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2 Chapter 1 Introduction

section (Section 1.4) can be used as quick reference for the various mathe-
matical concepts involved in the text.

B The moment generating function (shown at the end of Section 1.3) and

Taylor-series expansion (given at the end of Section 1.4) are introduced here
but will only be needed in Chapter 7.

er introduces the subject of stochastic processes, reviews transform
techniques to facilitate problem solving and analysis in applied probability, and
presents some mathematical background needed in the sequel. In the first section,
we define what is meant by a stochastic process and the ideas of stationary and
independent increments. The section also gives an overview of the text. The next
two sections review generating functions and Laplace transforms. They are quite
useful in handling discrete and continuous random variables that we will
encounter in the study of stochastic processes. In addition to inversion by alge-
braic means (manageable only for problems of small size and simple structure),
we also present approaches for inverting probability generating functions and
Laplace transforms numerically. In this age of computers, numerical inversion
enlarges the domain of applicability of transform methods. Readers who have
experiences in using generating functions and Laplace transforms in other con-
texts can go through Sections 1.2 and 1.3 rather quickly. The last section lists a
minimal set of results in mathematical analysis that are needed for the text. The
section is written primarily for readers who do not have training in mathematics
beyond calculus. For others, the section can serve as a source for quick reference.
Those who already have had a course in advanced calculus or elementary analy-
sis (say at a level of Rudin [1976] or Bartle [1976]) can skip the last section and
go directly to the next chapter.

Let X(¢) denote the state of a system at time . For example, the state X(t) can be
the closing price of an IBM stock on day ¢. The collection of the random variables
X = {X(#), t € T} is called a stochastic process, in which the set T is called the
index set. When the index set is countable, X is called a discrete-time process.
Thus the daily closing prices of an IBM stock form a discrete-time stochastic
process, in which T = (0, 1, ...}. When the index set is an interval of the real line,
the stochastic process is called a continuous-time process. If X(r) denotes the
price of an IBM stock at time ¢ on a given day, then the process X = (X(D),te T}
is a continuous-time process, in which T is the interval covering a trading day.
If we assume that X(¢) takes values in a set § for every 1 € T, then S is called
the state space of the process X. When § is countable, we say that the process has
a discrete state space. The two stochastic processes involving the price of an IBM
stock both have discrete state spaces whose elements are dollars in increment of
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1/8. When § is an interval of a real line. the process has a continuous state space.
As an example, if X(¢) denotes the tempcrature at Houston Intercontinental Air-
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A realization of a stochastic process X is called a sample path of the process.
In Figure 1.1, we depict a sample path associated with a discrete-time process
with a discrete state space---namely, the daily closing prices of an IBM stock. In
Figure 1.2, we do the same for a continuous-time process with a discrete state

space—namely, the price at any time 7 on a given day. Similarly, in Figure 1.3 we
plot a sample path for a continuous-time process with a continuous state space
representing the uninterrupted temperature readings at Houston Intercontinental
Airport over a given period. If these temperature readings are taken at a set of
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distinct epochs, say every hour on the hour, then the process becomes a discrete-
time process with a continuous state space. The latter is depicted in Figure 1.4.
Without structural properties, little can be said or done about a stochastic
process. Two important properties are the independent-increment and stationary-
increment properties of a stochastic process. A process X = {X(#), t 2 0] possesses
the independent-increment property if for all f, < t, < --- < t,, random variables
X(1)) - X(t,), X(1,) - X(2)), ..., X(1,) - X(1,,_)) are independent (the time indices will
either be discrete or continuous depending on the context). Hence in a process
with independent increments, the magnitudes of state change over nonoveriapping
intervais are mutuaily independent. A process possesses the siationary-incremeni
property if the random variable X(z + 5) — X(£) possesses the same probability dis-
tribution for all ¢+ and any s > 0. In other words, the probability distribution
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governing the magnitude of state change depends only on the difference in the
!en'gtl}s of the time¢ indices and is independent of the time origin used for the
indexing variabie.

Let N(r) denote the number of arrivals of a given event by time 7 (e.g., car
arrivals to a toll booth). The stochastic process N = {N(r), r Z 0} is called a count-
ing process. The Poisson process studied in Chapter 2 is a counting process in
which interarrival times of successive events are independently and identically
distributed (i.i.d.) exponential random variables. The process possesses both the
independent-increment and stationary-increment properties. Poisson processes

A " . .
are used extensively in modeling arrival processes to service systems and demand

processes in inventory systems. There are many useful variants of Poisson
processes. An important extension is the nonhomogeneous Poisson process in
which we assume that the arrival rate is time dependent. This extension makes
Poisson a versatile process for real-world applications.

In a counting process, when interarrival times of successive events follow a
probability distribution other than the exponential and yet these times are mutu-
ally independent, the resulting process is called a renewal process. Chapter 3 is
devoted to the study of renewal and related processes. The theory of a renewal
process forms a cornerstone for the development of other more complicated sto-
chastic processes, which is accomplished by use of its extension known as the
regenerative process. At the arrival epoch of a renewal event, the future of the
process becomes independent of the past. Therefore the interval between two suc-
cessive renewals forms a regeneration cycle. The regeneration cycles are proba-
bilistic replica to one another. When we are interested in a long-run property of a
stochastic process, studying it over one regeneration cycle wiil enable us to ascer-
tain its asymptotic value.

In Chapier 4, we introduce Markov chains. In a Markov chain, hoth the state
space and index set are discrete. A change of state depends probabilistically ondy
on the current state of the system and is independent of the past given that the pre-
sent state is known. A process possessing this property is known to have the Mar-
kovian property. The successes one can have in employing Markov chains for
modeling in applications depend on proper state definitions at selected epochs to
maintain the Markovian property at these epochs. When there are rewards asso-
ciated with state occupancy, the resuling process is called a Markov reward
process. Markov chains and Markov reward processes have been used extensively
in modeling and analyses of many systems in production, inventory, computers,
and communication.

In 2 Markov chain, we are interested in the state changes over the state space
and unconcerned about the sojourn times in each state before a state change takes
place. For such a chain, when sojourn times in each state follow exponential dis-
tributions with state-dependent parameters, the resulting stochastic process 1s
called a continuous-time Markov process with a discrete state space. For the spe-
cial case when transitions from a given state will only be made to states other than
itself, the resulting process is called the continuous-time Markov chain. Various
subjects relating to continuous-time Markov chains will be examined in detail in
Chapter 5.
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A generalization of a Markov chain allows sojourn times in each state to fol-
low probability distributions that depend on the starting and ending states associ-
ated with each transition. Stochastic processes resulting from such a generaliza-
tion are called Markov renewal processes. This generalization makes renewal
processes and discrete-time and continuous-time Markov chains all special cases
of Markov renewal processes. Subjects relating to Markov renewal processes are
covered in Chapter 6.

Stochastic processes presented in Chapters 26 all have discrete state space.
In the last chapter, we will study processes with continuous state space—
particularly the Brownian motion process. The mathematics needed to handle
Brownian motion and related processes is more demanding. Our coverage of the
subjects involved will be relatively limited.

Discrete Random Variables and Generating Functions

Let {a,} denote a sequence of numbers. We define the generating function for the
sequence (a,} as

af(2)= Y. a,7", (1.21)
n=0

where the power series a®(z) converges in some interval |z| < R. a®(2) is also called
the Z-transform or geometric transform for the sequence {a,}. To illustrate, con-
sider the case in which a, = ", n =0, 1, .... Then we see that &*(z) = 1/(1 - o)
when |oiz| < 1. In Table 1.1, we present an abbreviated listing relating some
sequences {a, ] and their respective generating functions. For the ith pair shown in
the table, we use the notation Z-i. The pairs Z-1 and Z-2 imply that the generating
function is a linear operator in the sense that if a sequence is a linear combination
of two sequences, the linear relation is preserved under the transform by using the
generating function. The pair Z-3 implies that the convolution operation of two
sequences becomes a multiplication operation if we work with the respective gen-
erating functions instead. The sequence {b,} in Z-6 is the sequence {a,} “delayed”
by k units, whereas the sequence {b,} in Z-7 is the sequence {a,} “advanced” by
k units. The sequences in Z-8 and Z-9 perform réspectively the “summing™ and
“differencing” operations. They are the discrete analogs of integration and dif-
ferentiation. The two pairs enable us to do these operations when the functions
have first been transformed. If A, is a square matrix with elements {a;(n)}, then
the (i, j)th element of the matrix generating function A%(z) is deﬁned as

zn 02 au(n) When the elements of matrix A are {a;}, Z-10 gives the corre-
sponding matrix generating function.

WMMWcﬂMﬁlmW“ﬂh
generating function using the final value property:

l:n im a, = Iill{l -'.Jl'(t)
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The Sequence {a,} Generating Fenctien 07 (z) = iu,z'
=0
1. {oa,} oat(z)
2. {0a, + Pb,} aa®(z)+Bb*(2), where b8(z)=3 b 7"
n=0
3 I Eamﬁn_m}Convolution af (DB (7)
a. (a") !
1—-az
5 {L( +i1Mn+2 k "} —-————1
. P n (n+2)---(n+ka | (l—az)'”'
6. {b,}, where b, =0 if n<k Fa@
=a, ifn>k

and k is a positive integer

7. {b }, where b, =0 ifn<0 1 _
" " T[ag(z)—-ao~a,z—~--—aHz" 1]

8. {Eam _l_as(z)

m=0 -z
9. {b,}, where b, = a, fn=90 (1 = 2)ab(@)
=a,-q,, iftn21
10. {A"}, where A is a square matrix Y (zA)" =lI- Azl
n=0

where [ is an identity matrix

A formal proof of the property can be found in a reference cited in th
graphic Notes. We leave an alternate proof based on Z-6 as an exercise.

Problem manipulations involving transforms are sometimes referred to as
operations in the transform domain. When we invert a transform to its corre-
sponding sequence {a,}. we call the procedure an inversion of the transform to
the time domain. Generating functions are quite useful in solving systems of dif-
ference equations; however, we shall focus our attention on their applications in
stochastic modeling.

Let X denote a discrete random variable and a, = Prob{X = n}. Then Py(z)
= 8(2) = E[z¥] is called the probability generating function for the random vari-
able X. Here we impose the condition [z] < | so as to ensure the uniform conver-
gence of the power series a®(2). If we know the probability generating function of
X, the coefficients of the power series expansion of *(z) give the probabilities
that X assumes various values. Many times problem solving is somewhat messy
in the time domain. We do our manipulations in the transform domain and then
make an inversion to obtain the desired result.

[{]
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. We can obtain moments of a random variable X from its probability generat-
ing function P,(z). Define the kth derivative of P,(z) by

k

), y_ 4
Then we see that
d hnd n hd d n - n—
PO()=Ya7 =Y e =Yz and  EX]=PPQ).
dz =0 n_odz T(') B

Similarly, we have

d d < n— - n—
PP (2) =-&;P}”(z) = Y na,z"' =¥ n(n-1a,2"?,
n=|\

n=1

and PP (1) = E[X(X ~ 1)] = ETX*] - E[X]. So the second derivative of Py(z) with
respect to z evaluated at 1 gives the second factorial moment of X. The second
moment of X is given by

EIX*)=PP M+ POQ). 122
Other higher moments of X can be found analogously.

00—

The Binomiol Random Varioble et X be a binomial random variable with parameters
n and p and

n )
PX=j}=a, =[Jp"q”” j=0 1 .am,

where g = 1 — p. The probability generating function is given by

P(2)= Y a;2 = i{'fl’}”qw = z[n(pz)" q" =(pz+q).
j=0

j=0 j=0

-1 -2 2 :
With P{(z)=n(pz+q)""'p and PP (2)=n(n—1)(pz+q)" “p°, we obtain E{X]
= P;‘{”(l)=np and E[X*] = n(n ~ 1)p* + np by Eguation 1.2.2. This gives

Var{X] =npq. *

W
The Poisson Random Varigble Let X be a Poisson random variable with parameter
A>0and

AN

P{X=n}l=a,=¢
n!

n=01,....

The probability generating function is given by

oo n oo n
Pey=Y e L L M)
n=0

n! a0 ™
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Differentiating P,(z) with respect to z twice, we obtain

~ -

P(l) — Y Mz A p(2) 12 A(z-D)
X I SALLIVE I3 X — e

So, E[X]1=P{(1)=A,and P{(1) =%, This gives E[X*] = A* + A and Var{X]
=A =

The Geomelric Rundom Variable [t X be a geometric random variable with parame-
ter p and

P{(X=n}=a,=pq" n=0,1,...,

where g = 1 — p. We can interpret X as the number of failures needed to obtain the
first success in a sequence of independent Bernoulli trials with probability of p of
finding a success in a single trial. The probability generating function of X is
given by

Let X,, ..., X, denote k independent, nonnegative, and integer-valued random
variables where X, follows probability generating function P(2). Let S be the sum
of these k random variables. Since S is the convolution of the k independent ran-
dom variables, by Z-3 we conclude that the probability generation function of §
is given by

Ps(Z) = P{(Z) Pk(Z) (123

Hence if we work in the transform domain the convolution operations are reduced
to multiplication operations.

The Negative Binomial Random Varible For a negative binomial random variable S, we
have $ = X, + -+ + X, where X, ..., X, are i.id. random variables with a com-
mon geometric distribution { pq"}. We note that S can be interpreted as the num-
ber of failures needed to obtain the kth success for the first time in a sequence of
independent Bernoulli trials with probability p of finding a success in a single
trial. In Example 1.2.3, we recall that the probability generating function P (z) for
X, is given by p/(1 — q2). Using Equation 1.2.3, we find the probability generat-
ing function
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To invert the previous equation to the time domain, we see that
1 B 1
(1— go)* - (1= gz)® DT
and an application of Z-5 shows that the sequence in the time domain reads

(k_l)'(n+1)---(n+(k—1))q".

Using Z-1, we conclude that
k

-1y... 1
(4142 (kg = BFE=D Dl e,

p

" (k-1 (k—D)'n!
fn+k -1\ i n
=L Jpq n=0,1.. =
n

We now introduce the notion of a compound random variable. Let {X;} be a
sequence of i.i.d., nonnegative, and integer-valued random variables with a com-
mon probability generating function P,(z). Let N be a nonnegative and integer-
valued random variable with a probability generating function 7,(z). Assume that
N is independent of {X;}. The compound random variable S is defined as the sum
of X,, ..., Xy This random variable is often called the random sum. We let Hy(z)
denote the probability generating function of Sy. Now we see that

Hy(z)=Flz°)= EN[E[ZS|N]] = EN[E[zX'+"‘+X”

N]]
= E,, E[z0% % ]] (by independence of N and {X;})

=Ey -E[zx’]--- EI:X” ]] (by independence of X, ..., Xy)

[ N
=Ey _(PX(Z)) ]: EN(PX(Z))' (124)

Therefore, the probability generating function H(z) is obtained by simply using
the probability generating function of X (a function in z) as the argument of the
probability generating function of N. One way to find the first two moments of
the random sum S,, is by using the approach involving differentiation of Hy(z). We
leave the application of this approach as an exercise. Another way is by use of
conditional expectations. First, we see that E[Sy|N]=E[X,+ --- + Xy|N]
= E[NX,|N) = NE[X,]. This implies that

ELSy 1= E[ELSyIN1| = E{NELX, ] = ELX, JEIN). (1.25)
For any random variables ¥ and N, we recall from probability theory that the con-
ditional variance formula is given by

Varl Y] = E[Var{Y|N]|+ Var[ ELYIN}] (1.26)
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With Y = S in Equation 1.2.6 and Var{Sy|N] = NVar[X,] by independence of
{X;], we conclude

Var{Sy1= E[NVar[ X, 1| + Var| NE X, ]| = Var X, JEIN1+ E*[X, ]var(N]. (127)

Let N be the number of times a person will visit a store in a year. Assume that N
follows the geometric distribution P{N=n} =(1-6)0",n=0, 1, .... From Exam-
ple 1.2.3, we find the probability generating function 7,{z) = (1 - 8)/(1 — 6z). Dur-
ing each visit with probability p the person buys something. Purchases over suc-
cessive visits are probabilistically independent and whether a purchase will be
made during a visit is independent of number of times the person visits the store
in a year. We are interested in deriving the probability distribution for S, the num-
ber of times the person will buy something from the store in a year. We let X, = |
if the person buys something during the ith visit and 0 otherwise. Then we have
§ = X; + - + X,. The probability generating function of X, is P(z) = q + pz.

Using Equatlon 1.2.4, we obtain

-6 1-8 _  1-8

Hs(@ =B )= T s " Tmotg e pl - (=@~ 72

1-9
__ 1-48 -9
A
1-¢6 )

where we let Q = pB/(1 — ¢8). Noting that the previous equation is actually the
probability generating function of a geometric distribution, we conclude that
P(S=k}=(1-Q)0" k=0,1,.... =

RSN E L EEFEL R e T S e § 4 b L F BT D TR T Yk S EERTE YT

Let B, ..., B, be mutually exclusive and collectively exhaustive events. For
any event A, we recall from probability theory that

&
P(A)=Y P(A|B)P(B,).
1=l

M if X apd Y are two discrete random variables, we have
PY= y)=E,P(Y=yIX— x)P(X = x).



EXAMPLE
1.2.6

12 Chopter 1 Infroduction

The preceding formulas are commonly known as the laws of total probability. In
problem solving in applied probability, sometimes the following three-step
approach can be useful: (i) by conditioning on the outcomes of the initial trials
and using the law of total probability, write a system of difference equations; (ii)
rewrite the system in the transform domain; and (iii) derive desired results from
the transform. The next example illustrates the use of such an approach.

Consider a biased coin with probability p of obtaining heads and ¢ = 1 — p of get-
ting tails. The coin is tossed repeatedly and stopped when two heads occur in suc-
cession for the first time. Let X denote the number of such trials needed and let

a, = P{X = n}. We want to find the probability generating function and the first
two moments of X.

Following the first step of the approach, we note that a; =0, @, =0, a, = P,
and a; = pzq. Forn=4,5, ..., the probabilities associated with the three mutually
exclusive and collectively exhaustive outcomes B, = (T}, B,={H, T}, and
B, = {H, H} are g, pq, and p LetH 2 denote the event that two heads occur in
succession and A, denote the event that // 2 occurs for the first time at the nth trial.
For n > 3, we apply the law of total probability and find

3
P(A,)= Y P(A,|B)P(B) = P(A, )q+ P(A,_)Pq +(0)p".

i=l
In the previous derivation, to see that P(A,,IB]) = P(A,_|) we observe that given
(T} occurs at the first trial, then H 2 must occur for the first time at the (n — )st
remaining trials so that H ? indeed occurs at the nth trial of the whole experiment.
The term P(A|B,) = P(A,_,) can be interpreted similarly. Finally, if {(H, H)
occurs initially, then it is impossible for i 2 to occur for the first time at trial z for
n > 3. This gives P(A |B;) = 0. Since a, = P(A,), we obtain

a,=qa, , +pqa, , n=4,5, ... (1.2.8}

We now move to the second step of the approach. We rewrite Equation 1.2.8
as

Apiy = qa, + PG4, n=23,... {1.2.9)

We multiply the nth equation of Equation 1.2.9 by z" and add the resulting equa-
tions. This gives

o0

3 2"y = 242 00 + 2 P74,
n=2

n=2 n=2

1 n+2 _1 < n+1 P )

—222 an+z-—241 G,y + PaPx (2

Z p=2 Z p=2

:—Z[PX(Z) ~z'ay- 22a2] - %[PX(Z) B 2202]"' PaFx (D)

Py(2)— z’}a3 - zza2 = qz[PX(z) - zzaz] + pqzzPX(z).
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Using the initial conditions a, and a, and rearranging the terms, we obtain

Pg)=—L% . (1.210)

l-gz- pqz2
. We now give a slightly simpler way of obtaining Equation 1.2.10. Define the
indicator variable /{A} = 1 if A is true, and O otherwise, and define¢ a, = 0 if

n < 0. Then Equation 1.2.8 and the initial conditions can be combined in a single
expression:

an=qan_l+pqan_2+p2]{n=2} n=0,1, ...

It is easy to verify that the above holds for all n. Multiplying the nth equation by
z" and adding the resulting equations give

n o__ n 2.2
Zanz - ann—lz + quan—ZZ" +pz.
T!=0 Il=0 n=0

Changes of indexing variables will produce

Pe(2)= Y qa,2"" + 3, paa, " + p*7 = qiPy () + pa’ B+ p°7’

n=0 n=0
and hence Equation 1.2.10.

Having obtained the probability generating function, we are now at the iast
step. By differentiating Equation 1.2.10 twice with respect to z and proceeding
methodically, we will find the first two moments of X—after some cumbersome
algebra. A somewhat intriguing alternative is to look at Equation 1.2.10 in the fol-
lowing manner:

2 Py (2)
P ): < = L
K2 (1-gz—pet | P
e

and assume that W and Y are two legitimate random variables with respective
probability generating functions Py,(z) and Py(z). If this were the case, then we
would have concluded without hesitation that W= X + ¥ and X and Y are inde-
pendent. For W, we see that P{W =2} =1 and therefore is a legitimate random
variable. While P,(1) = 1, we see that the coefficients of the power series expan-
sion associated with the terms z and z? are both negative. This implies that the
“probabilities” that Y = | and Y = 2 are both negative. Fortunately, we can.pro-
ceed with our computation by assuming that having negative probabilities is
acceptable. The reason that this transgression is acceptable in the present context
is that the results pertaining to convolution and moments are actually derived for
generating functions whose coefficients are not restricted to be numbers in a unit
interval as long as generating functions equal 1 when their arguments are set to
1. It is easy to verify that

1 11 1 2
PP = 7(—q—2pq) =2-—- = E[Y] and PP (1) =?(—2pq)= 2—;-

The variance of Y is then

2 2 2 1
Var(Y]1= PP+ PO - [RPO)| =—-— -+ +—.
Y Y [ Y ] p4 P3 p2 P
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Since E[W] =2 and Var{W] = 0. we conclude that

~ rorl 1 1 . - 3 o -5 -

i—LElY|=—+—5 and \’arlXJ:—VarlY]z_l.I.*_%_%_i_
p r g P p P

(The expression Var[X] = —Vur{Y] might raise some eyebrows if one forgets that

Y is not a legitimate random variable.) =

LiA]=

pee s SOl e BE R S R Y

i
»
]

If we have a generating tunction, we can invert it to the corresponding dis-
crete function in the time domain—namely the sequence {a,}—either alge-

bral_callu or numencallv To do it algebraically, we use partial f:rnrhnn expansion.

A NN AL QIR VLRI G Yy WE RSN Pl sl Ll L8

Typically the transform A®(z) is written as the ratio of two polynomials. For the
method to work, the degree of the numerator polynomial must be at least one
less than that of the denominator. If this is not so, we can either factor enough
z out of the numerator or divide the two polynomials so that the mentioned con-
dition is met. We then do a partial fraction expansion of the remainder. There are
two types of ratio and their respective expansions to consider. To illustrate, one
type reads
a+bz A . B
(1-coX1—dz) (1-cz2) (1-dz)’

where ¢ # d. The preceding equation is equivaient to a + bz = A(l — d2)
+ B(1 — ¢z). Setting z = l/c. we find the value of A. The value of B can be found
similarly. Another option is to set z at any two distinct values and solve the result-
ing system of linear equations. Inverting the transform is done by invoking Z-1,
Z-2, and Z-4. The other type of ratio is one in which the denominator factors are

P e 2GR A LR 22 BRNLRL LENL. QO 1NRPRNNN

not distinct. This is 111ustrated by

atbitcz’ A B C
(1-do*(l-ex) (-d2y’ (1-dz) (1-ed)’
where d # e. Finding the coefficients A, B, and C can be done in a manner simi-
lar to the first case. MATLAB functlon residue will do the aforementioned
partial fraction expansion. Since there is a one-to-one correspondence between
the probability generating function and the respective probability distribution, the
inversion enables us to uncover the functional form of the latter. This is illustrated

in the IOllOWlng WO exampics.

RN T TR S PR ER SN Baied

Assume that we are given the following probability generating function of ran-
dom variable X

4
PX(Z) = £y A Vae! \2 '
le=INS— )
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What is the probability distribution {p, } of X? We need to invert P,(2). First, we
write
4 A B C

5 = + + 5 -
2-23-2 (2-23 G-2) (3-2)
Multiplying that by the denominator on the left side gives

AB -+ B2 -3 -+ C2-2) =4
Setting z at 2, 3, and O in succession, we find respectively A = 4, C = -4, and
B = —4. The partial fraction expansion of P,(z) is then given by
4 4
P.(2)= 4 4 4 2 3 9

iy& - 2— ~ ~ = =
2-2) (-2 (-2 (_1) (_l) 1Y
| 2z: 1 32 (1-5‘,)

In the Appendix, we illustrate the use of MATLAB to do the partial fraction
expansion. Using Z-2, Z-4, and Z-5, we invert the previous equation to the time
domain. This gives the probability distribution

Ly " 4
p"’:z(z) (3)(3) (‘1/( ) (n+D
=27 43 — 4+ D3P n=0,1,2, ... 8

We return to Example 1.2.6 with the goal of obtaining a closed-form expression
for the distribution of X—the number of trials needed to obtain two heads in suc-
cession in a sequence of Bernoulli trials. Recall the probability generating func-
tion is given by Equation 1.2.10. Note that

1 B -1
1- gz~ pqz* 1Y
4z~ pq pq(zz+iz———]
\ P4 P4,

The term in the last parentheses can be factored as (z — z;)(z — 2,), where

Zz—q+\/;2+4pq and Zz-q—\}q2+4pq.
1 2pq : 2pq

Using partial fraction expansion and 2, —2, = qu +4pq)/pg, we find

1

-1 1
+ .
1- gz - paz’ \F +4pq|:z g 2'12]
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UNIT-II

SYLLABUS

Markov Process with discrete state space: Poisson process — and related distributions — properties
of Poisson process, Generalizations of Poisson Processes — Birth and death Processes —
continuous time Markov Chains

In some homes the use of the telephone can become quite a sensitive issue.
Suppose that if the phone is free during some period of time, say the nth
minute, then with probability p, where 0 < p < 1, it will be busy during the
next minute. If the phone has been busy during the nth minute, it will become
free during the next rninute with probability g, where 0 < g < 1. Assume that
the phone is free in the Oth minute. We would like to answer the following two
questions.

1) What is the probability x,, that the telephone will be free in the nth
minute?

2) What is lim, . 2,, if it exists?

Suppose that S is a finite or a countable set. Suppose also that a probability
space ({2, F, P) is given. An S-valued sequence of random variables £,,, n € I,
is called an S-valued Markov chain or a Markov chain on S if for all n € N and
allse S

P(&ns1 = 8léo, .. -1 €n) = P(€ny1 = slén)- (5.10)

Here P(£n41 = s|&,) is the conditional probability of the event {£,4, = s} with
respect to random variable £,,, or equivalently, with respect to the o-field o(£&,)
generated by . Similarly, P(£,41 = 5|, .. .,£n) is the conditional probability
of {€,41 = s} with respect to the o-field o (&, - - -, £€,) generated by the random
variables &, - --, &,.

Property (5.10) will usually be referred to as the Markov property of the
Markov chain &,, n € M. The set S is called the state space and the elements
of S are called states.
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Show that a stochastic matrix is doubly stochastic if and only if the sum of the
entries in each row is 1,i.e. ). ca;; = 1for any j € S.

Proof

Put A* = [b;;]. Then, by the definition of the transposed matrix, b;; = aj;.
Therefore, A? is a stochastic matrix if and only if

Zﬂjlzgf]!_j =1,

completing the proof. O

Show that f P = [p J-.] j.ies 18 a stochastic matrix, then any natural power P™ of
P is a stochastic matrix. Is the corresponding result true for a double stochastic
matrix?

Definition 5.4

The n-step transition matriz of a Markov chain &, with transition probabilities
p(jli), j,i € S is the matrix P, with entries

Palili) = P(€n = jl&o = ). (5.17)

Exercise 5.5

Find an exact formula for F,, for the matrix P from Exercise 5.4.

Hint Put z, = P(én = 0|éo = 0) and yn = P(£n = 1|y = 1). Is it correct to suppose
that p.(0|0) = z. and pn(1|1) = yn? If yes, you may be able use Example 5.1 and
Exercise 5.1.

Exercise 5.6

You may suspect that I, equals ", the nth power of the matrix P. This holds
for n = 1. Check if it is true for n = 2. If this is the case, try to prove that
P, = P" for all n € M.

Hint Once again, this is an exercise in matrix multiplication.

The following is a generalization of Exercise 5.6.
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Proposition 5.3 (Chapman-Kolmogorov equation)
Suppose that &,, n € M, is an S-valued Markov chain with n-step transition
probabilities p,, (j|i). Then for all k,n € N

prik(§li) =D palils)pe(sli), i.j € S. (5.18)
sES

Exercise 5.7 o
Proof (of Proposition 5.3)

Let P and F, be, respectively, the transition probability matrix and the n-step

transition probability matrix. Since p,(j|i¢) are the entries of P, we only need
to show that PP, = P" for all n € M. This can be done by induction. The

assertion is clearly true for n = 1. Suppose that P, = P™. Then, fori,j € S,
by the total probability formula and the Markov property (5.10)

Pa I-lijlﬂ = P{‘Eﬂ Rl = jl‘sﬂ = 1}
= Y Plént1 = jléo = i,6n = 8) P(€ = 5& = 1)

§ES

= Z F'{'E?'l 1 = jl‘sﬂ = ";)p{‘E?1 - ";|‘EU — EJ

Proposition 5.4
For all p € (0,1)

P, =il =1i) =0, asn = oo. (5.20)
ﬁFODfT
To begin with, we shall consider the case p # % When j = i, formula (5.19)
becomes LE);
i * if n=2k,
P(&, =il =i)=4¢ ¥ (Pg) _ _ (5.21)
0, if n is odd.
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Then, denoting ay = &ﬁ%{pq]h we have

@jt1 (2k + 1)(2k + 2)
—— = - 1.
" rq k+1)2 + dpg <

Hence, ay — 0. Thus, P({x = il = i) — 0. The result follows, since
P(ék+1 =ilo =1)=0—=0.

This argument does not work for p = § because 4pg = 1. In this case we
shall need the Stirling formula’

k
k! ~ v 2mk (g) , as k — oo. (5.22)
Here we use the standard convention: a, ~ b, whenever %: —+1asn — oo.
By (5.22)
Vark {2k 2k e 2k "
O ok (?) (E) (pg)
1
= —a —} '[].. as k — oo,
vk '

Let us note that the second method works in the first case too. However, in the
first case there is no need for anything as sophisticated as the Stirling formula.

O

Proposition 5.5
The probability that the random walk &,, ever returns to the starting point is

1-|p—gql
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Proof

Suppose that {; = 0 and denote by fy(n) the probability that the process
returns to 0 at time n for the first time, i.e.

fU{ﬂ':l = P(‘Eﬂ :DNEI' #D11= 11"'1”‘ - ]'J

If also pp(n) = P (& =0) for any n € N, then we can prove that

Y mm)=)_po(n) Y fo(n). (5.23)
n=1 n=1

n=0
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Since all the mumbers involved are non-negative, in order to prove (5.23) we
need only to show that

po(n) =) _ fo(k)po(n — k) forn > 1.
k=1
The total probability formula and the Markov property (5.10) yield

pon) = ) PlEa=0,&=0,6#0,i=1,-- k- 1)
k=1

= ZF{{:‘L:U}'fI#U:t:I:uk_]-}
k=1
XP(n =0[§k =0,& # 0,i=1,---, k- 1)

=Y P =0,6#0,i=1,-,k - )P(€, = 0[&x = 0)
k=1

=Y folk)po(n - k).
k=1

Having proved (5.23). we are going to make use of it. First we notice that the
probability that the process will ever return to 0 equals ), fo(n). Next, from
(5.23) we infer that

PEn>1:6,=0) = ) fo(n)
n=1 N B . B
=1- (Z pu{ﬂ]) =1- (ZPD(EH)
=0 k=0

Since pg(2k) = ﬁ—:‘]}é{pq]’“ and

— (2K\ & _ 1 av-1/2 1

E}(k)x — (1—4z)" el < 3 (5.24)
it follows, that for p #1/2

PEn>1:6,=0)=1-(1-4pg)"/?* =1-[p—gq|, (5.25)

since, recalling that g =1 —p, we have 1 —dpg=1—4p+4p° = (1 - 2p)* =
(g-p)*.

*  The case p = 1/2 is more delicate and we shall not pursue this topic here, =
Let us only remark that the case p = 1/2 needs a special treatment as in 1ge 6/7
Proposition 5.4. O
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Proposition 5.6

The probability of survival in Exercise 5.12, part 2) equals 0if A < 1, and 1—#*
if X > 1, where k is the initial Vugiel population and # € (0, 1) is a solution to

r=elm" A (5.28)

Proof

We denote by (i), i € N the probability of dying out subject to the condition
& = 1. Hence, if A = {£, =0 for n € N}, then

@ (i) = P (A& =1). (5.29)

Obviously, ¢(0) = 1 and the total probability formula together with the Markov
property (5.10) imply that for eachi € N
= ]
#(i) = P (Alé =1,& = j) P (& = jléo = 1)
j_—ﬂ
[= 4]
= Y P(Ales =5) P (& = jléo = 1)

=0
o0

= > o(i)p(il).

=0

Therefore, the sequence ¢(i), 1 € M is bounded (by 1 from above and by 0 from
below) and satisfies the following system of equations

o(i) = ) _o()p(li), i€N (5.30)
j=0
$(0) = 1.
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UNIT-I111
SYLLABUS

Markov processes with continuous state space: Introduction, Brownian motion — Weiner Process
and differential equations for Weiner process, Kolmogrov equations — first passage time
distribution for Weiner process — Ornstein — Uhlenbech process
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Consider a system starting in state x, at time 0. We suppose that the
system remains in state x, until some positive time 7,, at which time the
system jumps to a new state x, # x,. We allow the possibility that
the system remains permanently in state x,, in which case we set 1, = o0.
If 7, is finite, upon reaching x, the system remains there until some time
T, > 7, when it jumps to state x, # x,. If the system never leaves x,,
we set 7, = oo. This procedure is repeated indefinitely. If some 7, = oo,
we set 1, = oo forn > m.

Let X(¢) denote the state of the system at time ¢, defined by

X0, 0 =1 <7y,
X, T, <t <1,
X, T, 21 <13

0 X(f) =

The process defined by (1) is called a jump process. At first glance it might
appear that (1) defines X(¢) for all # = 0. But this is not necessarily
the case.

Consider, for example, a ball bouncing on the floor. Let the state of
the system be the number of bounces it has made. We make the physically
reasonable assumption that the time in seconds between the nth bounce
and the (n + 1)th bounce is 27". Then x, = n and

'r,,=1+1+--'+ =2 -
2 2
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We see that 7, < 2 and 1, - 2 as n — co. Thus (1) defines X(¢) only fo.
0 < t < 2. By the time ¢t = 2 the ball will have made an infinite numbe:
of bounces. In this case it would be appropriate to define X(¢) = o fo:
t = 2.

In general, if

) lim 7, < oo,
we say that the X(¢) process explodes. If the X(¢) process does no
explode, i.e., if

(3) lim 7, = oo,

then (1) does define X(¢) for all ¢ = 0.

We will now specify a probability structure for such a jump process
We suppose that all states are of one of two types, absorbing or non
absorbing. Once the process reaches an absorbing state, it remains ther
permanently. With each non-absorbing state x, there is associated &
distribution function F,(¢), — o0 < t < oo, which vanishes for 1 < 0, anc
transition probabilities Q.,, y € &, which are nonnegative and such tha
0., = 0and

@ 0., =1

A process starting at x remains there for a random length of time T,
having distribution function F, and then jumps to state X(z,) = y witt
probability Q,,, ye€ &. We assume that 7, and X(z,) arc choser
independently of each other, 1.e., that

Px(fl < ts X(Tl) = y) = Fx{t)er‘
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The transition function P,(t) cannot be used directly to obtain such
probabilities as

PX(t) = xqy..., X(t,) = x,)

unless the jump process satisfies the Markov property, which states that for
0<s; <" "<s,<s<tand xq,...,X%X, X, y€ &,

PX(@) =y X(sq) = x15.. .5 X(50) = Xp, X(5) = X) = Pt — 5).

By a Markov pure jump process we mean a pure jump process that
satisfies the Markov property. It can be shown, although not at the level
of this book, that a pure jump process is Markovian if and only if all
non-absorbing states x are such that

P(t,>t+s|1y,>98)=Pf(t;>1), 5120,
1.e., such that

) L=FCt+3) _{ _Fr@, st>o0

1 - F x(s)
Now a distribution function F,_satisfies (5) if and only if it is an exponential
distribution function (see Chapter 5 of Introduction to Probability Theory).
We conclude that a pure jump process is Markovian if and only if F_ is an
exponential distribution for all non-absorbing states x.
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Let X(¢), 0 € ¢ < w0, be a Markov pure jump process. If x is a non-
absorbing state, then F_ has an exponential density f,. Let g, denote the
parameter of this density. Then g, = 1/E,(r;) > 0 and

q.e” %, t >0,

I = [0, t < 0.

Observe that

P((t, =¢t) = f g.e” > ds = e™ 9, t > 0.
t

If x is an absorbing state, we set g, = 0.
It follows from the Markov property that for 0 < ¢ <--- <1, and
Xiy.eey XpIN &,

6) PX(t) = xq,..., X(t,) = x,)
= P(X(t;) = X)Pere(ts = 1)+ Pa_ye(tn — tamy)-
In particular, fors > 0Oand ¢ > 0
PX(1) =z, X(t + 5) = y) = P (OP,[(s).
Since

P (t 1 s) = Y PAX(t) =z, X(t + 5) = ),

we conclude that

(N P(t+5s)=YP. (OP,(), s=0andt>0.

Equation (7) is known as the Chapman-Kolmogorov equation.
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The quantities ¢,,, x € & and y € &, are called the infinitesimal parameters
of the process. These parameters determine g, and Q,,, and thus by our
construction determine a unique Markov pure jump process. We can
rewrite (10) in terms of the infinitesimal parameters as

(14) Pi(t) = Y q..P.,(1), t=0.

This equation is known as the backward equation.
If & is finite, we can differentiate the Chapman-Kolmogorov equation
with respect to s, obtaining

(15) Pi(t+5) =Y Po(OP,(s), s=0andt>0.

In particular,
PL(f) = ), P (1)P(0), =0,
z
or equivalently,

(16) P.(t) =}, P (D)q,, t=0.

Formula (16) is known as the forward equation. It can be shown that (15)
and (16) hold even if & is infinite, but the proofs are not easy and will be
omitted.

In Section 3.2 we will describe some examples in which the backward or
forward equation can be used to find explicit formulas for P, (¢).

Prepared by Dr. K. Kalidass, Asst Prof, Department of Mathematics, KAHE Page 7/7




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II M.Sc MATHEMATICS COURSE NAME: Stochastic Process
RSE DE: 17 P402 IT: IV(Branching pr BATCH-2017-201
UNIT-IV
SYLLABUS

Branching Processes: Introduction — properties of generating functions of Branching process—
Distribution of the total number of progeny, Continuous- Time Markov Branching Process, Age
dependent branching process: Bellman-Harris process.
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Let ¥ ={0,1,...,d} or & =1{0,1,2,...}. By a birth and death
process on & we mean a Markov pure jump process on & having infinites-
imal parameters g, such that

‘Ixy=0s Iy-—xl::-l.

Thus a birth and death process starting at x can in one jump go only to
the states x — 1 or x + |.

The parameters 4, = ¢, ., X €., and p, = g, . , x € ¥, are called
respectively the birth rates and death rates of the process. The parameters
g. and Q,, of the process can be expressed simply in terms of the birth
and death rates. By (13)

—dxx = 9x = Gx,x+1 + Ax,x~1s
so that
(17) Qxx = _{Ax + aux) and dx = A’x + Hy

Thus x is an absorbing state if and only if A, = u, = 0. If x is a non-
absorbing state, then by (12)

(
Ky = x -,
Ay + My

(18) ) P
Ay + Py
\0, elsewhere.

A birth and death process is called a pure birth process if u, = 0, x € &,
and a pure death process if 1, = 0, x € &. A pure birth process can move
only to the right, and a pure death process can move only to the left.

Prepared by K. Kalidass, Asst Prof, Department of Mathematics, KAHE Page 2/7




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II M.Sc MATHEMATICS COURSE NAME: Stochastic Process
RSE DE: 17 P402 IT: IV(Branching pr BATCH-2017-201

Example 1. Branching process. Consider a collection of particles
which act independently in giving rise to succeeding generations of
particles. Suppose that each particle, from the time it appears, waits a
random length of time having an exponential distribution with parameter
g and then splits into two identical particles with probability p and
disappears with probability 1 — p. Let X(¢), 0 < t < oo, denote the
number of particles present at time ¢. This branching process is a birth
and death process. Find the birth and death rates.

Consider a branching process starting out with x particles. Let
&y, ..., &, be the times until these particles split apart or disappear. Then
&y ..., &, each has an exponential distribution with parameter g, and
hence 7, = min (¢,,...,£,) has an exponential distribution with
parameter g, = xqg. Whichever particle acts first has probability p of
splitting into two particles and probability 1 — p of disappearing. Thus
forx > 1

Qx,x+l =p and Qx,x—l =1- P
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State O is an absorbing state. Since i, = 9,0, .+, and pu, = ¢,0, .,
we conclude that

A,=xqp and p,.=xg(1 —p), x>0

In the preceding example we did not actually prove that the process is a
birth and death process, i.c., that it “starts from scratch” after making a
jump. This intuitively reasonable property basically depends on the fact
that an exponentially distributed random variable ¢ satisfies the formula

PE>t+s5s|éE>5)=PE&>1), s, 1 >0,

but a rigorous proof is complicated.
By (17) and the definition of A, and pu,, the backward and forward
equations for a birth and death process can be written respectively as

{20) P;:y(t) = .»uxPx—l,y(r) - (Ax + u'x}ny{r) + lex+l,y(r)9 t 2 0’
and

(2]) P::y(t) = Ay—IPx.y—l(r) - (Ay + ﬂy)ny(f) + #yl lPx,yI 1(I),
t > 0.
In (21) we set A_; =0, and if & = {0,...,d} for d < o0, we set

Ha+1 = 0.
We will solve the backward and forward equations for a birth and death

process in some special cases. To do so we will use the result that if

(22) /@)= —of(t) + 9t), =20,
then
(23) S = fQe™™ + J'l e"‘“"}g(s) ds, t > 0.

The proof of this standard result is very easy. We multiply (22) through
by €** and rewrite the resulting equation as

d xr —_ 3
7 (e"f(1)) = e"g(1).

Integrating from O to 7 we find that

”,

e*g(s) ds,

r.n

e“f(t) = f(0) =




KARPAGAM ACADEMY OF HIGHER EDUCATION

CLASS: II M.Sc MATHEMATICS COURSE NAME: Stochastic Process
RSE DE: 17 P402 IT: IV(Branching pr BATCH-2017-201

3.2.1. Two-state birth and death process. Consider a birth
and death process having state space & = {0, 1}, and suppose that 0 and
1 are both non-absorbing states. Since u, = A, = 0, the process is
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determined by the parameters Ao and p,. For simplicity in notation we
set A = A, and u = u,. We can interpret such a process by thinking of
state 1 as the system (e.g., telephone or machine) operating and state 0 as
the system being idle. We suppose that starting from an idle state the
system remains idle for a random length of time which is exponentially
distributed with parameter A, and that starting in an operating state the
system continues operating for a random length of time which is
exponentially distributed with parameter p.

We will find the transition function of the process by solving the back-
ward equation. It is left as an exercise for the reader to obtain the same
results by solving the forward equation.

Setting y = 0 in (20), we see that

(24) Poo(t) = —APgo(t) + AP,o(2), t >0,
and
(25) Pio(t) = puPoo(t) — pPio(t), t=0.

Subtracting the second equation from the first,
d
It (Poo(t) — Pyo(1)) = —(4 + u)(Pyo(?) — Pyo(2)).

Applying (23),
(26) Poo() — Po(t) = (Poo(0) — P,o(0))e~ AHa2

= g (A+pk

Here we have used the formulas Py,(0) = 1 and P,,(0) = 0. It now
follows from (24) that

Pyo(t) = —MPoo(?) — Pyo(1)

= —je” Fmr
Thus

Poo(t) = Poo(0) + f " Po(s) ds

0

=1 — f Ae~ GHms g
0

A

(1 — g~ (Atu)ny
L L= Vil

= 1

—).-i-u
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3.2.2. Poisson process. Consider a pure birth process X(t),

0 < t < oo, on the nonnegative intcgers such that

Ay = 24 >0, x > 0.
Since a pure birth process can move only to the right,
(33) P()=0, y<xandtzx0.
Also P,.(t) = P(t, > t) and hence

(34) P (t)=¢* 1t>0.
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UNIT-V
SYLLABUS

Stochastic Processes in Queuing Systems: Concepts — Queuing model M/M1 — transient
behavior of M/M/1 model — Birth and death process in Queuing theory: M/M/1 — Model related
distributions — M/M/1 - M/M/S/S — loss system - M/M/S/M — Non birth and death Queuing
process: Bulk queues — M(x)/M/1.
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The analysis of a queueing system with fixed (deterministic) interarrival and
service times does not present much difficulty. We shall be concerned with
models or systems where one or both (interarrival and service times) are
stochastic. Their analyses will involve a stochastic description of the system
and related performance measures, as discussed below.

(1) Distribution of the number N(t) in the system at time ¢ (the number in
the queue and the one being served, if any). N(¢) is also called the queue
length of the system at time t. By the number in the system (queue), we
will always mean the number of custormers in the system (queue).

(2) Distribution of the waiting time in the queue (in the system), the time that
an arrival has to wait in the queue (remain in the system). If W), denotes
the waiting time of the nth arrival, then of interest is the distribution

of W,.
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(3) Distribution of the virtual waiting time W(t)—the length of time an
arrival has to wait had he arrived at time ¢.

(4) Distribution of the busy period being the length (or duration) of time
during which the server remains busy. The busy period is the interval
from the moment of arrival of a unit at an empty system to the moment
that the channel becomes free for the first time. The busy period is a
random variable.

From a complete description of the above distributions, various performance
measures of interest are obtained.
The problems studied in queueing theory may be grouped as:

(i) Stochastic behavior of various random variables, or stochastic processes
that arise, and evaluation of the related performance measures;

(ii) Method of solution—exact, transform, algorithmic, asymptotic, numer-
ical, approximations, etc.;

(1ii) Nature of solution—time dependent, limiting form, etc.;

(iv) Control and design of queues—comparison of behavior and perfor-
mances under various situations, as well as queue disciplines, service
rules, strategies, etc.; and

(v) Optimization of specific objective functions involving performance
measures, associated cost functions, etc.
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(3) Distribution of the virtual waiting time W(t)—the length of time an
arrival has to wait had he arrived at time ¢.

(4) Distribution of the busy period being the length (or duration) of time
during which the server remains busy. The busy period is the interval
from the moment of arrival of a unit at an empty system to the moment
that the channel becomes free for the first time. The busy period is a
random variable.

From a complete description of the above distributions, various performance
measures of interest are obtained.
The problems studied in queueing theory may be grouped as:

(i) Stochastic behavior of various random variables, or stochastic processes
that arise, and evaluation of the related performance measures;

(ii) Method of solution—exact, transform, algorithmic, asymptotic, numer-
ical, approximations, etc.;

(1ii) Nature of solution—time dependent, limiting form, etc.;

(iv) Control and design of queues—comparison of behavior and perfor-
mances under various situations, as well as queue disciplines, service
rules, strategies, etc.; and

(v) Optimization of specific objective functions involving performance
measures, associated cost functions, etc.
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The notation introduced by Kendall (1951) is generally adopted to denote a
queueing model. It consists of the specifications of three basic characteristics:
the input, the service time, and the number of (parallel) servers. Symbols used
to denote some of the common formulations are as follows:

M  Exponential interarrival (Poisson input) and service time distribution
(having Markov property)

Er  Erlang-k distribution

H  Hyperexponential distribution

PH Phase-type distribution

D Deterministic (constant)(interarrival or service time)

G Arbitrary (general) distribution

Denote by N(t) the number in the system (the number in the queue plus the
number being served, if any) at time ¢ measured from a fixed initial moment
(r = 0) and its probability distribution by

pu(t) = Pr{N(t) =n}, n=0,1,2,.... Then
pil)y =1, (pj(0)=0,7#1)

implies that the number of customers at the initial moment was i (where i
could be 0, 1,2,....). For a complete description of the stochastic behavior of
the queue-length processes { N(t),t > 0}, we need to find a time-dependent
solution p,(t), n = 0.1Itis often difficult to obtain such solutions. Or even when
found, these may be too complicated to handle. For many practical situations,
however, one needs the equilibrium behavior—that is, the behavior when the
system reaches an equilibrium state after being in operation for a sufficiently
long time. In other words, one is often interested in the limiting behavior of
pn(t) as t — oo, Denote

pn=lim py(t), n=0,12,...
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Theorem 2.1. Burke’s Theorem
In any queueing system in which arrivals and departures occur one by one and
that has reached equilibrium state,

ay =d, foralln=0.

Proof: Consider that an arrival will see, on arrival, # in the system; then
the number in the system will increase by 1 and will go from nto n 4 1.
Again, a departure will leave # in the system, implying that the number in
the system will decrease by 1 and will go from # + 1 to n. In any interval
of time T, the number of transitions A from # to n 4+ 1 and the number
of transitions B from n + 1 to # will differ at most by 1; in other words,
either A= B or A~ B=1. Then for large T, the rates of transitions A/ T
and B/ T will be equal. Thus, on the average, arrivals and departures always
see the same number of customers, which means that a, = d, always and
for every n = 0. ]
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Assume that steaﬂy state exasts and let

Pn = Ilim PriN(t) =n}), n=0,1,2,..., (3.2.1)
— 00

N(t) being the number in the system (in the service channel and in queue, if
any) at instant t; p, is also the proportion of time the process is in state n.
We proceed to derive the equations involving p, by using the rate-equality
principle; then we proceed to solve the equations to find p,.
Consider state n (n = 0). The system can go to the next state (» + 1) at rate
Apy, and it can come down from state (n + 1) to the original state n at rate

L P n+1-
For equilibrium these two rates—that is, the rate up from a particular state

n to the next state (n + 1)—and the rate down—that is, from the state (n+ 1)
to the original state #—must be equal. (In equilibrium, rate up = rate down.)

This implies that

’]"PH = KU Pui (n>=0)

A
or  Puyr = ;PH =apy = ﬂzpu—l [322}

n+ |

= PD

or py=a'py, n=0
Using Z pn = 1, one gets, for a < 1,
n=I(}

pn=1(1—aja", n=0,12,...
Since a=p, weget
po=(0—-a)=1-p
pr=(1=p)p", n=12 .. (3.2.3)

The distribution is geometric and is memoryless.
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Let N be the number and W the waiting time in the system in steady state. We
have

oo o0
E(Ny=) np,=) n(l—p)p"

n=0 n=1
=p{l_p}inpﬂ—] f-}(l_p} .ID (3'2.4}
— (1—-p)? 1—p
and
E{NY} =) m’pa=) n'(L-p)p"
n={ n=1|
=(1-p) ) {(n* = n)+n}p"
207 (1 - p)p 2p° p
=(1— + = +
p}(l—pﬁ 1-=p¥ (A-pP 1-p
_prp
(1= p)?
so that var{ N} = E{N?} — [E[N})?
o
_ _ 3.25
(1-p)? 523

Using Little’s formula L = A W, we get that the expected waiting time in the
system, E{ W), equals
E{N}

E{(W] = =1_° __1
ok A(=p) p-p)

(3.2.6)
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Answer ALL questions
PART - A (20 x 1 = 20 marks)

. There are types of stochastic processes
a. 1 b. 2
c.3 d. 4
. A —— state Markov process is called a Markov
chain
a. discrete b. continuous

c. bothaandb d. neither anorb

. In a process, future state depends only on the
present state is

a. random process
c. Markov process

b. stochastic process
d. non Markov process

. In a Markov chain {X,, : n > 0},

P(Xn+1 = ]an = Z'n)in—l = in—l/ T /XO = ZO) =
a. P(Xy41 = ]|X = ln) )
b. P(Xn+1 = ]an =i Xy-1 = Zn—l)

c. neither a nor b
d. bothaandb

10.

11.

12.

In a transition probability matrix,
a. Tow
c. neither a nor b

equaltol

b. column
d. bothaandb

In a doubly stochastic matrix, —— equal to 1
a. row b. column
c. neither a nor b d. bothaand b

If d(j) — — — —1, then state j is called periodic
a. = b. >
c. < d. neither a nor b

State j is said to be an absorbing state if p;; =
a. 1 b. 0
c. neither a nor b d. bothaand b

The collection of r.v.”s {X}, : n > 0} with P(X,, = 0) =
pand P(X, =1)=1-p, 0<p<1,is

a. random process b. stochastic process
c. Bernoulli process d. all the above

Consider patients coming to a doctor’s office at
random points in time. Let X,, denote the time
(in hours) that the nth patient has to wait in the
office before being admitted to see the doctor. The
process {X,} is - time and —— state space

b. continuous, continuous
d. continuous, discrete

a. discrete, discrete
c. discrete, continuous

State j is absorbing iff

a. pjj =1
c. bothaand b

b. pj =0forallk # j
d. neither a norb

i—jifp;>—-————-- for somen > 1
a. 1
c. -1

ac
on



13.

14.

15.

16.

17.

18.

19.

20.

21.

A state j is aperiodic iff

a.pj]-il b.p]-]-iO
c. both a and b d. neither a nor b

A state j is persistent if Fj; =

a. 1 b. 2
c.3 d. 4
A state jis transient if Fj; <

a. 1 b. 2
c.3 d. 4
A state j is ergodic if j is

a. persistent b. non-null

c. ergodic d. all the above

If pjj < oo then jis
a. persistent
c. ergodic

b. non-null
d. all the above

If Yoo pj; = oo then jis

a. persistent b. non-null

c. ergodic d. all the above
05 0 05

IfP=|10 1 0 [, then P
05 0 05

a. P b. P

c. bothaandb

Which of the following is true?
a. P = vy
c. bothaandb

d. neither anorb

b. pit™ = Py
d. neither anorb

Part B-(3 X 2 = 6 marks)

Define Markov process

22.

23.

24.

25.

Define aperiodic state

Draw the transition diagram of a Markov chain
with 4 recurrent states, each with periodicity 4.

Part C-(3 X 8 = 24 marks)

a) Describe about Polya’s urn model
OR

b) Consider a two-state Markov chain with the
transition probability matrix

l1-a a
P:[b 1—b]

with 0 <4,b < 1. Find P" whenn — o

a) Draw the state transition diagram and clas-
sify the states of the Markov chain

5 05

—_—_0 O

0.
0
0
0

!

Il
coro
cooo

OR

b) Consider a Markov chain with state space
{0, 1} and transition probability matrix

1 0
(1)
2 2

Classify the states 0 and 1.



26. a) Consider a Markov chain with state space
{0, 1,2} and transition probability matrix
Classify the state 0.
OR
b) Show that if P is a Markov matrix, then P" is

also a Markov matrix for any positive integer
n.

P=

—_—_ O
[e>New STl
O O
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Then E[X]
17MMP402 ) b, “d=p)
Tl o1
Karpagam Academy of Higher Education c. neither a nor b d. bothaand b
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Department of Mathematics 7. Recurssive formula for Poisson distribution is
Fourth Semester- II Internal test a. Pr+1 = ﬁpk b. pre1 = %Pk
1 k k
Stochastic Process C. Pra1 = A? Dk d. a1 = ﬁ Dk
Date:11.03.2019(FN) Time: 2 hours "
Class: II M.Sc Mathematics Max Marks: 50 8. P (1) =
a. E[X] b. E[X?]
c. E[X(X-1)] d. Var(X)
Answer ALL questions . . .
PART - A (20 X 1 = 20 marks) 9. In Poisson distribution X and Y are variables
a. dependent b. indendent
1. Pu(h) = 0(h) ifn > — — — c. neitheraorb d. none
a1 b. 2 . . e e
.0 d. all the above 10. gﬂﬁ cl)’rcl)lsson distribution is a —- probability distri-
2. P(z) converges for a. discrete continuous b. continuous
alzl=1 b. |z <1 c. discrete d. continuous discrete
c. eitheraorb d. neither a nor b 11, Ais a-
3. For a Poisson distribution, P"(1) = a. variable b. constant
a A b A2 C. parameter d. none
3 4
c.A d.-A 12. In Poisson distribution A——u
4. P'(1) = a. > b. =
c. neither a nor b d. bothaand b 13. A > —is called the rate of the distribution
. : . a. 1 b. 0
5. Suppose X is a geometric random variable. Then <5 d none
PX=s+1X2s) = 14. Exponential distribution is calculated using
by parts
a. P(X =5) b. P(X =7) a. differentiating b integration
c. neither anorb d. bothaand b ¢ bothaand b d. neither a and b



15.

16.

17.

18.

19.

20.

21.
22.
23.

24.

Markov process is a -property

a. memory less b memorable
c. neither a or b d. none
The outcomes are called the of Markov
chain

a. states b. trails
c. bothaandb d. none

The states of Markov chain can be described by—

a. only graph b. only matrix
c. neither a or b d. matrix and graph
In M/M/1 queue the first M denote

a. arrival b. srevice
C. server d.none

The traffic intensity is denoted by——

a. A b. u
c.p d. none
Steady state is - on time

a. dependent b. independent
c. neitheraorb c. none

Part B-(3 X 2 = 6 marks)

Define binomial distribution
Find the mean value of geometric distribution

State two properties of exponential distribution
Part C-(3 x 8 = 24 marks)

a) Derive Var(X) in terms of P.G.F of the random
variable X

25.

26.

OR

b) Describe about logarithmic series distribu-
tion

a) If X is an exponential distribution, show that
E[X"] = ;—'
OR

b) State and prove two properties of Poisson
distribution

a) Descibe about Poisson process
OR

b) Find the average number of customers in
M/M/1 queue.



	01.pdf (p.1-2)
	02.pdf (p.3-5)
	03.pdf (p.6-20)
	04.pdf (p.21-27)
	05.pdf (p.28-34)
	06.pdf (p.35-41)
	07.pdf (p.42-49)
	08.pdf (p.50-52)
	09.pdf (p.53-54)

