
new regions back to the original vertex.

Such a transformation may be called regularization of a planar graph,
because it converts a planar graph G into a regular planar graph H of degree
three. Clearly, if H can be colored with four colors, so can G. Thus, for map-
coloring problems, it is sufficient to confine oneself to (connected) planar,
regular graphs of degree three. And the four-color conjecture may be restated

as follows:

in & in "
(a) (b)

Fig. 8-16 Regularization of a graph.
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The regions of every planar, regular graph of degree three can be colored
properly with four colors.

If, in a planar graph G, every vertex is of degree three, its dual G* is a
planar graph in which every region is bounded by three edges; that is, G* is
a triangular graph. Thus the four-color conjecture may again be restated as
follows: The chromatic number of every triangular, planar graph is four or
less.

POSSIBLE QUESTIONS
2 Mark Questions:
1. Define Mobius Inversion Formula.
2. Prove that the function g is a multiplicative function.

3. Define greatest positive integer.

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 47/49




KARPAGAM ACADEMY OF HIGHER EDUCATION

COURSE CODE: 18MMP205A UNIT: 111 BATCH-2018-2020

CLASS: | M.Sc MATHEMATICS COURSE NAME: GRAPH THEORYTHEORY
AND ITS APPLICATIONS

N N
4. IfNis a positive integer, then Zz‘(n) = Z[N /n].
n=1 =1

Define Euler Phi function with example.
Find the value of ¢(36000).

Prove that for n>2, ¢(n) is an even integer.

® Nown

Prove that for any positive integer n, ¢(n)=n>_x(d)/d.

dpn
9. State Gauss lemma.
10. Prove thatif pisaprime and p does not divides a,then a®* =1(mod p).
8 Mark Questions:
1. State and prove Mobius inverse formula.
2. Prove thatif F is multiplicative function
F(n)=> f(d),
dJn

Then fis also multiplicative.
3. Prove thatif nis a positive integer and p is a prime, then the exponent of the highest

power of p that divides n! is

0

>'[n/ pk]

n=1
(That is an infinite series, since [n/ p¥] = 0 for p*>n.)

4. Proveif nand r are positive integers with 1<r <n, then the binomial coefficient

ny_nl
(rj_ ri(n—r)!

5. Let f and F be number-theoretic function such that

F(n)=>_f(d),

djn

is also an integer.

then, prove for any positive integer N,
N N
Z F(n)= z f (K)[N /K]
k=1 k=1
6. Prove that the function ¢ is a multiplicative function.
7. Prove thatif the integer n>1has the prime factorization n= plkl p2k2 prkr , then
#(m) = (P = P )P — P ) (P = )
=n(l-1/ p)1-1/p,)..A-1/ p,).
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8. Let n>1land gcd(a,n)=1.If a,a,,..., ., are the positive integer less than n and
relatively prime to n, then
aa,,aa,,..., ad,
are congruent modulo n to a,,3,,...,3,, insome order.

9. State and prove Euler theorem.
10. Prove that for each positive integer n>1,
n=> ¢(d),
djn

the sum being extended over all positive divisor of n.
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UNIT-IV

SYLLABUS

Directed Graphs — Types of Directed Graphs - Types of enumeration, counting labeled trees,
counting unlabelled trees, Polya’s counting theorem, graph enumeration with Polya’s theorem.
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DIRECTED GRAPH

A directed graph (or a digraph for short) G consists of a set of vertices
V ={v,,v,,...},asetofedges E = {e,, e,, . . .}, and a mapping ¥ that maps

€1

P . Fig, 9-1 Directed graph with 5 vertices
€7 3 and 10 edges.

every edge onto some ordered pair of vertices (v, v,). As in the case of
undirected graphs, a vertex 1s represented by a point and an edge by a line
segment between v, and v, with an arrow directed from v, to v,. For example,
Fig. 9-1 shows a digraph with five vertices and ten edges. A digraph is also
referred to as an oriented graph.t

In a digraph an edge is not only incident on a vertex, but is also incident
out of a vertex and incident into a vertex. The vertex v, which edge ¢, is
incident out of, is called the initial vertex of e,. The vertex v,, which e, is
incident into, is called the terminal vertex of e,. In Fig. 9-1, v, is the initial
vertex and v, 1s the terminal vertex of edge e,. An edge for which the initial
and terminal vertices are the same forms a self-loop, such as e;. (Some
authors reserve the term arc for an oriented or directed edge. We use the
term edge to mean either an undirected or a directed edge. Whenever there is
a possibility of confusion, we shall explicitly state directed or undirected edge.)

The number of edges incident out of a vertex v, is called the out-degree (or
out-valence or outward demidegree) of v, and is written d*(v»,). The number of
edges incident into v, is called the in-degree (or in-valence or inward demi-
degree) of v, and is written as d (v,). In Fig. 9-1, for example,
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d+{vl) =3, d_(ﬂl) =1,
drw) =1,  d@) =2,
d*(v) =4,  d-(v;) = 0.

It is not difficult to prove (Problem 9-1) that in any digraph G the sum of
all in-degrees is equal to the sum of all out-degrees, each sum being equal to

the number of edges in G; that is,
; d+(7”£} = igl d_(?"r)

An isolated vertex is a vertex in which the in-degree and the out-degree
are both equal to zero. A vertex v in a digraph is called pendant if it is of
degree one, that is, if

d* ) + d-(v) = 1.

Two directed edges are said to be parallel if they are mapped onto the
same ordered pair of vertices. That is, in addition to being parallel in
the sense of undirected edges, parallel directed edges must also agree in the
direction of their arrows. In Fig. 9-1, edges e4, ey, and e,, are parallel,
whereas edges ¢, and e, are not.

Since many properties of directed graphs are the same as those of
undirected ones, it is often convenient to disregard the orientations of edges
in a digraph. Such an undirected graph obtained from a directed graph G will
be called the undirected graph corresponding to G.

On the other hand, given an undirected graph H, we can assign each edge

of H some arbitrary direction. The resulting digraph, designated by H is
called an orientation of H (or a digraph associated with H). Note that while a
given digraph has a unique (within isomorphism) undirected graph corre-
sponding to it, a given undirected graph may have “different orientations
possible. This is why we say the undirected graph corresponding to a digraph,
but an orientation of a graph.

Isomorphic Digraphs: Isomorphic graphs were defined such that they have
identical behavior in terms of graph properties. In other words, if their labels
are removed, two isomorphic graphs are indistinguishable. For two digraphs
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(a) (b)

Fig. 9-2 Two nonisomorphic digraphs.

to be isomorphic not only must their corresponding undirected graphs be
isomorphic, but the directions of the corresponding edges must also agree.
For example, Fig. 9-2 shows two digraphs that are not isomorphic, although
they are orientations of the same undirected graph.

Figure 9-2 immediately suggests a problem. What i1s the number of
distinct (i.e., nonisomorphic) orientations of a given undirected graph? The
problem was solved by F. Harary and E. M. Palmer in 1966. Some specific
cases are left as an exercise (Problem 9-3).

SOME TYPES OF DIGRAPHS

Like their undirected sisters, digraphs come in many varieties. In fact, due
to the choice of assigning a direction to each edge, directed graphs have more
varieties than undirected ones.

Simple Digraphs: A digraph that has no self-loop or parallel edges 1s
called a simple digraph (Figs. 9-2 and 9-3, for example).

Asymmetric Digraphs: Digraphs that have at most one directed edge
between a pair of vertices, but are allowed to have self-loops, are called
asymmetric or antisymmetlric.

Symmetric Digraphs: Digraphs in which for every edge (a, b) (i.e., from
vertex a to b) there is also an edge (b, a).

A digraph that is both simple and symmetric is called a simple symmetric
digraph. Similarly, a digraph that is both simple and asymmetric is simple
asymmetric. The reason for the terms symmetric and asymmetric will be
apparent in the context of binary relations in Section 9-3.
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Complete Digraphs: A complete undirected graph was defined as a simple
graph in which every vertex is joined to every other vertex exactly by one edge.
For digraphs we have two types of complete graphs. A complete symmetric
digraph is a simple digraph in which there is exactly one edge directed from
every vertex to every other vertex (Fig. 9-3), and a complete asymmetric
digraph is an asymmetric digraph in which there is exactly one edge between
every pair of vertices (Fig. 9-2).

A complete asymmetric digraph of n vertices contains n(n — 1)/2 edges,
but a complete symmetric digraph of » vertices contains n(n — 1) edges. A
complete asymmetric digraph is also called a rournament or a complete
tournament (the reason for this term will be made clear in Section 9-10).

A digraph is said to be balanced if for every vertex v, the in-degree equals
the out-degree; that is, d*(v,) = d~(v,). (A balanced digraph is also referred
to as a pseudosymmetric digraph, or an isograph.) A balanced digraph is said
to be regular if every vertex has the same in-degree and out-degree as every
other vertex.

Fig. 9-3 Complete symmetric digraph
of four vertices.

DIGRAPHS AND BINARY RELATIONS
The theory of graphs and the calculus of binary relations are closely
related (so much so that some people often mistakenly come to regard graph
theory as a branch of the theory of relations).
In a set of objects, X, where

X =1[{x,x,...1}
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a binary relation R between pairs (x;, x;) may exist. In which case, we write
X, Rx;

and say that x, has relation R to x;.

Relation R may for instance be “is parallel to,” “is orthogonal to,” or
“is congruent to” in geometry. It may be “is greater than,” “is a factor of,”
“is equal to,” and so on, in the case when X consists of numbers. On the other
hand, if the set X is composed of people, the relation R may be “is son of,”
“is spouse of,” *“is friend of,” and so forth. Each of these relations i1s defined
only on pairs of numbers of the set, and this is why the name binary relation.
Although there are relations other than binary (x; “is a product of” x, and
x,, for example, will be a tertiary relation), binary relations are the most
important in mathematics, and the word “relation” implies a binary relation.

A digraph 1s the most natural way of representing a binary relation on a
set X. Each x; € Xis represented by a vertex x,. If x, has the specified relation
R to x,;, a directed edge is drawn from vertex x; to x;, for every pair (x;, x,).
For example, the digraph in Fig. 9-4 represents the relation “is greater than”
on a set consisting of five numbers {3, 4, 7, 5, 8].

Clearly, every binary relation on a finite set can be represented by a
digraph without parallel edges. Conversely, every digraph without parallel
edges defines a binary relation on the set of its vertices.

4

Fig. 9-4 Digraph of a binary relation.
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Fig. 9-5 Graphs of symmetric binary relation.

Reflexive Relation: For some relation R it may happen that every element
is in relation R to itself. For example, a number is always equal to itself, or a
line 1s always parallel to itself. Such a relation R on set X that satisfies

x; Rx,
for every x; € X is called a reflexive relation. The digraph of a reflexive
relation will have a self-loop at every vertex. Such a digraph representing a
reflexive binary relation on its vertex set may be called a reflexive digraph. A
digraph in which no vertex has a self-loop is called an irreflexive digraph.

Symmetric Relation: For some relation R it may happen that for all x, and
x;, if

X;Rx; holds, then x;Rx; also holds.

Such a relation is called a symmetric relation. “Is spouse of” is a symmetric
but irreflexive relation. “Is equal to” is both symmetric and reflexive.

The digraph of a symmetric relation is a symmetric digraph because for
every directed edge from vertex x, to x, there is a directed edge from x, to x,.
Figure 9-5(a) shows the graph of an irreflexive, symmetric binary relation on
a set of four elements. The same relation can also be represented by drawing
just one undirected edge between every pair of vertices that are related, as in
Fig. 9-5(b). Thus every undirected graph is a representation of some sym-
metric binary relation (on the set of its vertices). Furthermore, every
undirected graph with e edges can be thought of as a symmetric digraph with
2e directed edges. (A two-way street is equivalent to two one-way streets
pointed in opposite directions.)
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Transitive Relation: A relation R i1s said to be transitive if for any three
elements x;, x;, and x, 1n the set,

x;,Rx; and x;Rx,
always imply
x,Rx,.

The binary relation “is greater than,” for example, is a transitive relation. If
x, > x, and x; > x,, clearly x, = x,. “Is descendent of” is another example
of a transitive relation.

The digraph of a transitive (but irreflexive and asymmetric) binary relation
is shown in Fig. 9-4. Note the triangular subgraphs. A digraph representing a
transitive relation (on its vertex set) is called a transitive directed graph.

Equivalence Relation: A binary relation is called an equivalence relation if
it is reflexive, symmetric, and transitive. Some examples of equivalence

b L T

relations are “is parallel to,” *is equal to,
modulo m,” and “is isomorphic to.”

The graph representing an equivalence relation may be called an equiva-
lence graph. What does an equivalence graph look like? Let us look at an
example, consisting of the equivalence relation *“is congruent to modulo 3”
defined on the set of 11 integers, 10 through 20. The graph is shown in Fig.
9-6. (Recall that each undirected edge in Fig. 9-6 represents two parallel but
oppositely directed edges.)

In Fig. 9-6 we see that the vertex set of the graph is divided into three
disjoint classes, each in a separate component. Each component is an
undirected subgraph (due to symmetry) with a self-loop at each vertex (due to
reflexivity). Furthermore, in each component every vertex is related to (i.e.,
joined by an edge to) every other vertex.

10 13 11 14
12
16 19 17 20 15 18

= | (mod 3) =2 (mod 3) =0 (mod 3)

Y &R L I Y T

i1s congruent to,” “is equal to

Fig. 9-6 Equivalence graph.
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In general, an equivalence relation on a set partitions the elements of the
set into classes (called equivalence classes) such that two elements are in the
same class if and only if they are related. Symmetry ensures that there is no
ambiguity regarding membership in the equivalence class; otherwise, x; may
have been related to x, but not vice versa. Transitivity ensures that in each
component every vertex is joined to every other vertex, because if a is related
to b and b is related to ¢, a is also related to ¢. Transitivity also guarantees
that no element can be in more than one class. Reflexivity allows an element
to be in a class by itself, if it is not related to any other element in the set.

Relation Mairices: A binary relation R on a set can also be represented by
a matrix, called a relation matrix. It is a (0, 1), n by n matrix, where n is the
number of elements in the set. The i, jth entry in the matrix is 1 if x,Rx, is
true, and is 0, otherwise. For example, the relation matrix of the relation “is
greater than™ on the set of integers {3, 4, 7, 5, 8} is

347 58
370 0 0 0 0]
411 0 0 00
711 1 0 1 0
511 0 0 0
111 1 0]

We shall see in Section 9-8 that this is precisely the adjacency matrix of the
digraph representing the binary relation.
DIRECTED PATHS AND CONNECTEDNESS

Walks, paths, and circuits in a directed graph, in addition to being what
they are in the corresponding undirected graph, have the added consideration
of orientation. For example, in Fig. 9-1, the sequence of vertices and edges
v, €5V, €4V, €, 0, 18 a path “directed” from v, tov,, whereas v, e, v, e, v, €, v,
(although a path in the corresponding undirected graph) has no such consis-
tent direction from v to v,. A distinction must be made between these two
types of paths. It is natural to call the first one a directed path from v, to v,
and the second one a semipath. The word *“path” in a digraph could mean

either a directed path or a semipath, and similarly for walks, circuits, and
cutsets. More precisely:
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A directed walk from a vertex v, to v, is an alternating sequence of vertices
and edges, beginning with v, and ending with v;, such that each edge is
oriented from the vertex preceding it to the vertex following it. Of course, no
edge in a directed walk appears more than once, but a vertex may appear
more than once, just as in the case of undirected graphs. A semiwalk in a
directed graph is a walk in the corresponding undirected graph, but is not
a directed walk. A walk in a digraph can mean either a directed walk or a
semiwalk.

The definitions of circuit, semicircuit, and directed circuit can be written
similarly. Let us turn to Fig. 9-1 once more. The set of edges {e,, e,, €5} is a
directed circuit. But {e,, e4, ¢,} is a semicircuit. Both of them are circuits.

Connected Digraphs: In Chapter 2 a graph (i.e., undirected graph) was
defined as connected if there was at least one path between every pair of
vertices. In a digraph there are two different types of paths. Consequently, we
have two different types of connectedness in digraphs. A digraph G is said to
be strongly connected if there is at least one directed path from every vertex
to every other vertex. A digraph G is said to be weakly connected if its corre-
sponding undirected graph i1s connected but G is not strongly connected. In
Fig. 9-2 one of the digraphs is strongly connected, and the other one is weakly
connected. The statement that a digraph G is connected simply means that its
corresponding undirected graph is connected; and thus G may be strongly or
weakly connected. A directed graph that is not connected is dubbed as
disconnected.

Since there are two types of connectedness in a digraph, we can define two
types of components also. Each maximal connected (weakly or strongly)
subgraph of a digraph G will still be called a component of G. But within each
component of G the maximal strongly connected subgraphs will be called the
fragments (or strongly connected fragments) of G.

For example, the digraph in Fig. 9-7 consists of two components. The
component g, contains three fragments {e,, e,}, {e;, ey, €5, €5}, and {e,,}.
Observe that e,, e,, and e, do not appear in any fragment of g,.

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 10/44




KARPAGAM ACADEMY OF HIGHER EDUCATION

COURSE CODE: 18MMP205A UNIT: IV BATCH-2018-2020

CLASS: | M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY
AND ITS APPLICATIONS

Fig. 9-7 Disconnected digraph with two components,

e

(e11.€)3,€p3)

I:ejm "?4 ]

('351 € €7, 83]

(e)0) Fig. 9-8 Condensation of Fig. 9-7.
Condensation: The condensation G_ of a digraph G is a digraph in which
each strongly connected fragment i1s replaced by a vertex, and all directed
edges from one strongly connected component to another are replaced by a
single directed edge. The condensation of the digraph G in Fig. 9-7 is shown
in Fig. 9-8.
Two observations can be made from the definition:
1. The condensation of a strongly connected digraph is simply a vertex.

2. The condensation of a digraph has no directed circuit.
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Accessibility: In a digraph a vertex b is said to be accessible (or reachable)
from vertex « if there is a directed path from a to b. Clearly, a digraph G is
strongly connected if and only if every vertex in G is accessible from every
other vertex.

TYPES OF ENUMERATION
All graph-enumeration problems fall into two categories:

I. Counting the number of different graphs (or digraphs) of a particular

kind, for example, all connected, simple graphs with eight vertices and
two circuits.

2. Counting the number of subgraphs of a particular type in a given graph
G, such as the number of edge-disjoint paths of length k between
vertices g and b in G.

The second type of problem usually involves a matrix representation of
graph G and manipulations of this matrix. Such problems, although often
encountered in practical applications, are not as varied and interesting as
those in the first category. We shall not consider such problems in this
chapter.

In problems of type | the word “different” is of utmost importance and
must be clearly understood. If the graphs are labeled (i.e., each vertex is
assigned a name distinct from all others), all graphs are counted. On the other
hand, in the case of unlabeled graphs the word “different” means non-
isomorphic, and each set of isomorphic graphs is counted as one,

As an example, let us consider the problem of constructing all simple
graphs with n vertices and e edges. There are n(n — 1)/2 unordered pairs of
vertices. If we regard the vertices as distinguishable from one another (i.e.,

labeled graphs), there are
nn—1)
( 2 ) (10-1)
e

ways of selecting e edges to form the graph. Thus expression (10-1) gives the
number of simple labeled graphs with n vertices and e edges.
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Many of these graphs, however, are isomorphic (that is, they are the same
except for the labels of their vertices). Hence the number of simple, unlabeled
graphs of n vertices and e edges is much smaller than that given by (10-1).

Among a collection of graphs, isomorphism i1s an equivalence relation
(Problem 10-1). The number of different unlabeled graphs (of a certain type)
equals the number of equivalence classes, under isomorphism, of the labeled
graphs. For example, we have 16 different labeled trees of four vertices (Fig.
3-15), and these trees fall into two equivalence classes, under isomorphism. In
Fig. 3-15 the 4 trees in the top row fall into one equivalence class, and the
remaining 12 into another. Thus we have only two different unlabeled trees of
four vertices (Fig. 3-16).

Let us now proceed with counting certain specific types of graphs.

THEOREM 10-1

The number of simple, labeled graphs of n vertices is
Inln=1)/2, (10-2)

Proof: The numbers of simple graphs of n verticesand 0, 1, 2, ..., n(n — 1)/2
edges are obtained by substituting 0, 1, 2, .. ., n(n — 1)/2 for e in expression (10-1).
The sum of all such numbers is the number of all simple graphs with » vertices.
Then the use of the following identity proves the theorem:

0+ () +G)++(E)+() -2 m
COUNTING LABELED TREES
THEOREM 3-10

There are n"~2 labeled trees with n vertices (n = 2).

Proof of Theorem 3-10: Let the n vertices of a tree T be labeled 1,2,3,...,n.
Remove the pendant vertex (and the edge incident on it) having the smallest label,
which is, say, a,. Suppose that b, was the vertex adjacent to @,. Among the remain-
ing n — 1 vertices let a, be the pendant vertex with the smallest label, and #, be
the vertex adjacent to a,. Remove the edge (a,, b;). This operation is repeated on
the remaining n — 2 vertices, and then on n — 3 vertices, and so on. The process
is terminated after n — 2 steps, when only two vertices are left. The tree T defines
the sequence
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(brybay ..y byy) (10-3)

uniquely. For example, for the tree in Fig. 10-1 the sequence is (1,1, 3,5, 5, 5, 9).
Note that a vertex i/ appears in sequence (10-3) if and only if it is not pendant (see
Problem 10-2).

Conversely, given a sequence (10-3) of n — 2 labels, an s-vertex tree can be

Fig. 10-1 Nine-vertex labeled tree,
I which yields sequence(1, 1, 3, 5, 5, 5, 9).

constructed uniquely, as follows: Determine the first number in the sequence
1,2,3,...,n (10-4)

that does not appear in sequence (10-3). This number clearly is a,. And thus the
edge (a,, b,) is defined. Remove b, from sequence (10-3) and a, from (10-4). In
the remaining sequence of (10-4) find the first number that does not appear in the
remainder of (10-3). This would be a,, and thus the edge (a,, b;) is defined. The
construction is continued till the sequence (10-3) has no element left. Finally,
the last two vertices remaining in (10-4) are joined. For example, given a sequence

4,4,3,1,1),
we can construct a seven-vertex tree as follows: (2, 4) is the first edge. The second
is (5, 4). Next, (4, 3). Then (3, 1), (6, 1), and finally (7, 1), as shown in Fig. 10-2.
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7

Fig. 10-2 Tree constructed from se-
quence (4,4, 3,1, 1).

For each of the n — 2 elements in sequence (10-3) we can choose any one of
n numbers, thus forming

nn-2 (10-5)

(n — 2)-tuples, each defining a distinct labeled tree of n vertices. And since each tree
defines one of these sequences uniquely, there is a one-to-one correspondence
between the trees and the n"~2 sequences. Hence the theorem. [l

Rooted Labeled Trees: In a rooted graph one vertex is marked as the root.
For each of the n*~% labeled trees we have n rooted labeled trees, because any
of the n vertices can be made a root. Therefore,

THEOREM 10-2

The number of different rooted, labeled trees with n vertices is
nel, (10-6)
All rooted trees for n = 1, 2, and 3 are given in Fig. 10-3.

COUNTING UNLABFLED TREES

The problem of enumeration of unlabeled trees is more involved and
requires familiarity with the concepts of generating functions and partitions.

H Labeled free trees Labeled rooted trees
1K v

2 | 2
2

| 2 |
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Fig. 10-3 Rooted labeled trees of one, two, and three vertices.
Centroid

In a tree T, at any vertex v of degree d, there are d subtrees with only
vertex v in common. The weight of each subtree at v is defined as the number of
branches in the subtree. Then the weight of the vertex v 1s defined as the
weight of the heaviest of the subtrees at v. A vertex with the smallest weight
in the entire tree T is called a centroid of T.

Just as in the case of centers of a tree (Section 3-4), it can be shown that
every tree has either one centroid or two centroids. It can also be shown that
if a tree has two centroids, the centroids are adjacent. In Fig. 10-6 a tree with
a centroid (called a centroidal tree) and a tree with two centroids (called a
bicentroidal tree) are shown. The centroids are shown enclosed in circles, and
the numbers next to the vertices are the weights.

Free Unlabeled Trees

Let '(x) be the counting series for centroidal trees, and t"”(x) be the
counting series for bicentroidal trees. Then #(x), the counting series for all
(unlabeled, free) trees, is the sum of the two. That is,

H(x) = t'(x) + t"(x). (10-22)
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To obtain ¢''(x), observe that an n-vertex bicentroidal tree can be regarded
as consisting of two rooted trees each with n/2 = m vertices, and joined at
their roots by an edge. (A bicentroidal tree will always have an even number of
vertices; why ?) Thus the number of bicentroidal trees with n = 2m vertices is

) 7 .
6 . ‘:____\ 4
& & & &7
4 ~3 s 5~
6O g -

(a) Centroidal Tree (b)Y Bicentroidal Tree

given by

v (e T w,u, + 1)
i3 2 __"'2'—-_'_'!

and therefore

0= 5 taltn D)

kel

3 u x| i2 }f; (1, x™)? (10-23)

m=]

u(x?) + % "1‘21 (b, x™)2.

R — b —

The number of vertices, n, in a centroidal tree can be odd or even. If n is
odd, the maximum weight the centroid could have is (n — 1). This maximum
is achieved only when the tree consists of a path of n — 1 edges. On the other
hand, if n is even and the tree is centroidal, the maximum weight the centroid
could possibly have is 4(n — 2). This maximum is achieved when the degree
of the centroid is three, and one of the subtrees consists of just one edge.

Thus, regardless whether n is odd or even, it is clear that an n-vertex (free)
centroidal tree can be regarded as composed of several rooted trees, rooted at
the centroid, and none of these rooted trees can have more than | (n — 1)/2 ]
edges, where | x | denotes the largest integer no greater than x. In view of
this observation, an involved manipulation of Eq. (10-21) leads to the fol-
lowing (for missing steps see [10-3]):
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£(x) = ulx) — %u’(x) — 13 ) (10-24)
me1

Adding (10-23) and (10-24), we get the desired counting series:
_ 1 (2 2
1(x) = u(x) — T(H (x) — u(x ))- (10-25)

This relation, which gives the tree-counting series in terms of the rooted-tree
counting series, was first obtained by Richard Otter in 1948 and is known
as Otter’s formula. The first 10 terms of (10-25) are

Hx)=x+ x* + x* + 2x* + 3x% - 6x° 4 11x7
+ 23x% + 47x° + 106x'° + - - -,

The reader is encouraged to extend it by another 10 terms. The first 26 terms
of both u(x) and t(x) are given in Riordan’s book [3-11], page 138.

By now you must have the impression that enumeration of graphs is an
involved subject. And indeed it is. So far we have enumerated only four types
of graphs—rooted and free trees, both labeled and unlabeled varieties. It is

difficult to proceed further without some additional enumerative tool. This is
provided by a general counting theorem due to Polya. We shall first state
and discuss Polya’s theorem and then show how it can be applied for count-
ing graphs.

POLYA’'S COUNTING THEOREM

Permutation

On a finite set 4 of some objects, a permutation z is a one-to-one mapping
from A onto itself. For example, consider a set {q, b, ¢, d}. A permutation

__fabcd
T =\bdca
takes a into b, b into d, ¢ into ¢, and d into a. Alternatively, we could write

ﬂl{a) — b?
Rl(b) - dr
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n,(c) = ¢,
7, (d) = a.

The number of elements in the object set on which a permutation acts is
called the degree of the permutation. The degree of , in the above example is

four.
A permutation can also be represented by a digraph, in which each vertex

represents an element of the object set and the directed edges represent the

mapping. For example, the permutation n, = (gggg) is represented dia-

grammatically by Fig. 10-7.

b

d Fig. 10-7 Digraph of a permutation.

Observe that the in-degree and the out-degree of every vertex in the
digraph of a permutation is one. Such a digraph must decompose into one or
more vertex-disjoint directed circuits (why ?). This suggests yet another way of

representing a permutation—as a collection of the vertex-disjoint, directed

circuits (called the cycles of the permutation). Permutation (g 3§ z) can thus

be written as (@ b d)(c). This compact and popular representation is called the
cyclic representation of a permutation. The number of edges in a permuta-
tion cycle is called the length of the cycle in the permutation.

Often the only information of interest about a permutation is the number
of cycles of various lengths. A permutation 7 of degree k is said to be of type
(6,,0, ...,0.)ifwhasa,cycles of lengthifori = 1,2, ..., k. Forexample,
permutation (a b d)(c) is of type (1, 0, 1, 0) and permutation (a b f)(c)(d e h)(g)
is of type (2,0, 2,0, 0,0, 0, 0). Clearly,
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le, + 26, + 36, + -+ + ko, = k. (10-26)

Another useful method for indicating the type of a permutation 1s to
introduce & dummy variables, say, y,, y,,...,¥,, and then show the type
of permutation by the expression

Yo ys ... yE (10-27)

Expression (10-27) is called the cycle structure of m. For example, the cycle
structure of the eight-degree permutation (a b f)(c)(d e h)(g) is

VIVIYIvivsyeyiyi = yiyi.
Note that the dummy variable y, has no significance except as a symbol to
which subscripts (indicating the lengths) and exponents (indicating the num-
ber of cycles) are attached. Two distinct permutations (acting on the same
object set) may have the same cycle structure (page 149 in [10-1]).

So far we have discussed only the representation and properties of a
permutation individually. Let us now examine a set of permutations col-
lectively.

On a set A with k objects, we have a total of k! possible permutations—
including the identity permutation, which takes every element into itself. For

example, the following are the six permutations on a set of three elements
{a, b, c}:

(@)(®)c), (ab)(c), (ac)b), (a)bc), (abc), (ach).

Their cycle structures, respectively, are

Y ¥ YV ViV Vi Vi (10-28)
Composition of Permutations

Consider the two permutations , and z, on an object set {1, 2, 3, 4, 5}:

/123
"l—(214

W, =N
lad Ui
—

)

=

(')

=

(]

il
——
ol
R ou i
—
[ N =N
h Lh
—
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A composition of these two permutations m,7, is another permutation
obtained by first applying &, and then applying &, on the resultant. That is,

mm,(1) = 7m,(2) = 4,
n,m,(2) = m,(1) = 3,
7,m,(3) = m,(4) = 2,
m,m(4) = m,y(5) = 5,
n,m,(5) = n,(3) = 1.
Thus .7, =(411§§§?)

Thus among a collection of permutations on the same object set, composition
is a binary operation.

Permutation Group
A collection of m permutations P = {m,, m,, ..., m,} acting on a set

A={a,a,...,4]

forms a group under composition, if the four postulatest of a group, that is,
closure, associativity, identity, and inverse (see Section 6-1), are satisfied.
Such a group is called a permutation group. For example, it can be easily
verified that the set of four permutations

{(@)®)(c)d), (ac)bd), (abcd), (adcb) (10-29)

acting on the object set {a, b, ¢, d} forms a permutation group.

The number of permutations m in a permutation group is called its order,
and the number of elements in the object set on which the permutations are
acting is called the degree of the permutation group. In the example just cited,
both the degree and order of the permutation group is four. It can be shown
that the set of all k! permutations on a set A of k elements forms a permuta-
tion group. Such a group, of order k! and degree k, is called the full symmetric
group, S,.
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Pélya’s Counting Theorem

Let us consider two finite sets, domain D and range R, together with a
permutation group P on D. To each element p € R let us assign a quantity
w[p] and call it the content (or weight) of the element p. The weight w[p] can
be a symbol or a real number. A mapping f from D to R can be described by
a sequence of | D| elements of set R such that the ith element in the sequence
is the image of the ith element of set D under f. Therefore the content W{( ) of
a mapping f can be defined as the product of the contents of all its images.
That 1s,

W) = IL wlf @)L

Clearly, all functions belonging to the same equivalence class defined by
(10-33) have identical weights. Therefore, we define the weight of an entire
equivalence class (of functions from domain D to range R) to be the (com-
mon) weight of the functions in this class. Our problem is to count the num-
ber of equivalence classes with various weights, given D, R, permutation
group P on D, and weights w[p] for each p € R. This is exactly what Pdlya’s
counting theorem gives.

In Polya’s terminology, elements p of set R are called figures, and func-
tions f from D to R are called configurations. Often the weights of the ele-
ments of R can be expressed as powers of some common quantity x. In that
case the weight assignment to elements of set R can be neatly described by
means of a counting series A(x)

A(x) = fi ax, (10-34)
-
where a, is the number of elements in set R with weight x4.7 Likewise, the

number of configurations can be expressed in terms of another series, called
configuration counting series B(x), such that

B(x) = }jﬂ b, x™, (10-35)

where b, is the number of different configurations having weight x™. Now we
can state the following powerful result known as Polya’s counting theorem.
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THEOREM 10-3

The configuration-counting series B(x) is obtained by substituting the figure-
counting series A(x") for each y; in the cycle index Z(P; yi, ¥2,- .., ¥:) of the

permutation group P. That is,
B(x) = Z(P; 3 a,x9, Y, agx29, 3, ax, ..., 3, a,xk9). (10-36)

The proof of Polya’s theorem, although not complicated, is not particularly
illuminating and is therefore left out. The reader can find it in [10-1], page 157.
Our interest is mainly in the application of the theorem; let us illustrate it with
some examples.

Example 1: Suppose that we are given a cube and four (identical) balls. In
how many ways can the balls be arranged on the corners of the cube? Two
arrangements are considered the same if by any rotation of the cube they can
be transformed into each other.

The answer is seven, as can be seen by inspection in Fig. 10-9. In Pélya’s
terms the domain D is the set of the eight corners of the cube, and the range

Fig. 10-9 Attaching four balls to corners of a cube.

R consists of two elements (i.e., figures), “presence of a ball” or “absence of a
ball,” with contents x' and x°, respectively. The figure-counting series is

A(x) = f; ax = apx® + a,x' = 1 + x, (10-37)
p3
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since a,, the number of figures with content 0, is one, and a,, the number of
figures with content I, is also one. The configurations are 2% = 256 different
mappings that assign balls to the corners of the cube. The permutation
group P on D is the set of all those permutations that can be produced by
rotations of the cube. These permutations with their cycle structures are

I. One identity permutation. Its cycle structure is y3.

2. Three 180° rotations around lines connecting the centers of opposite
faces. Its cycle structure is y3.

3. Six 90° rotations (clockwise and counterclockwise) around lines con-
necting the centers of opposite faces. The cycle structure is y2.

4. Six 180° rotations around lines connecting the midpoints of opposite
edges. The corresponding cycle structure is 3.

5. Eight 120° rotations around lines connecting opposite corners in the
cube. The cycle structure of the corresponding permutation is y?y3.

The cycle index of this group consisting of - these 24 permutations is,
therefore,

Z(P) = 2]—4( ¥t 9yt -+ 6yi + 8yiyd). (10-38)

Using Polya’s theorem, we now substitute the figure-counting series, that is
1 + xfory, 1 + x*fory,, 1 4 x3for y,, and | 4 x* for y,. This yields the
configuration-counting series.

B(x) = 1 + x + 3x2 + 3x* + 7x* 4 3x* + 3x¢ 4 x7 + x%  (10-39)

The coefficient of x* in B(x) gives the number of P-inequivalent configurations
of content x* (i.e., with four balls). This verifies the answer obtained by
exhaustive inspection in Fig. 10-9.

The total number of P-inequivalent configurations (with contents
x% x', x?, ..., x®) is obtained by adding all coefficients in (10-39), which is
23. It may be observed that this is the number of distinct ways of painting
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the eight vertices of a cube with two colors (one color corresponds to the
“presence of a ball” and the other with the “absence of a ball”).

Example 2: In example 1 we were given four identical balls. Now suppose
that we are given two red balls and two blue balls, and are again asked to find
the number of distinct arrangements on the corners of the cube. Clearly, D,
P, and Z(P) will remain the same as they were in example 1. Only the range R
and the figure-counting series A(x) will change. The range will contain three
elements: (1) presence of no ball, (2) presence of a red ball, and (3) presence
of a blue ball. Choosing x to indicate the presence of a red ball and x’ to
indicate the presence of a blue ball, the three elements in the range mentioned
above will have the contents x%x'?, x'x’%, and x%°x"', respectively. Therefore
the figure-counting series is

Alx, x') = x°x"% 4+ x'x'° + xx't =1 + x + x'.

Substituting this figure-counting series in (10-38), we get the configuration-
counting series

B(x, x') = 2_14[(] + x4+ x)* 4+ 9(1 + x* + x"2)* 4+ 6(1 + x* + x')?

+8(1 4+ x + x)H(1 + x* + x"3)?]
=14 x4 x" 4+ 3x2 + 3x"2 4+ 3xx" 4 3x3 + 3x"3
+ Tx2x" + Txx"2 + Tx* 4+ Tx"* + 13x3x" + 13xx"3
+ 22x2x'% 4+ 3x3 4+ 3x"5 + 13x*x" 4 13xx"*
+ 24x3x"? 4 24x%x"3 4+ 3x% 1+ 3x" + Tx3x’
+ Txx's 4 22x*x'? 4 22x2x"* 4 24x3x'? + x7 + x'7
4+ 3xSx" + 3xx"® + Tx5x"? + Tx3x"% + 13x3x"* 4+ 13x*x"3
+ x4+ X"+ x"x" + xx"T + 3xSx'2 + 3x2x"6 4 3x5x"3
+ 3x3x" + Tx4x™.

The coefficient of x"x’® in (10-40) is the number of distinct arrangements with
r red balls, b blue balls and 8 — r — b corners with no balls. The number of
arrangements with two red and two blue balls is, therefore, 22.

(10-40)

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 25/44




KARPAGAM ACADEMY OF HIGHER EDUCATION

COURSE CODE: 18MMP205A UNIT: IV BATCH-2018-2020

CLASS: | M.Sc MATHEMATICS COURSE NAME: GRAPH THEORY
AND ITS APPLICATIONS

For some other non-graph-theoretic examples of the applications of
Polya’s theorem, the reader should work out Problems 10-10, 10-11, 10-14,
and 10-15. Let us now return to the counting of graphs.

GRAPH ENUMERATION WITH POLYA'S
THEOREM

Enumeration of Simple Graphs: Let us consider the problem of counting
all unlabeled, simple graphs of n vertices. Any such graph G can be regarded
as a mapping (i.e., configuration) of the set D of all Jn(n — 1) unordered
pairs of vertices (for digraphs n(n — 1) pairs of vertices). Range R consists of
two elements s and 7, with contents x' and x°, respectively. If a vertex pair
is joined by an edge in G, the vertex pair maps into s, an element with content
x'; otherwise, into 7, an element with content x° = 1. Thus the figure-count-
ing series is

Alx) = Y ax® =1+ x.

The relevant permutation group in this case is R_, the group of permuta-
tions on the pairs of vertices induced by S, (the full symmetric group on the n
vertices of the graph).f Therefore, the configuration-counting series is
obtained by substituting 1 4 x for y,, | + x2for y,, 1 4+ x* for y,, and so on
in Z(R,). Some specific cases are

(1) For n = 3,

l
Z(Ry) = =i + 3y, + 2py).
Therefore, the configuration-counting series is

Bx) = (1 +x)° 4 31+ x)(1 + x2) + 21 + 23]

=14 x4 x*4 x%.
The coefficient of x'in B(x) is the number of configurations with content x’.
The content of a configuration here is the number of edges in the correspond-
ing graph. Thus the number of nonisomorphic simple graphs of three vertices

with 0, 1, 2, and 3 edges is each one. This is how it should be, as shown in Fig.
10-10.
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(2) For n = 4, the cycle index Z(R,) is given in (10-32). Substituting
I + x' for y, in (10-32), we get

Bx) = 214[“ + x)° 4 91+ x)A(1 + x2)* + 8(1 + x?)?
+ 6(1 + x2)(1 + x4)] (10-41)

= | +4- x 4- 2x% - 3x3 + 2x* + x5 + x°.

In (10-41) the coefficient of x" gives the number of simple graphs with four
vertices and r edges. The validity of series (10-41) 1s verified in Fig. 10-11.

] ./.
L4 < 4 Fig. 10-10 Simple unlabeled graphs of
® ] three vertices.

L ] * @ +* &= *
L

~ 7
171

Fig. 10-11 Simple unlabeled graphs of four vertices.

11X

L

(3) For n = 35, the cycle index Z(R;) is given in Problem 10-9. Substituting
1 4+ x' for y, in Z(R,), we get the counting series B(x) for simple graphs of
five vertices, as follows:

B(x) = al(1 -+ X019+ 10(1 + )41 + x2)* + 20(1 + xK1 + x)

+ 15(1 4+ x)%(1 + x2)* + 30(1 + x2)(1 + x*)?

+ 20(1 4+ xX)1 + x3)1 + x®) + 24(1 + x%)]
=14 x 4 2x% + 4x° + 6x* + 6x° + 6x° + 4x7 + 2x®

+ x* + x19,

(10-42)
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Again, for each r the coefficient of x" in (10-42) gives the number of simple
graphs of five vertices and r edges.

The number of simple, unlabeled graphs with »n vertices for any n can be
counted similarly.

Enumeration of Multigraphs: Suppose that we are interested in counting
multigraphs of n vertices, in which at most two edges are allowed between a

pair of vertices.

In this case the domain and the permutation group are the same as they
were for simple graphs. The range, however, is different. A pair of vertices
may be joined by (1) no edge, (2) one edge, or (3) two edges. Thus range R
contains three elements, say, s, ¢, u, with contents x°, x', and x2, respectively;
that 1s, x’ indicates the presence of i/ edges between a vertex pair, for i =
0, 1, 2. Threfore, the figure-counting series becomes

I+ x + x. (10-43)

Substitution of 1 + x” + x?* for y, in Z(R,) will yield the desired configura-
tion-counting series. For n = 4, using the cycle index from (10-32), we get

-2—13[(1 + x + xz)s -+ 9(1 + x + xz}"(l + x2 4+ x*)? + 8(1 + x? + x6)?

+ 6(1 + x? + x*)1 + x* 4 x*)] (10-44)
=14 x + 3x? 4+ 5x% + 8x* + 9x% 4+ 12x° 4- 9x7 4+ 8x®
+ 5x® 4 3x10 4 x4 x!2,

The coefficient of x' in (10-44) is the number of distinct, unlabeled,
multigraphs of four vertices and i edges (such that there are at most two
parallel edges between any vertex pair). For example. the coefficient of x3 is
5, and these five multigraphs are shown in Fig. 10-12.

Instead of allowing at most two parallel edges between a pair of vertices,

oot T N

Fig. 10-12 Unlabeled multigraphs of four vertices, three edges, and
at most two parallel edges.
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had we allowed any number of parallel edges the figure-counting series
would be the infinite series

|
| — x

Ax)=1+x+x2+x34 -+ = (10-45)

Enumeration of Digraphs: For enumerating digraphs we have to consider
all n(n — 1) ordered pairs of vertices as constituting the domain. The relevant
permutation group will consist of permutations induced on all ordered pairs
of vertices by S_. The cycle index of this permutation group, M,, can be
obtained in the same fashion as was done in the case of R,. For example, for
n = 4, Table 10-4 gives the terms in Z(M,) induced by each term in Z(S,).

Term in Z(54) Induced Term in Z(M,)
»t yi?
yirz rivi
Y1)3 »4
»3 %]
Y4 yi
Table 10-4

Therefore, the cycle index is
| .
Z(M ) = 5z(ni* + 6yiyi + 8y5 1 3y2 + 6y2). (10-46)

For a simple digraph the figure-counting series A(x) = 1 4 x is applicable,
because a given ordered pair of vertices (a, b) either does or does not have an
edge (directed) from a to b. On substituting 1 + x’ for every y, in (10-46), we
get the following configuration-counting series for four-vertex, simple
digraphs.

B(x) = 2L4[(1 + x)'2 + 6(1 + 021 4+ x2)° + 8(1 4 x3)*
+ 3(1 4+ x2)¢ + 6(1 + x*)°]

=14 x4 5x% 4+ 13x? 4+ 27x* + 38x® 4 48x°¢
+ 38x7 4+ 27x® + 13x®? 4+ S5x19 4 x'! - x!2,

(10-47)
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DU DU DS B S

Fig. 10-13 Simple unlabeled digraphs of four vertices and two edges.

The coefficient of x/ in (10-47) is the number of simple digraphs with four
vertices and j edges. For example, the five digraphs of two edges are shown in
Fig. 10-13.

The general expression for the cycle index, Z(M,), of the permutation
group on n(n — 1) ordered pairs induced by S, is given in [1-5], page 180.
Digraphs with parallel edges can be enumerated by substituting the appro-
priate figure-counting series, say (10-43), in Z(M,).
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UNIT-V

SYLLABUS

DOMINATION IN GRAPHS

Introduction — Terminology and concepts — Applications — Dominating set and domination number
— Independent set and independence number — History of domination in graphs.
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Introduction

Let p and ¢ be distinct odd primes, so that both of the Legendre symbols
(plg) and (g/p) are defined. It is natural to inquire whether the value' of
(p/g) can be determined if that of (¢/p) is known. To put the question
more generally, is there any connection at all between the values of these
two symbols? The basic relationship was conjectured experimentally by
Euler in 1783 and impetfectly proved by Legendre two years there-
after. Using his symbol, Legendre stated this relationship in the elegant
form that has since become known as the Quadratic Reciprocity Law:

p-1g-t

(Plolp)y=(=1"* *.
Legendre went amiss in assuming a result which is as difficult to prove as
the law itself, namely, that for any prime p =1 (mod 8), there exists
another prime g =23 (mod 4) for which p is a quadratic residue. Un-
daunted, he attempted another proof in his Essai sur la Théorie des Nombres
(1798); this one too contained a gap, since Legendre took for granted
that there are an infinite number of primes in certain arithmetical pro-
gressions (a fact eventually proved by Dirichlet in 1837, using in the
process very subtle arguments from complex variable theory).

At the age of eighteen, Gauss (in 1795), apparently unaware of
the work of either Euler or Legendre, rediscovered this reciprocity law
and, after a year’s unremitting labor, obtained the first complete proof.
“It tortured me,” says Gauss, *“for the whole year and eluded my most

strenuous efforts before, finally, I got the proof explained in the fourth
section of the Disquisitiones Arithmeticae.”” In the Disguisitiones Arith-
meticae—which was published in 1801, although finished in 1798—Gauss
attributed the Quadratic Reciprocity Law to himself, taking the view
that a theorem belongs to the one who gives the first rigorous demonstra-
tion. The indignant Legendre was led to complain: “This excessive
impudence is unbelievable in 2 man who has sufficient personal merit
not to have the need of appropriating the discoveries of others.” All
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discussion of priority between the two was futile; since each clung to
the correctness of his position, neither took heed of the other. Gauss
went on to publish five different demonstrations of what he called “the
gem of higher arithmetic,” while another was found among his papets.
The version presented below, a variant of one of Gauss® own arguments,
is due to his student, Ferdinand Eisenstein (1823-1852). The proof is
complicated (and it would perhaps be unreasonable to expect an easy
proof), but the underlying idea is simple enough.

TuroreM 9-9 (Gauss’ Quadratic Reciprocity Law). If p and g are
distinct odd primes, then

p=1g-1

(Plo)qip) =(—1)2 =

Proof: Consider the rectangle in the xy coordinate plane whose
vertices are (0, 0), (p/2, 0), (0, ¢/2), and (p/2, 4/2). Let R denote the
region within this rectangle, not including any of the bounding lines.
The general plan of attack is to count the number of lattice points
(that is, the points whose coordinates are integers) inside R in two
different ways. Since p and g are both odd, the lattice points in R
consist of all points (7, m), where 1 <n<<(p—1)2and 1 <m <
(g9 — 1)/2; the mamber of such points is clearly

p—1 g—1
2 2
Now the diagonal D from (0, 0) to (p/2, 4/2) has the equation
Y =1(q/p)x, or equivalently, py=gx. Since gcd(p, g)= 1, none of
the lattice points inside R will lie on D. For p must divide the
x coordinate of any lattice point on the line py = ¢x, and ¢ must divide
its y coordinate; there are are no such points in R. Suppose that T}
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denotes the portion of R which is below the diagonal D, and I, the
portion above. By what we have just seen, it suffices to count the
lattice points inside each of these triangles.

The number of integers in the interval 0 <y <<Aq[p 1s
[4g/p}. Thus, for 1<A<(p—1)/2, there are preciscly [£q/p]
lattice points in T, directly above the point (£, 0) and below D;
in other words, lying on the vertical line segment from (4, 0) to
(k, kq/p). It follows that the total number of lattice points con-
tained in T} is

(p_1y2

> Tkglpl-

k=1

(0,4/2)
T,

] - L] L - L . -

—
=
o
s

(0,0) (¢/2,0)

A similar calculation, with the roles of p and 4 interchanged, show.

that the number of lattice points within T, is
(g—1)/2

> Lipla)-

i=1
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This accounts for all of the lattice points inside R, so that

1 (p—132 (g—1)/2

= > lall+ 2 Uil

k= =

p—1 94—
2 2

The time has come for Gauss’ Lemma to do its duty:

(9=1)/2 (P=1)/2

Y irlal 2 (kalp]
(PIglp)y=(—1) = (—1) +=
M-l}.fzr al (p—zluz .
7 + a/pl
=(___]) ;g"l pla R kaipl

pP-1¢-1
2
=(-1)
The proof of the Quadratic Reciprocity Law is now complete.
CoroLLARY 1. If p and g are distinct odd primes, then
_| 1 # p=1(mod4)erg=1(mod 4)

Progf: The number (p — 1)/2 - (3 — 1)/2 is even if and only if at least
one of the integers p and g is of the form 44 -+ 1; if both are of the
form 44 + 3, then(p — 1)/2 - (¢ — 1)/2 is odd.

Multiplying each side of the Quadratic Reciprocity equation b
(g/p) and using the fact that (g/p)*= 1, we could also formulate this a:

CowrovrvLary 2. If p and qare distinet odd primes, then

_[ (glp) if p=1(mod4)org=1(mod 4)
(plq) —(g/p) if p=g=3(mod4)
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Let us see what this last series of results accomplishes. Take

p to be an odd prime and 4 % 41 to be an integer not divisible by 2.
Suppose further that 2 has the factorization

a= £2%p p, 2. p
where the p; are odd primes.  Since the Legendre symbol is multiplicative,
(alp) = (EUPYCIPY (s )" - - (prpY

In order to evaluate (4/p), we have only to calculate the symbols (—1/p),
(2/p), and (p,/p). The values of (—1/p) and (2/p) were discussed eatlier,
so that the one stumbling block is (p/p), where p, and p are distinct odd
primes; this is where the Quadratic Reciprocity Law enters. For Corol-

lary 2 allows us to replace (p,/p) by a new Legendre sym}:crlohavjng
a smaller denominator. Through continued inversion and division, the
computation can be reduced to that of the known quantities

(—1/g), (1/g), and (2/g)-
Example 9-5 ‘ .
Consider the Legendre symbol (29/53), for instance. Since both
29 =1 (mod 4) and 53 =1 (mod 4), we see that

(29/53) = (53/29) = (24/29) = (2/29)(3/29)(4/29)
= (2/29)(3/29).
With reference to Theorem 9-6, (2/29) = —1, while inverting again,
(3/29) = (29/3) = (2/3) = —1,

where we used the congruence 29 =2 (mod 3). The net effect is
that

(29/53) = (2/29)(3/29) = (— 1)(—1) = 1.
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The Quadratic Reciprocity Law provides a very satisfactf:-ry
answer to the problem of finding all odd primes p # 3 for wlruckln 3isa
quadratic residue. Since 3 ==3 (mod 4), Corollary 2 above implies that

L (p3) i p=1 (mod 4)
@Blp) = —(p3) if p=3 (mod 4).

Now p =1 (mod 3) or p =2 (mod 3). By Theorems 9-2 and 9-6,

1 if p=1(mod3J)
(Pﬁ')-—'{_*] if p=2(mod 3)

the implication of which is that (3/p) =1 if and only if

(1) p=1(mod 4) and p=l (mod 3),
or
(2) p=3(mod4) and p=2(mod 3).

The restrictions in (1) are equivalent to requiring that p EI_(mod _12)
while those in (2) are equivalent to p =11 =—1 (mod 12).

TueoreM 9-10.  If p £ 3 is an odd prime, then

| 1 i p=41(mod 12)
3/p) —
Gin={_q % =45 (mod 12)

Example 9-6

The purpose of this example is to investigate the existence of solu-
tions of the congruence

x2 =196 (mod 1357).

Since 1357 = 23 . 59, the given congruence is solvable if and only
if both

x? =196 (mod 23) and x2=196 (mod 59)
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are solvable. Our procedure is to find the values of the Legendre
symbols (196/23) and (196/59).

The evaluation of (196/23) requires the use of Theorem
9-10:

(196/23) = (12/23) = (3/23) = 1.

Thus, the congruence x2 =196 (mod 23) admits a solution. As
regards the symbol (196/59), the Quadratic Reciprocity Law enables
us to write

(196/59) = (19/59) = —(59/19) = —(2/19) = —(—1) = 1.

It is therefore possible to solve x% =196 (mod 59) and, in con-
sequence, the congruence x2 =196 (mod 1357) as well.

Let us turn to a quite different application of these ideas. At
an earlier stage, it was observed that if F,=2%" 41, n>1, is a prime,
then 2 is not a primitive root of F,. We now possess the means to show
that the integer 3 serves as a primitive root of any prime of this type.

As a step in this direction, note that any F, is of the form 124 + 5.
A simple induction argument confirms that 47 =4 (mod 12) for m=
1, 2, ... ; hence, we must have

Fro=2"41=2% 4 1=4m 41 =5 (mod 12).
If F, happens to be prime, then Theorem 9-10 permits the conclusion

(3j'Fn)= _1:
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or, using Euler’s Criterion,

Fp-1

377 =—1(mod F,).

Switching to the phi-function, the last congruence says that

3¢F0 12 = —1 (mod F,).

From this, it may be inferred that 3 has order $(F.) modulo F,, and so
3 is a primitive root of F,,.

PROBLEMS

1.

Evaluate the following Legendre symbols:

@ (7173), (b) (—219/383), (o) (461/773),  (d) (1234/4567),
() (3658/12703). [Hinr: 3658 =2-31.59.]

Prove that 3 is a quadratic nonresidue of all primes of the form 22"+ 1, as
well as all primes of the form 27 —1, where p is an odd prime. [Hint:
For all #, 4"=4 (mod 12).]

Determine whether the following quadratic congruences are solvable:
(a) x2=219 (mod 419).

(b) 3x2 -+ 6x+ 5=0(mod 89).

(€) 2x24 5x — 9 =0 (mod 101).

Verify that if p is an odd prime, then

1 if p=1(mod8) or p=3(mod8)
f_sz’)=‘_1 if p=5(mod8) or p=7(mod8)

(a) Prove that if >3 is an odd prime, then

1 if p=1(mod 6)
(—3.’P)=[_1 if p=5(mod 6)

(b) Using part (a), show that there are infinitely many primes of the
form 6k + 1. [Hint: Assume that py, p,, ..., p, are all the primes of
the form 64 4 1 and consider the integer (29, p3- - 2,)* + 3.]

Use Theorem 9-2 and Problems 4 and 5 to determine which primes can
divide each of #2 -+ 1, #2 + 2, n2 4 3 for some value of ~.
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So far in the proceedings, quadratic congruences with (odd) prime
moduli have been of paramount importance. The remaining theorems
broaden the hotizon by allowing a composite modulus. To start, let us
consider the situation where the modulus is a power of a prime.

Tueorem 9-11. If p is an odd prime and ged (a, p) =1, then the con-
gruence
x? =g (mod p"), n>1

has a solution if and only if (a|p) = 1.
Proof: As is common with many “if and only if” theorer.ns, one
half of the proof is trivial while the other half requires considerable
effort: If x =a (mod p") has a solution, then so does x* =4 (mod p)
—in fact, the same solution—whence (4/p) = 1. ‘
For the converse, suppose that (¢/p)=1. We argue that
x? =a (mod ") is solvable by inducting on 7. If #=1 there is
reallv nothing to prove: indeed, (2/p) == 1 is just another way of say-
ing that x2 =4 (mod p) can be solved. Assume that the result
holds for # = & > 1, so that x? =a (mod p*) admits a solution x,.
Then

x02=§+hpk

for an approptiate choice of 4. In passing from k to £ 4 1, we shall
use x, and & to write down explicitly a solution'to the congruence

x? =a (mod p¥*1).
Towards this end, we first solve the linear congruence

2x,y =—b (mod p),

obtaining a unique solution _y, modulo p (this is certainly possible,
since ged (25, p) =1). Next, consider the integer

xy = Xo + o
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Upon squaring this integer, we get
(X0 + o )% = Xo® + 20 Yo* + Yo’ p**
=a+(b+2x0)o)p* +20P*
But p | (b + 2x y,), from which it follows that
%1% = (x¢ 0 2*)? =a (mod pk+1).

Thus, the congruence x? =4 (mod ") has a solution for 7 = 4 L 1
and, by induction, for all positive integers .

' Let us run through a specific example in detail. The first step
in obtaining a solution of, say, the quadratic congruence
x? =23 (mod 7?)

is to solve x? =23 (mod 7), or what amounts to the same thing, the
congruence

x? =2 (mod 7).
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Since (2/7) =1, a solution surely exists; in fact x, =3 is an obvious
choice. Now x,? can be represented as

3 —9=23+(-2)7,

so that b= —2 (in our special case, the integer 23 plays the role of a).
Following the proof of Theorem 9-11, we next determine ¥ so that
6y =2 (mod 7);

that is, 3y =1 (mod 7). This linear congruence is satisfied by yo=>5.
Hence,

x0+?}'o=3+75———38

serves as a solution to the original congruence x? =23 (mod 49). Tt
should be noted that —38 = 11 mod (49) is the only other solution.
If, instead, the congruence

x? =23 (mod 7°)
were proposed for solution, we would start with

x? =23 (mod 72),
obtaining a solution x, = 38. Since

382 =23 4+29.7¢

the integer #=29. We would then find the unique solution y, — 1 of
the linear congruence

76y =—29 (mod 7).
Then x? =23 (mod 7°) is satisfied by

o+ 7,72 =38 | 1-49==87,

as well as —87 = 256 (mod 7°).
Having dwelt at length on odd primes, let us now take up the

case p =2. The next theorem supplies the pertinent information.
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THeOREM 9-12.  Let a be an odd integer. Then

(1) x2=a (mod 2) always has a solution;

(2) 2 =a (mod 4) has a solution if and only if a =1 (mod 4);

(3) x?=a (mod 2"), for n=>3, has a solution if and only if a =1
(mod 8).

Proof: The first assertion is obvious. The second depends on the
observation that the square of any odd integer is congruent to 1 mod-
ulo 4. Thus, x? =a (mod 4) can be solved only when 4 is of the
form 44 + 1; in this event, there are two solutions modulo 4, namely

x=1and x=3.
Now consider the case in which # > 3. Since the square of

any odd integer is congruent to 1 modulo 8, we see that for the
congruence x?=a (mod 2") to be solvable it 1s necessary tnhat z

should be of the form 84 + 1. To go the other way, let us suppose
that @ =1 (mod 8) and proceed by induction on . When 7= 3,
the congruence x2? =4 (mod 2") is certainly solvable; indeed, each of
the integers 1, 3, 5, 7 satisfies x? =1 (mod 8). Fix a value of >3
and assume, for the induction hypothesis, that the congruence
x? =4 (mod 2") admits a solution xo. Then there exists an integet
b for which

xo2=a -+ b2
Since @ is odd, so is the integer x,. It is therefore possible to find
a unique solution y, of the linear congruence

xoy =—Fb (mod 2).
We argue that the integer

Xy =Xo+ Yo 2"}
satisfies the congruence x2 =g (mod 2"*%). Squaring yields
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(xﬁ ‘I—_}’gzﬂ - 1)2 = xﬂﬂ —’—xojjozﬂ +}0222n— 2
=t (bt xogg2" 32,

By the way y, was chosen, 2| (b -- x4 1), hence
X2 = (%0 + 162" 12 =g (mod 2" *1)

(one also uses the fact that 22 —2=n |14 (#—3) >n 4 1).
Thus x2 =4 (mod 2" *1) is solvable, completing the induction step
and the proof.

To illustrate: the congruence x? =35 (mod 4) has a solution, but
x%=5 (mod 8) does not; on the other hand, x? =17 (mod 16) and
x? =17 (mod 32) are both solvable,

In theory, we can now completely settle the question of when
there exists an integer x such that

x? =a (mod z), gecd(a,n)=1, n=>1,
For suppose that » has the prime-power decomposition
n—2%p pgtee . p, Ao =0, A >0

where the p; are distinct odd primes. Since the problem of solving the
quadratic congruence x? =g« (mod #) is equivalent to that of solving the
system of congruences

x? =a (mod 2*°),

x? =4 (mod p,"),

3 =a (mod p,""),

our last two results may be combined to give the following general

conclusion.
TueoreM 9-13. Let n=2%p," ... p*" be the prime factorization
of n>1 and let ged (a, n) = 1. Then x* =a (mod #) is solvable if and

ondy if
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(1) (@p)=1fori=1,2,...,r;
(2) a=1(mod4)if4|n bur8 yn;a=1(mod 8)if 8|
PROBLEMS

1. (a) Show that 7 and 18 are the only incongruent solutions of x = —1
(mod 5%).
(b) Use part (a) to find the solutions of x? == — 1 (mod 5%).
2. Solve each of the following quadratic congruences:
(a) x?=7 (mod 3%);
(b) x?%=14(mod 5%);
(c) x?=2(mod 7%).

3. Solve the congruence x? =31 (mod 11%).

4. Find the solutions of x2+45x4+ 6=0 (mod 5% and x*+x+3=0
(mod 3%).

5. Prove that if the congruence x2 = 4 (mod 2"), where # > 3, has a solution,
then it has exactly four incongruent solutions. [Hinz: If x; is any solution,
then the four integers x,, —xg, X+ 2"}, —x, - 2"~ ! are incongruent
modulo 2" and comprise all the solutions.]

6. From 23%2=17 (mod 27), find three other solutions of the congruence
x? =17 (mod 27).
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1 The idea of public key cryptography

Recall that a cryptosystem consists of a 1-to-1 enciphering transformation f
from a set P of all possible plaintext message units to a set C of all possible
ciphertext message units. Actually, the term “cryptosystem” is more often
used to refer to a whole family of such transformations, each corresponding
to a choice of parameters (the sets P and C, as well as the map f, may
depend upon the values of the parameters). For example, for a fixed N-
letter alphabet (with numerical equivalents also fixed once and for all),
we might consider the affine cryptosystem (or “family of cryptosystems")
which for each a € (2/NZ)* and b € Z/NZ is the map from P = Z/NZ
to C = Z/NZ defined by C = aP + b mod N. In this example, the sets P
and C are fixed (because N is fixed), but the enciphering transformation f
depends upon the choice of parameters a, b. The enciphering transformation
can then be described by (i) an algorithm, which is the same for the whole
family, and (ii) the values of the parameters. The values of the parameters
are called the enciphering key Kg. In our example, Kg is the pair (a, b).
In practice, we shall suppose that the algorithm is publicly known, i.e., the
general procedure used to encipher cannot be kept sccret. However, the
keys can easily be changed periodically and, if one wants, kept secret.
One also needs an algorithm and a key in order to decipher, i.e., com-
pute f~! The key is called the deciphering key K. In our cxample of the
affine cryptosystem family, deciphering is also accomplished by an affine
map, namely P = a~'C — a~'b mod N, and so the deciphering transfor-
mation uses the same algorithin as the enciphering transformation, except

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 16/41




KARPAGAM ACADEMY OF HIGHER EDUCATION

COURSE CODE: 18MMP205A UNIT: V BATCH-2018-2020

CLASS: | M.ScMATHEMATICS COURSENAME: GRAPH THEORY
AND ITS APPLICATIONS

with a different key, namely, the pair (a~! —a~'b). (In some cryptosys-

tems, the deciphering algorithm, as well as the key, is different from the
enciphering algorithm.) We shall always suppose that the deciphering and
enciphering algorithms are publicly known, and that it is the keys Kg and
K p which can be concealed.

Let us suppose that someone wishes to communicate secretly using
the above affine cryptosystem C = aP + b. We saw in §III.1 that it is not
hard to break the system if one uses single-letter message units in an N-
letter alphabet. It is a little more difficult to break the system if one uses

digraphs, which can be regarded as symbols in an N?-letter alphabet. It
would be safer to use blocks of k letters, which have numerical equivalents
in Z/N*Z. At least for k > 3 it is not easy to use frequency analysis,
since the number of possible k-letter blocks is very large, and one will find
many that are close contenders for the title of most frequently occurring
k-graph. If we want to increase k, we must be concerned about the length
of time it takes to do various arithmetic tasks (the most important one
being finding a~! by the Euclidean algorithm) involved in setting up our
keys and carrying out the necessary transformations every time we send a
message or our friend at the other end deciphers a message from us. That
is, it is useful to have big-O estimates for the order of magnitude of time
(as the parameters increase, i.e., as the cryptosystem becomes “larger”)
that it takes to: encipher (knowing Kg), decipher (knowing Kp), or break
the code by enciphering without knowledge of Kg or deciphering without
knowledge of Kp.
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In all of the examples in Chapter III — and in all of the cryptosystems
used historically until about fifteen years ago — it is not really necessary
to specify the deciphering key once the enciphering key (and the general
algorithms) are known. Even if we are working with large numbers — such
as N* with k fairly large — it is possible to determine the deciphering
key from the enciphering key using an order of magnitude of time which is
roughly the same as that needed to implement the various algorithms. For
example, in the case of an affine enciphering transformation of Z/N*Z, once
we know the enciphering key Kg = (a,b) we can compute the deciphering
key Kp = (a~! mod N¥, —a~'b mod N*) by the Euclidean algorithm in
O(log®(N*)) bit operations.

Thus, with a traditional cryptosystem anyone who knew enough to
decipher messages could, with little or no extra effort, determine the enci-
phering key. Indeed, it was considered naive or foolish to think that someone
who had broken a cipher might nevertheless not know the enciphering key.
We see this in the following passage from the autobiography of a well-known
historical personality:

Thus, with a traditional cryptosystem anyone who knew enough to
decipher messages could, with little or no extra effort, determine the enci-
phering key. Indeed, it was considered naive or foolish to think that someone
who had broken a cipher might nevertheless not know the enciphering key.

We see this in the following passage from the autobiography of a well-known
historical personality:

Thus, with a traditional cryptosystem anyone who knew enough to
decipher messages could, with little or no extra effort, determine the enci-
phering key. Indeed, it was considered naive or foolish to think that someone
who had broken a cipher might nevertheless not know the enciphering key.

Five or six weeks later, she [Madame d'Urfé] asked me if I
had deciphered the manuscript which had the transmutation pro-
cedure. I told her that I had.
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“Without the key, sir, excuse me if I believe the thing impos-
sible.”

“Do you wish me to name your key, madame?”

“If you please.”

I then told her the key-word, which belonged to no language,
and I saw her surprise. She told me that it was impossible, for she
believed herself the only possessor of that word which she kept in
her memory and which she had never written down.

I could have told her the truth — that the same calculation
which had served me for deciphering the manuscript had enabled
me to learn the word — but on a caprice it struck me to tell her
that a genie had revealed it to me. This false disclosure fettered
Madame d'Urfé to me. That day I became the master of her soul,
and I abused my power. Every time I think of it, I am distressed
and ashamed, and I do penance now in the obligation under which
I place myself of telling the truth in writing my memoirs.

— Casanova, 1757, quoted in D. Kahn's The Codebreakers

The situation persisted for another 220 years after this encounter be-
tween Casanova and Madame d'Urfé: knowledge of how to encipher and
knowledge of how to decipher were regarded as essentially equivalent in
any cryptosystem. However, in 1976 W. Diffie and M. Hellman discovered
an entirely different type of cryptosystem and invented “public key cryp-
tography.”

By definition, a public key cryptosystem has the property that someone
who knows only how to encipher cannot use the enciphering key to find
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the deciphering key without a prohibitively lengthy computal?ion.fln other
words the enciphering function f:P — C is easy to compute once the
enciphering key K is known, but it is very hard in practice to compute
the inverse function f~!:C — P. That is, from the standpoint of realistic
computability, the function f is not invertible (without some additional
information — the deciphering key Kp). Such a function f is called a
trapdoor function. That is, a trapdoor function f is a function which is
easy to compute but whose inverse f~! is hard to compute without having
some additional auxiliary information beyond what is necessary to compute
f. The inverse f~! is easy to compute, however, for someone who has this
information Kp (the “deciphering key”).

There is a closely related concept of a one-way function. This is a
function f which is easy to compute but for which f~1is hard to compute
and cannot be made easy to compute even by acquiring some additional
information. While the notion of a trapdoor function apparently appeared
for the first time in 1978 along with the invention of the RSA public-key
cryptosystem, the notion of a one-way function is somewhat older. What
seems to have been the first use of one-way functions for cryptography was

described in Wilkes’ book about time-sharing systems that was published in
1968. The author describes a new one-way cipher used by R. M. Needham
in order to make it possible for a computer to verify passwords without
storing information that could be used by an intruder to impersonate a

legitimate user.

In Needham'’s system, when the user first sets his password,
or whenever he changes it, it is immediately subjected to the enci-
phering process, and it is the enciphered form that is stored in the
computer. Whenever the password is typed in response to a de-
mand from the supervisor for the user’s identity to be established,
it is again enciphered and the result compared with the stored
version. It would be of no immediate use to a would-be malefac-
tor to obtain a copy of the list of enciphered passwords, since he
would have to decipher them before he could use them. For this
purpose, he would need access to a computer and even if full de-
tails of the enciphering algorithm were available, the deciphering

process would take a long time.
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In 1974, G. Purdy published the first detailed description of such a
one-way function. The original passwords and their enciphered forms are
regarded as integers modulo a large prime p, and the “one-way” map ¥, —
F, is given by a polynomial f(x) which is not hard to evaluate by computer
but which takes an unreasonably long time to invert. Purdy used p =

264 _ 59 f(x) = 227 4+ @,z *3 + agz® + azz? + a4 + a5, where the
coefficients a; were arbitrary 19-digit integers.

The above definitions of a public key cryptosystem and a one-way or
trapdoor function are not precise from a rigorous mathematical standpoint.
The notion of “realistic computability” plays a basic role. But that is an
empirical concept that is affected by advances in computer technology (e.g.,
parallel processor techniques) and the discovery of new algorithms which
speed up the performance of arithmetic tasks (sometimes by a large factor).
Thus, it is possible that an enciphering transformation that can safely be
regarded as a one-way or trapdoor function in 1994 might lose its one-way
or trapdoor status in 2004 or in the year 2994.

It is conceivable that some transformation could be proved to be trap-
door. That is, there could be a theorem that provides a nontrivial lower
bound for the number of bit operations that would be required (“on the
average,” i.e., for random values of the key parameters) in order to figure
out and implement a deciphering algorithm without the deciphering key.
Here one would have to allow the possibility of examining a large number of
corresponding plaintext—ciphertext message units (as in our frequency anal-
ysis of the simple systems in Chapter III), because, by the definition of a
public key system, any user can generate an arbitrary number of plaintext-
ciphertext pairs. One would also have to allow the use of “probabilistic”
methods which, while not guaranteed to break the code at once, would be

likely to work if repeated many times. (Examples of probabilistic algorithms
will be given in the next chapter.) Unfortunately, no such theorems have
been proved for any of the functions that have been used as enciphering
maps. Thus, while there are now many cryptosystems which empirically
seem to earn the right to be called “public key,” there is no cryptosystem
in existence which is provably public key.
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The reason for the name “public key” is that the information needed
to send secret messages — the enciphering key K g — can be made public
information without enabling anyone to read the secret messages. That is,

suppose we have some population of users of the cryptosystem, each one of
whom wants to be able to receive confidential communications from any of
the other users without a third party (either another user or an outsider)
being able to decipher the message. Some central office can collect the
enciphering key Kg 4 from each user A and publish all of the keys in a
“telephone book" having the form

AAA Banking Company  (9974398087453939, 2975290017591012)
Aardvark, Aaron (8870004228331, 7234752637937)

Someone wanting to send a message merely has to look up the enciphering
key in this “telephone book™ and then use the general enciphering algorithm
with the key parameters corresponding to the intended recipient. Only the
intended recipient has the matching deciphering key needed to read the
message.

In earlier ages this type of system would not have seemed to have
any particularly striking advantages. Traditionally, cryptography was used
mainly for military and diplomatic purposes. Usually there was a small,
well-defined group of users who could all share a system of keys, and new
keys could be distributed periodically (using couriers) so as to keep the
enemy guessing.

However, in recent years the actual and potential applications of cryp-
tography have expanded to inclnde many other areas where communication
systems play a vital role — collecting and kecping records of confidential
data, electronic financial transactions, and so on. Often one has a large
network of users, any two of whom should be able to keep their commu-
nications secret from all other users as well as intruders from outside the
network. Two parties may share a sccret communication on one occasion,
and then a little later one of them may want to send a confidential message
to a third party. That is, the “alliances” - who is sharing a secret with
whom — may be continually shifting. It might be impractical always to be
exchanging keys with all possible confidential correspondents.

Prepared by U.R.Ramakrishnan, Asst Prof, Department of Mathematics KAHE Page 22/41




KARPAGAM ACADEMY OF HIGHER EDUCATION

COURSE CODE: 18MMP205A UNIT: V BATCH-2018-2020

CLASS: | M.ScMATHEMATICS COURSENAME: GRAPH THEORY
AND ITS APPLICATIONS

Notice that with a public key system it is possible for two parties to
initiate secret communications without ever having had any prior contact,
without having established any prior trust for one another, without ex-

changing any preliminary information. All of the information necessary to
send an enciphered message is publicly available.

Classical vesus public key. By a classical cryptosystem (also called
a private key cryptosystem or a symmetrical cryptosystem), we mean a
cryptosystem in which, once the enciphering information is known, the
deciphering transformation can be implemented in approximately the same
order of magnitude of time as the enciphering transformation. All of the
cryptosystems in Chapter III are classical. Occasionally, it takes a little
longer for the deciphering — because one needs to apply the Euclidean
algorithm to find an inverse modulo N or one must invert a matrix (and
this can take a fairly long time if we work with k x k -matrices for k larger
than 2) — nevertheless, the additional time required is not prohibitive.
(Moreover, usually the additional time is required only once — to find Kp
— after which it takes no longer to decipher than to encipher.) For example,
we might need only O(log?B) to encipher a message unit, and O(log”B)
bit operations to decipher one by finding Kp from Kg, where B is a bound
on the size of the key parameters. Notice the role of big-O estimates here.

If, on the other hand, the enciphering time were polynomial in log B
and the deciphering time (based on knowledge of Kg but not Kp) were,
say, polynomial in B but not in log B, then we would have a public key
rather than a classical cryptosystem.
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Authentication. Often, one of the most important parts of a message
is the signature. A person’s signature — hopefully, written with an idiosyn-
cratic flourish of the pen which is hard to duplicate — lets the recipient
know that the message really is from the person whose name is typed be-
low. If the message is particularly important, it might be necessary to use
additional methods to authenticate the communication. And in electronic
communication, where one does not have a physical signature, one has to
rely entirely on other methods. For example, when an officer of a corporation
wants to withdraw money from the corporate account by telephone, he/she
is often asked to give some personal information (e.g., mother’s maiden
name) which the corporate officer knows and the bank knows (from data
submitted when the account was opened) but which an imposter would not
be likely to know.

In public key cryptography there is an especially easy way to identify
oneself in such a way that no one could be simply pretending to be you. Let
A (Alice) and B (Bob) be two users of the system. Let f4 be the enciphering
transformation with which any user of the system sends a message to Alice,
and let fg be the same for Bob. For simplicity, we shall assume that the
set P of all possible plaintext message units and the set C of all possible
ciphertext message units are equal, and are the same for all users. Let
P be Alice’s “signature” (perhaps including an identification number, a
statement of the time the message was sent, etc.). It would not be enough
for Alice to send Bob the encoded message fg(P), since everyone knows how
to do that, so there would be no way of knowing that the signature was not
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forged. Rather, at the beginning (or end) of the message Alice transmits
fo;!{P]. Then, when Bob deciphers the whole message, including this
part, by applying fﬁi, he finds that everything has become plaintext except
for a small section of jibberish, which is f;'(P). Since Bob knows that the
message is claimed to be from Alice, he applics f4 (which he knows, since
Alice’s enciphering key is public), and obtains P. Since no one other than
Alice could have applied the function f, ' which is inverted by f4, he knows
that the message was from Alice.

Hash functions. A common way to sign a document is with the help of
a hash function. Roughly speaking, a hash function is an easily computable
map f : x +— h from a very long input z to a much shorter output h
(for example, from strings of about 10° bits to strings of 150 or 200 bits)
that has the following property: it is not computationally feasible to find
two different inputs x and x’ such that f(z') = f(z). If part of Alice’s
“signature” consists of the hash value h = f(z), where z is the entire text
of her message, then Bob can verify not only that the message was really
sent by Alice, but also that it wasn’t tampered with during transmission.
Namely, Bob applies the hash function f to his deciphered plaintext from
Alice, and checks that the result agrees with the value h in Alice’s signature.
By assumption, no tamperer would have been able to change r without
changing the value h = f(x).

Key exchange. In practice, the public key eryptosystems for sending
messages tend to be slower to implement than the classical systems that are
in current use. The number of plaintext message units per second that can
be transmitted is less. However, even if a network of users fecls attached
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to the traditional type of cryptosystem, they may want to usc a public
key cryptosystem in an auxiliary capacity to send one another their keys
K = (Kg, Kp) for the classical system. Thus, the ground rules for the
classical cryptosystem can be agreed upon, and keys can be periodically
exchanged, using the slower public key cryptography; while the large volume
of messages would then be sent by the faster, older methods.

Probabilistic Encryption. Most of the number theory based cryptosys-
tems for message transmission are deterministic, in the sense that a given
plaintext will always be encrypted into the same ciphertext any time it is
sent. However, deterministic encryption has two disadvantages: (1) if an
eavesdropper knows that the plaintext message belongs to a small set (for
example, the message is either “yes” or “no”), then she can simply en-
crypt all possibilities in order to determine which is the supposedly secret
message; and (2) it seems to be very difficult to prove anything about the
security of a system if the encryption is deterministic. For these reasons,
probabilistic encryption was introduced. We will not discuss this further or
give examples in this book. For more information, see the fundamental pa-
pers on the subject by Goldwasser and Micali ( Proc. 14th ACM Symp. The-
ory of Computing, 1982, 365-377, and J. Comput. System Sci. 28 (1984),
270-299).

2 RSA

In looking for a trapdoor function f to use for a public key cryptosystem,
one wants to use an idea which is fairly simple conceptually and lends itself
to easy implementation. On the other hand, one wants to have very strong
empirical evidence — based on a long history of attempts to find algorithms
for f~! — that decryption cannot feasibly be accomplished without knowl-
edge of the secret deciphering key. For this reason it is natural to look at an
ancient problem of number theory: the problem of finding the complete fac-
torization of a large composite integer whose prime factors are not known
in advance. The success of the so-called “RSA” cryptosystem (from the last
names of the inventors Rivest, Shamir, and Adleman), which is one of the
oldest (16 years old) and most popular public key cryptosystems, is based
on the tremendous difficulty of factoring.
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We now describe how RSA works. Each user first chooses two extremely
large prime numbers p and q (say, of about 100 decimal digits each), and
sets n = pq. Knowing the factorization of n, it is easy to compute @(n) =
(p—1)(q —1) =n+1— p— g. Next, the user randomly chooses an integer
e between 1 and ¢(n) which is prime to @(n).

Remark. Whenever we say “random” we mean that the number was
chosen with the help of a random-number generator (or “pseudo-random”
number generator), i.e., a computer program that generates a sequence of
digits in a way that no one could duplicate or predict, and which is likely
to have all of the statistical properties of a truly random sequence. A lot
has been written concerning efficient and secure ways to generate random
numbers, but we shall not concern ourselves with this question here. In
the RSA cryptosystem we need a random number generator not only to
choose e, but also to choose the large primes p and q (so that no one
could guess our choices by looking at tables of special types of primes, for
example, Mersenne primes or factors of b* + 1 for small b and relatively
small k). What does a “randomly generated” prime number mean? Well,
first generate a large random integer m. If m is even, replace m by m + 1.
Then apply suitable primality tests to see if the odd number m is prime
(primality tests will be examined systematically in the next chapter). If m
is not prime, try m+2, then m+4, and so on, until you reach the first prime
number > m, which is what you take as your “random” prime. According
to the Prime Number Theorem (for the statement see Exercise 13 of §1.1),
the frequency of primes among the numbers near m is about 1/log(m), so
you can expect to test O(logm) numbers for primality before reaching the
first prime > m.
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Similarly, the “random” number e prime to ¢(n) can be chosen by first
generating a random (odd) integer with an appropriate number of bits, and
then successively incrementing it until one finds an e with g.c.d.(e, ¢(n)) =
1. (Alternately, one can perform primality tests until one finds a prime
e, say between maz(p,q) and @(n); such a prime must necessarily satisfy
g.c.d.(e,p(n)) = 1.

Thus, each user A chooses two primes p4 and g4 and a random number
e4 which has no common factor with (ps — 1)(g4 — 1). Next, A computes
nA = Paga, p(na) = na+1—ps—qa, and also the multiplicative inverse of
ea modulo p(na): da rlzre‘il mod p(n 4). She makes public the enciphering

£

key Kg 4 = (na, ea) and conceals the deciphering key Kpa = (na, da).
The enciphering transformation is the map from Z/n4Z to itself given by
f(P) = P*4 mod ns. The deciphering transformation is the map from
Z/naZ to itself given by f~1(C) = C% mod n,. It is not hard to see that
these two maps are inverse to one another, because of our choice of d4.
Namely, performing f followed by f~' or f~! followed by f means raising
to the d4es-th power. But, because d ey leaves a remainder of 1 when
divided by ¢(n4), this is the same as raising to the 1-st power (see the
corollary of Proposition 1.3.5, which gives this in the case when P has no
common factor with nu; if g.c.d.(P,n4) > 1, see Exercise 6 below).

From the description in the last paragraph, it seems that we are work-
ing with sets P = C of plaintext and ciphertext message units that vary
from one user to another. In practice, we would probably want to choose
P and C uniformly throughout the system. For example, suppose we are
working in an N-letter alphabet. Then let k < £ be suitably chosen positive
integers, such that, for example, N* and N have approximately 200 dec-
imal digits. We take as our plaintext message units all blocks of k letters,
which we regard as k-digit base-N integers, i.c., we assign them numerical
equivalents between 0 and N* We similarly take ciphertext message units to
be blocks of € letters in our N-letter alphabet. Then each user must choose
his/her large primes p4 and g4 so that ngy = paga satisfies N* < na < Nt
Then any plaintext message unit, i.e., integer less than N* corresponds to
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an element in Z/nsZ (for any user’s n4); and, since ng < N the image
f(P) € Z/n4Z can be uniquely written as an ¢-letter block. (Not all f-letter
blocks can arise — only those corresponding to integers less than ny for
the particular user's n4.)

Example 1. For the benefit of a reader who doesn’t have a computer
handy (or does not have good multiple precision software), we shall sac-
rifice realism and choose most of our examples so as to involve relatively
small integers. Choose N = 26, k = 3, £ = 4. That is, the plaintext con-
sists of trigraphs and the ciphertext consists of four-graphs in the usual
26-letter alphabet. To send the message “YES” to a user A with enci-
phering key (n4,e4) = (46927, 39423), we first find the numerical equiva-
lent of “YES,” namely: 24 - 26 + 4 - 26 + 18 = 16346, and then compute
16346°**** mod 46927, which is 21166 = 1-26° +5-26% +8-26+2 =“BFIC."
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The recipient A knows the deciphering key (na,ds) = (46927, 26767),
and so computes 21166%°7%7 mod 46927 = 16346 =“YES.” How did user
A generate her keys? First, she multiplied the primes py = 281 and
ga = 167 to get n,; then she chose e4 at random (but subject to the
condition that g.c.d.(es,280) = g.c.d.(es,166) = 1). Then she found
dg = e;l mod 280 - 166. The numbers pa, qga, d4 remain secret.

In Example 1, how cumbersome are the computations? The most time-
consuming step is modular exponentiation, e.g., 16346°%% mod 46927. But
this can be done by the repeated squaring method (see §1.3) in O(k?) bit
operations, where k is the number of bits in our integers. Actually, if we were
working with much larger integers, potentially the most time-consuming
step would be for each user A to find two very large primes p4 and g4. In
order to quickly choose suitable very large primes, one must use an efficient
primality test. Such tests will be described in the next chapter.

Remarks. 1. In choosing p and g, user A should take care to see
that certain conditions hold. The most important are: that the two primes
not be too close together (for example, one should be a few decimal digits
longer than the other); and that p— 1 and ¢ — 1 have a fairly small g.c.d.
and both have at least one large prime factor. Some of the reasons for
these conditions are indicated in the exercises below. Of course, if someone
discovers a factorization method that works quickly under certain other
conditions on p and g, then future users of RSA would have to take care to
avoid those conditions as well.

2. In §1.3 we saw that, when n is a product of two primes p and g,
knowledge of ¢(n) is equivalent to knowledge of the factorization. Let’s
suppose now that we manage to break an RSA system by determining a
positive integer d such that a®® = a mod n for all a prime to n. This
is equivalent to ed — 1 being a multiple of the least common multiple of
p—1 and q - 1. Knowing this integer m = ed — 1 is weaker than actually
knowing @(n). But we now give a procedure that with a high probability
is nevertheless able to use the integer m to factor n.

So suppose we know n — which is a product of two unknown primes
— and also an integer m such that a™ = 1 mod n for all a prime to
n. Notice that any such m must be even (as we see by taking a = —1).
We first check whether m/2 has the same property, in which case we can
replace m by m/2. If a™/2 is not = 1 mod n for all a prime to n, then we
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must have a™? # 1 mod n for at least 50% of the a’s in (Z/nZ)* (this
statement is proved in exactly the same way as part (a) of Exercise 21 in
§11.2). Thus, if we test several dozen randomly chosen a’s and find that
in all cases a™/2 = 1 mod n, then with very high probability we have this
congruence for all a prime to n, and so may replace m by m/2. We keep
on doing this until we no longer have the congruence when we take half of
the exponent. There are now two possibilitics:
(i) m/2 is a multiple of one of the two numbers p — 1, ¢ — 1 (say, p— 1)
but not both. In this case a™/? is always = 1 mod p but exactly 50%

of the time is congruent to —1 rather than +1 modulo q.
(ii) m/2 is not a multiple of cither p — 1 or ¢ — 1. In this case a
modulo both p and ¢ (and hence modulo n) exactly 25% of the time,

mif2 is = 1

it is = —1 modulo both p and ¢ exactly 25% of the time, and for the
remaining 50% of the values of a it is = 1 modulo one of the primes
and = —1 modulo the other prime.

Thus, by trying a’s at random with high probability we will soon find
an a for which a™/2 — 1 is divisible by one of the two primes (say, p) but not
the other. (Each randomly selected a has a 50% chance of satisfying this
statement.) Once we find such an a we ean immediately factor n, becanse
g.cd.(n, a™? - 1) = p.

The above procedure is an example of a probabilistic algorithm. We
shall encounter other probabilistic algorithms in the next chapter.

3. How do we send a signature in RSA? When discussing anthentica-
tion in the last section, we assumed for simplicity that P = C. We have
a slightly more complicated set-up in RSA. Here is one way to avoid the
problem of different n4’s and different block sizes (k, the number of letters
in a plaintext message unit, being less than £, the number of letters in a ci-
phertext message unit). Suppose that, as in the last section, Alice is sending
her signature (some plaintext ) to Bob. She knows Bob's enciphering key
Kg p = (ng,ep) and her own deciphering key Kp 4 = (na,d4). What she
doesissend fzf, "(P)ifng < ng, or else fa 'fu(P)ifna > ng. That is, in
the former case she takes the least positive residue of P94 modulo n; then,
rpgardmg that number modulo ng, she computes (P“—* mod r:u}' B modng,

which she sends as a ciphertext message unit. In the case nqa > npg, she
first computes P8 mod ng and then, working modulo n 4, she raises this
to the d4-th power. Clearly, Bob can verify the anthenticity of the message
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in the first case by raising to the dg-th power modulo ng and then to the
e a-Lth power modulo n4; in the second case he does these two operations
in the reverse order.

TueoreM 11-3 (Fermat). The Diophantine equation x* - y* = z*
has no solution in positive integers x, y, .
Proof: With the idea of deriving a contradiction, let us assume
that there exists a positive solution xg, Yo, 2o of x*-}yt=22
Nothing is lost in supposing also that gcd (x,, y,) = 1; otherwise, put
ged (g, Vo) = dy Xo =X, Yo = dyy, Zg= d?z, to get x,* + y,* = z,°
with ged (%, 31) = 1.

Expressing the supposed equation xo! - yo* = 2,* in the
form

(%07)? +()’02)2 = 2,°

we see that xo%, ¥,2, 2, meet all the requirements of a primitive
Pythagorean triple, and so Theorem 11-1 can be brought into play.
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In such triples, one of the integers x,® or j,* is necessarily even,
while the other is odd. Taking x,2 (and hence x,) to be even, there
exist relatively prime integers s > # > O satisfying

_}l'uz; .I.'2 - 1!2’
2.'0:52 +f2,

where exactly one of s and #is even. If it happened that s were even,
then we would have

1 E‘}Pozﬁiz— 72 —__-—O-_ 1 53(1'1'10(1 4),

an impossibility. ‘Therefore, s must be the odd integer and, in con-
sequence, 7 is the even one. Let us put /= 2r. Then the equation
x,2 = 25t becomes xy2 = 4sr, which says that

(2¢0/2)% = 5.
But Lemma 2 asserts that the product of two relatively prime 1integers
[ged (s, £) = 1 implies that ged (5, 7) = 1] is 2 square only if each of
the integers is itself a square; hence, 5= z,%, r=w,* for positive
integers 2, #,.

We wish to apply Theorem 11-1 again, this time to the equa-

tion

12+ yo% = 52
Since ged (5, £) =1, it follows that ged (£, yo, 5) =1, making 7, yo, 5
a primitive Pythagorean triple. With # even, we obtain

1= 2w,
J’o=”z"—1’2=
s=u? 403,
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for relatively prime integers # >v > 0. Now the relation

= t2=r=w,>
signifies that # and » are both squares (Lemma 2 serves its purpose
once more); say, #=X,? and v =y,%2. When these values are sub-
stituted into the equation for s the result is

2l=s=u+02=x*-}+y"

A crucial point is that, z, and 7 being positive, we also have the
inequality

0<z <z2?=05<s2<s?+ 2= 2.

What has happened is this: starting with one solution x,,
Yo, 2o of x* -+ y*= 22 we have constructed another solution x,,
¥1, 2, such that 0 < z; << 2,. Repeating the whole argument, our
second solution would lead to a third solution x,, ¥, 2; with 0 <
z, <z, which in its turn gives rise to a fourth. This process can be
carried out indefinitely to produce an infinite decreasing sequence of

positive integers

B >R > g >
Since there is only a finite supply of positive integers less than z,,
a contradiction occurs. We are forced to conclude that x* -+ y* = 22
is not solvable in the positive integers.
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CoroLLARY. The equation x* 4 y* = 2* has no solution in the positive
integers.

Proof: If x4, yo, 2, were a positive solution of x* + y* = 2%, then
X0, Yo, %02 would satisfy the equation x* - y* = 22, in conflict with
Theorem 11-3.

A If n>2, then # is either a power of 2 or divisible by an odd
prime p. In the first case, »=44 for some A#>1 and the Fermat
equation x™ - y" = z" can be written as

(9t + (") = (21"
We have just seen that this equation is impossible in the positive integers.
When # = pk, the Fermat equation is the same as

(5 + ()P = ()"

If it could be shown that the equation #” + »*=»* has no solution,
then, in particular, there would be no solution of the form # = x*, v =
%, w=2z* and hence x"-+y"=2z" would not be solvable. Fermat’s
Conjecture therefore reduces to this: for no odd prime p does the equation

xﬁ+y?=zp

admit a solution in the positive integers.
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Although the problem has challenged the foremost mathe-
maticians of the last 300 years, their efforts have only produced partial
results and proofs of individual cases. Euler gave the first proof of the
Fermat Conjecture for the prime p =3 in the year 1770; the reasoning
was incomplete at one stage, but Legendre later supplied the missing
steps. Using the method of infinite descent, Dirichlet and Legendre
independently settled the case p =5 around 1825. Not long thereafter,
in 1839, Lamé proved the conjecture for seventh powers. With the in-
creasing complexity of the arguments came the realization that a successful
resolution of the general case called for different techniques. The best
hope seemed to lie in extending the meaning of *integer™ to include a
wider class of numbers and, by attacking the problem within this enlarged
system, obtaining more information than was possible by using ordinary
integers only.

The German mathematician Kummer made the major break-
through. In 1843, he submitted to Dirichlet a purported proof of the
Fermat Conjecture based upon an extension of the integers to include the
so-called “algebraic numbers” (that is, complex numbers satisfying
polynomials with rational coefficients). Having spent considerable
time on the problem himself, Dirichlet was immediately able to detect
the flaw in the reasoning: Kummer had taken for granted that algebraic
numbers admit a unique factorization similar to that of the ordinary
integers, and this is not always true.

But Kummer was undeterred by this perplexing situation and
returned to hiw investigations with redoubled effort. In order to restore
unique factorization to the algebraic numbers, he was led to invent the

concept of ideal numbers. By adjoining these new entities to the algebraic
numbers, Kummer successfully proved the Fermat Conjecture for a

large class of primes which he termed *regular primes™ (that this repre-
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sented an enormous achievement is reflected in the fact that the only
irregular primes less than 100 are 37, 59, and 67.). Unforttunately, it is
still not known whether there are an infinite number of regular primes,
while, in the other direction, Jensen (1915) established that there exist
infinitely many irregular ones. Almost all the subsequent progress on the

problem has been within the framework suggested by Kummer.

To round out our historical digression, we might mention that in
1908 a prize of 100,000 marks was bequeathed to the Academy of Science
at Gottingen to be paid for the first complete proof of Fermat’s Conjec-
ture. The immediate result was a deluge of incorrect demonstrations
by amateur mathematicians. Since only printed solutions were eligible,
Fermat’s Conjecture is reputed to be the mathematical problem for which
the greatest number of false proofs have been published; indeed, between
1908 and 1912 over 1000 alleged proofs appeared, mostly printed as
private pamphlets. Suffice it to say, interest declined as the German

inflation of the 1920’s wiped out the monetary value of the prize.
From x* 4 y* = 2%, we move on to a closely related Diophantine

equation, namely, x*—y*= 22 The proof of its insolubility parallels
that of Theorem 11-3, but we give a slight variation in the method of

infinite descent.

THEOREM 11-4 (Fermat). The Diophantine equation x* — y* = 22 has

no Solution in positive integers x, y, z.
Proof: The proof proceeds by contradiction. Let us assume that the
equation admits a solution in the positive integers and among these
solutions x, ¥, 2o 1 one with a least value of x; in particular, this
supposition forces x, to be odd (Why?). Were ged (5, yo) =d > 1,
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then putting xo = dx;, ¥o = d¥,; , we would have @*(x;* — y,%) = 2,2,
whence 42| 2, ot zo=d%z, for some 2z, >0. It follows that x,,
Y1, %, provides a solution to the equation under consideration with
0 < x, < xq,an impossible situation. Thus, we are free to assume a
solution x, ¥, 2o in which ged (x4, o) = 1. 'The ensuing argument
falls into two stages, depending on whether y, is odd or even.

First, consider the case of an odd integer y,. If the equation
xo* — yo* = 2o is written in the form z,? + (9,2)? = (x,?)?, one sees
that z,, 0% x,? constitute a primitive Pythagorean triple. Theorem
11-1 asserts the existence of relatively prime integers s > # >0 for

hich
e 2o = 251,

Yot = §$2— 12
o2 = 52 - £2,
It thus appears that
4 1 = (5% (5% — ) = xo%e” = (¥00)"

making s, #, xo_y, & (positive) solution to the equation x* — y* = z°

Since
0'(!'(\»’.1’2—'—#2—_—.%"3,

we arrive at a contradiction to the minimal nature of x.
For the second part of the proof, assume that y, is an even

integer. Using the formulas for primitive Pythagorean triples, we

now write
jﬂz = 25¢,

=52 — 12,
xo2 = 52 -+ 12,
It thus appears that
st — 1= (2 (P — ) = %Do” = (X0 o)

making s, £, Xo %o a (positive) solution to the equation x* — y* = 2%
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Since
0 <5 <<Vs24 2= x¢,
we arrive at a contradiction to the minimal nature of x.

For the second part of the proof, assume that y, is an even
integer. Using the formulas for primitive Pythagorean triples, we
now write

Yo = 252,
2o =2 — 12,

xﬂﬂzfz +¢23

where 5 may be taken to be even and 7 to be odd. Then, in the rela-
tion yo2 = 2st, we have ged (25, #/}=1. The by-now-customary
Lemma 2 tells us that 2r and 7 are each squares of positive integers;
say, 25 = w?, f=12% Since w must of necessity be an even integer,
set w = 24 to get s==2u4*. Therefore,
Ma2=1s2 + P2=4dut + 0"

and so 242, 12, x, forms a primitive Pythagorean triple. Falling back
on Theorem 11-1 again, there exist integers @ > >0 for which

202 = 2ab,
p? = g% — b2,
X9 = ‘22 '—l_ b 2:
where ged (4, ) = 1. The equality #* = ab ensures that 4 and & are

perfect squares, so that #=¢? and b = 4% Knowing this, the rest of
the proof is easy; for, upon substituting,

v2 = g% — b? =t — d*.

{ 1 i i 4 __ 2
The result is 2 new solution ¢, 4, » of the given equation x* — y* = 2
and what’s more, a solution in which
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0 <c=Va<a®+b*=x,,
contrary to our assumption regarding x..

The only resolution of these contradictions is that the
equation x* — y*= 22 cannot be satisfied in the positive integers.
Tueorem 11-5. The area of a Pythagorean triangle can never be equal

to a perfect (integral) square.

Proof: Consider a Pythagorean triangle whose hypotenuse has
length z and other two sides have lengths x and y, so that x2  y2 =
22, The area of the triangle in question is 4xy and if this were a
square, say #°, it would follow that 2xy = 44%. By adding and sub-
tracting the last-written equation from x? + y% = 22, we are led to

(x +p)2=2%2+44 and (x— )%= 22 — 442

When these last two equations ate multiplied together, the outcome
is that two fourth powers have as their difference a square:

(%2 — y)2 =2t 16ut — 2% (2u)".
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Since this amounts to an infringement of Theorem 11-4, there can
be no Pythagorean triangle whose area is a square.

There are a number of simple problems pertaining to Pythagorean
triangles that still await solution. The Coroliary to Theorem 11-3 may
be expressed by saying that there exists no Pythagotean triangle all the
sides of which are squares. However, it is not difficult to produce
Pythagorean triangles whose sides, if increased by 1, are squares; for
instance, the triangles associated with the triples 132 — 1, 102 — 1, 142 — |,
and 287% — 1, 265> — 1, 3292 — 1. An obvious—and as yet unanswered
—question is whether there are an infinite number of such triangles.
One can find Pythagorean triangles each side of which is a triangular
number. [By a triangular number, we mean an integer of the form
t,=n(n-+1)/2.] An example of such is the triangle corresponding to
#1325 123> 164 . It 1s not known if there exist infinitely many Pythagorean
triangles of this type.

As a closing comment, we should observe that all the effort
expended on attempting to prove Fermat’s Conjecture has been far from

wasted. The new mathematics that was developed as a by-product laid
the foundations for algebraic number theory, as well as the ideal theory
of modern abstract algebra. It seems fair to say that the value of these

far exceeds that of the conjecture itself.

PROBLEMS

1. Show that the equation x2 4 y2=2° has infinitely many solutions for
x, J, % positive integers. [Hint: For any n>3, let x=n(n*>—3) and
J= 3n2 — 1.]

2. Prove the theorem: The only solutions in nonnegative integers of the
equation x? + 2y* == 2%, with gcd (x, 3, z) = 1, are given by

o= (262 —1#2), y=2st, g =224 17

where s, ¢ are arbitrary nonnegative integers. [Hins: If «, v, w are such that
y = 2w, z + x = 24, z — x = 2v, then the equation becomes 2u? = uv.]
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