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Course Objectives
This course enables the students to learn
e The concepts of fluid, its properties and behavior under various conditions of internal and
external flows.
e The fundamentals of Fluid Dynamics, which is used in the applications of Aerodynamics,
Hydraulics, Marine Engineering, Gas dynamics etc.
e To imbibe basic laws and equations used for analysis of static and dynamic fluids

Course Outcomes (COs)
On successful completion of this course, students will be able to
1. Classify and exploit fluids based on the physical properties of a fluid.
2. Compute correctly the kinematical properties of a fluid element.
3. Apply correctly the conservation principles of mass, linear momentum, and energy to
fluid flow systems.
4. Understand both flow physics and mathematical properties of governing Navier-Stokes
equations and define proper boundary conditions for solution.
5. Provide the student with the basic mathematical background and tools to model fluid
motion.
6. Calculate the flow of an ideal fluid in a variety of situations.
7. Develop a physical understanding of the important aspects that govern fluid flows that
can be observed in a variety of situations in everyday life.

UNIT I

INTRODUCTORY NOTIONS

Velocity — Stream Lines and Path Lines — Stream Tubes and Filaments — Fluid Body — Density —
Pressure. Differentiation following the Fluid — Equation of continuity — Boundary conditions —
Kinematical and physical — Rate of change of linear momentum — Equation of motion of an in
viscid fluid.
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UNIT 11

EQUATION OF MOTION OF A FLUID

Euler’s momentum Theorem — Conservative forces — Bernoulli’s theorem in steady motion —
energy equation for in viscid fluid — circulation — Kelvin’s theorem — vortex motion — Helmholtz
equation.

UNIT 111

TWO DIMENSIONAL FLOW

Two Dimensional Motion — Two Dimensional Functions — Complex Potential — basic
singularities — source — sink — Vortex — doublet — Circle theorem. Flow past a circular cylinder
with circulation — Blasius Theorem — Lift force. (Magnus effect)

UNIT IV

VISCOUS FLOWS

Viscous flows — Navier-Stokes equations — Vorticity and circulation in a viscous fluid — Steady
flow through an arbitrary cylinder under pressure — Steady Couettc flow between cylinders in
relative motion — Steady flow between parallel planes.

UNIT V

LAMINAR BOUNDARY LAYER IN INCOMPRESSIBLE FLOW

Boundary Layer concept — Boundary Layer equations — Displacement thickness, Momentum
thickness — Kinetic energy thickness — integral equation of boundary layer — flow parallel to semi
infinite flat plate — Blasius equation and its solution in series.

SUGGESTED READINGS
1. Milne Thomson .L.M., (1968). Theoretical Hydrodynamics, Fifth edition, Dover
Publications INC, NewYork.
2. Curle.N., and Davies H.J., (1971), Modern Fluid Dynamics Volume-I, D Van Nostrand
Company Ltd., London.
3. Yuan, S.W, (1976). Foundations of Fluid Mechanics, Prentice- Hall, India.
4. Shanthi swarup, (2003), Fluid dynamics, Krishna Prakasan media Pvt Ltd, Meerut.
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KARPAGAM
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KARPAGAM ACADEMY OF HIGHER EDUCATION

ACADEMY OF HIGHER EDUCATION

(Deemed to be University)

(Established Under Section 3 of UGC Act, 1956 |

Coimbatore — 641 021.

LECTURE PLAN
DEPARTMENT OF MATHEMATICS

STAFF NAME: V.KUPPUSAMY

SUBJECT NAME: FLUID DYNAMICS

(Deemed to be University Established Under Section 3 of UGC Act 1956)

SUB.CODE:18MMP206

SEMESTER: Il CLASS: | M.SC MATHEMATICS
Lecture Support
S.No Duration Topics to be Covered Material/Page
Period Nos
UNIT-I
1 1 Introduction to fluid dynamics R1:Ch:1; Pg.No:1-3
Basic concepts of fluid dynamics, viscosity, e )
2 1 compressible and non compressible fluids R1:Ch:1; Pg.No:3-8
3 1 Stream surface, tube filament,streak lines, path R1:Ch:1: Pg.No:8-9
lines, problems on path lines
4 1 Geor_netrlcal 5|_gn|f|c§1nce of velocity, problems on R1:Ch:1: Pg.No:65-68
rotational and irrotational flow
5 1 Theorem on equation of Continuity R1:Ch:3; Pg.No:68-76
6 1 Conservation of mass, Boundary conditions R1:Ch:3; Pg.No:76-77
7 1 Theorems on rate of change of linear momentum, R1.Ch:3: Pg.No:78-80
equation of motion of an inviscid fluid
3 1 Recapitulation and discussion on possible
guestions
Total No of Hours Planned For Unit 1=8
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UNIT-II
1 Euler’s equation of motion interms of vorticity R1: Ch:3; Pg.No:80-81
1 Euler’s momentum theorem R1: Ch:3; Pg.N0:81-82
1 Equations of motion R1: Ch:3; Pg.No:106-108

Theorem on equations of motion interms of

! vorticity, Problems on Barotropic flow R1: Ch:3; Pg.No:108-112

1 Bernoulli’s tl_leorem-ln §te§1dy motlon, Theorem on R3: Ch:3; Pg.No:181-185
energy equation for inviscid fluid

1 Circulation, Kelvins theorem R4: Ch:4; Pg.N0:146-147

1 Theorem on Helmholtz equation of vorticity R4: Ch:4; Pg.No:148-155

1 Recapitulation and discussion on possible questions

Total No of Hours Planned For Unit 11=8

UNIT-III
1 Two dimensional motion, Functions- problems R2:Ch:3; Pg.No:42-44
1 Theorem on stream lines, Potential lines R2: Ch:3; Pg.No:44-46
1 Problems on the flow patterns, Basic singularities R2: Ch:3; Pg.N0:46-50
1 Theorem on source and sink in 2D flow R2: Ch:3; Pg.N0:50-55

1 Theorem on complex potential for doublet and vortex | R2: Ch:3; Pg.N0:56-60

1 Milne Thomson’s circle theorem R2: Ch:3; Pg.N0:69-70

1 Blasius theorem and lift force R2: Ch:3; Pg.No:70-72

1 Recapitulation and discussion on possible questions

Total No of Hours Planned For Unit 111=8
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UNIT-IV
1 Introduction and definition of plane R2:Ch:5: Pg.No:123-124
coquette flow
1 Theorem on Reynolds’s humber R2: Ch:5; Pg.N0:124-125
1 Theorem on Navier Stokes equation R2: Ch:5; Pg.No:140-144
Theorem on energy equation, Diffusion of . AAE.
1 vorticity R2: Ch:5; Pg.No:145-150
1 Stegdy flow through an arbitrary R2: Ch:5: Pg.No:150-152
cylinder under pressure
1 Stea(_jy Coue:\tte flow between cylinders in R3: Ch:5: Pg.No:80-85
relative motion
1 Steady flow between para!lel planes — R3: Ch:5: Pg.No:86-88
problems, Theorem on Poiseuille flow
1 Recapitulation and discussion on possible
questions
Total No of Hours Planned For Unit 1VV=8
UNIT-V
Laminar boundary layer in incompressible
1 fluid: Definition and problems on equation R2: Ch:6; Pg.N0:175-178
of boundary layer
1 Theorems on displacement R2: Ch:5; Pg.N0:184-185
1 Theorems on momentum thickness R2: Ch:5; Pg.N0:186-187
1 Boundary Iayt_er separation: Theorem on R2: Ch:s: Pg.No:187-188
integral equation of boundary layer
1 Problems on momentum integral equation R2: Ch:5; Pg.N0:188-190
1 Thgqrems on boundary layer along a semi- R2: Ch:5: Pg.No:191-192
infinite flat plate
1 Blasius equation and its solution in series R2: Ch:5; Pg.N0:193-195
1 Problerr_ls on flow near to the stagnation point R2: Ch:s: Pg.No:197-108
of a cylinder
1 Recapitulation and discussion on possible
questions
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10 1 Discussion on previous ESE question papers

11 1 Discussion on previous ESE question papers

12 1 Discussion on previous ESE question papers
Total No of Hours Planned for unit V=12

Total Planned Hours 44

REFERENCES

1.Milne Thomson .L.M., (1968). Theoretical Hydrodynamics, Fifth edition, Dover
Publications INC, New York.

2. Curle.N., and Davies H.J., (1971), Modern Fluid Dynamics Volume-1, D Van
Nostrand Company Ltd., London.

3.Yuan, S.W, (1976). Foundations of Fluid Mechanics, Prentice- Hall, India.

4.Shanti swarup, (2003), Fluid dynamics, Krishna Prakasan media Pvt Ltd, Meerut.
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COURSE CODE: 18MMP206 UNIT: | BATCH-2018-2020
UNIT-I

Velocity — Stream Lines and Path Lines — Stream Tubes and Filaments — Fluid Body — Density
— Pressure. Differentiation following the Fluid — Equation of continuity — Boundary conditions
— Kinematical and physical — Rate of change of linear momentum — Equation of motion of an in
viscid fluid.

INTRODUCTION

Fluid dynamics is the science of treating of fluids in motion. Fluid may be divided into two
kinds

Liquids

Gases

A liquids are incompressible and gases are compressible fluids
COMPRESSIBLE

It means changes in volume whenever the pressure changes.
INCOMPRESSIBLE

It means changes in volume donot change when the pressure changes.
NOTE I

The term hydro dynamics is often applied to the science of measuring.
Incompressible fluid
NOTE Il

Matter classified into three types
Elasticity
Plasticity

Flow
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VISCOUS AND INVISCID FLUID

Suppose that the fluid element is enclosed by the surface S. Let ds be the surface element
around a point p. Then a surface force acting on the surface. It may be resolved into normal

direction and tangential direction.
Normal forces per unit area is said to be normal stress.(pressure)
The tangential forces per unit area is called shearing stress.

A fluid is said to be viscous (real fluid) when normal stress as well as shearing stress exists

Eg: oil for viscous fluid dam water for inviscid fluid.
Velocity of the fluid at a point

At atime ‘t’ a fluid particle is at the point p.

Here OP =rand at a time t + & the same particle has reached P’
OP =r+or

And PP =&
The particle velocity g at p is

_dr

’ q_a

Clearly q is displacement on both r and t
So g=q(r.t)
It p has Cartesian coordinates (X,y,z) relative to the fixed point O

We get QZQ(X,y,Z,t)
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le further suppose u,v,w are the Cartesian components of q in their direction

q=qi+Uui +Vvj +wk

In general r is represented by r = xi +yj +zk then q = %

=%(XT+ yT+zIZ)

=%T+ﬂi+%ﬁ
dt dt dt

g=ui +Vj +wk
DEFINITION
Fluid dynamics is a branch of science treating the study of fluid in motion
The term fluid is a substance that flows is called solid.
The fluid is divided into two kinds.

Liquids => which are in compression

Gases =>which are in compression

LAMINAR FLOW

A flow in which the fluid particles trace out a definite curve and a curve traced by any two
fluid particles do not intersect is said to be laminar flow
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TURBULENTFLOW

A flow in which the fluid particles do not trace out a definite curve and curve traced by any

two fluids will intersect is said to be turbulent flow
STEADY FLOW

A flow in which the flow pattern remains unchanged with time is said to be steady flow

le @:O
ot

Here p may be velocity, density, pressure, temperature etc.
UNSTEADY FLOW

A flow in which the flow pattern changes with time is said to be unsteady
UNIFORM FLOW

The flow in which the fluid particles possesses equal velocity at each section of the channel

or pipe is called uniform flow
NON — UNIFORM FLOW

The flow in which the fluid particles possesses different velocity at each section of the

channel or pipe called non-uniform flow
ROTATIONAL OR IRROTATIONAL FLOW

A flow in which the fluid particles go on rotating about their own axes while flowing is

called rotational

The fluid particles does not rotate about their own axes while flowing called irrotational

flow

BAROTROPHIC FLOW
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A flow is said to be Barotrophic when the pressure is the function of density
PRESSURE

When a fluid is contained in a vessel. It exaerts a force at each point of the linear side of

the vessel such a force per unit area is called pressure.
VELOCITY OF A FLUID PARTICLE:

Let a fluid particle at a point P at any time t. let it be at Q at the timet + ot such that OP=r.

Then the moment of the particle PQ is or

Hence the velocity q = (Iagm()%

_dr

T

Here q is a function of r and t or g=f(r,t)
u,v,w are the components of then we have @ =ui +Vvj +wk

STREAM LINES:

A stream line is a curve drawn in the fluid. Such that the tangent to the curve gives the

direction of the fluid velocity at a particular point

Let F=Xxi +Yj + zk be the position vector of point P and q=ui +Vj +wk be the fluid

velocity at the point P. then the equation of the stream line is given by

gxdr=0

(uT+v]+WIZ)xd(xT+ yj+z|2):0
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R T ¢

u v w/=0

dx dy dz

i(vdz —wdy) — j(udz—wdx) + k(udy —vdx) =0
i(vdz—wdy) =0
j(udz—wdx) =0

k(udy—vdx)=0

i(vdz —wdy) =0

vdz = wdy

dz d

9 _ & @
v

dz dx

= )
u

udy = vdx

dx d

LA ®)
Y

dx d dz

LA @)
v

This is the equation 4 of the stream line thus stream line shows how each particle is moving

at a given instant

If the velocity vanishes at a given point such a point is known as critical point stagnation.
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PATH LINE:

The path traced out by the fluid particle as it moves with evaluation of time is called path
line

THE VELOCITY VECTOR

T (- [OX O 2
f _(U’V’W)_(dt "dt’ dtj

dx
— = U(X, ,Z,t
ot (X,y,2,1)

dy
— =V(X, ,Z,t
ot (X,y,2,1)

dz
—=w(X,V,Z,t
i (%, Y,2,1)

STREAK LINES:

The locus of all fluid particles which has crossed a particular point at an earlier instant is
called as streak lines.

EXAMPLE:

The powder line formed in the river water when we pour pouder by standing in a particular
place a particular point.

STREAM TUBE:

The stream tube is the collection of number of stream lines forming an imaginary tube.

STREAM FILAMENT:

A stream tube of infinite estimal cross section is known as stream filament.
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Problem 1:

Given the velocity vector g = xi +Yj determine the equation of stream line.

Solution:

The equation of steam line

dx_dy_dz
Vv
G=xi +Vj
dx_dy
y
Integrate
%_jﬂ
X y

logx=logy+logc

logx—logy=logc

Problem 2:

The velocity component in three dimension flow fluid for a incompressible fluid (2x,-y,-z)

determine the equation of steam line passing through (1,1,1)
Solution:

The equation stream line
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2X -y

dx__I dy

2x -y

1
EIogx:—logy+logc

1
Eng+bgy:bgc

1
logx? +logy =logc,

dy _dw
dy _dz
jo e

—logy=-logz+logc,
—logy+logz=logc,

logz—-logy=Ilogc,

dz _ dx
—7 2x
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dz_pd

-2 2X

1
—Iogz:EIogx+Iogc3

Problem 3:

find the equation of stream line for the flow g =—i(3y?) — j(6X)
at the point (1,1)
VISCOSITY:

A Fluid which has viscosity is called viscosity fluid.

A Fluid which has no viscosity is called non — viscous fluid or inciscid fluid.
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It is a property of exerting internal resistance to the change in shape is form is called

viscousity
Example:
Honey is more viscous than water

It is clear that there exist a property in the fluid which controls the rate of flow. This

property of flow is called viscousity or internal friction.

DIFFERENCE BETWEEN STREAM LINE AND PATH LINE:

Stream line:

1. Atangent to the stream line gives the direction of velocity of fluid particles at various point
at a given time

2. Stream line shows how each fluid particle is moving at the given instant

3. In steady flow stream lines do not vary with time and co inside with path lines.

Path line:

1. A tangent to path line gives the direction of velocity given fluid particles at various time.
2. The path shows how the given fluid particle is moving at each instant.

THEOREM:

Show that the product of speed and cross sectional area is constant along the stream

filament of a liquid in a steady motion

(or)
Show that the stream filament widest at place where the speed is narrowest and the speed is
greatest.
Solution
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Consider the stream filament of a liquid in steady motion.

Letg, and g, be the speeds of the flow at places where the cross section area o,ando,

The liquid is incompressible in a given time the same volume of fluid must flow out at one

end as flow in at other end

0,0, = 0,0,

The product of speed and cross section area is constant along the stream filament of the

liquid in steady motion.

VELOCITY POTENTIAL OR VELOCITY FUNCTION:

Let the velocity of the fluid the time t be q = ui +Vj +wk at any point p further suppose
that at a particular instant t there exists a scalar function ¢(x, y, z,t) which is uniform throughout

the entire field of flow and such that
de¢ = 6(]jdx+8¢dy+6('/5dz+ ¢dt
oy 0z ot

= —(udx+vdy +wdz)

o

Since —= =0
ot

Let the expression on the right hand side is exact differential they we have

u:—%v_ a¢w 8¢and ¢ =0

ox oy oz ot

Hence q =ui +Vj +wk

=—@§Q+j§ﬂdy+k§£J
OX oy 0z

Prepared by V.Kuppusamy, Asst Prof, Department of Mathematics KAHE Page 12




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc. MATHEMATICS COURSENAME: FLUID DYNAMICS
COURSE CODE: 18MMP206 UNIT: | BATCH-2018-2020
=-V¢

q=-V¢ = —gradg

¢ is called the velocity potential.
Here the negative sign indicates the flow taking place flow the higher to lower potential.
VORTEX LINE:

Vortex line is a curve drawn in the fluid such that the tangent to the curve gives the direction

of the vorticity vector.
VORTEX TUBE:

A vortex line drawn through each point of a closed curve enclosed by the tubular space in

the fluid known as vortex tube
VORTEX FILAMENT:
The vortex tube of infinitesimal cross section is called as vortex filament.
BELTRANIC FLOW:
A fluid motion is said to be Beltranic flow if g is parallel to w
ie qxw=0
Here q is called Beltranic vector
ROTATIONAL AND IRROTATIONAL MOTION:

A motion of a fluid is said to be irrotational when the velocity vector of the every fluid

particle is zero.

When the vorticity vector is different from zero then the motion is said to be rotational.

THEOREM:
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Show that the pressure at a point in an inviscid fluid is a scalar quantity
Proof:

Let P,Q,R,S be the tetrahedral of the small of the small dimension with common centroid
0 in the fluid.

Let p,and p,be the average pressure on the phase pRS+gRS

Whose areas are o,and o, . Let o be the common area of projection of o, and o, on pq

The component of the pressure stress in the direction of PQ of all phase of tetrahedran
= p,o, — p,o, +0+0

The volume of the fluid within PQRS=Ilo

Where |is the small length

Let f be the component of external force per unit mass in PQ and f be component of
acceleration of the fluid per unit mass in PQ

By the second law of motion F =ma

We have p,o, — p,o, + Flop = flop

Where p is the density

(p,—p,)o=I(F-f)op

Here the area o, = o, = ois infinite estimal cross section
| >0 Isapoint

(P, = Pp,)o=0

P. =P,
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The pressure is a scalar quantity which is independent of direction
The orientation of phase is arbitrary

We conclude that the pressure at o is same for all orientation

THEOREM:

DIFFERENTIATION OF FLUID:
Fluid particles moves from p(x,y,z)attimetto p'(x+d,y+dy,z+ &) at the time t + &
Let f(x,y,z,t)be ascalar function associated with some property of the fluid then motion

F-Fes+Fgy:F5,:Fs
x oy | e ot

The total of changes of f at p at the time t is the motion

lim

a—0

(éFj dF 6FdX oF dy oF dz aF

&) dt oxdt oy dt azdi ot

lim| &= |= 2" =

[51:] dF oF oF _oF oF
U—+V—+2—+—
a-0\ ot dt OX oy oz ot

Here g =[u,v,w] s the velocity of the fluid particle at p

Similarly for a vector function f(x,y,z,t)associated with same property of fluid

We get the differential equation of motion

From equation (2) and (3) we get operation equivalence
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d 0

—=qQV+—...... 4

pranl Al 4)

Hence the equation (4) is called differential for the fluid.
Note 1:

In equation (3) and (4) Z—T% are called particle rate of change

& : gare called local rate of change.
ot ot

Note 2:
In equation (3) replace F =q
dq . a
— =g.Vg+—.rirrren. 5
AL ©)
This is known as the analytic expression for acceleration
Note 3:

If the fluid is incompressible then ((jj_? =0

Equation (5) becomes q.vq + %c_] =0

EQUATION OF CONTINUITY:

If is based on the law of conservation of energy which states that energy can neither created
nor destroyed. In this case the conservation of mass is interpreted in the following form it express
the fact that the rate of generation of mass within the given volume is entirely due to net flow

volume is enterly due to net flow of mass through the surface enclosing the given volume
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Let us consider the closed surface s enclosing the volume v in the region occupied by the

moving fluid.
Let the 1 be the unit outward drawn normal vector.
Let ds be any elementary surface enclosing the volume dv
Then the elementary mass dm is given by dm = pdv

Where p is the density of the fluid. Now the mass of the fluid within the whole surface s

is v
J
Now the rate at which the mass is generated as %J' oo \VARURIIN. ®

This is because the rate refers to the time and % is the total derivative its takes care of changes in

both time and position

Now equation (1) becomes Ig—f dv

Since the differentiation under the integral sign is allowed

But according to the conservative of mass this should be equal to the mass of the fluid

entering per unit time across the surface S.

The mass of the fluid entering per unit time through the element ds is give by ds= px

length

= pxdsx Velocity
= pxdsx Velocity componentxtime

= pxdsx—ghixt
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But time is unity

But the conservation of mass claim’s that (1)=(2)

J.%OdV:—ipx(qxﬁ)x ds

Now the L.H.S is given in volume integral and R.H.S is given is surface integral.
We should change surface integral and this is done by guass divergent theorem

If s is the closed surface enclosed surface in volume v and n is the unit normal vector
outward to S

j AFds = j V.Fdv
S

v

<e—
sejl%

V= —JV(p.q)x dv
.!.%)dvﬂv'v(p.q)x dv=0

Since v is an arbitrary choosen volume then we get

p
P v(pg)=0
i (p.a)

This is called a continuity equation
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Note 1:

Equation of continuity for a steady compressible flow:

Since the flow is steady %’O =0 and hence the equation of continuity for a steady
compressible flow is V(p.q)=0
Note 2:

Equation of continuity for a incompressible flow:

Since p is constant foe any incompressible fluid we get V.u=0
In other words to check any fluid velocity or to find the velocity of a liquid then we check V.q =0

Note 3:
Derive the equation of continuity for incompressible fluid
Proof:

The fluid is incompressible fluid so p is constant

By the equation of continuity we have

op
P v(pg)=0
=" (pq)
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divg =0

THEOREM:

DERIVE EULER’S EQUATION OF MOTION FOR INVISCID FLUID:
OR

DERIVE EQUATION OF MOTION OF AN INVISCID FLUID IN THE

FORM Y9_F_1y,
dt e,

PROOF:

Consider a fluid of volume v inside a closed surface.

p be the density of the fluid

ds elementary surface area
A unit outward vector

q velocity of the fluid particle
Elementary mass of the fluid = pdv

Linear momentum of elementary mass = qodv

Linear momentum of entire mass = Iq,odv
\

The rate of change of linear momentum = %qudv
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By Newton’s second law of motion the total force on the body is equal to the rate of change of

linear momentum

The force acting on this area

(i) External force = I F pdv

Normal pressure= stress of the body
= —I pids
S

Here p indicates the pressure

F indicates the force

The total force acting on the body = J. prdv—J' pnds
v S

Equate (1) and (2)

I%pdv = j prdv—IVpdv

d — 1
Id—?dv:dev—;.ngdv

\ )

By vanishing the integral over the volume we get

%: |E_1Vp
dt o,

This is the given equation of motion for an inviscid fluid
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UNIT 1
POSSIBLE QUESTIONS

PART-B (MARKS)

1. Show that the surface will be a surface of discontinuity of direction of the velocity not of
speed

Derive the equation of motion of an inviscid fluid

Show that the velocity g is a function of r and t

Show that the path lines coincide with the stream lines when the motion is steady.
Discuss about the concept of kinematical boundary condition.

Explain briefly about adherence condition.

Derive equation of motion of an inviscid fluid.

Explain compressible and incompressible fluid.

© © N o g kDD

Given the velocity vector g = xi +Yj determine the equation of stream line.
10. Derive equation of continuity for a incompressible flow
11. Fluid particles moves from p(x,y,z)attimetto p'(x+ X,y +dy,z+ ) atthetime t+ &

12. Show that the pressure at a point in an inviscid fluid is a scalar quantity

13. Explain rotational and Irrotational terms.
14. Difference between path lines and steam lines.

15. Explain briefly about the viscous flow with examples.
PART-C (10 MARKYS)

1. Show that the surface will be a surface of discontinuity of direction of the velocity not of
speed
2. Find the rate of change of the momentum as S moves about with the fluid

3. Prove that the pressure at a point in an inviscid fluid is independent of direction
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4. Show that the product of the speed and cross sectional area is constant along a stream
filament of a liquid in steady motion.

5. Derive equation of motion of an inviscid fluid in the form % =F —EVp

Yo
6. Explain (i) Compressible (ii) incompressible (i)turbulent Flow with examples.
7. Explain the concept of viscous and invicous flow.

8. Define path line and steam line with application.
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Coimbatore —641 021

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)

Subject: Fluid Dynamics
Class : |- M.Sc. Mathematics

Unit |

Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions

Subject Code: 18MMP206

Semester

Questions Optl Opt2 Opt3 Opt4 Answer
The behavior of fluid at rest gives the study of fluid dynamics fluid statics elastic plastic fluid statics
The behavior of fluid when it is in motion without con3|der|ng
the pressure force is called fluid kinematics fluid mechanics fluid statics fluids fluid kinematics
is a branch of science WhICh deals with the
behavior of fluid at rest as well as motion. fluid mechanics fluid statics fluid kinematics fluids fluid mechanics

The behavior of fluid when it is in motion with considering the
pressure force is called

fluid kinematics

fluid dynamics

fluid statics

fluid mechanics

fluid dynamics

is the branch of science which deals with the
study of fluids.

fluid kinematics

fluid dynamics

fluid statics

fluid mechanics

fluid dynamics

If any material deformation vanishes when a force applied

withdrawn a material is said to be elastic plastic deformation fluid elastic

If deformation remains even after the force applled withdrawn the

material is said to be elastic plastic fluid fluid statics plastic

If the deformation remains even after the force applied withdrawn

this property of material is elastic plasticity fluid deformation plasticity
can be classified as liquids and gases. solids pressure fluids forces fluids

The density of fluids is defined as volume. limit per unit solid per time mass per unit forces per unit mass per unit

A force per unit area is known as force pressure fluid density. pressure

OF is the force due to fluid on Os normal constant force pressure normal

The pressure changes in the fluid beings changes in the dencity of]

fluid is called compressible fluid |incompressible fluid |body force surface force compressible fluid

The change in pressure of ﬂUId do not alter the density of the

fluid is called compressible fluid |incompressible fluid |body force surface force incompressible fluid
are propotional to mass of the body. pressure body force surface force force body force
are propotional to the surface area. body force surface force force mass surface force

The normal force per unit area is said to be normal stress shearing stress stress strain normal stress

The tangential force per unit area is said to be normal stress shearing stress stress strain shearing stress

In a high viscosity fluid there exist normal as well as shearmg

stress is called viscous fluid inviscid fluid frictionless ideal viscous fluid




Which is the velocity of the equation. g=dr/dt .g=s/r v=dx/w .u=dy/s g=dr/dt

The differential equation of the path line is .u=dy/s v=dx/w g=dr/dt .q=s/r g=dr/dt

A flow in which each fluid particle posses different velomty at

each section of the pipe are called uniform flow rotational floe barotropic flow non-uniform flow  [non-uniform flow

A flow in which each fluid particle go on rotating about their

own axis while flowing is said to be rotational floe uniform flow non-uniform flow barotropic flow uniform flow
The pressure is function of density then the flow is said to be

. rotational floe uniform flow barotropic flow non-uniform flow  [barotropic flow
The direction of the fluid velocity at the point is
called . stream line velocity fluid pressure stream line

is defined as the locus of different fluid particles
passing through a fixed point. stream filament stream line path line stream tube stream line
A stream tube of an infinitesimal cross sectional area is
called stream line stream filament path line stream tube stream filament

Cross section speed/cross section |cross section Cross section

The equation of volume is area*speed area area/speed speed area*speed
The equation of speed is time/length length/speed length*time time*speed length/speed

When a fluid particle moves it changes in both

speed and time

time and frequency

speed and position

position and time

position and time

When the flow is the strem line have same form at all

times. steady unsteady stream surface stream tube steady
When the flow is the stream line changes from instant to

instant. stream tube steady unsteady steady unsteady
If A.f=0 then f'is said to be a solenoid rotation irrotation constant solenoid
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UNIT 11

Euler’s momentum Theorem — Conservative forces — Bernoulli’s theorem in steady motion —
energy equation for in viscid fluid — circulation — Kelvin’s theorem — vortex motion — Helmholtz
equation.

EULER’S MOMENTUM THEOREM:

STATEMENT:

A resultant thrust on the fluid enclosed with a closed surface S is equal to the reserve
resultant of the boundary force enclosed the fluid and rate of flow of momentum outwards across

the boundary S.
PROOF:

Consider a fluid of volume V enclosed with the surface S. let dv be an elementary volume
enclosing the fluid particle p at time t.

dv=elementary volume

p = one point of the fluid particle
q = velocity of the fluid particle at time t
p = density of the fluid

A =unit outward normal vector

Elementary mass of the fluid= p.dv

Linear momentum of the elementary mass=qodv

Rate of change of linear momentum of entire quid:%jquv
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We know that d = 2+GV
dt ot

d. 0. e
aj‘quv:aj.quv+j(q.V)quv ............. ®
Using Gauss divergence theorem

[Fnds=[(V.F)dv

The equation (1) becomes

% [apdv = % [apdv+ [ (@n)pads.......... )

The minus symbol indicates the opposite direction of surface.

The force acting on the fluid body

(1) Normal pressure on the surface JA p.n.ds
S

(2) External force (gravity) F per unit mass= I F.p.dv

The total force acting on the fluid :_[ p.n.ds+ I F.odv..ceo... ®)
S v

By Newton’s second law the total force acting on the particle = Rate of change linear momentum

(2)=(3)
[pnds=-[F.pdv+ % [dpdv—[(@.n)pads............. (4)

NOTE:

When the fluid is at rest the Euler momentum theorem is nothing but the principle of

Archimedes.
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PROOF:

When the particle is at restthen =0

Equation (4)

I p.n.ds = —I F.p.dv— j (g.n) pgds
S \

I p.n.ds = —j F.p.dv

S
This is the principle of Archimedes

CONSERVATIVE FORCE:
The force F is conservative iff there exists a potential function Q such that F = -VQ

BOOK WORK:

Derive the equation of motion in the form z—?:—v{j@+g} where the force is
Y

conservative and derived from potential Q and the pressure is the function of density.

PROOF:

From unit 1 Euler equation of in viscid fluid is 2—? =F —le ................ (IH]

The force F is conservative

Now F = Xi + Vj +zK

Divide p by above equation
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dp _dr-vp

P P

Larvp=d[ P
p p

i(dr.Vp) =drv j dp
p p
Use equation (2) and (3) in (1)

dg dp Vp dp
—=vVQ-V|[=+* E=v|=..... ©)
dt jp p j/0

9q = —V[Q+j@}
dt 0

T T (c/ Y
drV¢_d(X|+y1+zk{|ax+18y+kazj
:%dx+%dy+%dz
OX oy oz

drvg =d¢

STATE AND PROVE BERNOULLI’S THEOREM

OR

DERIVE BERNOULLI’'S EQUATION OF STEADY MOTION IN THE
FORM:

Z—? —gx¢ =-V¥where
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‘P:J‘@+Q+1q2
P 2

PROOF:

Equation of motion for inviscid fluid is

Then we know that

dg dg _. - 1,
dq _dq a 3
gt ar At ®

dg
~Vg? =-VQ-V
L - AxE oV I
dg dp 1
=-VQ-V V
L Cax¢ = j o’
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dy _ = dp 1,

—_gxl=-V|Q-[—+.-=

L -x¢ ( jp 2z

q _ =

——-qQx{ =-V¥

5 %6

Where ‘P:j@+§2+iq2
Jo, 2

When the motion is steady a =0

qx¢ =VV¥
qx¢ is normal to the surface ¥

In this surface W is constant

I@+Q+%q2 = constant

P

This is known as Bernoulli’s equation for fluid in steady motion.
NOTE 2:
Derive the Bernoulli’s equation of motion for an incompressible fluid

PROOF:

o L 1
Bernoulli’s equation for fluid in steady motion is ¥ = J-% +Q+ > (* =constant
Yo,

The given fluid is incompressible

dp _
%

v o

Bernoulli’s equation for incompressible fluid is
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p

~+Q +lq2 is constant
yo, 2

CIRCULATION:

The line integral of the fluid velocity around of the fluid velocity the closed curve c is

called the circulation.

F=§G.dr
C

KELVIN’S THEOREM:

If fluid is inviscid and the force are conservative then circulation on any closed curve

moving with the fluid is constant for all the time.
PROOF:
First we want to prove the following lemma.

LEMMA:

The necessary and sufficient condition for the constant ¢ of circulation in a closed curve

moving with the fluid is Vxa =0.

PROOF:

We know that a = ((jj—(t] ........ () and the circulation is

T =§qdr .. )
C

dr d

— =—{qd

dt dt§q '
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dr §99.‘+§qfidr
dt a7t
= ifd_q.dr
I dt

Using stroke’s theorem

F.dr = §cur|lfﬁds

0'—@—. O —e—y
T

:§ urI—nds
S

dr
— =¢curlands............... 3
- § )

From equation (3) it follows that necessary and sufficient condition for constant c of circular in a

closed for constant C of circular in a closed curve moving with the velocity is
curla=0
Vxa=0
Hence the lemma
PROOF OF THE THEOREM:
Equation of motion for an inviscid fluid is

49 If—le
dt P

Here the forces are conservative
F=-VQ

Sub this value in the above equation
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99 __vo-Lyp
dt o,
a--va-Ltvp
Yo,

Here a is acceleration value.

Taking curl on both sides

an:Vx(—VQ—EVp]
yo,

:VXEVp

P

=—Vlep+£Vpr}
L p P

CASE 1:

For an incompressible fluid p is constant then equation 4 becomes Vxa =0
CASE 2:

For compressible fluid p is a function of p.

Let L= f(P)
yo,
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v1=vhmﬂ

Yo,

. 0 . 0 0

:i@+]i@+ki@
opox ~opoy op oz

, .o0p .0p op
(mP&+JW+ &}

vi_t(pvp.....
yo,

Use (5) in (4)

Vxa=Vpx f'(p)Vp

Vxa=0

If either p is a constant or p is the function of p
We have Vxa=0

From the lemma we can say

((11_1; =0 T'is a constant

Hence the fluid is inviscid and the forces are conservative then circulation on any closed

curve moving with fluid is constant for all the time.

Hence proved
BOOK WORK:

Derive the equation of motion in Cartesian co-ordination when the force are conservative
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PROOF:

The equation of motion for an inviscid fluid is

And we know that

dg dg . __
—_ =1 AVAo ) I 3
S dt+(q q) ©)

By (1)(2) and (3)

g .\ - 1
d—q+(q-VQ)=F——Vp
t p

- va-tvp
P

Let g =ui +vj +wk

V:i£+jﬁ+k£

oXx oy oz

a(ur+VJ7+le)+((uiﬁ+vj+w12(iﬁ+ j£+k£J](uT+vf+WIZ)
ot x oy e

=—i£+j£+k£ Q—EVp
OX oy 0z P

a(uT+vT+WE)+(5_U+@+@](UT+VT+WIZ>
ot ox oy oz
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=—i—+ j£+k£ Q—EVp

0 oy oz P

By equation the co-efficient I,j,k
We get

ou ou ou ou oQ 1o0op
E‘i‘ +W— | =

_+ —_—— e
ot U ox oy o oy poy
ow ow  aw) Q1 4p
— | U—FV—FW— |[=—— — =
ot ox oy oz oW pow

ENERGY EQUATION:

STATEMENT:

The rate of change of total energy of any portion of a inviscid fluid as it moves about is

equal to the rate of at which working is being done by a pressure on the boundary.

PROOF:

Consider any arbitrary closed surface S drawn in the region occupied by the inviscid fluid

and let v be the volume of the fluid with in s.

Let p be the density of the fluid particle p and dv be the volume element surrounding p.
Let q(r,t) be the velocity of p then the Euler equation of motion.

a9 _p_Vp
dt Jo,

The force is conservative
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F=-VQ

Sub F =-VQin

9__go-YP .0

dt P

Multiplying both sides oq

1d,, dq
@) =q— 3
2dt(q) Tt ©

Sub (3) in (2)

1 d,,
Zp— = —p(.V)Q - qV
2pdt(Q) ,(Q.V)Q2-qVp

Q  do
@ _dQ o
g @V

1 d,, dQ
Zp—(q¥) =—p—"—qV
zpdt(Q) P4t qvp

1 d,, do
B S =t __qVv
5P A+ p s =—avp
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d(1,
~[292+Q|=-qV
pdt(ZQ+j qvp

Ip%@qz +dev = —Iqudv

jp%(%qﬂdv+jp%ﬂdv= —qupdv
Let T =!p%6q2)dv

v sz%de

| = [Epdv

V(pa) = pvVa+qvp
@V)p=V(pg) — pVQ..ccccvemrennne ®)

Use (5) in (4)

d(1, d . )
J"E[Eq jdV+£panV— {(V(pq) pva v

!p%eqzjdwgp%mv: —£V(pq)dV+!(qu)dv

Srv)= J pas + [(pvak

dl
T : \% =—
0 prove JV.(p q)dv .
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Suppose e is defined as the work done by the unit mass of the fluid against external pressure p in

which p,and p, are the values of the pressure and density respectively.

E:]‘pdv

Vo

Integrating

dE
I

v

_(Pdp
pdv—jgadv
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d p dp

—(EpdW) = |=—dV.....rvvmrnn... 6
{ ¢ (Epcy) j o (6)

From the equation of continuity

%+ p(V.q) = 0we have
dp

— =—p(V.

it p(V.0)

Use (7) in (6)

d P
J 7 (Epdy) = j 5(— p(V.q))dv
= —_[ p(V.g)dv

[ < (Epdv) =~ p(v.a)av

v

_a
dt

d dl
—(T+V)= A)dS ——
£ T+Y) !p(qn) o

d dl
—(T+V)+—= A)dS
mURA DR !p(qn)

%(rwu):!p(qﬁ)ds

This shoes that rate of change of total energy of position of the fluid as it moves about is
equal to the rate of working done by the pressure on the boundary.
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BOOK WORK:

Show that magnitude of the vorticity multiplied by the cross sectional area along the

filament is a constant.
Or
Show that vertex filaments if cannot terminate at a point within the fluid.
Or
Show that vertex filament must be either closed or terminated at the boundary.

PROOF:

Consider the volume of the fluid enclosed between two cross sectional area do,and do,

of the vertex filament

Consider If.ﬁds = jvfdv
S Vv

If.ﬁds = _[V(Vx q)dv

v

£.nds=0

7] —

£ . =0on the walls of the filament

Then we have £,.i, =0
£, =0

At the place of the cross sectional areas the above equation becomes
¢ ndo, =0

£,m,do, =0
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Where £,and ¢, are the vertices at the end of the filaments whose cross sectional areas are do, and

do,.
n,and n, be the unit normal vectors

Then the magnitude value is
‘51Hﬁ1||d61| - ‘52 Hﬁz |do|
=|¢\[doy =|¢;|do
HELMHOLTZ THEOREM:

Derive Helmholtz equation in the form

PROOF:

We know that a = ?:i_?

- v‘i—‘:—v(qxfﬁ v%qu

0 . S—
= (Vxa)-V(axZ)
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We know that V{ = _ld_p

p dt
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Vxa=- - (CV)T+L pdtJ
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Vxa="2-((9)i-¢ pdt]
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(E] = (Vxa)+(EV)q

Yo,

E(QJ - Lvxa)+ @Vl ®
p) p

Hence the equation (1) indicates the rate of change of ¢
Yo,

If the force are consecutive and pressure is a function of density
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a-%__y | P, 0

dt o,

Taking curl on both sides

Vxﬁszd—q
dt

=Vx-V

Sub (2) in (1)

%(i}i[wmﬂivm]
p) p

3[5 - 2o+(¢vyd]
p) p

2o
VR
ISAAY

112 o
= =[¢w)a]
P
Hence the proof

NOTE:

In the case of liquid V.q =0and so § becomes solenoidal we also know that Q is also a

solenoidal.

VxQ=0
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UNIT 2

POSSIBLE QUESTIONS

PART- B (6 MARKS)

1. Show that the vortex filaments must be either closed or terminate at the boundary
2. If w is the area of the cross- section of a stream filament prove that the equation of
continuity is g(pw) +§(pwq) =0where Jsan element of arc of the filament in is the
S
direction of the flow and q is the speed.
3. State and prove the Euler’s momentum theorem

4. Show that the mass of the particle remain unaltered as it moves.

5. Derive the equation of motion in the form Z—?:—V{Jd—g+ﬂ} where the force is

conservative and derived from potential Q and the pressure is the function of density.

6. Derive Helmholtz equation in the form

i £ = év q
dt{ p p
7. Show that magnitude of the vorticity multiplied by the cross sectional area along the
filament is a constant.
8. Derive the equation of motion in Cartesian co-ordination when the force are conservative
9. State and prove energy equation.

10. Show that vertex filaments if cannot terminate at a point within the fluid.

11. Show that vertex filament must be either closed or terminated at the boundary.
12. Derive the necessary and sufficient condition for the constant ¢ of circulation in a closed

curve moving with the fluid is Vxa=0.
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13. State and prove if fluid is inviscid and the force are conservative Then circulation on any

14.
15.

closed curve moving with the fluid is constant for all the time.
Derive the equation of motion.

Explain the concept of rate of change of circulation.
PART-C (10 MARKYS)

Find the equation of motion of an inviscid fluid

Find the rate of change of circulation

Show that the rate of change of total energy of any portion of the fluid as it moves about
is equal to the rate of working of the pressures on the boundary

Show that the rotational motion permanent and so is irrotational motion

Show that he equation of motion in the form Z—? :—V[Jd—pp+§2} is the function of

density.
Show that vertex filament must be either closed or terminated at the boundary.

Show that the rate of change of total energy of any portion of a inviscid fluid as it moves

about is equal to the rate of at which working is being done by a pressure on the boundary.

State and prove Kelvin’s theorem
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Possible Questions

Questions Opt1 Opt 2 Opt 3 Opt 4 Answer
A force is said to be -------- if the force can be derivable from the
potential. conservative non conservative acceleration surface conservative
A flow is called a Beltrami’s flow when--- q.E=0 g*E=0 g/E=0 g+E=0 g*E=0
Bernoulli’s equation occurs when the motion is-- unsteady rotational steady irrotational steady
The ---- --—-- flow can occurs when the vertex and stream lines
coincide viscous flow beltrami’s flow invisid flow normal flow beltrami’s flow
When the motion is both steady and irrotational then--- V E V*E V+E V-E V E
The product of the cross sectional area and magniyude of the
vorticity is -------- along a vortex filament parallel zero constant normal constant
When the forces are conservative and the pressure is a function of
the density,then-------- V.a=0 V*a=0 V+a =0 V-a=0 V.a=0
When a force is conservative,there exist a potentialQ such that f= [f=VQ =V Q f=-V*Q f=V*Q =V Q
circulation around a closed circuit ‘c’ is defined as Jq.rdr Jq.dr Jqx.rdr Jqx-+dr Jq.dr
Euler’s equation of motion is dg/dt=F-VP dg/dt=F dg/dt=F-Vp/P qd/dt=-VQ dg/dt=F-Vp/P
----------- from is called the acceleration potential Q-6 P/ p V[l 8 P/ p] +dp V[l P/p] Q+H P /p Q+H o P /p
Beltram’s flow is --------- og/ 6t=V og/ 6t=-V dq/ 0t=-QV a9/ 6t=-V p /p dq/ 6t=-V
q*E=0 can become zero when E #0,but q*E can be to each other |parallel non parallel zero normal parallel
The motion is both steady and irrotational if V.y#0 V+y =0 V.uy =0 V*a=0 V.y =0
Which is the constant of kelvin’s theorem a p B \ p
Circulation is always defined around a  ---------—- ciruit open parallel closed normal closed
When a conservative force f a potentialQ such that F=VQ F=-VQ F£V*Q F£V.Q F=-VQ
The euler’s equation of motion corresponding to a beltrami’s flow
is 0g/o6t=-V vy 0g/o6t=-V vy 0g/6t=-V* y 0q/0t£V v 0g/ot=-V v
A force is said to be conservative if the force can be derivable
from the --------—- potential density area viscosity potential
The euler’s theory is confined only for ideal or inviscid fluid viscid stream inviscid fluid inviscid




The rate of change of linear momentum is equal to the ------- of
the forces acting on a body sum product proportional difference sum
the inward normal is -------- n" F n”

The rate of change of momentum of the fluid body is given by---

p
d/dt(cir c)=[B.n ds

q
d/dt(cir c)=In ds

d/dt(cir ¢)=[B.n dc

d/dt(cir ¢)=n dc

d/dt(cir c)=IB.n ds

The is the motion the rate of change of linear momentum
=the sum of the forces acting on the body

Kelvin’s theorem

Energy equation

Newton’s second
law

Euler’s theorem

Newton’s second law

rate of change of circulation is

/8t(cir ¢)= Jb.nds

3/dt(cir ¢)=Jq.dr

3/dt(cir ¢)=Jdq/dt.dr

3/68t(cir )= Ja.dr

3/8t(cir ¢)= [b.nds

Accelaration is given by a=dm/dt a=dg/dt a=dr/dt a=dc/dt a=dg/dt
The ------ is the internal energy per unit mass E F r a E
Density of a fluid is denoted by F p a E p
Absolute value of  |Part of the head of  |Fluid discharges
viscosity is fluid is utilized through orifice with | Comparison of Comparison of
In Red wood viscometer detemiined inOvercoming negligible velocity  [viscosity is done.  |viscosity is done.
The point of

Centre of buoyancy is

intersection of
buoyant force and
centre line of the
body

Centre of gravity of
the body

Centric of displaced
volume fluid

Midpoint between
C.G. and
metacentric.

Centric of displaced
volume fluid

In isentropic flow; the temperature

Cannot exceed the
reservoir
temperature

Cannot drop and
again increase
downstream

Is independent of
Match number

Is a function of
Match number only

Cannot exceed the
reservoir temperature

The line of equal

The line along which
the rate of pressure

The line along the
geometrical centre of

Fixed in space in

Fixed in space in steady

A stream line is velocity in a flow  |drop is uniform the flow steady flow. flow.
The flow of water in a pure of diameter 3000mm can be measured
by Venturimeter Rotameter Pilot tube Orifice plate Pilot tube

Apparent shear forces

Can never occur in
frictionless fluid
regardless of its
motion

Can never occur
when the fluid is at
rest

Depend upon
cohesive forces

All of the above

All of the above

Weber number is the ratio of

Inertial forces to
surface tension

Inertial forces to
viscous forces

Elastic forces to
pressure forces

Viscous forces to
gravity

Inertial forces to
surface tension

A small plastic boat loaded with pieces of steel rods is floating in
a bath tub. If the cargo is dumped into the water allowing the
both to float empty, the water level in the tub will

water level in the tub will

Rise

Fall

Remains same

Rise and then fall

Fall

A flow in which each liquid particle has a definite path and their
paths do not cross each other, is called

Steady flow

Uniform flow

Streamline flow

Turbulent flow

Streamline flow

Buoyant force is

Resultant of up
thrust and gravity
forces acting on the
body

Resultant force on
the body due to the
fluid surrounding it

Resultant of static
weight of body and
dynamic thrust of
fluid

Equal to the volume
of liquid displaced
by the body

Equal to the volume of
liquid displaced by the
body
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UNIT 111

Two Dimensional Motion — Two Dimensional Functions — Complex Potential — basic
singularities — source — sink — Vortex — doublet — Circle theorem. Flow past a circular

cylinderwith circulation — Blasius Theorem — Lift force. (Magnus effect)

TWO DIMENSIONAL MOTIONS

When the lines of motion are parallel to the fixes plane z=0 and the velocity at the
corresponding points of all planes are parallel to z=0 has same magnitude and direction. Then the

motion is said to be two dimensional motion.
EXAMPLE:

Stream function or of current function potential function or velocity function.
Two dimensional function:

STREAM FUNCTION OR CURRENT FUNCTION:

In 2D motion velocity vector g is the function of (x,y,t).

Hence the differential equation of stream line is given by X = gy
u v

Equation of continuity for an incompressible fluid in 2D motion is

ou ov
—t— =
oxX oy

In differential equation

We know that Mdx+ Ndy =0
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M N _g

oX oy

Equation (2) is condition for equation (1) to be exact

Thus there exists a function W(X, y) such that

d¥ = udy—vdx

a—‘/ljté—l//zudy—vdx

oXx oy

Here the function W(X, y) is called stream function or current function.

POTENTIAL FUNCTION:

In case of irrotational curl g=0

i j kK
vxgo|l O 2
dx dy dz

u v 0
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Equation (1) is the condition for the differential equation

udy+ vdx =0 to be exact there exists a function ¢(x, y) such that

d¢ = udy + vdx

%dx+%dy=udx+vdy
ox oy

Hence the function ¢(x, y) is called potential function or velocity potential.
NOTE:

Write down the relationship connecting velocity components of the stream function or
potential function.

u=0¢ _ov
ox oy

v=0¢__%v
oy OX

BOOK WORK:

Explain physical interpretation of stream function.
Let us consider the portion of the curve between A and B through the fluid.

Let p be any point on the curve at which the tangent makes an angle 6 with OX.
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Let u,v be the components of velocity at the point p(x,y) and let q(x + Ax, y + Ay) be its
neighbourhood points so that pg=ds

Component of u along the normal = ucos(90 - 9)
=usind
Components of v along the normal = ucos(©0 + 90 — )

=—VCos#
Components of velocity along the normal =usin @ —vcosé
The amounts of flow access the elementary all.
ds = (usin & —vcosé)ds
ds = usin &ds —vcos&ds

= udy — vdx

B
The amount of flow access AB = I (udy — vdx)
A
B
A

=[w];
=Yg W,

The difference is the value of stream function at difference point gives the element of flow
access. The curve joining the two points.

PROBLEMS:

1. Express velocity components in terms of stream function in polar co-ordinates
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Or

Show that in the polar co-ordinates V, = 1ov and V, = _ov
r oo or

Solution:
Hence X =rcosé

y=rsing

Also we know that the relation connecting velocity components of stream function and
potential function

— E = ®
oy _O¢
~ 5 ............ 4

We know from dynamics. The radial components of velocity

v, =%
or

v, 100
r oo
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To find V,

_0x_ opoy
T oxor oy or

_0¢

OX

o

cosfd+—-sind

_0plyy a¢( 1@)
oxrod oyl rad

_logoy 104 5
rox o6 r oy oe

Using eq (3) and (4)

5!// AN (5_'/’%)
oy 06 ox 00

v -tov
r o6
To find V
v, -0
or
_1o¢
 roo

1o oy  og ox
r| ox 00 oy 06

_100 sing) s 00
_r_ax( rsm9)+ay(rcose)}
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= —%(Sin 9)+%(cosé?)
ox oy
v, -1
r oo

2. Show that stream function  and the potential function ¢ satisfies the Laplace equation.

Solution:

The relation correction velocity components of stream function and potential function

0 0
u=Y_9 o Q
oy oX
0 0
__v %9 .. )
ox oy
The equation continuity for an incompressible fluid in 2D motion is
o + N _ 0 I ®
ox oy

Use eqgn (1) and (2) in (3)

2[%}2 9%1_ g
ox\ox ) oyloy)

0’ 3% _,

x> oy?
V=0

The velocity potential ¢ satisfies the Laplace Eqn (1) and (2)
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STREAM FUNCTION SATISFIES THE LAPLACE EQUATION.

PROBLEMS:

1. Investigate the orthogonality of two families of curves ¢@(X, y) =constant (X, y) =constant

Solution:
#(X, y) =constant
w (X, y) =constant

#(X, y) =constant

Differential %f dx+ %9 dy=0

%dx:—%dy
X oy
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a9
dy _ ox
dx  J¢
oy
dy_ u
dx v

w (X, y) =constant

Differential v dx + v dy=0
X oy

W 4x= -V gy
OX oy
o
ay __ ox
dx Oy
oy
dy _v
dx u
\"

They intersect orthogonally.

C-R equations from stream function and potential function we have
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Equation u

% _
oy

v

o _oy
X oy

¢ =V,

Equating v we get

op __ oy
oy X
¢x=_l//y

This is known as C-R equation

2. The velocity filed is given by q=—xi + (y +t) j find the stream function and stream line

for this field at t=2.

Solution:
q=—X+(y+1)j
To find stream function

dw:a—wdx+a—vldy
X oy
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From the equation

u=-x
V=y+t
dy =—vdx+udy

dy =—(y+t)dx—xdy
Integrate the equation
jdy/ = j—(y+t)dx—xdy
==y
Put t=2
Idyx = I— y—tdx—J'xdy
= —yX—IX—Xy
=—-2Xy —tx
= —2Xy — 2X
y =-2x(y+1)

Stream line

dx _ dy
—-X (y+1)
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Integrate

L

—X (y+t)

—logx =log(y +t)+logc
—x=(y+t)+c

Put t=2
—-x=(y+2)c
—-X=2y+2C
X+2y+2c=0

3. Atwo dimensional flow is given by w = xy then show that is irrotational.

Solution:

To prove this flow is irrotational then Vxq=0

i ]k
Uxg|l 0 2
dx dy dz

u v 0
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o_w
dx dy

oy
oy

u=

Subuandvin

v _a
oX oy

It is irrotational
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4. Obtain C-R equation of complex potential in polar form
Solution:
Let w be the analytic function of z

W=f(2)

d+iy = f(re?)..(1)

0p .0y 1feniON Q0
—— L= f"(re")e"............. 2
or or (re™) @

D i%Y  fi(re

rie’
o0 )

%Jri@_w_{?ﬁﬁ_w}

060 06 |or or
9% _ o
00 or
oy __.9¢
06 or
o _1oy
o0 r or

COMPLEX FUNCTION:

A complex function w= ¢+ iy where real and imaginary parts are velocity potential and

stream function this w is the complex potential of the fluid.

NOTE 1:
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Since velocity potential ¢ and the stream function y satisfies the C-R equation.

W = ¢ + iy is an analytic function of z(x +iy)

NOTE 2:
Since w=¢+iy

30w _ow_ow i _ow

X  ox ox o ox a

ow_3p ov

oz ox  ox

i0

Hence @ is the velocity direction relation to the real axis given by

dw
0=— =
arg( dzj

NOTE 3:

Discuss the motion for the inverse function z = ccoshwwhere c is real positive number

and w is the complex potential.
Solution:
We know that z = x+1iy
Z =ccoshw
= cosh(u +1iv)

=ccosh(@g+iy)
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= c(coshgcoshiy +sinh gsinhiy)
= c(coshgcoshy) + ci(sinh gsinh i)
X = c(coshgcoshy)
y = c(sinh ¢gsinh i)
x® = c¢?(cosh® gcosh® y)
y* =c?(sinh? gsinh® y)

2

— = —cosh?
¢’ cosh® i ¢
yz .2

——~ — =sinh
c’sinh’y ¢
X2 y2

—~ = cosh? ¢ —sinh?
c’cosh®y  c?sinh?y / ¢

For the different values of  we get the same focus
Hence the streamlines are confocal hyperbola.
BASIC SINGULARITY:
SOURCE:

Any point in the two dimensional motion where the fluid is assumed to be created is called

source.
SINK:

Any point in the two dimensional motion where the fluid is assumed to be ignored is called

sink.
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DOUBLETS OR DOUBLE SOURCE OR DIPOLE:

The combination of the source of strength m and the sink of strength M at the distance ¢

apart such that M¢ is finite is called doublets.
NOTE:

If the total flux act outwards as a small surface closed surrounding a point 2zm. Here m is

called the strength of the source.
BOOK WORK:

Obtain the complex potential of the flow due to a source of strength of origin.
Proof:

Let m be the strength of source placed at the origin.

Then the flex across the circle of unit radius

r=2zm
For a source the flow is purely radial and symmetrical.

The flex across the circle of radius for satisfying the condition of continuity we have

27zm=27r%
or
mzr%
or
o _m
or r

Integrate w r t r we get
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o
I =1
1
¢:m_[Fdr

¢p=mlogr

Also we know that

v —1ov
r o6
Here 8¢_18_1,y
or r o
m_1ow
r roe
_ov
00

Integrate w r t to 6 we get

)
jmd@:jgg

v =mé
The complex potential of the flow due to a source of strength m is place at the origin is
W=g¢+iy
w=mlogr+imé
w = m(log(r +16))

w=mlogre"
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w=mlogz

NOTE:

The complex potential of the flow due to a source of strength m placed at a=a +1fis

w=mlog(z—-a)
PROBLEMS:

1. Obtain the complex potential of the flow due to the doublet of strength m.
Proof:

We know that the complex potential of the flow due to the source of strength n placed at

originis w=mlog z
Hence sink of strength —m is placed at the origin
Its complex potential is
w, =-mlog z

Here source of strength n is placed at &'*
Its complex potential is
w, = mlog(z — &™)

The complex potential of the doublet is
W=W, + W,
w=-mlog z+mlog(z — %&")
=m(log z + log(z — %&'))

=m(log z — &'*) — log(z))
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_ m((Iog z—&‘“)}
log z

m (log(1- &™)

BOOK WORK 4:

Obtain the complex potential of the flow due to rectilinear vertex filament or point vertex
in two dimensional motion or symmetrical circulation flow about the point.

Proof:

If the stream line of the flow are concentric circle.

The radial component of the velocity will be zero and from the symmetrical conservation

.10
of the transverse component is ——¢

Let us suppose that the circulation around any stream line is constant say k

Circulation around the stream line of radius r = anl%

r oo

op _ K

00 2rx

Integrating on both sides
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J'% - Ld,g
00 27
k
=—0
¢ 27
We know that
op__ ov
06 or
k__ v
27 or
—k_%¥
2nr  or

Integratingw rtr
—Kar - ja—y/dr
2ar or

-k
=—/(logr
W 2ﬁ( gr)

The complex potential of the flow due to vector linear vertex filament is

W=g+iy

k =k
:EGH(Z(Iog r))

k .
- X (o-il
X (0-ilogr)
=—£(i logr +6)
2r
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= —i(log r+io)
2

THEOREM:
STATE AND PROVE CIRCLE THEOREM
OR
STATE AND PROVE MILNE THOMSON CIRCLE THEOREM:

STATEMENT:

Let f(z) be a complex potential for a flow having no rigid boundary and such that they we

have no singularities of the flow within the circle |z| = a

Then on introducing the solid cylinder |z| = ainto the flow the new complex potential given

by

w=f(2)+ f_[ij
z

Proof:

Let ¢ be the cross section of the circular cylinder |z|=a
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Hence for the points of the circle |z| = awe have

a2
Z

w=f(2)+ f_(

d+iy="F@)+f —2] ................ )

Hence the quantity R.H.S equation (1) is purely real part v =0
Hence c is the stream line in the net flow by the hypothesis of singularities of f(z) at which

2
. . . : \ . a
source sink doublet may be present lie outside the circle |z| = aand so the singularities of f(—j
z

lies inside the circle |z| = a

2
a . . . .
Here z and — are inverse points with respect to the circle|z| = a
z

aZ

Thus we find the additional form f_( . ] introduce no singularities into the flow inside the

circle |z =a

2
a—j for [z| > a
z

Hence |z| = a is the possible boundary for the new flow and w = f(z) + f_(
is the approximate complex potential for the net flow.
Blasius theorem:

Statement:

Consider the steady two dimensional irrotational incompressible inviscid fluids under no

external force. Let w=f(z) be the complex potential for the flow.

Consider the cylinder of any cross section c placed in the flow
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Let (x,y) be the component of the force and M be the pitching movement (moment about

the origin for the cylinder)

. 1. dw)’
Then X—|Y:—|p:f — | dz
2 -\dz

M= real part of- =i §(d—wj2dz
2 pc dz

Where p is the density of the fluid and the integrals are taken around the contour c of the cylinder

Proof:
Let p be the point on the curve ¢
Consider any element ds of R surrounding the point p of (x,y)
C denotes the boundary of the cylinder of any shape and size

Let the tangent at p makes an angle @ with x-axis so that invert normal at p will make an

angle 90+ & with x-axis.

Now the force exerted on the cylinder is only the pressure force because given that there is

no external force.
Pressure is the normal stress and the stress is nothing but force per unit area.
Hence force due to pressure of the length=pds

Let x and y are the component of force exerted on the cylinder in xy direction.

T
X = —+6|d
ipco{2+ js

= —{ psin g
C
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)

= ipdsds

=—§ pdy
C

Y = § p coséds
C

dx
=i:pgds
:j:pdx

C

X —iY = —§ pdy—if pdx
C C

=—§ p(dy~idx)
= —if p(dx—idy)
= —if pdz

We have given that the motion is steady 2 dimensional irrotational and incompressible.

Hence by the Bernoulli’s equation

o+P. 1q2 =constant
p 2

Here Q=0

O+£+1q2 =C
p 2
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P tgr=c

Yo

o, 2

1
=|B-=q?
(8- Za%)

Where B is a constant

- - 1 2
Then X —iY :—|I(B—Eq pjdz
 ilBdzs (g
= |dez+ 5 _[q dz
=O+I§Iq2dz
_pp 2
_?jq dz
_lp
_?J‘ dz

:Iﬁ‘[d_\Nd_\Ndz
27dz dz

d_\N 2
dz

=I£jd—vv.dw
27 dz

Given c is the circuit of cross section of the cylinder also therefore c is also one of the

streamline of the flow and there won’t be any flow across this line.
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On ¢ w remains constant
dy =0

We know that w=¢g+ iy

dw=d¢+idy

dw=dg+i.0

dw=d¢

dw =dg—idy

dw =d¢-i.0

dw =d¢g

dw = dw

X —iY =i§jz—w.d—wdz
z dz

ip o dw)’
X —iY :ﬁj(—) dz
27\ dz
If dM is the elementary moment then the entire moment is given by §dM

dM = pdyy+ pdxx

M:jdlvl

c

M = p.[ ydy + xdx
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M = realpartofPf zdz

Since we need to obtained the result in terms of complex potential. We express p in terms of g by

using Bernoulli’s equation

1
=|B-=q?
p=(B-Za%)
1, _
M= real part of (B—Eq pj zdzj
=real part of BJ' 2d7 - lqu'[ zdz
Cc 2 Cc

=real part of 0— lquj 2dz

2 C
— “P (~25045
=real part of T.Iq zdz

2
=real part of —£ j (d_w) dz
2 dz

=real part of ijd—vv.d—vvdz
2 7dz dz
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=real part of ijd—w dw
2 Jdz

CONFORMAL TRANSFORMATION:

In studying the two dimensional irrotational motion of the incompressible inviscid fluid.
We are able to study the flow about the circular cylinder but the cylinder is not a circular say
aerofoil (aerofoil is a fish like profile with the sharp tailing edge) then there is no method by which
it is possible to obtain the exact solution of the quantities of the flow. In such case we use the

conformal transformation.

Suppose it where possible to establish the relationship between the complex variable z and

¢
Say & = f(2)
Then the mapping is said to be conformal transformation.
It satisfies the following 3 conditions
1. Geometrical condition
2. Dynamical condition
3. Physical condition

By uniform transformation the mapping & = f(z)is said to be uniform transformation if it

satisfies
1. GEOMETRICAL CONDITION:

For every point in z plane there must exists only one pointin & plane and conversely

corresponding to one point in & plane there must exists one and only point in z- plane.

2. DYNAMICAL CONDITION:
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There must be a relationship between the velocity of the corresponding point of

infinitesimal length must be similar and the angles are preserved.

3. PHYSICAL CONDITION:

The corresponding masses or areas must be similar.
TRANSFORMATION OF FLOW FIELD:

Let the complex potential describing the flow in the z plane is given by w= f,(z) then by
the conformal mapping & = f(z), the corresponding complex potential in & plane will be given

by w= f,(z) then

dW= dW>< d&

dz d¢ dz

dw

dw| _jdw_d¢&
dz

=|—X
‘dﬁf dz

Velocity of a point in z plane is equal to the velocity at the corresponding point in £ plane.
STATE THE THEORY OF KUTTA AND JOUKOWSKI :

STATEMENT:

dw . 4 .
Suppose m has no singularities outside the contour c.
z

Let their be a fixed aerofoil in an uniform stream with velocity u and the direction of motion

makes n angle « with real axis.

Let k be the circulation around the aerofoil
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Let x and y be the components of the force acting on the surface c of the aerofoil then by

. 2
the Blasius theorem X —iY :'ﬁj(d—wj dz
2 dz

wW. .
We take I"as the contour at oothen we expand ?j— in inverse powers of z
z

At oo the fluid velocity must tend to the constant which is the velocity of uniform stream

but uniform stream velocity u makes an angle o with real axis then |z| — o

dw ~

E:ao :ue lo

dw i a

— =ue +i+—§ .......
dz YA

Integrate with respect to z
—-ia a'2
w=ue'“z—alogz——=+......
z

The 2" term in this equation being a multiple valued function and represent the circulation 27k

around the aerofoil

dW —ia i
— =T —+ =4 ...
dz z z

By Blasius theorem
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dw)’ K 1 ik 1
— | =jue+—+0 — |jfue" +—+0 —
dz z z z z
:(uzez"" . ikue™ . ikue™ j+0(i2j
z 4 z

2 H —ia
(d_vvj _yZeti 4 2ikue +0(i2)
dz z z

2
The function (z—wj as z=0 which is essential singularities
z

Then by Cauchy residue theorem

2
§(3—Wj dz = 27 (sum of residue)
z

2
=27 (co-efficient of 1/z in (d_wj

dz
= 27i(2iuke ™)
= 4auke '
ip ¢ dw)’
X —=iY :£§(—) dz
2:\dz

x—wz%mmm“)

= 2ipauke ™
= —2ipauk(cosa —isin «)

X =-2ipauksin ¢
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Y =2ipauk cosa

Lift force VX2 +Y?2

= J(=2ipruksin @)? + (2ipauk cosa)?

= 2 pauk
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POSSIBLE QUESTION
UNIT 3

PART-B (6 MARKS)

Show that ¢ and  satisfy Laplace’s equation

Describe the transformation of flow field

Obtain the velocity potential

Obtain the transformation of doublet.

Explain physical interpretation of stream function.
Explain the concept of conformal transformation.

N oo g &~ e

State and prove circle theorem.

8. Obtain the complex potential of the flow due to rectilinear vertex filament or point vertex

in two dimensional motion or symmetrical circulation flow about the point.
9. Obtain the complex potential of the flow due to the doublet of strength m.
10. Express velocity components in terms of stream function in polar co-ordinates .

11. Show that stream function y and the potential function ¢ satisfies the Laplace equation.

12. Investigate the orthogonality of two families of curves ¢(Xx, y) =constant (X, y) =constant

13. The velocity filed is given by q=—xi + (y+t) j find the stream function and stream line

for this field at t=2.

14. A two dimensional flow is given by y = xy then show that is irrotational.

15. Obtain the complex potential of the flow due to the doublet of strength m.
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PART C (10 MARKS)

. Show that a source is an abstract in introduced to describe the flow in a domain which

excludes the source

. State and prove the circle theorem

Describe the flow due to a rectilinear vortex filament a point vortex in a two dimensional
plane

. State and prove Blasius theorem

. State the theory of kutta and joukowski.
. State and prove milne Thomson circle theorem.

. Prove that f(z) be a complex potential for a flow having no rigid boundary and such that
they we have no singularities of the flow within the circle |z| = ainto the flow the new

2
complex potential given by w = f (z) + f(%}

. Show that in the polar co-ordinates V, = L and V, = o

r o0 or
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Possible Questions
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(Question Nos. 1 to 20 Online Examinations)

Questions Opt1 Opt 2 Opt 3 Opt 4 Answer
The stream function is constant along a Stream line Path line Vortex line Filament line Stream line
If the stream function is along a stream line equal to zero zero constant not equal constant
If the motion is steady, the stream line pattern is equal fixed not fixed constant fixed
When the motion is not steady the stream line pattern is
fixed not equal constant zero not

The velocity potential ¢ exits when the fluid is Rotational Irrotational Stream line Path line Irrotational
If the velocity potential function are Velocity Density Pressure Force Velocity
The necessary and sufficient condition for q=- ®=- grad @ is
hold is V.q#0 Vxq=0 Vxq=0 V.q#0 Vxq=0
The complex potential functions are satisfying Homogeneous
equation Laplace equation Differential equation | C — R equation equation C — R equation
If the velocity potential function are velocity @ is called g=V ® g=-V @ g=Vx @ g=-Vx ® g=-V o
The irrotational flow of an incompressible in viscid fluid is in

3-D 1-D 2-D Multi — Dimension |2 —-D
When the incompressible in viscid 2 — D fluid flow ® and y Differential
satisfy the equation. C — R equation Laplace equation Linear equation equation Laplace equation
The stream function y exist whether the motes is

Stream line Path line Irrotational Rotational Irrotational
The potential can exist only when the motion is
irrotational Velocity Density Pressure Force Velocity
Part of the fluid may be moving irrotationally and the other parts
may be Irrotational constant Rotational Density Rotational
The points where the velocity is are called
stagnation points 1 0 Constant Variable 0
In a 2 — D flow field where the fluid is assumed to be created is
called Doublet Vertex Sink Sources Sources
The flow is radically inverse is called Vertex Sink Sources Doublet Sink
The amount of the fluid going in to the sink in a unit time is Strength of the Strength of the Strength of the
called Strength of the sink |doublet source Vertex Strength of the sink




The amount of the fluid going in to the sink in a is called
strength of the sink Certain Interval Unit time Mean time average Unit time
If a source, the velocity of the fluid is Finite Equal Infinite Zero Infinite
Complex potential of the flow due to sink of strength m at the
origin is given by w =m logz w = -m logz w=log z W=-log z w = -m logz
A combination of a source and a sink in a particular way is known
asa Doublet Source sink vortex Doublet
The line joining the source and sink is called as
of the doublet X — axis Access Y — axis Z-axis Access
If any point in the 2 — D field where the fluid is assumed to be

is called a sink Created Constant Moving Annihilated Annihilated
In a 2 — D field where the fluid is assumed to be annihilated is
called a Sink Source Strength of source | Strength of sink Sink
When the motion of a fluid consists of symmetrical radial flow in
all directions proceeding from a point, Then the point is known a

Source Simple source Sink vortex Simple source
When the fluid particles have circular motion under steady
condition such a circular motion is called vortex Sink Doublet Source vortex
The Complex potential for a stream flow when a
is placed in that Surface uniform Circular Cylinder  |continuous Circular Cylinder
The complex potential for the uniform flow is w=vZ w=VZ wZ#uxZ w=u.Z w=VZ
The circular cylinder is an irrotational incompressible 3-D 1-D Multi — Dimension |2 —D 2-D
The complex potential for the flowisw=uZ Uniform Continuous Discontinuous Equal Uniform
The complex potential for a flow when a circular
cylinder is placed in that Straight Stream Rotational irrotational Stream
A steady two dimensional irrotational incompressible in viscid
fluid flow under no Forces External Internal Heat mass External
When are remembered that as the fluid is assumed to be in viscid,
the drag force is 1 Equal Zero Not Equal Zero
Low barometric

Cavitations is caused by High velocity pressure High pressure Low pressure Low pressure
The general energy equation is applicable to Unsteady flow Steady flow Non-uniform flow  |Turbulent flow Steady flow

The friction resistance in Pipe is proportional To Square of V ,
according to

Froudeaiumber

Reynolds-Weber

Darcy-Reynolds

Weber-Froude

Froudeaiumber

Pitot tube is used to measure the velocity head of Still fluid Laminar flow Turbulent flow Flowing fluid Flowing fluid
Resistance to Geometric
In equilibrium condition, fluids are not able to sustain Shear force viscosity Surface tension similitude Surface tension
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UNIT IV

Viscous flows — Navier-Stokes equations — Vorticity and circulation in a viscous fluid — Steady
flow through an arbitrary cylinder under pressure — Steady Couettc flow between cylinders in

relative motion — Steady flow between parallel planes.

VISCOSITY AND REYNOLDS NUMBER

Consider the simple type of flow in which a streamline are parallel.
The velocity field is one dimensional and hence the velocity is U
H is the distance between the stream lines and y denotes the normal line of the stream lines

The velocity profile for this flow is a straight line

In the view of the linear nature of velocity profit the stresses will be determined by the

velocity gradient %and all higher derivatives of velocity will be zero
y

From (1)
du_U,
dy h

By varying u and h the measures of force experienced by upper plain. It is found that the

tangential stress 7 is direct proportional to the velocity gradients.
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u
T=—
y
T= = iiiiiiimnnnn. @)

The constant proportionality x depends upon the physical properties of the fluid and it is

called the co-efficient of viscosity

In many fluids the co-efficient of viscosity s is very small.

Because of the reason the viscosity stress is neglect able in ideal fluid.
In practice the relative magnitude of viscous flow in the form equ (2) is varied

If U typical velocity and | is typical length in the flow under consideration then

ou?
u
h

typical pressure force / typical viscous force =

uL
H
o,

:%Where y:ﬁ

/4

Where y = His called kinematical viscosity

Yo,

The non-dimensional parameter R = vt is called the Reynolds number.
v
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NAVIER-STROKES EQUATION:

Navier strokes equation are the set of equations which expresses the basic physical concept

of flow of the real fluid they are,
1. Equation of mass continuity
2. Momentum equation
3. Equation of energy conservation
BOOK WORK1.:
Derive the equation of continuity for a real or viscous fluid in cartisian co-ordinates
PROOF:
Consider a fluid of volume v inside a closed surface s

Let pbe the density of the fluid consider an elementary surface ds and 1 be the unit

outward vector.
Let ¢ be the velocity of the fluid particle at p on the elementary surface ds.
The rate at which the mass of fluid flows out of the surface ds is p(g.n).ds
The rate at which the mass of the fluid flows in the surface ds is — p(G.i).ds

The rate of which the mass of the fluid flow into the surface s

| j p(G.).ds = j [(7.p0).fidv....oor... O

Let us consider the elementary volume dv

The elementary mass = pdv
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The mass of the fluid inside the volume v= ”J.pdv

_0
The rate of change of mass-a I V” PAV. )

If we assume that the motion of the fluid is created or destroyed inside the volume v the

equation (1) and (2) are same
- 0
—ij(v.pq).nds=aijpdv

gwpdww(v.pq).ﬁds:o

. IJI(%O+V.pqﬁ)dV:O

Since the volume under consideration is arbitrary an d hence the integral must vanish

Which is known as the equation of continuity

Hence the proof
BOOK WORK 2:
In usually notation derive the momentum equation for viscous fluid
PROOF,;
Consider the orbitray volume v bounded by the surface s

Let | i be the direction cosines of the outward normal from the fluid surface
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Let dv be an elementary volume enclosing a fluid particle at p, where the velocity components

along Xx;direction at time tis v,
Let p be the density of the fluid
Elementary mass of the fluid= pdv

Linear momentum of the elementary mass =v; pdv

The momentum of the fluid containing within the volume v= J'vipdv
\

Rate of change of momentum= %Ivipdv

By Newton’s second law of motion the rate of change of momentum is must be equal to the total

force acting upon the fluid within the volume v.

The force acting on the fluid are

Q) External force = I Fodv..ccooee. @

Where F, is external force per unit mass

IR R @)

(i) The resultant of the fluid stress at the surface S = —j P;

Where p; is a stress component in x; direction

By Newton second law
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=.|'Fipdv—_|'§ p;l,ds

S J
Since the volume is orbitray

Dv. 0
1 — F _ .
P Dt P i an (plj)

Divide by p

Dvi g 10

Dt p OX.

]

In case of rectangle cartesian co-ordinates

%:%+vj% ............. 5)
Dt ot 8xj
Also,
ov. OV 2 (ov
P =PO. — | — +—L [+ =1 =5 S irviirinnnn, 6
ij ij ﬂ[axi 8)(1} 3”(6ij" ©)

Sub (5) and (6) in (4)

10 2 [ov, 0 | ov, oV
=K -———||P+-py — || +V—| —+_—
P 0OX; 3" OX, OX; | 0% OX;

It is known as equation for momentum of viscous
DERIVE THERMAL ENERGY EQUATION FOR VISCOUS FLUID:

Consider an orbitray volume B enclosed by the surface S
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Let [, be the direction cosines of the outward from the fluid surface

Let dv be the elementary volume enclosing a fluid particle at p. where the velocity

components along x; direction at time tis v

Let p be the density of the fluid
The elementary mass of the fluid = pdv

The total energy of the volume is = kinetic energy + potential energy
1 2

== pdvxV,
5 PAVXY,

Here potential energy = pdvgh

= pEdv

Where E is the internal energy

The total energy of the entire volume = j(%viz + Ejpdv

\

Rate of change of total energy = %j(%viz + Ejpdv ............. @

From thermo dynamics we know that the rate of change of total energy is determined by the
following fact.

Q) Q, - heat conduction
(i) V;; -pressure thrust

(i)  F -external force
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1. If Q,is the heat conduction per unit area in X, direction then —1.Q,ds is the heat conduction

into the elementary surface ds.

The total heat conducted within the volume enclosed by the surface

S =1 Qds.......... @)

The stress in x; direction upon the fluid on the elementary surface ds is 1, P;ds

The rate at which the elementary surface works upon the fluid is —1,B;dsv,

The total rate of work upon the entire fluid = —J'Ii PidSViee e ®

The external force in the x,th direction is F, per unit mass
The external force on the mass=F, pdv
The rate of change of work is done by the external force=F, pdwv,

The total rate of change of work done apart the entire fluid = j Fodw,.....ccoane. @)

Now equation (1)=(2)+(3)+(4)

_j( v, +Ejpdv_ jIst jl, P, dsv, +jdeW

D
Dt

—J( Vv, +EJ = (F.pv,) - Q& _ (pij)v.

1
2

a(pijVi) dv

—V, +Ejpdv jdew IaQ'd _[ x

The volume under the consideration is orbitray

OX; ox. !
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- o(p::

R lvi2+E p:(Fi i)_@_ﬂvi

Dt \ 2 Dt oX; oX;

1. Dv, DE oQ; o(py)

—2v. —+—p=(Fpv.))————V.iccoeo... 5
PS5t P = (Fv) x ok ©)

Dv. DE oQ;  a(py)

= p=(Fpv)-—L -y

From the previous bookwork we know that

Dy, 10
—_— = Fi - pij
Dt P OX;

Multiply fully by pv,

Dv. 0
— . = F oV =V, —— Do 6
( Dt jpv, i Vo P ©

Equation (5)-(6)

DE oQ;  o(py) 0

Z o =i MUy 4y .
ot’ " Tax,  ax " Vox P

__ R M

oo

DE oQ 1

—— o= Dl 7
Dt ox. 2 Pty ")

Introducing enthalpy which is defined as
I =E+ P
o

Differentiating with respect to t we get
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DI_DE_D(P
Dt Dt Dtlp

Multiply by p we get

br__DE__D(P
Pt ot ol

Use equation (7) we get

DI Q 1 DP PDP

—— = —— Pl +—
bt OX; 2 it Ty p Dt

Using equation of continuity

op O

4 — ) =

P 6i(pV.)

o _ong 1, p

ot ox, ' o2
pﬂ:_@—i_%_lgijpﬁ—kpﬁ
Dt oX; Dt 2 OX;
8=

DI__% 1 DP lé‘P

ijij

—= — /. P +—=
"Dt ax 27" Dt 2

DI DP &Q,

— =L D, 9
"ot ot ax Y ©)

Where ¢ = %E i (Po; —P;) is the rate of description of energy per unit of volume due to viscousity.

If we assume that conduction Q, is propositional to temperature gradients then Q, = —ka—

oT
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Where k is called thermal conductivity

From equation (9)

DI DP 0 ar
—=———| -Kk— [+ e, 10
”bt ~ Dt axi( J ’ 40)

For perfect gas contains specific

I=C,T
Equation (10)

D DP 0 oT . .

—|\C T)=———| —k— |+ ¢ is called thermal energy equation.
th(") Dt axi( axiJ / 9y ed
BOOK WORK 4.

Derive the Navier stoke equation for incompressible fluids.

PROOF:

We know for an incompressible fluid p is an constant

i Equation of continuity:

Equation of continuity for a viscid fluid is

a_p_l_a(lavi)zo
ot Ox

Equation of continuity for an incompressible viscous fluid is

v,
O+p—=0
p&X-
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N _

OX:

ii. Momentum equation:

The momentum equation for a viscous fluid is

Dy, 10 2 0V, 1 0 N, ov,
—=F-———+|P+_u—|0; +— U +
Dt p OX; 3 OX, p OX; oX, OX,

! ]

2 0%V,
Here 0 Ve _ Z Vi _
OX;0X,  OX;OX;
2
azvk 0
0 X,

_ I 2 NG ov,
ﬂ:Fi_l ip_}_gﬂazvk 5ij+£ 0 7 J+6V|
Dt P oX; 3 07X, P OX; OX;  OX;

i 2
%_Fl_i iero}gij ﬁazvi
Dt p| OX; p O°X;

i 2
ﬂzpl_l 9p 5, ﬂazvl
Dt ,o_axj p O°X;

iii. Thermal energy equation:

We know the thermal energy equation for viscous fluid

D DP o oT
2= 9k,
2ot &) = o 6xi( axJ ¢

Here %O = 0 = the pressure value
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DP

ot =0and ¢ = 0 because the rate of description value is zero

The above equation becomes

D 0T
—(C.T)=k.
th( oT) E;

p Dt_ '6Xi2

2
DT kaT

DT k o°T

Dt pC, ox°

2
E: '(la -I;
Dt OX.

k . : .
(Where K = ——is called thermo metric conduction)
p

BOOK WORK 5:

Derive the momentum equation in the form

N = P 1_._ _

——VxW=F —grad| —+—=V.V |—curlw

ot p 2

PROOF:

The momentum equation for incompressible viscous fluid is

Dv. 2y,

Bvi g 1 faﬁyi"' .................. O

Dt p| X, 07X,
Where y = L

Yo
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We know that

DV_& | wwyw
Dt a

We know that from the vector identities
V(@UV) = (uV)V+(V.V)i+Uxcurlv +Vxcurll
Take u=v

V(VV) = 2% ((V.V)V +V x curlV)

%V(V.V) = ((V.V)V +V xcurlv)

%V(V.V) —+Vxcurlv =((V.V)V)

BV N vl @9 =T W @
Dt ot 2

We consider
V(VI) =V xW=V?V,..cooorrmne. ®)

For an incompressible fluid

VG=0

g
<
I

o

(3) becomes
—V.W=V?y,

Here Vv, is the component of —curl w
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From equation (1)

%:Fi_i a_P 5ij+7
Dt P X,

In general | th +j th +k th components of momentum equation

ﬂ: F. —gradE—;curIw ............... 4
Dt ol

Using (2) and (4)

2

2 _UxW=F -grad E+1\7.\7 — yeurlw
ot p 2

THE BOUNDARY LAYER ALONG A FLAT PLATE:

Let us consider the steady flow of an incompressible viscous fluid past a thin semi infinite
flate which is placed in direction of a uniform velocity u. the motion is two dimensional and can
be analyzed by using the prandt boundary layer equations. We choose the origin of the co-ordinates
at the leading edge of the plate x-axis along the direction of uniformly stream and y-axis normal

to the plate. The prandt boundary layer equations for this case are

ou ou 0%

u B v E oy )
OX oy

M N @)

oX oy

Where u,v are the velocity components and v is the kinematic viscosity
The boundary conditions are
U=v=0 when y=0

U=uco when y > w............. 3)
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In this problem the parameter in which the result are to be obtained are uoo,v,x

So we may take

L= F YU = () ()

0

Further according to the exact solution of the unsteady motion of a flat plate we have

Where X is the distance travelled in time with velocity uoo. hence the non-dimensional distance
parameter may be expressed as

uoo
n:l_i_ - (6)
o VX VX
Uoo

Thus it can be seen that 7 is (4) is a function of X,y,v, u«in (6)

The stream function v is given by

w = [udy
u=Y
oy
vo_ v
OX

dy
=|u,F d
v I“’(")dn"

=uw\/%jF(n)dﬂ=m ........... @)
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The velocity components in term of 7 are

8"’ aa‘/’;aaz \/W\/iF()

-1 VR oy [
V=2 V) + Y L F )
1 Uoo( (U0 _,
=5 V—(\/:VF (n)—F(n)]
X VX
=_% /VU%O(UF’(U)—F(U)) ............... o)

2
Also M -0V _ oof”(n)a—’7
OX  OXoy OX
1 , u, 1
:—Euwf (m).y v
=———°o 7t (1) 0
5 % (7) @0)

ou 0 U, ¢
5 5f "(n)=u \/;f ((7) @)
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Using these values of u,v and their derivatives in (1) we obtain

u, f'(m)
_1uoo " 1 Vuoo ’ uoo " u002 m
“2 8 ) | 2 o (1) = F .| == (1) = V== 1 "(17)
2 WX 2V X VX VX
2 2 2
u u u
-2 pff"+ = (pf ' —f)F"=—=f"
2x77 2X (7 ) X
Or
—nff "+ ff = ff"=29f"
Or
2f"+ ff"=0
3 2
2df3+fd£=0 .................. (13)
dn dn

Thus we have reduced the partial differential equation (1) to ordinary differential equation
(13) known as Blasius equation.
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POSSIBLE QUESTIONS
UNIT 4

PART-B (6 MARKS)

1. Explain inviscid flow past of a circular cylinder

2. Explain steady flow between parallel planes

3. Show that the rate of change of momentum must equal the total force acting upon the fluid
within the volume

4. Deduce the equation for incompressible

5. Explain the concept of boundary layer of a flat plane.

6. Derive the momentum equation .

7. Derive the Navier stoke equation for incompressible fluids.

8. Define thermal equation for viscous fluid.

9. Inusually notation derive the momentum equation for viscous fluid.
10. Derive the equation of continuity for a real or viscous fluid.

11. What are the basic physical concept of flow of the real fluid

12. Brief the concept Equation of mass continuity

13. Show that the Derivation of Momentum equation

14. Expain Equation of energy conservation

15. Derive Navier stoke equation.
PART-C (10 MARKS)

1. Explain stokes’s flow foe very slow motion

2. Obtain Helmholtz’s equation for the vorticity
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3. Derive Helmholtz’s equation for vorticity
. D Dp o (,0T
4. Deduce the thermal energy equation p—(C T)=—+—| k— |+
9y equation oo, (C,T) =5 axi(axi] ¢
5. Derive the equation of continuity for a real or viscous fluid in Cartesian equation.
. _ N L = P 1__ _
6. Derive the momentum equation in the form re VxW=F —grad| —+ Ev.v — yeurlw
Yo,
7. Define (i) inviscid flow and (ii) Reynolds number with examples.
8. Derive the momentum equation for viscous fluid.
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Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions

Subject Code: 18MMP206

Semester

Questions Opt1 Opt 2 Opt 3 Opt 4 Answer
In the case of a real fluid frictionless resistance is known as --------|
------- shearing stress tangential stress friction stress ideal fluid tangential stress
In the case of -------------- frictionless resistance is known as
tangential stress perfect fluid friction stress real fluid ideal fluid real fluid
On real fluid ,tangential stresses are --------------- large small very small infinite small
The property which causes the tangential stress is known as------- inviscosity real fluid velocity Viscosity Viscosity
On plane coutte flow if the fluid is perfect the motion of the plates
has-------- on the fluid no effect Viscous effect speed no effect
Shearing stress will be proportional to the rate of change of ------- speed pressure force velocity velocity
The force will be proportional to the area upon which it acts and it
is known as ------- shearing stress tangential stress viscosity effect of viscosity |shearing stress
In the effect of viscosity the shearing stress is denoted by -------- s u T Q T
The coefficient of viscosity is denoted by-------- s u Q T u
A typical viscous stress is in the form t=--------- ou/oy u p(ou/oy) oy p(ouloy)
The viscous force are of order ---- per unit area U/L p (U/L) p/L puU p (U/L)
The typical pressure force will be of order------ per unit area u? pU pU/L pU? pU?
In a Reynold’s numbers, the kinematic viscosity is ------ v=p/p y=p y=1/n y=0 Y=p/p
The non-dimensional parameter R=UL/ is called ------- viscous force pressure force Reynold’s number kinematic viscosity | Reynold’s number
dplot + oplot +

The equation of continuity in a real fluid on a viscous flow is ------

(0/oxi)(pv)=0

alot + (210%)(pv)=0

(@16t%)(pv)=0

oplot + (0/0x;)(p)=0

Bplot + (210x)(pv)=0

In the Navier stokes equation,when the fluid is
incompressible,then p and p are-----

equal

ZEro

not equal

constant

constant

The Navier stokes equation in vector form is ---------------

dg/dt=F-Vp/p

da/dt=F-Vp/p+yVZq

dg/dt=F+yV?q

dg/dt=F+Vp/p+yV?
q

dg/dt=F-Vp/p+yV’q

The equation of an Helmholtz equation of the viscous fluid is------

de/dt=(c.V)q+ yVe

de/dt=(c.V)q

de/dt=yVZe

de/dt=(c.V)q- YV

de/dt=(c.V)q+ yVe

On the 2-D motion the equation of vorticity is ------

de/dt=(e.V)q+ yV’e

de/dt=(e.V)q

de/dt=yV’e

de/dt=(e.V)q- yV’e

de/dt=yV’e




In a circulation on a viscous fluid the space derivative of the

vorticity vector are-------------- small constant large infinite large
The steady flow through an arbitrary cylinder under pressure is  [Hagen —Poiseuille
known as --------- flow viscous flow inviscous flow vorticity flow Hagen —Poiseuille flow

In the Reynolds number
the ---—-

is the principal parameter determining

role of the flow

nature of the flow

order of the flow

type of the flow

nature of the flow

The constant of proportionality, p depends entirely upon the

typical viscous

coefficient of

physical properties of the fluid is called stress effect of viscosity viscosity viscosity of a flow |coefficient of viscosity
An arbitrary volume of a fluid,the momentum of the fluid
contained within the volume is --—- Ividv [ pv;dv [ pav [ p?v,dv [ pv, dv

The resultant value of an poiseuille’s law is ------

M=(np a>)/4p

M=(npp a°)/6p

M=(npp a*)/8p

M=(np a*)/6p.

M=(rpp a*)/8p

If we consider two infinite parallel planes.Aflow with pressure
gradient when both planes are at rest then they are called as --------

pressure flow

plane poiseuille flow

coutte flow

plane coutte flow

plane poiseuille flow

If we consider two infinite parallel planes.A flow without
pressure gradient when one plane moves relative to the other such
a flow is called----------

plane coutte flow

plane poiseuille flow

infinite plane flow

viscous plane flow

plane coutte flow

A flow is said to be ---------- if all fluid particles moving in one
direction parallel perpendicular nonparallel Zero parallel
A flow is said to be parallel if only one velocity component is ------
Zero non zero constant variable non zero
A flow is said to be parallel if all fluid particles moving in----------
direction two three one four one
A flow is said to be parallel if only---------- velocity component is
non zero two four three one one
Skin friction 6= ---------- wh 110) uU/h U/h uU/h
Skin friction is also known as --------- per unit area circle sphere square drag drag
In plane couette flow the -----------—----—-- is zero temperature gradient| temperature pressure gradient pressure pressure gradient
plane poiseuille
IN---mmmemm e the pressure gradient is zero flow plane couette flow | couette flow poiseuille flow plane couette flow
plane poiseuille
In the plates are at rest flow plane couette flow | couette flow poiseuille flow plane poiseuille flow
In plane poiseuille flow the plates are at-------- motion rest stable nonstable rest
The ---—----mmemm - for the drag of a sphere is given by D=6
npal, stokes formula Greens formula Gauss formula Laplace formula stokes formula
The stokes formula for the drag of a sphere is given by D= ----------
""""" 6 U 6 mpal, 6 mua 6 aUg 6 mpal,
The stokes formula for the drag of a --------------- is given by D=6
npaU, circle flux sphere square sphere
In steady flow the flow past a circular cylinder then the stokes
equation reduces to ------- parallel perpendicular nonzero Zero Zero




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc. MATHEMATICS COURSENAME: FLUID DYNAMICS
COURSE CODE: 18MMP206 UNIT: V BATCH-2018-2020

UNIT V

Boundary Layer concept — Boundary Layer equations — Displacement thickness, Momentum
thickness — Kinetic energy thickness — integral equation of boundary layer — flow parallel to
semi infinite flat plate — Blasius equation and its solution in series.

BOOK WORK 1
Derive the boundary layer equation for the two dimensional flow along a plane all.

PROOF:

Let us take a rectangle Cartesian co-ordinates (X,y) with x measure on the surface in the
direction of flow and y measured normal to the surface.

Let (u,v) be the velocity components then the equation of motion are

2 2
gM Mo Lo, o OV @)
oxX°= oy

The approximate boundary layer equation may be obtained either physically or
mathematically.

Physically we have u is order of U and typical length scale parallel and normal to the wall
are L and ¢ respectively.

Then v is the order of %where %is the order of Reynolds’s number.
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2 2
The terms in equation (2) are of the order (%) expect the term %
X

The term may be neglected

Then equation (2) becomes

2
TRV S X2 KIS B @)
X oy  pox oy

And also from equation (3) except the term —lﬁthe remaining terms are of order

p OX

Then equation (3) becomes

_Lop_ ffu
> ox o(( E jﬁ} ......... 6)

The pressure gradient normal to the wall is small and the total pressure changes a cross the

boundary layer.
The pressure is the function of x only.
P=p(x)

Equation (4)becomes

ou  ou 1 op o%u  o%u
U—+V—=———+y —2+—2 ......... (6)
ox oy P OX ox: oy

The equation (1) and (6) are approximate boundary layer equation for u and v

By the continuity equation (1) we may introduce the stream layer function y such that
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X
Dy [ @)
vo v
OX

And equation (6) becomes the equation of 3™ order of
The boundary conditions are u=v=0 when y=0

In addition to the velocity u(x,y) we join smoothly onto the main stream velocity for some
suitable value of y

It is found that u =u, (x) atleast the boundary layer solution is concerned

The 3" boundary condition is u =u,(x) when y = c

2
At y—>ooa—u—>0and 6—l:—>0

Then equation (6) becomes

du, 1dp
ol 2%
dx p dx
ﬁz—_pﬂ
2 p

2

1
2 oL

The thermal pressure co-efficient

2
u
Cp:l_L2

Uo

BOOK WORK 2:
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Some important boundary layer characteristics are

1. Displacement thickness o,
2. Momentum thickness &,
3. Kinetic energy thickness o,

4. Skin friction or wall shearing stress z,

o

Discipation of energy within a boundary layer.

Displacement thickness &,
Let us consider a particular stream line which is at a distance h(x,y,) from the wall.

In this case inviscid flow the stream would have be a distance h; (x,y,) from the wall.

We know that mass of the fluid flowing in unit time between y=0 and y=h is equal to the

mass of the fluid per unit time between y=0and y = h,

In inviscid flow u =u, (x) for every y

h hi ;
We have Ipudy - jpuldy = Pul[Y]g'
0 0
h
[ pudy = push
0

h
u
h, =£Idy

The amount by which the stream is displaced outwards under the influence of viscosity

h
h—h =h-[—dy
Oul
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frsh

It follows that the amount by which the stream line for from the wall is displaced is

lim(h—h)=6,(x) = jl(l—ijdy
n—ow 0 u

1
Hence o,(x)is called as displacement thickness.

Momentum thickness o, :

It is defined by comparing the loss of momentum due to the way function in the boundary

to the momentum in the free flow region the momentum thickness &, can be calculated as

pu,”5, = [u(pu, — pu)dy
0

Tu u
5, =[—|1-—|dy
? .(')‘ul( Ulj

pu,°s, is equal to the flux of defect of momentum in the boundary layer
0, (x)is called momentum thickness of a boundary layer.

Kinetic energy thickness o, :

There is always loss in kinetic energy because of viscosity now the loss of kinetic energy

in the boundary layer at a distance y from the fluid is

|

p(u, —u®)udy

N
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If this integral is equaled to the quantity % pu13§3,§3 can be considered as kinetic energy
flux as the rate of which the kinetic energy loss of a boundary layer

0,25, = T
0

2

p(u,” —u®)udy

I\Jll—\
N |-

Tu
8, = [—5 (U —u*)dy
0

Tu u?
0;=|—|1-—|dy
Skin friction or wall shearing stress z,:

We considered the stress expectation upon the wall by the fluid in the boundary in 2D flow
the components of the stress are

N, oV, | 2ufov
o =po —ul — 4+ |+ 25 RS
P = POy ”Lax. ax,) 3 [6xk ”j

=p-2uy—*
P.=P /18)(1

ou
= —2 —_—
p /Jax

o
S

ou ov
22,
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ov
=p-2y—2

P, =P ﬂ@XZ

ov
=p-2u—

oy

Within the boundary layer %u is of order%and il is of order %so the ratios of these

OX
2
termsis 1: (é)
L

1:R*and % may be neglated by comparison with K

Also by using 2n from of continuity equation %u +% =0

Now from equation (1)

P = P20
11 =P ,Uax
Pn.=P __ﬂa_u
11 21 oy
ov
pzzzp_zﬂg
ou
=p+2u—
oy

At the wall itself the stress acting on the wall in the direction is simply — p,,

ou
Tw :_p21 :ua

Here 7, is the skin friction or wall shearing stress.
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The rate of energy destination per unit volume by viscosity or Discipation of energy within a

boundary layer:

We know ¢= u(¢, )’

. OV,
Where ¢ :2\/—'+8—J
X X.

j i

From the equation of continuity for the compressible flow

ou

é/kk =0and 4;11 :_gzz :2-&
ou ov
§12 :§21:§+&

Sub these values in (1)

L[4 0o o 2 2u),
¢= 2’{4(&] +4(8xj +2(8y+8xj }
:gﬂ{gia_u}ﬂ(@_uﬁ_uﬂ

2 ox oy O

:4ﬂ(a_uj2+lu a_u+6_u 2
OX oy OX

The magnitude of varies terms in this expression is found that is

aU 2 ﬂuz .- -1
u = 0 57 And the remaining terms are almost the order of R
This expression may be neglated

The boundary layer approximation to the equation (1) is ¢ = y[Z—UJZ
X
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This is the rate of Discipation per unit volume by viscosity
BOOK WORK 3:
Derive the integral equation for the boundary layer
PROOF:
Here there are two types of integral layer

1. Momentum integral

2. Kinetic energy integral equation
Momentum integral:

For 2D flow the momentum equation of the boundary layer is

2
u&_u+va_u:_£%+7(6_uj ......... -

x oy pdx |ay?
g M _tdp %)
OX p dx
sub (2) in (1)
ou  au ou, o%u
U—+Vv—=U—L+y —
ox oy ‘o

c
<
|
|
—~
W
~

Prepared by V.Kuppusamy, Asst Prof, Department of Mathematics KAHE Page 9




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: I M.Sc. MATHEMATICS COURSENAME: FLUID DYNAMICS
COURSE CODE: 18MMP206 UNIT: V BATCH-2018-2020

J‘(ua—u—ulﬁjdyﬂ[v@dy— (auj
o OX OX oy % ),

0

ou
Where 7, = ,u(—]
%N

Consider the 2" integral

Since by integral parts first subtraction the zero quantity v%u from the integral
jv—dy I(va—u—vaLJ y

T 0
= |v=(u—u,)dy

! o

~Mu-u)l - vy

Since u=v=0 when y=0 and u =u,when y — 0. In above equation the first term becomes zero
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ZV%Udy:I(u—ul)%udy

Here u and u,are functions of x along

ou, du

ox dx

w d % du, §
v —&uz[(u —ul)dy+d—X1J;(u1 —u)dy
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d u du, u
=——uu, || —-1 dy+a_|-ul 1-— (dy

Here ¢, is displacement thickness and &, is momentum thickness.

Equation (*) is called momentum integral equation.
ii. kinetic energy integral equation:

for a 2d flow the momentum equation of the boundary layer is

2
u&_u+va_u:_1@+78_l: ............ @
o pdx "oy

We know that

ul%z—iﬁ .................. (2).
X p dx

ou ou du, (8%]
U—+V—=U——+y —5
a oy d oy

Multiply equation (3) by u and integrate w r t y with the limit 0 to cowe have
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T ou du tooou T (0%
ju(ua—ula)dy+£uv5dy_!;w(ayzjdy ............. 4

0

Using integration by parts

Tooau T 0(1
uv—dy = v—[—uzjdy
I')‘ oy ‘([ oy\2

Since u=v=0 when y=0

U=u, when y=0

Consider from equation (4) R.H.S

{5 -5 1) o

Using the equation of continuity
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N__u
oy OX
T ([ au dulj 17(, 2\ou w(auT
uu——-u,— [dy+=|Wu°—-u" ] —dy=—y|| —| dy
May " dx 25( l)ay !ay
Multiply throughout by -2
2
[ ou du K 2\ou T ou
~2fufu——u, —2 |dy—|lu® —u,” )—dy =2y (—] dy
[{og s aprJo-w)or-2](5
2
K du ou R ou T ou
2| uf u —1—u—de— u —u?)—dy=2y (—j dy
Mldx o !(1 )ay !ay
2
7 du ou ou ou T ou
2uu, —* —2u% = uz——uz—de:2y (—J dy
flow -2 G oG- -2
20 2ou)
2 3
—\uy,” —u =2y||—|d
[ b5 o

0

J

0

0

OX

1
2

(s[5

Where 6, is the kinetic energy thickness

PU1353j =H
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Tu u?
u,8, = [—|1-= (dy

o U1 u,

Equation (1) is called kinetic energy integral equation. The rate of change of flux of kinetic energy
defeat with the boundary layer is equal to the rate at which the kinetic energy is discipated by

viscousity

BOOK WORK 4:

Derive Blasius equation at boundary layer
Or

Flow parallel to a semi infinite plate
Or

Boundary layer along a semi infinite plate

Let us consider a semi infinite plate with thickness zero, with velocity u in the stream study

motion along x-axis
The plane is at y=0 and leading edge at x=0

We assume that the stream is neglibility effected by the pressure of the plane expect at the

boundary layer

oP

—=0
OX

Then the boundary layer equation becomes
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With boundary conditions u =uyat y=0at u=u,(X)at y - «

We show the stream function has the relationship

...................... )
v v
oy

By using the idea of Blasius we introduce a function y

W =(2Ur,) 2 £ (7)o 5)

Her fis a function of 7

y %
And 77:[2—0] y
Vx

From the equation (2)

5
uzi(Zuoyx)%f(“i] y
2

%
U= (2u,7,) f(;_] y
7 x

u=u,f’
v v
oy
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0 ,0 1
—v=5'” = (2up7,) 7 f =Ly f(n)5<2uoyx)—% 2,7

% ' %
_ Yo Ug _1 -3 f(2u07)
~ (20,7,) f(—z j [ Lx jy+—2x%

X

4 %

_ [ UV [ Uy ,

() 5 e
y

v=[Mj (f'(7) - 1)

2X

ou o
Now — =—(u, f’
o aX(o )

ou Uy ;o
—=——f
OX 2X ()
ou o0
—=—(u, f'
Py ay(o )
_uof”@

oy

%
st
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3 e U0 ) 2

oyt 0 2m) oy

e

Sub all these in equation (1)

% %
Vu 14 u 14 n u u 14
—uy t o +(2LZ] Gff "= f)u, f (ﬁ} =vu0(—°Jf

2
u0

2x

— ety ff =

f"+ff" =0 @)
3 2
ua Z Jrfaaylc =0

With boundary condition
f=1f"=0(r)p=0f" >1for n -
This equation is known as Blasius equation for boundary layer along semi infinite plate.

BOOK WORK 5:

Show that the Blasius equation to the boundary layer along flate is a profile f(y) such that

0

[(t'=1%)dn = 1"(0)

0

SOLUTION:

The Blasius equation gives
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f m + f.f 4 — O

Adding f’*on both sides we get
f”'+ .ﬁ:ﬂ+ fIZ — f!2

Integrate w r t 7 between the limit 0 to cowe get

ow—3

(f”+ﬁ”+f”bn=Tf“dn
0

o —38

d(f"+ ff')=[f"dp
0

[f”+ ﬁ:,]OOO:J‘f’Zdn
0
Using the boundary condition f = f'asn >0 f'=0& f'=1n—> o

[F7(0) + 1 (@)~ [£7(0) + 11 '(@)] - J f2dy
m+f¢m—¢”m)+ﬂzzf“dn
f(w)—If’Zdnz £(0)

Ifdnz () - F(0) = ()

Tfun—ff*dnzf"m)
0 0
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T(f’—f’z)dn: £7(0)

POSSIBLE QUESTIONS
UNIT 5

PART-B (6 MARKS)

1. Explain boundary layer separation

2. Obtain von mises transformation

3. Derive the equation that hold for curved if the radius of curvature is large compared to the
boundary layer thickness

4. Explain the concept of the boundary layer

5. Define integral layer and its types.

6. Show that the Blasius equation to the boundary layer along flate is a profile f(y) such that

j(f!_ f/2)d77 — f”(o)
0
7. Derive Blasius equation at boundary layer

8. Show that the Flow parallel to a semi infinite plate

9. Derive the concept of Boundary layer along a semi infinite plate
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10. Explain characteristics of Some important boundary layer

11. Define (i) Displacement thickness ¢, (if)Momentum thickness &,

12. Explain (i) Kinetic energy thickness o, (ii)Skin friction or wall shearing stress z,
13. Explain the concept Discipation of energy within a boundary layer.

14.Derive the boundary layer equation for the two dimensional flow along a plane.

15.State blasius equation and prandfl’s boundary layer with application.

PART-C (10 MARKS)

Obtain the Blasius equation
Obtain the momentum integral equation

Derive Prandtl’s boundary layer equation

N

Find the displacement thickness of boundary layer
5. Derive the integral equation for the boundary layer
6. Explain the applications of boundary layer.

7. Define (i) Displacement thickness o, (i)Momentum thickness o, (iii) Kinetic energy

thickness J;, (iv)Skin friction or wall shearing stress 7,

8. Explain briefly about thickness of boundary layers.
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Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions
Questions Opt1 Opt 2 Opt 3 Opt 4 Answer
In a boundary layer characteristics which streamlines far from the wall |displacement kinetic energy
are displaced then 8,(x) is referred to as-------------- thickness momentum thickness  |thicknesss friction thifckness displacement thickness

The value of displacement thickness 8;(X)=-------------------

fu(1-(u/uy)) dy

11-(1/uy)) dy

[1-(uuy) dy

[(wuy)(1-(uluy) dy

J1-(u/uy) dy

When separation ocurrs in which circumstances the boundary layer
approximation is suspect in such case is

displacement
thickness

momentum thickness

kinetic energy
thicknesss

friction thifckness

momentum thickness

A momentum thickness 3,(X) is defined for incompressible flow as

Ju(1-(u/uy)) dy

11-(1/uy)) dy

[1-(u/uy) dy

[(wuy)(1-(uluy) dy

[(w/uy)(1-(uluy) dy

displacement

kinetic energy

A physically significant measure of boundary layer thickness is -------- thickness momentum thickness |thicknesss friction thifckness kinetic energy thicknesss
A measuresthe flux of kinetic energy defect within the boundary layer as

compared with--------- viscous flow steady flow inviscid flow incompressible flow  |incompressible flow

The kinetic energy thickness is defined as 8(X)=----- Ju(1-(u/uy)) dy 11-(1/uy)) dy [1-(utuy) dy [ @-u?ud) dy | fuug)(@-(u?u,?) dy
The wall shearing stress is defined as ------- 0 5 Ty Pw Ty

The skin friction ,=----- (Bu/ldy), Ww(Bu/dy), 3(6u/dy), (B%uloyd), n(0u/dy),

The onset of reversed flow near the wall takes place at the position of boundary layer boundary layer

zero skin frction.such a position is called a position of ------ boundary layer friction|characteristics separation boundary layer flow [boundary layer separation
Kinematic viscosity is denoted by ----- w=y/p v=w p p=uy Y=pu =W

Enthalpy is defined as ---- I=E+P I=E-(P/ p) I=E+(P/ p) I=E+(p/P) I=E+(P/ p)

Thermal conductivity is denoted by --------- p | p K K

Reynold’s number is defined as ------- R=U/y R=L/y R=UL/y R=Uy/L R=UL/y

Viscosity is a function of temperature and ----------- pressure mass density viscosity pressure

Kinematic viscosity is a function of ------- and pressure pressure temperature density force temperature

The rate of increases of the boundary layer thickness depends on ------ Op/ox 0q/0x Op/oy 0q/0y Op/ox

The rate of -------- of the boundary layer thickness depends on boundary

gradient change not change increase decrease increase

The layer in which ----- is called boundary layer ou/oy ov/oy ou/ox Ov/ox ou/dy

Kinetic energy thickness is also known as kinetic energy --------- linear equation laplace equation integral equation definite equation integral equation

------- is called the pressure coefficient c, P, Ve [ [




-------- have zero velocity at the walls real fluids ideal fluid viscous fluid inviscid fluid real fluids

Real fluids have-------- velocity at the walls negative positive zero nonzero zero

Real fluids have zero velocity -------- near to the wall opposite to the wall at the walls befor the wall at the walls

If the pressure has ----then the boundary layer thickness increases

rapidly decreases change nochange increases increases

boundary layer

.If the pressure increases then the---- increases rapidly boundary thickness boundary layer boundary surface boundary layer thickness
If the ------------—-- increases then the boundary layer thickness increases

rapidly pressure density mass force pressure

If the pressure increases then the boundary layer thickness -------------

rapidly decreases gradually increases increases gradually decreases |increases

fmmmmmen has no slip conditions real fluids ideal fluid viscous fluid inviscid fluid real fluids

maximum slip minimum slip

Real fluids has -------- no slip conditions slip conditions conditions conditions no slip conditions
The velocity component is normal to the wall is small if ----- is small d/2 d/3 d/4 d/5 8/2
The velocity component is normal to the wall is small if 6/2 is ----- normal small parallel perpendicular small

In the equation of boundary layer-------------------- normal to the wall is
small temperature gradient | temperature pressure pressure gradient pressure gradient
In the equation of boundary layer pressure gradient -------------------- to
the wall is small parallel normal tangent perpendicular normal

The relationship between the pressure and main stream velocity can be
obtained by --------

beltramis equation

linear equation

indefinite equation

Bernoulli’s equation

Bernoulli’s equation

------ is the flux of defect of momentum in the boundary layer LS, PLL T 1%, T

1,25, is the flux of defect Of--------—-c--e- in the boundary layer acceleration velocity mass momentum momentum

In the equation of boundary layer the velocity component is-----to the

wall parralel perpendicular normal tangent normal
boundary layer

In the equation of ----- the velocity component is normal to the wall boundary thickness boundary layer boundary surface boundary layer

In the equation of boundary layer the velocity component is normal to the

wall is -----

normal

parallel

small

perpendicular

small




Reg. NO ---------------- 6. In a high viscosity fluid there exist normal as well as shearing

(18MMP206) stress is called :
KARPAGAM ACADEMY OF HIGHER EDUCATION a) viscous fluid b) inviscid fluid
COIMBATORE -21 c) frictionless d) ideal
DEPARTMENT OF MATHEMATICS 7. Which is the velocity of the equation.
Second Semester a) g=dr/dt b) g=s/r
I Interna.l Test- Feb'ruary’19 ¢) v=dx/w d) u=dy/s
E!wd Dynamlci_ 8. The is a branch of science which deals with the
Date : 06.02.2019(AN) Time: 2 Hours behavior of fluid at rest as well as motion.
Class : I-M.Sc. Mathematics Maximum: 50 Marks a) fluid mechanics b) fluid statics
¢) fluid kinematics d) fluids
PART - A (20 x 1 =20 Marks) 9. The behavior of fluid at rest gives the study of
Answer All the Questions a) fluid dynamics b) fluid statics
1. The can be classified as liquids and gases. ¢) elastic d) plastic
a) solids b) fluids 10. The behavior of fluid when it is in motion without considering
C) pressure d) forces the pressure force is called .
2. The density of fluids is defined as volume. a) fluid kinematics b) fluid mechanics
a) mass per time b) solid per time c) fluid statics d) fluids
C) mass per unit d) limit per unit 11. Circulation around a closed circuit ‘¢’ is defined as
3. A force per unit area is known as . a) [q.dr b) Jq.rdr
a) force b) pressure c) Jqx.rdr d) Jgx-+dr
¢) fluid d) density. 12. Euler’s equation of motion is
4. JF is the force due to fluid on aS. a) dg/dt=F-Vp/P b) dg/dt=F-VP
a) normal b) constant ¢) d/dt=F d) qd/dt=-V ©
c) force d) pressure . . .
. . 13. The form is called the acceleration potential
5. The normal force per unit area is said to be : —
a) normal stress b) shearing stres 2) Q8P /p b) Qo P/p
c) stress d) strain ¢)-VQ-V[[ 5P/ p] d) V[I o P/ p]
6. The tangential force per unit area is said to be . 14. The irrotational flow of an incompressible in viscid fluid is in
a) normal stress b) shearing stress
C) stress d) strain a)3-D b)1-D

c)2-D d) multi — Dimension



15.

16.

17.

18.

19.

20.

Circulation is always defined around a circuit
a) open b) closed

c) parallel d) normal

When a conservative force F a potential Q such that

a) F=VQ b) F=-VQ

¢) FAV*Q d) F£V.Q

The Euler’s equation of motion corresponding to a Beltrami’s
flow is
99 _ 99_ g+
a) 5 =V b) oL \%
0q_ %,
c) FTan d) 5 \Y%
A force is said to be conservative if the force can be derivable
from the
a) density b) potential
C) area d) viscosity

If the motion is both steady and irrotational then
a)V.E =0 BYVXE =0
QOVE=0 dV—E=0

The product of the cross sectional area and magnitude of the

vorticity is along a vortex filament.
a) constant b) zero
c) parallel d) normal

PART-B (3 x 2 =6 Marks)
Answer All the Questions

21. Define Laminar flow.
22. What are the two method of describing fluid motion?
23. Explain about the circulation flow around the closed curve.

PART-C (3 x 8 =24 Marks)
Answer All the Questions

24. a) Prove that the velocity field u=yzt,v=zxt,w=xyt is a possible
case of irrotational flow.

(OR)
b) Derive differential equation of a stream line.
25. a) The velocity components in a flow two dimensional flow fluid
for an incompressible fluid is given by u=e*coshy, v=-e*sinhy.
Determine the equation of the streamline for this flow.

(OR)
b) Derive Euler’s Generalized Momentum theorem.

26. a) Explain Beltrami’s flow.
(OR)

b) Show that in an irrotational incompressible inviscid 2-D fluid
flow both ¢ & v satisfy the Laplace equation.
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(18MMP206)
KARPAGAM ACADEMY OF HIGHER EDUCATION
COIMBATORE -21
DEPARTMENT OF MATHEMATICS
Second Semester
Il Internal Test- March’19
Fluid Dynamics

Time: 2 Hours
Maximum: 50 Marks

Date : 13.03.2019 (AN)
Class : 1-M.Sc. Mathematics

PART - A (20 x 1 =20 Marks)
Answer All the Questions
1. The irrotational flow of an incompressible in viscid fluid is in

a)3-D b)1-D
c)2-D d) multi — Dimension
2. When the incompressible in viscid 2 — D fluid flow ® and v
satisfy the
a) C — R equation b) laplace equation
c) linear equation d) differential equation
3. The stream function y exist whether the motes is
a) stream line b) path line
c) rotational d) irrotational
4. The amount of the fluid going in to the sink in a unit time is called

a) strength of the sink b) strength of the doublet

c) strength of the source d) strength of the Vertex
5. The velocity potential @ exits when the fluid is

a) rotational b) irrotational

c) stream line d) path line

6. If a source, the velocity of the fluid is

a) finite b) equal
¢) infinite d) zero
7. If any point in the 2 — D field where the fluid is assumed to be
is called a sink.
a) created b) constant

) moving d) annihilated
8. Ina 2 — D field where the fluid is assumed to be annihilated is

called a

a) sink b) source

c) strength of source d) strength of sink
9. The stream function is constant along a

a) stream line b) path line

c) vortex line d) filament line
10. The amount of the fluid going in to the sink in a

strength of the sink

is called

a) certain Interval b) unit time

C) mean time d) average
11. If the motion is steady, the stream line pattern is

a) fixed b) not fixed

c) equal d) constant
12. When the motion is not steady the stream line pattern is

fixed.
a) not b) equal
C) constant d) zero

13. In a circulation on a viscous fluid the space derivative of the
vorticity vector are
a) small b) constant
c) large d) infinite

14. The steady flow through an arbitrary cylinder under pressure is
known as
a) Hagen —Poiseuille flow
¢) inviscous flow

b) viscous flow
d) vorticity flow



15. In the Reynolds number
the
a) role of the flow b) nature of the flow
c) order of the flow d) type of the flow

16. The constant of proportionality, u depends entirely upon the
physical properties of the fluid is called
a) typical viscous stress b) effect of viscosity
c) coefficient of viscosity d) viscosity of a flow

17. In the case of a real fluid frictionless resistance is known as

Is the principal parameter determining

a) shearing stress
c) friction stress
18. In the case of
tangential stress.
a) perfect fluid b) real fluid
c) friction stress d) ideal fluid
19. On real fluid, tangential stresses are
a) large b) very small
c) small d) infinite
20. The property which causes the tangential stress is known
as
a) inviscosity
c) real fluid

b) tangential stress
d) ideal fluid
frictionless resistance is known as

b) viscosity
d) velocity

PART-B (3 x 2 =6 Marks)
Answer All the Questions

21. Define Sink and Dublet.

22. Show that in an irrotational incompressible inviscid 2-D fluid
flow both ¢ & v satisfy the Laplace equation.
23. Write the Cauchy’s Riemann equation in both cartesian and

polar Coordinates.

PART-C (3 x 8 = 24 Marks)
Answer All the Questions

24. a) Explain Sink and its complex potential strength of the sink.
(OR)
b) Obtain the complex potential for the vortex.

25. a) In irrotational motions of 2-D, prove that
(0q/0x)*+( (0q/0y)*=q.Aq.
(OR)
b) A velocity field is given by q = -xi +(y+t)j find the stream
function and the stream line for the field at t=2.

26. a) Obtain the Helmholtz equations for vorticity of viscous fluid.
(OR)
b) Explain Milne Thomson’s circle theorem.
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Reg. Nowwviiiiniiitiiceee e, PARTC (1 x10=10 Marks)
h]
[18MMP206) COMPULSORY

26. Derive Euler’s equation of motion.

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University)
(Established Under Section 3 of UGC Act, 1956)
Pollachi Main Road, Eachanari Post, Coimbatore — 64] 021
(For the candidates admitted from 2018 onwards)

M.Sc., DEGREE EXAMINATION, APRIL 2019

Second Semester .
MATHEMATICS

FLUID DYNAMICS
Time: 3 hours Maximum : 60 marks

PART - A (20 x 1 =20 Marks) (30 Minutes)

(Question Nos. 1 to 20 Online Examinations)
(Part-B & C 2 ¥ Hours)

PART B (5 x 6 =30 Marks)
Answer ALL the Questions

2

. a. Derive differential equation of a stream line.
Or
b. Obtain the condition that the surface F(r,t)=0.

22. a. Explain Bernoulli’s equation.
Or
b. Obtain the Equation of motion in terms of vorticity vector when the force is
conservative.

23. 2. Show that in an irrotational incompressible inviscid 2-D fluid flow both o0&y
satis(y the Laplace equation.
Or
b. Explain Sink and its complex potential strength of the sink.

2

B

. a. Explain Vorticity of viscous fluid.
Or
b. Explain Navier Strokes equation.

2

w

- a. Explain the equation of boundary layer.
Or
b. Derive the kinetic energy integral equation.

! 2
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Pollachi Main Road, Eachanari (Po),
Coimbatore —641 021

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed to be University Established Under Section 3 of UGC Act 1956)

Subject: Fluid Dynamics
Class : |- M.Sc. Mathematics

Unit |

Part A (20x1=20 Marks)
(Question Nos. 1 to 20 Online Examinations)
Possible Questions

Subject Code: 18MMP206

Semester

Questions Optl Opt2 Opt3 Opt4 Answer
The behavior of fluid at rest gives the study of fluid dynamics fluid statics elastic plastic fluid statics
The behavior of fluid when it is in motion without con3|der|ng
the pressure force is called fluid kinematics fluid mechanics fluid statics fluids fluid kinematics
is a branch of science WhICh deals with the
behavior of fluid at rest as well as motion. fluid mechanics fluid statics fluid kinematics fluids fluid mechanics

The behavior of fluid when it is in motion with considering the
pressure force is called

fluid kinematics

fluid dynamics

fluid statics

fluid mechanics

fluid dynamics

is the branch of science which deals with the
study of fluids.

fluid kinematics

fluid dynamics

fluid statics

fluid mechanics

fluid dynamics

If any material deformation vanishes when a force applied

withdrawn a material is said to be elastic plastic deformation fluid elastic

If deformation remains even after the force applled withdrawn the

material is said to be elastic plastic fluid fluid statics plastic

If the deformation remains even after the force applied withdrawn

this property of material is elastic plasticity fluid deformation plasticity
can be classified as liquids and gases. solids pressure fluids forces fluids

The density of fluids is defined as volume. limit per unit solid per time mass per unit forces per unit mass per unit

A force per unit area is known as force pressure fluid density. pressure

OF is the force due to fluid on Os normal constant force pressure normal

The pressure changes in the fluid beings changes in the dencity of]

fluid is called compressible fluid |incompressible fluid |body force surface force compressible fluid

The change in pressure of ﬂUId do not alter the density of the

fluid is called compressible fluid |incompressible fluid |body force surface force incompressible fluid
are propotional to mass of the body. pressure body force surface force force body force
are propotional to the surface area. body force surface force force mass surface force

The normal force per unit area is said to be normal stress shearing stress stress strain normal stress

The tangential force per unit area is said to be normal stress shearing stress stress strain shearing stress

In a high viscosity fluid there exist normal as well as shearmg

stress is called viscous fluid inviscid fluid frictionless ideal viscous fluid




Which is the velocity of the equation. g=dr/dt .g=s/r v=dx/w .u=dy/s g=dr/dt

The differential equation of the path line is .u=dy/s v=dx/w g=dr/dt .q=s/r g=dr/dt

A flow in which each fluid particle posses different velomty at

each section of the pipe are called uniform flow rotational floe barotropic flow non-uniform flow  [non-uniform flow

A flow in which each fluid particle go on rotating about their

own axis while flowing is said to be rotational floe uniform flow non-uniform flow barotropic flow uniform flow
The pressure is function of density then the flow is said to be

. rotational floe uniform flow barotropic flow non-uniform flow  [barotropic flow
The direction of the fluid velocity at the point is
called . stream line velocity fluid pressure stream line

is defined as the locus of different fluid particles
passing through a fixed point. stream filament stream line path line stream tube stream line
A stream tube of an infinitesimal cross sectional area is
called stream line stream filament path line stream tube stream filament

Cross section speed/cross section |cross section Cross section

The equation of volume is area*speed area area/speed speed area*speed
The equation of speed is time/length length/speed length*time time*speed length/speed

When a fluid particle moves it changes in both

speed and time

time and frequency

speed and position

position and time

position and time

When the flow is the strem line have same form at all

times. steady unsteady stream surface stream tube steady
When the flow is the stream line changes from instant to

instant. stream tube steady unsteady steady unsteady
If A.f=0 then f'is said to be a solenoid rotation irrotation constant solenoid
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