

Reg. No............•....................•

(lSCCP303]
PART C (I x 10 = 10 Marks)
CASE STUDY (Compulsory)

KARP AGAM UNIVERSITY
Karpagam Academy of Higher Education

(Established Under Section 3 ofUGC Act 1956)
COIMBA TORE - 641 021

(For the candidates admitted from 2015 onwards)

M.Com., DEGREE EXAMINATION, NOVEMBER 2016
Third Semester

26. Write a Java application for retail stores management which wants to automate
the following process
i. Booking product for customer ii. Bill generation for customer
iii. Inventory status check and updation.

COMMERCE (COMPUTER APPLICATIONS)

JAVA
Time: 3 hours Maximum: 60 marks

PART - A (20 xl = 20 Marks) (30 Minutes)
(Question Nos. 1 to 20 Online Examinations)

(Part - B & C 2 Vz Hours)

PART B (S x 6 = 30 Marks)
Answer ALL the Questions

21. a. Write short notes on Data types ofJava.
Or

b. Explain in brief about the concept of handling arrays in Java.

22. a. Explain the types ofInheritance with example.
Or

b. Write a program to find whether the given number is prime or not using
Constructor.

23. a. Explain different levels of Access protection in Java.
Or

b. What are Interfaces? How to define and implement Interfaces?

24. a. Explain the use of Priorities in thread with example.
Or

b. What is Synchronization? Explain it with example.

25. a. What is an applet? How do applets differ from application programs?
Or

b. Explain the methods used for drawing line and rectangles.

2

CIA I ANSWER KEY 2016

Prepared by K.Gomathi, Department of Commerce(Computer Application) 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMMERCE (CA)

SUBJECT : JAVA

SEMESTER : III

SUBJECT CODE: 16CCP304 CLASS : II M.COM CA

FIRST INTERNAL EXAMINATIONS-ANSWER KEY

PART A (20 *1=20 Marks)

1. Space

2. Classes

3. Abstraction

4. Data members

5. Methods

6. Inheritance

7. Local

8. Final class

9. = =

10. Cannot change its value

11. ?:

12. Array

13. Import

14. Constructor

15. Return type

16. Classes

17. Only in the same class

18. Java.lang

19. Java.util

20. Exception

CIA I ANSWER KEY 2016

Prepared by K.Gomathi, Department of Commerce(Computer Application) 2

CIA I ANSWER KEY 2016

Prepared by K.Gomathi, Department of Commerce(Computer Application) 3

PART B (3 *2=6 Marks)

21. (i) Byte Code

Java bytecode is the result of the compilation of a Java program, an intermediate

representation of that program which is machine independent.

(ii)Java Environment

The Java bytecode gets processed by the Java virtual machine (JVM) instead of the

processor. It is the job of the JVM to make the necessary resource calls to the processor in

order to run the bytecode.

22. “Command Line arguments”.

The command line arguments are handled using main() function arguments

where argc refers to the number of arguments passed, and argv[] is a pointer array which

points to each argument passed to the program.

23. Package Declaration

To make a Java package named pkg :

 Make a directory named pkg .
 Put all the .java files for the classes and interfaces in the directory pkg .
 Begin each of the .java files with a package declaration.
 Compile the files by running javac from pkg 's parent directory.

PART C(3 *8=24 Marks)

24. (a) Advantages of Object Oriented Programming

 Platform Independent

 Simple

 Robust

 Distributed

 Portable

 Dynamic

 Secure

 Performance

 Interpreted

CIA I ANSWER KEY 2016

Prepared by K.Gomathi, Department of Commerce(Computer Application) 4

(b) Control Structure in Java

The control statement is used to control the flow of execution of the program. This
execution order depends on the supplied data values and the conditional
logic. Java contains the following types of control statements:

1- Selection Statements
2- Repetition Statements
3- Branching Statements

Selection statements:

 If Statement:

This is a control statement to execute a single statement or a block of code, when the
given condition is true and if it is false then it skips if block and rest code of program is
executed.

 Syntax:

 if(conditional_expression){

 <statements>;
 ...;
 ...;
}

If-else Statement:

The "if-else" statementis an extension of if statement that provides another option when

'if' statement evaluates to "false" i.e. else block is executed if "if" statement is false.

 Syntax:

 if(conditional_expression){

 <statements>; ...;

 ...;

 }

 else{

http://ecomputernotes.com/java/what-is-java/what-is-java-explain-basic-features-of-java-language

CIA I ANSWER KEY 2016

Prepared by K.Gomathi, Department of Commerce(Computer Application) 5

 <statements>;

 ;

 ;

 }

Switch Statement:

In a switch block there can be one or more labeled cases. The expression that creates

labels for the case must be unique. The switch expression is matched with each case

label. Only the matched case is executed ,if no case matches then the default statement (if

present) is executed.

Syntax:

 switch(control_expression){

 case expression 1:

 <statement>;

 case expression 2:

 <statement>;

 ...

 ...

 case expression n:

 <statement>;

 default:

 <statement>;

 }//end switch

Repetition Statements:

While loop statements:

CIA I ANSWER KEY 2016

Prepared by K.Gomathi, Department of Commerce(Computer Application) 6

This is a looping or repeating statement. It executes a block of code or statements till the

given condition is true. The expression must be evaluated to a boolean value. It continues

testing the condition and executes the block of code. When the expression results to false

control comes out of loop.

Syntax:

 while(expression){

 <statement>;

 ...;

 ...;

 }

do-while loop statements:

This is another looping statement that tests the given condition past so you can say that the

do-while looping statement is a past-test loop statement. First the do block statements are

executed then the condition given in while statement is checked. So in this case, even the

condition is false in the first attempt, do block of code is executed at least once.

Syntax:

 do{

 <statement>;

 ...;

 ...;

 }while (expression);

for loop statements:

This is also a loop statement that provides a compact way to iterate over a range of values.

From a user point of view, this is reliable because it executes the statements within this

block repeatedly till the specified conditions is true.

CIA I ANSWER KEY 2016

Prepared by K.Gomathi, Department of Commerce(Computer Application) 7

Syntax:

for (initialization; condition; increment or decrement){

 <statement>;

 ...;

 ...;

 }

initialization: The loop is started with the value specified.

condition: It evaluates to either 'true' or 'false'. If it is false then the loop is terminated.

increment or decrement: After each iteration, value increments or decrements.

CIA I ANSWER KEY 2016

Prepared by K.Gomathi, Department of Commerce(Computer Application) 8

25. (a)Sum of series
AIM:

 To write a java program for find the sum of any number of integers

ALGORITHM:

 Step 1: Start the process.

Step 2 : Import input output package.

Step 3 : Create class name as series.

 Step 4 : In main function create the object name as “br” buffered reader class.

 Step 5 : Enter the value from user using readLine () method.

Step 6: Get the values for the required variables and convert into integer type.

Step 7: To calculate mul=mul*x;sum=sum+mul;

Step 8 : Display the result.

Step 9: Stop the Process

import java.util.*;

import java.io.*;

import java.lang.*;

class series

{

public static void main(String[] args) throws IOException

{

BufferedReader br=new BufferedReader(new InputStreamReader(System.in));

System.out.println("Enter the n number of values:");

CIA I ANSWER KEY 2016

Prepared by K.Gomathi, Department of Commerce(Computer Application) 9

int n=Integer.parseInt(br.readLine());

System.out.println("Enter the value of x:");

int x=Integer.parseInt(br.readLine());

int i,sum=1,mul=1;

for(i=1;i<=n;i++)

{

mul=mul*x;

sum=sum+mul;

}

System.out.println("Sum of Series=" + sum);

}}

OUTPUT:

Enter the n number of values: 5

Enter the value of x: 1

Sum of Series=6

CIA I ANSWER KEY 2016

Prepared by K.Gomathi, Department of Commerce(Computer Application) 10

(b) Prime or not
AIM:

 To check if a number is prime or not by talking the number as input from the

keyboard.

ALGORITHM:

Step 1 : Start the process.

 Step 2 : Import input output Stream.

 Step 3 : Create class name as prime.

Step 4 : In main function create the object name as “br” buffered reader class.

Step 5 : Enter the value from user using readLine () method.

Step 6 : Declare the variables as count=0,1 type int.

Step 7 : To check whether the given number is prime or not using n/2 and n%i==0
using for loop.

 Step 8 : Stop the process and Display the result.

SOURCE CODE

import java.util.*;

import java.io.*;

import java.lang.*;

class prime

{

public static void main(String [] args) throws IOException

{

int i,n,count=0;

CIA I ANSWER KEY 2016

Prepared by K.Gomathi, Department of Commerce(Computer Application) 11

BufferedReader br=new BufferedReader(new InputStreamReader(System.in));

System.out.println("Enter the value of n :");

n=Integer.parseInt(br.readLine());

for(i=2;i<n;i++)

{

if(n% i==0)

count++;

}

if(count!=0)

{

System.out.println("The given number is not prime number");

}

else

{

System.out.println("The given number is prime number");

}

}

}

OUTPUT:

Enter the value of n : 1

The given number is prime number

CIA I ANSWER KEY 2016

Prepared by K.Gomathi, Department of Commerce(Computer Application) 12

26. (a) Final Keyword

The final keyword in java is used to restrict the user. The java final keyword can be used
in many contexts. Final can be:

1. variable

2. method

3. class

Final Variable

Any variable which is declared by using the final keyword is called final variable. Final
variables can be declare with static keyword in java and treated as constant. A final
variable can only be explicitly assigned once.

Final method

To define final keyword with method declaration. It means a method with final keyword
is called final method. Final methods are faster than non-final methods because they are
not required to be resolved during run-time and they are bonded on compile time.

Final Class

A class with final keyword is known as final class in java. Final class is complete in
nature and cannot be inherited. Several classes in Java are final e.g. String, Integer and
other wrapper classes.

(b)Packages in Java
A Package can be defined as a grouping of related types (classes, interfaces,
enumerations) providing access protection and namespace management.

Existing packages in Java are

java.lang − bundles the fundamental classes

java.io − classes for input , output functions are bundled in this package

Since the package creates a new namespace there won't be any name conflicts with names
in other packages. Using packages, it is easier to provide access control and it is also
easier to locate the related classes.

Creating a Package
While creating a package, to choose a name for the package and include a package
statement along with that name at the top of every source file that contains the classes,
interfaces, enumerations, and annotation types that to include in the package.

CIA I ANSWER KEY 2016

Prepared by K.Gomathi, Department of Commerce(Computer Application) 13

The package statement should be the first line in the source file. There can be only one
package statement in each source file, and it applies to all types in the file.

If a package statement is not used then the class, interfaces, enumerations, and annotation
types will be placed in the current default package.

To compile the Java programs with package statements, you have to use -d option as
shown below.

javac -d Destination_folder file_name.java

CIA II ANSWER KEY 2016

Prepared by K.Gomathi Department of Commerce(Computer Application),KAHE Page 1

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMMERCE (CA)

SUBJECT : JAVA

SEMESTER : III

SUBJECT CODE: 16CCP304 CLASS : II M.COM CA

SECOND INTERNAL EXAMINATIONS-ANSWER KEY

PART A (20 *1=20 Marks)

1. Class name

2. 5

3. Buffered output stream

4. File

5. Main

6. Abstract window toolkit

7. Applets

8. Appletviewer

9. <applet></applet>

10. Font.Bold

11. Update()

12. x-y co-ordinates

13. runtime exceptions

14. exception and error

15. catch

16. throw

17. nested classes

18. checked exceptions

19. long

20. new born

CIA II ANSWER KEY 2016

Prepared by K.Gomathi Department of Commerce(Computer Application),KAHE Page 2

PART B (3 *2=6 Marks)

21. Exception are handled in java

An exception is an abnormal condition that arises in a code sequence at run time. A Java

exception is an object that describes an exceptional condition that has occurred in a piece

of code. When an exceptional condition arises, an object representing that exception is

created and thrown in the method that caused the error.

 22. Difference between preemptive scheduling and time slicing

 Under preemptive scheduling, the highest priority task executes until it enters the

waiting state or dead state or a higher priority task comes into existence

 Under time slicing,a task executes for a predefined slice of time and then

reenters a pool of ready tasks.

 The scheduler then determine which task should executes next ,based on priority

and other factors.

 23. Method invocation in an Applet
Executable applet is nothing but the .class file of applet, which is obtained by compiling

the source code of the applet. Compiling the applet is exactly the smae as compiling an

application using following command.

 javac appletname.java

The compiled output file called appletname.class should be placed in the same directory

as the source file.

PART C(3 *8=24 Marks)

24. (a)Keywords in Exception Handling

Try Block

It is a try block nested inside another try block. If inner try does not have a catch handler

then the stack is unwound and the next try block catch handlers are inspected for a match.

class NestTry

{

public static void main(String args[])

{

CIA II ANSWER KEY 2016

Prepared by K.Gomathi Department of Commerce(Computer Application),KAHE Page 3

try

{

int a=args.length;

int b=42/a;

System.out.println(“a=”+a);

try

{

if(a==1)

 a=9/(a-a);

if(a==2)

{

 int c[]={1};

 c[10]=99;

}

}

catch(ArrayIndexOutOfBoundException e)

{

System.out.println(“Array index out of bound” +e);

}

}

catch(ArithmeticException e)

{

System.out.println(“Divide by 0”+e);

}

}

}

throw Clause

It is possible for the program to throw an exception explicitly rather than being thrown by

the Java runtime system.

CIA II ANSWER KEY 2016

Prepared by K.Gomathi Department of Commerce(Computer Application),KAHE Page 4

Syntax:

Throw expression;

Here expression is an object of type Throwable or subclass of Throwable. There are 2

ways to create Throwable object

1. Using a parameter into catch clause

2. creating one with the new operator.

Eg.

throw new NullPointerException(“demo”);

throw new ArtithmeticException();

The flow of execution stops immediately after throw statement.

class throwtest

{

static void xyz()

{

try

{

Throw new NullPointerException(“Exception thrown explicitly”);

}

catch (NullPointerException e)

{

System.out.println(“Caught inside xyz”);

throw e;

}

}

public static void main(String args[])

CIA II ANSWER KEY 2016

Prepared by K.Gomathi Department of Commerce(Computer Application),KAHE Page 5

{

try

{

xyz();

}

catch(NullPointerException e)

{

System.out.println(“Caught inside main”+ e);

}

}

}

Output

Caught inside xyz

Caught inside main: java.lang.NullPointerException: Exception thrown explicitly

 (b)

EXCEPTION HANDLING

 AIM:

 To write a program to display message when mark exceeds hundred

ALGORITHM:

Step 1: Start the process.

 Step 2: Specify class name which implements Exception class.

 Step 3: In the main class create try block to check the condition

whether mark exceeds 100.

 Step 4: Create catch block to catch the exception thrown by the try block

 Step 5: Display the result.

CIA II ANSWER KEY 2016

Prepared by K.Gomathi Department of Commerce(Computer Application),KAHE Page 6

 Step 6: Stop the process.

SOURCE CODE

import java.io.*;

import java.lang.Exception;

class myExcept extends Exception

{

myExcept(String message)

{

super(message);

}

}

class numexp

{

public static void main(String args[]) throws IOException

{

BufferedReader h=new BufferedReader(new InputStreamReader(System.in));

int m1,m2,m3,no;

String name;

System.out.println("enter the register number");

no=Integer.parseInt(h.readLine());

System.out.println("enter the name");

name=h.readLine();

System.out.println("enter the three marks:");

m1=Integer.parseInt(h.readLine());

m2=Integer.parseInt(h.readLine());

m3=Integer.parseInt(h.readLine());

try

{

if(m1>100|m2>100|m3>100)

{

CIA II ANSWER KEY 2016

Prepared by K.Gomathi Department of Commerce(Computer Application),KAHE Page 7

throw new myExcept("marks should be less than 100");

}

}

catch(myExcept e)

{

System.out.println("\n");

System.out.println(e.getMessage());

System.exit(0);

}

System.out.println("name:"+name+"\t number:"+no+"\t mark 1:"+m1+"\t mark

2:"+m2+"\t mark 3:"+m3);

}}

OUTPUT:

Enter the register number: 101

Enter the name: Kichu

Enter the three marks:

60

70

80

Name: kichu number: 101 mark 1: 60 mark 2: 70 mark 3: 80

Enter the register number: 102

Enter the name: Kavi

Enter the three marks:

100

200

300

Marks should be less than 100

RESULT :

 The above program has been executed successfully and the output is verified.

CIA II ANSWER KEY 2016

Prepared by K.Gomathi Department of Commerce(Computer Application),KAHE Page 8

25. (a)Reading Console input

There are few ways to read input string from your console/keyboard. The

following smaple code shows how to read a string from the console/keyboard by

using Java.

Note: Java Console Example to read password

import java.io.*;

class ReadPasswordTest{

public static void main(String args[]){

Console c=System.console();

System.out.println("Enter password: ");

char[] ch=c.readPassword();

String pass=String.valueOf(ch);//converting char array into string.

}

public class ConsoleReadingDemo {

 public static void main(String[] args) {

BufferedReader reader = new BufferedReader(new

InputStreamReader(System.in));

 System.out.print("Please enter user name : ");

 String username = null;

 try {

 username = reader.readLine();

 } catch (IOException e) {

 e.printStackTrace();

 }

 System.out.println("You entered : " + username);

 Scanner in = new Scanner(System.in);

 System.out.print("Please enter user name : ");

 username = in.nextLine();

 System.out.println("You entered : " + username);

 Console console = System.console();

CIA II ANSWER KEY 2016

Prepared by K.Gomathi Department of Commerce(Computer Application),KAHE Page 9

 username = console.readLine("Please enter user name : ");

 System.out.println("You entered : " + username);

 } }

The last part of code used java.io.Console class. We cannot get Console instance

from System.Console() when running the demo code through Eclipse. Because

eclipse runs your application as a background process and not as a top-level

process with a system console.

(b)Writing Console Output

File file = new File("test.txt");

FileOutputStream fis = new FileOutputStream(file);

PrintStream out = new PrintStream(fis);

System.setOut(out);

System.out.println("First Line");

System.out.println("Second Line");

System.out.println("Third Line");

System.out.println("Fourth Line");

(b) Threads

Multithreading allows multiple tasks to execute concurrently within a single program.

The advantage of multiple threads in a program is that it utilizes system resources better

because other threads can grab CPU time when one line of execution is blocked.

MULTIPLICATION TABLE

AIM:

 To write a program to display multiplication table using thread

ALGORITHM:

 Step 1: Start the process.

CIA II ANSWER KEY 2016

Prepared by K.Gomathi Department of Commerce(Computer Application),KAHE Page 10

 Step 2: Specify class name which implements Runnable interface.

 Step 3: Define method name which displays multiplication table.

 Step 4: In the main class create the thread for different number and start the

 thread by using the thread object

 Step 5: Display the result.

 Step 6: Stop the process.

SOURCE CODE

import java.io.*;

class table implements Runnable

{

int n;

public table (int x)

{

n=x;

}

public synchronized void run()

{

for(int i=1;i<=5;i++)

{

System.out.println(i+"*"+n+"="+(i*n));

}

}

}

public class multi

{

public static void main(String args[])

{

table t1=new table(3);

table t2=new table(4);

table t3=new table(9);

CIA II ANSWER KEY 2016

Prepared by K.Gomathi Department of Commerce(Computer Application),KAHE Page 11

Thread t=new Thread(t1);

t.start();

t=new Thread(t2);

t.start();

t=new Thread(t3);

t.start();

}

}

OUTPUT:

1*3=3

1*4=4

1*9=9

2*3=6

2*4=8

2*9=18

3*3=9

3*4=12

3*9=27

4*3=12

4*4=16

4*9=36

5*3=15

5*4=20

5*9=45

RESULT :

 The above program has been executed successfully and the output is verified.

26. (a)Explain the process involved in drawing ellipses and circle in graphics

Drawing Ellipses and Circles and Ovals

CIA II ANSWER KEY 2016

Prepared by K.Gomathi Department of Commerce(Computer Application),KAHE Page 12

 public abstract void drawOval (int x, int y, int width, int height):- The

drawOval() method draws an oval in the current color within an invisible

bounding rectangle from (x, y) to (x+width, y+height). You cannot specify the

oval's center point and radii. If width and height are equal, you get a circle. If

width or height is negative, nothing is drawn.

 public abstract void fillOval (int x, int y, int width, int height):- The fillOval()

method draws a filled oval in the current color within an invisible bounding

rectangle from (x, y) to (x+width-1, y+height-1). You cannot specify the oval's

center point and radii. Notice that the filled oval is one pixel smaller to the right

and bottom than requested. If width or height is negative, nothing is drawn.

Example:

import java.awt.*;

import java.applet.*;

/*

<applet code="Ovals" width=300 height=200>

</applet>

*/

public class Ovals extends Applet

{

 public void init()

 {

 setBackground(Color.black);

 setForeground(Color.green);

 }

 public void paint(Graphics g)

 {

 g.drawOval(10, 10, 50, 50);

 g.fillOval(100, 10, 75, 50);

 g.drawOval(190, 10, 90, 30);

 g.fillOval(70, 90, 140, 100);

 }

CIA II ANSWER KEY 2016

Prepared by K.Gomathi Department of Commerce(Computer Application),KAHE Page 13

 }

Output:

(b) Life Cycle of an applet

 Various states, an Applet, undergo between its object creation and object removal

(when the job is over) is known as life cycle. Each state is represented by a method.

There exist 5 states represented by 5 methods. That is, in its life of execution, the

applet exists in one of these 5 states.

 These methods are known as "callback methods" as they are called automatically

by the browser whenever required for the smooth execution of the applet.

Programmers just write the methods with some code but never call.

CIA II ANSWER KEY 2016

Prepared by K.Gomathi Department of Commerce(Computer Application),KAHE Page 14

Four methods in the Applet class:

� init: This method is intended for whatever initialization is needed for your applet.

It is called after the param tags inside the applet tag have been processed.

� start: This method is automatically called after the browser calls the init method.

It is also called whenever the user returns to the page containing the applet after

having gone off to other pages.

� stop: This method is automatically called when the user moves off the page on

which the applet sits. It can, therefore, be called repeatedly in the same applet.

� destroy: This method is only called when the browser shuts down normally.

Because applets are meant to live on an HTML page, you should not normally leave

resources behind after a user leaves the page that contains the applet.

� paint: Invoked immediately after the start() method, and also any time the applet

needs to repaint itself in the browser. The paint() method is actually inherited from the

java.awt.

Lesson Plan 2016 -2018
Batch

Prepared by K.Gomathi, Department of Commerce, KAHE 1/6

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.
(For the candidates admitted from 2016 onwards)

 DEPARTMENT OF COMMERCE

LECTURE PLAN

STAFF NAME : K.GOMATHI
SUBJECT NAME : JAVA SUBJECT CODE: 16CCP304
SEMESTER : III CLASS : II M.COM CA

UNIT-I

Sl
No.

Lecture
Duration

(Hour)
Topics to be Covered

Support
Materials

1 1

Introduction Of Object-Oriented
Programming

 Object-Oriented Programming Concepts
 Recapitulating Procedure-Oriented

Programming

T1:19-26
R2:1-7 R3: 3-

8
R4:1-3 W2

 Structured versus Object –Oriented
Approach R1:17-25

R2::7-8
2 1 OOPs Language

3

1
The Java Language

 Features of Java

R2:10-12 R3:
13-15

R5: 3-5

4 1
 Java Environment
 The Java Architecture

R2:11-15

5 1
 Java Development Kit
 Types of Java Program

R1:25-31
R2:15-17
R3: 27-30

R5:4

6 1

Variable Declaration & Arrays
 Data Types In Java
 Java Tokens
 Variable Declaration

T1:47-60
R1:42-56
R2:20-24

R3:35-37,51-
54

R5: 9-12 W1

7 1 Type Casting and conversion T1:62-66

Lesson Plan 2016 -2018
Batch

Prepared by K.Gomathi, Department of Commerce, KAHE 2/6

8 1 Arrays

R1:57-67
R2:24-28
R3:59-61
R4:33-40

9 1
Operators

 Operators Introduction
 Operator Precedence

T1:67-87
R1: 74-98
R2:31-38
R3:69-82
R5:12-13

10 1
Control Statements

 Control Statements-Introduction
 Selection constructs

T1:90-97 W1
R1:100-108
R2:41-51
R3:88-123
R4: 22-25

11 1
 Iteration constructs
 Jump Statements

T1:90-97
R1:109-127

R2:47-
51R3:111-123

R5: 26-31

12 1
Recapitulation & Important Questions
Discussion

Total No .Of Hours 12 Hours

UNIT –II

1 1
Introduction to Classes

 Class Fundamentals
 Declaring Objects

T1:106-107
R1:129-134
R2::54-56

R3:129-130

2 1
 Assigning Object Reference Variables
 Methods

T1:108
R1:134 -145

R2:56-59
R3:130-133

3 1
Constructors

 Parameterized Constructors

T1:114-115
R1:145-149
R2:59-61

R3:137-138

4 1
 The this Keyword
 Garbage Collection
 Finalize() Method

R1:149-151
R2:65-66
R5:79,90

5 1
Methods and Classes

 Overloading Methods

T1:115-116
R2:70-72

R1:156-159 W2

6 1
 Overloading Constructor

 R1: 159-162

R2:72-74

Lesson Plan 2016 -2018
Batch

Prepared by K.Gomathi, Department of Commerce, KAHE 3/6

 W2

7 1
 Returning Objects
 Recursion

R1:168 -172
R2:78-81

8 1
 Static
 Final
 Nested and Inner Class

R1:176-184
T1:123-124
R2:84 -85

9 1 Command line Arguments
R1:188

R2:85-86

10 1

Inheritance
 Basics of Inheritance
 Super Class Variable And Subclass

Object

T1:118-122
R1:190-196
R2:89-93

11 1
 Method Overriding
 Final Keyword

T1:120-122
R1: 208-209
R2:100-103

12 1
Recapitulation & Important Questions
Discussion

Total No .Of Hours 12 Hours

UNIT-III

Sl
No.

Lecture
Duration

(Hour)
Topics to be Covered

Support
Materials

1 1
Packages and Access Modifiers

 Packages –An Introduction

T1:129-130 W1
R1:224-227
R2:161-16

R3:188 R5: 84

2 1
 Package Declaration
 Access Protection

R2:164-165
R3:192-193

 R5: 84

3 1 Importing Packages T1:132-143
R1:227-230
R2:167-174

4 1

Interfaces
 Defining an Interface
 Implementing Interfaces

5 1
Exception Handling : Introduction

 Fundamentals of Exception handling
T1:166 R1:250
R2:120-121 W1

6 1 Hierarchy Of The Exception Classes R2:121

7 1 Types Of Exception
T1:166 R1: 251-

252

8 1
 Try and Catch
 Multiple Catch

T1:166-175
R2:161-166

Lesson Plan 2016 -2018
Batch

Prepared by K.Gomathi, Department of Commerce, KAHE 4/6

9 1
 Nested Try
 Throw

R3:188-193

10 1
 Throws
 finally

11 1 Built in Exception R2:133

12 1
Recapitulation & Important Questions
Discussion

Total No .Of Hours 12 Hours

UNIT IV

1 1
Multithreaded Programming

 The Thread Moel
T1:181-185
R2:138-146

2 1 Life cycle of Thread

3 1 Thread Creation R2:140

4 1 Multiple thread

5 1 Thread Priorities T1:188-190
R1:292-297
R2:149-152 6 1 Synchronization

7 1
 Inter thread Communication
 Suspending,

R2:152-155

8 1 Resuming and Stopping Threads R2:155-158

9 1
Input Output Classes

 Input and Output Operations

T1:219-220
R2:253-254

R3:293

10 1 Input Stream Classes
T1:224-225 R1:

314-318
R2:258-263
R5:223-225 11 1 Output Stream Classes

12 1
Recapitulation & Important Questions
Discussion

Total No .Of Hours 12 Hours

UNIT-V

1 1
Applet

 Applet Basics

T1:253-256
R1:328-331

2 1 Building Applet Code
R2:292

R3:237-245
R5:100 W1

3 1
 Applet Life Cycle
 Creating an executable applet

T1:262-267
R1:705-712

R2:293 R4:110-

Lesson Plan 2016 -2018
Batch

Prepared by K.Gomathi, Department of Commerce, KAHE 5/6

111

4 1 Designing a Web Page
T1:268-272
R1:712-715

5 1
 Running the applet
 Getting input from the user

R2:302-304
R4:112-115

6 1
Graphics Programming

 The Graphics Class
R2:300-302

7 1
 Line and Rectangle
 Circle and Ellipse

8 1
 Using Controls loops in applet
 Drawing bar charts

R1:695-702
R5:150-158

9 1
Recapitulation & Important Questions
Discussion

10 Previous year ESE Question Papers

11 1 Previous year ESE Question Papers

12 Previous year ESE Question Papers

Total No .Of Hours 12 Hours

Total Planned Hours 60 Hours

Lesson Plan 2016 -2018
Batch

Prepared by K.Gomathi, Department of Commerce, KAHE 6/6

Text Book

1. Partrick Naughton. (2002). Java Hand Book. New Delhi: McGraw Hill Publishing Company

Limited.

Reference Books

1. Herbert Schildt. (2014).Java Complete Reference, 9th edition, Tata McGraw hill.

2. Permanand Mohan. (2013). Fundamentals of Object-Oriented Programming in Java, 1st

edition, Createspace Independent Publishing

3. Balagurusamy,E. (2014). Programming with Java, 5th edition, Tata McGraw-hill Publishing

Company limited.

4. Daniel Liang,Y. (2015). Introduction to Java Programming, 10th edition, Pearson Prentice
Hall.

Website

1. http://www.tutorialspoint.com/java/
2. http://docs.oracle.com/javase/tutorial/java/
3. http://javabeginnerstutorial.com/core-java/
4. http://www.learnjavaonline.org/

http://docs.oracle.com/javase/tutorial/java/
http://www.learnjavaonline.org/

SUBJECT: : JAVA

SEMESTER : III

SUBJECT CODE: 16CCP304 CLASS : II M.COM CA

QUESTIONS OPT1 OPT2 OPT3 OPT4 ANSWER

1

It takes no parameters Default Constructors Copy Constructors Parameter Constructor Function Default Constructors

2

It is required when objects are required to perform a similar task Method Overriding Polymorphism Static Binding Method Overloading Method Overloading

3

It is used to refer to the current object this reference that reference dot Arrow this reference

4

Which of the following is a valid identifier? area Class 9X 8+9 area

5

 A literal character is represented inside a pair of ______ single quotes double quotes brackets paraenthesis single quotes

6

 short is a signed _________ type 8 bit 16 bit 32 bit 64 bit 16 bit

7

Single precision is specified by ________keyboard int double float char float

8

 An _________ is a group of like_typed variables that are referred to

by a common name

instance array class Method instance

9

 The operators which have single operand is called ______ binary unary ternary logical binary

10

 The operators which come after the operand is called __ postfix prefix superfix superfix postfix

11

 A ________ is the one that describes the general attributes of an

object, including types of each attribute and the methods that can

operate on the object

 object variable methods functions object

12

 Which is invalid? int a; float x,y,z; INT abc; double a; INT abc;

13

Which of these data type requires the most amount of memory? long Int Short byte long

14

To declare an int variable number with initial value 2, you write int number = 2L; int number = 2l; int number = 2; int number = 2.0; int number = 2;

15

What is result of 45 / 4? 10 11 11.25 12 11

16

Which of the following assignment statements is correct? char c = 'd'; char c = =100; char c = "d"; char c = "100"; char c = 'd';

17

The equal comparison operator in Java is __________. <> != == ^= ==

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMMERCE (CA)

JAVA (16CCP304) - UNIT II

18

To add number to sum, you write (Note: Java is case_sensitive). number += sum; number = sum + number; sum = Number + sum; sum += number; sum += number;

19

What are the values of X and Y. if x=5 and y=++x x=6 and y=6 x=5 and y=6 x=5 and y=5 x=0 and y=5 x=6 and y=6

20

A___________ variable is known only in the method that declares

the variable.

 Local Global Static Auto Local

21

Which of the following is a valid identifier? $343 Class 9X 8+9 $343

22

To declare a constant MAX_LENGTH inside a method with value

99.98, you write

 final MAX_LENGTH =

99.98;

 final float

MAX_LENGTH = 99.98;

 double

MAX_LENGTH =

99.98;

 final double

MAX_LENGTH =

99.98;

 final double MAX_LENGTH = 99.98;

23

Which of the following is a constant, according to Java naming

conventions?

 MAX_VALUE Test read ReadInt MAX_VALUE

24

A class that cannot be subclassed is called a _______ final class final vairable final keyword final method final class

25

Inheritance is the process of using classes in the

established standard Java

Language library.

using features from an

existing class.

combining data and the

methods, which process

the data, inside the same

 dividing a program into

multiple related files for

each class in the

using features from an existing class.

26

Which of the following expression results in a value 1? 2 % 1 15 % 4 25 % 5 37 % 6 37 % 6

27

To assign a double variable d to an float variable x, you write x = (long)d x = (int)d; x = d; x = (float)d; x = (float)d;

28

Which of the following assignment statements is illegal? float f = _34; int t = 23; short s = 10; int t = (int)false; int t = (int)false;

29

If you attempt to add an int, a byte, a long, and a double, the result

will be a _____ value.

 byte int; long; double; double;

30

Which of the following is the correct expression of character 4? 4 "4" '\0004' ‘4’ ‘4’

31

What declarations are required for every Java application? A class and the main() method declarationsA Class declarations Only main() declarations public access modifier A class and the main() method declarations

32

Which of the following assignment statements is correct? char c = 'd'; char c = =100; char c = "d"; char c = "100"; char c = 'd';

33

Which of the Boolean expressions below is incorrect? (true) && (3 => 4) !(x > 0) && (x > 0) (x > 0) || (x < 0) (x !== 0) || (x = 0) (true) && (3 => 4)

34

Which of the following is the correct expression that evaluates to

true if the number x is between 1 and 100 or the number is

negative?

 1 < x < 100 && x < 0 ((x < 100) && (x > 1)) ||

(x < 0)

 ((x < 100) && (x > 1))

&& (x < 0)

 (1 > x > 100) || (x < 0) ((x < 100) && (x > 1)) || (x < 0)

35

The "less than or equal to" comparison operator in Java is

__________.

 < <= =< << <=

36

The equal comparison operator in Java is __________. <> != == ^= ==

37

Suppose x=10 and y=10 what is x after evaluating the expression (y

> 10) & (x++ > 10).

9 10 11 12 11

38

What is final variable? cannot change its value value can be changed value cannot be assigned value can assign cannot change its value

39

The __________ method parses a string s to a double value. double.parseDouble(s); Double.parsedouble(s); double.parseDouble(s); Double.parseDouble(s); Double.parseDouble(s);

40

The __________ method returns a raised to the power of Math.power(a,b) Math.exponent(a,b) Math.pow(a,b) ; Math(a.b) Math.pow(a,b) ;

41

If a program compiles fine, but it produces incorrect result, then the

program suffers __________.

 compilation error runtime error logic error Syntax error logic error

42

Analyze the following code: boolean even = false; if (even = true) {

System.out.println("It is even!"); }

 The program has a

syntax error.

 The program has a

runtime error.

 The program runs fine,

but displays nothing.

 The program runs fine

and displays It is even!.

 The program runs fine and displays It is even!.

43

Variables of type boolean are given the value ________ by default. 1 0 true FALSE FALSE

44

Which one of the following is conditional operator? ?: ?; ?. :? ?:

45

The number used to refer to a particular element of an array is called

the element’s _________

 Pointer Index 0 1 Index

46

________ is an object that contains elements of same data type. Array Structure Class Object Array

47

What is the representation of the third element in an array called a? a[2] a(2) a[3] a(3) a[2]

48

Which of the following is correct? int[] a = new int[2]; int a[] = new int[2]; int[] a = new int(2); int a() = new int[2]; int[] a = new int[2];

49

Which of the following statements is valid? int i = new int(30); double d[] = new

double[30];

 char[] c = new

char[4]{'a', 'b', 'c', 'd'};

 char[] c = new char(); double d[] = new double[30];

50

the length of a string by calling the ____ method strlen() len() length() none length()

51

 What are the two parts in executing a Java program and their purposes? Java compiler and Java

interpreter

Java Compiler and Source

Code

Java Interpreter an

Source Code

JVM and throws Java compiler and Java interpreter

52

 _________ is a keyword import loop export none import

53

Which of the following is a method having same name as that of it’s

class?

finalize delete class constructor constructor

54 Constructor does not hava any __________ return type void object class return type

55

Which function is used to perform some action when the object is to

be destroyed?

Finalize() delete() main() void() Finalize()

56

Which of these access specifiers must be used for main() method? private public protected import public

57

Arrays in Java are implemented as? class object variable methods object

58

Which of this keyword must be used to inherit a class? super this extent extends extends

59

Which of these is correct way of inheriting class A by class B? class B + class A {} class B inherits class A {} class B extends A {} class B extends class A

{}

 class B extends A {}

60

Which of this keyword can be used in subclass to call the

constructor of superclass?

super this extent extends super

SUBJECT: : JAVA

SEMESTER : III

SUBJECT CODE: 16CCP304 CLASS : II M.COM CA

QUESTIONS OPT1 OPT2 OPT3

1 Which of these keywords is used to define packages in Java? pkg Pkg package

2

Which of these is a mechanism for naming and visibility control of a

class and its content? Object Packages Interfaces

3

Which of these access specifiers can be used for a class so that it’s

members can be accessed by a different class in the different
package? Public Protected Private

4
Which of the following is correct way of importing an entire package
‘pkg’? import pkg. Import pkg. import pkg.*

5 Which of the following package stores all the standard java classes? lang java util

6 Which of these keywords is used to define interfaces in Java? interface Interface intf

7 A package is container of _____ Methods Objects Classes

8 If a variable is declared as private , then it can be used in _______ Any class of any package Any class of same package Only in the same class

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMMERCE (CA)

JAVA (16CCP304) - UNIT III

9 which package is imported implicitly? java.applet java.util java.lang

10 Math class is in ………package. java.io java.lang java.util

11

An _________ is a condition that is caused by a runtime error in the
program

throw exception handle

12 The data type wrapper classes are in……….package java.lang java.io java.util

13

Exception can be generated by the ___________ or manually by the

code

Throwable class Java runtime system object

14

All exception types are subclasses of the built_in class ____________ Throwable RuntimeException StackTree

15

All exception classes are divided into ________ groups 3 4 2

16

The _______ defines the exceptions which are not expected to be
caught

java.lang.Error java.lang.Math java.lang.Throwable

17

When an exception occurs within a java method, the method creates
an exception object and hands it over to the runtime systewm is called

catching the exception throwing an exception handle the exception

18

When java method throws an exception the java runtime system
searches all the methods in the call stack to find one that can handle

this type of exception is known as __________

catching the exception throwing an exception handle the exception

19 Inner classes are anonymous classes nested classes sub classes

20

The errors are printed by ____________ Stack Trace StackTree Message

21

Packages denote _____ classes and interfaces class classes

22

Choose the correct statement for package decleration package package_name; packagepackage.name package_name

23

To compile and running packages from a command line javac
package_name/classname.

java

javac package java classname

24

* symbol denotes wildcard character asterick multiplication

25

All exception classes are divided into ________ groups 3 4 2

26

If a class includes an interface but does not fully implement the
method is ____

partial implementations callback() final()

27

One interface can inherit another by use of the keyword extends scope braces

28

Java exception handling is managed via _____ keyword 5 4 3

29

A _____ statement cannot catch an exception thrown by another try

statement

catch try throw

30

Throwable overrides the _________ method toString() String() get()

31

The general form of throw statement is throw ThrowableInstance; throw; throw classname;

32

____ clause lists the types of exceptions that a method might throw throw IO exception try

33

_______ creates a block of code that will executed after a try/catch
statements.

finally try catch

34

The ________ class does not define any methods of its own. exception java throw

35

Choose the correct statement for displaying output system.out.println("**") System.out.println("**") system.out.Println("**")

36

Exception performs ______________ tasks 3 4 5

37

Each of Exception's predefined class provide ______________
constructors

3 4 5

38

Once an exception has been thrown, it must be ________ by an
exception handler

caught try catch

39

 ____________ is an important subclass of exception RuntimeException AarithmeticException NullException

40

There are ___________ ways of creating Throwable object 3 4 5

41

Certain block of code necessarily has to be run no matter of what
exceptions occurs. Those codes are identified using the keyword

throw final finally

42

When an exceptional conditional arises, an object representing that
exeption is created and _____ in the method that caused the error.

thrown catch try

43

Program statements that you want to monitor for exceptions are
contained within ________ block

try catach final()

44

If an exception occurs within the try block, then it is _____ thrown thwows catch

45

Your code can catch this exception using _____ and handle it in some
rational manner.

catch IO exception try

46

System-generated exceptions are automatically ______ by the Java
run-time system

thrown throw try

47

Manually, throw an exception , use the keyword ______ throw threw throws

48

The compiler checks that the method must either handle the exception
or pass it to the caller mehod is

checked exceptions unchecked exceptions runtime exceptions

49

The ______________ Keyword is used to specify a block of code that
should be guarded against all exceptions.

Catch try exception

50

Unchecked exceptions are extensions of ________ checked exceptions unchecked exceptions runtime exceptions

51

The two subclass of throwable class are __________ Exception and Error Exception and handler throw and throwable

52

Exception performs ______________ tasks 3 4 5

53

When java method throws an exception the java runtime system

searches all the methods in the call stack to find one that can handle
this type of exception is known as __________

catching the exception throwing an exception handle the exception

54

When an exception occurs within a java method, the method creates

an exception object and hands it over to the runtime systewm is called

catching the exception throwing an exception handle the exception

55

The _______ defines the exceptions which are not expected to be
caught

java.lang.Error java.lang.Math java.lang.Throwable

56

One try block can be ____ inside the another try block nested merged placed

57

 ______________ specifies the type of exception to be caught. Catch try exception

58

All exception types are subclasses of the built_in class ____________ Throwable RuntimeException StackTree

59
Exception can be generated by the ___________ or manually by the
code

Throwable class Java runtime system object

60

 _____________ keyword is used to identify the list of possible
exceptions that a method might throw.

throw try catch

OPT4 ANSWER

Package package

import Packages

 default Public

 Import pkg.* import pkg.*

java.packages java

 Intf interface

Variables Classes

Only subclass in that

package Only in the same class

java.io java.lang

java.applet java.lang

catch exception

java.applet java.lang

catch Java runtime system

LocalizedMessage Throwable

6 2

java.lang.IOException java.lang.Error

get the exception throwing an exception

get the exception catching the exception

 derived classes nested classes

Error Stack Trace

interface classes and interfaces

package package.name package package_name;

package.classname.javac javac
package_name/classname.java

special character wildcard character

6 2

greed() partial implementations

inheritance extends

2 5

throws catch

put() toString()

throw throws throw ThrowableInstance;

catch throw

throw finally

package exception

system.Out.println("**") System.out.println("**")

2 4

2 2

send to source file caught

Subclasses of Throwable RuntimeException

2 2

try finally

finally thrown

throw try

IO Exception thrown

throw catch

catch thrown

catch throw

IO Exception runtime exceptions

block of code try

IO Exception runtime exceptions

try and catch Exception and Error

2 4

get the exception catching the exception

get the exception throwing an exception

java.lang.IOException java.lang.Error

chained nested

block of code Catch

LocalizedMessage Throwable

catch Java runtime system

block of code throw

SUBJECT: : JAVA

SEMESTER : III

SUBJECT CODE: 16CCP304 CLASS : II M.COM CA

QUESTIONS OPT1 OPT2 OPT3 OPT4 ANSWER

1

The concept of reading and writing data as ______________ of

either bytes or characters stream file java.io reader stream

2 What is the mechanisam defind by java for the Resources to be used by only one Thread at a time?
priority parameters arguments Synchronization Synchronization

3

To support input and output package ________is used
java.util java.awt java.lang java.io java.io

4 What is the data type for the parameter of the sleep() method?
long int byte double long

5 What is the mechanism defined by java for the Resources to be used by only one Thread at a time?
priority parameters arguments Synchronization Synchronization

6 Garbage collector thread belongs to which priority?
high-priority low-priority middle-priority highest-priority low-priority

7

When a Java program starts up, ____ thread begins running

immediately program main function input main

8

The ____ method causes the thread from which it is called to

suspend execution for the specified period of milliseconds wait() notify() sleep() run() sleep()

9

To implement Runnable, a class need only implement a single

method called ____ wait() notify() sleep() run() run()

10

A ____ is an object that is used as a mutually exclusive lock to

achieve synchronization monitor thread process applet monitor

11 Garbage collector thread belongs to which priority?
high-priority low-priority middle-priority highest-priority low-priority

12

InputStream suports certain methods, all of which throw an

IOException on error conditions ByteStreams InputStream OutputStream Character streams InputStream

13

When a Java program starts up, ____ thread begins running

immediately program main function input main

14

The ____ method causes the thread from which it is called to

suspend execution for the specified period of milliseconds wait() notify() sleep() run() sleep()

15

To implement Runnable, a class need only implement a single

method called ____ wait() notify() sleep() run() run()

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMMERCE (CA)

JAVA (16CCP304) - UNIT IV

16

A ____ is an object that is used as a mutually exclusive lock to

achieve synchronization monitor thread process applet monitor

17 What is the data type for the parameter of the sleep() method?
long int byte double long

18

_________ allows multiple tasks to execute concurrently within a

single program threads multithreading execution scheduling multithreading

19

________ method is used to avoid collision
synchronization multithreading runnable deadlock synchronization

20

_____ allows a running program to perform several tasks apparently

at the same time synchronization multithreading runnable deadlock multithreading

21

Any single path of execution within a program that can be executed

independently, is called a thread multithreading runnable deadlock thread

22

______ has its own stack, priority and virtual set of registers
thread multithreading runnable deadlock thread

23

The ________ class provides a buffered stream of input
DataInputStream DataOutputStream BufferedInputStream BufferedOutputStream BufferedInputStream

24

The ________ class maintains a buffer that is written to when you

write to the stream DataInputStream DataOutputStream BufferedInputStream BufferedOutputStream BufferedOutputStream

25

The _____________ class is designed primarily for printing output

data as text print primtln PrintStream write PrintStream

26

Runnable interface is defined in one of the JDK packages called
java.util java.awt java.lang java.io java.lang

27

The method which specifies only one method, the run() method is
runnable multithreading synchronization deadlock runnable

28

_________ method establishes the new entry point for another,

concurrent thread of execution run() runnable sleep() wait() run()

29

DataInput is __________________

an abstract class
used to read primitive data

types

an interface that defines

method to open files

an interface that defines

method to read primitive

data types

an interface that defines

method to read primitive data

types

30

Which of the following statements are valid?
new DataInputStream();

new DataInputStream(new

File("in.dat"));

new

DataInputStream("in.dat

");

new

DataInputStream(new

FileInputStream("in.dat"

new DataInputStream();

31

Which method is used to call the run() method
start() run() wait() sleep() start()

32

In the first part of the thread, _____ is created for thread
class object classname packagename class

33

A thread is always in one of the following ___ states
5 4 3 2 5

34

______ programs create thread objects to perform concurrent tasks
java c++ c BASIC java

35

Creation of thread object is said to be ________ state
newborn runnable running blocked newborn

36

______ is an independent line of execution within a program
thread multithreading runnable Synchronisation thread

37

Every ______ has a priority value associated with it
thread multithreading runnable Synchronisation thread

38

_______ method is used to serialize access to shared resources
thread multithreading runnable Synchronisation synchronization

39

The state which is ready for execution and is waitng for the CPU

time runnable newborn running dead runnable

40

A thread is said to be in _______ when it is suspended, sleeping or

waiting in order to satisfy some condition blocked state newborn state running state dead state blocked state

41

The suspended thread can be revived by using the
resume() method runnable interface multithreading run() method resume() method

42

System.out refers to the
standard output stream system output stream sequential output stream standard output string standard output stream

43

System.in refers to the
standard input stream system input stream sequential input stream standard input string standard input stream

44

System.err refers to
standard error stream stand error stream

standard execution

stream
standard error string standard error stream

45

An input stream that contains methods for reading the java standard

types is DataInputStream DataOutputStream BufferedInputStream BufferedOutputStream DataInputStream

46

An output stream that contains methods for reading the java standard

types is DataInputStream DataOutputStream BufferedInputStream BufferedOutputStream DataOutputStream

47

Input stream that reads from a string
StringBufferInputStream standard input stream system input stream Stream Tokenizer StringBufferInputStream

48

The lowest level input method is
read() write() read() and write() run() read()

49

The method which automatically reads a sequence of characters from

the input stream and returns them in an object of type String is readLine() readline() readl() readln() readLine()

50

 ________ class in java does not specify how information is retrieved

from or stored in files stream File String Array File

51

The ________ class also defines platform_dependent constants that

can be used to separate the diredtory and the file components in

pathname

stream File java.io reader File

52

The method to check for directory is _________
isFile() isDirectory() File String isDirectory()

53

The ________ class define byte input streams that are connected to

files InputStream OutputStream FileInputStream FileOutputStream FileInputStream

54

The ________ class define byte output streams that are connected to

files InputStream OutputStream FileInputStream FileOutputStream FileOutputStream

55

The FileInputStream class provides an implementation for the

_________ methods defined in its superclass InputStream read() write() update() replace() read()

56

The FileOutputStream class provides an implementation for the

_________ methods defined in its superclass OutputStream read() write() update() replace() write()

57

The method __________ is used to write string value
readChars() writeChars() read() write() writeChars()

58

The ________ class provides a buffered stream of input
DataInputStream DataOutputStream BufferedInputStream BufferedOutputStream BufferedInputStream

59

The ________ class maintains a buffer that is written to when you

write to the stream DataInputStream DataOutputStream BufferedInputStream BufferedOutputStream BufferedOutputStream

60

Java also uses the ______ class to manipulate files
stream File String Array File

SUBJECT: : JAVA

SEMESTER : III

SUBJECT CODE: 16CCP304 CLASS : II M.COM CA

QUESTIONS OPT1 OPT2 OPT3 OPT4 ANSWER

1

AWT stands for _________ Abstract Window Toolkit Absolute Window Toolkit Absolute Windowing

Toolkit

Abstract Windowing

Toolkit

Abstract Window Toolkit

2

 __________ are small applicationsthat are accessed on an internet

server

utilities networks applets bean applets

3

The compiled applet is tested using ___________ word dos notepad applet viewer applet viewer

4

The __________ tag is used to start an applet from both HTML and

JDK applet viewer

Html JDK applet title applet

5

Applet basically is a Java class defined in the _____ package of JDK java.awt java.lang java.applet java.util java.applet

6

Color class also defines _________ common colors as constants Canvas Frame Dialog Panel Dialog

7

The Applet class which is in the java.applet package inherits the

properties of the _______ class which is in the java.awt package

Container Componenet Panel List Panel

8

The Panel class inherits the properties of the _________ class in the

java.awt package

Container Componenet Panel List Container

9

The container class inherits the properties of the ______________

class

Container Componenet Panel List Componenet

10

An _______ is a window based event driven program Html JDK applet title applet

11

The _______ and _______ method executes only once stop() and destroy() start() and stop() init() and paint() init() and destroy() init() and destroy()

12

Immediately after calling init() methodthe browser calls the

__________________ method

stop() start() init() destroy() start()

13

The ________ method also called when the user returns to an HTML

page that contains the applet

paint() init() destroy() start() start()

14

The ________ methodis called each time your applet's output is

redrawn

stop() start() init() paint() paint()

15

The ________ method acalled when the user moves from the HTML

page that contains an applet

paint() init() stop() destroy() stop()

JAVA (16CCP304) - UNIT 5

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMMERCE (CA)

16

The _______ method that is used to release additional resource paint() init() destroy() start() destroy()

17

There are ______ main methods defined in java.awt.Component 2 4 5 3 3

18

The _____ method is defined by the AWT and is usually called by

the applet for screen updating

paint() init() stop() repaint() repaint()

19

 ________ class cannot be created directly by using constructors Panel Container Componenet Graphics Grapahics

20

In java color is encapsulated by the ________ class Container Componenet Graphics Color Color

21

Color class also defines _________ common colors as constants 10 13 12 14 13

22

Methods of ________ class can also be used in the Graphiocs class

methods to set and get the background and foreground colors

Container Componenet Panel List Componenet

23

There are ___________ common terms that are used when

describing fonts

2 4 5 3 5

24

The java.applet package defines _______ inetrfaces 2 4 5 3 3

25

The user cannot have their HTML document,applet code,data and

web browser at _____________ different locations

2 4 5 3 4

26

The loop() method plays the audio clip automatically while

__________ plays it only once

paint() play() init() start() play()

27

The audio clip can be stopped by calling the ______ method paint() init() stop() repaint() stop()

28

The _________ interface provides the inter_communication between

an applet and the parent container

AppletContext AppletStub getApplet showDocument AppletStub

29

The _________ inetface gives the information about the applet's

execution environment

AppletStub getApplet AppletContext showDocument AppletContext

30

The setBackground() is the part of the class ______ Graphics AppletStub Component Container Component

31

If you want to assign a vlaue 99 to a variable called number, which of

the following lines you will use within an applet tag?

number=99 param = number value=99 param name = number

value=99

param number =99 param name = number

value=99

32

____ parameters are passed to drawArc method 4 5 6 3 3

33

____ is the default color for drawing graphics color white black red green black

34

how many colors does a GIF image can have? 180 256 3600 4800 256

35

when a portion of a applet window is to be redrawn ____ method is

used

paint() start() update() repaint() update()

36

______ method is used set the background color setbackGround() Setcolor() setBackGround() setBackground() setBackground()

37

_______is the distance from the base line to the top of the character font size ascent descent baseline ascent

38

_____________is the distance from the base line to the bottom of the

character

font size ascent descent baseline descent

39

To get the URL of the applet, you use __________. getCodeBase() getDocumentBase() returnCodeBase() returnDocumentBase() getCodeBase()

40

To get the image file at a specified URL, you use __________. getImage(url) createImage(url) url.getImage() url.createImage() getImage(url)

41

The ________ method of class Graphics draw a line between two

points.

Line Putline drawline getline drawline

42

When init() method calls immediately, the browser calls the start() method paint() method applet applet viewer start() method

43

________ method clears the screen area update() delete destroy() backspace update()

44

The Graphics class can be used to draw figures and images using X-Y coordinates X coordinates Y coordinates shapes X-Y coordinates

45

applets are flexible for using parameters variables constants shapes

parameters

46

_______ method used for screen updating repaint() paint() update() start()

repaint()

47

In applet to retrieve a parameter ______ is used getparameter() method getApplet applet tag variables getparameter() method

48

When an applet is terminated the sequence of method calls takes

place

stop() and destroy() only stop() only destroy() init() and destroy() stop() and destroy()

49

The first method called by any applet is void init() void() void main() main() void init()

50

_______ method used to remove from view void init() void hide() void main() void show() void hide()

51

Lines are drawn by means of drawLine() method drewLine() method drawline method drawline() method drawLine() method

52

The method used to display an outlined is drawRect() Rect() drawline method drawline() method drawRect()

53

To draw a rounded rectangle drawRoundRect() drawcircle() drawcircleRect() circleRect() drawRoundRect()

54

To drawan ellipse drawOval() drawcircle() drawEllipse() drawline() method drawOval()

55

Arcs can be drawn with fillArc() frameArc() fillAngle() frameAngle() fillArc()

56

To draw shaped figures drawPolygon() drawcircle() drawline() drawOval() drawPolygon()

57

The complete Applet tag of HTML is <APPLET> </APPLET> <APPLET /APPLET> APPLET/APPLET> <APPLET APPLET> <APPLET> </APPLET>

58

Font style can be specified using the constants as Font.BOLD FONT.BOLD FONT.Bold font.bold Font.BOLD

59

Audio clips and video clips can be played from within an applet web browser applet viewer component applet

60

_____ can respond to events generated by users such as mouseclick

and keypress

applet web browser applet viewer component applet

SUBJECT: : JAVA

SEMESTER : III

SUBJECT CODE: 16CCP304 CLASS : II M.COM CA

QUESTIONS OPT1 OPT2 OPT3 OPT4 ANSWER

Questions opt1 opt2 opt3 opt4 answer

1

Java is a ___________ language structured programming object oriented procedural oriented machine object oriented

2

OOPS follows______________ approach in program design bottom_up top_down middle top bottom_up

3

Objects take up ______________in the memory Space Address Memory bytes Space

4

 _________________is a collection of objects of similar type Objects methods classes messages classes

5

The wrapping up of data & function into a single unit is known as

Polymorphism encapsulation functions data members encapsulation

6

__________________refers to the act of representing essential

features without including the background details or explanations

Encapsulation inheritance Dynamic binding Abstraction Abstraction

7

Attributes are sometimes called______________ data members methods messages functions data members

8

The functions operate on the datas are called______________ Methods data members messages classes Methods

9

______________is the process by which objects of one class acquire

the properties of objects of another class

Polymorphism encapsulation data binding Inheritance Inheritance

10

__________________means the ability to take more than one form Polymorphism encapsulation data binding Inheritance Polymorphism

11

The process of making an operator to exhibit different behaviors in

different instances is known as ________________

function overloading operator overloading method overloading message overloading operator overloading

12

 pow () is associated with which class

Math class Input stream class Object class function name
Math class

13

x=x+1 is equivalent to ++x x++ x=x-1 x x++

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMMERCE (CA)

JAVA (16CCP304) - UNIT I

14

All collection classes are available in java.io package java.lang package java.awt package java.util package java.util package

15

Keyword _________ indicates that method do not return any value. Static Final void null void

16

_________ is used to define the objects class functions methods datamembers class

17

An _________ is a single instance of a class that retains the structure

and behaivour as defined by a class

 class member object instances datamembers object

18

A _________ is a message to take some action on an object member variable method class method

19

Java does not have _________ statement goto if do do while goto

20

Execution of the program is always begins with Main method class contain main method parent class default package Main method

21

The ________ is the basic unit of storage in a Java program identifier variable class object variable

22

byte belongs to _________ type. character Boolean floating integer integer

23

In Java an int is _____ bits 16 64 52 32 32

24

byte is a signed ______ type 16 bit 8 bit 32 bit 64 bit 8 bit

25

The ________ statement is often used in switch statement break end do exit break

26

The keywords private and public are known as _________ labels Static Dynamic Visibility const Visibility

27

The class members that have been declared as ________ can be

accessed only from within the class

 Private Public Static protected Private

28

The class members that have been declared as ________ can be

accessed from outside the class also

 Private Public Static protected Public

29

The class variables are known as ________ Functions members objects variable decleration objects

30

Command to execute a compiled java program is javac java run execute java

31

File produced by the java compiler contains _________ ASCII Class Pnemonics ByteCodes ByteCodes

32

The file produced by java compiler ends with _______ file extension Java html class applet class

33

Objects are instantiated from__________ Java methods groups class class

34

Which of the following lines is not a Java comment? /** comments */ // comments – comments /* comments */ – comments

35

Which of the following statements is correct? system.out.println('Welco

me to Java');

System.out.println("Welco

me to Java");

System.println('Welcome

to Java');

System.out.print('Welco

me to Java');

System.out.println("Welcome

to Java");

36

A block is enclosed inside __________. Parentheses Braces Brackets Quotes Braces

37

Wich of the following is a correct signature for the main method? static void main(String[]

args[])

public static void

main(String[] args)

public void

main(String[] args)

public static void

main(Strings[] args)

public static void

main(String[] args)

38

The Java programming language was developed by ______ James Gosling James John Gosling James Gossor James Gosling

39

 __________ translates the Java sourcecode to bytecode files that the

interpreter can understand

 javac java javap jdk javac

40

 In java the functions are called as _________ fields method variables packages method

41

JAR file contains the compressed version of .java file .class file .jsp file .java .class file

42

Main method parameter has which type of data type int char string double string

43

Java interpreter is JVM Javac Compiler JAR JVM

44

The __________ method terminates the program. System.terminate(0); System.halt(0); System.exit(0); System.stop(0); System.exit(0);

45

 Java has no ______ function. malloc, free calloc super package malloc, free

46

 Java supports __________ inheritance single multiple single and multiple extends single

47

Java does not have _________ sturct package import java.io sturct

48

 __________ is a access specifier static void main public temp public

49

Java is a __________ type language. Weak strong correct incorrect strong

50

Data type Short occupies _________ bytes. 1 2 4 8 2

51

Code Reusability is characterized by baseclass Subclass Derived class Inheritance Inheritance

52

Classes are the Members Algorithms Templates Methods Templates

53

_________ contains the executable files for the development tools

contained in the JDK

bin lib jre jar bin

54

It enables us to ignore the non_essential Inheritance Encapsulation Abstraction DataBinding Abstraction

55

It is the most powerful feature of any programming technique top_down bottom up Code reusability Security Code reusability

56

Encapsulation is also known as Abstraction Information hiding Polymorphism Inheritence Information hiding

57

Well defined entities that are capable of interacting with themselves Encapsulation Message Passing Abstraction Binding Message Passing

58

The data or variables,defined within a class are called Variables Class variables Data variables Instance Variables Instance Variables

59

Class is a _______Construct Hierarchical Logical Physical Hybrid Logical

60

To access instance variables of an object______operator is used Dot Operator Logical operator Relational Operator Boolean Operator Dot Operator

61

Variables declared as static are______variables Member variables Instance Global Local Global

62

These are the foundation of encapsulation Functions Instance methods procedures operators Instance methods

63

The java compiler creates executable translates java source code

to byte code

create classes produces java interpreter translates java source code to

byte code

Java 2016

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 1/2

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.
(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMMERCE (CA)

SUBJECT : JAVA
SEMESTER : III
SUBJECT CODE: 16CCP304 CLASS : II M.COM CA

POSSIBLE QUESTIONS – UNIT I

PART A (1 Mark)

(Online Examinations)

PART B (2 Marks)

1. Give any 4 differences between C++ and Java.

2. What gives java it’s “write once and run anywhere” nature?

3. How to Compile and Execute a Java Program.

4. Write short notes on i) Byte Code ii) Java Environment

5. Write a Java code for Basic Program Output.

6. Define Tokens

7. List out the operators in java.

8. Mention types of java program and explain it.

9. What are literals

10. List down the data types in Java

Java 2016

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 2/2

PART C (6 Marks)

1. Explain in detail about various control statements.

2. Discuss: Arrays in java.

3. Differentiate between Object Oriented paradigm and structured programming.

4. Explain in detail about tokens and variables in JAVA.

5. What are all the types of JAVA program, Explain about variable declaration

and arrays with example.

6. Explain in detail about the features and architecture of JAVA.

7. Illustrate the working of control statements in JAVA with appropriate

examples.

8. Discuss Java Methods with example program.

9. Elucidate variables in java with the use of operators each with suitable

examples.

10. Write a program in JAVA to find out a given number is prime number or not.

 Java 2016

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 1/2

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.
(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMMERCE (CA)

SUBJECT : JAVA
SEMESTER : III
SUBJECT CODE: 16CCP304 CLASS : II M.COM CA

POSSIBLE QUESTIONS – UNIT II

PART A (1 Mark)

(Online Examinations)

PART B (2 Marks)

1. How to create objects? Give an example

2. Define Method overloading

3. What do we declare a method or class abstract

4. Write a note on "this" keyword

5. Explain the use of "final" keyword

6. Explain about "super" keyword

7. Write brief on “Command Line Argument”.

8. What do you mean by a class?

9. What is an object?

10. Give two differences between overloading and overriding.

 Java 2016

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 2/2

PART C (6 Marks)

1. Elucidate about the command line argument with suitable example.

2. Explain : i)this Keyword ii)finalize() method

3. Discuss the following with suitable examples.

4. Defining i)a class ii) instance variables iii) class variables iv) instance

methods

5. Illustrate Method Overloading with suitable program.

6. Explain the following with suitable program i)Garbage Collection ii)final

classes

7. Describe about the inheritance in java

8. What is overloading? Explain about Method Overloading with examples.

9. Explain the following: i)Static ii)final iii)Recursion

10. Compare between Method overloading and Method Overriding.

11. Explain about inheritance and its types.

Java 2016

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 1/2

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.
(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMMERCE (CA)

SUBJECT : JAVA
SEMESTER : III
SUBJECT CODE: 16CCP304 CLASS : II M.COM CA

POSSIBLE QUESTIONS – UNIT III

PART A (1 Mark)

(Online Examinations)

PART B (2 Marks)

1. What is an Exception?

2. How to declare the Packages.

3. What are packages and how it is used?

4. Define and give the syntax for interface.

5. What is Interface?

6. What are Java Packages?

7. How an Exception is handled in java?

8. What is the use of finally block?

9. Write short notes on access Protection

10. What is the difference between exception and error?

Java 2016

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 2/2

PART C (6 Marks)

1. Discuss Package with suitable examples.

2. What is an Exception? Explain how to throw, catch and handle Exceptions

3. How will you declare a package and import it, Explain.

4. Clarify in detail about the types of exception with an example program to

handle array out of bounds exception.

5. Clarify in detail about the basics of exception with its types and an

example program

6. Discuss in detail about java.net package with example

7. Explain the significance of using packages in Java.

8. Elaborate in detail on the following.(i) Exception handling in Java

(ii) Distinguish between Error and Exception

9. Discuss Packages and Sub-Packages.

10. Explain following keywords used in Exception Handling.

(i) try (ii) catch (iii) throw

Java 2016

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 1/2

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.
(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMMERCE (CA)

SUBJECT : JAVA
SEMESTER : III
SUBJECT CODE: 16CCP304 CLASS : II M.COM CA

POSSIBLE QUESTIONS – UNIT IV

PART A(1 Mark)

(Online Examinations)

PART B (2 Marks)

1. What is Thread prioritization?

2. How Threads are created in Java?

3. What do you mean by Thread Scheduling?

4. What is the difference between preemptive scheduling and time slicing?

5. Differentiate wait and sleep methods in java?

6. Define Dead Lock. A Dead Lock

7. Write note on FileInputStream class

8. Define Multithread Programming

9. What is Synchronization?

10. What is the need of Thread Priorities?

http://java2novice.com/java_interview_questions/wait-sleep-difference/

Java 2016

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 2/2

PART C (6 Marks)

1. Explain the procedure involved in incorporating priorities for threads.

2. Explain a various types of modifiers in I/O Applets.

3. Explicate about Inter thread communication.

4. Explicate in detail about method of reading and writing files in I/O Applets.

5. Explain the use of thread methods yield(),stop() and sleep().

6. Define threads. Explain multiplication table using multithreading with

suitable program.

7. Explicate about Inter thread communication.

8. Explain about the applet skeleton and order of applet initialization and

termination.

9. Describe the usefulness of suspend () method, resume () method and stop

() method in threading.

10. Write in detail on the following.
(i) Reading console input (ii) Writing console output

Java 2016

Prepared by K.Gomathi, Department of Commerce, KAHE 1/2

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.
(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMMERCE (CA)

SUBJECT : JAVA
SEMESTER : III
SUBJECT CODE: 16CCP304 CLASS : II M.COM CA

POSSIBLE QUESTIONS – UNIT V

PART A (1 Mark)

(Online Examinations)

PART B (2 Marks)

1. Draw the life cycle of Java Applets.

2. Write any two AWT Controls.

3. Distinguish between init () and start () methods

4. Write the difference between an applet and an application.

5. What is the order of method invocation in Applet.

6. Define AWT

7. Name Component subclasses that support painting.

8. What is the difference between the ‘Font’ and ‘FontMetrics’ class?

9. What is the difference between the paint() and repaint() methods?

10. How are the elements of different layouts organized?

Java 2016

Prepared by K.Gomathi, Department of Commerce, KAHE 2/2

PART C (6 Marks)

1. Distinguish between an applet and an application

2. Explain in detail about the concept of drawing lines in java.

3. Discuss about the steps involved in running an applet

4. Explain the process involved in drawing ellipses and circle in graphics.

5. Discuss in detail about life cycle of an Applet.

6. Write a program to create an applet and draw the shape.

7. Describe on AWT color system in Java.

8. Explain the concept and problems with Native methods in I/O Applets.

9. List out and explain a various methods of the Applet Class.

SYLLABUS 2016-2018 Batch

Prepared by Department of Commerce (Computer Application), KAHE 1/3

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.
(For the candidates admitted from 2016 onwards)

 DEPARTMENT OF COMMERCE (CA)

SYLLABUS

16CCP304 JAVA

Course Objectives

 To understand Object oriented concepts like data abstraction, encapsulation, etc.

 To solve the real world scenarios using top down approach.

 To understand various Java programming constructs.

Learning Outcome

On successful completion of this course the student should be able to:

 To solve computational problems using basic constructs like if-else, control

structures, array, and strings.

 To implement relationships between classes

 To demonstrate various collection classes.

 to demonstrate programs on exceptions, multithreading and applets.

 To write programs that solves simple business problems.

Unit – I

An overview of Java: Object oriented programming – Java features – Java

environment - Data types, variables and arrays. Operators- Expressions - Control Statements:

Branching statements – Iteration statements – Jump statements – Sample java program.

Unit – II

Classes – Objects – Methods – Constructors – The this keyword – finalize () method

– Overloading methods – Returning objects – Recursion – Static – Final – Nested inner

classes – Command line arguments – Inheritance.

Semester – III
L T P C
4 - - 4

SYLLABUS 2016-2018 Batch

Prepared by Department of Commerce (Computer Application), KAHE 2/3

Unit – III

Packages and Interfaces: Packages – Access protection – Importing packages –

Interfaces – Exception handling: Fundamentals – Exception types – Try and catch – Multiple

catch – Nested try – throw – throws – finally – Build in exception.

Unit – IV

Multithread programming: Thread model –Life cycle of thread – Creating thread –

Multiple threads – Thread priorities – Synchronization – Inter thread Communication –

Suspending, Resuming and Stopping threads – I/O Applets, and other topics.

Unit – V

The Applet Class: Basics – Building applet code – Applet life cycle – Creating an

executable applet – Designing a web page – Running the applet – Getting input from the user

– Graphics programming: The graphic class – Lines and rectangles – Circles and ellipses –

Using control loops in applets – Drawing bar charts.

Text Book

1. Partrick Naughton. (2002). Java Hand Book. New Delhi: McGraw Hill Publishing

Company Limited.

Reference Books

1. Herbert Schildt. (2014).Java Complete Reference, 9th edition, Tata McGraw hill.

2. Permanand Mohan. (2013). Fundamentals of Object-Oriented Programming in

Java, 1st edition, Createspace Independent Publishing

3. Balagurusamy,E. (2014). Programming with Java, 5th edition, Tata McGraw-hill

Publishing Company limited.

4. Daniel Liang,Y. (2015). Introduction to Java Programming, 10th edition, Pearson
Prentice Hall.

SYLLABUS 2016-2018 Batch

Prepared by Department of Commerce (Computer Application), KAHE 3/3

Website

1. http://www.tutorialspoint.com/java/
2. http://docs.oracle.com/javase/tutorial/java/
3. http://javabeginnerstutorial.com/core-java/
4. http://www.learnjavaonline.org/

http://docs.oracle.com/javase/tutorial/java/
http://www.learnjavaonline.org/

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 1/31

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.

(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMMERCE(CA)

SUBJECT : JAVA
SEMESTER : III
SUBJECT CODE: 16CCP304 CLASS : II M.COM CA

Unit – I

An overview of Java: Object oriented programming – Java features – Java

environment - Data types, variables and arrays. Operators- Expressions -

Control Statements: Branching statements – Iteration statements – Jump

statements – Sample java program.

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 2/31

UNIT-I

1. INTRODUCTION TO JAVA

1.1 Introduction to Object Oriented Programming

 Object Oriented Programming or OOP is the technique to create

programs based on the real world. Unlike procedural programming, here in the

OOP programming model programs are organized around objects and data

rather than actions and logic. Objects represent some concepts or things and

like any other objects in the real Objects in programming language have certain

behavior, properties, type, and identity. In OOP based language the principal aim

is to find out the objects to manipulate and their relation between each other.

Class - It is the central point of OOP and that contains data and codes with

behavior. In Java everything happens within class and it describes a set of

objects with common behavior. The class definition describes all the properties,

behavior, and identity of objects present within that class. As far as types of

classes are concerned, there are predefined classes in languages like C++ and

Pascal. But in Java one can define his/her own types with data and code.

Object - Objects are the basic unit of object orientation with behavior, identity.

As we mentioned above, these are part of a class but are not the same. An object

is expressed by the variable and methods within the objects. Again these

variables and methods are distinguished from each other as instant variables,

instant methods and class variable and class methods.

Methods - We know that a class can define both attributes and behaviors. Again

attributes are defined by variables and behaviors are represented by methods. In

other words, methods define the abilities of an object.

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 3/31

Inheritance - This is the mechanism of organizing and structuring software

program. Though objects are distinguished from each other by some additional

features but there are objects that share certain things common. In object

oriented programming classes can inherit some common behavior and state from

others. Inheritance in OOP allows to define a general class and later to organize

some other classes simply adding some details with the old class definition. This

saves work as the special class inherits all the properties of the old general class

and as a programmer you only require the new features. This helps in a better

data analysis, accurate coding and reduces development time.

Abstraction - The process of abstraction in Java is used to hide certain details

and only show the essential features of the object. In other words, it deals with

the outside view of an object (interface).

Encapsulation - This is an important programming concept that assists in

separating an object's state from its behavior. This helps in hiding an object's

data describing its state from any further modification by external component. In

Java there are four different terms used for hiding data constructs and these are

public, private, protected and package. As we know an object can associated

with data with predefined classes and in any application an object can know

about the data it needs to know about. So any unnecessary data are not

required by an object can be hidden by this process. It can also be termed as

information hiding that prohibits outsiders in seeing the inside of an object in

which abstraction is implemented.

Polymorphism - It describes the ability of the object in belonging to different

types with specific behavior of each type. So by using this, one object can be

treated like another and in this way it can create and define multiple level of

interface. Here the programmers need not have to know the exact type of object

in advance and this is being implemented at runtime.

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 4/31

The Java Language

1.3 Features of java

Object Oriented

To be an Object Oriented language, any language must follow at least the four

characteristics.

 Inheritance: It is the process of creating the new classes and using the

behavior of the existing classes by extending them just to reuse the

existing code and adding the additional features as needed.

 Encapsulation: It is the mechanism of combining the information and

providing the abstraction.

 Polymorphism: As the name suggest one name multiple form,

Polymorphism is the way of providing the different functionality by the

functions having the same name based on the signatures of the methods.

 Dynamic binding: Sometimes we don't have the knowledge of objects

about their specific types while writing our code. It is the way of providing

the maximum functionality to a program about the specific type at

runtime.

As the languages like Objective C, C++ fulfills the above four characteristics yet

they are not fully object oriented languages because they are structured as well

as object oriented languages. But in case of java, it is a fully Object Oriented

language because object is at the outer most level of data structure in java. No

stand alone methods, constants, and variables are there in java. Everything in

java is object even the primitive data types can also be converted into object by

using the wrapper class.

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 5/31

Platform Independent

The concept of Write-once-run-anywhere (known as the Platform independent)

is one of the important key feature of java language that makes java as the

most powerful language. Not even a single language is idle to this feature but

java is closer to this feature. The programs written on one platform can run on

any platform provided the platform must have the JVM.

Simple

There are various features that makes the java as a simple language. Programs

are easy to write and debug because java does not use the pointers explicitly. It

is much harder to write the java programs that can crash the system. Java

provides the bug free system due to the strong memory management. It also

has the automatic memory allocation and deallocation system.

Robust

Java has the strong memory allocation and automatic garbage collection

mechanism. It provides the powerful exception handling and type checking

mechanism as compare to other programming languages. Compiler checks the

program whether there any error and interpreter checks any run time error and

makes the system secure from crash. All of the above features make the java

language robust.

Distributed

The widely used protocol like HTTP and FTP are developed in java. Internet

programmers can call functions on these protocols and can get access the files

from any remote machine on the internet rather than writing codes on their

local system.

Portable

The feature Write-once-run-anywhere makes the java language portable

provided that the system must have interpreter for the JVM. Java also has the

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 6/31

standard data size irrespective of operating system or the processor. These

features make the java as a portable language.

Dynamic

While executing the java program the user can get the required files

dynamically from a local drive or from a computer thousands of miles away

from the user just by connecting with the Internet.

Secure

Java does not use memory pointers explicitly. All the programs in java are run

under an area known as the sand box. Security manager determines the

accessibility options of a class like reading and writing a file to the local disk.

Java uses the public key encryption system to allow the java applications to

transmit over the internet in the secure encrypted form. The Bytecode Verifier

checks the classes after loading.

Performance

Java uses native code usage, and lightweight process called threads. In the

beginning interpretation of bytecode results the performance slow but the

advance version of JVM uses the adaptive and just in time compilation

technique that improves the performance.

Interpreted

Java is an interpreted language as well. With an interpreted language such as

Java, programs run directly from the source code.

The interpreter program reads the source code and translates it on the fly into

computations. Thus, Java as an interpreted language depends on an interpreter

program.

The versatility of being platform independent makes Java to outshine from

other languages.

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 7/31

1.4 Java Environment

The Java Virtual Machine

 At the heart of Java's network-orientation is the Java virtual machine,

which supports all three prongs of Java's network-oriented architecture:

platform independence, security, and network-mobility.

 The Java virtual machine is an abstract computer.

 Its specification defines certain features every Java virtual machine

must have, but leaves many choices to the designers of each

implementation.

 For example, although all Java virtual machines must be able to

execute Java bytecodes, they may use any technique to execute them.

 Also, the specification is flexible enough to allow a Java virtual machine

to be implemented either completely in software or to varying degrees in

hardware.

 The flexible nature of the Java virtual machine's specification enables it

to be implemented on a wide variety of computers and devices.

 A Java virtual machine's main job is to load class files and execute the

bytecodes they contain.

Figure A basic block diagram of the Java virtual machine.

Class Loader

Execution Engine

Class files
of program

Class files
of API

bytecodes

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 8/31

 As the program runs, the virtual machine compiles to native and

optimizes just these heavily used areas.

 The rest of the code, which is not heavily used, remains as bytecodes

which the virtual machine continues to interpret.

 Sometimes the Java virtual machine is called the Java interpreter;

however, given the various ways in which bytecodes can be executed,

this term can be misleading.

 While "Java interpreter" is a reasonable name for a Java virtual

machine that interprets bytecodes, virtual machines also use other

techniques (such as just-in-time compiling) to execute bytecodes.

 Therefore, although all Java interpreters are Java virtual machines, not

all Java virtual machines are Java interpreters.

1.5 Java Architecture

Java's architecture arises out of four distinct but interrelated technologies:

 The Java programming language

 The Java class file format

 The Java Application Programming Interface

 The Java virtual machine

When you write and run a Java program, you are tapping the power of these

four technologies. The source files written in the Java programming language,

compile the source to Java class files, and run the class files on a Java virtual

machine. When you write your program, you access system resources (such as

I/O, for example) by calling methods in the classes that implement the Java

Application Programming Interface, or Java API. As your program runs, it

fulfills your program's Java API calls by invoking methods in class files that

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 9/31

implement the Java API. You can see the relationship between these four parts

in Figure 1-1.

Figure 1-1. The Java programming environment.

Together, the Java virtual machine and Java API form a "platform" for which

all Java programs are compiled. In addition to being called the Java runtime

system, the combination of the Java virtual machine and Java API is called the

Java Platform (or, starting with version 1.2, the Java 2 Platform). Java

programs can run on many different kinds of computers because the Java

Platform can itself be implemented in software. As you can see in Figure, a

Java program can run anywhere the Java Platform is present.

Program Source
Files (.java)

Java
Compiler

Program Class Files
(.class)

Program Class Files
(.class)

Java
Virtual

Machine

Object.class

String.class

Run Time Environment

Compile Time Environment

Program Source
Files (.java)

Java
Compiler

Program Class Files
(.class)

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 10/31

Figure Java programs run on top of the Java Platform.

1.6 Java development Kit

The Java Development Kit (JDK) is a Sun Microsystems product aimed at Java

developers. Since the introduction of Java, it has been by far the most widely

used Java SDK. On 17 November 2006, Sun announced that it would be

released under the GNU General Public License (GPL), thus making it free

software. This happened in large part on 8 May 2007; Sun contributed the

source code to the OpenJDK.

The JDK has as its primary components a collection of programming tools,

including:

 java – the loader for Java applications. This tool is an interpreter and can

interpret the class files generated by the javac compiler. Now a single

launcher is used for both development and deployment. The old

deployment launcher, jre, no longer comes with Sun JDK.

 javac – the compiler, which converts source code into Java bytecode

Java
Program

Java
Platform for

Linux

Linux Box

Java
Program

Java
Platform for

Win 32

PC with Win

NT

Java
Program

Java
Platform for

TV

TV

http://en.wikipedia.org/wiki/Java_Development_Kit
http://en.wikipedia.org/wiki/Loader_(computing)
http://en.wikipedia.org/w/index.php?title=Java_Development_Kit&action=edit

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 11/31

 appletviewer – this tool can be used to run and debug Java applets

without a web browser

1.7 Types of java program

Broadly Java programs can be categorized in two main groups

 Applets

 Applications

Applets

It is a small program embedded in a web page and is run when that page is

browsed using a web browser. Applets are graphical in nature and tend to

contain controls such as buttons, labels, text fields etc.,

Applications

These are stand-alone programs written in Java. They are invoked using a JVM

which resides within a local operating system. Unlike Applets, applications can

access the local file system or establish connections with other machines on the

network.

A Sample Java Program

Write source code

The following Java program is developed under Microsoft Windows. The

process on other operating system should be similar but will not be covered

here. Select a directory which should contain your code. I will use the directory

c:\temp\java which will be called "javadir".

Open a text editor which supports plain text, e.g. notepad under Windows and

write the following source code. You can start notepad via Start->Run->

notepad and pressing enter.

// The smallest Java program possible

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 12/31

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello World");

 }

}

Save the source code in your directory "javadir" under the name

"HelloWorld.java". The name of a Java source file must always equals the class

name (within the source code) and end with .java. In our case the filename

must be HelloWorld.java because the class is called HelloWorld.

Compile the code

Switch to the command line, e.g. under Windows Start-> Run -> cmd. Switch to

the "javadir" directory with the command cd javadir, for example in my case cd

c:\temp\java. Use the command dir to see that the source file is in the

directory.

Type javac HelloWorld.java .

Check the content of the directory with the command "dir". The directory

contains now a file "HelloWorld.class". If you see this file you have successfully

compiled your first Java source code into byte-code.

Run the code

Switch again to the command line, e.g. under Windows Start-> Run -> cmd.

Switch to the directory jardir.

Type java HelloWorld .

The system should write "Hello World" on the command line.

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 13/31

Using the classpath

You can use the classpath to run the program from another place in your

directory. Switch to the command line, e.g. under Windows Start-> Run -> cmd.

Switch to any directory you want.

Type java HelloWorld .

If you are not in the directory in which the compiled class is stored then the

system should result an error message Exception in thread "main"

java.lang.NoClassDefFoundError: test/TestClass

Type java -classpath "mydirectory" HelloWorld . Replace "mydirectory" with

the directory which contains the test directory. You should again see the

"HelloWorld" output.

Variable Declarations and Arrays

1.8 Data type

Java programming language is a language in which all the variables must be

declared first and then to be used. That means to specify the name and the type

of the variable. This specifies that Java is a strongly-typed programming

language. Like

 int pedal = 1;

This shows that there exists a field named 'pedal' that holds a data as a

numerical value '1'. The values contained by the variables determines its data

type and to perform the operations on it.

There are seven more primitive data types which are supported by Java

language programming in addition to int. A primitive data type is a data type

which is predefined in Java. Following are the eight primitive data types:

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 14/31

int

It is a 32-bit signed two's complement integer data type. It ranges from -

2,147,483,648 to 2,147,483,647. This data type is used for integer values.

However for wider range of values use long.

byte

The byte data type is an 8-bit signed two's complement integer. It ranges from -

128 to127 (inclusive). We can save memory in large arrays using byte. We can

also use byte instead of int to increase the limit of the code.

short

The short data type is a 16-bit signed two's complement integer. It ranges from

-32,768 to 32,767. short is used to save memory in large arrays.

long

The long data type is a 64-bit signed two's complement integer. It ranges from -

9,223,372,036,854,775,808 to 9,223,372,036,854,775,807. Use this data type

with larger range of values.

float

The float data type is a single-precision 32-bit IEEE 754 floating point. It ranges

from 1.40129846432481707e-45 to 3.40282346638528860e+38 (positive or

negative). Use a float (instead of double) to save memory in large arrays. We do

not use this data type for the exact values such as currency. For that we have

to use java.math.BigDecimal class.

double

This data type is a double-precision 64-bit IEEE 754 floating point. It ranges

from 4.94065645841246544e-324d to 1.79769313486231570e+308d (positive

or negative). This data type is generally the default choice for decimal values.

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 15/31

boolean

The boolean data type is 1-bit and has only two values: true and false. We use

this data type for conditional statements. true and false are not the same as

True and False. They are defined constants of the language.

char

The char data type is a single 16-bit, unsigned Unicode character. It ranges

from 0 to 65,535. They are not same as ints, shorts etc.

The following table shows the default values for the data types:

 Keyword Description Size

 byte Byte-length integer 8-bit

 short Short integer 16-bit

 int Integer 32-bit

 long Long integer 64-bit

 float
 Single-precision

floating point
 32-bit

 double
 Double-precision

floating point
 64-bit

 char A single character 16-bit

 Boolean A Boolean value true or false

When we declare a field it is not always essential that we initialize it too. The

compiler sets a default value to the fields which are not initialized which might

be zero or null. However this is not recommended.

1.9 Java Tokens

In a Java program, all characters are grouped into symbols called tokens. Larger

language features are built from the first five categories of tokens (the sixth kind

of token is recognized, but is then discarded by the Java compiler from further

processing). We must learn how to identify all six kinds of tokens that can

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 16/31

appear in Java programs. In EBNF we write one simple rule that captures this

structure:

token <= identifier | keyword | separator | operator | literal | comment

The different types of Tokens are:

1. Identifiers: names the programmer chooses

2. Keywords: names already in the programming language

3. Separators (also known as punctuators): punctuation characters and

paired-delimiters

4. Operators: symbols that operate on arguments and produce results

5. Literals (specified by their type)

o Numeric: int and double

o Logical: boolean

o Textual: char and String

o Reference: null

6. Comments

o Line

1.10 Variable Declaration

Declaring variables

A variable is a container that stores a meaningful value that can be used

throughout a program. For example, in a program that calculates tax on items

you can have a few variables - one variable that stores the regular price of an

item and another variable that stores the total price of an item after the tax is

calculated on it. Variables store this information in a computer's memory and

the value of a variable can change all throughout a program.

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 17/31

Java data types

Keyword Type of data the variable will store
Size in

memory

boolean true/false value 1 bit

byte byte size integer 8 bits

char a single character 16 bits

double
double precision floating point decimal

number
64 bits

float
single precision floating point decimal

number
32 bits

int a whole number 32 bits

long a whole number (used for long numbers) 64 bits

short a whole number (used for short numbers) 16 bits

Example:

char aCharacter; int aNumber;

You can assign a value to a variable at the same time that it is declared. This

process is known as initialization:

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 18/31

1.11 Type Casting and Conversion

It is sometimes necessary to convert a data item of one type to another type.

For example when it is necessary to perform some arithmetic using data items

of different types (so called mixed mode arithmetic). Under certain

circumstances Type conversion can be carried out automatically, in other

cases it must be "forced" manually (explicitly).

In Java type conversions are performed automatically when the type of the

expression on the right hand side of an assignment operation can be safely

promoted to the type of the variable on the left hand side of the assignment.

Thus we can safely assign: byte -> short -> int -> long -> float -> double The ->

symbol used here should be interpreted as "to a". For example:

// 64 bit long integer

long myLongInteger;

// 32 bit standard integer

int myInteger;

myLongInteger = myInteger;

The extra storage associated with the long integer, in the above example, will

simply be padded with extra zero.

1.12 Arrays

By definition, array is the static memory allocation. It allocates the memory for

the same data type in sequence. It contains multiple values of same types. It

also stores the values in memory at the fixed size. Multiple types of arrays are

used in any programming language such as: one - dimensional, two -

dimensional or can say multi - dimensional.

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 19/31

Declaration of an array:

int num[]; or int num = new int[2];

Sometimes user declares an array and its size simultaneously. You may or

may not be define the size in the declaration time. such as:

int num[] = {50,20,45,82,25,63};

In this program we will see how to declare and implementation. This program

illustrates that the array working way. This program takes the numbers

present in the num[] array in unordered list and prints numbers in ascending

order. In this program the sort() function of the java.util.*; package is using to

sort all the numbers present in the num[] array. The Arrays.sort()

automatically sorts the list of number in ascending order by default. This

function held the argument which is the array name num.

Here is the code of the program:-

import java.util.*;

public class array{

 public static void main(String[] args){

 int num[] = {50,20,45,82,25,63};

 int l = num.length;

 int i,j,t;

 System.out.print("Given number : ");

 for (i = 0;i < l;i++){

 System.out.print(" " + num[i]);

 }

 System.out.println("\n");

 System.out.print("Ascending order number : ");

 Arrays.sort(num);

 for(i = 0;i < l;i++){

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 20/31

 System.out.print(" " + num[i]);

 }

 }

}

Output of the program:

C:\chandan>javac array.java

C:\chandan>java array

Given number : 50 20 45 82 25 63

Ascending order number : 20 25 45 50 63 82

1.13 Operators and Control Statements

Operators

 Arithmetic operators

 Increment and Decrement operators

 Relational operators

 Logical operators

 Assignment operators

 Ternary operators

 Bitwise operators

Operators are special symbols that perform specific operations on one, two, or

three operands, and then return a result.

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 21/31

Operator Precedence

Operators Precedence

postfix expr++ expr--

unary ++expr --expr +expr -expr ~ !

multiplicative * / %

additive + -

shift << >> >>>

relational < > <= >= instanceof

equality == !=

bitwise AND &

bitwise exclusive OR ^

bitwise inclusive OR |

logical AND &&

logical OR ||

ternary ? :

assignment = += -= *= /= %= &= ^= |= <<= >>= >>>=

In general-purpose programming, certain operators tend to appear more

frequently than others; for example, the assignment operator "=" is far more

common than the unsigned right shift operator ">>>". With that in mind, the

following discussion focuses first on the operators that we’re most likely to use

on a regular basis, and ends focusing on those that are less common. Each

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 22/31

discussion is accompanied by sample code that you can compile and run.

Studying its output will help reinforce what we have just learned.

Control Statements

Different types of control statements: the decision making statements (if-then,

if-then-else and switch), looping statements (while, do-while and for) and

branching statements (break, continue and return).

The control statements are used to control the flow of execution of the program

. This execution order depends on the supplied data values and the conditional

logic. Java contains the following types of control statements:

1. Selection Statements

2. Repetition Statements

3. Branching Statements

Selection constructs

1. If Statement: This is a control statement to execute a single statement or

a block of code, when the given condition is true and if it is false then it

skips if block and rest code of program is executed .

Syntax:

 if(conditional_expression){

 <statements>;

 ...;

 ...;

}

Example: If n%2 evaluates to 0 then the "if" block is executed. Here it

evaluates to 0 so if block is executed. Hence "This is even number" is

printed on the screen.

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 23/31

int n = 10;

if(n%2 = = 0){

 System.out.println("This is even number");

}

2. If-else Statement:

The "if-else" statement is an extension of if statement that provides another

option when 'if' statement evaluates to "false" i.e. else block is executed if "if"

statement is false.

 Syntax:

 if(conditional_expression){

 <statements>;

 ...;

 ...;

 }

 else{

 <statements>;

 ;

 ;

 }

Example: If n%2 doesn't evaluate to 0 then else block is executed. Here n%2

evaluates to 1 that is not equal to 0 so else block is executed. So "This is not

even number" is printed on the screen.

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 24/31

int n = 11;

if(n%2 = = 0){

 System.out.println("This is even number");

}

else{

 System.out.println("This is not even number");

}

3. Switch Statement:

This is an easier implementation to the if-else statements. The keyword

"switch" is followed by an expression that should evaluates to byte, short,

char or int primitive data types ,only. In a switch block there can be one or

more labeled cases. The expression that creates labels for the case must be

unique. The switch expression is matched with each case label. Only the

matched case is executed ,if no case matches then the default statement (if

present) is executed.

Syntax:

 switch(control_expression){

 case expression 1:

 <statement>;

 case expression 2:

 <statement>;

 ...

 ...

 case expression n:

 <statement>;

 default:

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 25/31

 <statement>;

 }//end switch

Example: Here expression "day" in switch statement evaluates to 5 which

matches with a case labeled "5" so code in case 5 is executed that results to

output "Friday" on the screen.

int day = 5;

Switch (day) {

 case 1:

 System.out.println("Monday");

 break;

 case 2:

 System.out.println("Tuesday");

 break;

case 3:

System.out.println("Wednesday");

 break;

case 4:

System.out.println("Thursday");

 break;

case 5:

System.out.println("Friday");

 break;

case 6:

System.out.println("Saturday");

 break;

case 7:

System.out.println("Sunday");

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 26/31

 break;

default:

 System.out.println("Invalid entry");

 break;

}

Iteration Constructs

While Loop Statements:

This is a looping or repeating statement. It executes a block of code or

statements till the given condition is true. The expression must be evaluated

to a boolean value. It continues testing the condition and executes the block

of code. When the expression results to false control comes out of loop.

Syntax:

 while(expression){

 <statement>;

 ...;

 ...;

 }

Example: Here expression i<=10 is the condition which is checked before

entering into the loop statements. When i is greater than value 10 control

comes out of loop and next statement is executed. So here i contains value "1"

which is less than number "10" so control goes inside of the loop and prints

current value of i and increments value of i. Now again control comes back to

the loop and condition is checked. This procedure continues until i becomes

greater than value "10". So this loop prints values 1 to 10 on the screen.

int i = 1;

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 27/31

//print 1 to 10

while (i <= 10){

 System.out.println("Num " + i);

 i++;

}

Do-While Loop Statements:

This is another looping statement that tests the given condition past so you

can say that the do-while looping statement is a past-test loop

statement. First the do block statements are executed then the condition

given in while statement is checked. So in this case, even the condition is

false in the first attempt, do block of code is executed at least once.

Syntax:

 do{

 <statement>;

 ...;

 ...;

 }while (expression);

Example: Here first do block of code is executed and current value "1" is printed

then the condition i<=10 is checked. Here "1" is less than number "10" so the

control comes back to do block. This process continues till value of i becomes

greater than 10.

int i = 1;

do{

 System.out.println("Num: " + i);

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 28/31

 i++;

}while(i <= 10);

For Loop Statements:

This is also a loop statement that provides a compact way to iterate over a

range of values. From a user point of view, this is reliable because it executes

the statements within this block repeatedly till the specified conditions is true

.

Syntax:

 for (initialization; condition; increment or decrement){

 <statement>;

 ...;

 ...;

 }

initialization: The loop is started with the value specified.

condition: It evaluates to either 'true' or 'false'. If it is false then the loop is

terminated.

increment or decrement: After each iteration, value increments or

decrements.

Example: Here num is initialized to value "1", condition is checked whether

num<=10. If it is so then control goes into the loop and current value of num

is printed. Now num is incremented and checked again whether num<=10.If

it is so then again it enters into the loop. This process continues till num>10.

It prints values 1 to10 on the screen.

for (int num = 1; num <= 10; num++){

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 29/31

 System.out.println("Num: " + num);

}

Jump Statements

Break statements:

The break statement is a branching statement that contains two forms: labeled

and unlabeled. The break statement is used for breaking the execution of a loop

(while, do-while and for). It also terminates the switch statements.

Syntax:

 break; // breaks the innermost loop or switch statement.

 break label; // breaks the outermost loop in a series of nested loops.

Example: When if statement evaluates to true it prints "data is found" and

comes out of the loop and executes the statements just following the loop.

int num[]= {2,9,25,4,16};

int search=4;

for (int i=1; i<num.length;i++)

{

if num[i]==search)

{

System.out.println(“data is found”);

break;

}

}

Continue statements:

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 30/31

This is a branching statement that are used in the looping statements (while, do-

while and for) to skip the current iteration of the loop and resume the next

iteration .

Syntax:

 continue;

Example:

int num[]={2,9,1,4,25,50)

int search=4;

for(int i=1; i<num.length,i++){

if (num[i]!=search){

continue;

}

if(found==search){

System.out.println(“data is found”);

break;

}

}

Return statements:

It is a special branching statement that transfers the control to the caller of the

method. This statement is used to return a value to the caller method and

terminates execution of method. This has two forms: one that returns a value

and the other that cannot return. The returned value type must match the

return type of method.

Syntax:

 return;

An Overview of Java 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 31/31

 return values;

return; //This returns nothing. So this can be used when method

is declared with void return type.

return expression; //It returns the value evaluated from the expression.

Example: Here Welcome() function is called within println() function which

returns a String value "Welcome to roseIndia.net". This is printed to the screen.

public static void Hello(){

System.out.println(“Hello” + Welcome());

}

static String Welcome() {

return “Welcome to RoseIndia.net”;

}

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 1/38

KARPAGAM ACADEMY OF HIGHER EDUCATION
(Deemed University Established Under Section 3 of UGC Act 1956)

Coimbatore - 641021.
(For the candidates admitted from 2016 onwards)

DEPARTMENT OF COMMERCE(CA)

SUBJECT : JAVA
SEMESTER : III
SUBJECT CODE: 16CCP304 CLASS : II M.COM CA

Unit – II

Classes – Objects – Methods – Constructors – The this keyword – finalize ()

method – Overloading methods – Returning objects – Recursion – Static – Final –

Nested inner classes – Command line arguments – Inheritance.

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 2/38

UNIT - II

Introduction to Classes

2.1 Introduction to Classes

 A class is a template that defines a type of object.

 Many objects can be constructed from a single class architecture.

 Class outlines the properties of an object.

 Objects created from the same class have similar characteristics.

 Class is a collection of data variables and methods.

 Java program must be included within class

 A program may contain any no. of classes.

 Class can be user-defined or built-in java packages.

Defining a class

 Class is defined using a keyword class followed by a user-defined class

name

Class classname

{

[variable declarations;]

[method declarations;]

}

 The data or variable defined within a class is called instance variables.

(eg)

class Exampleclass //class name

{

 char c; //data item

 int i;

 double dd;

 void exampleMethod1() //method

{

 System.out.println(“Hello World”);

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 3/38

}

 void exampleMethod2()

{

 System.out.println(“Hello HITEC”);

}

}

A class definition includes the following

Access Modifier - specifies the accessibility of class from other classes

Class Keyword Instance Fields – variables & constants that are used by objects of

the class.

Constructors - Methods having the same as class, used to control the initial state

of any class object.

Instance Methods – Define the function that can act upon objects in this class.

Class Fields – Variables & constants that belong to the class and are shared by

all objects of particular objects.

Class Method - Methods that belong to the class and are used to control the

values of class fields.

Class as Datatype

 Java has two types of data and two categories of variables.

 The datatype are primitive and non-primitive.

 Variables can either contain primitive values pr refer to objects.

2.2 Instance Variables

 These variables are declared in the class body.

 Instance variables belong to particular object.

 When an object is created, java automatically performs default initialization

for all instance variables.

(eg)

class Movie

{

string title;

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 4/38

string rating;

double cost;

int numOfAwards=0;

.

}

 Title, rating, cost etc are instance variables.

 Each of them is created for every object of the class Movie.

 To access instance variable of an object use dot(.)operator

Syntax:

Object_name.instance_variable

2.3 Class Variables

 Instance variables are created every time when a new object is created and

accessed with dot operator.

 If we want to define a member that is common to all objects and is

accessed without using a particular object, static keyword is used.

 Members declared as static belong to the class as a whole rather than

object.

 Class/Static variables can be accessed by using

 Class_name.class_variable

 (or)

Object_name.class_variable

(eg)

 Class Movie

 {

 static int numMovies;

 static double mincost=1.5;

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 5/38

 }

 Class variables are initialized when the class is loaded.

2.4 Instance Methods

 Java method is equivalent to function, procedure or subroutine in other

language.

 Adding methods to classes

 Methods are declared inside the body of the class but immediately after the

declaration of the instance variables & class variables.

returntype methodname(parameter_list)

{

 method_body;

}

 returntype can be primitive type such as int or class type such as string or

void.

 methodname begins with lowercase and compound words begins with

uppercase.

 parameter_list is optional separated by commas.

 Return Value:

 To return a value, return statement is used which takes a single value or

expression

(eg)

 String gettitle()

{

 return title;

}

 void printDetails()

{

 System.out.println(“Title is:”+title);

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 6/38

System.out.println(“Rating is:”+rating);

}

Method Accepting Parameters:

 A method can have 0 or any no. of arguments.

 Parameters list is always enclosed in parenthesis.

(eg)

 Void setDetails(string ntitle,string nrating,double ncost)

 {

 title=ntitle;

 rating=nrating;

 cost=ncost;

 }

2.5 Constructors

 Constructors are used to initialize member variables when object is

created.

 Constructors also perform many operations like allocating memory block,

opening files etc when an object is created.

 Constructor name is same as class name & do not have return type.

classname(parameter_list)

{

 constructor_body;

}

 If no constructors are declared in a class the compiler creates a default

constructor

classname()

{

}

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 7/38

(eg)

 Movie()

 {

 System.out.println(“A new movie object is created:”);

 }

 Movie(string r)

 {

 Rating=r;

 }

2.6 Class Methods

 A class static method is similar to a class variable in that it is assigned to a

class and not an object of that class.

Static returntype class_method_name(parameter_list)

{

 Method_body;

}

 To invoke a static method from another class,

Class_name.class_method_name(parameter_list)

 Class methods can also be called by using an object reference before the

dot operator as in the class if class variables

Object_name.class_method_name(parameter_list)

(eg)

 Class Movie

 {

 static void printTotalMovies()

 {

 System.out.println(“Total no. of movies are:”+Movie.numMovie);

 }

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 8/38

 }

The main() Method

 The main() method is an example of a class method.

 It is declared static because it is called by java runtime system before any

objects are created.

 public static void main(String args[])

 Argument is a multi-dimensional string array which accepts any command

line argument.

 The name argument can be any variable name that is not used within the

body of the method.

2.7 Declaring Objects

 Each instance of the class (i.e.) each object of the class contains its own

copy of the variables.

 Class declaration doesn’t create an actual object and hence doesn’t copy

memory.

 To create objects of a class new operator is used.

 The new operator

 All class objects are created by using a new keyword followed by a

constructor.

 The new operator performs the following functions

 Allocates memory for the new object.

 Calls the constructor to initialize the instance variables with the new

object.

 Returns the reference of the newly created object.

Class_name.object_name;

Object_name=new constructor;

 (or)

Class_name.object_name=new constructor;

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 9/38

(eg)

 Class Movie3

 {

 string title;

 string rating;

 double cost;

 int numOfAwards=0;

 static int nummovies;

 static double mincost=1.5;

 static

 {

 System.out.println(“Static Block”);

 mincost=1.27;

 }

 Movie(String ntitle)

 {

 numMovies++;

 title=ntitle;

 }

 String gettitle()

 {

 return title;

 }

 void printDetails()

 {

 System.out.println(“Title is:”+title);

 System.out.println(“Rating is:”+rating);

 }

 void setDetails(string ntitle,string nrating,double ncost)

 {

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 10/38

 Title=ntitle;

 Rating=nrating;

 Cost=ncost;

 }

 Static void printTotalMovies()

 {

 System.out.println(“Total no. of movies are:”+Movies.numMovies);

 public static void main(String args[])

 {

 Movie m1=new Movie(“The Last Resort”);

 Movie m2=new Movie(“Ice Age”);

 Movie.printTotalMovies();

 String t=m1.gettitle();

 System.out.println(“Title of m1 is:”+t);

 m2.setDetails(“Dil Mangae More”,”PG”,7.5);

 m2.printDetails();

 }

Object Reference Variables

 Object reference variables are declared in java with a statement that gives

the type of object to when variables expected to refer.

 Class_name anyRef;

 (eg)

 String myString;

2.8 Garbage Collection

 It is a process that handles the memory deallocation.

 When an object is created memory is allocated for the subject.

 When there is no more reference to that object it is marked for garbage

collection.

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 11/38

 When the garbage collector runs it searches for the marked memory and

free it.

 To force an object to be marked for garbage collection simply remove all

references to that object by setting it to null.

 Movie m1=null;

 Movie m2=null;

 JVM performs garbage collection in a low priority thread.

 When JVM has nothing else to do the garbage collector takes some CPU

time.

 System.gc() method can be invoked to explicitly request the garbage

collection.

 The Finalise() Method

The method helps to optimize the disposing of an object.

 finalize()

 {

 }

2.9 Method Overloading

 It enables to send different types of parameters to a method.

 It defines a method with one set of parameters.

 To overload that declare and define another versions with a different set of

parameters.

 In java it is possible to overload methods that have the same name,

provided they have different signatures.

 A method signature is formed by its name, with the no. & types of its

arguments.

 It is used when objects are required to perform a similar task by using

different parameters.

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 12/38

 When an object is called java matches the name, no. & type of parameters.

This process is called as polymorphism.

(eg)

 Class Movie

 {

 double cost;

 void setCost()

 {

 cost=3.50;

 }

 void setCost(double ncost)

 {

 cost=ncost;

 }

 public static void main(String args[])

 {

 Movie m1=new Movie();

 m1.setCost();

 m1.setCost(5.25);

 }

 }

2.10 Constructor Overloading

 If constructor is overloaded each one must have different signature.

 Constructor always have the name of the class and no return type.

(eg)

 Class Movie

 {

 String title;

 String rating;

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 13/38

 double cost;

 Movie()

 {

 System.out.println(“A new movie object created”);

 Movie(string ntitle)

 {

 title=ntitle;

 }

 Movie(String ntitle, String nrating,double ncost)

 {

 title=ntitle;

 rating=nrating;

 cost=ncost;

 }

 void printDetails()

 {

 System.out.println(“Title is:”+title);

 System.out.println(“Rating is:”+rating);

 System.out.println(“Cost is:”+cost);

 }

 }

 Class test2

 {

 public static void main(String args[])

 {

 Movie m1=new Movie();

 Movie m2=new Movie(“The Last Resort”);

 Movie m3=new Movie(“Ice Age”,”G”,10.25);

 m1.printdetails();

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 14/38

 m2.printDetails();

 m3.printDetails();

 }

 }

2.11 The ‘this’ Reference

 All instance method receives an implicit argument called this , which can

be used inside any method to refer to the current object.

 Current object is the object on which the method was called.

 When need to pass a reference to the current object as an argument to

another method.

 When we need to call a constructor from another constructor.

(eg)

 Class Movie

 {

 String title;

 String rating;

 double cost;

 void setDetails(Sstring ntitle,String nrating,double ncost)

 {

 this.title=title;

 rating=nrating;

 cost=ncost;

 }

 }

 class test3

 {

 public static void main(String args[])

 {

 Movie m1=new Movie();

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 15/38

 m1.setDetails(“Paradise Lost”,”PG”,7.6);

 }

 }

Calling constructor from another constructor

 Class Movie

 {

 String title;

 String rating;

 double cost;

 Movie(String ntitle)

 {

 this(ntitle);

 rating=nrating;

 cost=ncost;

 }

 }

 Class test4

 {

 public static void main(String a[])

 {

 Movie m1=new Movie(“The Sixth Sense”);

 Movie m2=new Movie(“Pride and Prejudice”,”G”,4.5);

 }

 }

2.12 Using Objects in Method

Objects as parameters

 When a primitive value is passed into a method a copy of its value is

passed into the method argument.

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 16/38

 If the method changes the value of the argument , only the local argument

is affected. when method terminates local argument is discarded.

 int num=150;

 obj.amethod(num);

 System.out.println(“num=”+num);

 public void amethod(int a)

 {

 If(a<0||a>100)

 a=0;

 System.out.println(“arg:”+a);

 }

 This manner of method calling is called call-by-value.

Call-by-reference

 Class Movie

 {

 Movie(String ntitle,String nrating,double ncost)

 {

 title=ntitle;

 rating=nrating;

 cost=ncost;

 }

 }

 Class test5

 {

 public static void main(String a[]);

 {

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 17/38

 Movie m1=new Movie(“Duplicate”,”G”,5.75);

 System.out.println(“Original title is:”+m1.title);

 xyz(m1);

 System.out.println(“New title is:”+m1.title);

 }

 Static void xyz(Movie X)

 {

 x.title=”Behnur”;

 }

 }

 This method of calling is called call-by-reference.

Returning objects

 Method can return primitive datatype or an object.

(eg)

 Class test

 {

 int a;

 test(int i)

 {

 a=i;

 }

 test incrbyten()

 {

 test temp=new test(a+10);

 return temp;

 }

 }

 Class Retob

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 18/38

 {

 public static void main(String args[])

 {

 test ob1=new test(2);

 test ob2;

 ob2=ob1.incrbyten();

 System.out.println(“ob1.a:”+ob1.a);

 System.out.println(“ob2.a:”+ob2.a);

 }

 }

2.13 Recursion

 Recursion is a process in which functions calls itself repeatedly until some

specific condition is satisfied.

 (eg)

 Class factorial

 {

 int num;

 int fact(int n) {

 If(n==0)

 return(1);

 num=n*fact(n-1);

 return num;

 }}

 Class factrecur

 {

 public static void main(String args[]){

 int result;

 factorial f1=new factorial();

 result=f1.fact(n);

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 19/38

 System.out.println(“Factorial=”+result);

 }}

2.14 Access Modifiers

 Access to member variables and methods in a java class is accomplished

three access modifiers.

 There are four access modifiers

 Default

 Private

 Protected

 Public

 Only classes in the same physical file or compilation unit have access to

member variables and methods with default access specifier.

 Most restrictive of all the access modifiers.

 Variables and methods are accessible only within the class it is declared.

 Variables and methods are accessible only in the class in which they are

declared and also in the classes derived from it(subclass).

 Last restrictive of all the access modifiers

 Variables and methods of all the accessible both inside and outside the

class in which they declared.

2.15 Command Line Arguments

 Parameters are passed at the time of invoking it for execution.

 Any argument passed through command line as passed to array args[].

 Java programs that can receive and use the arguments provided in the

command line

 public static void main(String args[])

(eg)

 class test

 {

 public static void main(String args[]) {

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 20/38

 int cnt,i=0;

 String str;

 cnt=args.length;

 System.out.println(“No. of arguments=”+cnt)

 while(i<cnt) {

 str=args[i];

 i=i+1;

 System.out.println(i+”argument is”+str)

 }} }

Inheritance

2.16 Basics Of Inheritance

 Reusability is one of the most important aspects of OOP paradigm.

 A class that is inherited is called super class or parent class or base class.

 The class that does inheriting is called sub class or child class or derived

class.

 A class can be built on another class that is already defined and that

exists.

 The child class inherits all the properties if the parent class (i.e.) it inherits

all the member variables and methods in the parent class.

 Single Inheritance Multiple Inheritance

 A

B

 A B

 C

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 21/38

Hierarchical Inheritance Multilevel Inheritance

 A classes in java can only extend one other class (i.e.) a class can have only

one immediate super class called linear inheritance.

 Multiple inheritances were not supported in java.

Defining subclass

 The root class for all java object is java.lang.object class.

Class classname extends parameters

{

// body of the child class

}

(eg)

 public class inherit1

 {

 public static void main(String args[])

 {

 childclass ch=new childclass();

 System.out.println(“ch.pi=”+ch.pi);

 System.out.println(“ch.ci=”+ch.ci);

 ch.parentMethod();

 ch.childMethod();

 A

 B C D

 A

 B

 C

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 22/38

 }

 }

 class childclass extends parentclass

 {

 int ci;

 Childclass()

 {

 ci=100;

 }

 void childMethod()

 {

 System.out.println(“HELLO HITEC”);

 }

 }

 class Parentclass

 {

 int pi;

 Parentclass()

 {

 pi=10;

 }

 void parentMethod()

 {

 System.out.println(“Hello World”);

 }

 }

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 23/38

Member Access and Inheritance

 A subclass includes all if the members of its superclass but it cannot

access those members if they are declared as private.

(eg)

 class A

 {

 int i;

 private int j;

 void getData(int x,int y)

 {

 i=x;

 j=y;

 }

 }

 class B extends A

 {

 int total;

 void sum()

 {

 Total=i+j;

 }

 }

 class inherit2

 {

 public static void main(String args[])

 {

 B obj=new B();

 obj.getData(10,12);

 obj.sum();

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 24/38

 System.out.println(“Total=”+obj.total);

 }

 }

2.17 Superclass Variable And Subclass Object

 A reference variable of a superclass can be assigned to any subclass

derived from that superclass.

 The rule for reference values is that conversions up the inheritance are

permitted(upcasting),but conversions down the hierarchy require explicit

casting(downcasting).

(<destination_type>) <reference>

 Casting requires compile time and runtime checks.

(eg)

 class A{}

 class B extends A{}

 class inherits 3

 {

 public static void main(String args[])

 {

 A a1=new A();

 B b1=new B();

 a1=b1;

 b1=(B)a1;

 A a2=new A();

 B b2=new B();

 b2=(B)a2;

- When objects are compared references a2 refers to the object of the class A,

which is parent of class B object of superclass cannot be assigned to object of

subclass.

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 25/38

-

2.18 The Super Reference

 Super reference is useful only when a class has a parent class.

 The super keyword refers to the immediate parent class object.

 The super has two forms

 Super(parameter_list);- This method calls the superclass constructor.

 Super_membername;-It is used to access a member of the superclass that

has been hidden by a member of a subclass.

Calling superclass constructors

 Subclass constructor is used to construct the instance variables if both the

subclass & superclass.

 Super() invokes the constructor of the superclass.

 The parameters on the super() call must match the order and type of

parameters declared in the superclass constructor.

(eg)

 public class employee

 {

 int empno;

 String name;

 String address;

 Employee(int e, String n, String a)

 {

 empno=e;

 name=n;

 address=a;

 }

 }

 class worker extends employee

 {

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 26/38

 int noofhrs;

 Worker(int c, String n, String a, int h)

 {

 super(e,n,a);

 Noofhrs=h;

 }

 }

Calling superclass Members

 The second form always refer to the members of the superclass of the

subclass in which it is used.

(eg)

 class A

 {

 int i;

 }

 class B extends A

 {

 int i;

 B(int a, int b)

 {

 super.i=a;

 i=b;

 }

 }

 class inherit 5

 {

 public static void main(String args[])

 {

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 27/38

 B b1=new B(1,2);

 System.out.println(b1.i);

 }

 }

2.19 Method Overriding

 A subclass inherits all the methods of its superclass

 Subclass can modify the behavior of a method in a superclass by overriding

it

 To override a superclass method, subclass defines a method with exactly

the same signature and return type.

(eg)

 public class inherit 8

 {

 public static void main(String args[])

 {

 Parentclass pa=new Parentclass();

 pa.parentMethod();

 childclass ch=new childclass();

 ch.parentMethod();

 ch.childMethod();

 }

 }

 class Parentclass

 {

 void parentMethod()

 {

 System.out.println(“Hello Parent”);

 }

 }

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 28/38

 class Childclass extends Parentclass

 {

 void childMethod()

 {

 System.out.println(“Hello Child”);

 }

 void parentMethod()

 {

 System.out.println(“Hello parent in the child class”);

 }

 }

Differences between Overloading and Overriding

2.20 The final keyword

Final variables

 If a variable is declared as final modifications is not possible.

 Final double pi=3.14;

Final Methods

 All methods can be overridden by default in the subclass

 To prevent from overriding the members of the superclass are declared

using the keyword final.

 Final void disp() {-------}

Overloading Overriding

 Class can have more than

one method with same name

but differ in no, type, and

order of the i/p parameter.

 Resolved at couple time.

 In subclass method has

same name, parameter list

and return type as

superclass method.

 Resolved at runtime.

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 29/38

(eg)

 Class A

 {

 Final void show()

 {

 System.out.println(“This is final method”);

 }

 }

 class B extends A

 {

 void show()

 {

 System.out.println(“Error”);

 }

 }

Final classes

 To from class from being inherited it can be defined using a final keyword.

 Final class A{………}

(eg)

 final class A

 {

 void show()

 {

 System.out.println(“Class A”);

 }

 }

 class B extends A

 {

 void disp()

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 30/38

 {

 System.out.println(“Class B”);

 }

 }

2.21 Abstract Classes and Interfaces

 In java, classes can be defined that are abstractions of real world objects.

These classes are called abstract classes.

The Abstract Classes

 It is necessary to create a superclass that only defines a general form that

can be shared by all of its subclasses.

 Abstract keyword is used before the class keyword in the class definition,

these classes do not take part in object creation.

 Any class can be specified with the keyword abstract to indicate that it

cannot be instantiated.

(eg)

 Abstract class A

 {

 }

 If object is created for the abstract class the compiler shows an error.

The Abstract Methods

 The methods with only method signature and no method body are called

abstract methods.

 Since no implementation a subclass must override them.

 Abstract method defined in a abstract class must be implemented by all it

subclasses.

 Only instance methods can be abstract

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 31/38

(eg)

 Abstract class A

 {

 Abstract void amethod1();

 Abstract void amethod2();

 }

 Abstract class B extends A

 {

 void amethod1();

 {

 System.out.println(“Implementing amethod1 in B”);

 }

 void bmethod()

 {

 System.out.println(“Another Completemethod”);

 }

 }

 class C extends B

 {

 void amethod2()

 {

 System.out.println(“Implementing amethod 2 in C”);

 }

 }

 class inter 1

 {

 public static void main(String args[])

 {

 C obj=new C();

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 32/38

 obj.amethod1();

 }

 }

Defining Interface

 An interface is a prototype for a class.

 An interface is like a fully abstract class.

 It is a collection of abstract method declaration and constants, methods in

an interface are implicitly abstract.

 Interfaces do not specify any code to implement the methods.

 Any class that implements an interface must implement all of the methods

specified in that interface.

 Interface offers multiple inheritances a class can implement many interface

but can extend only one class.

 Syntax:

 Interface interface_name

 {

 Variable declarations;

 Method declarations;

 }

(eg)

 interface item

 {

 static final int code=1001;

 static final string name=”fan”;

 void display();

 }

 The class which implements this interface must define the code for display()

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 33/38

Implementing Interfaces

 While implementing interface the interface method must have public

accessibility.

 If a class does not implement all of the interface methods then it must be

declared as abstract.

 Syntax

 Class classname implements interface1,interface2…..

 {

 }

 A class can also extend another class and also implement one or more

interface.

Syntax

Class classname extends superclass implements interface1,interface2…..

{

}

(eg)

 interface Area

 {

 static final float pi=3.14;

 float compute(float x, float y);

 }

 class Rectangle implements Area

 {

 public float compute(float x, float y);

 {

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 34/38

 return(x*y);

 }

 }

 class Circle implements Area

 {

 public float compute(float x, float y)

 {

 return(pi*x*x);

 }

 }

 class inter 2

 {

 public static void main(String args[])

 {

 Rectangle rect =new Rectangle();

 Circle cir=new Circle();

 System.out.println(“Area of Rectangle:”+rect.compute(10,20));

 System.out.println(“Area of Circle:”+cir.compute(10,0));

 }

 }

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 35/38

Variables in Interfaces

 Interface can be used to declare a set of constants that can be used in

different classes.

 Such constants can be public, static, final.

 It can be accessed by a class that implements this interface as well as any

other class.

 If a constant name is repeated in more than one interface it is fully

qualified name.

 <interface name>.<constantname>

 These variables must be initialized with a constant value that cannot be

changed by the implementing class.

(eg)

 interface one

 {

 public static final int p=6;

 int q=77;

 void aone();

 }

 interface two

 {

 int p=9;

 }

 class A implements one, two

 {

 int p=4;

 public void aone()

 {

 System.out.println(“P=”+this.p);

 System.out.println(“one.p=”+one.p);

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 36/38

 System.out.println(“q=”+q)

 }

 }

 public class inter 3

 {

 public static void main(String args[])

 {

 A a=new A();

 a.aone();

 System.out.println(“two.p=”+two.p);

 }

 }

Extending Interface

 Interface can also be extended using extends class.

 While interfaces are allowed to extend to other interfaces sub interfaces

cannot define the method declared in the super interfaces.

(eg)

 interface ItemConstants

 {

 int code=100;

 String name=”fan”;

 }

 interface Item extends ItemConstants

 {

 void display();

 }

 class MyItem implements Item

 {

 public void display()

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 37/38

 {

 System.out.println(“Code=”+code);

 System.out.println(“Name=”+name);

 }

 }

 class inter 5

 {

 public static void main(String args[])

 {

 MyItem i=new MyItem();

 i.display();

 }

 }

Interface Reference

 Although interface cannot be instantiated variables of an interface type can

be declared like abstract classes.

 Any object of a class that implements the interface can be assigned to a

variable of that interface type.

(eg)

 interface X

 {

 void disp();

 }

 class A implements X

 {

 public void disp()

 {

 System.out.println(“in A”);

 }

Introduction to Classes 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 38/38

 }

 class B extends A

 {

 public void disp()

 {

 System.out.println(“in B”);

 }

 }

 class C implements X

 {

 public void disp()

 {

 System.out.println(“in C”);

 }

 }

 class inter 6

 {

 public static void main(String args[])

 {

 X x;

 x=new B();

 x.disp();

 x.new c();

 x.disp();

 }

 }

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 1/24

KARPAGAM ACADEMY OF HIGHER EDUCATION

 (Deemed University Established Under Section 3 of UGC Act 1956)
Coimbatore - 641021.

 (For the candidates admitted from 2015 onwards)
 DEPARTMENT OF COMMERCE(CA)

SUBJECT : JAVA
SEMESTER : III
SUBJECT CODE: 16CCP304 CLASS : II M.COM CA

Unit – III

Packages and Interfaces: Packages – Access protection – Importing

packages – Interfaces – Exception handling: Fundamentals – Exception types –

Try and catch – Multiple catch – Nested try – throw – throws – finally – Build in

exception.

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 2/24

UNIT-III

Packages and Access Modifiers

3.1.1 Packages-An Introduction

 When software is developed all related files are stored into a single

directory.

 It is easy to handle when software is small, if it is bigger it is difficult.

 In java the sort of problems can be avoided by using the packages.

 Package is a way of organizing files into different directories according to

their functionality.

 In java package is a library of types(classes&interfaces)

 Multiple classes of larger programs are grouped together into packages.

 Packages can be conceptualized into the following ways:

 Type Libraries

 Hierarchical Organisation

 Avoiding name collisions

 Hiding the implementation

1 .Type Libraries:

 Packages are simply a set of libraries.

 Any program will atleast use the runtime libraries of the java API, some

of which are java.lang, java.io, java.util, java.net, java.awt, java.applet.

2. Hierarchical Organisation:

 A package is a tool to help to organize the types you create for the

program.

 With packages one can recognize a program into logically related groups

of types and organize the groups hierarchically.

 Packages can contain other packages also.

 The entities contained in a package-classes, interfaces, sub-packages are

called the members of the package.

 Java compilers & JVM use the package hierarchy as away to locate files

or a disk.

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 3/24

3. Avoiding name collisions:

 Packages help to avoid class name collisions when we use the same class

name as already defined.

Eg: vector is a class defined by user.

 This name conflict with vector class from JDK, but this never happens

 JDK uses java.util as a package name for the vector class.

4. Hiding the implementations:

 Packages is a tool that can help you isolate interface from

implementation.

 One can grant special access privileges to types within the same package.

(Eg) JDK package.

3.1.2 Package Naming Convention

 Package used by a program came from many sources.

 Name should not conflict with the package name created by others. Of

course one doesn’t know the name of the package created by others.

 To solve this java comes with a recommended naming convention for

packages.

 Java doesn’t enforce any naming convention it is up to you to take

measure for preventing naming conflict within java program.

3.1.3 The Package Declaration

 Packages are groups of related classes and interfaces.

 Built in packages user-defined packages.

 While writing java program class must be placed into a package.

 User can create own packages containing classes and interfaces.

 A class is placed into a packages by including a package declaration

at the top of the source file.

Syntax:

 Package package-name;

 (or)

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 4/24

 Package package-name.subpackage-name.

 It should be the first statement.

3.1.4 Creating Packages

 Package media

 Interface forever

 {

 …..

 …..

 }

 Class Movie

 {

 …..

 }

 Class Documentry

 {

 ….

 }

 Creates a packages named media

 Movie, forever, documentary are members

 . class files are generated by the compiler

 Directory is created namely media.

Classpath Variable

 CLASSPATH environment variable, one can indicate to java interpreter

where it can find the classes that run

 The actual construct of CLASSPATH depends on the system that you are

running.

 When an interpreter gets a class name it searches each directory in the

CLASSPATH until it finds the class its looking for.

Location of the Class Files

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 5/24

 To set a CLASSPATH environment variable so that it includes home

directory simply type

C:\> SET CLASSPATH = J:\ASHISH\

ASHISH it contains com/moviemagic/hits/commercial

 The order in which the directories are specified in the CLASSPATH

variable is important.

3.1.5 THE Import STATEMENT

 In java source file two ways are there to refer to a class or interface defined

in another packages

1) Use fully qualified name of the class.

2) Import that classes fully qualified name into our source file.

 Alternative is to import the class into the source file and then refer to the

class by its name.

 Import statement must be placed at the beginning of a file before any class

or interface defines

 import java.awt.Button;

 (or)

 import java.awt.*;

3.1.6 Illustration Package

 (eg)

 package mypack;

 public class classA

 {

 int addtwo (int a, int b)

 {

 return a+b;

 }

 }

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 6/24

 package mypack;

 public class classB

 {

 static void greet()

 {

 System.out.println(“Hi”);

 }

 }

Source file named as classA.java and classB.java

 Create directory named subpack1 in mypack and another directory

subpack2 in subpack1.place classC.java in subpack2

package mypack.subpack1.subpack2;

 public class classC

 {

 String x=”class of the subpackages”;

 void display()

 {

 System.out.println(x);

}

 }

Mypack . subpack1 . subpack2

Set the CLASSPATH variable as

c:\> SET CLASSPATH=J:\ASHISH\JAVA.

import mypack .*;

import mypack.subpack1.subpack2.*;

class myclass

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 7/24

{

 public static void main(String args[])

{

ClassA a=new classA();

classC c=new classC();

classB.greet();

c.display();

int z= a.addtwo (9,45);

System.out.println(z);

}

}

3.1.7 The Java Languages Packages

Following packages comprise the standard Java development environment

 Java language packages are also known as java.lang contains classes

that are core to the java languages

 The most of classes is object class, a class from which all others

inherits

 The other classes include thread, threadDeath, threadGroup which

are used to implement multi-threading capabilities and Data type

wrappers, string, stringBuffer, system and runtime, Exception, Errors

and throwable.

 Java.lang package also defines the Runnable interface to create

threads

 Math class is a library of math routine and values such as pi

Java I/O Packages

 Java.io provides a set of i/p and o/p streams used to read and write

date to files or other i/p and o/p sources.

Java Utility Package

 Java.util, contains a collection of utility classes. Among them are

several generic data structures (Dictionary, stack, vector, hashtable)

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 8/24

 It also contains observer interface and observable class

Java Networking Package

 Java.net contains classes and interface that implement various

networking capabilities

 Classes in this package implements URL a connection to URL a socket

connection, datagram packet.

Applet Packages

 Java.applet contains the applet classes

 It includes audioclip interface that provides a very high level abstraction

of audio

Abstract Window Toolkit packages

 3 packages are there

1)java.awt - it provides GUI elements used to get i/p from and display

information to the user such as windows, buttons, scrollbars, textitems

2)java.awt.image - it contains classes and interface for managing image

data such as setting the color model, cropping, color filtering setting pixel

values, grabbing, snapshots of the screen

3)java.awt.peer - it contains classes and interfaces that connect platform

independent AWT components to their platform-dependent

implementations.

3.1.8 Access Protection

 One of the most useful features of java packages is the ability to grant

access to classes, interfaces, methods or fields of the same packages

Access Levels for classes

 Classes must be either declared with the keyword public or have no

access specifier.

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 9/24

Access Levels for class Members

 3 access modifiers 1)private 2)public 3)protected

 Private access denoted by the keyword private accessible only to the

class which defines it.

 Package Access is denoted by lack of any access modifier keywords. It is

accessible to any type in the same package.

 Protected Access denoted by protected. Its field or method is accessible to

any type in the same package and to subclasses in any package.

 Public Access denoted by keyword public. Its field or method is

accessible to any type in any package.

3.2.1 Exception Handling

An exception is an abnormal condition that arises in a code sequence at run

time. A Java exception is an object that describes an exceptional condition that

has occurred in a piece of code. When an exceptional condition arises, an

object representing that exception is created and thrown in the method that

caused the error. An exception can be caught to handle it or pass it on

.Exceptions can be generated by the Java run-time system, or they can be

manually generated by your code.

3.2.1 Fundamentals of Exception Handling

Java exception handling is managed by via five keywords: try, catch, throw,

throws, and finally. Program statements to monitor are contained within a try

block if an exception occurs within the try block, it is thrown. Code within

catch block catch the exception and handle it. System generated exceptions are

automatically thrown by the Java run-time system. To manually throw an

exception, use the keyword throw. Any exception that is thrown out of a

method must be specified as such by a throws clause. Any code that absolutely

must be executed before a method returns is put in a finally block. General

form of an exception-handling block

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 10/24

try{ // block of code to monitor for errors

}catch (ExceptionType1 exOb){

 // exception handler for ExceptionType1}

catch (ExceptionType2 exOb){

 // exception handler for ExceptionType2

}//…

Finally // block of code to be executed before try block ends

}

3.2.2 Hierarchy of the Exception Class

The runtime has a base set of exceptions deriving from SystemException that it

throws when executing individual instructions. The following table

hierarchically lists the standard exceptions provided by the runtime and the

conditions under which you should create a derived class.

Exception type Base type Description Example

Exception Object Base class

for all

exceptions.

None (use a derived

class of this

exception).

SystemException Exception Base class

for all

runtime-

generated

errors.

None (use a derived

class of this

exception).

IndexOutOfRangeException SystemException Thrown by

the runtime

only when

Indexing an array

outside its valid

range:

http://msdn.microsoft.com/en-us/library/5whzhsd2.aspx
http://msdn.microsoft.com/en-us/library/system.systemexception.aspx
http://msdn.microsoft.com/en-us/library/system.indexoutofrangeexception.aspx

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 11/24

an array is

indexed

improperly.

arr[arr.Length+1]

NullReferenceException SystemException Thrown by

the runtime

only when a

null object is

referenced.

object o = null;

o.ToString();

AccessViolationException SystemException Thrown by

the runtime

only when

invalid

memory is

accessed.

Occurs when

interoperating with

unmanaged code or

unsafe managed

code, and an invalid

pointer is used.

InvalidOperationException SystemException Thrown by

methods

when in an

invalid state.

Calling

Enumerator.GetNext()

after removing an

Item from the

underlying collection.

ArgumentException SystemException Base class

for all

argument

exceptions.

None (use a derived

class of this

exception).

http://msdn.microsoft.com/en-us/library/system.nullreferenceexception.aspx
http://msdn.microsoft.com/en-us/library/system.accessviolationexception.aspx
http://msdn.microsoft.com/en-us/library/system.systemexception.aspx
http://msdn.microsoft.com/en-us/library/system.invalidoperationexception.aspx
http://msdn.microsoft.com/en-us/library/system.argumentexception.aspx

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 12/24

3.2.3 Types of exception

An exception is a problem that arises during the execution of a program. An

exception can occur for many different reasons, including the following:

 A user has entered invalid data.

 A file that needs to be opened cannot be found.

 A network connection has been lost in the middle of communications, or

the JVM has run out of memory.

Some of these exceptions are caused by user error, others by programmer

error, and others by physical resources that have failed in some manner.

To understand how exception handling works in Java, you need to understand

the three categories of exceptions:

 Checked exceptions: A checked exception is an exception that is

typically a user error or a problem that cannot be foreseen by the

programmer. For example, if a file is to be opened, but the file cannot be

found, an exception occurs. These exceptions cannot simply be ignored

at the time of compilation.

 Runtime exceptions: A runtime exception is an exception that occurs

that probably could have been avoided by the programmer. As opposed

to checked exceptions, runtime exceptions are ignored at the time of

compilation.

 Errors: These are not exceptions at all, but problems that arise beyond

the control of the user or the programmer. Errors are typically ignored in

your code because you can rarely do anything about an error. For

example, if a stack overflow occurs, an error will arise. They are also

ignored at the time of compilation

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 13/24

3.2.4 Exception Class

The Exception Class is the super class of the exception objects that should be

caught by the Java Program. It provide 2 constructors

 public Exception()

 public Exception(String message)

First is the default one and the second constructor takes a string as argument.

The Exception class does not define any methods of its own. It inherits

methods provided by Throwable.

String getMessage()

It returns the String object associated with the invoking exception object.

Void printStackTrace()

It displays the stack trace by sending information to System.err

String toString()

It returns a string containing the name of the invoking object and its

associated messages.

 Throwable fillInStackTrace()

It fills in the execution stack trace and can be used to obtain additional

information about the invoking error or exception.

 String getLocalizedMessage()

It is used to provide a localized message different from that passed to the

objects constructor.

3.2.5 Uncaught Exceptions

class Error1

{

Public static void main(String args[])

{

int a=10;

int b=5;

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 14/24

int c=5;

int x=a/(b-c);

System.out.println(“X=”+x);

int y=a/(b+c);

System.out.println(“Y=”+y);

}

}

When Java runtime detect the attempt to divide by zero, it constructs a new

exception object and then throws this exception. It is caught by the default

handler. The errors are printed by Stack Trace. The Stack Trace will always

show the sequence of method invocations that led to the error.

3.2.6 Handling Exceptions

An exception is generated when the program does some illegal operation.

Public class Example1

{

Public static void main(String args[])

{

int i=1, j=0,k;

k=i/j;

System.out.println(“Hello world”);

}}

Compiling the above program will give the following result.

Java.lang.ArithmeticException:/ by zero

At Example1.main(Example1.java:6)

The above exception can be handled properly using try-catch blocks

The try-catch construct

The general form of Exception handling block is

Try

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 15/24

{

// block of code to monitor for errors

}

Catch (Exceptiontype1 exob)

{

//code to handle exception of Exceptiontype1

}

Catch (Exceptiontype2 exob)

{

//code to handle exception of Exceptiontype2

}

Exceptions thrown during the execution of the try block can be caught and

handled in catch block. If an exception occurs which matches the argument of

catch, the statements in the curly braces that follows the catch keyword will be

executed.

public class Example2

{

public static void main(String args[])

{

int i=1,j=0,k;

try

{

k=i/j;

}

catch (ArithmeticException ae)

{

System.out.println(“Division by zero”);

}

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 16/24

System.out.println(“Hello World”);

}

}

Output

Division by zero

Hello World

public class Example2

{

public static void main(String args[])

{

int i=1,j=0,k;

try

{

k=i/j;

System.out.println(“Hello World”);

}

catch (ArithmeticException ae)

{

System.out.println(“Division by zero”);

}

}

}

Output

Division by zero

public class Example3

{

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 17/24

public static void main(String args[])

{

int i=1,j=0,k;

try

{

k=i/j;

}

catch (ArithmeticException ae)

{

System.out.println(“Division by zero”);

}

}

}

Output

Java.lang.ArithmeticException:/ by zero

At Example1.main(Example1.java:6)

Nested Try Block

It is a try block nested inside another try block. If inner try does not have a

catch handler then the stack is unwound and the next try block catch handlers

are inspected for a match.

class NestTry

{

public static void main(String args[])

{

try

{

int a=args.length;

int b=42/a;

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 18/24

System.out.println(“a=”+a);

try

{

if(a==1)

 a=9/(a-a);

if(a==2)

{

 int c[]={1};

 c[10]=99;

}

}

catch(ArrayIndexOutOfBoundException e)

{

System.out.println(“Array index out of bound” +e);

}

}

catch(ArithmeticException e)

{

System.out.println(“Divide by 0”+e);

}

}

}

Finally Block

If a try block has a finally block attached, the code block associated with finally

is always executed regardless of how the try block exits. A try block exits

because of normal termination by falling through the end brace, return or

break statement or an exception that was thrown. Both catch and finally

blocks are optional. At least one of the catch or finally blocks must exist with a

try.

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 19/24

class finallytest

{

public static void main(String args[])

{

int a[]={1,2};

char b[]={‘x’};

try

{

System.out.println(“in outer try”);

try

{

System.out.println(“in inner try”);

a[5]=10;

}

finally

{

System.out.println(“in inner finally”);

}

}

catch(ArithmeticException ae)

{

System.out.println(“in outer catch”);

}

Finally

{

System.out.println(“in outer finally”);

}

}}

Output

in outer try

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 20/24

in inner try

in inner finally

in outer finally

throw Clause

It is possible for the program to throw an exception explicitly rather than being

thrown by the Java runtime system.

Syntax:

Throw expression;

Here expression is an object of type Throwable or subclass of Throwable. There

are 2 ways to create Throwable object

1. Using a parameter into catch clause

2. creating one with the new operator.

Eg.

throw new NullPointerException(“demo”);

throw new ArtithmeticException();

The flow of execution stops immediately after throw statement.

class throwtest

{

static void xyz()

{

try

{

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 21/24

Throw new NullPointerException(“Exception thrown explicitly”);

}

catch (NullPointerException e)

{

System.out.println(“Caught inside xyz”);

throw e;

}

}

public static void main(String args[])

{

try

{

xyz();

}

catch(NullPointerException e)

{

System.out.println(“Caught inside main”+ e);

}

}

}

Output

Caught inside xyz

Caught inside main: java.lang.NullPointerException: Exception thrown

explicitly

Throws Clause

It lists the type of exception that a method might throw.

Syntax:

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 22/24

return_type method_name(parameter_list) throws exceptionlist

{

body of the method

}

Eg

class throwtest

{

static void methodone() throws IllegalAcessException

{

System.out.println(“inside method one”);

throw new IllegalAccessException(“Exception raised”);

}

public static void main(String args[])

{

try

{

methodone();

}

catch(IllegalAccessException e)

{

System.out.println(“Exception handled:”+e);

}

}

}

Output

inside method one

Exception handled: java.lang.IllegalAccessException:Exception raised

3.2.7 User defined Exception

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 23/24

It is done by defining a subclass of exception.

class myexception extends Exception

{

myexception(String message)

{

super(message);

}

}

class TestMyException

{

public static void main(String args[])

{

int x=5,y=1000;

try

{

float z=(float)x/(float)y;

if(z<0.01)

{

throw new myException(“Number is too small”);

}

}

catch(MyException e)

{

System.out.println(“Caught my exception”);

System.out.println(“e.getMessage());

}

finally

{

System.out.println(“I am always here”);

}}}

 Packages and Access Modifiers 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce(Computer Application), KAHE 24/24

Output

Caught my exception

Number is too small

I am always here

Multithreaded Programming 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 1/22

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act 1956)
Coimbatore - 641021.

(For the candidates admitted from 2016 onwards)
DEPARTMENT OF COMMERCE (CA)

SUBJECT : JAVA
SEMESTER : III
SUBJECT CODE: 16CCP304 CLASS : II M.COM CA

Unit – IV

Multithread programming: Thread model –Life cycle of thread –

Creating thread – Multiple threads – Thread priorities – Synchronization – Inter

thread Communication – Suspending, Resuming and Stopping threads – I/O

Applets, and other topics.

Multithreaded Programming 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 2/22

UNIT IV

4.1 Multithreaded Programming

Multithreading allows multiple tasks to execute concurrently within a single

program. The advantage of multiple threads in a program is that it utilizes

system resources better because other threads can grab CPU time when one

line of execution is blocked.

4.1.1 The Java Thread model

A thread goes through various stages in its life cycle. For example, a thread is

born, started, runs, and then dies. The stages of the thread are:

 New: A new thread begins its life cycle in the new state. It remains in this

state until the program starts the thread. It is also referred to as a born

thread.

 Runnable: After a newly born thread is started, the thread becomes

runnable. A thread in this state is considered to be executing its task.

 Waiting: Sometimes a thread transitions to the waiting state while the

thread waits for another thread to perform a task. A thread transitions

back to the runnable state only when another thread signals the waiting

thread to continue executing.

 Timed waiting: A runnable thread can enter the timed waiting state for

a specified interval of time. A thread in this state, transitions back to the

runnable state when that time interval expires or when the event it is

waiting for occurs.

 Terminated: A runnable thread enters the terminated state when it

completes its task or otherwise terminates.

Multithreaded Programming 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 3/22

4.1.2 Thread Priorities

Every Java thread has a priority that helps the operating system determine

the order in which threads are scheduled. Java priorities are in the range

between MIN_PRIORITY (a constant of 1) and MAX_PRIORITY (a constant of

10). By default, every thread is given priority NORM_PRIORITY (a constant of

5). Threads with higher priority are more important to a program and should

be allocated processor time before lower-priority threads. However, thread

priorities cannot guarantee the order in which threads execute and very much

platform dependent.

4.1.3 Creating a Thread

Java defines two ways in which this can be accomplished:

 You can implement the Runnable interface.

 You can extend the Thread class, itself.

Create Thread by Implementing Runnable:

The easiest way to create a thread is to create a class that implements the

Runnable interface.

To implement Runnable, a class need only implement a single method called

run(), which is declared like this:

public void run()

You will define the code that constitutes the new thread inside run() method.

It is important to understand that run () can call other methods, use other

classes, and declare variables, just like the main thread can.

After you create a class that implements Runnable, you will instantiate an

object of type Thread from within that class. Thread defines several

constructors. The one that we will use is shown here:

Thread(Runnable threadOb, String threadName);

Multithreaded Programming 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 4/22

Here threadOb is an instance of a class that implements the Runnable

interface and the name of the new thread is specified by threadName.

After the new thread is created, it will not start running until you call its start(

) method, which is declared within Thread. The start() method is shown here:

void start();

Example:

Here is an example that creates a new thread and starts it running:

class NewThread implements Runnable {

Thread t;

NewThread() {

 t = new Thread(this, "Demo Thread");

 System.out.println("Child thread: " + t);

 t.start(); // Start the thread

 }

.

 public void run() {

 try {

 for(int i = 5; i > 0; i--) {

 System.out.println("Child Thread: " + i);

 Thread.sleep(500);

 }

 }

 catch (InterruptedException e) {

 System.out.println("Child interrupted.");

 }

 System.out.println("Exiting child thread.");

 }

 }

 class ThreadDemo {

 public static void main(String args[]) {

Multithreaded Programming 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 5/22

 new NewThread(); // create a new thread

 try {

 for(int i = 5; i > 0; i--) {

 System.out.println("Main Thread: " + i);

 Thread.sleep(1000);

 }

 } catch (InterruptedException e) {

 System.out.println("Main thread interrupted.");

 }

 System.out.println("Main thread exiting.");

 }

 }

4.1.4 Runnable interface

The Runnable interface should be implemented by any class whose instances

are intended to be executed by a thread. The class must define a method of no

arguments called run. This interface is designed to provide a common protocol

for objects that wish to execute code while they are active. For example,

Runnable is implemented by class Thread. Being active simply means that a

thread has been started and has not yet been stopped.

In addition, Runnable provides the means for a class to be active while not

subclassing Thread. A class that implements Runnable can run without

subclassing Thread by instantiating a Thread instance and passing itself in as

the target. In most cases, the Runnable interface should be used if you are

only planning to override the run() method and no other Thread methods. This

is important because classes should not be subclassed unless the

programmer intends on modifying or enhancing the fundamental behavior of

the class.

public void run()

Multithreaded Programming 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 6/22

When an object implementing interface Runnable is used to create a thread,

starting the thread causes the object's run method to be called in that

separately executing thread.

4.1.5 Thread class

A thread is a thread of execution in a program. The Java Virtual Machine

allows an application to have multiple threads of execution running

concurrently. Every thread has a priority. Threads with higher priority are

executed in preference to threads with lower priority. Each thread may or may

not also be marked as a daemon. When code running in some thread creates a

new Thread object, the new thread has its priority initially set equal to the

priority of the creating thread, and is a daemon thread if and only if the

creating thread is a daemon.

When a Java Virtual Machine starts up, there is usually a single non-daemon

thread (which typically calls the method named main of some designated

class). The Java Virtual Machine continues to execute threads until either of

the following occurs:

 The exit method of class Runtime has been called and the security

manager has permitted the exit operation to take place.

 All threads that are not daemon threads have died, either by returning

from the call to the run method or by throwing an exception that

propagate beyond the run method.

There are two ways to create a new thread of execution. One is to declare a

class to be a subclass of Thread. This subclass should override the run

method of class Thread. An instance of the subclass can then be allocated and

started.

Multithreaded Programming 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 7/22

4.1.6 Thread Life Cycle

In the life cycle of the thread, only one thread can be executed and uses in the

CPU at a time. All the other thread should be in some other states. The are

mainly 5 states in the life cycle of thread.

States of a thread

1. newborn – New Thread that is created

2. runnable – Thread which is ready for execution and waiting for CPU

3. running – CPU gives the time and thread executes using run() method

4. blocked – Thread which is suspended, sleeping or waiting

4. dead – Thread completes execution

Methods

Start() – starts the thread

Stop() – kills the thread

Resume() – suspended thread resumes execution

Wait – used to run again using notify or notify all

4.1.7 Thread Scheduling

Thread scheduling is the process of determining execution order of threads. At

a time only one thread can be executed by the CPU. Schedulers follow different

algorithm to decide which thread gets CPU. The scheduler is platform

independent.

New born

Running Runnable

Blocked

Dead

Multithreaded Programming 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 8/22

There are two types of scheduling method

a) Pre-emptive Scheduling – priority based

If a thread with highest priority exists then current thread is moved to

Runnable state. It is used when the CPU encounters an important thread.

4.1.8 Thread priorities

Each thread is assigned a priority that affects the order of execution of the

thread. The scheduler lets the high priority thread to be executed first. A

thread can inherit the priority of its parent thread during execution. Priorities

are integer values from 1 to 10.

Methods

setPriority – it is used to set priority of the thread

getPriority – it reads the priority of the thread

MIN_PRIORITY – 1

MAX_PRIORITY – 10

NORM_PRIORITY – 5

If no priority is provided default priority is set as 5 that is NORM_PRIORITY.

Example

class A extends Thread

{

public void run()

{

System.out.println(“Thread A started”);

for(int i=0;i<=4;i++)

Multithreaded Programming 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 9/22

System.out.println(“From Thread A: i=”+i);

System.out.println(“Exit from A”);

}

}

class B extends Thread

{

public void run()

{

System.out.println(“Thread B started”);

for(int j=0;j<=4;j++)

System.out.println(“From Thread B: j=”+j);

System.out.println(“Exit from B”);

}

}

class C extends Thread

{

public void run()

{

System.out.println(“Thread C started”);

for(int k=0;k<=4;k++)

System.out.println(“From Thread C: k=”+k);

System.out.println(“Exit from C”);

}

}

class ThreadPriority

{

public static void main(String args[])

{

A threadA=new A();

B threadB=new B();

Multithreaded Programming 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 10/22

C threadC=new C();

threadC.setPriority(Thread.MAX_PRIORITY);

threadB.setPriority(Thread.getPriority()+1);

threadA.setPriority(Thread.MIN_PRIORITY);

System.out.println(“Start ThreadA”);

threadA.start();

System.out.println(“Start ThreadB”);

threadB.start();

System.out.println(“Start ThreadC”);

threadC.start();

System.out.println(“End of Main”);

}

}

b) Time-Sliced Scheduling

It is a non-priority based scheduling. Every thread executes for fixed length of

time. If the allotted time is over then the current thread moves to Runnable

state. The low or high priority threads gets the same time slots. The advantage

of this scheduling method is no thread starves for CPU.

4.1.9 Synchronization and Deadlock

Generally, one thread accesses one source of data (or to say, its own source)

like your thread accesses your bank account. Sometimes, it may be needed

multiple threads to access the same source of data like all the partners of a

business may be acting on the joint bank account at the same time. When

multiple threads access or share, there may be data corruption or

inconsistency.

To avoid data inconsistency, a concept called synchronization comes. The

literature meaning of synchronization is putting the events in an order.

Synchronized is a keyword of Java used as access modifier. A block of code

Multithreaded Programming 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 11/22

or a method can be synchronized. The advantage of synchronization is only one

thread is allowed to access the source and other threads are made to wait until

the first thread completes its task (of accessing the source). This is known as a

thread safe operation. Synchronization is a way of inter-thread

communication (another is join ()). In the following snippet of code, whole

method is synchronized.

4.1.10 Starvation and Deadlock

These are the two problems that may creep into the programming code if the

programmer is not aware of these concepts.

1. Your style of programming should allow fairly each thread to get

microprocessor time; this is known as fair system. A fair system does

not allow a thread to get starved of processor time. A starved thread is

the one that does not get processor for a long time. A starved thread

cannot give the output fast.

After starvation, another problem with threads is deadlock. When one thread

depends on another for their execution, a deadlock occurs. When two threads

are holding locks on two different resources, one thread would like to have

other's source, a deadlock occurs. Deadlock is the result of poor programming

code and is not shown by a compiler or execution environment as an exception.

When exists, the program simply hangs and programmer should take care of

himself.

Multithreaded Programming 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 12/22

4.1.11 Suspending, Resuming, or Stopping threads

Java provides complete control over multithreaded program. You can develop a

multithreaded program which can be suspended, resumed, or stopped

completely based on your requirements. There are various static methods

which you can use on thread objects to control their behavior. Following table

lists down those methods –

Sr.No. Method & Description

public void suspend()

This method puts a thread in the suspended state and can be
resumed using resume() method.

2

public void stop()

This method stops a thread completely.

3

public void resume()

This method resumes a thread, which was suspended using
suspend() method.

4

public void wait()

Causes the current thread to wait until another thread invokes the
notify().

5

public void notify()

Wakes up a single thread that is waiting on this object's monitor.

Prepared by K.Gomathi, Department of

4.2 I/O Applets

Streams

Reading and Writing Files

A stream can be defined as a sequence of data. The InputStream is used to

read data from a source and the OutputStream is used for writing data to a

destination. Here is a hierarchy of classes to deal with Input and Output

streams.

Input and Output Operations

 Java.io package – used for input and output operations

 Data retrieved from an input source and results sent to an output

destination

 All devices handled by streams (a logical entity that produces or consumes

information)

 Stream is linked to phys

 Streams – array of bytes or characters, a file, a pipe or a network

connection.

Multithreaded Programming 201

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE

Reading and Writing Files

stream can be defined as a sequence of data. The InputStream is used to

read data from a source and the OutputStream is used for writing data to a

destination. Here is a hierarchy of classes to deal with Input and Output

streams.

Operations

used for input and output operations

Data retrieved from an input source and results sent to an output

All devices handled by streams (a logical entity that produces or consumes

Stream is linked to physical device by Java I/O system.

array of bytes or characters, a file, a pipe or a network

2016-2018 Batch

 13/22

stream can be defined as a sequence of data. The InputStream is used to

read data from a source and the OutputStream is used for writing data to a

destination. Here is a hierarchy of classes to deal with Input and Output

streams.

Data retrieved from an input source and results sent to an output

All devices handled by streams (a logical entity that produces or consumes

array of bytes or characters, a file, a pipe or a network

Multithreaded Programming 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 14/22

 Two kinds of streams

o Byte stream – 8-bit I/O operation. 2 classes are InputStream and

OutputStream.

o Character stream – 16-bit Unicode character I/O. 2 classes are

Reader and Writer.

4.2.1Hierarchy of Classes in java.io package

 InputStream

o FilterInputStream

 BufferedInputStream

 DataInputStream

 LineNumberInputStream

 PushbackInputStream

o ByteArrayInputStream

o FileInputStream

o ObjectInputStream

o PipedInputStream

o StringBufferInputStream

 OutputStream

o FilterOutputStream

 BufferedOutputStream

 DataOutputStream

 PrintStream

o ByteArrayOutputStream

o FileOutputStream

Multithreaded Programming 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 15/22

o ObjectOutputStream

o PipedOutputStream

 Reader

o BufferedReader

 LineNumberReader

o CharArrayReader

o PipedReader

o StringReader

o FilterReader

 PushbackReader

o InputStreamReader

 FileReader

 Writer

o BufferedWriter

o CharArrayWriter

o FileWriter

o PipedWriter

o PrintWriter

o StringWriter

o OutputStreamWriter

 FileWriter

 File

 RandomAccessFile

 FileDescriptor

Multithreaded Programming 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 16/22

 StreamTokenizer

4.2.2 InputStream and OutputStream Classes

 InputStream

 InputStream is an abstract class that defines Java’s model of streaming

byte input. All of the methods in this class will throw an IOException on

error conditions.

 OutputStream

 OutputStream is an abstract class that defines streaming byte output. All

of the methods in this class return a void value and throw an IOException in

the case of errors.

 Example:

import java.io.*;

class filecopy

{

public static void main(String s[])

{

FileInputStream f1;

FileOutputStream f2;

try

{

f1=new FileInputStream(s[0]);

f2=new FileOutputStream(s[1]);

int i=f1.read();

while(i!=-1)

{

Multithreaded Programming 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 17/22

f2.write(i);

i=f1.read();

while(i!=-1)

{

f2.write(i);

i=f1.read();

}

f1.close();

f2.close();

}

catch(FileNotFoundException e)

{

}

catch(IOException e)

{

}

} }

4.2.3Reading Console Input

There are few ways to read input string from your console/keyboard. The

following smaple code shows how to read a string from the console/keyboard

by using Java.

Note: Java Console Example to read password

import java.io.*;

class ReadPasswordTest{

Multithreaded Programming 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 18/22

public static void main(String args[]){

Console c=System.console();

System.out.println("Enter password: ");

char[] ch=c.readPassword();

String pass=String.valueOf(ch);//converting char array into string.

}

public class ConsoleReadingDemo {

 public static void main(String[] args) {

BufferedReader reader = new BufferedReader(new

InputStreamReader(System.in));

 System.out.print("Please enter user name : ");

 String username = null;

 try {

 username = reader.readLine();

 } catch (IOException e) {

 e.printStackTrace();

 }

 System.out.println("You entered : " + username);

 Scanner in = new Scanner(System.in);

 System.out.print("Please enter user name : ");

 username = in.nextLine();

 System.out.println("You entered : " + username);

 Console console = System.console();

 username = console.readLine("Please enter user name : ");

 System.out.println("You entered : " + username);

 } }

Multithreaded Programming 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 19/22

The last part of code used java.io.Console class. We cannot get Console

instance from System.Console() when running the demo code through Eclipse.

Because eclipse runs your application as a background process and not as a

top-level process with a system console.

4.2.4 Writing Console Output

File file = new File("test.txt");

FileOutputStream fis = new FileOutputStream(file);

PrintStream out = new PrintStream(fis);

System.setOut(out);

System.out.println("First Line");

System.out.println("Second Line");

System.out.println("Third Line");

System.out.println("Fourth Line");

4.2.5 Applet Fundamentals

 public void init(): is used to initialized the Applet. It is invoked only

once.

 public void start(): is invoked after the init() method or browser is

maximized. It is used to start the Applet.

 public void stop(): is used to stop the Applet. ...

 public void destroy(): is used to destroy the Applet.

Transient and Volatile Modifiers

The volatile and transient modifiers apply to fields of classes. The transient

modifier tells the Java object serialization subsystem to exclude the field when

serializing an instance of the class. ... Volatile means other threads can edit

that particular variable. So the compiler allows access to them.

Multithreaded Programming 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 20/22

 When serializable interface is declared, the compiler knows that the

object has to be handled so as to be able to serialize it. However, if you declare

a variable in an object as transient, then it doesn’t get serialized.

Volatile

 Specifying a variable as volatile tells the JVM that any threads using that

variable are not allowed to cache that value at all.

Volatile modifier tells the compiler that the variable modified by volatile can be

changed unexpectedly by other parts of the program.

What are transient and volatile modifiers?

 Volatile is a access modifier that informs to the compiler that the variable

with this modifier can be changed unexpectedly by other elements of the

program. In multithreading environment, one or more threads can share the

same instance variables. Each thread can have its own copy of volatile variable.

The real copy or the master copy of the variable is updated at timesThe

transient access modifier is used at the time of object serialization in order not

to serialize the instance variable value.

Instance of

The java instanceof operator is used to test whether the object is an instance

of the specified type (class or subclass or interface).

The instanceof in java is also known as typecomparison operator because it

compares the instance with type. It returns either true or false. If we apply the

instanceof operator with any variable that has null value, it returns false.

Example

class Simple1{

Multithreaded Programming 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 21/22

public static void main(String args[]){

Simple1 s=new Simple1();

System.out.println(s instanceof Simple1);//true

}

}

strictfp

 strictfp is a keyword in the Java programming language that restricts

floating-point calculations to ensure portability. The strictfp command was

introduced into Java with the Java virtual machine (JVM) version 1.2 and is

available for use on all currently updated Java VMs.

Native Method

The Java native method is a great way to gain and merge the power of C

or C++ programming into Java. To use Java as a scientific and high

performance language, when efficient native Java compilers are not fully

implemented, use native method can boost the performance to at least the

speed of C compiled code

Assertion:

Assertion is a statement in java. It can be used to test your assumptions

about the program.

While executing assertion, it is believed to be true. If it fails, JVM will throw an

error named AssertionError. It is mainly used for testing purpose.

Advantage of Assertion:

It provides an effective way to detect and correct programming errors.

Multithreaded Programming 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 22/22

Syntax of using Assertion:

There are two ways to use assertion. First way is:

assert expression;

and second way is:

assert expression1 : expression2;

Simple Example of Assertion in java:

import java.util.Scanner;

 class AssertionExample{

 public static void main(String args[]){

 Scanner scanner = new Scanner(System.in);

 System.out.print("Enter ur age ");

 int value = scanner.nextInt();

 assert value>=18:" Not valid";

 System.out.println("value is "+value);

 } }

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 1/29

KARPAGAM ACADEMY OF HIGHER EDUCATION

(Deemed University Established Under Section 3 of UGC Act 1956)
Coimbatore - 641021.

(For the candidates admitted from 2016 onwards)
DEPARTMENT OF COMMERCE (CA)

SUBJECT : JAVA
SEMESTER : III
SUBJECT CODE: 16CCP304 CLASS : II M.COM CA

Unit – V

The Applet Class: Basics – Building applet code – Applet life cycle –

Creating an executable applet – Designing a web page – Running the applet –

Getting input from the user – Graphics programming: The graphic class – Lines

and rectangles – Circles and ellipses – Using control loops in applets – Drawing

bar charts.

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 2/29

UNIT V

5.1. Definition

 An Applet is a Java program that runs in a Web browser. An applet can

be a fully functional Java application because it has the entire Java API at its

disposal.

There are some important differences between an Applet and a standalone

Java application, including the following:

 An applet is a Java class that extends the java.applet.Applet class.

 A main() method is not invoked on an applet, and an applet class will not

define main().

 Applets are designed to be embedded within an HTML page.

 When a user views an HTML page that contains an applet, the code for

the applet is downloaded to the user's machine.

 A JVM is required to view an applet. The JVM can be either a plug-in of

the Web browser or a separate runtime environment.

 The JVM on the user's machine creates an instance of the applet class

and invokes various methods during the applet's lifetime.

 Applets have strict security rules that are enforced by the Web browser.

The security of an applet is often referred to as sandbox security,

comparing the applet to a child playing in a sandbox with various rules

that must be followed.

 Other classes that the applet needs can be downloaded in a single Java

Archive (JAR) file.

5.1.1 Local Applets

Local applets are applet types that are developed and stored in local

system. The web page will search the local system directories, find the

local applet and execute it. Execution of local applet does not require

internet connection.

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 3/29

Specifying a Local Applet

<applet codebase="path" code="NewApplet.class" width=120

height=120 >

</apple>

Remote Applets

Local applets are applet types that are developed and stored in local

system. The web page will search the local system directories, find the

local applet and execute it. Execution of local applet does not require

internet connection.

Specifying a Remote Applet

<applet

codebase="http://www.myconnect.com/applets/"

code="NewApplet.class"

width=120

height=120 >

</applet>

Note: The only difference between Local Applet and Remote Applet is the

value of the codebase attribute. In the first case, codebase specifies a

local folder, and in the second case, it specifies the URL at which the

applet is located.

5.1.2 Life Cycle of an Applet

 Various states, an Applet, undergo between its object creation and object

removal (when the job is over) is known as life cycle. Each state is represented

by a method. There exist 5 states represented by 5 methods. That is, in its life

of execution, the applet exists in one of these 5 states.

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 4/29

 These methods are known as "callback methods" as they are called

automatically by the browser whenever required for the smooth execution of

the applet. Programmers just write the methods with some code but never call.

Four methods in the Applet class :

 init: This method is intended for whatever initialization is needed for your

applet. It is called after the param tags inside the applet tag have been

processed.

 start: This method is automatically called after the browser calls the init

method. It is also called whenever the user returns to the page containing

the applet after having gone off to other pages.

 stop: This method is automatically called when the user moves off the page

on which the applet sits. It can, therefore, be called repeatedly in the same

applet.

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 5/29

 destroy: This method is only called when the browser shuts down normally.

Because applets are meant to live on an HTML page, you should not

normally leave resources behind after a user leaves the page that contains

the applet.

 paint: Invoked immediately after the start() method, and also any time the

applet needs to repaint itself in the browser. The paint() method is actually

inherited from the java.awt.

Applet Life Cycle Example

/*

 Applet Life Cycle Example

 This java example explains the life cycle of Java applet.

*/

import java.applet.Applet;

import java.awt.Graphics;

/*

 * Applet can either run by browser or appletviewer application.

 * Define <applet> tag within comments as given below to speed up

 * the testing.

 */

/*

<applet code="AppletLifeCycleExample" width=100 height=100>

</applet>

*/

public class AppletLifeCycleExample extends Applet{

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 6/29

 /*

 * init method is called first.

 * It is used to initialize variables and called only once.

 */

 public void init() {

 super.init();

 }

 /*

 * start method is the second method to be called. start method is

 * called every time the applet has been stopped.

 */

 public void start() {

 super.start();

 }

 /*

 * stop method is called when the the user navigates away from

 * html page containing the applet.

 */

 public void stop() {

 super.stop();

 }

 /* paint method is called every time applet has to redraw its

 * output.

 */

 public void paint(Graphics g) {

 super.paint(g);

 }

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 7/29

 /*

 * destroy method is called when browser completely removes

 * the applet from memeory. It should free any resources initialized

 * during the init method.

 */

 public void destroy() {

 super.destroy();

 }

}

5.1.3 Building Applet Code

To building the applet code two classes of java library are essential namely

Applet and Graphics.

 The Applet class is contained in java.applet package provides life and

beehaviour to the applet through its methods such as int(), start() and

paint().

 Unlike with applications, where java calls the main() method directly to

initiate the execution of the program, when an applet is loaded java

automatically calls a series of Applet class methods for starting running

and stopping the applet code.

 The Applet class therefore maintains the life cycle of an applet.

 To display the result of the applet code, the paint() method of the Applet

class is called up.

 The output may be test, graphics, or sound.

 The syntax of paint() method which requires a Graphic object as an

argument, is defined as follows

 public void paint(Graphics g)

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 8/29

 This requires that the applet code imports the java.awt package that

contain the Graphic class.

 All output operations of an applet are performed using the methods

defined in the graphics class.

The general format of applet code is as following:

import java.awt.*;

import java.applet.*;

.........................

.........................

public class applet classname extends Applet

{

.................................

................................ //statements

................................

public void paint(Graphics g)

{

..........................

..........................//Applet operations code

.........................

}

......................

.....................

}

Building Applet Code - Example

//HelloApplet.java

import java.applet.Applet;

import java.awt.*;

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 9/29

 public class HelloApplet extends Applet

 {

 public void paint(Graphics g)

 {

 g.drawString ("Welcome to Applet Tutorial !",100, 100);

 }

 }

Embedding Applet in HTML (Web Page) - Example

<HTML>

<HEAD>

<TITLE>

Hello World Applet

</TITLE>

</HEAD>

<body>

<h1>Hi, This is My First Java Applet on the Web!</h1>

<APPLET CODE="HelloApplet.class" width=500 height=400>

</APPLET>

</body>

</HTML>

5.1.4 Creating an Executable Applet

 Executable applet is nothing but the .class file of applet, which is

obtained by compiling the source code of the applet. Compiling the applet is

exactly the smae as compiling an application using following command.

 javac appletname.java

The compiled output file called appletname.class should be placed in the same

directory as the source file.

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 10/29

5.1.5 Designing a Web Page Applet

 Java applet are programs that reside on web page. A web page is

basically made up of text and HTML tags that can be interpreted by a

web browser or an applet viewer.

 Java source code, it can be prepared using any ASCII text editor.

 A web page is also called HTML page or HTML document.

 A Web pages are stored using a file extension .html such as my

Applet.html. Such files are referred to as HTML files.

 HTML files should be stored in the same directory as the compiled code

of the applets.

 A web page is marked by an opening HTML tag <HTML> and closing

HTML tag </HTML> and is divided into the following three major

parts:

 Comment Section

 Head Section

 Body Section

Comment Section

This is very first section of any web page containing the comments about

the web page functionality. It is important to include comments that tell us

what is going on in the web page. A comment line begins with <! And ends

with a > and the web browsers will ignore the text enclosed between them.

The comments are optional and can be included anywhere in the web page.

Head Section

This section contains title, heading and sub heading of the web page. The

head section is defined with a starting <Head> tag and closing </Head>

tag.

<Head>

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 11/29

<Title>Hello World Applet</Title>

</Head>

Body Section

After the Head Section the body section comes. This is called as body

section because the entire information and behavior of the web page is

contained in it, It defines what the data placed and where on to the screen.

It describes the color, location, sound etc. of the data or information that is

going to be placed in the web page.

<body>

<h1>Hi, This is My First Java Applet on the Web!</h1>

</body>

Applet Tag

 The <Applet...> tag supplies the name of the applet to be loaded and tells

the browser how much space the applet requires.

 The ellipsis in the tag <Applet...> indicates that it contains certain

attributes that must specified.

 The <Applet> tag given below specifies the minimum requirements to place

the Hellojava applet on a web page.

<Applet

code = "Hellojava.class"

width = 400

Height = 200 >

</Applet>

 This HTML code tells the browser to load the compiled java applet

Hellojava.class, which is in the same directory as this HTML file.

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 12/29

 It also specifies the display area for the applet output as 400 pixels

width and 200 pixels height.

 We can make this display area appear in the center of screen by using

the CENTER tags as showsn below:

<CENTER>

<Applet>

</Applet>

</CENTER>

 The applet tag discussed above specified the three things:

1. Name of the applet

2. Width of the applet (in pixels)

3. Height of the applet (in pixels)

Applet Adding HTML to html file

 To execute an applet in a web browser, you need to write a short HTML

text file that contains the appropriate APPLET tag. Here is the HTML file that

executes SimpleApplet:

<Applet code = "Hellojava.class" width = 400 Height = 200 >

</Applet>

 The width and height attributes specify the dimensions of the display

area used by the applet. After you create this file, you can execute the HTML

file called RunApp.html (say) on the command line.

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 13/29

 c:\ appletviewer RunApp.html

Running the Applet

 To execute an applet with an applet viewer, you may also execute the

HTML file in which it is enclosed, eg.

 c:\ appletviewer RunApp.html

 Execute the applet the applet viewer, specifying the name of your applet's

source file. The applet viewer will encounter the applet tag within the

comment and execute your applet.

Example: To Display Numerical Values in Java Applet (Getting input from

the user)

 In applets, we can display numerical values by first converting them into

strings and then using the drawstring() method of Graphics class we can do

this easily by calling the valueOf() Method of String class.

Example

import java.awt.*;

import java.applet.*;

public class DisplayNumericalValues extends Applet

{

 public void paint(Graphics g)

 {

 int val1 = 10;

 int val2 = 20;

 int sum = val1 + val2;

 String str_sum = "Sum="+String.valueOf(sum);

 g.drawString(str_sum,100,200);

 }

}

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 14/29

This applet runs using the following HTML file:

<HTML>

<HEAD>

 <TITLE>Display Numerical Values</TITLE>

</HEAD>

<BODY>

 <APPLET Code="DisplayNumericalValues.class" Width=400 Height=300>

 &/APPLET>

<BODY>

</HTML>

Output: Sum = 30

GRAPHICS PROGRAMMING

 Graphics in any language gives a wonderful look and feel to the users as

well as programmers. Programmers draw figures, strings etc with the help of

graphics. Without graphics the windows programming is incomplete. Java is

not behind. Java provides Abstract Window Toolkit.

5.2. AWT

 The Abstract Window Toolkit (AWT) is Java's original platform-

independent windowing, graphics, and user-interface widget toolkit. The AWT

classes are contained in the java.awt package. It is one of Java’s largest

packages. Because it is logically organized in a top-down, hierarchical fashion,

it is easier to understand and use.

 Graphics Class

 Drawing Strings

 Drawing Lines

 Drawing Rectangle

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 15/29

 Drawing Ellipses and Circles and Ovals

 Drawing Arcs

 Drawing Polygons

Note: The java.awt.Graphics is an abstract class, as the actual act of drawing

is system-dependent and device-dependent. Each operating platform will

provide a subclass of Graphics to perform the actual drawing under the

platform, but conform to the specification defined in Graphics.

5.2.1Graphics Class

 Browser or appletviewer sends a Graphics object to the paint method.

 The Graphics object represents the applet window, current font, and

current color and provides methods to draw shapes (rectangles, triangles,

circles, etc.) and text on the window.

The Graphics Class Coordinate System

 Never use 0, 0 because the applet itself uses it for the title bar.

Graphics class methods

 No return type so they are all void

 Draw ()? methods draw an outlined share

 Fill ()? methods draw a solid shape

Displaying text use

 g.drawString ("string", x, y);

 Need to draw the strings.

Draw a line

 g.drawLine(xStart, yStart, xEnd, yEnd);

Draw a Square

 g.drawRect(int x,int y, int width, int height);

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 16/29

 Make multiple lines that attach at the points.

 For square, width and height value should be same.

Drawing a Rectangle

 g.drawRect(int x,int y, int width, int height);

 Use pixels for height and width and an anchoring corner.

Drawing an oval

 g.drawOval (int x, int y , int width, int height)

 drawn inside an invisible rectangle. Give rectangle coordinates.

 Graphics methods, Use offsets to make your figure easier to move

resize.

Using the Color class

 Found in the Java.awt

 All drawing is done in the current color

 Default color is black

 On the Graphics object method called setColor. This takes a Color

object.

Example: setColor(Color.RED);

 Many different constants in the color class defining many preset colors

 Colors consist of red, green and blue components (RGB)

 You may create custom colors in the Color class by passing in three

integers for red, green and blue.

Example: Color green = new Color(0,255,0);

 Static color Constants defined in the Color class

Color.BLACK

Color.WHITE

Color.GREEN

Color.BLUE

Color.CYAN

Color.LIGHT_GRAY

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 17/29

Color.DARK_GRAY

Color.GRAY

Color.ORANGE

Color.RED

Color.PINK

Color.YELLOW

Color.MAGENTA

 Using the Font class

 Also found in Java.awt

 Works just like color, in that color, in that the drawing of strings is

done in the current font.

Example:

 Font myFont = new Font(?TimesRoman? Font.ITALIC, 28);

 g.Font.setFont(myFont);

 Font(string fontName, int fontStyle, int fontSize)

Example

 import java.awt.*;

 class FontsExample extends JApplet

 {

 public void paint(Graphics g)

 {

 g.setFont(new Font("TimesRoman", Font.ITALIC, 28));

 g.drawString("Some Examples of Fonts", 20, 45);

 g.setFont(new Font("Helvetica", Font.PLAIN, 12));

 g.drawString("This is an example of plain 12pt Helvetica font", 20, 70);

 g.setFont(new Font("TimesRoman", Font.PLAIN, 12));

 g.drawString("This is an example of plain 12pt TimesRoman font", 20, 90);

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 18/29

 g.drawOval(10,10,50,50);

 g.fillOval(10,10,50,50);//filling colors in Oval0

 }

}

Drawing Strings

 These methods let you draw text strings on the screen. The coordinates

refer to the left end of the text's baseline.

 public abstract void drawString (String text, int x, int y) :- This

method draws text which is specified as the method’s argument on the screen

in the current font and color, starting at position (x, y).

Drawing Lines

 public abstract void drawLine (int x1, int y1, int x2, int y2):- The

drawLine() method draws a line on the graphics context in the current color

that begins at startX,startY and ends at endX,endY. If (x1, y1) and (x2, y2) are

the same point, it will draw a point. There is no method specific to drawing a

point.

Example:

import java.awt.*;

import java.applet.*;

/*

<applet code="Rectangles" width=300 height=200>

</applet>

*/

public class Lines extends Applet

{

 public void init()

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 19/29

 {

 setBackground (Color.black);

 setForeground(Color.green);

 }

 public void paint(Graphics g)

 {

 g.drawLine(0, 0, 100, 100);

 g.drawLine(0, 100, 100, 0);

 g.drawLine(40, 25, 250, 180);

 g.drawLine(75, 90, 400, 400);

 g.drawLine(20, 150, 400, 40); //line

 g.drawLine(5, 290, 80, 19); //line

 g.drawLine (5, 75, 5, 75); // point

 g.drawLine (50, 5, 50, 5); // point

 }

}

Output:

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 20/29

Drawing Rectangle

 public void drawRect (int x, int y, int width, int height):- The

drawRect() method draws a rectangle on the drawing area in the current

color from (x, y) to (x+width, y+height). If width or height is negative,

nothing is drawn.

 public abstract void fillRect (int x, int y, int width, int height):- The

fillRect() method draws a filled rectangle on the drawing area in the

current color from (x, y) to (x+width-1, y+height-1). The filled rectangle is

one pixel smaller to the right and bottom than requested. If width or

height is negative, nothing is drawn.

 public abstract void drawRoundRect (int x, int y, int width, int

height, int arcWidth, int arcHeight):- The drawRoundRect() method

draws a rectangle on the drawing area in the current color from (x, y) to

(x+width, y+height). Instead of perpendicular corners, the corners are

rounded with a horizontal diameter of arcWidth and a vertical diameter

of arcHeight. If width or height is a negative number, nothing is drawn.

If width, height, arcWidth, and arcHeight are all equal, you get a circle.

 public abstract void fillRoundRect (int x, int y, int width, int

height, int arcWidth, int arcHeight):- The fillRoundRect() method is

similar to drawRoundRect() method except that it draws a filled

rectangle on the drawing area in the current color from (x, y) to

(x+width-1, y+height-1). If width, height, arcWidth, and arcHeight are all

equal, you get a filled circle

Example:

import java.awt.*;

import java.applet.*;

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 21/29

/*

<applet code="Rectangles" width=300 height=200>

</applet>

*/

public class Rectangles extends Applet

{

 public void init()

 {

 setBackground(Color.black);

 setForeground(Color.green);

 }

 public void paint(Graphics g)

 {

 g.drawRect(10, 10, 60, 50);

 g.fillRect(100, 10, 60, 50);

 g.drawRoundRect(190, 10, 60, 50, 15, 15);

 g.fillRoundRect(70, 90, 140, 100, 30, 40);

 }

}

Output:

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 22/29

 public void fill3DRect (int x, int y, int width, int height, boolean

raised):- It is similar to the draw3DRect () method except that it draws

a filled rectangle in the current color from (x, y) to (x+width,y+height).. If

width or height is negative, the shadow appears from another direction,

and the rectangle isn't filled.

Example

import java.awt.*;

import java.applet.*;

/*

<applet code="Rectangles3D" width=300 height=200>

</applet>

*/

public class Rectangles3D extends Applet

{

 public void init()

 {

 setBackground(Color.black);

 }

 public void paint(Graphics g)

 {

 g.setColor (Color.gray);

 g.draw3DRect (25, 10, 50, 75, true);

 g.draw3DRect (25, 110, 50, 75, false);

 g.fill3DRect (100, 10, 50, 75, true);

 g.fill3DRect (100, 110, 50, 75, false);

 }

}

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 23/29

Output:

Drawing Ellipses and Circles and Ovals

 public abstract void drawOval (int x, int y, int width, int height):- The

drawOval() method draws an oval in the current color within an invisible

bounding rectangle from (x, y) to (x+width, y+height). You cannot specify

the oval's center point and radii. If width and height are equal, you get a

circle. If width or height is negative, nothing is drawn.

 public abstract void fillOval (int x, int y, int width, int height):- The

fillOval() method draws a filled oval in the current color within an invisible

bounding rectangle from (x, y) to (x+width-1, y+height-1). You cannot

specify the oval's center point and radii. Notice that the filled oval is one

pixel smaller to the right and bottom than requested. If width or height is

negative, nothing is drawn.

Example:

import java.awt.*;

import java.applet.*;

/*

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 24/29

<applet code="Ovals" width=300 height=200>

</applet>

*/

public class Ovals extends Applet

{

 public void init()

 {

 setBackground(Color.black);

 setForeground(Color.green);

 }

 public void paint(Graphics g)

 {

 g.drawOval(10, 10, 50, 50);

 g.fillOval(100, 10, 75, 50);

 g.drawOval(190, 10, 90, 30);

 g.fillOval(70, 90, 140, 100);

 }

 }

Output:

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 25/29

Drawing Arcs

 The drawArc() method draws an arc in the current color within an

invisible bounding rectangle from (x,y) to (x+width, y+height). The arc

starts at startAngle degrees and goes to startAngle + arcAngle degrees. An

angle of 0 degrees is at the 3 o'clock position; angles increase counter-

clockwise. If arcAngle is negative, drawing is in a clockwise direction. If

width and height are equal and arcAngle is 360 degrees, drawArc() draws a

circle. If width or height is negative, nothing is drawn.

 public abstract void fillArc (int x, int y, int width, int height, int

startAngle, int arcAngle):- The fillArc() method is similar to the drawArc()

method except that it draws a filled arc in the current color within an

invisible bounding rectangle from (x, y) to (x+width-1, y+height-1. If width

and height are equal and arcAngle is 360 degrees, fillArc() draws a filled

circle. import java.awt.*;

Example

import java.applet.*;

/*

<applet code="Arcs" width=300 height=200>

</applet>

*/

public class Arcs extends Applet

{

 public void init()

 {

 setBackground(Color.black);

 setForeground(Color.green);

 }

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 26/29

 public void paint(Graphics g)

 {

 g.drawArc(10, 40, 70, 70, 0, 75);

 g.fillArc(100, 40, 70, 70, 0, 75) ;

 g.drawArc(10, 100, 70, 80, 0, 175);

 g.fillArc(100, 100, 70, 90, 0, 270);

 g.drawArc(200, 80, 80, 80, 0, 180);

 }

}

Output:

Drawing Polygons

 public abstract void drawPolygon (int xPoints[], int yPoints[], int

numPoints):- The drawPolygon() method draws a path of numPoints nodes

by taking one element at a time out of xPoints and yPoints to make each

point. The path is drawn in the current color. If either xPoints or yPoints

does not have numPoints elements, drawPolygon() throws a run-time

exception

Example:

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 27/29

import java.awt.*;

import java.applet.*;

/*

<applet code="HourGlass" width=230 height=210>

</applet>

*/

public class HourGlass extends Applet

{

 public void init()

 {

 setBackground(Color.black);

 setForeground(Color.green);

 }

 public void paint(Graphics g)

 {

 int xpoints[] = {30, 200, 30, 200, 30};

 int ypoints[] = {30, 30, 200, 200, 30};

 int num = 5;

 g.drawPolygon(xpoints, ypoints, num);

 }

}

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 28/29

Output:

An entire Java graphics program:

import java.awt.*;

class GraphicsProgram extends Canvas{

 public GraphicsProgram(){

 setSize(200, 200);

 setBackground(Color.white);

 }

 public static void main(String[] argS){

 //GraphicsProgram class is now a type of canvas

 //since it extends the Canvas class

 //lets instantiate it

 GraphicsProgram GP = new GraphicsProgram();

 //create a new frame to which we will add a canvas

Applet and AWT 2016-2018 Batch

Prepared by K.Gomathi, Department of Commerce (Computer Application), KAHE 29/29

 Frame aFrame = new Frame();

 aFrame.setSize(300, 300);

 //add the canvas

 aFrame.add(GP);

 aFrame.setVisible(true);

 }

 public void paint(Graphics g){

 g.setColor(Color.blue);

 g.drawLine(30, 30, 80, 80);

 g.drawRect(20, 150, 100, 100);

 g.fillRect(20, 150, 100, 100);

 g.fillOval(150, 20, 100, 100);

 Image img1 = Toolkit.getDefaultToolkit().getImage("sky.jpg");

 g.drawImage(img1, 140, 140, this);

 }

}

Output:

	2013 QP.pdf (p.1)
	2014 QP.pdf (p.2)
	2016 QP.pdf (p.3)
	CIA I ANSWER KEY.pdf (p.4-16)
	CIA I QP.pdf (p.17)
	CIA II ANSWER KEY.pdf (p.18-31)
	CIA II QP.pdf (p.32-33)
	LECTURE PLAN.pdf (p.34-39)
	ONE MARK II.pdf (p.40-42)
	ONE MARK III.pdf (p.43-52)
	ONE MARK iv.pdf (p.53-56)
	ONE MARK V.pdf (p.57-60)
	ONE MARK.pdf (p.61-64)
	POSSIBLE QUESTIONS 1.pdf (p.65-66)
	POSSIBLE QUESTIONS 2.pdf (p.67-68)
	POSSIBLE QUESTIONS 3.pdf (p.69-70)
	POSSIBLE QUESTIONS 4.pdf (p.71-72)
	POSSIBLE QUESTIONS 5.pdf (p.73-74)
	SYLLABUS.pdf (p.75-77)
	UNIT I.pdf (p.78-108)
	UNIT II.pdf (p.109-146)
	UNIT III.pdf (p.147-170)
	UNIT IV.pdf (p.171-192)
	UNIT V.pdf (p.193-221)

